Copyright © 2000, 2001, 2002, 2003 by The FreeBSD Documentation Project
This document contains the hardware compatability notes for FreeBSD 4.8-RELEASE on the Alpha/AXP hardware platform (also referred to as FreeBSD/alpha 4.8-RELEASE). It lists devices known to work on this platform, as well as some notes on boot-time kernel customization that may be useful when attempting to configure support for new devices.
Note: This document includes information specific to the Alpha/AXP hardware platform. Versions of the hardware compatability notes for other architectures will differ in some details.
Additions, corrections and constructive criticism are invited. In particular, information on system quirks is more than welcome.
This document tries to provide a starting point for those who want to run FreeBSD on an Alpha-based machine. It is aimed at providing background information on the various hardware designs. It is not a replacement for the systems manuals.
The information is structured as follows:
general hardware requirements to run FreeBSD on alpha;
system specific information for each of the systems/boards supported by FreeBSD;
information on expansion boards for FreeBSD, including things that differ from what is in the generic supported hardware list.
Note: You will see references to DEC, Digital Equipment Corporation and Compaq used more or less interchangeably. Now that Compaq has acquired Digital Equipment it would be more correct to refer to Compaq only. Given the fact that you will see the mix of names everywhere, I don't bother.
Note: SRM commands will be in UPPER CASE. Lower case input is also acceptable to SRM. Upper case is used for clarity.
Note: Compaq has put information on the Web for Linux developers that is also very useful for FreeBSD users. Please check at Linux Alpha Power tools.
Obviously you will need an Alpha machine that FreeBSD knows about. Alpha machines are NOT like PCs. There are considerable differences between the various core logic chip sets and mainboard designs. This means that a kernel needs to know the intimate details of a particular machine before it can run on it. Throwing some odd GENERIC kernel at unknown hardware is almost guaranteed to fail miserably.
For a machine even to be considered for FreeBSD use please make sure it has the SRM console firmware installed. Or at least make sure that SRM console firmware is available for the particular machine type. If FreeBSD does not currently support your machine type, there is a good chance that this will change at some point in time, assuming SRM is available. All bets are off when SRM console firmware is not available.
Machines with the ARC or AlphaBIOS console firmware were intended for WindowsNT. Some have SRM console firmware available in the system ROMs which you only have to select (via an ARC or AlphaBIOS menu). In other cases you will have to re-flash the ROMs with SRM code. Check on http://ftp.digital.com/pub/DEC/Alpha/firmware to see what is available for your particular system. In any case: no SRM means no FreeBSD (or NetBSD, OpenBSD, Tru64 Unix or OpenVMS for that matter). With the demise of WindowsNT/alpha a lot of former NT boxes are sold on the second hand market. They have little or no trade-in value when they are NT-only from the console firmware perspective. So, be suspicious if the price appears too good.
Known non-SRM machines are:
Digital XL series
Digital XLT series
Samsung PC164UX (``Ruffian'')
Samsung 164B
Machines that have SRM but are not supported by FreeBSD are:
DECpc 150 (``Jensen'')
DEC 2000/300 (``Jensen'')
DEC 2000/500 (``Culzean'')
AXPvme series (``Medulla'')
To complicate things a bit further: Digital used to have so called ``white-box'' Alpha machines destined as NT-only and ``blue-box'' Alpha machines destined for OpenVMS and Digital Unix. These names are based on the color of the cabinets, ``FrostWhite'' and ``TopGunBlue'' respectively. Although you could put the SRM console firmware on a whitebox, OpenVMS and Digital Unix will refuse to boot on them. FreeBSD in post-4.0-RELEASE will run on both the white and the blue-box variants. Before someone asks: the white ones had a rather different (read: cheaper) Digital price tag.
As part of the SRM you will get the so called OSF/1 PAL code (OSF/1 being the initial name of Digital's UNIX offering on Alpha). The PAL code can be thought of as a software abstraction layer between the hardware and the operating system. It uses normal CPU instruction plus a handful of privileged instructions specific for PAL use. PAL is not microcode. The ARC console firmware contains a different PAL code, geared towards WinNT and in no way suitable for use by FreeBSD (or more generic: Unix or OpenVMS). Before someone asks: Linux/alpha brings its own PAL code, allowing it to boot on ARC and AlphaBIOS. There are various reasons why this is not a very good idea in the eyes of the *BSD folks. I don't want to go into details here. If you are interested in the gory details search the FreeBSD and NetBSD web sites.
There is another pitfall ahead: you will need a disk adapter that the SRM console firmware recognizes in order to be able to boot from a disk. What is acceptable to SRM as a boot adapter is unfortunately highly system and SRM version dependent. For older PCI based machines it means you will need either a NCR/Symbios 53C810 based adapter, or a Qlogic 1020/1040 based adapter. Some machines come with a SCSI chip embedded on the mainboard. Newer machine designs and SRM versions will be able to work with more modern SCSI chips/adapters. Check out the machine specific info below. Please note that the rest of this discussion only refers to Symbios chips, this is meant to include the older chips that still have NCR stamped on them. Symbios bought NCR sometime.
The problem might bite those who have machines that started their lives as WindowsNT boxes. The ARC or AlphaBIOS knows about other adapter types that it can boot from than the SRM. For example you can boot from an Adaptec 2940UW with ARC/AlphaBios but (generally) not with SRM. Some newer machine types have introduced Adaptec boot support. Please consult the machine specific section for details.
Most adapters that cannot be booted from work fine for data-only disks. The differences between SRM and ARC could also get you pre-packaged IDE CDROMs and hard drives in some (former WindowsNT) systems. SRM versions exist (depends on the machine type) that can boot from IDE disks and CDROMs. Check the machine specific section for details.
FreeBSD 4.0 and later can be booted from the distribution CDROM. Earlier versions needed booting from a 2 disk floppy set.
In order to be bootable the root partition (partition a) must be at offset 0 of the disk drive. This means you have to use the installer's partitioning menu and start with assigning partition a at offset 0 to the root partition. Subsequently layout the rest of the partitions to your liking. If you do not adhere to this rule the install will proceed just fine, but the system will not be bootable from the freshly installed disk.
If you don't have/want a local disk drive you can boot via the Ethernet. This assumes an Ethernet adapter/chip that is recognized by the SRM console. Generally speaking this boils down to either a 21040 or 21142 or 21143 based Ethernet interface. Older machines or SRM versions may not recognize the 21142 / 21143 Fast Ethernet chips, you are then limited to using 10Mbit Ethernet for net booting those machines. Non-DEC cards based on said chips will generally (but are not guaranteed to) work. Note that Intel took over the 21x4x chips when it bought Digital Semiconductor. So you might see an Intel logo on them these days. Recent machine designs have SRM support for Intel 8255x Ethernet chips.
Alpha machines can be run with SRM on a graphics console or on a serial console. ARC can also be run on a serial consoles if need be. VT100 emulation with 8 bit controls should at least allow you to switch from ARC/AlphaBIOS to SRM mode without having to install a graphics card first.
If you want to run your Alpha machine without a monitor/graphics card just don't connect a keyboard/mouse to the machine. Instead hook up a serial terminal[emulator] to serial port #1. The SRM will talk 9600N81 to you. This can also be really practical for debugging purposes. Beware: some/most (?) SRMs will also present you with a console prompt at serial port #2. The booting kernel, however, will display the boot messages on serial port #1 and will also put the console there. This can be extremely confusing.
Most PCI based Alphas can use ordinary PC-type VGA cards. The SRM contains enough smarts to make that work. It does not, however, mean that each and every PCI VGA card out on the street will work in an Alpha machine. Things like S3 Trio64, Mach64, and Matrox Millennium generally work. Old ET4000 based ISA cards have also worked for me. But ask around first before buying.
Most PCI devices from the PC-world will also work in FreeBSD PCI-based machines. Check the /sys/alpha/conf/GENERIC file for the latest word on this. Check the appropriate machine type's discussion in case you want to use PCI cards that have PCI bridge chips on them. In some cases you might encounter problems with PCI cards not handling PCI parity correctly. This can lead to panics. PCI parity checking can be disabled using the following SRM command:
>>> SET PCI_PARITY OFF
This is not a FreeBSD problem, all operating systems running on Alpha hardware will need this workaround.
If your system (also) contains EISA expansion slots you will need to run the EISA Configuration Utility (ECU) after you have installed EISA cards or after you have upgraded your console firmware.
For Alpha CPUs you will find multiple generations. The original Alpha design is the 21064. It was produced in a chip process called MOS4, chips made in this process are nicknamed EV4. Newer CPUs are 21164, 21264 etc. You will see designations like EV4S, EV45, EV5, EV56, EV6, EV67, EV68. The EVs with double digit numbers are slightly improved versions. For example EV45 has an improved FPU and 16 kByte on-chip separate I & D caches compared to the EV4 on which it is based. Rule of thumb: the higher the digit immediately following ``EV'' the more desirable (read: faster / more modern).
For memory you want at least 32 Mbytes. I have had FreeBSD run on a 16 Mbyte system but you will not enjoy that. Kernel build times halved when I went to 32 Mbytes. Note that the SRM console steals 2Mbyte from the total system memory (and keeps it). For more serious work 64 Mbytes or more are recommended.
While on the subject of memory: pay close attention to the type of memory your machine uses. There are very different memory configurations and requirements for the various machines.
Final word: I expect the above to sound a bit daunting to the first-time Alpha user. Don't be daunted too much. And do feel free to ask questions if something is not clear after reading this document.
Below is an overview of the hardware that FreeBSD runs on. This list will definitely grow, a look in /sys/alpha/conf/GENERIC can be enlightening.
Alpha machines are often best known by their project code name. Where known these are listed below in parentheses.
The NoName is a baby-AT mainboard based on the 21066 LCA (Low Cost Alpha) processor. NoName was originally designed for OEM-use. The LCA chip includes almost all of the logic to drive a PCI bus and the memory subsystem. All of this makes for a low-priced design.
Due to the limited memory interface the system is not particularly fast in case of cache misses. As long as you stay inside the on-chip cache the CPU is comparable to a 21064 (first generation Alpha). These boards should be very cheap to obtain these days. It is a full-fledged 64 bit CPU, just don't expect miracles as far as speed goes.
Features:
21066 Alpha CPU at 166 MHz or 21066A CPU at 233MHz. 21068 CPUs are also possible, but are even slower.
on-board Bcache / L2 cache: 0, 256k or 1 Mbyte (uses DIL chips)
PS/2 mouse & keyboard port OR 5pin DIN keyboard (2 mainboard models)
memory:
bus width: 64 bits
PS/2 style 72 pin 36 bit Fast Page Mode SIMMs
70ns or better
installed in pairs of 2
4 SIMM sockets
uses ECC
512kB Flash ROM for the console code.
2 16550A serial ports
1 parallel port
floppy interface
1 embedded IDE interface
expansion:
3 32 bit PCI slots (1 shared with ISA)
5 ISA slots (1 shared with PCI)
embedded Fast SCSI using a Symbios 53C810 chip
NoNames can either have SRM or ARC console firmware in their Flash ROM. The Flash ROM is not big enough to hold both ARC and SRM at the same time and allow software selection of alternate console code. But you only need SRM anyway.
Cache for the NoNames are 15 or 20 ns DIL chips. For a 256 kByte cache you want to check your junked 486 mainboard. Chips for a 1 Mbyte cache are a rarer breed unfortunately. Getting at least a 256kByte cache is recommended performance wise. Cache-less they are really slow.
The NoName mainboard has a PC/AT-standard power connector. It also has a power connector for 3.3 Volts. No need to rush out to get a new power supply. The 3.3 Volts is only needed in case you run 3.3 Volts PCI expansion boards. These are quite rare.
The IDE interface is supported by FreeBSD and requires a line in the kernel configuration file as follows:
device ata0 at isa? port IO_WD1 irq 14
The SRM console unfortunately cannot boot from IDE disks. This means you will have to use a SCSI disk as the boot device.
The NoName is somewhat stubborn when it comes to serial consoles. It needs
>>> SET CONSOLE SERIAL
before it goes for a serial console. Pulling the keyboard from the machine is not sufficient, like it is on most other Alpha models. Going back to a graphical console needs
>>> SET CONSOLE GRAPHICS
at the serial console.
There have been reports that you sometimes need to press Control-Alt-Del to capture the SRM's attention. I have never seen this myself, but it is worth trying if you are greeted by a blank screen after powerup.
