FreeBSD Developers’ Handbook

The FreeBSD Documentation Project

FreeBSD Developers’ Handbook

by The FreeBSD Documentation Project

Published August 2000

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 The FreeBSD Documentation Project

Welcome to the Developers’ Handbook. This manual is a work in progress and is the work of many individuals.
Many sections do not yet exist and some of those that do exist need to be updated. If you are interested in helping
with this project, send email to the FreeBSD documentation project mailing list
(http://Nists.FreeBSD.org/mailman/listinfo/freebsd-doc).

The latest version of this document is always available from the FreeBSD World Wide Web server
(http://www.FreeBSD.org/index.html). It may also be downloaded in a variety of formats and compression options
from the FreeBSD FTP server (ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/) or one of the numerous mirror sites
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html).

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

FreeBSD is a registered trademark of the FreeBSD Foundation.

Apple, AirPort, FireWire, Mac, Macintosh, Mac OS, Quicktime, and TrueType are trademarks of Apple Computer, Inc., registered in the United
States and other countries.

IBM, AIX, EtherJet, Netfinity, OS/2, PowerPC, PS/2, S/390, and ThinkPad are trademarks of International Business Machines Corporation in the
United States, other countries, or both.

IEEE, POSIX, and 802 are registered trademarks of Institute of Electrical and Electronics Engineers, Inc. in the United States.

Intel, Celeron, EtherExpress, 1386, 1486, Itanium, Pentium, and Xeon are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds.

Microsoft, IntelliMouse, MS-DOS, Outlook, Windows, Windows Media and Windows NT are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Motif, OSF/1, and UNIX are registered trademarks and IT DialTone and The Open Group are trademarks of The Open Group in the United States
and other countries.

Sun, Sun Microsystems, Java, Java Virtual Machine, JavaServer Pages, JDK, JRE, JSP, JVM, Netra, OpenJDK, Solaris, StarOffice, Sun Blade,
Sun Enterprise, Sun Fire, SunOS, Ultra and VirtualBox are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this document, and the FreeBSD Project was aware of the trademark claim, the designations have been followed by the “T™” or the “®”

symbol.

Table of Contents

I. Basics vii
1 INELOAUCTION ..ttt ettt ettt s be et s b e ettt e bt e et s bt et e s bt eb b et e ebeeatesbeestenbesbeennenbeens 1
1.1 Developing on FIEEBSDccoii ittt sttt ettt st e s aaesabeenbeesasesanesats 1

1.2 The BSD VISION ..cuutiuiiiiiiiiiinieeienieetetese ettt ettt ettt st b et s bt et sbe et sae s bt e e sbeesnenaeeaee 1

1.3 Architectural GUIAEINEScocueruiriiriiniiiiieietcert ettt ettt sae et sae sttt sae e 1

1.4 The Layout Of /UST/ STC weriiriiiiriiieieeieeteete ettt ettt ettt et et sae et sttt sae e 1

2 Pro@ramiming TOOLSeocuierierieiiteiierite sttt sttt et e st e st e et e s ttesabesabeesbaesabesateenbeesatesaseenbaenaeesasesaseeseenseenn 3
2.1 SYMOPSIS teeuteeiitetieriteete ettt ete et et s e st e bt e st e sttt e bt e bt e s hte et e e bt e e bt e e be et e e bt e s abe e be e b e e sabeeabeenbeesatesareentes 3

2.2 INETOAUCTION. ..ottt ettt ettt ettt et b e ettt aesat e e s bt e s e bt ebe et e saeemte bt saeemsesbeennenaeeaes 3

2.3 Introduction tO PrOZIamMIMINGcccevvieiiiiriienienieeieeite sttt eieesitesteebeesbtesteeteebeesabesateenbeesanesaresases 3

2.4 COMPIING WILI CC vttt ettt ettt et sttt e b e st e e bt e b e e s it e sabeeabeesaaesaresats 6

2.5 MK ..ttt ettt b et sae e ae e aeeaee 12

2.0 DEDUZZING.....ceeoniiiieiiiietetete ettt ettt et st b e ettt ae et b s eane 16

2.7 Using Emacs as a Development Environment............c.ccoceoeeieiiinierinienienenieteseeeeseeeeseseene e 20

2.8 Further REAAINGcc.couiiiiiiiiiiiieeeee ettt 28

3 Secure Programmiigccoiiiiiiiiiiieiieieieece ettt sttt e sttt s eanen 30
31 SYNOPSIS ..ttt s e e st e ae e a e et e r e et ne e saeeanes 30

3.2 Secure Design MethodOIOZYeovuiiriiiiiiiiiiiieiieeeet ettt sttt et sbeesaee e 30

3.3 BUFTET OVEITIOWS ..vviiiieiiieiiecie ettt ettt te et e st e e e e ebe e baeesbaesbeesseasssassseensaessesasassaenseenseenns 30

3.4 SEUUID ISSUCS. ..uuvreeeurieeauteeeriteesiteeeeteeetteeeteeeesteeasseeessseeeasseesasseeansseeanssassnseeesnseesanseeeasseeensseesnssessnseennn 32

3.5 Limiting your program’s €NVIFONMIMENLe.ceruerteeruerteeienueeseensesteeeesteeseenseeseesesaeesessesseensesseessessesnees 33

B0 TTUSE c.ttetieeiteete et e ete ettt et e e tte e bt eteesteessbeessaesseessseansaesseesseassaesseensaaassaesseensaanssansseansaanssanseesnseenseenseenns 34

3.7 RACE CONAITIONS ...cuvvieiiieiiieitieeieeieesttesteeeteesteesteeseteesaeseesssaasseesseesssesssassseesseasssesssesnseesseessesssseesseenseenns 34

4 Localization and Internationalization - LION and TT8Nc.ccccieiiiiiiiiciiiiiecieeie ettt sve e e 35
4.1 Programming [18N Compliant APPLICAtIONS.......co.eeruirtirieriiriieiirieeie ettt sttt sae s 35

4.2 Localized Messages with POSIX.1 Native Language Support (INLS)ccccocievininneniniininieenene 35

5 Source Tree Guidelines and POIICIEScc.ueuiiiiriiiiiieeeieeeee e ettt 40
S.IMAINTAINER ON MaKEMIIES ..eooviiiiiiiiiiciciccccceeret et 40

5.2 CoNtIIDULEd SOFEWATE ..c..eouviiieiiiiiiteeierieet ettt ettt sttt b et bt et sae et e b beebe b ene 40

5.3 ENCUMDETEA FIIES ...cuviiiiiiiiiiiiiiiiteesee ettt sttt et b et bbbt be e 45

5.4 SRAred LIDIATIES ...c..eeviiieiiiiieiietteeteerteet ettt ettt ettt s b e ettt s b et sae et e besbeennesbeenee 46

6 Regression and Performance TESTNGc.cueecviirieriierieeiierieete ettt e eite st e it esaeeseteebeesseessaesnbeenseesaesnsesnseenses 48
6.1. Micro Benchmark CheCKIiStc..cecueriieiiniiiiniiiieienieetce ettt sttt 48

I1. Interprocess Communication 50
T SOCKELS ..ttt ettt ettt a e et h e bttt s a et s h e b e et b e ne e sh e e b e san et e ereenee 51
T 1 SYNOPSIS eteuteeuiieiteeiie ettt ettt sttt et s et e bt e bt e s bt e et e e bt e bt e s a b e e bt e bt e s abeeab e e bt e bt e eabe et e e bt e eabeeabe e beesatesatean 51

7.2 Networking and DIVETSILYcecuiiriierieriiiiieeiteste ettt sttt et ettt b e e st esabe st e e sbaesabesabeesbeesaeesasean 51

T3 PIOTOCOLS ...cuiieei ettt ettt st ettt et et e b et b e ae et ae s aeeane 51

7.4 The SOCKELS IMOAELoeiiiiiiiiieieeee ettt sttt et e st st st esbaesate st e e beesatesaten 54

7.5 Essential SOCKEt FUNCHONScccuiiieiiiieiiieciieeeiee ettt ettt e et e e et e s aaeesteeesnseeessaeassseeensseesnnnas 54

7.6 Helper FUNCHONS......c..oouiiiiiieiec ettt st e st eeee 67

7.7 CONCUITENE SETVETSvveeeerieeiereeeiereeaiteeeassreesseeeasseeesssseassseesssseesssseessssesassssesssssesssesssssessssseessssesesssessssses 69

B TPVO INEEINIALS ..c.eeiieeiiiieeiie ettt ettt e et e e et e e ettt e e ste e e sbeeeasseeessseeassbeeassseeanseaesnseeeassaeesseaenssesasseesnsneenn 72
8.1 IPVO/IPsec IMPIEMENTATION.c..couiiiiiiiiiii ettt et st 72

II1. Kernel 89

9 Building and Installing a FreeBSD KeTnel.........c.cooouiiiiiiiiiiiiiiieiieeect ettt sttt 90
9.1 Building a Kernel the “Traditional” Waycccccooviiiiiiiiiieiiee ettt 90

9.2 Building a Kernel the “NEW” WaY......cccciiiiiriiiiiiieeieiite ettt ettt ettt sttt st e esaeesaee s 90

10 KeTNel DEDUZZINGvveruieiiiiiieeiieeieeiteeteet ettt ettt ettt sb e et st et e bt e s bt e s abeeabeesbtesabeebeenbeesabesnseenses 91
10.1 Obtaining a Kernel Crash DUMPcoouiiieiiiiiiiiiiieieteee ettt 91

10.2 Debugging a Kernel Crash Dump with kgabcecueevueeiiiriiriiiiiiieeieceetee ettt 92

10.3 Debugging a Crash Dump with DDD.......cociiiiiiiiiiiiiiietteeeeeete et 96

10.4 Post-Mortem Analysis 0f @ DUIMND ...ccc.eeeieiiiiiiiiiiieieeeceeteee ettt sttt 97

10.5 On-Line Kernel Debugging Using DDBccooiiiiiiiiiiiiiteetee ettt 97

10.6 On-Line Kernel Debugging Using Remote GDB...........ccccoiiiiiiinieiiieeeeeieee e 100

10.7 Debugging Loadable Modules Using GDBi..........cccccoiiiiiiiiinieieieese e 101

10.8 Debugging @ Console DIIVETcoeiriiiiiiiitieiieeet ettt ettt sttt e e s esbesaeeneens 102

10.9 Debugging DeadloCks.........oiuiiiiiiiieie ettt ettt ettt st 102

10.10 Glossary of Kernel Options for Debug@ingcccceveeriererieniinieienieieriesteiesieee e 103

IV. Architectures 105
11 x86 Assembly Language Programmingcccccceveerieniiiinienieienieetenie ettt ettt 106
L1.T SYMOPSIS etentintteiteteeitete ettt ettt ettt st et b ettt b e s bt et e bt e bt et e bt e st e s bt e bt et e bt et e bt ebt et ebeebesbeentent 106

T1.2 THE TOOIS ettt e e et e et e e et e e e tbeeetaeeeaaeeeatseeeasaeesasseeasteseessseenasaeensseaanns 106

11.3 SYSEIM CalLS ..ottt ettt ettt et b et sb e st aesbe et e bt ebt et sbeebesaeennens 107

T1.4 RELUIN VALUCS.....cooiiiiiiiii et eteeeeee ettt ettt ettt e et eeeearee e tbeeetbeeeatseesasseesasseeassseenasaeesssesenssesennes 109

11.5 Creating Portable COAE.......ccuuiiiiriiiiienieeieeit ettt ettt e sttt et e st e sbeebeesbaesabeesseenseesssesssesnseas 110

11.6 OUE FIrSt PrOZIAM ... ciiiiieiieiieiieeieeitese ettt st ettt sttt et e st e st e esbe e baesabeenseenbeesasesnsesnseas 114

11.7 WIiting UNIX® FIIEETS......eeiuieiieeiteiienieete et esiteste sttt esitesete s bt esseesasessbeesseesseesasesnseenseesssesssesnses 115

11.8 Buffered INput and OULPUL......ccueriiriiiirieeieeieerteete ettt st ettt e st st e e bt esbeesabessbeenbeesssesasesnbeas 118

11.9 Command LiNe ATZUIMIEILS.c...eeruiritierierieeieerttestesteesteesttesieeebeesseesatesaseeseesseesasesnseenseesssesnsesses 125

11.10 UNIX ENVITONIMENL. ...c..utiiiiieeiiiieeiieeeiteesteeesveeesveeestseeeseseessseessseesssssesssssessssessssesssssseessssesssseeses 129

1111 WOrTKIng With FIIES....cc..oiiiiiiiiiiiiee ettt ettt st ettt e ebee e 133

11.12 ONe-PoinNted MINdooeioiiiiiiiieeiie et ecieeeeteeestee et e e v e e e taeestaeestbeeessaeessseaesssesesssaeessseaessseannns 144

L1 13 USING the FPUL.c...iiiiiiiiiiieeeeet ettt ettt ettt et sttt e bt e st e e bt e bt e sateenbeenbeeneee 152

L1144 CAVEALSccuvveeee et ettt e et e e e e et e e e e e etba e e e e eetaaeeeeeeataseeeeeataaeeeeentaseeeeeentsseeeeentreeeeeeennreeas 179

11.15 ACKNOWIEAZEIMENLS........cotiiiiiiiiiiiieie ettt ettt ettt ene st enesaeennens 181

V. Appendices 182
BIDIIOGIAPIY ...ttt ettt et b e s bt ettt e b e st e bt e be e eate et eareas 183

List of Examples

2-1. A sample .emacs file

Vi

|l. Basics

Chapter 1 Introduction

Contributed by Murray Stokely and Jeroen Ruigrok van der Werven.

1.1 Developing on FreeBSD

So here we are. System all installed and you are ready to start programming. But where to start? What does FreeBSD
provide? What can it do for me, as a programmer?

These are some questions which this chapter tries to answer. Of course, programming has different levels of
proficiency like any other trade. For some it is a hobby, for others it is their profession. The information in this
chapter might be aimed toward the beginning programmer; indeed, it could serve useful for the programmer
unfamiliar with the FreeBSD platform.

1.2 The BSD Vision

To produce the best UNIX® like operating system package possible, with due respect to the original software tools
ideology as well as usability, performance and stability.

1.3 Architectural Guidelines

Our ideology can be described by the following guidelines

« Do not add new functionality unless an implementor cannot complete a real application without it.

« It is as important to decide what a system is not as to decide what it is. Do not serve all the world’s needs; rather,
make the system extensible so that additional needs can be met in an upwardly compatible fashion.

+ The only thing worse than generalizing from one example is generalizing from no examples at all.

« If a problem is not completely understood, it is probably best to provide no solution at all.

« If you can get 90 percent of the desired effect for 10 percent of the work, use the simpler solution.

+ Isolate complexity as much as possible.

+ Provide mechanism, rather than policy. In particular, place user interface policy in the client’s hands.

From Scheifler & Gettys: "X Window System"

1.4 The Layout of /usr/src

The complete source code to FreeBSD is available from our public repository. The source code is normally installed
in /usr/src which contains the following subdirectories:

Directory Description

bin/ Source for files in /bin

Directory
cddl/

contrib/
crypto/
etc/
games/
gnu/
include/
kerberos5/
lib/
libexec/
release/
rescue/
sbin/
secure/
share/
sys/
tools/
usr.bin/

usr.sbin/

Chapter 1 Introduction

Description

Utilities covered by the Common Development and
Distribution License

Source for files from contributed software.
Cryptographical sources

Source for files in /etc

Source for files in /usr/games

Utilities covered by the GNU Public License
Source for files in /usr/include

Source for Kerberos version 5

Source for files in /usr/1ib

Source for files in /usr/libexec

Files required to produce a FreeBSD release
Build system for the /rescue utilities
Source for files in /sbin

FreeSec sources

Source for files in /usr/share

Kernel source files

Tools used for maintenance and testing of FreeBSD
Source for files in /usr/bin

Source for files in /usr/sbin

Chapter 2 Programming Tools

Contributed by James Raynard and Murray Stokely.

2.1 Synopsis

This chapter is an introduction to using some of the programming tools supplied with FreeBSD, although much of it
will be applicable to many other versions of UNIX. It does not attempt to describe coding in any detail. Most of the
chapter assumes little or no previous programming knowledge, although it is hoped that most programmers will find
something of value in it.

