
ArgoUML User Manual

A tutorial and reference description

Alejandro Ramirez
Philippe Vanpeperstraete

Andreas Rueckert
Kunle Odutola

Jeremy Bennett
Linus Tolke

Michiel van der Wulp

ArgoUML User Manual : A tutorial and reference description
by Alejandro Ramirez, Philippe Vanpeperstraete, Andreas Rueckert, Kunle Odutola, Jeremy Bennett,
Linus Tolke, and Michiel van der Wulp
Copyright © 2004, 2005, 2006, 2007, 2008 Michiel van der Wulp
Copyright © 2003 Linus Tolke
Copyright © 2001, 2002 Jeremy Bennett
Copyright © 2001 Kunle Odutola
Copyright © 2000 Philippe Vanpeperstraete
Copyright © 2000 Alejandro Ramirez
Copyright © 2000 Andreas Rueckert

Abstract

This version of the manual is intended to describe the version 0.28.1 of ArgoUML.

This material may be distributed only subject to the terms and conditions set forth in the Open Publication License, v1.0 or later.
The applied copy of this license is included in the section Open Publication License. The latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/].

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

Table of Contents
1. Preface ... xviii
1. Introduction .. 1

1.1. Origins and Overview of ArgoUML .. 1
1.1.1. Object Oriented Analysis and Design .. 1
1.1.2. The Development of ArgoUML ... 1
1.1.3. Finding Out More About the ArgoUML Project .. 2

1.2. Scope of This User Manual ... 2
1.2.1. Target Audience ... 2
1.2.2. Scope ... 3

1.3. Overview of the User Manual .. 3
1.3.1. Tutorial Manual Structure ... 3
1.3.2. Reference Manual Structure .. 3
1.3.3. User Feedback ... 4

1.4. Assumptions .. 4
1. Tutorial .. 5

2. Introduction (being written) ... 6
3. UML Based OOA&D ... 7

3.1. Background to UML .. 7
3.2. UML Based Processes for OOA&D .. 7

3.2.1. Types of Process ... 8
3.2.2. A Development Process for This Tutorial 11

3.3. Why ArgoUML is Different .. 12
3.3.1. Cognitive Psychology .. 13
3.3.2. Open Standards .. 14
3.3.3. 100% Pure Java .. 15
3.3.4. Open Source .. 15

3.4. ArgoUML Basics .. 16
3.4.1. Getting Started ... 16
3.4.2. The ArgoUML User Interface ... 19
3.4.3. Output .. 30
3.4.4. Working With Design Critics .. 33

3.5. The Case Study (To be written) .. 36
4. Requirements Capture .. 37

4.1. Introduction ... 37
4.2. The Requirements Capture Process ... 37

4.2.1. Process Steps ... 38
4.3. Output of the Requirements Capture Process .. 38

4.3.1. Vision Document .. 39
4.3.2. Use Case Diagram .. 39
4.3.3. The Use Case Specification .. 44
4.3.4. Supplementary Requirement Specification 47

4.4. Using Use Cases in ArgoUML ... 48
4.4.1. Actors Akteure ... 48
4.4.2. Use Cases .. 48
4.4.3. Associations .. 50
4.4.4. Hierarchical Use Cases .. 51
4.4.5. Stereotypes .. 52
4.4.6. Documentation ... 53
4.4.7. System Boundary Box ... 53

4.5. Case Study ... 53
4.5.1. Vision Document .. 53
4.5.2. Identifying Actors and Use Cases ... 55
4.5.3. Associations (To be written) ... 56

iv

4.5.4. Advanced Diagram Features (To be written) 56
4.5.5. Use Case Specifications (To be written) .. 56
4.5.6. Supplementary Requirements Specification (To be written) 56

5. Analysis ... 57
5.1. The Analysis Process ... 57

5.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 57
5.1.2. Concept Diagram (To be written) ... 58
5.1.3. System Sequence Diagram (To be written) 58
5.1.4. System Statechart Diagram (To be written) 58
5.1.5. Realization Use Case Diagram (To be written) 58
5.1.6. Documents (To be written) ... 58

5.2. Class Diagrams (To be written) .. 58
5.2.1. The Class Diagram (To be written) ... 58
5.2.2. Advanced Class Diagrams (To be written) 58

5.3. Creating Class Diagrams in ArgoUML .. 59
5.3.1. Classes ... 59
5.3.2. Associations (To be written) ... 59
5.3.3. Class Attributes and Operations (To be written) 59
5.3.4. Advanced Class Features (To be written) 59

5.4. Sequence Diagrams (To be written) .. 59
5.4.1. The Sequence Diagram (To be written) ... 60
5.4.2. Identifying Actions (To be written) .. 60
5.4.3. Advanced Sequence Diagrams (To be written) 60

5.5. Creating Sequence Diagrams in ArgoUML .. 60
5.5.1. Sequence Diagrams ... 60
5.5.2. Actions (To be written) .. 60
5.5.3. Advanced Sequence Diagrams (To be written) Erweiterte Sequenzdia-
gramme (Noch zu beschreiben) .. 60

5.6. Statechart Diagrams (To be written) .. 60
5.6.1. The Statechart Diagram (To be written) .. 60
5.6.2. Advanced Statechart Diagrams (To be written) 60

5.7. Creating Statechart Diagrams in ArgoUML .. 60
5.7.1. Statechart Diagrams (To be written) ... 60
5.7.2. States (To be written) .. 60
5.7.3. Transitions (To be written) ... 61
5.7.4. Actions (To be written) .. 61
5.7.5. Advanced Statechart Diagrams (To be written) 61

5.8. Realization Use Cases (To be written) ... 61
5.9. Creating Realization Use Cases in ArgoUML (To be written) 61
5.10. Case Study (To be written) .. 61

5.10.1. CRC Cards .. 61
5.10.2. Concept Class Diagrams (To be written) 62
5.10.3. System Sequence Diagrams (To be written) 62
5.10.4. System Statechart Diagrams (To be written) 62
5.10.5. Realization Use Cases (To be written) ... 62

6. Design ... 63
6.1. The Design Process (To be written) .. 63

6.1.1. Class, Responsibilities, and Collaborators (CRC) Cards 63
6.1.2. Package Diagram (To be written) ... 64
6.1.3. Realization Class Diagrams (To be written) 64
6.1.4. Sequence Diagrams and Collaboration Diagrams (To be written) 64
6.1.5. Statechart Diagrams and Activity Diagrams (To be written) 64
6.1.6. Deployment Diagram (To be written) ... 64
6.1.7. Documents (To be written) ... 64

6.2. Package Diagrams (To be written) .. 64
6.2.1. The Package Diagram (To be written) ... 64
6.2.2. Advanced Package Diagrams (To be written) 64

6.3. Creating Package Diagrams in ArgoUML .. 64

ArgoUML User Manual

v

6.3.1. Packages ... 65
6.3.2. Relationships between packages (To be written) 65
6.3.3. Advanced Package Features (To be written) 65

6.4. More on Class Diagrams (To be written) .. 65
6.4.1. The Class Diagram (To be written) ... 65
6.4.2. Advanced Class Diagrams (To be written) 65

6.5. More on Class Diagrams in ArgoUML (To be written) 66
6.5.1. Classes (To be written) .. 66
6.5.2. Class Attributes and Operations (To be written) 66
6.5.3. Advanced Class Features .. 66

6.6. Sequence and Collaboration Diagrams (To be written) 68
6.6.1. More on the Sequence Diagram (To be written) 68
6.6.2. The Collaboration Diagram (To be written) 69
6.6.3. Advanced Collaboration Diagrams (To be written) 69

6.7. Creating Collaboration Diagrams in ArgoUML (To be written) 69
6.7.1. Collaboration Diagrams (To be written) .. 69
6.7.2. Messages (To be written) ... 69
6.7.3. Advanced Collaboration Diagrams (To be written) 69

6.8. Statechart Diagrams (To be written) .. 69
6.8.1. The Statechart Diagram (To be written) .. 69
6.8.2. Advanced Statechart Diagrams (To be written) 69

6.9. Creating Statechart Diagrams in ArgoUML (To be written) 70
6.9.1. Statechart Diagrams (To be written) ... 70
6.9.2. States (To be written) .. 70
6.9.3. Transitions (To be written) ... 70
6.9.4. Actions (To be written) .. 70
6.9.5. Advanced Statechart Diagrams (To be written) 70

6.10. Activity Diagrams (To be written) .. 71
6.10.1. The Activity Diagram (To be written) ... 71

6.11. Creating Activity Diagrams in ArgoUML (To be written) 71
6.11.1. Activity Diagrams (To be written) .. 71
6.11.2. Action States (To be written) ... 71

6.12. Deployment Diagrams (To be written) ... 71
6.12.1. The Deployment Diagram (To be written) 71

6.13. Creating Deployment Diagrams in ArgoUML (To be written) 71
6.13.1. Nodes (To be written) .. 71
6.13.2. Components (To be written) .. 72
6.13.3. Relationships between nodes and components (To be written) 72

6.14. System Architecture (To be written) .. 72
6.15. Case Study (To be written) .. 72

6.15.1. CRC Cards (To be written) ... 72
6.15.2. Packages (To be written) .. 72
6.15.3. Class Diagrams (To be written) .. 72
6.15.4. Sequence Diagrams (To be written) .. 73
6.15.5. Collaboration Diagrams (To be written) 73
6.15.6. Statechart Diagrams (To be written) .. 73
6.15.7. Activity Diagrams (To be written) .. 73
6.15.8. The Deployment Diagram (To be written) 73
6.15.9. The System Architecture (To be written) 73

7. Code Generation, Reverse Engineering, and Round Trip Engineering 74
7.1. Introduction ... 74
7.2. Code Generation ... 74

7.2.1. Generating Code from the Static Structure 74
7.2.2. Code aus Interaktionen und Zustandsautomaten generieren 75

7.3. Code Generation in ArgoUML ... 76
7.3.1. Static Structure ... 76
7.3.2. Interactions and statechart diagrams ... 76

7.4. Reverse Engineering .. 76

ArgoUML User Manual

vi

7.5. Round-Trip Engineering ... 76
2. User Interface Reference ... 77

8. Introduction .. 78
8.1. Overview of the Window .. 78
8.2. General Mouse Behavior in ArgoUML .. 79

8.2.1. Mouse Button Terminology .. 79
8.2.2. Button 1 Click .. 79
8.2.3. Button 1 Double Click ... 80
8.2.4. Button 1 Motion ... 80
8.2.5. Shift and Ctrl modifiers with Button 1 .. 80
8.2.6. Alt with Button 1: Panning ... 81
8.2.7. Ctrl with Button 1: Constrained Drag .. 81
8.2.8. Button 2 Actions ... 81
8.2.9. Button 2 Double Click ... 81
8.2.10. Button 2 Motion ... 81

8.3. General Information About Panes ... 81
8.3.1. Re-sizing Panes .. 81

8.4. The status bar ... 82
9. The Toolbar .. 83

9.1. File operations .. 83
9.2. Edit operations .. 83
9.3. View operations .. 83
9.4. Create operations .. 84

10. The Menu bar .. 86
10.1. Introduction .. 86
10.2. Mouse Behavior in the Menu Bar ... 86
10.3. The File Menu .. 87

10.3.1. New ... 87

10.3.2. Open Project... .. 87

10.3.3. Save Project ... 88

10.3.4. Save Project As... .. 89

10.3.5. Revert to Saved Projekt speichern rückgängig machen 89
10.3.6. Import XMI... ... 89
10.3.7. Export XMI... ... 90
10.3.8. Import Sources... ... 91

10.3.9. Page Setup... .. 93

10.3.10. Print... ... 93

10.3.11. Export Graphics... Grafik exportieren... 93
10.3.12. Export All Graphics... .. 94
10.3.13. Notation .. 94
10.3.14. Project Properties .. 95

10.3.15. Most Recent Used Files .. 98
10.3.16. Exit .. 99

10.4. The Edit Menu .. 99
10.4.1. Select .. 99
10.4.2. Remove From Diagram .. 100

10.4.3. Delete From Model ... 100

10.4.4. Perspektiven konfigurieren... ... 100

10.4.5. Einstellungen... ... 101

10.5. The View Menu .. 111
10.5.1. Goto Diagram... .. 111

ArgoUML User Manual

vii

10.5.2. Find... ... 112

10.5.3. Zoom .. 114
10.5.4. Adjust Grid .. 115
10.5.5. Adjust Snap ... 115
10.5.6. Page Breaks ... 115
10.5.7. Toolbars .. 115
10.5.8. XML Dump ... 116

10.6. The Create Menu ... 116
10.6.1. New Use Case Diagram ... 116

10.6.2. New Class Diagram Klassendiagramm 116

10.6.3. New Sequence Diagram ... 116

10.6.4. New Collaboration Diagram .. 117

10.6.5. New Statechart Diagram ... 117

10.6.6. New Activity Diagram ... 117

10.6.7. New Deployment Diagram ... 117

10.7. The Arrange Menu ... 117
10.7.1. Align .. 118
10.7.2. Distribute .. 118
10.7.3. Reorder ... 119
10.7.4. Size To Fit Contents .. 119
10.7.5. Layout .. 119

10.8. The Generation Menu ... 119
10.8.1. Generate Selected Classes 120
10.8.2. Generate All Classes... ... 121
10.8.3. Generate Code for Project... (To be Written) 121
10.8.4. Settings for Generate for Project... (To be Written) 121

10.9. The Critique Menu ... 121
10.9.1. Toggle Auto-Critique ... 121
10.9.2. Design Issues... ... 121
10.9.3. Design Goals... ... 123
10.9.4. Browse Critics... ... 124

10.10. The Tools Menu .. 126
10.11. The Help Menu ... 126

10.11.1. System Information ... 126
10.11.2. About ArgoUML ... 127

11. The Explorer ... 130
11.1. Introduction .. 130
11.2. Mouse Behavior in the Explorer ... 130

11.2.1. Button 1 Click .. 131
11.2.2. Button 1 Double Click ... 131
11.2.3. Button 1 Motion ... 131
11.2.4. Button 2 Actions ... 131
11.2.5. Button 2 Double Click ... 132

11.3. Keyboard Behavior in the Explorer ... 132
11.4. Perspective Selection .. 132
11.5. Configuring Perspectives .. 133

11.5.1. The Configure Perspectives dialog ... 133
11.6. Context Sensitive Menu .. 135

11.6.1. Create Diagram .. 135
11.6.2. Create ModelElement .. 135
11.6.3. Copy Diagram to Clipboard as Image .. 135
11.6.4. Add to Diagram .. 136
11.6.5. Delete From Model ... 136

ArgoUML User Manual

viii

11.6.6. Set Source Path... (To be written) ... 137
11.6.7. Add Package .. 137
11.6.8. New Stereotype .. 137
11.6.9. Add All Classes in Namespace Alle Klassen im Namensraum
hinzufügen ... 137

12. The Editing Pane .. 138
12.1. Introduction .. 138
12.2. Mouse Behavior in the Editing Pane .. 138

12.2.1. Button 1 Click .. 139
12.2.2. Button 1 Double Click ... 139
12.2.3. Button 1 Motion ... 139
12.2.4. Shift and Ctrl modifiers with Button 1 140
12.2.5. Alt with Button 1 motion .. 140
12.2.6. Button 2 Actions ... 140
12.2.7. Button 2 Double Click ... 140
12.2.8. Button 2 Motion ... 140

12.3. Keyboard Behavior in the Editing Pane .. 141
12.3.1. Nudging a model element ... 141
12.3.2. Moving across the model elements ... 141

12.4. The tool bar .. 141
12.4.1. Layout Tools .. 141
12.4.2. Annotation Tools .. 142
12.4.3. Drawing Tools .. 142
12.4.4. Use Case Diagram Specific Tools .. 143
12.4.5. Class Diagram Specific Tools .. 144
12.4.6. Sequence Diagram Specific Tools .. 146
12.4.7. Collaboration Diagram Specific Tools 147
12.4.8. Statechart Diagram Specific Tools .. 147
12.4.9. Activity Diagram Specific Tools .. 149
12.4.10. Deployment Diagram Specific Tools 150

12.5. The Broom ... 151
12.6. Selection Action Buttons ... 153
12.7. Clarifiers .. 154
12.8. The Drawing Grid .. 154
12.9. The Diagram Tab .. 154
12.10. Pop-Up Menus .. 154

12.10.1. Critiques .. 154
12.10.2. Ordering .. 154
12.10.3. Add .. 155
12.10.4. Show .. 155
12.10.5. Modifiers ... 156
12.10.6. Multiplicity .. 157
12.10.7. Aggregation ... 157
12.10.8. Navigability ... 157

12.11. Notation ... 158
12.11.1. Notation Languages ... 158
12.11.2. Notation Editing on the diagram ... 158
12.11.3. Notation Parsing .. 159

13. The Details Pane .. 160
13.1. Introduction .. 160
13.2. To Do Item Tab ... 160

13.2.1. Wizards ... 164
13.2.2. The Help Button ... 164

13.3. Properties Tab ... 165
13.4. Documentation Tab .. 166
13.5. Presentation Tab .. 167
13.6. Source Tab ... 171
13.7. Constraints Tab ... 172

ArgoUML User Manual

ix

13.7.1. The Constraint Editor ... 175
13.8. Stereotype Tab .. 177
13.9. Tagged Values Tab .. 178
13.10. Checklist Tab .. 178

14. The To-Do Pane .. 180
14.1. Introduction .. 180
14.2. Mouse Behavior in the To-Do Pane ... 180

14.2.1. Button 1 Click .. 181
14.2.2. Button 1 Double Click ... 181
14.2.3. Button 2 Actions ... 181
14.2.4. Button 2 Double Click ... 181

14.3. Presentation Selection .. 181
14.4. Item Count ... 182

15. The Critics .. 183
15.1. Introduction .. 183

15.1.1. Terminology .. 183
15.1.2. Design Issues ... 183

15.2. Uncategorized ... 183
15.3. Class Selection .. 183

15.3.1. Wrap DataType .. 183
15.3.2. Reduce Classes in namespace <namespace> 184
15.3.3. Clean Up Diagram .. 184

15.4. Naming ... 184
15.4.1. Resolve Association Name Conflict .. 184
15.4.2. Revise Attribute Names to Avoid Conflict 184
15.4.3. Change Names or Signatures in a model element 185
15.4.4. Duplicate End (Role) Names for an Association 185
15.4.5. Role name conflicts with member .. 185
15.4.6. Choose a Name (Classes and Interfaces) 185
15.4.7. Name conflict in a namespace ... 185
15.4.8. Choose a Unique Name for a model element (Classes and Interfaces) 186
15.4.9. Choose a Name (Attributes) .. 186
15.4.10. Choose a Name (Operations) ... 186
15.4.11. Choose a Name (States) .. 186
15.4.12. Choose a Unique Name for a (State related) model element 186
15.4.13. Revise Name to Avoid Confusion ... 186
15.4.14. Choose a Legal Name .. 186
15.4.15. Change a model element to a Non-Reserved Word 187
15.4.16. Choose a Better Operation Name .. 187
15.4.17. Choose a Better Attribute Name ... 187
15.4.18. Capitalize Class Name .. 187
15.4.19. Revise Package Name .. 187

15.5. Storage .. 187
15.5.1. Revise Attribute Names to Avoid Conflict 187
15.5.2. Add Instance Variables to a Class ... 188
15.5.3. Add a Constructor to a Class ... 188
15.5.4. Reduce Attributes on a Class ... 188

15.6. Planned Extensions .. 188
15.6.1. Operations in Interfaces must be public 189
15.6.2. Interfaces may only have operations ... 189
15.6.3. Remove Reference to Specific Subclass 189

15.7. State Machines .. 189
15.7.1. Reduce Transitions on <state> ... 189
15.7.2. Reduce States in machine <machine> 189
15.7.3. Add Transitions to <state> .. 190
15.7.4. Add Incoming Transitions to <model element> 190
15.7.5. Add Outgoing Transitions from <model element> 190
15.7.6. Remove Extra Initial States ... 190

ArgoUML User Manual

x

15.7.7. Place an Initial State .. 190
15.7.8. Add Trigger or Guard to Transition .. 190
15.7.9. Change Join Transitions ... 190
15.7.10. Change Fork Transitions ... 190
15.7.11. Add Choice/Junction Transitions .. 190
15.7.12. Add Guard to Transition ... 190
15.7.13. Clean Up Diagram ... 191
15.7.14. Make Edge More Visible .. 191
15.7.15. Composite Association End with Multiplicity >1 Zusammengesetztes
Assoziationsende mit der Kardinalität >1 ... 191

15.8. Design Patterns ... 191
15.8.1. Consider using Singleton Pattern for <class> 191
15.8.2. Singleton Stereotype Violated in <class> 192
15.8.3. Nodes normally have no enclosers .. 192
15.8.4. NodeInstances normally have no enclosers 192
15.8.5. Components normally are inside nodes 192
15.8.6. ComponentInstances normally are inside nodes 192
15.8.7. Classes normally are inside components 192
15.8.8. Interfaces normally are inside components 193
15.8.9. Objects normally are inside components 193
15.8.10. LinkEnds have not the same locations 193
15.8.11. Set classifier (Deployment Diagram) 193
15.8.12. Missing return-actions .. 193
15.8.13. Missing call(send)-action .. 193
15.8.14. No Stimuli on these links .. 193
15.8.15. Set Classifier (Sequence Diagram) .. 193
15.8.16. Wrong position of these stimuli .. 193

15.9. Relationships .. 193
15.9.1. Circular Association .. 194
15.9.2. Make <association> Navigable .. 194
15.9.3. Remove Navigation from Interface via <association> 194
15.9.4. Add Associations to <model element> 194
15.9.5. Remove Reference to Specific Subclass 194
15.9.6. Reduce Associations on <model element> 194
15.9.7. Make Edge More Visible .. 195

15.10. Instantiation .. 195
15.11. Modularity .. 195

15.11.1. Classifier not in Namespace of its Association 195
15.11.2. Add Elements to Package <package> 195

15.12. Expected Usage ... 196
15.12.1. Clean Up Diagram ... 196

15.13. Methods ... 196
15.13.1. Change Names or Signatures in <model element> 196
15.13.2. Class Must be Abstract ... 196
15.13.3. Add Operations to <class> .. 196
15.13.4. Reduce Operations on <model element> Reduzieren Sie die Anzahl der
Operationen im <Modellelement> .. 196

15.14. Code Generation .. 196
15.14.1. Change Multiple Inheritance to interfaces 197

15.15. Stereotypes ... 197
15.16. Inheritance .. 197

15.16.1. Revise Attribute Names to Avoid Conflict 197
15.16.2. Remove <class>'s Circular Inheritance 197
15.16.3. Class Must be Abstract ... 197
15.16.4. Remove final keyword or remove subclasses 197
15.16.5. Illegal Generalization ... 197
15.16.6. Remove Unneeded Realizes from <class> 198
15.16.7. Define Concrete (Sub)Class ... 198

ArgoUML User Manual

xi

15.16.8. Define Class to Implement <interface> 198
15.16.9. Change Multiple Inheritance to interfaces 198
15.16.10. Make Edge More Visible ... 198

15.17. Containment ... 198
15.17.1. Remove Circular Composition ... 198
15.17.2. Duplicate Parameter Name .. 198
15.17.3. Two Aggregate Ends (Roles) in Binary Association 198
15.17.4. Aggregate End (Role) in 3-way (or More) Association 199
15.17.5. Wrap DataType ... 199

3. Model Reference ... 200
16. Top Level Model Element Reference ... 201

16.1. Introduction .. 201
16.2. The Model ... 201

16.2.1. Model Details Tabs ... 201
16.2.2. Model Property Toolbar ... 202
16.2.3. Property Fields For The Model .. 202

16.3. Datatype .. 204
16.3.1. Datatype Details Tabs .. 204
16.3.2. Datatype Property Toolbar .. 205
16.3.3. Property Fields For Datatype ... 206

16.4. Enumeration ... 208
16.4.1. Enumeration Details Tabs ... 208
16.4.2. Enumeration Property Toolbar ... 209
16.4.3. Property Fields For Enumeration .. 209

16.5. Enumeration Literal ... 211
16.6. Stereotype .. 211

16.6.1. Stereotype Details Tabs .. 211
16.6.2. Stereotype Property Toolbar .. 212
16.6.3. Property Fields For Stereotype ... 212

16.7. Tag Definition .. 213
16.8. Diagram ... 213

16.8.1. Diagram Details Tabs .. 215
16.8.2. Diagram Property Toolbar .. 215
16.8.3. Property Fields For Diagram ... 215

17. Use Case Diagram Model Element Reference .. 217
17.1. Introduction .. 217

17.1.1. ArgoUML Limitations Concerning Use Case Diagrams 217
17.2. Actor ... 218

17.2.1. Actor Details Tabs Detail-Register Akteur 218
17.2.2. Actor Property Toolbar .. 219
17.2.3. Property Fields For Actor ... 219

17.3. Use Case .. 220
17.3.1. Use Case Details Tabs .. 221
17.3.2. Use Case Property Toolbar ... 222
17.3.3. Property Fields For Use Case .. 223

17.4. Extension Point ... 225
17.4.1. Extension Point Details Tabs ... 225
17.4.2. Extension Point Property Toolbar ... 226
17.4.3. Property Fields For Extension Point .. 226

17.5. Association .. 227
17.6. Association End .. 227
17.7. Dependency .. 227
17.8. Generalization ... 227

17.8.1. Generalization Details Tabs .. 228
17.8.2. Generalization Property Toolbar .. 229
17.8.3. Property Fields For Generalization ... 229

17.9. Extend ... 231
17.9.1. Extend Details Tabs ... 231

ArgoUML User Manual

xii

17.9.2. Extend Property Toolbar ... 232
17.9.3. Property Fields For Extend ... 233

17.10. Include ... 234
17.10.1. Include Details Tabs .. 235
17.10.2. Include Property Toolbar .. 235
17.10.3. Property Fields For Include ... 236

18. Class Diagram Model Element Reference ... 237
18.1. Introduction .. 237

18.1.1. Limitations Concerning Class Diagrams in ArgoUML 239
18.2. Package ... 239

18.2.1. Package Details Tabs ... 239
18.2.2. Package Property Toolbar ... 240
18.2.3. Property Fields For Package .. 241

18.3. Datatype .. 242
18.4. Enumeration ... 242
18.5. Stereotype .. 242
18.6. Class ... 243

18.6.1. Class Details Tabs ... 243
18.6.2. Class Property Toolbar ... 244
18.6.3. Property Fields For Class .. 245

18.7. Attribute .. 247
18.7.1. Attribute Details Tabs .. 247
18.7.2. Attribute Property Toolbar .. 248
18.7.3. Property Fields For Attribute ... 249

18.8. Operation ... 251
18.8.1. Operation Details Tabs ... 252
18.8.2. Operation Property Toolbar ... 252
18.8.3. Property Fields For Operation .. 253

18.9. Parameter ... 256
18.9.1. Parameter Details Tabs ... 256
18.9.2. Parameter Property Toolbar .. 257
18.9.3. Property Fields For Parameter ... 257

18.10. Signal .. 259
18.10.1. Signal Details Tabs .. 259
18.10.2. Signal Property Toolbar .. 260
18.10.3. Property Fields For Signal ... 261

18.11. Reception (to be written) ... 262
18.12. Association ... 262

18.12.1. Three-way and Greater Associations and Association Classes 263
18.12.2. Association Details Tabs ... 263
18.12.3. Association Property Toolbar ... 264
18.12.4. Property Fields For Association .. 265

18.13. Association End ... 266
18.13.1. Association End Details Tabs .. 266
18.13.2. Association End Property Toolbar .. 267
18.13.3. Property Fields For Association End 268

18.14. Dependency .. 271
18.14.1. Dependency Details Tabs .. 271
18.14.2. Dependency Property Toolbar .. 272
18.14.3. Property Fields For Dependency ... 272

18.15. Generalization ... 273
18.16. Interface ... 273

18.16.1. Interface Details Tabs ... 274
18.16.2. Interface Property Toolbar .. 275
18.16.3. Property Fields For Interface ... 275

18.17. Abstraction ... 277
18.17.1. Abstraction Details Tabs ... 277
18.17.2. Abstraction Property Toolbar ... 278

ArgoUML User Manual

xiii

18.17.3. Property Fields For Abstraction .. 278
19. Sequence Diagram Model Element Reference .. 280

19.1. Introduction .. 280
19.1.1. Limitations Concerning Sequence Diagrams in ArgoUML 281

19.2. Object ... 281
19.2.1. Object Details Tabs ... 281
19.2.2. Object Property Toolbar ... 282
19.2.3. Property Fields For Object .. 283

19.3. Stimulus .. 283
19.3.1. Stimulus Details Tabs .. 284
19.3.2. Stimulus Property Toolbar .. 286
19.3.3. Property Fields For Stimulus ... 286

19.4. Stimulus Call .. 287
19.5. Stimulus Create ... 287
19.6. Stimulus Destroy ... 288
19.7. Stimulus Send ... 288
19.8. Stimulus Return .. 288
19.9. Link .. 289

19.9.1. Link Details Tabs .. 289
19.9.2. Link Property Toolbar .. 290
19.9.3. Property Fields For Link ... 290

20. Statechart Diagram Model Element Reference ... 292
20.1. Introduction .. 292

20.1.1. Limitations Concerning Statechart Diagrams in ArgoUML 293
20.2. State .. 293

20.2.1. State Details Tabs ... 293
20.2.2. State Property Toolbar ... 294
20.2.3. Property Fields For State .. 294

20.3. Action ... 296
20.3.1. Action Details Tabs ... 297
20.3.2. Action Property Toolbar ... 297
20.3.3. Property Fields For Action .. 297

20.4. Composite State .. 298
20.5. Concurrent Region ... 299
20.6. Submachine State .. 299
20.7. Stub State ... 299
20.8. Transition .. 300

20.8.1. Transition Details Tabs .. 300
20.8.2. Transition Property Toolbar .. 301
20.8.3. Property Fields For Transition ... 301

20.9. Event .. 302
20.9.1. Event Details Tabs .. 303
20.9.2. Event Property Toolbar .. 303
20.9.3. Property Fields For Event ... 304

20.10. Guard .. 305
20.10.1. Guard Details Tabs .. 305
20.10.2. Guard Property Toolbar .. 305
20.10.3. Property Fields For Guard ... 306

20.11. Pseudostate ... 306
20.11.1. Pseudostate Details Tabs ... 307
20.11.2. Pseudostate Property Toolbar ... 307
20.11.3. Property Fields For Pseudostate .. 307

20.12. Initial State ... 308
20.13. Final State .. 308

20.13.1. Final State Details Tabs .. 309
20.13.2. Final State Property Toolbar .. 309
20.13.3. Property Fields For Final State ... 309

20.14. Junction ... 310

ArgoUML User Manual

xiv

20.15. Choice ... 311
20.16. Fork .. 311
20.17. Join ... 311
20.18. Shallow History ... 312
20.19. Deep History ... 312
20.20. Synch State ... 312

20.20.1. Synch State Details Tabs ... 312
20.20.2. Synch State Property Toolbar .. 313
20.20.3. Property Fields For Synch State ... 313

21. Collaboration Diagram Model Element Reference .. 315
21.1. Introduction .. 315

21.1.1. Limitations Concerning Collaboration Diagrams in ArgoUML 316
21.2. Classifier Role .. 316

21.2.1. Classifier Role Details Tabs .. 317
21.2.2. Classifier Role Property Toolbar .. 318
21.2.3. Property Fields For Classifier Role ... 318

21.3. Association Role ... 321
21.3.1. Association Role Details Tabs ... 321
21.3.2. Association Role Property Toolbar ... 322
21.3.3. Property Fields For Association Role .. 323

21.4. Association End Role ... 324
21.4.1. Association End Role Details Tabs ... 324
21.4.2. Association End Role Property Toolbar 325
21.4.3. Property Fields For Association End Role 326

21.5. Message ... 326
21.5.1. Message Details Tabs .. 327
21.5.2. Message Property Toolbar .. 328
21.5.3. Property Fields For Message ... 328

22. Activity Diagram Model Element Reference ... 331
22.1. Introduction .. 331

22.1.1. Limitations Concerning Activity Diagrams in ArgoUML 332
22.2. Action State .. 332

22.2.1. Action State Details Tabs .. 333
22.2.2. Action State Property ToolBar ... 334
22.2.3. Property fields for action state ... 334

22.3. Action ... 335
22.4. Transition .. 335
22.5. Guard .. 335
22.6. Initial State ... 335
22.7. Final State .. 335
22.8. Junction (Decision) .. 335
22.9. Fork .. 336
22.10. Join ... 336
22.11. ObjectFlowState .. 336

23. Deployment Diagram Model Element Reference .. 337
23.1. Introduction .. 337

23.1.1. Limitations Concerning Deployment Diagrams in ArgoUML 338
23.2. Node ... 338

23.2.1. Node Details Tabs ... 338
23.2.2. Node Property Toolbar ... 339
23.2.3. Property Fields For Node .. 340

23.3. Node Instance ... 341
23.3.1. Node Instance Details Tabs ... 341
23.3.2. Node Instance Property Toolbar ... 342
23.3.3. Property Fields For Node Instance .. 343

23.4. Component ... 343
23.4.1. Component Details Tabs ... 344
23.4.2. Component Property Toolbar .. 344

ArgoUML User Manual

xv

23.4.3. Property Fields For Component ... 345
23.5. Component Instance ... 346

23.5.1. Component Instance Details Tabs ... 346
23.5.2. Component Instance Property Toolbar 347
23.5.3. Property Fields For Component Instance 347

23.6. Dependency .. 348
23.7. Class ... 348
23.8. Interface .. 348
23.9. Association .. 349
23.10. Object .. 349
23.11. Link .. 349

24. Profiles .. 350
24.1. Introduction .. 350
24.2. The UML 1.4 Standard Elements Profile .. 350

24.2.1. Datatypes .. 351
24.2.2. Enumerations ... 351
24.2.3. Stereotypes .. 351
24.2.4. Tag Definitions ... 353

24.3. The Java Profile .. 354
24.3.1. Datatypes .. 356
24.3.2. Classes .. 356
24.3.3. Interfaces ... 357

Glossary .. 359
A. Supplementary Material for the Case Study .. 366

A.1. Introduction ... 366
A.2. Requirements Documents (To be written) .. 366

A.2.1. Vision Document (To be written) .. 366
A.2.2. Use Case Specifications (To be written) ... 366
A.2.3. Supplementary Requirements Specification (To be written) 366

B. UML resources ... 367
B.1. The UML specs (To be written) ... 367
B.2. UML related papers (To be written) ... 367

B.2.1. UML action specifications (To be written) .. 367
B.3. UML related websites (To be written) ... 367

C. UML Conforming CASE Tools ... 368
C.1. Other Open Source Projects (To be written) ... 368
C.2. Commercial Tools (To be written) ... 368

D. The C++ Module .. 369
D.1. Modeling for C++ ... 369

D.1.1. Class tagged values .. 369
D.1.2. Attribute tagged values .. 371
D.1.3. Parameters ... 371
D.1.4. Generalization ... 372
D.1.5. Realization ... 372
D.1.6. Preserved sections .. 372

E. Limits and Shortcomings .. 374
E.1. Diagram Canvas Size ... 374
E.2. Missing functions ... 374

F. Open Publication License .. 375
F.1. Introduction ... 375
F.2. Copyright .. 375
F.3. Scope Of License .. 375
F.4. Requirements On Modified Works ... 375
F.5. Good-Practice Recommendations ... 376

G. The CRC Card Methodology ... 377
G.1. The Card ... 377
G.2. The Group ... 378
G.3. The Session ... 378

ArgoUML User Manual

xvi

G.4. The Process ... 378
Index .. 379

ArgoUML User Manual

xvii

Preface
Software design is a cognitively challenging task. Designers must manually enter designs, but the
primary difficulty is decision-making rather than data-entry. If designers improved their decision-mak-
ing capabilities, it would result in better designs.

Current CASE tools provide automation and graphical user interfaces that reduce the manual work of
entering a design and transforming a design into code. They aid designers in decision-making mainly by
providing visualization of design diagrams and simple syntactic checks. Also many CASE tools provide
substantial benefits in the area of version control and concurrent design mechanisms. One area of design
support that has been not been well supported is analysis of design decisions.

Current CASE tools are usable in that they provide a GUI that allows designers to access all the features
provided by the tool. And they support the design process in that they allow the designer to enter dia-
grams in the style of popular design methodologies. But they typically do not provide process support to
guide the designer through the design task. Instead, designers typically start with a blank page and must
remember to cover every aspect of the design.

ArgoUML is a domain-oriented design environment that provides cognitive support of object-oriented
design. ArgoUML provides some of the same automation features of a commercial CASE tool, but it fo-
cuses on features that support the cognitive needs of designers. These cognitive needs are described by
three cognitive theories:

1.
reflection-in-action;

2.
opportunistic design; and

3.
comprehension and problem solving.

ArgoUML is based directly on the UML 1.4 specification. The core model repository is an implementa-
tion of the Java Metadata Interface (JMI) which directly supports MOF and uses the machine readable
version of the UML 1.4 specification provided by the OMG.

Furthermore, it is our goal to provide comprehensive support for OCL (the Object Constraint Language)
and XMI (the XML Model Interchange format).

ArgoUML was originally developed by a small group of people as a research project. ArgoUML has
many features that make it special, but it does not implement all the features that commercial CASE
tools provide.

