Package Building Procedures

The FreeBSD Ports Management Team

Copyright © 2003, 2004, 2005, 2006, 2007, 2008, 2009 The FreeBSD Ports
Management Team
$FreeBSD: doc/en_US.ISO8859-1/articles/portbuild/article.sgml,v 1.44 2009/08/05
01:48:18 linimon Exp $

FreeBSD is a registered trademark of the FreeBSD Foundation.

Intel, Celeron, EtherExpress, i386, 486, Itanium, Pentium, and Xeon are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Sparc, Sparc64, SPARCEngine, and UltraSPARC are trademarks of SPARC International, Inc in the
United States and other countries. Products bearing SPARC trademarks are based upon architecture
developed by Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this document, and the FreeBSD Project was
aware of the trademark claim, the designations have been followed by the “™” or the “®” symbol.

Table of Contents

1 Introduction and Conventions
2 Build Client Management
3 Chroot Build Environment Setup
4 Starting the Build
5 Anatomy of a Build
6 Interrupting a Build
7 Monitoring the Build
8 Dealing With Build Errors
9 Release Builds
10 Uploading Packages

o R RN AN WD -

e
<

11 Experimental Patches Builds

[
|8}

12 How to configure a new package building node

p—
o

13 Procedures for dealing with disk failures

1 Introduction and Conventions

In order to provide pre-compiled binaries of third-party applications for FreeBSD, the Ports Collection is regularly
built on one of the “Package Building Clusters.” Currently, the main cluster in use is at http://pointyhat.FreeBSD.org.

Package Building Procedures

Most of the package building magic occurs under the /var/portbuild directory. Unless otherwise specified, all
paths will be relative to this location. ${arch} will be used to specify one of the package architectures (amd64,
1386™, and Sparc64®), and s {branch} will be used to specify the build branch (6, 6-exp, 7, 7-exp, 8, 8-exp).

Note: Packages are no longer built for Release 4 or 5, nor for the alpha nor ia64 architectures.

The scripts that control all of this live in /var/portbuild/scripts/. These are the checked-out copies from
/usr/ports/Tools/portbuild/scripts/.

Typically, incremental builds are done that use previous packages as dependendencies; this takes less time, and puts
less load on the mirrors. Full builds are usually only done:

- right after release time, for the —~STABLE branches
« periodically to test changes to ~CURRENT

« for experimental builds

2 Build Client Management

The 1386 clients co-located with pointyhat netboot from it (connected nodes); all other clients (disconnected
nodes) are either self-hosted or netboot from some other pxe host. In all cases they set themselves up at boot-time to
prepare to build packages.

The cluster master rsyncs the interesting data (ports and src trees, bindist tarballs, scripts, etc.) to disconnected
nodes during the node-setup phase. Then, the disconnected portbuild directory is nullfs-mounted for chroot builds.

The ports-s{arch} user can ssh(1) to the client nodes to monitor them. Use sudo and check the
portbuild. hostname.conf for the user and access details.

The scripts/allgohans script can be used to run a command on all of the ${arch} clients.

The scripts/checkmachines script is used to monitor the load on all the nodes of the build cluster, and schedule
which nodes build which ports. This script is not very robust, and has a tendency to die. It is best to start up this
script on the build master (e.g. pointyhat) after boot time using a while(1) loop.

3 Chroot Build Environment Setup

Package builds are performed in a chroot populated by the portbuild script using the
${arch}/${branch}/builds/${buildid}/bindist.tar file.

The following command builds a world from the ${arch}/${branch}/src tree and installs it into ${worlddir}.
The tree will be updated first unless —nocvs is specified.

/var/portbuild# scripts/makeworld $farch} ${branch} ${buildid} [-nocvs]

The bindist.tar tarball is created from the previously installed world by the mkbindist script. It should be run
as root with the following command:

/var/portbuild# scripts/mkbindist $f{arch} ${branch} ${buildid}

Package Building Procedures

The per-machine tarballs are located in ${archj/clients.

The bindist.tar file is extracted onto each client at client boot time, and at the start of each pass of the
dopackages script.

4 Starting the Build

Several separate builds for each architecture - branch combination are supported. All data private to a build (ports
tree, src tree, packages, distfiles, log files, bindist, Makefile, etc) are located under
${arch}/${branch}/builds/$(buildid}. The last created build can be alternatively referenced under buildid
latest, the one before is called previous.

New builds are cloned from the 1atest, which is fast since it uses ZFS.

4.1 dopackages Scripts

The scripts/dopackages~ scripts are used to perform the builds. Most useful are:

« dopackages. 6 - Perform a 6.X build
+ dopackages.6—exp - Perform a 6.X build with experimental patches (6-exp branch)
+ dopackages.7 - Perform a 7.X build
+ dopackages.7-exp - Perform a 7.X build with experimental patches (7-exp branch)
+ dopackages. 8 - Perform a 8.X build
+ dopackages.8-exp - Perform a 8.X build with experimental patches (8-exp branch)

These are wrappers around dopackages, and are all symlinked to dopackages.wrapper. New branch wrapper
scripts can be created by symlinking dopackages.${branch} to dopackages.wrapper. These scripts take a
number of arguments. For example:

dopackages.6 ${arch} [-options]

[-options] may be zero or more of the following:

+ —keep - Do not delete this build in the future, when it would be normally deleted as part of the 1atest -
previous cycle. Don’t forget to clean it up manually when you no longer need it.