2.2 Introduction

FreeBSD offers an excellent development environment. Compilers for C and C++ and an assembler come with the
basic system, not to mention classic UNIX tools such as sed and awk. If that is not enough, there are many more
compilers and interpreters in the Ports collection. The following section, Introduction to Programming, lists some of
the available options. FreeBSD is very compatible with standards such as POSIX® and ANSI C, as well with its own
BSD heritage, so it is possible to write applications that will compile and run with little or no modification on a wide
range of platforms.

However, all this power can be rather overwhelming at first if you have never written programs on a UNIX platform
before. This document aims to help you get up and running, without getting too deeply into more advanced topics.
The intention is that this document should give you enough of the basics to be able to make some sense of the
documentation.

Most of the document requires little or no knowledge of programming, although it does assume a basic competence
with using UNIX and a willingness to learn!

2.3 Introduction to Programming

A program is a set of instructions that tell the computer to do various things; sometimes the instruction it has to
perform depends on what happened when it performed a previous instruction. This section gives an overview of the
two main ways in which you can give these instructions, or “commands” as they are usually called. One way uses an
interpreter, the other a compiler. As human languages are too difficult for a computer to understand in an
unambiguous way, commands are usually written in one or other languages specially designed for the purpose.

2.3.1 Interpreters

With an interpreter, the language comes as an environment, where you type in commands at a prompt and the
environment executes them for you. For more complicated programs, you can type the commands into a file and get
the interpreter to load the file and execute the commands in it. If anything goes wrong, many interpreters will drop
you into a debugger to help you track down the problem.

The advantage of this is that you can see the results of your commands immediately, and mistakes can be corrected
readily. The biggest disadvantage comes when you want to share your programs with someone. They must have the
same interpreter, or you must have some way of giving it to them, and they need to understand how to use it. Also

Chapter 2 Programming Tools

users may not appreciate being thrown into a debugger if they press the wrong key! From a performance point of
view, interpreters can use up a lot of memory, and generally do not generate code as efficiently as compilers.

In my opinion, interpreted languages are the best way to start if you have not done any programming before. This
kind of environment is typically found with languages like Lisp, Smalltalk, Perl and Basic. It could also be argued
that the UNIX shell (sh, csh) is itself an interpreter, and many people do in fact write shell “scripts” to help with
various “housekeeping” tasks on their machine. Indeed, part of the original UNIX philosophy was to provide lots of
small utility programs that could be linked together in shell scripts to perform useful tasks.

2.3.2 Interpreters available with FreeBSD

Here is a list of interpreters that are available from the FreeBSD Ports Collection, with a brief discussion of some of
the more popular interpreted languages.

Instructions on how to get and install applications from the Ports Collection can be found in the Ports section
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports-using.html) of the handbook.

BASIC

Short for Beginner’s All-purpose Symbolic Instruction Code. Developed in the 1950s for teaching University
students to program and provided with every self-respecting personal computer in the 1980s, BASIC has been
the first programming language for many programmers. It is also the foundation for Visual Basic.

The Bywater Basic Interpreter can be found in the Ports Collection as 1ang/bwbasic and the Phil Cockroft’s
Basic Interpreter (formerly Rabbit Basic) is available as 1ang/pbasic.

Lisp
A language that was developed in the late 1950s as an alternative to the “number-crunching” languages that

were popular at the time. Instead of being based on numbers, Lisp is based on lists; in fact the name is short for
“List Processing”. Very popular in Al (Artificial Intelligence) circles.

Lisp is an extremely powerful and sophisticated language, but can be rather large and unwieldy.

Various implementations of Lisp that can run on UNIX systems are available in the Ports Collection for
FreeBSD. GNU Common Lisp can be found as 1ang/gcl. CLISP by Bruno Haible and Michael Stoll is
available as 1ang/clisp. For CMUCL, which includes a highly-optimizing compiler too, or simpler Lisp
implementations like SLisp, which implements most of the Common Lisp constructs in a few hundred lines of
C code, lang/cmucl and lang/slisp are available respectively.

Perl

Very popular with system administrators for writing scripts; also often used on World Wide Web servers for
writing CGI scripts.

Perl is available in the Ports Collection as 1ang/per15. 8 for all FreeBSD releases, and is installed as
/usr/bin/perl in the base system 4.X releases.
Scheme

A dialect of Lisp that is rather more compact and cleaner than Common Lisp. Popular in Universities as it is
simple enough to teach to undergraduates as a first language, while it has a high enough level of abstraction to
be used in research work.

Chapter 2 Programming Tools

Scheme is available from the Ports Collection as 1ang/elk for the Elk Scheme Interpreter. The MIT Scheme
Interpreter can be found in 1ang/mit-scheme and the SCM Scheme Interpreter in lang/scm.

Icon

Icon is a high-level language with extensive facilities for processing strings and structures. The version of Icon
for FreeBSD can be found in the Ports Collection as 1ang/icon.

Logo

Logo is a language that is easy to learn, and has been used as an introductory programming language in various
courses. It is an excellent tool to work with when teaching programming in small ages, as it makes the creation
of elaborate geometric shapes an easy task even for very small children.

The latest version of Logo for FreeBSD is available from the Ports Collection in 1ang/logo.

Python

Python is an Object-Oriented, interpreted language. Its advocates argue that it is one of the best languages to
start programming with, since it is relatively easy to start with, but is not limited in comparison to other popular
interpreted languages that are used for the development of large, complex applications (Perl and Tcl are two
other languages that are popular for such tasks).

The latest version of Python is available from the Ports Collection in lang/python.

Ruby

Ruby is an interpreter, pure object-oriented programming language. It has become widely popular because of its
easy to understand syntax, flexibility when writing code, and the ability to easily develop and maintain large,
complex programs.

Ruby is available from the Ports Collection as 1ang/ruby18.

Tcl and Tk

Tcl is an embeddable, interpreted language, that has become widely used and became popular mostly because
of its portability to many platforms. It can be used both for quickly writing small, prototype applications, or
(when combined with Tk, a GUI toolkit) fully-fledged, featureful programs.

Various versions of Tcl are available as ports for FreeBSD. The latest version, Tcl 8.5, can be found in
lang/tcl85.

2.3.3 Compilers

Compilers are rather different. First of all, you write your code in a file (or files) using an editor. You then run the
compiler and see if it accepts your program. If it did not compile, grit your teeth and go back to the editor; if it did
compile and gave you a program, you can run it either at a shell command prompt or in a debugger to see if it works
properly. !

Obviously, this is not quite as direct as using an interpreter. However it allows you to do a lot of things which are
very difficult or even impossible with an interpreter, such as writing code which interacts closely with the operating
system—or even writing your own operating system! It is also useful if you need to write very efficient code, as the
compiler can take its time and optimize the code, which would not be acceptable in an interpreter. Moreover,

Chapter 2 Programming Tools
distributing a program written for a compiler is usually more straightforward than one written for an interpreter—you
can just give them a copy of the executable, assuming they have the same operating system as you.

Compiled languages include Pascal, C and C++. C and C++ are rather unforgiving languages, and best suited to
more experienced programmers; Pascal, on the other hand, was designed as an educational language, and is quite a
good language to start with. FreeBSD does not include Pascal support in the base system, but both GNU Pascal
Compiler (GPC) and the Free Pascal Compiler are available in the Ports Collection as 1ang/gpc and lang/fpc.

As the edit-compile-run-debug cycle is rather tedious when using separate programs, many commercial compiler
makers have produced Integrated Development Environments (IDEs for short). FreeBSD does not include an IDE in
the base system, but devel/kdevelop is available in the Ports Collection and many use Emacs for this purpose.
Using Emacs as an IDE is discussed in Section 2.7.

2.4 Compiling with cc

This section deals only with the GNU compiler for C and C++, since that comes with the base FreeBSD system. It
can be invoked by either cc or gcc. The details of producing a program with an interpreter vary considerably
between interpreters, and are usually well covered in the documentation and on-line help for the interpreter.

Once you have written your masterpiece, the next step is to convert it into something that will (hopefully!) run on
FreeBSD. This usually involves several steps, each of which is done by a separate program.

1. Pre-process your source code to remove comments and do other tricks like expanding macros in C.

2. Check the syntax of your code to see if you have obeyed the rules of the language. If you have not, it will
complain!

3. Convert the source code into assembly language—this is very close to machine code, but still understandable by
humans. Allegedly. *

4. Convert the assembly language into machine code—yep, we are talking bits and bytes, ones and zeros here.

5. Check that you have used things like functions and global variables in a consistent way. For example, if you
have called a non-existent function, it will complain.

6. If you are trying to produce an executable from several source code files, work out how to fit them all together.
7. Work out how to produce something that the system’s run-time loader will be able to load into memory and run.
8. Finally, write the executable on the filesystem.

The word compiling is often used to refer to just steps 1 to 4—the others are referred to as linking. Sometimes step 1
is referred to as pre-processing and steps 3-4 as assembling.

Fortunately, almost all this detail is hidden from you, as cc is a front end that manages calling all these programs
with the right arguments for you; simply typing

% cc foobar.c

will cause foobar. c to be compiled by all the steps above. If you have more than one file to compile, just do
something like

% cc foo.c bar.c

Chapter 2 Programming Tools

Note that the syntax checking is just that—checking the syntax. It will not check for any logical mistakes you may
have made, like putting the program into an infinite loop, or using a bubble sort when you meant to use a binary sort. >

There are lots and lots of options for cc, which are all in the manual page. Here are a few of the most important ones,
with examples of how to use them.

-0 filename

The output name of the file. If you do not use this option, cc will produce an executable called a . out. *

cc foobar.c executable is a.out

oo oo

cc —o foobar foobar.c executable is foobar

Just compile the file, do not link it. Useful for toy programs where you just want to check the syntax, or if you
are using a Makefile.

% cc —c foobar.c

This will produce an object file (not an executable) called foobar . o. This can be linked together with other
object files into an executable.

Create a debug version of the executable. This makes the compiler put information into the executable about
which line of which source file corresponds to which function call. A debugger can use this information to show
the source code as you step through the program, which is very useful; the disadvantage is that all this extra
information makes the program much bigger. Normally, you compile with —g while you are developing a
program and then compile a “release version” without —g when you are satisfied it works properly.

[

% cc —-g foobar.c

This will produce a debug version of the program. ’

Create an optimized version of the executable. The compiler performs various clever tricks to try to produce an
executable that runs faster than normal. You can add a number after the -0 to specify a higher level of
optimization, but this often exposes bugs in the compiler’s optimizer. For instance, the version of cc that comes
with the 2.1.0 release of FreeBSD is known to produce bad code with the -02 option in some circumstances.

Optimization is usually only turned on when compiling a release version.

[

% cc -0 —-o foobar foobar.c

This will produce an optimized version of foobar.

Chapter 2 Programming Tools

The following three flags will force cc to check that your code complies to the relevant international standard, often
referred to as the ANSI standard, though strictly speaking it is an ISO standard.

-Wall
Enable all the warnings which the authors of cc believe are worthwhile. Despite the name, it will not enable all
the warnings cc is capable of.

—ansi
Turn off most, but not all, of the non-ANSI C features provided by cc. Despite the name, it does not guarantee
strictly that your code will comply to the standard.

-pedantic
Turn off all cc’s non-ANSI C features.

Without these flags, cc will allow you to use some of its non-standard extensions to the standard. Some of these are
very useful, but will not work with other compilers—in fact, one of the main aims of the standard is to allow people
to write code that will work with any compiler on any system. This is known as portable code.

Generally, you should try to make your code as portable as possible, as otherwise you may have to completely rewrite
the program later to get it to work somewhere else—and who knows what you may be using in a few years time?

o

% cc -Wall -ansi —-pedantic -o foobar foobar.c

This will produce an executable foobar after checking foobar. c for standard compliance.

—llibrary
Specify a function library to be used at link time.

The most common example of this is when compiling a program that uses some of the mathematical functions
in C. Unlike most other platforms, these are in a separate library from the standard C one and you have to tell
the compiler to add it.

The rule is that if the library is called 1ibsomething.a, you give cc the argument -1 something. For example,
the math library is 1ibm. a, so you give cc the argument —1m. A common “gotcha” with the math library is that
it has to be the last library on the command line.

o

% cc —o foobar foobar.c -1m

This will link the math library functions into foobar.

If you are compiling C++ code, you need to add —-1g++, or ~1stdc++ if you are using FreeBSD 2.2 or later, to
the command line argument to link the C++ library functions. Alternatively, you can run c++ instead of cc,
which does this for you. c++ can also be invoked as g++ on FreeBSD.

cc —o foobar foobar.cc -lg++ For FreeBSD 2.1.6 and earlier
cc —o foobar foobar.cc -lstdc++ For FreeBSD 2.2 and later
c++ —-o foobar foobar.cc

o0 oo oe

Chapter 2 Programming Tools

Each of these will both produce an executable foobar from the C++ source file foobar . cc. Note that, on
UNIX systems, C++ source files traditionally end in . C, .cxx or .cc, rather than the MS-DOS® style . cpp
(which was already used for something else). gcc used to rely on this to work out what kind of compiler to use
on the source file; however, this restriction no longer applies, so you may now call your C++ files . cpp with
impunity!

2.4.1 Common cc Queries and Problems

1. T am trying to write a program which uses the sin () function and I get an error like this. What does it mean?

/var/tmp/cc0143941.0: Undefined symbol ‘_sin’ referenced from text segment

When using mathematical functions like sin (), you have to tell cc to link in the math library, like so:

% cc —o foobar foobar.c -1m

2. All right, I wrote this simple program to practice using —1m. All it does is raise 2.1 to the power of 6.

#include <stdio.h>

int main () {
float £f;

f = pow(2.1, 6);
printf("2.1 ~ 6
return 0;

}

= $f\n", £);

and I compiled it as:

[

% cc temp.c -1m

like you said I should, but I get this when I run it:

2.1 ~ 6 =1023.000000

Chapter 2 Programming Tools

This is not the right answer! What is going on?

When the compiler sees you call a function, it checks if it has already seen a prototype for it. If it has not, it assumes
the function returns an int, which is definitely not what you want here.

3. So how do I fix this?

The prototypes for the mathematical functions are in math.h. If you include this file, the compiler will be able to
find the prototype and it will stop doing strange things to your calculation!

#include <math.h>
#include <stdio.h>

int main() |

After recompiling it as you did before, run it:

% ./a.out
2.1 ~ 6 = 85.766121

If you are using any of the mathematical functions, always include math.h and remember to link in the math library.

4.1 compiled a file called foobar.c and I cannot find an executable called foobar. Where has it gone?

Remember, cc will call the executable a . out unless you tell it differently. Use the —o filename option:

% cc —o foobar foobar.c

5. OK, I have an executable called foobar, I can see it when [run 1s, but when I type in foobar at the command
prompt it tells me there is no such file. Why can it not find it?

Unlike MS-DOS, UNIX does not look in the current directory when it is trying to find out which executable you
want it to run, unless you tell it to. Either type ./ foobar, which means “run the file called foobar in the current
directory”, or change your PATH environment variable so that it looks something like

bin:/usr/bin:/usr/local/bin:.

The dot at the end means “look in the current directory if it is not in any of the others”.

10

Chapter 2 Programming Tools

6. I called my executable test, but nothing happens when I run it. What is going on?
Most UNIX systems have a program called test in /usr/bin and the shell is picking that one up before it gets to
checking the current directory. Either type:

% ./test

or choose a better name for your program!

7.1 compiled my program and it seemed to run all right at first, then there was an error and it said something about
“core dumped”. What does that mean?

The name core dump dates back to the very early days of UNIX, when the machines used core memory for storing
data. Basically, if the program failed under certain conditions, the system would write the contents of core memory
to disk in a file called core, which the programmer could then pore over to find out what went wrong.

8. Fascinating stuff, but what I am supposed to do now?

Use gdb to analyze the core (see Section 2.6).

9. When my program dumped core, it said something about a “segmentation fault”. What is that?

This basically means that your program tried to perform some sort of illegal operation on memory; UNIX is designed
to protect the operating system and other programs from rogue programs.

Common causes for this are:

+ Trying to write to a NULL pointer, eg

char xfoo = NULL;
strcpy (foo, "bang!");

« Using a pointer that has not been initialized, eg

char *foo;
strcpy (foo, "bang!");

The pointer will have some random value that, with luck, will point into an area of memory that is not available to
your program and the kernel will kill your program before it can do any damage. If you are unlucky, it will point
somewhere inside your own program and corrupt one of your data structures, causing the program to fail
mysteriously.