The current version (0.28.1) of ArgoUML implements all the diagram types of the UML 1.4 standard
[http://www.omg.org/cgi-bin/doc?formal/01-09-67] (versions of ArgoUML prior to 0.20 implemented
the UML 1.3 standard [http://www.omg.org/cgi-bin/doc?formal/00-03-01]). It is written in Java and runs
on every computer which provides a Java platform version 5 or newer. It uses the open file formats XMI
[http://www.omg.org/cgi-bin/doc?formal/02-01-01] (XML Metadata Interchange format) (for model in-
formation) and PGML [http://www.w3.org/TR/1998/NOTE-PGML] (Precision Graphics Markup Lan-
guage) (for graph information) for storage. When ArgoUML implements UML 2.0, PGML will be re-
placed by the UML Diagram Interchange specification.

This manual is the cumulative work of several people and has been evolving over several years. Connec-
ted to the release 0.10 of ArgoUML, Jeremy Bennett, wrote a lot of the new material that was added to
the earlier versions by Alejandro Ramirez, Philippe Vanpeperstraete and Andreas Rueckert. He also ad-

xviii

http://www.omg.org/cgi-bin/doc?formal/01-09-67
http://www.omg.org/cgi-bin/doc?formal/00-03-01
http://www.omg.org/cgi-bin/doc?formal/02-01-01
http://www.w3.org/TR/1998/NOTE-PGML

ded things from some of the other documents namely the developers cookbook by Markus Klink and
Linus Tolke, the Quick Guide by Kunle Odutola, and the FAQ by Dennis Daniels. Connected to the re-
lease 0.14 changes were made by Linus Tolke, and by Michiel van der Wulp. These changes were
mostly to adopt the manual to the new functions and appearance of ArgoUML version 0.14, and intro-
duction of the index. The users and developers that have contributed by providing valuable input, such
as review comments or observations while reading and using this manual are too many to name.

ArgoUML is available for free and can be used in commercial settings. For terms of use, see the license
agreement presented when you download ArgoUML. We are providing the source code for ArgoUML
for you to review, customize to your needs, and improve. Over time, we hope that ArgoUML will
evolve into a powerful and useful tool for everyone to use.

This User Manual is aimed at the working designer, who wishes to make use of ArgoUML. The manual
is presently written assuming familiarity with UML, but eventually it will support those new to UML.

The manual is written in DocBook/XML and available as both HTML and PDF.

The ArgoUML project welcomes those who want to get more involved. Look at the project website
[http://argouml.tigris.org/] to find out more.

Tell us what you think about this User Manual! Your comments will help us improve things. See Sec-
tion 1.3.3, “ User Feedback ” .

Preface

xix

http://argouml.tigris.org/

Chapter 1. Introduction
1.1. Origins and Overview of ArgoUML
1.1.1. Object Oriented Analysis and Design

Over the past decade, Object Oriented Analysis and Design (OOA&D) has become the dominant soft-
ware development paradigm. With it has come a major shift in the thought processes of all involved in
the software development life cycle.

Programming language support for objects began with Simula 67, but it was the emergence in the 1980's
of hybrid languages, such as C++, Ada and Object Pascal that allowed OOA&D to take off. These lan-
guages provided support for both OO and procedural programming. Object Oriented programming be-
came mainstream.

An OO system is designed and implemented as a simulation of the real world using software artifacts.
This premise is as powerful as it is simple. By using an OO approach to design a system can be designed
and tested (or more correctly simulated) without having to actually build the system first.

It is the development during the 1990's of tools to support Object Oriented analysis and design that
moved this approach into the mainstream. When coupled with the ability to design systems at a very
high level, a tool based OOA&D approach has enabled the implementation of more complex systems
than previously possible.

The final driver that has propelled OOA&D has been its suitability for modeling graphical user inter-
faces. The popularity of object based and object oriented graphical languages such as Visual Basic and
Java reflect the effectiveness of this approach.

1.1.2. The Development of ArgoUML
During the 1980's a number of OOA&D process methodologies and notations were developed by differ-
ent research teams. It became clear there were many common themes and, during the 1990's, a unified
approach for OOA&D notation was developed under the auspices of the Object Management Group
[http://www.omg.org]. This standard became known as the Unified Modeling Language (UML), and is
now the standard language for communicating OO concepts.

ArgoUML was conceived as a tool and environment for use in the analysis and design of object-oriented
software systems. In this sense it is similar to many of the commercial CASE tools that are sold as tools
for modeling software systems. ArgoUML has a number of very important distinctions from many of
these tools.

1. It is free.

2. ArgoUML draws on research in cognitive psychology to provide novel features that increase pro-
ductivity by supporting the cognitive needs of object-oriented software designers and architects.

3. ArgoUML supports open standards extensively - UML, XMI, SVG, OCL and others.

4. ArgoUML is a 100% pure Java application. This allows ArgoUML to run on all platforms for
which a reliable port of the Java platform is available.

5. ArgoUML is an open source project. The availability of the source ensures that a new generation of
software designers and researchers now have a proven framework from which they can drive the
development and evolution of CASE tool technologies.

1

http://www.omg.org

UML is the most prevalent OO modeling language and Java is one of the most productive OO develop-
ment platforms. Jason Robbins and the rest of his research team at the University of California, Irvine
leveraged these benefits in creating ArgoUML. The result is a solid development tool and environment
for OO systems design. Further, it provides a test bed for the evolution of object oriented CASE tools
development and research.

A first release of ArgoUML was available in 1998 and more than 100,000 downloads by mid-2001 show
the impact that this project has made, being popular in educational and commercial fields.

1.1.3. Finding Out More About the ArgoUML Project

1.1.3.1. How ArgoUML is Developed

Jason Elliot Robbins founded the Argo Project and provided early project leadership. While Jason re-
mains active in the project, he has handed off project leadership. The project continues to move forward
strongly. There are more than 300 members on the developer mailing list (see ht-
tp://argouml.tigris.org/servlets/ProjectMailingListList
[http://argouml.tigris.org/servlets/ProjectMailingListList]), with a couple of dozen of those forming the
core development group.

The developer mailing list is the place where all the discussion on the latest tasks takes place, and de-
velopers discuss the directions the project should take. Although controversial at times, these discus-
sions are always kept nice and friendly (no flame-wars and such), so newbies should not hesitate and
participate in them. You'll always get a warm welcome there.

If you want to learn how the project is run and how to contribute to it, go the the ArgoUML Web Site
Developer Zone [http://argouml.tigris.org/dev.html] and read through the documentation there. The De-
velopers' Cookbook was written specifically for this purpose.

1.1.3.2. More on Infrastructure

Besides the developer mailing list, there's also a mailing for users (see The ArgoUML Mailing List
[http://argouml.tigris.org/servlets/ProjectMailingListList]), where we can discuss problems from a user
perspective. Developers also read this list, so highly qualified help will generally be provided.

Before posting to this list, you should take a look at the user FAQ
[http://argouml.tigris.org/faqs/users.html] maintained by Ewan R. Grantham.

More information on ArgoUML and other UML related topics is also available on the ArgoUML web-
site [http://argouml.tigris.org], maintained by Linus Tolke.

1.2. Scope of This User Manual
1.2.1. Target Audience

The current release of this document is aimed at experienced users of UML in OOA&D (perhaps with
other tools) who wish to transfer to ArgoUML.

Future releases will support designers who know OOA&D, and wish to adopt UML notation within their
development process.

A long term goal is to support i) those who are learning design and wish to start with an OOA&D pro-
cess that uses UML notation, and ii) people interested in modularized code design with a GUI.

Introduction

2

http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/dev.html
http://argouml.tigris.org/servlets/ProjectMailingListList
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
http://argouml.tigris.org

i.
ii.

1.2.2. Scope
The intention is that this document will provide a comprehensive guide, enabling designers to use
ArgoUML to its full extent. It is in two parts.

• A tutorial manual, showing how to work with ArgoUML

• A complete reference manual, recording everything you can do with ArgoUML.

Version 0.22 of the document achieved the second of these.

In this guide there are some things you will not find, because they are covered elsewhere.

• Descriptions of how ArgoUML works on the inside.

• How to improve ArgoUML with new features and functions.

• A trouble shooting guide.

• A summary quick reference to using ArgoUML.

These are covered in the Developers Cookbook
[http://argouml-stats.tigris.org/documentation/defaulthtml/cookbook/], the FAQ
[http://argouml.tigris.org/faqs/users.html], and the Quick Guide
[http://argouml-stats.tigris.org/documentation/quick-guide-0.26/].

1.3. Overview of the User Manual
1.3.1. Tutorial Manual Structure

Chapter 2, Introduction (being written) provides an overview of UML based OOA&D, including a guide
to getting ArgoUML up and running.

Chapter 4, Requirements Capture through Chapter 7, Code Generation, Reverse Engineering, and
Round Trip Engineering then step through each part of the design process from initial requirements cap-
ture through to final project build and deployment.

As each UML concept is encountered, its use is explained. Its use within ArgoUML is then described.
Finally a case study is used to give examples of the concepts in use.

1.3.2. Reference Manual Structure
Chapter 8, Introduction is an overview of the user interface and provides a summary of the support for
the various UML diagram types in ArgoUML. Chapter 10, The Menu bar and Chapter 11, The Explorer
describe the menu bar, and each of the sub-windows of the user interface, known as Panes.

Chapter 15, The Critics gives details of all the cognitive critics within the system. Eventually ArgoUML
will link directly to this manual when giving advice on critics.

Introduction

3

http://argouml-stats.tigris.org/documentation/defaulthtml/cookbook/
http://argouml.tigris.org/faqs/users.html
http://argouml-stats.tigris.org/documentation/quick-guide-0.26/

Chapter 16, Top Level Model Element Reference is an overview of the model elements (i.e. the UML en-
tities that can be placed on diagrams) within ArgoUML. The following chapters (Chapter 17, Use Case
Diagram Model Element Reference through Chapter 24, Profiles) describe, the model elements that can
be created through each ArgoUML diagram, and their properties, as well as some standard model ele-
ments provided with the system.

A complete Glossary is provided. Appendix A, Supplementary Material for the Case Study provides ma-
terial to supplement the case study used throughout the document. Appendix B, UML resources and Ap-
pendix C, UML Conforming CASE Tools identify background information on UML and UML CASE
tools. Appendix D, The C++ Module explains the use of the C++ module. Appendix F, Open Publica-
tion License is a copy of the GNU Free Documentation License.

1.3.3. User Feedback
Please tell us what you think about this User Manual. Your comments will help us make improvements.
Email your thoughts to the ArgoUML Users Mailing List [mailto:users@argouml.tigris.org]. In case you
would like to add to the missing chapters you should contact the ArgoUML Developer Mailing List
[mailto:dev@argouml.tigris.org] to check whether anyone else is working on this part. You can sub-
scribe to either of the mailing lists via the ArgoUML web site [http://argouml.tigris.org].

1.4. Assumptions
This release of the manual assumes the reader is very familiar with UML already. This is reflected in the
sparseness of the description of UML concepts in the tutorial.

The case study is described, but not yet fully realized throughout the tutorial. This will be achieved in
future releases of the manual.

Introduction

4

mailto:users@argouml.tigris.org
mailto:dev@argouml.tigris.org
http://argouml.tigris.org

Part 1. Tutorial

Chapter 2. Introduction (being written)
This tutorial will be taking you through a tour of the use of ArgoUML to model a system.

First you will become familiar with the feel of the product and then we will go through an analysis and
development process for a test case. Not every nook and cranny of the product will be demonstrated.
That degree of detail is given in the reference materials to be found in subsequent parts of this docu-
ment.

The state of the model at the end of key sections will be available in .zargo files. These are available so
that you can play with various aspects not specifically covered in this tutorial and then restore yourself
back to the proper state of the model in your work area. These .zargo files will be identified at the end of
the sections whose work they represent.

An ATM (automated teller machine) project has been chosen as a case study to demonstrate the various
aspects of modeling that ArgoUML offers. In subsequent sections we are going to develop the ATM ex-
ample into a complete description in UML. The tutorial, however, will only walk you through part of it.

At this point you should create a directory to contain your project. Name the directory anything you feel
is consistent with the rest of your file system. You should name the contents and any subdirectories as
directed for reasons that will become apparent.

The case study will be an ATM system. Your company is FlyByNight Industries. You are going to play
two roles. That of the Project Manager and that of the Designer Analyst.

We are not going to build a physical ATM, of course. The product that we will build as a case study will
be an ATM simulator to be used for testing the design of a physical ATM.

How your company arranges its work into projects is usually determined as much by politics as anything
else and is, therefore, out of the scope of this document. We will go into how you structure the project it-
self once one has been defined.

6

Chapter 3. UML Based OOA&D
In this chapter, we look at how UML as a notation is used within OOA&D.

3.1. Background to UML
Object orientation as a concept has been around since the 1960's, and as a design concept since 1972.
However it was in the 1980's that it started to develop as a credible alternative to a functional approach
in analysis and design. We can identify a number of drivers.

1. The emergence of mainstream OO programming languages like SmallTalk and particularly C++.
C++ was a pragmatic OO language derived from C, widely used because of its association with
Unix.

2. The development of powerful workstations, and with them the emergence into the mainstream of
windowing operating user environments. Graphical User Interfaces (GUI) have an inherent object
structure.

3. A number of very public major project failures, suggesting that current approaches were not satis-
factory.

A number of researchers proposed OOA&D processes, and with them notations. Those that achieved
some success include Coad-Yourdon, Booch, Rumbaugh OMT, OOSE/Jacobson, Shlaer-Mellor, ROOM
(for real-time design) and the hybrid Jackson Structured Development.

During the early 1990's it became clear that these approaches had many good ideas, often very similar.
A major stumbling block was the diversity of notation, meaning engineers tended to be familiar with one
OOA&D methodology, rather than the approach in general.

UML was conceived as a common notation, that would be in the interests of all involved. The original
standard was driven by Rational Software (www.rational.com [http://www.rational.com], in which three
of the key researchers in the field (Booch, Jacobson and Rumbaugh were involved). They produced doc-
uments describing UML v0.9 and v0.91 during 1996. The effort was taken industry wide through the
Object Management Group (OMG), already well known for the CORBA standard. A first proposal, 1.0
was published in early 1997, with an improved version 1.1 approved that autumn.

ArgoUML is based on UML v1.4, which was adopted by OMG in September 2001. The current official
version, supported by ArgoUML, is UML v1.4.2 dated July 2004, adopted as ISO/IEC 19501. The latest
UML version is UML v2.1.2, from November 2007.

3.2. UML Based Processes for OOA&D
It is important to understand that UML is a notation for OOA&D. It does not prescribe any particular
process. Whatever process is adopted, it must take the system being constructed through a number of
phases.

1. Requirements Capture. This is where we identify the requirements for the system, using the lan-
guage of the problem domain. In other words we describe the problem in the “customer's” terms.

2. Analysis. We take the requirements and start to recast them in the language of a putative solu-
tion—the solution domain. At this stage, although thinking in terms of a solution, we ensure we
keep things at a high level, away from concrete details of a specific solution—what is known as ab-

7

http://www.rational.com

straction.

3. Design. We take the specification from the Analysis phase and construct the solution in full detail.
We are moving from abstraction of the problem to its realization in concrete terms.

4. Build Phase. We take the actual design and write it in a real programming language. This includes
not just the programming, but the testing that the program meets the requirements (verification),
testing that the program actually solves the customer's problem (validation) and writing all user
documentation.

3.2.1. Types of Process
In this section we look at the two main types of process in use for software engineering. There are oth-
ers, but they are less widely used.

In recent years there has also been a move to reduce the effort required in developing software. This has
led to the development of a number of lightweight variants of processes (often known as agile comput-
ing or extreme programming) that are suited to small teams of engineers.

3.2.1.1. The Waterfall Process

In this process, each stage of the process—requirements, analysis, design and build (code and test) is
completed before the next one starts. This is illustrated in Figure 3.1, “ The Waterfall Process ”.

Figure 3.1. The Waterfall Process

This is a very satisfactory process where requirements are well designed and not expected to change, for
example automating a well proven manual system.

The weaknesses of this approach show with less well defined problems. Invariably some of the uncer-
tainties in the requirements will not be clarified until well into the analysis and design, or even code

UML Based OOA&D

8

phases, requiring backtracking to redo work.

The worst aspect of this, is that working code does not become available until near the end of the
project, and very often it is only at this stage that problems with the original requirements (for example
with the user interface) become apparent.

This is exacerbated, by each successive stage requiring more effort, than the previous, so that the costs
of late problem discovery are hugely expensive. This is illustrated by the pyramid in Figure 3.2, “ Effort
Involved in the Steps of the Waterfall Process ”.

Figure 3.2. Effort Involved in the Steps of the Waterfall Process

The waterfall process is still probably the dominant design process. However because of its limitations it
is increasingly replaced by iterative processes, particularly for projects where the requirements are not
well defined.

3.2.1.2. Iterative Development Processes

In recent years a new approach has been used, which aims to get at least part of the code up and running
as quickly as possible, to bring discovery of problems forward in the development cycle.

These processes use a series of “mini-waterfalls”, defining a few requirements (the most important) first,
taking them through analysis, design and build to get an early version of the product, with limited func-
tionality, related to the most important requirements. Feedback from this can then be used to refine the
requirements, spot problems etc before more work is done.

The process is then repeated for further requirements to construct a product with a step up in functional-
ity. Again further feedback can be applied to the requirements.

The process is repeated, until eventually all requirements have been implemented and the product is
complete. It is this iteration that gives these processes their name. Figure 3.3, “ Effort Involved in the
Steps of an Iterative Process ” shows how this process compares to the pyramid structure of the Water-
fall Process.

UML Based OOA&D

9

Figure 3.3. Effort Involved in the Steps of an Iterative Process

The growth in popularity of iterative processes is closely tied to the growth of OOA&D. It is the clean
encapsulation of objects that allows a part of a system to be built with stubs for the remaining code
clearly defined.

3.2.1.2.1. The Rational Unified Process

Perhaps the best known Iterative Process is the Rational Unified Process (RUP) from Rational Software
(www.rational.com [http://www.rational.com]).

This process recognizes that our pyramid view of even slices of the waterfall is not realistic. In practice
the early iterations tend to be heavy on the requirements end of things (you need to define a reasonable
amount even to get started), while the later iterations have more of their effort in the design and build
areas.

RUP recognizes that iterations can be grouped into a number of phases according to their stage in the
overall project. Each phase may have one or more iterations.

• In the inception phase iterations tend to be heavy on the requirements/analysis end, while any build
activity may be limited to emulation of the design within a CASE tool.

• In the elaboration phase iterations tend to be completing the specification of the requirements, and
starting to focus on the analysis and design, and possibly the first real built code.

• In the construction phase iterations the requirements and analysis are more or less completed, and
the effort is mostly in design and build.

• Finally, in the deployment phase iterations are largely about build activity, and in particular the test-
ing of the software.

UML Based OOA&D

10

http://www.rational.com

Note

It should be clear that testing is an integral part of all phases. Even in the early phases the
requirements and design should be tested, and this is facilitated by a good CASE tool.

We shall use an iterative process in this manual, that is loosely based on the RUP.

3.2.1.2.2. Iteration Size

A good rule of thumb is that an iteration should take between six and ten weeks for typical commercial
projects. Any longer and you have probably bitten off too many requirements to do in one go. You also
lose focus on getting the next working iteration completed. Any shorter and you probably haven't got
enough requirements to make a significant advance. In this case the additional overhead associated with
an interation will become a problem.

The total number of iterations depends on the size of project. Take the estimated time (working out/
guessing that is a whole subject on its own), and divide it into 8 week chunks. Experience seems to sug-
gest that the iterations will divide in the ratio of around 1:2:3:3 into RUP style inception, elaboration,
construction and deployment phases. A project that has great vagueness in its specification (some ad-
vanced research projects for example) will tend to be heavier on the early phases.

When building a product to contract for a customer the end point is well defined. However when devel-
oping a new product for the market place, a strategy that can be used is to decide the product launch
date, and hence the end date for completion of engineering (some time before). The time is then divided
into iterations, and as much of the product as can be built in that time developed. The iterative process is
very effective where time to market is more important than the exact functionality.

3.2.1.3. Recursive Development Processes

Very few software systems are conceived as monolithic artifacts. They are broken down into subsys-
tems, modules etc.

Software processes are the same, with early parts of the process defining a top level structure, and the
process reapplying to parts of the structure in turn to define ever greater details.

For example the initial design of a telephone system might identify objects to

i. Handle the phone lines,

ii. Process the calls,

iii. Manage the system and,

iv. Bill the customer.

The software process can then be reapplied to each of these four components to identify their design.

OOA&D with its clean boundaries to objects, naturally supports this approach. Such OOA&D with re-
cursive development is sometimes abbreviated as OOA&D/RD.

Recursive development can be applied equally well to waterfall or iterative processes. It is not an altern-
ative to them.

3.2.2. A Development Process for This Tutorial

UML Based OOA&D

11

For the purpose of this tutorial we will use a stripped down iterative process with recursive develop-
ment, loosely akin to RUP. The case study will take us through the first iteration, although at the end of
the tutorial section of the manual we will look at how the project will develop to completion.

Within that first iteration, we will tackle each of the requirements capture, analysis, design and build
activities in turn. Not all parts of the process are based on UML or ArgoUML. We will look at what oth-
er material is needed outside.

Within this process we will have an opportunity to see the various UML diagrams in use. The full range
of UML diagrams and how they are supported is described in the reference manual (see Section 16.8, “
Diagram ”).

3.2.2.1. Requirements Capture

Our requirements capture will use the UML concept of Use Cases. Starting with a Vision Document we
will see how Use Cases can be developed to describe all aspects of the system's behavior in the problem
domain.

3.2.2.2. Analysis

During the analysis stage, we will introduce the UML concept of classes to allow us to build a top level
view of the objects that will make up the solution—sometimes known as a concept diagram.

We will introduce the UML sequence diagram and statechart diagram to capture requirements for the
overall behavior of the system.

Finally we will take the Use Cases from the requirements capture stage, and recast them in the language
of the solution domain. This will illustrate the UML ideas of stereotyping and realization.

3.2.2.3. Design

We use the UML package diagram to organize the components of the project. We then revisit the class
diagram, sequence diagram and statechart diagram, to show how they can be used recursively to design
the complete solution.

During this part of the process, we need to develop our system architecture, to define how all the com-
ponents will fit together and operate.

Although not strictly part of our process, we'll look at how the UML collaboration diagram can be used
as an alternative to, or to complement the sequence diagram. Similarly we will look at the UML activity
diagram as an alternative or complement to the statechart diagram.

Finally we shall use the UML deployment diagram to specify how the system will actually be realized.

3.2.2.4. Build

UML is not really concerned with code writing. However at this stage we will show how ArgoUML can
be used for code generation.

We will also look at how the UML Use Case Diagram and Use Case Specification are invaluable tools
for a test program.

3.3. Why ArgoUML is Different
In the introduction, we listed the four key things that make ArgoUML different: i) it makes use of ideas
from cognitive psychology, ii) it is based on open standards; iii) it is 100% pure Java; and iv) it is an

UML Based OOA&D

12

open source project.

i.
ii.
iii.
iv.

3.3.1. Cognitive Psychology

3.3.1.1. Theory

ArgoUML is particularly inspired by three theories within cognitive psychology: i) reflection-in-action,
ii) opportunistic design iii) and comprehension and problem solving.

1.
2.
3.

• Reflection-in-Action

This theory observes that designers of complex systems do not conceive a design fully-formed. In-
stead, they must construct a partial design, evaluate, reflect on, and revise it, until they are ready to
extend it further.

As developers work hands-on with the design, their mental model of the problem situation improves,
hence improving their design.

• Opportunistic Design

A theory within cognitive psychology suggesting that although designers plan and describe their
work in an ordered, hierarchical fashion, in reality, they choose successive tasks based on the criteria
of cognitive cost.

Simply stated, designers do not follow even their own plans in order, but choose steps that are men-
tally least expensive among alternatives.

• Comprehension and Problem Solving

A design visualization theory within cognitive psychology. The theory notes that designers must
bridge a gap between their mental model of the problem or situation and the formal model of a solu-
tion or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposition, state transitions, control
flow, and data flow. These allow the programmer to better identify elements and relationships
in the problem and solution and thus more readily create a mapping between their situation
models and working system models.

2. Familiar aspects of a situation model, which improve designers' abilities to formulate solutions.

3.3.1.2. Practical Application in ArgoUML

ArgoUML implements these theories using a number of techniques.

UML Based OOA&D

13

1. The design of a user interface which allows the user to view the design from a number of different
perspectives, and allows the user to achieve goals through a number of alternative routes.

2. The the use of processes running in parallel with the design tool, evaluating the current design
against models of how “best practice” design might work. These processes are known as design
critics.

3. The use of to-do lists to convey suggestions from the design critics to the user, as well as allowing
the user to record areas for future action.

4. The use of checklists, to guide the user through a complex process.

3.3.2. Open Standards
UML is itself an open standard. ArgoUML throughout has tried to use open standards for all its inter-
faces.

The key advantage of adherence to open standards is that it permits easy inter-working between applica-
tions, and the ability to move from one application to another as necessary.

3.3.2.1. XML Metadata Interchange (XMI)

XML Metadata Interchange (XMI) is the standard for saving the meta-data that make up a particular
UML model. In principle this will allow you to take the model you have created in ArgoUML and im-
port it into another tool.

This clearly has advantages in allowing UML to meet its goal of being a standard for communication
between designers.

The reality is not quite this good. Prior to UML 2.0 the XMI file includes no information about the
graphical representation of the models, so diagram layout is lost. ArgoUML gets round this by saving
graphical information separate from the model (see Section 3.4.3.1, “ Loading and Saving ”).

3.3.2.2. Graphics Formats - EPS, GIF, PGML, PNG, PS, SVG

• Encapsulated PostScript (EPS) [http://en.wikipedia.org/wiki/Encapsulated_PostScript] file is a Post-
Script file which satisfies additional restrictions. These restrictions are intended to make it easier for
software to embed an EPS file within another PostScript document.

• Graphics Interchange Format (GIF) [http://en.wikipedia.org/wiki/GIF] uses lossless compression,
and preserves sharp edges well, which makes it well-suited for ArgoUML. The GIF format used to
be a patent encumbered format, but all the patents have currently expired.

• Precision Graphics Markup Language (PGML) [http://en.wikipedia.org/wiki/PGML] is an XML-
based language for representing vector graphics. It was a W3C draft, but was not adopted as a re-
commendation. PGML and VML, another XML-based vector graphics language, were later joined
and improved upon to create SVG (see below).

• Portable Network Graphics (PNG) [http://en.wikipedia.org/wiki/Portable_Network_Graphics] is an
ISO/IEC standard (15948:2004) and is also a W3C recommendation. PNG is a bitmap image format
that employs lossless data compression. PNG was created to both improve upon and replace the GIF
format with an image file format that does not require a patent license to use. PNG is officially pro-
nounced "ping" but it is often just spelled out — probably to avoid confusion with the network tool
ping. PNG is supported by the libpng reference library, a platform-independent library that contains
C functions for handling PNG images.

UML Based OOA&D

14

http://en.wikipedia.org/wiki/Encapsulated_PostScript
http://en.wikipedia.org/wiki/GIF
http://en.wikipedia.org/wiki/PGML
http://en.wikipedia.org/wiki/Portable_Network_Graphics

• PostScript (PS) [http://en.wikipedia.org/wiki/PostScript] is a page description language and pro-
gramming language used primarily in the electronic and desktop publishing areas.

• Scalable Vector Graphics (SVG) [http://en.wikipedia.org/wiki/Scalable_Vector_Graphics] is an
XML markup language for describing two-dimensional vector graphics, both static and animated,
and either declarative or scripted. It is an open standard created by the World Wide Web Consorti-
um. The use of SVG on the web is in its infancy. There is a great deal of inertia due to the long-time
use of pure raster formats and other formats like Macromedia Flash or Java applets, but also browser
support is still uneven, with native support in Opera, Safari and Firefox, but Internet Explorer re-
quires a plugin. See PGML above.

3.3.2.3. Object Constraint Language (OCL)

Object Constraint Language (OCL) [http://en.wikipedia.org/wiki/Object_Constraint_Language] is a de-
clarative language for describing rules that apply to UML models. It was developed at IBM and is now
part of the UML standard. Initially OCL was only a formal specification language extension to UML.
OCL may now be used with any Meta-Object Facility (MOF) compliant metamodel, including UML.
The Object Constraint Language is a precise text language that provides constraint and object query ex-
pressions on any MOF model or metamodel that cannot otherwise be expressed by diagrammatic nota-
tion.

3.3.3. 100% Pure Java
Java was conceived as an interpreted language. It doesn't have a compiler to produce code for any par-
ticular target machine. It compiles code for its own target, the Java Virtual Machine (JVM).

Writing an interpreter for a JVM is much easier than writing a compiler, and such machines are now in-
corporated into almost every Web Browser. As a result most machines can run Java, with no further
work.

(In case you wonder why all languages aren't like this, it is because interpreted languages tend to be
slower than compiled languages. However with the high performance of modern PCs, the trade-off for
portability is worthwhile for many applications. Furthermore modern multi-level caches can mean that
interpreted languages, which produce denser code, may actually not be that much slower anyway.)

By choosing to write ArgoUML in pure Java, it is immediately made available to the maximum number
of users with the minimum amount of effort.

3.3.4. Open Source
ArgoUML is an open source project. That means anyone can have a free copy of the source code,
change it, use it for new purposes and so on. The only (major) obligation is that you pass your code on
in the same way to others. The precise nature of what you can and can't do varies from project to project,
but the principle is the same.

The advantage is that a small project like ArgoUML suddenly is open to a lot of additional help from
those who can chip in their ideas for how the program might be improved. At any one time there may be
10, 15, 20 or more people making significant contributions to ArgoUML. To do that commercially
would cost $1m+ per year.

Its not just a spirit of pure altruism. Contributing is a way of learning “hands-on” about leading edge
software. Its a way of getting a lot of visibility (over 1,125,000 people had downloaded ArgoUML by
the end of 2005). That's a lot of good experience on a résumé and a lot of potential employers seeing
you!

And its great for the ego!

UML Based OOA&D

15

http://en.wikipedia.org/wiki/PostScript
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Object_Constraint_Language

Open Source doesn't preclude making money. Gentleware www.gentleware.com
[http://www.gentleware.com] sell a commercial version of ArgoUML, Poseidon. Their value proposition
is not a piece of private code. Its the commercial polish and support that take risk out of using
ArgoUML in a commercial development, allowing customers to take advantage of ArgoUML's leading
edge technology.

3.4. ArgoUML Basics
The aim of this section is to get you started with ArgoUML. It takes you through obtaining the code and
getting it running.

3.4.1. Getting Started

3.4.1.1. System Requirements

Since ArgoUML is written in 100% pure Java, it should run on any machine with Java installed. Java
version 5 or later is needed. You may have this in place, but if not the latest version can be downloaded
free from www.java.com [http://www.java.com]. Note that you only need the Java Runtime Environ-
ment (JRE), there is no need to download the whole Java Development Kit (JDK).

ArgoUML needs a reasonable amount of computing resource. Any PC which is able to run an operating
system with a graphical user interface will suffice. Download the code from Download section of the
project website argouml.tigris.org [http://argouml.tigris.org]. Choose the version that suits your needs as
described in the section below.

3.4.1.2. Downloading Options

You have three options for obtaining ArgoUML.

1. Run ArgoUML directly from the Web Site using Java Web Start. This is the easiest option.

2. Download the Windows installer program. This is the right option if you are on Windows and in-
tend using ArgoUML regularly.

3. Download the binary executable code. Unless you are on Windows, this is the right option if you
intend using ArgoUML regularly and is not that difficult.

4. Download the source code using Subversion and build your own version. Choose this option if you
want to look at the internal workings of ArgoUML, or want to join in as a developer. This option
does require the whole JDK (see Section 3.4.1.1, “ System Requirements ”).

All four options are freely available through the project web site, argouml.tigris.org
[http://argouml.tigris.org].

3.4.1.3. ArgoUML Using Java Web Start ArgoUML mit Java Web
Start aufrufen

There are two steps to this.

1. Install Java Web Start on your machine. This is available from java.sun.com/products/javawebstart
[http://java.sun.com/products/javawebstart], or via the Java Web Start link on the ArgoUML
home page [http://argouml.tigris.org].

UML Based OOA&D

16

http://www.gentleware.com
http://www.java.com
http://argouml.tigris.org
http://argouml.tigris.org
http://java.sun.com/products/javawebstart
http://argouml.tigris.org

2. Click on the Launch latest stable release link on the ArgoUML home page
[http://argouml.tigris.org].

Java Web Start will download ArgoUML, cache it and start it the first time, then on subsequent starts,
check if ArgoUML is updated and only download any updated parts and then start it. The ArgoUML
home page [http://argouml.tigris.org] also provides details on starting ArgoUML from the Java Web
Start console.

3.4.1.4. Using the Windows installer

If you choose to download and install using the Windows installer, you will have a choice of download-
ing the latest stable version of the code (which will be more reliable, but not have all the latest features),
or the current version (which will be less reliable, but have more features). Choose according to your
own situation.

The install wizard gives you the opportunity to install the latest "JRE" (Java Runtime Environment).
There is no need to select this if you already have a Sun Java installed, version 5 or better.

3.4.1.5. Downloading the Binary Executable

If you choose to download the binary executable, you will have a choice of downloading the latest stable
version of the code (which will be more reliable, but not have all the latest features), or the current ver-
sion (which will be less reliable, but have more features). Choose according to your own situation.

ArgoUML comes in .zip or tar.gz flavors. Choose the former if you are a Microsoft Windows user,
and the latter if you are running some flavor of Unix. There is also a Mac OS X version with
.app.tgz extension. Unpacking is as follows.

• On Windows. Unzip the .zip file with WinZip, or if your version of Windows supports it, copy the
files out of the compressed folder and put them into a directory of your choosing.

• On Unix. Use GNU tar to unzip and break out the files to a directory of your choice
tar zxvf <file>.tar.gz. If you have an older version of tar, the z option may not be avail-
able, so use gunzip < file.tar.gz | tar xvf -.

You should have a directory containing a number of .jar files and a README.txt.

3.4.1.6. Problems Downloading and Installing

If you get completely stuck and you have no local assistance, try the web site, particularly the FAQ
[http://argouml.tigris.org/faqs/users.html]. If this still doesn't solve the problem, try the ArgoUML users'
mailing list.

You can subscribe through the mailing lists section of the project web site argouml.tigris.org
[http://argouml.tigris.org], or send an empty message to users@argouml.org
[mailto:users@argouml.org] with the subject line subscribe.

You can then send your problem to users@argouml.org [mailto:users@argouml.org] and see how other
users are able to help.

The users' mailing list is an excellent introduction to the live activity of the project. If you want to get
further involved there are additional mailing lists that cover the development of the product and issues in
the current and future releases.

UML Based OOA&D

17

http://argouml.tigris.org
http://argouml.tigris.org
http://argouml.tigris.org/faqs/users.html
http://argouml.tigris.org
mailto:users@argouml.org
mailto:users@argouml.org

3.4.1.7. Running ArgoUML

To run ArgoUML depends on whether you use Microsoft Windows or some flavor of Unix.

• On Windows. If you used the installer, starting ArgoUML is a matter of clicking on its icon. In case
you installed the binairy executable, read on: Start an MSDOS shell window by e.g. using Start/Run
with “command” in the text window. In the window change to the directory holding your ArgoUML
files and type java -jar argouml.jar. This method has the advantage that progress and de-
bugging information is visible in the DOS window. Alternatively use the supplied batch file (.bat), or
create one containing the above command, with a shortcut to it on the desktop. The batch file should
end with a "pause" statement in case any debugging information is created during a run. On some
systems, simply (double) clicking on the argouml.jar file works. On others doing so initiates a
zip utility. Refer to your operating system instructions or help facility to determine how to configure
this.

• On Unix. Start a shell window and type java -jar argouml.jar

3.4.1.8. Problems Running ArgoUML

It's unusual to encounter problems if you have made a successful download. If you can't solve the prob-
lem. Try the users' mailing list (see Section 3.4.1.6, “ Problems Downloading and Installing ”).

• Wrong JRE. The most common issue is not having a new enough Java Runtime Environment (it
must be version 5 or later).

• Wrong language. If the product came up in a language you can't read or just don't want, go to the
second leftmost menu item in the menu bar at the top of the screen. Select the bottom most menu
entry in the drop down. Figure 3.5, “ Setting Language in the Appearance Pane ” shows this in Rus-
sian. Then click on the second tab from the bottom in the column of tabs on the left. Drop down the
list as shown in Figure 3.5, “ Setting Language in the Appearance Pane ” and select a language. Note
that the languages are listed in themselves. The language shown as being selected is German in
which the word for “German” is “Deutsch”. You will have to exit ArgoUML and restart it for the
change to take effect. Use the X button at the upper right.

Figure 3.4. Finding the Settings Wizard

UML Based OOA&D

18

Figure 3.5. Setting Language in the Appearance Pane

3.4.2. The ArgoUML User Interface
Before beginning the Case Study, you need to become familiar with the user interface. Start by reading
the introduction to the User Interface Reference. See Chapter 8, Introduction . You should also read the

UML Based OOA&D

19

Section 8.2, “ General Mouse Behavior in ArgoUML ”

As you go through this tutorial you will be told what to do, and when to do it but how to do it will often
be left to the User Interface Reference. It is not necessary at this point to read all of the Reference, but
you should leaf through enough of it to become familiar with how to find things in it. Every attempt will
be made to direct you to the appropriate part of the Reference at those points in the tutorial where they
apply.

