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1 Build

1.1 Cold init

At the start of cold init, the only thing the system can do is call functions, because COLD-
FSET has arranged for that (and nothing else) to happen.

The tricky bit of cold init is getting the system to the point that it can run top level
forms. To do that, we need to set up basic structures like the things you look symbols up
in the structures which make the type system work.

So cold-init is the real bootstrap moment. Genesis dumps symbol<->package relation-
ships but not the packages themselves, for instance. So we need to be able to make packages
to fixup the system, but to do that we need to be able to make hash-tables, and to do that
we need RANDOM to work, so we need to initialize the random-state and so on.

We could do much of this at genesis time, but it would just end up being fragile in
a different way (needing to know about memory layouts of non-fundamental objects like
packages, etc).
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2 Calling Convention

The calling convention used within Lisp code on SBCL/x86 was, for the longest time, really
bad. If it weren’t for the fact that it predates modern x86 CPUs, one might almost believe
it to have been designed explicitly to defeat the branch-prediction hardware therein. This
chapter is somewhat of a brain-dump of information that might be useful when attempting
to improve the situation further, mostly written immediately after having made a dent in
the problem.

Assumptions about the calling convention are embedded throughout the system.
The runtime knows how to call in to Lisp and receive a value from Lisp, the assembly-
routines have intimate knowledge of what registers are involved in a call situation,
‘src/compiler/target/call.lisp’ contains the VOPs involved in implementing function
call/return, and ‘src/compiler/ir2tran.lisp’ has assumptions about frame allocation
and argument /return-value passing locations.

Note that most of this documentation also applies to other CPUs, modulo the actual
registers involved, the displacement used in the single-value return convention, and the fact
that they use the “old” convention anywhere it is mentioned.

2.1 Assembly Routines

;55 The :full-call assembly-routines must use the same full-call
;53 unknown-values return convention as a normal call, as some
;53 of the routines will tail-chain to a static-function. The
;35 routines themselves, however, take all of their arguments
;35 in registers (this will typically be one or two arguments,
;55 and is one of the lower bounds on the number of argument-
;3; passing registers), and thus don’t need a call frame, which
;35 simplifies things for the normal call/return case. When it
;35 1s neccessary for one of the assembly-functions to call a
;55 static-function it will construct the required call frame.
;53 Also, none of the assembly-routines return other than one
;55 value, which again simplifies the return path.

HH -- AB, 2006/Feb/05.

There are a couple of assembly-routines that implement parts of the process of returning
or tail-calling with a variable number of values. These are return-multiple and tail-
call-variable in ‘src/assembly/x86/assem-rtns.lisp’. They have their own calling
convention for invocation from a VOP, but implement various block-move operations on
the stack contents followed by a return or tail-call operation.

That’s about all I have to say about the assembly-routines.

2.2 Local Calls

Calls within a block, whatever a block is, can use a local calling convention in which the
compiler knows where all of the values are to be stored, and thus can elide the check for
number of return values, stack-pointer restoration, etc. Alternately, they can use the full
unknown-values return convention while trying to short-circuit the call convention. There
is probably some low-hanging fruit here in terms of CPU branch-prediction.
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The local (known-values) calling convention is implemented by the known-call-local
and known-return VOPs.

Local unknown-values calls are handled at the call site by the call-local and mutiple-
call-local VOPs. The main difference between the full call and local call protocols here
is that local calls use a different frame setup protocol, and will tend to not use the normal
frame layout for the old frame-pointer and return-address.

2.3 Full Calls

;55 There is something of a cross-product effect with full calls.

;35 Different versions are used depending on whether we know the

;35 number of arguments or the name of the called function, and

;33 Whether we want fixed values, unknown values, or a tail call.

;55 In full call, the arguments are passed creating a partial frame on
;55 the stack top and storing stack arguments into that frame. On

;55 entry to the callee, this partial frame is pointed to by FP.

Basically, we use caller-allocated frames, pass an fdefinition, function, or closure in EAX,
argcount in ECX, and first three args in EDX, EDI, and ESI. EBP points to just past the start
of the frame (the first frame slot is at [EBP-4], not the traditional [EBP], due in part to
how the frame allocation works). The caller stores the link for the old frame at [EBP-4]
and reserved space for a return address at [EBP-8]. [EBP-12] appears to be an empty
slot that conveniently makes just enough space for the first three multiple return values
(returned in the argument passing registers) to be written over the beginning of the frame
by the receiver. The first stack argument is at [EBP-16]. The callee then reallocates the
frame to include sufficient space for its local variables, after possibly converting any &rest
arguments to a proper list.

The above scheme was changed in 1.0.27 on x86 and x86-64 by swapping the old frame
pointer with the return address and making EBP point two words later:

On x86/x86-64 the stack now looks like this (stack grows downwards):

__________ <- FP points here
EMPTY SLOT

just as if the function had been CALLed and upon entry executed the standard prologue:
PUSH EBP; MOV EBP, ESP. On other architectures the stack looks like this (stack grows
upwards):

EMPTY SLOT
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__________ <- FP points here

2.4 Unknown-Values Returns

The unknown-values return convention consists of two parts. The first part is that of
returning a single value. The second is that of returning a different number of values. We
also changed the convention in 0.9.10, so we should describe both the old and new versions.
The three interesting VOPs here are return-single, return, and return-multiple.

For a single-value return, we load the return value in the first argument-passing register
(A0, or EDI), reload the old frame pointer, burn the stack frame, and return. The old
convention was to increment the return address by two before returning, typically via a
JMP, which was guaranteed to screw up branch- prediction hardware. The new convention
is to return with the carry flag clear.

For a multiple-value return, we pass the first three values in the argument-passing regis-
ters, and the remainder on the stack. ECX contains the total number of values as a fixnum,
EBX points to where the callee frame was, EBP has been restored to point to the caller frame,
and the first of the values on the stack (the fourth overall) is at [EBP-16]. The old con-
vention was just to jump to the return address at this point. The newer one has us setting
the carry flag first.