+ —-nofinish - Do not perform post-processing once the build is complete. Useful if you expect that the build will
need to be restarted once it finishes. If you use this option, don’t forget to cleanup the clients when you don’t need
the build anymore.

+ —finish - Perform post-processing only.

+ -nocleanup - By default, when the —finish stage of the build is complete, the build data will be deleted from
the clients. This option will prevent that.

+ -restart - Restart an interrupted (or non-£finished) build from the beginning. Ports that failed on the previous
build will be rebuilt.

+ —continue - Restart an interrupted (or non-f inished) build. Will not rebuild ports that failed on the previous
build.

Package Building Procedures

+ —incremental - Compare the interesting fields of the new INDEX with the previous one, remove packages and
log files for the old ports that have changed, and rebuild the rest. This cuts down on build times substantially since
unchanged ports do not get rebuilt every time.

+ —cdrom - This package build is intended to end up on a CD-ROM, so NO_CDROM packages and distfiles should be
deleted in post-processing.

+ -nobuild - Perform all the preprocessing steps, but do not actually do the package build.
+ —noindex - Do not rebuild INDEX during preprocessing.

+ —noduds - Do not rebuild the duds file (ports that are never built, e.g. those marked IGNORE, NO_PACKAGE, etc.)
during preprocessing.

+ —trybroken - Try to build BROKEN ports (off by default because the amd64/i386 clusters are fast enough now that
when doing incremental builds, more time was spent rebuilding things that were going to fail anyway. Conversely,
the other clusters are slow enough that it would be a waste of time to try and build BROKEN ports).

+ —nosrc - Do not update the src tree from the ZFS snapshot, keep the tree from previous build instead.

+ -srccvs - Do not update the src tree from the ZFS snapshot, update it with cvs update instead.

+ —noports - Do not update the ports tree from the ZFS snapshot, keep the tree from previous build instead.
+ -portscvs - Do not update the ports tree from the ZFS snapshot, update it with cvs update instead.

+ -norestr - Do not attempt to build RESTRICTED ports.

+ -plistcheck - Make it fatal for ports to leave behind files after deinstallation.

+ -nodistfiles - Do not collect distfiles that pass make checksum for later uploading to ftp-master.

+ —fetch-original - Fetch the distfile from the original MASTER_SITES rather than ftp-master.

If the last build finished cleanly you do not need to delete anything. If it was interrupted, or you selected
-nocleanup, you need to clean up clients by running

build cleanup S{arch} S$S{branch} S${buildid} —-full

errors/, logs/, packages/, and so forth, are cleaned by the scripts. If you are short of space, you can also clean
out ports/distfiles/. Leave the latest/ directory alone; it is a symlink for the webserver.

Note: dosetupnodes is supposed to be run from the dopackages script in the -restart case, but it can be a
good idea to run it by hand and then verify that the clients all have the expected job load. Sometimes,
dosetupnode cannot clean up a build and you need to do it by hand. (This is a bug.)

Make sure the ${arch} build is run as the ports-$ farch} user or it will complain loudly.

Note: The actual package build itself occurs in two identical phases. The reason for this is that sometimes
transient problems (e.g. NFS failures, FTP sites being unreachable, etc.) may halt a build. Doing things in two
phases is a workaround for these types of problems.

Be careful that ports/Makefile does not specify any empty subdirectories. This is especially important if you are
doing an -exp build. If the build process encounters an empty subdirectory, both package build phases will stop short,
and an error similar to the following will be written to $(arch}/s{branch}/make. [0]|1]:

Package Building Procedures

don’t know how to make dns-all (continuing)

To correct this problem, simply comment out or remove the SUBDIR entries that point to empty subdirectories. After
doing this, you can restart the build by running the proper dopackages command with the —restart option.

Note: This problem also appears if you create a new category Makefile with no suBDIRS in it. This is probably a
bug.

Example 1. Update the i386-6 tree and do a complete build

dopackages.6 1386 —-nosrc -norestr -nofinish

Example 2. Restart an interrupted amd64-8 build without updating

dopackages.8 amd64 -nosrc -noports —-norestr -continue -noindex -noduds -nofinish

Example 3. Post-process a completed sparc64-7 tree

dopackages.7 sparc64 —-finish

Hint: it us usually best to run the dopackages command inside of screen (1).

4.2 build command

You may need to manipulate the build data before starting it, especially for experimental builds. This is done with
build command.

+ build list arch branch - Shows the current set of build ids.
* build clone arch branch oldid [newid] - Clones oldid to newid (or a datestamp if not specified).

