214

FreeBSD Architecture Handbook

The FreeBSD Documentation Project

FreeBSD Architecture Handbook

by The FreeBSD Documentation Project

Published August 2000

Copyright © 2000, 2001, 2002, 2003, 2004, 2005, 2006 The FreeBSD Documentation Project

Welcome to the FreeBSD Architecture Handbook. This manual is a work in progress and is the work of many
individuals. Many sections do not yet exist and some of those that do exist need to be updated. If you are interested
in helping with this project, send email to the FreeBSD documentation project mailing list
(http://Nists.FreeBSD.org/mailman/listinfo/freebsd-doc).

The latest version of this document is always available from the FreeBSD World Wide Web server
(http://www.FreeBSD.org/index.html). It may also be downloaded in a variety of formats and compression options
from the FreeBSD FTP server (ftp://ftp.FreeBSD.org/pub/FreeBSD/doc/) or one of the numerous mirror sites
(http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html).

FreeBSD is a registered trademark of The FreeBSD Foundation.

UNIX is a registered trademark of The Open Group in the US and other countries.

Sun, Sun Microsystems, SunOS, Solaris, Java, JDK, and OpenJDK are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries.

Apple and QuickTime are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

Macromedia and Flash are trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries.

Microsoft, Windows, and Windows Media are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

PartitionMagic is a registered trademark of PowerQuest Corporation in the United States and/or other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations

appear in this book, and the FreeBSD Project was aware of the trademark claim, the designations have been followed by the *™ symbol.

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF and so forth) with or without

modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE FREEBSD DOCUMENTATION PROJECT "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE FREEBSD DOCUMENTATION PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Table of Contents

I. Kernel viii
1 Bootstrapping and kernel initialiZationcoeeoveririeiiiniiieneieeeneet ettt et 1
L1 SYMOPSIS ceeutieuiieiieitesiie et et et e st et et e sttt eate e beesebeesbe et e esbbessbeenb e e bae e st e eab e e beeeabeenbeenbeeesteeabeenbeenaennrenntes 1

L2 OVRIVIEW ..ottt ettt ettt ettt ettt et sttt ettt e bt e et s bt et e s bt e bt et e e bt et e sbeemtenbesbtembesbeennenaesae 1

L3 BIOS POST ...ttt sttt ettt st st e b ettt e bt et e sbe et e nbesbt et e sbeesnenaeeae 2

1.4 DOOT 0 STAZE c.vveeureenrierieeeieesitertte st eteestte sttt este e beestteesbeenteesbaessseenseenbeesabeeaseenbeesasassseenbeensbesabesnbeestenasesntes 2

1.5 00T 2 STAZE cvvteuveeueeriieeteesitertte st et et e sttt ebe e bt e s ateeabeeabeesbaeeabeease e baesabeeab e e bt e sabeeabeenbe e sbeeabeeabeentenatenates 3

LoO JOAAET SLAZEcouveeneieiiieiiieieetee ettt ettt st ettt e s bt e st e et e bt e sabeeab e e bt e sabeeabeenbeessbesabeenbeebtenabesats 5

1.7 Kernel INTHATIZAtIONc..coueeiiriiiiiiiiieicitet ettt sttt ettt s et ae st e sae e bt eaeesaesaeesnesbeean 6

2 LLOCKING INOTES ...eouveeniieeiiteieette sttt ettt et st et e sb e st e sate e bt e s bt e eabesa bt e bt e satesateenbeesaeeshbeeabeenbeesssesabeenseensaesasesnseenses 14
2.1 MIUEEXES ...ttt eit et eet et sttt e s bt ettt st e she e b e bt easesa e satessesaeeas e bt easeat e eae e st e satean e bt e s et e eaeennenaeennen 14

2.2 Shared EXCIUSIVE LIOCKSevteuiiiiiiiieniicietieetetee ettt et 17

2.3 Atomically Protected Variablescocuiiiiiriiniiiiiiitiiite ettt ettt ettt st n 17

B KEINEL ODJECLScneiieiteiieieie ettt ettt et a e et e bt st h e et e bt e aeenesae e s e b e ean et e eneennesneennen 18
3.1 TeIMINOLOZY ..evoniiieiiiieeet ettt st st et eae e e sae e r e e ae et e eae e e saeennen 18

3.2 KODJ OPEIALION ...ttt ettt sttt st st e et e e saeesne s e e et e sneennesaeennes 18

B3 USING KODJ .ttt 18

4 The Jall SUDSYSIEIM......iiiiiiiiiieiieeeette ettt ettt et e sb e st eat e e bt e s bt e sat e e bt e sbeesaeesabeenbeeebeesabeenseenneenas 22
O N (e 11T 1L (< SRR SSRSRTR 22

O N 4 o1 o) 1 LT OSSR 27

5 The SYSINIT FramewWOTKccoueeiiiiiiiiiiiieeeeeeeee ettt sttt sttt sbe e sttt e b e sane e e e nee 33
5.1 TRIMUINOLOZY ..ottt ettt ettt ettt e et bt et e b e eb e et e ehe et e sbeese e bees e emteebeenteebeemtenbesseenteeneenes 33

5.2 SYSINIT OPEIAtIONcuveueeniieiieiietteie ettt et te ettt et et eete b ebtetesbe e tesbeeseenbeeseentesbeeneesbeemtenbeeseensesneenes 33

5.3 USING SYSINIT ..ottt b e bttt a et s bt e st e b e e bt et e sb e et e sbe e st e besbeenseeneenes 33

6 The TrustedBSD MAC FramewWOrK..........ccocoiiiiiiiiiieiiiieiesieete sttt ettt st sttt e seeenees 36
6.1 MAC Documentation COPYIIZIL.....cc.evuteiiririiirieitieienieeteie ettt ettt ettt sbe e e e e eaees 36

0.2 STNOPSIS 1.ttt ettt ettt e ettt et et et e s bt et bt e bt et e bt et e s bt e s e bt eb e et eh e et e sheeat e bt bt et bt et e nbeeneen 36

6.3 TNETOAUCTION. ...ttt ettt b ettt st e e s bt e st e s bt ebt et ebe e tesbeemtenbeebe et e sbeenaesaeeneen 36

6.4 POLiCY BACKZIOUN.....c..coiiiiiiiiiiiiiiieieete ettt sttt eaees 37

6.5 MAC Framework Kernel ArCRItECTULEcocuivuiiiiiiiriieiiiinieieseeesieeet ettt 37

6.6 MAC POJICY ATCRITECIUIEecuvieiiieiieiieiieeieeite sttt stt e st e ettt e s tesste e beessaesasesnseenseensaesnseenseenseenns 41

6.7 MAC Policy Entry Point REfEIENCE.cuivviiiriiiiiiiiieiiesiteeteeeee ettt st ees 44

6.8 USerland ATCHILECTUIRc..cotiriirieieniieieric ettt ettt et ettt et st et e b eae et sbeenaenaeenees ??

6.9 CONCIUSION ...ttt ettt ettt et et s a et sb et e bt e e et sbe et e saeemae bt eua et esbeeneenueeneen 7

T VITtUAL MEIMOTY SYSLEIN ..eutiiiieiiiieiieniiesteeiteenttesiteeteeteesttesateesteesbaesstessseenbeesstesasesnseesseesssesnseesaessaesnseensessseesns 7
7.1 Management of physical MEeMOTY—VIM_DPaGE_t tevveerrierierierriieniienieeieenieestesteeteesiaesaresbeesseesasesaeeas 7

7.2 The unified buffer CaChe——Im_ 0D JECT _fuiiiiiiiiiiiiiiiiiee et ee e e e eareee s 27?

7.3 FileSyStemM I/O——STEIUCT DU tiiriiirieiiieiteeitesite ettt sttt ettt ettt et s e st esbaesabesabeebeesaaesatean 7

7.4 Mapping Page Tables—vm_map_t, VM _ENETY_turiiirieiieiierieeieneeseeeiesieestesesseesessessessessaensesseenes 2?

7.5 KVM MEMOTY MAPPING....ctieuieiieieieeiieiesiteiesteeeteeesseeaesseestessesseesesseessessesssensesseensesseansessesssensessennes ??

7.6 Tuning the FreeBSD VIM SYSIEIML.....cc.eruiiiieiiiriintiieieteiceiesie ettt sttt et ebe b s a st ebe v ??

8 SMPng Design DOCUMENLc...ccuiriiiiiiieieiieteterieetete ettt ettt ettt et ae st oo s b e ean s saeesnesaeennesnesanens ??
8.1 INETOAUCTION. ...ttt sttt et e b et st e e e bt e s bt e eat e e bt e sbtesaeesabeenstenbeesaseenseenbeenas 2?

8.2 Basic Tools and Locking Fundamentalsc.ccceiiiiiiiiiiiniiiieieceeee e 2?

8.3 General Architecture and DeSI@N...........ccoiiiiiiiiiiiiiiiiii e 2?

8.4 Specific LOCKING STrAtBZIES ..evuvervieiieriieiiieiteitesite ettt et sttt et e e st e sate e bt e saeesatesabeesaeesseesaseenseenseenes
8.5 ITMPIEMENTATION NNOLES. .. .ueiiieritiiiieiiertie ettt sttt et sb e st e et e bt e st e sate e beesstesatesnbeesseesseesaseeseenseenns
8.0 MISCEIIANEOUS TOPICS...euveeiieruteriiietientte sttt eett e sttt et e e sbt e st e e bt esbee s st e sabe e beesstesatesnbeensaenseesaseenseenseenns
GLOSSATY ...ttt ettt ettt ettt ettt e b e bt e s bt e et e e bt e bt e sab e eab e e bt e s abeeabeeab e e bt e eabeea b e e bt e sabeeabe e beenatesatean

I1. Device Drivers

9 Writing FreeBSD Device DITVETS......cc.couiiiiiiiiiiiieieieeeteeeeteete ettt s e s
.1 INETOAUCTION.vvieieeiiiee ettt eete e ettt e e ettt e e e eeeatreeeeeetbaeeeeeeasraeeeeeassaaeeeeastaseeeeanssaseeeeansrseeeeanreeens
9.2 Dynamic Kernel Linker Facility - KLD.........ccccccioiiiiiiiiiiiiiceeeeceeeeeeeeese e
9.3 AccesSING @ AEVICE ATIVETcueiiiiiiiiiiiiiiiieet ettt sttt s e
9.4 CRATACLET DIEVICES ...ttt e e e e e e e e et e e et e e eae e e eteeeeteeeenaeeeesreeeeneeeeneas
9.5 BIOCK DEVICES (ATE GONE)....eiiuvieiieeeieeiiieitiesttesiteesteesteesseesseeseesseessseesseeseesssessssenseesssesssessesssessssesssees
9.0 INEIWOIK DITIVETS. ..ottt ettt ettt ete e et e et e e et e e e ete e e eeaeeeeaeeeeteeeeaseseesseeeeareeeeseeeenneas
1O ISA AEVICE AIIVETS ..ottt e et e e et e e et e e eteeeeaeeeeaseeeeaseeeesseeeeaeseeesteseesseeeeseeesnseeeanes
LO.1 SYMOPSIS ettt ettt ettt ettt ettt ettt et e bt e st et e st e bt sh e et e s bees e et e e bt en b e bt eat e bt ehe et e b e en b et e eaeentesaeenean
10.2 BaSiC iNFOIMATION.cciuiiiiiieieiieeeiee ettt et e ettt ettt e et e e et e e eteeeeteeeeaeeeeaseeeesseeeeaseeentseeeseesenseas
10.3 DIEVICE_t POIIMLET ...ttt ettt sttt et sb ettt et e bt s bt et e s bees b et e eb e e st e nbeeat e besbeenbenbeestenteebeeneesbeeneen
10.4 Configuration file and the order of identifying and probing during auto-configuration....................
1.5 RESOUITES ...uvviieetieeeiieeeie e et e e ettt e e ettt e e etteeeetteeeeaaeeeeaeeeetseeesseeeaaeeessesaessaseeasseeassesensseeessseessesenssesenseas
10.6 BUS MEMOTY MAPPINEveevrentertiententeetenterttentesteettenteettetesteestestesbtestesbtestesteestentesbeestenbesssenteeseensesseeneen
TOT DA oottt e et e et e e e e tb e e e aa e e e tb e e eat e e etaeeateeeeabaeeeaaeeaabeeetbeeeetreeetreeerreeenres
1.8 XXX _ISA_PIODE ...cneieenieitieiteteeitete ettt ettt ettt et ettt b et st bt et e bt et e st e e bt e bt sbe e b e beeb b et e ebeentesbeeneen
TO.9 XXX _ISA_ALEACK «oeeiiiiiieeeeeee ettt et e e e e e e e e e e e e e aaesteeaeeeesessessssasasassaasaeeeeeesesessssnnans
TO.TO XXX_ISA_AETACK oottt et e e e e e ettt et e eeeeeeseessssasaaassassaeeeeeeessessssanns
L oo T T 101 7¢ (074 s KRS
L0 0o 4 s PSS
L1 PCI DEVICES ...veeeuirieeiiieeiiee ettt eeite e et eeeiteeeeateeestvaeastbeeeseseeessaaesssaeassseeaassaasssesaassaeassaeassasanssseenssaeesssaeassseesnsens
11.1 Probe and AttACH.......cccuiiiiiieceeeeee ettt e et e e et e e e tae e s abaeesabesessaeetbaeeeseeensaeeearaaans
T1.2 BUS RESOUICES......eeeiiiiieiiieciieeeiieeeite et e et e ettt e et e e estbeeesebeesabaeessbeeeessaeesssaeessseeansseeessaeesssesansseesnsens
12 Common Access Method SCST CONIOIIETS.........cciiiieriieiiieeieeete et e e et e eereeesraeesebeeesebeeesseeesaseesssseesanes
L2, 1 SYTOPSIS tuvteutteiietie sttt ettt et et e s bt et e et e s bt e st e e bt e bt e sabesab e e bt e s bt e eabeea bt e s bt e e abesa bt e bt e sheeeateebeenatesatean
12.2 GENETAl ATCRILECIUTE .. .cuviieieiieeeiieeeiieeeiee et eeesteeebeeetbeeeereessaeessseeessseeessseeesssesassesessasessseesnsseesnsnes
T2.3 POIING ...ttt ettt et et st st e e b e sa e et e st sat e a e b e eas et e ennesneeanen
12.4 ASYNCRIONOUS EVEIILSeiuiiiiiiiiiiiieiiie ettt sttt ettt sttt st e sbt e s bt e sate e beesbeesaee s
T2.5 TIEETTUPES ...ttt sttt et s e st e s bt e e st e st e aesaeesne b e eas et eeneennesneennen
12.6 EITOIS SUMIMATYc.eeiiiiiiiiiiieieieeeet ettt st sttt s e ne b e n e eneesnesaeennes
12.7 TIMEOUt HANAIINE ..c.vvieiiiiiiiiiieeieeeeet ettt ettt st e sbe e s b e st ebeesneesaee s
T3 TUSB DEVICES ...eeeeeiitiiieeeeeieee ettt e ettt e e e ettt e e e eetaee e e e eeabaaeeeeettaaeeeeeasaaseeeeasssseeeeassssaeseanssaseeeeassaseeeenssaneanans
13,1 INEEOAUCTION. ...ttt ettt e et e e eeat e e et e e eaeeeeaeeeeaeeeeaseeeeaseeeesseeeeseeeensneeennees
13.2 HOSt CONIIOIIETSeveeieeiiiieee ettt ettt e ettt e e e ettt e e e eettaeeeeeeaaaaeeeeeessaseeeeensaaeeeeaansasaeeeansreneaeans
13.3 USB Device INfOrMAtioNcccuoieeuiiieiiieeiiee ettt et e e e et e e aeeeeateeeeateeeeateeeeaeeeenneas
13.4 Device probe and attaChi.........coeeiuirieiieriieeet ettt sttt et eaaan
13.5 USB Drivers Protocol INfOrmMationcoouiiiiiiiiiiieeeiie et etee et et et et eeateeeeaae e eaneas
T4 IN@WDUS ...ttt ettt et e et e e ettt e e et e e e etteeeetteeeetaeeeeateeeteaeeasseeesseeenseseenseseessseeasseseesseeesseeesseeeseesenreas
14,1 DEVICE DIIVETS ..ottt ettt e et e et e e eae e e eta e e eateeeeateeeeaaeeeeaseseesseseesseeesseeesresenseas
14.2 OVEIVIEW OF INEWDUSvviiiiiiiieiiieeeiee ettt ettt ettt e e e et e e e teeeeateeeeateeeeateeeesseeeesseeesseeesresenseas
TA.3INEWDUS AP ...ttt ettt e et e e e ta e e eteeeeaaeeeeaaeeeeabeeeetbeeeesseeesseeesreeenreas
15 SOUNA SUDSYSEIM ..c.euiiniiiiieieitieiteet ettt ettt ettt et b et b e bt et sb et e sbees b e bt eb s e bt ebeeneesbeestenbesbeensenbeenee

29

29

29

29

??

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

29

I5.1 INEEOAUCHION.cutvveieeeetteie e ettt eete e eeere e e ee ettt e e e e aaeeeeeesaaaeeeeeesasseeeeenataseeesetaseeeeeestaseeseesreseeeannnes 2?

I5.2 LS.ttt bttt bbbt a bt h e bbbt h bbbttt ebe bt e ??

15.3 Probing, attaChing, ©LC.c.eeiiiriiiiriienieeieeieertte ettt ettt et b e st s e st e st e st e sabeesbaesseesateebeesaeesseean 2?

154 TIEEITACES ...ttt ettt b e sttt a e bt bt ettt et e st e bt e bt st st e b et eneebenaen ??

L0 PC CAI ...ttt ettt bbbt ettt be bbb st et ent bt e bt bt ettt et ebe b eben ??

16.1 AdING @ AEVICE ...cverviiiiiieieiceieetestest ettt ettt ettt et a e st ettt be bt st sae et eneeuesaea ??

II1. Appendices ??
BIbHOZIAPRY ..ottt e et 215

Vi

List of Tables

2 B\ L3175 1] S SO ORRRURRRRRRRRRRN 15
2-2. Shared EXCIUSIVE LLOCK LIStiiiiiiiriiiiiiiieiie ettt eetee e e ettt e e eetaeeeeeeeataeeeesenataesessessaseeesenstaseessensssesessnnnes 17

Vii

l. Kernel

Chapter 1 Bootstrapping and kernel
initialization
Contributed by Sergey Lyubka.

1.1 Synopsis

This chapter is an overview of the boot and system initialization process, starting from the BIOS (firmware) POST, to
the first user process creation. Since the initial steps of system startup are very architecture dependent, the IA-32
architecture is used as an example.

1.2 Overview

A computer running FreeBSD can boot by several methods, although the most common method, booting from a
harddisk where the OS is installed, will be discussed here. The boot process is divided into several steps:

- BIOS POST
* bootO stage
* boot2 stage
+ loader stage
+ kernel initialization

The boot 0 and boot 2 stages are also referred to as bootstrap stages 1 and 2 in boot(8) as the first steps in FreeBSD’s
3-stage bootstrapping procedure. Various information is printed on the screen at each stage, so you may visually
recognize them using the table that follows. Please note that the actual data may differ from machine to machine:

may vary BIOS (firmware) messages
Fl FreeBSD F2 BSD F5 Disk 2 boot0
>>FreeBSD/i386 BOOT boot 2a

Default: 1l:ad(1l,a)/boot/loader boot:

BTX loader 1.0 BTX version is 1.01 loader

BIOS drive A: is diskO

BIOS drive C: is diskl

BIOS 639kB/64512kB available memory

FreeBSD/1i386 bootstrap loader, Revision 0.8

Console internal video/keyboard

(jkh@bento.freebsd.org, Mon Nov 20 11:41:23 GMT 2000)

/kernel text=0x1234 data=0x2345 syms=[0x4+0x3456]

Hit [Enter] to boot immediately, or any other key for command prompt

Booting [kernel] in 9 seconds..._

Chapter 1 Bootstrapping and kernel initialization

Copyright (c) 1992-2002 The FreeBSD Projectkernel

Copyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994
The Regents of the University of California. All rights reserved.
FreeBSD 4.6-RC #0: Sat May 4 22:49:02 GMT 2002
devnull@kukas:/usr/obj/usr/src/sys/DEVNULL

Timecounter "i8254" frequency 1193182 Hz

Notes:
a. This prompt will appear if the user presses a key just after selecting an OS to boot at the boot 0 stage.