The code at the call site for accepting some number of unknown- values is fairly well
boilerplated. If we are expecting zero or one values, then we need to reset the stack pointer
if we are in a multiple-value return. In the old convention we just encoded a MOV ESP,
EBX instruction, which neatly fit in the two byte gap that was skipped by a single-value
return. In the new convention we have to explicitly check the carry flag with a conditional
jump around the MOV ESP, EBX instruction. When expecting more than one value, we need
to arrange to set up default values when a single-value return happens, so we encode a
jump around a stub of code which fakes up the register use convention of a multiple-value
return. Again, in the old convention this was a two-byte unconditionl jump, and in the new
convention this is a conditional jump based on the carry flag.

2.5 IR2 Conversion

The actual selection of VOPs for implementing call /return for a given function is handled
in ir2tran.lisp. Returns are handled by ir2-convert-return, calls are handled by ir2-
convert-local-call, ir2-convert-full-call, and ir2-convert-mv-call, and function
prologues are handled by ir2-convert-bind (which calls init-xep-environment for the
case of an entry point for a full call).

2.6 Additional Notes

The low-hanging fruit is going to be changing every call and return to use CALL and RETURN
instructions instead of JMP instructions which is partly done on x86oids: a trampoline is
CALLed and that JMPs to the target which is sufficient to negate (most of?) the penalty.
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A more involved change would be to reduce the number of argument passing registers
from three to two, which may be beneficial in terms of our quest to free up a GPR for use
on Win32 boxes for a thread structure.

Another possible win could be to store multiple return-values somewhere other than the
stack, such as a dedicated area of the thread structure. The main concern here in terms
of clobbering would be to make sure that interrupts (and presumably the internal-error
machinery) know to save the area and that the compiler knows that the area cannot be live
across a function call. Actually implementing this would involve hacking the IR2 conversion,
since as it stands now the same argument conventions are used for both call and return value
storage (same TNs).
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3 Discriminating Functions

The Common Lisp Object System specifies a great deal of run-time customizeability, such
as class redefinition, generic function and method redefinition, addition and removal of
methods and redefinitions of method combinations. The additional flexibility defined by
the Metaobject Protocol, specifying the generic functions called to achieve the effects of
CLOS operations (and allowing many of them to be overridden by the user) makes any
form of optimization seem intractable. And yet such optimization is necessary to achieve
reasonable performance: the MOP specifies that a slot access looks up the class of the
object, and the slot definition from that class and the slot name, and then invokes a generic
function specialized on those three arguments. This is clearly going to act against the user’s
intuition that a slot access given an instance should be relatively fast.

The optimizations performed cannot be done wholly at compile-time, however, thanks
to all of these possibilities for run-time redefinition and extensibility. This section describes
the optimizations performed in SBCL’s CLOS implementation in computing and calling the
effective method for generic functions.

3.1 The Initial Discriminating Function

The system method on SB-MOP:COMPUTE-DISCRIMINATING-FUNCTION, under most circum-
stances, returns a function which closes over a structure of type SB-PCL::INITIAL, and
which calls SB-PCL: : INITIAL-DFUN. This discriminating function is responsible for imple-
menting the computation of the applicable methods, the effective method, and thence the
result of the call to the generic function. In addition, it implements optimization of these
steps, based on the arguments it has been called with since the discriminating function was
installed and the methods of the generic function.

default-method-only

Figure 3.1

no-methods constant-value
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For each substantive change of the generic function (such as addition or removal of a
method, or other reinitialization) the discriminating function is reset to its initial state.

The initial discriminating function can transition into a discriminating func-
tion optimized for the methods on the generic function (SB-PCL::NO-METHODS,
SB-PCL: : DEFAULT-METHOD-ONLY, SB-PCL: :CONSTANT—VALUE), for slot access (SB—
PCL: :ONE-CLASS, SB-PCL::TWO-CLASS, SB-PCL::0NE-INDEX, SB-PCL::N-N'), or for
dispatch based on its arguments (SB-PCL::CACHING, SB-PCL::DISPATCH). Those in the
second category can transition into the third, or into a SB-PCL: : CHECKING state where the
choice between SB-PCL: : CACHING and SB-PCL: :DISPATCH has not yet been made.

The possible transitions are shown in Figure 3.1.

3.2 Method-Based Discriminating Functions

The method-based discriminating functions are used if all the methods of the generic func-
tion at the time of the first call are suitable: therefore, these discriminating function strate-
gies do not transition into any of the other states unless the generic function is reinitialized.
Of these discriminating functions, the simplest is the SB-PCL: : NO-METHODS, which is appro-
priate when the generic function has no methods. In this case, the discriminating function
simply performs an argument count check? and then calls NO-APPLICABLE-METHOD with the
appropriate arguments.

If all of the specializers in all methods of the generic function are the root of the class
hierarchy, t, then no discrimination need be performed: all of the methods are applicable
on every call®. In this case, the SB-PCL: : DEFAULT-METHOD-ONLY discriminating function
can call the effective method directly, as it will be the same for every generic function call.*

If all methods of the generic function are known by the system to be side-effect-free
and return constants, and the generic function has standard-method-combination and no
eql-specialized methods, then the SB-PCL: :CONSTANT-VALUE discriminating function can
simply cache the return values for given argument types. Though this may initially appear
to have limited applicability, type predicates are usually of this form, as in Example 3.1°.

(defgeneric foop (x))
(defmethod foop ((foo foo)) t)
(defmethod foop (object) nil)

Example 3.1

More details of the cacheing mechanism are given in Section 3.5 [The Cacheing Mecha-
nism|, page 8 below.

Would be better named as M-N, as there is no requirement for the number of classes and number of
indices to be the same.

Actually, this bit isn’t currently done. Oops.
Hm, there might be another problem with argument count here.

- W N

I wonder if we’re invalidating this right if we define a method on compute-applicable-methods...

There is vestigial code in SBCL for a currently unused specialization of SB-PCL: :CONSTANT-VALUE for
boolean values only.

ot
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3.3 Accessor Discriminating Functions

Accessor Discriminating Functions are used when the effective method of all calls is an
access to a slot, either reading, writing or checking boundness®; for this path to apply, there
must be no non-standard methods on SB-MOP:SLOT-VALUE-USING-CLASS and its siblings.
The first state is SB-PCL: : ONE-CLASS, entered when one class of instance has been accessed;
the discriminating function here closes over the wrapper of the class and the slot index, and
accesses the slot of the instance directly.