+ build srcupdate arch branch buildid - Replaces the src tree with a new ZFS snapshot. Don’t forget to use
-nosrc flag to dopackages later!

+ build portsupdate arch branch buildid - Replaces the ports tree with a new ZFS snapshot. Don’t forget to
use —noports flag to dopackages later!

4.3 Building a single package

Sometimes there is a need to rebuild a single package from the package set. This can be accomplished with the
following invocation:

/var/portbuild/evil/gqmanager/packagebuild amdé64 7-exp 20080904212103 aclock-0.2.3_2

Package Building Procedures

5 Anatomy of a Build

A full build without any —no options performs the following operations in the specified order:

—

. An update of the current ports tree from the ZFS snapshot [*]

. An update of the running branch’s src tree from the ZFS snapshot [*]

. Checks which ports do not have a SUBDIR entry in their respective category’s Makefile [*]
. Creates the duds file, which is a list of ports not to build [*] [+]

. Generates a fresh INDEX file [*] [+]

. Sets up the nodes that will be used in the build [*] [+]

. Builds a list of restricted ports [*] [+]

. Builds packages (phase 1) [++]

O 00 3 O U B W

. Performs another node setup [+]
10. Builds packages (phase 2) [++]

[*] Status of these steps can be found in s7archj/$(branchj/build.log as well as on stderr of the tty running the
dopackages command

[+] If any of these steps fail, the build will stop cold in its tracks.

[++] Status of these steps can be found in $7arch}/$(branch}/make. [0]|1], where make. 0 is the log file used by
phase 1 of the package build and make . 1 is the log file used by phase 2. Individual ports will write their build logs to
${arch}/${branch}/logs and their error logs to ${arch}/$(branch}/errors.

Formerly the docs tree was also checked out, however, it has been found to be unnecessary.

6 Interrupting a Build

Interrupting a build is a bit messy. First you need to identify the tty in which it’s running (either record the output of
tty(1) when you start the build, or use ps x to identify it. You need to make sure that nothing else important is
running in this tty, e.g. ps -t pl or whatever. If there is not, you can just kill off the whole term easily with pkil1l
-t pts/1; otherwise issue akill —HUP in there by, for example, ps -t pts/1 -o pid= | xargs kill
—-HUP. Replace p1 by whatever the tty is, of course.

The package builds dispatched by make to the client machines will clean themselves up after a few minutes (check
with ps x until they all go away).

If you do not kill make(1), then it will spawn more jobs. If you do not kill dopackages, then it will restart the entire
build. If you do not kill the pdispatch processes, they’ll keep going (or respawn) until they’ve built their package.

To free up resources, you will need to clean up client machines by running build cleanup command. For example:

% /var/portbuild/scripts/build cleanup 1386 6-exp 20080714120411 -full

If you forget to do this, then the old build chroots will not be cleaned up for 24 hours, and no new jobs will be
dispatched in their place since pointyhat thinks the job slot is still occupied.

Package Building Procedures

To check, cat ~/1loads/* to display the status of client machines; the first column is the number of jobs it thinks is
running, and this should be roughly concordant with the load average. 1oads is refreshed every 2 minutes. If you do
ps x | grep pdispatch and it’s less than the number of jobs that 10ads thinks are in use, you’re in trouble.

You may have problem with the umount commands hanging. If so, you are going to have to use the allgohans
script to run an ssh(1) command across all clients for that buildenv. For example:

ssh -1 root gohan24 df
will get you a df, and

allgohans "umount -f pointyhat.freebsd.org:/var/portbuild/i386/6-exp/ports"
allgohans "umount -f pointyhat.freebsd.org:/var/portbuild/i386/6-exp/src"

are supposed to get rid of the hanging mounts. You will have to keep doing them since there can be multiple mounts.

Note: Ignore the following:

umount: pointyhat.freebsd.org:/var/portbuild/i386/6-exp/ports: statfs: No such file or directory
umount : pointyhat.freebsd.org:/var/portbuild/i386/6-exp/ports: unknown file system

umount: Cleanup of /x/tmp/6-exp/chroot/53837/compat/linux/proc failed!
/x/tmp/6-exp/chroot/53837/compat/linux/proc: not a file system root directory

The former 2 mean that that client did not have those mounted; the latter 2 are a bug.

You may also see messages about procfs.

After you have done all the above, remove the s{arch}/1lock file before trying to restart the build. If you do not,
dopackages will simply exit.

If you have to do a ports tree update before restarting, you may have to rebuild either duds, INDEX, or both. If you are
doing the latter manually, you will also have to rebuild packages/Al1l/Makefile via the makeparallel script.

7 Monitoring the Build

You can use gclient command to monitor the status of build nodes, and to list the currently scheduled jobs:
python /var/portbuild/evil/gmanager/gclient jobs

python /var/portbuild/evil/gmanager/gclient status

The scripts/stats $(branch} command shows the number of packages already built.