Figure 3.6, “ Initial ArgoUML window ”, shows the main ArgoUML window as it appears when
ArgoUML is first entered.

Figure 3.6. Initial ArgoUML window

Grab the vertical divider bars and move them back and forth. Grab the horizontal divider bar and move
it up and down. Play around a little with the little arrows at the left or top of the divider bars. See Sec-
tion 8.3, “ General Information About Panes ”.

3.4.2.1. The Menu Bar and Toolbars

The menu bar and toolbars give access to all the main features of ArgoUML. As is conventional, menu
options and toolbar options that are not available (disabled) are grayed out and menu items that invoke a
dialog box are followed by an ellipsis (...). At this time you should read Chapter 9, The Toolbar and
Chapter 10, The Menu bar .

File menu. The standard file menu entries present no surprises and we will just use them when needed
without first showing how they work. A number of other actions are available that are peculiar to
ArgoUML and we will go over them here.

1. File=>Revert to Saved. This has the same effect as File=>Open Project selecting the current
project.

2. Export/Import. Select the project line at the top of the Explorer. It should say "untitledModel" un-
less you have changed it. Perform a File=>Export XMI action using "DeleteThis" for an output

UML Based OOA&D

20

name in the file chooser dialog. Select the "Properties" tab in the "Details Pane" and change the
name to something else, anything will do. Perform a File=>Import XMI action. It will ask you
whether you want to save the changes you have just made. Click on "No" and then in the file
choosed that comes up select the "DeleteThis.xmi" file that you just wrote out. Observe that the
name of the model has reverted back to what you had saved.

3. File=>Import Sources. We will cover this later. You can't test it now unless you have some Java
source code of your own handy.

4. File=>Export (All) Graphics. In the Explorer Pane select one of the diagrams. Either "Class Dia-
gram 1" or "Use Case Diagram 1" (assuming you haven't renamed or deleted them). Perform a
File=>Export Graphics action. When the file chooser opens it defaults to the last name you saved
something to (even from a project no longer open). The file chooser allows you to select from a
number of formats. Drop down the "Files of type" combobox and observe the choices. Cancel out
as there is nothing useful to save. Perform a File=>Export All Graphics action. Notice that this
time you can't specify a file name and you can't select a file format. ArgoUML will allow you only
to select an output directory. It will then create a file for each of your diagrams using the diagram
name for the file name and an extension determined by the default graphics format. Actually, al-
though you can't select file names in the browser panel, you can type one into the edit box. But, if
you do that, nothing at all will happen. You will learn more about the default graphics format when
we get to the Edit menu.

5. File=>Notation. We are going to get a little ahead of ourselves here and do a little class diagram
work so you can see what notation is all about. In the Explorer Pane select or create a class dia-
gram. See Section 10.6, “ The Create Menu ” and Section 12.4.3, “ Drawing Tools ”. Create a class
in the diagram. Go to the Detail Pane and create an attribute in the class. See Section 18.6.2, “ Class
Property Toolbar ”. In the Properties tab of the Detail Pane change the multiplicity to "1..*". Now
go the the File Menu and select Notation. Go back and forth between UML and Java observing the
changes in the display in the Edit Pane.

6. File=>Project Properties. In the Project Properties dialog it is possible to configure the project
specific settings. It contains the tabs for User, Profiles, Notations and Diagram Appearance. For in-
stance, to change the Notation language in the Project Properties dialog, click on File=>Project
Properties and select the Notations tab. Set the Notation Language to UML1.4. Turn on all of the
options and click Apply. Then turn off all of the options and click Apply observing the changes in
the diagram. Set the Default Shadow Width to 8 and click Apply. Notice that nothing happens. This
is because you are not setting the Shadow Width, but its default. The next time you create a class in
a diagram, this new shadow value will apply.

Edit menu. The edit menu does not look like what you are used to in other products. There are no "Cut",
"Copy", or "Paste" actions. All of the choices are peculiar to ArgoUML so we are going to cover all of
them in detail.

1. Edit=>Select.

• Select a class diagram in the Explorer Pane. If there is none there create one using Cre-
ate=>New Class Diagram. Create three classes using the class tool described in the User Inter-
face Reference section on Class Diagram Specific Tools. Double click on it and then click in
the Edit Pane for the class diagram in three different locations.

• Undo the current mode by clicking on the "Select" tool. See Section 12.4.1, “ Layout Tools ”.
This allows you to do things in the Edit Pane other than creating classes.

• Open everything in the Explorer Pane tree, so that all elements are visible. Now activate the
first menu item: Edit=>Select=>All. Obviously, this selects all elements, but only those on the
current diagram - elements only present on another diagram are not selected this way. This

UML Based OOA&D

21

function is e.g. usefull if you have a big diagram, and need to shift everything to add some more
elements at the left or top of the diagram.

• Each of the classes in the diagram has three vertically spaced sections. Double click in the top
section of each class and enter a name for the class then hit the enter key. Just name the classes
"A", "B", and "C". Select class A, then class B, and then class C either in the Edit Pane or in the
Explorer Pane.

• Now do an Edit=>Select=>Navigate Back. Class B should now be selected. Do another
Edit=>Select=>Navigate Back. Class A should now be selected. Finally, do an
Edit=>Select=>Navigate Forward. Class B should be selected again.

• Do an Edit=>Select=>Invert Selection. Classes A and C should now be selected. Do another
Edit=>Select=>Invert Selection. Class B should be selected again.

• Do an Edit=>Remove From Diagram. Notice that class B is gone from the diagram but still ex-
ists in the Explorer Pane.

• Select class B in the Explorer Pane, right click on it and choose "Add to Diagram". Move the
cursor back onto the Edit Pane and left click on some part of the diagram where you think it
will fit. You should be pretty much right back where you were before you removed it from the
diagram. Do an Edit=>Delete From Model. Now class B should be gone both from the diagram
and from the Explorer Pane.

2. Edit=>Configure Perspectives. Read Section 11.5, “ Configuring Perspectives ”. We aren't going
to go into this at this point as it needs much larger projects to be displayed than we have available
at this point.

3.

Figure 3.7. Initial ArgoUML window

UML Based OOA&D

22

Edit=>Settings=>Preferences. Enter Help=>About ArgoUML. Look at the panel in the "splash"
tab. This is known as the Splash Panel. Go to Edit=>Settings=>Preferences. Turn off the "Show
Splash Panel" check button. Exit from ArgoUML and restart it. Note that the splash panel does not
show during the load.

4. Edit=>Settings=>Environment. Do File=>Export Graphics and observe the file extension that
shows at the bottom of the file chooser dialog in the "Files of type" combobox. Go to the
Edit=>Settings=>Environment editor and pick some other value for Default graphics format. Click
"Apply" and then "OK". Go back to the File=>Export Graphics dialog and notice that the new
format is now the default.

5. Edit=>Settings=>User. Enter your name and email address.

6. Edit=>Settings=>Appearance. Change the "Look and Feel:" to Metal." Note that the "Metal
Theme:" editor becomes anabled. Change the theme to "Very Large Fonts." Click on "Apply" and
then "OK." Notice that nothing has happened. Exit from ArgoUML and reopen it. The display
should be markedly different. You can change it back or leave it that way as you prefer.

7. Edit=>Settings=>Profiles. Look in the Explorer Pane under "Profile Configuration". The only
folder by default is the UML 1.4 profile. Now go to Edit=>Settings=>Profiles and look at the field
"Default Profiles". It only contains the same UML 1.4 profile. Add the Java profile to it, and press
OK.

UML Based OOA&D

23

If you now look at the Explorer Pane, nothing has changed, since you adapted the default setting,
not the project setting. Press File=>New and check out the profiles in the Explorer Pane: it now
shows both the UML 1.4 profile and the Java profile.

Many examples in this manual presume that the Java profile is available,so you may best leave it
enabled.

8. Edit=>Settings=>Configure Shortcuts. (To be written).

9. Edit=>Settings=>Notations. We played around with this earlier with the File=>Notation and
File=>Project Properties menu items. Start another copy of ArgoUML resize each copy so they
can be seen at the same time next to each other. On one of them set the Notation Language to UML
(the actual choice will have a version number with it). On the other set the Notation Language to
Java.

On both of them do the following. Turn all of the check boxes on. Do a File=>New, create a class
in a class diagram. Double click in the attributes section to create an attribute. Double click in the
operation section to create a method. Observe the difference in the displays.

10. Edit=>Settings=>Diagram Appearance. This settings makes it possible to change the font and
font-size used in the diagrams. Hence this setting does not influence the font used in the UI of
ArgoUML itself. The default font for ArgoUML is Dialog.

11. Edit=>Settings=>Modules. This shows the currently loaded modules. We are not going to mess
with it in this version of the tutorial.

View menu. This allows you to switch between diagrams, find model elements in the model, zoom in a
diagram, adjust the grid, toggle page break display, and show an XML representation of the project. Do
a File=>New to get back to a known point. Create an example of each diagram type not already in the
Explorer Pane. Click on the (+) sign widgets in the Explorer Pane to expand the tree nodes. Select the
class diagram and give it a name.

1. View=>Goto Diagram brings up a Go To Diagram panel. Select the class diagram entry in this
panel and click on the "Go to Selection" button. There should be 0 nodes and 0 edges in the de-
scription column. Click on the "Close" button. In the Details Pane (Properties tab) enter the name
as "Blort". Create two classes in the class diagram and go back to View=>Goto Diagram. You
should now see 2 nodes and 0 edges shown. Click on the "Close" button again and link the classes
with one of the "line" items like association or generalization. Go back to View=>Goto Diagram
and you should see 2 nodes and 1 edge(s). Click on the "Close" button again and create a third
class. Run the mouse over the icons in the toolbar until you find the one with the tooltip "New As-
sociation Class." Click on this tool and then connect the new class to one of the others. Having
clicked on the "New Association Class" tool move the mouse over the new class. Press and hold
down button 1. Move the mouse over one of the other classes and release button 1. Go back to
View=>Goto Diagram and you should see 3 nodes and 2 edge(s). Even though it is a class and has
a two dimensional representation, it counts as an edge not a node. Select other entries in this panel
and click on the "Go to Selection" button in the Go To Diagram panel. Observe the changes in the
Explorer Panel.

2. View=>Find. At this point you should have three normal classes and an association class in the Ex-
plorer Pane. Name them "AA", "AB", "B", and "C". Perform a View=>Find operation. Click on the
"Find" button. Notice that an "* in *" tab is created below. This tab should show pretty much
everything. In the "In Diagram" editor change the "*" to "B*" and click on the "Find Button" ob-
serving the contents of the new tab with "* in B*" as a tab label. You should see the three classes,
the link (such as an association), and the association class. In the Element Type drop down box se-
lect "Interface" and click on the Find button. The new tab "* in B* Inte..." should have no entries in
it as we have defined no interfaces. In the Element Type drop down box select "Class" and click on

UML Based OOA&D

24

the Find button. The new tab "* in B* Class" should have one fewer entries in it than the "* in B*"
tab. Switch back and forth between these two observing the difference. In various of these tabs se-
lect an item and click on the "Go To Selection" button observing the change in the selection shown
in the diagram and in the Explorer Pane.

3. View=>Zoom. As an exeption to a general rule the toolbar equivalent of View=>Zoom does not op-
erate in the same way as the corresponding menu item. Highlight View=>Zoom. and a submenu
will appear that contains "Zoom Out", "Zoom Reset" and "Zoom In". Click on these a few times
observing the effect on the diagram then click on the Zoom tool bar icon. This is a magnifying
glass next to a down arrow head. You should see a graduated slider bar tool. Grab the pointer in
this tool and move it up and down observing the effect on the diagram.

4. View=>Adjust Grid.

5. View=>Adjust Snap.

6. View=>Page Breaks.

7. View=>XML Dump.

Create Diagram menu. This allows you to create any one of the seven UML diagram types (class, use
case, state, activity, collaboration, deployment and sequence) supported by ArgoUML.

State and activity diagrams can only be created when a class or actor is selected, even though the relev-
ant menu entries are not grayed out if this has not been done (nothing will happen under this circum-
stance).

Arrange menu. This allows you to align, distribute and reorder model elements on a diagram and set the
layout strategy for the diagram.

Generation menu. This allows you to generate Java code for selected classes or all classes.

Critique menu. This allows you to toggle the auto-critique on and off, set the level of importance of
design issues and design goals and browse the critics available.

Tools menu. This menu is permanently grayed out unless there is some tool available in your version of
ArgoUML.

Help menu. This menu gives access to details of those who authored the system, and where additional
help may be found.

File Toolbar. This toolbar contains some of the tools from the File menu.

Edit Toolbar. This toolbar contains some of the tools from the Edit menu.

View Toolbar. This toolbar contains some of the tools from the View menu.

Create Diagram Toolbar. This toolbar contains some of the tools from the Create Diagram menu.

3.4.2.2. The Explorer Pane

At this time you should take the time to read Chapter 11, The Explorer . The Explorer Pane is funda-
mental to almost everything that you do and we will be coming back to it again and again in what fol-
lows. In fact you will recall we have had to use it already.

There is an expand or contract control in front of the package symbol for “untitledModel” in the Ex-
plorer Pane and the package symbol for “Medium” in the To-Do Pane. Click on these controls and ob-
serve that these panes are tree widgets that behave pretty much as you would expect them to. The ex-

UML Based OOA&D

25

pand or contract control is either plus (+)/minus (-) sign or knob with a right or bottom pointer depend-
ing upon the look and feel that you have chosen for an appearance.

Select alternately Class Diagram 1 and Use Case Diagram 1 observing that the detail pane changes to
track to the selected item in the Explorer. The detail pane is described in Chapter 12. It is not necessary
to read Chapter 12 at this point, but it couldn't hurt.

3.4.2.3. The Editing Pane

At this point take some time to read Chapter 12, The Editing Pane .

As we go through the Editing pane changes will sometimes occur in the Details and the To-Do panes.
Pay no attention to them for now. We will attend to them when we cover those panes.

Select "Class Diagram 1" in the Explorers Pane. The name is unimportant, if you have changed it, just
select the new name. If you have deleted it, first perform a Create=>New Class Diagram action. Click
on the "New Package" button in the Edit Pane tool bar. Click somewhere in the edit pane. In the Ex-
plorer notice that a package appears named (unnamed Package).

Double click on the "New Class" button in Edit Pane the tool bar. Click first within the package and
once outside of it. Notice that within the Explorer, two classes appear in the tree both named (unnamed
Class) one of them attached to the model node and the other attached to the (unnamed Package) node.

Click the Select button in the Edit Pane tool bar so you can do things in the Edit Pane without adding
new Classes. In the Explorer select the class that is not subordinate to the package. This selects the cor-
responding class in the diagram. Grab this class and move it into the package. Notice that in the Explorer
this class is now also subordinate to the package node.

In the diagram select the other class. Notice that in the Explorer, the selected node changes correspond-
ingly. Grab this class and move it outside of the package and watch what happens in the Explorer.

3.4.2.4. The Details Pane

At this point take some time to read Chapter 13, The Details Pane .

Note

• To-Do Item. Discuss differences with other tabs about locations of items selected. Hold
particulars for discussion of To-Do Pane.

• Properties,

• Documentation,

• Presentation,

• Source,

• Constraints,

• Stereotype,

• Tagged Values,

• Checklist.

UML Based OOA&D

26

• Remove "images/tutorial/detailsoverview.gif" from file system.

3.4.2.5. The To-Do Pane

At this point take some time to read Chapter 14, The To-Do Pane .

Note

• Describe priorities.

• Resolving items.

• Relation to ToDo Item tab in details pane.

• Remove "images/tutorial/todooverview.gif" from file system.

3.4.2.6. Drawing Diagrams

In general diagrams are drawn by using the edit pane toolbar to select the model element desired and
clicking in the diagram at the position required.

Model elements that are already in the model, but not on a diagram, may be added to a diagram by se-
lecting the model element in the explorer, using Add to Diagram from the drop down menu
(button 2) over that model element, and then clicking button 1 at the desired location on the diagram.

As well as UML model elements, the Edit pane toolbar provides for general drawing objects (rectangles,
circles, lines, polygons, curves, text) to provide supplementary information on diagrams.

3.4.2.6.1. Moving Diagram Elements

There are several ways to move diagram elements.

3.4.2.6.1.1. Using the Mouse Keys

Select the elements you want to move. By holding down the Ctrl key while selecting you can select sev-
eral elements to move at the same time.

Now hit your arrow keys. Your elements move a little with every key stroke.

If you also hold down the Shift key, they move a bit faster.

3.4.2.6.1.2. Using the Edit Pane Toolbar

Click on the broom button on the toolbar. Move your mouse to the diagram pane, right click and hold.
Now moving your mouse will align elements.

3.4.2.6.2. Arranging Elements

The menu item Arrange allows you to align or group elements.

3.4.2.7. Working with Projects

UML Based OOA&D

27

3.4.2.7.1. The Start-Up Window

Figure 3.6, “ Initial ArgoUML window ” shows the ArgoUML main window as it appears as right after
start-up

The main window's client area, below the menu and toolbar, is subdivided into four panes. Starting at
the leftmost top pane, and working around the clock, you can see the Explorer, showing a tree view of
your UML model, the Editing Pane with its toolbar, two scroll bars and gray drawing area, the Details
Pane with the ToDoItem tab selected, and the To-Do Pane with a tree view of the to do items, ranked in
various ways selected via the drop down list at the top of the pane.

Each time ArgoUML is started up without a project file as an argument, a new blank project is created.
This project contains a model called untitledModel. This model contains a blank Class Diagram,
called class diagram 1, and a blank Use Case Diagram called use case diagram 1.

The model and both empty diagrams can be seen in the explorer, which is the main tool for you to nav-
igate through your model.

Let's assume for a moment that this is the point where you want to start modeling a new purchasing sys-
tem. You want to give the name “purchasingmodel” to your model, and you want to store it in a file
called FirstProject.

3.4.2.7.2. Saving a Project - The File Menu

For now ArgoUML; saves diagrams using an earlier proposed standard, Precision Graphics Markup
Language (PGML). However it has the option to export graphical data as SVG for those who can make
use of it. When ArgoUML; supports UML 2.0, it will store diagrams using the UML 2.0 Diagram Inter-
change format.

First, let's save the model in it's current (empty and unnamed) state. On the menu bar, click on File,
then on Save Project As... as shown in Figure 3.8, “ Invoking Save Project As... ”.

Figure 3.8. Invoking Save Project As...

UML Based OOA&D

28

Please notice that the File menu contains the usual options for creating a new project, for opening an ex-
isting project, for saving a project under a new name, for printing the currently displayed diagram, for
saving the currently displayed diagram as a file, and for program Exit.

Some of these menu commands can be invoked by pressing key combinations, as indicated on the drop-
down menu. For instance, holding down the “Ctrl” key, and pressing “N”, will create a new project.

In the current version, ArgoUML can only contain one active project at a time. In addition, a project can
only contain one UML model. Since an UML model can contain an unlimited number of elements and
diagrams, this should not present any serious limitations, even for modeling quite large and complex
systems.

3.4.2.7.3. The File Chooser Dialog

But let's go back to saving our project. After clicking on the Save Project As... menu command,
we get the file chooser dialog to enter the file name we wish to use as shown in Figure 3.9, “ File
Chooser Dialog ”.

Figure 3.9. File Chooser Dialog

This is a standard Java FileChooser. Let's go over it in some detail.

The main, outstanding feature, is the scrollable folders list in the center of the dialog. By using the scroll
bar on the right, you can move up and down in the list of folders contained inside the currently selected
folder. If it is scrollable or not depends on the amount of files and folders shown and also how they are
shown. If everything fits the window is not scrollable as seen in the picture.

Double-clicking on one of the displayed folders navigates you into that folder, allowing you to quickly

UML Based OOA&D

29

navigate down into the folders hierarchy on your hard disk.

Notice that only folder names, and no file names are displayed in the scrollable area. Indeed, the dialog
is currently set up in order to show only ArgoUML project files with an extension of .zargo, as can be
seen on the lower drop-down control labeled Files of Type:.

Also notice that the currently selected folder's name is displayed in the upper drop-down control labeled
Look in:. A single click on a folder inside the scrollable area does select that folder on screen but
does not select the folder for saving.

At the top of the dialog, above the scrollable folder chooser area, there are a few more folder navigation
tools.

• The Folder drop-down control.

Clicking on the down-arrow displays a tree view of the folder hierarchy, allowing you to navigate
quickly up the hierarchy, and at the same time to quickly determine where in the hierarchy we are
currently positioned.

• The Folder-Up icon. Clicking on this icon will bring us to the parent folder of the current

folder.

• The Home Folder icon. Clicking on this icon will bring us to our home directory.

• The New Folder icon. Clicking on this icon will create a new folder called "New Folder" un-

der the current folder. After the folder is created selecting it an clicking in the name allows us to se-
lect the name of our choice.

• The Folders Presentation Icon.

OK, now we navigate to the directory where we want to save our ArgoUML project, fill in the File
name: with an appropriate name, such as “FirstProject” and click on the Save button.

You have now an active project called FirstProject, connected to the file FirstPro-
ject.zargo.

3.4.3. Output

3.4.3.1. Loading and Saving

3.4.3.1.1. Saving XMI files in ArgoUML

ArgoUML saves the diagram information in a PGML file (with extension .pgml, the model informa-
tion in an XMI file (with extension .xmi and information about the project in a file with extension
.argo. See Section 3.4.3.2.2, “ Precision Graphics Markup Language (PGML) ” and Section 3.4.3.3,
“XMI” for more about PGML and XMI respectively.

UML Based OOA&D

30

All of these are then zipped to a file with extension .zargo. You can easily extract the .xmi file from
the .zargo file using any old generic ZIP application. Give it a try and look into the magic of Argo.

Warning

Be aware that double clicking will launch a ZIP utility, if one is installed, and NOT
Argo.

3.4.3.2. Graphics and Printing

3.4.3.2.1. The Graph Editing Framework (GEF)

GEF is the software package that is the foundation of the diagrams that appear in the Editing Pane. GEF
was an integral part of ArgoUML but has been separated. Like ArgoUML it is an open source project
available via Tigris [http://www.tigris.org].

3.4.3.2.2. Precision Graphics Markup Language (PGML)

PGML is the current storage format for diagram information used in ArgoUML. In the future, PGML
will be replaced by the UML 2.0 Diagram Interchange format.

3.4.3.2.3. Applications Which Open PGML

PGML is a predecessor of SVG (see Section 3.4.3.2.5, “ Scalable Vector Graphics (SVG) ”. It was
dropped by the W3C Consortium.

Currently there are no other tools that we know of working on PGML.

3.4.3.2.4. Printing Diagrams

Select a diagram, then go to File=>Export Diagrams. You can generate GIF, PostScript, Encap-
sulated PostScript or SVG format.

3.4.3.2.5. Scalable Vector Graphics (SVG)

A World Wide Web Consortium (W3C) standard vector graphics format (http://www.w3.org/TR/SVG/
[http://www.w3.org/TR/SVG/]).

Support is built in to modern browsers, but you can also get a plugin for older browsers from adobe.com
[http://www.adobe.com].

3.4.3.2.6. Saving Diagrams as SVG

1. Select .svg as the file type.

2. Type the name of the file as you like with the .svg tag at the end. Example myumldia-
gram.svg

Et viola! SVG! Give it a try and zoom around a little... They are not pretty though, so if you know any-
thing about rendering beautiful SVG let us know.

Most modern browsers support SVG. If yours doesn't try Firefox [http://www.mozilla.com/firefox/] or
get a plugin for your current browser from adobe.com [http://www.adobe.com]

UML Based OOA&D

31

http://www.tigris.org
http://www.w3.org/TR/SVG/
http://www.adobe.com
http://www.mozilla.com/firefox/
http://www.adobe.com

Note

You will not have scroll bars for your SVG unless it is embedded in HTML. Good luck
and let us know what you find!

3.4.3.3. XMI

ArgoUML supports XMI 1.0, 1.1, and 1.2 files which contain UML 1.3 and UML 1.4 models. For best
compatibility with ArgoUML, export your models using UML 1.4 and XMI 1.1 or 1.2. Be sure to turn
off any proprietary extensions (such as Poseidon's diagram data).

With UML versions earlier than UML 2.0, it isn't possible to save diagram information, so no diagrams
will be transferred.

There is also a tool that converts XMI to HTML. For more information, see ht-
tp://www.objectsbydesign.com/projects/xmi_to_html_2.html
[http://www.objectsbydesign.com/projects/xmi_to_html_2.html].

3.4.3.3.1. Using XMI from Rational Rose

...

3.4.3.3.2. Using Models Created by Poseidon

In the Export project to XMI dialog, but sure to clear the selection of Save with diagram
dataliteral>.

3.4.3.3.3. Using Models Created by MagicDraw

...

3.4.3.3.4. XMI Compatibility with other versions of ArgoUML

Versions of ArgoUML prior to 0.19.7 supported UML 1.3/XMI 1.0. After this time, the save format is
UML 1.4/XMI 1.2 which is not backward compatible. Newer versions of ArgoUML will read projects
written by older versions, but not vice versa. If you might need to return to an older version of
ArgoUML you should be careful to save a backup of your old projects.

Additionally, if you write XMI files which need to be read by other tools, you should take into account
the different versions. Most modern UML modelling tools should read UML 1.4, but you may have in-
house code generators or other tools which are tied to UML 1.3.

3.4.3.3.5. Importing Other XMI Formats into ArgoUML Andere XMI-Formate in
ArgoUML importieren

XMI compatibility between UML modeling tools has improved over the years, but you may still occa-
sionally run into problems.

ArgoUML will not read XMI files which contain UML 1.5 or UML 2.0 models, but it should be able to
open most UML 1.4 and UML 1.3 files. If you find one that it can't open, please file a bug report so that
a developer can investigate.

3.4.3.3.6. Generating XMI Format

Select the command File=>Export as XMI and choose a filename.

UML Based OOA&D

32

http://www.objectsbydesign.com/projects/xmi_to_html_2.html
http://www.objectsbydesign.com/projects/xmi_to_html_2.html

3.4.3.4. Code Generation

3.4.3.4.1. Code Generated by ArgoUML

It is possible to compile your generated code with ArgoUML, you still need to implement method bod-
ies, though, to get usable results.

3.4.3.4.2. Generating Code for Methods

At the moment you cannot write code for methods (operations) within ArgoUML. The source pane is
editable, but the changes are ignored. ArgoUML is a pure design tool for now, no IDE functionality but
the desire is there. You might consider using Forte and ArgoUML together—it's a good work around!

You can help us out there if you'd like!

3.4.4. Working With Design Critics
Design critics are part of the practical application of the theories of Cognitive Psychology that are imple-
mented in ArgoUML. See Section 3.3.1, “ Cognitive Psychology ”

3.4.4.1. Messages From the Design Critics

Where do we stand now? A new project has been created, and is stored in the file FirstPro-
ject.zargo. Figure 3.10, “ ArgoUML Window Having Saved FirstProject.zargo ” shows
how your ArgoUML window should look at this stage.

Figure 3.10. ArgoUML Window Having Saved FirstProject.zargo

UML Based OOA&D

33

The project contains a top-level package, called untitledModel, which contains a class diagram and
a use case diagram.

If we look carefully at the screen, we can see that the "Medium" folder in the To-Do Pane (the lower left
pane) must contain some items, since its activation icon is displayed.

Clicking on this icon will open the "Medium" folder. An open folder is indicated by the icon.

But what is this “To-Do” Pane anyway. You haven't recorded anything yet that has to be done, so where
do these to do items originate.

The answer is simple, and is at the same time one of the strong points of ArgoUML. While you are
working on your UML model, your work is monitored continuously and invisibly by a piece of code
called a design critic. This is like a personal mentor that watches over your shoulder and notifies you
each time he sees something questionable in your design.

Critics are quite unobtrusive. They give you a friendly warning, but they do not force you into design
principles that you don't want or like to follow. Let us take a look at what the critics are telling us. Click
on the icon next to the Medium folder, and click on the Revise Package Name Untitled-

Model item.

Figure 3.11, “ ArgoUML Window Showing the Critic Item Revise Package Name Untitled-
Model ” shows how your screen should now look.

Figure 3.11. ArgoUML Window Showing the Critic Item Revise Package
Name UntitledModel

UML Based OOA&D

34

Notice that your selection is highlighted in red in the To-Do Pane, and that a full explanation appears
now in the Details Pane (the lower right pane). You may have to re-size your Details Pane or to scroll
down in order to see the full message as displayed in our example.

What ArgoUML is trying to tell you is that usually, package names are written in lower cases. The de-
fault top level package created by ArgoUML is called untitledModel and therefore violates a sound
design principle. (Actually, this could be considered as a bug within ArgoUML, but it comes in handy to
demonstrate the working of critics).

At this point, you can choose to change the package name manually or to impose silence on the design
critic for some time or permanently

We will do nothing of this (we'll come back to it when we talk about the design critics in more detail)
but we'll use another handy feature of ArgoUML—an auto-correct feature.

In order to do that, just click on the Next button on the Details Pane. This will cause a renaming wizard
to be displayed inside the properties panel, proposing to use the name untitledmodel (all in lower
case).

3.4.4.2. Design Critics at Work: The Rename Package Wizard

Replace the name untitledmodel with purchasingmodel, and click on the Finish button.
Figure 3.12, “ ArgoUML Window Showing the Critic Wizard to Rename the Package ” shows how the
ArgoUML window will now look.

Figure 3.12. ArgoUML Window Showing the Critic Wizard to Rename the
Package

UML Based OOA&D

35

Watch now how the design critic note in the To Do panel disappears, leaving only the Add Elements
to Package purchasingmodel note in the To-Do list.

If this doesn't happen at once, wait for a few seconds. ArgoUML makes heavy use of several threads of
execution that execute in parallel. This can cause delays of a few seconds before the information gets
updated on the screen.

The package name change should also be reflected in the explorer, in the top left corner of your
ArgoUML window.

We are now ready to create our first UML diagram, a Use Case diagram, but first let's save what we've
done so far.

Click on the File menu item, and select Save Project. You can now safely exit ArgoUML
without losing your work so far, or go on creating your first diagram.

3.5. The Case Study (To be written)
Here is where we are going to start the Case Study. It is at this point that you define your project; not
your product, but your project. It can be argued that modeling concepts should apply here as well but
this has not been well established. If you can take the time to look into the ArgoUML project, you will
find that there are a large number of "lines of code" and lines of documentation that are part of the
project, but not part of the product. For example, this document is part of the product while the Cook-
book and the build.xml files are part of the project only. At a minimum the file structure of the project
could be shown in a package diagram.

...

UML Based OOA&D

36

Chapter 4. Requirements Capture
4.1. Introduction

Requirements capture is the process of identifying what the “customer” wants from the proposed sys-
tem.

The key at this stage is that we are in the problem domain. At this stage we must describe everything
from the “customer” perspective and in the language of the “customer”.

The biggest risk we have in requirements capture is to start thinking in terms of possible solutions. That
must wait until the Analysis Phase (see Chapter 5, Analysis). One of the steps of the Analysis Phase will
be to take the output of the Requirements Phase and recast it in the language of a deemed solution.

Remember we are using both a incremental, and an iterative process.

We may well come back to the requirements process again as we break down the problem into smaller
chunks, each of which must have its requirements captured.

We will certainly come back through the requirements phase on each iteration as we seek to define the
requirements of more and more of the system

Note

The only part of the requirements notation specified by the UML standard is the use case
diagram. The remainder is process specific. The process described in this chapter draws
heavily on the Rational Unified Process.

4.2. The Requirements Capture Process
We start with a top-level view of the problem we are solving and the key areas of functionality that we
must address in any solution. This is our vision document, and should be just a few pages long.

For example the top-level view of an automated teller machine (ATM) might be that it should support
the following.

1. Cash deposit, cash withdrawal and account inquiries by customers.

2. Maintenance of the equipment by the bank's engineers, and unloading of deposits and loading of
cash by the local bank branch.

3. Audit trail for all activities sent to the bank's central computer.

From this top-level view we can extract the principal activities of the system, and the external agents
(people, equipment) that are involved in those activities. These activities are known as use cases and the
external agents are known as actors.

Actors may be people or machines. From a practical standpoint it is worth knowing the stakeholder be-
hind any machine, since only they will be able to engage with the requirements capture process.

Use cases should be significant activities for the system. For example customer use of the ATM machine

37

is a use case. Entering a PIN number is not.

There is a gray area between these two extremes. As we shall see it is often useful to break very large
use cases into smaller sub-use cases. For example we may have sub-use cases covering cash deposit,
cash withdrawal and account inquiry.

There is no hard and fast rule. Some architects will prefer a small number of relatively large use cases,
others will prefer a larger number of smaller use cases. A useful rule of thumb is that any practical
project ought to require no more than about 30 use cases (if it needs more, it should be broken into sep-
arate projects).

We then show the relationship between use cases and actors on one or more use case diagrams. For a
large project more than one diagram will be needed. Usually groups of related use cases are shown on
one diagram.

We must then give a more detailed specification of each use case. This covers its normal behavior, al-
ternative behaviors and any pre- and post-conditions. This is captured in a document variously known as
a use case specification or use case scenario.

Finally, since use cases are functional in nature, we need a document to capture the non-functional re-
quirements (capacity, performance, environmental needs etc). These requirements are captured in a doc-
ument known as a supplementary requirements specification.

4.2.1. Process Steps
The steps in the requirements capture process can be summarized as follows.

1.
Capture an overall view of the problem, and the desired characteristics of its solution in the vision
document.

2.
Identify the use case and actors from the vision document and show their relationships on one or
more use case diagrams.

3.
Give detailed use case specifications for each use case, covering normal and alternate behavior,
pre- and post-conditions.

4.
Capture all non-functional requirements in a supplementary requirements specification.

In any iterative development process, we will prioritize, and early iterations will focus on capturing the
key behavior of the most important use cases.

Most modern requirements capture processes agree that it is essential that the authoritative representat-
ive of the customer is fully involved throughout the process.

4.3. Output of the Requirements Capture Pro-
cess

Almost all the output of the requirements capture process is documentary. The only diagram is the use
case diagram, showing the relationships between use cases and actors.

Requirements Capture

38

4.3.1. Vision Document
Typical sections of this document would be as follows.

• Summary. A statement of the context, problem and solution goals.

•
Goals. What are we trying to achieve (and how do we wish to achieve it).

•
Market Context or Contractual Arrangements. For a market led development, this should indicate
target markets, competitive differentiators, compelling events and so forth. For a contractual devel-
opment this should explain the key contractual drivers.

•
Stakeholders. The users (in the widest sense) of the system. Many of these will map in to actors, or
control equipment that maps into actors.

•
Key Features. At the very highest level what are they key functional aspects of the problem/desired
solution. These will largely map down to the use cases. It is helpful to give some prioritization here.

•
Constraints. A high level view of the non-functional parameters of the system. These will be worked
out in detail in the supplementary requirements specification.

• Appendix. A listing of the actors and use cases that will be needed to meet this vision. It is useful to
link to these from the earlier sections to ensure comprehensive coverage.

4.3.2. Use Case Diagram
The vision document has identified the use cases and actors. The use case diagram captures how they in-
teract. In our ATM example we have identified “customer uses machine”, “maintain machine” and
“audit” as the three main use cases. We have identified “customer”, maintenance engineer“,” “local
branch official” and “central computer” as the actors.

Figure 4.1, “ Basic use case diagram for an ATM system ” shows how this could be displayed on a use
case diagram. The use cases are shown as ovals, the actors as stick people (even where they are ma-
chines), with lines (known as associations connecting use cases to the actors who are involved with
them. A box around the use cases emphasizes the boundary between the system (defined by the use
cases) and the actors who are external.

Note

Not all analysts like to use a box around the use cases. It is a matter of personal choice.

Figure 4.1. Basic use case diagram for an ATM system

Requirements Capture

39

The following sections show how the basic use case diagram can be extended to show additional inform-
ation about the system being designed.

4.3.2.1. Active and Passive Actors

Active actors initiate interaction with the system. This can be shown by placing an arrow on the associ-
ation from the actor pointing toward the use case. In the ATM example, the customer is an active actor.

Interaction with passive actors is initiated by the system. This can be shown by placing an arrow on the
association from the use case pointing toward the actor. In the ATM example, the central computer is a
passive actor.

This is a good example where the arrow helps, since it allows us to distinguish an event driven system
(the ATM initiates interaction with the central computer) from a polling system (the central computer in-
terrogates the ATM from time to time).

Where an actor may be either active or passive, depending on circumstances, the arrow may be omitted.
In the ATM example the bank engineer fits into this category. Normally he is active, turning up on a
regular cycle to service the machine. However if the ATM detects a fault, it may summon the engineer
to fix it.

The use of arrows on associations is referred to as the navigation of the association. We shall see this
used elsewhere in UML later on. The choice, by the OMG, of zero vice two arrowheads to show a bid-
irectional association is unfortunate. Under this convention you cannot distinguish between an associ-
ation whose navigation has yet to be determined and one that is bidirectional.

Figure 4.2, “ Use case diagram for an ATM system showing navigation. ” shows the ATM use case dia-
gram with navigation displayed.

Figure 4.2. Use case diagram for an ATM system showing navigation.