« Trying to access past the end of an array, eg

int bar[20];
bar([27] = 6;

« Trying to store something in read-only memory, eg

char xfoo = "My string";
strcpy (foo, "bang!");

11

Chapter 2 Programming Tools

UNIX compilers often put string literals like "My string" into read-only areas of memory.
« Doing naughty things withmalloc () and free (), eg

char bar[80];
free (bar);

or

char *xfoo = malloc(27);
free (foo);
free (foo);

Making one of these mistakes will not always lead to an error, but they are always bad practice. Some systems and
compilers are more tolerant than others, which is why programs that ran well on one system can crash when you try
them on an another.

10. Sometimes when I get a core dump it says “bus error”. It says in my UNIX book that this means a hardware
problem, but the computer still seems to be working. Is this true?

No, fortunately not (unless of course you really do have a hardware problem. . .). This is usually another way of
saying that you accessed memory in a way you should not have.

11. This dumping core business sounds as though it could be quite useful, if I can make it happen when I want to.
Can I do this, or do I have to wait until there is an error?

Yes, just go to another console or xterm, do

% ps

to find out the process ID of your program, and do

% kill -ABRT pid

where pid is the process ID you looked up.

This is useful if your program has got stuck in an infinite loop, for instance. If your program happens to trap
SIGABRT, there are several other signals which have a similar effect.

Alternatively, you can create a core dump from inside your program, by calling the abort () function. See the
manual page of abort(3) to learn more.

If you want to create a core dump from outside your program, but do not want the process to terminate, you can use
the gcore program. See the manual page of gcore(1) for more information.

12

Chapter 2 Programming Tools

2.5 Make

2.5.1 What is make?

When you are working on a simple program with only one or two source files, typing in

% cc filel.c file2.c

is not too bad, but it quickly becomes very tedious when there are several files—and it can take a while to compile,
too.

One way to get around this is to use object files and only recompile the source file if the source code has changed. So
we could have something like:

% cc filel.o file2.o0 ... file37.c ...

if we had changed file37.c, but not any of the others, since the last time we compiled. This may speed up the
compilation quite a bit, but does not solve the typing problem.

Or we could write a shell script to solve the typing problem, but it would have to re-compile everything, making it
very inefficient on a large project.

What happens if we have hundreds of source files lying about? What if we are working in a team with other people
who forget to tell us when they have changed one of their source files that we use?

Perhaps we could put the two solutions together and write something like a shell script that would contain some kind
of magic rule saying when a source file needs compiling. Now all we need now is a program that can understand
these rules, as it is a bit too complicated for the shell.

This program is called make. It reads in a file, called a makefile, that tells it how different files depend on each other,
and works out which files need to be re-compiled and which ones do not. For example, a rule could say something
like “if fromboz. o is older than fromboz . c, that means someone must have changed fromboz. c, so it needs to be
re-compiled.” The makefile also has rules telling make how to re-compile the source file, making it a much more
powerful tool.

Makefiles are typically kept in the same directory as the source they apply to, and can be called makefile,
Makefile or MAKEFILE. Most programmers use the name Makefile, as this puts it near the top of a directory
listing, where it can easily be seen. ¢

2.5.2 Example of using make

Here is a very simple make file:

foo: foo.c
cc -o foo foo.c

It consists of two lines, a dependency line and a creation line.

The dependency line here consists of the name of the program (known as the targer), followed by a colon, then
whitespace, then the name of the source file. When make reads this line, it looks to see if foo exists; if it exists, it
compares the time foo was last modified to the time foo.c was last modified. If foo does not exist, or is older than
foo.c, it then looks at the creation line to find out what to do. In other words, this is the rule for working out when
foo.c needs to be re-compiled.

13

Chapter 2 Programming Tools

The creation line starts with a tab (press the tab key) and then the command you would type to create foo if you
were doing it at a command prompt. If foo is out of date, or does not exist, make then executes this command to
create it. In other words, this is the rule which tells make how to re-compile foo.c.

So, when you type make, it will make sure that foo is up to date with respect to your latest changes to foo. c. This
principle can be extended to Make files with hundreds of targets—in fact, on FreeBSD, it is possible to compile the
entire operating system just by typing make world in the appropriate directory!

Another useful property of makefiles is that the targets do not have to be programs. For instance, we could have a
make file that looks like this:

foo: foo.c
cc —-o foo foo.c

install:
cp foo /home/me

We can tell make which target we want to make by typing:

o

% make target
make will then only look at that target and ignore any others. For example, if we type make foo with the makefile
above, make will ignore the install target.

If we just type make on its own, make will always look at the first target and then stop without looking at any others.
So if we typed make here, it will just go to the foo target, re-compile foo if necessary, and then stop without going
onto the install target.

Notice that the install target does not actually depend on anything! This means that the command on the
following line is always executed when we try to make that target by typing make install. In this case, it will
copy foo into the user’s home directory. This is often used by application makefiles, so that the application can be
installed in the correct directory when it has been correctly compiled.

This is a slightly confusing subject to try to explain. If you do not quite understand how make works, the best thing
to do is to write a simple program like “hello world” and a make file like the one above and experiment. Then
progress to using more than one source file, or having the source file include a header file. The t ouch command is
very useful here—it changes the date on a file without you having to edit it.

2.5.3 Make and include-files

C code often starts with a list of files to include, for example stdio.h. Some of these files are system-include files,
some of them are from the project you are now working on:

#include <stdio.h>
#include "foo.h"

int main(....

To make sure that this file is recompiled the moment foo.h is changed, you have to add it in your Makefile:

foo: foo.c foo.h

14

Chapter 2 Programming Tools

The moment your project is getting bigger and you have more and more own include-files to maintain, it will be a
pain to keep track of all include files and the files which are depending on it. If you change an include-file but forget
to recompile all the files which are depending on it, the results will be devastating. gcc has an option to analyze your
files and to produce a list of include-files and their dependencies: —MM.

If you add this to your Makefile:

depend:
gcc -E -MM x.c > .depend

and run make depend, the file . depend will appear with a list of object-files, C-files and the include-files:

foo.o: foo.c foo.h

If you change foo.h, next time you run make all files depending on foo.h will be recompiled.

Do not forget to run make depend each time you add an include-file to one of your files.

2.5.4 FreeBSD Makefiles

Makefiles can be rather complicated to write. Fortunately, BSD-based systems like FreeBSD come with some very
powerful ones as part of the system. One very good example of this is the FreeBSD ports system. Here is the
essential part of a typical ports Makefile:

MASTER_SITES= ftp://freefall.cdrom.com/pub/FreeBSD/LOCAL_PORTS/
DISTFILES= scheme-microcode+dist-7.3-freebsd.tgz

.include <bsd.port.mk>

Now, if we go to the directory for this port and type make, the following happens:

1. A check is made to see if the source code for this port is already on the system.
2. Ifitis not, an FTP connection to the URL in MASTER_SITES is set up to download the source.

3. The checksum for the source is calculated and compared it with one for a known, good, copy of the source. This
is to make sure that the source was not corrupted while in transit.

4. Any changes required to make the source work on FreeBSD are applied—this is known as patching.

5. Any special configuration needed for the source is done. (Many UNIX program distributions try to work out
which version of UNIX they are being compiled on and which optional UNIX features are present—this is
where they are given the information in the FreeBSD ports scenario).

6. The source code for the program is compiled. In effect, we change to the directory where the source was
unpacked and do make—the program’s own make file has the necessary information to build the program.

7. We now have a compiled version of the program. If we wish, we can test it now; when we feel confident about
the program, we can type make install. This will cause the program and any supporting files it needs to be
copied into the correct location; an entry is also made into a package database, so that the port can easily be
uninstalled later if we change our mind about it.

Now I think you will agree that is rather impressive for a four line script!

15

Chapter 2 Programming Tools

The secret lies in the last line, which tells make to look in the system makefile called bsd.port .mk. It is easy to
overlook this line, but this is where all the clever stuff comes from—someone has written a makefile that tells make
to do all the things above (plus a couple of other things I did not mention, including handling any errors that may
occur) and anyone can get access to that just by putting a single line in their own make file!

If you want to have a look at these system makefiles, they are in /usr/share/mk, but it is probably best to wait
until you have had a bit of practice with makefiles, as they are very complicated (and if you do look at them, make
sure you have a flask of strong coffee handy!)

2.5.5 More advanced uses of make

Make is a very powerful tool, and can do much more than the simple example above shows. Unfortunately, there are
several different versions of make, and they all differ considerably. The best way to learn what they can do is
probably to read the documentation—hopefully this introduction will have given you a base from which you can do
this.

The version of make that comes with FreeBSD is the Berkeley make; there is a tutorial for it in
/usr/share/doc/psd/12.make. To view it, do

[

% zmore paper.ascii.gz

in that directory.

Many applications in the ports use GNU make, which has a very good set of “info” pages. If you have installed any
of these ports, GNU make will automatically have been installed as gmake. It is also available as a port and package
in its own right.

To view the info pages for GNU make, you will have to edit the dir file in the /usr/local/info directory to add
an entry for it. This involves adding a line like

* Make: (make). The GNU Make utility.

to the file. Once you have done this, you can type info and then select make from the menu (or in Emacs, do c-h

i).

2.6 Debugging

2.6.1 The Debugger
The debugger that comes with FreeBSD is called gdb (GNU debugger). You start it up by typing

% gdb progname
although many people prefer to run it inside Emacs. You can do this by:
M-x gdb RET progname RET

Using a debugger allows you to run the program under more controlled circumstances. Typically, you can step
through the program a line at a time, inspect the value of variables, change them, tell the debugger to run up to a
certain point and then stop, and so on. You can even attach to a program that is already running, or load a core file to

16

Chapter 2 Programming Tools

investigate why the program crashed. It is even possible to debug the kernel, though that is a little trickier than the
user applications we will be discussing in this section.

gdb has quite good on-line help, as well as a set of info pages, so this section will concentrate on a few of the basic
commands.

Finally, if you find its text-based command-prompt style off-putting, there is a graphical front-end for it
(devel/xxgdb) in the Ports Collection.

This section is intended to be an introduction to using gdb and does not cover specialized topics such as debugging
the kernel.

2.6.2 Running a program in the debugger
You will need to have compiled the program with the —g option to get the most out of using gdb. It will work
without, but you will only see the name of the function you are in, instead of the source code. If you see a line like:

(no debugging symbols found)

when gdb starts up, you will know that the program was not compiled with the —g option.

At the gdb prompt, type break main. This will tell the debugger that you are not interested in watching the
preliminary set-up code in the program being run, and that it should stop execution at the beginning of your code.
Now type run to start the program—it will start at the beginning of the set-up code and then get stopped by the
debugger when it calls main () . (If you have ever wondered where main () gets called from, now you know!).

You can now step through the program, a line at a time, by pressing n. If you get to a function call, you can step into
it by pressing s. Once you are in a function call, you can return from stepping into a function call by pressing £. You
can also use up and down to take a quick look at the caller.

Here is a simple example of how to spot a mistake in a program with gdb. This is our program (with a deliberate
mistake):
#include <stdio.h>
int bazz (int anint);
main () |
int 1i;

printf ("This is my program\n");
bazz (i) ;
return 0;

}

int bazz (int anint) {
printf ("You gave me %d\n", anint);
return anint;

}

This program sets i to be 5 and passes it to a function bazz () which prints out the number we gave it.

When we compile and run the program we get

17

Chapter 2 Programming Tools

% cc —g -o temp temp.c
% ./temp

This is my program
anint = 4231

That was not what we expected! Time to see what is going on!

% gdb temp

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.

(gdb) break main Skip the set-up code
Breakpoint 1 at 0x160f: file temp.c, line 9. gdb puts breakpoint at main ()
(gdb) run Run as far as main ()

Starting program: /home/Jjames/tmp/temp Program starts running

Breakpoint 1, main () at temp.c:9 gdb stopsatmain/()
(gdb) n Go to next line

This is my program Program prints out

(gdb) s step into bazz ()

bazz (anint=4231) at temp.c:17 gdb displays stack frame
(gdb)

Hang on a minute! How did anint get to be 42317? Did we not we set it to be 5 in main () ? Let’s move up to main ()
and have a look.

(gdb) up Move up call stack

#1 0x1625 in main () at temp.c:11 gdbdisplays stack frame
(gdb) p i Show us the value of i

$1 = 4231 gdb displays 4231

Oh dear! Looking at the code, we forgot to initialize i. We meant to put

main () {
int 1i;

i =5;
printf ("This is my program\n");

but we left the 1=5; line out. As we did not initialize i, it had whatever number happened to be in that area of
memory when the program ran, which in this case happened to be 4231.

Note: gdp displays the stack frame every time we go into or out of a function, even if we are using up and down to
move around the call stack. This shows the name of the function and the values of its arguments, which helps us
keep track of where we are and what is going on. (The stack is a storage area where the program stores
information about the arguments passed to functions and where to go when it returns from a function call).

18

Chapter 2 Programming Tools

2.6.3 Examining a core file

A core file is basically a file which contains the complete state of the process when it crashed. In “the good old
days”, programmers had to print out hex listings of core files and sweat over machine code manuals, but now life is a
bit easier. Incidentally, under FreeBSD and other 4.4BSD systems, a core file is called progname. core instead of
just core, to make it clearer which program a core file belongs to.

To examine a core file, start up gdb in the usual way. Instead of typing break or run, type
(gdb) core progname.core

If you are not in the same directory as the core file, you will have to do dir /path/to/core/£file first.

You should see something like this:

% gdb a.out

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying” to see the conditions.
There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.13 (i386-unknown-freebsd), Copyright 1994 Free Software Foundation, Inc.
(gdb) core a.out.core

Core was generated by ‘a.out’.

Program terminated with signal 11, Segmentation fault.

Cannot access memory at address 0x7020796d.

#0 0x164a in bazz (anint=0x5) at temp.c:17

(gdb)

In this case, the program was called a . out, so the core file is called a . out . core. We can see that the program
crashed due to trying to access an area in memory that was not available to it in a function called bazz.

Sometimes it is useful to be able to see how a function was called, as the problem could have occurred a long way up
the call stack in a complex program. The bt command causes gdb to print out a back-trace of the call stack:

(gdb) bt

#0 Oxl64a in bazz (anint=0x5) at temp.c:17
#1 Oxefbfd888 in end ()

#2 0x162c in main () at temp.c:11

(gdb)

The end () function is called when a program crashes; in this case, the bazz () function was called from main ().

2.6.4 Attaching to a running program

One of the neatest features about gdb is that it can attach to a program that is already running. Of course, that
assumes you have sufficient permissions to do so. A common problem is when you are stepping through a program
that forks, and you want to trace the child, but the debugger will only let you trace the parent.

What you do is start up another gdb, use ps to find the process ID for the child, and do
(gdb) attach pid

in gdb, and then debug as usual.

19

Chapter 2 Programming Tools

“That is all very well,” you are probably thinking, “but by the time I have done that, the child process will be over the
hill and far away”. Fear not, gentle reader, here is how to do it (courtesy of the gdb info pages):

if ((pid = fork()) < 0) /+ _Always_ check this =/
error () ;

else if (pid == 0) { /% child =/
int PauseMode = 1;

while (PauseMode)
sleep(10); /* Wait until someone attaches to us x/

} else { /* parent =/

Now all you have to do is attach to the child, set PauseMode to 0, and wait for the sleep () call to return!

2.7 Using Emacs as a Development Environment

2.7.1 Emacs

Unfortunately, UNIX systems do not come with the kind of
everything-you-ever-wanted-and-lots-more-you-did-not-in-one-gigantic-package integrated development
environments that other systems have. ’ However, it is possible to set up your own environment. It may not be as
pretty, and it may not be quite as integrated, but you can set it up the way you want it. And it is free. And you have
the source to it.

The key to it all is Emacs. Now there are some people who loathe it, but many who love it. If you are one of the
former, I am afraid this section will hold little of interest to you. Also, you will need a fair amount of memory to run
it—I would recommend 8MB in text mode and 16MB in X as the bare minimum to get reasonable performance.

Emacs is basically a highly customizable editor—indeed, it has been customized to the point where it is more like an
operating system than an editor! Many developers and sysadmins do in fact spend practically all their time working
inside Emacs, leaving it only to log out.