Running cat /var/portbuild/x/loads/* shows the client loads and number of concurrent builds in progress.
The files that have been recently updated are the clients that are online; the others are the offline clients.

Note: The pdispatch command does the dispatching of work onto the client, and post-processing.
ptimeout .host is a watchdog that kills a build after timeouts. So, having 50 pdispatch processes but only 4
ssh(1) processes means 46 pdispatches are idle, waiting to get an idle node.

Running tail -f ${arch}/${branch}/build.log shows the overall build progress.

Package Building Procedures

If a port build is failing, and it is not immediately obvious from the log as to why, you can preserve the WRKDIR for
further analysis. To do this, touch a file called . keep in the port’s directory. The next time the cluster tries to build
this port, it will tar, compress, and copy the WRKDIR to ${arch}/${branch}/wrkdirs.

If you find that the system is looping trying to build the same package over and over again, you may be able to fix the
problem by rebuilding the offending package by hand.

If all the builds start failing with complaints that they cannot load the dependent packages, check to see that httpd is
still running, and restart it if not.

Keep an eye on df(1) output. If the /var/portbuild file system becomes full then Bad Things™ happen.

The status of all current builds is generated twice an hour and posted to
http://pointyhat. FreeBSD.org/errorlogs/packagestats.html. For each buildenv, the following is displayed:

+ cvs date is the contents of cvsdone. This is why we recommend that you update cvsdone for —exp runs (see
below).

« date of latest log

« number of lines in INDEX

« the number of current build logs

« the number of completed packages

+ the number of errors

« the number of duds (shown as skipped)

+ missing shows the difference between INDEX and the other columns. If you have restarted a run after a cvs
update, there will likely be duplicates in the packages and error columns, and this column will be meaningless.
(The script is naive).

+ running and completed are guesses based on a grep(l) of build.log.

8 Dealing With Build Errors

The easiest way to track build failures is to receive the emailed logs and sort them to a folder, so you can maintain a
running list of current failures and detect new ones easily. To do this, add an email address to
${branch}/portbuild.conf. You can easily bounce the new ones to maintainers.

After a port appears broken on every build combination multiple times, it is time to mark it BROKEN. Two weeks’

notification for the maintainers seems fair.

Note: To avoid build errors with ports that need to be manually fetched, put the distfiles into
~ftp/pub/FreeBSD/distfiles.

9 Release Builds

When building packages for a release, it may be necessary to manually update the ports and src trees to the release
tag and use -nocvs and —noportscvs.

Package Building Procedures

To build package sets intended for use on a CD-ROM, use the —~cdrom option to dopackages.
If the disk space is not available on the cluster, use -nodistfiles to avoid collecting distfiles.
After the initial build completes, restart the build with —~restart -fetch-original to collect updated distfiles as

well. Then, once the build is post-processed, take an inventory of the list of files fetched:

% cd ${arch}/${branch}
% find distfiles > distfiles-${release}
This inventory file typically lives in 1386/ ${branch} on the cluster master.

This is useful to aid in periodically cleaning out the distfiles from ftp-master. When space gets tight, distfiles from
recent releases can be kept while others can be thrown away.

Once the distfiles have been uploaded (see below), the final release package set must be created. Just to be on the safe
side, run the s{arch}/${branch}/cdrom. sh script by hand to make sure all the CD-ROM restricted packages and
distfiles have been pruned. Then, copy the $(arch}/$(branch}/packages directory to
$f{arch}/${branch}/packages—s${release}. Once the packages are safely moved off, contact the Release
Engineering Team <re@FreeBSD.org> and inform them of the release package location.

Remember to coordinate with the Release Engineering Team <re@FreeBSD.org> about the timing and status of the
release builds.

10 Uploading Packages

Once a build has completed, packages and/or distfiles can be transferred to ftp-master for propagation to the FTP
mirror network. If the build was run with -nofinish, then make sure to follow up with dopackages —finish to
post-process the packages (removes RESTRICTED and NO_CDROM packages where appropriate, prunes packages not
listed in INDEX, removes from INDEX references to packages not built, and generates a CHECKSUM.MD5 summary);
and distfiles (moves them from the temporary distfiles/.pbtmp directory into distfiles/ and removes
RESTRICTED and NO_CDROM distfiles).

It is usually a good idea to run the restricted. sh and/or cdrom. sh scripts by hand after dopackages finishes
just to be safe. Run the restricted. sh script before uploading to ftp-master, then run cdrom. sh before
preparing the final package set for a release.

The package subdirectories are named by whether they are for release, stable, or current. Examples:

¢ packages—-6.4-release
¢ packages-6-stable
¢ packages-7.2-release
¢ packages-T7-stable

¢ packages—-8-current
Note: Some of the directories on ftp-master are, in fact, symlinks. Examples:

* packages-stable

* packages-current

Package Building Procedures

Be sure you move the new packages directory over the real destination directory, and not one of the symlinks
that points to it.