Requirements Capture

40

4.3.2.2. Multiplicity

It can be useful to show the multiplicity of associations between actors and use cases. By this we mean
how many instances of an actor interact with how many instances of the use case.

By default we assume one instance of an actor interacts with one instance of a use case. In other cases
we can label the multiplicity of one end of the association, either with a number to indicate how many
instances are involved, or with a range separated by two periods (..). An asterisk (*) is used to indicate
an arbitrary number.

In the ATM example, there is only one central computer, but it may be auditing any number of ATM
uses. So we place the label 0..* at the use case end. There is no need for a label at the other end, since
the default is one.

A local bank will have up to three officials authorized to unload and load ATM machines. So at the actor
end of the relationship with the use case Maintain ATM, we place the label 1..3. They may be deal-
ing with any number of ATM machines, so at the other end we place the label 0..*.

There may be any number of customers and there may be any number of ATM systems they could use.
So at each end of the association we place the label 0..*.

Figure 4.3, “ Use case diagram for an ATM system showing multiplicity. ” shows the ATM use case
diagram with multiplicity displayed.

Figure 4.3. Use case diagram for an ATM system showing multiplicity.

Requirements Capture

41

Multiplicity can clutter a diagram, and is often not shown, except where it is critical to understanding. In
the ATM example we would only choose to show 1..3 against the local bank official, since all others
are obvious from the context.

4.3.2.3. Hierarchies of Use Cases

In our ATM example so far we have just three use cases to describe all the behavior of the system.
While use cases should always describe a significant chunk of system behavior, if they are too general
they can be difficult to describe.

We could for example define the behavior of the use case “Use ATM” in terms of the behavior of three
simpler use cases, “Deposit Cash”, “Withdraw Cash” and “Query Account”. The main use case could be
specified by including the behavior of the subsidiary use cases where needed.

Similarly the “Maintain ATM” use case could be defined in terms of two use cases “Maintain Equip-
ment” and “Reload ATM”. In this case the two actors involved in the main use case are really only in-
volved in one or other of the two subsidiary use cases and this can be shown on the diagram.

The decomposition of a use case into simpler sub-use cases is shown in UML by using an include rela-
tionship, a dotted arrow from the main use case to the subsidiary, with the label «include».

Figure 4.4. Use case diagram for an ATM system showing include relationships.

Requirements Capture

42

Include relationships are fine for breaking down the use case behaviors in to hierarchies. However we
may also want to show a use case that is an extension to an existing use case to cater for a particular cir-
cumstance.

In the ATM example we have a use case covering routine maintenance of the ATM, “Maintain Equip-
ment”. We also want to cover the special case of an unscheduled repair caused by the ATM detecting an
internal fault.

This is shown in UML by the extend relationship. In the main use case, we specify a name for a location
in the description, where an extension to the behavior could be attached. The name and location are
shown in a separate compartment within the use case oval. The representation extend relationship is the
same as the include relationship, but with the label «extend». Alongside the extend relationship, we spe-
cify the condition under which that behavior will be attached.

Figure 4.5, “ Use case diagram for an ATM system showing an extend relationship. ” shows the ATM
use case diagram with an extend relationship to a use case for unscheduled repairs. The diagram is now
getting rather complex, and so we have split it into two, one for the maintenance side of things, the other
for customer usage and audit.

The “Maintain Equipment” use case defines a name “Unsched”, at the start of its description. The ex-
tending use case “Unscheduled Repair” is attached there when the ATM detects an internal error.

Figure 4.5. Use case diagram for an ATM system showing an extend relationship.

Requirements Capture

43

Use cases may be linked together in one other way. One use case may be a generalization of a subsidi-
ary use case (or alternatively the subsidiary is a specialization of the main use case). This is very like the
extends relationship, but without the constraint of specific extension points at which the main use case
may be extended, and with no condition on when the subsidiary use case may be used.

Generalization is shown on a use case diagram by an arrow with solid line and solid white head from the
subsidiary to the main use case. This may be useful when a subsidiary use case specializes the behavior
of the main use case at a large number of positions and under a wide range of circumstances. However
the lack of any restriction makes generalization very hard to specify precisely. In general use an extend
relationship instead.

4.3.3. The Use Case Specification
Each use case must be documented to explain in detail the behavior it is specifying. ArgoUML assists in
this area through the generation of graphic files for inclusion in this documentation. This document is
known by different names in different processes: use case specification, use case scenario or even
(confusingly) just use case.

A typical use case specification will include the following sections.

•
Name. The name of the use case to which this relates.

•
Goal. A one or two line summary of what this use case achieves for its actors.

• Actors. The actors involved in this use case, and any context regarding their involvement.

Note

This should not be a description of the actor. That should be associated with the actor
on the use case diagram.

•

Requirements Capture

44

Pre-condition. These would be better named “pre-assumptions”, but the term used everywhere is
pre-conditions. This is a statement of any simplifying assumptions we can make at the start of the
use case.

In the ATM example we might make the assumption for the“Maintain Equipment” use case that an
engineer is always available, and we do not need to worry about the case where a routine mainten-
ance visit is missed.

Caution

Avoid pre-conditions wherever possible. You need to be absolutely certain that the pre-
condition holds under all possible circumstances. If not your system will be under spe-
cified and hence will fail when the pre-condition is not true. Alternatively, when you
cannot be certain the pre-condition is always true, you will need to specify a second
use case to handle the pre-condition being false. In the first case, pre-conditions are a
source of problems, in the second a source of more work.

•
Basic Flow. The linear sequence of steps that describe the behavior of the use case in the “normal”
scenario. Where a use case has a number of scenarios that could be normal, one is arbitrarily selec-
ted. Specifying the basic flow is described in more detail in Section 4.3.3.1, “ Specifying the Basic
Flow ” below.

•
Alternate Flows. A series of linear sequences describing each of the alternative behaviors to the ba-
sic flow. Specifying alternate flows is described in more detail in Section 4.3.3.2, “ Specifying the
Alternate Flows ”.

•
Post-conditions. These would be better named “post-assumptions”. This is a statement of any as-
sumptions that we can make at the end of the use case. Most useful where the use case is one of a
series of subsidiary use cases that are included in a main use case, where they can form the pre-
conditions of the next use case to be included.

Caution

Like pre-conditions, post-conditions are best avoided. They place a burden on the spe-
cification of the use case flows, to ensure that the post-condition always holds. They
therefore are also a source of problems and extra work.

• Requirements. In an ideal world the vision document, use case diagrams, use case specifications and
supplementary requirements specification would form the requirements for a project.

For most market-led developments, where ownership of requirements is within the same business as
the team who will do the development, this is now usually the case. The marketing department can
learn use case based requirements capture and analysis to link to their customer facing activities.

However for external contract developments, customers may insist on a traditional “list of features”
as the basis of the contract. Where this is the case, this section of the use case specification should
link to the contract features that are covered by the use case.

This is often done through a third party tool that can link documents, providing automated checking
of coverage, in which case this section is not needed, or may be generated automatically.

Requirements Capture

45

The final size of the use case specification will depend on the complexity of the use case. As a rule of
thumb, most use cases take around 10-15 pages to specify, the bulk of which is alternate flows. If you
are much larger than this, consider breaking the use case down. If you are much smaller consider wheth-
er the use case is addressing too small a chunk of behavior.

4.3.3.1. Specifying the Basic Flow

All flows in a use case specification are linear—that is there is no conditional branching. Any choices in
flows are handled by specifying another alternate flow that takes over at the choice point. It is important
to remember we are specifying behavior here, not programming it.

A flow is specified as a series of numbered steps. Each step must involve some interaction with an actor,
or at least generate a change that is observable externally by an actor. Requirements capture should not
be specifying hidden internal behavior of a system.

For example we might give the following sequence of steps for the basic flow of the use case "Withdraw
Cash" in our ATM example.

1. Customer indicates a receipt is required.

2. Customer enters amount of cash required.

3. ATM verifies with the central computer that the customer can make this withdrawal.

4. ATM dispenses cash to the customer.

5. ATM issues receipt to customer.

Remember this is a sub-use case included in the main “Use ATM” use case, which will presumably
handle checking of cards and PINs before invoking this included use case.

Note

The first step is not a condition. We take as our basic flow the case where the customer
does want a receipt. The case where the customer does not want a receipt will be an altern-
ative flow.

4.3.3.2. Specifying the Alternate Flows

This captures the alternative scenarios, as linear flows, by reference to the basic flow. Initially we just
build a list of the alternate flows.

A.
A.1. Customer does not require a receipt.

A.2. Customer's account will not support the withdrawal.

A.3. Communication to the central computer is down.

A.4. The customer cancels the transaction.

A.5. The customer fails to take the dispensed cash.

Requirements Capture

46

Subsequently we flesh out each alternate flow, by reference to the basic flow. For example the first al-
ternate flow might look like.

A.
A.1. Customer does not require a receipt.

A.1.
1.

At step 1 of the basic flow the customer indicates they do not want a receipt.

A.1.
2.

The basic flow proceeds from step 2 to step 4, and step 5 is not used.

The convention is to number the various alternate flows as A.1, A.2, A.3, etc. The steps within an altern-
ate flow are then numbered from this. So the steps of the first alternate flow would be A.1.1, A.1.2,
A.1.3, etc.

4.3.3.3. Iterative Development of Use Case Specifications

Iterative development will prioritize the use cases, and the first iterations will address the most import-
ant.

Early iterations will capture the basic flows of the most important use cases with only essential detail
and list the headings of the main alternate flows.

Later iterations will address the remaining use cases, flesh out the steps on individual alternate flows and
possibly provide more detail on individual steps.

4.3.4. Supplementary Requirement Specification
This captures the non-functional requirements or constraints placed on the system. Since use cases are
inherently functional in nature, they cannot capture this sort of information.

Note

Some analysts like to place non-functional requirements in a section at the end of each use
case specification, containing the non-functional requirements relevant to the use case.

This can cause some problems. First key non-functional requirements (for example about
performance) may need to appear in many use cases and it is bad practice to replicate in-
formation. Secondly there are invariably some non-functional requirements that are system
wide and need a system wide document. Hence my preference for a single supplementary
requirements specification.

There should be a section for each of the main areas of non-functional requirements. The checklist
provided by Ian Sommerville in his book Software Engineering (Third Edn, Addison-Wesley, 1989) is a
useful guide.

• Speed. Processor performance, user/event response times, screen refresh time.

• Size. Main memory (and possibly caches), disc capacity.

• Ease of use. Training time, style and detail of help system.

• Reliability. Mean time to failure, probability of unavailability, rate of failure, availability.

Requirements Capture

47

• Robustness. Time to restart after failure, percentage of events causing failure, probability of data cor-
ruption on failure.

• Portability. Percentage of target-dependent code/classes, number of target systems.

To this we should add sections on environment (temperature, humidity, lightening protection status) and
standards compliance.

4.4. Using Use Cases in ArgoUML
ArgoUML allows you to draw use case diagrams. When you create a new project it has a use case dia-
gram created by default, named use case diagram 1. Select this by button 1 click on the diagram
name in the explorer (the upper left quadrant of the user screen).

New use case diagrams can be created as needed through Create Diagram on the main menu bar or
on the Create Diagram Toolbar. They are edited in the editing pane (the upper right quadrant of the user
screen).

4.4.1. Actors Akteure
To add an actor to the diagram use button 1 click on the actor icon on the editing pane toolbar ()

and then button 1 click at the location where you wish to place it. The actor can be moved subsequently
by button 1 motion (i.e. button 1 down over the actor to select it, move to the new position and button 1
release to drop the actor in place.

Multiple actors can be added in one go, by using button 1 double click on the actor icon. Each sub-
sequent button 1 click will drop an actor on the diagram. A button 1 click on the select icon () will

stop adding actors.

The actors name is set in its property panel. First select the actor (if not already selected) on the editing
pane using button 1 click. Then click on the Properties tab in the details pane. The name is entered
in the name field, and will appear on the screen.

As a shortcut, double button 1 click on the name of the actor in the editing pane (or just typing on the
keyboard when an actor is selected) will allow the name to be edited directly. This is a convenient way
to enter a name for a new actor.

Having created the actor, you will see it appear in the explorer (the upper left quadrant of the user
screen). This shows all the model elements created within the UML design. A drop down at the top of
the explorer controls the ordering of model elements in the explorer. The most useful are the Pack-
age-centric (default) and Diagram-centric. The latter shows model elements grouped by the
diagram on which they appear.

4.4.2. Use Cases
The procedure for adding use cases is the same as that for adding actors, but using the use case icon on
the editing pane toolbar ().

By default use cases in ArgoUML do not display their extension points (for use in extend relationships).
You can show the extension point compartment in one of two ways.

1. Select the use case in the editing pane with button 1 click, then select the Style tab in the details

Requirements Capture

48

pane and button 1 click on the Display: Extension Points check box.

2. Use button 2 click over the use case in the editing pane to display a context-sensitive pop-up menu
and from that choose Show/Show Extension Point Compartment.

The same approaches can be used to hide the extension point compartment.

4.4.2.1. Adding an Extension Point to a Use Case

There are two ways to add an extension point to a use case.

1. Select the use case on the editing pane with button 1 click. Then click on the Add Extension
Point icon () on the toolbar, and a new extension point with default name and location will

be added after any existing extension points.

Note

The Add Extension Point icon is grayed out and unusable until a use case is
selected.

2. Select the use case on the editing pane with button 1 click and then select its property tab in the de-
tails pane. A button 2 click over the Extension Points: field will bring up a context-sensitive
pop-up menu. Select Add to add a new extension point.

If any extension points already exist, they will be shown in this field on the property tab. The new
extension point will be inserted immediately before the entry over which the pop-up menu was in-
voked. This ordering can be changed later by using the Move Up and Move Down entries on the
pop-up menu.

Whichever method is used, the new extension point is selected, and its property tab can be displayed in
the details pane. The name and location of the extension point are free text, set in the corresponding
fields of the property tab.

An existing extension point can be edited from its property tab. The property tab can be reached in two
ways.

1. If the extension point compartment for the use case is displayed on the diagram, select the use case
with button 1 click and then select the extension point with a further button 1 click. The property
tab can then be selected in the details pane.

2. Otherwise select the use case and its property tab in the details pane. A button 1 click on the desired
entry in the Extension Points field will bring up the property tab for the extension point in
the details pane.

The name and location fields of the extension point may then be edited.

As a shortcut, where the extension point compartment is displayed, double click on the extension point
allows text to be typed in directly. This is parsed to set name and location for the extension point.

Extension points may be deleted, or their ordering changed by using the button 2 pop-up menu over the
Extension Points field in the use case property tab.

Requirements Capture

49

Having created an extension point, it will appear in the explorer (upper left quadrant of the user screen).
Extension points are always shown in a sub-tree beneath their owning use case.

4.4.3. Associations
To join a use case to an actor on the diagram use button 1 click on the association icon on the editing
pane toolbar (). Hold button 1 down at the use case, move to the actor and release button 1 (or al-

ternatively start at the actor and finish at the use case).

This will create a straight line between actor and use case. You can segment the line by holding down
button 1 down on the line and moving before releasing. A vertex will be added to the line, which you
can move by button 1 motion. A vertex can be removed by picking it up and sliding to one end of the
line.

Multiple associations can be added in one go, by using button 1 double click on the association icon.
Each subsequent button 1 down/motion/release sequence will join an actor to a use case. Use button 1 on
the select icon () to stop adding associations.

It is also possible to add associations using small “handles” that appear to the left and right of a use case
or actor when it is selected and the mouse is over it. Dragging the handle from a use case to an actor will
create an association to that actor (and similarly by dragging a handle from an actor to a use case).

Dragging a handle from a use case into empty space will create a new actor to go on the other end. Sim-
ilarly dragging a handle from an actor into empty space will create a new use case.

It is possible to give an association a name, describing the relationship of the actor to the use case, al-
though this is not usually necessary. This is done through the property tab of the association. Such a
name appears alongside the association near its center.

4.4.3.1. Setting Navigation

There are two ways of setting the navigation of an association.

1. Use button 2 click on the association to bring up a context-sensitive pop-up menu. The Navigab-
ility sub-menu has options for bi-directional navigation (the default, with no arrows) and for
navigability Actor->Use Case and Use Case->Actor.

2. Use button 1 to select the association and select its property tab in the details pane. This shows a
field named Association Ends:, with entries for each end labeled by the actor or use case
name and its multiplicity. Select the end that should be at the tail of the arrow with button 1 click.
This brings up the property tab for the association end. Use button 1 click to uncheck the Navig-
ability box.

Note

This may seem counter-intuitive, but in fact associations by default are navigable in
both directions (when no arrows are shown). This process is turning off navigation at
one end, rather than turning it on at the other.

You will see it is possible to give an association end a name in its property tab. This name will appear at
that end of the association, and can be used to indicate the role being played by an actor or use case in
an association.

Requirements Capture

50

For example a time management system for a business may have use cases for completing time sheets
and for signing off time sheets. An employee actor may be involved in both, one as an employee, but the
other in a role as manager.

4.4.3.2. Setting Multiplicity

There are two ways of setting multiplicity at the end of an association.

1. Button 2 click over the end of an association will cause a context-sensitive pop-up menu to appear
with a sub-menu labeled Multiplicity. This allows you to select from 1 (the default), 0..1,
0..* and 1..*.

2. Bring up the property sheet for the association end as described for setting navigation (see the
second option in Section 4.4.3.1, “ Setting Navigation ”). A drop down menu gives a range of mul-
tiplicity options that may be selected.

The second of these two approaches has a wider range of options, although ArgoUML does not cur-
rently allow the user to set an arbitrary multiplicity.

4.4.4. Hierarchical Use Cases
UML as originally designed allowed use cases to be organized by grouping them in packages as well as
by specifying relations among them. In ArgoUML only the relations mechanism is supported. All Three
of the relations that apply to use cases are supported. These are include, extend and generalization.

4.4.4.1. Includes

The procedure for adding an include relationship is the same as that for adding an association, but using
the include icon from the editing pane toolbar () to join two use cases.

Since include relationships are directional the order in which the two ends are selected is important. The
including (main) use case should be selected first (button 1 down) and the included (subsidiary) use case
second (button 1 release).

It is possible to name include relationships using the property tab, but this is rarely done, and will not be
displayed on the use case diagram.

4.4.4.2. Extends

The procedure for adding an extend relationship is the same as that for adding an include relationship,
but using the extend icon from the editing pane toolbar () to join two use cases.

As with include relationships, the order of selection matters. In this case, the extending (subsidiary) use
case should be selected first (button 1 down) and the extending (main) use case second (button 1 re-
lease).

Note

This is the reverse of the include relationship, but reflects the way that designer's tend to
think. The fact that the extend icon's arrow points upward (the opposite of the include icon)
should help remind you of this.

Requirements Capture

51

To set a condition for the extend relationship, select the extend relationship in the editing pane (button 1
click) and then bring up its property tab in the details pane ((button 1 click on the tab). The text of the
condition may be typed in the Condition field. Long conditions may be split over several lines if de-
sired. The condition is displayed under the «extend» label on the diagram.

It is possible to name extend relationships using the property tab, but this is rarely done, and will not be
displayed on the use case diagram.

4.4.4.3. Generalization

The procedure for adding generalizations, is the same as for adding extend relationships, but using the
generalization icon from the editing pane toolbar ().

Since generalization is a directed relationship, the order of selection matters. The specialized use case
should be selected first (button 1 down) and the generalized second (button 1 release).

It is also possible to add generalizations using small “handles” that appear to the top and bottom of a use
case when it is selected. Dragging the handle at the top to another use case will create a generalization.
The original use case is the specializing end, and the use case to which the handle was dragged will be
the generalizing end. Dragging into empty space will create a new use case to be the generalizing end.

Similarly dragging on the bottom handle will create a generalization in which the original use case is the
generalizing end.

Generalization is also permitted between actors, although its use is beyond the scope of this tutorial. Un-
like use cases there are no generalization handles on actors, so generalizations must be created using the
toolbar icon.

It is possible to name generalization relationships using the property tab, but this is rarely done. If a
name is provided, it will be displayed on the use case diagram.

4.4.5. Stereotypes
UML has the concept of stereotyping as a way of extending the basic notation. It may prove useful for
example to model a problem at both the business level and the engineering level. It is for this reason that
the OMG distinguishes between a PIM and a PSM. For both of these we will need use cases, but the use
cases at the business level hold a different sort of information to those at the engineering level. Very
likely they use different language and notation in their underlying use case specifications.

Stereotypes are used to label UML model elements such as use cases, to indicate that they belong to a
certain category. Such labels are shown in guillemots (« ») above the name of the model element on
the diagram. The UML standard defines a number of standard stereotypes, and the user may define more
stereotypes of his own.

You will see that ArgoUML has a drop down selector, Stereotype on every property tab. This is
populated with the standard stereotypes, to which you may add your own user defined ones.

The details of stereotyping are beyond the scope of this tutorial. The reference manual (see Section 16.6,
“ Stereotype ”) documents the support provided in ArgoUML.

Warning

ArgoUML is missing a few of the standard UML stereotypes. In addition not all model ele-
ments will actually display the stereotype on the diagram. At present this includes use
cases and actors.

Requirements Capture

52

4.4.6. Documentation
ArgoUML has some simple documentation facilities associated with model elements on a diagram. In
general these should be used only to record the location of material in documents that can be handled by
a mainstream editor or word processor, not the actual documentation itself.

Documentation for a particular model element is recorded through the documentation tab in the details
pane (the quadrant of the user screen at the bottom right).

In addition annotation may be added to diagrams using the text icon on the editing pane toolbar ().

The recommendation is that a use case diagram should use the documentation tab of actors to record in-
formation about the actor, or if the actor is complex to refer to a separate document that holds informa-
tion about the actor.

The documentation tab of use cases should record the location of the use case specification. The inform-
ation in a use case specification (for all but the simplest use cases) is too complex to be placed directly
in the tab.

The project should also have a separate vision document and supplementary requirements specification.
A text annotation on diagrams may be used to refer to these if the user finds this helpful.

Warning

The documentation tab includes a Deprecated check box. The state of this flag is not
preserved over save and load in the current release of ArgoUML

4.4.7. System Boundary Box
ArgoUML provides a series of tools to provide arbitrary graphical annotation on diagrams (we have
already mentioned the text tool). These are found at the right hand end of the editing pane toolbar and
are fully documented in the reference manual (see Chapter 12, The Editing Pane).

The rectangle tool can be used to draw the boundary box. Use the button 2 context-sensitive Ordering
pop-up menu to place it behind everything else. However there is no way to change its fill color from the
default white. You may therefore prefer to draw the boundary box as four lines. This is the method used
for the diagrams in this chapter.

Note

The editing pane in ArgoUML has a grid to which objects snap to aid in drawing. The size
of this grid and its effect may be altered through the View menu (using Adjust Grid
and Adjust Grid Snap). This is described fully in the reference manual (see
Chapter 10, The Menu bar).

4.5. Case Study
4.5.1. Vision Document

A vision document contains more than those things needed for the modeling effort. It also contains fin-
ancial and scheduling pertinent information. The following sections are those parts of the Vision Docu-
ment spelled out in Section 4.3.1, “ Vision Document ” above. In practice this format need not be fol-

Requirements Capture

53

lowed religiously, but is used here for consistency.

4.5.1.1. Summary

The company wishes to produce and market a line of ATM devices. The purpose of this project is to
produce the hardware and the software to drive it that are both maintainable and robust.

4.5.1.2. Goals

To produce better designed products based on newer technology. Follow the MDA philosophy of the
OMG by producing first a Platform Independent Model (PIM). As current modeling technology does not
admit of maintaining the integrity of the connection between the PIM and Platform Specific Models
(PSMs), the PIM will become comparatively stable before the first iteration of the PSM is produced. The
software platform will be Java technology. The system will use a simple userid (from ATM card) and
password (or PIN) mechanism.

4.5.1.3. Market Context

Equipment currently on the market is based on older technology for both hardware and software. This
technology has not reached the end of its useful life, making it unlikely that the vendors of that gear are
going to update it in the near future. On the other hand newer technology is available that would put us
at a competitive advantage if implemented now.

4.5.1.4. Stakeholders

Among the stakeholders for this system are the Engineering Department, the Maintenance Department,
and the Central Computer Facility. The full list of these stakeholders and the specific individuals repres-
enting them are.

• Engineering. Bunny, Bugs

• Maintenance. Hardy, Oliver

• Computer Facility. Laurel, Stanley

• Chief Executive Officer. Hun, Atilla The

• Marketing. Harry, Oil Can

4.5.1.5. Key Features

Cash deposit, cash withdrawal, and account inquiries by customers. Customers include people who have
accounts at the owning bank as well as people who wish to make withdrawals from accounts in other
banks or from credit card accounts.

Maintenance of the equipment by the bank's engineers. This action may be initiated by the engineer on a
routine basis. It may also be initiated by the equipment that can call the engineer when it detects an in-
ternal fault.

Unloading of deposits and loading of cash by officials of the local bank branch. These actions occur
either on a scheduled basis or when the central computer determines that the cash supply is low or the
deposit receptacle is liable to be getting full.

An audit trail for all activities will be maintained and sent periodically to the bank's central computer. It
will be possible for the maintenance engineer to save a copy of the audit trail to a diskette for transport-
ing to the central computer.

Requirements Capture

54

Both dialup and leased line support will be provided. The ATM will continue to provide services to cus-
tomers when communication with the central computer is not available.

4.5.1.6. Constraints

The project must be completed within nine months. It must cost no more than 1,750,000 USD excluding
production costs. Components may be contracted out, but the basic architecture as well as the infrastruc-
ture will be designed in house. Close liaison must be maintained between the software development and
the design, development and production of the hardware. Neither the hardware nor the software shall be
considered the independent variable, but rather they shall be considered equal.

4.5.1.7. Appendix

The following are the actors that directly support this vision. Additional actors may be identified later
that are needed to support this or that technology. They should not be added to this list unless they are
deemed to directly support the vision as described in this document.

• Central Computer

• Customer

• Local Branch Official

• Maintenance Engineer

The following are the use cases that directly support this vision. Additional use cases may be identified
later that are needed to support this or that technology or to support the use cases listed here. They
should not be added to this list unless they are deemed to directly support the vision as described in this
document.

• Audit

• Customer Uses Machine

• Maintain Machine

4.5.2. Identifying Actors and Use Cases
For the ATM case study, we will elaborate on the examples in Section 4.3, “ Output of the Requirements
Capture Process ”, Figure 4.4, “ Use case diagram for an ATM system showing include relationships. ”
and Figure 4.5, “ Use case diagram for an ATM system showing an extend relationship. ”, and progress
to identify additional actors and use cases that comprise our model of the ATM system. Figure 4.4, “
Use case diagram for an ATM system showing include relationships. ” and Figure 4.5, “ Use case dia-
gram for an ATM system showing an extend relationship. ” exemplified the essential concepts and com-
ponents of a use case diagram such as, use cases, actors, multiplicity, and include / extend relationships.
They showed the relationships between the actors and use cases, and demonstrated how these actors and
use cases interact.

In Figure 4.4, “ Use case diagram for an ATM system showing include relationships. ” we see a use case
diagram for an ATM system consisting of «include» relationships for the use cases, Maintain ATM and
Use ATM. Maintain ATM was further defined by two use cases, "Maintain Equipment" and "Reload
ATM". Use ATM was further defined in terms of the behavior of three simpler use cases: "Deposit
Cash", "Withdraw Cash" and "Query Account".

Requirements Capture

55

More to be written...

4.5.3. Associations (To be written)
To be written...

4.5.4. Advanced Diagram Features (To be written)
To be written...

4.5.5. Use Case Specifications (To be written)
To be written...

4.5.6. Supplementary Requirements Specification (To be
written)

To be written...

Requirements Capture

56

Chapter 5. Analysis
Analysis is the process of taking the “customer” requirements and re-casting them in the language of,
and from the perspective of, a putative solution.

We are not actually trying the flesh out the detailed solution at this stage. That occurs in the Design
Phase (see Chapter 6, Design).

Unlike the boundary between Requirements and Analysis Phases, the boundary between Analysis and
Design Phases is inherently blurred. The key is that analysis should define the solution no further than is
necessary to specify the requirements in the language of the solution. The model elements in Analysis
generally represent a high level of abstraction.

Once again the recursive, and iterative nature of our process means we will come back to the Analysis
phase many times in the future.

5.1. The Analysis Process
There are three schools of thought on how Analysis should be approached. The ontologist defines the
data (actually the metadata) first and worries about processes later. The true ontologist would prefer not
to have to think about processes at all. The phenomenonologist reverses this and favors process over
data. The panparadigmist considers both process and data to be equally important and addresses both
from the start.

When it comes to being a purist the ontologist has the upper hand. It is possible to define and build a
database into which data can be entered and retrieved without concern for what happens to it or is done
with it. On the other hand implementing a process without having any data structures for it to operate on
is not very meaningful.

5.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

The CRC methodology favors the phenomenonologists preference for analysis. It is the equivalent of
starting with the use cases, the process aspects (operations) of the class diagrams, and scenarios from
which sequence diagrams can be initiated.

CRC cards and the associated methodology are described in detail in Appendix G, The CRC Card Meth-
odology . They are used again in the design phase and are further discussed in Chapter 6, Design .

The strength of CRC cards during analysis.

• Common Project Vocabulary -

• Spread Domain Knowledge -

• Making the Paradigm Shift -

• Live Prototyping -

• Identifying Holes in Requirements -

In this phase the group should consist of two or three domain experts, one object-oriented technology fa-
cilitator, and the rest of the group made up of people who are responsible for delivering the system.

57

The first time that the Analysis phase occurs a special case of the CRC session happens as there are no
classes or scenarios to choose from to define a CRC session. At this point a special type of session
known as brainstorming is held. During this session you identify the initial set of classes in the problem
domain by using the problem statement or requirements document or whatever you know about the de-
sired result for a starting point. The nouns that are found in whatever you are starting from are a good
key to an initial set of classes in the system. In a brainstorming session there should be little or no dis-
cussion of the ideas. Record them and filter the results after the brainstorming. At this stage the distinc-
tion between class and object is blurred.

Once a reasonable set of classes has been defined by the group, responsibilities can be added. Add re-
sponsibilities that are obvious from the requirements or the name of the class. You don't need to find
them all (or any for that matter). The scenarios will make them more obvious. The advantage of finding
some in the beginning is that it helps provide a starting place.

Select the initial scenarios from the requirements document by examining it's verbs in much the same
way that we scanned its nouns earlier. Then as many walk through sessions as necessary to complete the
analysis phase are performed.

When is enough of the analysis complete that design can begin? When all the different responsibilities
are in place and the system has become stable. After all the normal behavior has been covered, excep-
tional behavior needs to be simulated. When you notice that the responsibilities are all in place to sup-
port the new scenarios, and there is little change to the cards, this is a sign the you are ready to start
design.

5.1.2. Concept Diagram (To be written)
To be written...

5.1.3. System Sequence Diagram (To be written)
To be written...

5.1.4. System Statechart Diagram (To be written)
To be written...

5.1.5. Realization Use Case Diagram (To be written)
To be written...

5.1.6. Documents (To be written)
Use Case Specifications and Supplementary Requirements Specifications recast in solution language. To
be written...

5.2. Class Diagrams (To be written)
To be written...

5.2.1. The Class Diagram (To be written)
To be written...

5.2.2. Advanced Class Diagrams (To be written)
To be written...

5.2.2.1. Association Classes (To be written)
To be written...

Analysis

58

5.3. Creating Class Diagrams in ArgoUML
5.3.1. Classes

Identifying class diagrams from existing materials (Vision, Use Cases etc). To be written...

5.3.1.1. Using the Note Icon in the Tool Bar

Click on your target class. Then click on the note icon. ArgoUML will generate the link automatically.

You can also right click to add a note as well! Be aware that you can add an undefined number of notes
to any one class!

Warning

Be aware that your note will not appear in the source code documentation tab.

5.3.2. Associations (To be written)
To be written...

5.3.2.1. Aggregation (To be written)
To be written...

5.3.3. Class Attributes and Operations (To be written)
To be written...

5.3.3.1. Entering Data Into Attributes and Methods Windows

Click directly in the class model element and start typing. Do not use the properties window dialog
fields—they are not fully functional and liable to cause you a little frustration.

In fact, it would be interesting to see if you can type stereotypes right into the class attribute box for gen-
erating XML diagrams.

5.3.3.2. Class Attributes (To be written)
To be written...

5.3.3.3. Class Operations (To be written)
To be written...

5.3.4. Advanced Class Features (To be written)

5.3.4.1. Association Classes (To be written)
To be written...

5.3.4.2. Stereotypes (To be written)
To be written...

5.4. Sequence Diagrams (To be written)
To be written...

Analysis

59

5.4.1. The Sequence Diagram (To be written)
To be written...

5.4.2. Identifying Actions (To be written)
To be written...

5.4.3. Advanced Sequence Diagrams (To be written)
To be written...

5.5. Creating Sequence Diagrams in ArgoUML
5.5.1. Sequence Diagrams

5.5.1.1. Creating a Sequence Diagram

Normally, you can just start a sequence diagram right away. On the Create Diagram menu choose
Sequence.

5.5.2. Actions (To be written)
To be written...

5.5.3. Advanced Sequence Diagrams (To be written) Er-
weiterte Sequenzdiagramme (Noch zu beschreiben)

To be written...

5.6. Statechart Diagrams (To be written)
To be written...

5.6.1. The Statechart Diagram (To be written)
Types of statechart diagram (Moore, Mealy); Hierarchical diagrams. To be written...

5.6.2. Advanced Statechart Diagrams (To be written)
To be written...

5.6.2.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.7. Creating Statechart Diagrams in ArgoUML
5.7.1. Statechart Diagrams (To be written)

To be written...

5.7.1.1. Creating a Statechart Diagram

Select a class, then you can create a statechart diagram.

5.7.2. States (To be written)

Analysis

60

To be written...

5.7.2.1. Editing a Composite State

When editing a composite state, how do you provide do and event for a composite state?

The answer is to select a class, then you can create a statechart diagram.

5.7.3. Transitions (To be written)
To be written...

5.7.4. Actions (To be written)
To be written...

5.7.5. Advanced Statechart Diagrams (To be written)
To be written...

5.7.5.1. Hierarchical Statechart Diagrams (To be written)
To be written...

5.8. Realization Use Cases (To be written)
To be written...

5.9. Creating Realization Use Cases in
ArgoUML (To be written)

To be written...

5.10. Case Study (To be written)
Regardless of which methodology you use, at this time you are undoubtedly going to take the problem
statement from Section 4.5, “ Case Study ” and extract the nouns from it. This list should be compacted
to contain only those nouns that are expected to result in a class. This effort results in the following.

• Account

• Audit trail

• Bank

• Cash

• Customer

5.10.1. CRC Cards
The project manager convenes a CRC session at which the initial set of classes are to be defined. The fa-
cilitator reminds the participants that we are in the analysis phase and are only interested in what needs
to be done (at the business level) and are to leave out anything that smacks of how to do it. As a general
rule of thumb this means a subset of the nouns from the problem statement (see above). The group starts
with a complete list of all of the nouns in the statement, examines each one, and decides which are inap-

Analysis

61

propriate crossing them off the list. Each class is then assigned to one of the participants.

to be continued...

5.10.2. Concept Class Diagrams (To be written)
To be written...

5.10.2.1. Identifying classes (To be written)
To be written...

5.10.2.2. Identifying associations (To be written)
To be written...

5.10.3. System Sequence Diagrams (To be written)
To be written...

5.10.3.1. Identifying actions (To be written)
To be written...

5.10.4. System Statechart Diagrams (To be written)
To be written...

5.10.5. Realization Use Cases (To be written)
To be written...

Analysis

62

Chapter 6. Design
We now have the problem we are trying to solve specified in the language of a putative solution. In the
Design Phase, we construct all the details of that solution.

The blurred boundary between Analysis and Design is reflected in their use of many of the same UML
tools. In this chapter we will mostly be reusing UML technology we have already met once. The big step
is casting everything into concrete terms. We move from the abstract concepts of analysis to their con-
crete realization.

Once again the recursive, and iterative nature of our process means we will come back to the Design
phase many times in the future.

6.1. The Design Process (To be written)
The design process extends the modeling effort beyond the business concerns and into the solutions
space. It is during this effort that you decide whether you are going to use Java, C++, J2EE, CORBA,
SOAP, Dial up line, internet connection dedicated line, XML, etc. Many of these decisions will impact
directly the PSM model, others may only be reflected in the documents produced.

...

6.1.1. Class, Responsibilities, and Collaborators (CRC)
Cards

Strength of CRC cards during Design

• Spreading Objet-Oriented Design Expertise

• Design Reviews

• Framework for Implementation

• Informal Notation

• Choice of supporting software components

• Performance Requirements

In this phase developers replace some of the domain experts in the group, but there should always be at
least one domain expert in the group.

The focus of the group moves from what is to be done to how to do it. The classes from the solution do-
main are added to those defined in the analysis phase. Think about what classes are needed to make the
system work. Do you need a List class to hold objects? Do you need classes to handle exceptions? Do
you need wrapper classes for other subsystems? New classes that are looked for in this part, are classes
that support the implementation of the system.

During the design phase the distinction between class and object becomes important. Think about the
objects in your scenarios. Who creates the objects? What happens when it is created and destroyed?
What is the lifetime of the object vs. the lifetime of the information held be the object?