If a direct instance of another class is passed to the generic function for slot access,
then another accessor discriminating function is created: if the index of the slot in the slots
vector of each instance is the same, then a SB-PCL: : TWO-CLASS function is created, closing
over the two class wrappers and the index and performing the simple dispatch. If the slot
indexes are not the same, then we go to the SB-PCL: :N-N state.

For slot accesses for more than two classes with the same index, we move to the SB-
PCL: :ONE-INDEX state which maintains a cache of wrappers for which the slot index is
the same. If at any point the slot index for an instance is not the same, the state moves
to SB-PCL: :N-N, which maintains a cache of wrappers and their associated indexes; if
at any point an effective method which is not a simple slot access is encountered, then
the discriminating function moves into the SB-PCL: : CHECKING, SB-PCL: : CACHING or SB-
PCL: :DISPATCH states.

3.4 Cacheing and Dispatch Functions

SB-PCL: : CACHING functions simply cache effective methods as a function of argument wrap-
pers, while SB-PCL: :DISPATCH functions have code that computes the actual dispatch. SB-
PCL: : CHECKING functions have a cache, but on cache misses will recompute whether or not
to generate a SB-PCL: : CACHING or SB-PCL: :DISPATCH function.

(FIXME: I'm actually not certain about the above paragraph. Read the code again and
see if it makes any more sense.)

3.5 The Cacheing Mechanism

In general, the cacheing mechanism works as follows: each class has an associated wrapper,
with some number of uniformly-distributed random hash values associated with it; each
cache has an associated index into this pseudovector of random hash values. To look a
value up from a cache from a single class, the hash corresponding to the cache’s index is
looked up and reduced to the size of the cache (by bitmasking, for cache sizes of a power
of two); then the entry at that index is looked up and compared for indentity with the
wrapper in question. If it matches, this is a hit; otherwise the cache is walked sequentially
from this index, skipping the Oth entry. If the original index is reached, the cache does not
contain the value sought’.

To add an entry to a cache, much the same computation is executed. However, if there
is a collision in hash values, before the cache is grown, an attempt is made to fill the cache
using a different index into the wrappers’ hash values.

6 Although there is ordinarily no way for a user to define a boundp method, some automatically generated
generic functions have them.

7 Actually, there’s some kind of scope for overflow.
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Wrappers are invalidated for caches by setting all of their hash values to zero. (Addi-
tionally, they are invalidated by setting their depthoid to -1, to communicate to structure
type testers, and their invalid to non-nil, communicating to obsolete-instance-trap.

The hash value for multiple dispatch is computed by summing all of the individual hash
values from each wrapper (excluding arguments for which all methods have t specializers,
for which no dispatch computation needs to be done), jumping to the cache miss case if any
wrapper has a zero hash index.

(FIXME: As of sbcl-0.9.x.y, the generality of multiple hash values per wrapper was
removed, as it appeared to do nothing in particular for performance in real-world situations.)

References (O for working BibTeX):
The CLOS standards proposal
Kiczales and Rodruigez

AMOP
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4 Foreign Linkage

4.1 Linkage-table

Linkage-table allows saving cores with foreign code loaded, and is also utilized to allow
references to as-of-yet unknown aliens. See Section 4.2 [Lazy Alien Resolution], page 12.

The SBCL implementation is somewhat simplified from the CMUCL one by Timothy
Moore, but the basic idea and mechanism remain identical: instead of having addresses
from dlsym(3) in the core, we have addresses to an mmapped memory area (LINKAGE_
TABLE_SPACE) that is initialized at startup to contain jumps & references to the correct
addresses, based on information stored on the lisp side in *LINKAGE-INFO*.

4.1.1 Differences to CMUCL

CMUCL does lazy linkage for code, keeps all foreign addresses in the linkage-table, and
handles the initialization from C. We do eager linkage for everything, maintain a separate
*STATIC-FOREIGN-SYMBOLS* just like on non-linkage-table ports (this allows more code
sharing between ports, makes thread-safety easier to achieve, and cuts one jump’s worth of
overhead from stuff like closure_tramp), and do the initialization from lisp.

4.1.2 Nitty Gritty Details

Symbols in *STATIC-FOREIGN-SYMBOLS* are handled the old fashioned way: linkage-table
is only used for symbols resolved with d1sym(3).

On system startup FOREIGN-REINIT iterates through the *LINKAGE-INFO*, which is a
hash-table mapping dynamic foreign names to LINKAGE-INFQ structures, and calls arch_
write_linkage_table_jmp/ref to write the appropriate entries to the linkage-table.

When a foreign symbol is referred to, it is first looked for in the *STATIC-FOREIGN-
SYMBOLS*. If not found, ENSURE-FOREIGN-LINKAGE is called, which looks for the corre-
sponding entry in *LINKAGE-INFO*, creating one and writing the appropriate entry in the
linkage table if necessary.

FOREIGN-SYMBOL-ADDRESS and FOREIGN-SYMBOL-SAP take an optional datap argument,
used to indicate that the symbol refers to a variable. In similar fashion there is a new kind
of fixup and a new VOP: :FOREIGN-DATAREF and FOREIGN-SYMBOL-DATAREF-SAP.

The DATAP argument is automagically provided by the alien interface for normal defi-
nitions, but is really needed only for dynamic foreign variables. For those it indicates the
need for the indirection either within a conditional branch in FOREIGN-SYMBOL-SAP, or via
:FOREIGN-DATAREF fixup and FOREIGN-SYMBOL-DATAREF-SAP VOP: "this address holds the
address of the foreign variable, not the variable itself". Within SBCL itself (in the fix-
ups manifest in various VOPs) this fixup type is never used, as all foreign symbols used
internally are static.

One thing worth noting is that FOREIGN-SYMBOL-SAP and friends now have the potential
side-effect of entering information in *LINKAGE-INFO* and the linkage-table proper. If the
usage case is about checking if the symbol is available use FIND-FOREIGN-SYMBOL-ADDRESS,
which is side-effect free. (This is used by SB-POSIX.)