1.3 BIOS POST

When the PC powers on, the processor’s registers are set to some predefined values. One of the registers is the
instruction pointer register, and its value after a power on is well defined: it is a 32-bit value of Oxfffffff0. The
instruction pointer register points to code to be executed by the processor. One of the registers is the cr1 32-bit
control register, and its value just after the reboot is 0. One of the crl’s bits, the bit PE (Protected Enabled) indicates
whether the processor is running in protected or real mode. Since at boot time this bit is cleared, the processor boots
in real mode. Real mode means, among other things, that linear and physical addresses are identical.

The value of OxfffffffO is slightly less then 4Gb, so unless the machine has 4Gb physical memory, it cannot point to a
valid memory address. The computer’s hardware translates this address so that it points to a BIOS memory block.

BIOS stands for Basic Input Output System, and it is a chip on the motherboard that has a relatively small amount of
read-only memory (ROM). This memory contains various low-level routines that are specific to the hardware
supplied with the motherboard. So, the processor will first jump to the address Oxfffffff0, which really resides in the
BIOS’s memory. Usually this address contains a jump instruction to the BIOS’s POST routines.

POST stands for Power On Self Test. This is a set of routines including the memory check, system bus check and
other low-level stuff so that the CPU can initialize the computer properly. The important step on this stage is
determining the boot device. All modern BIOS’s allow the boot device to be set manually, so you can boot from a
floppy, CD-ROM, harddisk etc.

The very last thing in the POST is the INT 0x19 instruction. That instruction reads 512 bytes from the first sector of
boot device into the memory at address 0x7c00. The term first sector originates from harddrive architecture, where
the magnetic plate is divided to a number of cylindrical tracks. Tracks are numbered, and every track is divided by a
number (usually 64) sectors. Track number 0 is the outermost on the magnetic plate, and sector 1, the first sector
(tracks, or, cylinders, are numbered starting from 0, but sectors - starting from 1), has a special meaning. It is also
called Master Boot Record, or MBR. The remaining sectors on the first track are never used .

1.4 boot 0 stage

Take a look at the file /boot /boot0. This is a small 512-byte file, and it is exactly what FreeBSD’s installation
procedure wrote to your harddisk’s MBR if you chose the “bootmanager” option at installation time.

As mentioned previously, the INT 0x19 instruction loads an MBR, i.e. the boot 0 content, into the memory at
address 0x7¢c00. Taking a look at the file sys/boot/1386/boot0/boot0.S can give a guess at what is happening
there - this is the boot manager, which is an awesome piece of code written by Robert Nordier.

Chapter 1 Bootstrapping and kernel initialization

The MBR, or, boot 0, has a special structure starting from offset Ox1be, called the partition table. It has 4 records of
16 bytes each, called partition records, which represent how the harddisk(s) are partitioned, or, in FreeBSD’s
terminology, sliced. One byte of those 16 says whether a partition (slice) is bootable or not. Exactly one record must
have that flag set, otherwise boot 0’s code will refuse to proceed.

A partition record has the following fields:

« the 1-byte filesystem type

+ the 1-byte bootable flag

+ the 6 byte descriptor in CHS format
« the 8 byte descriptor in LBA format

A partition record descriptor has the information about where exactly the partition resides on the drive. Both
descriptors, LBA and CHS, describe the same information, but in different ways: LBA (Logical Block Addressing)
has the starting sector for the partition and the partition’s length, while CHS (Cylinder Head Sector) has coordinates
for the first and last sectors of the partition.

The boot manager scans the partition table and prints the menu on the screen so the user can select what disk and
what slice to boot. By pressing an appropriate key, boot 0 performs the following actions:

« modifies the bootable flag for the selected partition to make it bootable, and clears the previous
« saves itself to disk to remember what partition (slice) has been selected so to use it as the default on the next boot
+ loads the first sector of the selected partition (slice) into memory and jumps there

What kind of data should reside on the very first sector of a bootable partition (slice), in our case, a FreeBSD slice?
As you may have already guessed, it is boot 2.

1.5 boot2 stage

You might wonder, why boot 2 comes after boot 0, and not boot1. Actually, there is a 512-byte file called boot1 in
the directory /boot as well. It is used for booting from a floppy. When booting from a floppy, boot1 plays the same
role as boot0 for a harddisk: it locates boot 2 and runs it.

You may have realized that a file /boot /mbr exists as well. It is a simplified version of boot 0. The code in mbr
does not provide a menu for the user, it just blindly boots the partition marked active.

The code implementing boot 2 resides in sys/boot /1386 /boot2/, and the executable itself is in /boot. The files
boot0 and boot 2 that are in /boot are not used by the bootstrap, but by utilities such as bootOcfg. The actual
position for boot 0 is in the MBR. For boot 2 it is the beginning of a bootable FreeBSD slice. These locations are not
under the filesystem’s control, so they are invisible to commands like Is.

The main task for boot2 is to load the file /boot/loader, which is the third stage in the bootstrapping procedure.
The code in boot 2 cannot use any services like open () and read (), since the kernel is not yet loaded. It must scan
the harddisk, knowing about the filesystem structure, find the file /boot/loader, read it into memory using a BIOS
service, and then pass the execution to the loader’s entry point.

Besides that, boot 2 prompts for user input so the loader can be booted from different disk, unit, slice and partition.

The boot2 binary is created in special way:

Chapter 1 Bootstrapping and kernel initialization

sys/boot/1386/boot2/Makefile

boot2: boot2.1ldr boot2.bin ${BTX}/btx/btx

btxld -v -E ${ORG2} -f bin -b ${BTX}/btx/btx -1 boot2.ldr \
-0 boot2.1d -P 1 boot2.bin

This Makefile snippet shows that btxld(8) is used to link the binary. BTX, which stands for BooT eXtender, is a piece
of code that provides a protected mode environment for the program, called the client, that it is linked with. So
boot2 is a BTX client, i.e. it uses the service provided by BTX.

The btxld utility is the linker. It links two binaries together. The difference between btxld(8) and 1d(1) is that 1d
usually links object files into a shared object or executable, while btxld links an object file with the BTX, producing
the binary file suitable to be put on the beginning of the partition for the system boot.

boot 0 passes the execution to BTX’s entry point. BTX then switches the processor to protected mode, and prepares
a simple environment before calling the client. This includes:

- virtual v86 mode. That means, the BTX is a v86 monitor. Real mode instructions like pushf, popf, cli, sti, if called
by the client, will work.

« Interrupt Descriptor Table (IDT) is set up so all hardware interrupts are routed to the default BIOS’s handlers, and
interrupt 0x30 is set up to be the syscall gate.

» Two system calls: exec and exit, are defined:

sys/boot/1386/btx/1lib/btxsys.s:
.set INT_SYS,0x30 # Interrupt number

#

System call: exit

#

__exit: xorl %eax, %eax # BTX system

int $INT_SYS # call 0x0

#

System call: exec

#

__exec: movl $0x1,%eax # BTX system

int $INT_SYS # call Ox1

BTX creates a Global Descriptor Table (GDT):

sys/boot/1386/btx/btx/btx.s:

gdt: .word 0x0,0x0,0x0,0x0 # Null entry
.word Oxffff,0x0,0x9a00,0xcf # SEL_SCODE
.word Oxffff,0x0,0x9200,0xcf # SEL_SDATA
.word Oxffff,0x0,0x%9a00,0x0 # SEL_RCODE
.word Oxffff,0x0,0x9200,0x0 # SEL_RDATA
.word Oxffff,MEM_USR, 0xfa00, Oxcf# SEL_UCODE
.word Oxffff,MEM_USR,0xf200, Oxcf# SEL_UDATA
.word _TSSLM,MEM_TSS,0x8900,0x0 # SEL_TSS

The client’s code and data start from address MEM_USR (0xa000), and a selector (SEL_UCODE) points to the
client’s code segment. The SEL._UCODE descriptor has Descriptor Privilege Level (DPL) 3, which is the lowest
privilege level. But the INT 0x30 instruction handler resides in a segment pointed to by the SEL_SCODE
(supervisor code) selector, as shown from the code that creates an IDT:

mov $SEL_SCODE, $dh # Segment selector

Chapter 1 Bootstrapping and kernel initialization

init.2: shr %bx # Handle this int?
jnc init.3 # No
mov %ax, (%di) # Set handler offset
mov %$dh, 0x2(%di) # and selector
mov %dl, 0x5(%di) # Set P:DPL:type
add $0x4, %ax # Next handler

So, when the client calls __exec (), the code will be executed with the highest privileges. This allows the kernel to
change the protected mode data structures, such as page tables, GDT, IDT, etc later, if needed.

boot2 defines an important structure, st ruct bootinfo. This structure is initialized by boot2 and passed to the
loader, and then further to the kernel. Some nodes of this structures are set by boot2, the rest by the loader. This
structure, among other information, contains the kernel filename, BIOS harddisk geometry, BIOS drive number for
boot device, physical memory available, envp pointer etc. The definition for it is:

/usr/include/machine/bootinfo.h

struct bootinfo {

u_int32_t bi_version;

u_int32_t bi_kernelname; /* represents a char x */

u_int32_t bi_nfs_diskless; /% struct nfs_diskless x x/
/+ End of fields that are always present. */

#define bi_endcommon bi_n_bios_used

u_int32_t bi_n_bios_used;

u_int32_t bi_bios_geom[N_BIOS_GEOM];

u_int32_t bi_size;

u_int8_t bi_memsizes_valid;

u_int8_t bi_bios_dev; /x bootdev BIOS unit number =/

u_int8_t bi_padl2];

u_int32_t bi_basemem;

u_int32_t bi_extmem;

u_int32_t bi_symtab; /* struct symtab * x/

u_int32_t bi_esymtab; /* struct symtab * */

/* Items below only from advanced bootloader =/
u_int32_t bi_kernend; /+ end of kernel space x/
u_int32_t bi_envp; /* environment =*/
u_int32_t bi_modulep; /+ preloaded modules x*/

}i

boot?2 enters into an infinite loop waiting for user input, then calls 1oad () . If the user does not press anything, the
loop breaks by a timeout, so 1oad () will load the default file (/boot /loader). Functions ino_t lookup (char
xfilename) and int xfsread(ino_t inode, void *buf, size_t nbyte) are used to read the content of a
file into memory. /boot/loader is an ELF binary, but where the ELF header is prepended with a.out’s st ruct
exec structure. load () scans the loader’s ELF header, loading the content of /boot/loader into memory, and
passing the execution to the loader’s entry:

sys/boot/1386/boot2/boot2.c:
__exec((caddr_t)addr, RB_BOOTINFO | (opts & RBX_MASK),
MAKEBOOTDEV (dev_majl[dsk.type], 0, dsk.slice, dsk.unit, dsk.part),
0, 0, 0, VTOP (&bootinfo));

Chapter 1 Bootstrapping and kernel initialization

1.6 loader stage

loader is a BTX client as well. I will not describe it here in detail, there is a comprehensive manpage written by
Mike Smith, loader(8). The underlying mechanisms and BTX were discussed above.

The main task for the loader is to boot the kernel. When the kernel is loaded into memory, it is being called by the
loader:

sys/boot/common/boot.c:
/* Call the exec handler from the loader matching the kernel «/
module_formats [km—->m_loader]->1_exec (km);

1.7 Kernel initialization

Let us take a look at the command that links the kernel. This will help us identify the exact location where the loader
passes execution to the kernel. This location is the kernel’s actual entry point.

sys/conf/Makefile.i1386:

1d -elf -Bdynamic -T /usr/src/sys/conf/ldscript.i386 -export-dynamic \
—-dynamic-linker /red/herring -o kernel -X locore.o \

<lots of kernel .o files>

A few interesting things can be seen in this line. First, the kernel is an ELF dynamically linked binary, but the
dynamic linker for kernel is /red/herring, which is definitely a bogus file. Second, taking a look at the file
sys/conf/ldscript.i386 gives an idea about what Id options are used when compiling a kernel. Reading
through the first few lines, the string

sys/conf/ldscript.i386:
ENTRY (btext)

says that a kernel’s entry point is the symbol ‘btext’. This symbol is defined in 1ocore.s:

sys/1386/1386/1locore.s:
.text
/*************************‘k‘k***********‘k*******************************
*

* This is where the bootblocks start us, set the ball rolling...

*
*/
NON_GPROF_ENTRY (btext)

First what is done is the register EFLAGS is set to a predefined value of 0x00000002, and then all the segment
registers are initialized:

sys/1386/1386/locore.s

/+ Don’t trust what the BIOS gives for eflags. =/
pushl $PSI_KERNEL

popfl

/ *
x= Don’t trust what the BIOS gives for %fs and %gs. Trust the bootstrap
* to set %cs, %ds, %es and %ss.

Chapter 1 Bootstrapping and kernel initialization

*/
mov %ds, %ax
mov %ax, %fs

mov %ax, %gs

btext calls the routines recover_bootinfo (), identify_cpu (), create_pagetables (), which are also
defined in 1ocore. s. Here is a description of what they do:

recover_bootinfo This routine parses the parameters to the kernel passed
from the bootstrap. The kernel may have been booted in
3 ways: by the loader, described above, by the old disk
boot blocks, and by the old diskless boot procedure. This
function determines the booting method, and stores the
struct bootinfo structure into the kernel memory.

identify_cpu This functions tries to find out what CPU it is running
on, storing the value found in a variable _cpu.

create_pagetables This function allocates and fills out a Page Table
Directory at the top of the kernel memory area.

The next steps are enabling VME, if the CPU supports it:

testl $CPUID_VME, R(_cpu_feature)
jz 1f

movl %créd, %eax

orl S$CR4_VME, %eax

movl %eax, %cr4d

Then, enabling paging:

/+* Now enable paging =*/
movl R(_Id1lePTD), %eax

movl %$eax, %$cr3 /* load ptd addr into mmu =*/
movl %cr0, $eax /* get control word =*/

orl $CRO_PE|CRO_PG, %eax /* enable paging =/
movl %eax,%cr0 /+ and let’s page NOW! */

The next three lines of code are because the paging was set, so the jump is needed to continue the execution in
virtualized address space:

pushl $begin /+ jump to high virtualized address =/
ret

/+ now running relocated at KERNBASE where the system is linked to run =*/
begin:

The function init386 () is called, with a pointer to the first free physical page, after that mi_startup (). init386
is an architecture dependent initialization function, and mi_startup () is an architecture independent one (the *mi_’
prefix stands for Machine Independent). The kernel never returns from mi_startup (), and by calling it, the kernel
finishes booting:

sys/1386/1386/locore.s:

Chapter 1 Bootstrapping and kernel initialization

movl physfree, %esi

pushl %esi /* value of first for init386 (first) =/
call _init386 /* wire 386 chip for unix operation =/
call _mi_startup /* autoconfiguration, mountroot etc x/

hlt /* never returns to here x/

1.7.1 init386()

init386 () is defined in sys/1386/1386/machdep.c and performs low-level initialization, specific to the 1386
chip. The switch to protected mode was performed by the loader. The loader has created the very first task, in which
the kernel continues to operate. Before running straight away to the code, I will enumerate the tasks the processor
must complete to initialize protected mode execution:

« Initialize the kernel tunable parameters, passed from the bootstrapping program.
« Prepare the GDT.

« Prepare the IDT.

« Initialize the system console.

« Initialize the DDB, if it is compiled into kernel.

+ Initialize the TSS.

+ Prepare the LDT.

« Set up procQ’s pcb.

What init386 () first does is initialize the tunable parameters passed from bootstrap. This is done by setting the
environment pointer (envp) and calling init_paraml (). The envp pointer has been passed from loader in the
bootinfo structure:

sys/1386/1386/machdep.c:
kern_envp = (caddr_t)bootinfo.bi_envp + KERNBASE;

/+ Init basic tunables, hz etc */
init_paraml () ;

init_paraml () is defined in sys/kern/subr_param.c. That file has a number of sysctls, and two functions,
init_paraml () and init_param2 (), that are called from init386 ():

sys/kern/subr_param.c
hz = HZ;
TUNABLE_INT_FETCH ("kern.hz", &hz);

TUNABLE_<typename>_FETCH is used to fetch the value from the environment:

/usr/src/sys/sys/kernel.h
#define TUNABLE_INT_FETCH (path, wvar) getenv_int ((path), (var))

Sysctl kern.hz is the system clock tick. Along with this, the following sysctls are set by init_paraml ():
kern.maxswzone, kern.maxbcache, kern.maxtsiz, kern.dfldsiz, kern.maxdsiz,

kern.dflssiz, kern.maxssiz, kern.sgrowsiz.

Chapter 1 Bootstrapping and kernel initialization

Then init386 () prepares the Global Descriptors Table (GDT). Every task on an x86 is running in its own virtual
address space, and this space is addressed by a segment:offset pair. Say, for instance, the current instruction to be
executed by the processor lies at CS:EIP, then the linear virtual address for that instruction would be “the virtual
address of code segment CS” + EIP. For convenience, segments begin at virtual address 0 and end at a 4Gb boundary.
Therefore, the instruction’s linear virtual address for this example would just be the value of EIP. Segment registers
such as CS, DS etc are the selectors, i.e. indexes, into GDT (to be more precise, an index is not a selector itself, but
the INDEX field of a selector). FreeBSD’s GDT holds descriptors for 15 selectors per CPU:

sys/1386/1386/machdep.c:
union descriptor gdt [NGDT MAXCPU]; /% global descriptor table =/

sys/1386/include/segments.h:
/ *
* Entries in the Global Descriptor Table (GDT)
*/
#define GNULL_SEL
#define GCODE_SEL
#define GDATA_SEL
#define GPRIV_SEL /+* SMP Per—-Processor Private Data =/
#define GPROCO_SEL 4 /+ Task state process slot zero and up */
#define GLDT_SEL 5 /+ LDT - eventually one per process =/
#define GUSERLDT_SEL 6 /% User LDT x/
#define GTIGATE_SEL 7 /* Process task switch gate */
#define GBIOSLOWMEM_SEL 8 /% BIOS low memory access (must be entry 8) =/
#define GPANIC_SEL 9 /* Task state to consider panic from =*/
#define GBIOSCODE32_SEL 10 /% BIOS interface (32bit Code) «/
#define GBIOSCODE16_SEL 11 /+ BIOS interface (l6ébit Code) x/
#define GBIOSDATA_SEL 12 /% BIOS interface (Data) =/
#define GBIOSUTIL_SEL 13 /x BIOS interface (Utility) =*/
#define GBIOSARGS_SEL 14 /* BIOS interface (Arguments) =/

/* Null Descriptor x/
/* Kernel Code Descriptor =/
/+ Kernel Data Descriptor =/

w N P O

Note that those #defines are not selectors themselves, but just a field INDEX of a selector, so they are exactly the
indices of the GDT. for example, an actual selector for the kernel code (GCODE_SEL) has the value 0x08.

The next step is to initialize the Interrupt Descriptor Table (IDT). This table is to be referenced by the processor
when a software or hardware interrupt occurs. For example, to make a system call, user application issues the INT
0x80 instruction. This is a software interrupt, so the processor’s hardware looks up a record with index 0x80 in the
IDT. This record points to the routine that handles this interrupt, in this particular case, this will be the kernel’s
syscall gate. The IDT may have a maximum of 256 (0x100) records. The kernel allocates NIDT records for the IDT,
where NIDT is the maximum (256):

sys/1386/1386/machdep.c:
static struct gate_descriptor idtO[NIDT];
struct gate_descriptor xidt = &idt0[0]; /x interrupt descriptor table x/

For each interrupt, an appropriate handler is set. The syscall gate for INT 0x80 is set as well:

sys/1386/1386/machdep.c:
setidt (0x80, &IDTVEC (int0x80_syscall),
SDT_SYS386TGT, SEL_UPL, GSEL(GCODE_SEL, SEL_KPL));

So when a userland application issues the INT 0x80 instruction, control will transfer to the function
_Xint0x80_syscall, which is in the kernel code segment and will be executed with supervisor privileges.

Chapter 1 Bootstrapping and kernel initialization

Console and DDB are then initialized:

sys/1386/1386/machdep.c:
cninit () ;
/* skipped =*/
#ifdef DDB
kdb_init ();
if (boothowto & RB_KDB)
Debugger ("Boot flags requested debugger");
#endif

The Task State Segment is another x86 protected mode structure, the TSS is used by the hardware to store task
information when a task switch occurs.