Make sure you use true 36 bit SIMMs, and only FPM (Fast Page Mode) DRAM. EDO DRAM or SIMMs with fake parity will not work. The board uses the 4 extra bits for ECC. 33 bit FPM SIMMs will for the same reason not work.
Given the choice, get the PS/2-variant mainboard. Apart from giving you a mouse port as bonus it is directly supported by Tru64 Unix in case you ever want or need to run it. The ``DIN-plug''-variant should work OK for FreeBSD.
The OEM manual is recommended reading.
The kernel configuration file for a NoName kernel must contain:
options DEC_AXPPCI_33 cpu EV4
Note: Multia can be either Intel or Alpha CPU based. We assume Alpha based ones here for obvious reasons.
Multia is a small desktop box intended as a sort of personal workstation. They come in a considerable number of variations, check closely what you get.
Features:
21066 Alpha CPU at 166 MHz or 21066A CPU at 233MHz
on-board Bcache / L2 cache: COAST-like 256 kByte cache module; 233MHz models have 512kByte of cache; 166MHz models have soldered-on 256kB caches
PS/2 mouse & keyboard port
memory:
bus width: 64 bits
PS/2 style 72 pin 36 bit Fast Page Mode SIMMs
70ns or better
SIMMs are installed in pairs of 2
4 SIMM sockets
uses ECC
2 16550A serial ports
1 parallel port
floppy interface
Intel 82378ZB PCI to ISA bridge
1 embedded 21040 based 10Mbit Ethernet, AUI and 10base2 connector
expansion:
1 32 bit PCI slot
2 PCMCIA slots
on-board Crystal CS4231 or AD1848 sound chip
embedded Fast SCSI, using a Symbios 53C810[A] chip on the PCI riser card
Multia has enough Flash ROM to store both SRM and ARC code at the same time and allow software selection of one of them.
The embeded TGA video adapter is not currently usable as a FreeBSD console. You will need to use a serial console.
Multia has only one 32 bit PCI slot for expansion, and it is only suitable for a small form factor PCI card. By sacrificing the PCI slot space you can mount a 3.5" hard disk drive. Mounting stuff may have come with your Multia. Adding a 3.5" disk is not a recommended upgrade due to the limited power rating of the power supply and the extremely marginal cooling of the system box.
Multia also has 2 PCMCIA expansion slots. These are currently not supported by FreeBSD.
The CPU might or might not be socketed, check this before considering CPU upgrade hacks. The low-end Multias have a soldered-in CPU.
Multia has 2 serial ports but routes both of them to the outside world on a single 25 pin sub-D connector. The Multia FAQ explains how to build your own Y-cable to allow both ports to be used.
Although the Multia SRM supports booting from floppy this can be problematic. Typically the errors look like:
*** Soft Error - Error #10 - FDC: Data overrun or underrun
This is not a FreeBSD problem, it is a SRM problem. The best available workaround to install FreeBSD is to boot from a SCSI CDROM.
There have been reports that you sometimes need to press Control-Alt-Del to capture the SRM's attention. I have never seen this myself, but it is worth trying when you are greeted by a blank screen after powerup.
Sound works fine using pcm(4) driver and a line in the kernel configuration file as follows for the Crystal CS4231 chip:
device pcm0 at isa? port 0x530 irq 9 drq 3 flags 0x15
I have not yet been successful in getting my Multia with the AD1848 to play any sound.
While verifying playback I was reminded of the lack of CPU power of the 166MHz CPU. MP3 only plays acceptable using 22kHz down-sampling.
Multias are somewhat notorious for dying of heat strokes. The very compact box does not really allow access to cooling air. Please use the Multia on its vertical stand, don't put it horizontally (``pizza style''). Replacing the fan with something which pushes around more air is really recommended. You can also cut one of the wires to the fan speed sensor. Once cut, the fan runs at a (loud) full speed. Beware of PCI cards with high power consumption. If your system has died you might want to check the Multia-Heat-Death pages at the NetBSD Web site for help in reviving it.
The Intel 82378ZB PCI to ISA bridge enables the use of an IDE disk. This requires a line in the kernel configuration file as follows:
device ata0 at isa? port IO_WD1 irq 14
The IDE connector pin spacing is thought for 2.5" laptop disks. A 3.5" IDE disk would not fit in the case anyway. At least not without sacrificing your only PCI slot. The SRM console unfortunately does not know how to boot from IDE disks. You will need to use a SCSI disk as the boot disk.
In case you want to change the internal hard drive: the internal flat cable running from the PCI riser board to the 2.5" hard drive has a finer pitch than the standard SCSI flat cables. Otherwise it would not fit on the 2.5" drives. There are also riser cards that have a standard-pitch SCSI cable attached to it, which will fit an ordinary SCSI disk.
Again, I recommend against trying to cram a replacement hard disk inside. Use the external SCSI connector and put your disk in an external enclosure. Multias run hot enough as-is. In most cases you will have the external high density 50-pin SCSI connector but some Multia models came without disk and may lack the connector. Something to check before buying one.
The kernel configuration file for a Multia kernel must contain:
options DEC_AXPPCI_33 cpu EV4
Recommended reading on Multia can be found at http://www.netbsd.org/Ports/alpha/multiafaq.html or http://www.brouhaha.com/~eric/computers/udb.html.
The Miata is a small tower machine intended to be put under a desk. There are multiple Miata variants. The original Miata is the MX5 model. Because it suffers from a number of hardware design flaws a redesign was done, yielding the MiataGL. Unfortunately the variants are not easily distinguishable at first sight from the outside of the case. An easy check is to see if the back of the machine sports two USB connectors. If yes, it is a MiataGL. MX5 models tend to be more common in the used system market place.
System designations look like ``Personal Workstation 433a''. Personal Workstation, being a bit of a mouthful, is often abbreviated to PWS. This means it has a 433 MHz CPU, and started life as a WinNT workstation (the trailing ``a''). Systems designated from day 1 to run Tru64 Unix or OpenVMS will sport ``433au''. WinNT-Miatas are likely to come pre-configured with an IDE CDROM drive. So, in general systems are named like PWS[433,500,600]a[u].
There was also a Miata model with a special CPU cooling system by Kryotech. The Kryotech has a special cooling system and is housed in a different enclosure.
Features:
21164A EV56 Alpha CPU at 433, 500 or 600MHz
21174 core logic (``Pyxis'') chip
on-board Bcache / L3 cache: 0, 2 or 4 Mbytes (uses a cache module)
memory:
bus width: 128 bits wide, ECC protected
unbuffered 72 bit wide SDRAMs DIMMs, installed in pairs of 2
6 DIMM sockets
maximum memory 1.5 GBytes
on-board Fast Ethernet:
MX5 uses a 21142 or 21143 Ethernet chip, dependent on the version of the PCI riser card
MiataGL has a 21143 chip
the bulkhead can be 10/100 Mbit UTP, or 10 Mbit UTP/BNC
2 on-board [E]IDE disk interfaces, based on the CMD646 (MX5) or the Cypress 82C693 (MiataGL)
1 Ultra-Wide SCSI Qlogic 1040 [MiataGL only]
2 64-bit PCI slots
3 32-bit PCI slots (behind a DEC PCI-PCI bridge chip)
3 ISA slots (physically shared with the 32 bit PCI slots, via an Intel 82378IB PCI to ISA bridge chip)
2 16550A serial port
1 parallel port
PS/2 keyboard & mouse port
USB interface [MiataGL only]
embedded sound based on an ESS1888 chip
The Miata logic is divided into two printed circuit boards. The lower board in the bottom of the machine has the PCI and ISA slots and things like the sound chip etc. The top board has the CPU, the Pyxis chip, memory etc. Note that MX5 and the MiataGL use a different PCI riser board. This means that you cannot just upgrade to a MiataGL CPU board (with the newer Pyxis chip) but that you will also need a different riser board. Apparently an MX5 riser with a MiataGL CPU board will work but it is definitely not a supported or tested configuration. Everything else (cabinet, wiring, etc.) is identical for MX5 and MiataGL.
MX5 has problems with DMA via the 2 64-bit PCI slots when this DMA crosses a page boundary. The 32 bit slots don't have this problem because the PCI-PCI bridge chip does not allow the offending transfers. The SRM code knows about the problem and refuses to start the system if there is a PCI card in one of the 64bit slots that it does not know about. Cards that are ``known good'' to the SRM are allowed to be used in the 64bit slots.
If you want to fool the SRM you can type set pci_device_override at the SRM prompt. Just don't complain if your data mysteriously gets mangled.
The complete command is:
>>> SET PCI_DEVICE_OVERRIDE <vendor_id><device_id>
For example:
>>> SET PCI_DEVICE_OVERRIDE 88c15333
The most radical approach is to use:
>>> SET PCI_DEVICE_OVERRIDE -1
This disables PCI ID checking altogether, so that you can install any PCI card without its ID getting checked. For this to work you need a reasonable current SRM version.
Important: Do this on your own risk..
The FreeBSD kernel reports it when it sees a buggy Pyxis chip:
Sep 16 18:39:43 miata /kernel: cia0: Pyxis, pass 1 Sep 16 18:39:43 miata /kernel: cia0: extended capabilities: 1<BWEN> Sep 16 18:39:43 miata /kernel: cia0: WARNING: Pyxis pass 1 DMA bug; no bets...
A MiataGL probes as:
Jan 3 12:22:32 miata /kernel: cia0: Pyxis, pass 1 Jan 3 12:22:32 miata /kernel: cia0: extended capabilities: 1<BWEN> Jan 3 12:22:32 miata /kernel: pcib0: <2117x PCI host bus adapter> on cia0
MiataGL does not have the DMA problems of the MX5. PCI cards that make the MX5 SRM choke when installed in the 64bit slots are accepted without problems by the MiataGL SRM.
The latest mainboard revisions of MX5 contain a hardware workaround for the bug. The SRM does not know about the ECO and will complain about unknown cards as before. So does the FreeBSD kernel by the way.
The Miata SRM can boot from IDE CDROM drives. IDE hard disk boot is known to work for both MiataGL and MX5 disks, so you can root FreeBSD from an IDE disk. Speeds on MX5 are around 14 Mbytes/sec assuming a suitable drive. Miata's CMD646 chip will support up to WDMA2 mode as the chip is too buggy for use with UDMA.
Miata MX5s generally use Qlogic 1040 based SCSI adapters. These are bootable by the SRM console. Note that Adaptec cards are not bootable by the Miata SRM console.
The MiataGL has a faster PCI-PCI bridge chip on the PCI riser card than some of the MX5 riser card versions. Some of the MX5 risers have the same chip as the MiataGL. All in all there is a lot of variation.
Not all VGA cards will work behind the PCI-PCI bridge. This manifests itself as no video at all. Workaround is to put the VGA card ``before'' the bridge, in one of the 64 bit PCI slots. Graphics performance using a 64 bit slot is generally substantially better.
Both MX5 and MiataGL have an on-board sound chip, an ESS1888. It emulates a SoundBlaster and can be enabled by putting
device pcm0 device sbc0
in your kernel configuration file:
in case your Miata has the optional cache board installed make sure it is firmly seated. A slightly loose cache has been observed to cause weird crashes (not surprising obviously, but maybe not so obvious when troubleshooting). The cache module is identical between MX5 and MiataGL.
Installing a 2Mb cache module achieves, apart from a 10-15% speed increase (based on buildworld elapsed time), a decrease for PCI DMA read bandwidth from 64bit PCI cards. A benchmark on a 64-bit Myrinet card resulted in a decrease from 149 Mbytes/sec to 115 Mbytes/sec. Something to keep in mind when doing really high speed things with 64 bit PCI adapters.
Although the hardware allows you to install up to 1.5Gbyte of memory, FreeBSD is limited to 1Gbyte because the DMA code does not correctly handle memory above 1Gbyte.
Moving to a faster CPU is quite simple, swap out the CPU chip and set the clock multiplier dipswitch to the speed of the new CPU.
If you experience SRM errors like
ERROR: scancode 0xa3 not supported on PCXAL
after halting FreeBSD you should update your SRM firmware to V7.2-1 or later. This SRM version is first available on the Firmware Update CD V5.7, or on http://www.compaq.com/ This SRM problem is fixed on both Miata MX5 and Miata GL.
USB is supported by FreeBSD 4.1 and later.
Disconnect the power cord before dismantling the machine, the soft-power switch keeps part of the logic powered even when the machine is switched off.