4.1.3 Porting
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4.1.3.1 Porting to new operating systems

Find a memory area for the linkage-table, and add it for the OS in ‘src/compiler/target/parms.1lisp’}]
by defining SB!VM:LINKAGE-TABLE-SPACE-START and SB!VM:LINKAGE-TABLE-SPACE-END.
See existing ports and CMUCL for examples.

4.1.3.2 Porting to new architectures

Write arch_write_linkage_table_jmp and arch_write_linkage_table_ref.
Write FOREIGN-SYMBOL-DATAREF VOP.
Define correct SB!VM: LINKAGE-TABLE-ENTRY-SIZE in ‘src/compiler/target/parms.lisp’ |}
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4.2 Lazy Alien Resolution

On linkage-table ports SBCL is able to deal with forward-references to aliens — which is to
say, compile and load code referring to aliens before the shared object containing the alien
in question has been loaded.

This is handled by ENSURE-DYNAMIC-FOREIGN-SYMBOL-ADDRESS, which first tries to re-
solve the address in the loaded shared objects, but failing that records the alien as undefined
and returns the address of a read/write/execute protected guard page for variables, and ad-
dress of undefined_alien_function for routines. These are in turn responsible for catching
attempts to access the undefined alien, and signalling the appropriate error.

These placeholder addresses get recorded in the linkage-table.

When new shared objects are loaded UPDATE-LINKAGE-TABLE is called, which in turn
attempts to resolve all currently undefined aliens, and registers the correct addresses for
them in the linkage-table.
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4.3 Callbacks

SBCL is capable of providing C with linkage to Lisp — the upshot of which is that C-functions
can call Lisp functions thru what look like function pointers to C.

These “function pointers” are called Alien Callbacks. An alien callback sequence has 4
parts / stages / bounces:

e Assembler Wrapper

saves the arguments from the C-call according to the alien-fun-type of the callback,
and calls #’ ENTER-ALIEN-CALLBACK with the index indentifying the callback, a
pointer to the arguments copied on the stack and a pointer to return value storage.
When control returns to the wrapper it returns the value to C. There is one assembler
wrapper per callback.[1] The SAP to the wrapper code vector is what is passed to
foreign code as a callback.

The Assembler Wrapper is generated by ALIEN-CALLBACK-ASSEMBLER-WRAPPER.
e #’ENTER-ALIEN-CALLBACK

pulls the Lisp Trampoline for the given index, and calls it with the argument and result
pointers.

e Lisp Trampoline

calls the Lisp Wrapper with the argument and result pointers, and the function desig-
nator for the callback. There is one lisp trampoline per callback.

e Lisp Wrapper
parses the arguments from stack, calls the actual callback with the arguments, and

saves the return value at the result pointer. The lisp wrapper is shared between all the
callbacks having the same same alien-fun-type.

[1] As assembler wrappers need to be allocated in static addresses and are (in the current
scheme of things) never released it might be worth it to split it into two parts: per-callback
trampoline that pushes the index of the lisp trampoline on the stack, and jumps to the
appropriate assembler wrapper. The assembler wrapper could then be shared between all
the callbacks with the same alien-fun-type. This would amortize most of the static allocation
costs between multiple callbacks.
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5 Funcallable Instances

5.1 Overview of Funcallable Instances

Funcallable instances in SBCL are implemented as a subtype of function, and as such must
be directly funcallable using the same calling sequence as ordinary functions and closure
objects, which means reading the first word of the object after the header, and then jumping
to it (with an offset on non-x86 platforms). It must be possible to set the function of a
funcallable instance, as CLOS (one user of funcallable instances) computes and sets the
discriminating function for generic functions with sb-mop:set-funcallable-instance-
function, and also allows the user to do the same.

Additionally, although this functionality is not exported to the normal user, they
must support an arbitrary number of slots definable with !defstruct-with-alternate-
metaclass. If generic functions were the only users of funcallable instances, then this
might be less critical, but (as of SBCL 0.9.17) other users of funcallable instances are: the
ctor make-instance optimization; the method-function funcallable instance which does
the bookkeeping for fast method function optimization; and interpreted functions in the
full evaluator.

5.2 Implementation of Funcallable Instances

The first word after the header of a funcallable instance points to a dedicated trampoline
function (known as funcallable_instance_tramp in SBCL 0.9.17) which is responsible
for calling the funcallable instance function, kept in the second word after the header. The
remaining words of a funcallable instance are firstly the layout, and then the slots.

The implementation of funcallable instances inherited from CMUCL differed in that
there were two slots for the function: one for the underlying simple-fun, and one for the
function itself (which is distinct from the simple-fun in the case of a closure. This, coupled
with an instruction in the prologue of a closure’s function to fetch the function from the latter
slot, allowed a trampolineless calling sequence for funcallable instances; however, drawbacks
included the loss of object identity for the funcallable instance function (if a funcallable
instance was set as the function of another, updates to the first would not be reflected in
calls to the second) and, more importantly, a race condition in calling funcallable instances
from one thread while setting its funcallable instance function in another. The current
implementation, described in the paragraph above, does not suffer from these problems
(the function of a funcallable instance can be set atomically and retains its identity) at the
cost of an additional layer of indirection.
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6 Objects In Memory

6.1 Type tags

The in-memory representation of Lisp data includes type information about each object.
This type information takes the form of a lowtag in the low bits of each pointer to heap
space, a widetag for each boxed immediate value and a header (also with a widetag) at the
start of the allocated space for each object. These tags are used to inform both the GC and
Lisp code about the type and allocated size of Lisp objects.

6.1.1 Lowtags

Objects allocated on the Lisp heap are aligned to a double-word boundary, leaving the
low-order bits (which would normally identify a particular octet within the first two words)
available for use to hold type information. This turns out to be three bits on 32-bit systems
and four bits on 64-bit systems.

Of these 8 or 16 tags, we have some constraints for allocation:

e We need 6 of the low 8 bits of the word for widetags, meaning that one out of every
four lowtags must be an other-immediate lowtag.

e We have four pointer types. Instance (struct and CLOS) pointers, function pointers,
list pointers, and other pointers.

e fixnums are required to have their lowtags be comprised entirely of zeros.

e There are additional constraints around the ordering of the pointer types, particularly
with respect to list pointers (the NIL-cons hack).