It is impossible even to summarize everything Emacs can do here, but here are some of the features of interest to
developers:

« Very powerful editor, allowing search-and-replace on both strings and regular expressions (patterns), jumping to
start/end of block expression, etc, etc.

+ Pull-down menus and online help.

« Language-dependent syntax highlighting and indentation.
+ Completely customizable.

» You can compile and debug programs within Emacs.

« On a compilation error, you can jump to the offending line of source code.

20

Chapter 2 Programming Tools

« Friendly-ish front-end to the info program used for reading GNU hypertext documentation, including the
documentation on Emacs itself.

« Friendly front-end to gdb, allowing you to look at the source code as you step through your program.
+ You can read Usenet news and mail while your program is compiling.

And doubtless many more that I have overlooked.

Emacs can be installed on FreeBSD using the editors/emacs port.

Once it is installed, start it up and do c-h t to read an Emacs tutorial—that means hold down the control key, press
h, let go of the control key, and then press t. (Alternatively, you can you use the mouse to select Emacs Tutorial
from the Help menu).

Although Emacs does have menus, it is well worth learning the key bindings, as it is much quicker when you are
editing something to press a couple of keys than to try to find the mouse and then click on the right place. And, when
you are talking to seasoned Emacs users, you will find they often casually throw around expressions like “M-x
replace-s RET foo RET bar RET” so it is useful to know what they mean. And in any case, Emacs has far too
many useful functions for them to all fit on the menu bars.

Fortunately, it is quite easy to pick up the key-bindings, as they are displayed next to the menu item. My advice is to
use the menu item for, say, opening a file until you understand how it works and feel confident with it, then try doing
C-x C-f. When you are happy with that, move on to another menu command.

If you can not remember what a particular combination of keys does, select Describe Key from the Help menu and
type it in—Emacs will tell you what it does. You can also use the Command Apropos menu item to find out all the
commands which contain a particular word in them, with the key binding next to it.

By the way, the expression above means hold down the Meta key, press X, release the Meta key, type replace-s
(short for replace-string—another feature of Emacs is that you can abbreviate commands), press the return key,
type £oo (the string you want replaced), press the return key, type bar (the string you want to replace foo with) and
press return again. Emacs will then do the search-and-replace operation you have just requested.

If you are wondering what on earth the Meta key is, it is a special key that many UNIX workstations have.
Unfortunately, PC’s do not have one, so it is usually the alt key (or if you are unlucky, the escape key).

Oh, and to get out of Emacs, do C-x C-c (that means hold down the control key, press X, press ¢ and release the
control key). If you have any unsaved files open, Emacs will ask you if you want to save them. (Ignore the bit in the
documentation where it says C-z is the usual way to leave Emacs—that leaves Emacs hanging around in the
background, and is only really useful if you are on a system which does not have virtual terminals).

2.7.2 Configuring Emacs
Emacs does many wonderful things; some of them are built in, some of them need to be configured.

Instead of using a proprietary macro language for configuration, Emacs uses a version of Lisp specially adapted for
editors, known as Emacs Lisp. Working with Emacs Lisp can be quite helpful if you want to go on and learn
something like Common Lisp. Emacs Lisp has many features of Common Lisp, although it is considerably smaller
(and thus easier to master).

The best way to learn Emacs Lisp is to download the Emacs Tutorial
(ftp://ftp.gnu.org/old-gnu/emacs/elisp-manual-19-2.4.tar.gz)

21

Chapter 2 Programming Tools

However, there is no need to actually know any Lisp to get started with configuring Emacs, as I have included a
sample .emacs file, which should be enough to get you started. Just copy it into your home directory and restart
Emacs if it is already running; it will read the commands from the file and (hopefully) give you a useful basic setup.

2.7.3 A sample .emacs file

Unfortunately, there is far too much here to explain it in detail; however there are one or two points worth
mentioning.

+ Everything beginning with a ; is a comment and is ignored by Emacs.

+ In the first line, the -x— Emacs-Lisp —x- is so that we can edit the . emacs file itself within Emacs and get all
the fancy features for editing Emacs Lisp. Emacs usually tries to guess this based on the filename, and may not get
it right for . emacs.

« The tab key is bound to an indentation function in some modes, so when you press the tab key, it will indent the
current line of code. If you want to put a tab character in whatever you are writing, hold the control key down
while you are pressing the tab key.

« This file supports syntax highlighting for C, C++, Perl, Lisp and Scheme, by guessing the language from the
filename.

+ Emacs already has a pre-defined function called next-error. In a compilation output window, this allows you to
move from one compilation error to the next by doing M-n; we define a complementary function,
previous—error, that allows you to go to a previous error by doing M-p. The nicest feature of all is that C-c
c-c will open up the source file in which the error occurred and jump to the appropriate line.

« We enable Emacs’s ability to act as a server, so that if you are doing something outside Emacs and you want to
edit a file, you can just type in

o

% emacsclient filename

and then you can edit the file in your Emacs! ®

Example 2-1. A sample . emacs file

;7 —*—Emacs-Lisp—»*-—

;7 This file is designed to be re-evaled; use the variable first-time
;7 to avoid any problems with this.

(defvar first-time t
"Flag signifying this is the first time that .emacs has been evaled")

;5 Meta

global-set-key "\M- " ’/set-mark-command)
global-set-key "\M-\C-h" ’'backward-kill-word)
global-set-key "\M-\C-r" ’'query-replace)

(
(
(
(global-set-key "\M-r" ’replace-string)
(global-set-key "\M-g" ’‘goto-line)

(

global-set-key "\M-h" ’help-command)

;7 Function keys

22

global-set-key
global-set-key
global-set-key
global-set-key
global-set-key
global-set-key
global-set-key
global-set-key
global-set-key

(
(
(
(
(
(
(
(
(
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(

global-set-key

H O 0 J o U b W N -

f11] '

; Keypad bindings

;
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key
(global-set-key

;7 Mouse
(global-set-key

;7 Misc
(global-set-key

"manual-entry)
"info)

]

]

]

] "advertised-undo)
] "eval-current-buffer)
] "buffer-menu)

] "other—-window)
] "find-file)

] "save-buffer)
0] ’"next—-error)

compile)

£12] ’'grep)

’compile)

"grep)
"next—-error)
'previous—error)
"display-faces)
"dired)

"repeat—-complex—command)

"kill-compilation)

[up] "\C-p")

down] "\C-n")
left] "\C-b")
right] "\C-f")
home] "\C-a")
end] "\C-e")

prior] "\M-v")
next] "\C-v")

"\M-\C-b")

C—-down] "\M-\C-f")
C-left] "\M-b")
C-right] "\M-f")
C-home] "\M-<")

C—-end]

"\M_>vl)

C-prior] "\M-<")
C-next] "\M->")

[
[
[
[
[
[
[
[C-up]
[
[
[
[
[
[
[

[mouse—

[C-tab]

3] ’imenu)

"\C-g\t") ; Control tab quotes a tab.

(setqg backup-by-copying-when-mismatch t)

;7 Treat 'y’ or <CR> as yes, 'n’ as no
(fset ’'yes—-or—-no-p 'y-or—-n-p)
(define-key query-replace-map [return]

"act)

(define-key query-replace-map [?\C-m] ’act)

;7 Load packages

(require ’desktop)

(require ’tar-mode)

Chapter 2 Programming Tools

23

Chapter 2 Programming Tools

;; Pretty diff mode
(autoload "ediff-buffers "ediff" "Intelligent Emacs interface to diff" t)
(autoload "ediff-files "ediff" "Intelligent Emacs interface to diff" t)
(autoload 'ediff-files—-remote "ediff"

"Intelligent Emacs interface to diff")

(if first-time
(setg auto-mode-alist

(append " (("\\.cpp$" . c++-mode)
("\\.hpps$" . c++-mode)
"\\.1lsp$" . lisp-mode)

(
("\\.scm$" . scheme-mode)
("\\.pl$" . perl-mode)

) auto-mode-alist)))

;7 Auto font lock mode

(defvar font-lock-auto-mode-list
(list 'c-mode ’c++-mode ’c++-c-mode 'emacs-lisp-mode ’lisp-mode ’perl-mode ’scheme-mode)
"List of modes to always start in font-lock-mode")

(defvar font-lock-mode-keyword-alist
" ((ct+-c—mode . c—-font-lock-keywords)
(perl-mode . perl-font-lock-keywords))
"Associations between modes and keywords")

(defun font-lock—-auto-mode-select ()
"Automatically select font-lock-mode if the current major mode is in font-lock-auto-mode-list"
(if (memg major-mode font-lock-—auto-mode-list)
(progn
(font-lock-mode t))
)

(global-set-key [M-fl] ’font-lock-fontify-buffer)

;7 New dabbrev stuff
; (require ’'new-dabbrev)
(setqg dabbrev-always—-check—-other-buffers t)
(setqg dabbrev-abbrev-char-regexp "\\sw\\|[\\s_")
(add-hook ’emacs-lisp-mode-hook
' (lambda ()
(set (make-local-variable ’dabbrev-case-fold-search) nil)
(set (make-local-variable ’'dabbrev-case-replace) nil)))
(add-hook ’c-mode-hook
' (lambda ()
(set (make-local-variable ’dabbrev-case-fold-search) nil)
(set (make-local-variable ’'dabbrev-case-replace) nil)))
(add-hook ’text-mode-hook
" (lambda ()
(set (make-local-variable ’'dabbrev-case—-fold-search) t)
(set (make-local-variable ’dabbrev-case-replace) t)))

24

Chapter 2 Programming Tools

;; C++ and C mode...
(defun my-c++-mode-hook ()
(setg tab-width 4)
(define-key c++-mode-map "\C-m" ’reindent-then-newline-and-indent)
(define-key c++-mode-map "\C-ce" ’c-comment-edit)
(setg c++-auto-hungry-initial-state ’‘none)
(setq c++-delete-function ’backward-delete-char)
(setg ct++-tab-always—-indent t)
(setq c—-indent-level 4)
(setqg c-continued-statement-offset 4)
(setg ct+-empty-arglist—-indent 4))
(defun my-c-mode-hook ()
(setq tab-width 4)
define-key c-mode-map "\C-m" ’reindent-then-newline-and-indent)
define-key c-mode-map "\C-ce" 'c-comment-edit)

setqg c-delete-function ’backward-delete-char)
setq c-tab-always—-indent t)
;; BSD-ish indentation style
(setqg c-indent-level 4)
(setg c-continued-statement-offset 4)
(setg c-brace-offset -4)
(
(

(
(
(setqg c-auto-hungry-initial-state ’none)
(
(

setq c—argdecl-indent 0)
setg c—label-offset -4))

;+ Perl mode
(defun my-perl-mode—-hook ()
(setg tab-width 4)
(define-key c++-mode-map "\C-m" ’'reindent-then-newline-and-indent)
(setg perl-indent-level 4)
(setq perl-continued-statement-offset 4))

;7 Scheme mode...
(defun my-scheme-mode-hook ()
(define-key scheme-mode-map "\C-m" ’'reindent-then-newline-and-indent))

;7 Emacs-Lisp mode...

(defun my-lisp-mode-hook ()
(define-key lisp-mode-map "\C-m" ’reindent-then-newline-and-indent)
(define-key lisp-mode-map "\C-i" ’lisp-indent-line)
(define-key lisp-mode-map "\C-3" ’eval-print-last-sexp))

;; Add all of the hooks...

(add-hook 'c++-mode-hook ’'my-c++-mode—-hook)
(add-hook ’c—mode-hook ’"my-c-mode—hook)

(add-hook ’scheme-mode-hook ’'my-scheme-mode-hook)
(add-hook ’"emacs-lisp-mode-hook ’'my-lisp-mode-hook)
(add-hook ’1lisp-mode-hook ’'my-lisp-mode-hook)
(add-hook ’"perl-mode-hook ’'my-perl-mode-hook)

;7 Complement to next-error
(defun previous-error (n)

25

Chapter 2 Programming Tools

"Visit previous compilation error message and corresponding source code."

(interactive "p")
(next—error (- n)))

;; Misc.

transient-mark-mode 1)

setq mark-even-if-inactive t)
setqg visible-bell nil)

setqg next-line-add-newlines nil)

setq suggest-key-bindings nil)

put ’'eval-expression ’‘disabled nil)
put ‘narrow-to-region ’disabled nil)
p "set-goal-column ’disabled nil)

(
(
(
(
(setq compile-command "make")
(
(
(
(
(1

(>= emacs-major-version 21)
(setq show-trailing-whitespace t))

;7 Elisp archive searching
(autoload ’format-lisp-code-directory "lispdir" nil t)
(autoload ’lisp-dir—apropos "lispdir" nil t)

(autoload ’lisp-dir-retrieve "lispdir" nil t)

(

autoload ’'lisp-dir-verify "lispdir" nil t)

;; Font lock mode
(defun my-make-face (face color &optional bold)
"Create a face from a color and optionally make it bold"
(make—-face face)
(copy—face 'default face)
(set—face—-foreground face color)
(1f bold (make-face-bold face))
)

(if (eq window-system ’x)
(progn
(my-make—face "blue "blue")
my-make-face ’'red "red")
my-make—face ’'green "dark green")
setq font-lock-comment-face ’"blue)
setqg font-lock-string-face ’'bold)

(

(

(

(

(setg font-lock-type-face ’"bold)

(setg font-lock-keyword-face ’'bold)

(setg font-lock-function-name-face ’red)

(setqg font-lock-doc-string-face ’'green)

(add-hook ’find-file-hooks ’font-lock—-auto-mode-select)

(setg baud-rate 1000000)

(global-set-key "\C-cmm" ’'menu-bar-mode)

(global-set-key "\C-cms" ’scroll-bar-mode)

(global-set-key [backspace] ’'backward-delete-char)
; (global-set-key [delete] ’delete-char)

(standard-display-european t)

(load-library "iso-transl")))

26

Chapter 2 Programming Tools

;7 X11 or PC using direct screen writes
(if window-system

(progn
HH (global-set-key [M—-fl] 'hilit-repaint-command)
HH (global-set-key [M-f2] [?\C-u M-f1l])

(setg hilit-mode-enable-1list
" (not text-mode c-mode c++-mode emacs-lisp-mode lisp-mode

scheme-mode)

hilit-auto-highlight nil

hilit-auto-rehighlight ’visible

hilit-inhibit-hooks nil

hilit-inhibit-rebinding t)
(require "hilitl9)
(require ’paren))

(setg baud-rate 2400) ; For slow serial connections

)

;7 TTY type terminal
(if (and (not window-system)
(not (equal system-type ’'ms-dos)))
(progn
(1f first-time
(progn
(keyboard-translate 2\C-h ?2\C-?)
(keyboard-translate 2\C-? 2\C-h)))))

;3 Under UNIX
(if (not (equal system-type ’"ms-dos))
(progn
(i1f first-time
(server—-start))))

;7 Add any face changes here
(add-hook ’term-setup-hook ’'my-term-setup-hook)
(defun my-term-setup-hook ()
(if (eq window-system ’pc)
(progn
;7 (set—-face-background ’'default "red")

)))

;7 Restore the "desktop" - do this as late as possible
(1f first-time
(progn

(desktop—-load-default)
(desktop-read)))

;7 Indicate that this file has been read at least once
(setg first-time nil)

;7 No need to debug anything now

(setqg debug-on-error nil)

27

Chapter 2 Programming Tools

;7 All done
(message "All done, %s%s" (user-login-name) ".")

2.7.4 Extending the Range of Languages Emacs Understands

Now, this is all very well if you only want to program in the languages already catered for in the . emacs file (C, C++,
Perl, Lisp and Scheme), but what happens if a new language called “whizbang” comes out, full of exciting features?

The first thing to do is find out if whizbang comes with any files that tell Emacs about the language. These usually
end in . el, short for “Emacs Lisp”. For example, if whizbang is a FreeBSD port, we can locate these files by doing

% find /usr/ports/lang/whizbang -name "*.el" -print

and install them by copying them into the Emacs site Lisp directory. On FreeBSD, this is

/usr/local/share/emacs/site-1isp.

So for example, if the output from the find command was
/usr/ports/lang/whizbang/work/misc/whizbang.el

we would do

cp /usr/ports/lang/whizbang/work/misc/whizbang.el /usr/local/share/emacs/site-lisp

Next, we need to decide what extension whizbang source files have. Let’s say for the sake of argument that they all
end in .wiz. We need to add an entry to our .emacs file to make sure Emacs will be able to use the information in

whizbang.el.