The Local Descriptors Table is used to reference userland code and data. Several selectors are defined to point to the
LDT, they are the system call gates and the user code and data selectors:

/usr/include/machine/segments.h

#define LSYS5CALLS_SEL 0 /* forced by intel BCS =/
#define LSYS5SIGR_SEL 1

#define L43BSDCALLS_SEL 2 /* notyet »*/

#define LUCODE_SEL 3

#define LSOL26CALLS_SEL 4 /% Solaris >= 2.6 system call gate x/
#define LUDATA_SEL 5

/+ separate stack, es,fs,gs sels ? */

/+ #define LPOSIXCALLS_SEL 5%/ /% notyet =/

#define LBSDICALLS_SEL 16 /% BSDI system call gate =/
#define NLDT (LBSDICALLS_SEL + 1)

Next, proc0’s Process Control Block (st ruct pcb) structure is initialized. proc0 is a st ruct proc structure that
describes a kernel process. It is always present while the kernel is running, therefore it is declared as global:

sys/kern/kern_init.c:
struct proc procO;

The structure struct pcb is a part of a proc structure. It is defined in /usr/include/machine/pcb.h and has a
process’s information specific to the 1386 architecture, such as registers values.

1.7.2 mi_startup()

This function performs a bubble sort of all the system initialization objects and then calls the entry of each object one
by one:

sys/kern/init_main.c:

for (sipp = sysinit; =*sipp; sipp++) {
/x ... skipped ... x/
/+ Call function x/

(x ((*sipp)->func)) ((#sipp)->udata);
/% ... skipped ... x/

10

Chapter 1 Bootstrapping and kernel initialization

Although the sysinit framework is described in the Developers’ Handbook, I will discuss the internals of it.

Every system initialization object (sysinit object) is created by calling a SYSINIT() macro. Let us take as example an
announce sysinit object. This object prints the copyright message:

sys/kern/init_main.c:

static void

print_caddr_t (void xdata __unused)

{

printf ("$s", (char x)data);

}

SYSINIT (announce, SI_SUB_COPYRIGHT, SI_ORDER_FIRST, print_caddr_t, copyright)

The subsystem ID for this object is SI_SUB_COPYRIGHT (0x0800001), which comes right after the
SI_SUB_CONSOLE (0x0800000). So, the copyright message will be printed out first, just after the console
initialization.

Let us take a look at what exactly the macro SYSINIT () does. It expands to a C_SYSINIT () macro. The

C_SYSINIT () macro then expands to a static struct sysinit structure declaration with another DATA_SET
macro call:

/usr/include/sys/kernel.h:
#define C_SYSINIT (uniquifier, subsystem, order, func, ident) \
static struct sysinit uniquifier ## _sys_init = { \ subsystem, \
order, \ func, \ ident \ }; \ DATA_SET (sysinit_set,uniquifier ##
_sys_init);

#define SYSINIT (uniquifier, subsystem, order, func, ident) \
C_SYSINIT (uniquifier, subsystem, order, \
(sysinit_cfunc_t) (sysinit_nfunc_t) func, (void x)ident)

The DATA_SET () macro expands to a MAKE_SET (), and that macro is the point where the all sysinit magic is hidden:

/usr/include/linker_set.h

#define MAKE_SET (set, sym) \

static void const * const __set_##set##_sym_##sym = &sym; \
__asm(".section .set." #set ",\"aw\""); \

__asm(".long " #sym); \

__asm(".previous")

#endif

#define TEXT_SET (set, sym) MAKE_SET (set, sym)
#define DATA_SET (set, sym) MAKE_SET (set, sym)

In our case, the following declaration will occur:

static struct sysinit announce_sys_init = {
SI_SUB_COPYRIGHT,

SI_ORDER_FIRST,

(sysinit_cfunc_t) (sysinit_nfunc_t) print_caddr_t,
(void *) copyright
}i

static void const xconst set_sysinit_set_sym_announce_sys_init =
&announce_sys_init;

11

Chapter 1 Bootstrapping and kernel initialization

asm(".section .set.sysinit_set" ",\"aw\"");
asm(".long " "announce_sys_init");
asm(".previous");

The first __asm instruction will create an ELF section within the kernel’s executable. This will happen at kernel link
time. The section will have the name .set .sysinit_set. The content of this section is one 32-bit value, the
address of announce_sys_init structure, and that is what the second __asm is. The third __asm instruction marks the
end of a section. If a directive with the same section name occurred before, the content, i.e. the 32-bit value, will be
appended to the existing section, so forming an array of 32-bit pointers.

Running objdump on a kernel binary, you may notice the presence of such small sections:

% objdump -h /kernel
7 .set.cons_set 00000014 c03164c0 <c03164c0 002154c0 2%%2
CONTENTS, ALLOC, LOAD, DATA
8 .set.kbddriver_set 00000010 ¢c03164d4 <c03164d4 002154d4 2%x2
CONTENTS, ALLOC, LOAD, DATA
9 .set.scrndr_set 00000024 c03164ed4 c03164ed 002154ed4 2x%*2
CONTENTS, ALLOC, LOAD, DATA
10 .set.scterm_set 0000000c c0316508 <c0316508 00215508 2%x2
CONTENTS, ALLOC, LOAD, DATA
11 .set.sysctl_set 0000097c c0316514 c0316514 00215514 2%x%2
CONTENTS, ALLOC, LOAD, DATA
12 .set.sysinit_set 00000664 c0316e90 c0316e90 00215e90 2x%2
CONTENTS, ALLOC, LOAD, DATA

This screen dump shows that the size of .set.sysinit_set section is 0x664 bytes, so 0x664/sizeof (void «) sysinit
objects are compiled into the kernel. The other sections such as . set .sysctl_set represent other linker sets.

By defining a variable of type struct linker_set the content of .set.sysinit_set section will be “collected”
into that variable:

sys/kern/init_main.c:
extern struct linker_set sysinit_set; /x XXX */

The struct linker_set is defined as follows:

/usr/include/linker_set.h:
struct linker_set {
int 1ls_length;
void x1ls_items[1]; /+ really 1ls_length of them, trailing NULL =/

}i

The first node will be equal to the number of a sysinit objects, and the second node will be a NULL-terminated array
of pointers to them.

Returning to the mi_startup () discussion, it is must be clear now, how the sysinit objects are being organized. The

mi_startup () function sorts them and calls each. The very last object is the system scheduler:

/usr/include/sys/kernel.h:

enum sysinit_sub_id {

SI_SUB_DUMMY = 0x0000000, /+* not executed; for linkerx*/
SI_SUB_DONE = 0x0000001, /x processedx/
SI_SUB_CONSOLE = 0x0800000, /% consolex/

12

Chapter 1 Bootstrapping and kernel initialization
SI_SUB_COPYRIGHT = 0x0800001, /% first use of consolex/

SI_SUB_RUN_SCHEDULER = Oxfffffff /% scheduler: no returnx/
bi

The system scheduler sysinit object is defined in the file sys/vm/vm_glue. c, and the entry point for that object is
scheduler (). That function is actually an infinite loop, and it represents a process with PID 0, the swapper process.
The procO structure, mentioned before, is used to describe it.

The first user process, called init, is created by the sysinit object init:

sys/kern/init_main.c:

static void

create_init (const void *xudata __ unused)
{

int error;

int s;

s = splhigh();
error = forkl (&procO, REFEFDG | RFPROC, &initproc);
if (error)
panic ("cannot fork init: %d\n", error);
initproc->p_flag |= P_INMEM | P_SYSTEM;
cpu_set_fork_handler (initproc, start_init, NULL);
remrunqueue (initproc) ;
splx(s);
}
SYSINIT (init, SI_SUB_CREATE_INIT, SI_ORDER_FIRST, create_init, NULL)

The create_init () allocates a new process by calling fork1 (), but does not mark it runnable. When this new
process is scheduled for execution by the scheduler, the start_init () will be called. That function is defined in
init_main.c. Ittries to load and exec the init binary, probing /sbin/init first, then /sbin/oinit,
/sbin/init.bak, and finally /stand/sysinstall:

sys/kern/init_main.c:
static char init_path[MAXPATHLEN] =
#ifdef INIT_PATH
__ XSTRING (INIT_PATH);
#else
"/sbin/init:/sbin/oinit:/sbin/init.bak:/stand/sysinstall";
#endif

Notes

1. Some utilities such as disklabel(8) may store the information in this area, mostly in the second sector.

13

Chapter 2 Locking Notes

This chapter is maintained by the FreeBSD SMP Next Generation Project. Please direct any comments or suggestions
to its FreeBSD symmetric multiprocessing mailing list (http.//lists. FreeBSD.org/mailman/listinfo/freebsd-smp).

This document outlines the locking used in the FreeBSD kernel to permit effective multi-processing within the
kernel. Locking can be achieved via several means. Data structures can be protected by mutexes or lockmgr(9) locks.
A few variables are protected simply by always using atomic operations to access them.

2.1 Mutexes

A mutex is simply a lock used to guarantee mutual exclusion. Specifically, a mutex may only be owned by one entity
at a time. If another entity wishes to obtain a mutex that is already owned, it must wait until the mutex is released. In
the FreeBSD kernel, mutexes are owned by processes.

Mutexes may be recursively acquired, but they are intended to be held for a short period of time. Specifically, one
may not sleep while holding a mutex. If you need to hold a lock across a sleep, use a lockmgr(9) lock.

Each mutex has several properties of interest:

Variable Name

The name of the struct mtx variable in the kernel source.

Logical Name
The name of the mutex assigned to it by mtx_init. This name is displayed in KTR trace messages and witness
errors and warnings and is used to distinguish mutexes in the witness code.

Type

The type of the mutex in terms of the MTX_ » flags. The meaning for each flag is related to its meaning as
documented in mutex(9).

MTX_DEF
A sleep mutex

MTX_SPIN

A spin mutex

MTX_RECURSE

This mutex is allowed to recurse.

Protectees

A list of data structures or data structure members that this entry protects. For data structure members, the name
will be in the form of structure name.member name.

14

Dependent Functions

Functions that can only be called if this mutex is held.

Table 2-1. Mutex List

Chapter 2 Locking Notes

Variable Name

Logical Name

Type

Protectees

Dependent
Functions

15

Chapter 2 Locking Notes

Variable Name Logical Name Type Protectees Dependent
Functions
sched_lock “sched lock™ MTX_SPIN | _gmonparam, setrunqueue,
MTX_RECURSE cnt.v_swtch, remrunqueue,

cp_time,
curpriority
mtxX.mtx _blocked,
mtx.mtx_contested,
proc.p_procqg,
proc.p_slpq,
proc.p_sflag,
procC.p_stat,
proc.p_estcpu,
proc.p_cpticks
proc.p_pctcpu,
proc.p_wchan,
proc.p_wmesg,
proc.p_swtime,
proc.p_slptime,
proc.p_runtime,
proc.p_uu,
proc.p_su,
proc.p_iu,
proc.p_uticks,
proc.p_sticks,
proc.p_iticks,
proc.p_oncpu,
proc.p_lastcpu,
proc.p_rgindex,
proc.p_heldmtx,
proc.p_blocked,
procC.p_mtxname,
proc.p_contested,
proc.p_priority,
proc.p_usrpri,
proc.p_nativepri,
proc.p_nice,
proc.p_rtprio,
pscnt, slpque,
itqueuebits,
itqgqueues,
rtqueuebits,
rtqueues,
queuebits,
queues,
idqueuebits,
idqueues,
switchtime,

switchticks

mi_switch,
chooseproc,
schedclock,
resetpriority,
updatepri,
maybe_resched,
cpu_switch,
cpu_throw,
need_resched,
resched_wanted,
clear_resched,
aston, astoff,
astpending,
calcru,

proc_compare

16

Chapter 2 Locking Notes

Variable Name Logical Name Type Protectees Dependent

Functions
vm86pcb_lock “vm86pcb lock” MTX_DEF vm86pchb vm86_bioscall
Giant “Giant” MTX_DEF | nearly everything lots

MTX_RECURSE

callout_lock

“callout lock™

MTX_SPIN |
MTX_RECURSE

callfree,
callwheel,
nextsoftcheck,
proc.p_itcallout,
proc.p_slpcallout,
softticks, ticks

2.2 Shared Exclusive Locks

These locks provide basic reader-writer type functionality and may be held by a sleeping process. Currently they are

backed by lockmgr(9).

Table 2-2. Shared Exclusive Lock List

Variable Name

Protectees

allproc_lock

allproc zombproc pidhashtbl proc.p_list
proc.p_hash nextpid

proctree_lock

proc.p_children proc.p_sibling

2.3 Atomically Protected Variables

An atomically protected variable is a special variable that is not protected by an explicit lock. Instead, all data
accesses to the variables use special atomic operations as described in atomic(9). Very few variables are treated this
way, although other synchronization primitives such as mutexes are implemented with atomically protected variables.

e mtX.mtx_ lock

17

Chapter 3 Kernel Objects

Kernel Objects, or Kobj provides an object-oriented C programming system for the kernel. As such the data being

operated on carries the description of how to operate on it. This allows operations to be added and removed from an

interface at run time and without breaking binary compatibility.

3.1 Terminology

Object

A set of data - data structure - data allocation.

Method

An operation - function.

Class

One or more methods.

Interface

A standard set of one or more methods.

3.2 Kobj Operation

Kobj works by generating descriptions of methods. Each description holds a unique id as well as a default function.

The description’s address is used to uniquely identify the method within a class’ method table.

A class is built by creating a method table associating one or more functions with method descriptions. Before use
the class is compiled. The compilation allocates a cache and associates it with the class. A unique id is assigned to
each method description within the method table of the class if not already done so by another referencing class

compilation. For every method to be used a function is generated by script to qualify arguments and automatically
reference the method description for a lookup. The generated function looks up the method by using the unique id

associated with the method description as a hash into the cache associated with the object’s class. If the method is not

cached the generated function proceeds to use the class’ table to find the method. If the method is found then the
associated function within the class is used; otherwise, the default function associated with the method description
used.

These indirections can be visualized as the following:

object->cache<->class

is

18

Chapter 3 Kernel Objects

3.3 Using Kobj

3.3.1 Structures

struct kobj_method

3.3.2 Functions

void kobj_class_compile (kobj_class_t cls);

void kobj_class_compile_static(kobj_class_t cls, kobj_ops_t ops);

void kobj_class_free (kobj_class_t cls);

kobj_t kobj_create(kobj_class_t cls, struct malloc_type *mtype, int mflags);
void kobj_init (kobj_t obj, kobj_class_t cls);

void kobj_delete (kobj_t obj, struct malloc_type =xmtype);

3.3.3 Macros

KOBJ_CLASS_FIELDS

KOBJ_FIELDS

DEFINE_CLASS (name, methods, size)
KOBJMETHOD (NAME, FUNC)

3.3.4 Headers

<sys/param.h>
<sys/kobj.h>

3.3.5 Creating an interface template

The first step in using Kobj is to create an Interface. Creating the interface involves creating a template that the script
src/sys/kern/makeobjops.pl can use to generate the header and code for the method declarations and method
lookup functions.

Within this template the following keywords are used: #include, INTERFACE, CODE, METHOD, STATICMETHOD, and
DEFAULT.

The #include statement and what follows it is copied verbatim to the head of the generated code file.

For example:
#include <sys/foo.h>

The INTERFACE keyword is used to define the interface name. This name is concatenated with each method name as
[interface name]_[method name]. Its syntax is INTERFACE [interface name];.

For example:

19

Chapter 3 Kernel Objects

INTERFACE foo;

The coDE keyword copies its arguments verbatim into the code file. Its syntax is CODE { [whatever] };

For example:

CODE {
struct foo » foo_alloc_null (struct bar x)

{
return NULL;

}
}i

The METHOD keyword describes a method. Its syntax is METHOD [return type] [method name] { [object

[, arguments]] };

For example:

METHOD int bar {
struct object x;
struct foo x;
struct bar;

}i

The DEFAULT keyword may follow the METHOD keyword. It extends the METHOD key word to include the default
function for method. The extended syntax is METHOD [return type] [method name] { [object; [other
arguments]] }DEFAULT [default function];

For example:

METHOD int bar {
struct object x;
struct foo x;
int bar;

} DEFAULT foo_hack;

The sTATICMETHOD keyword is used like the METHOD keyword except the kobj data is not at the head of the object
structure so casting to kobj_t would be incorrect. Instead STATICMETHOD relies on the Kobj data being referenced as
“ops’. This is also useful for calling methods directly out of a class’s method table.

Other complete examples:

src/sys/kern/bus_if.m
src/sys/kern/device_if.m

3.3.6 Creating a Class

The second step in using Kobj is to create a class. A class consists of a name, a table of methods, and the size of
objects if Kobj’s object handling facilities are used. To create the class use the macro DEFINE_CLASS () . To create
the method table create an array of kobj_method_t terminated by a NULL entry. Each non-NULL entry may be
created using the macro KOBJMETHOD () .

For example:

20

Chapter 3 Kernel Objects

DEFINE_CLASS (fooclass, foomethods, sizeof (struct foodata));

kobj_method_t foomethods[] = {
KOBJMETHOD (bar_doo, foo_doo),
KOBJMETHOD (bar_foo, foo_foo),
{ NULL, NULL}

}i

The class must be “compiled”. Depending on the state of the system at the time that the class is to be initialized a
statically allocated cache, “ops table” have to be used. This can be accomplished by declaring a struct kobj_ops and
using kobj_class_compile_static (); otherwise, kobj_class_compile () should be used.

3.3.7 Creating an Object

The third step in using Kobj involves how to define the object. Kobj object creation routines assume that Kobj data is
at the head of an object. If this in not appropriate you will have to allocate the object yourself and then use
kobij_init () on the Kobj portion of it; otherwise, you may use kobj_create () to allocate and initialize the Kobj
portion of the object automatically. kobj_init () may also be used to change the class that an object uses.

To integrate Kobj into the object you should use the macro KOBJ_FIELDS.

For example

struct foo_data {
KOBJ_FIELDS;
foo_foo;
foo_bar;

i

3.3.8 Calling Methods

The last step in using Kobj is to simply use the generated functions to use the desired method within the object’s
class. This is as simple as using the interface name and the method name with a few modifications. The interface
name should be concatenated with the method name using a ’_’ between them, all in upper case.

For example, if the interface name was foo and the method was bar then the call would be:

[return value =] FOO_BAR (object [, other parameters]);

3.3.9 Cleaning Up

When an object allocated through kob3j_create () is no longer needed kobj_delete () may be called on it, and
when a class is no longer being used kobj_class_free () may be called on it.

21

Chapter 4 The Jail Subsystem

On most UNIX® systems, root has omnipotent power. This promotes insecurity. If an attacker gained root on a
system, he would have every function at his fingertips. In FreeBSD there are sysctls which dilute the power of root,
in order to minimize the damage caused by an attacker. Specifically, one of these functions is called secure
levels. Similarly, another function which is present from FreeBSD 4.0 and onward, is a utility called jail(8). Jail
chroots an environment and sets certain restrictions on processes which are forked within the jail. For example, a
jailed process cannot affect processes outside the jail, utilize certain system calls, or inflict any damage on the host
environment.

Jail is becoming the new security model. People are running potentially vulnerable servers such as Apache, BIND,
and sendmail within jails, so that if an attacker gains root within the jail, it is only an annoyance, and not a
devastation. This article mainly focuses on the internals (source code) of jail. If you are looking for a how-to on
setting up a jail, I suggest you look at my other article in Sys Admin Magazine, May 2001, entitled "Securing
FreeBSD using Jail."

4.1 Architecture

Jail consists of two realms: the userland program, jail(8), and the code implemented within the kernel: the jail(2)
system call and associated restrictions. I will be discussing the userland program and then how jail is implemented
within the kernel.

4.1.1 Userland Code

The source for the userland jail is located in /usr/src/usr.sbin/jail, consisting of one file, jail.c. The
program takes these arguments: the path of the jail, hostname, IP address, and the command to be executed.

4.1.1.1 Data Structures

In jail.c, the first thing I would note is the declaration of an important structure st ruct jail 3; which was
included from /usr/include/sys/jail.h

The definition of the jail structure is:
/usr/include/sys/jail.h:

struct jail {

u_int32_t version;
char *path;
char *hostname;
u_int32_t ip_number;

}i

As you can see, there is an entry for each of the arguments passed to the jail(8) program, and indeed, they are set
during its execution.