Now is the time to look at what information the objects hold compared to what is requested from other

63

classes or computed on the fly. Use the back of the card to record the attributes found for the classes.
Break you responsibilities into subresponsibilities and list the subresponsibilities indented under the
main responsibilities. Move the collaborators next to the subresponsibilities that use them.

After the Collaborator class on your card list the responsibility of the used class that is used in the col-
laboration. After the collaborating responsibilities on your cards, list the data passed back by the collab-
orating object in parenthesis.

Redo the scenarios you did in the analysis phase, but know take into consideration all of the design heur-
istics discussed. Make up your own scenarios and try them.

6.1.2. Package Diagram (To be written)
To be written...

6.1.3. Realization Class Diagrams (To be written)
To be written...

6.1.4. Sequence Diagrams and Collaboration Diagrams
(To be written)

To be written...

6.1.5. Statechart Diagrams and Activity Diagrams (To be
written)

To be written...

6.1.6. Deployment Diagram (To be written)
To be written...

6.1.7. Documents (To be written)
System Architecture. To be written...

6.2. Package Diagrams (To be written)
To be written...

6.2.1. The Package Diagram (To be written)
To be written...

6.2.2. Advanced Package Diagrams (To be written)
To be written...

6.2.2.1. Subpackages (To be written)
To be written...

6.2.2.2. Adding DataTypes (To be written)
To be written...

6.2.2.3. Adding Stereotypes (To be written)
To be written...

Design

64

6.3. Creating Package Diagrams in ArgoUML
6.3.1. Packages

How to work out what goes in packages. To be written...

6.3.1.1. Subpackages (To be written)
To be written...

6.3.2. Relationships between packages (To be written)
To be written...

6.3.2.1. Dependency (To be written)
To be written...

6.3.2.2. Generalization (To be written)
To be written...

6.3.2.3. Realization and Abstraction (To be written)
To be written...

6.3.3. Advanced Package Features (To be written)
To be written...

6.3.3.1. Creating New Datatypes (To be written)
To be written...

6.3.3.2. Creating New Stereotypes (To be written)
To be written...

6.4. More on Class Diagrams (To be written)
To be written...

6.4.1. The Class Diagram (To be written)
To be written...

6.4.1.1. Class Attributes (To be written)
To be written...

6.4.1.2. Class Operations (To be written)
To be written...

6.4.2. Advanced Class Diagrams (To be written)
To be written...

6.4.2.1. Realization and Abstraction (To be written)
To be written...

6.5. More on Class Diagrams in ArgoUML (To

Design

65

be written)
6.5.1. Classes (To be written)

More on identifying classes from existing materials and use of stereotypes. To be written...

6.5.2. Class Attributes and Operations (To be written)
To be written...

6.5.2.1. Class Attributes (To be written)
To be written...

6.5.2.2. Class Operations (To be written)
To be written...

6.5.3. Advanced Class Features

6.5.3.1. Operations on Interfaces

6.5.3.1.1. Interfaces that extend interfaces

Add a unnamed interface to the current classdiagram by single-clicking on the interface icon in the tool
bar and then clicking at the diagram pane (see Figure 6.1, “ Selecting the Interface tool ”).

Figure 6.1. Selecting the Interface tool

Then double click on the interfaces name field to change it's name as shown in Figure 6.2, “ Interface
model element on the Class Diagram ”

Figure 6.2. Interface model element on the Class Diagram

Design

66

and type a name for it (like TestInterface in this case). Press “Enter” when the name is complete.
(You could also enter the name by going to the Properties Tab in the Details Pane after adding the inter-
face.)

Add another interface with a different name by repeating the last 2 steps. Then single-click on the Gen-
eralization icon in the tool bar as shown in Figure 6.3, “ Generalization on the Class Diagram tool bar ”.

Figure 6.3. Generalization on the Class Diagram tool bar

Move the mouse pointer to the subinterface, press the left mouse button and drag the generalization to
the superinterface, where you release the mouse button. The screenshot of Figure 6.4, “ Generalization
between two Interfaces. ” shows how your diagram should look now.

Figure 6.4. Generalization between two Interfaces.

Design

67

By clicking on the subinterface and the source tab properties pane, and then selecting Java Notation for
the source tab, you can see that the interface actually extends it's superinterface.

6.5.3.2. Stereotypes (To be written)
To be written...

6.6. Sequence and Collaboration Diagrams (To
be written)

Note

Sequence diagrams does not work in ArgoUML version 0.14.

To be written...

6.6.1. More on the Sequence Diagram (To be written)
To be written...

Design

68

6.6.2. The Collaboration Diagram (To be written)
To be written...

6.6.2.1. Messages (To be written)
To be written...

6.6.2.2. Actions (To be written)
To be written...

6.6.3. Advanced Collaboration Diagrams (To be written)
To be written...

6.7. Creating Collaboration Diagrams in
ArgoUML (To be written)
6.7.1. Collaboration Diagrams (To be written)

To be written...

6.7.2. Messages (To be written)
To be written...

6.7.2.1. Actions (To be written)
To be written...

6.7.3. Advanced Collaboration Diagrams (To be written)
To be written...

6.8. Statechart Diagrams (To be written)
To be written...

6.8.1. The Statechart Diagram (To be written)
More on this. To be written...

6.8.2. Advanced Statechart Diagrams (To be written)
To be written...

6.8.2.1. Actions (To be written)
To be written...

6.8.2.2. Transitions (To be written)
To be written...

6.8.2.2.1. Triggers (To be written)
To be written...

6.8.2.2.2. Guards (To be written)
To be written...

Design

69

6.8.2.2.3. Effectss (To be written)
To be written...

6.8.2.3. Pseudo States (To be written)
To be written...

6.8.2.3.1. Junction and Choice (To be written)
To be written...

6.8.2.3.2. Fork and Join (To be written)
To be written...

6.8.2.4. Hierarchical State Machines (To be written)
To be written...

6.8.2.5. Models for State History (To be written)
Shallow v Deep. To be written...

6.9. Creating Statechart Diagrams in ArgoUML
(To be written)
6.9.1. Statechart Diagrams (To be written)

To be written...

6.9.2. States (To be written)
To be written...

6.9.3. Transitions (To be written)
To be written...

6.9.4. Actions (To be written)
To be written...

6.9.5. Advanced Statechart Diagrams (To be written)
To be written...

6.9.5.1. Transitions (To be written)
To be written...

6.9.5.1.1. Triggers (To be written)
To be written...

6.9.5.1.2. Guards (To be written)
To be written...

6.9.5.1.3. Effectss (To be written)
To be written...

6.9.5.2. Pseudo States (To be written)

Design

70

To be written...

6.9.5.2.1. Junction and Choice (To be written)
To be written...

6.9.5.2.2. Fork and Join (To be written)
To be written...

6.9.5.3. Hierarchical State Machines (To be written)
To be written...

6.9.5.4. History (To be written)
Shallow v Deep. To be written...

6.10. Activity Diagrams (To be written)
To be written...

6.10.1. The Activity Diagram (To be written)
More on this. To be written...

6.10.1.1. Action States (To be written)
To be written...

6.11. Creating Activity Diagrams in ArgoUML
(To be written)
6.11.1. Activity Diagrams (To be written)

To be written...

6.11.1.1. Creating an Activity Diagram

Select a use case or class, then you can create an activity diagram.

6.11.2. Action States (To be written)
To be written...

6.12. Deployment Diagrams (To be written)
To be written...

6.12.1. The Deployment Diagram (To be written)
To be written...

6.13. Creating Deployment Diagrams in
ArgoUML (To be written)
6.13.1. Nodes (To be written)

To be written...

Design

71

6.13.1.1. Node Instances (To be written)
To be written...

6.13.2. Components (To be written)
To be written...

6.13.2.1. Component Instances (To be written)
To be written...

6.13.3. Relationships between nodes and components
(To be written)

To be written...

6.13.3.1. Dependency (To be written)
To be written...

6.13.3.2. Associations (To be written)
To be written...

6.13.3.3. Links (To be written)
To be written...

6.14. System Architecture (To be written)
To be written...

6.15. Case Study (To be written)
6.15.1. CRC Cards (To be written)

To be written...

6.15.2. Packages (To be written)
To be written...

6.15.2.1. Identifying Packages (To be written)
To be written...

6.15.2.2. Datatypes and Stereotypes (To be written) Datentypen und
Stereotypen (Noch zu beschreiben)

To be written...

6.15.3. Class Diagrams (To be written)
To be written...

6.15.3.1. Identifying classes (To be written)
To be written...

6.15.3.2. Identifying associations (To be written)

Design

72

To be written...

6.15.3.3. Specifying Attributes and Operations (To be written)
To be written...

6.15.4. Sequence Diagrams (To be written)
To be written...

6.15.4.1. Identifying actions (To be written)
To be written...

6.15.5. Collaboration Diagrams (To be written)
To be written...

6.15.5.1. Identifying Messages (To be written)
To be written...

6.15.6. Statechart Diagrams (To be written)
To be written...

6.15.7. Activity Diagrams (To be written)
To be written...

6.15.8. The Deployment Diagram (To be written)
To be written...

6.15.9. The System Architecture (To be written)
To be written...

Design

73

Chapter 7. Code Generation, Reverse
Engineering, and Round Trip
Engineering
7.1. Introduction

We now have our design fully specified. With the right simulator we could actually execute the design
and see if it works. (ArgoUML does not provide such functionality, but this functionality has been
provided in alternative tools.)

ArgoUML does allow you to generate code from the design in several different programming languages.
We, most likely, already in the design had a programming language in mind because some of the design
considerations are to care for a specific language.

The output of this process is the set of files that constitute the program that solves the problem.

Once again the recursive, and iterative nature of our process means we will come back to the Build
phase many times in the future.

There is also another side to this and that is the reverse engineering side. If we happen to have an old
program that we would like to examine then we could take the files and reverse engineer them to create
a design. This can be used when trying to understand some not so well documented program or as a
quick start for the design work.

The process of going back and forth between doing changes in the design followed by a code generation
and then doing changes in the code followed by a reverse engineering using for every change, the best
possible perspective, is called Round-trip Engineering.

7.2. Code Generation
The output of the Code Generation is the completed program. Depending on the contents of the design,
we could also generate Unit test cases.

To do the work we need the design model, containing both static and dynamic descriptions of the pro-
gram.

7.2.1. Generating Code from the Static Structure
It is rather straightforward to do this generation, at least as long as we do it for an object-oriented lan-
guage. This is some of the basic rules:

• A class will become a class.

In some target languages (like java, c++) they also become files and compilation units.

• A generalization will become an inheritance.

If the target language does not support inheritance and we didn't address this during the design, some
special conversions are required to solve this.

74

• An attribute will become a member variable.

• A navigable association will become a member variable.

Depending on the target language, target platform, and the association multiplicities this will be a
pointer, a reference, a collection class, an entry in some table or map.

• A non-abstract operation in a class will become a method.

• An abstract operation in a class will become an abstract method.

• An in parameter in an operation will become a parameter in the method.

For simple types (int, boolean), this is the normal case. For C++, these will probably const classes.
For Java, this cannot be enforced for classes.

• An out or in/out parameter in an operation will become a referenced parameter in the method.

For C++, these will be referenced non-const parameters. For Java classes, this is the default. Simple
types (int, boolean) must, in java, be converted to an object of a corresponding class (Integer,
Boolean).

• The visibilities of the attributes, associations, and operations will become visibilities on the member
variables or methods.

• Packages will become directories, namespaces, or both.

7.2.2. Code aus Interaktionen und Zustandsautomaten
generieren

This conversion is not as straight-forward as the conversion of the static structure. It is much more de-
pending on the target language and target platform.

In general it is only possible to say the following for interactions:

• A message is converted into a function call.

The class of the recipient will have to have a function with the correct name and signature.

The sender function in the class of the sender will have a call to the function in the recipient.

• An asynchronous message is converted to either posting a message to be handled by some other
thread or a function call to a function that starts a new thread.

The following describes one possible way to generate state machines:

• A State Machine is generated to a set of member variables that each method in this class refer to
when deciding behavior.

• A State is generated to a closed set of combination of values on these member variables.

• An Event is generated as a call to a member method that can change the state.

These methods would then typically have one big switch statement splitting on the current state.

Code Generation, Reverse Engineering, and
Round Trip Engineering

75

• A Guard is generated to an if statement in the event member method in the branch for the correct
state.

• A Transition is generated as an assignment of some state variable.

• An Action is generated as a function call.

7.3. Code Generation in ArgoUML
7.3.1. Static Structure

Most of the generation can be done automatically by the provided language modules. Files are generated
in a directory hierarchy that need to be filled in by the actual code.

7.3.2. Interactions and statechart diagrams
There is currently no support for this in ArgoUML, not for any language.

7.4. Reverse Engineering
Reverse Engineering is used for two main purposes:

1. To get previously developed classed into the model to build upon.

2. To get a UML view of previously developed classes to understand how they work.

Essentially this does the opposite of Code Generation.

7.5. Round-Trip Engineering
Round-Trip Engineering makes it possible to switch perspective while doing the design. Create some
classes in a class diagram. Write some code for some of the operations or functions using your favorite
editor. Move the operations from one class to another in the class diagram...

ArgoUML currently does not support this for any language.

Code Generation, Reverse Engineering, and
Round Trip Engineering

76

Part 2. User Interface Reference

Chapter 8. Introduction
This chapter describes the overall behavior of the user interface. Description of the various component
parts—the menu bar, panes and various diagrams— is in separate chapters.

8.1. Overview of the Window
Figure 8.1, “ Overview of the ArgoUML window ” shows the main ArgoUML window.

The titlebar of the window shows the following 4 parts of information, separated from each other by a
dash.

• The current filename. If no filename for the project is set yet, then the titlebar shows "Unititled".

• The name of the currently active diagram.

• The name “ArgoUML”.

• An asterisk (*). This item is only present if the current project file is “dirty”, i.e. it is altered, but not
yet saved. In other words, if the asterisk is absent, then the current file has not been altered.

Figure 8.1. Overview of the ArgoUML window

At the top of screen is a menu bar, which is described in Chapter 10, The Menu bar . Below that is the
toolbar, as described in Chapter 9, The Toolbar .

78

The bulk of the window comprises four sub-windows or panes. Clockwise from top left these are the ex-
plorer (see Chapter 11, The Explorer), editing pane (see Chapter 12, The Editing Pane), details pane
(see Chapter 13, The Details Pane) and to-do pane (see Chapter 14, The To-Do Pane). All 4 panes
have a tool bar at the top (in the details pane it is located under the properties tab). An overview of the
panes is given in Section 8.3, “ General Information About Panes ”. Finally at the bottom of the window
is a status bar described in Section 8.4, “ The status bar ”.

8.2. General Mouse Behavior in ArgoUML
Mouse behavior that is specific to the various panes of ArgoUML (see Section 8.3, “ General Informa-
tion About Panes ”) or the menu bar, is discussed in the chapters covering those panes and the menu bar.
In this section we cover behavior that is general across all of ArgoUML.

In a number of places in ArgoUML text may be directly edited (for example the constraint editor—see
Section 13.7.1, “ The Constraint Editor ”). The behavior of the mouse when handling text is discussed in
the sections that follow.

8.2.1. Mouse Button Terminology
ArgoUML assumes a two button mouse. We will refer to the buttons as “button 1” and “button 2”. But-
ton 1 is the leftmost button on a right-handed mouse, and sometimes referred to as the select button. But-
ton 2 is the rightmost button on a right-handed mouse, and is sometimes referred to as the adjust button.

A single depress and release of a mouse button with the mouse is referred to as a click. Two clicks in
quick succession is referred to as a double click. Moving the mouse while holding a button down is re-
ferred to as button motion with the starting point being at button down and the end point at button up.

8.2.2. Button 1 Click
Clicking on an user-interface object or on a diagram model element may establish many different things.
Most of the behaviour is experienced quite intuitive by the user, mainly because the high degree of
standardisation, even spanning different computer platforms (Macintosh, PC, UNIX,...). ArgoUML fol-
lows the Java Look and Feel Design Guidelines by Sun. See http://java.sun.com/products/jlf/. Hence,
behaviour of common user-interface components is generally not discussed in this document.

On the other hand, mouse actions in a diagram may not seem so intuitive to the user, since it is specific
for ArgoUML. Hence they are explained here. In short, clicking selects or activates the object beneath
the mouse-pointer, and moves the focus (i.e. navigation).

More in detail, the button 1 click may cause the following result:

8.2.2.1. Selection

Here button 1 is used to choose (select) a model element (in a list or tree or on a diagram) on which sub-
sequent operations will take place. Multiple model elements may be selected by using Shift and/or Ctrl
in combination with button 1, see Section 8.2.5, “ Shift and Ctrl modifiers with Button 1 ”. Selection is
always clearly indicated by a colored background.

On a diagram, the selected model element is indicated with colored "blocks" at the corners/ends of the
object. Model elements can be selected or deselected in different ways:

• Button 1 click. Deselects all model elements, and selects the one clicked on.

• Button 1 motion. Button motion (moving the mouse with the button down) in the diagram, not on
any model element, allows to draw a rectangle around model elements which will be selected when

Introduction

79

http://java.sun.com/products/jlf/

the button 1 is released.

• Menu functions and shortcuts. Many menu operations change selection as side-effect, e.g. creating a
new diagram. Many keyboard shortcuts for menu operations change the selection, e.g. Ctrl-A, which
stands for the Select All function.

8.2.2.2. Activation

Here button 1 is used to activate the user interface component, e.g. a button. The object is usually high-
lighted when the mouse button is pressed and then activated when the mouse button is released. Activat-
ing an user-interface object means that its function is executed.

8.2.2.3. Navigation

Here button 1 is used to move the focus from one user interface component or diagram model element to
another. It is better known under the term keyboard focus. This because keyboard commands usually
work on the model element that has the focus. The focus is indicated by a (hardly visible) box around
the model element, or for a text entry box, by a flashing cursor.

8.2.2.4. General Behavior When Editing Text

Here button 1 is used to select the point within the text at which operations (text entry and deletion) will
take place.

8.2.3. Button 1 Double Click
The behavior of button 1 double click varies betweens panes and is discussed in their chapters.

8.2.3.1. General Behavior When Editing Text

Here button 1 double click is used to select a complete word, or other syntactic unit within the text. Sub-
sequent operations (text entry and deletion) will replace the selected text.

8.2.4. Button 1 Motion

8.2.4.1. General Behavior When Editing Text

Here button 1 motion is used to select a range of text. Subsequent operations (text entry and deletion)
will replace the selected text.

8.2.5. Shift and Ctrl modifiers with Button 1

8.2.5.1. Within Lists

This behavior applies where there is a list of things that may be selected. This includes various dialog
boxes, and the to-do pane, where there is a list of to-do items to be selected.

Where selections are to be made, the SHIFT key is used to with button 1 to extend from the original but-
ton 1 selection to the current position.

Similarly the CTRL key with button 1 is used to add individual items to the current selection. Where
Ctrl-button 1 is used on an item already selected, that item is removed from the selection.

Introduction

80

Caution

Users of Microsoft Windows might be familiar with the use of SHIFT-CTRL-Click (i.e.
holding both the Shift and Ctrl key down when clicking), to add sub-lists to an existing se-
lection. ArgoUML does not support this. SHIFT-CTRL-Click will behave as CTRL-Click.

8.2.5.2. General Behavior When Editing Text

In a number of places in ArgoUML text may be directly edited (for example when naming a mod-
el—element in the properties pane, or when typing a UML note / comment). Here SHIFT button 1 is
used to select a range of text from the previously selected point. Subsequent operations (text entry and
deletion) will replace the selected text.

8.2.6. Alt with Button 1: Panning
When holding down the Alt key during button 1 down on a diagram, movement of the mouse pans the
drawing area. The function is indicated by the mousepointer which turns into a crosshair with arrows.

8.2.7. Ctrl with Button 1: Constrained Drag
When holding down the Ctrl key while dragging with mouse button 1 down on a diagram, the movement
of the dragged element element will be constrained to one of eight cardinal directions : North, South,
East, West, NE, SE, SW, NW.

8.2.8. Button 2 Actions
Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

8.2.9. Button 2 Double Click
Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

8.2.10. Button 2 Motion
Button 2 actions are all dependent on the pane or menu bar, and discussed in their various chapters.

8.3. General Information About Panes
The four sub-windows of the main ArgoUML window are called panes. Clockwise from top left these
are the explorer (see Chapter 11, The Explorer), editing pane (see Chapter 12, The Editing Pane), de-
tails pane (see Chapter 13, The Details Pane) and to-do pane (see Chapter 14, The To-Do Pane). At the
top the editing pane is a tool bar.

8.3.1. Re-sizing Panes
You can re-size panes by dragging on the divider bars between them. To indicate this possibility, the
mouse cursor changes shape when hovering over the divider bars.

In addition you will see there are two small left pointing arrows within the vertical divider bars, one at
the top of the vertical divider bar between explorer and editing pane and one at the top of the vertical di-
vider bar between to-do pane and details pane. Button 1 click on the first of these will expand the editing
pane to the full width of the window, button 1 click on the second will expand the details pane to the full

Introduction

81

width of the window.

There is also a small downward pointing arrow within the horizontal divider bar at its leftmost end.
Clicking on this will expand the explorer and editing panes to the full depth of the window.

By using both the top arrow on the vertical divider and the arrow on the horizontal divider, it is possible
to expand the editing pane to use the entire window.

The original configuration can be restored by clicking again on these arrows, which are now located at
the edge of the window.

8.4. The status bar
The status bar is at the very bottom of the ArgoUML window and is used to display short advisory mes-
sages. In general such messages are self explanatory. It is e.g. used for displaying parsing error messages
in case a text entered on the diagram can not be interpreted.

Introduction

82

Chapter 9. The Toolbar
9.1. File operations

These buttons have identical functions as their counterparts in the File menu.

• New See for a full description Section 10.3.1, “ New ”.

• Open Project... See for a full description Section 10.3.2, “ Open Project... ” .

• Save Project See for a full description Section 10.3.3, “ Save Project ”.

• Project Properties See for a full description Section 10.3.14, “ Project Properties ”.

• Print See for a full description Section 10.3.10, “ Print... ”.

9.2. Edit operations
These buttons have identical functions as their counterparts in the Edit menu.

• Remove From Diagram See for a full description Section 10.4.2, “ Remove From Dia-

gram ”.

• Delete From Model See for a full description Section 10.4.3, “ Delete From Model ”.

• Configure Perspectives See for a full description Section 10.4.4, “ Perspektiven

konfigurieren... ”.

• Settings See for a full description Section 10.4.5, “ Einstellungen... ”.

9.3. View operations
The Find... button has identical behaviour as its counterpart in the View menu. The Zoom button is
a more luxurously version of the function in the View menu.

• Find... See for a full description Section 10.5.2, “ Find... ”.

• Zoom This is a different version of the menu-item for zooming, as described in Section 10.5.3, “

Zoom ” . Clicking with button 1 on the zoom-icon opens a panel as in the figure below.

Figure 9.1. The Zoom slider on the Toolbar

83

Once the panel is open, the following actions are possible:

• Clicking with button 1 on the "knob" followed by button 1 movement will adjust the zoomfactor.

• Clicking with button 1 on the shown percentage allows editing the given zoomfactor (in percent)
directly with the keyboard. Double clicking on the value shown selects the whole entry for easy
overtyping.

• Clicking with button 1 below or above the knob increases or decreass the zoom factor with 1%.
Use this function to easily fine-adjust the percentage.

• Clicking with button 1 or button 2 on the Zoom tool, or anywhere outside the slider panel closes
the panel.

• The keyboard can be used to operate the Zoom Slider as follows: When the Zoom icon in the
toolbar has the focus (indicated by the thin blue box around it), then pressing the spacebar opens
the zoon slider panel. Use the arrow keys to increase and decrease the percentage 1 by 1. Use
Shift-Tab to set the focus to the percentage box, where you can edit the given value directly.
Pressing Enter activates the changed value. When the "knob" has the focus, pressing
PageUp/PageDown increases/decreases the percentage by some amount. Pressing Home sets
the percentage to 300%, and End sets it to 25%.

9.4. Create operations
These buttons have identical functions as their counterparts in the Create menu.

The Toolbar

84

• New Use Case Diagram See for a full description Section 10.6.1, “ New Use Case

Diagram ” .

• New Class Diagram See for a full description Section 10.6.2, “ New Class Diagram

Klassendiagramm ” .

• New Sequence Diagram See for a full description Section 10.6.3, “ New Sequence

Diagram ” .

• New Collaboration Diagram See for a full description Section 10.6.4, “ New Col-

laboration Diagram ” .

• New Statechart Diagram See for a full description Section 10.6.5, “ New Statechart

Diagram ” .

• New Activity Diagram See for a full description Section 10.6.6, “ New Activity Dia-

gram ” .

• New Deployment Diagram See for a full description Section 10.6.7, “ New Deploy-

ment Diagram ” .

The Toolbar

85

Chapter 10. The Menu bar
10.1. Introduction

An important principle behind ArgoUML is that actions should be able to be invoked in whatever way
the user finds convenient. As a result many (but not all) actions that can be carried out on the menu can
be carried out in other ways as well under ArgoUML.

A number of the common menu entries are also available through keyboard shortcuts.

It is also be possible to navigate the menu from the keyboard. Each level of each menu is identified by a
letter (shown underlined in the menu or entry name from the moment the ALT key is pressed). This se-
quence of letters while holding down the ALT key selects the entry.

The following is an explanation of why the menuitems are grouped as they are.

• The File menu contains operations that affect on the whole project/file. All the items in this menu
can be explained as such.

• The Edit menu is generally intended for editing the model or changing the content of a diagram. It
also contains functions to enable editing, like e.g. selecting. This menu is not intended for diagram
layout functions. Most functions here do something with the selected modelelement and diagram.
The items "Configure Perspectives..." and "Settings..." are a bit different, since they adjust the way
ArgoUML works - but they do not belong in the File menu, since their settings are not stored in the
project.

• The View menu is for functions that do never alter the model, nor the diagram layout, only the way
you view the diagram. A good example is "zoom". Also navigational functions belong here, e.g.
"Find" and "Goto Diagram...". All changes of settings in this menu apply to all diagrams (e.g. zoom).

• The Create menu contains all possible diagrams that can be created. These functions are context de-
pendend, since they work on the selected modelelement.

• The Arrange menu allows layout changes in the current diagram, which is not the same as the items
in the View menu. Functions here can not alter the UML model.

• The Generation menu is for Code Generation. The functions here work either on the selected
modelelements, or on the whole project.

• The Critique menu is specific for settings related to critics, which apply for all projects.

• The Tools menu is currently empty. If plugins are installed, then their functions appear here.

• The Help menu contains the usual "information" and "about".

10.2. Mouse Behavior in the Menu Bar
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Section 8.2, “ General Mouse Behavior in ArgoUML ”). There is no ArgoUML spe-
cific behaviour for the menu.

86

10.3. The File Menu
These are actions concerned with input and output and the overall management of projects and the
ArgoUML system.

10.3.1. New
Shortcut Ctrl-N.

This initializes a new project within ArgoUML. The project is created without a the name. It contains a
(top-level) Model named untitledModel and two empty diagrams: a class diagram and a use case
diagram.

Caution

untitledModel is not a conventional model name (most processes suggest models
should be build from lower case letters). ArgoUML permits you to use any case letters, but
a critic will trigger to warn that this is not conventional. See Section 16.2, “ The Model ”
for a discussion of this.

If the model has been altered (as indicated by the "*" in the titlebar of ArgoUML's window), then activ-
ating the "New" function is potentionally not the user's intention, since it will erase the changes. Hence a
confirmation dialog appears to allow the user to save his work first, or cancel the operation completely.

Figure 10.1. The confirmation dialog for New.

10.3.2. Open Project...
Shortcut Ctrl-O.

This opens an existing project from a file. Selecting this menu option will open a file selection dialog
(see Figure 10.2, “ The file selection dialog for Open Project.... ”).

Figure 10.2. The file selection dialog for Open Project....

The Menu bar

87

The main body of the dialog is a text area with a listing of all directories and files in the currently selec-
ted directory which match the current filter (see below).

Navigating in the directory tree is possible by selecting a directory in the drop down selector at the top
of this dialog. Navigating deeper in the tree may be done by double clicking button 1 on the directory
shown in the main text area.

In the lower portion of the dialog is a text box labeled File name: for the name of the file to be
opened. The file name may be typed directly in here, or selected from the directory listing above using
button 1 click.

Beneath this is a drop down selector labeled Files of type: to specify a filter on the files to be
shown in the directory listing. Only files that match the filter are listed. The available filters are listed
below. The default filter is the first one, which combines all available formats.

• ArgoUML file (*.zargo, *.uml, *.xmi, *.xml, *.zip)

• ArgoUML compressed project file (*.zargo)

• ArgoUML project file (*.uml)

• XML Metadata Interchange (*.xmi)

• XML Metadata Interchange (*.xml)

• XMI compressed project file (*.zip)

10.3.3. Save Project
Shortcut Ctrl-S.

This saves the project using its current file name. Use Save Project As... to save the project to a
different file. If no filename is given yet (e.g. after New), then this function works exactly as Save
Project As....

The Menu bar

88

Note

In certain circumstances, there is nothing to save, and this menuitem is downlighted. E.g.
when the user did not yet alter a loaded project. The presence of a “*” in the titlebar of
ArgoUML's window indicates that the current project is “dirty” (has been altered), and can
be saved.

10.3.4. Save Project As...
This opens a dialog allowing you to save the project under a different file name (or to specify a file
name for the first time if the project is a new project).

The dialog box is almost identical to that for Open Project (see Figure 10.2, “ The file selection dia-
log for Open Project.... ”). The extension of the filename is automatically set.

10.3.5. Revert to Saved Projekt speichern rückgängig
machen

This menu-item allows you to throw away all your recent changes, and reload the last saved version of
the current project. It works a bit like an Undo feature, but only restores changes done since the last
time the file was saved.

This menu-item is downlighted unless the currentproject has been saved or loaded before (i.e. it has a
name), and it has been altered.

When this menu-item is activated, a small confirmation dialog box opens, as shown in the figure below.
This warning that all recent changes will be discarded, is needed because the action can not be undone.
Selecting No cancels the whole action as if you did not select the menu-item in the first place. Selecting
Yes reloads the last saved file.

Figure 10.3. The warning dialog for Revert to Saved.

10.3.6. Import XMI...
This menu-item allows to load an UML 1.3 or 1.4 model which was exported by e.g. another tool, as a
XMI file, according the XMI V1.0, V1.1 or V1.2 standard. The extension of such file should be .xmi.

If the model has been altered (as indicated by the "*" in the titlebar of ArgoUML's window), then activ-
ating the "Import XMI..." function is potentionally not the user's intention, since it will erase the
changes. Hence a confirmation dialog appears to allow the user to save his work first, or cancel the oper-

The Menu bar

89

ation completely.

Figure 10.4. The confirmation dialog for Import XMI....

When the menu is activated, the standard filechooser appears, see Figure 10.5, “ The dialog for Import
XMI.... ”. Beware the fact that this file will only contain the model, not any diagram layout. Hence,
the new project will not contain any diagrams.

Figure 10.5. The dialog for Import XMI....

10.3.7. Export XMI...
This menu-item allows to save the complete structure of the UML 1.4 model as a XMI file, according
the XMI V1.2 standard. Beware the fact that this file will only contain the model, not any diagram lay-
out. Hence, if the XMI file is reloaded with the File - Open Project... menu, then the dia-
grams are lost.

The Menu bar

90

When the menu is activated, the standard filechooser appears, see Figure 10.6, “ The dialog for Export
XMI.... ”.

Figure 10.6. The dialog for Export XMI....

10.3.8. Import Sources...
A very powerful feature of ArgoUML is that it can “Reverse Engineer” Java code to yield a class dia-
gram. This sub-menu entry specifies Java code to be imported for reverse engineering.

The dialog box is similar to that for Open Project (see Figure 10.2, “ The file selection dialog for
Open Project.... ”), but with two extra tabs placed alongside the directory listing, as shown in
Figure 10.7, “ The file selection dialog for Import Sources.... ”).

Figure 10.7. The file selection dialog for Import Sources....

The Menu bar

91

Those fields that are the same as Open Project behave in the same way (see Section 10.3.2, “

Open Project... ”).

Next to the "All Files" file filter, there is the default filter "Java Source File (*.java)".

The first of the two tabs is labeled General and is selected by button 1 click on its tab. It provides a
combo box for the language selection (in V0.18 of ArgoUML only Java can be chosen), and the follow-
ing selections:

• Descend directories recursively. If enabled (the default), reverse engineering will
track through sub-directories for any further Java files. If not it will restrict to the selected directory.

• Changed/new files only. If enabled (the default), only changed and new files are imported.
If not all classes will be replaced.

• Create diagrams from imported code. If you unselect this, then no diagrams are cre-
ated, i.e. all data will only be visible in the explorer.

• Minimise Class icons in diagrams. If enabled, then the attributes and operations com-
partiments will not be shown in the classes on the generated class diagrams. Note: This item is
checked by default, and is overseen by many users, which are then surprised by the result.

• Perform Automatic Diagram Layout. If selected, then ArgoUML will do its best to layout
the generated diagrams automatically. If not, then all items will be placed at the top left corner of the
diagram.

• Level of import detail: Classifiers only / Classifiers plus feature
specifications / Full import. The latter is the default.

• Import source file encoding:. The value Cp1252 is often the default. This string rep-
resents the coded character set identifier (CCSID).

The second of the two tabs is labeled Java and is selected by button 1 click on its tab. It provides two
pairs of radio boxes.

The Menu bar

92

• The first radio box allows selection between modeling attributes of Java classes as UML attributes
(the default) or as UML associations to the class specified.

• The second radio box allows selection between modeling arrays as new datatypes in their own right
(the default) or as their base datatype with multiplicity.

10.3.9. Page Setup...
This brings up the standard dialog box provided by the operating system to adjust printer paper size, ori-
entation, and other options.

10.3.10. Print...
Shortcut Ctrl-P.

This brings up the standard dialog box provided by the operating system allowing the current diagram to
be printed out.

In some cases, when the printing is started, the dialog box of Figure 10.8, “ The diagram exceeds page
size dialog. ” appears. Selecting the "Fit to page" button does print the whole diagram fitted on one page
by scaling it down. Which might cause all text to be too small to read in case of big diagrams, but it is a
quick and easy way to get an usable printout. Selecting the "Multiple pages" option does print unscaled,
by dividing the diagram in pieces, on as many pages as needed. Pressing the close button of the dialog
does the former option.

Figure 10.8. The diagram exceeds page size dialog.

Warning

If the current diagram contains no selected model elements, then the whole diagram is
printed. However, if one or more model elements are selected, then only the area they cov-
er is printed! If scaling is selected (by the "Fit to page" choice in the dialog box descibed
above), then the scaling is done on basis of the selected model elements only. If scaling is
not chosen (or in case it is not needed), then all pages containing a selected model element
are printed.

10.3.11. Export Graphics... Grafik exportieren...
This menu entry brings up a dialog box allowing the currently selected diagram (in the editing pane) to
be saved in one of a number of graphic formats.

The Menu bar

93

The dialog box is identical to that for Open Project (see Figure 10.2, “ The file selection dialog for
Open Project.... ”), except for the Files of type:. The chosen filetype specifies the graph-
ics format used for saving. The filename is automatically extended with the corresponding ending (if not
entered already). A default filename is generated based on the diagram name.

The available graphics types are:

• GIF image (*.gif)

• Encapsulated Postscript file (*.eps)

• PNG image (*.png)

• Postscript file (*.ps)

• Scalable Vector Graphics file (*.svg)

The graphics format that is selected by default is set in the dialog under the menu entry Edit - Settings...

10.3.12. Export All Graphics...
This menu entry brings up a dialog box to select a directory. In this directory, for all diagrams in the cur-
rent project, a graphics file is generated.

The names of the files are deducted from the diagram names. The graphics format that is produced is set
in the dialog under the Edit menu (see Section 10.4.5, “ Einstellungen... ”).

10.3.13. Notation
This sub-menu presents a radio button selection for notation, i.e. the language in which all textual adorn-
ments are shown on the diagrams.

This feature defines the project's notation language.

There are 2 ways to set the notation language:

• In the Edit menu, see Section 10.4.5.7, “ Notation Tab ” in the notation tab of the settings dialog,
which defines the default notation language for new projects. This choice is stored in the
argo.user.properties file in the .argouml directory under the user's home directory.

• In the File menu, item Notation. This determines how all textual adornments of figures on all dia-
grams of the current project are shown. This choice is stored in the project file.

The following 2 notations are build in ArgoUML:

• UML 1.4. Uses UML notation as the default notation for every modelelement on any diagram.

• Java. Uses Java notation as the default notation for every modelelement on any diagram.

The following choices are only available if the corresponding plugin languages are installed.

The Menu bar

94

• Cpp.

• CSharp.

• PHP.

Besides UML, only Java is partly implemented in V0.22 of ArgoUML.

10.3.14. Project Properties
This menu entry brings up a dialog box, which allows the user to set various options of the currently
loaded project.

All settings in this dialog are stored in the project-file together with the model.

Figure 10.9. The dialog for Project Properties - the User tab.

In the User tab, you are able to set the following fields:

• The first field contains the name of the author or responsible for the current project. By default the
name and email of the creator are filled in, so probably you will never need to edit this, but it is pos-
sible.

• The Project Description field may contain any text that you need to describe the project. By default it
is empty.

