category-extras-0.53.5: Various modules and constructs inspired by category theory
Source code
Contents
Index
Control.Morphism.Zygo
Portability
non-portable (rank-2 polymorphism)
Stability
experimental
Maintainer
Edward Kmett <ekmett@gmail.com>
Description
Synopsis
type
Zygo
=
(,)
type
ZygoT
=
CoreaderT
distZygo
::
Functor
f =>
Algebra
f b ->
Dist
f (
Zygo
b)
distZygoT
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
Dist
f (
ZygoT
w b)
zygo
::
Functor
f =>
Algebra
f b ->
GAlgebra
f (
Zygo
b) a ->
FixF
f -> a
g_zygo
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
GAlgebra
f (
ZygoT
w b) a ->
FixF
f -> a
prepro_zygo
::
Functor
f =>
Algebra
f b ->
GAlgebra
f (
Zygo
b) a -> (f
:~>
f) ->
FixF
f -> a
g_prepro_zygo
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
GAlgebra
f (
ZygoT
w b) a -> (f
:~>
f) ->
FixF
f -> a
Documentation
type
Zygo
=
(,)
Source
type
ZygoT
=
CoreaderT
Source
distZygo
::
Functor
f =>
Algebra
f b ->
Dist
f (
Zygo
b)
Source
distZygoT
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
Dist
f (
ZygoT
w b)
Source
zygo
::
Functor
f =>
Algebra
f b ->
GAlgebra
f (
Zygo
b) a ->
FixF
f -> a
Source
g_zygo
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
GAlgebra
f (
ZygoT
w b) a ->
FixF
f -> a
Source
prepro_zygo
::
Functor
f =>
Algebra
f b ->
GAlgebra
f (
Zygo
b) a -> (f
:~>
f) ->
FixF
f -> a
Source
a zygomorphic prepromorphism
g_prepro_zygo
:: (
Functor
f,
Comonad
w) =>
GAlgebra
f w b ->
Dist
f w ->
GAlgebra
f (
ZygoT
w b) a -> (f
:~>
f) ->
FixF
f -> a
Source
a generalized zygomorphic prepromorphism
Produced by
Haddock
version 2.4.2