Find the auto-mode-alist entry in .emacs and add a line for whizbang, such as:

("\\.1lspS$" . lisp-mode)

("\\.wiz$" . whizbang-mode)
("\\.scm$" . scheme-mode)

This means that Emacs will automatically go into whizbang-mode when you edit a file ending in . wiz.

Just below this, you will find the font-lock-auto-mode-list entry. Add whizbang-mode to it like so:

;7 Auto font lock mode

(defvar font-lock—auto-mode-list
(list 'c-mode ’c++-mode ’'ct+-c-mode 'emacs-lisp-mode ’'whizbang-mode ’lisp-mode ’'perl-mode ’scheme-
"List of modes to always start in font-lock-mode")

This means that Emacs will always enable font-lock-mode (ie syntax highlighting) when editing a . wiz file.

And that is all that is needed. If there is anything else you want done automatically when you open up a .wiz file,
you can add a whizbang-mode hook (see my—-scheme-mode-hook for a simple example that adds

auto-indent).

28

Chapter 2 Programming Tools

2.8 Further Reading

For information about setting up a development environment for contributing fixes to FreeBSD itself, please see
development(7).

» Brian Harvey and Matthew Wright Simply Scheme MIT 1994. ISBN 0-262-08226-8
+ Randall Schwartz Learning Perl O’Reilly 1993 ISBN 1-56592-042-2

+ Patrick Henry Winston and Berthold Klaus Paul Horn Lisp (3rd Edition) Addison-Wesley 1989 ISBN
0-201-08319-1

+ Brian W. Kernighan and Rob Pike The Unix Programming Environment Prentice-Hall 1984 ISBN 0-13-937681-X

« Brian W. Kernighan and Dennis M. Ritchie The C Programming Language (2nd Edition) Prentice-Hall 1988
ISBN 0-13-110362-8

« Bjarne Stroustrup The C++ Programming Language Addison-Wesley 1991 ISBN 0-201-53992-6
+ W. Richard Stevens Advanced Programming in the Unix Environment Addison-Wesley 1992 ISBN 0-201-56317-7
« W. Richard Stevens Unix Network Programming Prentice-Hall 1990 ISBN 0-13-949876-1

Notes

1. If you run it in the shell, you may get a core dump.

2. To be strictly accurate, cc converts the source code into its own, machine-independent p-code instead of
assembly language at this stage.

3. In case you did not know, a binary sort is an efficient way of sorting things into order and a bubble sort is not.
4. The reasons for this are buried in the mists of history.

5. Note, we did not use the —o flag to specify the executable name, so we will get an executable called a. out.
Producing a debug version called foobar is left as an exercise for the reader!

6. They do not use the MAKEFILE form as block capitals are often used for documentation files like README.
7. Some powerful, free IDEs now exist, such as KDevelop in the Ports Collection.

8. Many Emacs users set their EDITOR environment to emacsclient so this happens every time they need to edit a
file.

29

Chapter 3 Secure Programming

Contributed by Murray Stokely.

3.1 Synopsis

This chapter describes some of the security issues that have plagued UNIX programmers for decades and some of the
new tools available to help programmers avoid writing exploitable code.

3.2 Secure Design Methodology

Writing secure applications takes a very scrutinous and pessimistic outlook on life. Applications should be run with
the principle of “least privilege” so that no process is ever running with more than the bare minimum access that it
needs to accomplish its function. Previously tested code should be reused whenever possible to avoid common
mistakes that others may have already fixed.

One of the pitfalls of the UNIX environment is how easy it is to make assumptions about the sanity of the
environment. Applications should never trust user input (in all its forms), system resources, inter-process
communication, or the timing of events. UNIX processes do not execute synchronously so logical operations are
rarely atomic.

3.3 Buffer Overflows

Buffer Overflows have been around since the very beginnings of the Von-Neuman 1 architecture. They first gained
widespread notoriety in 1988 with the Morris Internet worm. Unfortunately, the same basic attack remains effective
today. By far the most common type of buffer overflow attack is based on corrupting the stack.

Most modern computer systems use a stack to pass arguments to procedures and to store local variables. A stack is a
last in first out (LIFO) buffer in the high memory area of a process image. When a program invokes a function a new
"stack frame" is created. This stack frame consists of the arguments passed to the function as well as a dynamic
amount of local variable space. The "stack pointer"” is a register that holds the current location of the top of the stack.
Since this value is constantly changing as new values are pushed onto the top of the stack, many implementations
also provide a "frame pointer" that is located near the beginning of a stack frame so that local variables can more
easily be addressed relative to this value. 1 The return address for function calls is also stored on the stack, and this
is the cause of stack-overflow exploits since overflowing a local variable in a function can overwrite the return
address of that function, potentially allowing a malicious user to execute any code he or she wants.

Although stack-based attacks are by far the most common, it would also be possible to overrun the stack with a
heap-based (malloc/free) attack.

The C programming language does not perform automatic bounds checking on arrays or pointers as many other
languages do. In addition, the standard C library is filled with a handful of very dangerous functions.

strcpy(char *dest, const char *src) May overflow the dest buffer
strcat(char *dest, const char *src) May overflow the dest buffer
getwd(char *buf) May overflow the buf buffer

30

gets(char *s)
[vf]scanf(const char *format, ...)
realpath(char *path, char resolved_path([])

[v]sprint f(char *str, const char *format, ...)

Chapter 3 Secure Programming

May overflow the s buffer
May overflow its arguments.
May overflow the path buffer
May overflow the str buffer.

3.3.1 Example Buffer Overflow

The following example code contains a buffer overflow designed to overwrite the return address and skip the
instruction immediately following the function call. (Inspired by 4)

#include <stdio.h>

void manipulate (char xbuffer) {
char newbuffer[80];
strcpy (newbuffer,buffer);

int main() |
char ch,buffer[4096];
int 1=0;

while ((buffer[i++] = getchar()) != "\n’) {};

i=1;

manipulate (buffer);

i=2;

printf ("The value of i is : %d\n",i);
return 0;

}

Let us examine what the memory image of this process would look like if we were to input 160 spaces into our little
program before hitting return.

[XXX figure here!]

Obviously more malicious input can be devised to execute actual compiled instructions (such as exec(/bin/sh)).

3.3.2 Avoiding Buffer Overflows

The most straightforward solution to the problem of stack-overflows is to always use length restricted memory and
string copy functions. st rncpy and strncat are part of the standard C library. These functions accept a length
value as a parameter which should be no larger than the size of the destination buffer. These functions will then copy
up to ‘length’ bytes from the source to the destination. However there are a number of problems with these functions.
Neither function guarantees NUL termination if the size of the input buffer is as large as the destination. The length
parameter is also used inconsistently between strncpy and strncat so it is easy for programmers to get confused as to
their proper usage. There is also a significant performance loss compared to st rcpy when copying a short string into
a large buffer since st rncpy NUL fills up the size specified.

In OpenBSD, another memory copy implementation has been created to get around these problem. The strlcpy
and strlcat functions guarantee that they will always null terminate the destination string when given a non-zero

31

Chapter 3 Secure Programming

length argument. For more information about these functions see 6. The OpenBSD strlcpy and strlcat
instructions have been in FreeBSD since 3.3.

3.3.2.1 Compiler based run-time bounds checking

Unfortunately there is still a very large assortment of code in public use which blindly copies memory around
without using any of the bounded copy routines we just discussed. Fortunately, there is a way to help prevent such
attacks — run-time bounds checking, which is implemented by several C/C++ compilers.

ProPolice is one such compiler feature, and is integrated into gcc(1) versions 4.1 and later. It replaces and extends the
earlier StackGuard gcc(1) extension.

ProPolice helps to protect against stack-based buffer overflows and other attacks by laying pseudo-random numbers
in key areas of the stack before calling any function. When a function returns, these “canaries” are checked and if
they are found to have been changed the executable is immediately aborted. Thus any attempt to modify the return
address or other variable stored on the stack in an attempt to get malicious code to run is unlikely to succeed, as the
attacker would have to also manage to leave the pseudo-random canaries untouched.

Recompiling your application with ProPolice is an effective means of stopping most buffer-overflow attacks, but it
can still be compromised.

3.3.2.2 Library based run-time bounds checking

Compiler-based mechanisms are completely useless for binary-only software for which you cannot recompile. For
these situations there are a number of libraries which re-implement the unsafe functions of the C-library (st rcpy,
fscanf, getwd, etc..) and ensure that these functions can never write past the stack pointer.

« libsafe
« libverify
+ libparanoia

Unfortunately these library-based defenses have a number of shortcomings. These libraries only protect against a
very small set of security related issues and they neglect to fix the actual problem. These defenses may fail if the
application was compiled with -fomit-frame-pointer. Also, the LD_PRELOAD and LD_LIBRARY_PATH
environment variables can be overwritten/unset by the user.

3.4 SetUID issues

There are at least 6 different IDs associated with any given process. Because of this you have to be very careful with
the access that your process has at any given time. In particular, all seteuid applications should give up their
privileges as soon as it is no longer required.

The real user ID can only be changed by a superuser process. The login program sets this when a user initially logs
in and it is seldom changed.

The effective user ID is set by the exec () functions if a program has its seteuid bit set. An application can call
seteuid () at any time to set the effective user ID to either the real user ID or the saved set-user-ID. When the
effective user ID is set by exec () functions, the previous value is saved in the saved set-user-ID.

32

Chapter 3 Secure Programming

3.5 Limiting your program’s environment

The traditional method of restricting a process is with the chroot () system call. This system call changes the root
directory from which all other paths are referenced for a process and any child processes. For this call to succeed the
process must have execute (search) permission on the directory being referenced. The new environment does not
actually take effect until you chdir () into your new environment. It should also be noted that a process can easily
break out of a chroot environment if it has root privilege. This could be accomplished by creating device nodes to
read kernel memory, attaching a debugger to a process outside of the chroot(8) environment, or in many other
creative ways.

The behavior of the chroot () system call can be controlled somewhat with the kern.chroot_allow_open_directories
sysctl variable. When this value is set to 0, chroot () will fail with EPERM if there are any directories open. If set
to the default value of 1, then chroot () will fail with EPERM if there are any directories open and the process is
already subject to a chroot () call. For any other value, the check for open directories will be bypassed completely.

3.5.1 FreeBSD’s jail functionality

The concept of a Jail extends upon the chroot () by limiting the powers of the superuser to create a true ‘virtual
server’. Once a prison is set up all network communication must take place through the specified IP address, and the
power of "root privilege" in this jail is severely constrained.

While in a prison, any tests of superuser power within the kernel using the suser () call will fail. However, some
calls to suser () have been changed to a new interface suser_xxx (). This function is responsible for recognizing
or denying access to superuser power for imprisoned processes.

A superuser process within a jailed environment has the power to:

+ Manipulate credential with setuid, seteuid, setgid, setegid, setgroups, setreuid, setregid,

setlogin
+ Set resource limits with setrlimit
« Modify some sysctl nodes (kern.hostname)
e chroot ()
+ Set flags on a vnode: chflags, fchflags
« Set attributes of a vnode such as file permission, owner, group, size, access time, and modification time.
« Bind to privileged ports in the Internet domain (ports < 1024)

Jail is a very useful tool for running applications in a secure environment but it does have some shortcomings.
Currently, the IPC mechanisms have not been converted to the suser_xxx so applications such as MySQL cannot
be run within a jail. Superuser access may have a very limited meaning within a jail, but there is no way to specify
exactly what "very limited" means.

3.5.2 POSIX®.1e Process Capabilities

POSIX has released a working draft that adds event auditing, access control lists, fine grained privileges, information
labeling, and mandatory access control.

This is a work in progress and is the focus of the TrustedBSD (http://www.trustedbsd.org/) project. Some of the
initial work has been committed to FreeBSD-CURRENT (cap_set_proc(3)).

33

Chapter 3 Secure Programming

3.6 Trust

An application should never assume that anything about the users environment is sane. This includes (but is certainly
not limited to): user input, signals, environment variables, resources, [IPC, mmaps, the filesystem working directory,
file descriptors, the # of open files, etc.

You should never assume that you can catch all forms of invalid input that a user might supply. Instead, your
application should use positive filtering to only allow a specific subset of inputs that you deem safe. Improper data
validation has been the cause of many exploits, especially with CGI scripts on the world wide web. For filenames
you need to be extra careful about paths ("../", "/"), symbolic links, and shell escape characters.

Perl has a really cool feature called "Taint" mode which can be used to prevent scripts from using data derived
outside the program in an unsafe way. This mode will check command line arguments, environment variables, locale
information, the results of certain syscalls (readdir (), readlink (), getpwxxx ()), and all file input.

3.7 Race Conditions

A race condition is anomalous behavior caused by the unexpected dependence on the relative timing of events. In
other words, a programmer incorrectly assumed that a particular event would always happen before another.

Some of the common causes of race conditions are signals, access checks, and file opens. Signals are asynchronous
events by nature so special care must be taken in dealing with them. Checking access with access (2) then

open (2) is clearly non-atomic. Users can move files in between the two calls. Instead, privileged applications
should seteuid () and then call open () directly. Along the same lines, an application should always set a proper
umask before open () to obviate the need for spurious chmod () calls.

34

Chapter 4 Localization and Internationalization
- L10N and I18N

4.1 Programming 118N Compliant Applications

To make your application more useful for speakers of other languages, we hope that you will program 118N
compliant. The GNU gcc compiler and GUI libraries like QT and GTK support 118N through special handling of
strings. Making a program 118N compliant is very easy. It allows contributors to port your application to other
languages quickly. Refer to the library specific 118N documentation for more details.

In contrast with common perception, 18N compliant code is easy to write. Usually, it only involves wrapping your
strings with library specific functions. In addition, please be sure to allow for wide or multibyte character support.

4.1.1 A Call to Unify the 118N Effort

It has come to our attention that the individual I18N/L10N efforts for each country has been repeating each others’
efforts. Many of us have been reinventing the wheel repeatedly and inefficiently. We hope that the various major
groups in [18N could congregate into a group effort similar to the Core Team’s responsibility.

Currently, we hope that, when you write or port I18N programs, you would send it out to each country’s related
FreeBSD mailing list for testing. In the future, we hope to create applications that work in all the languages
out-of-the-box without dirty hacks.

The FreeBSD internationalization mailing list (http://lists.FreeBSD.org/mailman/listinfo/freebsd-i18n) has been
established. If you are an [18N/L10N developer, please send your comments, ideas, questions, and anything you
deem related to it.

4.1.2 Perl and Python

Perl and Python have I18N and wide character handling libraries. Please use them for 118N compliance.

4.2 Localized Messages with POSIX.1 Native Language Support
(NLS)

Contributed by Gdbor Kovesddn.

Beyond the basic I18N functions, like supporting various input encodings or supporting national conventions, such
as the different decimal separators, at a higher level of I18N, it is possible to localize the messages written to the
output by the various programs. A common way of doing this is using the POSIX.1 NLS functions, which are
provided as a part of the FreeBSD base system.

35

Chapter 4 Localization and Internationalization - LION and 118N

4.2.1 Organizing Localized Messages into Catalog Files

POSIX.1 NLS is based on catalog files, which contain the localized messages in the desired encoding. The messages
are organized into sets and each message is identified by an integer number in the containing set. The catalog files are
conventionally named after the locale they contain localized messages for, followed by the .msg extension. For
instance, the Hungarian messages for ISO8859-2 encoding should be stored in a file called hu_HU.I508859-2.

These catalog files are common text files that contain the numbered messages. It is possible to write comments by
starting the line with a $ sign. Set boundaries are also separated by special comments, where the keyword set must
directly follow the $ sign. The set keyword is then followed by the set number. For example:

Sset 1

The actual message entries start with the message number and followed by the localized message. The well-known
modifiers from printf(3) are accepted:

15 "File not found: %s\n"

The language catalog files have to be compiled into a binary form before they can be opened from the program. This
conversion is done with the gencat(1) utility. Its first argument is the filename of the compiled catalog and its further
arguments are the input catalogs. The localized messages can also be organized into more catalog files and then all of
them can be processed with gencat(1).

