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1 Introduction

In this paper we give an overview of existing audio content analysis approaches in the
compressed domain and incorporate them into a coherent formal structure. We first examine the
kinds o information accessible in an MPEG compressed audio stream and describe a coherent
approach to determine features from these. These features are generic enough to be further
processed with standard audio content analysis approaches. We report on a numbe r of
applications that have been presented making use of the compressed domain features. Most of
them aim at creating an index to the audio stream by segmenting the stream into temporally
coherent regions, which are often classified into a papecified s¢of classes. We also discuss
recognition and identification applications.

2 MPEG-1 compressed data

To understand the kind of features that can be extracted from an MPEG compressed audio
stream, we have to understand the meaning of the encoded fields [EIAS97, ISA93, NUL97,
PANO95]). To that end, we first briefly explain the encoding steps and the resulting field
structures and then explain which fields contain useful information for content analysis.

2.1 MPEG-1 audio encoding

MPEG-1 audio encoding comes in three different flavours called Layers. They increase in
complexity from Layer 1 to 3 yet all follow the same processing steps:

1. The sampled sound data is broken up into analysis windows and transformed into the
frequency domain. A polyphase filterbdanalculates 32 frequency band magnitudes (called
subband value$ for each of the three Layers, which is further refined to 576 subbands for
Layer 3 only.

2. The resulting subband values are manipulated according to psychoacoustic models and the
desired bitate. The aim is to filter out sounds that are masked by other sounds and to arrive at
a perceptually lossless compression. The extent of compression achieved by this
psychoacoustic filtering is encodspecific and not standardised.

3. The remaining subbandagnitudes are linearised into a bitstream according to the bitstream
format standardised for the respective Layer. In this last step, further compression can be done
(such as Huffman encoding) which is lossless and exploits redundancies of the dataembntai
within several successive analysis windows. The data is then encoded-taiesbaudio
frames. The resulting files therefore consist of a sequence of (audio) frames containing Layer
specific fields.

Figure 1 displays the transformation that a setueeof 1152 PCM samples go through during
encoding. Layers 1 and 2 stop after the first transform (a polyphase filterbank), while Layer 3
goes through an additional Modified Discrete Cosine Transform (MDCT) step. Access of
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transformation coefficients in lyeer 3 can therefore be either at the filterbank or the MDCT
level.

|
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Figure 1: Frequency transformations of Layer 3

Figure 2 displays the frame formats of all three Layers. The 32 subband values ameaded in
groups of 12 (Layer 1 & 2) or 18 (Layer 3) subband samples. We call these grougganules.

There is only one such granule in a Layer 1 frame, whereas a Layer 2 frame contains three
granules and a Layer 3 frame two granules to exploit further nedancies. A granule in Layer 3

can be viewed as either consisting of 18 values in each of 32 subbands or of one value in each of
576 subbands depending on whether one accesses the filterbank coefficients or the MDCT
coefficients.

Layer | & Layer I Encoded data

Channel 1 Channel 2

Layer M (MP3) Encoded data
Huffmar Huf‘fmal‘ Huf'fmal‘ Huffmat
ide Info data data data data
Channel 1 Channel 2 Channel 1 Channel 2
— AN /

e N
Granule 1 Granule 2

Main data

Figure 2: Frame formats for all three Layers

Except for the number of granules, Layer 1 and 2 encodings are the same. Their subband values
are encoded in the quantised values field after having being normalised with scaiefatte

number of bits required for the quantised values is encoded in the bit allocation field.
Additionally, the scalefactor selection field used by Layer 2 stores how many of the three
scalefactors of each granule were different and thus had to beledco
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Layer 3 is different. As mentioned above, it results in 576 subband values. These are further
compressed mainly by use of a Huffman compression scheme after careful grouping of subbands
(see Figure 3).