• The "Last saved with ArgoUML" field indicates the version of ArgoUML that was used to save this
project (the last time it was saved). This may be usefull if multiple designers have different versions
of ArgoUML, which may not be backwards compatible all the time.

The Menu bar

95

Figure 10.10. The dialog for Project Properties – the Profiles tab.

In the Profiles tab, you are able change the following settings:

• The type of “Stereotype Visualization” for the project, which may be textual, small or with big
icons.

• The UML profiles which are configured in the project – model elements of these UML profiles may
be referenced in the project.

Figure 10.11. The dialog for Project Properties - the Notations tab.

The Menu bar

96

In the Notations tab, you are able to set the following fields:

• The first field is a combobox that allows selection of the project's Notation language. By default, it
lists UML and Java, but other languages may be added by plugins. See the chapter on Notation for
more explanation: Section 12.11, “ Notation ”.

• Use guillemots (« ») for stereotypes (clear by default). By default ArgoUML uses pairs of less
than and greater than (<< >>) characters for stereotypes. If this box is checked stereotypes on dia-
grams are shown between true guillemots (« »).

This feature is presumably added to ArgoUML because guillemots are poorly supported by various
fonts, and if they are present, then they are quite small and poorly visible.

• Show visibility (clear by default). If this is selected, then ArgoUML will show the visibility
indicators in front of e.g. attributes in the diagram. In UML the notation is "+" for public, "-" for
private, "#" for protected, and "~" for package. E.g. for an attribute, it may show: +newAttr :
int.

• Show multiplicity (clear by default). If this is selected, then ArgoUML will show the multi-
plicity of e.g. attributes in the diagram. In UML notation, the multiplicity is shown between [], such
as: +newAttr [0..*] : int. This setting has no impact on showing multiplicity near associ-
ationends.

• Show initial value (clear by default). If this is selected, then ArgoUML will show the initial
value of e.g. attributes in the diagram. In UML notation, the initial value is shown e.g. like this:

The Menu bar

97

+newAttr : int = 1.

• Show properties (clear by default). If this is selected, then ArgoUML will show various prop-
erties between braces {}. E.g. for an attribute, it may show: +newAttr : int { frozen }.

• Show types and parameters (set by default). When this checkbox is unmarked, attributes in
classes are shown without type indication, and operations are shown without parameters. This fea-
ture may be usefull during the analysis phase of your project. If all checkmarks in the Notation Tab
are unchecked, then e.g. for an attribute, ArgoUML may show: newAttr. And for an operation:
newOperation().

• Show stereotypes in explorer (clear by default). If this is selected, then ArgoUML will
show stereotypes next to the icons of the modelelements in the Explorer, i.e. the tree structure at the
left hand side.

• Default shadow width (set to 1 by default). ArgoUML is able to draw all elements on a dia-
gram with a shadow, for esthetical reasons. Use this setting to adjust the size of the shadow, used
when the modelelement is created. The details tab "Presentation" allows to set the shadow per
modelelement, after they are created, but ArgoUML V0.22 does not retain this latter change after
save and load.

Figure 10.12. The dialog for Project Properties – the Diagram Appearance tab.

In the Diagram Appearance tab, you are able change the diagrams font.

10.3.15. Most Recent Used Files
ArgoUML remembers a few of the most recently saved files, and lists them here, to enable loading then
in the most simple way.

The maximum number of files that is listed here, can be adjusted in the Edit -> Settings... menu.
The list of files is stored in the argo.user.properties file in the .argouml directory under the
user's home directory.

The Menu bar

98

10.3.16. Exit
Shortcut Alt-F4.

This closes down ArgoUML. A warning message will pop-up if you have a project open with unsaved
changes asking if you wish to save it. See Figure 10.13, “ The save changes dialog. ”. The options are:

• Yes (save the project and exit ArgoUML);

• No (do not save the project, but still exit ArgoUML); and

• Cancel (do not save the project and do not exit ArgoUML).

• The dialog box can also be closed by clicking in the close button in the window border. The effect is
the same as selecting "Cancel".

Figure 10.13. The save changes dialog.

10.4. The Edit Menu
This menu provides support for selecting model elements on the editing pane; removal of model ele-
ments from diagrams and the model; and control of user settings.

10.4.1. Select
This sub-menu provides for selection of items on the editing menu. It has the following entries.

• Select All (shortcut Ctrl-A). Selects all model elements on the current pane or in the current
field. The exact behaviour depends on the current pane (i.e. the last one you clicked in): ex-
plorer pane, editing pane, to-do pane, details pane. One rule applies in all cases though: the selection
on the diagram (editing pane) and in the explorer are always synchronised.

If the editing pane is the current pane: First everything in the explorer and on the current dia-
gram is deselected, and then everything that is on the current diagram is selected (and if the same
items apear in the explorer, then they are also there indicated as selected, because they are always
synchronised).

If the explorer pane is the current pane: All visible items in the explorer pane are selected, and
non-visible items are deselected.

If the to-do pane is the current pane: All visible items in the to-do pane are selected, and non-

The Menu bar

99

visible items are deselected. In fact, this works the same as for the explorer pane, because both are
tree structures.

If the details pane is the current pane: The function only works when the cursor is in certain
fields, where selecting is possible, e.g. a Name field. In such a case, the Select All function extends
the current selection to the whole field contents.

• Navigate Back. ArgoUML keeps a record of the model elements that you have been select-

ing while navigating the model. This button moves you back to the previous one selected. If there
are no more previous model elements, the button is grayed out.

• Navigate Forward. ArgoUML keeps a record of the model elements that you have been

selecting while navigating the model. This button moves you forward to the next one selected (after
you have used the Navigate Back button to move back). If there are no more next model elements,
the button is grayed out.

• Invert Selection. This inverts the current selection on the current pane. More exact:
everything that was selected is de-selected and everything that was not selected within the current
pane is selected.

10.4.2. Remove From Diagram
Shortcut Delete.

This removes the currently selected item(s) from the diagram, but not from the model.

The modelelement can be re-added to the diagram by button 2 click on the modelelement in the ex-
plorer, or by dragging it onto the diagram.

10.4.3. Delete From Model
Shortcut Ctrl-Delete.

This function deletes the selected item(s) from the model completely.

If the item to be deleted is also present on another diagram than the current one, the dialog box from fig-
ure x appears.

Figure 10.14. The dialog for confirmation of Remove from Model.

10.4.4. Perspektiven konfigurieren...

The Menu bar

100

This menu-item invokes the same dialog as the button at the top of the explorer. See Section 11.5, “
Configuring Perspectives ”. for a complete description.

10.4.5. Einstellungen...
This menu entry brings up a dialog box, which allows the user to set various options that control the be-
havior of ArgoUML (see Figure 10.15, “ The dialog for Settings - Preferences. ”).

These settings are saved persistently for use by subsequent ArgoUML sessions.

ArgoUML has various user specific configurations that can be set in this dialog box, or directly on the
various panes. Also the main window size and location is such a setting. Activating this menu entry
causes the information to be saved in the file argo.user.properties. The location of this file is in
the .argouml directory under the "users home directory", which is defined as ${user.home} , and
can be determined as described in Section 10.4.5.2, “ Environment Tab ” .

Tip

This is a text file, which you can edit to configure ArgoUML.

Figure 10.15. The dialog for Settings - Preferences.

The options that can be set up on the various tabs are described in the following sections. For each tab
there are three buttons at the bottom of the dialog box.

• OK. Activating this button (button 1 click) applies the chosen settings and exits the dialog.

• Cancel. Selecting this button (button 1 click) exits the dialog without applying any settings
changed since the last Apply (or since the dialog started if Apply has not been used).

The Menu bar

101

• Apply. Selecting this button (button 1 click) applies the chosen settings and remains in the dialog.

Closing the dialog (with the close button in the top corner in the border of the window) causes the same
effect as Cancel.

10.4.5.1. Preferences Tab

Selecting the Preferences tab (button 1 click on the tab) gives the following options as check boxes.

• Show Splash Panel (set by default). If enabled ArgoUML will show a small panel with a pic-
ture while starting up.

Tip

The splash panel can be seen by using the Help menu (see Section 10.11.2, “ About
ArgoUML ”).

• Reload last saved project on startup (clear by default). Check this item if you al-
ways work on the same project, and wish to load it automatically when you start up ArgoUML.

• Strip (non-standard) diagrams from XMI file during import (clear by de-
fault). Checking this item will tell ArgoUML to ignore the "Diagram" elements when importing
XMI files.

You only need to use this setting, if ArgoUML gives an error while importing your XMI file saying
that it encountered unrecognized elements named "Diagram." Some versions of Poseidon are known
to create this type of file by default although there's usually an export option to force them to create
standard XMI files.

10.4.5.2. Environment Tab

Selecting the Environment tab (button 1 click on the tab) lists several environmental items. Note that
none of the paths can be altered — these are just a matter of record.

Figure 10.16. The dialog for Settings - Environment.

The Menu bar

102

• Default Graphics Format. Here you can select the same graphics formats as in the menu
Section 10.3.11, “ Export Graphics... Grafik exportieren... ”. The chosen format is selected by de-
fault in the Export Graphics and Export All Graphics menu-items.

• Graphics Export Resolution. This allows you to artificially increase the resolution of pro-
duced graphics. The advised setting is "Standard". To be able to use "High" or "Extra High", you
usually need to start the Java virtual machine with extra memory.

• ${argo.ext.dir}. The directory holding ArgoUML extensions—by default the ext sub-
directory of the ArgoUML build directory.

• ${java.home}. The home directory of the Java Runtime Environment (JRE).

• ${user.home}. The user's home directory. Used for storing the argo.user.properties
file, under the .argouml directory.

• ${user.dir}. The directory from which ArgoUML was started.

• Startup Directory. The directory in which ArgoUML starts file searches etc.

10.4.5.3. User Tab

This tab allows the user to record additional information of use to the system. There are two text boxes
provided.

Figure 10.17. The dialog for Settings - User.

The Menu bar

103

• Full Name. Allows the user to record her full name.

• Email Address. Allows the user to record his Email address.

This information is used when requesting to-do help by Email.

10.4.5.4. Appearance Tab

This tab allows the user to specify the LAF (Look And Feel) and theme, i.e. what the complete
ArgoUML UI looks like. It comprises the following settings.

Figure 10.18. The dialog for Settings - Appearance.

The Menu bar

104

• Look and Feel. The choice made here influences the complete User Interface. It only becomes
effective when ArgoUML is exited and restarted.

• Metal Theme. This item is downlighted if the Metal LAF is not chosen. The choice made here in-
fluences the complete User Interface. It only becomes effective when ArgoUML is exited and restar-
ted.

• Smooth edges of diagram lines and text. This feature is known as “anti-aliasing” on
certain platforms. It causes diagonal lines to look much less jagged, by making use of several shades
of gray. This feature only works if the operating system supports it.

10.4.5.5. Profiles Tab

In this tab the user may configure the ArgoUML application settings related to the profiles.

Figure 10.19. The dialog for Settings - Profiles.

The Menu bar

105

• Stereotype Visualization – select to view stereotypes as text, small or big icons.

• Default XMI directories – allows the user to configure directories where ArgoUML can
find the user defined profiles.

• Default Profiles – select which profiles from the available profiles are configured in new
projects by default.

10.4.5.6. Configure Shortcuts Tab

(To Be Written)

Figure 10.20. The dialog for Settings - Configure Shortcuts.

The Menu bar

106

10.4.5.7. Notation Tab

This tab allows the user to specify certain notation settings, i.e. how things are shown on diagrams. It
comprises the following check boxes.

All settings here, only define the defaults used for new projects. If you want to change the way the dia-
grams in your current project look, then see the File - Properties menu.

Figure 10.21. The dialog for Settings - Notations.

The Menu bar

107

• Notation Language (UML 1.4 by default). This feature allows changing the default notation
(i.e. language: UML, Java,...) used on the diagrams for new projects. Suppose that a designer indic-
ates that the default notation of a project is Java. When he saves the project, the choice for Java is
stored inside the project file. If someone else is viewing the diagram, he will see the Java notation,
too. This person can select the UML notation in the File - Notation menu, and see all diagrams in
UML language. See Section 10.3.13, “ Notation ”).

• Show name of nodes in bold font.

This feature causes the names of every node (i.e. something drawn with a closed polygon) to be
bold.

There is no semantics to showing bold names, but it may make your diagrams look nicer.

• Use guillemots (« ») for stereotypes (clear by default). By default ArgoUML uses pairs of less
than and greater than (<< >>) characters for stereotypes. If this box is checked stereotypes on dia-
grams are shown between true guillemots (« »).

This feature is presumably added to ArgoUML because guillemots are poorly supported by various
fonts, and if they are present, then they are quite small and poorly visible.

Independent of the way they are shown, when entering stereotypes, you can always type real guille-
mots (if your keyboard supports it) or their << >> equivalents.

• Show association names.

This feature causes the names of every association to be hidden if not marked.

• Show visibility (clear by default). If this is selected, then ArgoUML will show the visibility

The Menu bar

108

indicators in front of e.g. attributes in the diagram. In UML the notation is "+" for public, "-" for
private, "#" for protected, and "~" for package. E.g. for an attribute, it may show: +newAttr :
int.

• Show multiplicity (clear by default). If this is selected, then ArgoUML will show the multi-
plicity of e.g. attributes in the diagram. In UML notation, the multiplicity is shown between [], such
as: +newAttr [0..*] : int. This setting has no impact on showing multiplicity near associ-
ationends.

• Show initial value (clear by default). If this is selected, then ArgoUML will show the initial
value of e.g. attributes in the diagram. In UML notation, the initial value is shown e.g. like this:
+newAttr : int = 1.

• Show properties (clear by default). If this is selected, then ArgoUML will show various prop-
erties between braces {}. E.g. for an attribute, it may show: +newAttr : int { frozen }.

• Show types and parameters (set by default). When this checkbox is unmarked, attributes in
classes are shown without type indication, and operations are shown without parameters. This fea-
ture may be usefull during the analysis phase of your project. If all checkmarks in the Notation Tab
are unchecked, then e.g. for an attribute, ArgoUML may show: newAttr. And for an operation:
newOperation().

• Show stereotypes in explorer (clear by default). If this is selected, then ArgoUML will
show stereotypes next to the icons of the modelelements in the Explorer, i.e. the tree structure at the
left hand side.

• Show "1" multiplicities.

This feature allows the user to select if he wants to show all multiplicities that are "1" to be shown or
not..

Some people consider not showing the multiplicity as "undefined". So, the only way to differentiate
between a multiplicity of 1 and an undefined multiplicity, is to mark this checkbox.

• Hide arrowheads for bi-directional associations..

The UML standard defines different ways to indicate navigability of an association on diagrams.
Presentation option 1 is to show all arrows (i.e. you can only navigate in a certain direction if an ar-
row is drawn), presentation option 2 is to show no arrows at all, and presentation option 3 is to show
only an arrow if the association is unidirectional.

Before the release of version 0.26, ArgoUML could only use presentation option 3. Currently, the
user can choose between option 1 and 3. Option 2 is not supported.

In the past, option 3 was used most often in other UML tools, but nowadays option 1 is more com-
mon.

• Default shadow width (set to 1 by default). ArgoUML is able to draw all elements on a dia-
gram with a shadow. Use this setting to adjust the size of the shadow, used when the modelelement
is created. The details tab "Presentation" allows to set the shadow per modelelement, after they are
created.

10.4.5.8. Diagram Appearance Tab

(To Be Written)

The Menu bar

109

Figure 10.22. The dialog for Settings - Diagram Appearance.

10.4.5.9. Modules Tab

This tab shows a list of modules that are installed, which may be enabled or disabled. Since this is a new
concept for ArgoUML, it currently contains a list of modules that can not be removed, and a button to
test the concept. Pressing this button adds a useless menu-item on the Tools menu, nothing else.

Notice also that this is a "new" modules concept so the old Pluggable modules do not work this way, and
are not listed.

10.4.5.10. Extra Tabs added by Plugins

A plug-in module has the possibility to add extra tabs. One example is C++; it adds the following tab.

Figure 10.23. The dialog for Settings - C++.

The Menu bar

110

10.5. The View Menu
This menu is used for actions that affect how the various panes are viewed.

10.5.1. Goto Diagram...
This menu entry brings up a dialog box, describing all the diagrams in the current project under
ArgoUML.

Figure 10.24. The dialog for Goto Diagram....

The Menu bar

111

The dialog box contains a table with three columns and one row for each diagram in the current project.
A scroll bar gives access if the table is too long for the box. Double button 1 click on any row will select
that diagram in the editing pane. The three columns are as follows.

• Type. Lists the type of diagram.

• Name. Lists the name given to the diagram.

• Description. Shows how many nodes and edges there are on the diagrams. A node is a “2-D”
model element and an edge is a connector model element.

This dialog box is not modal, which allows it to remain open while editing the model for easy naviga-
tion.

Warning

The V0.26 implementation of ArgoUML does not immediately update the dialog box with
changes made to diagrams: change of name, addition of diagrams, deletion of diagrams.

10.5.2. Find...
This menu entry brings up a non-modal dialog box for the ArgoUML search engine.

Figure 10.25. The dialog for Find....

The Menu bar

112

The Name and Location specifies the search to be made. It contains the following:

• A text box labeled Element Name: specifies the name of the model element to search for. Wild
cards (*, ?) may be used here. A drop down gives access to find expressions previously used.

• A text box labeled In Diagram: specifies which diagrams are to be searched. Again wild cards
may be used. Both these two text boxes have a default entry of *, i.e. match anything.

• To the right of these two text boxes, a selector labeled Element Type: allows you to specify the
UML metaclass for which you are searching.

• A selector labeled Find in: allows the search to be made over the entire project (the default) or as
a sub-search over the results of a previous search. When opened, a list of all the search result tabs
appears.

• Beneath these boxes is the button Clear Tabs. This clears the display of tabs with the results
from previous searches (see below). This button is downlighted if there are no tabs but the Help tab.

• And finally, there is the button Find. This causes the search specified in the text boxes and selectors
above to be executed. The results are displayed in a tab taking up the lower two thirds of the page.

The lower two thirds of the dialog comprises an initial tab (labeled Help) giving summary help, and
further tabs displaying the results of searches. These search tabs are labeled with a summary of the
search element in diagram and are divided horizontally in two halves.

Button 1 double clicking on these tabs removes the tab, and spawns a new window that contains the tab
contents, i.e. the search results. This window can be moved and sized at will. This does not work for the
help tab.

The Menu bar

113

The top half is labeled Search Results: followed by a count of the number of items found. It com-
prises a table with one row for each model element and four columns. The width of the columns can be
adjusted.

• Type. Lists the type of model element.

• Name. Lists the name given to the model element.

• In Diagram. Where the model element is visible on a diagram, this lists the name of the diagram,
otherwise it shows N/A.

• Description. Contains a description of the model element. In ArgoUML V0.18 this seems to be
restricted to the single entry docs.

Button 1 click on any row will give more information on that model element by showing related model
elements in the bottom half (see below). Double click on any row describing a model element on a dia-
gram and that item and diagram will be selected.

The bottom half of the tab is a table labeled Related Elements: and is a table with the same
columns as the top half. When a model element has been selected in the top half, this table shows the de-
tails of any related elements.

Tip

Enlarging the dialog vertically shows that the "Related Items" part changes in size, but not
the Search results part. However, between them is a divider line and when hovering over
this line, the mouse pointer changes into a sizing icon, and the border between these 2
areas can be moved up or down to redistribute the space in the window.

Warning

This dialog box is not modal, which allows it to remain open while editing the model for
easy navigation. But the V0.26 implementation of ArgoUML does not immediately update
the dialog box with changes made to the found model elements: change of model element
name, change of diagram name. Deletion of a diagram does not stop the possibility to nav-
igate to it.

10.5.3. Zoom
This entry brings up a sub-entry, which allows scaling the view of all diagrams to a factor of its normal
size. This setting is not saved persistently.

The sub-menu items that can be selected are:

• Zoom Out. Shortcut (Ctrl-Minus). Gives more overview over the drawing.

• Zoom Reset. Returns to the default zoom ratio (i.e. 100%).

• Zoom In. Shortcut (Ctrl-Plus). Makes the items on the drawings bigger.

The Menu bar

114

10.5.4. Adjust Grid
This allows selection of the grid representation on the screen between the following:

• Lines 16: full grid at 16 pixel spacing.

• Lines 8: full grid at 8 pixel spacing.

• Dots 16: dots at 16 pixel spacing (the default).

• Dots 32: dots at 32 pixel spacing.

• None: no grid of any form.

10.5.5. Adjust Snap
This allows selection of the spacing of grid snapping between the following:

• Snap 4: snap at 4 pixel spacing.

• Snap 8: snap at 8 pixel spacing (the default).

• Snap 16: snap at 16 pixel spacing.

• Snap 32: snap at 32 pixel spacing.

Note

There is no option to turn off snap to grid altogether

Note

If you wish to align existing elements to changed snap boundaries, you can use the Ar-
range > Align To Grid Snap menu (see Section 10.7.1, “ Align ”).

10.5.6. Page Breaks
This toggles whether page breaks are shown on the diagram (as white dotted lines).

Warning

This menu item does not work in ArgoUML V0.26.

10.5.7. Toolbars
This menu allows the user to hide or show any of the bars at will. By default, all of them are shown.

The Menu bar

115

10.5.8. XML Dump
This activates a window that shows the complete contents of the current project in XML format.

Although very useful for debugging ArgoUML, this menu function is hardly interesting to the common
user.

10.6. The Create Menu
This menu provides for creating the various types of UML diagrams supported by ArgoUML.

10.6.1. New Use Case Diagram
This menu entry creates a blank use case diagram, and selects that diagram in the editing pane. If a pack-
age is currently selected, then the use case diagram will be created within that package. This means that
it will be shown within the package on the explorer hierarchy (under Package-centric view) and model
elements created on the diagram will be created within the namespace of the package. This does not only
apply to a package, but also to a class, interface, use case, etc.

Tip

This does not prevent model elements from other namespaces/packages appearing on the
diagram. They can be added from the explorer using Add to Diagram from the but-
ton 2 pop-up menu.

10.6.2. New Class Diagram Klassendiagramm
This menu entry creates a blank class diagram, and selects that diagram in the editing pane. If a package
is currently selected, the class diagram will be created within that package. This means that it will be
shown within the package on the explorer hierarchy (under Package-centric view) and model elements
created on the diagram will be created within the namespace of the package. This does not only apply to
a package, but also to a class, interface, use case, etc.

Tip

This does not prevent model elements from other namespaces/packages appearing on the
diagram. They can be added from the explorer using Add to Diagram from the but-
ton 2 pop-up menu.

10.6.3. New Sequence Diagram
This menu entry creates a blank sequence diagram, and selects that diagram in the editing pane. It also
creates a Collaboration UML element, which is a container for the elements shown on the new dia-
gram. If a class is currently selected, a sequence diagram and a collaboration will be created that repres-
ent the behaviour of that class. This means that the created elements will be shown within the class in
the explorer hierarchy (under Package-centric view) and model elements created on the diagram will be
created within the namespace of the collaboration. A sequence diagram may not only represent the beha-
vior of a class, but also of any other classifier, such as interface, use case, etc. It is also possible to make
sequence diagrams for an operation.

The Menu bar

116

10.6.4. New Collaboration Diagram
This menu entry creates a blank collaboration diagram, and selects that diagram. It also creates a Col-
laboration UML element, which is a container for the elements shown on the new diagram. If a
package is selected when this menu item is activated, the collaboration diagram will be created within a
collaboration within that package. This means that it will be shown within the collaboration within the
package on the explorer hierarchy (under Package-centric view) and model elements created on the dia-
gram will be created within the namespace of the collaboration within the package.

Tip

This does not prevent model elements from other namespaces/packages appearing on the
diagram. They can added from the explorer by dragging or by using Add to Diagram
from the button 2 pop-up menu.

10.6.5. New Statechart Diagram
This menu entry creates a blank statechart diagram associated with the currently selected class, and se-
lects that diagram in the editing pane. It also creates a Statemachine UML element, which is a con-
tainer for the elements shown on the new diagram.

Statechart diagrams are associated with a model element capable of dynamic behavior, such as a classifi-
er or a behavioral feature, which provides the context for the state machine it represents. Suitable model
elements are e.g. a class, an operation, and a use case. If such element is not selected at the time the New
Statechart Diagram menu is activated, then an unattached statemachine is created. To obtain a
well-formed UML model, you have to set the context of the statemachine on its details pane.

10.6.6. New Activity Diagram
This menu entry creates a blank activity diagram associated with the currently selected class, and selects
that diagram in the editing pane. It also creates a ActivityGraph UML element, which is a container
for the elements shown on the new diagram.

Activity diagrams are associated with a model element capable of dynamic behavior, such as packages,
classifiers (including use cases) and behavioral features. Suitable model elements are e.g. a class, a use
case, an operation, and a package. If such element is not selected at the time the New Activity
Diagram menu is activated, then an unattached ActivityGraph is created. To obtain a well-formed
UML model, you have to set the context of the ActivityGraph on its details pane.

10.6.7. New Deployment Diagram
This menu entry creates a blank deployment diagram, and selects that diagram in the editing pane.

Tip

Model elements from other namespaces/packages can be added from the explorer by drag-
ging or by using Add to Diagram from the button 2 pop-up menu.

10.7. The Arrange Menu
This menu provides a range of functions to help in the alignment of model elements on diagrams within

The Menu bar

117

the editing pane. In general the menu function invoked is applied to any model element or model ele-
ments currently selected in the editing pane.

10.7.1. Align
This sub-menu aligns the selected items. There are seven alignment options provided.

• Align Tops. Aligns the selected model elements by their top edges.

• Align Bottoms. Aligns the selected model elements by their bottom edges.

• Align Rights (Shortcut Ctrl-R). Aligns the selected model elements by their right edges.

• Align Lefts (Shortcut Ctrl-L). Aligns the selected model elements by their left edges.

• Align Horizontal Centers. Aligns the selected model elements so their horizontal cen-

ters are in a vertical line.

• Align Vertical Centers. Aligns the selected model elements so their vertical centers

are in a horizontal line.

• Align To Grid. Aligns the selected model elements so their top and right edges are on the

grid snap boundary (see Section 10.5.5, “ Adjust Snap ”) edge.

Tip

The alignment is to the current grid snap setting, which may be smaller, larger or the
same as the displayed grid. Since items are aligned to the grid snap boundary any way
when you place them, this menu entry has no effect unless you have either changed the
grid snap to a larger value or used one of the other Arrange menu entries to push
items off their initial positions.

10.7.2. Distribute
This sub-menu distributes the selected items. There are four distribution options provided.

• Distribute Horizontal Spacing. The leftmost and rightmost selected model ele-

ments are not moved. The others are adjusted horizontally until the horizontal space (i.e. from the
right edge of the left model element to the left edge of the right model element) is the same for all of
the selected items

• Distribute Horizontal Centers. The leftmost and rightmost selected model ele-

ments are not moved. The others are adjusted horizontally until the distance between the horizontal
centers of all the selected items is the same.

• Distribute Vertical Spacing. The top and bottom selected model elements are not

The Menu bar

118

moved. The others are adjusted vertically until the vertical space (i.e. from the bottom edge of the
top model element to the top edge of the bottom model element) is the same for all of the selected
items

• Distribute Vertical Centers. The top and bottom selected model elements are not

moved. The others are adjusted vertically until the distance between the vertical centers of all the se-
lected items is the same.

10.7.3. Reorder
This sub-menu adjusts the ordering of overlapping items. There are four reorder options provided.

• Forward. The selected model elements are moved one step forward in the ordering hierarchy

with respect to other model elements they overlap.

• Backward. The selected model elements are moved one step back in the ordering hierarchy

with respect to other model elements they overlap.

• To Front. The selected model elements are moved to the front of any other model elements

they overlap.

• To Back. The selected model elements are moved to the back of any other model elements

they overlap.

10.7.4. Size To Fit Contents
This menu-item acts on all selected items on the current diagram. It resets all sizes of all model elements
to its minimum size for which all text fits inside.

10.7.5. Layout
This menu-item provides an automatic diagram layout function, i.e. when activating this menu-item, all
items on the current class diagram are rearranged according a certain layout algorithm.

This function currently only works for classdiagrams. For all other types of diagrams, the menu-item
does not do anything .

10.8. The Generation Menu
This menu provides support for code generation from UML diagrams. The functionality is built around
the structural information of class diagrams.

Note

Without any plugin modules installed, ArgoUML supports only code generation of Java.
ArgoUML V0.20 supports the following languages by plugin: C#, C++, php4, php5.

The Menu bar

119

Warning

Code generation is still very much a work in progress. The current version of ArgoUML
will generate a structural template for your code, but is not able to handle behavioral spe-
cifications to generate code for the dynamic behavior of the model.

10.8.1. Generate Selected Classes ...
This menu entry brings up a dialog box for the ArgoUML code generator (see Figure 10.26, “ The dia-
log for Generate Selected Classes.... ”).

Figure 10.26. The dialog for Generate Selected Classes....

Below a label Available Classes the dialog box lists each of the selected classes by name with a
check box to the left, for each language installed. All the checkboxes are initially unchecked. Checking
any of these boxes will cause code generation for that class. Checking multiple languages for a class
causes it to be generated in all these languages.

The buttons Select All and Select None may help when a lot of items have to be selected or
deselected.

In the lower portion of the dialog box is an editable combo box labeled Output Directory to spe-
cify the directory in which code is generated. Within this directory, a top level directory will be created
with the name of the model. Further sub-directories will be created to reflect the package/namespace

The Menu bar

120

hierarchy of the model. A drop down selector gives access to previously selected output directories.

Finally, at the bottom of the dialog box are two buttons, labeled Generate and Cancel. Button 1
click on the former will cause the code to be generated, button 1 click on the latter will cancel code gen-
eration.

10.8.2. Generate All Classes...
Shortcut F7.

This function behaves as Generate Selected Classes... (see Section 10.8.1, “ Generate Se-
lected Classes ... ”) would with all classes in the current diagram selected.

10.8.3. Generate Code for Project... (To be Written)

10.8.4. Settings for Generate for Project... (To be Writ-
ten)

10.9. The Critique Menu
This menu controls one of ArgoUML's unique features—the use of critics to guide the designer. The
theory behind this is well described in Jason Robbins' PhD dissertation ht-
tp://argouml.tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

Note

A word about terminology: The critics are background processes, which evaluate the cur-
rent model according to various “good” design criteria. There is one critic for every design
criterion.

The output of a critic is a critique—a statement about some aspect of the model that does
not appear to follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be
rectified, by raising a to-do item.

Note

The critics run as asynchronous processes in parallel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

10.9.1. Toggle Auto-Critique
This is a check box, controlling whether the critics are running. By default it is checked. If unchecked,
then all critics are disabled, and any to-do items generated by critics (the only others being those the de-
signer has added by hand) are hidden in the to-do pane.

10.9.2. Design Issues...

The Menu bar

121

http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/

This menu entry brings up a dialog box controlling how critics associated with a particular design area
are to be handled (see Figure 10.27, “ The dialog for Design Issues.... ”).

Figure 10.27. The dialog for Design Issues....

ArgoUML categorizes critics according the the design issue they address. There are 16 such categories.
The critics in each category are discussed in detail in the chapter on critics (Chapter 15, The Critics).

The sliders may be set for each category to control the critics that trigger for that category. Setting a
slider to Off will disable all critics in that category, and remove all associated to-do items from the to-
do pane.

The Menu bar

122

Setting a slider to a higher priority value will enable all critics at or above that priority level within the
design issue category (Off being the lowest priority).

Note

The sliders are set by default to High for all design categories.

10.9.3. Design Goals...
This menu entry brings up a dialog box controlling how design goals are to be handled (see Fig-
ure 10.28, “ The dialog for Design Goals.... ”).

Figure 10.28. The dialog for Design Goals....

ArgoUML has the concept that the designer will have a number of design goals to be achieved (for ex-
ample good structural representation, detailed behavioral representation etc). Critics are associated with
one or more goals.

This dialog allows the user to specify the priority of each design goal.

The sliders may be set for each design goal to control the critics that trigger for that goal. Setting a slider
to zero will disable all critics in that goal, and remove all associated to-do items from the to-do pane.

Setting a slider to a higher value will enable all critics at or above that priority level within the design is-

The Menu bar

123

sue category (1 being the highest priority and 5 the lowest).

Tip

It may be useful to think of this function as very similar to Design Issues... (see
Section 10.9.2, “ Design Issues... ”), but with grouping of critics according to the outcomes
of OOA&D rather than grouping according to the structure of UML.

Warning

The V0.20 version of ArgoUML provides a single design goal, Unspecified, with its
slider set by default to priority 1. However it contains no critics and so has no effect.

10.9.4. Browse Critics...
This menu entry brings up a dialog box controlling the individual critics (see Figure 10.29, “ The dialog
for Browse Critics.... ”).

Figure 10.29. The dialog for Browse Critics....

This dialog controls the behavior of individual critics. To the left is a list of all the critics, to enable them
to be switched on or off individually. For each critic there are three columns, labeled Active, Head-
line and Snoozed. The first of these is a check box, which may be toggled with button 1 click. The
second is the headline name of the critic, the third indicates if the critic has been snoozed from the to-do
pane (see Chapter 14, The To-Do Pane . A critic is only really active if the box in the first column is
checked and the critic has not been snoozed.

Any critic for which the box in the first column is unchecked is inactive and will not trigger. In addition
any to-do items associated with that critic will be removed from the to-do pane.

The V0.26 version of ArgoUML has a total of 90 critics, a few of which are incompletely implemented.
They are described in detail by design issue category in the chapter on critics (see Chapter 15, The Crit-

The Menu bar

124

ics).

To the right of the list are a series of fields, titled Critic Details, giving detailed control over indi-
vidual critics. Selecting a critic in the list on the left will populate the fields for that critic.

The first field on the right is titled Critic Class: and then the full name of the class in ArgoUML
that implements the critic. This name can be used as unique identifier of the critique, e.g. in conversa-
tions about the critic.

The first field below this title is a text box labeled Headline: giving the complete headline of the crit-
ic (which may be truncated in the list on the left).

Note

In the headline you may see the text <ocl>self</ocl>, which will be replaced by the
name of the model element in question when the critic is triggered.

The next field is a drop-down selector, labeled Priority:. The three options available are High,
Medium and Low and specify the priority category of any to-do item generated by this critic. This does
not alter the priority of the already existing todo items, only the newly generated ones. Changing the pri-
ority of a critic is not saved persistently.

The next field is labeled MoreInfo: and contains a URL pointing to further information with a button
to the right labeled Go to navigate to that URL.

Warning

In the V0.26 release of ArgoUML there is no further information available, and the Go
button is always grayed out and disabled.

The next field is labeled Description: and is a text area with a detailed explanation of what this
critic means. If the text is too large for the area a scroll bar is provided to the right.

Note

In this text area you may see the text <ocl>self</ocl>, which will be replaced by the
name of the model element in question when the critic is triggered.

The last field is a drop-down selector labeled Use Clarifier, with three options, Always, If
Only One and Never.

Clarifiers are the icons and wavy red underlines drawn on the actual diagrams to indicate the artefact to
which the critic refers. The original intention was to make the mapping from critics to clarifiers some-
what customizable.

For example one user might make a Missing Name critic show a red underline, another user might
turn off the clarifier, or have it draw a wavy green underline or a blue questionmark. Critics with their
clarifier's disabled would still produce feedback that is listed in the to-do pane.

Caution

In the V0.26 release of ArgoUML this selector has no function whatsoever. It is for future
development.

The Menu bar

125

Underneath the fields are two buttons in a horizontal row.

• Wake. It is possible to snooze a critic from the to-do pane (see Chapter 14, The To-Do Pane), which
makes the critic inactive for a period. If the critic has been snoozed, this button is enabled and will
wake the critic back up again. Otherwise it is grayed out.

Tip

You can tell a snoozed critic, because in the list on the left it will be indicated in the
third column.

• Advanced. This button causes ArgoUML to show a few columns extra in the table of critics. It al-
lows more detailed inspection of critic properties.

Finally the bottom right of the dialog contains a button labeled OK. Button 1 click here dismisses the
dialog.

10.10. The Tools Menu
This menu provides a generic menu attachment point for any plug-ins provided with ArgoUML. The
standard system has no plug-in, and this menu entry is empty by default.

10.11. The Help Menu
This menu provides help on the use of ArgoUML. It has two entries.

10.11.1. System Information
This menu entry brings up the system information dialog, see Figure 10.30, “ The dialog for System
Information. ”

Figure 10.30. The dialog for System Information.

The Menu bar

126

Use this menu to describe the system that runs ArgoUML to the system manager or developer. Pressing
the button Run Garbage Collector not only runs the Java gargage collector, but also refreshes
the information shown. To facilitate copy and paste into (e.g.) an email, the button Copy Informa-
tion to System Clipboard is foreseen. The Cancel button dismisses the dialog box.

10.11.2. About ArgoUML
This menu entry brings up the help window for ArgoUML (see Figure 10.31, “ The help window for
ArgoUML ”).

Figure 10.31. The help window for ArgoUML

The Menu bar

127

The window has six tabs, which are selected by button 1 click. By default the first tab (Splash) is
shown.

• Splash. This displays the picture shown when ArgoUML starts up, and the current version num-
ber.

• Version. This provides version information on the various packages that make up ArgoUML, and
some operating system and environment information.

• Credits. This details all those who have created ArgoUML, including contact details for the vari-
ous module owners.