Complicating this issue is that while the lowtag space is three or four bits wide, some
of the lowtags are effectively narrower. The other-immediate tags effectively have a two-
bit lowtag, and fixnums have historically been one bit narrower than the other lowtags
(thus even-fixnum-lowtag and odd-fixnum-lowtag) though with the recent work on wider
fixnums on 64-bit systems this is no longer necessarily so.

The lowtags are specified in ‘src/compiler/generic/early-objdef.lisp’.

6.1.1.1 Fixnums

Fixnums are signed integers represented as immediate values. In SBCL, these integers are
(- n-word-bits n-fixnum-tag-bits) bits wide, stored in the most-significant section of a
machine word.

The reason that fixnum tags are required to have the low n-fixnum-tag-bits as zeros is
that it allows for addition and subtraction to be performed using native machine instructions
directly, and multiplication and division can be performed likewise using a simple shift
instruction to compensate for the effect of the tag.

6.1.1.2 Other-immediates

Other-immediates are the lowtag part of widetag values. Due to the constraints of widetag
allocation, one out of every four lowtags must be a widetag (alternately, the width of the
other-immediate lowtag is two bits).
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6.1.1.3 Pointers

There are four different pointer lowtags, largely for optimization purposes.

e We have a distinct list pointer tag so that we can do a listp test by simply checking
the pointer tag instead of needing to retrieve a header word for each cons cell. This
effectively halves the memory cost of cons cells.

e We have a distinct instance pointer tag so that we do not need to check a header word
for each instance when doing a type check. This saves a memory access for retrieving
the class of an instance.

e We have a distinct function pointer tag so that we do not need to check a header word
to determine if a given pointer is directly funcallable (that is, if the pointer is to a
closure, a simple-fun, or a funcallable-instance). This saves a memory access in the
type test prior to funcall or apply of a function object.

e We have one last pointer tag for everything else. Obtaining further type information
from these pointers requires fetching the header word and dispatching on the widetag.

6.1.2 Widetags

Widetags are used for three purposes. First, to provide type information for immediate
(non-pointer) data such as characters. Second, to provide “marker” values for things such
as unbound slots. Third, to provide type information for objects stored on the heap.

Because widetags are used for immediate data they must have a lowtag component. This
ends up being the other-immediate lowtags. For various reasons it was deemed convenient
for widetags to be no more than eight bits wide, and with 27 or more distinct array types
(depending on build-time configuration), seven numeric types, markers, and non-numeric
heap object headers there ends up being more than 32 widetags required (though less than
64). This combination of factors leads to the requirement that one out of every four lowtags
be an other-immediate lowtag.

As widetags are involved in type tests for non-CLOS objects, their allocation is carefully
arranged to allow for certain type tests to be cheaper than they might otherwise be.

e The numeric types are arranged to make rational, float, real, complex and number
type tests become range tests on the widetag.

e The array types are arranged to make various type tests become range tests on the
widetag.

e The string types have disjoint ranges, but have been arranged so that their ranges
differ only by one bit, allowing the stringp type test to become a masking operation
followed by a range test or a masking operation followed by a simple comparison.

e There may be other clevernesses, these are just what can be found through reading the
comments above the widetag definition.

The widetags are specified in ‘src/compiler/generic/early-objdef.lisp’.

6.2 Heap Object Layout

Objects stored in the heap are of two kinds: those with headers, and cons cells. If the first
word of an object has a header widetag then the object has the type and layout associated
with that widetag. Otherwise, the object is assumed to be a cons cell.
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Some objects have “unboxed” words without any associated type information as well as
the more usual “boxed” words with lowtags. Obvious cases include the specialized array
types, some of the numeric types, system-area-pointers, and so on.

The primitive object layouts are specified in ‘src/compiler/generic/objdef.lisp’.

6.2.1 Header Values

As a widetag is only eight bits wide but a heap object header takes a full machine word,
there is an extra 24 or 56 bits of space available for unboxed data storage in each heap
object. This space is called the “header value”, and is used for various purposes depending
on the type of heap object in question.

6.2.2 Symbols

In contrast to the simple model of symbols provided in the Common Lisp standard, symbol
objects in SBCL do not have a function cell. Instead, the mapping from symbols to functions
is done via the compiler globaldb.

There are two additional slots associated with symbols. One is a hash value for the
symbol (based on the symbol name), which avoids having to recompute the hash from the
name every time it is required.

The other additional slot, on threaded systems only, is the TLS index, which is either
no-tls-value-marker-widetag or an unboxed byte offset within the TLS area to the TLS
slot associated with the symbol. Because the unboxed offset is aligned to a word boundary
it appears as a fixnum when viewed as boxed data. It is not, in general, safe to increment
this value as a fixnum, however, in case n-fixnum-tag-bits changes'.

6.2.3 The NIL-cons Hack

As an “optimization”, the symbol nil has list-pointer-lowtag rather than other-
pointer-lowtag, and is aligned in memory so that the value and hash slots are the car
and cdr of the cons, with both slots containing nil. This allows for car and cdr to simply
do a lowtag test and slot access instead of having to explicitly test for nil, at the cost of
requiring all symbol type tests and slot accesses to test for nil.

6.2.4 Functions and Code Components

All compiled code resides in code-component objects. These objects consist of a header,
some number of boxed literal values, a “data block” containing machine code and simple-
fun headers, and a “trace table” which is currently unused?.

The simple-fun headers represent simple function objects (not funcallable-instances
or closures), and each code-component will typically have one for the main entry point and
one per closure entry point (as the function underlying the closure, not the closure object
proper). In a compiler trace-file, the simple-fun headers are all listed as entries in the IR2
component.

! This is not as unlikely as it might seem at first; while historically n-fixnum-tag-bits has always been
the same as word-shift there is a branch where it is permitted to vary at build time from word-shift
to as low as 1 on 64-bit ports, and a proposed scheme to allow the same on 32-bit ports

2 Trace tables were originally used to support garbage collection using gengc in CMUCL. As there is still
vestigial support for carrying them around at the end of code-components, they may end up being used
for something else in the future.
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The simple-fun headers are held in a linked list per code-component in order to allow
the garbage collector to find them during relocation. In order to be able to find the start
of a code-component from a simple-fun, the header value is the offset in words from the
start of the code-component to the start of the simple-fun.
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7 Signal handling

7.1 Groups of signals

There are two distinct groups of signals.