123456 78910 575576

Region Region 1 Region 2

Huffman encoded Not encoded

b )

Noise allocation
& scalefactor
calculation

}

Huffman encoded

Figure 3: Layer 3 encoding of frequency bands

2.2 Field information

Without going back to decoding an MPEG audio file to PCM samples, there are two types of
information that can be used as features on which to base audio content analysis agptbache
information encoded in the headlie fields (header, bit allocation, scalefactor selection,
scalefactors, side information) and the encoded subband values.

2.2.1 Header-type information

Wang and Vilermo [WANO1] have used theéndow type information of Layer 3 to detect

beats. Layer 3 uses four different kinds of analysis windows: long -torghort, short, and short

to-long. The short windows are used for short but intensive sounds for which the long window

would introduce too much precho. They foud that the windowswitching pattern of ponusic

beats for their specific encoder at bitrates of@lkbps gives (long, lontp-short, short, short,

shortto-long, long) window sequences in 99% of the beats.

Our own research has also examined the hefger fields [BAR97]. We have used the

following fields of Layers 1 & 2 with the given feature interpretation:

« Bit allocation: stores the dynamic range of a sequence of subband values.

» Scalefactors stores information on the maximum loudness of a sequensealiifand values.

« Scalefactor selection information(Layer 2 only): stores how the loudness changes on three
subsequent groups; a value of 0 indicates no change, so the loudness is stable, a value of 2
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indicates a transient change, and the values 1 andi8dte an unstable change.

2.2.2 Subband values

Basically all other published research on compresseddomain audio analysis has used the
subband valuesas a starting point for feature calculation. Thus it is required to decode the
MPEG audio stream enough to acess the subband values. For all three Layers, the subband
values arenot available directly in the linearised file/stream but have to be reconstructed from
the encoded fields implying some processing cost. The most time consuming step for decoding
an MPEGaudio stream is however the resynthesis of PCM samples and this is avoided as the
subband values are still in the compressed domain.

In Layers 1 and 2 the subband values may be approximated by directly using the quantised values
in an encoded frame (whit can only be extracted from the file with help of the bitallocation
information). This however ignores the fact that the values are normalised by the scalefactors in
each of the32 subbands. So, to arrive at the subband values encoded in the file, onetbase

the quantised values and denormalise them.

In Layer 3 there ar&76subband values. To extract the frequency band magnitudes from the file,

it is necessary to decode the quantised samples with a Huffman decoder. Then, scalefactors have
to be readjusted, which served to colour the quantisation noise, and quantisation has to be
reversed. After this, one reaches the alias reduced MDCT coefficients, which we call tf%6
subband values. To achieve features which are comparable independent of the dnayas, it

is possible to further decode the 576 MDCT coefficients to the original 32 Polyphase Filterbank
coefficients, but there is a processing cost associated and a loss of frequency resolution. One
however gains on temporal resolution, which might beore appropriate in certain application

areas.

Subband valuesare in the following denoted bys (n), i being the subband number,9i <1-1,
(I=32in Layers 1 and 2, and possibl§76in Layer 3) andn the time index. In the following, all
index valueswill start with 0. The time index n is viewed from a whole file perspective. As an
example, if we take a Layer 2 encoded audio file, ftfmme, its 2 granule, and the"5subband
value (out of the 12) of the f0subband, we access the vak€L60)(see Figure 4)

Frame O Frame 1 Frame 2 Frame 3 Frame 4
GranuleO|Granulel{Granule?] Granulel
\||| | | | | | | | | | | | | | | || | | ll
'o 12 24 Tz 1 ! 72 ! 08 ! ! 144 ! ¢
t
kb t t 3 1 1 te ‘ ‘ ty 1 1 t 1 1 >
j Window t I 59(160)
0 M-1

Figure 4: Explanation of subband numbering scheme.
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Depending on the required resolution of an analysis, one may choose to calculate features on the
subband value resolution level, on the granule resolugeell or on the frame resolution level.

A statistical analysis on a larger time window may thus be calculated on a multiplicity of any of
these resolution levels. In our own research we have chosen the subband value or granule
resolution, while many otherzrefer the frame resolution.