/usr/src/usr.sbin/jail/jail.c
char path[PATH_MAX];

if (realpath(argv[0], path) == NULL)

22

Chapter 4 The Jail Subsystem

err (1, "realpath: %s", argv[0]);
if (chdir(path) != 0)

err (1, "chdir: %s", path);
memset (&3, 0, sizeof(3j));
j.version = 0;
j.path = path;
j.hostname = argv[1l];

4.1.1.2 Networking
One of the arguments passed to the jail(8) program is an IP address with which the jail can be accessed over the

network. jail(8) translates the IP address given into host byte order and then stores it in j (the jail structure).

/usr/src/usr.sbin/jail/jail.c:
struct in_addr in;

if (inet_aton(argv[2], &in) == 0)
errx(l, "Could not make sense of ip-number: %s", argv([2]);
j.ip_number = ntohl (in.s_addr);

The inet_aton(3) function "interprets the specified character string as an Internet address, placing the address into the
structure provided." The ip_number member in the jail structure is set only when the IP address placed onto the
in structure by inet_aton(3) is translated into host byte order by ntohl(3).

4.1.1.3 Jailing The Process

Finally, the userland program jails the process. Jail now becomes an imprisoned process itself and then executes the
command given using execv(3).

/usr/src/usr.sbin/jail/jail.c
i = jail(s&3j);

if (execv(argv[3], argv + 3) != 0)
err (1, "execv: %s", argv[3]);

As you can see, the jail () function is called, and its argument is the jail structure which has been filled with the
arguments given to the program. Finally, the program you specify is executed. I will now discuss how jail is
implemented within the kernel.

4.1.2 Kernel Space

We will now be looking at the file /usr/src/sys/kern/kern_jail.c. This is the file where the jail(2) system
call, appropriate sysctls, and networking functions are defined.

23

Chapter 4 The Jail Subsystem

4.1.2.1 sysctls

In kern_jail.c, the following sysctls are defined:
/usr/src/sys/kern/kern_jail.c:

int jail_set_hostname_allowed = 1;

SYSCTL_INT(_security_jail, OID_AUTO, set_hostname_allowed, CTLFLAG_RW,
&jail_set_hostname_allowed, O,
"Processes in jail can set their hostnames");

int jail_socket_unixiproute_only = 1;

SYSCTL_INT (_security_3jail, OID_AUTO, socket_unixiproute_only, CTLFLAG_RW,
&jail_socket_unixiproute_only, 0,
"Processes in Jjail are limited to creating UNIX/IPv4/route sockets only");

int Jail_sysvipc_allowed = 0;

SYSCTL_INT (_security_3jail, OID_AUTO, sysvipc_allowed, CTLFLAG_RW,
&jail_sysvipc_allowed, O,
"Processes in jail can use System V IPC primitives");

static int jail_enforce_statfs = 2;

SYSCTL_INT (_security_jail, OID_AUTO, enforce_statfs, CTLFLAG_RW,
&jail_enforce_statfs, 0,
"Processes in jail cannot see all mounted file systems");

int jail_allow_raw_sockets = 0;

SYSCTL_INT (_security_jail, OID_AUTO, allow_raw_sockets, CTLFLAG_RW,
&jail_allow_raw_sockets, O,
"Prison root can create raw sockets");

int jail_chflags_allowed = 0;

SYSCTL_INT (_security_jail, OID_AUTO, chflags_allowed, CTLFLAG_RW,
&jail_chflags_allowed, O,
"Processes in jail can alter system file flags");

int jail _mount_allowed = 0;

SYSCTL_INT (_security_jail, OID_AUTO, mount_allowed, CTLFLAG_RW,
&jail_mount_allowed, O,
"Processes in jail can mount/unmount jail-friendly file systems");

Each of these sysctls can be accessed by the user through the sysctl(8) program. Throughout the kernel, these specific
sysctls are recognized by their name. For example, the name of the first sysctl is

security.jail.set_hostname_allowed.

4.1.2.2 jail(2) system call

Like all system calls, the jail(2) system call takes two arguments, st ruct thread xtdand struct jail_args
xuap. td is a pointer to the thread structure which describes the calling thread. In this context, uap is a pointer to
the structure in which a pointer to the jail structure passed by the userland jail. c is contained. When I described
the userland program before, you saw that the jail(2) system call was given a jail structure as its own argument.

24

Chapter 4 The Jail Subsystem

/usr/src/sys/kern/kern_jail.c:
/ *
* struct jail_args {
* struct jail *jail;
* }i
*/
int
jail (struct thread *td, struct jail_args =uap)

Therefore, uap->jail can be used to access the jail structure which was passed to the system call. Next, the
system call copies the jail structure into kernel space using the copyin(9) function. copyin(9) takes three
arguments: the address of the data which is to be copied into kernel space, uap->jail, where to store it, j and the
size of the storage. The jail structure pointed by uap->7jail is copied into kernel space and is stored in another
jail structure, J.

/usr/src/sys/kern/kern_jail.c:
error = copyin(uap->jail, &3j, sizeof (j));

There is another important structure defined in jail.h. It is the prison structure. The prison structure is used
exclusively within kernel space. Here is the definition of the prison structure.

/usr/include/sys/jail.h:
struct prison {

LIST_ENTRY (prison) pr_list; /* (a) all prisons =*/
int pr_id; /* (c) prison id =*/
int pr_ref; /* (p) refcount =/
char pr_path [MAXPATHLEN] ; /% (c) chroot path =/
struct vnode *pr_root; /* (c) vnode to rdir =/
char pr_host [MAXHOSTNAMELEN] ; /* (p) jail hostname =/
u_int32_t pr_ip; /* (c) ip addr host =/
void *pr_linux; /* (p) linux abi =*/
int pr_securelevel; /* (p) securelevel x/
struct task pr_task; /* (d) destroy task =*/
struct mtx pr_mtx;

void **pr_slots; /* (p) additional data =*/

}i

The jail(2) system call then allocates memory for a prison structure and copies data between the jail and prison
structure.

/usr/src/sys/kern/kern_jail.c:
MALLOC (pr, struct prison %, sizeof (xpr), M_PRISON, M_WAITOK | M_ZERO);

error = copyinstr(j.path, &pr->pr_path, sizeof (pr->pr_path), 0);
if (error)
goto e_killmtx;

error = copyinstr(j.hostname, &pr->pr_host, sizeof (pr->pr_host), 0);
if (error)

goto e_dropvnref;
pr->pr_ip = j.ip_number;

25

Chapter 4 The Jail Subsystem

Next, we will discuss another important system call jail_attach(2), which implements the function to put a process
into the jail.

/usr/src/sys/kern/kern_jail.c:
/ *
x struct jail_attach_args {
* int jid;
* };
*/
int
jail_attach(struct thread =xtd, struct jail_attach_args =*uap)

This system call makes the changes that can distinguish a jailed process from those unjailed ones. To understand
what jail_attach(2) does for us, certain background information is needed.

On FreeBSD, each kernel visible thread is identified by its thread structure, while the processes are described by
their proc structures. You can find the definitions of the thread and proc structure in
/usr/include/sys/proc.h. For example, the td argument in any system call is actually a pointer to the calling
thread’s thread structure, as stated before. The td_proc member in the thread structure pointed by td is a
pointer to the proc structure which represents the process that contains the thread represented by td. The proc
structure contains members which can describe the owner’s identity(p_ucred), the process resource
limits(p_1limit), and so on. In the ucred structure pointed by p_ucred member in the proc structure, there is a
pointer to the prison structure(cr_prison).

/usr/include/sys/proc.h:
struct thread {

struct proc *td_proc;

}i

struct proc {
struct ucred *p_ucred;

}i
/usr/include/sys/ucred.h
struct ucred {

struct prison xcr_prison;
}i

In kern_jail.c, the function jail () then calls function jail_attach () with a given jid. And

jail_attach () calls function change_root () to change the root directory of the calling process. The
jail_attach () then creates a new ucred structure, and attaches the newly created ucred structure to the calling
process after it has successfully attached the prison structure to the ucred structure. From then on, the calling
process is recognized as jailed. When the kernel routine jailed () is called in the kernel with the newly created
ucred structure as its argument, it returns 1 to tell that the credential is connected with a jail. The public ancestor
process of all the process forked within the jail, is the process which runs jail(8), as it calls the jail(2) system call.
When a program is executed through execve(2), it inherits the jailed property of its parent’s ucred structure,
therefore it has a jailed ucred structure.

26

/usr/src/sys/kern/kern_jail.c

int

jail (struct thread xtd, struct jail_args
{

struct jail_attach_args jaa;
error = jail_attach(td, &jaa);

if (error)
goto e_dropprref;

int

jail_attach(struct thread xtd, struct jail_attach_args

{
struct proc *p;
struct ucred xnewcred, =*oldcred;
struct prison *pr;
p = td->td_proc;
pr = prison_find (uap->jid);

change_root (pr—->pr_root, td);

newcred->cr_prison = pr;
p->p_ucred = newcred;

*uap)

Chapter 4 The Jail Subsystem

When a process is forked from its parent process, the fork(2) system call uses crhold () to maintain the credential
for the newly forked process. It inherently keep the newly forked child’s credential consistent with its parent, so the

child process is also jailed.

/usr/src/sys/kern/kern_fork.c:
p2->p_ucred = crhold(td->td_ucred);

td2->td_ucred = crhold(p2->p_ucred);

4.2 Restrictions

Throughout the kernel there are access restrictions relating to jailed processes. Usually, these restrictions only check

whether the process is jailed, and if so, returns an error. For example:

if (jailed(td->td_ucred))
return (EPERM);

27

Chapter 4 The Jail Subsystem

4.2.1 SysV IPC

System V IPC is based on messages. Processes can send each other these messages which tell them how to act. The
functions which deal with messages are: msgctl(3), msgget(3), msgsnd(3) and msgrcv(3). Earlier, I mentioned that
there were certain sysctls you could turn on or off in order to affect the behavior of jail. One of these sysctls was
security.jail.sysvipc_allowed. By default, this sysctl is set to 0. If it were set to 1, it would defeat the whole
purpose of having a jail; privileged users from the jail would be able to affect processes outside the jailed
environment. The difference between a message and a signal is that the message only consists of the signal number.

/usr/src/sys/kern/sysv_msg.c:

« msgget (key, msgflg):msgget returns (and possibly creates) a message descriptor that designates a message
queue for use in other functions.

+ msgctl (msgid, cmd, buf): Using this function, a process can query the status of a message descriptor.
¢ msgsnd(msgid, msgp, msgsz, msgflg):msgsndSendsalne%ageu)apﬂme%.
+ msgrcv(msgid, msgp, msgsz, msgtyp, msgflg):a process receives messages using this function

In each of the system calls corresponding to these functions, there is this conditional:

/usr/src/sys/kern/sysv_msg.c:
if (!'jail_sysvipc_allowed && Jjailed(td->td_ucred))
return (ENOSYS);

Semaphore system calls allow processes to synchronize execution by doing a set of operations atomically on a set of
semaphores. Basically semaphores provide another way for processes lock resources. However, process waiting on a
semaphore, that is being used, will sleep until the resources are relinquished. The following semaphore system calls
are blocked inside a jail: semget(2), semctl(2) and semop(2).

/usr/src/sys/kern/sysv_sem.c:

+ semctl (semid, semnum, cmd, ...):semctl does the specified cmd on the semaphore queue indicated by

semid.
+ semget (key, nsems, flag):semget creates an array of semaphores, corresponding to key.
key and flag take on the same meaning as they do in msgget.

+ semop (semid, array, nops): semop performs a group of operations indicated by array, to the set of
semaphores identified by semid.

System V IPC allows for processes to share memory. Processes can communicate directly with each other by sharing
parts of their virtual address space and then reading and writing data stored in the shared memory. These system calls
are blocked within a jailed environment: shmdt(2), shmat(2), shmctl(2) and shmget(2).

/usr/src/sys/kern/sysv_shm.c:

+ shmctl (shmid, cmd, buf): shmctl does various control operations on the shared memory region identified
by shmid.

+ shmget (key, size, flag):shmget accesses or creates a shared memory region of size bytes.

+ shmat (shmid, addr, flag): shmat attaches a shared memory region identified by shmid to the address
space of a process.

28

Chapter 4 The Jail Subsystem

+ shmdt (addr): shmdt detaches the shared memory region previously attached at addr.

4.2.2 Sockets

Jail treats the socket(2) system call and related lower-level socket functions in a special manner. In order to
determine whether a certain socket is allowed to be created, it first checks to see if the sysctl
security.jail.socket_unixiproute_only is set. If set, sockets are only allowed to be created if the family
specified is either PF_LOCAL, PF_INET or PF_ROUTE. Otherwise, it returns an error.

/usr/src/sys/kern/uipc_socket.c:

int

socreate (int dom, struct socket xxaso, int type, int proto,
struct ucred xcred, struct thread xtd)

struct protosw xprp;

if (jailed(cred) && jail_socket_unixiproute_only &&

prp—->pr_domain->dom_family != PF_LOCAL &&
prp—->pr_domain->dom_family != PF_INET &&
prp—->pr_domain->dom_family != PF_ROUTE) {

return (EPROTONOSUPPORT) ;

4.2.3 Berkeley Packet Filter

The Berkeley Packet Filter provides a raw interface to data link layers in a protocol independent fashion. BPF is
now controlled by the devfs(8) whether it can be used in a jailed environment.

4.2.4 Protocols

There are certain protocols which are very common, such as TCP, UDP, IP and ICMP. IP and ICMP are on the same
level: the network layer 2. There are certain precautions which are taken in order to prevent a jailed process from
binding a protocol to a certain address only if the nam parameter is set. nam is a pointer to a sockaddr structure,
which describes the address on which to bind the service. A more exact definition is that sockaddr "may be used as
a template for referring to the identifying tag and length of each address". In the function in_pcbbind_setup (),
sin is a pointer to a sockaddr_in structure, which contains the port, address, length and domain family of the
socket which is to be bound. Basically, this disallows any processes from jail to be able to specify the address that
doesn’t belong to the jail in which the calling process exists.

/usr/src/sys/netinet/in_pcb.c:

int

in_pcbbind_setup (struct inpcb xinp, struct sockaddr xnam, in_addr_t =laddrp,
u_short xlportp, struct ucred =xcred)

struct sockaddr_in =xsin;

29

Chapter 4 The Jail Subsystem

if (nam) {
sin = (struct sockaddr_in =*)nam;

if (sin->sin_addr.s_addr != INADDR_ANY)
if (prison_ip(cred, 0, &sin->sin_addr.s_addr))
return (EINVAL) ;

if (lport) {
if (prison && prison_ip(cred, 0, &sin->sin_addr.s_addr))
return (EADDRNOTAVAIL);
}
if (lport == 0) {
if (laddr.s_addr != INADDR_ANY)

if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);

if (prison_ip(cred, 0, &laddr.s_addr))
return (EINVAL);

You might be wondering what function prison_ip () does. prison_ip () is given three arguments, a pointer to the
credential(represented by cred), any flags, and an IP address. It returns 1 if the IP address does NOT belong to the

jail or O otherwise. As you can see from the code, if it is indeed an IP address not belonging to the jail, the protcol is
not allowed to bind to that address.

/usr/src/sys/kern/kern_jail.c:

int

prison_ip (struct ucred xcred, int flag, u_int32_t =xip)

{

u_int32_t tmp;

if (!jailed(cred))
return (0);
if (flag)
tmp = xip;
else

tmp = ntohl (xip);
if (tmp == INADDR_ANY) {
if (flag)
*ip = cred->cr_prison->pr_ip;
else
*ip = htonl (cred->cr_prison->pr_ip);
return (0);

if (tmp == INADDR_LOOPBACK) {

30

Chapter 4 The Jail Subsystem

if (flagqg)
*ip = cred->cr_prison->pr_ip;
else
*ip = htonl (cred->cr_prison->pr_ip);
return (0);
}
if (cred->cr_prison->pr_ip != tmp)
return (1);
return (0);

4.2.5 Filesystem

Even root users within the jail are not allowed to unset or modify any file flags, such as immutable, append-only,
and undeleteable flags, if the securelevel is greater than 0.

/usr/src/sys/ufs/ufs/ufs_vnops.c:
static int
ufs_setattr (ap)

if (!'priv_check_cred(cred, PRIV_VFS_SYSFLAGS, 0)) {
if (ip->i_flags
& (SF_NOUNLINK | SF_IMMUTABLE | SF_APPEND)) {
error = securelevel_gt(cred, 0);
if (error)
return (error);

}

/usr/src/sys/kern/kern_priv.c

int

priv_check_cred(struct ucred *cred, int priv, int flags)

{

error = prison_priv_check (cred, priv);
if (error)
return (error);

}

/usr/src/sys/kern/kern_jail.c

int

prison_priv_check (struct ucred xcred, int priv)
{

switch (priv) {

case PRIV_VFS_SYSFLAGS:
if (jail_chflags_allowed)

31

Chapter 4 The Jail Subsystem

return (0);
else
return (EPERM) ;

32

Chapter 5 The SYSINIT Framework

SYSINIT is the framework for a generic call sort and dispatch mechanism. FreeBSD currently uses it for the
dynamic initialization of the kernel. SYSINIT allows FreeBSD’s kernel subsystems to be reordered, and added,
removed, and replaced at kernel link time when the kernel or one of its modules is loaded without having to edit a
statically ordered initialization routing and recompile the kernel. This system also allows kernel modules, currently
called KLD’s, to be separately compiled, linked, and initialized at boot time and loaded even later while the system is
already running. This is accomplished using the “kernel linker” and “linker sets”.

5.1 Terminology

Linker Set

A linker technique in which the linker gathers statically declared data throughout a program’s source files into a
single contiguously addressable unit of data.

5.2 SYSINIT Operation

SYSINIT relies on the ability of the linker to take static data declared at multiple locations throughout a program’s
source and group it together as a single contiguous chunk of data. This linker technique is called a “linker set”.
SYSINIT uses two linker sets to maintain two data sets containing each consumer’s call order, function, and a pointer
to the data to pass to that function.

SYSINIT uses two priorities when ordering the functions for execution. The first priority is a subsystem ID giving an
overall order for SYSINIT’s dispatch of functions. Current predeclared ID’s are in <sys/kernel.h> in the enum
list sysinit_sub_id. The second priority used is an element order within the subsystem. Current predeclared
subsystem element orders are in <sys/kernel.h> in the enum list sysinit_elem order.

There are currently two uses for SYSINIT. Function dispatch at system startup and kernel module loads, and
function dispatch at system shutdown and kernel module unload. Kernel subsystems often use system startup
SYSINIT’s to initialize data structures, for example the process scheduling subsystem uses a SYSINIT to initialize
the run queue data structure. Device drivers should avoid using SYSINIT () directly. Instead drivers for real devices
that are part of a bus structure should use DRIVER_MODULE () to provide a function that detects the device and, if it is
present, initializes the device. It will do a few things specific to devices and then call SYSINIT () itself. For
pseudo-devices, which are not part of a bus structure, use DEV_MODULE () .

5.3 Using SYSINIT

5.3.1 Interface

5.3.1.1 Headers

<sys/kernel.h>

33

Chapter 5 The SYSINIT Framework

5.3.1.2 Macros

SYSINIT (uniquifier, subsystem, order, func, ident)
SYSUNINIT (uniquifier, subsystem, order, func, ident)

5.3.2 Startup

The SYSINIT () macro creates the necessary SYSINIT data in SYSINIT’s startup data set for SYSINIT to sort and
dispatch a function at system startup and module load. SYSINIT () takes a uniquifier that SYSINIT uses to identify
the particular function dispatch data, the subsystem order, the subsystem element order, the function to call, and the
data to pass the function. All functions must take a constant pointer argument.

Example 5-1. Example of a SYSINIT ()

#include <sys/kernel.h>

void foo_null (void »unused)
{
foo_doo () ;
}
SYSINIT (foo, SI_SUB_FOO, SI_ORDER_FOO, foo_null, NULL);

struct foo foo_voodoo = {
FOO_VOODOO;

void foo_arg(void =*vdata)
{
struct foo xfoo = (struct foo x)vdata;
foo_data (foo);
}
SYSINIT (bar, SI_SUB_FOO, SI_ORDER_FOO, foo_arg, &foo_voodoo);

Note that ST_SUB_F00 and SI_ORDER_FOO need to be in the sysinit_sub_id and sysinit_elem_order
enum’s as mentioned above. Either use existing ones or add your own to the enum’s. You can also use math for
fine-tuning the order a SYSINIT will run in. This example shows a SYSINIT that needs to be run just barely before
the SYSINIT’s that handle tuning kernel parameters.