If you are doing a completely new package set (e.g. for a new release), copy packages to the staging area on
ftp-master with something like the following:

ed /var/portbuild/${arch}/${branch}
tar cfv - packages/ | ssh portmgr@ftp-master tar xfC - w/ports/${arch}/tmp/${subdir}

Then log into ftp-master, verify that the package set was transferred successfully, remove the package set that the
new package set is to replace (in ~/w/ports/$(arch}), and move the new set into place. (w/ is merely a shortcut.)
For incremental builds, packages should be uploaded using rsync so we do not put too much strain on the mirrors.

ALWAYS use —n first with rsync and check the output to make sure it is sane. If it looks good, re-run the rsync
without the —n option.

Example rsync command for incremental package upload:

rsync -n -r -v -1 -t -p —--delete packages/ portmgrRftp-master:w/ports/${arch}/${subdir}/ | tee log
Distfiles can be transferred with the cpdistfiles script:

/var/portbuild/scripts/cpdistfiles ${arch} ${branch}

Or you can do it by hand using rsync command:

ed /var/portbuild/${arch}/${branch}
rsync -n -r -v -1 -p -c distfiles/ portmgr@ftp-master:w/ports/distfiles/ | tee log

Again, run the command without the —n option after you have checked it.

11 Experimental Patches Builds

Experimental patches builds are run from time to time to new features or bugfixes to the ports infrastructure (i.e.
bsd.port .mk), or to test large sweeping upgrades. The current experimental patches branch is 7-exp on the amd64
architecture.

In general, an experimental patches build is run the same way as any other build, except that you should first update

the ports tree to the latest version and then apply your patches. To do the former, you can use the following:

% cvs -R update -dP > update.out

date > cvsdone

This will most closely simulate what the dopackages script does. (While cvsdone is merely informative, it can be
a help.)

You will need to edit update. out to look for lines beginning with ~M, ~C, or ~? and then deal with them.

It is always a good idea to save original copies of all changed files, as well as a list of what you are changing. You can
then look back on this list when doing the final commit, to make sure you are committing exactly what you tested.

10

Package Building Procedures

Since the machine is shared, someone else may delete your changes by mistake, so keep a copy of them in e.g. your
home directory on freefall. Do not use tmp/; since pointyhat itself runs some version of ~-CURRENT, you can
expect reboots (if nothing else, for updates).

In order to have a good control case with which to compare failures, you should first do a package build of the branch
on which the experimental patches branch is based for the i386 architecture (currently this is 7). Then, when
preparing for the experimental patches build, checkout a ports tree and a src tree with the same date as was used for
the control build. This will ensure an apples-to-apples comparison later.

Once the build finishes, compare the control build failures to those of the experimental patches build. Use the
following commands to facilitate this (this assumes the 7 branch is the control branch, and the 7-exp branch is the
experimental patches branch):

cd /var/portbuild/i386/7-exp/errors

% find . -name \x.log* | sort > /tmp/7-exp-errs
% cd /var/portbuild/i386/7/errors
% find . -name \x.log* | sort > /tmp/7-errs

Note: If it has been a long time since one of the builds finished, the logs may have been automatically
compressed with bzip2. In that case, you must use sort | sed ’s,\.bz2,g’ instead.

% comm -3 /tmp/7-errs /tmp/7-exp-errs | less

This last command will produce a two-column report. The first column is ports that failed on the control build but not
in the experimental patches build; the second column is vice versa. Reasons that the port might be in the first column
include:

+ Port was fixed since the control build was run, or was upgraded to a newer version that is also broken (thus the
newer version should appear in the second column)

+ Port is fixed by the patches in the experimental patches build
+ Port did not build under the experimental patches build due to a dependency failure

Reasons for a port appearing in the second column include:

« Port was broken by the experimental patches [1]
+ Port was upgraded since the control build and has become broken [2]
+ Port was broken due to a transient error (e.g. FTP site down, package client error, etc.)

Both columns should be investigated and the reason for the errors understood before committing the experimental
patches set. To differentiate between [1] and [2] above, you can do a rebuild of the affected packages under the
control branch:

% ed /var/portbuild/i386/7/ports

Note: Be sure to cvs update this tree to the same date as the experimental patches tree.

The following command will set up the control branch for the partial build:

11

Package Building Procedures

% /var/portbuild/scripts/dopackages.7 -noportscvs —-nobuild -nocvs -nofinish

The builds must be performed from the packages/A11 directory. This directory should initially be empty except for
the Makefile symlink. If this symlink does not exist, it must be created:

% cd /var/portbuild/i386/7/packages/All
% 1ln -sf ../../Makefile .
% make -k —-j<#> <list of packages to build>

Note: <#> is the concurrency of the build to attempt. It is usually the sum of the weights listed in
/var/portbuild/i386/mlist unless you have a reason to run a heavier or lighter build.

The list of packages to build should be a list of package names (including versions) as they appear in 1nDEX. The
PKGSUFFIX (i.e. .tgz or .tbz) is optional.