The kernel configuration file for a Miata kernel must contain:
options DEC_ST550 cpu EV5
The DEC3000 series were among the first Alpha machines ever produced. They are based on an I/O bus called the TurboChannel (TC) bus. These machines are built like tanks (watch your back).
DEC3000 can be subdivided in DEC3000/500-class and DEC3000/300-class. The DEC3000/500-class is the early high-end workstation/server Alpha family. Servers use serial consoles, workstations have graphics tubes. DEC3000/300-class is the lower-cost workstation class.
DEC3000/500-class are quite fast (considering their age) thanks to the good memory design. DEC3000/300 is crippled compared to DEC3000/500 because of its much narrower memory bus.
They are called ``Birds'' because their internal DEC code names were bird names:
DEC3000/400 | Sandpiper | 133MHz CPU, desktop |
DEC3000/500 | Flamingo | 150MHz CPU, floor standing |
DEC3000/500X | Hot Pink | 200MHz CPU, floor standing |
DEC3000/600 | Sandpiper+ | 175MHz CPU, desktop |
DEC3000/700 | Sandpiper45 | 225MHz CPU, floor standing |
DEC3000/800 | Flamingo Ultra | 200MHz CPU, floor standing |
DEC3000/900 | Flamingo45 | 275MHz CPU, floor standing |
DEC3000/300 | Pelican | 150MHz CPU, desktop, 2 TC slots |
DEC3000/300X | Pelican+ | 175MHz CPU, desktop, 2 TC slots |
DEC3000/300LX | Pelican+ | 125MHz CPU, desktop, 2 TC slots |
DEC3000/300L | 100MHz CPU, desktop, no TC slots |
Features:
21064 CPU (100 to 200 MHz) or 21064A CPU (225 to 275 MHz)
memory DEC3000/500 class:
bus width: 256 bit, with ECC
proprietary 100pin SIMMs
installed in sets of 8
memory DEC3000/300 class:
bus width: 64 bit, with ECC
PS/2 style 72pin 36 bit FPM SIMMs 70ns or better
used in pairs of 2
Bcache / L2 cache: varying sizes, 512 kB to 2 Mbyte
built-in 10Mbit Ethernet based on a Lance 7990 chip, AUI and UTP
one or two SCSI buses based on a NCR53C94 or a NCR53CF94-2 chip
2 serial ports based on Zilog 8530 (one usable as a serial console)
embedded ISDN interface
on-board 8 bit sound
8 bit graphics on-board or via a TC card (depending on model)
Currently DEC3000 machines can only be used diskless on FreeBSD. The reason for this is that the SCSI drivers needed for the TC SCSI adapters were not brought into CAM that the recent FreeBSD versions use. TC option cards for single (PMAZ-A) or dual fast SCSI (PMAZC-AA) are also available. These cards currently have no drivers on FreeBSD either.
DEC3000/300 has 5 MBytes/sec SCSI on-board. This bus is used for both internal and external devices. DEC3000/500 has 2 SCSI buses. One is for internal devices only, the other one is for external devices only.
Floppy devices found in the DEC3000s are attached to the SCSI bus (via a bridge card). This makes it possible to boot from them using the same device names as ordinary SCSI hard-disks, for example:
>>> BOOT DKA300
The 3000/300 series has a half-speed TurboChannel compared to the other 3000 machines. Some TC expansion cards have troubles with the half-speed bus. Caveat emptor.
The embedded ISDN interface is not supported on FreeBSD.
DEC3000/300-class uses standard 36 bit, 72 pin Fast Page Mode SIMMs. EDO SIMMs, 32 or 33 bit SIMMs all will not work in Pelicans. For 32Mbyte SIMMs to work on the DEC3000/300-class the presence detect bits/pins of the SIMM must correspond to what the machine expects. If they don't, the SIMM is ``seen'' as a 8 Mbyte SIMM. 8 Mbyte and 32 Mbyte SIMMs can be mixed, as long as the pairs themselves are identical.
When you find yourself in need of fixing 32Mbyte SIMMs that lack correct presence bits the following info might be of use:
There are four presence detection bits on PS/2 SIMMs. Two of the bits indicate the access time. The other two indicate the memory size.
At one end of the SIMM there are two rows of four solder pads. One row is connected to Vss (GND) and the other is connected to pins 67 (PRD1), 68 (PRD2), 69 (PRD3), 70 (PRD4).
If you bridge a pair of pads with a small resistor or a drop of solder you ground that particular bit.
PRD1 | PRD2 | Memory Size |
---|---|---|
GND | GND | 4 or 64 Mbyte |
Open | GND | 2 or 32 Mbyte |
GND | Open | 1 or 16 Mbyte |
Open | Open | 8 Mbyte |
DEC3000/500-class can use 2, 4, 8, 16 and 32 Mbyte 100pin SIMMs. Note that the maximum memory size varies from system to system, desktop machines have sacrificed box size for less memory SIMM sockets. Given enough sockets and enough SIMMs you can get to 512 Mbytes maximum. This is one of the main differences between floor standing and desktop machines, the latter have far less SIMM sockets.
The sound hardware is not supported on any of the Birds.
There is no X-Windows version available for the TC machines. DEC3000/300 needs a serial console. DEC3000/500-class might work with a graphical console. I ran mine with a serial console so I cannot verify this.
Birds can be obtained from surplus sales etc. As they are not PCI based they are no longer actively maintained. TC expansion boards can be difficult to obtain these days and support for them is not too good unless you write/debug the code yourself. Programming information for TC boards is hard to find. Birds are recommended only if a. you can get them cheap and b. if you prepared to work on the code to support them better.
For the DEC3000/[4-9]00 series machines the kernel config file must contain:
options DEC_3000_500 cpu EV4
For the DEC3000/300 (``Pelican'') machines the kernel config file must contain:
options DEC_3000_300 cpu EV4
In its attempts to popularize the Alpha CPU DEC produced a number of so called Evaluation Boards. Members of this family are EB64, EB64+, AlphaPC64 (codename ``Cabriolet''). A non-DEC member of this family is the Aspen Alpine. The EB64 family of evaluation boards has the following feature set:
21064 or 21064A CPU, 150 to 275 MHz
memory:
memory buswidth: 128 bit
PS/2 style 72 pin 33 bit Fast Page Mode SIMMs
70ns or better
installed in sets of 4
8 SIMM sockets
uses parity memory
Bcache / L2 cache: 0, 512 kByte, 1 Mbyte or 2 Mbytes
21072 (``APECS'') chip set
Intel 82378ZB PCI to ISA bridge chip (``Saturn'')
dual 16550A serial ports
parallel printer port
Symbios 53C810 Fast-SCSI (not on AlphaPC64)
IDE interface (only on AlphaPC64)
embedded 10 Mbit Ethernet (not on AlphaPC64)
2 PCI slots (4 slots on AlphaPC64)
3 ISA slots
Aspen Alpine is slightly different, but is close enough to the EB64+ to run an EB64+ SRM EPROM (mine did..). The Aspen Alpine does not have an embedded Ethernet, has 3 instead of 2 PCI slots. It comes with 2 Mbytes of cache already soldered onto the mainboard. It has jumpers to select the use of 60, 70 or 80ns SIMM speeds.
36 bits SIMMs work fine, 3 bits simply remain unused. Note the systems use Fast Page Mode memory, not EDO memory.
The EB64+ SRM console code is housed in an UV-erasable EPROM. No easy flash SRM upgrades for the EB64+ The latest SRM version available for EB64+ is quite ancient anyway.
The EB64+ SRM can boot both 53C810 and Qlogic1040 SCSI adapters. Pitfall for the Qlogic is that the firmware that is down-loaded by the SRM onto the Qlogic chip is very old. There are no updates for the EB64+ SRM available. So you are stuck with old Qlogic bits too. I have had quite some problems when I wanted to use Ultra-SCSI drives on the Alpine with Qlogic. The FreeBSD kernel can be compiled to include a much newer Qlogic firmware revision. This is not the default because it adds hundreds of kBytes worth of bloat to the kernel. In FreeBSD 4.1 and later the isp firmware is contained in a kernel loadable module. All of this might mean that you need to use a non-Qlogic adapter to boot from.
AlphaPC64 boards generally come with ARC console firmware. SRM console code can be loaded from floppy into the Flash ROM.
The IDE interface of the AlphaPC64 is not bootable from the SRM console. Enabling it requires the following line in the kernel configuration file:
device ata0 at isa? port IO_WD1 irq 14
Note that the boards require a power supply that supplies 3.3 Volts for the CPU.
For the EB64 family machines the kernel config file must contain:
options DEC_EB64PLUS cpu EV4
EB164 is a newer design evaluation board, based on the 21164A CPU. This design has been used to ``spin off'' multiple variations, some of which are used by OEM manufacturers/assembly shops. Samsung did its own PC164LX which has only 32 bit PCI, whereas the Digital variant has 64 bit PCI.
21164A, multiple speed variants [EB164, PC164, PC164LX]
21164PC [only on PC164SX]
21171 (Alcor) chip set [EB164]
21172 (Alcor2) chip set [PC164]
21174 (Pyxis) chip [164LX, 164SX]
Bcache / L3 cache: EB164 uses special cache-SIMMs
memory bus: 128 bit / 256 bit
memory:
PS/2 style SIMMs in sets of 4 or 8
36 bit, Fast Page Mode, uses ECC, [EB164 / PC164]
SDRAM DIMMs in sets of 2, uses ECC [PC164SX / PC164LX]
2 16550A serial ports
PS/2 style keyboard & mouse
floppy controller
parallel port
32 bits PCI
64 bits PCI [some models]
ISA slots via an Intel 82378ZB PCI to ISA bridge chip
Using 8 SIMMs for a 256bit wide memory can yield interesting speedups over a 4 SIMM/128bit wide memory. Obviously all 8 SIMMs must be of the same type to make this work. The system must be explicitly setup to use the 8 SIMM memory arrangement. You must have 8 SIMMs, 4 SIMMs distributed over 2 banks will not work. For the AlphaPC164 you can have a maximum of 1Gbyte of RAM, using 8 128Mbyte SIMMs. The manual indicates the maximum is 512 Mbyte.
The SRM can boot from Qlogic 10xx boards or the Symbios 53C810[A]. Newer Symbios 810 revisions like the Symbios 810AE are not recognized by the SRM on PC164. PC164 SRM does not appear to recognize a Symbios 53C895 based host adapter (tested with a Tekram DC-390U2W). On the other hand some no-name Symbios 53C985 board has been reported to work. Cards like the Tekram DC-390F (Symbios875 based) have been confirmed to work fine on the PC164. Unfortunately this seems to be dependent on the actual version of the chip/board.
Symbios 53C825[a] will also work as boot adapter. Diamond FirePort, although based on Symbios chips, is not bootable by the PC164SX SRM. PC164SX is reported to boot fine with Symbios825, Symbios875, Symbios895 and Symbios876 based cards. In addition, Adaptec 2940U and 2940UW are reported to work for booting (verified on SRM V5.7-1). Adaptec 2930U2 and 2940U2[W] do not work.
164LX and 164SX with SRM firmware version 5.8 or later can boot from Adaptec 2940-series adapters.
In summary: this family of machines is ``blessed'' with a challenging compatibility as far as SCSI adapters go.
On 164SX you can have a maximum of 1 Gbyte of RAM. 4 regular 256MB PC133 ECC DIMMs are reported to work just fine. Whether 512MB DIMMs will also work is currently unknown.
PCI bridge chips are sometimes not appreciated by the 164SX, they cause SRM errors and kernel panics in those cases. This seems to depend on the fact if the card is recognised, and therefore correctly initialised, by the SRM console. The 164SX' onboard IDE interface is quite slow, a Promise card gives a 3-4 times speed improvement.
On PC164 the SRM sometimes seems to loose its variable settings. ``For PC164, current superstition says that, to avoid losing settings, you want to first downgrade to SRM 4.x and then upgrade to 5.x.'' One sample error that was observed was:
ERROR: ISA table corrupt!
A sequence of a downgrade to SRM4.9, an
>>> ISACFG -INIT
followed by
>>> INIT
made the problem go away. Some PC164 owners report they have never seen the problem.
On PC164SX the AlphaBIOS allows you a selection to select SRM to be used as console on the next power up. This selection does not appear to have any effect. In other words, you will get the AlphaBIOS regardless of what you select. The fix is to reflash the console ROM with the SRM code for PC164SX. This will overwrite the AlphaBIOS and will get you the SRM console you desire. The SRM code can be found on the Compaq Web site.