7.1.1 Synchronous signals

This group consists of signals that are raised on illegal instruction, hitting a protected
page, or on a trap. Examples from this group are: SIGBUS/SIGSEGV, SIGTRAP, SIGILL
and SIGEMT. The exact meaning and function of these signals varies by platform and OS.
Understandably, because these signals are raised in a controllable manner they are never
blocked or deferred.

7.1.2 Asynchronous or blockable signals
The other group is of blockable signals. Typically, signal handlers block them to protect
against being interrupted at all. For example SIGHUP, SIGINT, SIGQUIT belong to this
group.

With the exception of SIG_STOP_FOR_GC all blockable signals are deferrable.

7.2 The deferral mechanism

7.2.1 Pseudo atomic sections

Some operations, such as allocation, consist of several steps and temporarily break for in-
stance gc invariants. Interrupting said operations is therefore dangerous to one’s health.
Blocking the signals for each allocation is out of question as the overhead of the two
sigsetmask system calls would be enormous. Instead, pseudo atomic sections are im-
plemented with a simple flag.

When a deferrable signal is delivered to a thread within a pseudo atomic section the
pseudo-atomic-interrupted flag is set, the signal and its context are stored, and all deferrable
signals blocked. This is to guarantee that there is at most one pending handler in SBCL.
While the signals are blocked, the responsibilty of keeping track of other pending signals
lies with the OS.

On leaving the pseudo atomic section, the pending handler is run and the signals are
unblocked.

7.2.2 WITHOUT-INTERRUPTS

Similar to pseudo atomic, WITHOUT-INTERRUPTS defers deferrable signals in its thread until
the end of its body, provided it is not nested in another WITHOUT-INTERRUPTS.

Not so frequently used as pseudo atomic, WITHOUT-INTERRUPTS benefits less from the
deferral mechanism.

7.2.3 Stop the world

Something of a special case, a signal that is blockable but not deferrable by WITHOUT-
INTERRUPTS is SIG_STOP_FOR_GC. It is deferred by pseudo atomic and WITHOUT-GCING.
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7.2.4 When are signals handled?

At once or as soon as the mechanism that deferred them allows.

First, if something is deferred by pseudo atomic then it is run at the end of pseudo atomic
without exceptions. Even when both a GC request or a SIG_STOP_FOR_GC and a deferrable
signal such as SIG_ZINTERRUPT_THREAD interrupts the pseudo atomic section.

Second, an interrupt deferred by WITHOUT-INTERRUPTS is run when the interrupts
are enabled again. GC cannot interfere.

Third, if GC or SIG_STOP_FOR_GC is deferred by WITHOUT-GCING then the GC or stopping
for GC will happen when GC is not inhibited anymore. Interrupts cannot delay a gc.

7.3 Implementation warts

7.3.1 Miscellaneous issues

Signal handlers automatically restore errno and fp state, but arrange_return_to_lisp_function
does not restore errno.

7.3.2 POSIX — Letter and Spirit

POSIX restricts signal handlers to a use only a narrow subset of POSIX functions, and
declares anything else to have undefined semantics.

Apparently the real reason is that a signal handler is potentially interrupting a POSIX
call: so the signal safety requirement is really a re-entrancy requirement. We can work
around the letter of the standard by arranging to handle the interrupt when the signal
handler returns (see: arrange_return_to_lisp_function.) This does, however, in no
way protect us from the real issue of re-entrancy: even though we would no longer be in a
signal handler, we might still be in the middle of an interrupted POSIX call.

For some signals this appears to be a non-issue: SIGSEGV and other synchronous signals
are raised by our code for our code, and so we can be sure that we are not interrupting a
POSIX call with any of them.

For asynchronous signals like SIGALARM and SIGINT this is a real issue.

The right thing to do in multithreaded builds would probably be to use POSIX
semaphores (which are signal safe) to inform a separate handler thread about such
asynchronous events. In single-threaded builds there does not seem to be any other option
aside from generally blocking asynch signals and listening for them every once and a while
at safe points. Neither of these is implemented as of SBCL 1.0.4.

Currently all our handlers invoke unsafe functions without hesitation.

7.4 Programming with signal handling in mind

7.4.1 On reentrancy

Since they might be invoked in the middle of just about anything, signal handlers must
invoke only reentrant functions or async signal safe functions to be more precise. Func-
tions passed to INTERRUPT-THREAD have the same restrictions and considerations as signal
handlers.
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Destructive modification, and holding mutexes to protect desctructive modifications from
interfering with each other are often the cause of non-reentrancy. Recursive locks are not
likely to help, and while WITHOUT-INTERRUPTS is, it is considered untrendy to litter the code
with it.

Some basic functionality, such as streams and the debugger are intended to be reentrant,
but not much effort has been spent on verifying it.

7.4.2 More deadlocks

If functions A and B directly or indirectly lock mutexes M and N, they should do so in the
same order to avoid deadlocks.

A less trivial scenario is where there is only one lock involved but it is acquired in a
WITHOUT-GCING in thread A, and outside of WITHOUT-GCING in thread B. If thread A has
entered WITHOUT-GCING but thread B has the lock when the gc hits, then A cannot leave
WITHOUT-GCING because it is waiting for the lock the already suspended thread B has. From
this scenario one can easily derive the rule: in a WITHOUT-GCING form (or pseudo atomic
for that matter) never wait for another thread that’s not in WITHOUT-GCING.

Somewhat of a special case, it is enforced by the runtime that SIG_STOP_FOR_GC and
SIG_RESUME_FROM_GC always unblocked when we might trigger a gc (i.e. on alloc or calling
into Lisp).

7.4.3 Calling user code

For the reasons above, calling user code, i.e. functions passed in, or in other words code that
one cannot reason about, from non-reentrant code (holding locks), WITHOUT-INTERRUPTS,
WITHOUT-GCING is dangerous and best avoided.

7.5 Debugging

It is not easy to debug signal problems. The best bet probably is to enable QSHOW and QSHOW_
SIGNALS in runtime.h and once SBCL runs into problems attach gdb. A simple thread
apply all ba is already tremendously useful. Another possibility is to send a SIGABORT
to SBCL to provoke landing in LDB, if it’s compiled with it and it has not yet done so on
its own.