Example 5-2. Example of Adjusting SYSINIT () Order

static void
mptable_register (void sdummy __unused)

{

apic_register_enumerator (&mptable_enumerator);

}

SYSINIT (mptable_register, SI_SUB_TUNABLES - 1, SI_ORDER_FIRST,
mptable_register, NULL);

34

Chapter 5 The SYSINIT Framework

5.3.3 Shutdown

The SYSUNINIT () macro behaves similarly to the SYSINIT () macro except that it adds the SYSINIT data to
SYSINIT’s shutdown data set.

Example 5-3. Example of a SYSUNINIT ()

#include <sys/kernel.h>

void foo_cleanup (void =xunused)
{
foo_kill();
}
SYSUNINIT (foobar, SI_SUB_FOO, SI_ORDER_FOO, foo_cleanup, NULL);

struct foo_stack foo_stack = {
FOO_STACK_VOODOO;

void foo_flush (void xvdata)

{

}

SYSUNINIT (barfoo, SI_SUB_FOO, SI_ORDER_FO0OO, foo_flush, &foo_stack);

35

Chapter 6 The TrustedBSD MAC Framework

Chris Costello and Robert Watson.

6.1 MAC Documentation Copyright

This documentation was developed for the FreeBSD Project by Chris Costello at Safeport Network Services and
Network Associates Laboratories, the Security Research Division of Network Associates, Inc. under
DARPA/SPAWAR contract N66001-01-C-8035 (“CBOSS”), as part of the DARPA CHATS research program.

Redistribution and use in source (SGML DocBook) and ’compiled’ forms (SGML, HTML, PDF, PostScript, RTF
and so forth) with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code (SGML DocBook) must retain the above copyright notice, this list of conditions
and the following disclaimer as the first lines of this file unmodified.

2. Redistributions in compiled form (transformed to other DTDs, converted to PDF, PostScript, RTF and other
formats) must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

Important: THIS DOCUMENTATION IS PROVIDED BY THE NETWORKS ASSOCIATES TECHNOLOGY, INC
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL NETWORKS ASSOCIATES TECHNOLOGY, INC BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY

WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

6.2 Synopsis

FreeBSD includes experimental support for several mandatory access control policies, as well as a framework for
kernel security extensibility, the TrustedBSD MAC Framework. The MAC Framework is a pluggable access control
framework, permitting new security policies to be easily linked into the kernel, loaded at boot, or loaded dynamically
at run-time. The framework provides a variety of features to make it easier to implement new security policies,
including the ability to easily tag security labels (such as confidentiality information) onto system objects.

This chapter introduces the MAC policy framework and provides documentation for a sample MAC policy module.

6.3 Introduction

The TrustedBSD MAC framework provides a mechanism to allow the compile-time or run-time extension of the
kernel access control model. New system policies may be implemented as kernel modules and linked to the kernel; if

36

Chapter 6 The TrustedBSD MAC Framework

multiple policy modules are present, their results will be composed. The MAC Framework provides a variety of
access control infrastructure services to assist policy writers, including support for transient and persistent
policy-agnostic object security labels. This support is currently considered experimental.

This chapter provides information appropriate for developers of policy modules, as well as potential consumers of
MAC-enabled environments, to learn about how the MAC Framework supports access control extension of the
kernel.

6.4 Policy Background

Mandatory Access Control (MAC), refers to a set of access control policies that are mandatorily enforced on users by
the operating system. MAC policies may be contrasted with Discretionary Access Control (DAC) protections, by
which non-administrative users may (at their discretion) protect objects. In traditional UNIX systems, DAC
protections include file permissions and access control lists; MAC protections include process controls preventing
inter-user debugging and firewalls. A variety of MAC policies have been formulated by operating system designers
and security researches, including the Multi-Level Security (MLS) confidentiality policy, the Biba integrity policy,
Role-Based Access Control (RBAC), Domain and Type Enforcement (DTE), and Type Enforcement (TE). Each
model bases decisions on a variety of factors, including user identity, role, and security clearance, as well as security
labels on objects representing concepts such as data sensitivity and integrity.

The TrustedBSD MAC Framework is capable of supporting policy modules that implement all of these policies, as
well as a broad class of system hardening policies, which may use existing security attributes, such as user and group
IDs, as well as extended attributes on files, and other system properties. In addition, despite the name, the MAC
Framework can also be used to implement purely discretionary policies, as policy modules are given substantial
flexibility in how they authorize protections.

6.5 MAC Framework Kernel Architecture

The TrustedBSD MAC Framework permits kernel modules to extend the operating system security policy, as well as
providing infrastructure functionality required by many access control modules. If multiple policies are
simultaneously loaded, the MAC Framework will usefully (for some definition of useful) compose the results of the
policies.

6.5.1 Kernel Elements

The MAC Framework contains a number of kernel elements:

« Framework management interfaces

+ Concurrency and synchronization primitives.
+ Policy registration

« Extensible security label for kernel objects

- Policy entry point composition operators

+ Label management primitives

+ Entry point API invoked by kernel services

37

Chapter 6 The TrustedBSD MAC Framework

+ Entry point API to policy modules

- Entry points implementations (policy life cycle, object life cycle/label management, access control checks).
+ Policy-agnostic label-management system calls

+ mac_syscall () multiplex system call

+ Various security policies implemented as MAC policy modules

6.5.2 Framework Management Interfaces
The TrustedBSD MAC Framework may be directly managed using sysctl’s, loader tunables, and system calls.

In most cases, sysctl’s and loader tunables of the same name modify the same parameters, and control behavior such
as enforcement of protections relating to various kernel subsystems. In addition, if MAC debugging support is
compiled into the kernel, several counters will be maintained tracking label allocation. It is generally advisable that
per-subsystem enforcement controls not be used to control policy behavior in production environments, as they
broadly impact the operation of all active policies. Instead, per-policy controls should be preferred, as they provide
greater granularity and greater operational consistency for policy modules.

Loading and unloading of policy modules is performed using the system module management system calls and other
system interfaces, including boot loader variables; policy modules will have the opportunity to influence load and
unload events, including preventing undesired unloading of the policy.

6.5.3 Policy List Concurrency and Synchronization

As the set of active policies may change at run-time, and the invocation of entry points is non-atomic,
synchronization is required to prevent loading or unloading of policies while an entry point invocation is in progress,
freezing the set of active policies for the duration. This is accomplished by means of a framework busy count:
whenever an entry point is entered, the busy count is incremented; whenever it is exited, the busy count is
decremented. While the busy count is elevated, policy list changes are not permitted, and threads attempting to
modify the policy list will sleep until the list is not busy. The busy count is protected by a mutex, and a condition
variable is used to wake up sleepers waiting on policy list modifications. One side effect of this synchronization
model is that recursion into the MAC Framework from within a policy module is permitted, although not generally
used.

Various optimizations are used to reduce the overhead of the busy count, including avoiding the full cost of
incrementing and decrementing if the list is empty or contains only static entries (policies that are loaded before the
system starts, and cannot be unloaded). A compile-time option is also provided which prevents any change in the set
of loaded policies at run-time, which eliminates the mutex locking costs associated with supporting dynamically
loaded and unloaded policies as synchronization is no longer required.

As the MAC Framework is not permitted to block in some entry points, a normal sleep lock cannot be used; as a
result, it is possible for the load or unload attempt to block for a substantial period of time waiting for the framework
to become idle.

6.5.4 Label Synchronization

As kernel objects of interest may generally be accessed from more than one thread at a time, and simultaneous entry
of more than one thread into the MAC Framework is permitted, security attribute storage maintained by the MAC

38

Chapter 6 The TrustedBSD MAC Framework

Framework is carefully synchronized. In general, existing kernel synchronization on kernel object data is used to
protect MAC Framework security labels on the object: for example, MAC labels on sockets are protected using the
existing socket mutex. Likewise, semantics for concurrent access are generally identical to those of the container
objects: for credentials, copy-on-write semantics are maintained for label contents as with the remainder of the
credential structure. The MAC Framework asserts necessary locks on objects when invoked with an object reference.
Policy authors must be aware of these synchronization semantics, as they will sometimes limit the types of accesses
permitted on labels: for example, when a read-only reference to a credential is passed to a policy via an entry point,
only read operations are permitted on the label state attached to the credential.

6.5.5 Policy Synchronization and Concurrency

Policy modules must be written to assume that many kernel threads may simultaneously enter one more policy entry
points due to the parallel and preemptive nature of the FreeBSD kernel. If the policy module makes use of mutable
state, this may require the use of synchronization primitives within the policy to prevent inconsistent views on that
state resulting in incorrect operation of the policy. Policies will generally be able to make use of existing FreeBSD
synchronization primitives for this purpose, including mutexes, sleep locks, condition variables, and counting
semaphores. However, policies should be written to employ these primitives carefully, respecting existing kernel lock
orders, and recognizing that some entry points are not permitted to sleep, limiting the use of primitives in those entry
points to mutexes and wakeup operations.

When policy modules call out to other kernel subsytems, they will generally need to release any in-policy locks in
order to avoid violating the kernel lock order or risking lock recursion. This will maintain policy locks as leaf locks
in the global lock order, helping to avoid deadlock.

6.5.6 Policy Registration

The MAC Framework maintains two lists of active policies: a static list, and a dynamic list. The lists differ only with
regards to their locking semantics: an elevated reference count is not required to make use of the static list. When
kernel modules containing MAC Framework policies are loaded, the policy module will use SYSINIT to invoke a
registration function; when a policy module is unloaded, SYSINIT will likewise invoke a de-registration function.
Registration may fail if a policy module is loaded more than once, if insufficient resources are available for the
registration (for example, the policy might require labeling and insufficient labeling state might be available), or
other policy prerequisites might not be met (some policies may only be loaded prior to boot). Likewise,
de-registration may fail if a policy is flagged as not unloadable.

6.5.7 Entry Points

Kernel services interact with the MAC Framework in two ways: they invoke a series of APIs to notify the framework
of relevant events, and they provide a policy-agnostic label structure pointer in security-relevant objects. The label
pointer is maintained by the MAC Framework via label management entry points, and permits the Framework to
offer a labeling service to policy modules through relatively non-invasive changes to the kernel subsystem
maintaining the object. For example, label pointers have been added to processes, process credentials, sockets, pipes,
vnodes, Mbufs, network interfaces, IP reassembly queues, and a variety of other security-relevant structures. Kernel
services also invoke the MAC Framework when they perform important security decisions, permitting policy
modules to augment those decisions based on their own criteria (possibly including data stored in security labels).
Most of these security critical decisions will be explicit access control checks; however, some affect more general
decision functions such as packet matching for sockets and label transition at program execution.

39

Chapter 6 The TrustedBSD MAC Framework

6.5.8 Policy Composition

When more than one policy module is loaded into the kernel at a time, the results of the policy modules will be
composed by the framework using a composition operator. This operator is currently hard-coded, and requires that
all active policies must approve a request for it to return success. As policies may return a variety of error conditions
(success, access denied, object does not exist, ...), a precedence operator selects the resulting error from the set of
errors returned by policies. In general, errors indicating that an object does not exist will be preferred to errors
indicating that access to an object is denied. While it is not guaranteed that the resulting composition will be useful
or secure, we have found that it is for many useful selections of policies. For example, traditional trusted systems
often ship with two or more policies using a similar composition.

6.5.9 Labeling Support

As many interesting access control extensions rely on security labels on objects, the MAC Framework provides a set
of policy-agnostic label management system calls covering a variety of user-exposed objects. Common label types
include partition identifiers, sensitivity labels, integrity labels, compartments, domains, roles, and types. By policy
agnostic, we mean that policy modules are able to completely define the semantics of meta-data associated with an
object. Policy modules participate in the internalization and externalization of string-based labels provides by user
applications, and can expose multiple label elements to applications if desired.

In-memory labels are stored in slab-allocated struct label, which consists of a fixed-length array of unions, each
holding a void = pointer and a 1ong. Policies registering for label storage will be assigned a "slot" identifier, which
may be used to dereference the label storage. The semantics of the storage are left entirely up to the policy module:
modules are provided with a variety of entry points associated with the kernel object life cycle, including
initialization, association/creation, and destruction. Using these interfaces, it is possible to implement reference
counting and other storage models. Direct access to the object structure is generally not required by policy modules
to retrieve a label, as the MAC Framework generally passes both a pointer to the object and a direct pointer to the
object’s label into entry points. The primary exception to this rule is the process credential, which must be manually
dereferenced to access the credential label. This may change in future revisions of the MAC Framework.

Initialization entry points frequently include a sleeping disposition flag indicating whether or not an initialization is
permitted to sleep; if sleeping is not permitted, a failure may be returned to cancel allocation of the label (and hence
object). This may occur, for example, in the network stack during interrupt handling, where sleeping is not permitted,
or while the caller holds a mutex. Due to the performance cost of maintaining labels on in-flight network packets
(Mbufs), policies must specifically declare a requirement that Mbuf labels be allocated. Dynamically loaded policies
making use of labels must be able to handle the case where their init function has not been called on an object, as
objects may already exist when the policy is loaded. The MAC Framework guarantees that uninitialized label slots
will hold a 0 or NULL value, which policies may use to detect uninitialized values. However, as allocation of Mbuf
labels is conditional, policies must also be able to handle a NULL label pointer for Mbufs if they have been loaded
dynamically.

In the case of file system labels, special support is provided for the persistent storage of security labels in extended
attributes. Where available, extended attribute transactions are used to permit consistent compound updates of
security labels on vnodes--currently this support is present only in the UFS2 file system. Policy authors may choose
to implement multilabel file system object labels using one (or more) extended attributes. For efficiency reasons, the
vnode label (v_label) is a cache of any on-disk label; policies are able to load values into the cache when the vnode
is instantiated, and update the cache as needed. As a result, the extended attribute need not be directly accessed with
every access control check.

40

Chapter 6 The TrustedBSD MAC Framework

Note: Currently, if a labeled policy permits dynamic unloading, its state slot cannot be reclaimed, which places a

strict (and relatively low) bound on the number of unload-reload operations for labeled policies.

6.5.10 System Calls

The MAC Framework implements a number of system calls: most of these calls support the policy-agnostic label
retrieval and manipulation APIs exposed to user applications.

The label management calls accept a label description structure, struct mac, which contains a series of MAC label
elements. Each element contains a character string name, and character string value. Each policy will be given the

chance to claim a particular element name, permitting policies to expose multiple independent elements if desired.

Policy modules perform the internalization and externalization between kernel labels and user-provided labels via

entry points, permitting a variety of semantics. Label management system calls are generally wrapped by user library
functions to perform memory allocation and error handling, simplifying user applications that must manage labels.

The following MAC-related system calls are present in the FreeBSD kernel:

+ mac_get_proc () may be used to retrieve the label of the current process.

+ mac_set_proc () may be used to request a change in the label of the current process.

+ mac_get_£d () may be used to retrieve the label of an object (file, socket, pipe, ...) referenced by a file descriptor.

+ mac_get_file () may be used to retrieve the label of an object referenced by a file system path.

+ mac_set_£d () may be used to request a change in the label of an object (file, socket, pipe, ...) referenced by a file

descriptor.
+ mac_set_file () may be used to request a change in the label of an object referenced by a file system path.

+ mac_syscall () permits policy modules to create new system calls without modifying the system call table; it
accepts a target policy name, operation number, and opaque argument for use by the policy.

+ mac_get_pid () may be used to request the label of another process by process id.

+ mac_get_link () isidentical to mac_get_file (), only it will not follow a symbolic link if it is the final entry

in the path, so may be used to retrieve the label on a symlink.

+ mac_set_link () isidentical to mac_set_file (), only it will not follow a symbolic link if it is the final entry

in a path, so may be used to manipulate the label on a symlink.

+ mac_execve () is identical to the execve () system call, only it also accepts a requested label to set the process

label to when beginning execution of a new program. This change in label on execution is referred to as a
"transition".

+ mac_get_peer (), actually implemented via a socket option, retrieves the label of a remote peer on a socket, if

available.

In addition to these system calls, the STOCSIGMAC and STOCSIFMAC network interface ioctls permit the labels on
network interfaces to be retrieved and set.

41

Chapter 6 The TrustedBSD MAC Framework

6.6 MAC Policy Architecture

Security policies are either linked directly into the kernel, or compiled into loadable kernel modules that may be
loaded at boot, or dynamically using the module loading system calls at runtime. Policy modules interact with the
system through a set of declared entry points, providing access to a stream of system events and permitting the policy
to influence access control decisions. Each policy contains a number of elements:

« Optional configuration parameters for policy.

+ Centralized implementation of the policy logic and parameters.

+ Optional implementation of policy life cycle events, such as initialization and destruction.

«+ Optional support for initializing, maintaining, and destroying labels on selected kernel objects.
« Optional support for user process inspection and modification of labels on selected objects.

- Implementation of selected access control entry points that are of interest to the policy.

+ Declaration of policy identity, module entry points, and policy properties.

6.6.1 Policy Declaration

Modules may be declared using the MAC_POLICY_SET () macro, which names the policy, provides a reference to the
MAC entry point vector, provides load-time flags determining how the policy framework should handle the policy,
and optionally requests the allocation of label state by the framework.

static struct mac_policy_ops mac_policy_ops =
{
.mpo_destroy = mac_policy_destroy,
.mpo_1init = mac_policy_init,
.mpo_init_lbpfdesc_label = mac_policy_init_bpfdesc_label,
.mpo_init_cred_label = mac_policy_init_label,
[x .. %/
.mpo_check_vnode_setutimes = mac_policy_check_vnode_setutimes,
.mpo_check_vnode_stat = mac_policy_check_vnode_stat,
.mpo_check_vnode_write = mac_policy_check_vnode_write,
}i

The MAC policy entry point vector, mac_policy_ops in this example, associates functions defined in the module
with specific entry points. A complete listing of available entry points and their prototypes may be found in the MAC
entry point reference section. Of specific interest during module registration are the .mpo_destroy and .mpo_init
entry points. .mpo_init will be invoked once a policy is successfully registered with the module framework but prior
to any other entry points becoming active. This permits the policy to perform any policy-specific allocation and
initialization, such as initialization of any data or locks. .mpo_destroy will be invoked when a policy module is
unloaded to permit releasing of any allocated memory and destruction of locks. Currently, these two entry points are
invoked with the MAC policy list mutex held to prevent any other entry points from being invoked: this will be
changed, but in the mean time, policies should be careful about what kernel primitives they invoke so as to avoid lock
ordering or sleeping problems.

The policy declaration’s module name field exists so that the module may be uniquely identified for the purposes of
module dependencies. An appropriate string should be selected. The full string name of the policy is displayed to the
user via the kernel log during load and unload events, and also exported when providing status information to
userland processes.

42

Chapter 6 The TrustedBSD MAC Framework

6.6.2 Policy Flags

The policy declaration flags field permits the module to provide the framework with information about its
capabilities at the time the module is loaded. Currently, three flags are defined:

MPC_LOADTIME_FLAG_UNLOADOK

This flag indicates that the policy module may be unloaded. If this flag is not provided, then the policy
framework will reject requests to unload the module. This flag might be used by modules that allocate label
state and are unable to free that state at runtime.

MPC_LOADTIME_FLAG_NOTLATE

This flag indicates that the policy module must be loaded and initialized early in the boot process. If the flag is
specified, attempts to register the module following boot will be rejected. The flag may be used by policies that
require pervasive labeling of all system objects, and cannot handle objects that have not been properly
initialized by the policy.

MPC_LOADTIME_FLAG_LABELMBUEFS

This flag indicates that the policy module requires labeling of Mbufs, and that memory should always be
allocated for the storage of Mbuf labels. By default, the MAC Framework will not allocate label storage for
Mbufs unless at least one loaded policy has this flag set. This measurably improves network performance when
policies do not require Mbuf labeling. A kernel option, MAC_ALWAYS_LABEL_MBUF, exists to force the MAC
Framework to allocate Mbuf label storage regardless of the setting of this flag, and may be useful in some
environments.