164LX can either have the SRM console code or the AlphaBIOS code in its flash ROM because the flash ROM is too small to hold both at the same time.
PC164 can boot from IDE disks assuming your SRM version is recent enough.
EB164 needs a power supply that supplies 3.3 Volts. PC164 does not implement the PS_ON signal that ATX power supplies need to switch on. A simple switch pulling this signal to ground allows you to run a standard ATX power supply.
For the EB164 class machines the kernel config file must contain:
options DEC_EB164 cpu EV5
The Digital AlphaStation 200 and 400 series systems are early low end PCI based workstations. The 200 and 250 series are desktop boxes, the 400 series is a desk-side mini-tower.
Features:
21064 or 21064A CPU at speeds of 166 up to 333 MHz
DECchip 21071-AA core logic chip set
Bcache / L2 cache: 512 Kbytes (200 and 400 series) or 2048KBytes (250 series)
memory:
64 bit bus width
8 to 384 MBytes of RAM
70 ns or better Fast Page DRAM
in three pairs (200 and 400 series)
in two quads, so banks of four. (250 series)
the memory subsystem uses parity
PS/2 keyboard and mouse port
two 16550 serial ports
parallel port
floppy disk interface
32 bit PCI expansion slots (3 for the AS400-series, 2 for the AS200 & 250-series)
ISA expansion slots (4 for the AS400-series, 2 for the AS200 & 250-series) (some ISA/PCI slots are physically shared)
embedded 21040-based Ethernet (200 & 250 series)
embedded Symbios 53c810 Fast SCSI-2 chip
Intel 82378IB (``Saturn'') PCI-ISA bridge chip
graphics is embedded TGA or PCI VGA (model dependent)
16 bit sound (on 200 & 250 series)
The systems use parity memory SIMMs, but these do not need 36 bit wide SIMMs. 33 bit wide SIMMs are sufficient, 36 bit SIMMs are acceptable too. EDO or 32 bit SIMMs will not work. 4, 8, 16, 32 and 64 Mbyte SIMMs are supported.
The AS200 & AS250 sound hardware is reported to work OK assuming you have the following line in your kernel config file:
device pcm0 at isa? port 0x530 irq 10 drq 0 flags 0x10011
AlphaStation 200 & 250 series have an automatic SCSI terminator. This means that as soon as you plug a cable onto the external SCSI connector the internal terminator of the system is disabled. It also means that you should not leave unterminated cables plugged into the machine.
AlphaStation 400 series have an SRM variable that controls termination. In case you have external SCSI devices connected you must set this SRM variable using
>>> SET CONTROL_SCSI_TERM EXTERNAL.
If only internal SCSI devices are present use:
>>> SET CONTROL_SCSI_TERM INTERNAL
For the AlphaStation-[24][05]00 machines the kernel config file must contain:
options DEC_2100_A50 cpu EV4
AS500 and 600 were the high-end EV5 / PCI based workstations. EV6 based machines have in the meantime taken their place as front runners. AS500 is a desktop in a dark blue case (TopGun blue), AS600 is a sturdy desk-side box. AS600 has a nice LCD panel to observe the early stages of SRM startup.
Features:
21164 EV5 CPU at 266, 300, 333, 366, 400, 433, 466, or 500 MHz (AS500) or at 266, 300 or 333 MHz (AS600)
21171 (Alcor) or 21172 (Alcor2) core logic chip set
Cache:
2 or 4 Mb L3 / Bcache (AS600 at 266 MHz)
4 Mb L3 / Bcache (AS600 at 300 MHz)
2 or 8 Mb L3 / Bcache (8 Mb on 500 MHz version only)
2 to 16 Mb L3 / Bcache (AS600; 3 cache-SIMM slots)
memory buswidth: 256 bits
AS500 memory:
industry standard 72 bit wide buffered Fast Page Mode DIMMs
8 DIMM slots
installed in sets of 4
maximum memory is 1 GB (512 Mb max on 333 MHz CPUs)
uses ECC
AS600 memory:
industry standard 36 bit Fast Page Mode SIMMs
32 SIMM slots
installed in sets of 8
maximum memory is 1 GB
uses ECC
Qlogic 1020 based wide SCSI bus (1 bus/chip for AS500, 2 buses/chip for AS600)
21040 based 10 Mbit Ethernet adapter, both Thinwire and UTP connectors
expansion:
AS500:
3 32-bit PCI slots
1 64-bit PCI slot
AS600:
2 32-bit PCI slot
3 64-bit PCI slots
1 PCI/EISA physically shared slot
3 EISA slots
1 PCI and 1 EISA slot are occupied by default
21050 PCI-to-PCI bridge chip
Intel 82375EB PCI-EISA bridge (AS600 only)
2 16550A serial ports
1 parallel port
16 bit audio Windows Sound System, in a dedicated slot (AS500) in EISA slot (AS600, this is an ISA card)
PS/2 keyboard and mouse port
Early machines had Fast SCSI interfaces, later ones are Ultra SCSI capable. AS500 shares its single SCSI bus with internal and external devices. For a Fast SCSI bus you are limited to 1.8 meters bus length external to the box. The AS500 Qlogic ISP1020A chip can be set to run in Ultra mode by setting a SRM variable. FreeBSD however follows the Qlogic chip errata and limits the bus speed to Fast.
Beware of ancient SRM versions on AS500. When you see weird SCSI speeds being reported by FreeBSD like
cd0 at isp0 bus 0 target 4 lun 0 cd0: <DEC RRD45 DEC 0436> Removable CD-ROM SCSI-2 device cd0: 250.000MB/s transfers (250.000MHz, offset 12)
it is time to do a SRM console firmware upgrade.
AS600 has one Qlogic SCSI chip dedicated to the internal devices whereas the other Qlogic SCSI chip is dedicated to external SCSI devices.
In AS500 DIMMs are installed in sets of 4, in ``physically interleaved'' layout. So, a bank of 4 DIMMs is not 4 physically adjacent DIMMs. Note that the DIMMs are not SDRAM DIMMs.
In AS600 the memory SIMMs are placed onto two memory daughter cards. SIMMs are installed in sets of 8. Both memory daughter cards must be populated identically.
Note that both AS500 and AS600 are EISA machines. This means you have to run the EISA Configuration Utility (ECU) from floppy after adding EISA cards or to change things like the configuration settings of the onboard I/O. For AS500 which does not have a physical EISA slot the ECU is used to configure the onboard sound interface etc.
AS500 onboard sound can be used by adding a line like
device pcm0 at isa? port? irq 10 drq 0 flags 0x10011
to the kernel configuration file.
Using the ECU I configured my AS500 to use IRQ 10, port 0x530, and drq 0. Note the uncommon flags in the kernel configuration.
AS600 has a peculiarity for its PCI slots. AS600 (or rather the PCI expansion card containing the SCSI adapters) does not allow I/O port mapping, therefore all devices behind it must use memory mapping. If you have problems getting the Qlogic SCSI adapters to work, add the following option to /boot/loader.rc:
set isp_mem_map=0xff
This may need to be typed at the boot loader prompt before booting the installation kernel.
For the AlphaStation-[56]00 machines the kernel config file must contain:
options DEC_KN20AA cpu EV5
The AlphaServer 1000 and 800 range of machines are intended as departmental servers. They come in quite some variations in packaging and mainboard/cpu. Generally speaking there are 21064 (EV4) CPU based machines and 21164 (EV5) based ones. The CPU is on a daughter card, and the type of CPU (EV4 or EV5) must match the mainboard in use.
AlphaServer 800 has a much smaller mini tower case, it lacks the StorageWorks SCSI hot-plug chassis. The main difference between AS1000 and AS1000A is that AS1000A has 7 PCI slots whereas AS1000 only has 3 PCI slots and has EISA slots instead.
AS800 with an EV5/400 MHz CPU was later re-branded to become a ``DIGITAL Server 3300[R]'', AS800 with an EV5/500 MHz CPU was later re-branded to become a ``DIGITAL Server 3305[R]''.
Features:
21064 EV4[5] CPU at 200, 233 or 266 MHz 21164 EV5[6] CPU at 300, 333 or 400 MHz (or 500 MHz for AS800 only)
memory:
buswidth: 128 bit with ECC
AS1000[A]:
72pin 36 bit Fast Page Mode SIMMs, 70ns or better
16 (EV5 machines) or 20 (EV4 machines) SIMM slots
max memory is 1 GB
uses ECC
AS800: Uses 60ns 3.3 Volts EDO DIMMs
embedded VGA (on some mainboard models)
3 PCI, 2 EISA, 1 64-bit PCI/EISA combo (AS800)
7 PCI, 2 EISA (AS1000A)
2 PCI, 1 EISA/PCI, 7 EISA (AS1000)
embedded SCSI based on Symbios 810 [AS1000] or Qlogic 1020 [AS1000A]
AS1000 based machines come in multiple enclosure types. Floor standing, rack-mount, with or without StorageWorks SCSI chassis etc. The electronics are the same.
AS1000-systems: All EV4 based machines use standard PS/2 style 36 bit 72pin SIMMs in sets of 5. The fifth SIMM is used for ECC. All EV5 based machines use standard PS/2 style 36 bit 72pin SIMMs in sets of 4. The ECC is done based on the 4 extra bits per SIMM (4 bits out of 36). The EV5 mainboards have 16 SIMM slots, the EV4 mainboards have 20 slots.
AS800 machines use DIMMs in sets of 4. DIMM installation must start in slots marked bank 0. A bank is four physically adjacent slots. The biggest size DIMMs must be installed in bank 0 in case 2 banks of different DIMM sizes are used. Max memory size is 2GB. Note that these are EDO DIMMs.
The AS1000/800 are somewhat stubborn when it comes to serial consoles. They need
>>> SET CONSOLE SERIAL
before they go for a serial console. Pulling the keyboard from the machine is not sufficient, like it is on most other Alpha models. Going back to a graphical console needs
>>> SET CONSOLE GRAPHICS
at the serial console.
For AS800 you want to check if your Ultra-Wide SCSI is indeed in Ultra mode. This can be done using the EEROMCFG.EXE utility that is on the Console Firmware Upgrade CDROM.
For the AlphaServer1000/1000A/800 machines the kernel config file must contain:
options DEC_1000A cpu EV4 # depends on the CPU model installed cpu EV5 # depends on the CPU model installed
Webbrick and Monet are high performance workstations/servers based on the EV6 CPU and the Tsunami chipset. Tsunami is also used in much higher-end systems and as such has plenty of performance to offer. DS10, VS10 and XP900 are different names for essentially the same system. The differences are the software and options that are supported. DS10L is a DS10 based machine in a 1U high rackmount enclosure. DS10L is intended for ISPs and for HPTC clusters (e.g. Beowulf)
21264 EV6 CPU at 466 MHz
L2 / Bcache: 2MB, ECC protected
memory bus: 128 bit via crossbar, 1.3GB/sec memory bandwidth
memory:
industry standard 200 pin 83 MHz buffered ECC SDRAM DIMMs
4 DIMM slots for DS10; 2GB max memory
2 DIMM slots for DS10L; 1GB max memory
DIMMs are installed in pairs of 2
21271 Core Logic chipset (``Tsunami'')
2 on-board 21143 Fast Ethernet controllers
AcerLabs M5237 (Aladdin-V) USB controller (disabled)
AcerLabs M1533 PCI-ISA bridge
AcerLabs Aladdin ATA-33 controller
embedded dual EIDE
expansion: 3 64-bit PCI slots and 1 32-bit PCI slot. DS10L has a single 64bit PCI slot
2 16550A serial ports
1 parallel port
2 USB
PS/2 keyboard & mouse port
The system has a smart power controller. This means that parts of the system remain powered when it is switched off (like an ATX-style PC power supply). Before servicing the machine remove the power cord.
The smart power controller is called the RMC. When enabled, typing EscapeEscapeRMC on serial port 1 will bring you to the RMC prompt. RMC allows you to powerup or powerdown, reset the machine, monitor and set temperature trip levels etc. RMC has its own builtin help.
Webbrick is shipped in a desktop-style case similar to the older 21164 ``Maverick'' workstations but this case offers much better access to the components. If you intend to build a farm you can rackmount them in a 19-inch rack; they are 3U high. Slate is 1U high but has only one PCI slot.
DS10 has 4 DIMM slots. DIMMs are installed as pairs. Please note that DIMM pairs are not installed in adjacent DIMM sockets but rather physically interleaved. DIMM sizes of 32, 64, 128, 256 and 512 Mbytes are supported.