Note, that fprintf used by QSHOW is not reentrant and at least on x86 linux it is known
to cause deadlocks, so place SHOW and co carefully, ideally to places where blockable signals
are blocked. Use QSHOW_SAFE if you like.
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8 Slot-Value

The ANSI Common Lisp standard specifies slot-value, (setf slot-value), slot-
boundp and slot-makunbound for standard-objects, and furthermore suggests that these be
implemented in terms of Metaobject generic functions slot-value-using-class, (setf
slot-value-using-class), slot-boundp-using-class and slot-makunbound-using-
class. To make performance of these operators tolerable, a number of optimizations are
performed, at both compile-time and run-time?.

8.1 Basic Implementation

All of the following, while described in terms of slot-value, also applies to (setf slot-
value) and to slot-boundp, and could in principle be extended to slot-makunbound.

The basic implementation of slot-value, following the suggestion in the standards
document, is shown in Example 8.1; the implementation of the other slot operators is similar.
The work to be done simply to arrive at the generic function call is already substantial: we
need to look up the object’s class and iterate over the class’ slots to find a slot of the right
name, only then are we in a position to call the generic function which implements the slot
access directly.

(defun slot-value (object slot-name)
(let* ((class (class-of object))
(slot-definition (find-slot-definition class slot-name)))
(if (null slot-definition)
(values (slot-missing class object slot-name ’slot-value))
(slot-value-using-class class object slot-definition))))

Example 8.1

The basic implementation of slot-value-using-class specialized on the standard
metaobject classes is shown in Example 8.2. First, we check for an obsolete instance (that
is, one whose class has been redefined since the object was last accessed; if it has, the object
must be updated by update-instance-for-redefined-class); then, we acquire the slot’s
storage location from the slot definition, the value from the instance’s slot vector, and then
after checking the value against the internal unbound marker, we return it.

! Note that ,at present, slot-makunbound and slot-makunbound-using-class are not optimized in any
of the ways mentioned below.
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(defmethod slot-value-using-class
((class std-class)
(object standard-object)
(slotd standard-effective-slot-definition))
(check-obsolete-instance object)
(let* ((location (slot-definition-location slotd))
(value
(etypecase location
(fixnum (clos-slots-ref (instance-slots object) location))
(cons (cdr location)))))
(if (eq value +slot-unbound+)
(values (slot-unbound class object (slot-definition-name slotd)))]]
value)))

Example 8.2

Clearly, all of this activity will cause the performance of clos slot access to compare
poorly with structure slot access; while there will be of necessity a slowdown between the slot
accesses because the structure class need not be redefineable (while redefinition of standard-
object classes is extremely common), the overhead presented in the above implementation
is excessive.

8.2 Compiler Transformations

The compiler can assist in optimizing calls to slot-value: in particular, and despite the
highly-dynamic nature of CLOS, compile-time knowledge of the name of the slot being
accessed permits precomputation of much of the access (along with a branch to the slow
path in case the parameters of the access change between compile-time and run-time).

8.2.1 Within Methods

If the object being accessed is a required parameter to the method, where the parameter
variable is unmodified in the method body, and the slot name is a compile-time constant,
then fast slot access can be supported through permutation vectors.

(FIXME: what about the metaclasses of the object? Does it have to be standard-class,
or can it be funcallable-standard-class? Surely structure-class objects could be completely
optimized if the class definition and slot name are both known at compile-time.)

Permutation vectors are built up and maintained to associate a compile-time index
associated with a slot name with an index into the slot vector for a class of objects. The
permutation vector applicable to a given method call (FIXME: or effective method? set of
classes? something else?) is passed to the method body, and slots are accessed by looking
up the index to the slot vector in the permutation vector, then looking up the value from
the slot vector. (FIXME: a diagram would help, if I understood this bit well enough to
draw a diagram).

Subsequent redefinitions of classes or of methods on slot-value-using-class cause an
invalid index to be written into the permutation vector, and the call falls back to a full call
to slot-value.
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If the conditions for (structure or) permutation vector slot access optimization are not
met, optimization of slot-value within methods falls back to the same as for calls to
slot-value outside of methods, below.

8.2.2 Outside of Methods

A call to slot-value with a compile-time constant slot name argument is compiled
into a call to a generic function named (sb-pcl::slot-accessor :global name sb-
pcl::reader), together with code providing load-time assurance (via load-time-value)
that the generic function is bound and has a suitable accessor method. This generic
function then benefits from the same optimizations as ordinary accessors, described in
Section 3.3 [Accessor Discriminating Functions], page 8.

(FIXME: how does this get invalidated if we later add methods on slot-value-using-
class? Hm, maybe it isn’t. I think this is probably a bug, and that adding methods to
slot-value-using-class needs to invalidate accessor caches. Bah, humbug. Test code in
Example 8.3, and note that I think that the analogous case involving adding or removing
methods from compute-applicable-methods is handled correctly by update-all-c-a-m-
gf-info.)

(defclass foo () ((a :initform 0)))

(defun foo (x) (slot-value x ’a))

(foo (make-instance ’foo)) ; => 0

(defmethod slot-value-using-class :after
((class std-class) (object foo)
(slotd standard-effective-slot-definition))
(print "hi"))

(foo (make-instance ’foo)) ; => 0, no print

(defclass bar (foo) ((a :initform 1)))

(foo (make-instance ’bar)) ; => 1 and prints "hi"

(foo (make-instance ’foo)) ; => 0, no print
Example 8.3

8.3 MOP Optimizations

Even when nothing is known at compile-time about the call to slot-value, it is possible
to do marginally better than in Example 8.2. Each effective slot definition metaobject can
cache its own effective method, and the discriminating function for slot-value-using-
class is set to simply call the function in its slot definition argument.

(FIXME: I'm pretty sure this is a bad plan in general. Or rather, it’s probably a good
plan, but the effective methods should probably be computed lazily rather than eagerly.
The default image has 8589 closures implementing this optimization: 3 (slot-value, set-
slot-value and slot-boundp) for each of 2863 effective slots.)

