SNORT® Users Manual
2.8.5

The Snort Project

October 19, 2009

Copyright(©1998-2003 Martin Roesch
Copyright(©2001-2003 Chris Green
Copyright(©2003-2009 Sourcefire, Inc.

Contents

[L__Snort Overview 8
L1 _Getfing Startd e 8
L2 _snifferMaode e 8
L3 PacketloggerMaole 9
[1.4 Network Intrusion Detection System Mbde e 10

.41 NIDS Mode Qutput Optiohso v i i e 10
.42 Understanding Standard Alert OUEPUL o v o vt i e 11
.43 High Performance Configurafion 11
44 ChangingAlertOrder 12
L5 InlineMoad 12
51 _Snortinline Rule AppCAtoNn OMHEr o o v oo et e e e e e e e 13
.52 Replacing Packets with SnortInline 13
.53 Installing Snortlnlide 13
.54 RunningSnortinlihe 14
55 Using the Honeynet Snor nine TodKit« o oo v e e e e e e e e 14
[L5.6 TroubleshootingSnortinline, 14
L6 Miscellaneals e e 15
.61 RunningSnortasaDaerhont 15
[1.6.2 Runningin Rule Stub Creation Mbde oo ... 15
[.6.3 Obfuscating IP Address Prinfduts o e 15
[1.6.4 Specifying Multiple-Instance Identifiers 16
L7 Reading Pcaps. oo 16
[L7.1 Commandlinearguments 16
D72 Examplds 16
L8 Tunneling Protocol Suppbrt e 18
.81 Multiple Encapsulationsot i 18
82 Togginh o oo 18
L9 Morelnformatidn 19

[2__Configuring Snori 20
B ncludds 20
D11 Formbt 20
P12 Natabladso 20
P13 Confl. . . . oo 23
P2 Prepracessbrs 28
P21 Fradd 28
P22 Streand5 31
D23 sfPartschn. e 36
P24 RPCDecolle 41
.25 Performance Monifor e e 41
P26 HITPInspekt. e 44
P27 SMTP Prepracesbor 53
2.2.8 FTP/Telnet Preprocedsor v v v v it e e e e e e e e e 55
P29 SSH 62
£210 DCEIRPIC e 63
P2I1DNE 66
P2I2 SSITTIR . . o oo 66
2213 ARP SpaofPrepracedsor 67
2.2.14 DCE/RPC 2 PreproCeaSOr v v v vt i e e e e e e e e e 68
2.3 _Decoderand PreprocessorRUIES e e 82
P31 Configuridg 82
.32 Revertingtooriginalbehavior 83
P4 FEventProcesshg 83
P41 RateFilteridg 83
P42 EventEilteridg o 84
P43 FEventSuppresslon 87
P44 Fventloggidg 88
.5 Performance Profilihg e 88
51 RuleProfilidgo e 89
P52 PreprocessorProfillng 90
.53 Packet Performance Monitoring (PPM) 93
P66 Output ModuIBS 96
P61 alertsysloly 69
P62 alerffast 98
P63 alertfull 98
P64 alertunixsock. 99
P65 logtepdumb 99
P66 datababe o e 99

P68 Unifieh 102
P69 unifiedD 102
2610 alerpreludk 031
D611 lognul 103
2612 alerarubaactioh 104
£613 loglimith e 104
D7 HostAttribute Table 105
P71 Configuration Formdat. 105
.72 Atribute Table File Format.o 105
2.8 DynamicModulds. 107
P81 Formbht 107
.82 Directivds 107
.9 Reloadinga Snort Configurafion 108
.91 Fnablingsuppdrt e 108
P92 Reloadingaconfiguratlon 108
- ' i NS . . e e e e 109
.10 Multiple Configuratiofs e 110
[2.10.1 Creating Multiple Configuratidnso 110
.10.2 Configuration Specific Elemdnts 111
[.10.3 How Configurationisapplidd? 112
B__Writing Snort Ruled 113
B TR Basis o oo 113
B2 RulesHeaddrs 113
B21 RuleActiods 113
B22 Protocals oo 114
B23 IPAddressks 114
B24 PortNumbdrs 115
B25 TheDirectionOperalor 115
B2.6 Activate/DynamicRulbs 116
B3 RuleOptiols 116
B4 GeneralRuUIE OPHONS v v vttt e e 117
BAT My . . . oo 117
B42 teferende 117
B3 gill . .. 118
Baa _sill. ... 118
BABs el 119
BA6 CIASSIYDE . . o o oo 119

BA8 metadadta 121
B.49 GeneralRule Quick Referehce 121
B.5 _Payload Detection Rule OPIibNS oottt e e 122
BEI _conteht 122
BE2 nacabe. 123
BE3 TaWDVIAS oo 123
BE4 _deplh 124
BEE _OMSAt . . o v o oo e 124
BE6 distande 124
BEZ _WIlhih . . . o o oo e 125
B5.8 httpelienthady 125
B59 httpcooki® 251
B5.10 httpheaddr 261
B511 htpmethaoll 261
BEI2 httpurl o 12
B513 fasmatterh 127
B514 uriconteht 128
BEIs urileh 128
BEI6 JSOAIARL . . . o v o oo e e e e e 129
BEIZ DCe . . o o oo 129
BEI8 DVIEIESt o o o e 301
B519 bytejump 23
B5.20 ftphounde 133
BE21 asll oo 133
BE22 cds . . . 134
BE23 ACAIACE . . . o o o o e, 351
B524 dceopnumh 513
B525 deestubdath 135
[3.5.26 Payload Detection Quick Referdnceo 135
- i bNs . . e 136
BE1 _TagofSht o oo 136
BE2 Ml ... 136
B3 105 . . o o o e 136
BOA 0l . .. 137
BBE 0PI . . o o e 137
BB6 _TAghES . . . o o oo 138
BOZ _dSideo 138
BB8 TAgS . . . o o v oot 139

BEI0 AOWDIES o oo ot e 140
BBIL S0 . o . oo 141
BEI2-a0K . . . oo 141
BOI3 windoW oo 141
BBIA YR . . . oo 142
BEI5 0C00E . . o o oot 142
BEI6 icmpid o 142
BOIZ 0cmpsell o o 142
BBIB 10C . . o o 143
BEIO IDDIOID o o 143
BB20 Samelp o 143
B621 streamsizé 144
[3.6.22 Non-Payload Detection Quick Referénceo oo ... 144
- i NS . . . e e e 145
BZI 10gib . . . oo 145
BZ2 sessibn 145
BZ3 163D . . o e 146
BZa xeabt. 147
BZE 1Al . . o o oo 147
BZ6 ACIVAIRS . . . o o o o et e 148
BZ7 activatedbyl. 149
BZ8 COUBt . . o o oo 149
BZ9 replade 149
B.7.10 detectiofdilted, 149
- NCE e e e e 150
B8 RuleThreshollls 150
B9 Wriing GOOd RUIBS o o ot e 151
B91 ContentMatchihg e 152
[3.9.2 Catch the Vulnerability, Notthe Exploit oo v, 152
3.9.3 Catch the Oddities of the Protocolinthe Rule 152
B94 OptimizingRulds 153
B.95 TestingNumericalValdes 154
4__Making Snort Fastet 157
B1 MMAPedpcdp 157
5__Dynamic Module$ 158
Bl DataStructurbs 158
B.11 DynamicPluginMefao 158

B.13 DynamicEngineData oot e e 159
B.14 SESnortPacket 159
B15 DynamicRUIBS o 160

B2 Required FUNCHONS o ottt e 166
B21 Preprocessbrs 167
B.22 DetectionEngihe 167
B23 RUES e 168

B3 Examplds oo 169
531 PreprocessorExamdple 169
B32 RUES . . . oo o o 171
{6__Snort Developmerit 174
B.1 _SubmittingPatchles 174
6.2 SnortData FIOW o o v o 174
6.2.1 PreproCessbrs o 174
.22 DetectionPlugihs e 175
B.23 OutputPlugihs 175

B.3 _TheSnortTedm 176

Chapter 1

Snort Overview

This manual is based aftriting Snort Ruleby Martin Roesch and further work from Chris Greeomg@snort.org .

It was then maintained by Brian Caswelbmc@snort.org and now is maintained by the Snort Team. If you have a
better way to say something or find that something in the decuation is outdated, drop us a line and we will update
it. If you would like to submit patches for this document, yzan find the latest version of the documentatiorigX
format in the Snort CVS repository aoc/snort_manual.tex . Small documentation updates are the easiest way to
help out the Snort Project.

1.1 Getting Started

Snortreally isn’t very hard to use, but there are a lot of c@ndiline options to play with, and it's not always obvious
which ones go together well. This file aims to make using Seaster for new users.

Before we proceed, there are a few basic concepts you shoditstand about Snort. Snort can be configured to run
in three modes:

e Sniffer modewhich simply reads the packets off of the network and displdaem for you in a continuous
stream on the console (screen).
e Packet Logger modevhich logs the packets to disk.

e Network Intrusion Detection System (NIDS) moithes most complex and configurable configuration, which
allows Snort to analyze network traffic for matches againstex-defined rule set and performs several actions
based upon what it sees.

¢ Inline mode which obtains packets from iptables instead of from libpaad then causes iptables to drop or
pass packets based on Snort rules that use inline-spedditypes.

1.2 Sniffer Mode

First, let’s start with the basics. If you just want to printtéhe TCP/IP packet headers to the screen (i.e. sniffer jnode
try this:

Jsnort -v

This command will run Snort and just show the IP and TCP/UDRWP headers, nothing else. If you want to see the
application data in transit, try the following:

Jsnort -vd

This instructs Snort to display the packet data as well ahéaglers. If you want an even more descriptive display,
showing the data link layer headers, do this:

Jsnort -vde

(As an aside, these switches may be divided up or smasheithésgre any combination. The last command could also
be typed out as:

Jsnort -d -v -e

and it would do the same thing.)

1.3 Packet Logger Mode

OK, all of these commands are pretty cool, but if you want tord the packets to the disk, you need to specify a
logging directory and Snort will automatically know to gdadrpacket logger mode:

Jsnort -dev - .Jlog

Of course, this assumes you have a directory nalotedn the current directory. If you don’t, Snort will exit with
an error message. When Snort runs in this mode, it colleetsy/gacket it sees and places it in a directory hierarchy
based upon the IP address of one of the hosts in the datagram.

If you just specify a plain -I switch, you may notice that Sne@wmetimes uses the address of the remote computer
as the directory in which it places packets and sometimesei the local host address. In order to log relative to the
home network, you need to tell Snort which network is the hoetvork:

Jsnort -dev - Jlog -h 192.168.1.0/24

This rule tells Snort that you want to print out the data limda CP/IP headers as well as application data into the
directory./log , and you want to log the packets relative to the 192.1681a$sdC network. All incoming packets
will be recorded into subdirectories of the log directorythathe directory names being based on the address of the
remote (non-192.168.1) host.

ANOTE

Note that if both the source and destination hosts are ondheemetwork, they are logged to a directary
with a hname based on the higher of the two port numbers orgicdlse of a tie, the source address.

If you're on a high speed network or you want to log the packats a more compact form for later analysis, you
should consider logging in binary mode. Binary mode logsahekets in tcpdump format to a single binary file in the
logging directory:

Jsnort -l Jlog -b

Note the command line changes here. We don't need to spetibn® network any longer because binary mode
logs everything into a single file, which eliminates the nédell it how to format the output directory structure.
Additionally, you don’t need to run in verbose mode or spettie -d or -e switches because in binary mode the entire
packetis logged, not just sections of it. All you really néedo to place Snort into logger mode is to specify a logging
directory at the command line using the -I switch—the -b biagging switch merely provides a modifier that tells
Snort to log the packets in something other than the defatttud format of plain ASCII text.

Once the packets have been logged to the binary file, you ealthe packets back out of the file with any sniffer that
supports the tcpdump binary format (such as tcpdump or E#itleerSnort can also read the packets back by using the

-r switch, which puts it into playback mode. Packets from topgdump formatted file can be processed through Snort
in any of its run modes. For example, if you wanted to run afyitag file through Snort in sniffer mode to dump the
packets to the screen, you can try something like this:

Jsnort -dv -r packet.log

You can manipulate the data in the file in a number of ways tjindsnort’'s packet logging and intrusion detection
modes, as well as with the BPF interface that's availablsftoe command line. For example, if you only wanted to
see the ICMP packets from the log file, simply specify a BPEffidtt the command line and Snort will only see the
ICMP packets in the file:

Jsnort -dvr packet.log icmp

For more info on how to use the BPF interface, read the Sndrtgrdump man pages.

1.4 Network Intrusion Detection System Mode

To enable Network Intrusion Detection System (NIDS) modéhst you don’t record every single packet sent down
the wire, try this:

Jsnort -dev -l Jlog -h 192.168.1.0/24 -c snort.conf

wheresnort.conf is the name of your rules file. This will apply the rules confignin thesnort.conf file to
each packet to decide if an action based upon the rule tygmifile should be taken. If you don'’t specify an output
directory for the program, it will default tévar/log/snort

One thing to note about the last command line is that if Srsoging to be used in a long term way as an IDS, the
-v switch should be left off the command line for the sake afexsh The screen is a slow place to write data to, and
packets can be dropped while writing to the display.

It's also not necessary to record the data link headers fat applications, so you can usually omit the -e switch, too.
Jsnort -d -h 192.168.1.0/24 -l .llog -c snort.conf

This will configure Snort to run in its most basic NIDS formglying packets that trigger rules specified in the
snort.conf in plain ASCII to disk using a hierarchical directory strui (just like packet logger mode).

1.4.1 NIDS Mode Output Options

There are a number of ways to configure the output of Snort bS\thode. The default logging and alerting mecha-
nisms are to log in decoded ASCII format and use full alertge full alert mechanism prints out the alert message in
addition to the full packet headers. There are several atleer output modes available at the command line, as well
as two logging facilities.

Alert modes are somewhat more complex. There are sevennateles available at the command line: full, fast,
socket, syslog, console, cmg, and none. Six of these modescaessed with the -A command line switch. These
options are:

Option Description

-A fast Fast alert mode. Writes the alert in a simple format with a&8tamp, alert message, source and
destination IPs/ports.

-A full Full alert mode. This is the default alert mode and will bedu@etomatically if you do not specify
a mode.

-A unsock Sends alerts to a UNIX socket that another program can lgaten

-A none Turns off alerting.

-A console Sends “fast-style” alerts to the console (screen).

-A cmg Generates “cmg style” alerts.

10

Packets can be logged to their default decoded ASCII formtd a binary log file via the -b command line switch.
To disable packet logging altogether, use the -N commarmdcshivitch.

For output modes available through the configuration file,3ectiod 216.

ANOTE

Command line logging options override any output optiorecgjed in the configuration file. This allows
debugging of configuration issues quickly via the commamel.li

To send alerts to syslog, use the -s switch. The defaulitiasifor the syslog alerting mechanism are LAGTHPRIV
and LOGALERT. If you want to configure other facilities for syslogtput, use the output plugin directives in the
rules files. See Secti@gn 2.6.1 for more details on configsysipg output.

For example, use the following command line to log to def@ddcoded ASCII) facility and send alerts to syslog:
Jsnort -¢ snort.conf -I Jlog -h 192.168.1.0/24 -s

As another example, use the following command line to lodpéodefault facility in /var/log/snort and send alerts to a
fast alert file:

Jsnort -c snort.conf -A fast -h 192.168.1.0/24

1.4.2 Understanding Standard Alert Output

When Snort generates an alert message, it will usually likekthe following:
[**] [116:56:1] (snort_decoder): T/TCP Detected [**]

The first number is the Generator ID, this tells the user wbatfonent of Snort generated this alert. For a list of
GIDs, please read etc/generators in the Snort source. drcéisie, we know that this event came from the “decode”
(116) component of Snort.

The second number is the Snort ID (sometimes referred togaatire 1D). For a list of preprocessor SIDs, please see
etc/gen-msg.map. Rule-based SIDs are written directtytimt rules with thesid option. In this case;6 represents a
T/TCP event.

The third number is the revision ID. This number is primatised when writing signatures, as each rendition of the
rule should increment this number with tre option.

1.4.3 High Performance Configuration

If you want Snort to gdast(like keep up with a 1000 Mbps connection), you need to uskashiibgging and a unified
log reader such dsarnyard This allows Snort to log alerts in a binary form as fast assjtids while another program
performs the slow actions, such as writing to a database.

If you want a text file that’s easily parsable, but still sorhevfast, try using binary logging with the “fast” output
mechanism.

This will log packets in tcpdump format and produce mininmatis. For example:

Jsnort -b -A fast -c snort.conf

11

1.4.4 Changing Alert Order

The default way in which Snort applies its rules to packetyg n@ be appropriate for all installations. The Pass rules
are applied first, then the Drop rules, then the Alert rulebfarally, Log rules are applied.

"\NOTE

Sometimes an errant pass rule could cause alerts to not ghow which case you can change the defgqult
ordering to allow Alert rules to be applied before Pass rulesr more information, please refer to the
--alert-before-pass option.

Several command line options are available to change thex ardvhich rule actions are taken.

e --alert-before-pass option forces alert rules to take affect in favor of a pass.rul

o --treat-drop-as-alert causes drop, sdrop, and reject rules and any associatésltalée logged as alerts,
rather then the normal action. This allows use of an inlingpavith passive/IDS mode.

e --process-all-events option causes Snort to process every event associated pitbket, while taking the
actions based on the rules ordering. Without this optiofefdecase), only the events for the first action based
on rules ordering are processed.

ANOTE

Pass rules are special cases here, in that the event pragessérminated when a pass rule is encountefed,
regardless of the use eprocess-all-events

1.5 Inline Mode

Snort 2.3.0 RC1 integrated the intrusion prevention sygi®8) capability ofSnort Inline into the official Snort
project.Snort Inline obtains packets from iptables instead of libpcap and thes new rule types to help iptables
pass or drop packets based on Snort rules.

In order forSnort Inline to work properly, you must download and compile the iptalsiede to include “make
install-devel” |ttp:/lwww.iptables.org). This will install thelibipg library that allowsSnort Inline to inter-
face with iptables. Also, you must build and install LibNehich is available frorinttp://iwww.packettactory.net

There are three rule types you can use when running SnorSnitih Inline

e drop - The drop rule type will tell iptables to drop the packet aod it via usual Snort means.

e reject - The reject rule type will tell iptables to drop the packeq It via usual Snort means, and send a TCP
reset if the protocol is TCP or an icmp port unreachable ifpitetocol is UDP.

e sdrop - The sdrop rule type will tell iptables to drop the packettiNog is logged.

\NOTE

You can also replace sections of the packet payload wheiy 8sot Inline . See Sectioh’T.3.2 for more
information.

When using aeject rule, there are two options you can use to send TCP resets:

e You can use a RAW socket (the default behaviorSoort Inline), in which case you must have an interface
that has an IP address assigned to it. If there is not an &uerkith an IP address assigned with access to the
source of the packet, the packet will be logged and the resdgp will never make it onto the network.

12

http://www.iptables.org
http://www.packetfactory.net

e You can also now perform resets via a physical device whemgugitables. We take the indev name from
ip_queue and use this as the interface on which to send resetaoWager need an IP loaded on the bridge,
and can remain pretty stealthy as toefig layer2 _resets in snort.conf takes a source MAC address which
we substitue for the MAC of the bridge. For example:

config layer2resets

tells Snort Inline to use layer2 resets and uses the MAC address of the briddge aotrce MAC in the
packet, and:

config layer2resets: 00:06:76:DD:5F:E3

will tell Snort Inline to use layer2 resets and uses the soMAC of 00:06:76:DD:5F:E3 in the reset packet.

e The command-line optiondisable-inline-initialization can be used to not initialize IPTables when in
inline mode. It should be used with command-line optibrto test for a valid configuration without requiring
opening inline devices and adversely affecting traffic flow.

1.5.1 Snort Inline Rule Application Order

The current rule application order is:
->activation->dynamic->pass->drop->sdrop->reject->a lert->log

This will ensure that a drop rule has precedence over analést rule.

1.5.2 Replacing Packets with Snort Inline

Additionally, Jed Haile’s content replace code allows yourtodify packets before they leave the network. For
example:

alert tcp any any <> any 80 (\
msg: "tcp replace”; content"GET"; replace:"BET")

alert udp any any <> any 53 (\
msg: "udp replace"; content: "yahoo"; replace: "Xxxxx";)

These rules will comb TCP port 80 traffic looking for GET, anBRport 53 traffic looking for yahoo. Once they are
found, they are replaced with BET and xxxxx, respectivelye Bnly catch is that the replace must be the same length
as the content.

1.5.3 Installing Snort Inline
To install Snort inline, use the following command:

Jconfigure --enable-inline
make
make install

13

1.5.4 Running Snort Inline

First, you need to ensure that thegmeue module is loaded. Then, you need to send traffic to Srore using the
QUEUE target. For example:

iptables -A OUTPUT -p tcp --dport 80 -j QUEUE

sends all TCP traffic leaving the firewall going to port 80 te UEUE target. This is what sends the packet from
kernel space to user spa@adrt Inline). A quick way to get all outbound traffic going to the QUEUEGsuUse the
rc.firewall script created and maintained by the Honeynaeet jttp://www.honeynet.org/papers/noneynetitools/

This script is well-documented and allows you to direct gaskoSnort Inline by simply changing the QUEUE
variable to yes.

Finally, start Snort Inline:
snort -QDc ../etc/drop.conf -I /var/llog/snort
You can use the following command line options:

e -Q - Gets packets from iptables.
e -D - RunsSnort Inline in daemon mode. The process ID is storefvatrun/snort.pid
e ¢ - Reads the following configuration file.
e -| -Logs to the following directory.
Ideally, Snort Inline will be run using only its own drop.egl If you want to use Snort for just alerting, a separate

process should be running with its own rule set.

1.5.5 Using the Honeynet Snort Inline Toolkit

The Honeynet Snort Inline Toolkit is a statically compit&abrt Inline binary put together by the Honeynet Project
for the Linux operating system. It comes with a set of drdpsutheSnort Inline binary, a snort-inline rotation
shell script, and a good README. It can be found at:

nttp://www.honeynet.org/papers/noneynet/tools/

1.5.6 Troubleshooting Snort Inline

If you run Snort Inline and see something like this:
Initializing Output Plugins!
Reading from iptables
Log directory = Ivar/log/snort
Initializing Inline mode
Inlinelnit: : Failed to send netlink message: Connection re fused

More than likely, the ipqueue module is not loaded or_gueue support is not compiled into your kernel. Either
recompile your kernel to supportigueue, or load the module.

The ip.queue module is loaded by executing:
insmod ip_queue

Also, if you want to ensure Snort Inline is getting packetsj gan start it in the following manner:
snort -Qvc <configuration file>

This will display the header of every packet that Snort lalsees.

14

http://www.honeynet.org/papers/honeynet/tools/
http://www.honeynet.org/papers/honeynet/tools/

1.6 Miscellaneous

1.6.1 Running Snort as a Daemon

If you want to run Snort as a daemon, you can the add -D switahyaombination described in the previous sections.
Please notice that if you want to be able to restart Snort bgling a SIGHUP signal to the daemon, youstspecify

the full path to the Snort binary when you start it, for exaenpl

lusr/local/bin/snort -d -h 192.168.1.0/24 \
-| Ivarflog/snortlogs -c /usr/local/etc/snort.conf -s -D

Relative paths are not supported due to security concerns.

Snort PID File

When Snort is run as a daemon , the daemon creates a PID file inghdirectory. In Snort 2.6, thepid-path
command line switch causes Snort to write the PID file in thedory specified.

Additionally, the--create-pidfile switch can be used to force creation of a PID file even when unming in
daemon mode.

The PID file will be locked so that other snort processes castaot. Use the-nolock-pidfile switch to not lock
the PID file.

1.6.2 Running in Rule Stub Creation Mode

If you need to dump the shared object rules stub to a diregtorymight need to use the —dump-dynamic-rules option.
These rule stub files are used in conjunction with the shabgetbrules. The path can be relative or absolute.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules=/tmp

This path can also be configured in the snort.conf using thégoption dump-dynamic-rules-path as follows:
config dump-dynamic-rules-path: /tmp/sorules
The path configured by command line has precedence over theoorfigured using dump-dynamic-rules-path.

lusr/local/bin/snort -c /ust/local/etc/snort.conf \
--dump-dynamic-rules

snort.conf:
config dump-dynamic-rules-path: /tmp/sorules

In the above mentioned scenario the dump path is set to /ombés.

1.6.3 Obfuscating IP Address Printouts

If you need to post packet logs to public mailing lists, yowghtiwant to use the -O switch. This switch obfuscates
your IP addresses in packet printouts. This is handy if yoo'tdeant people on the mailing list to know the IP
addresses involved. You can also combine the -O switch Wwéht switch to only obfuscate the IP addresses of hosts
on the home network. This is useful if you don’t care who sbesaddress of the attacking host. For example, you
could use the following command to read the packets from dilegnd dump them to the screen, obfuscating only
the addresses from the 192.168.1.0/24 class C network:

Jsnort -d -v -r snortlog -O -h 192.168.1.0/24

15

1.6.4 Specifying Multiple-Instance Identifiers

In Snortv2.4, theG command line option was added that specifies an instancgfidefor the event logs. This option
can be used when running multiple instances of snort, eghatifferent CPUs, or on the same CPU but a different
interface. Each Snort instance will use the value specifiegeherate unique event IDs. Users can specify either a
decimal value{G 1) or hex value preceded by 053 0x11). This is also supported via a long optielogid

1.7 Reading Pcaps

Instead of having Snort listen on an interface, you can gigepiacket capture to read. Snort will read and analyze the
packets as if they came off the wire. This can be useful fdingsnd debugging Snort.

1.7.1 Command line arguments

Any of the below can be specified multiple times on the commamed(-r included) and in addition to other Snort
command line options. Note, however, that specifyipgap-reset and--pcap-show multiple times has the same
effect as specifying them once.

Option Description

-r <file> Read a single pcap.

--pcap-single=<file> Same as -r. Added for completeness.

--pcap-file=<file> File that contains a list of pcaps to read. Can specifiy pafitép or directory to
recurse to get pcaps.

--pcap-list="<list>" A space separated list of pcaps to read.

--pcap-dir=<dir> A directory to recurse to look for pcaps. Sorted in ascii orde

--pcap-filter=<filter> Shell style filter to apply when getting pcaps from file or diary. This fil-
ter will apply to any--pcap-file or --pcap-dir arguments following. Use
--pcap-no-filter to delete filter for following--pcap-file or --pcap-dir
arguments or specifiypcap-filter again to forget previous filter and to apply
to following --pcap-file or--pcap-dir ~ arguments.

--pcap-no-filter Reset to use no filter when getting pcaps from file or directory

--pcap-reset If reading multiple pcaps, reset snort to post-configuratitate before reading
next pcap. The default, i.e. without this option, is not teetestate.

--pcap-show Print a line saying what pcap is currently being read.

1.7.2 Examples
Read a single pcap

$ snort -r foo.pcap
$ snort --pcap-single=foo.pcap

Read pcaps from a file
$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-file=foo.txt

This will read fool.pcap, foo2.pcap and all files under /hioe#pcaps. Note that Snort will not try to determine
whether the files under that directory are really pcap filesobr

16

Read pcaps from a command line list

$ snort --pcap-list="fool.pcap foo2.pcap foo3.pcap"

This will read fool.pcap, foo2.pcap and foo3.pcap.

Read pcaps under a directory

$ snort --pcap-dir="/home/foo/pcaps"

This will include all of the files under /home/foo/pcaps.

Using filters

$ cat foo.txt
fool.pcap
foo2.pcap
/home/foo/pcaps

$ snort --pcap-filter="*.pcap" --pcap-file=foo.txt
$ snort --pcap-filter="*.pcap" --pcap-dir=/home/foo/pc aps

The above will only include files that match the shell pattérpcap”, in other words, any file ending in ".pcap”.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-filter="*.cap" --pcap-dir="home/foo/pcaps

In the above, the first filter "*.pcap” will only be applied tbe pcaps in the file "foo.txt” (and any directories that are
recursed in that file). The addition of the second filter "htwill cause the first filter to be forgotten and then applied
to the directory /home/foo/pcaps, so only files ending imp:cwill be included from that directory.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir=rhome/foo/pcaps

In this example, the first filter will be applied to foo.txt,eth no filter will be applied to the files found under
/home/foo/pcaps, so all files found under /home/foo/pcapbevincluded.

$ snort --pcap-filter="*.pcap --pcap-file=foo.txt \
> --pcap-no-filter --pcap-dir="home/foo/pcaps \
> --pcap-filter="*.cap" --pcap-dir=’home/foo/pcaps2

In this example, the first filter will be applied to foo.txt,eth no filter will be applied to the files found under
/homef/foo/pcaps, so all files found under /home/foo/pcaifishe included, then the filter "*.cap” will be applied
to files found under /home/foo/pcaps?2.

Resetting state

$ snort --pcap-dir="home/foo/pcaps --pcap-reset

The above example will read all of the files under /home/foafys, but after each pcap is read, Snort will be reset to
a post-configuration state, meaning all buffers will be fegslstatistics reset, etc. For each pcap, it will be like Snor
is seeing traffic for the first time.

17

Printing the pcap
$ snort --pcap-dir=lhome/foo/pcaps --pcap-show

The above example will read all of the files under /homef/foafis and will print a line indicating which pcap is
currently being read.

1.8 Tunneling Protocol Support

Snort supports decoding of GRE, IP in IP and PPTP. To enaplgsst) an extra configuration option is necessary:
$.Jconfigure --enable-gre
To enable IPv6 support, one still needs to use the configurattion:

$./configure --enable-ipv6

1.8.1 Multiple Encapsulations

Snort will not decode more than one encapsulation. Scenatioh as
Eth IPv4 GRE IPv4 GRE IPv4 TCP Payload

or
Eth IPv4 IPv6 IPv4 TCP Payload

will not be handled and will generate a decoder alert.

1.8.2 Logging

Currently, only the encapsulated part of the packet is |dgge.
Eth IP1 GRE IP2 TCP Payload

gets logged as
Eth IP2 TCP Payload

and
Eth IP1 IP2 TCP Payload

gets logged as

Eth IP2 TCP Payload

NOTE
Decoding of PPTP, which utilizes GRE and PPP, is not culyesugbported on architectures that require word
alignment such as SPARC.

18

1.9 More Information

ChaptefR contains much information about many configunatjations available in the configuration file. The Snort
manual page and the outputsfort -? or snort --help contain information that can help you get Snort running
in several different modes.

ANOTE

In many shells, a backslasR)(is needed to escape the ?, so you may have todyme - \? instead of
snort -? for a list of Snort command line options.

The Snort web pag®@ip://www.sSnort.org) and the Snort Users mailing list:
http://marc.theaimsgroup.com/?I=snort-users

at snort-users@lists.sourceforge.net provide informative announcements as well as a venue fomoamity
discussion and support. There’s a lot to Snort, so sit battkavbeverage of your choosing and read the documentation
and mailing list archives.

19

http://www.snort.org
http://marc.theaimsgroup.com/?l=snort-users

Chapter 2

Configuring Snort

2.1 Includes

Theinclude keyword allows other rules files to be included within thesaile indicated on the Snort command line.
It works much like an #include from the C programming langiagading the contents of the named file and adding
the contents in the place where the include statement appete file.

2.1.1 Format

include <include file path/name>

/\NOTE

| Note that there is no semicolon at the end of this line. |

Included files will substitute any predefined variable valirgo their own variable references. See SediionP.1.2 for
more information on defining and using variables in Snoisdiles.

2.1.2 Variables
Three types of variables may be defined in Snort:

e var
e portvar

e ipvar

/\NOTE ,

Note 'ipvar’s are only enabled with IPv6 support. WithoB¥/6 support, use a regular ‘var'.

These are simple substitution variables set withveig ipvar , orportvar keywords as follows:

var RULES_PATH rules/

portvar MY_PORTS [22,80,1024:1050]

ipvar MY_NET [192.168.1.0/24,10.1.1.0/24]

alert tcp any any -> $MY_NET $MY_PORTS (flags:S; msg:"SYN pa cket")
include $RULE_PATH/example.rule

20

IP Variables and IP Lists
IPs may be specified individually, in a list, as a CIDR block,any combination of the three. If IPv6 support is

enabled, IP variables should be specified using ’ipvareiagdtof 'var’. Using 'var’ for an IP variable is still allowed
for backward compatibility, but it will be deprecated in aufte release.

IPs, IP lists, and CIDR blocks may be negated with '!". Negatis handled differently compared with Snort versions
2.7.x and earlier. Previously, each element in a list wascélly OR’ed together. IP lists now OR non-negated
elements and AND the result with the OR’ed negated elements.

The following example list will match the IP 1.1.1.1 and IBrfr 2.2.2.0 to 2.2.2.255, with the exception of IPs 2.2.2.2
and 2.2.2.3.

[1.1.1.1,2.2.2.0/24,1[2.2.2.2,2.2.2.3]]

The order of the elements in the list does not matter. The@hrany’ can be used to match all IPs, although "lany’
is not allowed. Also, negated IP ranges that are more geti@nalnon-negated IP ranges are not allowed.

See below for some valid examples if IP variables and IP. lists

ipvar EXAMPLE [1.1.1.1,2.2.2.0/24,12.2.2.2,2.2.2.3]]
alert tcp $EXAMPLE any -> any any (msg:"Example”; sid:1;)

alert tcp [1.0.0.0/8,!11.1.1.0/24] any -> any any (msg:"Exa mple";sid:2;)

The following examples demonstrate some invalid uses oflfables and IP lists.

Use of lany:

ipvar EXAMPLE any
alert tcp !$EXAMPLE any -> any any (msg:"Example”;sid:3;)

Different use of lany:

ipvar EXAMPLE lany
alert tcp $EXAMPLE any -> any any (msg:"Example”;sid:3;)

Logical contradictions:
ipvar EXAMPLE [1.1.1.1,11.1.1.1]
Nonsensical negations:

ipvar EXAMPLE [1.1.1.0/24,11.1.0.0/16]

Port Variables and Port Lists
Portlists supports the declaration and lookup of ports aedépresentation of lists and ranges of ports. Variables,

ranges, or lists may all be negated with '!I. Also, 'any’ wélpecify any ports, but 'lany’ is not allowed. Valid port
ranges are from 0 to 65535.

Lists of ports must be enclosed in brackets and port ranggdmapecified with a ’;’, such as in:

[10:50,888:900]

21

Port variables should be specified using 'portvar’. The Usear’ to declare a port variable will be deprecated in a
future release. For backwards compatibility, a 'var’ calh lsé used to declare a port variable, provided the variable
name either ends withPORT’ or begins with 'PORT.

The following examples demonstrate several valid usagbstbf port variables and port lists.

portvar EXAMPLE1 80

var EXAMPLE2_PORT [80:90]

var PORT_EXAMPLE2 [1]

portvar EXAMPLE3 any

portvar EXAMPLE4 [170:90]

portvar EXAMPLE5 [80,91:95,100:200]

alert tcp any $EXAMPLEL -> any $EXAMPLE2_PORT (msg:"Exampl e"; sid:1;)
alert tcp any $PORT_EXAMPLE2 -> any any (msg:"Example"; sid '2;)

alert tcp any 90 -> any [100:1000,9999:20000] (msg:"Exampl e"; sid:3;)

Several invalid examples of port variables and port lisescmonstrated below:

Use of lany:

portvar EXAMPLES lany
var EXAMPLES lany

Logical contradictions:
portvar EXAMPLE6 [80,!80]
Ports out of range:
portvar EXAMPLE7 [65536]
Incorrect declaration and use of a port variable:

var EXAMPLE8 80
alert tcp any $EXAMPLE8 -> any any (msg:"Example”; sid:4;)

Port variable used as an IP:

alert tcp $EXAMPLEL any -> any any (msg:"Example”; sid:5;)

Variable Modifiers

Rule variable names can be modified in several ways. You cimedmeta-variables using the $ operator. These can
be used with the variable modifier operatdrand- , as described in the following table:

22

Variable Syntax Description

var Defines a meta-variable.

$(var) or $var Replaces with the contents of varialube .

$(var:-default) Replaces the contents of the variatde with “default” if var is undefined.

$(var:?message) Replaces with the contents of variabt® or prints out the error message and
exits.

Here is an example of advanced variable usage in action:

ipvar MY_NET 192.168.1.0/24
log tcp any any -> $(MY_NET:?MY_NET is undefined!) 23

Limitations

When embedding variables, types can not be mixed. For iostquort variables can be defined in terms of other port
variables, but old-style variables (with the 'var’ keywdodn not be embedded inside a 'portvar’.

Valid embedded variable:

portvar pvarl 80
portvar pvar2 [$pvarl,90]

Invalid embedded variable:

var pvarl 80
portvar pvar2 [$pvarl,90]

Likewise, variables can not be redefined if they were preslipdefined as a different type. They should be renamed
instead:

Invalid redefinition:

var pvar 80
portvar pvar 90

2.1.3 Config

Many configuration and command line options of Snort can leeifipd in the configuration file.

Format

config <directive> [: <value>]

23

Config Directive

Description

config alert ~ _with _interface _name Appends interface name to aleshért -|).

config alertfile: <filename> Sets the alerts output file.

config asnl: <max-nodes> Specifies the maximum number of nodes to track when doing
ASN1 decoding. See Sectibn3.3.21 for more information and
examples.

config autogenerate _preprocessor If Snort was configured to enable decoder and preprocessor

_decoder _rules rules, this option will cause Snort to revert back to it'sgori
nal behavior of alerting if the decoder or preprocessor geas
an event.

config bpf _file: <filename> Specifies BPF filterssfort -F).

config checksum _drop: <types> Types of packets to drop if invalid checksums. Valueane,
noip , notcp , noicmp , noudp, ip, tcp , udp, icmp or all
(only applicable in inline mode and for packets checked |per
checksum _mode config option).

config checksum _mode: <types> Types of packets to calculate checksums. Valwese, noip ,
notcp , noicmp , noudp, ip , tcp , udp, icmp orall .

config chroot: <dir> Chroots to specified disfort -t).

config classification: <class> See Tabl&3]2 for a list of classifications.

config daemon Forks as a daemosrort -D).

config decode _data _link Decodes Layer2 headesrt -).

config default _rule _state: <state> Global configuration directive to enable or disable the ingd

of rules into the detection engine. Default (with or withaolit
rective) is enabled. Specifiisabled to disable loading rules,

config detection: <search-method>
[lowmem] [no _stream _inserts]
[max _queue _events <num>]

Makes changes to the detection engine. The following opt
can be used:

o search-method

ac-banded

<ac | ac-std
| ac-sparsebands

| ac-bnfa
| lowmem >

| acs |

— ac Aho-Corasick Full (high memory, best perfg
mance)

— ac-std Aho-Corasick Standard (moderate memq
high performance)

— ac-bnfa Aho-Corasick NFA (low memory, high
performance)

— acs Aho-Corasick Sparse (small memory, moder
performance)

— ac-banded Aho-Corasick Banded (small memor|
moderate performance)

— ac-sparsebands Aho-Corasick Sparse-Bande
(small memory, high performance)

— lowmem Low Memory Keyword Trie (small mem
ory, low performance)

e no_stream _inserts

e Mmax.queue _events <integer >

=
1

ry,

ate

config disable _decode _alerts

Turns off the alerts generated by the decode phase of Snor

LSS
S

config disable _inline _init _failopen Disables failopen thread that allows inline traffic to pa
while Snort is starting up. Only useful if Snort wa
configured with —enable-inline-init-failopen. snprt
--disable-inline-init-failopen)

config disable _ipopt _alerts Disables IP option length validation alerts.

24

config disable _tcpopt _alerts Disables option length validation alerts.

config Turns off alerts generated by experimental TCP options.
disable _tcpopt _experimental _alerts

config disable _tcpopt _obsolete _alerts Turns off alerts generated by obsolete TCP options.

config disable _tcpopt _ttcp _alerts Turns off alerts generated by T/TCP options.

config disable _ttcp _alerts Turns off alerts generated by T/TCP options.

config dump _chars _only Turns on character dumpsfrt -C).

config dump _payload Dumps application layesfort -d).

config dump _payload _verbose Dumps raw packet starting at link layen¢rt -X).

config enable _decode _drops Enables the dropping of bad packets identified by decoddy (

applicable in inline mode).