When 2 pairs of identical-sized DIMMs are installed DS10 will use memory interleaving for increased performance. DS10L, which has only 2 DIMM slots cannot do interleaving.
Starting with SRM firmware version 5.9 you can boot from Adaptec 2940-series adapters in addition to the usual set of Qlogic and Symbios/NCR adapters.
The base model comes with a FUJITSU 9.5GB ATA disk as its boot device. FreeBSD works just fine using EIDE disks on Webbrick. DS10 has 2 IDE interfaces on the mainboard. Machines destined for Tru64 Unix or VMS are standard equipped with Qlogic-driven Ultra-SCSI disks
On the PCI bus 32 and 64 bit cards are supported, in 3.3V and 5V variants.
The USB ports are not supported and are disabled by the SRM console in all recent SRM versions.
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Note: Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
21264 EV6 at 500 MHz 21264 EV67 at 500 or 667 MHz (XP1000G, codenamed Brisbane) CPU is mounted on a daughter-card which is field-upgradable
L2 / Bcache: 4MB, ECC protected
memory bus: 256 bit
memory: 128 or 256 Mbytes 100 MHz (PC100) 168 pin JEDEC standard, registered ECC SDRAM DIMMs
21271 core logic chip set (``Tsunami'')
1 on-board 21143 Ethernet controller
Cypress 82C693 USB controller
Cypress 82C693 PCI-ISA bridge
Cypress 82C693 controller
expansion: 2 independent PCI buses, driven by high-speed I/O channels called ``hoses'':
hose 0: (the upper 3 slots) 2 64-bit PCI slots 1 32-bit PCI slot
hose 1: (the bottom 2 slots) 2 32-bit PCI slots (behind a 21154 PCI-PCI bridge)
2 of the 64-bit PCI slots are for full-length cards
all of the 32-bit PCI slots are for short cards
1 of the 32-bit PCI slots is physically shared with an ISA slot
all PCI slots run at 33MHz
1 Ultra-Wide SCSI port based on a Qlogic 1040 chip
2 16550A serial port
1 parallel port
PS/2 keyboard & mouse port
embedded 16-bit ESS ES1888 sound chip
2 USB ports
graphics options: ELSA Gloria Synergy or DEC/Compaq PowerStorm 3D accelerator cards
Monet is housed in a mini-tower like enclosure quite similar to the Miata box.
The on-board Qlogic UW-SCSI chip supports up to 4 internal devices. There is no external connector for the on-board SCSI.
For 500 MHz CPUs 83 MHz DIMMs will do. Compaq specifies PC100 DIMMs for all CPU speeds. DIMMs are installed in sets of 4, starting with the DIMM slots marked ``0'' Memory capacity is max 4 GB. DIMMs are installed ``physically interleaved'', note the markings of the slots. Memory bandwidth of Monet is twice that of Webbrick. The DIMMs live on the CPU daughter-card. Note that the system uses ECC RAM so you need DIMMs with 72 bits (not the generic PC-class 64 bit DIMMs)
The EIDE interface is usable / SRM bootable so FreeBSD can be rooted on an EIDE disk. Although the Cypress chip has potential for 2 EIDE channels Monet uses only one of them.
The USB interface is supported by FreeBSD.If you experience problems trying to use the USB interface please check if the SRM variable usb_enable is set to on. You can change this by performing:
>>> SET USB_ENABLE ON
Important: Don"t try to use Symbios-chip based SCSI adapters in the PCI slots connected to hose 1. There is a not-yet-found FreeBSD bug that prevents this from working correctly.
Important: Not all VGA cards will work behind the PCI-PCI bridge (so in slots 4 and 5). Only cards that implement VGA-legacy addressing correctly will work. Workaround is to put the VGA card ``before'' the bridge.
The sound chip is not currently supported with FreeBSD.
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Note: Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
Features:
21264 EV6 CPU at 500 or 670 MHz
dual CPU capable machine
L2 / Bcache: 4 Mbytes per CPU
memory bus: dual 256 bit wide with crossbar switch
memory:
SDRAM DIMMs
installed in sets of 4
16 DIMM slots, max. 4GB
uses ECC
21271 core logic chip set (``Tsunami'')
embedded Adaptec ? Wide Ultra SCSI
expansion:
2 independent PCI buses, driven by high-speed I/O channels called ``hoses''
6 64-bit PCI slots, 3 per hose
1 ISA slot
DS20 needs
>>> SET CONSOLE SERIAL
before it goes for a serial console. Pulling the keyboard from the machine is not sufficient. Going back to a graphical console needs
>>> SET CONSOLE GRAPHICS
at the serial console. Confusing is the fact that you will get SRM console output on the graphics console with the console set to serial, but when FreeBSD boots it honors the CONSOLE variable setting and all the boot messages as well as the login prompt will go to the serial port.
The DS20 is housed in a fat cube-like enclosure. The enclosure also contains a StorageWorks SCSI hot-swap shelf for a maximum of seven 3.5" SCSI devices. The DS20E is in a sleeker case, and lacks the StorageWorks shelf.
The system has a smart power controller. This means that parts of the system remain powered when it is switched off (like an ATX-style PC power supply). Before servicing the machine remove the power cord(s).
The smart power controller is called the RMC. When enabled, typing EscapeEscapeRMC on serial port 1 will bring you to the RMC prompt. RMC allows you to powerup or powerdown, reset the machine, monitor and set temperature trip levels etc. RMC has its own builtin help.
The embedded Adaptec SCSI chip on the DS20 is disabled and is therefore not usable under FreeBSD.
Starting with SRM firmware version 5.9 you can boot from Adaptec 2940-series adapters in addition to the usual set of Qlogic and Symbios/NCR adapters. This unfortunately does not include the embedded Adaptec SCSI chips.
If you are using banks of DIMMs of different sizes the biggest DIMMs should be installed in the DIMM slots marked 0 on the mainboard. The DIMM slots should be filled ``in order'' so after bank 0 install in bank 1 and so on.
Don't try to use Symbios-chip based SCSI adapters in the PCI slots connected to hose 1. There is a not-yet-found FreeBSD bug that prevents this from working correctly. DS20 ships by default with a Symbios on hose 1 so you have to move this card before you can install/boot FreeBSD on it.
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Note: Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
UP2000 is built by Alpha Processor Inc.
Features:
21264 EV6 CPU at 670 MHz
dual CPU capable
L2 / Bcache: 4 Mbytes per CPU
memory bus: 256 bit
memory: SDRAM DIMMs installed in sets of 4, uses ECC, 16 DIMM slots, max. 4GB
21272 core logic chip set (``Tsunami'')
embedded Adaptec AIC7890/91 Wide Ultra SCSI
2 embedded IDE based on Cypress 82C693 chips
embedded USB via Cypress 82C693
expansion:
2 independent PCI buses, driven by high-speed I/O channels called ``hoses''
6 64-bit PCI slots, 3 per hose
1 ISA slot
Currently a maximum of 2GB memory is supported by FreeBSD.
The on-board Adaptec is not bootable but works with FreeBSD 4.0 and later as a datadisk-only SCSI bus.
Busmaster DMA is supported on the first IDE interface only.
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Note: Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
The AlphaServer 2[01]00 machines are intended as departmental servers. This is medium iron. They are multi-CPU machines, up to 2 CPUs (AS2000) or 4 CPUs (2100[A]) can be installed. Both floor-standing and 19" rackmount boxes exist. Rackmount variations have different numbers of I/O expansion slots, different max number of CPUs and different maximum memory size. Some of the boxes come with an integral StorageWorks shelf to house hot-swap SCSI disks. There was an upgrade program available to convert your Sable machine into a Lynx by swapping the I/O backplane (the C-bus backplane remains). CPU upgrades were available as well.
21064 EV4[5] CPU[s] at 200, 233, 275 MHz or 21164 EV5[6] CPU[s]s at 250, 300, 375, 400 MHz
cache: varies in size with the CPU model; 1, 4 or 8Mbyte per CPU
embedded floppy controller driving a 2.88 Mbytes drive
embedded 10Mbit 21040 Ethernet [AS2100 only]
2 serial ports
1 parallel port
PS/2 style keyboard & mouse port
The CPUs spec-ed as 200 MHz are in reality running at 190 MHz. Maximum number of CPUs is 4. All CPUs must be of the same type/speed.
If any of the processors are ever marked as failed, they will remain marked as failed even after they have been replaced (or reseated) until you issue the command
>>> CLEAR_ERROR ALL
on the SRM console and power-cycle the machine. This may be true for other modules (IO and memory) as well, but it has not been verified.
The machines use dedicated memory boards. These boards live on a 128 bit C-bus shared with the CPU boards. DemiSable supports up to 1GB, Sable up to 2GB. One of the memory bus slots can either hold a CPU or a memory card. A 4 CPU machine can have a maximum of 2 memory boards.
Some memory board models house SIMMs. These are called SIMM carriers. There are also memory modules that have soldered-on memory chips instead of SIMMs. These are called ``flat memory modules''.
SIMM boards are used in sets of eight 72-pin 36 bit FPM memory of 70ns or faster. SIMM types supported are 1M x36 bit (4 Mbyte), 2M x36bit (8 Mbyte) and 4M x36 bit (16 Mbyte). Each memory board can house 4 banks of SIMMs. SIMM sizes can not be mixed on a single memory board. The first memory module must be filled with SIMMs before starting to fill the next memory module. Note that the spacing between the slots is not that big, so make sure your SIMMs fit physically (before buying them..)
Both Lynx and Sable are somewhat stubborn when it comes to serial consoles. They need
>>> SET CONSOLE SERIAL
before they go for a serial console. Pulling the keyboard from the machine is not sufficient, like it is on many other Alpha models. Going back to a graphical console needs
>>> SET CONSOLE GRAPHICS
at the serial console. On Lynx keep the VGA card in one of the primary PCI slots. EISA VGA cards are not slot sensitive.
The machines are equipped with a small OCP (Operator Control Panel) LCD screen. On this screen the self-test messages are displayed during system initialization. You can put your own little text there by using the SRM:
>>> SET OCP_TEXT "FreeBSD"
The SRM
>>> SHOW FRU
command produces an overview of your configuration with module serial numbers, hardware revisions and error log counts.
Both Sable, DemiSable and Lynx have Symbios 810 based Fast SCSI on-board. Check if it is set to Fast SCSI speed by
>>> SHOW PKA0_FAST
When set to 1 it is negotiating for Fast speeds.
>>> SET PKA0_FAST 1
enables Fast SCSI speeds.
AS2100[A] come equipped with a StorageWorks 7 slot SCSI cage. A second cage can be added inside the cabinet. AS2000 has a single 7 slot SCSI cage, which cannot be expanded with an additional one. Note that the slot locations in these cages map differently to SCSI IDs compared to the standard StorageWorks shelves. Slot IDs from top to bottom are 0, 4, 1, 5, 2, 6, 3 when using a single bus configuration.
The cage can also be set to provide two independent SCSI buses. This is used for embedded RAID controllers like the KZPSC (Mylex DAC960). Slot ID assignments for split bus are, from top to bottom: 0A, 0B, 1A, 1B, 2A, 2B, 3A, 3B. Where A and B signify a SCSI bus. In a single bus configuration the terminator module on the back of the SCSI cage is on the TOP. The jumper module is on the BOTTOM. For split bus operation these two modules are reversed. The terminator can be distinguished from the jumper by noting the chips on the terminator. The jumper does not have any active components on it.
DemiSable has 7 EISA slots and 3 PCI slots. Sable has 8 EISA and 3 PCI slots. Lynx, being newer, has 8 PCI and 3 EISA slots. The Lynx PCI slots are grouped in sets of 4. The 4 PCI slots closest to the CPU/memory slots are the primary slots, so logically before the PCI bridge chip. Note that contrary to expectation the primary PCI slots are the highest numbered ones (PCI4 - PCI7).
Make sure you run the EISA Configuration Utility (from floppy) when adding/change expansion cards in EISA slots or after upgrading your console firmware. This is done by inserting the ECU floppy and typing
>>> RUNECU
Note: EISA slots are currently unsupported, but the Compaq Qvision EISA VGA adapter is treated as an ISA device. It therefore works OK as a console.
A special Extended I/O module for use on the C-bus was planned-for. If they ever saw daylight is unknown. In any case FreeBSD has never been verified with an ExtIO module.