Note: Policies using the MPC_LOADTIME_FLAG_LABELMBUFS Without the Mpc_roADTIME_FLAG_NOTLATE flag set
must be able to correctly handle nurL Mbuf label pointers passed into entry points. This is necessary as in-flight
Mbufs without label storage may persist after a policy enabling Mbuf labeling has been loaded. If a policy is
loaded before the network subsystem is active (i.e., the policy is not being loaded late), then all Mbufs are
guaranteed to have label storage.

6.6.3 Policy Entry Points

Four classes of entry points are offered to policies registered with the framework: entry points associated with the
registration and management of policies, entry points denoting initialization, creation, destruction, and other life
cycle events for kernel objects, events associated with access control decisions that the policy module may influence,
and calls associated with the management of labels on objects. In addition, a mac_syscall () entry point is
provided so that policies may extend the kernel interface without registering new system calls.

Policy module writers should be aware of the kernel locking strategy, as well as what object locks are available
during which entry points. Writers should attempt to avoid deadlock scenarios by avoiding grabbing non-leaf locks
inside of entry points, and also follow the locking protocol for object access and modification. In particular, writers
should be aware that while necessary locks to access objects and their labels are generally held, sufficient locks to
modify an object or its label may not be present for all entry points. Locking information for arguments is
documented in the MAC framework entry point document.

43

Chapter 6 The TrustedBSD MAC Framework

Policy entry points will pass a reference to the object label along with the object itself. This permits labeled policies
to be unaware of the internals of the object yet still make decisions based on the label. The exception to this is the
process credential, which is assumed to be understood by policies as a first class security object in the kernel.

6.7 MAC Policy Entry Point Reference

6.7.1 General-Purpose Module Entry Points
6.7.1.1 mpo_init

void mpo_init (struct mac_policy_conf *conf);

Parameter Description Locking
conf MAC policy definition

Policy load event. The policy list mutex is held, so sleep operations cannot be performed, and calls out to other
kernel subsystems must be made with caution. If potentially sleeping memory allocations are required during policy
initialization, they should be made using a separate module SYSINIT().

6.7.1.2 mpo_destroy

void mpo_destroy (struct mac_policy_conf xconf);

Parameter Description Locking
conf MAC policy definition

Policy load event. The policy list mutex is held, so caution should be applied.

6.7.1.3 mpo_syscall

int mpo_syscall (struct thread *td, int call, void xarg);

Parameter Description Locking
td Calling thread

call Policy-specific syscall number

arg Pointer to syscall arguments

44

Chapter 6 The TrustedBSD MAC Framework
This entry point provides a policy-multiplexed system call so that policies may provide additional services to user
processes without registering specific system calls. The policy name provided during registration is used to demux
calls from userland, and the arguments will be forwarded to this entry point. When implementing new services,
security modules should be sure to invoke appropriate access control checks from the MAC framework as needed.
For example, if a policy implements an augmented signal functionality, it should call the necessary signal access

control checks to invoke the MAC framework and other registered policies.

Note: Modules must currently perform the copyin () of the syscall data on their own.

6.7.1.4 mpo_thread_userret

void mpo_thread_userret (struct thread =*td);

Parameter Description Locking

td Returning thread

This entry point permits policy modules to perform MAC-related events when a thread returns to user space, via a
system call return, trap return, or otherwise. This is required for policies that have floating process labels, as it is not
always possible to acquire the process lock at arbitrary points in the stack during system call processing; process
labels might represent traditional authentication data, process history information, or other data. To employ this
mechanism, intended changes to the process credential label may be stored in the p_label protected by a per-policy
spin lock, and then set the per-thread TDF_ASTPENDING flag and per-process PS_MACPENDM flag to schedule a call to
the userret entry point. From this entry point, the policy may create a replacement credential with less concern about
the locking context. Policy writers are cautioned that event ordering relating to scheduling an AST and the AST
being performed may be complex and interlaced in multithreaded applications.

6.7.2 Label Operations
6.7.2.1 mpo_init_bpfdesc_label

void mpo_init_bpfdesc_label (struct label xlabel);

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated bpfdesc (BPF descriptor). Sleeping is permitted.

45

Chapter 6 The TrustedBSD MAC Framework

6.7.2.2 mpo_init_cred_label

void mpo_init_cred label (struct label xlabel);

Parameter Description Locking

label New label to initialize

Initialize the label for a newly instantiated user credential. Sleeping is permitted.

6.7.2.3 mpo_init_devfsdirent_label

void mpo_init_devfsdirent_label (struct label xlabel);

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated devfs entry. Sleeping is permitted.

6.7.2.4 mpo_init_ifnet_label

void mpo_init_ifnet_label (struct label xlabel);

Parameter Description Locking

label New label to apply

Initialize the label on a newly instantiated network interface. Sleeping is permitted.

6.7.2.5 mpo_init_ipq label

void mpo_init_ipq label (struct label xlabel, int flag);

Parameter Description Locking
label New label to apply
flag Sleeping/non-sleeping malloc(9); see below

Initialize the label on a newly instantiated IP fragment reassembly queue. The r1ag field may be one of
M_WAITOK and M_NOWAIT, and should be employed to avoid performing a sleeping malloc(9) during this

46

Chapter 6 The TrustedBSD MAC Framework

initialization call. IP fragment reassembly queue allocation frequently occurs in performance sensitive environments,
and the implementation should be careful to avoid sleeping or long-lived operations. This entry point is permitted to
fail resulting in the failure to allocate the IP fragment reassembly queue.

6.7.2.6 mpo_init_mbuf_ label

void mpo_init_mbuf_ label (int flag, struct label xlabel);

Parameter Description Locking
flag Sleeping/non-sleeping malloc(9); see below
label Policy label to initialize

Initialize the label on a newly instantiated mbuf packet header (mbur). The flag field may be one of M_WAITOK
and M_NOWAIT, and should be employed to avoid performing a sleeping malloc(9) during this initialization call.
Mbuf allocation frequently occurs in performance sensitive environments, and the implementation should be careful
to avoid sleeping or long-lived operations. This entry point is permitted to fail resulting in the failure to allocate the
mbuf header.

6.7.2.7 mpo_init_mount_label

void mpo_init_mount_label (struct label *mntlabel, struct label xfslabel);

Parameter Description Locking

mntlabel Policy label to be initialized for the mount itself

fslabel Policy label to be initialized for the file system

Initialize the labels on a newly instantiated mount point. Sleeping is permitted.

6.7.2.8 mpo_init_mount_fs_label

void mpo_init_mount_f£fs_label (struct label xlabel);

Parameter Description Locking
label Label to be initialized

Initialize the label on a newly mounted file system. Sleeping is permitted

47

Chapter 6 The TrustedBSD MAC Framework

6.7.2.9 mpo_init_pipe_label

void mpo_init_pipe label (struct labelxlabel);

Parameter Description Locking
label Label to be filled in

Initialize a label for a newly instantiated pipe. Sleeping is permitted.

6.7.2.10 mpo_init_socket_label

void mpo_init_socket_label (struct label xlabel, int flag);

Parameter Description Locking
label New label to initialize
flag malloc(9) flags

Initialize a label for a newly instantiated socket. The f1ag field may be one of M_WAITOK and M_NOWAIT, and
should be employed to avoid performing a sleeping malloc(9) during this initialization call.

6.7.2.11 mpo_init_socket_peer label

void mpo_init_socket_peer_ label (struct label xlabel, int flag);

Parameter Description Locking
label New label to initialize
flag malloc(9) flags

Initialize the peer label for a newly instantiated socket. The £1ag field may be one of M_WAITOK and
M_NOWAIT, and should be employed to avoid performing a sleeping malloc(9) during this initialization call.

6.7.2.12 mpo_init_proc_label

void mpo_init_proc_label (struct label =xlabel);

Parameter Description Locking

label New label to initialize

48

Chapter 6 The TrustedBSD MAC Framework

Initialize the label for a newly instantiated process. Sleeping is permitted.

6.7.2.13 mpo_init_vnode_label

void mpo_init_vnode_label (struct label xlabel);

Parameter Description Locking

label New label to initialize

Initialize the label on a newly instantiated vnode. Sleeping is permitted.

6.7.2.14 mpo_destroy_bpfdesc_label

void mpo_destroy bpfdesc_label (struct label xlabel);

Parameter Description Locking
label bpfdesc label

Destroy the label on a BPF descriptor. In this entry point a policy should free any internal storage associated with
label so that it may be destroyed.

6.7.2.15 mpo_destroy_cred_label

void mpo_destroy_cred label (struct label xlabel);

Parameter Description Locking

label Label being destroyed

Destroy the label on a credential. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.16 mpo_destroy_devfsdirent_label

void mpo_destroy devfsdirent_label (struct label xlabel);

Parameter Description Locking

49

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
label Label being destroyed

Destroy the label on a devfs entry. In this entry point, a policy module should free any internal storage associated
with Iabel so that it may be destroyed.

6.7.2.17 mpo_destroy_ifnet_label

void mpo_destroy_ifnet_label (struct label xlabel);

Parameter Description Locking

label Label being destroyed

Destroy the label on a removed interface. In this entry point, a policy module should free any internal storage
associated with 1abe1l so that it may be destroyed.

6.7.2.18 mpo_destroy_ipq label

void mpo_destroy_ipqg label (struct label =xlabel);

Parameter Description Locking
label Label being destroyed

Destroy the label on an IP fragment queue. In this entry point, a policy module should free any internal storage
associated with 1abel so that it may be destroyed.

6.7.2.19 mpo_destroy_mbuf_ label

void mpo_destroy _mbuf label (struct label xlabel);

Parameter Description Locking

label Label being destroyed

Destroy the label on an mbuf header. In this entry point, a policy module should free any internal storage associated
with I1abel so that it may be destroyed.

50

Chapter 6 The TrustedBSD MAC Framework

6.7.2.20 mpo_destroy_mount_label

void mpo_destroy mount_label (struct label xlabel);

Parameter Description Locking

label Mount point label being destroyed

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mntlabel so that they may be destroyed.

6.7.2.21 mpo_destroy mount_label

void mpo_destroy mount_label (struct label xmntlabel, struct label xfslabel);

Parameter Description Locking

mntlabel Mount point label being destroyed
fslabel File system label being destroyed>

Destroy the labels on a mount point. In this entry point, a policy module should free the internal storage associated
with mnt 1abel and fslabel so that they may be destroyed.

6.7.2.22 mpo_destroy_socket_label

void mpo_destroy_socket_label (struct label xlabel);

Parameter Description Locking

label Socket label being destroyed

Destroy the label on a socket. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.23 mpo_destroy_socket_peer_ label

void mpo_destroy_socket_peer_label (struct label x*peerlabel);

Parameter Description Locking

peerlabel Socket peer label being destroyed

51

Chapter 6 The TrustedBSD MAC Framework

Destroy the peer label on a socket. In this entry point, a policy module should free any internal storage associated
with Iabel so that it may be destroyed.
6.7.2.24 mpo_destroy_pipe_label

void mpo_destroy_ pipe_label (struct label xlabel);

Parameter Description Locking

label Pipe label

Destroy the label on a pipe. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.25 mpo_destroy_proc_label

void mpo_destroy proc_label (struct label xlabel);

Parameter Description Locking

label Process label

Destroy the label on a process. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.26 mpo_destroy_vnode_label

void mpo_destroy_vnode_label (struct label xlabel);

Parameter Description Locking

label Process label

Destroy the label on a vnode. In this entry point, a policy module should free any internal storage associated with
label so that it may be destroyed.

6.7.2.27 mpo_copy_mbuf_label

void mpo_copy mbuf_ label (struct label *src, struct label =xdest);

52

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

src Source label

dest Destination label

Copy the label information in src into dest.

6.7.2.28 mpo_copy_pipe_label

void mpo_copy_pipe_label (struct label *src, struct label xdest);

Parameter Description Locking

src Source label
dest Destination label

Copy the label information in src into dest.

6.7.2.29 mpo_copy_vnode_label

void mpo_copy_vnode_label (struct label *src, struct label =*dest);

Parameter Description Locking

src Source label
dest Destination label

Copy the label information in src into dest.

6.7.2.30 mpo_externalize_ cred_label

int mpo_externalize cred label (struct label xlabel, char xelement_name, struct sbuf
*sb, int *claimed);

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label
claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text

53

Chapter 6 The TrustedBSD MAC Framework

representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, xclaimed should be incremented.

6.7.2.31 mpo_externalize_ifnet_label

int mpo_externalize_ifnet_label (struct label xlabel, char xelement_name, struct sbuf
*sb, int #*claimed);

Parameter Description Locking
label Label to be externalized

element_name Name of the policy whose label should be externalized
sb String buffer to be filled with a text representation of label
claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, rclaimed should be incremented.

6.7.2.32 mpo_externalize_pipe_label

int mpo_externalize pipe label (struct label xlabel, char xelement_name, struct sbuf
*sb, int #*claimed);

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized
sb String buffer to be filled with a text representation of label
claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, rclaimed should be incremented.

54

Chapter 6 The TrustedBSD MAC Framework

6.7.2.33 mpo_externalize_socket_label

int mpo_externalize_ socket_label (struct label xlabel, char xelement_name, struct sbuf
*sb, int #*claimed);

Parameter Description Locking

label Label to be externalized
element_name Name of the policy whose label should be externalized
sb String buffer to be filled with a text representation of label

claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, xclaimed should be incremented.

6.7.2.34 mpo_externalize_ socket_peer_ label

int mpo_externalize_socket_peer_label (struct label xlabel, char xelement_name, struct
sbuf xsb, int #claimed);

Parameter Description Locking

label Label to be externalized
element_name Name of the policy whose label should be externalized
sb String buffer to be filled with a text representation of label

claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, xclaimed should be incremented.

6.7.2.35 mpo_externalize_vnode_label

int mpo_externalize_vnode_label (struct label xlabel, char xelement_name, struct sbuf
*sb, int #claimed);

55

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

label Label to be externalized

element_name Name of the policy whose label should be externalized

sb String buffer to be filled with a text representation of label
claimed Should be incremented when element_data can be filled in.

Produce an externalized label based on the label structure passed. An externalized label consists of a text
representation of the label contents that can be used with userland applications and read by the user. Currently, all
policies’ externalize entry points will be called, so the implementation should check the contents of
element_name before attempting to fill in sb. If element_name does not match the name of your policy, simply
return 0. Only return nonzero if an error occurs while externalizing the label data. Once the policy fills in
element_data, rclaimed should be incremented.

6.7.2.36 mpo_internalize_ cred_label

int mpo_internalize_cred label (struct label xlabel, char xelement_name, char
*element_data, int *xclaimed);

Parameter Description Locking
label Label to be filled in
element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents of element_name to its own name in order to be sure it should be internalizing the data in element_data.
Just as in the externalize entry points, the entry point should return O if element_name does not match its own
name, or when data can successfully be internalized, in which case *claimed should be incremented.

6.7.2.37 mpo_internalize_ifnet_label

int mpo_internalize_ifnet_label (struct label xlabel, char xelement_name, char
xelement_data, int xclaimed);

Parameter Description Locking
label Label to be filled in

element_name Name of the policy whose label should be internalized
element_data Text data to be internalized

56

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents of element_name to its own name in order to be sure it should be internalizing the data in element_data.
Just as in the externalize entry points, the entry point should return O if element_name does not match its own
name, or when data can successfully be internalized, in which case xclaimed should be incremented.

6.7.2.38 mpo_internalize_pipe_label

int mpo_internalize_pipe_ label (struct label xlabel, char xelement_name, char
*element_data, int *claimed);

Parameter Description Locking
label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized
claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents of element_name to its own name in order to be sure it should be internalizing the data in element_data.
Just as in the externalize entry points, the entry point should return O if element_name does not match its own
name, or when data can successfully be internalized, in which case xclaimed should be incremented.

6.7.2.39 mpo_internalize_socket_label

int mpo_internalize_socket_label (struct label xlabel, char *element_name, char
+element_data, int =*xclaimed);

Parameter Description Locking
label Label to be filled in

element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents of element_name to its own name in order to be sure it should be internalizing the data in element_data.
Just as in the externalize entry points, the entry point should return O if element_name does not match its own

57

Chapter 6 The TrustedBSD MAC Framework

name, or when data can successfully be internalized, in which case *claimed should be incremented.

6.7.2.40 mpo_internalize_vnode_label

int mpo_internalize_vnode_label (struct label xlabel, char *element_name, char
xelement_data, int xclaimed);

Parameter Description Locking
label Label to be filled in
element_name Name of the policy whose label should be internalized

element_data Text data to be internalized

claimed Should be incremented when data can be successfully internalized.

Produce an internal label structure based on externalized label data in text format. Currently, all policies’
internalize entry points are called when internalization is requested, so the implementation should compare the
contents of element_name to its own name in order to be sure it should be internalizing the data in element_data.
Just as in the externalize entry points, the entry point should return O if element_name does not match its own
name, or when data can successfully be internalized, in which case xclaimed should be incremented.

6.7.3 Label Events

This class of entry points is used by the MAC framework to permit policies to maintain label information on kernel
objects. For each labeled kernel object of interest to a MAC policy, entry points may be registered for relevant life
cycle events. All objects implement initialization, creation, and destruction hooks. Some objects will also implement
relabeling, allowing user processes to change the labels on objects. Some objects will also implement object-specific
events, such as label events associated with IP reassembly. A typical labeled object will have the following life cycle
of entry points:

Label initialization o
(object-specific wait) \
Label creation o

Relabel events, o——<——.
Various object-specific, | |
Access control events ~——>--0

Label destruction o

Label initialization permits policies to allocate memory and set initial values for labels without context for the use of
the object. The label slot allocated to a policy will be zeroed by default, so some policies may not need to perform
initialization.

Label creation occurs when the kernel structure is associated with an actual kernel object. For example, Mbufs may

be allocated and remain unused in a pool until they are required. mbuf allocation causes label initialization on the
mbuf to take place, but mbuf creation occurs when the mbuf is associated with a datagram. Typically, context will be

58

Chapter 6 The TrustedBSD MAC Framework

provided for a creation event, including the circumstances of the creation, and labels of other relevant objects in the
creation process. For example, when an mbuf is created from a socket, the socket and its label will be presented to
registered policies in addition to the new mbuf and its label. Memory allocation in creation events is discouraged, as
it may occur in performance sensitive ports of the kernel; in addition, creation calls are not permitted to fail so a
failure to allocate memory cannot be reported.

Object specific events do not generally fall into the other broad classes of label events, but will generally provide an
opportunity to modify or update the label on an object based on additional context. For example, the label on an IP
fragment reassembly queue may be updated during the MAC_UPDATE_IPQ entry point as a result of the acceptance
of an additional mbuf to that queue.

Access control events are discussed in detail in the following section.

Label destruction permits policies to release storage or state associated with a label during its association with an
object so that the kernel data structures supporting the object may be reused or released.

In addition to labels associated with specific kernel objects, an additional class of labels exists: temporary labels.
These labels are used to store update information submitted by user processes. These labels are initialized and
destroyed as with other label types, but the creation event is MAC_INTERNALIZE, which accepts a user label to be
converted to an in-kernel representation.

6.7.3.1 File System Object Labeling Event Operations

6.7.3.1.1 mpo_associate_vnode_devfs

void mpo_associate_vnode_devfs (struct mount *mp, struct label xfslabel, struct
devfs_dirent xde, struct label xdelabel, struct vnode =*vp, struct label xvlabel);

Parameter Description Locking

mp Devfs mount point

fslabel Devfs file system label (mp->mnt_fslabel)
de Devfs directory entry

delabel Policy label associated with de

vp vnode associated with de

vlabel Policy label associated with vp

Fill in the label (v1abel) for a newly created devfs vnode based on the devfs directory entry passed in de and its
label.

6.7.3.1.2 mpo_associate_vnode_extattr

int mpo_associate_vnode_ extattr (struct mount xmp, struct label xfslabel, struct vnode
*vp, struct label xvlabel);

59

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

mp File system mount point
fslabel File system label

vp Vnode to label

vlabel Policy label associated with vp

Attempt to retrieve the label for vp from the file system extended attributes. Upon success, the value 0 is returned.
Should extended attribute retrieval not be supported, an accepted fallback is to copy fslabel into viabel. In the
event of an error, an appropriate value for errno should be returned.