• Contact Info. This gives the major contact points for the ArgoUML project—the web site, and
the developers mailing list.

• Report bugs. This gives information about how to deal with bugs in ArgoUML. It is important
that all bugs are reported, and all cooperation is appreciated.

• Legal. A statement of the FreeBSD license which covers all the ArgoUML software.

Caution

The various documentation of the project are not all covered by FreeBSD (which is
really meant for software). In particular this manual is covered by the OpenPub license

The Menu bar

128

(see Appendix F, Open Publication License).

The Menu bar

129

Chapter 11. The Explorer
The Explorer was previously called Navigation Pane/Tree or sometimes Navigator Pane/Tree.

11.1. Introduction
Figure 11.1, “ Overview of the explorer ” shows the ArgoUML window, with the explorer highlighted.

Figure 11.1. Overview of the explorer

The explorer allows the user to view the structure of the model from a number of predefined perspect-
ives. It also allows the user to define their own perspetives for custom exploring of the model.

An important feature, related to the cognitive psychology ideas behind ArgoUML is that not all model
elements are necessarily shown in all perspectives. Rather, the perspectives are used to implement hid-
ing of uninteresting parts of the model.

11.2. Mouse Behavior in the Explorer
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

130

11.2.1. Button 1 Click
Within the hierarchical display, elements which have sub-hierarchies are indicated by when the

hierarchy is hidden and when the hierarchy is open.

Button 1 click over the name of any diagram model element will cause the diagram to be selected and
displayed in the editing pane. Its details will also be displayed in the details pane.

Button 1 click over the name of any model element other than a diagram in the main area of the explorer
will cause it to be selected, and its details shown in the details pane. If the model element is part of a dia-
gram currently displayed in the editing pane, it will be highlighted there.

Note

If the model element is part of a diagram other than that currently displayed in the Editing
Pane, there will be no change of diagram in the Editing Pane.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. button 1 click outside the menu area will remove it.

11.2.2. Button 1 Double Click
This has the effect of a button 1 single click, and if the tree item was not a leaf, it will toggle the hier-
archy open or close.

11.2.3. Button 1 Motion
Button 1 motion means that you pick up one or more modelelements, and drag them to a new location.
Dropping the modelelement somewhere causes ArgoUML to execute some function that depends on
where you drop the modelelements.

11.2.3.1. From Explorer to Explorer

Releasing the mouse button above a namespace, makes the modelelement owned by the namespace. In
the Package-centric explorer perspective, this means a straigh-forward drag-and-drop function.

Use this drap and drop feature to easily move e.g. classes from one package into another.

11.2.3.2. From Explorer to Diagram

Dropping a modelelement on the diagram is the equivalent of the "Add to Diagram" function. Hence, if
the diagram did not yet show this modelelement, it is added.

Use this drap and drop feature e.g. to easily create a diagram from imported XMI files. This because
XMI files contain all the modelelements, but not any diagram information.

11.2.4. Button 2 Actions
When used in the the explorer, this will display a selection dependent pop-up menu. Menu entries are
highlighted (but not selected) and sub-menus exposed by subsequent mouse motion (without any but-
tons). Menu entry selection is with button 1 or button 2.

The Explorer

131

11.2.5. Button 2 Double Click
This has no effect other than that of button 2 single click.

11.3. Keyboard Behavior in the Explorer
All keys active in a tree widget have their normal behaviour.

When a diagram is selected, pressing Ctrl-C will copy the diagram in GIF format to the system clip-
board.

11.4. Perspective Selection
The model elements in the ArgoUML model may be configured for displaying in the tree by a number
of perspectives. To this end, a drop-down at the top allows selection of the explorer perspective.

Below that, there is a drop-down to select the ordering of the atifacts within the hierarchy. The two pos-
sibilities are "Order by Type, Name" and "Order by Name". The former groups all items per type, and
sorts them per group alphabetically on the name. The lattter simply sorts on name only.

The following explorer perspectives may be selected in the drop-down at the top:

• Package-centric (the default). The exploring hierarchy is organized by package hierarchy. The
top level shows the model. Under this are all the top level packages in the model and all the model
elements that are directly in the namespace of the model.

Beneath each package are all the model elements that sit within the namespace of that package, in-
cluding any further sub-packages (which in turn have their own sub-hierarchies).

• Class-centric. Shows classes in their package hierarchy as well as datatypes and use case dia-
gram elements. Similar to the Package-centric view but it doesn't show connecting or associating
elements.

• Diagram-centric. In this view the top level comprises all the diagrams in the model. Beneath
each diagram is a flat listing of all the model elements on the diagram. Model elements that have
sub-model elements that do not appear on the diagram have their own hierarchy (for example attrib-
utes and operations of classes).

• Inheritance-centric. In this view the top level shows the model. Beneath this are all model
elements that have no generalization in the model. Those model elements that have specializations
have a sub-hierarchy showing the specializations.

• Class Associations. In this view the top level shows the model. Beneath this are all diagrams
and all classes. All classes that have associations have a hierarchy tracking through the associated
classes.

• Residence-centric. In this view the model is shown at the top-level, with below it only
Nodes, and below these only components that reside on the nodes, and below these components all
elements that reside on the components.

• State-centric. In this view the top level shows all the state machines and all activity graphics
associated with classes.

Beneath each state machine is a hierarchy showing the statechart diagram and all of the states. Be-
neath each state is a list of the transitions in and out of the state.

The Explorer

132

Beneath each activity graph is a hierarchy showing the activity diagram and all of the action states.
Beneath each action state is a list of the transitions in and out of the action state.

• Transitions-centric. This is very similar to State-centric view, but under each state
machine is listed the diagrams and all transitions on the diagram, with states being shown as sub-
hierarchies under their connected transitions.

Similarly under each activity graph is listed the diagrams and all transitions on the diagram, with ac-
tion states being shown as sub-hierarchies under their connected transitions.

• Composite-centric. In this view, all modelelements are shown according their composition in
the UML metamodel.

This perspective shows far more modelelements then all others - it does not hide anything. Hence,
this view is not so user-friendly, but very suited for the UML specialist.

11.5. Configuring Perspectives
The explorer is designed to be user configurable, to allow the designer to view in his or her preferred
way.

11.5.1. The Configure Perspectives dialog
button 1 click on the "Configure Perspectives" icon () at the top left of the explorer brings up the

explorer perspectives dialog (see Figure 11.2, “ The Configure Perspectives dialog box ”).

Figure 11.2. The Configure Perspectives dialog box

The Explorer

133

The top half of the dialog contains a list of all the currently defined perspectives and to the right a series
of buttons stacked vertically. Button 1 click can be used to select a perspective. You can select only one
perspective at a time.

Selecting a perspective reveals a text field above the list, where the name of the perspective can be ed-
ited.

The lower half of the dialog contains two list areas. The one on the left, labeled Rules Library,
contains the list of available rules that may be used to create the perspective. The one on the right,
labeled Selected Rules contains the actual rules chosen for the perspective that has been selected
in the list of perspectives at the top. In both lists, you can select only one rule at a time.

Separating the two areas in the lower half of the dialog are buttons labeled >> and <<. The first of these
transfers the rule selected in the library on the left to the list of rules on the right—i.e. it adds a rule to
the perspective. The second one transfers the rule selected on the right to the library list on the left—i.e.
it removes a rule from the perspective.

If you hover the mouse over the horizontal line that separates the two halves of the dialog, then you see
it change shape, to indicate that you can grab this line and drag it up or down.

All three titles of the lists show the number of items in the list. ArgoUML V0.26 has 9 default perspect-
ives, and 72 rules in the library to build perspectives from.

The buttons at the top right are explained as follows:

The Explorer

134

• New. This creates a new perspective from scratch with no rules selected, with an automatically gen-
erated name.

• Remove. This removes the selected perspective.

• Duplicate. This creates a copy the selected perspective so it can be used as the basis of a new
perspective. The new one is named "Copy of" followed by the original name.

• Move Up. This moves the selected perspective one place up in the list. This button is downlighted
for the topmost perspective.

• Move Down. This moves the selected perspective one place down in the list. This button is down-
lighted for the last perspective.

• Restore Defaults. This restores all perspectives and their selected rules to the build-in defaults
of ArgoUML.

At the very bottom right is a button labeled OK to be used when all changes are complete. button 1 click
on this button will close the dialog window. The changes are saved when you exit ArgoUML in the
argo.user.properties file.

Then there is the Cancel button, which cancels all changes made in the dialog. Pressing the dialog
close icon (usually at the top right corner) has the same effect as pressing the cancel button.

11.6. Context Sensitive Menu
Button 2 Click over any selected model element in the main area of the explorer will cause a pop-up
menu to appear.

The presence of all these menu entries depends on the selected element(s), and other circumstances. E.g.
the "Create ModelElement" submenu is not present on modelelements that are part of a non-editable
profile element.

11.6.1. Create Diagram
This entry on the pop-up menu opens a choice of submenus, one for each diagram type.

The namespace of the new diagram will be based on the selected modelelement.

11.6.2. Create ModelElement
This entry on the pop-up menu opens a choice of submenus, one for each model element.

The new model element will be composed by the selected modelelement.

Selecting multiple elements leads to different menu items, e.g. selecting 2 classes allows the creation of
several kinds of relationships.

11.6.3. Copy Diagram to Clipboard as Image
This entry on the pop-up menu creates a graphical file, in the default graphical format, and puts it on the
clipboard of your PC. The graphics can inmediately be pasted into e.g. a requirements document in
OpenOffice.Org.

The graphics format and its resolution are determined by ArgoUML's default setting: Select in the menu

The Explorer

135

Edit, then Settings..., then the tab Environment. The PNG and GIF formats are advised, and
the resolution Standard.

Tip

Some applications (such as Doors from Telelogic) require the background color of the gen-
erated graphics to be adapted (else the image is empty). This can be done with a tool like
IrfanView; it is as easy as clicking its paste button, and then its copy button.

11.6.4. Add to Diagram
This entry on the pop-up menu appears for any model element that could be added to the diagram in the
editing pane.

The item can be placed in a diagram by moving the cursor to the editing pane or a spawned editing pane
window (where it will appear as a cross) and clicking button 1.

Caution

This menu entry only appears as not grayed out, if the diagram in the editor pane allows to
contain the model element, and the model element is not present yet in the diagram.
ArgoUML will not let you place more than one copy of any particular model element on a
diagram.

11.6.5. Delete From Model
This entry on the pop-up menu appears for any model element that could be deleted from the model.

Warning

This deletes the model element from the model completely, not just from the diagram. To
remove the model element just from the diagram, use the edit menu (see Section 10.4.2, “

Remove From Diagram ”).

Caution

You can delete a diagram from the model. Depending on the type of diagram, that might
delete all model elements shown on the diagram. To illustrate the differences, consider the
following examples:

• Deleting a class diagram does not delete any model element drawn on it. All model ele-
ments that were shown on the diagram remain present in the model. This because a
class diagram does not "map" on any model element according the UML standard
V1.4.

• Deleting a statechart diagram also deletes the statemachine it represents, and hence also
all the model elements owned by the statemachine. This because a statechart diagram
does "map" into a StateMachine according the UML standard V1.4.

The Explorer

136

11.6.6. Set Source Path... (To be written)
This entry on the pop-up menu ...

11.6.7. Add Package
This entry on the pop-up menu is available whenever a model element is selected that may contain a
package, e.g. a package. After activating this menu the model element will own a new package.

11.6.8. New Stereotype
This entry on the pop-up menu is available ... (to be written)

11.6.9. Add All Classes in Namespace Alle Klassen im
Namensraum hinzufügen

This entry on the pop-up menu is available for Class Diagrams only. Activating this menu-item will add
all classes in the current namespace to the diagram. They will be located at the top left
corner—obviously a perfect occasion to use the “Arrange->Layout” function in the menu.

The Explorer

137

Chapter 12. The Editing Pane
12.1. Introduction

Figure 12.1, “ Overview of the editing pane ” shows the ArgoUML window with the editing pane high-
lighted.

Figure 12.1. Overview of the editing pane

This is where all the diagrams are drawn. In earlier versions of ArgoUML this pane went under a variety
of names. You may encounter “drawing pane”, “diagram pane” or “multi-editor pane” in other docu-
mentation that is still being updated.

The pane has a tool bar at the top, and a single tab labeled As Diagram at the bottom, which has no
function in the 0.20 version of ArgoUML. The main area shows the currently selected diagram, of which
the name is shown in the window title bar.

12.2. Mouse Behavior in the Editing Pane
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

138

12.2.1. Button 1 Click
In the tool bar of the editing pane, button 1 click is used to select a tool for creating a new model ele-
ment and adding it to the diagram (see double clicking for creating multiple model elements). For most
tools, adding a new model element to the diagram is achieved by moving the mouse into the editing area
and clicking again.

In the main editing area button 1 click is used to select an individual model element.

Many model elements (e.g. actor, class) show special handles when selected and the mouse hovers over
them. These are called “Selection Action Buttons”, see Section 12.6, “ Selection Action Buttons ”. They
appear at the sides, top and bottom, and indicate a relationship type. Clicking on a Selection Action But-
ton creates a new related model element, with the relation of the type that was indicated. If the shift key
is pressed when hovering the mouse over a selected model element, sometimes different handles are
shown, which stand for different relation types.

Where button 2 click has been used to bring up a context sensitive pop-up menu (see below), button 1
click is used to select the menu entry required. The pop-up menu will be removed by any button 1 click
outside of the menu area.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 12.4, “ The tool bar ”).

12.2.2. Button 1 Double Click
When used on the tool bar with a tool to add a model element, the selected model element will be added
multiple times to the drawing area, once for each further button click, until the tool is again selected or
another tool chosen.

When used within the drawing area on a model element that has sub-components, double click will se-
lect the sub-component for editing (creating it if necessary).

For example double clicking over an operation compartment of a class will select the operation. Or cre-
ate one if there is none yet.

A special use is with package model elements on the class diagram. A double click on a package will
navigate to the class diagram associated with a package (the first created if there is more than one), or
will offer to create one for you if there is none. See Figure 12.2, “ The dialog for adding a new class dia-
gram ”

Figure 12.2. The dialog for adding a new class diagram

12.2.3. Button 1 Motion

The Editing Pane

139

Where the model element being added is some form of connector its termination point is shown with
button 1 up over the terminating model element. button 1 click may be used in the space between model
elements to create articulation points in the connector. This is particularly useful where connectors must
loopback on themselves.

Over graphical model elements button 1 motion will move the model element to a new position.

Graphical model elements that are selected show handles at the corners or ends, and these can be used
for re-sizing.

Some model elements (e.g. actor, class) show special handles (called “Selection Action Buttons”, see
Section 12.6, “ Selection Action Buttons ”) at the sides, top and bottom, which can be dragged to form
types of relationship with other model elements.

Where the model element is some form of connector between other items, button 1 motion other than at
a handle will cause a new handle to be created, allowing the connector to be articulated at that point.
This only works when the connecting line is not straight angled. Such new handles can be removed by
moving them to the end of the connector.

There are various more detailed effects, which are discussed under the descriptions of the various tools
(see Section 12.4, “ The tool bar ”).

12.2.4. Shift and Ctrl modifiers with Button 1
Where multiple selections are to be made, the CTRL key is used with button 1 to add unselected model
elements to the current selection. Where a model element is already selected, it is removed from the cur-
rent selection.

Clicking Button 1 while the SHIFT key is pressed, invokes the broom tool, which causes the selected
model elements (and any others swept up with them) to be moved with the broom tool (see Sec-
tion 12.4.1, “ Layout Tools ”).

12.2.5. Alt with Button 1 motion
Button 1 down anywhere in the diagram while the ALT key is pressed, allows to scroll the canvas in all
directions with button 1 motion.

12.2.6. Button 2 Actions
When used over model elements in the the editing pane, this will display a context dependent pop-up
menu. Menu entries are highlighted (but not selected) and sub-menus exposed by subsequent mouse mo-
tion (without any buttons). Menu entry selection is with button 1 or button 2. See Section 12.10, “ Pop-
Up Menus ” for details of the specific pop-up menus.

In case multiple elements are selected, the pop-up menu only appears if all the items are of the same
kind. In this case, the functions apply to all selected elements.

12.2.7. Button 2 Double Click
This has no effect other than that of button 2 single click.

12.2.8. Button 2 Motion
This is used to select items in a context sensitive menu popped up by use of button 2 click.

The Editing Pane

140

12.3. Keyboard Behavior in the Editing Pane
Many keyboard shortcuts can be used when the editing pane is active, mainly to change the selection or
to move across the model elements.

12.3.1. Nudging a model element
You can nudge a fig by selecting an element and using arrow keys. Keeping the shift or the alt key
pressed will produce a wider movement.

12.3.2. Moving across the model elements
You can select the model element nearer to the selected one by using the arrow keys while clicking the
right button of the mouse. You can also select the next model element using the tab key, or the previous
using the ctrl+tab keys.

12.4. The tool bar
The toolbar at the top of the editing pane provides the main functions of the pane. The default tool is the
Select tool (). In general button 1 click on any tool selects a tool for one use, before reverting to

the default tool, and button 1 double click selects a tool for repeated use.

The tools fall into four categories.

• Layout tools. Provide assistance in laying out model elements on the diagram.

• Annotation tools. Used to annotate model elements on the diagram.

• Drawing tools. Used to add general graphic objects to diagrams.

• Diagram specific tools. Used to add UML model elements specific to a particular diagram type to
the diagram.

Some of the tools that are generally not all used so often, are combined in a dropdown, to take less space
on the toolbar. See e.g. Figure 12.3, “ The drawing tools selector. ”. Press the symbol at the right of the
tool to pop it open. These drop-down tools remember their last used tool persistently. This means that
when ArgoUML starts, they show the last tool that was activated the previous time ArgoUML was run.

12.4.1. Layout Tools
The following two tools are provided in all diagrams in this category.

• Select. This tool provides for general selection of model elements on the diagram. Button 1

click will select a model element. CTRL with button 1 can be used to select (or deselect) multiple
model elements. Button 1 motion will move selected 2D items or add and move a new control point
on a link. Button 1 motion on a selected component's control point will stretch that component's
shape.

• Broom. Button 1 motion with this tool provide a “broom” which will sweep all model elements

along. This is a very shortcut way of lining things up.

The Editing Pane

141

The Broom can also be invoked by using SHIFT with button 1 motion when the Select tool is in
use.

The Broom is discussed at length in its own chapter, see Section 12.5, “ The Broom ”

Tip

Additional control of model element layout is provided through the Arrange menu (see
Section 10.7, “ The Arrange Menu ”).

12.4.2. Annotation Tools
The annotation tool Comment () is used to add a comment to a selected UML model element.

Caution

Unlike most other tools you use the Select tool to select a model element, and then but-
ton 1 click on Comment to create the comment. If no element is selected when the com-
ment tool is clicked, then the comment is created and put at the left top corner.

The comment is created alongside the selected model element, empty by default. The text can be selec-
ted with button 1 double-click and edited from the keyboard.

The UML standard allows comments to be attached to any model element.

You can link any comment to aditional elements using the CommentLink () tool.

12.4.3. Drawing Tools
These are a series of tools for providing graphical additions to diagrams. Although they are not UML
model elements, the UML standard provides for such decoration to improve the readability of diagrams.

Tip

These drawing tools provide a useful way to partially support some of the UML features
(such as general purpose notes) that are missing from the current release of ArgoUML.

Eight tools are provided, all grouped into one drop-down widget. See Figure 12.3, “ The drawing tools
selector. ”. Button 1 click on the diagram will place an instance of the graphical item of the same size as
the last one placed. The size can be controlled by button 1 motion during placement. One side or end of
the element will be at button 1 down, the other side or end at button 1 up. In general after they are placed
on the diagram, graphical elements can be dragged with the Select tool and button 1 and re-sized by
button 1 motion on the handles after they have been selected.

Figure 12.3. The drawing tools selector.

The Editing Pane

142

• Rectangle. Provides a rectangle.

• Rounded Rectangle. Provides a rectangle with rounded corners. There is no control over

the degree of rounding.

• Circle. Provides a circle.

• Line. Provides a line.

• Text. Provides a text box. The text is entered by selecting the box and typing. Text is centered

horizontally and after typing, the box will shrink to the size of the text. However it can be re-sized
by dragging on the corners.

• Polygon. Provides a polygon. The points of the polygon are selected by button 1 click and the

polygon closed with button 1 double click (which will link the final point to the first point).

• Spline. Provide an open spline. The control points of the spline are selected with button 1

and the last point selected with button 1 double click.

• Ink. Provide a polyline. The points are provided by button 1 motion.

12.4.4. Use Case Diagram Specific Tools
Several tools are provided specific to UML model elements on use case diagrams. The detailed proper-
ties of these model elements are described in the section on use case diagram model elements (see
Chapter 17, Use Case Diagram Model Element Reference).

• Actor. Add an actor to the diagram. For convenience, when the mouse is over a selected actor

it displays two handles to left and right which may be dragged to form association relationships.

• Use Case. Add a use case to the diagram. For convenience, when the mouse is over a selec-

The Editing Pane

143

ted use case it displays two handles to left and right which may be dragged to form association rela-
tionships and two handles top and bottom which may be dragged to form generalization and special-
ization relationships respectively.

• Association. Add an association between two model elements selected using button 1 mo-

tion (from the first model element to the second). There are 6 types of association offered here, see
Figure 12.4, “ The association tool selector. ”: association, aggregation and composi-
tion, and all these three can be bidirectional or unidirectional.

Figure 12.4. The association tool selector.

• Dependency. Add a dependency between two model elements selected using button 1 motion

(from the dependent model element).

• Generalization. Add a generalization between two model elements selected using but-

ton 1 motion (from the child to the parent).

• Extend. Add an extend relationship between two model elements selected using button 1 mo-

tion (from the extended to the extending use case).

• Include. Add an include relationship between two model elements selected using button 1

motion (from the including to the included use case).

• Add Extension Point. Add an extension point to a selected use case. The extension point

is given the default name newEP and location loc. Where the extension point compartment is dis-
played, the extension point may be edited by button 1 double click and using the keyboard, or by se-
lecting with button 1 click (after the use case has been selected) and using the property tab. Other-
wise it may be edited through its property tab, selected through the property tab of the owning use
case.

Note

This tool is grayed out except when a use case is selected.

12.4.5. Class Diagram Specific Tools

The Editing Pane

144

Several tools are provided specific to UML model elements on class diagrams. The detailed properties
of these model elements are described in the section on class diagram model elements (see Chapter 18,
Class Diagram Model Element Reference).

• Package. Add a package to the diagram.

• Class. Add a class to the diagram. For convenience, when the mouse is over a selected class it

displays two handles to left and right which may be clicked or dragged to form association relation-
ships (or composition in case SHIFT has been pressed) and two handles top and bottom which may
be dragged or clicked to form generalization and specialization relationships respectively.

• Association. Add an association between two model elements selected using button 1 mo-

tion (from the first model element to the second). There are 2 types of association offered here, bi-
directional or unidirectional.

• Aggregation. Add an aggregation between two model elements selected using button 1 mo-

tion (from the first model element to the second). There are 2 types of aggregation offered here, bi-
directional or unidirectional.

• Composition. Add an composition between two model elements selected using button 1 mo-

tion (from the first model element to the second). There are 2 types of composition offered here,
bidirectional or unidirectional.

• Association-end. Add another end to an already existing association using button 1 (from

the association middle to a class, or vice versa). This is the way to create so-calld N-ary associations.

• Generalization. Add a generalization between two model elements selected using but-

ton 1 (from the child to the parent).

• Interface. Add an interface to the diagram. For convenience, when the mouse is over a se-

lected interface it displays a handle at the bottom which may be dragged to form a realization rela-
tionship (the target being the realizing class).

• Realization. Add a realization between a class and an interface selected using button 1 mo-

tion (from the realizing class to the realized interface).

• Dependency. Add a dependency between two model elements selected using button 1 motion

(from the dependent model element). There are also 2 special types of dependency offered here,
Permission () and Usage (). A Permission is created by default with stereotype

Import, and is used to import elements from one package into another.

• Attribute. Add a new attribute to the currently selected class. The attribute is given the de-

fault name newAttr of type int and may be edited by button 1 double click and using the key-
board, or by selecting with button 1 click (after the class has been selected) and using the property
tab.

The Editing Pane

145

Note

This tool is grayed out except when a class is selected.

• Operation. Add a new operation to the currently selected class or interface. The operation is

given the default name newOperation with no arguments and return type void and may be ed-
ited by button 1 double click and using the keyboard, or by selecting with button 1 click (after the
class has been selected) and using the property tab.

Note

This tool is grayed out except when a class or interface is selected.

• Association Class. Add a new association class between two model elements selected us-

ing button 1 motion (from the first model element to the second).

• Datatype. Add a datatype to the diagram. For convenience, when the mouse is over a selected

datatype it displays handles at the top and at the bottom which may be clicked or dragged to form a
generalization relationship (the target being another datatype). There are 2 other elements available
here, Enumeration and Stereotype. These two have similar handles, except the one

at the top of a stereotype: when clicked, it creates a metaclass, connected by a dependency marked
with «stereotype». This eases the creation of "stereotype declaration" diagrams - see the literature on
the subject.

12.4.6. Sequence Diagram Specific Tools
Seven tools are provided specific to UML model elements on sequence diagrams. The detailed proper-
ties of these model elements are described in the section on sequence diagram model elements (see
Chapter 19, Sequence Diagram Model Element Reference).

• ClassifierRole. Add a classifierrole to the diagram.

• Message with Call Action. Add a call message between two classifierroles selected

using button 1 motion (from the originating classifierrole to the receiving classifierrole).

• Message with Return Action. Add a return message between two classifierroles se-

lected using button 1 motion (from the originating classifierrole to the receiving classifierrole).

• Message with Create Action. Add a create message between two classifierroles se-

lected using button 1 motion (from the originating classifierrole to the receiving classifierrole).

• Message with Destroy Action. Add a destroy message between two classifierroles

selected using button 1 motion (from the originating classifierrole to the receiving classifierrole).

•

The Editing Pane

146

Add Vertical Space to Diagram. Add vertical space to a diagram by moving all mes-

sages below this down. Click the mouse at the point where you want the space to be added and drag
down the screen vertically the distance which matches the height of the space you'd like to have ad-
ded.

• Remove Vertical Space in Diagram. Remove vertical space from diagram and move

all elements below up vertically. Click and drag the mouse vertically over the space that you want
deleted.

12.4.7. Collaboration Diagram Specific Tools
Three tools are provided specific to UML model elements on collaboration diagrams. The detailed prop-
erties of these model elements are described in the section on collaboration diagram model elements (see
Chapter 21, Collaboration Diagram Model Element Reference).

• Classifier Role. Add a classifier role to the diagram.

• Association Role. Add an association role between two classifier roles selected using

button 1 motion (from the originating classifier role to the receiving classifier role). There are 6
types of association roles offered here, see Figure 12.4, “ The association tool selector. ”: associ-
ation, aggregation and composition, and all these three can be bidirectional or
unidirectional.

• Generalization. Add a generalization between two model elements selected using but-

ton 1 (from the child to the parent).

• Dependency. Add a dependency between two model elements selected using button 1 motion

(from the dependent model element).

• Add Message. Add a message to the selected association role.

Note

This tool is grayed out except when an association role is selected.

12.4.8. Statechart Diagram Specific Tools
Eleven tools are provided specific to UML model elements on statechart diagrams. The detailed proper-
ties of these model elements are described in the section on statechart diagram model elements (see
Chapter 20, Statechart Diagram Model Element Reference).

• Simple State. Add a simple state to the diagram.

• Composite State. Add a composite state to the diagram. All model elements that are sub-

The Editing Pane

147

sequently placed on the diagram on top of the composite state will form part of that composite state.

• Transition. Add a transition between two states selected using button 1 motion (from the

originating state to the receiving state).

• Synch State. Add a synchstate to the diagram.

• Submachine State. Add a submachinestate to the diagram.

• Stub State. Add a stubstate to the diagram.

• Initial. Add an initial pseudostate to the diagram.

Caution

There is nothing to stop you adding more than one initial state to a diagram or compos-
ite state. However to do so is meaningless, and one of the critics will complain.

• Final State. Add a final state to the diagram.

• Junction. Add a junction pseudostate to the diagram.

Caution

A well formed junction should have at least one incoming transition and at least one
outgoing. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any junction that does not follow this rule.

• Choice. Add a choice pseudostate to the diagram.

Caution

A well formed choice should have at least one incoming transition and at least one out-
going. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any choice that does not follow this rule.

• Fork. Add a fork pseudostate to the diagram.

Caution

A well formed fork should have exactly one incoming transition and two or more out-
going. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any fork that does not follow this rule.

• Join. Add a join pseudostate to the diagram.

The Editing Pane

148

Caution

A well formed join should have exactly one outgoing transition and two or more in-
coming. ArgoUML does not enforce this, but an ArgoUML critic will complain about
any join that does not follow this rule.

• Shallow History. Add a shallow history pseudostate to the diagram.

• Deep History. Add a deep history pseudostate to the diagram.

• Call Event. Add a Call Event as trigger to a transition. There are 4 types of events offered

here: Call Event, Change Event, Signal Event and Time Event.

• Guard. Add a guard to a transition.

• Call Action. Add a call action (i.e. the effect) to a transition. There are 7 types of actions

offered here: Call Action, Create Action, Destroy Action, Return Action, Send
Action, Terminate Action, Uninterpreted Action and Action Sequence.

12.4.9. Activity Diagram Specific Tools
Seven tools are provided specific to UML model elements on activity diagrams. The detailed properties
of these model elements are described in the section on activity diagram model elements (see
Chapter 22, Activity Diagram Model Element Reference).

• Action State. Add an action state to the diagram.

• Transition. Add a transition between two action states selected using button 1 motion

(from the originating action state to the receiving action state).

• Initial. Add an initial pseudostate to the diagram.

Caution

There is nothing to stop you adding more than one initial state to a diagram. However
to do so is meaningless, and one of the critics will complain.

• Final State. Add a final state to the diagram.

• Junction. Add a junction (decision) pseudostate to the diagram.

Caution

A well formed junction should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any junc-

The Editing Pane

149

tion that does not follow this rule.

• Fork. Add a fork pseudostate to the diagram.

Caution

A well formed fork should have one incoming transition and two or more outgoing.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any fork
that does not follow this rule.

• Join. Add a join pseudostate to the diagram.

Caution

A well formed join should have one outgoing transition and two or more incoming.
ArgoUML does not enforce this, but an ArgoUML critic will complain about any join
that does not follow this rule.

• CallState. Add a callstate to the diagram. A call state is an action state that calls a single op-

eration. Hence, the name of the operation being called is put in the symbol, along with the name of
the classifier that hosts the operation in parentheses under it.

• ObjectFlowState. Add a objectflowstate to the diagram. An objectflowstate is an object

that is input to or output from an action.

12.4.10. Deployment Diagram Specific Tools
Ten tools are provided specific to UML model elements on deployment diagrams. The detailed proper-
ties of these model elements are described in the section on deployment diagram model elements (see
Chapter 23, Deployment Diagram Model Element Reference).

Note

Remember that ArgoUML's deployment diagrams are also used for component diagrams.

• Node. Add a node to the diagram. For convenience, when the mouse is over a selected node it

displays four handles to left, right, top and bottom which may be dragged to form association rela-
tionships.

• Node Instance. Add a node instance to the diagram. For convenience, when the mouse is

over a selected node instance it displays four handles to left, right, top and bottom which may be
dragged to form link relationships.

•

The Editing Pane

150

Component. Add a component to the diagram. For convenience, when the mouse is over a se-

lected component it displays four handles to left, right, top and bottom which may be dragged to
form dependency relationships.

• Component Instance. Add a component instance to the diagram. For convenience, when

the mouse is over a selected component instance it displays four handles to left, right, top and bot-
tom which may be dragged to form dependency relationships.

• Generalization. Add a generalization between two model elements selected using but-

ton 1 (from the child to the parent).

• Realization. Add a realization between a class and an interface selected using button 1 mo-

tion (from the realizing class to the realized interface).

• Dependency. Add a dependency between two model elements selected using button 1 motion

(from the dependent model element).

• Association. Add an association between two model elements (node, component, class or

interface) selected using button 1 motion (from the first model element to the second model ele-
ment). There are 6 types of association offered here, see Figure 12.4, “ The association tool selector.
”: association, aggregation and composition, and all these three can be bidirec-
tional or unidirectional.

Caution

The constraint that associations between classes and interfaces must not be navigable
from the interface still applies on deployment diagrams.

• Object. Add an object to the diagram. For convenience, when the mouse is over a selected ob-

ject it displays four handles to left, right, top and bottom, which may be dragged to form link rela-
tionships.

• Link. Add a link between two model elements (node instance, component instance or object)

selected using button 1 motion.

12.5. The Broom
ArgoUML's broom alignment tool is specialized to support the needs of designers in achieving the kind
of alignment used in UML diagrams. It is common for designers to roughly align objects as they are cre-
ated or by using simple movement commands. The broom is an easy way to precisely align objects that
are already roughly aligned. Furthermore, the broom's distribution options are suited to the needs of
UML designers: making related objects appear evenly spaced, packing objects to save diagram space,
and spreading objects out to make room for new objects. The broom also makes it easy to change from
horizontal to vertical alignment or from left-alignment to right-alignment.

The T-shaped icon in ArgoUML's diagram toolbar invokes the broom alignment tool. When the mouse
button 1 is pressed while in broom-mode, the designer's initial mouse movement orients the broom to
face in one of four directions: north, south, east, or west. After that, mouse drag events cause the broom

The Editing Pane

151

to advance in the chosen direction, withdraw, or grow in a lateral direction. Like a real-world push
broom, the broom tool pushes diagram elements that come in contact with it. This has the effect of align-
ing objects along the face of the broom and provides immediate visual feedback (see the figure below).
Unlike a real-world broom, moving backwards allows diagram elements to return to their original posi-
tion. Growing the broom makes it possible to align objects that are not near each other. When the mouse
button is released, the broom disappears and the moved objects are selected to make it easy to manipu-
late them further.

Figure 12.5. The Broom.

If the designer presses the space bar while using the broom, objects on the face of the broom are distrib-
uted (i.e., spaced evenly). ArgoUML's broom supports three distribution modes: objects can be spaced
evenly across the space that they use, objects can be packed together with only a small gap between
them, or objects can be distributed evenly over the entire length of the broom's face. Repeatedly pressing
the space bar cycles among these three distribution modes and displays a brief message indicating the
operation just performed: Space evenly, Pack tightly, Spread out and Original.

If the designer presses the Enter key while using the broom, the broom turns red (instead of the normal

The Editing Pane

152

blue), and objects are not picked up by the broom when moving forward. It works like lifting up the
broom. Pressing Enter again returns to the normal mode.

Pressing the Tab key works exactly like the Enter key.

12.6. Selection Action Buttons
When the user selects a model element in a UML diagram, several handles are drawn on it to indicate
that it is selected and to provide user interface affordances to resize the node. ArgoUML also displays
some “selection-action buttons” around the selected model element. See the figure below for some ex-
amples of the handles and “selection-action buttons”. The two figures for a class differ because for cre-
ating the second one, the shift key has been depressed.

Figure 12.6. Some examples of “Selection Action Buttons”.

Selection-action buttons offer common operations on the selected object. For example, a class node has
a button at 12-o'clock for adding a superclass, one at 6-o'clock for adding a subclass, and buttons at
3-o'clock and 9-o'clock for adding associations. These buttons support a "click or drag" interaction: a
single click creates a new related class at a default position relative to the original class and creates a
generalization or association; a drag from the button to an existing class creates only the generalization
or association; and, a drag to an empty space in the diagram creates a new class at the mouse position
and the generalization or association. ArgoUML provides some automated layout support so that click-
ing the subclass button will position the new classes so that they do not overlap.

Selection-action buttons are transparent. They have a visibly recognizable rectangular shape and size
and they contain an icon that is the same as the icon used for the corresponding type of design element
on the standard toolbar. However, these icons are unfilled line drawings with many transparent pixels.
This allows selection-action buttons to be overlaid onto the drawing area without overly obscuring the
diagram itself. Also, the buttons are only drawn when the mouse is over the selected model element; if
any part of the diagram is obscured, the mouse can simply be moved away to get a clearer view of the
diagram.

The Editing Pane

153

12.7. Clarifiers
A key feature of ArgoUML are the critics, which run in parallel with the main ArgoUML tool. When
they find a problem, they typically raise a to-do item, and also highlight the problem on the editing pane.
The graphical techniques used for highlighting are called Clarifiers

• Note icon (). Displayed at the top left of a model element indicates a critic of that model ele-

ment. Moving the mouse over the icon will pop up the critic headline.

• Colored wavy line (). Used for critics specific to sub-components of graphical

model elements. For example to underline attributes with a problem within a class.

• Solid colored line (). Not seen in ordinary editing, but used when a to-do item is

highlighted from the to-do pane (see Chapter 14, The To-Do Pane) by button 1 double click. The
solid line is used to show all the model elements affected by the critic, for example all stimuli that
are out of order.

12.8. The Drawing Grid
The editing pane is provided with a background grid which can be set in various styles or turned off al-
together through the menu (see Section 10.5.4, “ Adjust Grid ”).

Whatever grid is actually displayed, placement of items on the diagram is always controlled by the set-
ting for grid snap, which ranges from 4 to 32 pixels (see Section 10.5.5, “ Adjust Snap ”).