The machines can be equipped with redundant power supplies. Note that the enclosure is equipped with interlock switches that switch off power when the enclosure is opened. The system's cooling fans are speed controlled. When the machine has more than 2 CPUs and more than 1 memory board dual power supplies are mandatory.
The kernel config file must contain:
options DEC_2100_A500 cpu EV4 #dependent on CPU model installed cpu EV5 #dependent on CPU model installed
The AlphaServer 4x00 machines are intended as small enterprise servers. Expect a 30" high pedestal cabinet or alternatively the same system box in a 19" rack. This is medium iron, not a typical hobbyist system. Rawhides are multi-CPU machines, up to 4 CPUs can be in a single machine. Basic disk storage is housed in one or two StorageWorks shelves at the bottom of the pedestal. The Rawhides intended for the NT market are designated DIGITAL Server 7300 (5/400 CPU), DIGITAL Server 7305 (5/533 CPU). A trailing R on the part-number means a rackmount variant.
Features:
21164 EV5 CPUs at 266, 300 MHz or 21164A EV56 CPUs at 400, 466, 533, 600 and 666 Mhz
cache: 4 Mbytes per CPU. EV5 300 MHz was also available cache-less. 8 Mbytes for EV5 600Mhz
memory bus: 128 bit with ECC
embedded floppy controller
2 serial ports
1 parallel port
PS/2 style keyboard & mouse port
Rawhide uses a maximum of 8 RAM modules. These modules are used in pairs and supply 72 bits to the bus (this includes ECC bits). Memory can be EDO RAM or synchronous DRAM. A fully populated Rawhide has 4 pairs of memory modules. Given the choice use SDRAM for best performance. The highest capacity memory board must be in memory slot 0. A mix of memory board sizes is allowed. A mix of EDO and SDRAM is also reported as working (assuming you don't try to mix EDO and SDRAM in one module pair). A mix of EDO and SDRAM results in the entire memory subsystem running at the slower EDO timing
Rawhide has an embedded Symbios 810 chip that gives you a narrow fast-SCSI bus. Generally only the SCSI CDROM is driven by this interface.
Rawhides are available with a 8 64-bit PCI / 3 EISA slot expansion backplanes (called ``Saddle'' modules). There are 2 separate PCI buses, PCI0 and PCI1. PCI0 has 1 dedicated PCI slot and (shared) 3 PCI/EISA slots. PCI0 also has a PCI/EISA bridge that drives things like the serial and parallel ports, keyboard/mouse etc. PCI1 has 4 PCI slots and an Symbios 810 SCSI chip. VGA console cards must be installed in a slot connected to PCI0.
The current FreeBSD implementation has problems in handling PCI bridges. There is currently a limited fix in place which allows for single level, single device PCI bridges. The fix allows the use of the Digital supplied Qlogic SCSI card which sits behind a 21054 PCI bridge chip.
Note: EISA slots are currently unsupported, but the Compaq Qvision EISA VGA adapter is treated as an ISA device. It therefore works OK as a console.
Rawhide employs an I2C based power controller system. If you want to be sure all power is removed from the system remove the mains cables from the system.
The kernel config file must contain:
options DEC_KN300 cpu EV5
The AlphaServer 1200 machine is the successor to the AlphaServer 1000A. It uses the same enclosure the 1000A uses, but the logic is based on the AlphaServer 4000 design. These are multi-CPU machines, up to 2 CPUs can be in a single machine. Basic disk storage is housed in a StorageWorks shelves The AS1200 intended for the NT market were designated DIGITAL Server 5300 (5/400 CPU) and DIGITAL Server 5305 (5/533 CPU).
Features:
21164A EV56 CPUs at 400 or 533 Mhz
cache: 4 Mbytes per CPU
memory bus: 128 bit with ECC, DIMM memory on two memory daughter boards
embedded floppy controller
2 serial ports
1 parallel port
PS/2 style keyboard & mouse port
AS1200 uses 2 memory daughter cards. On each of these cards are 8 DIMM slots. DIMMs must be installed in pairs. The maximum memory size is 4 GBytes. Slots must be filled in order and slot 0 must contain the largest size DIMM if different sized DIMMs are used. AS1200 employs fixed starting addresses for DIMMs, each DIMM pair starts at a 512 Mbyte boundary. This means that if DIMMs smaller than 256 Mbyte are used the system's physical memory map will contain ``holes''. Supported DIMM sizes are 64 Mbytes and 256 Mbytes. The DIMMs are 72 bit SDRAM based, as the system employs ECC.
Note: FreeBSD currently supports up to 2GBytes
AS1200 has an embedded Symbios 810 drive Fast SCSI bus.
Tincup has 5 64-bit PCI slots, one 1 32-bit PCI slot and one EISA slot (which is physically shared with one of the 64-bit PCI slots). There are 2 separate PCI buses, PCI0 and PCI1. PCI0 has the 32-bit PCI slot and the 2 top-most 64-bit PCI slots. PCI0 also has an Intel 82375EB PCI/EISA bridge that drives things like the serial and parallel ports, keyboard/mouse etc. PCI1 has 4 64-bit PCI slots and an Symbios 810 SCSI chip. VGA console cards must be installed in a slot connected to PCI0.
The system employs an I2C based power controller system. If you want to be sure all power is removed from the system remove the mains cables from the system. Tincup uses dual power supplies in load-sharing mode and not as a redundancy pair.
The kernel config file must contain:
options DEC_KN300 cpu EV5
The AlphaServer 8200 and 8400 machines are enterprise servers. Expect a tall 19" cabinet (8200) or fat (8400) 19" rack. This is big iron, not a hobbyist system. TurboLasers are multi-CPU machines, up to 12 CPUs can be in a single machine. The TurboLaser System Bus (TLSB) allows 9 nodes on the AS8400 and 5 nodes on the AS8200. TLSB is 256 bit data, 40 bit address allowing 2.1 GBytes/sec. Nodes on the TLSB can be CPUs, memory or I/O. A maximum of 3 I/O ports are supported on a TLSB.
Basic disk storage is housed in a StorageWorks shelf. AS8400 uses 3 phase power, AS8200 uses single phase power.
Features:
21164 EV5/EV56 CPUs at up to 467 MHz or 21264 EV67 CPUs at up to 625 MHz
one or two CPUs per CPU module
cache: 4Mbytes B-cache per CPU
memory bus: 256 bit with ECC
memory: big memory modules that plug into the TLSB, which in turn hold special SIMM modules. Memory modules come in varying sizes, up to 4 GBytes a piece. Uses ECC (8 bits per 64 bits of data) 7 memory modules max for AS8400, 3 modules max for AS8200. Maximum memory is 28 GBytes.
expansion: 3 system ``I/O ports'' that allow up to 12 I/O channels each I/O channel can connect to XMI, Futurebus+ or PCI boxes
FreeBSD supports (and has been tested with) up to 2 GBytes of memory on TurboLaser. There is a trade-off to be made between TLSB slots occupied by memory modules and TLSB slots occupied by CPU modules. For example you can have 28GBytes of memory but only 2 CPUs (1 module) at the same time.
Only PCI expansion is supported on FreeBSD. XMI or Futurebus+ (which are AS8400 only) are both unsupported.
The I/O port modules are designated KFTIA or KFTHA. The I/O port modules supply so called ``hoses'' that connect to up to 4 (KFTHA) PCI buses or 1 PCI bus (KFTIA). KFTIA has embedded dual 10baseT Ethernet, single FDDI, 3 SCSI Fast Wide Differential SCSI buses and a single Fast Wide Single Ended SCSI bus. The FWSE SCSI is intended for the CDROM.
KFTHA can drive via each of its 4 hoses a DWLPA or DWLPB box. The DWLPx house a 12 slots 32 bit PCI backplane. Physically the 12 slots are 3 4-slot buses but to the software it appears as a single 12 slots PCI bus. A fully expanded AS8x00 can have 3 (I/O ports) times 4 (hoses) times 12 (PCI slots/DWLPx) = 144 PCI slots. The maximum bandwidth per KFTHA is 500 Mbytes/second. DWLPA can also house 8 EISA cards, 2 slots are PCI-only, 2 slots are EISA only. Of the 12 slots 2 are always occupied by an I/O and connector module. DWLPB are the prefered I/O boxes.
For best performance distribute high bandwidth (FibreChannel, Gigabit Ethernet) over multiple hoses and/or multiple KFTHA/KFTIA.
Currently PCI expansion cards containing PCI bridges are not usable with FreeBSD. Don't use them at this time.
The single ended narrow SCSI bus on the KFTIA will turn up as the fourth SCSI bus. The 3 fast-wide differential SCSI buses of the KFTIA precede it.
AS8x00 are generally run with serial consoles. Some newer machines might have a graphical console of some sorts but FreeBSD has only been tested on a serial console.
For serial console usage either change /etc/ttys to have:
console "/usr/libexec/getty std.9600" unknown on secure
as the console entry, or add
zs0 "/usr/libexec/getty std.9600" unknown on secure
For the AlphaServer 8x00 machines the kernel config file must contain:
options DEC_KN8AE # Alpha 8200/8400 (Turbolaser) cpu EV5
Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
The UP1000 is an ATX mainboard based on the 21264a CPU which itself lives in a Slot B module. It is normally housed in an ATX tower enclosure.
Features:
21264a Alpha CPU at 600 or 700 MHz in a Slot B module (includes cooling fans)
memory bus: 128 bits to the L2 cache, 64 bits from Slot B to the AMD-751
on-board Bcache / L2 cache: 2MB (600Mhz) or 4MB (700Mhz)
AMD AMD-751 (``Irongate'') system controller chip
Acer Labs M1543C PCI-ISA bridge controller / super-IO chip
PS/2 mouse & keyboard port
memory: 168-pin PC100 unbuffered SDRAM DIMMS, 3 DIMM slots DIMM sizes supported are 64, 128 or 256 Mb in size
2 16550A serial port
1 ECP/EPP parallel port
floppy interface
2 embedded Ultra DMA33 IDE interface
2 USB ports
expansion:
4 32 bit PCI slots
2 ISA slots
1 AGP slot
Slot B is a box-like enclosure that houses a daughter-board for the CPU and cache. It has 2 small fans for cooling. Loud fans..
The machine needs ECC capable DIMMs, so 72 bit ones. This does not appear to be documented in the UP1000 docs. The system accesses the serial EEPROM on the DIMMs via the SM bus. Note that if only a single DIMM is used it must be installed in slot 2. This is a bit counter-intuitive.
The UP1000 needs a 400Watt ATX power supply according to the manufacturer. This might be a bit overly conservative/pessimistic judging from the power consumption of the board & cpu. But as always you will have to take your expansion cards and peripherals into account. The M1543C chip contains power management functionality & temperature monitoring (via I2C / SM bus).
Chances are that your UP1000 comes by default with AlphaBios only. The SRM console firmware is available from the Alpha Processor Inc. web site. It is currently available in a beta version which was successfully used during the port of FreeBSD to the UP1000.
The embedded Ultra DMA EIDE ports are bootable by the SRM console.
UP1000 SRM can boot off an Adaptec 294x adapter. Under high I/O load conditions machine lockups have been observed using the Adaptec 294x. A Symbios 875 based card works just fine, using the sym driver. Most likely other cards based on the Symbios chips that the sym driver supports will work as well.
The USB interfaces are disabled by the SRM console and have not (yet) been tested with FreeBSD.
For the UP1000 the kernel config file must contain:
options API_UP1000 # UP1000, UP1100 (Nautilus) cpu EV5
The UP1100 is an ATX mainboard based on the 21264a CPU running at 600 MHz. It is normally housed in an ATX tower enclosure.
Features:
21264a Alpha EV6 CPU at 600 or 700 MHz
memory bus: 100MHz 64-bit (PC-100 SDRAM), 800 MB/s memory bandwidth
on-board Bcache / L2 cache: 2Mb
AMD AMD-751 (``Irongate'') system controller chip
Acer Labs M1535D PCI-ISA bridge controller / super-IO chip
PS/2 mouse & keyboard port
memory: 168-pin PC100 unbuffered SDRAM DIMMS, 3 DIMM slots DIMM sizes supported are 64, 128 or 256 Mb in size
2 16550A serial port
1 ECP/EPP parallel port
floppy interface
2 embedded Ultra DMA66 IDE interface
2 USB port
expansion: 3 32 bit PCI slots and 1 AGP2x slot
SRM console code comes standard with the UP1100. The SRM lives in 2Mbytes of flash ROM.