This will build only those packages listed as well as all of their dependencies.
You can check the progress of this partial build the same way you would a regular build.

Once all the errors have been resolved, you can commit the package set. After committing, it is customary to send a
HEADS UP email to ports@FreeBSD.org (mailto:ports @FreeBSD.org) and copy ports-developers @FreeBSD.org
(mailto:ports-developers @FreeBSD.org) informing people of the changes. A summary of all changes should also be
committed to /usr/ports/CHANGES.

12 How to configure a new package building node

Before following these steps, please coordinate with portmgr.

12.1 Node requirements

portmgr is still working on characterizing what a node needs to be generally useful.

« CPU capacity: TBA. However, we have several dual-CPU P-II1 1386 1.0GHz machines available, so anything with
less horsepower than that is not as likely to be useful. (However, many of our Sparc64s are single-CPU, 500MHz
machines, so our requirements are lower.)

Note: We are able to adjust the number of jobs dispatched to each machine, and we generally tune the
number to use 100% of CPU.

+ RAM: TBA. Again, we have been tuning to one job per 512M of RAM. (Anything less than 512M is very unlikely
to be useful.)

« disk: at least 20G is needed for filesystem; 32G is needed for swap. Best performance will be if multiple disks are
used, and configured as geom stripes. Performance numbers are also TBA.

Note: Package building will test disk drives to destruction. Be aware of what you are signing up for!

12

Package Building Procedures

+ network bandwidth: TBA. However, an 8-job machine has been shown to saturate a cable modem line.

12.2 Preparation

Pick a unique hostname. It does not have to be a publicly resolvable hostname (it can be a name on your internal
network).

By default, package building requires the following TCP ports to be accessible: 22 (ssh), 414 (infoseek), and
8649 (ganglia). If these are not accessible, pick others and ensure that an ssh tunnel is set up (see below).

(Note: if you have more than one machine at your site, you will need an individual TCP port for each service on
each machine, and thus ssh tunnels will be necessary. As such, you will probably need to configure port
forwarding on your firewall.)

Decide if you will be booting natively or via pxeboot. You will find that it is easier to keep up with changes to
—-current with the latter, especially if you have multiple machines at your site.

Pick a directory to hold ports configuration and chroot subdirectories. It may be best to put it this on its own
partition. (Example: /usr2/.)

12.3 Configuring src

Create a directory to contain the latest —~current source tree and check it out. (Since your machine will likely
be asked to build packages for —current, the kernel it runs should be reasonably up-to-date with the bindist
that will be exported by our scripts.)

If you are using pxeboot: create a directory to contain the install bits. You will probably want to use a
subdirectory of /pxeroot, e.g., /pxeroot/${arch}—${branchj. Export that as DESTDIR.

If you are cross-building, export TARGET_ARCH=${arch}.

Note: The procedure for cross-building ports is not yet defined.

Generate a kernel config file. Include GENERIC (or, if you are using more than 3.5G on 1386, PAE). Suggested
options:

options GEOM_CONCAT
options GEOM_STRIPE
options NULLFS

options TMPF'S

options SHMMAXPGS=65536
options SEMMNI=40
options SEMMNS=240
options SEMUME=40

13

Package Building Procedures

options SEMMNU=120
options ALT_BREAK_TO_DEBUGGER
options PRINTF_BUFR_SIZE=128

For PAE, it is not currently possible to load modules. Therefore, you will need to add:

options COMPAT_LINUX
options LINPROCFS

As root, do the usual build steps, e.g.:

make -3j4 buildworld

make buildkernel KERNCONF=${kernconf}
make installkernel KERNCONF=${kernconf}
make installworld

The install steps use DESTDIR.

Customize files in et c/. Whether you do this on the client itself, or another machine, will depend on whether
you are using pxeboot.

If you are using pxeboot: create a subdirectory of $/pesTpIR} called conf/. Create one subdirectory
default/etc/, and (if your site will host multiple nodes), subdirectories ${ip-address}/etc/ to contain
override files for individual hosts. (You may find it handy to symlink each of those directories to a hostname.)
Copy the entire contents of s{DESTDIR}/etc/ to default/etc/; that is where you will edit your files. The
by-ip-address etc/ directories will probably only need customized rc. conf files.

In either case, apply the following steps:

+ Create a ports—-$(arch} user and group. Add it to the wheel group. It can have the ’ »’ password.
Create /home/ports—${arch}/.ssh/ and populate authorized_keys.

+ Also add the following users:

squid:*:100:100::0:0:User &:/usr/local/squid:/bin/sh
ganglia:*:102:102::0:0:User &:/usr/local/ganglia:/bin/sh

Add them to etc/group as well.
+ Create the appropriate files in etc/.ssh/.
+ Inetc/crontab: add
* * * * * root /var/portbuild/scripts/client-metrics

« Create the appropriate etc/fstab. (If you have multiple, different, machines, you will need to put those in
the override directories.)