@]

n

config

enable

_decode _oversized _alerts

Enable alerting on packets that have headers containitgghle
fields for which the value is greater than the length of thé&pag

config

enable

_decode _oversized _drops

Enable dropping packets that have headers containinghe
fields for which the value is greater than the length of théxptig
enable _decode _oversized _alerts must also be enabled fg
this to be effective (only applicable in inline mode).

ngt

=

config

enable

_ipopt _drops

Enables the dropping of bad packets with bad/truncated P
tions (only applicable in inline mode).

op

config

enable

_mpls _multicast

Enables support for MPLS multicast. This option is nee

led

when the network allows MPLS multicast traffic. When this

option is off and MPLS multicast traffic is detected, Snor
generate an alert. By default, it is off.

config

enable

_mpls _overlapping _ip

Enables support for overlapping IP addresses in an MPLS
work. In a normal situation, where there are no overlapp

IP addresses, this configuration option should not be tuoned

However, there could be situations where two private netas
share the same IP space and different MPLS labels are us
differentiate traffic from the two VPNSs. In such a situatitims

configuration option should be turned on. By default, it i§ of

net-
ing

DY
ed to

config

enable

_tcpopt _drops

Enables the dropping of bad packets with bad/truncated]
option (only applicable in inline mode).

rCP

config

enable _tcpopt

_experimental _drops

Enables the dropping of bad packets with experimental TGP
tion. (only applicable in inline mode).

op

config

enable

_tcpopt _obsolete _drops

Enables the dropping of bad packets with obsolete TCP op
(only applicable in inline mode).

tion

enable _tcpopt

_ttcp _drops

Enables the dropping of bad packets with T/TCP option. (q
applicable in inline mode).

enable _ttcp _drops

Enables the dropping of bad packets with T/TCP option. (q
applicable in inline mode).

config event _filter. memcap Set global memcap in bytes for thresholding. Default) i
<bytes> 1048576 bytes (1 megabyte).

config event _queue: [max _queue Specifies conditions about Snort’s event queue. You carhas
<num>] [log <num>] [order _events following options:

<order>]

e maxqueue <integer > (max events supported)
e log <integer > (number of events to log)

e order _events [priority |content _length) (how to
order events within the queue)

See Sectiof Z.4.4 for more information and examples.

25

config flexresp2 _attempts: Specify the number of TCP reset packets to send to the sg

<num-resets> of the attack. Valid values are 0 to 20, however values lems th
4 will default to 4. The default value without this option is 4
(Snort must be compiled with —enable-flexresp2)

config flexresp2 _interface: Specify the response interface to use. In Windows this czm

<iface> be the interface number. (Snort must be compiled with —eng
flexresp?2)

config flexresp2 _memcap: <bytes> Specify the memcap for the hash table used to track the
of responses. The times (hashed on a socket pair plus pipt
are used to limit sending a response to the same half of ats
pair every couple of seconds. Default is 1048576 bytes. itS
must be compiled with —enable-flexresp2)

config flexresp2 _rows: <num-rows> Specify the number of rows for the hash table used to track
time of responses. Default is 1024 rows. (Snort must be ¢
piled with —enable-flexresp2)

config flowbits _size: <num-bits> Specifies the maximum number of flowbit tags that can be
within a rule set.

config ignore _ports: <proto> Specifies ports to ignore (useful for ignoring noisy NF Sficaf

<port-list> Specify the protocol (TCP, UDP, IP, or ICMP), followed by
list of ports. Port ranges are supported.

config interface: <iface> Sets the network interfacenprt -i).

config ipv6 _frag:

[bsd _icmp _frag _alert on|off]

[, bad _ipv6 _frag _alert on]off]
[, frag _timeout <secs>] |,
max_frag _sessions <max-track>]

The following options can be used:

e bsd _icmp _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e bad_ipv6 _frag _alert on|off
to alert. Default is on)

(Specify whether or no

e frag _timeout <integer > (Specify amount of time in
seconds to timeout first frag in hash table)

e maxfrag _sessions <integer > (Specify the numbe
of fragments to track in the hash table)

config layer2resets: <mac-addr> This option is only available when running in inline modee§
Sectior Lb.

config logdir: <dir> Sets the logdirgnort -|).

config max _attribute _hosts: <hosts> Sets a limit on the maximum number of hosts to read fr

e

om

the attribute table. Minimum value is 32 and the maximum is

524288 (512k). The default is 10000. If the number of hg
in the attribute table exceeds this value, an error is logget
the remainder of the hosts are ignored. This option is onty g
ported with a Host Attribute Table (see sectiod 2.7).

sts

config max _mpls _labelchain _len:

<num-hdrs>

Sets a Snort-wide limit on the number of MPLS header
packet can have. Its default value is -1, which means thag¢t
is no limit on label chain length.

S a
he

config min _ttl: <ttl>

Sets a Snort-wide minimum ttl to ignore all traffic.

config mpls _payload _type:
ipv4|ipvé|ethernet

Sets a Snort-wide MPLS payload type. In addition to ipv46if
and ethernet are also valid options. The default MPLS paly
type is ipv4

config no _promisc

Disables promiscuous mod&ért -p).

config nolog

Disables logging. Note: Alerts will still occursifort -N).

config nopcre

Disables pcre pattern matching.

config obfuscate

Obfuscates IP Addressesi¢rt -O).

26

config order. <order> Changes the order that rules are evaluated, eg: pass aert lo
activation.

config pcre _match _limit: Restricts the amount of backtracking a given PCRE option.|Fo

<integer > example, it will limit the number of nested repeats withined-p
tern. A value of -1 allows for unlimited PCRE, up to the PCRE
library compiled limit (around 10 million). A value of O relsi
in no PCRE evaluation. The snort default value is 1500.

config pcre _match _limit _recursion: Restricts the amount of stack used by a given PCRE option. A

<integer > value of -1 allows for unlimited PCRE, up to the PCRE library
compiled limit (around 10 million). A value of O results in no
PCRE evaluation. The snort default value is 1500. This optio
is only useful if the value is less than there _match _limit

config pkt _count: <N> Exits after N packetssgort -n).

config policy _version: Supply versioning information to configuration files. Bage-v

<base-version-string > sion should be a string in all configuration files including |n

[<binding-version-string >] cluded ones. In addition, binding version must be in any file
configured withconfig binding . This option is used to avoid
race conditions when modifying and loading a configuration
within a short time span - before Snort has had a chance tojload
a previous configuration.

config profile _preprocs Print statistics on preprocessor performance. See SE&&koh
for more details.

config profile _rules Print statistics on rule performance. See SediionP.5.infme
details.

config quiet Disables banner and status repost®(t -q).

config read _bin _file: <pcap> Specifies a pcap file to use (instead of reading from netwark),
same effect as «tf> option.

config reference: <ref> Adds a new reference system to Snort, eg: myref
http://myurl.com/?id=

config reference _net <cidr> For IP obfuscation, the obfuscated net will be used if th&kpac
contains an IP address in the reference net. Also used to de-
termine how to set up the logging directory structure for the
session post detection rule option and ascii output plugin -[an
attempt is made to name the log directories after the IP addre
that is not in the reference net.

config set _gid: <gid> Changes GID to specified GIBrort -g).

set _uid: <uid> Sets UID to<id> (snort -u).

config show _year Shows year in timestampsnprt -y).

config snaplen: <bytes> Set the snaplength of packet, same effecPas<snaplen > or
--snaplen <snaplen > options.

config stateful Sets assurance mode for stream (stream is established).

config tagged _packet _limit: When a metric other thapackets is used in a tag option i

<max-tag> a rule, this option sets the maximum number of packets to be
tagged regardless of the amount defined by the other metric.
See Sectiol-3.4.5 on using the tag option when writing riiles
for more details. The default value when this option is nat-cp
figured is 256 packets. Setting this option to a value of 0 will
disable the packet limit.

config threshold: memcap <bytes> Set global memcap in bytes for thresholding. Default is
1048576 bytes (1 megabyte). (This is deprecated. Use config
eventfilter instead.)

config timestats _interval; <secs> Set the amount of time in seconds between logging time stats.
Default is 3600 (1 hour). Note this option is only availalflg i
Snort was built to use time stats witlenable-timestats

config umask: <umask> Sets umask when runningnfrt -m).

27

config utc Uses UTC instead of local time for timestampsoft -U).
config verbose Uses verbose logging to STDOU3nrt -v).

2.2 Preprocessors

Preprocessors were introduced in version 1.5 of Snort. @hey the functionality of Snort to be extended by allowing
users and programmers to drop modular plugins into Snoly &@asily. Preprocessor code is run before the detection
engine is called, but after the packet has been decoded. adketocan be modified or analyzed in an out-of-band
manner using this mechanism.

Preprocessors are loaded and configured usingrépeocessor keyword. The format of the preprocessor directive
in the Snort rules file is:

preprocessor <name>: <options>

2.2.1 Frag3

The frag3 preprocessor is a target-based IP defragmemtatidule for Snort. Frag3 is intended as a replacement for
the frag2 defragmentation module and was designed witholf@fing goals:

1. Faster execution than frag2 with less complex data manageme

2. Target-based host modeling anti-evasion techniques.

The frag2 preprocessor used splay trees extensively foagiag the data structures associated with defragmenting
packets. Splay trees are excellent data structures to use ydu have some assurance of locality of reference for the
data that you are handling but in high speed, heavily frageteanvironments the nature of the splay trees worked
against the system and actually hindered performance 3krsgs the sfxhash data structure and linked lists for data
handling internally which allows it to have much more préalidte and deterministic performance in any environment
which should aid us in managing heavily fragmented enviremis

Target-based analysis is a relatively new concept in nétlased intrusion detection. The idea of a target-based
system is to model the actual targets on the network instéagkrely modeling the protocols and looking for attacks
within them. When IP stacks are written for different opergtsystems, they are usually implemented by people
who read the RFCs and then write their interpretation of vihatRFC outlines into code. Unfortunately, there are
ambiguities in the way that the RFCs define some of the edgditbmms that may occurr and when this happens
different people implement certain aspects of their IPkstatifferently. For an IDS this is a big problem.

In an environment where the attacker can determine whae stiylP defragmentation is being used on a partic-
ular target, the attacker can try to fragment packets suahttie target will put them back together in a specific

manner while any passive systems trying to model the hoiictiave to guess which way the target OS is going

to handle the overlaps and retransmits. As | like to say, éf dttacker has more information about the targets on
a network than the IDS does, it is possible to evade the ID% iBhwhere the idea for “target-based IDS” came

from. For more detail on this issue and how it affects IDS,ckheut the famous Ptacek & Newsham paper at
http:/iwww.snort.org/docs/idspaper/

The basic idea behind target-based IDS is that we tell theififi@mation about hosts on the network so that it can
avoid Ptacek & Newsham style evasion attacks based on iattiwmabout how an individual target IP stack operates.
Vern Paxson and Umesh Shankar did a great paper on this yEcyind2003 that detailed mapping the hosts on a net-
work and determining how their various IP stack implemeatethandled the types of problems seen in IP defragmen-
tation and TCP stream reassembly. Check it olattpt/www.icir.org/vern/papers/activemap-0ak03.pdf

We can also present the IDS with topology information to dviol L-based evasions and a variety of other issues, but
that's a topic for another day. Once we have this informaitvercan start to really change the game for these complex
modeling problems.

Frag3 was implemented to showcase and prototype a targetHaodule within Snort to test this idea.

28

http://www.snort.org/docs/idspaper/
http://www.icir.org/vern/papers/activemap-oak03.pdf

Frag 3 Configuration

Frag3 configuration is somewhat more complex than frag2.r&aee at least two preprocessor directives required
to activate frag3, a global configuration directive and agie® instantiation. There can be an arbitrary number of
engines defined at startup with their own configuration, Il one global configuration.

Global Configuration

e Preprocessor namé&ag3 _global

e Available options: NOTE: Global configuration options acgroma separated.

— maxfrags <number > - Maximum simultaneous fragments to track. Default is 8192.
— memcap <bytes > - Memory cap for self preservation. Default is 4MB.

— prealloc _frags <number > - Alternate memory management mode. Use preallocated gagnodes
(faster in some situations).

Engine Configuration

e Preprocessor namé&ag3 _engine

¢ Available options: NOTE: Engine configuration options grace separated.

— timeout <seconds > - Timeout for fragments. Fragments in the engine for longantthis period will
be automatically dropped. Default is 60 seconds.

— min_ttl <value > - Minimum acceptable TTL value for a fragment packet. Deffal.
— detect _anomalies - Detect fragment anomalies.

— bind to <ip _list > -IP Listto bind this engine to. This engine will only run faagkets with destination
addresses contained within the IP List. Default valualis.

— overlap _limit <number> - Limits the number of overlapping fragments per packet. thkéult is
"0” (unlimited), the minimum is "0”, and the maximum is "255"This is an optional parameter. de-
tectanomalies option must be configured for this option to takecef

— min _fragment _length <number> - Defines smallest fragment size (payload size) that shoailcbinsid-
ered valid. Fragments smaller than or equal to this limitcamesidered malicious and an event is raised, if
detectanomalies is also configured. The default is "0” (unlimitegt® minimum is "0”, and the maximum
is "255". This is an optional parameter. detectomalies option must be configured for this option to take
effect.

— policy <type > - Select a target-based defragmentation mode. Availaplestare first, last, bsd, bsd-
right, linux. Default type is bsd.

The Paxson Active Mapping paper introduced the terminofoay3 is using to describe policy types. The
known mappings are as follows. Anyone who develops more imgpfand would like to add to this list
please feel free to send us an email!

29

Platform | Type |

AlX 2 BSD
AlX4.38.9.3 BSD
Cisco 10S Last
FreeBSD BSD
HP JetDirect (printer) BSD-right
HP-UX B.10.20 BSD
HP-UX 11.00 First
IRIX 4.0.5F BSD
IRIX 6.2 BSD
IRIX 6.3 BSD
IRIX64 6.4 BSD
Linux 2.2.10 linux
Linux 2.2.14-5.0 linux
Linux 2.2.16-3 linux
Linux 2.2.19-6.2.10smp linux
Linux 2.4.7-10 linux
Linux 2.4.9-31SGI 1.0.2smp linux
Linux 2.4 (RedHat 7.1-7.3) linux
MacOS (version unknown) First
NCD Thin Clients BSD
OpenBSD (version unknown) | linux
OpenBSD (version unknown) | linux
OpenVMS 7.1 BSD
0OS/2 (version unknown) BSD
OSF1V3.0 BSD
OSF1V3.2 BSD
OSF1V4.0,5.0,5.1 BSD
Sun0S4.1.4 BSD
Sun0S5.5.1,5.6,5.7,5.8 First
Tru64 Unix V5.0A,V5.1 BSD
Vax/VMS BSD
Windows (95/98/NT4/W2K/XP)| First

Format
Note in the advanced configuration below that there are thingines specified running wittinux, first andlast
policies assigned. The first two engines are bound to spéBifaxidress ranges and the last one applies to all other

traffic. Packets that don’t fall within the address requieens of the first two engines automatically fall through te th
third one.

Basic Configuration

preprocessor frag3_global
preprocessor frag3_engine

Advanced Configuration

preprocessor frag3_global: prealloc_nodes 8192

preprocessor frag3_engine: policy linux, bind_to 192.168 .1.0/24
preprocessor frag3_engine: policy first, bind_to [10.1.4 7.0/24,172.16.8.0/24]
preprocessor frag3_engine: policy last, detect anomalie S

30

Frag 3 Alert Output

Frag3 is capable of detecting eight different types of anm®alts event output is packet-based so it will work with
all output modes of Snort. Read the documentation irdtessignatures directory with filenames that begin with
“123-" for information on the different event types.

2.2.2 Stream5

The Stream5 preprocessor is a target-based TCP reassemdhlyjerfor Snort. It is capable of tracking sessions for
both TCP and UDP. With Stream5, the rule 'flow’ and 'flowbitgywvords are usable with TCP as well as UDP traffic.

Transport Protocols

TCP sessions are identified via the classic TCP "connectidBP sessions are established as the result of a series of
UDP packets from two end points via the same set of ports. |GMBsages are tracked for the purposes of checking
for unreachable and service unavailable messages, wHattiegly terminate a TCP or UDP session.

Target-Based

Streamb5, like Frag3, introduces target-based actionsdodlng of overlapping data and other TCP anomalies. The
methods for handling overlapping data, TCP Timestampsa batSYN, FIN and Reset sequence numbers, etc. and
the policies supported by Stream5 are the results of extenssearch with many target operating systems.

Stream API

Streamb5 fully supports the Stream API, other protocol ndimaes/preprocessors to dynamically configure reassembly
behavior as required by the application layer protocohiifg sessions that may be ignored (large data transferk, et
and update the identifying information about the sessippl{eation protocol, direction, etc) that can later be ulsed
rules.

Anomaly Detection

TCP protocol anomalies, such as data on SYN packets, da@edmutside the TCP window, etc are configured via
thedetect _anomalies option to the TCP configuration. Some of these anomaliesetected on a per-target basis.
For example, a few operating systems allow data in TCP SYKeiacwhile others do not.

Stream5 Global Configuration

Global settings for the Stream5 preprocessor.

preprocessor stream5_global; \
[track tcp <yes|no>], [max_tcp <number>], \
[memcap <number bytes>], \
[track_udp <yes|no>], [max_udp <number>], \
[track_icmp <yes|no>], [max_icmp <number>], \
[flush_on_alert], [show_rebuilt_packets], \
[prune_log_max <bytes>]

31

Option

Description

track _tcp <yes|no>

Track sessions for TCP. The default is "yes”.

max.tcp <num sessions>

Maximum simultaneous TCP sessions tracked. The defauR56000", maxi-
mum is "1052672”, minimum is "1".

memcap <num bytes>

Memcap for TCP packet storage. The default is "8388608” (§MiBaximum is
"1073741824” (1GB), minimum is "32768" (32KB).

track _udp <yes|no>

Track sessions for UDP. The default is "yes”.

max_.udp <num sessions>

Maximum simultaneous UDP sessions tracked. The default28000”, maxi-
mum is "1052672”, minimum is "1".

track _icmp <yes|no>

Track sessions for ICMP. The default is "yes”.

max_icmp <num sessions>

Maximum simultaneous ICMP sessions tracked. The defat@4800”, maxi-
mum is "1052672”, minimum is "1".

flush _on _alert Backwards compatibilty. Flush a TCP stream when an aleréieated on thaf
stream. The default is set to off.
show_rebuilt _packets Print/display packet after rebuilt (for debugging). Théeddt is set to off.

prune _log _-max <num bytes>

Print a message when a session terminates that was consumiegthan the
specified number of bytes. The default is "1048576” (1MB)nimum is "0”
(unlimited), maximum is not bounded, other than by the mgmca

Stream5 TCP Configuration

Provides a means on a per IP address target to configure T@J¥. pothis can have multiple occurances, per policy
that is bound to an IP address or network. One default poliggtrine specified, and that policy is not bound to an IP

address or network.

preprocessor stream5_tcp: \

[bind_to <ip_addr>], [timeout <number secs>], \
[policy <policy id>], [min_ttl <number>], \
[overlap_limit <number>], [max_window <number>], \
[require_3whs [<number secs>]], [detect_anomalies], \

[check_session_hijacking], [use_static_footprint_siz es], \
[dont_store_large packets], [dont reassemble_async], \
[max_queued_bytes <bytes>], [max_queued_segs <number se gs>], \

[ports <client|server|both> <alljnumber [number]*>], \

[ignore_any_rules]

Option

Description

bind _to <ip _addr>

IP address or network for this policy. The default is set tp an

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, ghd maxi-
mum is "86400” (approximately 1 day).

32

policy <policy _id>

The Operating System policy for the target OS. The palitgan be ong
of the following:

Policy Name| Operating Systems.

first Favor first overlapped segment.

last Favor first overlapped segment.

bsd FresBSD 4.x and newer, NetBSD 2.x and
newer, OpenBSD 3.x and newer

linux Linux 2.4 and newer

old-linux Linux 2.2 and earlier

windows Windows 2000, Windows XP, Windows
95/98/ME

win2003 Windows 2003 Server

vista Windows Vista

solaris Solaris 9.x and newer

hpux HPUX 11 and newer

hpux10 HPUX 10

irix IRIX 6 and newer

macos MacOS 10.3 and newer

min _ttl <number>

Minimum TTL. The defaultis "1”, the minimum s "1” and the mamum
is "255",

overlap _limit <number>

Limits the number of overlapping packets per session. Tlfeudtes "0”
(unlimited), the minimum is "0”, and the maximum is "255".

max_window <number>

Maximum TCP window allowed. The default is "0” (unlimitedhe
minimum is "0”, and the maximum is "1073725440” (65535 Ieffiifs
14). That is the highest possible TCP window per RFCs. Thi®ojs
intended to prevent a DoS against Stream5 by an attackey asiabnor-
mally large window, so using a value near the maximum is disaged.

require _3whs [<number
seconds>]

Establish sessions only on completion of a SYN/SYN-ACK/A&nhd-
shake. The default is set to off. The optional number of sds@peci-
fies a startup timeout. This allows a grace period for exgssiessions tq
be considered established during that interval immediatiér Snort is
started. The default is "0” (don’t consider existing sessiestablished)
the minimum is "0”, and the maximum is "86400” (approximatél
day).

detect _anomalies

Detect and alert on TCP protocol anomalies. The defaultt itogsf.

check _session _hijacking

Check for TCP session hijacking. This check validates thelvaare
(MAC) address from both sides of the connect — as establishetie
3-way handshake against subsequent packets received sasien. If
an ethernet layer is not part of the protocol stack receiye8rort, there
are no checks performed. Alerts are generated (jaéact _anomalies ’
option) for either the client or server when the MAC addresohe side
or the other does not match. The default is set to off.

use _static _footprint _sizes

Use static values for determining when to build a reasseintdeket to
allow for repeatable tests. This option should not be usedymstion
environments. The default is set to off.

dont _store _large _packets

Performance improvement to not queue large packets in aedng
buffer. The default is set to off. Using this option may résulmissed
attacks.

dont _reassemble _async

Don't queue packets for reassembly if traffic has not been geboth
directions. The default is set to queue packets.

max_queued _bytes <bytes>

Limit the number of bytes queued for reassembly on a given 3&Bion
to bytes. Default is "1048576” (LMB). A value of "0” means imlted,
with a non-zero minimum of "1024”, and a maximum of "10737248
(1GB). A message is written to console/syslog when thistligien-
forced.

33

max_queued _segs <num>

Limit the number of segments queued for reassembly on a giz
session. The default is "2621", derived based on an aveiage§400
bytes. A value of "0” means unlimited, with a non-zero minimwf
"2", and a maximum of "1073741824" (1GB). A message is writte
console/syslog when this limit is enforced.

ports <client|server|both>
<alljnumber(s)>

Specify the client, server, or both and list of ports in whiotperform
reassembly. This can appear more than once in a given cortfgdé-
fault settings areports client 21 23 25 42 53 80 110 111 135

136 137 139 143 445 513 514 1433 1521 2401 3306 . The mini-
mum port allowed is "1” and the maximum allowed is "65535".

ignore _any _rules

Don't process any> any (ports) rules for TCP that attempt to mat
payload if there are no port specific rules for the src or dastin port.
Rules that have flow or flowbits will never be ignored. This igeafor-

mance improvement and may result in missed attacks. Usiagltes
not affect rules that look at protocol headers, only thosih wontent,
PCRE, or byte test options. The default is "off”. This optian be used
only in default policy.

ANOTE

If no options are specified for a given TCP policy, that is tleéadIt TCP policy. If only a bindo option is
used with no other options that TCP policy uses all of the ulefalues.

Stream5 UDP Configuration

Configuration for UDP session tracking. Since there is ngeibased binding, there should be only one occurance of

the UDP configuration.

preprocessor stream5_udp: [timeout <number secs>], [igno re_any_rules]

Option

Description

timeout <num seconds>

Session timeout. The default is "30”, the minimum is "1”, atheé maximum is
"86400" (approximately 1 day).

ignore _any _rules

Don't process any> any (ports) rules for UDP that attempt to match paylqg

if there are no port specific rules for the src or destinatiort.pRules that have

flow or flowbits will never be ignored. This is a performancepmvement and
may result in missed attacks. Using this does not affecsriiat look at protoco
headers, only those with content, PCRE, or byte test optibims default is "off".

ANOTE

With the ignoreany.rules option, a UDP rule will be ignored except when therenistier port specific rule
that may be applied to the traffic. For example, if a UDP rulec#fies destination port 53, the 'ignored’ al
-> any rule will be applied to traffic to/from port 53, but NOT toyaother source or destination port. A li
of rule SIDs affected by this option are printed at Snorestsip.

ANOTE

With the ignoreany.rules option, if a UDP rule that uses amy any ports includes either flow or flowbits
the ignoreany.rules option is effectively pointless. Because of the ptig¢impact of disabling a flowbitg
rule, the ignoreany.rules option will be disabled in this case.

34

ad

y
st

Stream5 ICMP Configuration

Configuration for ICMP session tracking. Since there is mgaabased binding, there should be only one occurance
of the ICMP configuration.

NOTE

ICMP is currently untested, in minimal code form and is NOad for use in production networks. It is npt
turned on by default.

preprocessor stream5_icmp: [timeout <number secs>]

Option

Description

timeout

<num seconds> Session timeout. The default is ”30”, the minimum is 1", ah& maximum is
"86400" (approximately 1 day).

Example Configurations

1. This example configuration is the default configuratiosiort.conf and can be used for repeatable tests of
stream reassembly in readback mode.

preprocessor stream5_global: \
max_tcp 8192, track tcp yes, track udp yes, track icmp no

preprocessor stream5_tcp: \
policy first, use_static_footprint_sizes

preprocessor stream5_udp: \
ignore_any_rules

2. This configuration maps two network segments to diffe@8tpolicies, one for Windows and one for Linux,

with

Alerts

all other traffic going to the default policy of Solaris.

preprocessor stream5_global: track_tcp yes

preprocessor stream5_tcp: bind_to 192.168.1.0/24, polic y windows
preprocessor stream5_tcp: bind_to 10.1.1.0/24, policy |i nux
preprocessor stream5_tcp: policy solaris

Stream5 uses generator ID 129. It is capable of alerting @igh{) anomalies, all of which relate to TCP anomalies.
There are no anomalies detected relating to UDP or ICMP.

The list of SIDs is as follows:

© N o g A~ w NP

SYN on established session

Data on SYN packet

Data sent on stream not accepting data

TCP Timestamp is outside of PAWS window

Bad segment, overlap adjusted size less than/equal 0
Window size (after scaling) larger than policy allows
Limit on number of overlapping TCP packets reached

Data after Reset packet

35

2.2.3 sfPortscan

The sfPortscan module, developed by Sourcefire, is designddtect the first phase in a network attack: Recon-
naissance. In the Reconnaissance phase, an attacker idetemmnat types of network protocols or services a host
supports. This is the traditional place where a portscagstgkace. This phase assumes the attacking host has no prior
knowledge of what protocols or services are supported byattyet; otherwise, this phase would not be necessary.

As the attacker has no beforehand knowledge of its interatget, most queries sent by the attacker will be negative
(meaning that the service ports are closed). In the natulegifmate network communications, negative responses
from hosts are rare, and rarer still are multiple negatispoases within a given amount of time. Our primary objective
in detecting portscans is to detect and track these negaspenses.

One of the most common portscanning tools in use today is NiMagap encompasses many, if not all, of the current
portscanning techniques. sfPortscan was designed to bécathbtect the different types of scans Nmap can produce.

sfPortscan will currently alert for the following types ofidp scans:

e TCP Portscan
e UDP Portscan
e |P Portscan

These alerts are for oreone portscans, which are the traditional types of scans;hosescans multiple ports on
another host. Most of the port queries will be negative,esimost hosts have relatively few services available.

sfPortscan also alerts for the following types of decoy grans:

e TCP Decoy Portscan
e UDP Decoy Portscan
e |IP Decoy Portscan

Decoy portscans are much like the Nmap portscans descriima: aonly the attacker has a spoofed source address
inter-mixed with the real scanning address. This tactipfiide the true identity of the attacker.

sfPortscan alerts for the following types of distributedtpoans:

e TCP Distributed Portscan
e UDP Distributed Portscan

e |P Distributed Portscan

These are manyone portscans. Distributed portscans occur when multiptéshquery one host for open services.
This is used to evade an IDS and obfuscate command and chostsl.

ANOTE

Negative queries will be distributed among scanning hastsye track this type of scan through the scanhed
host.

sfPortscan alerts for the following types of portsweeps:

e TCP Portsweep
e UDP Portsweep

e |IP Portsweep

36

e ICMP Portsweep

These alerts are for oremany portsweeps. One host scans a single port on multipte.hsis usually occurs when
a new exploit comes out and the attacker is looking for a $ipesgrvice.

ANOTE

The characteristics of a portsweep scan may not result iy megative responses. For example, if an attagker
portsweeps a web farm for port 80, we will most likely not seengnnegative responses.

sfPortscan alerts on the following filtered portscans antspeeps:

e TCP Filtered Portscan

e UDP Filtered Portscan

e |P Filtered Portscan

e TCP Filtered Decoy Portscan

e UDP Filtered Decoy Portscan

¢ |P Filtered Decoy Portscan

e TCP Filtered Portsweep

e UDP Filtered Portsweep

e |P Filtered Portsweep

e ICMP Filtered Portsweep

e TCP Filtered Distributed Portscan

e UDP Filtered Distributed Portscan

¢ |P Filtered Distributed Portscan
“Filtered” alerts indicate that there were no network esfd€MP unreachables or TCP RSTSs) or responses on closed
ports have been suppressed. It's also a good indicator ahehthe alert is just a very active legitimate host. Active

hosts, such as NATSs, can trigger these alerts because thegnd out many connection attempts within a very small
amount of time. A filtered alert may go off before responsesifthe remote hosts are received.

sfPortscan only generates one alert for each host pair istigneduring the time window (more on windows below).
On TCP scan alerts, sfPortscan will also display any opetsbat were scanned. On TCP sweep alerts however,
sfPortscan will only track open ports after the alert hastigggered. Open port events are not individual alerts, but
tags based on the orginal scan alert.

sfPortscan Configuration

Use of the Stream5 preprocessor is required for sfPort&tamam gives portscan direction in the case of connection-
less protocols like ICMP and UDP. You should enable the &trpeeprocessor in yowsnort.conf , as described in

SectiofZZP.

The parameters you can use to configure the portscan modaule ar

1. proto <protocol>
Available options:

e TCP

37

e UDP
e IGMP
ip _proto

e all

2. scantype <scantype>
Available options:

portscan

portsweep

decoy _portscan
o distributed _portscan
o all

3. sensdevel <level>
Available options:

e low - “Low” alerts are only generated on error packets sent frioetarget host, and because of the nature
of error responses, this setting should see very few falsévyes. However, this setting will never trigger
a Filtered Scan alert because of a lack of error responsés sé&tting is based on a static time window of
60 seconds, afterwhich this window is reset.

e medium - “Medium” alerts track connection counts, and so will gexterfiltered scan alerts. This setting
may false positive on active hosts (NATSs, proxies, DNS cagchte), so the user may need to deploy the
use of Ignore directives to properly tune this directive.

e high - “High” alerts continuously track hosts on a network usingirae window to evaluate portscan
statistics for that host. A "High” setting will catch somewl scans because of the continuous monitoring,
but is very sensitive to active hosts. This most definitelly require the user to tune sfPortscan.

4. watchip <ipl|ip2/cidr[[port |port2-port3]] >
Defines which IPs, networks, and specific ports on those liostgtch. The list is a comma separated list of
IP addresses, IP address using CIDR notation. Optionaliys are specified after the IP address/CIDR using a
space and can be either a single port or a range denoted bi.aBa®or networks not falling into this range are
ignored if this option is used.

5. ignorescanners<ipl|ip2/cidr[[port |port2-port3]] >

Ignores the source of scan alerts. The parameter is the samatfas that ofvatch _ip .

6. ignorescanned<ipl|ip2/cidr[[port |port2-port3]] >
Ignores the destination of scan alerts. The parameter isatime format as that @fatch _ip .

7. lodfile <file>
This option will output portscan events to the file specififfidfile does not contain a leading slash, this file
will be placed in the Snort config dir.

8. include_midstream
This option will include sessions picked up in midstream Ine&m5. This can lead to false alerts, especially
under heavy load with dropped packets; which is why the opsmff by default.

9. detectack scans

This option will include sessions picked up in midstream g $tream module, which is necessary to detect
ACK scans. However, this can lead to false alerts, espgaialier heavy load with dropped packets; which is
why the option is off by default.

38

Format

preprocessor sfportscan: proto <protocols> \
scan_type <portscan|portsweep|decoy_portscan|distrib uted_portscanjall> \
sense_level <low|medium|high> \
watch_ip <IP or IP/CIDR> \
ignore_scanners <IP list> \
ignore_scanned <IP list> \
logfile <path and filename>

Example

preprocessor flow: stats_interval 0 hash 2
preprocessor sfportscan:\

proto { all }\

scan_type { all } \

sense_level { low }

sfPortscan Alert Output

Unified Output In order to get all the portscan information logged with therta snort generates a pseudo-packet
and uses the payload portion to store the additional pariséarmation of priority count, connection count, IP count
port count, IP range, and port range. The characteristittseobacket are:

Src/Dst MAC Addr == MACDAD
IP Protocol == 255
IP TTL ==

Other than that, the packet looks like the IP portion of thekpathat caused the portscan alert to be generated. This
includes any IP options, etc. The payload and payload sizheopacket are equal to the length of the additional
portscan information that is logged. The size tends to beratd.00 - 200 bytes.

Open port alerts differ from the other portscan alerts, beeapen port alerts utilize the tagged packet output system
This means that if an output system that doesn't print taggettets is used, then the user won’t see open port alerts.
The open port information is stored in the IP payload andaiostthe port that is open.

The sfPortscan alert output was designed to work with ungezket logging, so it is possible to extend favorite Snort
GUIs to display portscan alerts and the additional inforamain the IP payload using the above packet characteristics

Log File Output Log file output is displayed in the following format, and eaipled further below:

Time: 09/08-15:07:31.603880

event id: 2

192.168.169.3 -> 192.168.169.5 (portscan) TCP Filtered Po rtscan
Priority Count: 0

Connection Count: 200

IP Count: 2

Scanner IP Range: 192.168.169.3:192.168.169.4

Port/Proto Count: 200

Port/Proto Range: 20:47557

If there are open ports on the target, one or more additiagaldd packet(s) will be appended:

Time: 09/08-15:07:31.603881
event ref: 2

39

192.168.169.3 -> 192.168.169.5 (portscan) Open Port
Open Port: 38458

1. Eventid/Event_ref
These fields are used to link an alert with the correspondpeg Port tagged packet

2. Priority Count

Priority Count keeps track of bad responses (resets, unreachables). ghrer lhe priority count, the more
bad responses have been received.

3. Connection Count

Connection Count lists how many connections are active on the hosts (src Qr dehis is accurate for
connection-based protocols, and is more of an estimatetf@ra Whether or not a portscan was filtered is
determined here. High connection count and low priorityrtamould indicate filtered (no response received
from target).

4. |IP Count

IP Count keeps track of the last IP to contact a host, and imengs the count if the next IP is different. For
one-to-one scans, this is a low humber. For active hoststimisber will be high regardless, and one-to-one
scans may appear as a distributed scan.

5. Scanned/Scanner IP Range

This field changes depending on the type of alert. Portswaep-{0-many) scans display the scanned IP range;
Portscans (one-to-one) display the scanner IP.

6. Port Count

Port Count keeps track of the last port contacted and inangsribis number when that changes. We use this
count (along with IP Count) to determine the difference le&twone-to-one portscans and one-to-one decoys.

Tuning sfPortscan

The most important aspect in detecting portscans is tutiaglétection engine for your network(s). Here are some
tuning tips:

1. Use the watchip, ignore_scanners, and ignorescanned options.

It's important to correctly set these options. Twedch _ip option is easy to understand. The analyst should set
this option to the list of Cidr blocks and IPs that they wamveich. If nowatch _ip is defined, sfPortscan will
watch all network traffic.

Theignore _scanners andignore _scanned options come into play in weeding out legitimate hosts that a
very active on your network. Some of the most common examgeNAT IPs, DNS cache servers, syslog
servers, and nfs servers. sfPortscan may not generatetagaes for these types of hosts, but be aware when
first tuning sfPortscan for these IPs. Depending on the typted that the host generates, the analyst will know
which to ignore it as. If the host is generating portsweemtssehen add it to th@gnore _scanners option.

If the host is generating portscan alerts (and is the hostishHzeing scanned), add it to tlignore _scanned
option.

2. Filtered scan alerts are much more prone to false positive

When determining false positives, the alert type is veryangmt. Most of the false positives that sfPortscan
may generate are of the filtered scan alert type. So be much sagpicious of filtered portscans. Many times
this just indicates that a host was very active during the fi@riod in question. If the host continually generates
these types of alerts, add it to tlyaore _scanners list or use a lower sensitivity level.

3. Make use of the Priority Count, Connection Count, IP Count Port Count, IP Range, and Port Range to
determine false positives.

40

The portscan alert details are vital in determining the saffa portscan and also the confidence of the portscan.
In the future, we hope to automate much of this analysis ilgasg) a scope level and confidence level, but
for now the user must manually do this. The easiest way toriéte false positives is through simple ratio
estimations. The following is a list of ratios to estimatel dhe associated values that indicate a legimite scan
and not a false positive.

Connection Count / IP Count: This ratio indicates an estimated average of connectiond’pEor portscans,
this ratio should be high, the higher the better. For porépgethis ratio should be low.

Port Count/IP Count: This ratio indicates an estimated average of ports condéeteer IP. For portscans, this
ratio should be high and indicates that the scanned host's were connected to by fewer IPs. For portsweeps,
this ratio should be low, indicating that the scanning hosinected to few ports but on many hosts.

Connection Count / Port Count: This ratio indicates an estimated average of connectionpoe. For
portscans, this ratio should be low. This indicates thaheannection was to a different port. For portsweeps,
this ratio should be high. This indicates that there wereyntamnections to the same port.

The reason tha®riority Count is not included, is because the priority count is includethi® connection
count and the above comparisons take that into considarafibe Priority Count play an important role in
tuning because the higher the priority count the more liktelya real portscan or portsweep (unless the host is
firewalled).

If all else fails, lower the sensitivity level.

If none of these other tuning techniques work or the analyssd't have the time for tuning, lower the sensitivity
level. You get the best protection the higher the sensttigitel, but it's also important that the portscan detection
engine generate alerts that the analyst will find inforngativhe low sensitivity level only generates alerts based
on error responses. These responses indicate a portscémesaidrts generated by the low sensitivity level are
highly accurate and require the least tuning. The low seitgitevel does not catch filtered scans; since these
are more prone to false positives.

2.2.4 RPC Decode

The rpcdecode preprocessor normalizes RPC multiple fragmenteddsinto a single un-fragmented record. It does
this by normalizing the packet into the packet buffer. Ieamn5 is enabled, it will only process client-side traffic. By

default, it runs against traffic on ports 111 and 32771.

Format

preprocessor rpc_decode: \

<ports> [alert fragments] \
[no_alert_multiple_requests] \

[no_alert_large_fragments] \
[no_alert_incomplete]

Option

Description

alert _fragments

Alert on any fragmented RPC record.

no_alert _multiple _requests

Don't alert when there are multiple records in one packet.

no_alert _large _fragments

Don't alert when the sum of fragmented records exceeds otieepa

no_alert _incomplete

Don't alert when a single fragment record exceeds the siomefacket,

2.2.5 Performance Monitor

This preprocessor measures Snort’s real-time and theakretaximum performance. Whenever this preprocessor is
turned on, it should have an output mode enabled, eitherstieiwhich prints statistics to the console window or
“file” with a file name, where statistics get printed to the gfied file name. By default, Snort’s real-time statistics

are processed. This includes:

41

Time Stamp

Drop Rate

Mbits/Sec (wire) [duplicated below for easy comparisortwather rates]
Alerts/Sec

K-Pkts/Sec (wire) [duplicated below for easy comparisotihwiher rates]
Avg Bytes/Pkt (wire) [duplicated below for easy comparisdath other rates]
Pat-Matched [percent of data received that Snort proc@sgadtern matching]
Syns/Sec

SynAcks/Sec

New Sessions Cached/Sec

Sessions Del fr Cache/Sec

Current Cached Sessions

Max Cached Sessions

Stream Flushes/Sec

Stream Session Cache Faults

Stream Session Cache Timeouts

New Frag Trackers/Sec

Frag-Completes/Sec

Frag-Inserts/Sec

Frag-Deletes/Sec

Frag-Auto Deletes/Sec [memory DoS protection]

Frag-Flushes/Sec

Frag-Current [number of current Frag Trackers]

Frag-Max [max number of Frag Trackers at any time]

Frag-Timeouts

Frag-Faults

Number of CPUs [*** Only if compiled with LINUXSMP ***, the next three appear for each CPU]

CPU usage (user)

CPU usage (sys)

CPU usage (ldle)

Mbits/Sec (wire) [average mbits of total traffic]

Mbits/Sec (ipfrag) [average mbits of IP fragmented traffic]

Mbits/Sec (ipreass) [average mbits Snort injects afteed3sembly]
Mbits/Sec (tcprebuilt) [average mbits Snort injects alt€P reassembly]

Mbits/Sec (applayer) [average mbits seen by rules and pobttecoders]

42

Avg Bytes/Pkt (wire)

Avg Bytes/Pkt (ipfrag)

Avg Bytes/Pkt (ipreass)

Avg Bytes/Pkt (tcprebuilt)

Avg Bytes/Pkt (applayer)
K-Pkts/Sec (wire)

K-Pkts/Sec (ipfrag)

K-Pkts/Sec (ipreass)

K-Pkts/Sec (tcprebuilt)

K-Pkts/Sec (applayer)

Total Packets Received

Total Packets Dropped (not processed)
Total Packets Blocked (inline)
Percentage of Packets Dropped
Total Filtered TCP Packets

Total Filtered UDP Packets
Midstream TCP Sessions/Sec
Closed TCP Sessions/Sec

Pruned TCP Sessions/Sec
TimedOut TCP Sessions/Sec
Dropped Async TCP Sessions/Sec
TCP Sessions Initializing

TCP Sessions Established

TCP Sessions Closing

Max TCP Sessions (interval)

New Cached UDP Sessions/Sec
Cached UDP Ssns Del/Sec
Current Cached UDP Sessions
Max Cached UDP Sessions
Current Attribute Table Hosts (Target Based)
Attribute Table Reloads (Target Based)
Mbits/Sec (Snort)

Mbits/Sec (sniffing)

Mbits/Sec (combined)
uSeconds/Pkt (Snort)

43

uSeconds/Pkt (sniffing)

uSeconds/Pkt (combined)

KPkts/Sec (Snort)

KPkts/Sec (sniffing)

KPkts/Sec (combined)
The following options can be used with the performance noonit

e flow - Prints out statistics about the type of traffic and protalistributions that Snort is seeing. This option
can produce large amounts of output.

e events - Turns on event reporting. This prints out statistics ah@number of signatures that were matched
by the setwise pattern matcheofp-qualified evenjsand the number of those matches that were verified with
the signature flaggg(alified evenfs This shows the user if there is a problem with the rule sat they are
running.

e max- Turns on the theoretical maximum performance that Sndctites given the processor speed and current
performance. This is only valid for uniprocessor machis@s;e many operating systems don’t keep accurate
kernel statistics for multiple CPUs.

e console - Prints statistics at the console.

e file - Prints statistics in a comma-delimited format to the filattis specified. Not all statistics are output to
this file. You may also usenortfile which will output into your defined Snort log directory. Batifithese
directives can be overridden on the command line with-Zher --perfmon-file options.

e pkicnt - Adjusts the number of packets to process before checkinthéotime sample. This boosts perfor-
mance, since checking the time sample reduces Snort'srpafce. By default, this is 10000.

e time - Represents the number of seconds between intervals.

e accumulate orreset - Defines which type of drop statistics are kept by the opegasiystem. By default,
reset is used.

e atexitonly - Dump stats for entire life of Snort.

e maxfile _size - Defines the maximum size of the comma-delimited file. Befboeefile exceeds this size, it
will be rolled into a new date stamped file of the format YYYYMADD, followed by YYYY-MM-DD.x, where
x will be incremented each time the comma delimiated file iedoover. The minimum is 4096 bytes and the
maximum is 2147483648 bytes (2GB). The default is the santieeamiaximum.