6.7.3.1.3 mpo_associate_vnode_singlelabel

void mpo_associate_vnode_singlelabel (struct mount *mp, struct label =xfslabel, struct
vnode *xvp, struct label xvlabel);

Parameter Description Locking

mp File system mount point
fslabel File system label

vp Vnode to label

vlabel Policy label associated with vp

On non-multilabel file systems, this entry point is called to set the policy label for vp based on the file system label,
fslabel.

6.7.3.1.4 mpo_create _devfs_device

void mpo_create_devfs_device (dev_t dev, struct devfs_dirent xdevfs_dirent, struct
label xlabel);

Parameter Description Locking

dev Device corresponding with devfs_dirent
devfs_dirent Devfs directory entry to be labeled.
label Label for devfs_dirent to be filled in.

Fill out the label on a devfs_dirent being created for the passed device. This call will be made when the device file
system is mounted, regenerated, or a new device is made available.

6.7.3.1.5 mpo_create_devfs_directory

void mpo_create_devfs_directory (char *dirname, int dirnamelen, struct devfs_dirent

60

Chapter 6 The TrustedBSD MAC Framework

+devfs_dirent, struct label xlabel);

Parameter Description Locking
dirname Name of directory being created
namelen Length of string dirname

devfs_dirent Devfs directory entry for directory being created.

Fill out the label on a devfs_dirent being created for the passed directory. This call will be made when the device file
system is mounted, regenerated, or a new device requiring a specific directory hierarchy is made available.

6.7.3.1.6 mpo_create_devfs_symlink

void mpo_create_devfs_symlink (struct ucred xcred, struct mount =*mp, struct
devfs_dirent =*dd, struct label xddlabel, struct devfs_dirent =xde, struct label
~delabel) ;

Parameter Description Locking
cred Subject credential

mp Devfs mount point

dad Link destination

ddlabel Label associated with dd

de Symlink entry

delabel Label associated with de

Fill in the label (delabel) for a newly created devfs(5) symbolic link entry.

6.7.3. 1.7mpo_create_vnode_extattr

int mpo_create_vnode_extattr (struct ucred *cred, struct mount xmp, struct label
xfslabel, struct vnode xdvp, struct label xdlabel, struct vnode =*vp, struct label
*vlabel, struct componentname *cnp);

Parameter Description Locking
cred Subject credential

mount File system mount point

label File system label

dvp Parent directory vnode

dlabel Label associated with dvp

vp Newly created vnode

61

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
vlabel Policy label associated with vp
cnp Component name for vp

Write out the label for vp to the appropriate extended attribute. If the write succeeds, fill in viabel with the label,
and return 0. Otherwise, return an appropriate error.

6.7.3.1.8 mpo_create _mount

void mpo_create_mount (struct ucred *cred, struct mount *mp, struct label *mnt, struct
label xfslabel);

Parameter Description Locking
cred Subject credential
mp Object; file system being mounted

mntlabel Policy label to be filled in for mp
fslabel Policy label for the file system mp mounts.

Fill out the labels on the mount point being created by the passed subject credential. This call will be made when a
new file system is mounted.

6.7.3.1.9 mpo_create_root_mount

void mpo_create_root_mount (struct ucred xcred, struct mount *mp, struct label
*mntlabel, struct label xfslabel);

Parameter Description Locking
See Section 6.7.3.1.8.

Fill out the labels on the mount point being created by the passed subject credential. This call will be made when the
root file system is mounted, after mpo_create_mount;.

6.7.3.1.10 mpo_relabel_vnode

void mpo_relabel_vwvnode (struct ucred *cred, struct vnode xvp, struct label xvnodelabel,
struct label xnewlabel);

Parameter Description Locking

cred Subject credential

62

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
vp vnode to relabel
vnodelabel Existing policy label for vp

newlabel New, possibly partial label to replace vnodelabel

Update the label on the passed vnode given the passed update vnode label and the passed subject credential.

6.7.3.1.11 mpo_setlabel_vnode extattr

int mpo_setlabel vnode_extattr (struct ucred *cred, struct vnode *vp, struct label
*vlabel, struct label *intlabel);

Parameter Description Locking
cred Subject credential

vp Vnode for which the label is being written

vlabel Policy label associated with vp

intlabel Label to write out

Write out the policy from intlabel to an extended attribute. This is called from vop_stdcreatevnode_ea.

6.7.3.1.12 mpo_update_devfsdirent

void mpo_update_devfsdirent (struct devfs_dirent xdevfs_dirent, struct label
x*direntlabel, struct vnode *vp, struct label xvnodelabel);

Parameter Description Locking

devfs_dirent Object; devfs directory entry
direntlabel Policy label for devfs_dirent to be updated.
vp Parent vnode Locked

vnodelabel Policy label for vp

Update the devfs_dirent label from the passed devfs vnode label. This call will be made when a devfs vnode has
been successfully relabeled to commit the label change such that it lasts even if the vnode is recycled. It will also be
made when when a symlink is created in devfs, following a call to mac_vnode_create_from_vnode to initialize
the vnode label.

63

Chapter 6 The TrustedBSD MAC Framework

6.7.3.2 IPC Object Labeling Event Operations
6.7.3.2.1 mpo_create_mbuf_from_socket

void mpo_create_mbuf from_socket (struct socket *so, struct label *socketlabel, struct
mbuf *m, struct label *mbuflabel);

Parameter Description Locking
socket Socket Socket locking WIP

socketlabel Policy label for socket
m Object; mbuf
mbuflabel Policy label to fill in for m

Set the label on a newly created mbuf header from the passed socket label. This call is made when a new datagram or
message is generated by the socket and stored in the passed mbuf.

6.7.3.2.2 mpo_create_pipe

void mpo_create_pipe (struct ucred xcred, struct pipe *pipe, struct label x*pipelabel);

Parameter Description Locking
cred Subject credential
pipe Pipe

pipelabel Policy label associated with pipe

Set the label on a newly created pipe from the passed subject credential. This call is made when a new pipe is created.

6.7.3.2.3 mpo_create_socket

void mpo_create_socket (struct ucred *cred, struct socket xso, struct label
*socketlabel) ;

Parameter Description Locking
cred Subject credential Immutable
s0 Object; socket to label

socketlabel Labelto fill in for so

Set the label on a newly created socket from the passed subject credential. This call is made when a socket is created.

64

Chapter 6 The TrustedBSD MAC Framework

6.7.3.2.4 mpo_create_socket_from socket

void mpo_create_socket_from_socket (struct socket xoldsocket, struct label
xoldsocketlabel, struct socket xnewsocket, struct label xnewsocketlabel);

Parameter Description Locking

oldsocket Listening socket
oldsocketlabel Policy label associated with oldsocket
newsocket New socket

newsocketlabel Policy label associated with newsocketlabel

Label a socket, newsocket, newly accept(2)ed, based on the listen(2) socket, oldsocket.

6.7.3.2.5 mpo_relabel_pipe

void mpo_relabel_ pipe (struct ucred *cred, struct pipe xpipe, struct label xoldlabel,
struct label xnewlabel);

Parameter Description Locking
cred Subject credential
pipe Pipe

oldlabel Current policy label associated with pipe
newlabel Policy label update to apply to pipe

Apply a new label, newlabel, to pipe.

6.7.3.2.6 mpo_relabel_socket

void mpo_relabel_socket (struct ucred *cred, struct socket xso, struct label xoldlabel,
struct label xnewlabel);

Parameter Description Locking
cred Subject credential ~ Immutable
so Object; socket

oldlabel Current label for so
newlabel Label update for so

Update the label on a socket from the passed socket label update.

65

Chapter 6 The TrustedBSD MAC Framework

6.7.3.2.7 mpo_set_socket_peer from mbuf

void mpo_set_socket_peer_ from mbuf (struct mbuf smbuf, struct label xmbuflabel, struct
label xoldlabel, struct label xnewlabel);

Parameter Description Locking

mbuf First datagram received over socket
mbuflabel Label for mburf

oldlabel Current label for the socket

newlabel Policy label to be filled out for the socket

Set the peer label on a stream socket from the passed mbuf label. This call will be made when the first datagram is
received by the stream socket, with the exception of Unix domain sockets.

6.7.3.2.8 mpo_set_socket_peer from socket

void mpo_set_socket_peer_ from_ socket (struct socket xoldsocket, struct label
xoldsocketlabel, struct socket xnewsocket, struct label *newsocketpeerlabel);

Parameter Description Locking
oldsocket Local socket

oldsocketlabel Policy label for oldsocket

newsocket Peer socket

newsocketpeerlabel Policy label to fill in for newsocket

Set the peer label on a stream UNIX domain socket from the passed remote socket endpoint. This call will be made
when the socket pair is connected, and will be made for both endpoints.

6.7.3.3 Network Object Labeling Event Operations

6.7.3.3.1 mpo_create_bpfdesc

void mpo_create_bpfdesc(struct ucred *cred, struct bpf_d xbpf d, struct label
*bpflabel) ;

Parameter Description Locking
cred Subject credential Immutable
bpf_d Object; bpf descriptor

66

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
bpf Policy label to be filled in for bp£f_d

Set the label on a newly created BPF descriptor from the passed subject credential. This call will be made when a
BPF device node is opened by a process with the passed subject credential.

6.7.3.3.2 mpo_create_ifnet

void mpo_create_ifnet (struct ifnet *ifnet, struct label *ifnetlabel);

Parameter Description Locking

ifnet Network interface
ifnetlabel Policy label to fill in for i fnet

Set the label on a newly created interface. This call may be made when a new physical interface becomes available to
the system, or when a pseudo-interface is instantiated during the boot or as a result of a user action.

6.7.3.3.3 mpo_create_ipg

void mpo_create_ipqg(struct mbuf xfragment, struct label *fragmentlabel, struct ipg
*ipg, struct label xipglabel);

Parameter Description Locking

fragment First received IP fragment
fragmentlabel Policy label for fragment
ipg IP reassembly queue to be labeled
ipglabel Policy label to be filled in for ipg

Set the label on a newly created IP fragment reassembly queue from the mbuf header of the first received fragment.

6.7.3.3.4 mpo_create_datagram from_ipqg

void mpo_create_create_datagram from ipqg(struct ipg xipg, struct label xipqglabel,
struct mbuf xdatagram, struct label xdatagramlabel);

Parameter Description Locking
ipg IP reassembly queue
ipglabel Policy label for ipg

67

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
datagram Datagram to be labeled
datagramlabel Policy label to be filled in for datagramlabel

Set the label on a newly reassembled IP datagram from the IP fragment reassembly queue from which it was
generated.

6.7.3.3.5 mpo_create fragment

void mpo_create_fragment (struct mbuf xdatagram, struct label xdatagramlabel, struct
mbuf xfragment, struct label xfragmentlabel);

Parameter Description Locking

datagram Datagram
datagramlabel Policy label for datagram
fragment Fragment to be labeled

fragmentlabel Policy label to be filled in for datagram

Set the label on the mbuf header of a newly created IP fragment from the label on the mbuf header of the datagram it
was generate from.

6.7.3.3.6 mpo_create _mbuf_ from mbuf

void mpo_create_mbuf from mbuf (struct mbuf xoldmbuf, struct label xoldmbuflabel,
struct mbuf xnewmbuf, struct label xnewmbuflabel);

Parameter Description Locking

oldmbuf Existing (source) mbuf

oldmburflabel Policy label for oldmbuf
newmbuf New mbuf to be labeled
newmbuflabel Policy label to be filled in for newmbuf

Set the label on the mbuf header of a newly created datagram from the mbuf header of an existing datagram. This
call may be made in a number of situations, including when an mbuf is re-allocated for alignment purposes.

6. 7.3.3.7mpo_create_mbuf_linklayer

void mpo_create_mbuf_ linklayer (struct ifnet xifnet, struct label xifnetlabel, struct
mbuf xmbuf, struct label *mbuflabel);

68

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
ifnet Network interface

ifnetlabel Policy label for i fnet
mbuf mbuf header for new datagram
mbuflabel Policy label to be filled in for mburf

Set the label on the mbuf header of a newly created datagram generated for the purposes of a link layer response for
the passed interface. This call may be made in a number of situations, including for ARP or ND6 responses in the

IPv4 and IPv6 stacks.

6.7.3.3.8 mpo_create_mbuf_ from bpfdesc

void mpo_create_mbuf from bpfdesc(struct bpf_d *bpf_d, struct label xbpflabel, struct
mbuf *mbuf, struct label *mbuflabel);

Parameter Description Locking
bpf_d BPF descriptor

bpflabel Policy label for bpfiabel
mbuf New mbuf to be labeled
mbuflabel Policy label to fill in for mbuf

Set the label on the mbuf header of a newly created datagram generated using the passed BPF descriptor. This call is
made when a write is performed to the BPF device associated with the passed BPF descriptor.

6.7.3.3.9 mpo_create _mbuf from ifnet

void mpo_create_mbuf from_ ifnet (struct ifnet xifnet, struct label *ifnetlabel, struct
mbuf *mbuf, struct label *mbuflabel);

Parameter Description Locking

ifnet Network interface

ifnetlabel Policy label for i fnetlabel
mbuf mbuf header for new datagram

mbuflabel Policy label to be filled in for mbuf

Set the label on the mbuf header of a newly created datagram generated from the passed network interface.

69

Chapter 6 The TrustedBSD MAC Framework

6.7.3.3.10 mpo_create_mbuf _multicast_encap

void mpo_create_mbuf multicast_encap (struct mbuf *xoldmbuf, struct label xoldmbuflabel,
struct ifnet xifnet, struct label *ifnetlabel, struct mbuf *newmbuf, struct label

*newmbuflabel) ;
Parameter Description Locking
oldmbuf mbuf header for existing datagram

oldmburlabel Policy label for oldmbuf

ifnet Network interface

ifnetlabel Policy label for i fnet

newmbuf mbuf header to be labeled for new datagram

newmbuflabel Policy label to be filled in for newmburf

Set the label on the mbuf header of a newly created datagram generated from the existing passed datagram when it is
processed by the passed multicast encapsulation interface. This call is made when an mbuf is to be delivered using
the virtual interface.

6.7.3.3.11 mpo_create_mbuf_netlayer

void mpo_create_mbuf netlayer (struct mbuf xoldmbuf, struct label xoldmbuflabel, struct
mbuf xnewmbuf, struct label xnewmbuflabel);

Parameter Description Locking

oldmbuf Received datagram

oldmburflabel Policy label for oldmbuf
newmbuf Newly created datagram

newmbuflabel Policy label for newmbuf

Set the label on the mbuf header of a newly created datagram generated by the IP stack in response to an existing
received datagram (oldmbuf). This call may be made in a number of situations, including when responding to ICMP
request datagrams.

6.7.3.3.12 mpo_ fragment_match

int mpo_fragment_match (struct mbuf xfragment, struct label *fragmentlabel, struct ipg
*ipg, struct label xipglabel);

Parameter Description Locking

70

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

fragment IP datagram fragment

fragmentlabel Policy label for fragment
ipq IP fragment reassembly queue
ipglabel Policy label for ipg

Determine whether an mbuf header containing an IP datagram (fragment) fragment matches the label of the passed
IP fragment reassembly queue (ipg). Return (1) for a successful match, or (0) for no match. This call is made when
the IP stack attempts to find an existing fragment reassembly queue for a newly received fragment; if this fails, a new
fragment reassembly queue may be instantiated for the fragment. Policies may use this entry point to prevent the
reassembly of otherwise matching IP fragments if policy does not permit them to be reassembled based on the label
or other information.

6.7.3.3.13 mpo_relabel_ifnet

void mpo_relabel_ifnet (struct ucred *cred, struct ifnet xifnet, struct label
*1fnetlabel, struct label *newlabel);

Parameter Description Locking
cred Subject credential
ifnet Object; Network interface

ifnetlabel Policy label for ifnet
newlabel Label update to apply to i fnet

Update the label of network interface, i fnet, based on the passed update label, newlabel, and the passed subject
credential, cred.

6.7.3.3.14 mpo_update_ipqg

void mpo_update_ ipqg(struct mbuf *fragment, struct label xfragmentlabel, struct ipg
*ipqg, struct label xipglabel);

Parameter Description Locking

mbuf IP fragment
mbuflabel Policy label for mbuf
ipg IP fragment reassembly queue

ipglabel Policy label to be updated for ipg

Update the label on an IP fragment reassembly queue (ipg) based on the acceptance of the passed IP fragment mbuf
header (mbuf).

71

Chapter 6 The TrustedBSD MAC Framework

6.7.3.4 Process Labeling Event Operations

6.7.3.4.1 mpo_create_cred

void mpo_create_cred (struct ucred *parent_cred, struct ucred *child cred);

Parameter Description Locking

parent_cred Parent subject credential
child _cred Child subject credential

Set the label of a newly created subject credential from the passed subject credential. This call will be made when
crcopy(9) is invoked on a newly created struct ucred. This call should not be confused with a process forking or
creation event.

6.7.3.4.2 mpo_execve_transition

void mpo_execve_transition (struct ucred xold, struct ucred *new, struct vnode =*vp,
struct label *vnodelabel);

Parameter Description Locking
old Existing subject credential Immutable
new New subject credential to be labeled

vp File to execute Locked

vnodelabel Policy label for vp

Update the label of a newly created subject credential (new) from the passed existing subject credential (o1d) based
on a label transition caused by executing the passed vnode (vp). This call occurs when a process executes the passed
vnode and one of the policies returns a success from the mpo_execve_will_transition entry point. Policies may
choose to implement this call simply by invoking mpo_create_cred and passing the two subject credentials so as
not to implement a transitioning event. Policies should not leave this entry point unimplemented if they implement
mpo_create_cred, even if they do not implement mpo_execve_will_transition.

6.7.3.4.3 mpo_execve_will_transition

int mpo_execve will transition(struct ucred xold, struct vnode *vp, struct label
*vnodelabel) ;

Parameter Description Locking

old Subject credential prior to execve(2) Immutable

72

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
vp File to execute

vnodelabel Policy label for vp

Determine whether the policy will want to perform a transition event as a result of the execution of the passed vnode
by the passed subject credential. Return 1 if a transition is required, O if not. Even if a policy returns 0, it should
behave correctly in the presence of an unexpected invocation of mpo_execve_transition, as that call may happen
as a result of another policy requesting a transition.

6.7.3.4.4 mpo_create_proc0

void mpo_create_procO (struct ucred xcred);

Parameter Description Locking

cred Subject credential to be filled in

Create the subject credential of process 0, the parent of all kernel processes.

6.7.3.4.5 mpo_create_procl

void mpo_create_procl (struct ucred =*cred);

Parameter Description Locking

cred Subject credential to be filled in

Create the subject credential of process 1, the parent of all user processes.

6.7.3.4.6 mpo_relabel cred

void mpo_relabel cred(struct ucred *cred, struct label xnewlabel);

Parameter Description Locking

cred Subject credential

newlabel Label update to apply to cred

Update the label on a subject credential from the passed update label.

73

Chapter 6 The TrustedBSD MAC Framework

6.7.4 Access Control Checks

Access control entry points permit policy modules to influence access control decisions made by the kernel.
Generally, although not always, arguments to an access control entry point will include one or more authorizing
credentials, information (possibly including a label) for any other objects involved in the operation. An access
control entry point may return 0 to permit the operation, or an errno(2) error value. The results of invoking the entry
point across various registered policy modules will be composed as follows: if all modules permit the operation to
succeed, success will be returned. If one or modules returns a failure, a failure will be returned. If more than one
module returns a failure, the errno value to return to the user will be selected using the following precedence,
implemented by the error_select () function in kern_mac.c:

Most precedence EDEADLK
EINVAL
ESRCH
EACCES

Least precedence EPERM

If none of the error values returned by all modules are listed in the precedence chart then an arbitrarily selected value
from the set will be returned. In general, the rules provide precedence to errors in the following order: kernel failures,
invalid arguments, object not present, access not permitted, other.

6.7.4.1 mpo_check_bpfdesc_receive

int mpo_check bpfdesc_receive (struct bpf_d xbpf_d, struct label xbpflabel, struct
ifnet *ifnet, struct label xifnetlabel);

Parameter Description Locking

bpf_d Subject; BPF descriptor
bpflabel Policy label for bp£f_d
ifnet Object; network interface

ifnetlabel Policy label for i fnet

Determine whether the MAC framework should permit datagrams from the passed interface to be delivered to the
buffers of the passed BPF descriptor. Return (0) for success, or an errno value for failure Suggested failure:
EACCES for label mismatches, EPERM for lack of privilege.