4.2.2 Using the Catalog Files from the Source Code

Using the catalog files is simple. To use the related functions, n1_types.h must be included. Before using a catalog,
it has to be opened with catopen(3). The function takes two arguments. The first parameter is the name of the
installed and compiled catalog. Usually, the name of the program is used, such as grep. This name will be used when
looking for the compiled catalog file. The catopen(3) call looks for this file in /usr/share/nls/locale/catname
and in /usr/local/share/nls/locale/catname, Where locale is the locale set and catname is the catalog
name being discussed. The second parameter is a constant, which can have two values:

+ NL_CAT_LOCALE, which means that the used catalog file will be based on LC_MESSAGES.
+ 0, which means that LANG has to be used to open the proper catalog.

The catopen(3) call returns a catalog identifier of type n1_catd. Please refer to the manual page for a list of possible
returned error codes.

After opening a catalog catgets(3) can be used to retrieve a message. The first parameter is the catalog identifier
returned by catopen(3), the second one is the number of the set, the third one is the number of the messages, and the
fourth one is a fallback message, which will be returned if the requested message cannot be retrieved from the
catalog file.

After using the catalog file, it must be closed by calling catclose(3), which has one argument, the catalog id.

4.2.3 A Practical Example
The following example will demonstrate an easy solution on how to use NLS catalogs in a flexible way.

The below lines need to be put into a common header file of the program, which is included into all source files
where localized messages are necessary:

36

Chapter 4 Localization and Internationalization - LION and 118N

#ifdef WITHOUT_NLS

#define getstr(n) nlsstrn]
#else

#include <nl_types.h>

extern nl_catd catalog;
#define getstr (n) catgets (catalog, 1, n, nlsstr[n])
#endif

extern char +*nlsstr([];

Next, put these lines into the global declaration part of the main source file:

#ifndef WITHOUT_NLS
#include <nl_types.h>
nl_catd catalog;
fendif

/ *
* Default messages to use when NLS is disabled or no catalog
* 1is found.

x/
char *nlsstr[] = {
nw
4
/* 1%/ "some random message",
/x 2%/ "some other message"

i
Next come the real code snippets, which open, read, and close the catalog:
#ifndef WITHOUT_NLS

catalog = catopen ("myapp", NL_CAT_LOCALE) ;
#endif

printf (getstr(l));

#ifndef WITHOUT_NLS
catclose (catalog);
#endif

4.2.3.1 Reducing Strings to Localize

There is a good way of reducing the strings that need to be localized by using libe error messages. This is also useful
to just avoid duplication and provide consistent error messages for the common errors that can be encountered by a

great many of programs.

First, here is an example that does not use libc error messages:

#include <err.h>

37

Chapter 4 Localization and Internationalization - LION and 118N

if (!S_ISDIR(st.st_mode))
err (1, "argument is not a directory");

This can be transformed to print an error message by reading errno and printing an error message accordingly:

#include <err.h>
#include <errno.h>

if (!S_ISDIR(st.st_mode)) {
errno = ENOTDIR;

err (1, NULL);

}

In this example, the custom string is eliminated, thus translators will have less work when localizing the program and
users will see the usual “Not a directory” error message when they encounter this error. This message will probably
seem more familiar to them. Please note that it was necessary to include errno.h in order to directly access errno.

It is worth to note that there are cases when errno is set automatically by a preceding call, so it is not necessary to
set it explicitly:

#include <err.h>

if ((p = malloc(size)) == NULL)
err (1, NULL);

4.2.4 Making use of bsd.nls.mk

Using the catalog files requires few repeatable steps, such as compiling the catalogs and installing them to the proper
location. In order to simplify this process even more, bsd.nls.mk introduces some macros. It is not necessary to
include bsd.nls.mk explicitly, it is pulled in from the common Makefiles, such as bsd.prog.mk or bsd.lib.mk.

Usually it is enough to define NLSNAME, which should have the catalog name mentioned as the first argument of
catopen(3) and list the catalog files in NLs without their .msg extension. Here is an example, which makes it possible
to to disable NLS when used with the code examples before. The WITHOUT_NLS make(1) variable has to be defined
in order to build the program without NLS support.

.if !defined (WITHOUT_NLS)
NLS= es_ES.IS08859-1
NLS+= hu_HU.IS08859-2
NLS+= pt_BR.IS08859-1
.else

CFLAGS+= -DWITHOUT_NLS
.endif

Conventionally, the catalog files are placed under the n1s subdirectory and this is the default behaviour of
bsd.nls.mk. It is possible, though to override the location of the catalogs with the NLSSRCDIR make(1) variable.
The default name of the precompiled catalog files also follow the naming convention mentioned before. It can be

38

Chapter 4 Localization and Internationalization - LION and 118N
overriden by setting the NLSNAME variable. There are other options to fine tune the processing of the catalog files but

usually it is not needed, thus they are not described here. For further information on bsd.nls.mk, please refer to the
file itself, it is short and easy to understand.

39

Chapter 5 Source Tree Guidelines and Policies

Contributed by Poul-Henning Kamp and Giorgos Keramidas.

This chapter documents various guidelines and policies in force for the FreeBSD source tree.

5.1 MaINTAINER On Makefiles

If a particular portion of the FreeBSD src/ distribution is being maintained by a person or group of persons, this is
communicated through an entry in the src/MAINTAINERS file. Maintainers of ports within the Ports Collection
express their maintainership to the world by adding a MAINTAINER line to the Makefile of the port in question:

MAINTAINER= email-addresses

Tip: For other parts of the repository, or for sections not listed as having a maintainer, or when you are unsure
who the active maintainer is, try looking at the recent commit history of the relevant parts of the source tree. It is
quite often the case that a maintainer is not explicitly named, but the people who are actively working in a part of
the source tree for, say, the last couple of years are interested in reviewing changes. Even if this is not specifically
mentioned in the documentation or the source itself, asking for a review as a form of courtesy is a very
reasonable thing to do.

The role of the maintainer is as follows:

« The maintainer owns and is responsible for that code. This means that he or she is responsible for fixing bugs and
answering problem reports pertaining to that piece of the code, and in the case of contributed software, for
tracking new versions, as appropriate.

+ Changes to directories which have a maintainer defined shall be sent to the maintainer for review before being
committed. Only if the maintainer does not respond for an unacceptable period of time, to several emails, will it be
acceptable to commit changes without review by the maintainer. However, it is suggested that you try to have the
changes reviewed by someone else if at all possible.

« It is of course not acceptable to add a person or group as maintainer unless they agree to assume this duty. On the
other hand it does not have to be a committer and it can easily be a group of people.

5.2 Contributed Software

Contributed by Poul-Henning Kamp, David O’Brien, and Gavin Atkinson.

Some parts of the FreeBSD distribution consist of software that is actively being maintained outside the FreeBSD
project. For historical reasons, we call this contributed software. Some examples are sendmail, gcc and patch.

Over the last couple of years, various methods have been used in dealing with this type of software and all have some
number of advantages and drawbacks. No clear winner has emerged.

Since this is the case, after some debate one of these methods has been selected as the “official” method and will be
required for future imports of software of this kind. Furthermore, it is strongly suggested that existing contributed
software converge on this model over time, as it has significant advantages over the old method, including the ability

40

Chapter 5 Source Tree Guidelines and Policies

to easily obtain diffs relative to the “official” versions of the source by everyone (even without direct repository
access). This will make it significantly easier to return changes to the primary developers of the contributed software.

Ultimately, however, it comes down to the people actually doing the work. If using this model is particularly unsuited
to the package being dealt with, exceptions to these rules may be granted only with the approval of the core team and
with the general consensus of the other developers. The ability to maintain the package in the future will be a key
issue in the decisions.

Note: Because of some unfortunate design limitations with the RCS file format and the use of vendor branches,
minor, trivial and/or cosmetic changes are strongly discouraged on files that are still tracking the vendor branch.
“Spelling fixes” are explicitly included here under the “cosmetic” category and are to be avoided. The repository
bloat impact from a single character change can be rather dramatic.

5.2.1 Vendor Imports with CVS

The file utility, used to identify the format of a file, will be used as example of how this model works:

src/contrib/file contains the source as distributed by the maintainers of this package. Parts that are entirely not
applicable for FreeBSD can be removed. In the case of file(1), the python subdirectory and files with the 1t prefix
were eliminated before the import, amongst others.

src/lib/libmagic contains a bmake style Makefile that uses the standard bsd. 1ib.mk makefile rules to
produce the library and install the documentation.

src/usr.bin/file contains a bmake style Makefile which will produce and install the £i1le program and its
associated man-pages using the standard bsd.prog.mk rules.

The important thing here is that the src/contrib/file directory is created according to the rules: it is supposed to
contain the sources as distributed (on a proper vendor-branch and without RCS keyword expansion) with as few
FreeBSD-specific changes as possible. If there are any doubts on how to go about it, it is imperative that you ask first
and not blunder ahead and hope it “works out”.

Because of the previously mentioned design limitations with vendor branches, it is required that “official” patches
from the vendor be applied to the original distributed sources and the result re-imported onto the vendor branch
again. Official patches should never be patched into the FreeBSD checked out version and “committed”, as this
destroys the vendor branch coherency and makes importing future versions rather difficult as there will be conflicts.

Since many packages contain files that are meant for compatibility with other architectures and environments than
FreeBSD, it is permissible to remove parts of the distribution tree that are of no interest to FreeBSD in order to save
space. Files containing copyright notices and release-note kind of information applicable to the remaining files shall
not be removed.

If it seems easier, the bmake Makefiles can be produced from the dist tree automatically by some utility, something
which would hopefully make it even easier to upgrade to a new version. If this is done, be sure to check in such
utilities (as necessary) in the src/tools directory along with the port itself so that it is available to future
maintainers.

In the src/contrib/file level directory, a file called FREEBSD-upgrade should be added and it should state
things like:

« Which files have been left out.

41

Chapter 5 Source Tree Guidelines and Policies

« Where the original distribution was obtained from and/or the official master site.
« Where to send patches back to the original authors.
+ Perhaps an overview of the FreeBSD-specific changes that have been made.

Example wording from src/contrib/groff/FREEBSD-upgrade is below:
SFreeBSD: src/contrib/groff/FREEBSD-upgrade,v 1.5.12.1 2005/11/15 22:06:18 ru Exp $

This directory contains virgin copies of the original distribution files
on a "vendor" branch. Do not, under any circumstances, attempt to upgrade
the files in this directory via patches and a cvs commit.

To upgrade to a newer version of groff, when it is available:
1. Unpack the new version into an empty directory.
[Do not make ANY changes to the files.]

2. Use the command:
cvs import -m ‘Virgin import of FSF groff v<version>' \
src/contrib/groff FSF v<version>

For example, to do the import of version 1.19.2, I typed:
cvs import -m ’‘Virgin import of FSF groff v1.19.27 \
src/contrib/groff FSF v1_19_2

3. Follow the instructions printed out in step 2 to resolve any
conflicts between local FreeBSD changes and the newer version.

Do not, under any circumstances, deviate from this procedure.

To make local changes to groff, simply patch and commit to the main
branch (aka HEAD). Never make local changes on the FSF branch.

All local changes should be submitted to Werner Lemberg <wl@gnu.org> or
Ted Harding <ted.harding@nessie.mcc.ac.uk> for inclusion in the next
vendor release.

ru@FreeBSD.org - 20 October 2005

Another approach my also be taken for the list of files to be excluded, which is especially useful when the list is large
or complicated or where imports happen frequently. By creating a file FREEBSD-x11ist in the same directory the
vendor source is imported into, containing a list of filename patterns to be excluded one per line, future imports can
often performed with:

o

% tar -X FREEBSD-Xlist -xzf vendor-source.tgz
An example of a FREEBSD-X11ist file, from src/contrib/tcsh, is here:

*/BUGS
x/config/ax*
*/config/bs2000
x/config/bsd
*/config/bsdreno
/config/[c—z]

42

Chapter 5 Source Tree Guidelines and Policies

*/tests
*/win32

Note: Please do not import FREEBSD-upgrade Or FREEBSD-X1ist with the contributed source. Rather you should
add these files after the initial import.

5.2.2 Vendor Imports with SVN
Contributed by Dag-Erling Smgrgrav.

This section describes the vendor import procedure with Subversion in details.

1. Preparing the Tree

If this is your first import after the switch to SVN, you will have to flatten and clean up the vendor tree, and
bootstrap merge history in the main tree. If not, you can safely omit this step.

During the conversion from CVS to SVN, vendor branches were imported with the same layout as the main tree.
For example, the foo vendor sources ended up in vendor/ foo/dist/contrib/ foo, but it is pointless and
rather inconvenient. What we really want is to have the vendor source directly in vendor/ foo/dist, like this:

cd vendor/foo/dist/contrib/ foo
svn move $(svn list) ../..
ed ../..

svn remove contrib

svn propdel -R svn:mergeinfo

o o° o od° o° o°

svn commit

Note that, the propdel bit is necessary because starting with 1.5, Subversion will automatically add
svn:mergeinfo to any directory you copy or move. In this case, you will not need this information, since you
are not going to merge anything from the tree you deleted.

Note: You may want to flatten the tags as well. The procedure is exactly the same. If you do this, put off the
commit until the end.

Check the dist tree and perform any cleanup that is deemed to be necessary. You may want to disable keyword
expansion, as it makes no sense on unmodified vendor code. In some cases, it can be even be harmful.

svn propdel svn:keywords -R .

o0 oo

svn commit

Bootstrapping of svn:mergeinfo on the target directory (in the main tree) to the revision that corresponds to
the last change was made to the vendor tree prior to importing new sources is also needed:

% cd head/contrib/foo
% svn merge --record-only svn_base/vendor/foo/dist@12345678 .

svn commit
where svn_base is the base directory of your SVN repository, e.g. svn+ssh://svn.FreeBSD.org/base.

2. Importing New Sources

43

Chapter 5 Source Tree Guidelines and Policies

Prepare a full, clean tree of the vendor sources. With SVN, we can keep a full distribution in the vendor tree
without bloating the main tree. Import everything but merge only what is needed.

Note that you will need to add any files that were added since the last vendor import, and remove any that were
removed. To facilitate this, you should prepare sorted lists of the contents of the vendor tree and of the sources
you are about to import:

cd vendor/foo/dist
svn list -R | grep -v '/$’ | sort > ../old
cd ../foo-9.9

o° o° oo o°

find . -type £ | cut -c 3— | sort > ../new

With these two files, the following command will list list removed files (files only in o1d):
% comm -23 ../old ../new

While the command below will list added files (files only in new):

% comm -13 ../old ../new

Let’s put this together:

cd vendor/foo/foo-9.9

tar c¢£f - . | tar xf - -C ../dist
cd ../dist
comm -23 ../old ../new | xargs svn remove

o o0 o e oe

comm -13 ../old ../new | xargs svn add

Warning: If there are new directories in the new distribution, the last command will fail. You will have to add
the directories, and run it again. Conversely, if any directories were removed, you will have to remove them
manually.

Check properties on any new files:
« All text files should have svn:eol-style setto native.

« All binary files should have svn:mime-type set to application/octet—stream, unless there is a more
appropriate media type.

« Executable files should have svn:executable set to x.

« There should be no other properties on any file in the tree.

Note: You are ready to commit, but you should first check the output of svn stat and svn diff to make
sure everything is in order.

Once you have committed the new vendor release, you should tag it for future reference. The best and quickest
way is to do it directly in the repository:

°

% svn copy svn_base/vendor/foo/dist svn base/vendor/foo/9.9

To get the new tag, you can update your working copy of vendor/ foo.

Note: If you choose to do the copy in the checkout instead, do not forget to remove the generated
svn:mergeinfo as described above.

44

Chapter 5 Source Tree Guidelines and Policies

3. Merging to -HEAD

After you have prepared your import, it is time to merge. Option ——accept=postpone tells SVN not to handle
merge conflicts yet, because they will be taken care of manually:

cd head/contrib/foo

svn update

o0 o° oe

svn merge —-—accept=postpone svn base/vendor/foo/dist

Resolve any conflicts, and make sure that any files that were added or removed in the vendor tree have been
properly added or removed in the main tree. It is always a good idea to check differences against the vendor
branch:

°

% svn diff --no-diff-deleted —--old=svn base/vendor/foo/dist —--new=.

The --no-diff-deleted option tells SVN not to check files that are in the vendor tree but not in the main tree.