Examples

preprocessor perfmonitor: \
time 30 events flow file stats.profile max console pktcnt 10 000

preprocessor perfmonitor: \
time 300 file /var/tmp/snortstat pktcnt 10000

2.2.6 HTTP Inspect

HTTP Inspect is a generic HTTP decoder for user applicati@digen a data buffer, HTTP Inspect will decode the
buffer, find HTTP fields, and normalize the fields. HTTP Ingpearks on both client requests and server responses.

The current version of HTTP Inspect only handles statelessgssing. This means that HTTP Inspect looks for HTTP
fields on a packet-by-packet basis, and will be fooled if péelare not reassembled. This works fine when there is

44

another module handling the reassembly, but there arealiimits in analyzing the protocol. Future versions will have
a stateful processing mode which will hook into various seasbly modules.

HTTP Inspect has a very “rich” user configuration. Users aamfigure individual HTTP servers with a variety of
options, which should allow the user to emulate any type df server. Within HTTP Inspect, there are two areas of
configuration: global and server.

Global Configuration

The global configuration deals with configuration optioret tthetermine the global functioning of HTTP Inspect. The
following example gives the generic global configuratiomiat:

Format

preprocessor http_inspect; \
global \
iis_unicode_map <map_filename> \
codemap <integer> \
[detect_anomalous_servers] \
[proxy_alert]

You can only have a single global configuration, you'll gearor if you try otherwise.

Configuration

1.

iis _unicode _map <map_filename > [codemap <integer >]

This is the globaiis _unicode _mapfile. Theiis _unicode _mapis a required configuration parameter. The map
file can reside in the same directorysasrt.conf or be specified via a fully-qualified path to the map file.

Theiis _unicode _mapfile is a Unicode codepoint map which tells HTTP Inspect widodepage to use when
decoding Unicode characters. For US servers, the codenapadly 1252.

A Microsoft US Unicode codepoint map is provided in the Srsoirceetc directory by default. It is called
unicode.map and should be used if no other codepoint map is availableoissupplied with Snortto generate
custom Unicodeaps--ms _unicode _generator.c , which is available éittp://www.snort.org/dl/contrib/

ANOTE

Remember that this configuration is for the global 1IS Uniemdap, individual servers can reference their
own IS Unicode map.

detect _anomalous _servers

This global configuration option enables generic HTTP sanadfic inspection on non-HTTP configured ports,
and alerts if HTTP traffic is seen. Don't turn this on if you domave a default server configuration that
encompasses all of the HTTP server ports that your userstmigiess. In the future, we want to limit this to
specific networks so it's more useful, but for right now, timispects all network traffic.

proxy _alert

This enables global alerting on HTTP server proxy usage. @yiguring HTTP Inspect servers and enabling
allow _proxy _use, you will only receive proxy use alerts for web users thahdnasing the configured proxies
or are using a rogue proxy server.

Please note that if users aren’t required to configure wekypee, then you may get a lot of proxy alerts. So,
please only use this feature with traditional proxy envinemts. Blind firewall proxies don't count.

45

http://www.snort.org/dl/contrib/

Example Global Configuration

preprocessor http_inspect: \
global iis_unicode_map unicode.map 1252

Server Configuration

There are two types of server configurations: default andPtaddress.

Default This configuration supplies the default server configurdfiim any server that is not individually configured.
Most of your web servers will most likely end up using the dédtfaonfiguration.

Example Default Configuration

preprocessor http_inspect_server: \
server default profile all ports { 80 }

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP Configuration

preprocessor http_inspect_server; \
server 10.1.1.1 profile all ports { 80 }

Configuration by Multiple IP Addresses This format is very similar to “Configuration by IP Addres#ie only
difference being that multiple IPs can be specified via a spaparated list. There is a limit of 40 IP addresses or
CIDR notations pehttp _inspect _server line.

Example Multiple IP Configuration

preprocessor http_inspect_server; \
server { 10.1.1.1 10.2.2.0/24 } profile all ports { 80 }

Server Configuration Options

Important: Some configuration options have an argumented’‘gr ‘no’. This argument specifies whether the user
wants the configuration option to generate an HTTP Inspect af not. The ‘yes/no’ argument does not specify
whether the configuration option itself is on or off, only @lerting functionality. In other words, whether set to ‘yes
or 'no’, HTTP normalization will still occur, and rules basen HTTP traffic will still trigger.

1. profile <all |apache Jis |iis5 _Oliis4 _0>

Users can configure HTTP Inspect by using pre-defined HTTWeserofiles. Profiles allow the user to easily
configure the preprocessor for a certain type of server,ieutet required for proper operation.

There are five profiles available: all, apache, iis, ils%nd iis40.

1-A. all

Theall profile is meant to normalize the URI using most of the comnniwks available. We alert on the
more serious forms of evasions. This is a great profile foea®tg all types of attacks, regardless of the
HTTP serverprofile all sets the configuration options described in Tablk 2.3.

46

1-B.

1-C.

1-D.

Table 2.3: Options for the “all” Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ascii decoding

on, alert off

multiple slash on, alert off

directory normalization on, alert off

apache whitespace on, alert off

double decoding on, alerton

%u decoding on, alerton

bare byte decoding on, alerton

iis unicode codepoints| on, alert on

iis backslash on, alert off

iis delimiter on, alert off

webroot on, alerton

nonstrict URL parsing| on

tab.uri_delimiter is set

max headetdength 0, header length not checked

max headers 0, number of headers not checked
apache

Theapache profile is used for Apache web servers. This differs fromiihe profile by only accepting
UTF-8 standard Unicode encoding and not accepting badiesaas legitimate slashes, like 1IS does.

Apache also accepts tabs as whitespamefile apache

sets the configuration options described in

Table[Z3.
Table 2.4: Options for thepache Profile
Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
apache whitespace on, alerton
utf_8 encoding on, alert off
nonstrict url parsing | on
tab_uri_delimiter is set

max headedength 0, header length not checked
maxheaders 0, number of headers not checked
iis
Theiis profile mimics IIS servers. So that means we use IIS Unicodieitaps for each server, %u

encoding, bare-byte encoding, double decoding, backetagc. profile iis
options described in Tab[e2.5.

iis4 0, iis5 _0
In IS 4.0 and 1IS 5.0, there was a double decoding vulnétgbiThese two profiles are identical is ,

47

sets the configuration

Table 2.5: Options for thiis Profile

Option Setting
serverflow_depth 300
client flow_depth 300
postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

iis_unicodemap

codepoint map in the global configuration

ascii decoding

on, alert off

multiple slash on, alert off
directory normalization on, alert off
webroot on, alerton
double decoding on, alerton
%u decoding on, alerton
bare byte decoding on, alerton
iis unicode codepoints| on, alert on
iis backslash on, alert off
iis delimiter on, alerton
apache whitespace on, alerton
nonstrict URL parsing| on

max_headerdength

0, header length not checked

maxheaders

0, number of headers not checked

except they will alert by default if a URL has a double encgdibouble decode is not supported in IS
5.1 and beyond, so it's disabled by default.

1-E. default, no profile
The default options used by HTTP Inspect do not use a profdeaasm described in Table2.6.

Table 2.6: Default HTTP Inspect Options

Option Setting
port 80
serverflow_depth 300
client flow_depth 300

postdepth 0

chunk encoding

alert on chunks larger than 500000 bytes

ascii decoding

on, alert off

utf_8 encoding on, alert off

multiple slash on, alert off

directory normalization on, alert off

webroot on, alerton

iis backslash on, alert off

apache whitespace on, alert off

iis delimiter on, alert off

nonstrict URL parsing| on

max headedength 0, header length not checked

max headers 0, number of headers not checked

Profiles must be specified as the first server option and cérenmambined with any other options except:

ports

iis _unicode _map
allow _proxy _use

server _flow _depth

48

e client _flow _depth
e post _depth

e no_alerts

e inspect _uri _only

e oversize _dir _length
e normalize _headers
e normalize _cookies
e max header _length

e max_headers

These options must be specified afterghaile option.

Example

preprocessor http_inspect_server; \
server 1.1.1.1 profile all ports { 80 3128 }

. ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode on theRH5€erver. However, HTTPS traffic is encrypted
and cannot be decoded with HTTP Inspect. To ignore HTTP8drake the SSL preprocessor.

. iis _unicode _map <map filename > codemap <integer >

The IIS Unicode map is generated by the programumigodegenerator.c. This program is located on the
Snort.org web site dittp://www.snort.org/dlicontrib/ directory. Executing this program generates a
Unicode map for the system that it was run on. So, to get theifsp&nicode mappings for an IIS web server,
you run this program on that server and use that Unicode mégisiconfiguration.

When using this option, the user needs to specify the filedbatains the 11S Unicode map and also specify
the Unicode map to use. For US servers, this is usually 1262tH& msunicodegenerator program tells you
which codemap to use for you server; it's the ANSI code pageL ¢An select the correct code page by looking
at the available code pages that themmicodegenerator outputs.

. server _flow _depth <integer >

This specifies the amount of server response payload toghspieis option significantly increases IDS perfor-

mance because we are ignoring a large part of the netwoffict(efTTP server response payloads). A small
percentage of Snort rules are targeted at this traffic andadl #iow_depth value may cause false negatives in
some of these rules. Most of these rules target either theFHIeRder, or the content that is likely to be in the
first hundred or so bytes of non-header data. Headers aréiyusnder 300 bytes long, but your mileage may

vary.

This value can be set from -1 to 1460. A value of -1 causes $maghore all server side traffic for ports defined
in ports . Inversely, a value of 0 causes Snort to inspect all HTTPesgrayloads defined iports (note that
this will likely slow down IDS performance). Values abovedl tSnort the number of bytes to inspect in the
first packet of the server response.

ANOTE

‘ server _flow _depth isthe same as the ofdw _depth option, which will be deprecated in a future relea#se.

. client _flow _depth <integer >

This specifies the amount of raw client request payload fodicss It is similar toserver _flow _depth (above),
and has a default value of 300. It primarily eliminates Sfrarinspecting larger HTTP Cookies that appear at
the end of many client request Headers.

. post _depth <integer >

This specifies the amount of data to inspect in a client possage. The value can be set from 0 to 65495. The
default value is 0. This increases the perfomance by inggeohly specified bytes in the post message.

49

http://www.snort.org/dl/contrib/

7.

10.

11.

12.

13.

14.

ascii <yes [no>

Theasci decode option tells us whether to decode encoded ASCII chdes %2f =/, %2e = ., etc. Itis
normal to see ASCII encoding usage in URLS, so it is recomrmeétitat you disable HTTP Inspect alerting for
this option.

utf _8 <yes|no>

Theutf-8 decode option tells HTTP Inspect to decode standard UTFi8dde sequences that are in the URI.
This abides by the Unicode standard and only uses % encodparhe uses this standard, so for any Apache
servers, make sure you have this option turned on. As fatiradgyou may be interested in knowing when you
have a UTF-8 encoded URI, but this will be prone to false pestas legitimate web clients use this type of
encoding. Whentf _8 is enabled, ASCII decoding is also enabled to enforce cbfuectioning.

u-encode <yes |no>

This option emulates the 1IS %u encoding scheme. How the %oding scheme works is as follows: the
encoding scheme is started by a %u followed by 4 charactkes%duxxxx. The xxxx is a hex-encoded value
that correlates to an IIS Unicode codepoint. This value castrdefinitely be ASCII. An ASCII character is
encoded like %u002f = /, %u002e = ., etc. If natisicodemap is specified before or after this option, the
default codemap is used.

You should alert on %u encodings, because we are not awany tégitimate clients that use this encoding. So
it is most likely someone trying to be covert.

bare _byte <yes|no>

Bare byte encoding is an IIS trick that uses non-ASCII charaas valid values when decoding UTF-8 values.
This is not in the HTTP standard, as all non-ASCII values haviee encoded with a %. Bare byte encoding
allows the user to emulate an IIS server and interpret nandstrd encodings correctly.

The alert on this decoding should be enabled, because theredegitimate clients that encode UTF-8 this
way since it is non-standard.

base36 <yes |no>
This is an option to decode base36 encoded chars. This dpti@sed on info from:
http://www.yK.rim.or.|p/ shikap/patch/spp_http_deco de.patch

If %u encoding is enabled, this option will not work. You hdweause thébase36 option with theutf _8 option.
Don't use the %u option, because base36 won't work. WiaseB6 is enabled, ASCII encoding is also enabled
to enforce correct behavior.

iis _unicode <yes |no>

Theiis _unicode option turns on the Unicode codepoint mapping. If there ifisianicodemap option spec-
ified with the server configis _unicode uses the default codemap. Tlge _unicode option handles the
mapping of non-ASCII codepoints that the IIS server accaptsdecodes normal UTF-8 requests.

You should alert on thiés _unicode option , because it is seen mainly in attacks and evasion attemgtenW
iis _unicode is enabled, ASCIl and UTF-8 decoding are also enabled taremfiorrect decoding. To alert on
UTF-8 decoding, you must enable also enaltfie.8 yes .

double _decode <yes |no>

Thedouble _decode option is once again 11S-specific and emulates 1IS functipnadow this works is that 11S
does two passes through the request URI, doing decodeshroeac In the first pass, it seems that all types of
iis encoding is done: utf-8 unicode, ascii, bare byte, and fuhe second pass, the following encodings are
done: ascii, bare byte, and %u. We leave out utf-8 becausel tiow this works is that the % encoded utf-8
is decoded to the Unicode byte in the first pass, and then UiBFi8coded in the second stage. Anyway, this
is really complex and adds tons of different encodings far dmaracter. Whedouble _decode is enabled, so
ASCIl is also enabled to enforce correct decoding.

non_rfc _char {<byte > [<byte ... >]}

This option lets users receive an alert if certain non-RF&lare used in a request URI. For instance, a user
may not want to see null bytes in the request URI and we cahahethat. Please use this option with care,
because you could configure it to say, alert on all */’ or sdrirgg like that. It's flexible, so be careful.

50

http://www.yk.rim.or.jp/~shikap/patch/spp_http_decode.patch

15. multi _slash <yes |no>
This option normalizes multiple slashes in a row, so somegthke: “foo////l////bar” get normalized to “foo/bar.”
If you want an alert when multiple slashes are seen, thengumefivith ayes ; otherwise, useo.

16. iis _backslash <yes |no>

Normalizes backslashes to slashes. This is again an l|Satiomul So a request URI of “/fodar” gets normal-
ized to “/foo/bar.”

17. directory <yes |no>
This option normalizes directory traversals and selfyesiéal directories.
The directory:

[foolfake_dir/../bar

gets normalized to:
[foo/bar

The directory:
ffool./oar

gets normalized to:
[foo/bar

If you want to configure an alert, specifgs, otherwise, specifyo. This alert may give false positives, since
some web sites refer to files using directory traversals.
18. apache _whitespace <yes|no>

This option deals with the non-RFC standard of using tab fepace delimiter. Apache uses this, so if the
emulated web server is Apache, enable this option. Alertdhiznoption may be interesting, but may also be
false positive prone.

19. iis _delimiter <yes [no>

This started out being 11S-specific, but Apache takes thisstandard delimiter was well. Since this is common,

we always take this as standard since the most popular webersexccept it. But you can still get an alert on
this option.

20. chunk _length <non-zero positive integer >

This option is an anomaly detector for abnormally large é&hsines. This picks up the Apache chunk encoding

exploits, and may also alert on HTTP tunneling that uses kleacoding.

21. no_pipeline _req

This option turns HTTP pipeline decoding off, and is a perfance enhancement if needed. By default, pipeline
requests are inspected for attacks, but when this optionabled, pipeline requests are not decoded and ana-

lyzed per HTTP protocol field. It is only inspected with thengec pattern matching.

22. non_strict

This option turns on non-strict URI parsing for the brokenyvia which Apache servers will decode a URI.
Only use this option on servers that will accept URIs liketfiget /index.html alsjdfk alsj Ij aj la jsj\:1”. The

non.strict option assumes the URI is between the first and sequameseven if there is no valid HTTP identifier
after the second space.

51

23.

24,

25,

26.

27.

28.

29.

30.

31.

allow _proxy _use

By specifying this keyword, the user is allowing proxy usethis server. This means that no alert will be
generated if the@roxy _alert global keyword has been used. If the proadgert keyword is not enabled, then
this option does nothing. Thalow _proxy _use keyword is just a way to suppress unauthorized proxy use for
an authorized server.

no_alerts

This option turns off all alerts that are generated by the ATAspect preprocessor module. This has no effect
on HTTP rules in the rule set. No argument is specified.

oversize _dir _length <non-zero positive integer >

This option takes a non-zero positive integer as an argumiém argument specifies the max char directory
length for URL directory. If a url directory is larger thanishargument size, an alert is generated. A good
argument value is 300 characters. This should limit thester|DS evasion type attacks, like whisker -i 4.

inspect _uri _only

This is a performance optimization. When enabled, only tR¢ pbrtion of HTTP requests will be inspected
for attacks. As this field usually contains 90-95% of the wthcks, you'll catch most of the attacks. So if
you need extra performance, enable this optimization.irttjsortant to note that if this option is used without
anyuricontent rules, then no inspection will take place. This is obvioungsithe URI is only inspected with
uricontent rules, and if there are none available, then there is nothiirgspect.

For example, if we have the following rule set:

alert tcp any any -> any 80 (msg:"content"; content: "foo";)
and the we inspect the following URI:

get /foo.htm http/1.0\r\n\r\n

No alert will be generated whemspect _uri _only is enabled. Thaspect _uri _only configuration turns off
all forms of detection excepticontent inspection.

max_header _length <positive integer up to 65535 >

This option takes an integer as an argument. The integeeismiximum length allowed for an HTTP client
request header field. Requests that exceed this lengthavileca "Long Header” alert. This alert is off by
default. To enable, specify an integer argument to ineadedength of 1 to 65535. Specifying a value of 0 is
treated as disabling the alert.

webroot <yes |no>

This option generates an alert when a directory traverasktses past the web server root directory. This
generates much fewer false positives than the directoiipmpbecause it doesn'’t alert on directory traversals
that stay within the web server directory structure. It callgrts when the directory traversals go past the web
server root directory, which is associated with certain weacks.

tab _uri _delimiter

This option turns on the use of the tab character (0x09) adimiter for a URI. Apache accepts tab as a
delimiter; IIS does not. For IIS, a tab in the URI should betegl as any other character. Whether this option is
on or not, a tab is treated as whitespace if a space char@gb)(precedes it. No argument is specified.

normalize _headers

This option turns on normalization for HTTP Header Fieldst,including Cookies (using the same configuration
parameters as the URI normalization (ie, multi-slash,adineg, etc.). It is useful for normalizing Referrer URIs
that may appear in the HTTP Header.

normalize _cookies

This option turns on normalization for HTTP Cookie Fieldsitig the same configuration parameters as the
URI normalization (ie, multi-slash, directory, etc.). $tuseful for normalizing data in HTTP Cookies that may
be encoded.

52

32. maxheaders <positive integer up to 1024 >

This option takes an integer as an argument. The integee im#ximum number of HTTP client request header
fields. Requests that contain more HTTP Headers than thig veill cause a "Max Header” alert. The alert is
off by default. To enable, specify an integer argumnet to fmeaders of 1 to 1024. Specifying a value of 0 is
treated as disabling the alert.

Examples

preprocessor http_inspect_server: \
server 10.1.1.1 \
ports { 80 3128 8080 } \
server_flow_depth 0 \
ascii no \
double_decode yes \
non_rfc_char { 0x00 } \
chunk_length 500000 \
non_strict \
no_alerts

preprocessor http_inspect_server: \
server default \
ports { 80 3128 } \
non_strict \
non_rfc_char { Ox00 } \
server_flow_depth 300 \
apache_whitespace yes \
directory no \
iis_backslash no \
u_encode yes \
ascii no \
chunk_length 500000 \
bare_byte yes \
double_decode yes \
iis_unicode yes \
iis_delimiter yes \
multi_slash no

preprocessor http_inspect_server; \
server default \
profile all \
ports { 80 8080 }

2.2.7 SMTP Preprocessor

The SMTP preprocessor is an SMTP decoder for user applitat®iven a data buffer, SMTP will decode the buffer
and find SMTP commands and responses. It will also mark thev@omd, data header data body sections, and TLS
data.

SMTP handles stateless and stateful processing. It saatststtween individual packets. However maintaining
correct state is dependent on the reassembly of the clidgaidithe stream (ie, a loss of coherent stream data results
in a loss of state).

53

Configuration

SMTP has the usual configuration items, suclp@s andinspection _type . Also, SMTP command lines can be
normalized to remove extraneous spaces. TLS-encryptéit tcan be ignored, which improves performance. In
addition, regular mail data can be ignored for an additipeaformance boost. Since so few (none in the current snort
rule set) exploits are against mail data, this is relatigalfe to do and can improve the performance of data inspection

The configuration options are described below:

1. ports { <port> [<port>] ... }
This specifies on what ports to check for SMTP data. Typicdhis will include 25 and possibly 465, for
encrypted SMTP.

2. inspection _type <stateful | stateless>
Indicate whether to operate in stateful or stateless mode.

3. normalize <all | none | cmds>

This turns on normalization. Normalization checks for mihv@n one space character after a command. Space
characters are defined as space (ASCII 0x20) or tab (ASCBYx0

all checks all commands
none turns off normalization for all commands.
cmds just checks commands listed with themalize _cmds parameter.

4. ignore _data
Ignore data section of mail (except for mail headers) whecgssing rules.

5. ignore _tls _data
Ignore TLS-encrypted data when processing rules.

6. maxcommandline _len <int>
Alert if an SMTP command line is longer than this value. Alzseof this option or a "0” means never alert on
command line length. RFC 2821 recommends 512 as a maximumaadhline length.

7. maxheader _line _len <int>
Alert if an SMTP DATA header line is longer than this value.s&ince of this option or a "0” means never alert
on data header line length. RFC 2821 recommends 1024 as anoraxdata header line length.

8. maxresponse _line _len <int>
Alert if an SMTP response line is longer than this value. Ateseof this option or a "0” means never alert on
response line length. RFC 2821 recommends 512 as a maxingponge line length.

9. alt _maxcommandline _len <int> { <cmd> [<cmd>] }
Overridegnax_command.line _len for specific commands.

10. no_alerts
Turn off all alerts for this preprocessor.

11. invalid _cmds { <Space-delimited list of commands> }
Alert if this command is sent from client side. Default is anpy list.

12. valid _cmds { <Space-delimited list of commands> }

List of valid commands. We do not alert on commands in thts Default is an empty list, but preprocessor has
this list hard-coded:

{ ATRN AUTH BDAT DATA DEBUG EHLO EMAL ESAM ESND ESOM ETRN EVFY EXPN } { HELO
HELP IDENT MAIL NOOP QUIT RCPT RSET SAML SOML SEND ONEX QUEU { STARTTLS TICK
TIME TURN TURNME VERB VRFY X-EXPS X-LINK2STATE} { XADR XAUTH XCIR XEXCH50 XGEN
XLICENSE XQUE XSTA XTRN XUSR}

54

13. alert _unknown _cmds
Alert if we don’t recognize command. Default is off.

14. normalize _cmds { <Space-delimited list of commands> }
Normalize this list of commands Default{SRCPT VRFY EXPN}.

15. xlink2state { enable | disable [drop] }
Enable/disable xlink2state alert. Drop if alerted. Deféauénable .

16. print _cmds

List all commands understood by the preprocessor. Thisaratally printed out with the configuration because
it can print so much data.

Example

preprocessor SMTP: \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
ignore_data \
ignore_tls_data \
max_command_line_len 512 \
max_header_line_len 1024 \
max_response_line_len 512 \
no_alerts \
alt_max_command_line_len 300 { RCPT } \
invalid_cmds { } \
valid_cmds { } \
xlink2state { disable } \
print_cmds

Default

preprocessor SMTP; \
ports { 25 } \
inspection_type stateful \
normalize cmds \
normalize_cmds { EXPN VRFY RCPT } \
alt_max_command_line_len 260 { MAIL } \
alt_max_command_line_len 300 { RCPT } \
alt_max_command_line_len 500 { HELP HELO ETRN } \
alt_max_command_line_len 255 { EXPN VRFY }

Note
RCPT TO:andMAIL FROM:are SMTP commands. For the preprocessor configuration aifeeseferred to as RCPT

and MAIL, respectively. Within the code, the preprocessinally maps RCPT and MAIL to the correct command
name.

2.2.8 FTP/Telnet Preprocessor
FTP/Telnet is an improvement to the Telnet decoder and gesvstateful inspection capability for both FTP and

Telnet data streams. FTP/Telnet will decode the streamtifgisng FTP commands and responses and Telnet escape
sequences and normalize the fields. FTP/Telnet works ondtietit requests and server responses.

55

FTP/Telnet has the capability to handle stateless praugssieaning it only looks for information on a packet-by-
packet basis.

The defaultis to run FTP/Telent in stateful inspection madeaning it looks for information and handles reassembled
data correctly.

FTP/Telnet has a very “rich” user configuration, similar battof HTTP Inspect (Sde2.2.6). Users can configure
individual FTP servers and clients with a variety of optiowkich should allow the user to emulate any type of FTP
server or FTP Client. Within FTP/Telnet, there are four arefaconfiguration: Global, Telnet, FTP Client, and FTP

Server.

ANOTE

Some configuration options have an argumeryesfor no. This argument specifies whether the user wants
the configuration option to generate a ftptelnet alert or fite presence of the option indicates the optjon
itself is on, while theyes/no argument applies to the alerting functionality associatghl that option.

Global Configuration

The global configuration deals with configuration optioret tthetermine the global functioning of FTP/Telnet. The
following example gives the generic global configuratiomiat:

Format

preprocessor ftp_telnet: \
global \
inspection_type stateful \
encrypted_traffic yes \
check_encrypted

You can only have a single global configuration, you'll getearor if you try otherwise. The FTP/Telnet global
configuration must appear before the other three areas €ifjcoation.

Configuration
1. inspection _type
This indicates whether to operate in stateful or statelesdem

2. encrypted _traffic <yes|no >
This option enables detection and alerting on encryptedeteind FTP command channels.

ANOTE

Wheninspection _type isin stateless mode, checks for encrypted traffic will ocauevery packet, whereds
in stateful mode, a particular session will be noted as grted/and not inspected any further.

3. check _encrypted

Instructs the the preprocessor to continue to check an ptezhsession for a subsequent command to cease
encryption.

Example Global Configuration

preprocessor ftp_telnet: \
global inspection_type stateful encrypted traffic no

56

Telnet Configuration

The telnet configuration deals with configuration optiors tetermine the functioning of the Telnet portion of the
preprocessor. The following example gives the generietedanfiguration format:

Format

preprocessor ftp_telnet_protocol: \
telnet \
ports { 23 } \
normalize \
ayt_attack_thresh 6 \
detect_anomalies

There should only be a single telnet configuration, and syues® instances will override previously set values.

Configuration

1. ports {<port > [<port ><..>]}
This is how the user configures which ports to decode as tehfét. SSH tunnels cannot be decoded, so adding
port 22 will only yield false positives. Typically port 23 Ivbe included.

2. normalize
This option tells the preprocessor to normalize the telrafi¢ by eliminating the telnet escape sequences. It
functions similarly to its predecessor, the teldetode preprocessor. Rules written with ‘raw’ contentai
will ignore the normailzed buffer that is created when thisi@n is in use.

3. ayt _attack _thresh < number >
This option causes the preprocessor to alert when the nuofb@wnsecutive telnet Are You There (AYT)
commands reaches the number specified. It is only applieetde the mode is stateful.

4. detect _anomalies

In order to support certain options, Telnet supports subtietipn. Per the Telnet RFC, subnegotiation begins
with SB (subnegotiation begin) and must end with an SE (sgbiietion end). However, certain implementa-

tions of Telnet servers will ignore the SB without a coorexing SE. This is anomalous behavior which could
be an evasion case. Being that FTP uses the Telnet proto¢béaontrol connection, it is also susceptible to

this behavior. Theletect _anomalies option enables alerting on Telnet SB without the correspan8E.

Example Telnet Configuration

preprocessor ftp_telnet_protocol: \
telnet ports { 23 } normalize ayt attack_thresh 6

FTP Server Configuration

There are two types of FTP server configurations: defaultgné® address.

Default This configuration supplies the default server configureftw any FTP server that is not individually con-
figured. Most of your FTP servers will most likely end up usthg default configuration.

57

Example Default FTP Server Configuration

preprocessor ftp_telnet_protocol: \

ftp server default ports { 21 }

Refer td B0 for the list of options set in default ftp servenfiguration.

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Server Configuration

preprocessor _telnet_protocol: \

ftp server 10.1.1.1 ports { 21 } ftp_cmds { XPWD XCWD }

FTP Server Configuration Options

1.

ports {<port > [<port >< ...>]}

This is how the user configures which ports to decode as FTPnzomd channel traffic. Typically port 21 will
be included.

print _cmds

During initialization, this option causes the preprocessgrint the configuration for each of the FTP commands
for this server.

ftp cmds {cmdcmd}

The preprocessor is configured to alert when it sees an FTihemehthat is not allowed by the server.

This option specifies a list of additional commands allowgdHis server, outside of the default FTP command
set as specified in RFC 959. This may be used to allow the use okt commands identified in RFC 775, as
well as any additional commands as needed.

For example:

ftp_cmds { XPWD XCWD XCUP XMKD XRMD }

. def _max_param _len <number >

This specifies the default maximum allowed parameter lefaggthn FTP command. It can be used as a basic
buffer overflow detection.
alt _max_param_len <number > {cmdcmd}

This specifies the maximum allowed parameter length for pleeified FTP command(s). It can be used as a
more specific buffer overflow detection. For example the USBRmand — usernames may be no longer than
16 bytes, so the appropriate configuration would be:

alt_max_param_len 16 { USER }

chk _str _fmt {cmdcmd}
This option causes a check for string format attacks in tleeifipd commands.

cmd_validity emd < fmt >
This option specifies the valid format for parameters of &gigommand.
fmt must be enclosed ir>’s and may contain the following:

58

Value Description

int Parameter must be an integer
number Parameter must be an integer between 1 and 255
char<chars> Parameter must be a single character, onedfars>
date<datefmt- Parameter follows format specified, where:

n Number

C Character
I optional format enclosed

| OR
{} choice of options
.+ - literal
string Parameter is a string (effectively unrestricted)
hostport Parameter must be a host/port specified, per RFC 959
long hostport Parameter must be a long host port specified, per RFC
1639
extendedhostport | Parameter must be an extended host port specified, per
RFC 2428
{}] One of choices enclosed within, separated by
{11 One of the choices enclosed withj, optional value

enclosed withirj)

Examples of the cmdalidity option are shown below. These examples are theuttafhecks, per RFC 959 and
others performed by the preprocessor.

cmd_validity MODE <char SBC>

cmd_validity STRU <char FRP>

cmd_validity ALLO < int [char R int] >

cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe r]j}>
cmd_validity PORT < host_port >

A cmd_validity line can be used to override these defaults andidreacheck for other commands.

This allows additional modes, including mode Z which allow s for
zip-style compression.
cmd_validity MODE < char ASBCZ >

Allow for a date in the MDTM command.
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >

MDTM is an off case that is worth discussing. While not paranfestablished standard, certain FTP servers ac-
cept MDTM commands that set the modification time on a file. fflest common among servers that do, accept
aformatusing YYYYMMDDHHmMmss[.uuu]. Some others accepitafat using YYYYMMDDHHmMmMsS[+—-

]TZ format. The example above is for the first case (time fdrasaspecified in http://www.ietf.org/internet-
drafts/draft-ietf-ftpext-mist-16.txt)

To check validity for a server that uses the TZ format, usddhewing:
cmd_validity MDTM < [date nnnnnnnnnnnnnn[{+|-}n[n]]] str ing >

. telnet _cmds <yes|no>

This option turns on detection and alerting when telnetgssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequemesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP semderot process those telnet escape se-
guences.

59

10. data _chan

This option causes the rest of snort (rules, other prepsocssto ignore FTP data channel connections. Using
this option means thatO INSPECTION other than TCP state will be performed on FTP data transfiers.
can be used to improve performance, especially with largerfinsfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

Use of the "datachan” option is deprecated in favor of the "ignatatachan” option. "datachan” will be
removed in a future release.

11. ignore _data _chan <yes |no>

This option causes the rest of Snort (rules, other prepsotskto ignore FTP data channel connections. Setting
this option to "yes” means th&tO INSPECTION other than TCP state will be performed on FTP data transfers.
It can be used to improve performance, especially with léilgéransfers from a trusted source. If your rule set
includes virus-type rules, it is recommended that thisaptiot be used.

FTP Server Base Configuration Options

The base FTP server configuration is as follows. Optionsifipeédn the configuration file will modify this set of
options. FTP commands are added to the set of allowed comsnd@hé other options will override those in the base
configuration.

def_max_param_len 100
ftp_cmds { USER PASS ACCT CWD CDUP SMNT

QUIT REIN TYPE STRU MODE RETR

STOR STOU APPE ALLO REST RNFR

RNTO ABOR DELE RMD MKD PWD LIST

NLST SITE SYST STAT HELP NOOP }

ftp_cmds { AUTH ADAT PROT PBSZ CONF ENC }
ftp_cmds { PORT PASV LPRT LPSV EPRT EPSV }
ftp_cmds { FEAT OPTS }
ftp_cmds { MDTM REST SIZE MLST MLSD }
alt_ max_param_len 0 { CDUP QUIT REIN PASV STOU ABOR PWD SYST BOP }
cmd_validity MODE < char SBC >
cmd_validity STRU < char FRPO [string | >
cmd_validity ALLO < int [char R int] >
cmd_validity TYPE < { char AE [char NTC] | char | | char L [numbe rj}>
cmd_validity PORT < host_port >
cmd_validity LPRT < long_host_port >
cmd_validity EPRT < extd_host_port >
cmd_validity EPSV < [{1 | 27 | 'ALL’ }] >

FTP Client Configuration

Similar to the FTP Server configuration, the FTP client canfigions has two types: default, and by IP address.

Default This configuration supplies the default client configunatior any FTP client that is not individually con-
figured. Most of your FTP clients will most likely end up usitig default configuration.

Example Default FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client default bounce no max resp_len 200

60

Configuration by IP Address This format is very similar to “default”, the only differeadeing that specific IPs
can be configured.

Example IP specific FTP Client Configuration

preprocessor ftp_telnet_protocol: \
ftp client 10.1.1.1 bounce yes max_resp_len 500

FTP Client Configuration Options

1. maxresp _len <number >
This specifies the maximum allowed response length to an Biffmand accepted by the client. It can be used
as a basic buffer overflow detection.

2. bounce <yes|no >
This option turns on detection and alerting of FTP bounceck#. An FTP bounce attack occurs when the FTP
PORT command is issued and the specified host does not matbloghof the client.

3. bounce _to < CIDR,[port |portlow,porthi] >

When the bounce option is turned on, this allows the PORT canuhio use the IP address (in CIDR format) and
port (or inclusive port range) without generating an alértan be used to deal with proxied FTP connections
where the FTP data channel is different from the client.

A few examples:
e Allow bounces to 192.162.1.1 port 20020 — ie, the usRQ@QRT 192,168,1,1,78,52
bounce to { 192.168.1.1,20020 }

e Allow bounces to 192.162.1.1 ports 20020 through 20040 thie,use ofPORT 192,168,1,1,78xx
where xx is 52 through 72 inclusive.

bounce_to { 192.168.1.1,20020,20040 }
e Allow bounces to 192.162.1.1 port 20020 and 192.168.1.2202030.
bounce_to { 192.168.1.1,20020 192.168.1.2,20030 }

4. telnet _cmds <yesjno >

This option turns on detection and alerting when telnetpssaquences are seen on the FTP command channel.
Injection of telnet escape sequences could be used as dareattempt on an FTP command channel.

5. ignore _telnet _erase _cmds <yes|no >

This option allows Snort to ignore telnet escape sequemesdse character (TNC EAC) and erase line (TNC
EAL) when normalizing FTP command channel. Some FTP clidntsot process those telnet escape sequences.

Examples/Default Configuration from snort.conf

preprocessor ftp_telnet: \
global \
encrypted_traffic yes \
inspection_type stateful

preprocessor ftp_telnet_protocol:\
telnet \
normalize \
ayt_attack_thresh 200

61

This is consistent with the FTP rules as of 18 Sept 2004.

Set CWD to allow parameter length of 200

MODE has an additional mode of Z (compressed)

Check for string formats in USER & PASS commands

Check MDTM commands that set modification time on the file.

preprocessor ftp_telnet_protocol: \
ftp server default \
def_max_param_len 100 \
alt_max_param_len 200 { CWD } \
cmd_validity MODE < char ASBCZ > \
cmd_validity MDTM < [date nnnnnnnnnnnnnnl.n[n[n]]]] stri ng >\
chk_str_fmt { USER PASS RNFR RNTO SITE MKD } \
telnet_cmds yes \
ignore_data_chan yes

preprocessor ftp_telnet_protocol: \
ftp client default \
max_resp_len 256 \
bounce yes \
telnet_cmds yes

2.29 SSH

The SSH preprocessor detects the following exploits: @hgk-Response Buffer Overflow, CRC 32, Secure CRT,
and the Protocol Mismatch exploit.

Both Challenge-Response Overflow and CRC 32 attacks octarrthe key exchange, and are therefore encrypted.
Both attacks involve sending a large payload (20kb+) to #mees immediately after the authentication challenge. To
detect the attacks, the SSH preprocessor counts the nurnipgtes transmitted to the server. If those bytes exceed a
predefined limit within a predefined number of packets, art @@enerated. Since the Challenge-Response Overflow
only effects SSHv2 and CRC 32 only effects SSHv1, the SSHares$ring exchange is used to distinguish the attacks.

The Secure CRT and protocol mismatch exploits are obserimibre the key exchange.

Configuration

By default, all alerts are disabled and the preprocessaksteaffic on port 22.

The available configuration options are described below.

1. server _ports {<port > [<port >< ...>]}
This option specifies which ports the SSH preprocessor dhinspect traffic to.

2. maxencrypted _packets < number >

The number of encrypted packets that Snort will inspectigsffnoring a given SSH session. The SSH vulner-
abilities that Snort can detect all happen at the very béginof an SSH session. Once marcryptedpackets
packets have been seen, Snort ignores the session to mperdgrmance.

3. maxclient _bytes < number >

The number of unanswered bytes allowed to be transferredtdaferting on Challenge-Response Overflow or
CRC 32. This number must be hit before memxcryptedpackets packets are sent, or else Snort will ignore the
traffic.

4. maxserver _version _len < number >

62

10.

11.

12.

The maximum number of bytes allowed in the SSH server versiong before alerting on the Secure CRT
server version string overflow.

autodetect
Attempt to automatically detect SSH.

enable _respoverflow
Enables checking for the Challenge-Response Overflow gxplo

enable _sshlcrc32
Enables checking for the CRC 32 exploit.

enable _srvoverflow
Enables checking for the Secure CRT exploit.

enable _protomismatch
Enables checking for the Protocol Mismatch exploit.

enable _badmsgdir

Enable alerts for traffic flowing the wrong direction. Fortanrsce, if the presumed server generates client traffic,
or if a client generates server traffic.

enable _paysize
Enables alerts for invalid payload sizes.

enable _recognition
Enable alerts for non-SSH traffic on SSH ports.