6.7.4.2 mpo_check_kenv_dump

int mpo_check_kenv_dump (struct ucred *cred);

Parameter Description Locking

cred Subject credential

74

Chapter 6 The TrustedBSD MAC Framework

Determine whether the subject should be allowed to retrieve the kernel environment (see kenv(2)).

6.7.4.3 mpo_check_kenv_get

int mpo_check_kenv_get (struct ucred xcred, char xname);

Parameter Description Locking
cred Subject credential
name Kernel environment variable name

Determine whether the subject should be allowed to retrieve the value of the specified kernel environment variable.

6.7.4.4 mpo_check_kenv_set

int mpo_check_kenv_set (struct ucred xcred, char xname);

Parameter Description Locking
cred Subject credential
name Kernel environment variable name

Determine whether the subject should be allowed to set the specified kernel environment variable.

6.7.4.5 mpo_check_kenv_unset

int mpo_check kenv_unset (struct ucred xcred, char *name);

Parameter Description Locking
cred Subject credential
name Kernel environment variable name

Determine whether the subject should be allowed to unset the specified kernel environment variable.

6.7.4.6 mpo_check_kld_load

int mpo_check_kld load(struct ucred xcred, struct vnode =*vp, struct label *vlabel);

75

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

vp Kernel module vnode

vliabel Label associated with vp

Determine whether the subject should be allowed to load the specified module file.

6.7.4.7 mpo_check_k1d_stat

int mpo_check_kld_stat (struct ucred xcred);

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to retrieve a list of loaded kernel module files and associated
statistics.

6.7.4.8 mpo_check_kld_unload

int mpo_check_kld unload (struct ucred xcred);

Parameter Description Locking

cred Subject credential

Determine whether the subject should be allowed to unload a kernel module.

6.7.4.9 mpo_check_pipe_ioctl

int mpo_check_pipe_ioctl (struct ucred xcred, struct pipe xpipe, struct label
*pipelabel, unsigned long cmd, void =xdata);

Parameter Description Locking
cred Subject credential

pipe Pipe

pipelabel Policy label associated with pipe

cmd ioctl(2) command

data ioctl(2) data

76

Chapter 6 The TrustedBSD MAC Framework

Determine whether the subject should be allowed to make the specified ioctl(2) call.

6.7.4.10 mpo_check_pipe_poll

int mpo_check_pipe_poll (struct ucred *cred, struct pipe *pipe, struct label

*pipelabel);

Parameter Description Locking
cred Subject credential
pipe Pipe

pipelabel Policy label associated with pipe

Determine whether the subject should be allowed to poll pipe.

6.7.4.11 mpo_check_pipe_read

int mpo_check pipe_read(struct ucred *cred, struct pipe xpipe, struct label

«*pipelabel) ;

Parameter Description Locking
cred Subject credential
pipe Pipe

pipelabel Policy label associated with pipe

Determine whether the subject should be allowed read access to pipe.

6.7.4.12 mpo_check_pipe_relabel

int mpo_check_pipe_relabel (struct ucred xcred, struct pipe *pipe, struct label

+*pipelabel, struct label *newlabel);

Parameter Description Locking
cred Subject credential
pipe Pipe

pipelabel Current policy label associated with pipe
newlabel Label update to pipelabel

Determine whether the subject should be allowed to relabel pipe.

Chapter 6 The TrustedBSD MAC Framework

6.7.4.13 mpo_check_pipe_stat

int mpo_check_pipe_stat (struct ucred xcred, struct pipe *pipe, struct label
*pipelabel);

Parameter Description Locking

cred Subject credential
pipe Pipe
pipelabel Policy label associated with pipe

Determine whether the subject should be allowed to retrieve statistics related to pipe.

6.7.4.14 mpo_check_pipe_write

int mpo_check_pipe_write (struct ucred xcred, struct pipe *pipe, struct label
*pipelabel);

Parameter Description Locking

cred Subject credential
pipe Pipe
pipelabel Policy label associated with pipe

Determine whether the subject should be allowed to write to pipe.

6.7.4.15 mpo_check_socket_bind

int mpo_check_socket_bind (struct ucred *cred, struct socket xsocket, struct label
*socketlabel, struct sockaddr *xsockaddr);

Parameter Description Locking
cred Subject credential
socket Socket to be bound

socketlabel Policy label for socket
sockaddr Address of socket

6.7.4.16 mpo_check_socket_connect

int mpo_check_socket_connect (struct ucred *cred, struct socket *socket, struct label

78

Chapter 6 The TrustedBSD MAC Framework

*socketlabel, struct sockaddr xsockaddr);

Parameter Description Locking
cred Subject credential
socket Socket to be connected

socketlabel Policy label for socket
sockaddr Address of socket

Determine whether the subject credential (cred) can connect the passed socket (socket) to the passed socket
address (sockaddr). Return O for success, or an errno value for failure. Suggested failure: EACCES for label
mismatches, EPERM for lack of privilege.

6.7.4.17 mpo_check_socket_receive

int mpo_check_socket_receive (struct ucred *cred, struct socket *so, struct label
*socketlabel) ;

Parameter Description Locking
cred Subject credential
so Socket

socketlabel Policy label associated with so

Determine whether the subject should be allowed to receive information from the socket so.

6.7.4.18 mpo_check_socket_send

int mpo_check_socket_send(struct ucred xcred, struct socket *so, struct label
*socketlabel) ;

Parameter Description Locking
cred Subject credential
s0 Socket

socketlabel Policy label associated with so

Determine whether the subject should be allowed to send information across the socket so.

6.7.4.19 mpo_check_cred_visible

int mpo_check_cred_visible (struct ucred xul, struct ucred =*u2);

79

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
ul Subject credential
u2 Object credential

Determine whether the subject credential ul can “see” other subjects with the passed subject credential u2. Return 0
for success, or an errno value for failure. Suggested failure: EACCES for label mismatches, EPERM for lack of
privilege, or ESRCH to hide visibility. This call may be made in a number of situations, including inter-process
status sysctl’s used by ps, and in procfs lookups.

6.7.4.20 mpo_check_socket_visible

int mpo_check_socket_visible (struct ucred *cred, struct socket *socket, struct label
*socketlabel) ;

Parameter Description Locking
cred Subject credential
socket Object; socket

socketlabel Policy label for socket

6.7.4.21 mpo_check_ifnet_relabel

int mpo_check_ifnet_relabel (struct ucred *cred, struct ifnet xifnet, struct label
*ifnetlabel, struct label *newlabel);

Parameter Description Locking
cred Subject credential
ifnet Object; network interface

ifnetlabel Existing policy label for i fnet
newlabel Policy label update to later be applied to i fnet

Determine whether the subject credential can relabel the passed network interface to the passed label update.

6.7.4.22 mpo_check_socket_relabel

int mpo_check_socket_relabel (struct ucred xcred, struct socket *socket, struct label
*socketlabel, struct label xnewlabel);

80

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential
socket Object; socket

socketlabel Existing policy label for socket
newlabel Label update to later be applied to socketlabel

Determine whether the subject credential can relabel the passed socket to the passed label update.

6.7.4.23 mpo_check_cred_relabel

int mpo_check cred relabel (struct ucred *cred, struct label *newlabel);

Parameter Description Locking

cred Subject credential

newlabel Label update to later be applied to cred

Determine whether the subject credential can relabel itself to the passed label update.

6.7.4.24 mpo_check_vnode_relabel

int mpo_check_vnode_relabel (struct ucred xcred, struct vnode xvp, struct label
*vnodelabel, struct label xnewlabel);

Parameter Description Locking
cred Subject credential Immutable
vp Object; vnode Locked

vnodelabel Existing policy label for vp
newlabel Policy label update to later be applied to vp

Determine whether the subject credential can relabel the passed vnode to the passed label update.

6.7.4.25 mpo_check_mount_stat

int mpo_check_mount_stat (struct ucred *cred, struct mount xmp, struct label

*mountlabel) ;
Parameter Description Locking
cred Subject credential

81

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
mp Object; file system mount

mountlabel Policy label for mp

Determine whether the subject credential can see the results of a statfs performed on the file system. Return 0 for
success, or an errno value for failure. Suggested failure: EACCES for label mismatches or EPERM for lack of
privilege. This call may be made in a number of situations, including during invocations of statfs(2) and related calls,
as well as to determine what file systems to exclude from listings of file systems, such as when getfsstat(2) is invoked.

6.7.4.26 mpo_check_proc_debug

int mpo_check_proc_debug (struct ucred *cred, struct proc xproc);

Parameter Description Locking
cred Subject credential Immutable
proc Object; process

Determine whether the subject credential can debug the passed process. Return 0 for success, or an errno value for
failure. Suggested failure: EACCES for label mismatch, EPERM for lack of privilege, or ESRCH to hide visibility of
the target. This call may be made in a number of situations, including use of the ptrace(2) and ktrace(2) APIs, as well
as for some types of procfs operations.

6.7.4.27 mpo_check_vnode_access

int mpo_check_vnode_access (struct ucred *cred, struct vnode xvp, struct label xlabel,
int flags);

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

flags access(2) flags

Determine how invocations of access(2) and related calls by the subject credential should return when performed on
the passed vnode using the passed access flags. This should generally be implemented using the same semantics used
in mpo_check_vnode_open. Return 0 for success, or an errno value for failure. Suggested failure: EACCES for
label mismatches or EPERM for lack of privilege.

82

Chapter 6 The TrustedBSD MAC Framework

6.7.4.28 mpo_check_vnode_chdir

int mpo_check_vnode_chdir (struct ucred *cred, struct vnode xdvp, struct label
xdlabel) ;

Parameter Description Locking
cred Subject credential

dvp Object; vnode to chdir(2) into

dlabel Policy label for dvp

Determine whether the subject credential can change the process working directory to the passed vnode. Return O for
success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.29 mpo_check_vnode_chroot

int mpo_check_vnode_chroot (struct ucred *cred, struct vnode xdvp, struct label
~*dlabel) ;

Parameter Description Locking
cred Subject credential

dvp Directory vnode

dlabel Policy label associated with dvp

Determine whether the subject should be allowed to chroot(2) into the specified directory (dvp).

6.7.4.30 mpo_check_vnode_create

int mpo_check _vnode_create (struct ucred *cred, struct vnode =*dvp, struct label
xdlabel, struct componentname *cnp, struct vattr xvap);

Parameter Description Locking
cred Subject credential

dvp Object; vnode

dlabel Policy label for dvp

cnp Component name for dvp

vap vnode attributes for vap

Determine whether the subject credential can create a vnode with the passed parent directory, passed name

83

Chapter 6 The TrustedBSD MAC Framework
information, and passed attribute information. Return O for success, or an errno value for failure. Suggested failure:

EACCES for label mismatch, or EPERM for lack of privilege. This call may be made in a number of situations,
including as a result of calls to open(2) with O_CREAT, mknod(2), mkfifo(2), and others.

6.7.4.31 mpo_check_vnode_delete

int mpo_check_vnode_delete (struct ucred *cred, struct vnode xdvp, struct label
xdlabel, struct vnode xvp, void xlabel, struct componentname xcnp);

Parameter Description Locking
cred Subject credential

dvp Parent directory vnode

dlabel Policy label for dvp

vp Object; vnode to delete

label Policy label for vp

cnp Component name for vp

Determine whether the subject credential can delete a vnode from the passed parent directory and passed name
information. Return O for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or
EPERM for lack of privilege. This call may be made in a number of situations, including as a result of calls to
unlink(2) and rmdir(2). Policies implementing this entry point should also implement mpo_check_rename_to to
authorize deletion of objects as a result of being the target of a rename.

6.7.4.32 mpo_check_vnode_deleteacl

int mpo_check_vnode_deleteacl (struct ucred *cred, struct vnode *vp, struct label
*label, acl_type_t type);

Parameter Description Locking
cred Subject credential Immutable
vp Object; vnode Locked
label Policy label for vp

type ACL type

Determine whether the subject credential can delete the ACL of passed type from the passed vnode. Return O for
success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

84

Chapter 6 The TrustedBSD MAC Framework

6.7.4.33 mpo_check_vnode_exec

int mpo_check_vnode_exec (struct ucred xcred, struct vnode *vp, struct label xlabel);

Parameter Description Locking
cred Subject credential

vp Object; vnode to execute

label Policy label for vp

Determine whether the subject credential can execute the passed vnode. Determination of execute privilege is made
separately from decisions about any transitioning event. Return O for success, or an errno value for failure.
Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.34 mpo_check_vnode_getacl

int mpo_check_vnode_getacl (struct ucred xcred, struct vnode xvp, struct label xlabel,
acl_type_t type);

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

type ACL type

Determine whether the subject credential can retrieve the ACL of passed type from the passed vnode. Return O for
success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.35 mpo_check_vnode_getextattr

int mpo_check_vnode_getextattr (struct ucred xcred, struct vnode *vp, struct label
*label, int attrnamespace, const char *name, struct uio *uio);

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

attrnamespace Extended attribute namespace

name Extended attribute name

85

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking

uio I/O structure pointer; see uio(9)

Determine whether the subject credential can retrieve the extended attribute with the passed namespace and name
from the passed vnode. Policies implementing labeling using extended attributes may be interested in special
handling of operations on those extended attributes. Return O for success, or an errno value for failure. Suggested
failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.36 mpo_check_vnode_link

int mpo_check_vnode_link (struct ucred xcred, struct vnode xdvp, struct label xdlabel,
struct vnode xvp, struct label =xlabel, struct componentname x*cnp);

Parameter Description Locking
cred Subject credential

dvp Directory vnode

dlabel Policy label associated with dvp

vp Link destination vnode

label Policy label associated with vp

cnp Component name for the link being created

Determine whether the subject should be allowed to create a link to the vnode vp with the name specified by cnp.

6.7.4.37 mpo_check_vnode_mmap

int mpo_check_wvnode_mmap (struct ucred *cred, struct vnode xvp, struct label =xlabel,
int prot);

Parameter Description Locking
cred Subject credential

vp Vnode to map

label Policy label associated with vp

prot Mmap protections (see mmap(2))

Determine whether the subject should be allowed to map the vnode vp with the protections specified in prot.

6.7.4.38 mpo_check_vnode_mmap_downgrade

void mpo_check_vnode_mmap_downgrade (struct ucred xcred, struct vnode *vp, struct label
*label, int =*prot);

86

Chapter 6 The TrustedBSD MAC Framework

Parameter Description

cred See Section 6.7.4.37.

vp

label

prot Mmap protections to be downgraded

Downgrade the mmap protections based on the subject and object labels.

6.7.4.39 mpo_check_vnode_mprotect

int mpo_check vnode_mprotect (struct ucred xcred, struct vnode xvp, struct label
xlabel, int prot);

Parameter Description Locking
cred Subject credential

vp Mapped vnode

prot Memory protections

Determine whether the subject should be allowed to set the specified memory protections on memory mapped from
the vnode vp.

6.7.4.40 mpo_check_vnode_poll

int mpo_check_vnode_poll (struct ucred *active_cred, struct ucred xfile cred, struct
vnode xvp, struct label xlabel);

Parameter Description Locking

active_cred Subject credential

file cred Credential associated with the struct file
vp Polled vnode

label Policy label associated with vp

Determine whether the subject should be allowed to poll the vnode vp.

6.7.4.41 mpo_check_vnode_rename_from

int mpo_vnode_rename_from(struct ucred *cred, struct vnode xdvp, struct label xdlabel,
struct vnode xvp, struct label xlabel, struct componentname *cnp);

87

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

dvp Directory vnode

dlabel Policy label associated with dvp

vp Vnode to be renamed

label Policy label associated with vp

cnp Component name for vp

Determine whether the subject should be allowed to rename the vnode vp to something else.

6.7.4.42 mpo_check_vnode_rename_to

int mpo_check_vnode_rename_to (struct ucred xcred, struct vnode *dvp, struct label
xdlabel, struct vnode xvp, struct label xlabel, int samedir, struct componentname

*Cnp) ;

Parameter Description Locking
cred Subject credential

dvp Directory vnode

dlabel Policy label associated with dvp

vp Overwritten vnode

label Policy label associated with vp

samedir Boolean; 1 if the source and destination directories are the same

cnp Destination component name

Determine whether the subject should be allowed to rename to the vnode vp, into the directory dvp, or to the name
represented by cnp. If there is no existing file to overwrite, vp and 1abel will be NULL.

6.7.4.43 mpo_check_socket_listen

int mpo_check_socket_listen (struct ucred xcred, struct socket xsocket, struct label
*socketlabel) ;

Parameter Description Locking
cred Subject credential
socket Object; socket

socketlabel Policy label for socket

Determine whether the subject credential can listen on the passed socket. Return O for success, or an errno value for

88

Chapter 6 The TrustedBSD MAC Framework

failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.44 mpo_check_vnode_lookup

int mpo_check_vnode_lookup (struct ucred *cred, struct vnode *dvp, struct label
*dlabel, struct componentname <*cnp);

Parameter Description Locking
cred Subject credential

dvp Object; vnode

dlabel Policy label for dvp

cnp Component name being looked up

Determine whether the subject credential can perform a lookup in the passed directory vnode for the passed name.
Return O for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for
lack of privilege.

6.7.4.45 mpo_check_vnode_open

int mpo_check_vnode_open (struct ucred *cred, struct vnode xvp, struct label xlabel,
int acc_mode) ;

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

acc_mode open(2) access mode

Determine whether the subject credential can perform an open operation on the passed vnode with the passed access
mode. Return O for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM
for lack of privilege.

6.7.4.46 mpo_check_vnode_readdir

int mpo_check_vnode_readdir (struct ucred *cred, struct vnode *dvp, struct label
+*dlabel) ;

Parameter Description Locking

cred Subject credential

89

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
dvp Object; directory vnode
dlabel Policy label for dvp

Determine whether the subject credential can perform a readdir operation on the passed directory vnode. Return O
for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.47 mpo_check_vnode_readlink

int mpo_check_vnode_readlink (struct ucred *xcred, struct vnode *vp, struct label
*label) ;

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

Determine whether the subject credential can perform a readlink operation on the passed symlink vnode. Return 0
for success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege. This call may be made in a number of situations, including an explicit readlink call by the user process,
or as a result of an implicit readlink during a name lookup by the process.

6.7.4.48 mpo_check_vnode_revoke

int mpo_check_vnode_revoke (struct ucred *cred, struct vnode xvp, struct label xlabel);

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

Determine whether the subject credential can revoke access to the passed vnode. Return O for success, or an errno
value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.49 mpo_check_vnode_setacl

int mpo_check_vnode_setacl (struct ucred *cred, struct vnode xvp, struct label xlabel,
acl_type_t type, struct acl xacl);

90

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

type ACL type

acl ACL

Determine whether the subject credential can set the passed ACL of passed type on the passed vnode. Return O for
success, or an errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of
privilege.

6.7.4.50 mpo_check_vnode_setextattr

int mpo_check_vnode_setextattr (struct ucred xcred, struct vnode *vp, struct label
«*label, int attrnamespace, const char *name, struct uio *uio);

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

attrnamespace Extended attribute namespace

name Extended attribute name

uio I/O structure pointer; see uio(9)

Determine whether the subject credential can set the extended attribute of passed name and passed namespace on the
passed vnode. Policies implementing security labels backed into extended attributes may want to provide additional
protections for those attributes. Additionally, policies should avoid making decisions based on the data referenced
from uio, as there is a potential race condition between this check and the actual operation. The uio may also be
NULL if a delete operation is being performed. Return O for success, or an errno value for failure. Suggested failure:
EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.51 mpo_check_vnode_setflags

int mpo_check_vnode_setflags (struct ucred *cred, struct vnode xvp, struct label
~label, u_long flags);

Parameter Description Locking
cred Subject credential
vp Object; vnode

91

Chapter 6 The TrustedBSD MAC Framework

Parameter Description Locking
label Policy label for vp
flags File flags; see chflags(2)

Determine whether the subject credential can set the passed flags on the passed vnode. Return 0 for success, or an
errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack of privilege.

6.7.4.52 mpo_check_vnode_setmode

int mpo_check_vnode_setmode (struct ucred xcred, struct vnode xvp, struct label xlabel,
mode_t mode) ;

Parameter Description Locking
cred Subject credential

vp Object; vnode

label Policy label for vp

mode File mode; see chmod(2)

Determine whether the subject credential can set the passed mode on the passed vnode. Return O for success, or an
errno value for failure. Suggested failure: EACCES for label mismatch, or EPERM for lack