+ Inetc/inetd.conf: add

infoseek stream tcp nowait nobody /var/portbuild/scripts/reportload report]l
« We run the cluster on UTC:

cp /usr/share/zoneinfo/Etc/UTC etc/localtime

« Create the appropriate etc/rc.conf. (If you are using pxeboot, and have multiple, different, machines, you
will need to put those in the override directories.)

Recommended entries:

hostname="S${hostname}

14

Package Building Procedures

inetd_enable="YES"

linux_enable="YES"

nfs_client_enable="YES"

ntpd_enable="YES"

ntpdate_enable="YES"
ntpdate_flags="north-america.pool.ntp.org"
sendmail_enable="NONE"

sshd_enable="YES"
sshd_program="/usr/local/sbin/sshd"

gmond_enable="YES"
squid_enable="YES"

« Create etc/resolv.conf, if necessary.
+ Modify etc/sysctl.conf:

9al1l0, 30
kern.corefile=/tmp/%N.core
kern.sugid_coredump=1
#debug.witness_ddb=0
#debug.witness_watch=0

squid needs a lot of fds (leak?)
kern.maxfiles=40000
kern.maxfilesperproc=30000

Since the NFS root is static we don’t need to check frequently for file changes
This saves >75% of NFS traffic

vfs.nfs.access_cache_timeout=300

debug.debugger_on_panic=1

For jailing
security.jail.sysvipc_allowed=1
security.jail.allow_raw_sockets=1
security.jail.chflags_allowed=1
security.jail.enforce_statfs=1

V VV V V V V V V V V V V VYV V VYV V VYV

vis.lookup_shared=1

+ If desired, modify etc/syslog.conf to change the logging destinations to @pointyhat.freebsd.org.

12.4 Configuring ports

1. Install the following ports:

net/rsync

security/openssh-portable (with HPN on)
security/sudo

sysutils/ganglia-monitor-core (with GMETAD off)
www/squid (with SQUID_AUFS on)

There is a WIP to create a meta-port, but it is not yet complete.

15

Package Building Procedures

Customize files in usr/local/etc/. Whether you do this on the client itself, or another machine, will depend
on whether you are using pxeboot.

Note: The trick of using conf override subdirectories is less effective here, because you would need to copy
over all subdirectories of usr/. This is an implementation detail of how the pxeboot works.

Apply the following steps:

+ Modify usr/local/etc/gmond. conf:

21,22c21,22

< name = "unspecified"

< owner = "unspecified"

> name = "S{arch} package build cluster"
> owner = "portmgr@FreeBSD.org"

24c24

< url = "unspecified"

> url = "http://pointyhat.freebsd.org"

If there are machines from more than one cluster in the same multicast domain (basically = LAN) then change
the multicast groups to different values (.71, .72, etc).

+ Create usr/local/etc/rc.d/portbuild.sh:

#!/bin/sh
#
Configure the system post-boot

In -sf /usr2/portbuild /var/portbuild

Identify builds ready for use
cd /var/portbuild/${arch}
for i in */builds/*; do
if [-f ${i}/.ready 1; then
mkdir /tmp/.setup-S${i##«/}
fi
done

Flag that we are ready to accept jobs
touch /tmp/.boot_finished

If there are machines from more than one cluster in the same multicast domain (basically = LAN) then change
the multicast groups to different values (.71, .72, etc).

+ Modify usr/local/etc/squid/squid.conf:

288,290c288,290

< #auth_param basic children 5

< #auth_param basic realm Squid proxy-caching web server
< #auth_param basic credentialsttl 2 hours

> auth_param basic children 5

> auth_param basic realm Squid proxy-caching web server

16

Package Building Procedures

> auth_param basic credentialsttl 2 hours
611la612

> acl localnet src 127.0.0.0/255.0.0.0
655a657

> http_access allow localnet

2007a2011

> maximum_object_size 400 MB

2828a2838

> negative_ttl 0 minutes

Also, change usr/local to usr2 in the definitions of cache_dir, access_log, cache_log,

cache_store_log, pid_filename, netdb_filename, coredump_dir.
Finally, change the cache_dir storage scheme from ufs to aufs (offers better performance).
« Configure ssh: copy /etc/sshto /usr/local/etc/ssh and add NoneEnabled yes to sshd_config

+ Modify usr/local/etc/sudoers

38a39,42

>

> # local changes for package building

> %wheel ALL=(ALL) ALL

> ports—S{arch} ALL=(ALL) NOPASSWD: ALL

12.5 Configuration on the client itself

1. Change into the port/package directory you picked above, e.g., cd /usr2.
2. Asroot:

mkdir portbuild

chown ports—-${arch}:ports—$f{arch} portbuild
mkdir pkgbuild

chown ports—-${arch}:ports—$f{arch} pkgbuild
mkdir squid

mkdir squid/cache

mkdir squid/logs

chown -R squid:squid squid

3. Ifclients preserve /var/portbuild between boots then they must either preserve their /tmp, or revalidate
their available builds at boot time (see the script on the amd64 machines). They must also clean up stale chroots
from previous builds before creating /tmp/.boot_finished.