The SSH preprocessor should work by default. After magryptedpackets is reached, the preprocessor will stop
processing traffic for a given session. If Challenge-Resgownerflow or CRC 32 false positive, try increasing the
number of required client bytes with makent bytes.

Example Configuration from snort.conf

Looks for attacks on SSH server port 22. Alerts at 19600 umawledged bytes within 20 encrypted packets for the
Challenge-Response Overflow/CRC32 exploits.

preprocessor ssh; \

server ports { 22 } \
max_client_bytes 19600 \
max_encrypted_packets 20 \
enable_respoverflow \
enable_sshlcrc32

2.2.10 DCE/RPC

The dcerpc preprocessor detects and decodes SMB and DCERRE It is primarily interested in DCE/RPC
requests, and only decodes SMB to get to the potential DOE/RBuests carried by SMB.

Currently, the preprocessor only handles desegmentati@MB and TCP layers) and defragmentation of DCE/RPC.
Snort rules can be evaded by using both types of fragmentatith the preprocessor enabled, the rules are given
reassembled DCE/RPC data to examine.

At the SMB layer, only segmentation using WriteAndX is cunthg reassembled. Other methods will be handled in
future versions of the preprocessor.

63

Autodetection of SMB is done by looking folXFFSMB” at the start of the SMB data, as well as checking the NetBIOS
header (which is always present for SMB) for the type "Sesdessage”.

Autodetection of DCE/RPC is not as reliable. Currently, ttytes are checked in the packet. Assuming that the data
is a DCE/RPC header, one byte is checked for DCE/RPC versiml Bnother for a DCE/RPC PDU type of Request.
If both match, the preprocessor proceeds with the assumibii it is looking at DCE/RPC data. If subsequent checks
are nonsensical, it ends processing.

Configuration

The proprocessor has several optional configuration optidbhey are described below:
e autodetect
In addition to configured ports, try to autodetect DCE/RP€§s&ms. Note that DCE/RPC can run on practically

any port in addition to the more common ports. This optionasaonfigured by default.

e ports smb { <port > [< port> <.>] }

Ports that the preprocessor monitors for SMB traffic. Defaré ports 139 and 445.

e ports dcerpc { <port > [< port> <.>] }

Ports that the preprocessor monitors for DCE/RPC over T&Rdr Default is port 135.
e disable _smb_frag
Do not do SMB desegmentation. Unless you are experienciggas@erformance issues, this option should not

be configured as SMB segmentation provides for an easy @vapjmortunity. This option is not configured by
default.

e disable _dcerpc _frag
Do not do DCE/RPC defragmentation. Unless you are expangraevere performance issues, this option

should not be configured as DCE/RPC fragmentation providearf easy evasion opportunity. This option is
not configured by default.

e maxfrag _size <number >

Maximum DCE/RPC fragment size to put in defragmentatiorfidsuin bytes. Default is 3000 bytes.

e memcap <number >
Maximum amount of memory available to the DCE/RPC prepreme®r desegmentation and defragmentation,
in kilobytes. Default is 100000 kilobytes.

e alert _memcap

Alert if memcap is exceeded. This option is not configured &fadit.

e reassemble _increment <number >
This option specifies how often the preprocessor shouldemacassembled packet to send to the detection
engine with the data that's been accrued in the segment@tidfiragmentation reassembly buffers, before the

final desegmentation or defragmentation of the DCE/RPCeasitiakes place. This will potentially catch an
attack earlier and is useful if in inline mode. Since the poepssor looks at TCP reassembled packets (to avoid

64

TCP overlaps and segmentation evasions), the last packet attack using DCE/RPC segmented/fragmented
evasion techniques may have already gone through beforgrépeocessor looks at it, so looking at the data
early will likely catch the attack before all of the explo#td has gone through. Note, however, that in using
this option, Snort will potentially take a performance hilot recommended if Snort is running in passive
mode as it's not really needed. The argument to the optioaifspe how often the preprocessor should create
a reassembled packet if there is data in the segmentatignifentation buffers. If not specified, this option is
disabled. A value of 0 will in effect disable this option asle

Configuration Examples

In addition to defaults, autodetect SMB and DCE/RPC sessiomon-configured ports. Don’t do desegmentation on
SMB writes. Truncate DCE/RPC fragment if greater than 40@@s

preprocessor dcerpc: \
autodetect \
disable_smb_frag \
max_frag_size 4000

In addition to defaults, don't do DCE/RPC defragmentati®at memory cap for desegmentation/defragmentation to
50,000 kilobytes. (Since no DCE/RPC defragmentation véltone the memory cap will only apply to desegmenta-
tion.)

preprocessor dcerpc: \
disable_dcerpc_frag \
memcap 50000

In addition to the defaults, detect on DCE/RPC (or TCP) pb8ts and 2103 (overrides default). Set memory cap for
desegmentation/defragmentationto 200,000 kilobytesatera reassembly packet every time through the prepracesso
if there is data in the desegmentation/defragmentaticieisif

preprocessor dcerpc: \
ports dcerpc { 135 2103 } \
memcap 200000 \
reassemble_increment 1

Default Configuration
If no options are given to the preprocessor, the default gardition will look like:
preprocessor dcerpc: \
ports smb { 139 445 } \
ports dcerpc { 135 } \
max_frag_size 3000 \

memcap 100000 \
reassemble_increment 0

Preprocessor Events

There is currently only one alert, which is triggered whem pineprocessor has reached itieencaplimit for memory
allocation. The alert is gid 130, sid 1.

Note

At the current time, there is not much to do with the dcerpgpreessor other than turn it on and let it reassemble
fragmented DCE/RPC packets.

65

2.2.11 DNS

The DNS preprocessor decodes DNS Responses and can detitawing exploits: DNS Client RData Overflow,
Obsolete Record Types, and Experimental Record Types.

DNS looks at DNS Response traffic over UDP and TCP and it regu8tream preprocessor to be enabled for TCP
decoding.

Configuration

By default, all alerts are disabled and the preprocessaksteaffic on port 53.

The available configuration options are described below.

1. ports {<port > [<port ><..>]}
This option specifies the source ports that the DNS prepsocssiould inspect traffic.

2. enable _obsolete _types
Alert on Obsolete (per RFC 1035) Record Types

3. enable _experimental _types
Alert on Experimental (per RFC 1035) Record Types

4. enable _rdata _overflow
Check for DNS Client RData TXT Overflow

The DNS preprocessor does nothing if none of the 3 vulnetiakiit checks for are enabled. It will not operate on
TCP sessions picked up midstream, and it will cease operatica session if it loses state because of missing data
(dropped packets).

Examples/Default Configuration from snort.conf

Looks for traffic on DNS server port 53. Check for the DNS dli®Data overflow vulnerability. Do not alert on
obsolete or experimental RData record types.

preprocessor dns: \
ports { 53 } \
enable_rdata_overflow

2.2.12 SSL/TLS

Encrypted traffic should be ignored by Snort for both perfance reasons and to reduce false positives. The SSL
Dynamic Preprocessor (SSLPP) decodes SSL and TLS traffiojtiohally determines if and when Snort should
stop inspection of it.

Typically, SSL is used over port 443 as HTTPS. By enablingS3B& PP to inspect port 443 and enabling the noin-
spectencrypted option, only the SSL handshake of each connegiibbe inspected. Once the traffic is determined
to be encrypted, no further inspection of the data on the ection is made.

By default, SSLPP looks for a handshake followed by enc/pt&tfic traveling to both sides. If one side responds
with an indication that something has failed, such as thellaake, the session is not marked as encrypted. Verifying
that faultless encrypted traffic is sent from both endpoémsures two things: the last client-side handshake packet
was not crafted to evade Snort, and that the traffic is legit@ty encrypted.

In some cases, especially when packets may be missed, thelms#rved response from one endpoint will be TCP
ACKs. Therefore, if a user knows that server-side encrygtgd can be trusted to mark the session as encrypted, the
user should use the 'trustservers’ option, documentedwbelo

66

Configuration

1. ports {<port > [<port ><..>]}
This option specifies which ports SSLPP will inspect traffic o
By default, SSLPP watches the following ports:

e 443 HTTPS
e 465 SMTPS
e 563 NNTPS
e 636 LDAPS
e 989 FTPS
e 992 TelnetS
e 993 IMAPS
e 994 IRCS
e 995 POPS

2. noinspect _encrypted
Disable inspection on traffic that is encrypted. Defaultffs o

3. ftrustservers

Disables the requirement that application (encrypted) daist be observed on both sides of the session before
a session is marked encrypted. Use this option for sligtetyel performance if you trust that your servers are
not compromised. This requires thanspect _encrypted option to be useful. Default is off.

Examples/Default Configuration from snort.conf

Enables the SSL preprocessor and tells it to disable ingpmeah encrypted traffic.

preprocessor ssl: noinspect_encrypted

2.2.13 ARP Spoof Preprocessor
The ARP spoof preprocessor decodes ARP packets and defRBtattacks, unicast ARP requests, and inconsistent
Ethernet to IP mapping.

When no arguments are specified to arpspoof, the prepradespects Ethernet addresses and the addresses in the
ARP packets. When inconsistency occurs, an alert with GIDdlid SID 2 or 3 is generated.

When ™unicast " is specified as the argument of arpspoof, the preproce$mmks for unicast ARP requests. An
alert with GID 112 and SID 1 will be generated if a unicast ARBuest is detected.

Specify a pair of IP and hardware address as the argumargsfmof _detect _host . The host with the IP address
should be on the same layer 2 segment as Snort is. SpecifyosnéFhMAC combo per line. The preprocessor will
use this list when detecting ARP cache overwrite attacksrtAID 4 is used in this case.

Format

preprocessor arpspoof[: -unicast]
preprocessor arpspoof _detect host; ip mac

67

Option | Description
ip IP address.
mac The Ethernet address corresponding to the preceding IP.

Example Configuration

The first example configuration does neither unicast detector ARP mapping monitoring. The preprosessor merely
looks for Ethernet address inconsistencies.

preprocessor arpspoof

The next example configuration does not do unicast detebtibomonitors ARP mapping for hosts 192.168.40.1 and
192.168.40.2.

preprocessor arpspoof
preprocessor arpspoof_detect host; 192.168.40.1 f0:0f; 00:0:0f:00
preprocessor arpspoof_detect host; 192.168.40.2 f0:0f; 00:f0:0f:01

The third example configuration has unicast detection euabl

preprocessor arpspoof: -unicast
preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f: 00:0:0f:00
preprocessor arpspoof_detect_host: 192.168.40.2 f0:0f: 00:f0:0f:01

2.2.14 DCE/RPC 2 Preprocessor

The main purpose of the preprocessor is to perform SMB desegition and DCE/RPC defragmentation to avoid
rule evasion using these techniques. SMB desegmentatipariermed for the following commands that can be
used to transport DCE/RPC requests and responists: , Write Block Raw , Write and Close , Write AndX ,
Transaction , Transaction Secondary , Read, Read Block Raw andRead AndX. The following transports are sup-
ported for DCE/RPC: SMB, TCP, UDP and RPC over HTTP v.1 praxy server. New rule options have been im-
plemented to improve performance, reduce false positimds@duce the count and complexity of DCE/RPC based
rules.

Dependency Requirements

For proper functioning of the preprocessor:

e Thedcerpc preprocessor (the initial iteration) must be disabled.

e Stream session tracking must be enabledstream5 . The preprocessor requires a session tracker to keep its
data.

e Stream reassembly must be performed for TCP sessionss dédided that a session is SMB or DCE/RPC, ei-
ther through configured ports, servers or autodetectiegicdipc2 preprocessor will enable stream reassembly
for that session if necessary.

¢ |P defragmentation should be enabled, i.e.fthg8 preprocessor should be enabled and configured.

68

Target Based

There are enough important differences between Windowsanba versions that a target based approach has been
implemented. Some important differences:

Named pipe instance tracking

A combination of valid login handle or UID, share handle oDTdnd file/named pipe handle or FID must be
used to write data to a named pipe. The binding between thefepiendent on OS/software version.

Samba 3.0.22 and earlier

Any valid UID and TID, along with a valid FID can be used to makesquest, however, if the TID
used in creating the FID is deleted (via a tree disconnduot) AID that was created using this TID
becomes invalid, i.e. no more requests can be written tadraied pipe instance.

Samba greater than 3.0.22
Any valid TID, along with a valid FID can be used to make a rexjuélowever, only the UID used
in opening the named pipe can be used to make a request usifkgjBhhandle to the named pipe
instance. If the TID used to create the FID is deleted (vi@a tlisconnect), the FID that was created
using this TID becomes invalid, i.e. no more requests cantiteew to that named pipe instance. If

the UID used to create the named pipe instance is deleted [ogoff AndX), since it is necessary
in making a request to the named pipe, the FID becomes invalid

Windows 2003
Windows XP
Windows Vista

These Windows versions require strict binding between tii UID and FID used to make a request
to a named pipe instance. Both the UID and TID used to open dneed pipe instance must be

used when writing data to the same named pipe instance. fohereeleting either the UID or TID
invalidates the FID.

Windows 2000

Windows 2000 is interesting in that the first request to a rihpiige must use the same binding as that
of the other Windows versions. However, requests afterfttlaiv the same binding as Samba 3.0.22
and earlier, i.e. no binding. It also follows Samba gredtant3.0.22 in that deleting the UID or TID
used to create the named pipe instance also invalidates it.

Accepted SMB commands

Samba in particular does not recognize certain commands amiPC$ tree.

Samba (all versions)

Under anPC$ tree, does not accept:
Open
Write And Close
Read
Read Block Raw
Write Block Raw
Windows (all versions)

Accepts all of the above commands undeiRCH tree.

AndX command chaining

69

Windows is very strict in what command combinations it akboiw be chained. Samba, on the other hand, is
very lax and allows some nonsensical combinations, e.gtipfailogins and tree connects (only one place to
return handles for these), login/logoff and tree connesst/tlisconnect. Ultimately, we don't want to keep track
of data that the server won't accept. An evasion possibiityld be accepting a fragment in a request that the
server won't accept that gets sandwiched between an exploit

Transaction tracking

The differences betweenTaansaction request and using one of théite* commands to write data to a
named pipe are that (1) Hansaction performs the operations of a write and a read from the naneel pi
whereas in using th@é/rite* commands, the client has to explicitly send one ofRbed* requests to tell the
server to send the response and (2)asaction request is not written to the named pipe until all of the data i
received (via potentidiransaction Secondary requests) whereas with thigite* commands, data is written

to the named pipe as it is received by the server. Multiple3aation requests can be made simultaneously to
the same named pipe. These requests can also be segmeht&nsdction Secondary commands. What
distinguishes them (when the same named pipe is being wiittd.e. having the same FID) are fields in the
SMB header representing a process id (PID) and multipledi®j. The PID represents the process this request
is a part of. An MID represents different sub-processesiwishprocess (or under a PID). Segments for each
"thread” are stored separately and written to the named\phgen all segments are received. It is necessary to
track this so as not to munge these requests together (wlialiwe a potential evasion opportunity).

Windows (all versions)

Uses a combination of PID and MID to define a "thread”.
Samba (all versions)

Uses just the MID to define a "thread”.

Multliple Bind requests

A Bind request is the first request that must be made in a conneatiented DCE/RPC session in order to
specify the interface/interfaces that one wants to comoateiwith.

Windows (all versions)

For all of the Windows versions, only orBind can ever be made on a session whether or not it
succeeds or fails. Any binding after that must useAher Context request. If anotheBind is
made, all previous interface bindings are invalidated.

Samba 3.0.20 and earlier
Any amount ofBind requests can be made.
Samba later than 3.0.20

AnotherBind request can be made if the first failed and no interfaces weaeessfully bound to. If
aBind after a successfllind is made, all previous interface bindings are invalidated.

DCE/RPC Fragmented requests - Context ID

Each fragment in a fragmented request carries the contexttice bound interface it wants to make the request
to.

Windows (all versions)

The context id that is ultimately used for the request is @it in the first fragment. The context id
field in any other fragment can contain any value.

Samba (all versions)

The context id that is ultimately used for the request is @imrd in the last fragment. The context id
field in any other fragment can contain any value.

DCE/RPC Fragmented requests - Operation number

70

Each fragment in a fragmented request carries an operatioiber (opnum) which is more or less a handle to
a function offered by the interface.

Samba (all versions)
Windows 2000
Windows 2003
Windows XP

The opnum that is ultimately used for the request is conthinghe last fragment. The opnum field
in any other fragment can contain any value.

Windows Vista

The opnum that is ultimately used for the request is conthin¢he first fragment. The opnum field
in any other fragment can contain any value.

DCE/RPC Stub data byte order

The byte order of the stub data is determined differentlyfamrdows and Samba.

Windows (all versions)
The byte order of the stub data is that which was used iBitite request.
Samba (all versions)
The byte order of the stub data is that which is used in theagiorarrying the stub data.

Configuration

Thedcerpc2 preprocessor has a global configuration and one or morerssmigurations. The global preprocessor
configuration name idcerpc2 and the server preprocessor configuration nardeeipc2 _server .

Global Configuration

preprocessor dcerpc2

The globaldcerpc2 configuration is required. Only one glolizkrpc2 configuration can be specified.

Option syntax

| Option | Argument | Required| Default

memcap <memcap> NO memcap 102400
disable _defrag NONE NO OFF
max frag _len <max-frag-len> NO OFF
events <events> NO events [smb, co, cl]
reassemble _threshold <re-thresh> NO OFF

memcap = 1024-4194303 (kilobytes)

max-frag-len = 1514-65535

events = pseudo-event | event | [event-list]

pseudo-event = "none" | "all"

event-list = event | event ', event-list

event = "memcap” | "smb" | "co" | "cl"

re-thresh = 0-65535

Option explanations

memcap

71

Specifies the maximum amount of run-time memory that canlbeatkd. Run-time memory includes any
memory allocated after configuration. Default is 100 MB.

disable _defrag
Tells the preprocessor not to do DCE/RPC defragmentatiefal is to do defragmentation.
max frag _len

Specifies the maximum fragment size that will be added to #feagmention module. If a fragment is
greater than this size, it is truncated before being add#tetdefragmentation module. Default is not set.

events

Specifies the classes of events to enable. (See Eventsskectam enumeration and explanation of events.)

memcap
Only one event. If the memcap is reached or exceeded, alert.
smb
Alert on events related to SMB processing.
co

Stands for connection-oriented DCE/RPC. Alert on evefd$ed to connection-oriented DCE/RPC
processing.

cl

Stands for connectionless DCE/RPC. Alert on events relmtenbnnectionless DCE/RPC pro-
cessing. Defaults arnb, co andcl .

reassemble _threshold

Specifies a minimum number of bytes in the DCE/RPC desegti@mtand defragmentation buffers before
creating a reassembly packet to send to the detection eniieoption is useful in inline mode so as to
potentially catch an exploit early before full defragmeiatiais done. A value of 0 supplied as an argument
to this option will, in effect, disable this option. Defaigtdisabled.

Option examples

memcap 30000

max_frag_len 16840

events none

events all

events smb

events co

events [co]

events [smb, co]

events [memcap, smb, co, cl]
reassemble_threshold 500

Configuration examples

preprocessor dcerpc2
preprocessor dcerpc2: memcap 500000

preprocessor dcerpc2: max_frag_len 16840, memcap 300000, events smb
preprocessor dcerpc2: memcap 50000, events [memcap, smb, c o, cl], max_frag_len 14440
preprocessor dcerpc2: disable_defrag, events [memcap, sm b]

preprocessor dcerpc2: reassemble_threshold 500
Default global configuration

preprocessor dcerpc2: memcap 102400, events [smb, co, cl]

Server Configuration

72

preprocessor dcerpc2_server

Thedcerpc2 _server
options. Thelefault

no default
configurati

ons can be specified. For alogrpc2 _server

configuration is optional. Alcerpc2 _server
andnet options are mutually exclusive. At most one default configion can be specified. If
configuration is specified, default values will be used fardéfault

defaults will be used. When processing DCE/RPC traffic ddigult

match. If anet configuration matches, it will override thiefault

Option syntax

configuration must start witbefault ~ or net

configuration. Zero or moreet

configuration, if non-required options are not specified, th

configuration is used if no net configurations

configuration. Anet configuration matches if the
packet’s server IP address matches an IP address or ndfieg@tithenet configuration. Thaet option supports
IPv6 addresses. Note that port and ip variables defineabimconf

CANNOT be used.

Option Argument | Required| Default
default NONE YES NONE
net <net> YES NONE
policy <policy> NO policy WinXP
detect <detect> NO detect [smb [139,445], tcp 135,
udp 135, rpc-over-http-server
593]
autodetect <detect> NO autodetect [tcp 1025:, udp 1025:,
rpc-over-http-server 1025:]
no_autodetect _http _proxy _ports NONE NO DISABLED (The preprocessor autodeted
on all proxy ports by default)
smb_invalid _shares <shares> NO NONE
smb_max_chain <max-chain> NO smb_max_chain 3
net =ip | T iplist T
ip-list =ip | ip ") ip-list
ip = ip-addr | ip-addr /' prefix | ip4-addr '/’ netmask
ip-addr = ip4-addr | ip6-addr
ip4-addr = a valid IPv4 address
ip6-addr = a valid IPv6 address (can be compressed)
prefix = a valid CIDR
netmask = a valid netmask
policy = "Win2000" | "Win2003" | "WinXP" | "WinVista" |
"Samba" | "Samba-3.0.22" | "Samba-3.0.20"
detect = "none" | detect-opt | [detect-list T
detect-list = detect-opt | detect-opt ', detect-list
detect-opt = transport | transport port-item |
transport [port-list]’
transport = "smb" | "tcp" | "udp" | "rpc-over-http-proxy" |
“rpc-over-http-server"
port-list = port-item | port-item '’ port-list
port-item = port | port-range
port-range = " port | port ' | port ' port
port = 0-65535
shares = share | [share-list
share-list = share | share ', share-list
share = word | ™ word ™ | ™ var-word ™
word = graphical ascii characters except ', ™ T T '$'
var-word = graphical ascii characters except '} ™ T T
max-chain = 0-255

Because the Snort main parser treats '$’ as the start of ablarand tries to expand it, shares with '$’ must be
enclosed quotes.

Option explanations

default

Specifies that this configuration is for the default servexfiguration.

73

net

Specifies that this configuration is an IP or net specific condigon. The configuration will only apply to
the IP addresses and nets supplied as an argument.

policy
Specifies the target-based policy to use when processirfguDes "WinXP”.
detect

Specifies the DCE/RPC transport and server ports that steuttetected on for the transport. Defaults
are ports 139 and 445 for SMB, 135 for TCP and UDP, 593 for RP& bM TP server and 80 for RPC
over HTTP proxy.

autodetect

Specifies the DCE/RPC transport and server ports that therqaessor should attempt to autodetect on
for the transport. The autodetect ports are only queried dietect transport/ports match the packet. The
order in which the preprocessor will attempt to autodetdtithe - TCP/UDP, RPC over HTTP server,
RPC over HTTP proxy and lastly SMB. Note that most dynamic IRFEC ports are above 1024 and ride
directly over TCP or UDP. It would be very uncommon to see SMBanything other than ports 139 and
445, Defaults are 1025-65535 for TCP, UDP and RPC over HTT\REe

no_autodetect _http _proxy _ports

By default, the preprocessor will always attempt to autectsor ports specified in the detect configuration
for rpc-over-http-proxy. This is because the proxy is lfkalweb server and the preprocessor should not
look at all web traffic. This option is useful if the RPC over FH proxy configured with the detect option
is only used to proxy DCE/RPC traffic. Default is to autodetetRPC over HTTP proxy detect ports.

smb_invalid _shares

Specifies SMB shares that the preprocessor should alertaonaftempt is made to connect to them via a
Tree Connect orTree Connect AndX . Defaultis empty.

smb_max_chain

Specifies the maximum amount of AndX command chaining thall@gsved before an alert is generated.
Default maximum is 3 chained commands. A value of 0 disalblissaption.

Option examples

net 192.168.0.10

net 192.168.0.0/24

net [192.168.0.0/24]

net 192.168.0.0/255.255.255.0

net feab:45b3:abh92:8ac4:d322:007f.e5aa:7845
net feah:45b3:ah92:8ac4:d322:007f.e5aa:7845/128
net feah:45b3::/32

net [192.168.0.10, feab:45b3::/32]

net [192.168.0.0/24, feah:45b3:ab92:8ac4:d322:007f.e5 aa:7845]
policy Win2000

policy Samba-3.0.22

detect none

detect smb

detect [smb]

detect smb 445

detect [smb 445]

detect smb [139,445]

detect [smb [139,445]]

detect [smb, tcp]

detect [smb 139, tcp [135,2103]]

detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver [593,6002:6004]]

74

autodetect none

autodetect tcp

autodetect [tcp]

autodetect tcp 2025:

autodetect [tcp 2025:]

autodetect tcp [2025:3001,3003:]
autodetect [tcp [2025:3001,3003:]]
autodetect [tcp, udp]

autodetect [tcp 2025:, udp 2025:]
autodetect [tcp 2025:, udp, rpc-over-http-server [1025:6 001,6005:]]
smb_invalid_shares private
smb_invalid_shares “private”
smb_invalid_shares "C$"
smb_invalid_shares [private, "C$"]
smb_invalid_shares ["private”, "C$"]
smb_max_chain 1

Configuration examples

preprocessor dcerpc2_server: \
default

preprocessor dcerpc2_server: \
default, policy Win2000

preprocessor dcerpc2_server: \
default, policy Win2000, detect [smb, tcp], autodetect tcp 1025;, \
smb_invalid_shares ['C$", "D$", "ADMIN$"]

preprocessor dcerpc2_server: net 10.4.10.0/24, policy Wi n2000

preprocessor dcerpc2_server: \
net [10.4.10.0/24 feab:45b3::/126], policy WinVista, sm b_max_chain 1

preprocessor dcerpc2_server: \
net [10.4.10.0/24,feab:45b3::/126], policy WinVista, \
detect [smb, tcp, rpc-over-http-proxy 8081],
autodetect [tcp, rpc-over-http-proxy [1025:6001,6005:] 1\
smb_invalid_shares ['C$", "ADMIN$"], no_autodetect_htt p_proxy_ports

preprocessor dcerpc2_server: \
net [10.4.11.56,10.4.11.57], policy Samba, detect smb, au todetect none

Default server configuration

preprocessor dcerpc2_server: default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Completedcerpc2 default configuration

preprocessor dcerpc2: \
memcap 102400, events [smb, co, cl]

preprocessor dcerpc2_server: \
default, policy WinXP, \
detect [smb [139,445], tcp 135, udp 135, rpc-over-http-ser ver 593, \
autodetect [tcp 1025:, udp 1025:, rpc-over-http-server 10 25:], smb_max_chain 3

Events

The preprocessor uses GID 133 to register events.

Memcap events

75

SID | Description
1 | If the memory cap is reached and the preprocessor is configoiadert.
SMB events
SID | Description
2 | Aninvalid NetBIOS Session Service type was specified in gader. Valid types arédessage,

Request (only from client), Positive Response (only from server),Negative Response
(only from server)Retarget Response (only from server) anéeep Alive

An SMB message type was specified in the header. Either asegas made by the server or
response was given by the client.

The SMB id does not equalxffSMB . Note that since the preprocessor does not yet sug
SMB2, id of \xfeSMB is turned away before an eventable point is reached.

The word count of the command header is invalid. SMB commauagle pretty specific word

counts and if the preprocessor sees a command with a word twatndoesn't jive with that
command, the preprocessor will alert.

Some commands require a minimum number of bytes after thenzomd header. If a comman

requires this and the byte count is less than the minimumimedjbyte count for that command,

the preprocessor will alert.

7 | Some commands, especially the commands from the SMB Cofrleringmtation require a data
format field that specifies the kind of data that will be comimext. Some commands require
specific format for the data. The preprocessor will aletiéf tormat is not that which is expected
for that command.

8 | Many SMB commands have a field containing an offset from thygriméng of the SMB header to

where the data the command is carrying starts. If this offa&t us before data that has alreg
been processed or after the end of payload, the preprocesisalert.

a

port

Some SMB commands, such &ansaction , have a field containing the total amount of data

to be transmitted. If this field is zero, the preprocessoratdrt.

10

The preprocessor will alert if the NetBIOS Session Senacgth field contains a value less than

the size of an SMB header.

11

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of th
SMB command header to be decoded.

12

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of th
SMB command byte count specified in the command header.

13

The preprocessor will alert if the remaining NetBIOS padkegth is less than the size of tl
SMB command data size specified in the command header.

14

The preprocessor will alert if the total data count speciiiethe SMB command header is le
than the data size specified in the SMB command header. (@atal count must always b
greater than or equal to current data size.)

15

The preprocessor will alert if the total amount of data semtfransaction is greater than the to
data count specified in the SMB command header.

e

e

e

5S
e

tal

16

The preprocessor will alert if the byte count specified in®WB command header is less th
the data size specified in the SMB command. (The byte count ahays be greater than g
equal to the data size.)

AN

=

17

Some of the Core Protocol commands (from the initial SMB enpéntation) require that th
byte count be some value greater than the data size exadtly.pieprocessor will alert if th
byte count minus a predetermined amount based on the SMB aachia not equal to the dat

N ¢))

[s})

size.

76

18

FortheTree Connect command (and notthBee Connect AndX command),the preprocesspr

has to queue the requests up and wait for a server responseetoméhe whether or not an IP

share was successfully connected to (which is what the pecepsor is interested in). Unlike
)

the Tree Connect AndX response, there is no indication in thiee Connect response ast
whether the share is IPC or not. There should be under noimahestances no more than a fe
pending tree connects at a time and the preprocessor willifileis number is excessive.

19

After a client is done writing data using théite* commands, it issuesRead* command to
the server to tell it to send a response to the data it hasewritin this case the preprocess

or

is concerned with the server response. Rhad* request contains the file id associated with a
named pipe instance that the preprocessor will ultimatehdshe data to. The server response,

however, does not contain this file id, so it need to be queutdthe request and dequeued w
the response. If multiplRead* requests are sent to the server, they are responded to indiie
they were sent. There should be under normal circumstarmce®re than a few pendiriRpad*
requests at a time and the preprocessor will alert if thislmenis excessive.

20

The preprocessor will alert if the number of chained comnsana single request is greater than

or equal to the configured amount (default is 3).

21

With AndX command chaining it is possible to chain multiSkssion Setup AndX commands
within the same request. There is, however, only one platleeiiSMB header to return a logi
handle (or Uid). Windows does not allow this behavior, hogreévamba does. This is anomalg
behavior and the preprocessor will alert if it happens.

22

With AndX command chaining it is possible to chain multipkee Connect AndX commands
within the same request. There is, however, only one platiesrSMB header to return a tre
handle (or Tid). Windows does not allow this behavior, hogredamba does. This is anomalg
behavior and the preprocessor will alert if it happens.

23

When aSession Setup AndX request is sent to the server, the server responds (if thetg
successfully authenticates) which a user id or login hantles is used by the client in subs

guent requests to indicate that it has authenticatelchgsff AndX requestis sent by the client

to indicate it wants to end the session and invalidate thim lbgndle. With commands that a

th
0

>

us

us

D

[€

chained after &ession Setup AndX request, the login handle returned by the server is used for

the subsequent chained commands. The combinatioSexs®on Setup AndX command with
a chained.ogoff AndX command, essentially logins in and logs off in the same rsigard is
anomalous behavior. The preprocessor will alert if it shes t

24

A Tree Connect AndX command is used to connect to a share. Tiee Disconnect com-
mand is used to disconnect from that share. The combinafiarTee Connect AndX com-
mand with a chainedree Disconnect command, essentially connects to a share and dis|
nects from the same share in the same request and is anorbalwsor. The preprocessor w
alert if it sees this.

25

An Open AndXor Nt Create AndX command is used to open/create a file or named pipe.

preprocessor is only interested in named pipes as this iled@E/RPC requests are written to.

TheClose command is used to close that file or named pipe. The combmafiaOpen AndX
orNt Create AndX command with a chainedlose command, essentially opens and closes
named pipe in the same request and is anomalous behaviopr@pecessor will alert if it see
this.

26

The preprocessor will alert if it sees any of the invalid SMiaes configured. It looks for
Tree Connect orTree Connect AndX to the share.

Connection-oriented DCE/RPC events

SID

Description

con-

The

the

27

The preprocessor will alert if the connection-oriented IDRIEC major version contained in th
header is not equal to 5.

28

The preprocessor will alert if the connection-oriented IRIEC minor version contained in th
header is not equal to 0.

77

29

The preprocessor will alert if the connection-oriented DRIEC PDU type contained in th
header is not a valid PDU type.

e

30

The preprocessor will alert if the fragment length definethaheader is less than the size of the

header.

31

The preprocessor will alert if the remaining fragment lénigtless than the remaining pack
size.

et

32

The preprocessor will alert if in Bind or Alter Context request, there are no context iter
specified.

ns

33

The preprocessor will alertifinind orAlter Context request, there are no transfer synta
to go with the requested interface.

es

34

The preprocessor will alertif a non-last fragment s lessitihe size of the negotiated maximy

m

fragment length. Most evasion techniques try to fragmeatdata as much as possible and

usually each fragment comes well below the negotiated nérssze.

35

The preprocessor will alert if a fragment is larger than tteximum negotiated fragment lengt

=

36

The byte order of the request data is determined by the Bimdimection-oriented DCE/RP
for Windows. It is anomalous behavior to attempt to changebtyte order mid-session.

)

37 | The call id for a set of fragments in a fragmented requestlglaiay the same (it is incremented
for each complete request). The preprocessor will alerciianges in a fragment mid-request.

38 | The operation number specifies which function the requestlimg on the bound interface. If a
request is fragmented, this number should stay the samé fragments. The preprocessor will
alert if the opnum changes in a fragment mid-request.

39 | The contextid is a handle to a interface that was bound tord§aest if fragmented, this number
should stay the same for all fragments. The preprocessbaleit if the context id changes in g
fragment mid-request.

Connectionless DCE/RPC events
| SID | Description |

40 | The preprocessor will alert if the connectionless DCE/RPHJomversion is not equal to 4.

41 | The preprocessor will alert if the connectionless DCE/REQC fype is not a valid pdu type.

42 | The preprocessor will alert if the packet data length is thas the size of the connectionless
header.

43 | The preprocessor will alert if the sequence number uses @gaest is the same or less than a
previously used sequence number on the session. In testiagping the sequence number space
produces strange behavior from the server, so this shoutdis&dered anomalous behavior.

Rule Options

New rule options are supported by enablingdberpc2 preprocessor:

dce_iface
dce_opnum
dce_stub_data

New modifiers to existingyte _test andbyte _jump rule options:

byte test: dce
byte_jump: dce

78

dce _iface

For DCE/RPC based rules it has been necessary to set flowdsiesd on a client bind to a service to avoid
false positives. It is necessary for a client to bind to aiserbefore being able to make a call to it. When a
client sends a bind request to the server, it can, howevecjfgpne or more service interfaces to bind to. Each
interface is represented by a UUID. Each interface UUID isguawith a unique index (or context id) that future
requests can use to reference the service that the clierdkiihgna call to. The server will respond with the
interface UUIDs it accepts as valid and will allow the cli¢mtmake requests to those services. When a client
makes a request, it will specify the context id so the sermemis what service the client is making a request
to. Instead of using flow-bits, a rule can simply ask the pyepssor, using this rule option, whether or not the
client has bound to a specific interface UUID and whether arthis client request is making a request to it.
This can eliminate false positives where more than one®eisibound to successfully since the preprocessor
can correlate the bind UUID to the context id used in the rejuA DCE/RPC request can specify whether
numbers are represented as big endian or little endian. dpresentation of the interface UUID is different
depending on the endianness specified in the DCE/RPC psdyimguiring two rules - one for big endian and
one for little endian. The preprocessor eliminates the feetivo rules by normalizing the UUID. An interface
contains a version. Some versions of an interface may notilmerable to a certain exploit. Also, a DCE/RPC
request can be broken up into 1 or more fragments. Flags (Beld & the connectionless header) are set in the
DCE/RPC header to indicate whether the fragment is the éirstiddle or the last fragment. Many checks for
data in the DCE/RPC request are only relevant if the DCE/RRQest is a first fragment (or full request), since
subsequent fragments will contain data deeper into the REE/request. A rule which is looking for data,
say 5 bytes into the request (maybe it's a length field), welldoking at the wrong data on a fragment other
than the first, since the beginning of subsequent fragmeatal@ady offset some length from the beginning of
the request. This can be a source of false positives in fratpdedDCE/RPC traffic. By default it is reasonable
to only evaluate if the request is a first fragment (or fulluest). However, if thany _frag option is used to
specify evaluating on all fragments.

Syntax
<uuid> [', <operator> <version>] [') "any_frag"]
uuid = hexlong '-' hexshort -’ hexshort =" 2hexbyte "' 6he xbyte
hexlong = 4hexbyte
hexshort = 2hexbyte
hexbyte = 2HEXDIGIT
operator =< | > | = |0
version = 0-65535
Examples

dce_iface: 4b324fc8-1670-01d3-1278-5a47hf6eel88;

dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6eel88,<2;

dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6eel88,any frag;
dce_iface: 4b324fc8-1670-01d3-1278-5a47bf6eel188,=1,a ny_frag;

This option is used to specify an interface UUID. Optiongaments are an interface version and operator to
specify that the version be less thar:{j, greater than ('), equal to ('=") or not equal to ('!") the version
specified. Also, by default the rule will only be evaluatedddirst fragment (or full request, i.e. not a fragment)
since most rules are written to start at the beginning of agsy Theany _frag argument says to evaluate for
middle and last fragments as well. This option requireskiracclientBind andAlter Context requests as
well as serveBind Ack andAlter Context responses for connection-oriented DCE/RPC in the prepsoce
For eachBind andAlter Context request, the client specifies a list of interface UUIDs alwiiifp a handle

(or context id) for each interface UUID that will be used aigrthe DCE/RPC session to reference the interface.
The server response indicates which interfaces it willvaltbe client to make requests to - it either accepts
or rejects the client’s wish to bind to a certain interfacénisTtracking is required so that when a request is
processed, the context id used in the request can be cedeléh the interface UUID it is a handle for.

hexlong andhexshort will be specified and interpreted to be in big endian ordeis (i usually the default
way an interface UUID will be seen and represented). As amel@ the following Messenger interface UUID
as taken off the wire from a little endiddind request:

79

[f8 91 7b 5a 00 ff d0 11 a9 b2 00 cO 4f b6 e6 fc|

must be written as:
5a7h91f8-ff00-11d0-a9b2-00c04fh6ebfc

The same UUID taken off the wire from a big endBind request:
|5a 7b 91 f8 ff 00 11 dO a9 b2 00 cO 4f b6 e6 fc|

must be written the same way:
5a7h91f8-ff00-11d0-a9h2-00c04fh6ebfc

This option matches if the specified interface UUID matclhesinterface UUID (as referred to by the context
id) of the DCE/RPC request and if supplied, the version ameras true. This option will not match if the
fragment is not a first fragment (or full request) unlessame frag option is supplied in which case only the
interface UUID and version need match. Note that a defrageadddCE/RPC request will be considered a full
request.

dce _opnum

The opnum represents a specific function call to an interfadeer is has been determined that a client has
bound to a specific interface and is making a request to itgbege -dce _iface) usually we want to know
what function call it is making to that service. It is likelyat an exploit lies in the particular DCE/RPC function

call.
Syntax
<opnum-list>
opnum-list = opnum-item | opnum-item ', opnum-list
opnum-item = opnum | opnum-range
opnum-range = opnum -’ opnum
opnum = 0-65535
Examples

dce_opnum: 15;
dce_opnum; 15-18;
dce_opnum: 15,18-20;
dce_opnum; 15,17,20-22;

This option is used to specify an opnum (or operation numlzgmium range or list containing either or both

opnum and/or opnum-range. The opnum of a DCE/RPC requddtewihatched against the opnums specified
with this option. This option matches if any one of the opnuapscified match the opnum of the DCE/RPC
request.

dce _stub _data

Since most netbios rules were doing protocol decoding anlyet to the DCE/RPC stub data, i.e. the remote
procedure call or function call data, this option will aliete this need and place the cursor at the beginning of
the DCE/RPC stub data. This reduces the number of rule optieoks and the complexity of the rule.

This option takes no arguments.