The machine needs ECC capable DIMMs, so 72 bit ones. This does not appear to be documented in the UP1100 docs. The system accesses the serial EEPROM on the DIMMs via the SM bus. Note that if only a single DIMM is used it must be installed in slot 2. This is a bit counter-intuitive.
The UP1100 needs a 400Watt ATX power supply according to the manufacturer. This might be a bit overly conservative/pessimistic judging from the power consumption of the board & cpu. But as always you will have to take your expansion cards and peripherals into account. The M1535D chip contains power management functionality & temperature monitoring (via I2C / SM bus using a LM75 thermal sensor).
The UP1100 has an on-board 21143 10/100Mbit Ethernet interface.
The UP1100 is equipped with a SoundBlaster compatible audio interface. Whether it works with FreeBSD is as of yet unknown.
The embedded Ultra DMA EIDE ports are bootable by the SRM console.
The UP1100 has 3 USB ports, 2 going external and one connected to the AGP port.
For the UP1100 the kernel config file must contain:
options API_UP1000 # UP1000, UP1100 (Nautilus) cpu EV5
Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
The CS20 is a 19", 1U high rackmount server based on the 21264[ab] CPU. It can have a maximum of 2 CPUs. Compaq sells the CS20 rebranded as the AlphaServer DS20L. DS20L has 833MHz CPUs.
Features:
21264a Alpha CPU at 667 MHz or 21264b 833 MHz (max. 2 CPUs)
memory bus: 100MHz 256-bit wide
21271 Core Logic chipset (``Tsunami'')
Acer Labs M1533 PCI-ISA bridge controller / super-IO chip
PS/2 mouse & keyboard port
memory: 168-pin PC100 PLL buffered/registered SDRAM DIMMS, 8 DIMM slots, uses ECC memory, min 256 Mbytes / max 2 GBytes of memory
2 16550A serial port
1 ECP/EPP parallel port
ALI M1543C Ultra DMA66 IDE interface
embedded dual Intel 82559 10/100Mbit Ethernet
embedded Symbios 53C1000 Ultra160 SCSI controller
expansion: 2 64 bit PCI slots (2/3 length)
SRM console code comes standard with the CS20. The SRM lives in 2Mbytes of flash ROM.
The CS20 needs ECC capable DIMMs. Note that it uses buffered DIMMs.
The CS20 has an I2C based internal monitoring system for things like temperature, fans, voltages etc. The I2C also supports ``wake on LAN''.
Each PCI slot is connected to its own independent PCI bus on the Tsunami.
The embedded Ultra DMA EIDE ports are bootable by the SRM console.
The CS20 has an embedded slim-line IDE CD drive. There is a front-accessible bay for a 1" high 3.5" SCSI hard-disk drive with SCA connector.
Note that there is no floppy disk drive (or a connector to add one).
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
The ES40 is a SMP system that can have 1 - 4 21264 Alpha CPUs. With the maximum configuration of 32GB of memory these systems are often deployed as heavy database servers and are also found in HPTC compute farm environments.
Features:
21264 Alpha CPU at 500 (EV6), 667 (EV67) or 833 MHz (EV68) (max. 4 CPUs)
memory bus: 256-bit wide
21272 Core Logic chipset
PS/2 mouse & keyboard port
memory: 200-pin JEDEC standard SDRAM DIMMS, max 32 GBytes of memory
2 16550A serial port
1 ECP/EPP parallel port
ALI M1543C Ultra DMA66 IDE interface
expansion: 2 64 bit PCI buses
SRM console code comes standard with the ES40.
ES40 comes with an ATA CDROM drive, but uses SCSI harddisks.
Memory is divided in 4 memory arrays which each contain a set of 4 SDRAM DIMMs. Each DIMM is 72 bit wide and of the 100MHz speed variant. An array can contain 2 sets, so 8 DIMMs max per array. The DIMMs live on Memory Mother Boards (MMBs). There are 2 MMB models, with 4 and 8 DIMM sockets respectively. Each MMB provides half of the 256 bit memory bus width to the CPUs. Given the myriad options for the memory configuration it is advisable to check the system documentation for the optimum memory configuration.
Dependent on the model variation the ES40 has 6 or 10 64 bit PCI slots. This is basically just means the same backplane with less connectors mounted.
ES40 has the same RMC remote power control as DS10 and DS20. See the description of the RMC in the DS10 section of this document. Most variations of ES40 have multiple power supplies, allowing for N+1 redundancy. When installing CPU cards you must unplug all power cords, the CPU cards receive standby power from the power supplies. Maximum memory configurations need more than the default number of powersupplies.
The kernel config file must contain:
options DEC_ST6600 cpu EV5
Contrary to expectation there is no cpu EV6 defined for inclusion in the kernel config file. The cpu EV5 is mandatory to keep config(8) happy.
A word of caution: the installed base for FreeBSD is not nearly as large as for FreeBSD/Intel. This means that the enormous variation of PCI/ISA expansion cards out there has much less chance of having been tested on alpha than on Intel. This is not to imply they are doomed to fail, just that the chance of running into something never tested before is much higher. GENERIC contains things that are known to work on Alpha only.
The PCI and ISA expansion busses are fully supported. Turbo Channel is not in GENERIC and has limited support (see the relevant machine model info). The MCA bus is not supported. The EISA bus is not supported for use with EISA expansion cards as the EISA support code is lacking. ISA cards in EISA slots are reported to work. The Compaq Qvision EISA VGA card is driven in ISA mode and works OK as a console.
1.44 Mbyte and 1.2 Mbyte floppy drives are supported. 2.88 Mbyte drives sometimes found in Alpha machines are supported up to 1.44Mbyte.
ATA and ATAPI (IDE) devices are supported via the ata(4) driver framework. As most people run their Alphas with SCSI disks it is not as well tested as SCSI. Be aware of boot-ability restrictions for IDE disks. See the machine specific information.
There is full SCSI support via the CAM layer for Adaptec 2940x (AIC7xxx chip-based), Qlogic family and Symbios. Be aware of the machine-specific boot-ability issues for the various adapter types.
The Qlogic QL2x00 FibreChannel host adapters are fully supported.
If you want to boot your Alpha over the Ethernet you will obviously need an Ethernet card that the SRM console recognizes. This generally means you need a board with an 21x4x Ethernet chip as that is what Digital used. These chips are driven by the FreeBSD de(4) (older driver) or dc(4) (newer driver). Some new SRM versions are known to recognize the Intel 8255x Ethernet chips as driven by the FreeBSD fxp(4) driver. But beware: the fxp(4) driver is reported not to work correctly with FreeBSD (although it works excellently on FreeBSD/x86).
DEC DEFPA PCI FDDI network adapters are supported on alpha.
In general the SRM console emulates a VGA-compatibility mode on PCI VGA cards. This is, however, not guaranteed to work by Compaq/DEC for each and every card type out there. When the SRM thinks the VGA is acceptable FreeBSD will be able to use it. The console driver works just like on a FreeBSD/intel machine. Please note that VESA modes are not supported on Alpha, so that leaves you with 80x25 consoles.
In some Alpha machines you will find video adapters based on TGA chips. The plain TGA adapter does not emulate VGA and is therefore not usable for a FreeBSD console. TGA2 cards have a basic VGA compatibility mode and work fine as FreeBSD consoles.
The ``PC standard'' serial ports found on most Alphas are supported. For TurboChannel machines the serial ports are also supported.
ISDN (i4b) is not supported on FreeBSD/alpha.
In compiling this file I used multiple information sources, but the NetBSD Web site proved to be an invaluable source of information. If it wasn't for NetBSD/alpha there probably would not be a FreeBSD/alpha in the first place.
People who kindly helped me create this section:
Andrew Gallatin <gallatin@FreeBSD.org>
Chuck Robey <chuckr@FreeBSD.org>
Matthew Jacob <mjacob@FreeBSD.org>
Michael Smith <msmith@FreeBSD.org>
David O'Brien <obrien@FreeBSD.org>
Christian Weisgerber
Kazutaka YOKOTA
Nick Maniscalco
Eric Schnoebelen
Peter van Dijk
Peter Jeremy
Dolf de Waal
Wim Lemmers, ex-Compaq
Wouter Brackman, Compaq
Lodewijk van den Berg, Compaq
This section describes the devices currently known to be supported by with FreeBSD on the Alpha/AXP platform. Other configurations may also work, but simply have not been tested yet. Feedback, updates, and corrections to this list are encouraged.
Where possible, the drivers applicable to each device or class of devices is listed. If the driver in question has a manual page in the FreeBSD base distribution (most should), it is referenced here.
IDE/ATA controllers ( ata(4) driver)
Acerlabs Aladdin
AMD 756 ATA66, 766 ATA100, 768 ATA100
Cenatek Rocket Drive
CMD 646, 648 ATA66, and 649 ATA100
Cypress 82C693
Cyrix 5530 ATA33
HighPoint HPT366 ATA66, HPT370 ATA100, HPT372 ATA133, HPT374 ATA133
Intel PIIX, PIIX3, PIIX4
Intel ICH ATA66, ICH2 ATA100, ICH3 ATA100, ICH4 ATA100
nVidia nForce ATA100
Promise ATA100 OEM chip (pdc20265)
Promise ATA133 OEM chip (pdc20269)
Promise Fasttrak-33, -66, -100, -100 TX2/TX4, -133 TX2/TX2000
Promise Ultra-33, -66, -100, -133 TX2/TX2000
ServerWorks ROSB4 ATA33
ServerWorks CSB5 ATA66/ATA100
Sil 0680 UDMA6
SiS 530, 540, 620
SiS 630, 633, 635, 645, 730, 733, 735, 740, 745, 750
SiS 5591 ATA100
VIA 82C586 ATA33, 82C596 ATA66, 82C686a ATA66, 82C686b ATA100
VIA 8233, 8235 ATA133
Adaptec SCSI Controllers
Adaptec 19160/291x/2920/2930/2940/2950/29160/3940/3950/3960/39160/398x/494x series PCI SCSI controllers, including Narrow/Wide/Twin/Ultra/Ultra2 variants ( ahc(4) driver)
Adaptec AIC7770, AIC7850, AIC7860, AIC7870, AIC7880, and AIC789x on-board SCSI controllers ( ahc(4) driver)
AMI MegaRAID Express and Enterprise family RAID controllers ( amr(4) driver)
MegaRAID Series 418
MegaRAID Enterprise 1200 (Series 428)
MegaRAID Enterprise 1300 (Series 434)
MegaRAID Enterprise 1400 (Series 438)
MegaRAID Enterprise 1500 (Series 467)
MegaRAID Enterprise 1600 (Series 471)
MegaRAID Elite 1500 (Series 467)
MegaRAID Elite 1600 (Series 493)
MegaRAID Express 100 (Series 466WS)
MegaRAID Express 200 (Series 466)
MegaRAID Express 300 (Series 490)
MegaRAID Express 500 (Series 475)
Dell PERC
Dell PERC 2/SC
Dell PERC 2/DC
Dell PERC 3/DCL
HP NetRaid-1si
HP NetRaid-3si
HP Embedded NetRaid
Booting from these controllers is not supported due to SRM limitations.
Mylex DAC960 and DAC1100 RAID controllers with 2.x, 3.x, 4.x and 5.x firmware ( mlx(4) driver)
DAC960P
DAC960PD
DAC960PDU
DAC960PL
DAC960PJ
DAC960PG
AcceleRAID 150
AcceleRAID 250
eXtremeRAID 1100
Booting from these controllers is not supported due to SRM limitations. This list includes controllers sold by Digital/Compaq in Alpha systems in the StorageWorks family, e.g. KZPSC or KZPAC.