Most analysis algorithms work on a window of samples. Independent of the choice of resolution,
we denote the window size by M and the time position within a window by m,8 m < M-1.t

will denote the window number while going over a file, which is closely related to the time
position within a file. A subband value at window position m is accessed depending on the
choice of resolution for analysis. For example, if we select a granule as window size, have
consecutive noroverlgoping windows only, and work on a subband value resolution levehe
above subband values,(160)will be in window number t=13 at position m=4 (M=12 is the

implied window size for the Layer 2 granule here) (see Figure 4).

Synopsis of used terms:

n Timeindex 0S n< N-1

[ Subband index &i < I-1

s(n) Subband value at time index n for subband |
m Time position within window & m< M-1

M Analysis window size

t Analysis window number

3 Low-level audio features

Going from the subband valuesh@h-level analysis such as segmentation, classification,
recognition and identification, requires firstly the calculation of Hewvel audio features on

which the further analysis will be based. Most often information on the subband energies is used
as astarting point for the analysis of the features.

3.1 Pre-processed subband information

Instead of using the subband values themselves to access subband energies, some researchers
preprocess them to achieve different goals.

e Tzanetakis et al. [TZA00] use ¢#root mean squared (RMS) subband vectoon a frame
resolution because this is a better measure of signal energy than the subband values
themselves. A generalised formula for their approach, independent of granule, frame or any
larger window, is given by:

g(t)=\/ﬁZ§z(Mt+m).

This enables one to arrive 82 or 576 subband values by averaging thlesubband values in
the window.
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* Boccignone et al. [BOC99] use tlsribband meanvalue in a window of sizéV as feature as
a way to go to a frame resolution. Ayeneralised formula for their approach, independent of
granule, frame or any larger window, is given by:

U= Y8 (M)

« Nakajima et al. [INAK99] calculate theormalised subband energyfrom the subband
samples of a frame to absorb sound levelatefency on audio source. The following
formula normalises a single subband value on the maximum of all subband values at the
same time index:

s’ (n) )
max@’(n):0< j<1-1)"

Going to a lower resolution for a window of siz®l, we have also used the subband mean a
a basis for calculation of a normalised subband energy:

_ HE (1)
L _10|Oglo(max(/,1j2 t):0<j<I-1"

¢ (n) =10log,o(

« In our own work we have made use of the scalefactors in Layer 1 and 2 for a granule
resolution subband energy measure [BAR97]. Tlsealefactorsare the maximum value of
thesequence of subband values within a granule:

scf (t) = max(ls (Mt +m) |:0<sm< M -1), with 0 <i s/-1.

The two valuess(n) and ¢(n) work at the subband value resolution, whilegl(t) , 4(1),6(t) and

scf(t) work on agranule, frame or any larger window resolution. In the following subsections,
any of these values may be useth the formulas interchangeably. The choice depends on the
goals of the analysis. As a placeholder we will ggb.

3.2 Cepstral features

For speech and speaker recognition approaches it is standard to use a representation of the audio
signal in the frequency domain as feature. Cepstral coefficients have proven to be particularly
successful. They are calculated by performing another frequency transform on the logarithm of
spectral coefficients. Both th&2 subband values of Layer 1 and 2, and tf&r6 subband values

of Layer 3 are linearly spaced spectral coefficients and serve well as a basis for calculation of
cepstral coefficients.

* Venugopal et al. [VEN99] calculatéear frequency cepstral coefficientsfrom the
subband values and use them for speattentification.

* Yapp et al. [YAP97] use the quantised values of the first nine subbands for their speech
recognition system. To reach a higher frequency resolution they apply the Fast Fourier
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Transform (FFT) on subband windows of s2& msusing a Hammingvindow and padding
the number of samples to a powerdfThey take the magnitude of the FFT values and
assemble them over the subbands into one single frequency vector. This feature vector is
now metwarped and used to calculatepstral, delta cepstral,and acceleration
coefficientsas features.