Example

dce_stub_data;

80

This option is used to place the cursor (used to walk the gamk@doad in rules processing) at the beginning
of the DCE/RPC stub data, regardless of preceding rule mgtidhere are no arguments to this option. This

option matches if there is DCE/RPC stub data.

byte _test andbyte _jump

A DCE/RPC request can specify whether numbers are repessignibig or little endian. These rule options will
take as a new argumedite and will work basically the same as the norrhgke _test /byte _jump, but since
the DCE/RPC preprocessor will know the endianness of theasqit will be able to do the correct conversion.

byte _test

Syntax

<convert> *; ['I' | <operator> *; <value> [*, <offset> [’
'’ "dce"

convert =1]2]4
operator =< |'= | > | & |7
value = 0-4294967295
offset = -65535 to 65535

Examples

byte_test: 4,>,35000,0,relative,dce;
byte_test: 2,!=,2280,-10,relative,dce;

;' "relative”] \

When using thaelce argument to dyte _test , the following normabyte _test

allowed:big , little , string , hex, dec andoct .
byte _jump
Syntax
<convert> ', <offset> [' "relative"] [', "multiplier"
[') "align"] [, "post_offet" <adjustment-value>]’ "
convert =1|2]|4
offset = -65535 to 65535
mult-value = 0-65535
adjustment-value = -65535 to 65535
Example

byte_jump:4,-4,relative,align,multiplier 2,post_offs

<mult-value>] \
dce"

et -4,dce;

arguments will not be

When using thelce argument to dyte _jump, the following normabyte _jump arguments will not be

allowed:big , little , string

Example of rule complexity reduction

, hex, dec, oct andfrom _beginning

The following two rules using the new rule options replacg$et and isset flowbit) rules that are necessary if

the new rule options are not used:

alert tcp $EXTERNAL_NET any -> $HOME_NET [135,139,445,593
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_
pere:"/".{12}(\x00\x00\x00\x00|.{12})/sR"; byte_jump
byte_test:4,>,256,4,relative,dce; reference:bugtraq,
classtype:attempted-admin; sid:1000068;)

alert udp $EXTERNAL_NET any -> $HOME_NET [135,1024] \
(msg:"dns R_Dnssrv funcs2 overflow attempt"; flow:establ
dce_iface:50abc2a4-574d-40b3-9d66-ee4fd5fba076; dce_
pere:"/".{12}(\x00\x00\x00\x00]|.{12})/sR"; byte_jump
byte_test:4,>,256,4,relative,dce; reference:bugtraq,
classtype:attempted-admin; sid:1000069;)

81

,1024:] \
ished,to_server; \
opnum:0-11; dce_stub_data; \
4,-4 relative,align,dce; \
23470; reference:cve,2007-1748; \

ished,to_server; \
opnum:0-11; dce_stub_data; \
:4,-4 relative,align,dce; \
23470; reference:cve,2007-1748; \

2.3 Decoder and Preprocessor Rules

Decoder and preprocessor rules allow one to enable andlelidaboder and preprocessor events on a rule by rule
basis. They also allow one to specify the rule type or actfandecoder or preprocessor event on a rule by rule basis.

Decoder config options will still determine whether or notgenerate decoder events. For examplepiffig
disable _decode _alerts isinsnort.conf , decoder events will not be generated regardless of whethaot there
are corresponding rules for the event. Also note that if theoder is configured to enable drops, eanfig
enable _decode _drops , these options will take precedence over the event typeeofitle. A packet will be dropped
if either a decoder config drop option issnort.conf or the decoder or preprocessor rule typdrag . Of course,
the drop cases only apply if Snort is running inline. 8egREADME.decode for config options that control decoder
events.

2.3.1 Configuring
The following options to configure will enable decoder anesocessor rules:
$./configure --enable-decoder-preprocessor-rules

The decoder and preprocessor rules are located iprédpeoc _rules/ directory in the top level source tree, and
have the namedecoder.rules andpreprocessor.rules respectively. These files are updated as new decoder and
preprocessor events are added to Snort.

To enable these rules gnort.conf , define the path to where the rules are located and uncomheEntiude lines
in snort.conf that reference the rules files.

var PREPROC_RULE_PATH /path/to/preproc_rules

include $PREPROC_RULE_PATH/preprocessor.rules
include $PREPROC_RULE_PATH/decoder.rules

To disable any rule, just comment it with#aor remove the rule completely from the file (commenting isorae
mended).

To change the rule type or action of a decoder/preprocesnrjust replacalert with the desired rule type. Any
one of the following rule types can be used:

alert
log
pass
drop
sdrop
reject

For example one can change:

alert (msg: "DECODE_NOT_IPV4 DGRAM"; sid: 1; gid: 116; rev LN
metadata: rule-type decode ; classtype:protocol-command -decode;)
to
drop (msg: "DECODE_NOT_IPV4 DGRAM"; sid: 1; gid: 116; rev: 10\
metadata: rule-type decode ; classtype:protocol-command -decode;)

to drop (as well as alert on) packets where the Ethernet gobie IPv4 but version field in IPv4 header has a value
other than 4.

SeeREADME.decode, README.gre and the various preprocessor READMES for descriptionsefiles irdecoder.rules
andpreprocessor.rules

82

2.3.2 Reverting to original behavior

If you have configured short to use decoder and preproceskasy; the following config option isnort.conf will
make Snort revert to the old behavior:

config autogenerate_preprocessor_decoder_rules

Note that if you want to revert to the old behavior, you alswehto remove the decoder and preprocessor rules and
any reference to them froemort.conf , otherwise they will be loaded. This option applies to rulesspecified and
the default behavior is to alert.

2.4 Event Processing
Snort provides a variety of mechanisms to tune event prowess suit your needs:

e Detection Filters
You can use detection filters to specifiy a threshold that inegixceeded before a rule generates an event. This
is covered in section 3.7110.

e Rate Filters
You can use rate filters to change a rule action when the nuarnbiate of events indicates a possible attack.

e Event Filters
You can use event filters to reduce the number of logged ef@ntsisy rules. This can be tuned to significantly
reduce false alarms.

e Event Suppression
You can completely suppress the logging of uninterstingntsre

2.4.1 Rate Filtering

rate _filter provides rate based attack prevention by allowing usersnfigure a new action to take for a specified
time when a given rate is exceeded. Multiple rate filters cardé&fined on the same rule, in which case they are
evaluated in the order they appear in the configuration fild,the first applicable action is taken.

Format

Rate filters are used as standalone configurations (outsaleute) and have the following format:

rate_filter \
gen_id <gid>, sig_id <sid>, \
track <by_srclby_dst|by rule>, \
count <c>, seconds <s>, \
new_action alert|drop|pass|log|sdrop|reject, \
timeout <seconds> \
[, apply_to <ip-list>]

The options are described in the table below - all are reduxeeptapply _to , which is optional.

83

Option

Description

track by _src | by _dst |
by _rule

rate is tracked either by source IP address, destinatioddReas, or by
rule. This means the match statistics are maintained fon eacjue
source IP address, for each unique destination IP addreslsey are
aggregated at rule level. For rules related to Stream5@esssource
and destination means client and server respectiviedgk by _rule
andapply _to may not be used together.

count ¢ the maximum number of rule matchessirseconds before the rate filter
limit to is exceededc must be nonzero value.
seconds s the time period over whicbount is accrued. 0 seconds meawsnt is

a total count instead of a specific rate. For examale, _filter ~ may

be used to detect if the number of connections to a specifiesekceed
a specific count. 0 seconds only applies to internal rules {@é 35) and
other use will produce a fatal error by Snort.

new_action alert | drop |
pass | log | sdrop | reject

new_action replaces rule action for seconds. drop , reject , and
sdrop can be used only when snort is used in inline mostieop and
reject are conditionally compiled with GIDS.

timeout t

revert to the original rule action aftér seconds. Ift is O, then rule
action is never reverted back. Ament _filter ~ may be used to manag
number of alerts after the rule action is enableddby filter

apply _to <ip-list>

restrict the configuration to only to source or destinatiBratidress (in-
dicated by track parameter) determineddylist> . track by _rule
andapply _to may not be used together. Note that events are g¢
ated during the timeout period, even if the rate falls beloa/donfigured
limit.

Examples

ner-

Example 1 - allow a maximum of 100 connection attempts peorsgérom any one IP address, and block further
connection attempts from that IP address for 10 seconds:

rate_filter \

gen_id 135, sig_id 1, \

track by src, \

count 100, seconds 1, \
new_action drop, timeout 10

Example 2 - allow a maximum of 100 successful simultaneonsections from any one IP address, and block further
connections from that IP address for 10 seconds:

rate_filter \

gen_id 135, sig_id 2, \

track by src, \

count 100, seconds O, \
new_action drop, timeout 10

2.4.2 Event Filtering

Event filtering can be used to reduce the number of loggedsdi@r noisy rules by limiting the number of times a
particular event is logged during a specified time interVais can be tuned to significantly reduce false alarms.

There are 3 types of event filters:

o imit

Alerts on the 1stn events during the time interval, then ignores events foréiseof the time interval.

84

e threshold
Alerts everymtimes we see this event during the time interval.

e both

Alerts once per time interval after seeingoccurrences of the event, then ignores any additional s\tentng
the time interval.

Format

event filter \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>

threshold \
gen_id <gid>, sig_id <sid>, \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>

threshold is an alias forevent _fiter . Both formats are equivalent and support the options desditbelow - all
are requiredthreshold is deprecated and will not be supported in future releases.

Option Description

gen_id <gid> Specify the generator ID of an associated rgks_id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.

sig _id <sid> Specify the signature ID of an associated ralg._id 0 specifies a "global” filter
because it applies to aig _id s for the givergen_id .

type limit|threshold|both typelimit alerts on the 1st m events during the time interval, thenrngmevents

for the rest of the time interval. Typtreshold alerts every m times we see
this event during the time interval. Typeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adaligeents during the
time interval.

track by _srclby _dst rate is tracked either by source IP address, or destindfi@utiress. This means
count is maintained for each unique source IP addresses;, eath unique desti
nation IP addresses. Ports or anything else are not tracked.

=

count ¢ number of rule matching in s seconds that will caegent _filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.

ANOTE

Only oneevent filter ~ may be defined for a givegen_id, sig _id . If more than oneevent filter is
applied to a specifigen _id, sig _id pair, Snort will terminate with an error while reading thanfiguration
information.

event filter s withsig _id O are considered "global” because they apply to all rule$ whe givengen_id . If
gen_id is also 0, then the filter applies to all rulegerf_id 0, sig _id != 0 is not allowed). Standard filtering tests
are applied first, if they do not block an event from being ledigthe global filtering test is applied. Thresholds in a
rule (deprecated) will override a globalent filter . Globalevent _filter s do not override what's in a signature
or a more specific stand-aloaeent _filter

85

ANOTE

event filters can be used to suppress excessite filter alerts, however, the firsew_action event
of the timeout period is never suppressed. Such eventsairedécchange of state that are significant to the
user monitoring the network.

Examples

Limit logging to 1 event per 60 seconds:

event filter \
gen_id 1, sig_id 1851, \
type limit, track by src, \
count 1, seconds 60

Limit logging to every 3rd event:

event filter \
gen_id 1, sig_id 1852, \
type threshold, track by src, \
count 3, seconds 60

Limit logging to just 1 event per 60 seconds, but only if weeed 30 events in 60 seconds:

event_filter \
gen_id 1, sig_id 1853, \
type both, track by src, \
count 30, seconds 60

Limit to logging 1 event per 60 seconds per IP triggering eabd (rule genid is 1):

event filter \
gen_id 1, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Limit to logging 1 event per 60 seconds per IP, triggeringheade for each event generator:

event filter \
gen_id 0, sig_id 0, \
type limit, track by src, \
count 1, seconds 60

Events in Snort are generated in the usual way, event fillerdiandled as part of the output system. Read gen-
msg.map for details on gen ids.

Users can also configure a memcap for threshold with a “cdrdigtion:

config event filter: memcap <bytes>

this is deprecated:
config threshold: memcap <bytes>

86

2.4.3 Event Suppression

Event suppression stops specified events from firing withemabving the rule from the rule base. Suppression uses
an IP list to select specific networks and users for suppresSiuppression tests are performed prior to either standar
or global thresholding tests.

Suppression are standalone configurations that referemezafors, SIDs, and IP addresses via an IP list . This allows
a rule to be completely suppressed, or suppressed whenuhkative traffic is going to or coming from a specific IP
or group of IP addresses.

You may apply multiple suppressions to a non-zero SID. Yoy imao combine onevent filter and several
suppressions to the same non-zero SID.

Format

The suppress configuration has two forms:

suppress \
gen_id <gid>, sig_id <sid>, \

suppress \
gen_id <gid>, sig_id <sid>, \
track <by_srclby dst>, ip <ip-list>

Option Description

gen_id <gid> Specify the generator ID of an associated rgbn_id 0, sig _id 0 can be used
to specify a "global” threshold that applies to all rules.

sig _id <sid> Specify the signature ID of an associated ralg._id 0 specifies a "global” filter

because it applies to aig _id s for the givergen_id .
track by _srclby _dst | Suppress by source IP address or destination IP addressisTdyptional, but if
presentip must be provided as well.

ip <list> Restrict the suppression to only source or destination tPesdes (indicated by
track parameter) determined by jlist¢,. If track is provided, ipstrhe provided
as well.
Examples

Suppress this event completely:

suppress gen_id 1, sig_id 1852:
Suppress this event from this IP:

suppress gen_id 1, sig_id 1852, track by src, ip 10.1.1.54
Suppress this event to this CIDR block:

suppress gen_id 1, sig_id 1852, track by dst, ip 10.1.1.0/2 4

87

2.4.4 Event Logging

Snort supports logging multiple events per packet/stréenére prioritized with different insertion methods, sash
max content length or event ordering using the event queue.

The general configuration of the event queue is as follows:

config event_queue: [max_queue [size]] [log [size]] [orde r_events [TYPE]]

Event Queue Configuration Options There are three configuration options to the configuratioarpater 'eventjueue’.

1. max.queue

This determines the maximum size of the event queue. Forgiearhthe event queue has a max size of 8, only
8 events will be stored for a single packet or stream.

The default value is 8.

2. log

This determines the number of events to log for a given pamks&tream. You can’t log more than the mewent
number that was specified.

The default value is 3.

3. order _events

This argument determines the way that the incoming eventsralered. We currently have two different meth-
ods:

e priority - The highest priority (1 being the highest) events are adérst.

e content _length - Rules are ordered before decode or preprocessor aledsubas that have a longer
content are ordered before rules with shorter contents.

The method in which events are ordered does not affect rpkstguch as pass, alert, log, etc.
The default value is conteténgth.

Event Queue Configuration Examples The default configuration:

config event_queue: max_queue 8 log 3 order_events content _length
Example of a reconfigured event queue:

config event_queue: max_queue 10 log 3 order_events conten t_length
Use the default event queue values, but change event order:

config event_queue: order_events priority
Use the default event queue values but change the numbeggddcevents:

config event_queue: log 2

2.5 Performance Profiling

Snort can provide statistics on rule and preprocessor pediace. Each require only a simplenfig option to
snort.conf and Snort will print statistics on the worst (or all) perfara on exit. When a file name is provided in
profile _rules orprofile _preprocs , the statistics will be saved in these files. If #ippend option is not present,
previous data in these files will be overwritten.

88

2.5.1 Rule Profiling
Format

config profile_rules: \
print [all | <num>], \
sort <sort_option> \
[flename <filename> [append]]

e <num>is the number of rules to print

e <sort _option> is one of:
checks
matches
nomatches
avg _ticks
avg _ticks _per _match
avg _ticks _per _nomatch
total _ticks

o <filename> is the output filename

e [append] dictates that the output will go to the same file each timeidopt)

Examples
e Print all rules, sort by avdicks (default configuration if option is turned on)
config profile _rules

e Print all rules, sort by avdicks, and append to fileles _stats.txt
config profile _rules filename rules _stats.txt append

e Print the top 10 rules, based on highest average time
config profile _rules: print 10, sort avg _ticks

e Print all rules, sorted by number of checks
config profile _rules: print all, sort checks

e Printtop 100 rules, based on total time
config profile _rules: print 100, sort total _ticks

e Print with default options, save results to performan¢each time
config profile _rules: filename performance.txt append

e Printtop 20 rules, save results to perf.txt with timestamfilename
config profile _rules: print 20, filename perf.txt

89

Rule Profile Statistics (worst 4 rules)

Num SID GID Rev Checks Matches Alerts Ticks Avg/Check Avg/Ma tch Avg/Nonmatch
1 2389 1 12 1 1 1 385698 385698.0 385698.0 0.0
2 2178 1 17 2 0 0 107822 53911.0 0.0 53911.0
3 2179 1 8 2 0 0 92458 46229.0 0.0 46229.0
4 1734 1 37 2 0 0 90054 45027.0 0.0 45027.0

Figure 2.1: Rule Profiling Example Output

Output

Snort will print a table much like the following at exit.
Configuration line used to print the above table:
config profile _rules: print 4, sort total _ticks

The columns represent:

e Number (rank)

e SigID

e Generator ID

e Checks (number of times rule was evaluated after fast patt@tch within portgroup or any-any rules)
e Matches (number of times ALL rule options matched, will bgthfor rules that have no options)

e Alerts (humber of alerts generated from this rule)

e CPU Ticks

e Avg Ticks per Check

e Avg Ticks per Match

e Avg Ticks per Nonmatch

Interpreting this info is the key. The Microsecs (or Ticksjumn is important because that is the total time spent
evaluating a given rule. But, if that rule is causing aldttmakes sense to leave it alone.

A high Avg/Check is a poor performing rule, that most likelygntains PCRE. High Checks and low Avg/Check is
usually an any=any rule with few rule options and no content. Quick to chéio& few options may or may not match.
We are looking at moving some of these into code, espectatlyd with low SIDs.

By default, this information will be printed to the consold@n Snort exits. You can use the "filename” option in
snort.conf to specify a file where this will be written. If Ja@nd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtetot These files will be found in the logging directory.

2.5.2 Preprocessor Profiling
Format
config profile_preprocs: \
print [all | <num>], \

sort <sort_option> \
[, filename <filename> [append]]

e <num>is the number of preprocessors to print

90

e <sort _option> is one of:
checks
avg _ticks
total _ticks

o <filename> is the output filename

e [append] dictates that the output will go to the same file each timeidopt)

Examples
e Print all preprocessors, sort by atigks (default configuration if option is turned on)
config profile _preprocs

e Print all preprocessors, sort by atigks, and append to filereprocs _stats.txt
config profile _preprocs, filename preprocs _stats.txt append

e Print the top 10 preprocessors, based on highest average tim
config profile _preprocs: print 10, sort avg _ticks

e Print all preprocessors, sorted by number of checks
config profile _preprocs: print all, sort checks

Output

Snort will print a table much like the following at exit.
Configuration line used to print the above table:

config profile_rules: \
print 3, sort total_ticks

The columns represent:
e Number (rank) - The number is indented for each layer. Laymreprocessors are listed under their respective
caller (and sorted similarly).

e Preprocessor Name

e Layer - When printing a specific number of preprocessorsuditasks info for a particular preprocessor is
printed for each layer O preprocessor stat.

e Checks (number of times preprocessor decided to look atlkepgiorts matched, app layer header was correct,
etc)

e Exits (number of corresponding exits — just to verify codénistrumented correctly, should ALWAYS match
Checks, unless an exception was trapped)

e CPU Ticks
e Avg Ticks per Check
e Percent of caller - For non layer O preprocessors, i.e. suimes within preprocessors, this identifies the percent
of the caller’s ticks that is spent for this subtask.
Because of task swapping, non-instrumented code, and faitters, the Pct of Caller field will not add up to 100%
of the caller’s time. It does give a reasonable indicatiohaf much relative time is spent within each subtask.

By default, this information will be printed to the consold@n Snort exits. You can use the "filename” option in
short.conf to specify a file where this will be written. If Ja@nd” is not specified, a new file will be created each time
Snortis run. The filenames will have timestamps appenddtetot These files will be found in the logging directory.

91

Preprocessor Profile Statistics (all)

Num

1

2

1
1

coO~NO O WwWwN -

2

2

Preprocessor Layer Checks Exits
ftptelnet_ftp 0 2697 2697
detect 0 930237 930237
rule eval 1 1347969 1347969
rule tree eval 2 1669390 1669390
pcre 3 488652 488652
asnl 3 1 1
uricontent 3 647122 647122
content 3 1043099 1043099
ftpbounce 3 23 23
byte_jump 3 9007 9007
byte_test 3 239015 239015
icmp_seq 3 2 2
fragbits 3 65259 65259
isdataat 3 5085 5085
flags 3 4147 4147
flowbits 3 2002630 2002630
ack 3 4042 4042
flow 3 1347822 1347822
icode 3 75538 75538
itype 3 27009 27009
icmp_id 3 41150 41150
ip_proto 3 142625 142625
ipopts 3 13690 13690
rtn eval 2 55836 55836
mpse 1 492836 492836
frag3 0 76925 76925
frag3insert 1 70885 70885
frag3rebuild 1 5419 5419
dcerpc 0 127332 127332
s5 0 809682 809682
sbtcp 1 765281 765281
s5TcpState 2 742464 742464
s5TcpFlush 3 51987 51987
1 s5TcpProcessRebuilt 4 47355 47355
2 s5TcpBuildPacket 4 47360 47360
s5TcpData 3 250035 250035
1 s5TcpPktinsert 4 88173 88173
s5TcpNewSess 2 60880 60880
eventq 0 2089428 2089428
httpinspect 0 296030 296030
smtp 0 137653 137653
decode 0 1057635 1057635
ftptelnet_telnet 0 175 175
sfportscan 0 881153 881153
backorifice 0 35369 35369
dns 0 16639 16639
total 0 1018323 1018323

Microsecs Avg/Check Pc

t of Caller Pct of Total

135720
31645670
26758596
26605086
18994719
8
2638614
3154396
19
3321
64401
0
10168
757
517
212231
261
79002
4280
1524
1618
5004
457
22763
4135697
1683797
434980
6280
2426830
14195602
14128577
13223585
92918
14548497
41711
141490
110136
81779
26690209
1862359
227982
1162456
175
518655
4875
1346
67046412

50.32

34.02
19.85
15.94
38.87
8.56
4.08
3.02
0.87
0.37
0.27
0.16
0.16
0.15
0.12
0.11
0.06
0.06
0.06
0.06
0.04
0.04
0.03
0.41
8.39
21.89
6.14
1.16
19.06
17.53
18.46
17.81
1.79
307.22
0.88
0.57
1.25
1.34
12.77
6.29
1.66
1.10
1.00
0.59
0.14
0.08
65.84

0.20
47.20
84.56
99.43
71.40
0.00
9.92
11.86
0.00
0.01
0.24
0.00
0.04
0.00
0.00
0.80
0.00
0.30
0.02
0.01
0.01
0.02
0.00
0.09
13.07
251
25.83
0.37
3.62
21.17
99.53
93.59
0.70
15657.
44.89
1.07
77.84
0.58
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00
0.00

Figure 2.2: Preprocessor Profiling Example Output

92

0.20
47.20
39.91
39.68
28.33
0.00
3.94
4.70
0.00
0.00
0.10
0.00
0.02
0.00
0.00
0.32
0.00
0.12
0.01
0.00
0.00
0.01
0.00
0.03
6.17
251
0.65
0.01
3.62
21.17
21.07
19.72
0.14
21.70
0.06
0.21
0.16
0.12
39.81
2.78
0.34
1.73
0.00
0.77
0.01
0.00
0.00

2.5.3 Packet Performance Monitoring (PPM)

PPM provides thresholding mechanisms that can be used ¥adpra basic level of latency control for snort. It does
not provide a hard and fast latency guarantee but shouldectefrovide a good average latency control. Both rules
and packets can be checked for latency. The action taken dgtextion of excessive latency is configurable. The
following sections describe configuration, sample outantl some implementation details worth noting.

To use PPM, you must build with the —enable-ppm or the —ersdalecefire option to configure.

PPM is configured as follows:

Packet configuration:

config ppm: max-pkt-time <micro-secs>, \
fastpath-expensive-packets, \
pkt-log, \
debug-pkts

Rule configuration:

config ppm: max-rule-time <micro-secs>, \
threshold count, \
suspend-expensive-rules, \
suspend-timeout <seconds>, \
rule-log [log] [alert]

Packets and rules can be configured separately, as abowggetinér in just one config ppm statement. Packet and rule
monitoring is independent, so one or both or neither may labled.

Configuration

Packet Configuration Options

max-pkt-time <micro-secs>

e enables packet latency thresholding using 'micros-sectialimit.
e defaultis 0 (packet latency thresholding disabled)
e reasonable starting defaults: 100/250/1000 for 1G/100MiBts

fastpath-expensive-packets

e enables stopping further inspection of a packet if the nrar fis exceeded

o default is off
pkt-log

e enables logging packet event if packet exceeds max-pld-tim
e logging is to syslog or console depending upon snort cordigum

e defaultis no logging
debug-pkts

e enables per packet timing stats to be printed after eachgpack

o defaultis off

93

Rule Configuration Options

max-rule-time <micro-secs>

e enables rule latency thresholding using 'micros-secshadimit.
e defaultis 0 (rule latency thresholding disabled)

e reasonable starting defaults: 100/250/1000 for 1G/100MiBts
threshold <count>

e sets the number of consecutive rule time excesses befaialidig a rule

e defaultis 5
suspend-expensive-rules

e enables suspending rule inspection if the max rule timedseded

e default is off
suspend-timeout <seconds>

e rule suspension time in seconds
e defaultis 60 seconds

e set to zero to permanently disable expensive rules
rule-log [log] [alert]

e enables event logging output for rules
e defaultis no logging
e one or both of the options ’log’ and 'alert’ must be used withlé-log’

¢ the log option enables output to syslog or console depenging snort configuration

Examples

Example 1: The following enables packet tracking:
config ppm: max-pkt-time 100

The following enables rule tracking:
config ppm: max-rule-time 50, threshold 5

If fastpath-expensive-packets or suspend-expensiess-isiinot used, then no action is taken other than to increment
the count of the number of packets that should be fastpatttigeorules that should be suspended. A summary of this
information is printed out when snort exits.

Example 2:

The following suspends rules and aborts packet inspeciibase rules were used to generate the sample output that
follows.

94

config ppm: \
max-pkt-time 50, fastpath-expensive-packets, \
pkt-log, debug-pkt

config ppm: \

max-rule-time 50, threshold 5, suspend-expensive-rules, \
suspend-timeout 300, rule-log log alert

Sample Snort Output

Sample Snort Startup Output

Packet Performance Monitor Config:
ticks per usec : 1600 ticks
max packet time : 50 usecs

packet action : fastpath-expensive-packets
packet logging : log
debug-pkts . disabled

Rule Performance Monitor Config:
ticks per usec : 1600 ticks
max rule time : 50 usecs
rule action . suspend-expensive-rules
rule threshold : 5
suspend timeout : 300 secs
rule logging . alert log

Sample Snort Run-time Output

PPM: Process-BeginPkt[61] caplen=60
PPM: Pkt[61] Used= 8.15385 usecs
PPM: Process-EndPki[61]

PPM: Process-BeginPkt[62] caplen=342
PPM: Pkt[62] Used= 65.3659 usecs
PPM: Process-EndPki[62]

PPM: Pkt-Event Pki[63] used=56.0438 usecs, 0 rules, 1 nc-ru les tested, packet fastpathed.
PPM: Process-BeginPkt[63] caplen=60

PPM: Pkt[63] Used= 8.394 usecs

PPM: Process-EndPki[63]

PPM: Process-BeginPkt[64] caplen=60
PPM: Pkt[64] Used= 8.21764 usecs
PPM: Process-EndPkt[64]

Sample Snort Exit Output

Packet Performance Summary:

max packet time : 50 usecs
packet events 01
avg pkt time . 0.633125 usecs

Rule Performance Summary:

95

max rule time . 50 usecs
rule events .0
avg nc-rule time . 0.2675 usecs

Implementation Details

e Enforcement of packet and rule processing times is done pfteessing each rule. Latency control is not
enforced after each preprocessor.

e This implementation is software based and does not use amupt driven timing mechanism and is therefore
subject to the granularity of the software based timingsteBtie to the granularity of the timing measurements
any individual packet may exceed the user specified packel®processing time limit. Therefore this imple-
mentation cannot implement a precise latency guarantéestvitt timing guarantees. Hence the reason this is
considered a best effort approach.

e Since this implementation depends on hardware based hifdrp&ance frequency counters, latency threshold-
ing is presently only available on Intel and PPC platforms.

e Time checks are made based on the total system time, notgs@ugsage by Snort. This was a conscious design
decision because when a system is loaded, the latency faketdia based on the total system time, not just the
processor time the Snort application receives. Therefoierecommended that you tune your thresholding to
operate optimally when your system is under load.

2.6 Output Modules

Output modules are new as of version 1.6. They allow Snor tnbich more flexible in the formatting and presentation
of output to its users. The output modules are run when the @ldogging subsystems of Snort are called, after
the preprocessors and detection engine. The format of tieetiies in the rules file is very similar to that of the
preprocessors.

Multiple output plugins may be specified in the Snort configian file. When multiple plugins of the same type (log,
alert) are specified, they are stacked and called in seqwemnee an event occurs. As with the standard logging and
alerting systems, output plugins send their data to /vgglwort by default or to a user directed directory (using-the
command line switch).

Output modules are loaded at runtime by specifying the dikgyword in the rules file:
output <name>: <options>

output alert_syslog: log_auth log_alert

2.6.1 alertsyslog
This module sends alerts to the syslog facility (much like #h command line switch). This module also allows the

user to specify the logging facility and priority within tl8nort rules file, giving users greater flexibility in logging
alerts.

Available Keywords
Facilities
e log _auth

e log _authpriv

e log _daemon

96

e log _local0
e log _locall
e log _local2
e log _local3
e log _locald
e log _local5
e log _localé
e log _local7

e log _user

Priorities

e log _emerg
e log _alert

e log _crit

e log _err

e log _warning
e log _notice
e log _info

e log _debug

Options

log _cons

log _ndelay

log _perror

log _pid

Format

alert_syslog: \
<facility> <priority> <options>

ANOTE

As WIN32 does not run syslog servers locally by default, arerme and port can be passed as options. [The
default host is 127.0.0.1. The default port is 514.

output alert_syslog: \
[host=<hostname[:<port>],] \
<facility> <priority> <options>

97

Example

output alert_syslog: 10.1.1.1:514, <facility> <priority > <options>

2.6.2 alertfast

This will print Snort alerts in a quick one-line format to aesjfied output file. It is a faster alerting method than full
alerts because it doesn’t need to print all of the packetdrsad the output file and because it logs to only 1 file.

Format

output alert_fast: [<filename> ["packet”] [<limit>]]
<limit> ::= <number>[('G'|'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢/aMou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e packet : this option will cause multiline entries with full packeeaders to be logged. By default, only brief
single-line entries are logged.

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se¢2.6.13 for more
information.

Example

output alert_fast: alert.fast

2.6.3 alertfull

This will print Snort alert messages with full packet headdhe alerts will be written in the default logging diregtor
(/varflog/snort) or in the logging directory specified a tommand line.

Inside the logging directory, a directory will be created & These files will be decoded packet dumps of the packets
that triggered the alerts. The creation of these files slavest®lown considerably. This output method is discouraged
for all but the lightest traffic situations.

Format

output alert_full: [<filename> [<limit>]]
<limit> ::= <number>[('G’'M'|K")]

e filename : the name of the log file. The default name is jlogdir¢/alou may specify "stdout” for terminal
output. The name may include an absolute or relative path.

e limit : an optional limit on file size which defaults to 128 MB. Thenimium is 1 KB. Se€Z2.6.13 for more
information.

Example

output alert_full: alert.full

98

2.6.4 alertunixsock

Sets up a UNIX domain socket and sends alert reports to iergat programs/processes can listen in on this socket
and receive Snort alert and packet data in real time. Thigriently an experimental interface.

Format

alert_unixsock

Example

output alert_unixsock

2.6.5 logtcpdump

The logtcpdump module logs packets to a tcpdump-formatted files iBhiseful for performing post-process analysis
on collected traffic with the vast number of tools that arelatie for examining tcpdump-formatted files.

Format

output log_tcpdump: [<filename> [<limit>]]
<limit> ::= <number>[('G'|'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢/shlomyt.The name may include an absolute
or relative path. A UNIX timestamp is appended to the filename

e limit : an optional limit on file size which defaults to 128 MB. Whesegjuence of packets is to be logged, the
aggregate size is used to test the rollover condition[S&&®for more information.

Example

output log_tcpdump: snort.log

2.6.6 database
This module from Jed Pickel sends Snort data to a variety df 8Qabases. More information on installing and
configuring this module can be found on the [91]incidentwelp page. The arguments to this plugin are the name of

the database to be logged to and a parameter list. Pararaptesgecified with the format parameter = argument. see
Figure[ZB for example usage.

Format

database: <log | alert>, <database type>, <parameter list>
The following parameters are available:

host - Host to connect to. If a non-zero-length string is specjfiedP/IP communication is used. Without a host
name, it will connect using a local UNIX domain socket.
port - Port number to connect to at the server host, or socket filerextension for UNIX-domain connections.

dbnane - Database name

99

output database: \
log, mysql, doname=snort user=snort host=localhost passw ord=xyz

Figure 2.3: Database Output Plugin Configuration

user - Database username for authentication
passwor d - Password used if the database demands password autkientica

sensor _name - Specify your own name for this Snort sensor. If you do not#pe name, one will be generated
automatically

encodi ng - Because the packet payload and option data is binary, haoeone simple and portable way to store it
in a database. Blobs are not used because they are not pataibss databases. So i leave the encoding option
to you. You can choose from the following options. Each has\tn advantages and disadvantages:

hex (default) - Represent binary data as a hex string.

Storage requirements - 2x the size of the binary
Searchability - very good
Human readability - not readable unless you are a true geek, requires postgsinge

base64 - Represent binary data as a base64 string.

Storage requirements - ~1.3x the size of the binary
Searchability - impossible without post processing
Human readability - not readable requires post processing

asci i - Represent binary data as an ASCII string. This is the ontioapvhere you will actually lose data.
Non-ASCII Data is represented as a ‘.. If you choose thisamptthen data for IP and TCP options will
still be represented as hex because it does not make anyfeetisat data to be ASCII.
Storage requirements - slightly larger than the binary because some characterssaaped (&;,>)
Searchability - very good for searching for a text string impossible if yoantto search for binary
human readability - very good

det ai | - How much detailed data do you want to store? The options are:

ful | (default) - Log all details of a packet that caused an aladi@iding IP/TCP options and the payload)

fast - Log only a minimum amount of data. You severely limit thegmdtal of some analysis applications
if you choose this option, but this is still the best choicedome applications. The following fields are
logged:timestamp , signature , source ip , destination ip ,source port , destination port ,tcp
flags , andprotocol)

Furthermore, there is a logging method and database typmtist be defined. There are two logging types available,
log andalert . Setting the type to log attaches the database loggingifuradity to the log facility within the program.

If you set the type to log, the plugin will be called on the lagmut chain. Setting the type to alert attaches the plugin
to the alert output chain within the program.

There are five database types available in the current veddithe plugin. These amassqgl , mysgl , postgresgl
oracle , andodbc . Set the type to match the database you are using.

ANOTE

The database output plugin does not have the ability to leaamlérts that are generated by using tide
keyword. See sectidn 3.Y.5 for more details.

100

2.6.7 csv

The csv output plugin allows alert data to be written in a fareasily importable to a database. The output fields and
their order may be customized.

Format

output alert_csv: [<filename> [<format> [<limit>]]]

<format> ::= "default’|<list>
<list> 1= <field>(,<field>)*
<field> ::= "dst"|"src"|"ttl" ...
<limit> ::= <number>[('G'|'M'|K")]

o filename : the name of the log file. The default name is jlogdir¢ /alsvt. You may specify "stdout” for terminal
output. The name may include an absolute or relative path.

o format : The list of formatting options is below. If the formattingtion is "default”, the output is in the order
of the formatting options listed.

— timestamp
— sig _generator
— sig _id

— sig _rev
— msg

— proto

— src

— srcport

— dst

— dstport

— ethsrc

— ethdst

— ethlen

— tepflags
— tepseq

— tcpack

— tcplen

— tcpwindow
— i

— tos

—id

— dgmlen

— iplen

— icmptype
— icmpcode
— icmpid

— icmpseq

e limit : an optional limit on file size which defaults to 128 MB. Thenimum is 1 KB. Se¢2.6.13 for more
information.

101

Example
output alert_csv: /var/log/alert.csv default

output alert_csv: /varllog/alert.csv timestamp, msg

2.6.8 unified

The unified output plugin is designed to be the fastest plessilethod of logging Snort events. The unified output
plugin logs events in binary format, allowing another pags to handle complex logging mechanisms that would
otherwise diminish the performance of Snort.

The nameunifiedis a misnomer, as the unified output plugin creates two diffefiles, aralert file, and alog file.
The alert file contains the high-level details of an event (&g, protocol, port, message id). The log file contains
the detailed packet information (a packet dump with the @ased event ID). Both file types are written in a bimary
format described ispaunified.h

ANOTE

‘ Files have the file creation time (in Unix Epoch format) apgeshto each file when it is created.

Format
output alert_unified: <base file name> [, <limit <file size limit in MB>]
output log_unified: <base file name> [, <limit <file size li mit in MB>]
Example

output alert_unified: snort.alert, limit 128
output log_unified: snort.log, limit 128

2.6.9 unified 2

The unified2 output plugin is a replacement for the unifiegatiplugin. It has the same performance characteristics,
but a slightly different logging format. See sectlon2.6n8umified logging for more information.

Unified2 can work in one of three modes, packet logging, dteyging, or true unified logging. Packet logging
includes a capture of the entire packet and is specified lagthunified2 . Likewise, alert logging will only log
events and is specified witttert _unified2 . To include both logging styles in a single, unified file, siyngpecify
unified2

When MPLS support is turned on, MPLS labels can be includeahified2 events. Use optianpls _event _types to
enable this. If optiompls _event _types is not used, then MPLS labels will be not be included in uni#fiedents.

ANOTE

By default, unified 2 files have the file creation time (in Unipd€h format) appended to each file when it
created.

S

Format

output alert_unified2: \
flename <base filename> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]

102

output log_unified2:; \
flename <base filename> [, <limit <size in MB>] [, nostamp]

output unified2: \

flename <base file name> [, <limit <size in MB>] [, nostamp] [, mpls_event_types]
Example
output alert_unified2: filename snort.alert, limit 128, n ostamp
output log_unified2; filename snort.log, limit 128, nosta mp
output unified2: filename merged.log, limit 128, nostamp
output unified2: filename merged.log, limit 128, nostamp, mpls_event_types

2.6.10 alertprelude

ANOTE

support to use alegtrelude is not built in by default. To use algntelude, snort must be built with th
—enable-prelude argument passed to ./configure.

[}

The alertprelude output plugin is used to log to a Prelude databasanére information on Prelude, se#p://www.prelude-1ds.org

Format
output alert_prelude: \
profile=<name of prelude profile> \
[info=<priority number for info priority alerts>] \

[low=<priority number for low priority alerts>] \
[medium=<priority number for medium priority alerts>]

Example

output alert_prelude: profile=snort info=4 low=3 medium= 2

2.6.11 log null
Sometimes it is useful to be able to create rules that wiltt atecertain types of traffic but will not cause packet log

entries. In Snort 1.8.2, the lagull plugin was introduced. This is equivalent to using theemmand line option but
it is able to work within a ruletype.

Format

output log_null

Example
output log_null # like using snort -n
ruletype info {

type alert
output alert_fast: info.alert

103

http://www.prelude-ids.org/

output log_null

2.6.12 alertaruba_action

/A\NoTE

Support to use alerubaaction is not built in by default. To use aleatubaaction, snort must be built wit
the —enable-aruba argument passed to ./configure.

Communicates with an Aruba Networks wireless mobility colier to change the status of authenticated users. This
allows Snort to take action against users on the Aruba clbetto control their network privilege levels.

For more information on Aruba Networks access control e/ www.arubanetworks.com/

Format

output alert_aruba_action: \
<controller address> <secrettype> <secret> <action>

The following parameters are required:

control | er address - Aruba mobility controller address.
secrettype - Secrettype, one of "shal”, "md5” or "cleartext”.

secr et - Authentication secret configured on the Aruba mobilitytcolter with the "aaa xml-api client” configura-
tion command, represented as a shal or md5 hash, or a ctgassword.

action - Action to apply to the source IP address of the traffic getiregan alert.

bl ackl i st - Blacklist the station by disabling all radio communicatio
setrol e: rol enane - Change the users role to the specified rolename.

Example

output alert_aruba_action: \
10.3.9.6 cleartext foobar setrole:quarantine_role

2.6.13 Log Limits
This section pertains to logs produceddgrt _fast , alert _full , alert _csv, andlog _tcpdump . unified and
unified2 also may be given limits. Those limits are described in tlspeetive sections.

When a configured limitis reached, the currentlog is closebeanew log is opened with a UNIX timestamp appended
to the configured log name.

Limits are configured as follows:

<limit> ::= <number>[(<gh>|<mb>|<kb>)]

<gb> := 'Gqg’
<mb> ;= 'MI'm’
<kb> = 'K'|K’

Rollover will occur at most once per second so if limit is taoadl for logging rate, limit will be exceeded. Rollover
works correctly if snort is stopped/restarted.

104

http://www.arubanetworks.com/

2.7 Host Attribute Table

Starting with version 2.8.1, Snort has the capability to inégrmation from an outside source to determine both the
protocol for use with Snort rules, and IP-Frag policy (seetiea[Z2Z1) and TCP Stream reassembly policies (see
sectiofZ.ZR). This information is stored in an attribatelé, which is loaded at startup. The table is re-read during
run time upon receipt of signal number 30.

Snort associates a given packet with its attribute data frenable, if applicable.