4. Boot the client.

5. Asroot, initialize the squid directories:

squid -z

17

Package Building Procedures

12.6 Configuration on pointyhat

These steps need to be taken by a portmgr acting as root on pointyhat.

1. If any of the default TCP ports is not available (see above), you will need to create an ssh tunnel for it and
include it in the appropriate crontab.

2. Add anentry to /home/ports—-s${arch}/.ssh/config to specify the public IP address, TCP port for ssh,
username, and any other necessary information.

3. Add the public IP address to /etc/hosts.allow. (Remember, multiple machines can be on the same IP
address.)

4. Create /var/portbuild/${arch}/clients/bindist-${hostname}.tar.
« Copy one of the existing ones as a template and unpack it in a temporary directory.
« Customize etc/resolv.conf and etc/make. conf for the local site.
+ tar it up and move it to the right location.

Hint: you will need one of these for each machine; however, if you have multiple machines at one site, you may
be able to create a site-specific one and symlink to it.

5. Create /var/portbuild/${arch}/portbuild-$(hostname} using one of the existing ones as a guide. This
file contains overrides to /var/portbuild/s{arch}/portbuild.conf.

Suggested values:

disconnected=1
http_proxy="http://localhost:3128/"
squid_dir=/usr2/squid
scratchdir=/usr2/pkgbuild
client_user=ports-S${arch}
sudo_cmd="sudo -H"

rsync_gzip=-z

infoseek_host=localhost
infoseek_port=${tunelled-tcp-port}
Possible other values:

use_md_swap=1

md_size=9g

use_zfs=1
scp_cmd="/usr/local/bin/scp"
ssh_cmd="/usr/local/bin/ssh"

6. Add an appropriate data_source entry to /usr/local/etc/gmetad.conf:

data_source "arch/location Package Build Cluster" 30 hostname

12.7 Enabling the node

These steps need to be taken by a portmgr acting as ports—arch on pointyhat.

1. Ensure that ssh is working by executing ssh hostname.

18

Package Building Procedures

2. Populate /var/portbuild/scripts/ by something like /var/portbuild/dosetupnode arch major
latest hostname. Verify that you now have files in that directory.

3. Test the other TCP ports by executing telnet hostname portnumber. 414 (or its tunnel) should give you a
few lines of status information including arch and osversion; 8649 should give you an XML response from
ganglia

This step needs to be taken by a portmgr acting as root on pointyhat.

1. Tell gmanager about the node. Example:

python /var/portbuild/evil/gmanager/gclient add name=uniquename arch=arch
osversion=osversion numcpus=number haszfs=0 online=1 domain=domain

primarypool=package pools="package all" maxjobs=1 acl="ports—-arch,deny_all"

13 Procedures for dealing with disk failures

When a machine has a disk failure (e.g. panics due to read errors, etc), then we should do the following steps:

» Note the time and failure mode (e.g. paste in the relevant console output) in
/var/portbuild/${arch}/reboots

« For 1386 gohan clients, scrub the disk by touching /SCRUB in the nfsroot (e.g. /a/nfs/8.dirl/SCRUB) and
rebooting. This will dd if=/dev/zero of=/dev/ad0 and force the drive to remap any bad sectors it finds, if it
has enough spares left. This is a temporary measure to extend the lifetime of a drive that is on the way out.

Note: For the i386 blade systems another signal of a failing disk seems to be that the blade will completely
hang and be unresponsive to either console break, or even NMI.

For other build systems that don’t newfs their disk at boot (e.g. amd64 systems) this step has to be skipped.

« If the problem recurs, then the disk is probably toast. Take the machine out of m11ist and (for ata disks) run
smartctl on the drive:

smartctl -t long /dev/adO
It will take about 1/2 hour:

gohan51# smartctl -t long /dev/adO

smartctl version 5.38 [i386-portbld-freebsd8.0] Copyright (C) 2002-8
Bruce Allen

Home page is http://smartmontools.sourceforge.net/

=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===
Sending command: "Execute SMART Extended self-test routine immediately in off-line mode".

Drive command "Execute SMART Extended self-test routine immediately in off-line mode" successful.

Testing has begun.
Please wait 31 minutes for test to complete.
Test will complete after Fri Jul 4 03:59:56 2008

19

Package Building Procedures

Use smartctl -X to abort test.

Then smartctl —-a /dev/adO shows the status after it finishes:

SMART Self-test log structure revision number 1

Num Test_Description Status Remaining
LifeTime (hours) LBA_of_first_error
1 Extended offline Completed: read failure 80% 15252 319286

It will also display other data including a log of previous drive errors. It is possible for the drive to show previous
DMA errors without failing the self-test though (because of sector remapping).

When a disk has failed, please inform the cluster administrators so we can try to get it replaced.

20