3.3 Energy features

Signal energy features are closely related to the human loudness perception. When calculating
energy features in the compressed domain rather than from uncompressed PCM samples, the
results arecloser approximations of perceptual loudness because the subband values have been
filtered by the psychoacoustic model and thus the influence of non -hearable frequencies is
reduced. The disadvantage however is that signal energy is distributed over thedney bands

and thus has to be added up requiring higher computational complexity than on uncompressed
signals. Signal energy measures are often used for segmentation of an audio stream. A signal's
start and end times are then usually determined by tiotdsg.

« Patel et al. [PAT96] calculate signal energy for a window of size M from the subband
values. Nakajima et al. [NAK99] restrict their loudness measurement to the energy in the
lowest subband as this is the one where most energy is concentrated arttis restriction
provides a considerable efficiency increase. A generalised formula for signal energy is given

by:
1 1-1M-1 5
E(t)=——> > s (Mt +m)h(M -1-m).
| M i=0 m=0
The window functiorh(m)may be e.g. a Rectangular, Hamming, Hanning, Welch or Bartlett
window depending on the regjad narrowness or peakness of spectral leakage.

e Tzanetakis et al. [TZA0Q] prefer to use the  RMS of the signal energy for loudness
approximation which achieves a better separation for low level values.

¢ Another loudness approximation is thiginal magnitude, which is less sensitive to noise
than signal energy. It can be calculated analogously to signal energy [PAT96] via:

M (t) :ﬁZZm(MHmﬂ[ﬁ(M ~1-m).

¢ In our own work we have used thesum of scalefactorson a granule resolution for a fast
approximation of theignal magnitude on Layer 1 & 2 frames [BAR97, PFE99].

* Wang and Vilermo [WANO1] calculate theand energyof several subbands and use a

threshold on them to determine a confidence for a-puysic beat in the granule:
J2 M-1

E(Jl,JZ) (t) = Z Z S|2(Mt + m) Eh(M -1- m)-

i=J1m=0
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3.4 Silence statis tics

Silence statistics are often used as indicators for classification of audio segments into different

signal classes. Speech segments for example generally contain a lot more silence than music

segments.

¢ Therefore, Patel et al. [PAT96] propopause rate as an indicator to separate speech from
nonspeech signals:

P(t) = ﬁMZ_:l(E(Mt +m) >T.) O(E(Mt+ m+1) >T,)

m=0
with T as the silence energy threshdRIcounts the number of silent segments on a time
interval of sizeM.

« Similarly, Tzanetakis et al. [TZA00] uselaw energyfedaure to separate speech from music.
On a window of about sec(M=40 frames) they calculate the percentage of frames that have
less than the average enerfyt):

M-1

L(t) = Vz (E(Mt +m) < E(t)).

m=0

* Nakajima et al. [NAK99] call their silence statistenergy density It is also defined on a
window of 1 secand basically calculated as the log value of the variandgtf

3.5 Spectral energy statistics

Spectral energy statistics capture subband energy distribution features, which are indicative for
speific types of sounds.

» Thespectral centroid is the balancing point of the subband energy distribution [BAR97,

TZAOQ]. It is thus calculated as the first moment of the subband energy distribution:
1-1

2. (i +Ds ()
Ct)="2-7F—

2.8

It determines the frequency aremand which most of the signal energy concentrates and is
thus closely related to the tiromain zero crossing rate (ZCR) feature often used in speech
recognition systems to determine exact stand endpoints of talkspurts. It is also frequently
used asn approximation for a perceptual brightness measure [BAR97]. Nakajima et al.
[NAK99] use the squared subband samples in their spectral centroid calculation to better
spread out the centroid values.

e The gectral rolloff point R is determined wher@5%of the window's energy is achieved:

ZR: s(t) = 0.85[§ s (t).
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It is used to distinguish voiced speech from unvoiced speech and music [TZAQQ], which
have a higher rolloff point because their power is better distributed over the subband range.