For rule evaluation, service information is used insteaithefports when the protocol metadata in the rule matches the
service corresponding to the traffic. If the rule doesn'téhprotocol metadata, or the traffic doesn’t have any matching
service information, the rule relies on the port informatio

ANOTE

‘ To use a host attribute table, Snort must be configured with-&mable-targetbased flag.

2.7.1 Configuration Format

attribute_table filename <path to file>

2.7.2 Attribute Table File Format

The attribute table uses an XML format and consists of twtices, a mapping section, used to reduce the size of the
file for common data elements, and the host attribute secfibe mapping section is optional.

An example of the file format is shown below.

<SNORT_ATTRIBUTES>
<ATTRIBUTE_MAP>
<ENTRY>
<ID>1</ID>
<VALUE>Linux</VALUE>
</[ENTRY>
<ENTRY>
<ID>2</ID>
<VALUE>ssh</VALUE>
</[ENTRY>
</ATTRIBUTE_MAP>
<ATTRIBUTE_TABLE>
<HOST>
<IP>192.168.1.234</IP>
<OPERATING_SYSTEM>
<NAME>
<ATTRIBUTE_ID>1</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
<INAME>
<VENDOR>
<ATTRIBUTE_VALUE>Red Hat</ATTRIBUTE_VALUE>
<CONFIDENCE>99</CONFIDENCE>
</VENDOR>
<VERSION>
<ATTRIBUTE_VALUE>2.6</ATTRIBUTE_VALUE>
<CONFIDENCE>98</CONFIDENCE>
</VERSION>
<FRAG_POLICY>linux</FRAG_POLICY>

105

<STREAM_POLICY>linux</STREAM_POLICY>
</OPERATING_SYSTEM>
<SERVICES>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>22</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_ID>2</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_ID>OpenSSH</ATTRIBUTE_ID>
<CONFIDENCE>100</CONFIDENCE>
<VERSION>
<ATTRIBUTE_VALUE>3.9p1</ATTRIBUTE_VALUE>
<CONFIDENCE>93</CONFIDENCE>
</VERSION>
<IAPPLICATION>
<ISERVICE>
<SERVICE>
<PORT>
<ATTRIBUTE_VALUE>23</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PORT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_VALUE>telnet</ATTRIBUTE_VALUE>
<CONFIDENCE>50</CONFIDENCE>
<IAPPLICATION>
<ISERVICE>
</SERVICES>
<CLIENTS>
<CLIENT>
<IPPROTO>
<ATTRIBUTE_VALUE>tcp</ATTRIBUTE_VALUE>
<CONFIDENCE>100</CONFIDENCE>
</IPPROTO>
<PROTOCOL>
<ATTRIBUTE_ID>http</ATTRIBUTE_ID>
<CONFIDENCE>91</CONFIDENCE>
</PROTOCOL>
<APPLICATION>
<ATTRIBUTE_ID>IE Http Browser</ATTRIBUTE_ID>
<CONFIDENCE>90</CONFIDENCE>

106

<VERSION>
<ATTRIBUTE_VALUE>6.0</ATTRIBUTE_VALUE>
<CONFIDENCE>89</CONFIDENCE>
</VERSION>
</APPLICATION>
</CLIENT>
</CLIENTS>
</HOST>
</ATTRIBUTE_TABLE>
</SNORT_ATTRIBUTES>

ANOTE

With Snort 2.8.1, for a given host entry, the stream and 1B information are both used. Of the service
attributes, only the IP protocol (tcp, udp, etc), port, anot@col (http, ssh, etc) are used. The application
and version for a given service attribute, and any cliemiattes are ignored. They will be used in a futyre
release.

A DTD for verification of the Host Attribute Table XML file is pvided with the snort packages.

2.8 Dynamic Modules

Dynamically loadable modules were introduced with Snd8t Z.hey can be loaded via directivessimort.conf or
via command-line options.

ANOTE

‘ To disable use of dynamic modules, Snort must be configurtrdtie--disable-dynamicplugin flag.

2.8.1 Format

<directive> <parameters>

2.8.2 Directives

Syntax Description

dynamicpreprocessor [file Tells snort to load the dynamic preprocessor shared libr@iry|

<shared library path > | file is used) or all dynamic preprocessor shared librariésd

directory <directory of rectory is used). Specifyfle , followed by the full or rel-

shared libraries >] ative path to the shared library. Or, specifirectory , fol-
lowed by the full or relative path to a directory of preprosms
shared libraries. (Same effect adynamic-preprocessor-lib or
--dynamic-preprocessor-lib-dir options). See chaptEl 5 for more

information on dynamic preprocessor libraries.
dynamicengine [file <shared Tells snort to load the dynamic engine shared library (if leised) or

library path > | directory all dynamic engine shared libraries (if directory is usespecifyfile

<directory of shared followed by the full or relative path to the shared libraryr, Gpecify

libraries >] directory , followed by the full or relative path to a directory of pre-
processor shared libraries. (Same effect@samic-engine-lib or
--dynamic-preprocessor-lib-dir options). See chaptEl 5 for more

information on dynamic engine libraries.

107

dynamicdetection [file Tells snort to load the dynamic detection rules shared tib(d file

<shared library path > | is used) or all dynamic detection rules shared librariesdifiectory

directory <directory of is used). Specifyiile , followed by the full or relative path to the

shared libraries >] shared library. Or, specifgiirectory , followed by the full or relative
path to a directory of detection rules shared libraries.m&a&ffect as
--dynamic-detection-lib or --dynamic-detection-lib-dir op-
tions). See chaptél 5 for more information on dynamic dieteaules
libraries.

2.9 Reloading a Snort Configuration

Snort now supports reloading a configuration in lieu of nestg Snort in so as to provide seamless traffic inspection
during a configuration change. A separate thread will pansecaeate a swappable configuration object while the
main Snort packet processing thread continues inspectiffictunder the current configuration. When a swappable
configuration object is ready for use, the main Snort packatgssing thread will swap in the new configuration to
use and will continue processing under the new configuralimte that for some preprocessors, existing session data
will continue to use the configuration under which they wemreated in order to continue with proper state for that
session. All newly created sessions will, however, use dveconfiguration.

2.9.1 Enabling support

To enable support for reloading a configuration, adohble-reload to configure when compiling.

There is also an ancillary option that determines how Skl behave if any non-reloadable options are changed
(see sectiofi_Z9.3 below). This option is enabled by defandt the behavior is for Snort to restart if any non-
reloadable options are added/modified/removed. To dighiséehavior and have Snort exit instead of restart, add
--disable-reload-error-restart in addition to--enable-reload to configure when compiling.

ANOTE

‘ This functionality is not currently supported in Windows.

2.9.2 Reloading a configuration

First modify your snort.conf (the file passed to theoption on the command line).

Then, to initiate a reload, send SnoBl&HUPsignal, e.g.

$ kill -SIGHUP <snort pid>

ANOTE

‘ If reload support is not enabled, Snort will restart (aswals has) upon receipt of a SIGHUP.

ANOTE

An invalid configuration will still result in Snort fatal esring, so you should test your new configuratipn
before issuing a reload, e.§.snort -¢ snort.conf -T

108

2.9.3 Non-reloadable configuration options

There are a number of option changes that are currently eloagable because they require changes to output, startup
memory allocations, etc. Modifying any of these optiond wéluse Snort to restart (asS&EGHUP previously did) or
exit (if --disable-reload-error-restart was used to configure Snort).

Reloadable configuration options of note:

¢ Adding/modifying/removing text rules and variables arnea€eable.

¢ Adding/modifying/removing preprocessor configuratioresiloadable (except as noted below).
Non-reloadable configuration options of note:

¢ Adding/modifying/removing shared objects via dynamiedtibn, dynamicengine and dynamicpreprocessor are
not reloadable, i.e. any new/modified/removed shared tsyeitl require a restart.

e Any changes to output will require a restart.

Changes to the following options are not reloadable:

attribute_table

config alertfile

config asnl

config chroot

config daemon

config detection_filter
config flexresp2_attempts
config flexresp2_interface
config flexresp2_memcap
config flexresp2_rows
config flowbits_size
config interface

config logdir

config max_attribute_hosts
config nolog

config no_promisc
config pkt_count

config rate_filter

config read_bin_file
config set_gid

config set_uid

config snaplen

config threshold
dynamicdetection
dynamicengine
dynamicpreprocessor
output

In certain cases, only some of the parameters to a configroptigreprocessor configuration are not reloadable.
Those parameters are listed below the relevant config optipreprocessor.

config ppm: max-rule-time <int>
rule-log

config profile_rules

filename

print

109

sort
config profile_preprocs
filename

print

sort

preprocessor dcerpc2
memcap

preprocessor frag3_global
max_frags

memcap

prealloc_frags
prealloc_memcap
preprocessor perfmonitor
file

snortfile

preprocessor sfportscan
memcap

logfile

preprocessor stream5_global
memcap

max_tcp

max_udp

max_icmp

track_tcp

track_udp

track_icmp

2.10 Multiple Configurations

Snort now supports multiple configurations based on VLANrtRosubnet within a single instance of Snort. This will
allow administrators to specify multiple snort configuoatfiles and bind each configuration to one or more VLANs
or subnets rather than running one Snort for each configuraéiquired. Each unique snort configuration file will
create a new configuration instance within snort. VLANs/&tb not bound to any specific configuration will use the
default configuration. Each configuration can have diffepgaprocessor settings and detection rules.

2.10.1 Creating Multiple Configurations

Default configuration for snort is specified using the erigtic option. A default configuration binds multiple vlans
or networks to non-default configurations, using the follgywconfiguration line:

config binding: <path_to_snort.conf> vlan <vlanldList>
config binding: <path_to_snort.conf> net <ipList>

pat h.t o_snort. conf - Refersto the absolute or relative path to the snort.cardpecific configuration.

vl anl dLi st - Refers to the comma seperated list of vlandlds and vlamiges. The format for ranges is two vlanid
separated by a "-". Spaces are allowed within ranges. Vaéidld is any number in 0-4095 range. Negative
vland Ids and alphanumeric are not supported.

i pLi st - Refersto ip subnets. Subnets can be CIDR blocks for IPV@w4 |

"\NOTE

Vlan and Subnets can not be used in the same line. Confignsatan be applied based on either Vlang or
Subnets not both.

110

ANOTE

‘ Even though Vlan Ids 0 and 4095 are reserved, they are indlaslealid in terms of configuring Snort.

2.10.2 Configuration Specific Elements
Config Options

Generally config options defined within the default configioraare global by default i.e. their value applies to all
other configurations. The following config options are sfietd each configuration.

policy_id
policy_mode
policy version

The following config options are specific to each configuratibnot defined in a configuration, the default values of
the option (not the default configuration values) take ¢ffec

config checksum_drop

config disable_decode_alerts

config disable_decode_drops

config disable_ipopt_alerts

config disable_ipopt_drops

config disable_tcpopt_alerts

config disable_tcpopt_drops

config disable_tcpopt_experimental_alerts
config disable_tcpopt_experimental_drops
config disable_tcpopt_obsolete_alerts
config disable_tcpopt_obsolete_drops
config disable_ttcp_alerts

config disable_tcpopt_ttcp_alerts

config disable_ttcp_drops

Rules
Rules are specific to configurations but only some parts oleagan be customized for performance reasons. If a
rule is not specified in a configuration then the rule will meradse an event for the configuration. A rule shares all

parts of the rule options, including the general optiong/ged detection options, non-payload detection optiond, a
post-detection options. Parts of the rule header can béfigaedifferently across configurations, limited to:

Source IP address and port
Destination IP address and port
Action

A higher revision of a rule in one configuration will overridther revisions of the same rule in other configurations.

Variables

Variables defined using "var”, "portvar” and "ipvar” are gjiféc to configurations. If the rules in a configuration use
variables, those variables must be defined in that configurat

111

Preprocessors

Preprocessors configurations can be defined within eachovlanbnet specific configuration. Options controlling
specific preprocessor memory usage, through specific limihemory usage or number of instances, are processed
only in default policy. The options control total memory gedor a preprocessor across all policies. These options are
ignored in non-default policies without raising an errompeprocessor must be configured in default configuration be-

fore it can be configured in non-default configuration. Thisdquired as some mandatory preprocessor configuration
options are processed only in default configuration.

Events and Output
An unique policy id can be assigned by user, to each configurasing the following config line:
config policy_id: <id>

i d - Refers to a 16-bit unsigned value. This policy id will be dise identify alerts from a specific configuration in
the unified2 records.

ANOTE

‘ If no policy id is specified, snort assigns 0 (zero) value ®¢hnfiguration.

To enable vlanld logging in unified2 records the followingiop can be used.

output alert_unified2: vlan_event_types (alert logging o nly)
output unified2; filename <filename>, vlan_event types (true unified logging)

fil ename - Refers to the absolute or relative filename.

vl an_event _t ypes - When this option is set, snort will use unified2 event typd a6d 105 for IPv4 and IPv6
respectively.

ANOTE

‘ Each event logged will have the vlanld from the packet if \t@aders are present otherwise 0 will be usé;d.

2.10.3 How Configuration is applied?

Snort assigns every incoming packet to a unique configuratiged on the following criteria. If VLANID is present,
then the innermost VLANID is used to find bound configuratitfrihe bound configuration is the default configura-
tion, then destination IP address is searched to the mosifisggibnet that is bound to a non-default configuration.
The packet is assigned non-default configuration if foutegtise the check is repeated using source IP address. In
the end, default configuration is used if no other matchingigaration is found.

For addressed based configuration binding, this can leamhifticts between configurations if source address is bound
to one configuration and destination address is bound tdandh this case, snort will use the first configuration in
the order of definition, that can be applied to the packet.

112

Chapter 3

Writing Snort Rules

3.1 The Basics

Snort uses a simple, lightweight rules description languthgt is flexible and quite powerful. There are a number of
simple guidelines to remember when developing Snort rblaswill help safeguard your sanity.

Most Snort rules are written in a single line. This was reegiin versions prior to 1.8. In current versions of Snort,
rules may span multiple lines by adding a backslasithe end of the line.

Snort rules are divided into two logical sections, the rudader and the rule options. The rule header contains
the rule’s action, protocol, source and destination IP esklrs and netmasks, and the source and destination ports
information. The rule option section contains alert messand information on which parts of the packet should be
inspected to determine if the rule action should be taken.

Figure[3 illustrates a sample Snort rule.

The text up to the first parenthesis is the rule header ancetitma enclosed in parenthesis contains the rule options.
The words before the colons in the rule options section dtedcaptionkeywords

ANOTE

Note that the rule options section is not specifically regghipy any rule, they are just used for the sake of
making tighter definitions of packets to collect or alert ondrop, for that matter).

All of the elements in that make up a rule must be true for tlécited rule action to be taken. When taken together,
the elements can be considered to form a logicad statement. At the same time, the various rules in a Snorg rule
library file can be considered to form a large logioca statement.

3.2 Rules Headers

3.2.1 Rule Actions

The rule header contains the information that defines the where, and what of a packet, as well as what to do in
the event that a packet with all the attributes indicatedvanrtile should show up. The first item in a rule is the rule

alert tcp any any -> 192.168.1.0/24 111 \
(content:"|00 01 86 a5|"; msg:"mountd access";)

Figure 3.1: Sample Snort Rule

113

action. The rule action tells Snort what to do when it finds ekpathat matches the rule criteria. There are 5 available
default actions in Snort, alert, log, pass, activate, anthdyic. In addition, if you are running Snort in inline mode,
you have additional options which include drop, reject, atidp.

alert - generate an alert using the selected alert mesimatthen log the packet

log - log the packet

pass - ignore the packet

activate - alert and then turn on another dynamic rule

dynamic - remain idle until activated by an activate ruteen act as a log rule

drop - make iptables drop the packet and log the packet

N oo g~ w N PRE

reject - make iptables drop the packet, log it, and thed seRCP reset if the protocol is TCP or an ICMP port
unreachable message if the protocol is UDP.

8. sdrop - make iptables drop the packet but do not log it.

You can also define your own rule types and associate one ar autput plugins with them. You can then use the
rule types as actions in Snort rules.

This example will create a type that will log to just tcpdump:

ruletype suspicious

{

type log
output log_tcpdump: suspicious.log

This example will create a rule type that will log to sysloglanMySQL database:

ruletype redalert

{

type alert

output alert_syslog: LOG_AUTH LOG_ALERT

output database: log, mysql, user=snort dbname=snort host =localhost
}

3.2.2 Protocols

The next field in a rule is the protocol. There are four protetoat Snort currently analyzes for suspicious behavior
—TCP, UDP, ICMP, and IP. In the future there may be more, ssdiRP, IGRP, GRE, OSPF, RIP, IPX, etc.

3.2.3 IP Addresses

The next portion of the rule header deals with the IP addnedgart information for a given rule. The keyword any
may be used to define any address. Snort does not have a nmuoharprovide host name lookup for the IP address
fields in the rules file. The addresses are formed by a straighteric IP address and a CIDIR[3] block. The CIDR
block indicates the netmask that should be applied to tleesratidress and any incoming packets that are tested against
the rule. A CIDR block mask of /24 indicates a Class C netwtir&,a Class B network, and /32 indicates a specific
machine address. For example, the address/CIDR comhint®i®.168.1.0/24 would signify the block of addresses
from 192.168.1.1to 192.168.1.255. Any rule that used tesghation for, say, the destination address would match
on any address in that range. The CIDR designations give iceashort-hand way to designate large address spaces
with just a few characters.

114

alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 \
(content: "|00 01 86 a5|"; msg: "external mountd access";)

Figure 3.2: Example IP Address Negation Rule

alert tcp 1[192.168.1.0/24,10.1.1.0/24] any -> \
[192.168.1.0/24,10.1.1.0/24] 111 (content: "|00 01 86 a5 "\
msg: "external mountd access";)

Figure 3.3: IP Address Lists

In Figure[31, the source IP address was set to match for anpuier talking, and the destination address was set to
match on the 192.168.1.0 Class C network.

There is an operator that can be applied to IP addressesedfation operator. This operator tells Snort to match any
IP address except the one indicated by the listed IP addrassegation operator is indicated with a . For example,
an easy modification to the initial example is to make it ad@riny traffic that originates outside of the local net with
the negation operator as shown in Figiurd 3.2.

This rule’s IP addresses indicate any tcp packet with a sdir@address not originating from the internal network and
a destination address on the internal network.

You may also specify lists of IP addresses. An IP list is djgtby enclosing a comma separated list of IP addresses
and CIDR blocks within square brackets. For the time belmg]®P list may not include spaces between the addresses.
See Figur€3]3 for an example of an IP list in action.

3.2.4 Port Numbers

Port numbers may be specified in a number of ways, includingpanmts, static port definitions, ranges, and by
negation. Any ports are a wildcard value, meaning literalhy port. Static ports are indicated by a single port
number, such as 111 for portmapper, 23 for telnet, or 80 tpr, btc. Port ranges are indicated with the range operator
.. The range operator may be applied in a number of ways todakkfferent meanings, such as in Figlird 3.4.

Port negation is indicated by using the negation operatdhé negation operator may be applied against any of the
other rule types (except any, which would translate to nboe, Zen...). For example, if for some twisted reason you
wanted to log everything except the X Windows ports, you dald something like the rule in FigufeB.5.

3.2.5 The Direction Operator

The direction operator> indicates the orientation, or direction, of the traffic thia rule applies to. The IP address
and port numbers on the left side of the direction operat@oissidered to be the traffic coming from the source

log udp any any -> 192.168.1.0/24 1:1024 log udp
traffic coming from any port and destination ports rangirayrrl to 1024

log tcp any any -> 192.168.1.0/24 :6000
log tcp traffic from any port going to ports less than or eqo@@00
log tcp any :1024 -> 192.168.1.0/24 500:
log tcp traffic from privileged ports less than or equal to 4@®ing to ports greater than or equal to 500

Figure 3.4: Port Range Examples

115

log tcp any any -> 192.168.1.0/24 !6000:6010

Figure 3.5: Example of Port Negation
log tcp !192.168.1.0/24 any <> 192.168.1.0/24 23

Figure 3.6: Snort rules using the Bidirectional Operator

host, and the address and port information on the right sideeooperator is the destination host. There is also a
bidirectional operator, which is indicated with<a> symbol. This tells Snort to consider the address/port pairs
either the source or destination orientation. This is hdondyecording/analyzing both sides of a conversation, asch
telnet or POP3 sessions. An example of the bidirectionaladpebeing used to record both sides of a telnet session is
shown in Figur€316.

Also, note that there is ne:- operator. In Snort versions before 1.8.7, the directioeragr did not have proper
error checking and many people used an invalid token. Treorethe<- does not exist is so that rules always read
consistently.

3.2.6 Activate/Dynamic Rules

ANOTE

Activate and Dynamic rules are being phased out in favor afralination of taggind{3.745) and flowbits

EE51D).

Activate/dynamic rule pairs give Snort a powerful capailiYou can now have one rule activate another when it's
action is performed for a set number of packets. This is vesful if you want to set Snort up to perform follow on
recording when a specific rule goes off. Activate rules ast fike alert rules, except they have a *required* option
field: activates. Dynamic rules act just like log rules, theyt have a different option field: activatég. Dynamic
rules have a second required field as well, count.

Activate rules are just like alerts but also tell Snort to addle when a specific network event occurs. Dynamic rules
are just like log rules except are dynamically enabled wheractivate rule id goes off.

Put 'em together and they look like Figurel3.7.

These rules tell Snort to alert when it detects an IMAP budfearflow and collect the next 50 packets headed for port
143 coming from outside $HOMBET headed to SHOMBET. If the buffer overflow happened and was successful,
there’s a very good possibility that useful data will be @méd within the next 50 (or whatever) packets going to that
same service port on the network, so there’s value in caligthose packets for later analysis.

3.3 Rule Options

Rule options form the heart of Snort’s intrusion detectingiee, combining ease of use with power and flexibility. All
Snort rule options are separated from each other using thieg®n (;) character. Rule option keywords are separated
from their arguments with a colon (:) character.

activate tcp '$HOME_NET any -> $HOME_NET 143 (flags: PA; \
content: "|E8COFFFFFF|/bin"; activates: 1; \
msg: "IMAP buffer overflow!";)
dynamic tcp !$HOME_NET any -> $HOME_NET 143 (activated_by: 1; count: 50;)

Figure 3.7: Activate/Dynamic Rule Example

116

There are four major categories of rule options.

general These options provide information about the rule but do methany affect during detection
payload These options all look for data inside the packet payloadcamdbe inter-related
non-payload These options look for non-payload data

post-detection These options are rule specific triggers that happen afidedas “fired.”

3.4 General Rule Options

3.4.1 msg
The msg rule option tells the logging and alerting enginetiessage to print along with a packet dump or to an alert.

It is a simple text string that utilizes theas an escape character to indicate a discrete charactenitifettotherwise
confuse Snort’s rules parser (such as the semi-colon ; clesya

Format

msg: "<message text>";

3.4.2 reference

The reference keyword allows rules to include referencesternal attack identification systems. The plugin cutyent
supports several specific systems as well as unique URLs.pligin is to be used by output plugins to provide a link
to additional information about the alert produced.

Make sure to also take a lookratp://www.snort.org/pub-bin/sigs-search.cgi/ for a system that is indexing
descriptions of alerts based on of the sid (See SeEfion)3.4.4

Table 3.1: Supported Systems

System URL Prefix
bugtraq http://www.securityfocus.com/bid/
cve http://cve.mitre.org/cgi-bin/cvename.cgi?names
nessus http://cgi.nessus.org/plugins/dump.php3?id=
arachnids| (currently down) http://www.whitehats.com/info/ID|S
mcafee http://vil.nai.com/vil/dispVirus.asp?virds=
url http://
Format
reference: <id system><id>; [reference: <id system><id >
Examples
alert tcp any any -> any 7070 (msg:"IDS411/dos-realaudio”; \
flags:AP; content:"|fff4 fffd 06|"; reference:arachnids ,IDS411;)
alert tcp any any -> any 21 (msg:"IDS287/ftp-wuftp260-veng lin-linux"; \

flags:AP; content:"|31c031db 31c9b046 cd80 31c031db|"; \

117

http://www.snort.org/pub-bin/sigs-search.cgi/

reference:arachnids,|DS287; reference:bugtraq,1387; \
reference:cve,CAN-2000-1574;)

3.4.3 gid

The gid keyword (generator id) is used to identify what part of Srggherates the event when a particular rule
fires. For example gid 1 is associated with the rules subsyated various gids over 100 are designated for specific
preprocessors and the decoder. See etc/generators irutfoe s@e for the current generator ids in use. Note that the
gid keyword is optional and if it is not specified in a rule, ithdefault to 1 and the rule will be part of the general rule
subsystem. To avoid potential conflict with gids defined ini$that for some reason aren’t noted it etc/generators),

it is recommended that a value greater than 1,000,000 be &sedyeneral rule writing, it is not recommended that
thegid keyword be used. This option should be used withsttiekeyword. (See sectidn 3.4.4)

The file etc/gen-msg.map contains contains more informatiopreprocessor and decoder gids.

Format

gid: <generator id>;
Example
This example is a rule with a generator id of 1000001.

alert tcp any any -> any 80 (content."BOB"; gid:1000001; sid 1 revily)

3.4.4 sid

Thesid keyword is used to uniquely identify Snort rules. This imf@tion allows output plugins to identify rules
easily. This option should be used with tleg keyword. (See sectidn 3.3.5)

e <100 Reserved for future use
e 100-1,000,000 Rules included with the Snort distribution
e >1,000,000 Used for local rules

The file sid-msg.map contains a mapping of alert messagesadd Gile IDs. This information is useful when post-
processing alert to map an ID to an alert message.

Format

sid: <snort rules id>;

Example

This example is a rule with the Snort Rule ID of 1000983.

alert tcp any any -> any 80 (content."BOB"; sid:1000983; rev 1)

118

3.4.5

rev

Therev keyword is used to uniquely identify revisions of Snort mildRevisions, along with Snort rule id’s, allow
signatures and descriptions to be refined and replaced withtad information. This option should be used with the
sid keyword. (See sectidn3.3.4)

Format

rev: <revision integer>;

Example

This example is a rule with the Snort Rule Revision of 1.

alert tcp any any -> any 80 (content."BOB"; sid:1000983; rev 1)

3.4.6 classtype

Theclasstype

keyword is used to categorize a rule as detecting an attatkstpart of a more general type of attack

class. Snort provides a default set of attack classes thatisad by the default set of rules it provides. Defining
classifications for rules provides a way to better orgartizestvent data Snort produces.

Format

classtype: <class name>;

Example

alert tcp any any -> any 25 (msg:"SMTP expn root"; flags:A+; \

Attack classifications defined by Snort reside indlassification.config

config classification:

<class name>,<class description>

content:"expn root"; nocase; classtype:attempted-recon)

,<default priority>

file. The file uses the following syntax:

These attack classifications are listed in TébI& 3.2. Theyarrently ordered with 3 default priorities. A priority bf
(high) is the most severe and 3 (low) is the least severe.

Table 3.2: Snort Default Classifications

Classtype

Description

| Priority |

attempted-admin

Attempted Administrator Privilege Gain

high

attempted-user

Attempted User Privilege Gain

high

kickass-porn

SCORE! Get the lotion!

high

policy-violation

Potential Corporate Privacy Violation

high

shellcode-detect

Executable code was detected

high

successful-admin

Successful Administrator Privilege Gain

high

successful-user

Successful User Privilege Gain

high

trojan-activity

A Network Trojan was detected

high

unsuccessful-user

Unsuccessful User Privilege Gain

high

web-application-attack

Web Application Attack

high

119

attempted-dos Attempted Denial of Service medium
attempted-recon Attempted Information Leak medium
bad-unknown Potentially Bad Traffic medium
default-login-attempt Attempt to login by a default username apdmedium
password
denial-of-service Detection of a Denial of Service Attack medium
misc-attack Misc Attack medium
non-standard-protocol Detection of a hon-standard protocol or eveniedium
rpc-portmap-decode Decode of an RPC Query medium
successful-dos Denial of Service medium
successful-recon-largescale Large Scale Information Leak medium
successful-recon-limited Information Leak medium
suspicious-filename-detect A suspicious filename was detected medium
suspicious-login An attempted login using a suspicious usgrmedium
name was detected
system-call-detect A system call was detected medium
unusual-client-port-connection A client was using an unusual port medium
web-application-activity Access to a potentially vulnerable web appli-medium
cation
icmp-event Generic ICMP event low
misc-activity Misc activity low
network-scan Detection of a Network Scan low
not-suspicious Not Suspicious Traffic low
protocol-command-decode Generic Protocol Command Decode low
string-detect A suspicious string was detected low
unknown Unknown Traffic low
tcp-connection A TCP connection was detected very low

Warnings

The classtype option can only use classifications that have been definesar.conf by using theconfig
classification option. Snort provides a default set of classificationslassification.config that are used
by the rules it provides.

3.4.7 priority

Thepriority ~ tag assigns a severity level to rulesclasstype rule assigns a default priority (defined by thoafig
classification option) that may be overridden with a priority rule. Exangpdé each case are given below.
Format

priority: <priority integer>;

Examples

alert TCP any any -> any 80 (msg: "WEB-MISC phf attempt"; flag S:A+ \
content: "/cgi-bin/phf"; priority:10;)

alert tcp any any -> any 80 (msg:"EXPLOIT ntpdx overflow"; \
dsize: >128; classtype:attempted-admin; priority:10);

120

3.4.8 metadata

Themetadata tag allows a rule writer to embed additional informationattbe rule, typically in a key-value format.
Certain metadata keys and values have meaning to Snortatigtad in Tabl&313. Keys other than those listed in the
table are effectively ignored by Snort and can be free-favith a key and a value. Multiple keys are separated by a
comma, while keys and values are separated by a space.

Table 3.3: Snort Metadata Keys

Key Description Value Format
engine Indicate a Shared Library Rule "shared”
soid Shared Library Rule Generator and SID gid|sid
service Target-Based Service Identifier "http”

ANOTE

Theservice Metadata Key is only meaningful when a Host Atttribute Tablerovided. When the value
exactly matches the service ID as specified in the table uledas applied to that packet, otherwise, the rile
is not applied (even if the ports specified in the rule mat&8ae SectioR 217 for details on the Host Attribuite
Table.

Format

The examples below show an stub rule from a shared libras; riihe first uses multiple metadata keywords, the
second a single metadata keyword, with keys separated bgnasm

metadata: keyl valuel;
metadata: keyl valuel, key2 value2;

Examples

alert tcp any any -> any 80 (msg: "Shared Library Rule Example "\
metadata:engine shared; metadata:soid 3|12345;)

alert tcp any any -> any 80 (msg: "Shared Library Rule Example "\
metadata:engine shared, soid 3|12345;)

alert tcp any any -> any 80 (msg: "HTTP Service Rule Example"; \
metadata:service http;)

3.4.9 General Rule Quick Reference

Table 3.4: General rule option keywords

Keyword Description

msg The msg keyword tells the logging and alerting engine thesangs to print with
the packet dump or alert.

reference The reference keyword allows rules to include referencexternal attack iden
tification systems.

gid The gid keyword (generator id) is used to identify what pdBmort generates the
event when a particular rule fires.

121

sid The sid keyword is used to uniquely identify Snort rules.

rev The rev keyword is used to uniquely identify revisions of 8moles.

classtype The classtype keyword is used to categorize a rule as degeati attack that ig
part of a more general type of attack class.

priority The priority keyword assigns a severity level to rules.

metadata The metadata keyword allows a rule writer to embed additiorfiermation about
the rule, typically in a key-value format.

3.5 Payload Detection Rule Options

3.5.1 content

The content keyword is one of the more important featuresnafrtS It allows the user to set rules that search for
specific content in the packet payload and trigger respoasecbhon that data. Whenever a content option pattern
match is performed, the Boyer-Moore pattern match fundsaalled and the (rather computationally expensive) test
is performed against the packet contents. If data exactlgimrag the argument data string is contained anywhere
within the packet’s payload, the test is successful andehwmder of the rule option tests are performed. Be aware
that this test is case sensitive.

The option data for the content keyword is somewhat comji&gn contain mixed text and binary data. The binary
data is generally enclosed within the pigedharacter and represented as bytecode. Bytecode refyredsery data
as hexadecimal numbers and is a good shorthand method foiildeg complex binary data. The example below
shows use of mixed text and binary data in a Snort rule.

Note that multiple content rules can be specified in one fiiés allows rules to be tailored for less false positives.

If the rule is preceded by!a the alert will be triggered on packets that do not contaim¢bntent. This is useful when
writing rules that want to alert on packets that do not matchréain pattern

ANOTE

Also note that the following characters must be escapedeérsicontent rule:
S

Format
content: [!] "<content string>";
Examples
alert tcp any any -> any 139 (content:"|5¢c 00|P]00|l|00|P|O O|E|0O0 5c|")

alert tcp any any -> any 80 (content:!"GET")

ANOTE

A ! modifier negates the results of the entire content searchljfieis included. For example, if using
content:!"A"; within:50; and there are only 5 bytes of payload and there is no "A” inghobytes, the
result will return a match. If there must be 50 bytes for adrafiatch, usésdataat as a pre-cursor to th
content.

1)

122

Changing content behavior

Thecontent keyword has a number of modifier keywords. The modifier keyls@hange how the previously speci-
fied content works. These modifier keywords are:

Table 3.5: Content Modifiers

Modifier Section
nocase B52
rawbytes B53
depth .04
offset B53
distance B50
within B51
http_clientbody | B53
http_cookie BL59
http_header BET0
http_method Bo.ll
http_uri B.o. 12
fast pattern BL5T3

3.5.2 nocase

The nocase keyword allows the rule writer to specify thatShert should look for the specific pattern, ignoring case.
nocase modifies the previous 'content’ keyword in the rule.

Format

nocase,;

Example

alert tcp any any -> any 21 (msg:"FTP ROOT"; content:"USER ro ot"; nocase;)

3.5.3 rawbytes

The rawbytes keyword allows rules to look at the raw packt,dgnoring any decoding that was done by preproces-
sors. This acts as a modifier to the previous corfenil3.5idropt

format

rawbytes;

Example

This example tells the content pattern matcher to look atahetraffic, instead of the decoded traffic provided by the
Telnet decoder.

alert tcp any any -> any 21 (msg: "Telnet NOP"; content: "|FF F 1]"; rawbytes;)

123

3.5.4 depth

The depth keyword allows the rule writer to specify how faoia packet Snort should search for the specified pattern.
depth modifies the previous ‘content’ keyword in the rule.

A depth of 5 would tell Snort to only look for the specified gatt within the first 5 bytes of the payload.

As the depth keyword is a modifier to the previous ‘conteny\erd, there must be a contentin the rule before ‘depth’
is specified.

Format

depth: <number>;

3.5.5 offset

The offset keyword allows the rule writer to specify wherestart searching for a pattern within a packet. offset
modifies the previous 'content’ keyword in the rule.

An offset of 5 would tell Snort to start looking for the speedipattern after the first 5 bytes of the payload.

As this keyword is a modifier to the previous 'content’ keydiathere must be a content in the rule before 'offset’ is
specified.

Format

offset: <number>;

Example

The following example shows use of a combined content, bfésel depth search rule.

alert tcp any any -> any 80 (content: "cgi-bin/phf"; offset: 4; depth:20;)

3.5.6 distance

The distance keyword allows the rule writer to specify howifdo a packet Snort should ignore before starting to
search for the specified pattern relative to the end of théquie pattern match.

This can be thought of as exactly the same thing as offset$8etorl3.5)), except it is relative to the end of the last
pattern match instead of the beginning of the packet.

Format

distance: <byte count>;

Example

The rule below maps to a regular expression of /ABGDEF/.

alert tcp any any -> any any (content."ABC"; content. "DEF"; distance:1;)

124

3.5.7 within
The within keyword is a content modifier that makes sure thai@st N bytes are between pattern matches using the

content keyword (See Sectibn315.1). It's designed to bd irseonjunction with the distance (Sectibn315.6) rule
option.

Format

within: <byte count>;

Examples

This rule constrains the search of EFG to not go past 10 byastistipe ABC match.

alert tcp any any -> any any (content"ABC"; content: "EFG" within:10;)

3.5.8 http.client_body

The httpclientbody keyword is a content modifier that restricts the seas¢hé NORMALIZED body of an HTTP
client request.

As this keyword is a modifier to the previous 'content’ keydidhere must be a content in the rule before 'Hdfient body’
is specified.

Format

http_client_body;

Examples

This rule constrains the search for the pattern "EFG” to tRNMALIZED body of an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_client_body;)

ANOTE

‘ Thehttp _client _body modifier is not allowed to be used with thevbytes modifier for the same content,.

3.5.9 http.cookie

The httpcookie keyword is a content modifier that restricts the detr¢he extracted Cookie Header field of an HTTP
client request.

As this keyword is a modifier to the previous 'content’ keydighere must be a content in the rule before 'hatkie’
is specified.

The extracted Cookie Header field may be NORMALIZED, per thefiguration of Httpinspect (s€eZ.P.6).

Format

http_cookie;

125

Examples

This rule constrains the search for the pattern "EFG” to ttteaeted Cookie Header field of an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_cookie;)

ANOTE

Thehttp _cookie madifier is not allowed to be used with trevbytes orfast _pattern modifiers for the
same content.

3.5.10 http.header

The httpheader keyword is a content modifier that restricts the bdarthe extracted Header fields of an HTTP client
request.

As this keyword is a modifier to the previous 'content’ keydidhere must be a contentin the rule before 'htgader’
is specified.

The extracted Header fields may be NORMALIZED, per the conéition of Httpinspect (sde2.2.6).

Format

http_header;

Examples

This rule constrains the search for the pattern "EFG” to ttteaeted Header fields of an HTTP client request.

alert tcp any any -> any 80 (content."ABC"; content: "EFG"; h ttp_header;)

ANOTE

‘ Thehttp _header maodifier is not allowed to be used with trevbytes modifier for the same content.

3.5.11 httpmethod

The httpmethod keyword is a content modifier that restricts the $etart¢he extracted Method from an HTTP client
request.

As this keyword is a modifier to the previous 'content’ keydidhere must be a contentin the rule before 'httpthod’
is specified.

Format

http_method;

126

Examples

This rule constrains the search for the pattern "GET" to ttteaeted Method from an HTTP client request.

alert tcp any any -> any 80 (content:"ABC"; content: "GET"; h ttp_method;)

ANOTE

‘ Thehttp _method modifier is not allowed to be used with trevbytes maodifier for the same content.

3.5.12 http.uri

The httpuri keyword is a content modifier that restricts the seardh¢dNORMALIZED request URI field . Using a
content rule option followed by a httpri modifier is the same as using a uricontent by itself (E€&13).

As this keyword is a modifier to the previous 'content’ keydiothere must be a content in the rule before ’hitp
is specified.

Format

http_uri;

Examples

This rule constrains the search for the pattern "EFG” to t@RNMALIZED URI.

alert tcp any any -> any 80 (content:"ABC"; content: "EFG"; h ttp_uri;)

ANOTE

‘ Thehttp _uri modifier is not allowed to be used with trevbytes modifier for the same content.

3.5.13 fastpattern

The fastpattern keyword is a content modifier that sets the contetitinva rule to be used with the Fast Pattern
Matcher. It overrides the default of using the longest contégthin the rule.

fast pattern may be specified at most once for each of the buffeifrai(excluding the httgcookie modifier).

As this keyword is a modifier to the previous 'content’ keyaidhere must be a contentin the rule before “faattern’
is specified.

Format

fast_pattern;

Examples

This rule causes the pattern "EFG” to be used with the Fastfalatcher, even though it is shorter than the earlier
pattern "ABCD".

alert tcp any any -> any 80 (content:"ABCD"; content: "EFG"; fast_pattern;)

127

ANOTE

Thefast _pattern modifier is not allowed to be used with thip _cookie modifier for the same content,
nor with a content that is negated with a

3.5.14 uricontent

Theuricontent keyword in the Snort rule language searches the NORMALIZ&dest URI field. This means that
if you are writing rules that include things that are normadi, such as %2f or directory traversals, these rules will no
alert. The reason is that the things you are looking for arenatized out of the URI buffer.

For example, the URI:
Iscripts/..%c0%af../winnt/system32/cmd.exe?/c+ver
will get normalized into:
Iwinnt/system32/cmd.exe?/c+ver
Another example, the URI:
Icgi-bin/aaaaaaaaaaaaaaaaaaaaaaaaaal..%252fp%68f?
will get normalized into:
Icgi-bin/phf?

When writing auricontent rule, write the content that you want to find in the context tha URI will be normalized.
For example, if Snort normalizes directory traversals, doimclude directory traversals.

You can write rules that look for the non-normalized contantising the content option. (See Secfion3.5.1)
For a description of the parameters to this function, seednéent rule options in Secti@n 3.b.1.
This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ12.6.

Format

uricontent:[!]<content string>;

ANOTE

‘ uricontent cannot be modified by mwbytes modifier.

3.5.15 urilen

Theurilen keyword in the Snort rule language specifies the exact letigghminimum length, the maximum length,
or range of URI lengths to match.

128

Format

urilen: int<>int;
urilen: [<,>] <int>;

The following example will match URIs that are 5 bytes long:
urilen: 5

The following example will match URIs that are shorter thanyfes:
urilen: < 5

The following example will match URIs that are greater thebytes and less than 10 bytes:
urilen: 5<>10

This option works in conjunction with the HTTP Inspect pregessor specified in SectibnZ12.6.

