
Independent Verification of IPsec
Functionality in FreeBSD

David Honig
honig@sprynet.com

3 May 1999

FreeBSD is a registered trademark of the FreeBSD Foundation.
Motif, OSF/1, and UNIX are registered trademarks and IT DialTone and The Open Group are trademarks
of The Open Group in the United States and other countries.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this document, and the FreeBSD Project was
aware of the trademark claim, the designations have been followed by the “™” or the “®” symbol.

You installed IPsec and it seems to be working. How do you know? I describe a method for experimentally
verifying that IPsec is working.

1 The Problem
First, lets assume you have installed IPsec. How do you know it is working? Sure, your connection will not work if
it is misconfigured, and it will work when you finally get it right. netstat(1) will list it. But can you independently
confirm it?

2 The Solution
First, some crypto-relevant info theory:

1. Encrypted data is uniformly distributed, i.e., has maximal entropy per symbol;

2. Raw, uncompressed data is typically redundant, i.e., has sub-maximal entropy.

Suppose you could measure the entropy of the data to- and from- your network interface. Then you could see the
difference between unencrypted data and encrypted data. This would be true even if some of the data in “encrypted
mode” was not encrypted---as the outermost IP header must be if the packet is to be routable.

1

Independent Verification of IPsec Functionality in FreeBSD

2.1 MUST

Ueli Maurer’s “Universal Statistical Test for Random Bit Generators”(MUST
(http://www.geocities.com/SiliconValley/Code/4704/universal.pdf)) quickly measures the entropy of a sample. It
uses a compression-like algorithm. The code is given below for a variant which measures successive (~quarter
megabyte) chunks of a file.

2.2 Tcpdump

We also need a way to capture the raw network data. A program called tcpdump(1) lets you do this, if you have
enabled the Berkeley Packet Filter interface in your kernel’s config file.

The command:

tcpdump -c 4000 -s 10000 -w dumpfile.bin

will capture 4000 raw packets to dumpfile.bin. Up to 10,000 bytes per packet will be captured in this example.

3 The Experiment
Here is the experiment:

1. Open a window to an IPsec host and another window to an insecure host.

2. Now start capturing packets.

3. In the “secure” window, run the UNIX® command yes(1), which will stream the y character. After a while, stop
this. Switch to the insecure window, and repeat. After a while, stop.

4. Now run MUST on the captured packets. You should see something like the following. The important thing to
note is that the secure connection has 93% (6.7) of the expected value (7.18), and the “normal” connection has
29% (2.1) of the expected value.

% tcpdump -c 4000 -s 10000 -w ipsecdemo.bin

% uliscan ipsecdemo.bin

Uliscan 21 Dec 98
L=8 256 258560
Measuring file ipsecdemo.bin
Init done
Expected value for L=8 is 7.1836656
6.9396 --
6.6177 ---
6.4100 ---
2.1101 -----------------
2.0838 -----------------
2.0983 -----------------

2

Independent Verification of IPsec Functionality in FreeBSD

4 Caveat
This experiment shows that IPsec does seem to be distributing the payload data uniformly, as encryption should.
However, the experiment described here cannot detect many possible flaws in a system (none of which do I have any
evidence for). These include poor key generation or exchange, data or keys being visible to others, use of weak
algorithms, kernel subversion, etc. Study the source; know the code.

5 IPsec---Definition
Internet Protocol security extensions to IPv4; required for IPv6. A protocol for negotiating encryption and
authentication at the IP (host-to-host) level. SSL secures only one application socket; SSH secures only a login; PGP
secures only a specified file or message. IPsec encrypts everything between two hosts.

6 Installing IPsec
Most of the modern versions of FreeBSD have IPsec support in their base source. So you will need to include the
IPSEC option in your kernel config and, after kernel rebuild and reinstall, configure IPsec connections using
setkey(8) command.

A comprehensive guide on running IPsec on FreeBSD is provided in FreeBSD Handbook
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ipsec.html).

7 src/sys/i386/conf/KERNELNAME
This needs to be present in the kernel config file in order to capture network data with tcpdump(1). Be sure to run
config(8) after adding this, and rebuild and reinstall.

device bpf

8 Maurer’s Universal Statistical Test (for block size=8 bits)
You can find the same code at this link (http://www.geocities.com/SiliconValley/Code/4704/uliscanc.txt).

/*
ULISCAN.c ---blocksize of 8

1 Oct 98
1 Dec 98
21 Dec 98 uliscan.c derived from ueli8.c

This version has // comments removed for Sun cc

This implements Ueli M Maurer’s "Universal Statistical Test for Random
Bit Generators" using L=8

Accepts a filename on the command line; writes its results, with other

3

Independent Verification of IPsec Functionality in FreeBSD

info, to stdout.

Handles input file exhaustion gracefully.

Ref: J. Cryptology v 5 no 2, 1992 pp 89-105
also on the web somewhere, which is where I found it.

-David Honig
honig@sprynet.com

Usage:
ULISCAN filename
outputs to stdout

*/

#define L 8
#define V (1<<L)
#define Q (10*V)
#define K (100 *Q)
#define MAXSAMP (Q + K)

#include <stdio.h>

#include <math.h>

int main(argc, argv)
int argc;
char **argv;
{
FILE *fptr;
int i,j;
int b, c;
int table[V];
double sum = 0.0;
int iproduct = 1;
int run;

extern double log(/* double x */);

printf("Uliscan 21 Dec 98 \nL=%d %d %d \n", L, V, MAXSAMP);

if (argc < 2) {
printf("Usage: Uliscan filename\n");
exit(-1);

} else {
printf("Measuring file %s\n", argv[1]);

}

fptr = fopen(argv[1],"rb");

if (fptr == NULL) {
printf("Can’t find %s\n", argv[1]);
exit(-1);

}

4

Independent Verification of IPsec Functionality in FreeBSD

for (i = 0; i < V; i++) {
table[i] = 0;

}

for (i = 0; i < Q; i++) {
b = fgetc(fptr);
table[b] = i;

}

printf("Init done\n");

printf("Expected value for L=8 is 7.1836656\n");

run = 1;

while (run) {
sum = 0.0;
iproduct = 1;

if (run)
for (i = Q; run && i < Q + K; i++) {
j = i;
b = fgetc(fptr);

if (b < 0)
run = 0;

if (run) {
if (table[b] > j)
j += K;

sum += log((double)(j-table[b]));

table[b] = i;
}

}

if (!run)
printf("Premature end of file; read %d blocks.\n", i - Q);

sum = (sum/((double)(i - Q))) / log(2.0);
printf("%4.4f ", sum);

for (i = 0; i < (int)(sum*8.0 + 0.50); i++)
printf("-");

printf("\n");

/* refill initial table */
if (0) {
for (i = 0; i < Q; i++) {
b = fgetc(fptr);

5

Independent Verification of IPsec Functionality in FreeBSD

if (b < 0) {
run = 0;

} else {
table[b] = i;

}
}

}
}

}

6