Patel et al. [PAD6] propose a feature calldghnd energy ratio, which sets the energy of the
low frequencies (subbandsto J-1) in relation to the high frequencies (subbardds I-1):

fMZ_:lgz(Mt +m) th(M -1-m)
B(t) = 5405 .
D> sH(Mt+m) h(M —1-m)

i=J m=0
This is indicative of the voicedness of a sound. They claiat Ji2 is a good choice because
voiced signal energy concentrates betbwkHzwhile unvoiced signal energy is distributed
over all subbands.

Thespectral flux of two successive windowsandt+1 is calculated as the-Borm of the
difference between norriized subband value vectorstaandt+1 [TZAOQQ]:

A(t,t+1):\/li| §.(t) | _ S.(t'+1) | e
i Mmax@s;(t):0<j<1-1) max@t+):0<sj<1-1)

While the first three statistics calculated spectral energy distribution features on one window,
the spectral flux determines changes of spectral energy distribution of two sueessiv
windows.

The subband central momentscalculated by Boccignone et al. [BOC99] on the contrary
calculate statistics within subbands over several frames. They capture how much a subband's
energy is dispersed from its mean:

DX (t) = Mf(s, (Mt +m) — 4 (t))* with k=2,...,5

1
M

3.6 Bandwidth features

Thebandwidth covered by a window is calculated from all subbands with sufficient energy:
BW(t) =max(:(0<i<| -1 0O(s(t)>T,))—min(: (0<i <1 -1) (s (t) >Ty)).

It is stipulated that the bandwidth of speech is usually narrower than that of music [NAK99,
VEN99].

Nakajima efal. [INAK99] propose to determine bandwidth information by counting the
number of subbands with significant level

SE) = (5(0) > T,)

If a window’s content covers a lot of subbands such as m&¢t)becomes large. In
addition to measuring the sublshrange that a window contains, this also takes into account
how strong the subbands in between are represented.
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3.7 Pitch features

Pitch is indicative of a speaker and thus an important property of a sound.

« Patel et al. [PAT96] calculate thgitch of a sound signal in the compressed domain by using
the autocorrelation function of the values of the first subband3f%6overlapping windows.

With an overlap ob samples, the related generic formula can be given via:
M-1

A(t, k) =ﬁ2(so((M -o)t +m)5,((M - o)t + m+Kk)).

They calculate theitch only on windows of sufficient energy to reduce processing time on
silences. In addition they perform nonlinear clipping of small subband values to avoid
confusion of the first and second formants. They choose the largest autocorrelation peak
value aghe pitch if it contains more thaB0%of the window's energy.

¢ Venugopal et al. [VEN99] use the analydig-synthesis approach of tidultiband
Excitation Vocoder for pitch estimation. In it, speech is synthesised and an unbiased error
measure is calculad by comparison to the original speech. The pitch period is the period
used when the error is minimum.

4 Segmentation

When talking about segmentation of an audio stream, temporal segmentation is usually the
subject. The identification of the sound comrmamts that belong to one specific sound event

could be regarded as a spat@mporal segmentation. This is a hard task and being researched in
the field of “computational auditory scene analysis (CASA)”. We are not aware of any
approaches toward CASA inégiMPEG1 compressed domain. So, here we concentrate on
temporal segmentation in which specific temporal fragments of an audio stream are identified for
their homogenous content according to some criteria. Existing segmentation approaches
determine fragmerioundaries based on e.g. strong changes of a specific feature or relative
pauses.

For such segmentation approaches, the presented features are often not used direicttead
their mean and variances are calculated on larger windows of aba#t sec Additionally, log-
transforms of the results can be used to reduce the dynamic range and make the clusters in
classification more compact [TZAQQ].

4.1 General segmentation

¢ Tzanetakis et al. [TZA0Q] perform generic audio segmentatidteature” change instans.
They use the features low energy, and mean and variances of spectral centroid, spectral
rolloff point, spectral flux, and RMS energy in a feature vector. They calculate the
Mahalanobis distance between successive feature vectors, and differentiateki.dfe then
picked as segment boundaries via an adaptive thresholding algorithm, which includes a
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minimum duration condition to avoid small regions. They achieve utbébconsistency
with human segmentation results.