Note: With SVN, there is no concept of on or off the vendor branch. If a file that previously had local
modifications no longer does, just remove any left-over cruft, such as FreeBSD version tags, so it no longer
shows up in diffs against the vendor tree.

If any changes are required for the world to build with the new sources, make them now — and test until you are
satisfied that everything build and runs correctly.

4. Commit

Now, you are ready to commit. Make sure you get everything in one go. Ideally, you would have done all steps
in a clean tree, in which case you can just commit from the top of that tree. That is the best way to avoid
surprises. If you do it properly, the tree will move atomically from a consistent state with the old code to a
consistent state with the new code.

5.3 Encumbered Files

It might occasionally be necessary to include an encumbered file in the FreeBSD source tree. For example, if a
device requires a small piece of binary code to be loaded to it before the device will operate, and we do not have the
source to that code, then the binary file is said to be encumbered. The following policies apply to including
encumbered files in the FreeBSD source tree.

1. Any file which is interpreted or executed by the system CPU(s) and not in source format is encumbered.
2. Any file with a license more restrictive than BSD or GNU is encumbered.

3. A file which contains downloadable binary data for use by the hardware is not encumbered, unless (1) or (2)
apply to it. It must be stored in an architecture neutral ASCII format (file2c or uuencoding is recommended).

4. Any encumbered file requires specific approval from the Core Team
(http://www.FreeBSD.org/administration.html#t-core) before it is added to the repository.

5. Encumbered files go in src/contrib or src/sys/contrib.

45

Chapter 5 Source Tree Guidelines and Policies

6. The entire module should be kept together. There is no point in splitting it, unless there is code-sharing with
non-encumbered code.

7. Object files are named arch/ filename.o.uu>.
8. Kernel files:
a. Should always be referenced in conf/files. « (for build simplicity).

b. Should always be in LINT, but the Core Team (http://www.FreeBSD.org/administration.html#t-core)
decides per case if it should be commented out or not. The Core Team
(http://www.FreeBSD.org/administration.html#t-core) can, of course, change their minds later on.

c. The Release Engineer decides whether or not it goes into the release.

9. User-land files:
a.

The Core team (http://www.FreeBSD.org/administration.html#t-core) decides if the code should be part of

make world.

The Release Engineering (http://www.FreeBSD.org/administration.html#t-re) decides if it goes into the
release.

5.4 Shared Libraries

Contributed by Satoshi Asami, Peter Wemm, and David O’Brien.

If you are adding shared library support to a port or other piece of software that does not have one, the version
numbers should follow these rules. Generally, the resulting numbers will have nothing to do with the release version
of the software.

The three principles of shared library building are:

« Start from 1.0

« If there is a change that is backwards compatible, bump minor number (note that ELF systems ignore the minor
number)

« If there is an incompatible change, bump major number

For instance, added functions and bugfixes result in the minor version number being bumped, while deleted
functions, changed function call syntax, etc. will force the major version number to change.

Stick to version numbers of the form major.minor (x.y). Our a.out dynamic linker does not handle version numbers
of the form x.y.z well. Any version number after the y (i.e. the third digit) is totally ignored when comparing shared
lib version numbers to decide which library to link with. Given two shared libraries that differ only in the “micro”
revision, 1d. so will link with the higher one. That is, if you link with 1ibfoo.so.3.3. 3, the linker only records
3.3 in the headers, and will link with anything starting with 1ibfoo.so. 3. (anything >= 3).(highest

available).

46

Chapter 5 Source Tree Guidelines and Policies

Note: 1d. so will always use the highest “minor” revision. For instance, it will use 1ibc.so.2.2 in preference to
libc.so.2.0, even if the program was initially linked with 1ibc.so.2.0.

In addition, our ELF dynamic linker does not handle minor version numbers at all. However, one should still specify
a major and minor version number as our Makefiles “do the right thing” based on the type of system.

For non-port libraries, it is also our policy to change the shared library version number only once between releases.
In addition, it is our policy to change the major shared library version number only once between major OS releases
(i.e. from 6.0 to 7.0). When you make a change to a system library that requires the version number to be bumped,
check the Makefile’s commit logs. It is the responsibility of the committer to ensure that the first such change since
the release will result in the shared library version number in the Makefile to be updated, and any subsequent
changes will not.

47

Chapter 6 Regression and Performance Testing

Regression tests are used to exercise a particular bit of the system to check that it works as expected, and to make
sure that old bugs are not reintroduced.

The FreeBSD regression testing tools can be found in the FreeBSD source tree in the directory

src/tools/regression.

6.1. Micro Benchmark Checklist

This section contains hints for doing proper micro-benchmarking on FreeBSD or of FreeBSD itself.

It is not possible to use all of the suggestions below every single time, but the more used, the better the benchmark’s
ability to test small differences will be.

+ Disable APM and any other kind of clock fiddling (ACPI ?).

+ Run in single user mode. E.g. cron(8), and other daemons only add noise. The sshd(8) daemon can also cause
problems. If ssh access is required during test either disable the SSHv1 key regeneration, or kill the parent sshd
daemon during the tests.

+ Do not run ntpd(8).

« If syslog(3) events are generated, run syslogd(8) with an empty /etc/syslogd. conf, otherwise, do not run it.
+ Minimize disk-1/0O, avoid it entirely if possible.

« Do not mount file systems that are not needed.

+ Mount /, /usr, and any other file system as read-only if possible. This removes atime updates to disk (etc.) from
the I/O picture.

+ Reinitialize the read/write test file system with newfs(8) and populate it from a tar(1) or dump(8) file before every
run. Unmount and mount it before starting the test. This results in a consistent file system layout. For a worldstone
test this would apply to /usr/ob7 (just reinitialize with newfs and mount). To get 100% reproducibility, populate
the file system from a dd(1) file (i.e.: dd if=myimage of=/dev/ad0slh bs=1m)

+ Use malloc backed or preloaded md(4) partitions.
« Reboot between individual iterations of the test, this gives a more consistent state.

+ Remove all non-essential device drivers from the kernel. For instance if USB is not needed for the test, do not put
USB in the kernel. Drivers which attach often have timeouts ticking away.

+ Unconfigure hardware that are not in use. Detach disks with atacontrol(8) and camcontrol(8) if the disks are not
used for the test.

« Do not configure the network unless it is being tested, or wait until after the test has been performed to ship the
results off to another computer.

If the system must be connected to a public network, watch out for spikes of broadcast traffic. Even though it is
hardly noticeable, it will take up CPU cycles. Multicast has similar caveats.

+ Put each file system on its own disk. This minimizes jitter from head-seek optimizations.

48

Chapter 6 Regression and Performance Testing

Minimize output to serial or VGA consoles. Running output into files gives less jitter. (Serial consoles easily
become a bottleneck.) Do not touch keyboard while the test is running, even space or back-space shows up in the
numbers.

Make sure the test is long enough, but not too long. If the test is too short, timestamping is a problem. If it is too
long temperature changes and drift will affect the frequency of the quartz crystals in the computer. Rule of thumb:
more than a minute, less than an hour.

Try to keep the temperature as stable as possible around the machine. This affects both quartz crystals and disk
drive algorithms. To get real stable clock, consider stabilized clock injection. E.g. get a OCXO + PLL, inject
output into clock circuits instead of motherboard xtal. Contact Poul-Henning Kamp <phk@FreeBSD.org> for
more information about this.

Run the test at least 3 times but it is better to run more than 20 times both for “before” and “after” code. Try to
interleave if possible (i.e.: do not run 20 times before then 20 times after), this makes it possible to spot
environmental effects. Do not interleave 1:1, but 3:3, this makes it possible to spot interaction effects.

A good pattern is: bababa {bbbaaa} «. This gives hint after the first 1+1 runs (so it is possible to stop the test if it
goes entirely the wrong way), a standard deviation after the first 3+3 (gives a good indication if it is going to be
worth a long run) and trending and interaction numbers later on.

Use usr/src/tools/tools/ministat to see if the numbers are significant. Consider buying “Cartoon guide to
statistics” ISBN: 0062731025, highly recommended, if you have forgotten or never learned about standard
deviation and Student’s T.

Do not use background fsck(8) unless the test is a benchmark of background fsck. Also, disable
background_fsckin /etc/rc.conf unless the benchmark is not started at least 60+“£sck runtime” seconds
after the boot, as rc(8) wakes up and checks if £sck needs to run on any file systems when background £sck is
enabled. Likewise, make sure there are no snapshots lying around unless the benchmark is a test with snapshots.

If the benchmark show unexpected bad performance, check for things like high interrupt volume from an
unexpected source. Some versions of ACPI have been reported to “misbehave” and generate excess interrupts. To
help diagnose odd test results, take a few snapshots of vmstat -i and look for anything unusual.

Make sure to be careful about optimization parameters for kernel and userspace, likewise debugging. It is easy to
let something slip through and realize later the test was not comparing the same thing.

Do not ever benchmark with the wWITNESS and INVARIANTS kernel options enabled unless the test is interested to
benchmarking those features. WITNESS can cause 400%-+ drops in performance. Likewise, userspace malloc(3)
parameters default differently in -CURRENT from the way they ship in production releases.

49

Il. Interprocess Communication

Chapter 7 Sockets

Contributed by G. Adam Stanislav.

7.1 Synopsis

BSD sockets take interprocess communications to a new level. It is no longer necessary for the communicating
processes to run on the same machine. They still can, but they do not have to.

Not only do these processes not have to run on the same machine, they do not have to run under the same operating
system. Thanks to BSD sockets, your FreeBSD software can smoothly cooperate with a program running on a
Macintosh®, another one running on a Sun™ workstation, yet another one running under Windows® 2000, all
connected with an Ethernet-based local area network.

But your software can equally well cooperate with processes running in another building, or on another continent,
inside a submarine, or a space shuttle.

It can also cooperate with processes that are not part of a computer (at least not in the strict sense of the word), but of
such devices as printers, digital cameras, medical equipment. Just about anything capable of digital communications.

7.2 Networking and Diversity

We have already hinted on the diversity of networking. Many different systems have to talk to each other. And they
have to speak the same language. They also have to understand the same language the same way.

People often think that body language is universal. But it is not. Back in my early teens, my father took me to
Bulgaria. We were sitting at a table in a park in Sofia, when a vendor approached us trying to sell us some roasted
almonds.

I had not learned much Bulgarian by then, so, instead of saying no, I shook my head from side to side, the
“universal” body language for no. The vendor quickly started serving us some almonds.

I then remembered I had been told that in Bulgaria shaking your head sideways meant yes. Quickly, I started nodding
my head up and down. The vendor noticed, took his almonds, and walked away. To an uninformed observer, I did not
change the body language: I continued using the language of shaking and nodding my head. What changed was the
meaning of the body language. At first, the vendor and I interpreted the same language as having completely
different meaning. I had to adjust my own interpretation of that language so the vendor would understand.

It is the same with computers: The same symbols may have different, even outright opposite meaning. Therefore, for
two computers to understand each other, they must not only agree on the same language, but on the same
interpretation of the language.

7.3 Protocols

While various programming languages tend to have complex syntax and use a number of multi-letter reserved words
(which makes them easy for the human programmer to understand), the languages of data communications tend to be
very terse. Instead of multi-byte words, they often use individual bits. There is a very convincing reason for it: While
data travels inside your computer at speeds approaching the speed of light, it often travels considerably slower
between two computers.

51

Chapter 7 Sockets

Because the languages used in data communications are so terse, we usually refer to them as protocols rather than
languages.

As data travels from one computer to another, it always uses more than one protocol. These protocols are layered.
The data can be compared to the inside of an onion: You have to peel off several layers of “skin” to get to the data.
This is best illustrated with a picture:

Et her net
I P
TCP

HTTP
PNG

DATA

In this example, we are trying to get an image from a web page we are connected to via an Ethernet.

The image consists of raw data, which is simply a sequence of RGB values that our software can process, i.e.,
convert into an image and display on our monitor.

Alas, our software has no way of knowing how the raw data is organized: Is it a sequence of RGB values, or a
sequence of grayscale intensities, or perhaps of CMYK encoded colors? Is the data represented by 8-bit quanta, or
are they 16 bits in size, or perhaps 4 bits? How many rows and columns does the image consist of? Should certain
pixels be transparent?

I think you get the picture...

To inform our software how to handle the raw data, it is encoded as a PNG file. It could be a GIF, or a JPEG, but it is
a PNG.

And PNG is a protocol.
At this point, I can hear some of you yelling, “No, it is not! It is a file format!”

Well, of course it is a file format. But from the perspective of data communications, a file format is a protocol: The
file structure is a language, a terse one at that, communicating to our process how the data is organized. Ergo, it is a
protocol.

Alas, if all we received was the PNG file, our software would be facing a serious problem: How is it supposed to
know the data is representing an image, as opposed to some text, or perhaps a sound, or what not? Secondly, how is it
supposed to know the image is in the PNG format as opposed to GIF, or JPEG, or some other image format?

To obtain that information, we are using another protocol: HTTP. This protocol can tell us exactly that the data
represents an image, and that it uses the PNG protocol. It can also tell us some other things, but let us stay focused on
protocol layers here.

So, now we have some data wrapped in the PNG protocol, wrapped in the HTTP protocol. How did we get it from
the server?

By using TCP/IP over Ethernet, that is how. Indeed, that is three more protocols. Instead of continuing inside out, I
am now going to talk about Ethernet, simply because it is easier to explain the rest that way.

Ethernet is an interesting system of connecting computers in a local area network (LAN). Each computer has a
network interface card (NIC), which has a unique 48-bit ID called its address. No two Ethernet NICs in the world
have the same address.

52

Chapter 7 Sockets

These NICs are all connected with each other. Whenever one computer wants to communicate with another in the
same Ethernet LAN, it sends a message over the network. Every NIC sees the message. But as part of the Ethernet
protocol, the data contains the address of the destination NIC (among other things). So, only one of all the network
interface cards will pay attention to it, the rest will ignore it.

But not all computers are connected to the same network. Just because we have received the data over our Ethernet
does not mean it originated in our own local area network. It could have come to us from some other network (which
may not even be Ethernet based) connected with our own network via the Internet.

All data is transferred over the Internet using IP, which stands for Internet Protocol. Its basic role is to let us know
where in the world the data has arrived from, and where it is supposed to go to. It does not guarantee we will receive
the data, only that we will know where it came from if we do receive it.

Even if we do receive the data, IP does not guarantee we will receive various chunks of data in the same order the
other computer has sent it to us. So, we can receive the center of our image before we receive the upper left corner
and after the lower right, for example.

It is TCP (Transmission Control Protocol) that asks the sender to resend any lost data and that places it all into the
proper order.

All in all, it took five different protocols for one computer to communicate to another what an image looks like. We
received the data wrapped into the PNG protocol, which was wrapped into the HTTP protocol, which was wrapped
into the TCP protocol, which was wrapped into the IP protocol, which was wrapped into the Ethernet protocol.

Oh, and by the way, there probably were several other protocols involved somewhere on the way. For example, if our
LAN was connected to the Internet through a dial-up call, it used the PPP protocol over the modem which used one
(or several) of the various modem protocols, et cetera, et cetera, et cetera...

As a developer you should be asking by now, “How am I supposed to handle it all?”

Luckily for you, you are not supposed to handle it all. You are supposed to handle some of it, but not all of it.
Specifically, you need not worry about the physical connection (in our case Ethernet and possibly PPP, etc). Nor do
you need to handle the Internet Protocol, or the Transmission Control Protocol.

In other words, you do not have to do anything to receive the data from the other computer. Well, you do have to ask
for it, but that is almost as simple as opening a file.

Once you have received the data, it is up to you to figure out what to do with it. In our case, you would need to
understand the HTTP protocol and the PNG file structure.

To use an analogy, all the internetworking protocols become a gray area: Not so much because we do not understand
how it works, but because we are no longer concerned about it. The sockets interface takes care of this gray area for
us:

HTTP
PNG

DATA

We only need to understand any protocols that tell us how to interpret the data, not how to receive it from another
process, nor how to send it to another process.

53

Chapter 7 Sockets

7.4 The Sockets Model

BSD sockets are built on the basic UNIX model: Everything is a file. In our example, then, sockets would let us
receive an HTTP file, so to speak. It would then be up to us to extract the PNG file from it.

Because of the complexity of internetworking, we cannot just use the open system call, or the open () C function.
Instead, we need to take several steps to “opening” a socket.