3.5.16 isdataat

Verify that the payload has data at a specified locationpoptly looking for data relative to the end of the previous
content match.

Format

isdataat:<int>[relative];

Example

alert tcp any any -> any 111 (content:"PASS"; isdataat:50,r elative; \
content:!"|0al"; within:50;)

This rule looks for the string PASS exists in the packet, temifies there is at least 50 bytes after the end of the string
PASS, then verifies that there is not a newline characteim/ bytes of the end of the PASS string.

3.5.17 pcre

The pcre keyword allows rules to be written using perl contyp@tregular expressions. For more detail on what can
be done via a pcre regular expression, check out the PCRE ite¢iis//www.pcre.org

Format
pere:[1]"(/<regex>/|m<delim><regex><delim>)[ismxAEG RUBPHMCO]";

The post-re modifiers set compile time flags for the regularession. See tablESBI6.13.7, 3.8 for descriptions of
each modifier.

ANOTE

‘ The modifiers R and B should not be used together.

129

http://www.pcre.org

Table 3.6: Perl compatible modifiers fiere
i | case insensitive
s | include newlines in the dot metacharacter
m | By default, the string is treated as one big line of charactérand $ match at
the beginning and ending of the string. When m is set, ~ andtShmmmediately
following or immediately before any newline in the buffes,well as the very start
and very end of the buffer.
X | whitespace data characters in the pattern are ignored ewbem escaped or in
side a character class

Table 3.7: PCRE compatible modifiers fure
A | the pattern must match only at the start of the buffer (sanig as
E | Set $ to match only at the end of the subject string. Withouf Blso matcheg
immediately before the final character if it is a newline (bat before any othef
newlines).
G | Inverts the "greediness” of the quantifiers so that they ategreedy by default
but become greedy if followed by "?".

Example

This example performs a case-insensitive search for they$L AH in the payload.

alert ip any any -> any any (pcre:"/BLAH/")

ANOTE

Snort’'s handling of multiple URIs with PCRE does not work apected. PCRE when used without| a
uricontent only evaluates the first URI. In order to use pcre to inspdctURlls, you must use either a
content or a uricontent.

3.5.18 hytetest

Test a byte field against a specific value (with operator).aBbgpof testing binary values or converting representative
byte strings to their binary equivalent and testing them.

For a more detailed explanation, please read Segfiod 3.9.5.

Format

byte_test: <bytes to convert>, [/]<operator>, <value>, <o fiset> \
[relative] [,<endian>] [,<number type>, string];

130

Table 3.8: Snort specific modifiers fpere
Match relative to the end of the last pattern match. (Simtdatistance:0;)
Match the decoded URI buffers (Similaradcontent ~ andhttp _uri)
Match normalized HTTP request body (Similattp _client _body)
Match normalized HTTP request header (Similahttp _header)
Match normalized HTTP request method (Similahtip _method)
Match normalized HTTP request cookie (Similathttp _cookie)
Do not use the decoded buffers (Similar to rawbytes)
Override the configured pcre match limit for this expres¢®ee sectiof 2.11.3)

Olmo|Z|T|I0lClo

| Option | Description |
bytes _to _convert Number of bytes to pick up from the packet
operator Operation to perform to test the value:

e < -lessthan

e > - greater than
e =-equal

e | -not

e & - bitwise AND
e " - bitwise OR

value Value to test the converted value against

offset Number of bytes into the payload to start processing
relative Use an offset relative to last pattern match

endian Endian type of the number being read:

e big - Process data as big endian (default)

o little - Process data as little endian

string Data is stored in string format in packet
number type Type of number being read:

e hex - Converted string data is represented in hexadecimal
e dec - Converted string data is represented in decimal

e oct - Converted string data is represented in octal

dce Let the DCE/RPC 2 preprocessor determine the byte ordeeofdhue to be con
verted. See sectidn 2.2114 for a description and exan{plE#for quick refer-
ence).

Any of the operators can also inclutieéo check if the operator is not true. llfis specified without an operator, then
the operator is set to.

ANOTE

Snort uses the C operators for each of these operators.&8f tperator is used, then it would be the same as
usingif (data & value){ do_something()}

131

Examples

alert udp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content: "[00 00 00 07|"; distance: 4; within: 4; \
byte test: 4,>, 1000, 20, relative;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any \
(msg:"AMD procedure 7 plog overflow "; \
content: "[00 04 93 F3|"; \
content: "[00 00 00 07|"; distance: 4; within: 4; \
byte test: 4, >,1000, 20, relative;)

alert udp any any -> any 1234 \
(byte_test: 4, =, 1234, 0, string, dec; \
msg: "got 1234!")

alert udp any any -> any 1235\
(byte_test: 3, =, 123, 0, string, dec; \
msg: "got 123!")

alert udp any any -> any 1236 \
(byte_test: 2, =, 12, 0, string, dec; \
msg: "got 12!"))

alert udp any any -> any 1237 \
(byte_test: 10, =, 1234567890, 0, string, dec; \
msg: "got 1234567890!";)

alert udp any any -> any 1238 \
(byte_test: 8, =, Oxdeadbeef, 0, string, hex; \
msg: "got DEADBEEF!";)

3.5.19 bytejump

Thebyte _jump keyword allows rules to be written for length encoded protsdrivially. By having an option that
reads the length of a portion of data, then skips that far dodwn the packet, rules can be written that skip over
specific portions of length-encoded protocols and perfagteation in very specific locations.

Thebyte _jump option does this by reading some number of bytes, convert tbeéheir numeric representation, move
that many bytes forward and set a pointer for later deteciis pointer is known as the detect offset end pointer, or
doeptr.

For a more detailed explanation, please read Sekfiod 3.9.5.
Format
byte_jump: <bytes_to_convert>, <offset> \

[relative] [,multiplier <multiplier value>] [,big] [,li ttle][,string]\
[,hex] [,dec] [,oct] [,align] [,from_beginning] [,post_o ffset <adjustment value>]J;

132

Option

Description

bytes _to _convert

Number of bytes to pick up from the packet

offset Number of bytes into the payload to start processing

relative Use an offset relative to last pattern match

multiplier <value > | Multiply the number of calculated bytes kyalue > and skip forward that num¢
ber of bytes.

big Process data as big endian (default)

little Process data as little endian

string Data is stored in string format in packet

hex Converted string data is represented in hexadecimal

dec Converted string data is represented in decimal

oct Converted string data is represented in octal

align Round the number of converted bytes up to the next 32-bit danyn

from _beginning

Skip forward from the beginning of the packet payload ingtesfrom the current
position in the packet.

post _offset <value > | Skip forward or backwards (positive of negative valbg) <value > number of
bytes after the other jump options have been applied.
dce Let the DCE/RPC 2 preprocessor determine the byte ordeeofdlue to be con
verted. See sectidn 2.2]114 for a description and exaniplgsI@for quick refer-
ence).
Example

alert udp any any -> any 32770:34000 (content: |00 01 86 B8|"

content: "[00 00 00 01|"; distance: 4; within: 4; \
byte jump: 4, 12, relative, align; \

byte test: 4, >, 900, 20, relative; \

msg: "statd format string buffer overflow";)

3.5.20 ftpbounce

The ftpbounce keyword detects FTP bounce attacks.

Format

ftpbounce;

Example

alert tcp $EXTERNAL_NET any -> $HOME_NET 21 (msg:"FTP PORT b ounce attempt"; \

flow:to_server,established; content."PORT"; nocase; ft

pbounce; pcre:"/"PORT/smi"\

classtype:misc-attack; sid:3441; rev:1;)

3.5.21 asnl

The ASN.1 detection plugin decodes a packet or a portion aicgt, and looks for various malicious encodings.

Multiple options can be used in an 'asnl’ option and the iegliogic is boolean OR. So if any of the arguments

evaluate as true, the whole option evaluates as true.

The ASN.1 options provide programmatic detection capi@dslias well as some more dynamic type detection. If an
option has an argument, the option and the argument areagegday a space or a comma. The preferred usage is to

use a space between option and argument.

133

Format

asnl: option[argument][, option][argument]] . . .

Option

Description

bitstring ~ _overflow

Detects invalid bitstring encodings that are known to beatety exploitable.

double _overflow

Detects a double ASCII encoding that is larger than a stahdaffer. This is
known to be an exploitable function in Microsoft, but it iskimown at this time
which services may be exploitable.

oversize _length <value >

Compares ASN.1 type lengths with the supplied argument.syhtax looks like,
“oversizelength 500”. This means that if an ASN.1 type is greater thzy then
this keyword is evaluated as true. This keyword must haveangement which
specifies the length to compare against.

absolute _offset <value >

This is the absolute offset from the beginning of the pack&br example,
if you wanted to decode snmp packets, you would say “abswmiffiset 0”.
absolute _offset has one argument, the offset value. Offset may be pos|
or negative.

tive

relative _offset <value >

This is the relative offset from the last content match orelgst/jump.
relative _offset has one argument, the offset number. So if you wante
start decoding and ASN.1 sequence right after the content,"ffou would spec-
ify ’content:"foo"; asnl: bitstring_overflow, relative_off set 0" .

Offset values may be positive or negative.

d to

Examples

alert udp any any -> any 161 (msg:"Oversize SNMP Length"; \
asnl: oversize_length 10000, absolute offset 0;)

alert tcp any any -> any 80 (msg:"ASN1 Relative Foo"; content

"foo"; \

asnl: bitstring_overflow, relative_offset 0;)

3.5.22 cvs

The CVS detection plugin aids in the detection of: Bugtr@384, CVE-2004-0396: "Malformed Entry Modified and
Unchanged flag insertion”. Default CVS server ports are 2401514 and are included in the default ports for stream

reassembly.

NOTE

This plugin cannot do detection over encrypted sessiogs SSH (usually port 22).

Format

cvs:<option>;

Option Description
invalid-entry Looks for an invalid Entry string, which is a way of causing @eap overflow
(see CVE-2004-0396) and bad pointer derefenece in versidd¥S 1.11.15 and
before.
Examples

alert tcp any any -> any 2401 (msg:"CVS Invalid-entry"; \
flow:to_server,established; cvs:invalid-entry;)

134

3.5.23 dceiface

See the DCE/RPC 2 Preprocessor sedflon 2.2.14 for a désorgptd examples of using this rule option.

3.5.24 dceopnum

See the DCE/RPC 2 Preprocessor sedflon 2.2.14 for a désorgptd examples of using this rule option.

3.5.25 dcestub_data

See the DCE/RPC 2 Preprocessor sedflon 2.2.14 for a désorgptd examples of using this rule option.

3.5.26 Payload Detection Quick Reference

Table 3.9: Payload detection rule option keywords

Keyword Description

content The content keyword allows the user to set rules that searapgcific content in
the packet payload and trigger response based on that data.

rawbytes The rawbytes keyword allows rules to look at the raw packéd,dgnoring any
decoding that was done by preprocessors.

depth The depth keyword allows the rule writer to specify how faoia packet Snor
should search for the specified pattern.

offset The offset keyword allows the rule writer to specify wheretart searching for a
pattern within a packet.

distance The distance keyword allows the rule writer to specify homirito a packet Snor
should ignore before starting to search for the specifiegpatelative to the endl
of the previous pattern match.

within The within keyword is a content modifier that makes sure thatast N bytes are
between pattern matches using the content keyword.

uricontent The uricontent keyword in the Snort rule language seardtesdrmalized request
URI field.

isdataat The isdataat keyword verifies that the payload has data aafigul location.

pcre The pcre keyword allows rules to be written using perl confy@ategular expres
sions.

byte _test The bytetest keyword tests a byte field against a specific value (withrator).

byte _jump The bytejump keyword allows rules to read the length of a portion dhdéhen
skip that far forward in the packet.

ftpbounce The ftpbounce keyword detects FTP bounce attacks.

asnl The asn1l detection plugin decodes a packet or a portion afkepand looks for
various malicious encodings.

Vs The cvs keyword detects invalid entry strings.

dce _iface See the DCE/RPC 2 Preprocessor sedfion 2.2.14.

dce _opnum See the DCE/RPC 2 Preprocessor sedfion 2.2.14.

dce _stub _data See the DCE/RPC 2 Preprocessor sedfion 2.2.14.

135

3.6 Non-Payload Detection Rule Options

3.6.1 fragoffset

The fragoffset keyword allows one to compare the IP fragro#faét field against a decimal value. To catch all the first
fragments of an IP session, you could use the fragbits keyand look for the More fragments option in conjunction
with a fragoffset of 0.

Format

fragoffset:;[<|>]<number>;

Example

alert ip any any -> any any \
(msg: "First Fragment"; fragbits: M; fragoffset: 0;)

3.6.2

The ttl keyword is used to check the IP time-to-live valueisTdption keyword was intended for use in the detection
of traceroute attempts.

Format

ttl:[[<number>-]><=]<number>;

Example

This example checks for a time-to-live value that is less tBia
ttl:<3;

This example checks for a time-to-live value that between®%

ttl:3-5;

3.6.3 tos

The tos keyword is used to check the IP TOS field for a specifigeva

Format

tos:[![<number>;

Example

This example looks for a tos value that is not 4

tos:4;

136

364 id
The id keyword is used to check the IP ID field for a specific gal$Some tools (exploits, scanners and other odd

programs) set this field specifically for various purposes,ekample, the value 31337 is very popular with some
hackers.

Format

id:<number>;

Example

This example looks for the IP 1D of 31337.

id:31337;

3.6.5 ipopts

The ipopts keyword is used to check if a specific IP option &spnt.

The following options may be checked:

rr - Record Route

eol - End of list

nop - No Op

ts - Time Stamp

sec - IP Security

esec- IP Extended Security
Isrr - Loose Source Routing
ssrr - Strict Source Routing
satid - Stream identifier

any - any IP options are set

The most frequently watched for IP options are strict anddosource routing which aren’t used in any widespread
internet applications.

Format

ipopts:<rr|eol|nop|ts|sec|esec|Isrr|ssrr|satid|any> ;

Example

This example looks for the IP Option of Loose Source Routing.

ipopts:lsrr;

137

Warning

Only a single ipopts keyword may be specified per rule.

3.6.6 fragbits

Thefraghits keyword is used to check if fragmentation and reserved béset in the IP header.

The following bits may be checked:

M - More Fragments
D - Don’'t Fragment
R - Reserved Bit

The following modifiers can be set to change the match caiteri

+ match on the specified bits, plus any others
* match if any of the specified bits are set

I match if the specified bits are not set

Format

fragbits:[+*!]<[MDR]>;
Example
This example checks if the More Fragments bit and the Do rexjiRent bit are set.

fraghits:MD+;

3.6.7 dsize

The dsize keyword is used to test the packet payload size.riy be used to check for abnormally sized packets. In
many cases, it is useful for detecting buffer overflows.

Format

dsize: [<>]<number>[<><number>];

Example

This example looks for a dsize that is between 300 and 40Gbyte

dsize:300<>400;

Warning

dsize will fail on stream rebuilt packets, regardless ofdize of the payload.

138

3.6.8 flags

The flags keyword is used to check if specific TCP flag bits aesqmnt.

The following bits may be checked:

F - FIN (LSB in TCP Flags byte)

S - SYN

R -RST

P - PSH

A - ACK

U - URG

1 - Reserved bit 1 (MSB in TCP Flags byte)
2 - Reserved bit 2

0 - No TCP Flags Set

The following modifiers can be set to change the match caiteri

+ - match on the specified bits, plus any others
* - match if any of the specified bits are set

I - match if the specified bits are not set

To handle writing rules for session initiation packets sastECN where a SYN packet is sent with the previously
reserved bits 1 and 2 set, an option mask may be specified.eAoulld check for a flags value of S,12 if one wishes
to find packets with just the syn bit, regardless of the vahieke reserved bits.

Format

flags:[![*+]<FSRPAU120>[, <FSRPAU120>];

Example

This example checks if just the SYN and the FIN bits are sepiigg reserved bit 1 and reserved bit 2.

alert tcp any any -> any any (flags:SF,12;)

3.6.9 flow
The flow keyword is used in conjunction with TCP stream remds (see Sectioi2.2.2). It allows rules to only apply
to certain directions of the traffic flow.

This allows rules to only apply to clients or servers. Thiewas packets related to $HOMBET clients viewing web
pages to be distinguished from servers running in the SHONE.

The established keyword will replace thegs: A+ used in many places to show established TCP connections.

139

Options

| Option | Description

to _client Trigger on server responses from Ato B

to _server Trigger on client requests from A to B

from _client Trigger on client requests from A to B

from _server Trigger on server responses from Ato B

established Trigger only on established TCP connections

stateless Trigger regardless of the state of the stream processdiu{iee packets that are
designed to cause machines to crash)

no_stream Do not trigger on rebuilt stream packets (useful for dsize stnream5)

only _stream Only trigger on rebuilt stream packets

Format

flow: [(established|stateless)]
J(to_client|to_server|from_client|from_server)]
,(no_stream|only_stream)];

—_——

Examples

alert tcp '$HOME_NET any -> $HOME_NET 21 (msg:"cd incoming d etected”; \
flow:from_client; content:"CWD incoming"; nocase;)

alert tcp !$HOME_NET 0 -> $HOME_NET 0 (msg: "Port 0 TCP traffi ¢\
flow:stateless;)

3.6.10 flowbits

Theflowbits keyword is used in conjunction with conversation trackirggni the Stream preprocessor (see SeEifion2.2.2).
It allows rules to track states across transport protocssiseas. The flowbits option is most useful for TCP sessions,
as it allows rules to generically track the state of an apgitim protocol.

There are seven keywords associated with flowbits. Most@fitions need a user-defined name for the specific
state that is being checked. This string should be limitednyp alphanumeric string including periods, dashes, and
underscores.

| Option | Description |

set Sets the specified state for the current flow.
unset Unsets the specified state for the current flow.
toggle Sets the specified state if the state is unset, otherwise¢suhgestate if the state is
set.
isset Checks if the specified state is set.
isnotset Checks if the specified state is not set.
noalert Cause the rule to not generate an alert, regardless of thefréise detection
options.
Format
flowbits: [set|unset|toggle|isset|reset|noalert][,<S TATE_NAME>];
Examples

alert tcp any 143 -> any any (msg:"IMAP login";

140

content:"OK LOGIN"; flowhits;set,logged_in;
flowbits:noalert;)

alert tcp any any -> any 143 (msg:"IMAP LIST"; content:"LIST
flowbits:isset,logged_in;)

3.6.11 seq

The seq keyword is used to check for a specific TCP sequenckaerum

Format

seq:<number>;

Example

This example looks for a TCP sequence number of 0.
seq:0;

3.6.12 ack

The ack keyword is used to check for a specific TCP acknowladger.

Format

ack: <number>;

Example

This example looks for a TCP acknowledge number of 0.

ack:0;

3.6.13 window

The window keyword is used to check for a specific TCP windae si

Format

window:[]<number>;

Example

This example looks for a TCP window size of 55808.

window:55808;

141

3.6.14 itype

The itype keyword is used to check for a specific ICMP type @alu

Format

itype:[<|>]<number>[<><number>];

Example

This example looks for an ICMP type greater than 30.

itype:>30;

3.6.15 icode

The icode keyword is used to check for a specific ICMP codeevalu

Format

icode: [<|>]<number>[<><number>];

Example

This example looks for an ICMP code greater than 30.

code:>30;

3.6.16 icmpid

The icmpid keyword is used to check for a specific ICMP ID value.

This is useful because some covert channel programs ugel&stP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

Format

icmp_id:<number>;

Example

This example looks for an ICMP ID of 0.

icmp_id:0;

3.6.17 icmpseq

The icmpseq keyword is used to check for a specific ICMP sequence value

This is useful because some covert channel programs ugel&stP fields when they communicate. This particular
plugin was developed to detect the stacheldraht DDoS agent.

142

Format

icmp_seg:<number>;

Example

This example looks for an ICMP Sequence of 0.
icmp_seq:0;

3.6.18 rpc

The rpc keyword is used to check for a RPC application, varsiad procedure numbers in SUNRPC CALL requests.

Wildcards are valid for both version and procedure numbgnssing '*’;

Format

rpc: <application number>, [<version number>|*], [<proce dure number>[*]>;
Example
The following example looks for an RPC portmap GETPORT retjue

alert tcp any any -> any 111 (rpc: 100000,*,3;);

Warning

Because of the fast pattern matching engine, the RPC keywaidwer than looking for the RPC values by using
normal content matching.

3.6.19 ipproto

The ip_proto keyword allows checks against the IP protocol heaéer.a list of protocols that may be specified by
name, see /etc/protocols.

Format

ip_proto:[!|>|<] <name or number>;

Example

This example looks for IGMP traffic.

alert ip any any -> any any (ip_proto:igmp;)

3.6.20 sameip

The sameip keyword allows rules to check if the source ipasstime as the destination IP.

143

Format

sameip;

Example

This example looks for any traffic where the Source IP and thstiDation IP is the same.

alert ip any any -> any any (sameip;)

3.6.21 streamsize

The streansize keyword allows a rule to match traffic according to thembar of bytes observed, as determined by
the TCP sequence numbers.

ANOTE

‘ The streansize option is only available when the Stream5 preprocessarabled.

Format

stream_size:<server|client|both|either>,<operator>, <number>
Where the operator is one of the following:

< - less than

> - greater than

=-equal

e !=-not

<= - less than or equal

>= - greater than or equal

Example

For example, to look for a session that is less that 6 bytes the client side, use:

alert tcp any any -> any any (stream_size:client,<,6;)

3.6.22 Non-Payload Detection Quick Reference

Table 3.10: Non-payload detection rule option keywords

Keyword Description

fragoffset The fragoffset keyword allows one to compare the IP fragroéfeet field against
a decimal value.

ttl The ttl keyword is used to check the IP time-to-live value.

tos The tos keyword is used to check the IP TOS field for a specifigeva

id The id keyword is used to check the IP ID field for a specific galu

144

ipopts The ipopts keyword is used to check if a specific IP option &spnt.

fragbits The fragbits keyword is used to check if fragmentation arseémeed bits are set in
the IP header.

dsize The dsize keyword is used to test the packet payload size.

flags The flags keyword is used to check if specific TCP flag bits ageqnt.

flow The flow keyword allows rules to only apply to certain direas of the traffic
flow.

flowbits The flowbits keyword allows rules to track states acrosssfrart protocol ses
sions.

seq The seq keyword is used to check for a specific TCP sequenckaerum

ack The ack keyword is used to check for a specific TCP acknowledggber.

window The window keyword is used to check for a specific TCP windae si

itype The itype keyword is used to check for a specific ICMP type @alu

icode The icode keyword is used to check for a specific ICMP codeevalu

icmp _id The icmpid keyword is used to check for a specific ICMP ID value.

icmp _seq The icmpseq keyword is used to check for a specific ICMP sequence .value

rpc The rpc keyword is used to check for a RPC application, varsiad procedure
numbers in SUNRPC CALL requests.

ip _proto The ip_proto keyword allows checks against the IP protocol header.

sameip The sameip keyword allows rules to check if the source ip ésgame as the
destination IP.

3.7 Post-Detection Rule Options

3.7.1 logto
The logto keyword tells Snort to log all packets that trigggs rule to a special output log file. This is especially

handy for combining data from things like NMAP activity, HPTCGI scans, etc. It should be noted that this option
does not work when Snort is in binary logging mode.

Format

logto:"filename”;

3.7.2 session

The session keyword is built to extract user data from TCRiSes. There are many cases where seeing what users
are typing in telnet, rlogin, ftp, or even web sessions iy weseful.

There are two available argument keywords for the sessienoption, printable or all. The printable keyword only
prints out data that the user would normally see or be ablgi®. t

The all keyword substitutes non-printable characters thidir hexadecimal equivalents.

Format

session: [printablejall];

145

Example

The following example logs all printable strings in a telpatket.

log tcp any any <> any 23 (session:printable;)

Warnings

Using the session keyword can slow Snort down considerablit,should not be used in heavy load situations. The
session keyword is best suited for post-processing binargy) log files.

3.7.3 resp

The resp keyword is used to attempt to close sessions whetedrisatriggered. In Snort, this is called flexible
response.

Flexible Response supports the following mechanisms fengiting to close sessions:

| Option | Description |
rst _snd Send TCP-RST packets to the sending sockgt
rst _rcv Send TCP-RST packets to the receiving socket
rst _all Send TCPRST packets in both directions

icmp _net Send a ICMPNET_UNREACH to the sender
icmp _host | Send a ICMPHOST.UNREACH to the sender
icmp _port | Send a ICMPPORT.UNREACH to the sender
icmp _all Send all above ICMP packets to the sender

These options can be combined to send multiple responsks target host.

Format

resp: <resp_mechanism>[,<resp_mechanism>[,<resp_mech anism>]];

Warnings

This functionality is not built in by default. Use the — —etefiexresp flag to configure when building Snort to enable
this functionality.

Be very careful when using Flexible Response. Itis quitg éaget Snort into an infinite loop by defining a rule such
as:

alert tcp any any -> any any (resp:rst_all;)
It is easy to be fooled into interfering with normal networftic as well.

Example

The following example attempts to reset any TCP connectigrott 1524.

alert tcp any any -> any 1524 (flags:S; resp:rst_all))

146

3.7.4 react
This keyword implements an ability for users to react tdficahat matches a Snort rule. The basic reaction is blocking
interesting sites users want to access: New York Timeshdtdasor something really important - napster and porn

sites. The React code allows Snort to actively close offegndonnections and send a visible notice to the browser.
The notice may include your own comment. The following arguats (basic modifiers) are valid for this option:

e block - close connection and send the visible notice
The basic argument may be combined with the following argusédditional modifiers):

e msg - include the msg option text into the blocking visibleic®

e proxy <portnr> - use the proxy port to send the visible notice

Multiple additional arguments are separated by a comma.r&et keyword should be placed as the last one in the
option list.

Format

react: block[, <react additional _modifier>];

Example

alert tcp any any <> 192.168.1.0/24 80 (content: "bad.htm"; \
msg: "Not for children!"; react: block, msg, proxy 8000;)

Warnings

React functionality is not built in by default; you must canfie with —enable-react to build it. (Note that react may
now be enabled independently of flexresp and flexresp2.)

Be very careful when using react. Causing a network trafficegation loop is very easy to do with this functionality.

3.7.5 tag

The tag keyword allow rules to log more than just the singlekpathat triggered the rule. Once a rule is triggered,
additional traffic involving the source and/or destinatimst istagged Tagged traffic is logged to allow analysis of

response codes and post-attack tratbggedalerts will be sent to the same output plugins as the origiteat, but it

is the responsibility of the output plugin to properly haamttiese special alerts. Currently, the database outputplug

described in Sectidn 2.6.6, does not properly hatatigedalerts.

Format
tag: <type>, <count>, <metric>, [direction];

type

e session - Log packets in the session that set off the rule
e host - Log packets from the host that caused the tag to activaes (alirection] modifier)

count

147

e <integer> - Countis specified as a number of units. Units are specifiiteirzmetric> field.

nmetric

e packets - Tag the host/session fercount> packets
e seconds - Tag the host/session fercount> seconds
e bytes - Tag the host/session fercount> bytes

di recti on -only relevantif host type is used.
e sic - Tag packets containing the source IP address of the pdkeg¢nerated the initial event.

e dst - Tag packets containing the destination IP address of tblegb¢hat generated the initial event.

Note, any packets that generate an alert will not be taggedeXxample, it may seem that the following rule will tag
the first 600 seconds of any packet involving 10.1.1.1.

alert tcp any any <> 10.1.1.1 any (tag:host,600,seconds,sr c;)

However, since the rule will fire on every packet involving1.Q.1, no packets will get tagged. Tfiewbitsoption
would be useful here.

alert tcp any any <> 10.1.1.1 any (flowbits:isnotset,tagge d;
flowbits:set,tagged; tag:host,600,seconds,src;)

Also note that if you have a tag option in a rule that uses aimether tharpackets , atagged _packet _limit — will

be used to limit the number of tagged packets regardless eth@htheseconds or bytes count has been reached.
The defaultagged _packet _limit value is 256 and can be modified by using a config option in yoartsonf file
(see Sectiol 2.11.3 on how to use thgged _packet _limit config option). You can disable this packet limit for
a particular rule by adding packets metric to your tag option and setting its count to O (This candbne on a
global scale by setting thegged _packet _limit option in snort.conf to 0). Doing this will ensure that paiskare
tagged for the full amount afeconds or bytes and will not be cut off by theéagged _packet _limit . (Note that the
tagged _packet _limit was introduced to avoid DoS situations on high bandwidtlssenfor tag rules with a high
seconds orbytes counts.)

alert tcp 10.1.1.4 any -> 10.1.1.1 any \
(content:"TAGMYPACKETS"; tag:host,0,packets,600,seco nds,src;)

Example

This example logs the first 10 seconds ortdgged _packet _limit (whichever comes first) of any telnet session.

alert tcp any any -> any 23 (flags:s,12; tag:session,10,sec onds;)

3.7.6 activates

Theactivates keyword allows the rule writer to specify a rule to add wherpacific network event occurs. See
Sectio3.2J6 for more information.

Format

activates: 1;

148

3.7.7 activatedby

Theactivated _by keyword allows the rule writer to dynamically enable a ruleem a specific activate rule is trig-
gered. See Sectién3.P.6 for more information.

Format

activated_by: 1;

3.7.8 count

Thecount keyword must be used in combination with #utivated _by keyword. It allows the rule writer to specify
how many packets to leave the rule enabled for after it ivaigtd. See Sectidn3.2.6 for more information.

Format

activated_by: 1; count: 50;

3.7.9 replace

Thereplace keyword is a feature available in inline mode which will cau8nort to replace the prior matching
content with the given string. Both the new string and theteonit is to replace must have the same length. You can
have multiple replacements within a rule, one per content.

See sectiof 115 for more on operating in inline mode.

replace: <string>;

3.7.10 detectionfilter

detectionfilter defines a rate which must be exceeded by a source ondtsti host before a rule can generate an
event. detectiafilter has the following format:

detection_filter: \
track <by_srclby_dst>, \
count <c>, seconds <s>;

Option Description

track Rate is tracked either by source IP address or destinatiaddiRess. This means

by _srclby _dst count is maintained for each unique source IP address orwaghe destination
IP address.

count ¢ The maximum number of rule matches in s seconds allowed déferdetection
filter limit to be exceeded. C must be nonzero.

seconds s Time period over which count is accrued. The value must beean

Snort evaluates detection _filter as the last step of the detection phase, after evaluatirgtegdr rule options
(regardless of the position of the filter within the rule sm)r At most oneletection _filter is permitted per rule.

Example - this rule will fire on every failed login attemptifindl0.1.2.100 during one sampling period of 60 seconds,
after the first 30 failed login attempts:

149

drop tcp 10.1.2.100 any > 10.1.1.100 22 (\
msg:"SSH Brute Force Attempt”;
flow:established,to_server; \
content:"SSH"; nocase; offset:0; depth:4; \
detection_filter: track by _src, count 30, seconds 60; \
sid:1000001; rev:1;)

Since potentially many events will be generatedgtaction _filter ~ would normally be used in conjunction with
anevent _filter to reduce the number of logged events.

3.7.11 Post-Detection Quick Reference

Table 3.11: Post-detection rule option keywords

Keyword Description

logto The logto keyword tells Snort to log all packets that trigthes rule to a specia
output log file.

session The session keyword is built to extract user data from TCRiSes.

resp The resp keyword is used attempt to close sessions whenrarsatiggered.

react This keyword implements an ability for users to react toficahat matches a
Snort rule by closing connection and sending a notice.

tag The tag keyword allow rules to log more than just the singlekpathat triggered
the rule.

activates This keyword allows the rule writer to specify a rule to addenta specific net;
work event occurs.

activated _by This keyword allows the rule writer to dynamically enableierwhen a specifig
activate rule is triggered.

count This keyword must be used in combination with #utivated _by keyword. It
allows the rule writer to specify how many packets to leaveriie enabled for
after it is activated.

replace Replace the prior matching content with the given strindgiefdame length. Avalil
able in inline mode only.

detection _filter Track by source or destination IP address and if the ruleraibe matches more
than the configured rate it will fire.

3.8 Rule Thresholds

/N\NoTE

Rule thresholds are deprecated and will not be supportedfiniuae release. Usdetection _filter s
@EZID) within rules, oevent _filter s (ZZ4.2) as standalone configurations instead.

threshold can be included as part of a rule, or you can use standaloeshibids that reference the generator and
SID they are applied to. There is no functional differenceveen adding a threshold to a rule, or using a standalone
threshold applied to the same rule. There is a logical difiee. Some rules may only make sense with a threshold.
These should incorporate the threshold into the rule. Fstaice, a rule for detecting a too many login password
attempts may require more than 5 attempts. This can be damg the ‘limit’ type of threshold. It makes sense that
the threshold feature is an integral part of this rule.

Format

150

threshold: \
type <limit|threshold|both>, \
track <by_srclby_dst>, \
count <c>, seconds <s>;

Option Description

type limit|threshold|both typelimit alerts on the 1st m events during the time interval, thenngsmevents
for the rest of the time interval. Typtareshold alerts every m times we see
this event during the time interval. Tyfeth alerts once per time interval afte
seeing m occurrences of the event, then ignores any adaligwents during the
time interval.

track by _srclby _dst rate is tracked either by source IP address, or destindfi@utiress. This means
count is maintained for each unique source IP addresses; eath unique desti
nation IP addresses. Ports or anything else are not tracked.

=

count ¢ number of rule matching in s seconds that will caeget filter limit to be
exceededc must be nonzero value.
seconds s time period over whicltount is accrueds must be nonzero value.
Examples

This rule logs the first event of this SID every 60 seconds.

alert tcp $external_net any -> S$http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type li mit, track \

by src, count 1 , seconds 60 ; sid:1000852; rev:1;)

This rule logs every 10th event on this SID during a 60 secotetval. So if less than 10 events occur in 60 seconds,
nothing gets logged. Once an event is logged, a new timegstéwts for type=threshold.

alert tcp $external_net any -> $http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type th reshold, \

track by dst, count 10 , seconds 60 ; sid:1000852; rev:1;)
This rule logs at most one event every 60 seconds if at leastéiits on this SID are fired.

alert tcp $external_net any -> S$http_servers $http_ports \

(msg:"web-misc robots.txt access"; flow:to_server, esta blished; \
uricontent:"/robots.txt"; nocase; reference:nessus,10 302; \
classtype:web-application-activity; threshold: type bo th , track \

by dst, count 10 , seconds 60 ; sid:1000852; rev:1;)

3.9 Writing Good Rules

There are some general concepts to keep in mind when demgl8piort rules to maximize efficiency and speed.

151

3.9.1 Content Matching

The 2.0 detection engine changes the way Snort works gligiithaving the first phase be a setwise pattern match.
The longer a content option is, the ma@eactthe match. Rules withowontent(or uriconten) slow the entire system
down.

While some detection options, suchseandbyte test perform detection in the payload section of the packey; the
do not use the setwise pattern matching engine. If at alliplesary and have at least ore@ntentoption if at all
possible.

3.9.2 Catch the Vulnerability, Not the Exploit

Try to write rules that target the vulnerability, insteadacspecific exploit.

For example, look for a the vulnerable command with an argurit is too large, instead of shellcode that binds a
shell.

By writing rules for the vulnerability, the rule is less velable to evasion when an attacker changes the exploit
slightly.

3.9.3 Catch the Oddities of the Protocol in the Rule

Many services typically send the commands in upper caserdettFTP is a good example. In FTP, to send the
username, the client sends:

user username_here
A simple rule to look for FTP root login attempts could be:
alert tcp any any -> any any 21 (content:"user root";)

While it mayseentrivial to write a rule that looks for the username root, agoale will handle all of the odd things
that the protocol might handle when accepting the user camma

For example, each of the following are accepted by most FTRese

user root

user root

user root

user root

user<tab>root
To handle all of the cases that the FTP server might handleutk needs more smarts than a simple string match.
A good rule that looks for root login on ftp would be:

alert tcp any any > any 21 (flowto_server established; \
content:"root"; pere:"/user\s+root/i";)

There are a few important things to note in this rule:

e The rule has #lowoption, verifying this is traffic going to the server on antamdished session.

e The rule has @ontentoption, looking forroot, which is the longest, most unique string in the attack. dpison
is added to allow Snort’s setwise pattern match detectigimerto give Snort a boost in speed.

e The rule has pcreoption, looking for user, followed at least one space charguhich includes tab), followed
by root, ignoring case.

152

3.9.4 Optimizing Rules

The content matching portion of the detection engine hasrs@n to handle a few evasion cases. Rules that are not
properly written can cause Snort to waste time duplicatimerks.

The way the recursion works now is if a pattern matches, aaaifof the detection options after that pattern fail, then
look for the pattern again after where it was found the previime. Repeat until the pattern is not found again or the
opt functions all succeed.

On first read, that may not sound like a smart idea, but it isledeFor example, take the following rule:

nat.

alert ip any any -> any any (content:"a"; content:"b"; withi n:1;)

This rule would look for “a”, immediately followed by “b”. Whout recursion, the payload “aab” would fail, even
though it is obvious that the payload “aab” has “a” immediafellowed by “b”, because the first "a” is not immedi-
ately followed by “b”".

While recursion is important for detection, the recursimpiementation is not very smart.

For example, the following rule options are not optimized:
content:"|13|"; dsize:1;

By looking at this rule snippit, it is obvious the rule looks fa packet with a single byte of 0x13. However, because
of recursion, a packet with 1024 bytes of 0x13 could caus® 16@ many pattern match attempts and 1023 too many
dsize checks. Why? The content 0x13 would be found in thelfitdt, then the dsize option would fail, and because
of recursion, the content 0x13 would be found again stagftey where the previous 0x13 was found, once it is found,
then check the dsize again, repeating until 0x13 is not fonide payload again.

Reordering the rule options so that discrete checks (sucisias) are moved to the begining of the rule speed up
Snort.

The optimized rule snipping would be:
dsize:1; content:"|13|";

A packet of 1024 bytes of 0x13 would fail immediately, as tisezd check is the first option checked and dsize is a
discrete check without recursion.

The following rule options are discrete and should gengtsdlplaced at the begining of any rule:

e dsize

o flags

o flow

o fragbits

e icmp _id

e icmp _seq
e icode

e id

e ipopts

e ip _proto

e itype

153

e Se(

e Session
e t0S

o fl

e ack

e window
e resp

e sameip

3.9.5 Testing Numerical Values

The rule optiondytetestandbytejumpwere written to support writing rules for protocols that edength encoded
data. RPC was the protocol that spawned the requiremeritdeettwo rule options, as RPC uses simple length based
encoding for passing data.

In order to understamgthy byte test and bytgump are useful, let's go through an exploit attempt agahmssadmind
service.

This is the payload of the exploit:

89 09 9c e2 00 00 00 00 00 00 00 02 00 01 87 88 ...ccocevne
00 00 00 Oa 00 00 00 01 00 00 00 01 00 00 00 20cco.....

40 28 3a 10 00 00 00 Oa 4d 45 54 41 53 50 4c 4f @(....metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it...........
00 00 00 00 00 00 00 00 40 28 3a 14 00 07 45 df ... @c...e.
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ccoeenee.
00 00 00 00 00 00 00 06 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 04

7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 04

7f 00 00 01 00 01 87 88 00 00 00 Oa 00 00 00 11cocownn

00 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00coceee..
00 00 00 00 00 00 00 3b 4d 45 54 41 53 50 4c 4f ... ;metasplo
49 54 00 00 00 00 00 00 00 00 00 00 00 00 00 00 it............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...,
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00ccoceeee..
00 00 00 00 00 00 00 06 73 79 73 74 65 6d 00 00 ... system..
00 00 00 15 2e 2e 2f 2e 2e 2f 2e 2e 2f 2e 2e 2f .[.0.l./

2e 2e 2f 62 69 6e 2f 73 68 00 00 00 00 00 04 le ./hin/sh.......
<snip>

Let’s break this up, describe each of the fields, and figurdowtto write a rule to catch this exploit.

There are a few things to note with RPC:

e Numbers are written as uint32s, taking four bytes. The nurdéevould show up as 0x0000001a.

e Strings are written as a uint32 specifying the length of thag, the string, and then null bytes to pad the length
of the string to end on a 4 byte boundary. The string “bob” wialow up as 0x00000003626f6200.

89 09 9c e2 - the request id, a random uint32, unique to each req uest
00 00 00 00 - pc type (call = 0, response = 1)

00 00 00 02 - rpc version (2)

00 01 87 88 - rpc program (0x00018788 = 100232 = sadmind)

154

00 00 00 Oa - rpc program version (0x0000000a = 10)

00 00 00 01 - pc procedure (0x00000001 = 1)
00 00 00 01 - credential flavor (1 = auth\ unix)
00 00 00 20 - length of auth\ unix data (0x20 = 32

the next 32 bytes are the auth\ unix data

40 28 3a 10 - unix timestamp (0x40283al0 = 1076378128 = feb 10 0 1:55:28 2004 gmt)
00 00 00 Oa - length of the client machine name (0x0a = 10)

4d 45 54 41 53 50 4c 4f 49 54 00 00 - metasploit

00 00 00 00 - uid of requesting user (0)

00 00 00 00 - gid of requesting user (0)

00 00 00 00 - extra group ids (0)

00 00 00 00 - verifier flavor (0 = auth\ null, aka none)
00 00 00 00 - length of verifier (0, aka none)

The rest of the packet is the request that gets passed todoumece of sadmind.