¢ Our own approach to segmentation sifiee signal magnitude as feature [PFEO01] to calculate
relative pauses The segmentation algorithm also follows an adaptive thresholding approach
on 2 secintervals. Windows are determined as silence if their signal magnitude stays under
the threshold. Segentation uses a minimum duration and a maximum tolerated interruption
parameter. A sequence of silence windows gets clustered into a pause segment if it covers at
least the minimum duration and is not interrupted by-sdaence windows longer than the
tolerated interruption. We achieve hit rates betwééfoand97%when comparing to human
segmentation results depending upon the SNR of the material.

4.2 Scene change

* Barrass [BAR97] calculates a running average of the spectral centroid called “brightness
histary”. Sudden changes in brightness are used for scene change detection.

¢ Boccignone et al. [BOC99] calculate video scene changes based on audio and video breaks.
Video analysis provides shot boundaries, which are scene change candidates. Audio analysis
validates the candidates. They calculate the subband mean energy and four subband central
moments on the first 8 subbands and accumulate these into one feature vector. Then, an
Artificial Neural Network is trained to partition the feature space into silenpeesh, music,
and noise resulting in transition points between different sound classes. These are used to
validate the shot boundaries. They achieve a hit rate bet@2&and93%for audio breaks
in comparison to human results.

5 Classification

Althoughtemporal segmentation is an important first step in determining the structure of an
audio stream, automatic determination of more information on the actual content of the
fragments is of higher value. Thus the next step is to classify the fragment caontteatgiven

set of sound classes. Generic classes are silence, music, speech, and noise. According to the
requirements of the application, more specific classifications may be required, such as the
determiniation of the type of sound effect or the segarabf speakers.

5.1 Silence determination

* Patel et al. [PAT96] use a standard threshold approach on the average signal energy of a
video clip to determine whether the clip contains silence.

¢ Nakajima et al. [NAK99] use the variance of subbdhehergy to diinguish between
silence and nosilence:
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0 () = 3 (S(m) - 4 (M)

They choosév = 1 secand use only one subband sample per frame. Thissauntpling
increases calculation speed enormously. A silent segment is declared dﬁﬂe)eTs with
Ts as the silencenergy threshold. They achieve a hit rat®afowith 13%false hits. The
false hits are mainly attributed to mixed sigdasecwindows.

5.2 Music/speech determination

« Patel et al. [PAT96] classify audio segments determined by video shot boundary detiction
the band energy ratio lies abo@eB or the pause rate is belo®2 or there is no pitch found,
the segment is classified as a musical clip, else as speech clip.

¢ Nakajima et al. [INAK99] use the energy density and the average number of subbands with
significant level onl secwindows to distinguish between music and speech. Music has a
higher energy density than speech. Music also usually has significant subbands up to
subband numbe&z0, whereas speech rarely goes beyond subi@n@hey use a multivaate
Gaussian distribution to model the classes and achieve a hit ra@@6for music (with4%
false hits) and o88%for speech (witHL6%false hits). The false hits for speech stem from
intermittent sounds such as drum solo.

* Tzanetakis et al. [TZAOOUse the features low energy, and the mean and variances of the

spectral centroid, spectral rolloff point, and spectral flux in a feature vector. They compare a

multivariate Gaussian distribution classifier to aN€arest Neighbour classifier to
distinguishspeech from music. They evaluate them on about 2 hours of audio data and
compare results on a frame basis achieving aB@étaccuracy for the Gaussian distribution
and abouB5%accuracy for the KNN. In comparison to the classification of PCM data, the
results only degrade by abo2fb.