(Also note that this optimization depends on not being able to specialize the new-value
argument to (setf slot-value-using-class).)
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9 Specials

9.1 Overview

Unithread SBCL uses a shallow binding scheme: the current value of a symbol is stored
directly in its value slot. Accessing specials is pretty fast but it’s still a lot slower than
accessing lexicals.

With multithreading it’s slightly more complicated. The symbol’s value slot contains
the global value and each symbol has a TLS-INDEX slot that - when it’s first bound - is set
to a unique index of the thread local area reserved for this purpose. The tls index is initially
zero and at index zero in the tls NO-TLS-VALUE-MARKER resides. NO-TLS-VALUE-MARKER is
different from UNBOUND-MARKER to allow PROGV to bind a special to no value locally in a
thread.

9.2 Binding and unbinding

Binding goes like this: the binding stack pointer (bsp) is bumped, old value and symbol are
stored at bsp - 1, new value is stored in symbol’s value slot or the tls.

Unbinding: the symbol’s value is restored from bsp - 1, value and symbol at bsp - 1 are
set to zero, and finally bsp is decremented.

The UNBIND-TO-HERE VOP assists in unwinding the stack. It iterates over the bindings
on the binding stack until it reaches the prescribed point. For each binding with a non-zero
symbol it does an UNBIND.

How can a binding’s symbol be zero? BIND is not pseudo atomic (for performance
reasons) and it can be interrupted by a signal. If the signal hits after the bsp is incremented
but before the values on the stack are set the symbol is zero because a thread starts with
a zeroed tls plus UNBIND and UNBIND-TO-HERE both zero the binding being unbound.

Zeroing the binding’s symbol would not be enough as the binding’s value can be moved
or garbage collected and if the above interrupt initiates gc (or be SIG_STOP_FOR_GC) it will
be greeted by a garbage pointer.

Furthermore, BIND must always write the value to the binding stack first and the symbol
second because the symbol being non-zero means validity to UNBIND-TO-HERE. For similar
reasons UNBIND also zeroes the symbol first. But if it is interrupted by a signal that does
an async unwind then UNBIND-TO-HERE can be triggered when the symbol is zeroed but the
value is not. In this case UNBIND-TO-HERE must zero out the value to avoid leaving garbage
around that may wreck the ship on the next BIND.

In other words, the invariant is that the binding stack above bsp only contains zeros.
This makes BIND safe in face of gc triggered at any point during its execution.
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10 Character and String Types

The :SB-UNICODE feature implies support for all 1114112 potential characters in the char-
acter space defined by the Unicode consortium, with the identity mapping between lisp
char-code and Unicode code point. SBCL releases before version 0.8.17, and those without
the :SB-UNICODE feature, support only 256 characters, with the identity mapping between
char-code and Latinl (or, equivalently, the first 256 Unicode) code point.

In the absence of the :SB-UNICODE feature, the types base-char and character are
identical, and encompass the set of all 256 characters supported by the implementation.
With the :SB-UNICODE on *features* (the default), however, base-char and character
are distinct: character encompasses the set of all 1114112 characters, while base-char
represents the set of the first 128 characters.

The effect of this on string types is that an sbcl configured with :SB-UNICODE has
three disjoint string types: (vector nil), base-string and (vector character). In a
build without :SB-UNICODE, there are two such disjoint types: (vector nil) and (vector
character); base-string is identially equal to (vector character).

The SB-KERNEL : CHARACTER-SET-TYPE represents possibly noncontiguous sets of charac-
ters as lists of range pairs: for example, the type standard-char is represented as the type
(sb-kernel:character-set > ((10 . 10) (32 . 126)))

10.1 Memory Layout

Characters are immediate objects (that is, they require no heap allocation) in all permuta-
tions of build-time options. Even on a 32-bit platform with :SB-UNICODE, there are three
bits to spare after allocating 8 bits for the character widetag and 21 for the character code.
There is only one such layout, and consequently only one widetag is needed: the difference
between base-char and character is purely on the magnitude of the char-code.

Objects of type (simple-array nil (*)) are represented in memory as two words: the
first is the object header, with the appropriate widetag, and the second is the length field.
No memory is needed for elements of these objects, as they can have none.

Objects of type simple-base-string have the header word with widetag, then a word
for the length, and after that a sequence of 8-bit char-code bytes. The system arranges
for there to be a null byte after the sequence of lisp character codes.

Objects of type (simple-array character (*)), where this is a distinct type from
simple-base-string, have the header word with widetag, length, and then a sequence of
32-bit char-code bytes. Again, the system arranges for there to be a null word after the
sequence of character codes.

Non-simple character arrays, and simple character arrays of non-unit dimensionality,
have an array header with a reference to an underlying data array of the appropriate form
from the above representations.

10.2 Reader and Printer

The " reader macro always constructs an object of type (simple-array character), even
if all of the characters within the quotation marks are of type base-char. This implies
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that only strings of type (vector character) will be able to be printed when *print-
readably* is true: attempting to print strings of other types will cause an error of type
print-not-readable.
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11 Threads

11.1 Implementation (Linux x86/x86-64)

Threading is implemented using pthreads and some Linux specific bits like futexes.

On x86 the per-thread local bindings for special variables is achieved using the %fs
segment register to point to a per-thread storage area. This may cause interesting results
if you link to foreign code that expects threading or creates new threads, and the thread
library in question uses %fs in an incompatible way. On x86-64 the r12 register has a similar
role.

Queues require the sys_futex system call to be available: this is the reason for the
NPTL requirement. We test at runtime that this system call exists.

Garbage collection is done with the existing Conservative Generational GC. Allocation
is done in small (typically 8k) regions: each thread has its own region so this involves no
stopping. However, when a region fills, a lock must be obtained while another is allocated,
and when a collection is required, all processes are stopped. This is achieved by sending them
signals, which may make for interesting behaviour if they are interrupted in system calls.
The streams interface is believed to handle the required system call restarting correctly,
but this may be a consideration when making other blocking calls e.g. from foreign library
code.

Large amounts of the SBCL library have not been inspected for thread-safety. Some of
the obviously unsafe areas have large locks around them, so compilation and fasl loading,
for example, cannot be parallelized. Work is ongoing in this area.
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