Once we do, however, we can start treating the socket the same way we treat any file descriptor: We can read from
it, write to it, pipe it, and, eventually, close it.

7.5 Essential Socket Functions

While FreeBSD offers different functions to work with sockets, we only need four to “open” a socket. And in some
cases we only need two.

7.5.1 The Client-Server Difference

Typically, one of the ends of a socket-based data communication is a server, the other is a client.
7.5.1.1 The Common Elements

7.5.1.1.1 socket

The one function used by both, clients and servers, is socket(2). It is declared this way:
int socket (int domain, int type, int protocol);
The return value is of the same type as that of open, an integer. FreeBSD allocates its value from the same pool as

that of file handles. That is what allows sockets to be treated the same way as files.

The domain argument tells the system what profocol family you want it to use. Many of them exist, some are vendor
specific, others are very common. They are declared in sys/socket . h.

Use pF_INET for UDP, TCP and other Internet protocols (IPv4).

Five values are defined for the t ype argument, again, in sys/socket . h. All of them start with “socx_". The most
common one is SOCK_STREAM, which tells the system you are asking for a reliable stream delivery service (which is
TCP when used with PF_INET).

If you asked for SOCK_DGRAM, you would be requesting a connectionless datagram delivery service (in our case,
UDP).

If you wanted to be in charge of the low-level protocols (such as IP), or even network interfaces (e.g., the Ethernet),
you would need to specify SOCK_RAW.

Finally, the protocol argument depends on the previous two arguments, and is not always meaningful. In that case,
use 0 for its value.

The Unconnected Socket: Nowhere, in the socket function have we specified to what other system we should
be connected. Our newly created socket remains unconnected.

54

Chapter 7 Sockets

This is on purpose: To use a telephone analogy, we have just attached a modem to the phone line. We have
neither told the modem to make a call, nor to answer if the phone rings.

7.5.1.1.2 sockaddr

Various functions of the sockets family expect the address of (or pointer to, to use C terminology) a small area of the
memory. The various C declarations in the sys/socket . h refer to it as st ruct sockaddr. This structure is
declared in the same file:

/ *

* Structure used by kernel to store most

* addresses.

*/
struct sockaddr {

unsigned char sa_len; /% total length x/

sa_family_t sa_family; /* address family =/

char sa_data[l4]; /% actually longer; address value x/

i

#define SOCK_MAXADDRLEN 255 /x longest possible addresses =/

Please note the vagueness with which the sa_data field is declared, just as an array of 14 bytes, with the comment
hinting there can be more than 14 of them.

This vagueness is quite deliberate. Sockets is a very powerful interface. While most people perhaps think of it as
nothing more than the Internet interface—and most applications probably use it for that nowadays—sockets can be
used for just about any kind of interprocess communications, of which the Internet (or, more precisely, IP) is only
one.

The sys/socket . h refers to the various types of protocols sockets will handle as address families, and lists them
right before the definition of sockaddr:

/ *

* Address families.

*/
#define AF_UNSPEC 0 /* unspecified */
#define AF_LOCAL 1 /* local to host (pipes, portals) =/
#define AF_UNIX AF_LOCAL /* backward compatibility =/
#define AF_INET 2 /% internetwork: UDP, TCP, etc. =/
#define AF_IMPLINK 3 /% arpanet imp addresses x/
#define AF_PUP 4 /x pup protocols: e.g. BSP */
#define AF_CHAOS 5 /% mit CHAOS protocols =/
#define AF_NS 6 /x XEROX NS protocols x/
#define AF_ISO 7 /* ISO protocols =*/
#define AF_OSI AF_ISO
#define AF_ECMA 8 /* European computer manufacturers =/
#define AF_DATAKIT 9 /% datakit protocols =/
#define AF_CCITT 10 /% CCITT protocols, X.25 etc */
#define AF_SNA 11 /% IBM SNA */
#define AF_DECnet 12 /% DECnet =/
#define AF_DLI 13 /% DEC Direct data link interface =*/
#define AF_LAT 14 /x LAT =/

55

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

*

*/
#define
#define
#define
#define
#define
#define

Chapter 7 Sockets

AF_HYLINK 15 /% NSC Hyperchannel x/

AF_APPLETALK 16 /* Apple Talk x/

AF_ROUTE 17 /x Internal Routing Protocol =/

AF_LINK 18 /% Link layer interface x/

pseudo_AF_XTP 19 /x eXpress Transfer Protocol (no AF) =/
AF_COIP 20 /* connection-oriented IP, aka ST II x/
AF_CNT 21 /% Computer Network Technology =/
pseudo_AF_RTIP 22 /% Help Identify RTIP packets =/
AF_IPX 23 /% Novell Internet Protocol =*/

AF_SIP 24 /* Simple Internet Protocol =/

pseudo_AF_PIP 25 /x Help Identify PIP packets =/

AF_ISDN 26 /+* Integrated Services Digital Networksx/
AF_E164 AF_ISDN /% CCITT E.164 recommendation =*/
pseudo_AF_KEY 27 /x Internal key-management function =/
AF_INET6 28 /% IPv6 */

AF_NATM 29 /% native ATM access */

AF_ATM 30 /% ATM %/

pseudo_AF_HDRCMPLT 31 /* Used by BPF to not rewrite headers
in interface output routine

AF_NETGRAPH 32 /* Netgraph sockets =/
AF_SLOW 33 /x 802.3ad slow protocol =/
AF_SCLUSTER 34 /% Sitara cluster protocol =/
AF_ARP 35

AF_BLUETOOTH 36 /% Bluetooth sockets =*/
AF_MAX 37

The one used for IP is AF_INET. It is a symbol for the constant 2.

It is the address family listed in the sa_family field of sockaddr that decides how exactly the vaguely named bytes

of sa_dat

a will be used.

Specifically, whenever the address family is AF_INET, we can use struct sockaddr_in found in

netinet/

/ *

* Socke
*/
struct s
uint8_t
sa_fami
in_port
struct
char si

}i

in.h, wherever sockaddr is expected:

t address, internet style.

ockaddr_in {
sin_len;
ly_t sin_family;

_t sin_port;

in_addr sin_addr;
n_zero[8];

We can visualize its organization this way:

56

Chapter 7 Sockets

0 1 2 3
0 0 Family Port
4 IP Address
8 0
12 0

The three important fields are sin_family, which is byte 1 of the structure, sin_port, a 16-bit value found in
bytes 2 and 3, and sin_addr, a 32-bit integer representation of the IP address, stored in bytes 4-7.

Now, let us try to fill it out. Let us assume we are trying to write a client for the daytime protocol, which simply states
that its server will write a text string representing the current date and time to port 13. We want to use TCP/IP, so we
need to specify AF_INET in the address family field. AF_INET is defined as 2. Let us use the IP address of
192.43.244.18, which is the time server of US federal government (t ime.nist.gov).

0 1 2 3
0 2 13
192.43.244.18
8 0
12 0

By the way the sin_addr field is declared as being of the struct in_addr type, which is defined in

netinet/in.h:

/ *

* Internet address (a structure for historical reasons)
*/

struct in_addr {

in_addr_t s_addr;

}i

In addition, in_addr_t is a 32-bit integer.

The 192.43.244.18 is just a convenient notation of expressing a 32-bit integer by listing all of its 8-bit bytes,
starting with the most significant one.

So far, we have viewed sockaddr as an abstraction. Our computer does not store short integers as a single 16-bit
entity, but as a sequence of 2 bytes. Similarly, it stores 32-bit integers as a sequence of 4 bytes.

Suppose we coded something like this:

sa.sin_family = AF_INET;
sa.sin_port = 13;
sa.sin_addr.s_addr = (((((192 << 8) | 43) << 8) | 244) << 8) | 18;

What would the result look like?

Well, that depends, of course. On a Pentium®, or other x86, based computer, it would look like this:

57

Chapter 7 Sockets

0 1 2 3
0 0 2 13 0
4 18 244 43 192
8 0
12 0

On a different system, it might look like this:

0 1 2 3
0 0 2 0 13
192 43 244 18
8 0
12 0

And on a PDP it might look different yet. But the above two are the most common ways in use today.

Ordinarily, wanting to write portable code, programmers pretend that these differences do not exist. And they get
away with it (except when they code in assembly language). Alas, you cannot get away with it that easily when
coding for sockets.

Why?

Because when communicating with another computer, you usually do not know whether it stores data most
significant byte (MSB) or least significant byte (LSB) first.

You might be wondering, “So, will sockets not handle it for me?”
It will not.

While that answer may surprise you at first, remember that the general sockets interface only understands the
sa_len and sa_family fields of the sockaddr structure. You do not have to worry about the byte order there (of
course, on FreeBSD sa_family is only 1 byte anyway, but many other UNIX systems do not have sa_len and use
2 bytes for sa_family, and expect the data in whatever order is native to the computer).

But the rest of the data is just sa_data[14] as far as sockets goes. Depending on the address family, sockets just
forwards that data to its destination.

Indeed, when we enter a port number, it is because we want the other computer to know what service we are asking
for. And, when we are the server, we read the port number so we know what service the other computer is expecting
from us. Either way, sockets only has to forward the port number as data. It does not interpret it in any way.

Similarly, we enter the IP address to tell everyone on the way where to send our data to. Sockets, again, only
forwards it as data.

That is why, we (the programmers, not the sockets) have to distinguish between the byte order used by our computer
and a conventional byte order to send the data in to the other computer.

We will call the byte order our computer uses the host byte order, or just the host order.

There is a convention of sending the multi-byte data over IP MSB first. This, we will refer to as the network byte
order, or simply the network order.

58

Chapter 7 Sockets

Now, if we compiled the above code for an Intel based computer, our host byte order would produce:

0 1 2 3
0 0 2 13 0
4 18 244 43 192
8 0
12 0

But the network byte order requires that we store the data MSB first:

0 1 2 3
0 2 0 13
192 43 244 18
0
12 0

Unfortunately, our host order is the exact opposite of the network order.

We have several ways of dealing with it. One would be to reverse the values in our code:

sa.sin_family = AF_INET;
sa.sin_port = 13 << 8;
sa.sin_addr.s_addr = (((((18 << 8) | 244) << 8) | 43) << 8) | 192;

This will #rick our compiler into storing the data in the network byte order. In some cases, this is exactly the way to
do it (e.g., when programming in assembly language). In most cases, however, it can cause a problem.

Suppose, you wrote a sockets-based program in C. You know it is going to run on a Pentium, so you enter all your
constants in reverse and force them to the network byte order. It works well.

Then, some day, your trusted old Pentium becomes a rusty old Pentium. You replace it with a system whose host
order is the same as the network order. You need to recompile all your software. All of your software continues to
perform well, except the one program you wrote.

You have since forgotten that you had forced all of your constants to the opposite of the host order. You spend some
quality time tearing out your hair, calling the names of all gods you ever heard of (and some you made up), hitting
your monitor with a nerf bat, and performing all the other traditional ceremonies of trying to figure out why
something that has worked so well is suddenly not working at all.

Eventually, you figure it out, say a couple of swear words, and start rewriting your code.

Luckily, you are not the first one to face the problem. Someone else has created the htons(3) and htonl(3) C functions
to convert a short and long respectively from the host byte order to the network byte order, and the ntohs(3) and
ntohl(3) C functions to go the other way.

On MSB-first systems these functions do nothing. On LSB-first systems they convert values to the proper order.

So, regardless of what system your software is compiled on, your data will end up in the correct order if you use
these functions.

59

Chapter 7 Sockets

7.5.1.2 Client Functions

Typically, the client initiates the connection to the server. The client knows which server it is about to call: It knows
its IP address, and it knows the port the server resides at. It is akin to you picking up the phone and dialing the
number (the address), then, after someone answers, asking for the person in charge of wingdings (the porr).

7.5.1.2.1 connect

Once a client has created a socket, it needs to connect it to a specific port on a remote system. It uses connect(2):

int connect (int s, const struct sockaddr xname, socklen_t namelen);

The s argument is the socket, i.e., the value returned by the socket function. The name is a pointer to sockaddr,
the structure we have talked about extensively. Finally, namelen informs the system how many bytes are in our
sockaddr structure.

If connect is successful, it returns 0. Otherwise it returns -1 and stores the error code in errno.

There are many reasons why connect may fail. For example, with an attempt to an Internet connection, the IP
address may not exist, or it may be down, or just too busy, or it may not have a server listening at the specified port.
Or it may outright refuse any request for specific code.

7.5.1.2.2 Our First Client

We now know enough to write a very simple client, one that will get current time from 192.43.244.18 and print it
to stdout.

/ *
* daytime.c
*
* Programmed by G. Adam Stanislav
*/
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

int main () {
register int s;
register int bytes;
struct sockaddr_in saj;
char buffer[BUFSIZ+1];

if ((s = socket (PF_INET, SOCK_STREAM, 0)) < 0) {
perror ("socket");
return 1;

bzero (&sa, sizeof sa);

sa.sin_family = AF_INET;
sa.sin_port = htons(13);

60

Chapter 7 Sockets

sa.sin_addr.s_addr = htonl ((((((192 << 8) | 43) << 8) | 244) << 8) | 18);
if (connect (s, (struct sockaddr =)&sa, sizeof sa) < 0) {

perror ("connect");

close(s);

return 2;

while ((bytes = read(s, buffer, BUFSIZ)) > 0)
write(l, buffer, bytes);

close (s);
return 0;

Go ahead, enter it in your editor, save it as daytime. c, then compile and run it:

% cc —-03 -o daytime daytime.c
% ./daytime

52079 01-06-19 02:29:25 50 0 1 543.9 UTC(NIST) =

3
S

In this case, the date was June 19, 2001, the time was 02:29:25 UTC. Naturally, your results will vary.

7.5.1.3 Server Functions

The typical server does not initiate the connection. Instead, it waits for a client to call it and request services. It does
not know when the client will call, nor how many clients will call. It may be just sitting there, waiting patiently, one
moment, The next moment, it can find itself swamped with requests from a number of clients, all calling in at the
same time.

The sockets interface offers three basic functions to handle this.

7.5.1.3.1 bind

Ports are like extensions to a phone line: After you dial a number, you dial the extension to get to a specific person or
department.

There are 65535 IP ports, but a server usually processes requests that come in on only one of them. It is like telling
the phone room operator that we are now at work and available to answer the phone at a specific extension. We use
bind(2) to tell sockets which port we want to serve.

int bind(int s, const struct sockaddr xaddr, socklen_t addrlen);

Beside specifying the port in addr, the server may include its IP address. However, it can just use the symbolic
constant INADDR_ANY to indicate it will serve all requests to the specified port regardless of what its IP address is.
This symbol, along with several similar ones, is declared in netinet/in.h

#define INADDR_ANY (u_int32_t)0x00000000

Suppose we were writing a server for the daytime protocol over TCP/IP. Recall that it uses port 13. Our
sockaddr_in structure would look like this:

61

Chapter 7 Sockets

0 1 2 3

0 0 2 0 13
4 0
8 0
12 0

7.5.1.3.2 1isten

To continue our office phone analogy, after you have told the phone central operator what extension you will be at,
you now walk into your office, and make sure your own phone is plugged in and the ringer is turned on. Plus, you
make sure your call waiting is activated, so you can hear the phone ring even while you are talking to someone.

The server ensures all of that with the listen(2) function.
int listen(int s, int backlog);

In here, the backlog variable tells sockets how many incoming requests to accept while you are busy processing the
last request. In other words, it determines the maximum size of the queue of pending connections.

7.5.1.3.3 accept

After you hear the phone ringing, you accept the call by answering the call. You have now established a connection
with your client. This connection remains active until either you or your client hang up.

The server accepts the connection by using the accept(2) function.
int accept (int s, struct sockaddr xaddr, socklen_t *addrlen);
Note that this time addrlen is a pointer. This is necessary because in this case it is the socket that fills out addr, the

sockaddr_in structure.

The return value is an integer. Indeed, the accept returns a new socket. You will use this new socket to communicate
with the client.

What happens to the old socket? It continues to listen for more requests (remember the backlog variable we passed
to listen?) until we close it.

Now, the new socket is meant only for communications. It is fully connected. We cannot pass it to 1isten again,
trying to accept additional connections.

7.5.1.3.4 Our First Server

Our first server will be somewhat more complex than our first client was: Not only do we have more sockets
functions to use, but we need to write it as a daemon.

This is best ac