« Barrass [BAR97] determines music on Layer 2 files as a signal that exhibitdéongwide
band stability. This stability is calculated from the scalefactor selection information. A signal
is determined as lonterm stabé if more than 60% of the nerero subbands of a frame have

a repeated scalefactor. Coverage of the subbands must be at least 24 out of 30 subbands. In

contrast, speech is determined as a signal with lmwnid-range brightness and stability.
The brightnas is calculated via the spectral centroid of the scalefactors-lamge
brightness indicates a male voice, anrahge brightness a female one and highge
brightness again signifies music.

5.3 Sound effects

Nakajima et al. [NAK99] use the average and aaie of the spectral centroid on 1 sec windows
to determineapplauseon their TV program sound tracks. Applause has a continuous self
similarity and stable centre frequency. They achieve a hit ra@®fwith 15%false hits, which

MPEG-1 audio features -15- S. Pfeiffer, T. Vincent



occur mainly on mixed ghall secwindows.

5.4 Noise

Barrass [BAR97] determines noise on Layer 2 files as a signal that exhibitséomgwideband
transience. This transience is calculated from the scalefactor selection information. A signal is
determined as lorterm transienif more than 30% of the nemero subbands of a frame have
nonrepeated scalefactors. Coverage of the subbands must be at least 1 out of 4 subbands. In
addition, short, loud and bright signals are determined as a “clang” and also classified as a noise.

5.5 Speaker

To distinguish between six different speakers, Venugopal et al. [VEN99] use normalised linear
frequency cepstral coefficients and estimate Gaussian Mixture Model parameters using the
Expectation Maximisation algorithm.

6 Recognition and Identification

On speech segments, recognition and identification of more specific sound content is possible
such as the gender of a speaker segment, the speaker itself, and the content of his speech.

On music segments, recognition of beats and identification ahrhg can be performed. We
report on one beat recognition approach based on MREGmMpressed domain features.

6.1 Gender

* Venugopal et al. [VEN99] use the pitch estimation of the Multiband Excitation Vocoder and
declare the speaker as male if the pitch isnmEn60 and120 Hzand female betweet20
and200 Hz They achieve a hit rate of abo80%.

* As mentioned above, Barrass [BAR97] determines the gender of a speech frame via the
brightness of the signal, which is calculated from the spectral centroid cfcdlefactors in
Layer 2. If the spectral centroid lies below the second subband, it is determined as male, and
between the third and sixth subband as female.

6.2 Speech recognition

Yapp and Zick [YAP97] implemented a speakipendent, small vocabulary speaecognition
system that uses compressed domain features. They calculate cepstral, delta cepstral, and
acceleration coefficients as described in Section 2.2.1. Then they train Hidden Markov Models
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(HMMs) on 17 words. Training and recognition were bothifpemed with continuously spoken
sentences. A wortkvel accuracy 099%was obtained on Layer 2 encoded dat82kbit/s
Their system works on Layer 1 and Layer 2 and interlayer training and recognition is possible.

6.3 Beat recognition

Wang and VilermoWANO1] presented a compressddmain beat detector for pepusic with

the aim of replacing beats that were lost during an Internet transmission ofsopgpwith

previously stored beat samples of that song. They use the window type information of Layer 3
files and the band energy of four frequency ranges for beat detection. The four frequency ranges
are: the fultband energy and the frequency intervai$d®, 34057462, and 74622050 Hz. The
middle frequency ranges usually give poor beat information srather instruments and

singing are more dominant in these ranges. When restricting the search for beats to the most
probable times after inter beat intervals (IBIs), they detect most beats.

7 Conclusions

In this paper we have given an overview of thieckof features that have been extracted in the
MPEG-1 audio compressed domain. Considering the amount of MPE®&yer 3 (MP3) files
available nowadays, audio analysis on compressed files is bound to be in great demand soon.
Research in this field is stilh its infancy and there are still many opportunities to pursue for
fundamental research. Audio analysis results can be used more powerfully when used in
conjunction with video analysis results to achieve automatic extraction of more abstract
concepts. Orits own it can be used for sourzhsed audio search engines no more based on
textual queries and filenames but on the audio content.
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