However, we know the vulnerability is that sadmind truses tiid coming from the client. sadmind runs any request
where the client’s uid is 0 as root. As such, we have decodedgnof the request to write our rule.

First, we need to make sure that our packet is an RPC call.
content:"|00 00 00 00|"; offset:4; depth:4;
Then, we need to make sure that our packet is a call to sadmind.
content:"|00 01 87 88|"; offset:12; depth:4;
Then, we need to make sure that our packet is a call to the guoed, the vulnerable procedure.
content:"|00 00 00 01| offset:16; depth:4;
Then, we need to make sure that our packet has awnithcredentials.
content:"|00 00 00 01|"; offset:20; depth:4;

We don't care about the hostname, but we want to skip overitclieck a number value after the hostname. This is
where bytetest is useful. Starting at the length of the hostname, tkeewla have is:

00 00 00 Oa 4d 45 54 41 53 50 4c 4f 49 54 00 00
00 00 00 00 00 00 00 00 0O 00 00 00 0O 0O 00 00
00 00 00 00

We want to read 4 bytes, turn it into a number, and jump thatyntges forward, making sure to account for the
padding that RPC requires on strings. If we do that, we areatow

00 00 00 00 00 00 00 00 0O 00 00 00 0O 0O 00 00
00 00 00 00

which happens to be the exact location of the uid, the valuevarg to check.

In english, we want to read 4 bytes, 36 bytes from the begmafrthe packet, and turn those 4 bytes into an integer
and jump that many bytes forward, aligning on the 4 byte bamndio do that in a Snort rule, we use:

155

byte_jump:4,36,align;
then we want to look for the uid of 0.
content:"|00 00 00 00|"; within:4;
Now that we have all the detection capabilities for our ridés put them all together.

content:"|00 00 00 00|"; offset:4; depth:4;
content:"|00 01 87 88|"; offset:12; depth:4;
content:"|00 00 00 01| offset:16; depth:4;
content:"|00 00 00 01|"; offset:20; depth:4;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

The 3rd and fourth string match are right next to each otlwaesshould combine those patterns. We end up with:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01]"; offset:16; depth:8;
byte_jump:4,36,align;

content:"|00 00 00 00|"; within:4;

If the sadmind service was vulnerable to a buffer overflowneading the client’s hostname, instead of reading the
length of the hostname and jumping that many bytes forwaedywauld check the length of the hostname to make
sure it is not too large.

To do that, we would read 4 bytes, starting 36 bytes into tloigtaturn it into a number, and then make sure it is not
too large (let's say bigger than 200 bytes). In Snort, we do:

byte_test:4,>,200,36;
Our full rule would be:

content:"|00 00 00 00|"; offset:4; depth:4;

content:"|00 01 87 88|"; offset:12; depth:4;

content:"|00 00 00 01 00 00 00 01]"; offset:16; depth:8;
byte_test:4,>,200,36;

156

Chapter 4

Making Snort Faster

4.1 MMAPed pcap

On Linux, a modified version of libpcap is available that ieplkents a shared memory ring buffer. Phil Woods
(cpw@lanl.gov) is the current maintainer of the libpcap liempentation of the shared memory ring buffer. The shared
memory ring buffer libpcap can be downloaded from his webaihttp:/public.lanl.gov/cpw/

Instead of the normal mechanism of copying the packets fremmek memory into userland memory, by using a shared
memory ring buffer, libpcap is able to queue packets intceaesthbuffer that Snort is able to read directly. This change
speeds up Snort by limiting the number of times the packebed before Snort gets to perform its detection upon
it.

Once Snort linked against the shared memory libpcap, eraliie ring buffer is done via setting the enviornment
variable PCAP.FRAMES PCAP FRAMES:is the size of the ring buffer. According to Phil, the maximgine is
32768, as this appears to be the maximum number of iovecstinelkcan handle. By usingCAP.FRAMES=max
libpcap will automatically use the most frames possible.Eitmernet, this ends up being 1530 bytes per frame, for a
total of around 52 Mbytes of memory for the ring buffer alone.

157

http://public.lanl.gov/cpw/

Chapter 5

Dynamic Modules

Preprocessors, detection capabilities, and rules can rae¥eloped as dynamically loadable module to snort. When
enabled via the-enable-dynamicpluginonfigure option, the dynamic API presents a means for l@adimamic
libraries and allowing the module to utilize certain fucts within the main snort code.

The remainder of this chapter will highlight the data stawes and API functions used in developing preprocessors,
detection engines, and rules as a dynamic plugin to snort.

Beware: the definitions herein may be out of date; check tpeogpiate header files for the current definitions.

5.1 Data Structures

A number of data structures are central to the API. The d&fiif each is defined in the following sections.

5.1.1 DynamicPluginMeta

TheDynamicPluginMetatructure defines the type of dynamic module (preprocesses, or detection engine), the
version information, and path to the shared library. A stdilerary can implement all three types, but typically is
limited to a single functionality such as a preprocessas. diefined irsf _dynamic _meta.h as:

#define MAX_NAME_LEN 1024

#define TYPE_ENGINE 0x01
#define TYPE_DETECTION 0x02
#define TYPE_PREPROCESSOR 0x04

typedef struct _DynamicPluginMeta
{ «
int type;
int major;
int minor;
int build;
char uniqueName[MAX_NAME_LEN];
char *libraryPath;
} DynamicPluginMeta;

5.1.2 DynamicPreprocessorData

The DynamicPreprocessorDatstructure defines the interface the preprocessor usestaatwith snort itself. This
inclues functions to register the preprocessor’s confiumgarsing, restart, exit, and processing functionsdilides

158

function to log messages, errors, fatal errors, and debggigifo. It also includes information for setting alerts,
handling Inline drops, access to the StreamAPI, and it plesviaccess to the normalized http and alternate data
buffers. This data structure should be initialized when giheprocessor shared library is loaded. It is defined in
sf _dynamic _preprocessor.h . Check the header file for the current definition.

5.1.3 DynamicEngineData

The DynamicEngineDatatructure defines the interface a detection engine usegdmat with snort itself. This
includes functions for logging messages, errors, fatarsrrand debugging info as well as a means to register and
check flowbits. It also includes a location to store rulebstfor dynamic rules that are loaded, and it provides access
to the normalized http and alternate data buffers. It is @dfinsf _dynamic _engine.h as:

typedef struct _DynamicEngineData
{
int version;
u_int8_t *altBuffer;
Urilnfo *uriBuffersf]MAX_URIINFOS];
RegisterRule ruleRegister;
RegisterBit flowbitRegister;
CheckFlowbit flowbitCheck;
DetectAsnl asnlDetect;
LogMsgFunc logMsg;
LogMsgFunc errMsg;
LogMsgFunc fatalMsg;
char *dataDumpDirectory;

GetPreprocRuleOptFuncs getPreprocOptFuncs;

SetRuleData setRuleData;
GetRuleData getRuleData;

DebugMsgFunc debugMsg;
#ifdef HAVE_WCHAR_H
DebugWideMsgFunc debugWideMsg;
#endif

char **debugMsgFile;
int *debugMsgLine;

PCRECompileFunc pcreCompile;
PCREStudyFunc pcreStudy;
PCREExecFunc pcreExec;

} DynamicEngineData;

5.1.4 SFSnortPacket

The SFSnortPackestructure mirrors the snort Packet structure and providesss to all of the data contained in a
given packet.

It and the data structures it incorporates are defineflisnort _packet.h . Additional data structures may be defined
to reference other protocol fields. Check the header filehferctrrent definitions.

159

5.1.5 Dynamic Rules

A dynamic rule should use any of the following data structuréhe following structures are definedsifnsnort _plugin _api.h .

Rule

The Rulestructure defines the basic outline of a rule and containsdhee set of information that is seen in a text
rule. That includes protocol, address and port informadiad rule information (classification, generator and sigreat
IDs, revision, priority, classification, and a list of redéaces). It also includes a list of rule options and an optiona
evaluation function.

#define RULE_MATCH 1
#define RULE_NOMATCH 0

typedef struct _Rule

{
[PInfo ip;
Rulelnformation info;
RuleOption **options; /* NULL terminated array of RuleOpti on union */
ruleEvalFunc evalFunc;
char initialized; [* Rule Initialized, used internally */
u_int32_t numOptions; /* Rule option count, used internall y *
char noAlert; [* Flag with no alert, used internally */
void *ruleData; /¥ Hash table for dynamic data pointers */
} Rule;

The rule evaluation function is defined as
typedef int (*ruleEvalFunc)(void *);

where the parameter is a pointer to the SFSnortPacketsteuct

Rulelnformation

The Rulelnformationstructure defines the meta data for a rule and includes genébs signature ID, revision,
classification, priority, message text, and a list of rafiess.

typedef struct _Rulelnformation
{
u_int32_t geniD;
u_int32_t siglD;
u_int32_t revision;
char *classification; /* String format of classification n ame */
u_int32_t priority;
char *message;
RuleReference **references; /* NULL terminated array of re ferences */
RuleMetaData **meta; /* NULL terminated array of reference s ¥
} Rulelnformation;

160

RuleReference

TheRuleReferencstructure defines a single rule reference, including theeaysame and rereference identifier.

typedef struct _RuleReference
{

char *systemName;

char *refldentifier;
} RuleReference;

IPInfo

ThelPInfo structure defines the initial matching criteria for a rulel @mcludes the protocol, src address and port, des-
tination address and port, and direction. Some of the stdrefidngs and variables are predefined - any, HONIET,
HTTP_SERVERS, HTTPPORTS, etc.

typedef struct _IPInfo
{
u_int8_t protocol;
char * src_addr;
char * src_port; /¥ 0 for non TCP/UDP *
char direction; [* non-zero is bi-directional */
char * dst addr;
char * dst_port; /¥ 0 for non TCP/UDP */

} IPInfo;

#define ANY_NET "any"

#define HOME_NET "$HOME_NET"
#define EXTERNAL_NET "$EXTERNAL_NET"
#define ANY_PORT "any"

#define HTTP_SERVERS "$HTTP_SERVERS"
#define HTTP_PORTS "$HTTP_PORTS"

#define SMTP_SERVERS "$SMTP_SERVERS"

RuleOption

The RuleOptionstructure defines a single rule option as an option type aredesience to the data specific to that
option. Each option has a flags field that contains specifis flagthat option as well as a "Not” flag. The "Not” flag
is used to negate the results of evaluating that option.

typedef enum DynamicOptionType {
OPTION_TYPE_PREPROCESSOR,
OPTION_TYPE_CONTENT,
OPTION_TYPE_PCRE,
OPTION_TYPE_FLOWBIT,
OPTION_TYPE_FLOWFLAGS,
OPTION_TYPE_ASN1,
OPTION_TYPE_CURSOR,
OPTION_TYPE_HDR_CHECK,
OPTION_TYPE_BYTE_TEST,
OPTION_TYPE_BYTE_JUMP,
OPTION_TYPE_BYTE_EXTRACT,
OPTION_TYPE_SET_CURSOR,
OPTION_TYPE_LOOP,
OPTION_TYPE_MAX

161

3

typedef struct _RuleOption
{
int optionType;
union
{
void *ptr;
Contentinfo *content;
Cursorinfo *cursor;
PCREInfo *pcre;
FlowBitsInfo *flowBit;
ByteData *hyte;
ByteExtract *byteExtract;
FlowFlags *flowFlags;
AsnlContext *asni,
HdrOptCheck *hdrData;
Loopinfo *loop;
PreprocessorOption *preprocOpt;
} option_u;
} RuleOption;

#define NOT_FLAG 0x10000000

Some options also contain information that is initializéduen time, such as the compiled PCRE information, Boyer-
Moore content information, the integer ID for a flowbit, etc.

The option types and related structures are listed below.

e OptionType: Content & Structur&€ontentinfo

The Contentinfostructure defines an option for a content search. It incltisegattern, depth and offset, and
flags (one of which must specify the buffer — raw, URI or norimed — to search). Additional flags include
nocase, relative, unicode, and a designation that thisobig to be used for snorts fast pattern evaluation. The
most unique content, that which distinguishes this rule pessible match to a packet, should be marked for
fast pattern evaluation. In the dynamic detection engimeiged with Snort, if naContentinfostructure in a
given rules uses that flag, the one with the longest contagthewill be used.

typedef struct _Contentinfo

{
u_int8_t *pattern;
u_int32_t depth;
int32_t offset;
u_int32_t flags; [* must include a CONTENT BUF X *
void *hoyer_ptr;
u_int8_t *patternByteForm;
u_int32_t patternByteFormLength;
u_int32_t incrementLength;

} Contentlinfo;

#define CONTENT_NOCASE 0x01
#define CONTENT_RELATIVE 0x02
#define CONTENT_UNICODE2BYTE 0x04
#define CONTENT_UNICODE4BYTE 0x08
#define CONTENT_FAST_PATTERN 0x10
#define CONTENT_END_BUFFER 0x20

#define CONTENT_BUF_NORMALIZED 0x100

162

#define CONTENT_BUF_RAW 0x200
#define CONTENT_BUF_URI 0x400

OptionType: PCRE & Structurd®CREInfo

The PCREInfostructure defines an option for a PCRE search. It includeB@RE expression, pciftags such
as caseless, as defined in PCRE.h, and flags to specify thez.buff

/*
pcre.h provides flags:

PCRE_CASELESS
PCRE_MULTILINE
PCRE_DOTALL
PCRE_EXTENDED
PCRE_ANCHORED
PCRE_DOLLAR_ENDONLY
PCRE_UNGREEDY

*/

typedef struct _PCREInfo

{

char *expr;

void *compiled_expr;

void *compiled_extra;

u_int32_t compile_flags;

u_int32_t flags; /* must include a CONTENT BUF X */
} PCREInfo;

OptionType: Flowbit & StructureFlowBitsInfo

The FlowBitsInfostructure defines a flowbits option. It includes the name eflibwbit and the operation (set,
unset, toggle, isset, isnotset).

#define FLOWBIT_SET 0x01
#define FLOWBIT_UNSET 0x02
#define FLOWBIT_TOGGLE 0x04
#define FLOWBIT_ISSET 0x08
#define FLOWBIT_ISNOTSET 0x10
#define FLOWBIT_RESET 0x20
#define FLOWBIT_NOALERT 0x40

typedef struct _FlowBitsInfo

{
char *flowBitsName;
u_int8 t operation;
u_int32_t id;

u_int32_t flags;
} FlowBitsInfo;

OptionType: Flow Flags & Structuré&lowFlags

The FlowFlagsstructure defines a flow option. It includes the flags, whiakcty the direction (fromserver,
to_server), established session, etc.

#define FLOW_ESTABLISHED 0x10
#define FLOW_IGNORE_REASSEMBLED 0x1000
#define FLOW_ONLY_REASSMBLED 0x2000

163

#define FLOW_FR_SERVER 0x40
#define FLOW_TO_CLIENT 0x40 /* Just for redundancy */
#define FLOW_TO_SERVER 0x80
#define FLOW_FR_CLIENT 0x80 /* Just for redundancy */

typedef struct _FlowFlags
{

u_int32_t flags;
} FlowFlags;

OptionType: ASN.1 & StructureAsn1Context

The Asnl1Contexstructure defines the information for an ASN1 option. It misrthe ASN1 rule option and
also includes a flags field.

#define ASN1_ABS_OFFSET 1
#define ASN1_REL_OFFSET 2

typedef struct _AsnlContext
{
int bs_overflow;
int double_overflow;
int print;
int length;
unsigned int max_length;
int offset;
int offset_type;
u_int32_t flags;
} AsnlContext;

OptionType: Cursor Check & Structur€ursorinfo

The Cursorinfostructure defines an option for a cursor evaluation. Theocugghe current position within the
evaluation buffer, as related to content and PCRE searakasell as byte tests and byte jumps. It includes an
offset and flags that specify the buffer. This can be usedribtbere is sufficient data to continue evaluation,
similar to the isdataat rule option.

typedef struct _Cursorinfo

{
int32_t offset;

u_int32_t flags; I* specify one of CONTENT_BUF_X *
} Cursorlnfo;

OptionType: Protocol Header & StructutddrOptCheck

The HdrOptCheckstructure defines an option to check a protocol header foeeifépvalue. It incldues the
header field, the operation (j,¢,,=,etc), a value, a maskturégthat part of the header field, and flags.

#define IP_HDR_ID 0x0001 /* IP Header ID *

#define IP_HDR_PROTO 0x0002 /* IP Protocol */

#define IP_HDR_FRAGBITS 0x0003 /* Frag Flags set in IP Heade r*

#define IP_HDR_FRAGOFFSET 0x0004 /* Frag Offset set in IP He ader */
#define IP_HDR_OPTIONS 0x0005 /* IP Options -- is option xx i ncluded */
#define IP_HDR_TTL 0x0006 /* IP Time to live */

#define IP_HDR_TOS 0x0007 /* IP Type of Service */

#define IP_HDR_OPTCHECK_MASK 0x000f

#define TCP_HDR_ACK 0x0010 /* TCP Ack Value *

164

#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

typedef
{

u_intl6 t hdrField;
u_int32_t op;
u_int32_t value;

TCP_HDR_SEQ
TCP_HDR_FLAGS
TCP_HDR_OPTIONS
TCP_HDR_WIN

0x0020 /* TCP Seq Value *

0x0030 /* Flags set in TCP Header */

0x0040 /* TCP Options -- is option x X included */
0x0050 /* TCP Window *

TCP_HDR_OPTCHECK_MASK 0x00f0

ICMP_HDR_CODE
ICMP_HDR_TYPE
ICMP_HDR_ID
ICMP_HDR_SEQ

0x1000 /* ICMP Header Code */
0x2000 /* ICMP Header Type */

0x3000 /* ICMP ID for ICMP_ECHO/ICMP_E = CHO_REPLY *

0x4000 /* ICMP ID for ICMP_ECHO/ICMP_ ECHO_REPLY *

ICMP_HDR_OPTCHECK_MASK 0xf000

struct _HdrOptCheck

[* Field to check */
[* Type of comparison */
[* Value to compare value against */

u_int32_t mask_value; /* bits of value to ignore */
u_int32_t flags;
} HdrOptCheck;

OptionType: Byte Test & Structur&yteData

The ByteDatastructure defines the information for both ByteTest and Bytep operations. It includes the
number of bytes, an operation (for ByteTest, j,¢,,=,etcplaey an offset, multiplier, and flags. The flags must

specify the buffer.

#define CHECK_EQ 0

#define CHECK_NEQ 1

#define CHECK_LT 2

#define CHECK_GT 3

#define CHECK_LTE 4

#define CHECK_GTE 5

#define CHECK_AND 6

#define CHECK_XOR 7

#define CHECK_ALL 8

#define CHECK_ATLEASTONE 9

#define CHECK_NONE 10

typedef struct _ByteData

{
u_int32_t bytes; ¥ Number of bytes to extract */
u_int32_t op; * Type of byte comparison, for checkValue */
u_int32_t value; [* Value to compare value against, for chec kValue, or extracted value */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Used for byte jump -- 32bits is MORE than enough */
u_int32_t flags; /¥ must include a CONTENT_BUF_X *

} ByteData;

OptionType: Byte Jump & Structur@yteData
SeeByte Tesabove.

OptionType: Set Cursor & Structur€ursorinfo
SeeCursor Checlabove.

OptionType: Loop & Structured:ooplinfo,ByteExtract,DynamicElement

TheLooplinfostructure defines the information for a set of options thatabe evaluated repeatedly. The loop
option acts like a FOR loop and includes start, end, and imerg values as well as the comparison operation for

165

termination. It includes a cursor adjust that happens tiin@ach iteration of the loop, a reference to a Rulelnfo
structure that defines the RuleOptions are to be evaluatedgh each iteration. One of those options may be a
ByteExtract.

typedef struct _Loopinfo

{
DynamicElement *start; [* Starting value of FOR loop (i=sta) *
DynamicElement *end; ¥ Ending value of FOR loop (i OP end) *
DynamicElement *increment; /* Increment value of FOR loop (i+= increment) */
u_int32_t op; [* Type of comparison for loop termination */
Cursorinfo *cursorAdjust; /* How to move cursor each iterat ion of loop */
struct _Rule *subRule; [* Pointer to SubRule & options to eva luate within
* the loop */
u_int8_t initialized; ¥ Loop initialized properly (safeg uard) */
u_int32_t flags; /¥ can be used to negate loop results, speci fies
} Looplnfo;

TheByteExtracsstructure defines the information to use when extractingdfdr a DynamicElement used a in
Loop evaltion. It includes the number of bytes, an offsetltiplier, flags specifying the buffer, and a reference
to the DynamicElement.

typedef struct _ByteExtract

{
u_int32_t bytes; /¥ Number of bytes to extract */
int32_t offset; [* Offset from cursor */
u_int32_t multiplier; /* Multiply value by this (similar to byte jump) */
u_int32_t flags; /¥ must include a CONTENT_BUF_X *
char *refld; [* To match up with a DynamicElement refld */
void *memoryLocation; /* Location to store the data extract ed *

} ByteExtract;
The DynamicElemenstructure is used to define the values for a looping evalnatibincludes whether the

element is static (an integer) or dynamic (extracted fronaféeb in the packet) and the value. For a dynamic
element, the value is filled by a related ByteExtract opthat ts part of the loop.

#define DYNAMIC_TYPE_INT_STATIC 1
#define DYNAMIC_TYPE_INT REF 2

typedef struct _DynamicElement

{
char dynamicType; I* type of this field - static or reference *
char *refld; * reference ID (NULL if static) */
union
{
void *voidPtr; [* Holder */
int32_t staticlnt; [* Value of static */
int32_t *dynamicint; /* Pointer to value of dynamic */
} data;

} DynamicElement;

5.2 Required Functions

Each dynamic module must define a set of functions and dagetstijp work within this framework.

166

5.2.1 Preprocessors

Each dynamic preprocessor library must define the folloviungtions. These are defined in the fife dynamic _preproc _lib.c
The metadata and setup function for the preprocessor sheuléfinedf _preproc _info.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializePreprocessor(DynamicPreprocessorData *)

This function initializes the data structure for use by tiheppocessor into a library global variablepd and
invokes the setup function.

5.2.2 Detection Engine

Each dynamic detection engine library must define the faligvfunctions.

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

e int InitializeEngineLib(DynamicEngineData *)
This function initializes the data structure for use by thgiee.

The sample code provided with Snort predefines those fureiimd defines the following APIs to be used by a
dynamic rules library.

¢ int RegisterRules(Rule **)

This is the function to iterate through each rule in the lisitjalize it to setup content searches, PCRE evalution
data, and register flowbits.

e int DumpRules(char *,Rule **)

This is the function to iterate through each rule in the Ired svrite a rule-stop to be used by snort to control the
action of the rule (alert, log, drop, etc).

e int ruleMatch(void *p, Rule *rule)

This is the function to evaluate a rule if the rule does noehitsyown Rule Evaluation Function. This uses the
individual functions outlined below for each of the rule iops and handles repetitive content issues.

Each of the functions below returns RUIMATCH if the option matches based on the current criteriagou
position, etc).

— int contentMatch(void *p, Contentinfo* contentjmt8_t **cursor)

This function evaluates a single content for a given paaketcking for the existence of that content as
delimited by Contentinfo and cursor. Cursor position isated and returned in *cursor.

With a text rule, the with option corresponds to depth, amddistance option corresponds to offset.
— int checkFlow(void *p, FlowFlags *flowflags)
This function evaluates the flow for a given packet.

— int extractValue(void *p, ByteExtract *byteExtractjnt8_t *cursor)

This function extracts the bytes from a given packet, asifipddy ByteExtract and delimited by cursor.
Value extracted is stored in ByteExtract memoryLocatiomapater.

— int processFlowbits(void *p, FlowBitsInfo *flowbits)

This function evaluates the flowbits for a given packet, acgi@d by FlowBitsInfo. It will interact with
flowbits used by text-based rules.

167

— int setCursor(void *p, Cursorinfo *cursorinfo, int8_t **cursor)

This function adjusts the cursor as delimited by Cursorimiew cursor position is returned in *cursor.
It handles bounds checking for the specified buffer and nestRULENOMATCH if the cursor is moved
out of bounds.

Itis also used by contentMatch, byteJump, and pcreMatchjtestathe cursor position after a successful
match.
— int checkCursor(void *p, Cursorinfo *cursorinfo, mt8_t *cursor)
This function validates that the cursor is within boundshaf $pecified buffer.
— int checkValue(void *p, ByteData *byteDatajnt32 t value, uint8_t *cursor)
This function compares thealueto the value stored in ByteData.
— int byteTest(void *p, ByteData *byteData,int8_t *cursor)
This is a wrapper for extractValue() followed by checkVgue
— int byteJump(void *p, ByteData *byteData,int8_t **cursor)
This is a wrapper for extractValue() followed by setCuror(
— int pcreMatch(void *p, PCREInfo *pcre,_int8_t **cursor)
This function evaluates a single pcre for a given packetcking for the existence of the expression as
delimited by PCREInfo and cursor. Cursor position is updated returned in *cursor.
— int detectAsnl(void *p, Asn1Context *asnlint8_t *cursor)
This function evaluates an ASN.1 check for a given packedetimited by Asn1Context and cursor.
— int checkHdrOpt(void *p, HdrOptCheck *optData)
This function evaluates the given packet's protocol hesdes specified by HdrOptCheck.
— int loopEval(void *p, LooplInfo *loop, Lint8_t **cursor)
This function iterates through the SubRule of Looplinfo, atindited by Loopinfo and cursor. Cursor
position is updated and returned in *cursor.
— int preprocOptionEval(void *p, PreprocessorOption *prepOpt, uint8_t **cursor)
This function evaluates the preprocessor defined optiospagcifed by PreprocessorOption. Cursor po-
sition is updated and returned in *cursor.
— void setTempCursor(int8_t **temp_cursor, uint8_t **cursor)
This function is used to handled repetitive contents to sdfva cursor position temporarily to be reset at
later point.
— void revertTempCursor(int8_t **temp_cursor, uint8_t **cursor)
This function is used to revert to a previously saved temgyazarsor position.

ANOTE

If you decide to write you own rule evaluation function, jgatts that occur more than once may result in false
negatives. Take extra care to handle this situation andlséarthe matched pattern again if subsequent rule
options fail to match. This should be done for both contedtRERE options.

5.2.3 Rules

Each dynamicrules library must define the following funoioExamples are defined in the 8feort _dynamic _detection
The metadata and setup function for the preprocessor sheudéfined irsfsnort _dynamic _detection _lib.h

e int LibVersion(DynamicPluginMeta *)
This function returns the metadata for the shared library.

¢ int EngineVersion(DynamicPluginMeta *)
This function defines the version requirements for the apoading detection engine library.

168

_lib.c

e int DumpSkeletonRules()
This functions writes out the rule-stubs for rules that agled.

e int InitializeDetection()

This function registers each rule in the rules library. loshl set up fast pattern-matcher content, register
flowbits, etc.

The sample code provided with Snort predefines those furstiad uses the following data within the dynamic rules
library.

e Rule *rules]]
A NULL terminated list of Rule structures that this librargfihes.

5.3 Examples

This section provides a simple example of a dynamic pregsmreand a dynamic rule.

5.3.1 Preprocessor Example

The following is an example of a simple preprocessor. Théeppycessor always alerts on a Packet if the TCP port
matches the one configured.

This assumes the the filskdynamicpreproclib.c andsf.dynamicpreproclib.h are used.

This is the metadata for this preprocessor, definest preprocinfo.h.

#define MAJOR_VERSION 1
#define MINOR_VERSION 0
#define BUILD_VERSION 0
#define PREPROC_NAME "SF_Dynamic_Example_Preprocessor "

#define DYNAMIC_PREPROC_SETUP ExampleSetup
extern void ExampleSetup();

The remainder of the code is definedsppexample.and is compiled together witsf dynamicpreproclib.c into
lib_sfdynamicpreprocessaexample.so.

Define the Setup function to register the initializationdtion.

#define GENERATOR_EXAMPLE 256
extern DynamicPreprocessorData _dpd;

void Examplelnit(unsigned char *);
void ExampleProcess(void *, void *);

void ExampleSetup()
{

_dpd.registerPreproc("dynamic_example"”, Examplelnit) ;

DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is setup\n"););
The initialization function to parse the keywords franort.conf

169

u_int16_t portToCheck;

void Examplelnit(unsigned char *args)

{
char *arg;
char *argEnd;
unsigned long port;
_dpd.logMsg("Example dynamic preprocessor configuratio n\n");
arg = strtok(args, " \t\n\r");
if('strcasecmp(“port", arg))
{
arg = strtok(NULL, "\t\n\r");
if (‘arg)
{
_dpd.fatalMsg("ExamplePreproc: Missing port\n");
}
port = strtoul(arg, &argEnd, 10);
if (port < 0 || port > 65535)
_dpd.fatalMsg("ExamplePreproc: Invalid port %d\n", port);
}
portToCheck = port;
_dpd.logMsg(" Port: %d\n", portToCheck);
}
else
_dpd.fatalMsg("ExamplePreproc: Invalid option %s\n", ar Q);
}
I* Register the preprocessor function, Transport layer, ID 10000 */
_dpd.addPreproc(ExampleProcess, PRIORITY_TRANSPORT, 1 0000);
DEBUG_WRAP(_dpd.debugMsg(DEBUG_PLUGIN, "Preprocessor : Example is initialized\n"););
}

The function to process the packet and log an alert if theeejtort matches.

#define SRC_PORT_MATCH 1
#define SRC_PORT_MATCH_STR "example_preprocessor: src p ort match"
#define DST_PORT_MATCH 2

#define DST_PORT_MATCH_STR "example_preprocessor: dest port match"
void ExampleProcess(void *pkt, void *context)
{
SFSnortPacket *p = (SFSnortPacket *)pkt;
if (Ip->ip4_header || p->ip4_header->proto != IPPROTO_TC P || !p->tcp_header)
{
[* Not for me, return */
return;
}
if (p->src_port == portToCheck)
{

170

[* Source port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, SRC_PORT_MATCH,
1, 0, 3, SRC_PORT_MATCH_STR, 0);

return;
}
if (p->dst_port == portToCheck)
{
[* Destination port matched, log alert */
_dpd.alertAdd(GENERATOR_EXAMPLE, DST_PORT_MATCH,
1, 0, 3, DST_PORT_MATCH_STR, 0);
return;
}
}
5.3.2 Rules

The following is an example of a simple rule, take from therent rule set, SID 109. It is implemented to work with
the detection engine provided with snort.

The snort rule in normal format:

alert tcp $HOME_NET 12345:12346 -> $EXTERNAL_NET any \
(msg:"BACKDOOR nethus active"; flow:from_server,establ ished; \
content:"NetBus"; reference:arachnids,401; classtype: misc-activity; \
sid:109; rev:5;)

This is the metadata for this rule library, definedlietectionlib_meta.h

¥ Version for this rule library */

#define DETECTION_LIB_MAJOR_VERSION 1

#define DETECTION_LIB_MINOR_VERSION 0

#define DETECTION_LIB_BUILD_VERSION 1

#define DETECTION_LIB_NAME "Snort_Dynamic_Rule_Exampl e"

[* Required version and name of the engine */
#define REQ_ENGINE_LIB_MAJOR_VERSION 1
#define REQ_ENGINE_LIB_MINOR_VERSION 0
#define REQ_ENGINE_LIB_NAME "SF_SNORT_DETECTION_ENGI"

The definition of each data structure for this rule isith109.c

Declaration of the data structures.

e Flow option
Define tha-lowFlagsstructure and its correspondiRgileOption Per the text version, flow is froreerver,established.

static FlowFlags sid109flow =

{
FLOW_ESTABLISHED|FLOW_TO_CLIENT
|3
static RuleOption sid109optionl =
{

171

OPTION_TYPE_FLOWFLAGS,
{

}

&sid109flow
3

e Content Option

Define theContentinfostructure and its correspondifRuleOption Per the text version, content is "NetBus”,
no depth or offset, case sensitive, and non-relative. 8earche normalized buffer by defaulNOTE: This
content will be used for the fast pattern matcher since itédangest content option for this rule and no contents
have a flag o CONTENTFASTPATTERN

static Contentinfo sid109content =

{
“NetBus", [* pattern to search for */
0, ¥ depth */
0, I* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, * holder for boyer/moore info */
NULL, * holder for byte representation of "NetBus" */
0, * holder for length of byte representation */
0 * holder for increment length */
3
static RuleOption sid109option2 =
{
OPTION_TYPE_CONTENT,
{
&sid109content
}
3

e Rule and Meta Data
Define the references.

static RuleReference sid109ref arachnids =

{
"arachnids", ¥ Type */
401" [* value *
13
static RuleReference *sid109refs[] =
{
&sid109ref_arachnids,
NULL
13

The list of rule options. Rule options are evaluated in thdeospecified.

RuleOption *sid109options[] =

{
&sid109optionl,
&sid109option2,
NULL

3

172

The rule itself, with the protocl header, meta data (sicssifecation, message, etc).

Rule sid109 =
{
I* protocol header, akin to => tcp any any -> any any */
{
IPPROTO_TCP, [* proto *
HOME_NET, * source IP */
"12345:12346", ¥ source port(s) */
0, [* Direction */
EXTERNAL_NET, [* destination IP *
ANY_PORT, [* destination port */
13
* metadata */
{
3, ¥ genid -- use 3 to distinguish a C rule *
109, I* sigid *
5, I* revision */
"misc-activity", [* classification */
0, [* priority */
"BACKDOOR netbus active", [* message */
sid109refs ¥ ptr to references */
13
sid109options, [* ptr to rule options */
NULL, * Use internal eval func */
0, [* Holder, not yet initialized, used internally */
0, [* Holder, option count, used internally *
0, [* Holder, no alert, used internally for flowbits */
NULL ¥ Holder, rule data, used internally */

e The List of rules defined by this rules library

The NULL terminated list of rules. The InitializeDetectigarates through each Rule in the list and initializes
the content, flowbits, pcre, etc.

extern Rule sid109;
extern Rule sid637;

Rule *rules] =

{
&sid109,
&sid637,
NULL

3

173

Chapter 6

Snort Development

Currently, this chapter is here as a place holder. It will sday contain references on how to create new detection
plugins and preprocessors. End users don't really need tedukng this section. This is intended to help developers
get a basic understanding of whats going on quickly.

If you are going to be helping out with Snort developmentapteuse thelEAD branch of cvs. We've had problems
in the past of people submitting patches only to the staldadir (since they are likely writing this stuff for their own
IDS purposes). Bugfixes are what goes iaf@BLE. Features go intelEAD.

6.1 Submitting Patches

Patches to Snort should be sent to shert-devel@lists.sourceforge.net mailing list. Patches should done
with the commandiff -nu snort-orig snort-new

6.2 Snort Data Flow

First, traffic is acquired from the network link via libpcapackets are passed through a series of decoder routines that
first fill out the packet structure for link level protocolsthare further decoded for things like TCP and UDP ports.

Packets are then sent through the registered set of preysimmse Each preprocessor checks to see if this packet is
something it should look at.

Packets are then sent through the detection engine. Thetidaetengine checks each packet against the various
options listed in the Snort rules files. Each of the keywortioms is a plugin. This allows this to be easily extensible.

6.2.1 Preprocessors

For example, a TCP analysis preprocessor could simplynrdtthre packet does not have a TCP header. It can do this
by checking:

if (p->tcph==null)
return;

Similarly, there are a lot of packdiags available that can be used to mark a packet as “reasséhaiplogged. Check
out src/decode.h for the list of pktconstants.

174

6.2.2 Detection Plugins

Basically, look at an existing output plugin and copy it toeawitem and change a few things. Later, we’ll document
what these few things are.

6.2.3 Output Plugins

Generally, new output plugins should go into the barnyaajegat rather than the Snort project. We are currently
cleaning house on the available output options.

175

6.3 The Snort Team

Creator and Lead Architect Marty Roesch

Lead Snort Developers Steve Sturges
Todd Wease
Russ Combs

Ryan Jordan
Dilbagh Chahal
Bhagyashree Bantwal

Snort Rules Maintainer Brian Caswell
Snort Rules Team Nigel Houghton
Alex Kirk

Matt Watchinski
Win32 Maintainer Snort Team

RPM Maintainers JP Vossen
Daniel Wittenberg

Inline Developers Victor Julien
Rob McMillen
William Metcalf

Major Contributors Erek Adams
Andrew Baker
Scott Campbell
Roman D.
Michael Davis
Chris Green
Jed Haile
Jeremy Hewlett
Glenn Mansfield Keeni
Adam Keeton
Chad Kreimendahl
Kevin Liu
Andrew Mullican
Jeff Nathan
Marc Norton
Judy Novak
Andreas Ostling
Chris Reid
Daniel Roelker
Dragos Ruiu
Fyodor Yarochkin
Phil Wood

176

Bibliography

[1] http://packetstorm.securify.com/mag/phrack/phkra/p49-06
[2] http://www.nmap.org

[3] http://public.pacbell.net/dedicated/cidr.html

[4] http://www.whitehats.com

[5] http://www.incident.org/snortdb

[6] http://www.pcre.org

177

	Snort Overview
	Getting Started
	Sniffer Mode
	Packet Logger Mode
	Network Intrusion Detection System Mode
	NIDS Mode Output Options
	Understanding Standard Alert Output
	High Performance Configuration
	Changing Alert Order

	Inline Mode
	Snort Inline Rule Application Order
	Replacing Packets with Snort Inline
	Installing Snort Inline
	Running Snort Inline
	Using the Honeynet Snort Inline Toolkit
	Troubleshooting Snort Inline

	Miscellaneous
	Running Snort as a Daemon
	Running in Rule Stub Creation Mode
	Obfuscating IP Address Printouts
	Specifying Multiple-Instance Identifiers

	Reading Pcaps
	Command line arguments
	Examples

	Tunneling Protocol Support
	Multiple Encapsulations
	Logging

	More Information

	Configuring Snort
	Includes
	Format
	Variables
	Config

	Preprocessors
	Frag3
	Stream5
	sfPortscan
	RPC Decode
	Performance Monitor
	HTTP Inspect
	SMTP Preprocessor
	FTP/Telnet Preprocessor
	SSH
	DCE/RPC
	DNS
	SSL/TLS
	ARP Spoof Preprocessor
	DCE/RPC 2 Preprocessor

	Decoder and Preprocessor Rules
	Configuring
	Reverting to original behavior

	Event Processing
	Rate Filtering
	Event Filtering
	Event Suppression
	Event Logging

	Performance Profiling
	Rule Profiling
	Preprocessor Profiling
	Packet Performance Monitoring (PPM)

	Output Modules
	alert_syslog
	alert_fast
	alert_full
	alert_unixsock
	log_tcpdump
	database
	csv
	unified
	unified 2
	alert_prelude
	log null
	alert_aruba_action
	Log Limits

	Host Attribute Table
	Configuration Format
	Attribute Table File Format

	Dynamic Modules
	Format
	Directives

	Reloading a Snort Configuration
	Enabling support
	Reloading a configuration
	Non-reloadable configuration options

	Multiple Configurations
	Creating Multiple Configurations
	Configuration Specific Elements
	How Configuration is applied?

	Writing Snort Rules
	The Basics
	Rules Headers
	Rule Actions
	Protocols
	IP Addresses
	Port Numbers
	The Direction Operator
	Activate/Dynamic Rules

	Rule Options
	General Rule Options
	msg
	reference
	gid
	sid
	rev
	classtype
	priority
	metadata
	General Rule Quick Reference

	Payload Detection Rule Options
	content
	nocase
	rawbytes
	depth
	offset
	distance
	within
	http_client_body
	http_cookie
	http_header
	http_method
	http_uri
	fast_pattern
	uricontent
	urilen
	isdataat
	pcre
	byte_test
	byte_jump
	ftpbounce
	asn1
	cvs
	dce_iface
	dce_opnum
	dce_stub_data
	Payload Detection Quick Reference

	Non-Payload Detection Rule Options
	fragoffset
	ttl
	tos
	id
	ipopts
	fragbits
	dsize
	flags
	flow
	flowbits
	seq
	ack
	window
	itype
	icode
	icmp_id
	icmp_seq
	rpc
	ip_proto
	sameip
	stream_size
	Non-Payload Detection Quick Reference

	Post-Detection Rule Options
	logto
	session
	resp
	react
	tag
	activates
	activated_by
	count
	replace
	detection_filter
	Post-Detection Quick Reference

	Rule Thresholds
	Writing Good Rules
	Content Matching
	Catch the Vulnerability, Not the Exploit
	Catch the Oddities of the Protocol in the Rule
	Optimizing Rules
	Testing Numerical Values

	Making Snort Faster
	MMAPed pcap

	Dynamic Modules
	Data Structures
	DynamicPluginMeta
	DynamicPreprocessorData
	DynamicEngineData
	SFSnortPacket
	Dynamic Rules

	Required Functions
	Preprocessors
	Detection Engine
	Rules

	Examples
	Preprocessor Example
	Rules

	Snort Development
	Submitting Patches
	Snort Data Flow
	Preprocessors
	Detection Plugins
	Output Plugins

	The Snort Team