LSI/SymBios (formerly NCR) 53C810, 53C810a, 53C815, 53C825, 53C825a, 53C860, 53C875, 53C875a, 53C876, 53C885, 53C895, 53C895a, 53C896, 53C1010-33, 53C1010-66, 53C1000, 53C1000R PCI SCSI controllers, either embedded on motherboard or on add-on boards ( ncr(4) and sym(4) drivers)
ASUS SC-200, SC-896
Data Technology DTC3130 (all variants)
DawiControl DC2976UW
Diamond FirePort (all)
NCR cards (all)
Symbios cards (all)
Tekram DC390W, 390U, 390F, 390U2B, 390U2W, 390U3D, and 390U3W
Tyan S1365
Qlogic controllers and variants ( isp(4) driver)
Qlogic 1020, 1040 SCSI and Ultra SCSI host adapters
Qlogic 1240 dual Ultra SCSI controllers
Qlogic 1080 Ultra2 LVD and 1280 Dual Ultra2 LVD controllers
Qlogic 12160 Ultra3 LVD controllers
Qlogic 2100 and Qlogic 2200 Fibre Channel SCSI controllers
Qlogic 2300 and Qlogic 2312 2-Gigabit Fibre Channel SCSI controllers
Performance Technology SBS440 ISP1000 variants
Performance Technology SBS450 ISP1040 variants
Performance Technology SBS470 ISP2100 variants
Antares Microsystems P-0033 ISP2100 variants
LSI Logic Fusion/MP architecture Fiber Channel controllers (mpt driver)
LSI FC909, FC929
LSI 53c1020, 53c1030
With all supported SCSI controllers, full support is provided for SCSI-I, SCSI-II, and SCSI-III peripherals, including hard disks, optical disks, tape drives (including DAT, 8mm Exabyte, Mammoth, and DLT), medium changers, processor target devices and CD-ROM drives. WORM devices that support CD-ROM commands are supported for read-only access by the CD-ROM drivers (such as cd(4)). WORM/CD-R/CD-RW writing support is provided by cdrecord(1), which is a part of the sysutils/cdrtools port in the Ports Collection.
The following CD-ROM type systems are supported at this time:
SCSI interface (also includes ProAudio Spectrum and SoundBlaster SCSI) ( cd(4))
ATAPI IDE interface ( acd(4))
Adaptec Duralink PCI Fast Ethernet adapters based on the Adaptec AIC-6915 Fast Ethernet controller chip ( sf(4) driver)
ANA-62011 64-bit single port 10/100baseTX adapter
ANA-62022 64-bit dual port 10/100baseTX adapter
ANA-62044 64-bit quad port 10/100baseTX adapter
ANA-69011 32-bit single port 10/100baseTX adapter
ANA-62020 64-bit single port 100baseFX adapter
AMD PCnet NICs ( lnc(4) and pcn(4) drivers)
AMD PCnet/PCI (79c970 & 53c974 or 79c974)
AMD PCnet/FAST
Isolan AT 4141-0 (16 bit)
Isolink 4110 (8 bit)
PCnet/FAST+
PCnet/FAST III
PCnet/PRO
PCnet/Home
HomePNA
National Semiconductor DS8390-based Ethernet NICs, including Novell NE2000 and clones ( ed(4) driver)
3C503 Etherlink II ( ed(4) driver)
NetVin 5000
Novell NE1000, NE2000, and NE2100
RealTek 8029
SMC Elite 16 WD8013 Ethernet interface
SMC Elite Ultra
SMC WD8003E, WD8003EBT, WD8003W, WD8013W, WD8003S, WD8003SBT and WD8013EBT and clones
Surecom NE-34
VIA VT86C926
Winbond W89C940
RealTek 8129/8139 Fast Ethernet NICs ( rl(4) driver)
Accton ``Cheetah'' EN1207D (MPX 5030/5038; RealTek 8139 clone)
Allied Telesyn AT2550
Allied Telesyn AT2500TX
D-Link DFE-530TX+, DFE-538TX
Farallon NetLINE 10/100 PCI
Genius GF100TXR (RTL8139)
KTX-9130TX 10/100 Fast Ethernet
NDC Communications NE100TX-E
Netronix Inc. EA-1210 NetEther 10/100
OvisLink LEF-8129TX
OvisLink LEF-8139TX
SMC EZ Card 10/100 PCI 1211-TX
Lite-On 82c168/82c169 PNIC Fast Ethernet NICs ( dc(4) driver)
Kingston KNE110TX
LinkSys EtherFast LNE100TX
Matrox FastNIC 10/100
NetGear FA310-TX Rev. D1
Macronix 98713, 98713A, 98715, 98715A and 98725 Fast Ethernet NICs ( dc(4) driver)
Accton EN1217 (98715A)
Adico AE310TX (98715A)
Compex RL100-TX (98713 or 98713A)
CNet Pro120A (98713 or 98713A)
CNet Pro120B (98715)
NDC Communications SFA100A (98713A)
SVEC PN102TX (98713)
Macronix/Lite-On PNIC II LC82C115 Fast Ethernet NICs ( dc(4) driver)
LinkSys EtherFast LNE100TX Version 2
Winbond W89C840F Fast Ethernet NICs ( wb(4) driver)
Trendware TE100-PCIE
VIA Technologies VT3043 ``Rhine I'', VT86C100A ``Rhine II'', and VT86C105/VT86C105M ``Rhine III'' Fast Ethernet NICs ( vr(4) driver)
AOpen/Acer ALN-320
D-Link DFE-530TX
Hawking Technologies PN102TX
Silicon Integrated Systems SiS 900 and SiS 7016 PCI Fast Ethernet NICs ( sis(4) driver)
SiS 630, 635 and 735 motherboard chipsets
National Semiconductor DP83815 Fast Ethernet NICs ( sis(4) driver)
NetGear FA311-TX
NetGear FA312-TX
Sundance Technologies ST201 PCI Fast Ethernet NICs ( ste(4) driver)
D-Link DFE-550TX
SysKonnect SK-984x PCI Gigabit Ethernet cards ( sk(4) drivers)
SK-9821 1000baseT copper, single port
SK-9822 1000baseT copper, dual port
SK-9841 1000baseLX single mode fiber, single port
SK-9842 1000baseLX single mode fiber, dual port
SK-9843 1000baseSX multimode fiber, single port
SK-9844 1000baseSX multimode fiber, dual port
Texas Instruments ThunderLAN PCI NICs ( tl(4) driver)
Compaq Netelligent 10, 10/100, 10/100 Dual-Port
Compaq Netelligent 10/100 TX Embedded UTP, 10 T PCI UTP/Coax, 10/100 TX UTP
Compaq NetFlex 3P, 3P Integrated, 3P w/BNC
Olicom OC-2135/2138, OC-2325, OC-2326 10/100 TX UTP
Racore 8165 10/100baseTX
Racore 8148 10baseT/100baseTX/100baseFX multi-personality
ADMtek Inc. AL981-based PCI Fast Ethernet NICs ( dc(4) driver)
ADMtek Inc. AN985-based PCI Fast Ethernet NICs ( dc(4) driver)
LinkSys EtherFast LNE100TX v4.0/4.1
ASIX Electronics AX88140A PCI NICs ( dc(4) driver)
Alfa Inc. GFC2204
CNet Pro110B
DEC DC21040, DC21041, DC21140, DC21141, DC21142, and DC21143 based NICs ( de(4) driver)
Asante
Cogent EM100FX and EM440TX
DEC DE425, DE435, DE450, and DE500
SMC Etherpower 8432T, 9332, and 9334
ZYNX ZX 3xx
DEC/Intel 21143 based Fast Ethernet NICs ( dc(4) driver)
DEC DE500
Compaq Presario 7900 series built-in Ethernet
D-Link DFE-570TX
Kingston KNE100TX
LinkSys EtherFast 10/100 Instant GigaDrive built-in Ethernet
Davicom DM9009, DM9100 and DM9102 PCI Fast Ethernet NICs ( dc(4) driver)
Jaton Corporation XpressNet
Intel 82557- or 82559-based Fast Ethernet NICs ( fxp(4) driver)
Intel EtherExpress Pro/100B PCI Fast Ethernet
Intel InBusiness 10/100 PCI Network Adapter
Intel PRO/100+ Management Adapter
Intel Pro/100 VE Desktop Adapter
Intel Pro/100 M Desktop Adapter
Intel Pro/100 S Desktop, Server and Dual-Port Server Adapters
On-board Ethernet NICs on many Intel motherboards.
3Com Etherlink XL-based NICs ( xl(4) driver)
3C900/905/905B/905C PCI
3C556/556B MiniPCI
3C450-TX HomeConnect adapter
3c980/3c980B Fast Etherlink XL server adapter
3cSOHO100-TX OfficeConnect adapter
Dell Optiplex GX1 on-board 3C918
Dell On-board 3C920
Dell Precision on-board 3C905B
Dell Latitude laptop docking station embedded 3C905-TX
Ethernet and Fast Ethernet NICs based on the 3Com 3XP Typhoon/Sidewinder (3CR990) chipset ( txp(4) driver)
3Com 3CR990-TX-95
3Com 3CR990-TX-97
3Com 3CR990B-SRV
3Com 3CR990B-TXM
3Com 3CR990SVR95
3Com 3CR990SVR97
Gigabit Ethernet NICs based on the Intel 82542 and 82543 controller chips ( wx(4), gx(4) and em(4) drivers), plus NICs supported by the Intel 82540EM, 82544, 82545EM, and 82546EB controller chips ( em(4) driver only)
Intel PRO/1000 Gigabit Ethernet
Note: The wx(4) driver is deprecated.
Note: The em(4) driver is officially supported by Intel, but is only supported on the i386.
AST 4 port serial card using shared IRQ
Comtrol Rocketport card ( rp(4) driver)
ESS
ES1868, ES1869, ES1879 and ES1888 ( sbc(4) driver)
Maestro-1, Maestro-2, and Maestro-2E
Maestro-3/Allegro
Note: The Maestro-3/Allegro cannot be compiled into the FreeBSD kernel due to licensing restrictions. To use this driver, add the following line to /boot/loader.conf:
snd_maestro3_load="YES"
MSS/WSS Compatible DSPs ( pcm(4) driver)
Creative Technologies SoundBlaster series ( sbc(4) driver)
SoundBlaster
SoundBlaster Pro
SoundBlaster AWE-32
SoundBlaster AWE-64
SoundBlaster AWE-64 GOLD
SoundBlaster ViBRA-16
A range of USB peripherals are supported; devices known to work are listed in this section. Owing to the generic nature of most USB devices, with some exceptions any device of a given class will be supported, even if not explicitly listed here.
Note: USB Ethernet adapters can be found in the section listing Ethernet interfaces.
Host Controllers ( ohci(4) and uhci(4) drivers)
ALi Aladdin-V
AMD-756
CMD Tech 670 & 673
Intel 82371SB (PIIX3)
Intel 82371AB and EB (PIIX4)
Intel 82801AA (ICH)
Intel 82801AB (ICH0)
Intel 82801BA/BAM (ICH2)
Intel 82443MX
NEC uPD 9210
OPTi 82C861 (FireLink)
SiS 5571
VIA 83C572 USB
UHCI or OHCI compliant motherboard chipsets (no exceptions known)
Hubs
Andromeda hub
MacAlly self powered hub (4 ports)
NEC hub
Keyboards ( ukbd(4) driver)
Apple iMac keyboard
BTC BTC7935 keyboard with PS/2 mouse port
Cherry G81-3504 keyboard
Logitech M2452 keyboard
MacAlly iKey keyboard
Microsoft keyboard
Sun Microsystems Type 6 USB keyboard
Mice ( ums(4) driver)
Agiler Mouse 29UO
Apple iMac Mouse
Belkin Mouse
Chic mouse
Cypress mouse
Genius Niche mouse
Kensington Mouse-in-a-Box
Logitech wheel mouse (3 buttons)
Logitech PS/2 / USB mouse (3 buttons)
MacAlly mouse (3 buttons)
Microsoft IntelliMouse (3 buttons)
Sun Microsystems Type 6 USB Mouse
Trust Ami Mouse (3 buttons)
Printers and parallel printer conversion cables ( ulpt(4) driver)
ATen parallel printer adapter
Belkin F5U002 parallel printer adapter
Entrega USB-to-parallel printer adapter
Storage ( umass(4) driver)
Matshita CF-VFDU03 floppy drive
Microtech USB-SCSI-HD 50 USB to SCSI cable
Panasonic floppy drive
Y-E Data floppy drive (720/1.44/2.88Mb)
Floppy drives ( fd(4) driver)
Keyboards including:
AT-style keyboards
PS/2 keyboards
USB keyboards (specific instances are listed in the section describing USB devices)
Mice including:
PS/2 mice ( psm(4) driver)
Serial mice
USB mice (specific instances are listed in the section describing USB devices)
``PC standard'' parallel ports ( ppc(4) driver)
``PC standard'' 8250, 16450, and 16550-based serial ports ( sio(4) driver)
This file, and other release-related documents, can be downloaded from ftp://ftp.FreeBSD.org/.
For questions about FreeBSD, read the documentation before contacting <questions@FreeBSD.org>.
All users of FreeBSD 4-STABLE should subscribe to the <stable@FreeBSD.org> mailing list.
For questions about this documentation, e-mail <doc@FreeBSD.org>.