12.9. The Diagram Tab
At the bottom of the editing pane is a small tab labeled as As Diagram. The concept is that a UML
diagram can be displayed in a number of ways, for example as a graphical diagram or as a table. Each
representation would have its own tab and be selected by button 1 click on the tab.

Earlier versions of ArgoUML did implement a tabular representation, but the current release only sup-
ports a diagram representation, so this tab does not have any function.

12.10. Pop-Up Menus
Within the editing pane, button 2 click over a model element will bring up a pop-up menu with a vari-
able number of main entries, many with a sub-menu.

12.10.1. Critiques
This sub-menu gives list of all the critics that have triggered for this model element. Selection of a menu
entry causes that entry to be highlighted in the to-do pane and its detailed explanation to be placed in the
ToDoItem tab of the details pane. A solid colored line indicates the offending element.

12.10.2. Ordering
This menu controls the ordering of overlapping model elements on the diagram. It is equivalent to the
Reorder sub-menu of the Arrange menu (see Section 10.7.3, “ Reorder ”). There are four entries.

The Editing Pane

154

• Forward. The selected model elements are moved one step forward in the ordering hierarchy

with respect to other model elements they overlap.

• Backward. The selected model elements are moved one step back in the ordering hierarchy

with respect to other model elements they overlap.

• To Front. The selected model elements are moved to the front of any other model elements

they overlap.

• To Back. The selected model elements are moved to the back of any other model elements

they overlap.

12.10.3. Add
This sub-menu only appears for model elements that can have notes attached (class, interface, object,
state, pseudostate) or have operations or attributes added (class, interface). There are at most three
entries.

• New Attribute. Only appears where the selected model element is a class. Creates a new at-

tribute on the model element.

• New Operation. Only appears where the selected model element is a class or interface. Cre-

ates a new operation on the model element.

• New Comment. Attaches a new comment to the selected model element.

• Add All Relations. Only appears where the selected model element is a class or interface.
Makes all relations visible that exist in the model and that are connected to the selected model ele-
ment.

• Remove all Relations. Only appears where the selected model element is a class or interface.
Removes all connected relations from the diagram (without removing them from the model).

12.10.4. Show
This sub-menu only appears with certain model elements. It is completely context dependent. There are
many possible entries, depending on the selected model element and its state.

• Hide Extension Point Compartment. Only appears when the extension point compart-
ment of a use case is displayed. Hides the compartment.

• Show Extension Point Compartment. Only appears when the extension point compart-
ment of a use case is hidden. Displays the compartment.

• Hide All Compartments. Only appears when both attribute and operation compartments are
displayed on a class or object. Hides both compartments.

• Show All Compartments. Only appears when both attribute and operation compartments are
hidden on a class or object. Displays both compartments.

The Editing Pane

155

• Hide Attribute Compartment. Only appears when the attribute compartment of a class or
object is displayed. Hides the compartment.

• Show Attribute Compartment. Only appears when the attribute compartment of a class or
object is hidden. Displays the compartment.

• Hide Operation Compartment. Only appears when the operation compartment of a class or
object is displayed. Hides the compartment.

• Show Operation Compartment. Only appears when the operation compartment of a class or
object is hidden. Displays the compartment.

• Hide Enumeration Literal Compartment. Only appears when the enumeration literal
compartment of an enumeration is displayed. Hides the compartment.

• Show Enumeration Literal Compartment. Only appears when the enumeration literal
compartment of an enumeration is hidden. Displays the compartment.

• Show All Edges. Only appears on a class. Displays all associations (to shown model elements)
that are not shown yet. This is the same function as the "add to Diagram" on the asociation in the ex-
plorer context menu. currently.

• Hide All Edges. Only appears on a class. Hides all associations. This is the same function as
“Remove from Diagram” on all the associations of this class.

• Hide Stereotype. Only appears when the Stereotype of a package is displayed. Hides the ste-
reotype.

• Show Stereotype. Only appears when the Stereotype of a package is hidden. Displays the ste-
reotype.

• Hide Visibility. Only appears when the visibility of a package is displayed. Hides the visibil-
ity.

• Show Visibility. Only appears when the visibility of a package is hidden. Displays the visibil-
ity.

12.10.5. Modifiers
This sub-menu only appears with class, interface, package and use case model elements. It is used to set
or clear the values of the various modifiers available.

• Abstract. Set for an abstract model element.

• Leaf. Set for a final model element, i.e. one with no sub-model elements.

• Root. Set for a root model element, i.e. one with no super-model elements.

• Active. Set for a model element with dynamic behavior.

Note

This really ought to be set automatically for model elements with state machines or
activity diagrams.

The Editing Pane

156

12.10.6. Multiplicity
This sub-menu only appears with association model elements, when clicking at one end of the associ-
ation. It is used to control the multiplicity at the end of the association nearest the mouse click point.
There are only four entries, a sub-set of the range of multiplicities that are available through the property
sheet of a association end (see Section 17.6, “ Association End ”).

• 1

• 0..1

• 1..*

• 0..*

12.10.7. Aggregation
This sub-menu only appears with association model elements, when clicking at one end of the associ-
ation. It is used to control the aggregation at the end of the association nearest the mouse click point.
There are three entries.

• none. Remove any aggregation.

• aggregate. Make this end a shared aggregation (loosely known as an “aggregation”).

• composite. Make this end a composite aggregation (loosely known as a “composition”).

Caution

UML requires that an end with a composition relationship must have a multiplicity of 1
(the default).

12.10.8. Navigability
This sub-menu only appears with association model elements, when clicking at one end of the associ-
ation. It is used to control the navigability of the association. There are three entries.

• bidirectional. Make the association navigable in both directions.

• <class1> to <class2>. Make the association navigable only from <class1> to <class2>. In
other words <class1> can reference <class2> but not the other way round.

• <class2> to <class1>. Make the association navigable only from <class2> to <class1>. In
other words <class2> can reference <class1> but not the other way round.

Note

The Editing Pane

157

UML does permit an association to be non-navigable in both directions. ArgoUML will al-
low this, but you will have to set each of the association ends navigation property, reached
from the property tab of the association - and the diagram does not show any arrows in this
case.

This is considered bad design practice (it will trigger a critic in ArgoUML), so is only of
theoretical interest.

Note

UML does not permit navigability from an interface to a class. ArgoUML does not prevent
this.

12.11. Notation
Notation is the textual representation on the diagram of a modelelement or its properties.

12.11.1. Notation Languages
ArgoUML supports showing notation in different languages. By default, all text is shown in UML nota-
tion, but the menus contain an item to select between Java and UML. With plugin modules, it is even
possible to select other languages, such as C++.

Figure 12.7, “ A class in UML notation ” shows a class in UML notation, while Figure 12.8, “ A class in
Java notation ” shows the same class in Java notation.

Figure 12.7. A class in UML notation

Figure 12.8. A class in Java notation

12.11.2. Notation Editing on the diagram

The Editing Pane

158

Most text shown on a diagram may be edited by double-clicking button 1 on the text. This causes a edit
box to be shown, with the previous text selected, ready for amending.

Also, the status bar of ArgoUML (i.e. the small area at the bottom of the ArgoUML window), shows an
help text that indicates the syntax of the text to be entered. Text entry can be concluded by pressing F2,
or for single-line fields, by pressing the enter key. Additionally, editing can be concluded by clicking
somewhere in the diagram outside the edit area.

Editing notation on the diagram is a very powerful way to enter a lot of model-information in a very
compact way. It is e.g. possible to create an operation, its stereotype, all parameters and their types, and
operation properties (visibility, concurrency), all at once by typing:

+Order(customerID : int,items : List) : void {sequential}

An association (e.g. between two classes) is showing many texts close to its middle and ends, so it de-
serves some extra explanation. Figure 12.9, “ A couple of associations with adornments ” shows two as-
sociations to clarify the following:

Figure 12.9. A couple of associations with adornments

The association on the right shows that invisible fields where text can be entered become visible once
the modelelement is selected. The fields are indicated by blue rectangles - double-click on them with
mouse button 1 to start editing.

The visibility (the +, -, # or ~) is shown together with the association-end name, but it is not shown for
an unnamed association end.

Likewise, the multiplicity is not shown if it is 1, unless the setting Show "1" multiplicities in
the menu File=>Properties is checked.

The example figure does not demonstrate this, but stereotypes of an association are shown on the dia-
gram, but are not editable. And stereotypes of association-ends are shown together with the association-
end name.

12.11.3. Notation Parsing
(to be written)

The Editing Pane

159

Chapter 13. The Details Pane
13.1. Introduction

Figure 13.1, “ Overview of the details pane ” shows the ArgoUML window, with the details pane high-
lighted.

Figure 13.1. Overview of the details pane

For any model element within the system, this pane is where all its associated data is viewed and
entered.

The Pane has a series of tabs at the top, which are selected by button 1 click The body of a tab is a menu
of items to be checked, selected or entered specific to the particular tab selected.

Of these, the Properties Tab is by far the most complex, with a different presentation for each mod-
el element within the system. The detailed descriptions of the properties tab for each model element are
the subject of separate chapters covering the model elements that may appear on the various diagrams
(see Chapter 16, Top Level Model Element Reference through Chapter 23, Deployment Diagram Model
Element Reference).

13.2. To Do Item Tab

160

This tab provides control over the various to-do items created by the user, or raised automatically by the
ArgoUML critics (discussed in more detail in the section on the Critique menu—see Section 10.9, “
The Critique Menu ”). Figure 13.2, “ Example of the To Do Item tab on the properties pane ” shows
a typical pane. The to-do item is selected with button 1 in the to-do pane (see Chapter 14, The To-Do
Pane) or by using the Critiques context sensitive pop-up menu on the editing pane.

Figure 13.2. Example of the To Do Item tab on the properties pane

Customization of the critics behaviour is possible through the Browse critics... menu (see Sec-
tion 10.9.4, “ Browse Critics... ”).

The body of the tab describes the problem found by the critic and outlines how it can be fixed. To the
left are four buttons.

• New To Do Item... This launches a dialog box (see Figure 13.3, “ Dialog box for New

To Do Item ”), which allows you to create your own to-do item, with its own headline (which ap-
pears in the to-do pane), priority for the to-do pane, reference URL and detailed description for fur-
ther information.

Figure 13.3. Dialog box for New To Do Item

The Details Pane

161

• Resolve Item... This pops up a dialog allowing the user to resolve the selected to-do

item (see Figure 13.4, “ Dialog box for Resolve Item ”). This is an important dialog, because it
allows you to deal with to-do items in ways other than the recommendation of the to-do item (which
is the whole point of their being advisory).

This dialog box is intended to be used for the following reasons: deleting todo items that were manu-
ally created, preventing a single critic to trigger on a single object, and dismissing categories of todo
items by lowering design concerns or design goals.

Figure 13.4. Dialog box for Resolve Item

The Details Pane

162

At the top are three radio-buttons, of which by default the last is selected, labeled 1) It is not
relevant to my goals, 2) It is not of concern at the moment, and 3) Reas-
on given below. If you choose the third of these you should enter a reason in the main text box.

Tip

If you wish to resolve a to-do item (that is generated by a critic) by following its re-
commendations, just make the recommended changes and the to-do item will disappear
of its own accord. There is no need to use this dialog.

Warning

The V0.20 version of ArgoUML implementation is incomplete: The reason given is not
stored when the project is saved. And there is no way to retrieve todo items that were
resolved. So, it is not usefull to give a reason at all.

When a todo item generated by a critic is resolved, then there is no way to undo this
(unless by re-creating the object that triggered the critic).

• Snooze Critic This suspends the activity of the critic that generated the current to-do item.

The to-do item (and all others generated by the critic) will disappear from the to-do pane.

The critic will wake up after a period of time. Initially this period is 10 minutes, but it doubles on
each successive application of the Snooze button. The critic can be awakened explicitly through the
Critique > Browse Critics... menu (see Section 10.9.4, “ Browse Critics... ”).

The Details Pane

163

Tip

Some common critics can fire the whole time as you build a big diagram. Some users
find it useful to snooze these critics until the diagram has been completed.

13.2.1. Wizards
Some of the more common critics have a “wizard” available to help in fixing the problem. The wizard
comprises a series of pages (one or more) in the ToDo Item tab that step you through the changes.
Start the wizard by clicking the Next> button.

Figure 13.5. Example of a Wizard

The wizard is driven through the first three buttons at the bottom of the ToDo Item tab.

• <Back. This will take you back to the previous step in the wizard. Grayed out if this is the first step.

• Next>. This will take you back to the next step in the wizard. Grayed out if this is the last step.

• Finish. This will commit the changes you have made through the wizard in previous steps, and/or
use the defaults for all next steps.

Note

Not all to-do items have wizards. If there is no wizard all three buttons will remain grayed
out.

The ArgoUML wizards are non-modal, i.e. once started, you may select other todo items, or do some
other actions, and all the while the wizard will remeber where it was, so if you return to the todo item,
the wizard will indicate the same step it was on when you left it.

13.2.2. The Help Button
There is one remaining button at the bottom of the To Do Item tab, labeled Help. This will fire up a
browser to a URL with further help.

The Details Pane

164

13.3. Properties Tab
Through this tab, the properties of model elements selected in the explorer or editing pane may be set.
The properties of an model element may be displayed in one of the following ways:

1. Selection of the model element in the explorer or editing panes, followed by selection of the prop-
erties tab in the details pane; or

2. Navigation buttons cause different model elements to be selected. I.e. the Go Up button on the
properties tab, the Navigate Back and Navigate Forward buttons in the main tool bar,
and the various menu-items under Edit - Select.

Figure 13.6, “ A typical Properties tab on the details pane ” shows a typical properties tab for a
model element in ArgoUML (in this case a class).

Figure 13.6. A typical Properties tab on the details pane

At the top left is the icon and name of the type of model element (i.e. the UML metaclass, not the actual
name of this particular model element). In this example the property tab is for a class.

To the right of this is a toolbar of icons relevant to this property tab. The first one is always navigation
Go up. The last is always Delete to delete the selected model element from the model. The ones in
between depend on the model element.

The remainder of the tab comprises fields, laid out in two or three columns. Each field has a label to its
left. The fields may be text boxes, text areas, drop down selectors, radio boxes and check boxes. In most
(but not all cases) the values can be changed. In the case of text boxes this is sometimes by just typing
the required value.

However for many text boxes and text areas, data entry is via a context sensitive pop-up menu (using
button 2 click), which offers options to add a new entry, delete an entry or move entries up and down (in
text areas with multiple entries).

The first field is almost always a text field Name, where the name of the specific model element can be
entered. The remaining fields vary depending on the model element selected.

The detailed property sheets for all ArgoUML model elements are discussed in separate chapters for
each of the diagram types (use case diagram (Chapter 17, Use Case Diagram Model Element Reference ,
class diagram (Chapter 18, Class Diagram Model Element Reference , sequence diagram (Chapter 19,
Sequence Diagram Model Element Reference , statechart diagram (Chapter 20, Statechart Diagram
Model Element Reference , collaboration diagram (Chapter 21, Collaboration Diagram Model Element
Reference , activity diagram (Chapter 22, Activity Diagram Model Element Reference , deployment dia-

The Details Pane

165

gram (Chapter 23, Deployment Diagram Model Element Reference). Property sheets for model ele-
ments that are common to all diagram types have their own chapter (Chapter 16, Top Level Model Ele-
ment Reference).

Caution

ArgoUML will always try to squeeze all fields on to the property sheet. If the size of the
property tab is too small, it may become unusable. The solution is to either enlarge the
property tab by enlarging the main window, or by moving the dividers to left and top.

13.4. Documentation Tab
Within the UML 1.4 standard, all model elements are children of the Element metaclass. The Ele-
ment metaclass defines a tagged value documentation for comment, description or explanation of
the element to which it is attached. Since this tagged value applies to every model element, it is given its
own tab in the details pane, rather than being part of the Tagged Values tab.

Figure 13.7, “ A typical Documentation tab on the details pane ” shows a typical documentation tab
for a model element in ArgoUML.

Figure 13.7. A typical Documentation tab on the details pane

As you can see, many more fields have been added to the Documentation field alone. The other fields
similarly store their information under tagged values: author, version, since, deprecated,
see.

The fields on this tab are the same for all model elements.

Since UML comments are a kind of documentation, they are also shown on this tab, with name and
body.

• Author: A text box for the author of the documentation.

• Version: A text box for the version of the documentation.

• Since: A text box to show how long the documentation has been valid.

• Deprecated: A check box to indicate whether this model element is deprecated (i.e. planned for
removal in future versions of the design model).

• See: Pointers to documentation outside the system.

The Details Pane

166

• Documentation: Literal text of any documentation.

• Comment Name: The names of all comments attached to the modelelement.

• Body: The bodies of all comments attached to this modelelement.

Tip

ArgoUML is not primarily a documentation system. For model elements that require heavy
documentation, notably use cases, the use of the See: field to point to external documents
is more practical.

13.5. Presentation Tab
This tab provides some limited control over the graphical representation of model elements in the dia-
gram in the editing pane.

Model elements that do not have any specific direct graphical representation on the screen (beyond their
textual description) do not have style tabs of their own. For example the style sheet of an operation on a
class will be downlighted.

Style sheets vary a little from model element to model element, but Figure 13.8, “ A typical Present-
ation tab on the details pane ” shows a typical style tab for a model element in ArgoUML (in this case
a class).

Figure 13.8. A typical Presentation tab on the details pane

There may be further fields in some cases, e.g. for a package, but most fields are common to many mod-
el elements.

• Path This checkbox allow to display or hide the path in front of the name of the modelelement. It is
shown in UML notation with :: seperators. E.g. the ArgoUML Main class would be shown as:
org::argouml::application::Main.

• Attributes This checkbox allows to hide or show the attributes compartment of a class.

• Operation This checkbox allows to hide or show the operations compartment of a class or inter-
face.

• Stereotype This checkbox allows to reveal or hide the stereotypes of a package, shown above the

The Details Pane

167

name.

• Visibility This checkbox allows to hide the visibility of a package. The visibility is shown in
UML notation as +, -, # or ~.

• Extension Points This checkbox allows to reveal or hide the extensions points compartment
of a usecase.

• Bounds: This defines the corners of the bounding box for a 2D model element. It comprises four
numbers separated by commas. These four numbers are respectively: i) the X coordinate of the upper
left corner of the box; ii) the Y coordinate of the upper left corner of the box; iii) the width of the
box; and iv) the height of the box. All units are pixels on the editing pane.

This field has no effect on 1D model elements that link other model elements (associations, general-
izations etc), since their position is constrained by their connectedness. In this case the field is down-
lighted.

• Fill: This drop-down selector specifies the fill color for 2D model elements. It is not present for
line model elements. Selecting No Fill makes the model element transparant. Selecting Custom
allows to create other colors then the ones listed. It causes the color selector dialog box to appear,
see Figure 13.9, “ The Custom Fill/Line Color dialog box ”.

• Line: This drop-down selector specifies the line color for model elements. Selecting No Fill
makes the model element transparant. Selecting Custom allows to create other colors then the ones
listed. It causes the color selector dialog box to appear, see Figure 13.9, “ The Custom Fill/
Line Color dialog box ”.

Figure 13.9. The Custom Fill/Line Color dialog box

The Details Pane

168

Figure 13.10. The Custom Fill/Line Color dialog box

The Details Pane

169

Figure 13.11. The Custom Fill/Line Color dialog box

The Details Pane

170

13.6. Source Tab
This tab shows the source code that will be generated for this model element, in the selected language.
ArgoUML generates the code e.g. for classes and interfaces. The code shown here, may be saved in the
indicated files with the aid of the functions in the Generation menu.

Figure 13.12. The Source Tab of a class.

The Details Pane

171

Any code you add will be lost - that is not the intention of ArgoUML - use an IDE instead.

The dropdown at the right allows selection of the output file. This function is not very useful for lan-
guages that generate all code for a class within one file, but serves its purpose for e.g. C++, where a .h
and .cpp file are generated. See the figure below.

Figure 13.13. A C++ example.

13.7. Constraints Tab
Constraints are one of the extension mechanisms provided for UML. ArgoUML is equipped with a
powerful constraint editor based on the Object Constraint Language (OCL) defined in the UML 1.4
standard.

Caution

The OCL editor implementation for ArgoUML V0.26 doesn't support OCL constraints for
elements other than Classes and Features.

This is something of a general restriction of OCL. Although the UML specification claims
that there may be a constraint for every model element, the OCL specification only defines
classes/interfaces and operations as allowable contexts.

It is not before OCL 2.0 that a more general definition of allowable contexts is introduced.
The key issue is that for each context definition you need to define what is the contextual-

The Details Pane

172

Classifier, i.e., the classifier that will be associated with the self keyword. The creators of
the OCL specification claim that this is not an issue for the OCL specification, but rather
for UML or some integration task force. Conversely, it seems that the UML specification
people seem to expect this to be defined in the OCL specification (which is why we did a
first step in that direction in OCL 2.0).

So, to cut a long story short, it appeared that the simplest solution for ArgoUML at the mo-
ment would be to enable the OCL property panel only for those model elements for which
there actually exists a definition of the contextualClassifier in OCL 1.4. These are (s.
above) Class/Interface and Feature.

The standard pre-defines a small number of constraints (for example the xor constraint over a set of as-
sociations indicating that only one may be manifest for any particular instance).

The standard also envisages a number of circumstances where general purpose constraints may be use-
ful:

• To specify invariants on classes and types in the class model;

• To specify type invariants for stereotypes;

• To describe pre-conditions and post-conditions on operations and methods;

• To describe guards;

• As a navigation language; and

• To specify constraints on operations.

Figure 13.14, “ A typical Constraints tab on the details pane ” shows a typical constraint tab for a
model element in ArgoUML (in this case a class).

Figure 13.14. A typical Constraints tab on the details pane

The Details Pane

173

Along the top of the tab are a series of icons.

• New Constraint. This creates a new constraint and launches the constraint editor in the

Constraints tab for that new constraint (see Section 13.7.1, “ The Constraint Editor ”). The
new constraint is created with a context declaration for the currently selected model element.

Warning

It seems logical, that when a new constraint is created, it needs to be edited. But
ArgoUML V0.26 fails to start the OCL editor upon creation; you have to do this by
primo selecting the new constraint first, secundo rename it, and tertio press the Edit
Constraint button. It is essental for successfully creating a constraint to follow
these 4 steps accurately: create, select, rename, edit. The step to rename is necessary,
because the validity check will refuse the constraint if its name differs from the name
mentioned in the constraint text. For the same reason, renaming a constraint afterwards
is impossible.

• Delete Constraint. The constraint currently selected in the Constraint Name box

(see below) is deleted.

Caution

In V0.26 of ArgoUML this button is not downlighted when it is not functional, i.e.
when no constraint is selected.

• Edit Constraint. This launches the constraint editor in the Constraints tab (see Sec-

tion 13.7.1, “ The Constraint Editor ”). The editor is invoked on the constraint currently selected in
the Constraint Name box.

Caution

In V0.26 of ArgoUML this button is not downlighted when it is not functional, i.e.
when no constraint is selected.

• Configure Constraint Editor. This a dialog to configure options in the constraint

editor (see Figure 13.15, “ Dialog box for configuring constraints ”).

Figure 13.15. Dialog box for configuring constraints

The Details Pane

174

The dialog box has a check box for the following option.

• Check type conformance of OCL constraints. OCL is strictly typed. At the early
stages of design it may be helpful to disable type checking, rather than follow through all the de-
tailed specification needed to get type consistency.

At the bottom are two buttons, labeled OK (to accept the option changes) and Cancel (to discard
the changes).

The main body of the constraints tab comprises two boxes, a smaller to the left and a larger one to the
right. The two are separated by two small arrow buttons which control the size of the boxes.

• Shrink Left. Button 1 click on this icon shrinks the box on the left. Its effect may be reversed

by use of the Shrink Right button (see below).

• Shrink Right. Button 1 click on this icon shrinks the box on the right. Its effect may be re-

versed by use of the Shrink Left button (see above).

Finer control can be achieved by using button 1 motion to drag the dividing bar to left and right.

The box on the left is titled Constraint Name and lists all the constraints (if any) so far defined for
the selected model element. A constraint may be selected by button 1 click.

The box on the right is labeled Preview and contains the text of the constraint. This box only shows
some contents if a constraint is selected. Where a constraint is too large for the box, a scroll bar is
provided to the right.

13.7.1. The Constraint Editor
This is invoked through the use of the Edit Constraint button on the main Constraints tab.
The constraint editor takes up the whole tab (see Figure 13.16, “ Dialog box for configuring constraints
”).

Figure 13.16. Dialog box for configuring constraints

The Details Pane

175

Along the top of the tab are a series of icons.

• Cancel Edit Constraint. This exits the constraint editor without saving any changes

and returns to the main Constraints tab.

• Check OCL Syntax. This button invokes a full syntax check of the OCL written in the edit-

or. If the syntax is valid, the constraint is saved, and control returns to the main Constraints tab.
If the syntax is not valid, a dialog box explains the problem.

Warning

Whether type checking is included should be configurable with the Configure
Constraint Editor button (see below). But ArgoUML V0.20 does always check,
and refuses to accept any constraint with the slightest error.

• Configure Constraint Editor. This a dialog to configure options in the constraint

editor. It is also available in the main Constraints tab and is discussed in detail there (see Sec-
tion 13.7, “ Constraints Tab ”).

To the right of the toolbar is a check box labeled Syntax Assistant (unchecked by default), which
will enable the syntax assistant in the constraint editor.

If the syntax assistant is enabled, six drop down menus are provided in a row immediately below the
toolbar. These provide standard templates for OCL that, when selected, will be inserted into the con-
straint being edited.

The syntax assistant can be made floating in a separate window by button 1 motion on the small divider
area to the left of the row of drop-down menus.

• General. General OCL constructors. Entries: inv (inserts an invariant); pre (inserts a pre-
condition); post (inserts a post-condition); self (inserts a self-reference); @pre (inserts a refer-
ence to a value at the start of an operation); and result (inserts a reference to a previous result).

• Basic Operators. Relational operators and parentheses. Entries: =; <>; <; >; <=; >=; and ().

• Numbers. Arithmetic operators and functions. Entries: +; -; *; /; mod; div; abs; max; min;
round; and floor.

• Strings. String functions. Entries: concat; size; toLower; toUpper; and substring.

The Details Pane

176

• Booleans. Logical functions. Entries: or; and; xor; not; implies; and if then else.

• Collections. Operators and functions on collections—bags, sets and sequences. The large num-
ber of functions are organized into sub-groups.

• General. Functions that apply to all types of collection. Entries: Collection {} (insert a
new collection); Set {} (insert a a new set); Bag {} (insert a new bag); Sequence {}
(insert a new sequence); size; count; isEmpty; notEmpty; includes; includesAll;
iterate; exists; forAll; collect; select; reject; union; intersection;
including; excluding; and sum.

• Sets. Operators and functions that apply only to sets. Entries: - (set difference); and symmet-
ricDifference.

• Sequences. Functions that apply to sequences. Entries: first; last; at; append; pre-
pend; and subSequence.

The remainder of the tab comprises a writable text area containing the text to be edited. The mouse but-
tons have their standard behavior within an editable text area (see Section 8.2, “ General Mouse Behavi-
or in ArgoUML ”).

In addition, cut, copy and paste operations may be invoked through the keyboard shortcuts Ctrl-X,
Ctrl-C and Ctrl-V respectively.

13.8. Stereotype Tab
This tab shows the available and applied stereotypes for the currently selected modelelement. It consists
of 2 panels and 2 buttons. The buttons allow to move the stereotypes from one list to the other.

Figure 13.17. An example of a stereotype tab for a class.

In the lists, between [] the baseclass of the stereotypes is shown. E.g. in the figure above, the thread
[Classifier] stereotype may be applied to all types of classifiers, such as Class, UseCase,...

The Details Pane

177

13.9. Tagged Values Tab
Tagged values are another extension mechanism provided by UML. The user can define name-value
pairs to be associated with model elements which define properties of that model element. The names
are known as tags. UML pre-defines a number of tags that are useful for many of its model elements.

Note

The tag documentation is defined for the top UML metaclass, Element and is so
available to all model elements. In ArgoUML documentation values are provided through
the Documentation tab, rather than by using the Tagged Values tab.

The Tagged Values tab in ArgoUML comprises a two column table, with a combo-box on the left to
select the tagdefinition and an editable box on the right for the associated value. There is always at least
one empty row available for any new tag.

The button at the top of this tab allows creation of a new tagdefinition. After clicking this button, go to
the properties tab first to set the name of the new tagdefinition.

The mouse buttons have their standard behavior within the editable value area (see Section 8.2, “ Gener-
al Mouse Behavior in ArgoUML ”). In addition, when in the value field, cut, copy and paste operations
may be invoked through the keyboard shortcuts Ctrl-X, Ctrl-C and Ctrl-V respectively.

13.10. Checklist Tab
Conducting design reviews and inspections is one of the most effective ways of detecting errors during
software development. A design review typically consists of a small number of designers, implementers,
or other project stakeholders holding a meeting to review a software development artifact. Many devel-
opment organizations have developed checklists of common design problems for use in design review
meetings. Recent research indicated that reviewers inspecting code without meeting, makeing use of
these checklists, are just as effective as design review meetings.

Hence, a checklist feature has been added to ArgoUML, that is much in the spirit of design review
checklists. However, ArgoUML's checklists are integrated into the design tool user interface and the
design task.

A software designer using ArgoUML can see a review checklist for any design element. The “Checklist”
tab presents a list of check-off items that is appropriate to the currently selected design element. For ex-
ample, when a class is selected in a design diagram, the checklist tab shows items that prompt critical
thinking about classes. See the figure below. Designers may check off items as they consider them.
Checked items are kept in the list to show what has already been considered, while unchecked items
prompt the designer to consider new design issues. ArgoUML supplies many different checklists with
many possible items.

Figure 13.18. An example of a checklist for a class.

The Details Pane

178

Caution

In the V0.22 release of ArgoUML, this tab is not completely implemented. E.g. the checks
are not saved.

The Details Pane

179

Chapter 14. The To-Do Pane
14.1. Introduction

Figure 14.1, “ Overview of the to-do pane ” shows the ArgoUML window with the to-do pane high-
lighted.

Figure 14.1. Overview of the to-do pane

This pane provides access to the advice that comes from the critics processes running within ArgoUML.

A selector box at the top allows a choice of how the data is presented, a button allows the display of the
hierarchy to be changed, and there is an indicator of the number of to-do items identified.

More information on critics can be found in the discussion of the Critique menu (see Section 10.9, “
The Critique Menu ”).

14.2. Mouse Behavior in the To-Do Pane
Behavior of the mouse in general, and the naming of the buttons is covered in the chapter on the overall
user interface (see Chapter 8, Introduction).

180

14.2.1. Button 1 Click
This action is generally used to select an item for subsequent operations.

Within the hierarchical display, elements which have sub-hierarchies may be indicated by when the

hierarchy is hidden and when the hierarchy is open.

When these icons are displayed, the display of the hierarchy is toggled by button 1 click on these icons.

Button 1 click over the headline of any to-do item will cause its details to be shown in the To Do
Item tab of the details pane. That tab is automatically selected if it is not currently visible.

14.2.2. Button 1 Double Click
When applied to the folder icon alongside a hierarchy category, this will cause the display of that hier-
archy to be toggled.

When applied to a headline, button 1 double click will show the diagram for the model element to which
the to-do item applies in the editing pane and select the model element on the diagram using an appro-
priate clarifier (the model element may be highlighted, underlined with a wavy line or surrounded by a
colored box as appropriate).

14.2.3. Button 2 Actions
There are no button 2 functions in the to-do pane.

14.2.4. Button 2 Double Click
There are no button 2 functions in the to-do pane.

14.3. Presentation Selection
At the top of the pane is a drop-down selector controlling how the to-do items are presented. The to-do
items may be presented in six different ways. This setting is not stored persistently, i.e. it is on its default
vallue when ArgoUML is started.

• By Priority. This is the default setting. The to-do items are organized into three hierarchies by
priority: High, Medium and Low. The priority associated with the to-do items generated by a par-
ticular critic may be altered through the Critique > Browse Critics... menu (see Sec-
tion 10.9.4, “ Browse Critics... ”).

• By Decision. The to-do items are organized into 17 hierarchies by design issue: Uncategor-
ized, Class Selection, Behavior, Naming, Storage, Inheritance, Containment,
Planned Extensions, State Machines, Design Patterns, Relationships, In-
stantiation, Modularity, Expected Usage, Methods, Code Generation and
Stereotypes. The details of the critics in each category are discussed in Section 10.9.2, “ Design
Issues... ”.

• By Goal. ArgoUML has a concept that critics may be grouped according to the user goals they af-
fect. This presentation groups the to-do items into hierarchies by goal.

Caution

The To-Do Pane

181

In the current release of ArgoUML there is only one goal, Unspecified and all to-
do items will appear under this heading.

• By Offender. The to-do items are organized into a hierarchy according to the model element that
caused the problem. Todo items that were manually created with the "New ToDo item" button (i.e.
not by a critic), are not listed here.

• By Poster. The to-do items are organized into a hierarchy according to which critic generated the
to-do item. The class name of the critic is listed instead of just its headline name since the former is
guaranteed to be a unique name.

• By Knowledge Type. ArgoUML has the concept that a critic reflects a deficiency in a category
of knowledge. This presentation option groups the critics according to their knowledge category:
Designer's, Correctness, Completeness, Consistency, Syntax, Semantics, Op-
timization, Presentational, Organizational, Experiencial and Tool. The
former category (Designer's) contains the manually entered todo items.

14.4. Item Count
To the right of the flat/hierarchical button is a count of the number of to-do items currently found. It will
be highlighted in yellow when the number of to-do items grows above 50 todo items, and red when
above 100.

The To-Do Pane

182

Chapter 15. The Critics
15.1. Introduction

The key feature that distinguishes ArgoUML from other UML CASE tools is its use of concepts from
cognitive psychology. The theory behind this is well described in Jason Robbins' PhD dissertation ht-
tp://argouml.tigris.org/docs/robbins_dissertation/ [http://argouml.tigris.org/docs/robbins_dissertation/].

Critics are one of the main ways in which these ideas are implemented. Running in the background they
offer advice to the designer which may be accepted or ignored. A key point is that they do not impose a
decision on the designer.

Note

The critics are asynchronous processes that run in parallel with the main ArgoUML tool.
Changes typically take a second or two to propagate as the critics wake up.

15.1.1. Terminology
The critics are background processes, which evaluate the current model according to various “good”
design criteria. There is one critic for every design criterion.

The output of a critic is a critique—a statement about some aspect of the model that does not appear to
follow good design practice.

Finally a critique will generally suggest how the bad design issue it has identified can be rectified, by
raising a to-do item.

15.1.2. Design Issues
ArgoUML categorizes critics according the the design issue they address (some critics may be in more
than one category). At present there are 16 such categories.

Within this manual the descriptions of critics are grouped in sections by design issue.

15.2. Uncategorized
These are critics that do not fit into any other category.

ArgoUML has no critics in this category. Maybe some will be added in later versions.

15.3. Class Selection
These are critics concerning how classes are chosen and used.

ArgoUML has the following critics in this category.

15.3.1. Wrap DataType
DataTypes are not full classes within UML 1.4. They can only have enumeration literals as values, and

183

http://argouml.tigris.org/docs/robbins_dissertation/
http://argouml.tigris.org/docs/robbins_dissertation/

only support query operations (that is operations that do not change the DataType's state).

DataTypes cannot be associated with classes, unless the DataType is part of a composite (black dia-
mond) aggregation. Such an association relects the tight binding of a collection of DataType instances to
a class instance. In effect such a DataType is an attribute of the class with multiplicity.

Good OOA&D depends on careful choices about which entities to represent as full objects and which to
represent as attributes of objects.

There are two options to fix this problem.

• Replace the DataType with a full class.

• or change the association aggregation to composite relationship at the DataType end.

15.3.2. Reduce Classes in namespace <namespace>
Suggestion to improve understandability by having fewer classes in one namespace. If one namespace
(such as the model, a package, or a class) has too many classes it may become very difficult for humans
to understand. Defining an understandable set of namespaces is an important part of your design.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of classes allowed be-
fore this critic fires.

Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more classes until the critic fires again. Restarting ArgoUML re-
sets this number to its default: 20.

15.3.3. Clean Up Diagram
Suggestion that the diagram could be improved by moving model elements that are overlapping.

15.4. Naming
These are critics concerning the naming of model elements. The current version of ArgoUML has 18
critics in this category.

15.4.1. Resolve Association Name Conflict
Suggestion that two association names in the same namespace have the same name. This is not permit-
ted in UML.

15.4.2. Revise Attribute Names to Avoid Conflict
Suggestion that two attribute names of a class have the same name. This is not permitted in UML.

Note

The problem may be caused by inheritance of an attribute through a generalization rela-

The Critics

184

tionship.

15.4.3. Change Names or Signatures in a model element
Two operations in <model element> have the same signature. This means their name is the same, and
the list of parameters has the same type.

Where there are conflicting signatures, correct code cannot be generated for mainstream OO languages.
It also leads to very unclear semantics of the design.

In comparing signatures, this critic considers:

1. the name;

2. the list of in, out and in-out parameter types in order; and

Only if these all match in both type and order, will the signatures be considered as the same.

This follows the line of Java/C++ in ignoring the return parameters for the signature. This may be unsat-
isfactory for some functional OO languages.

Note

Some purists would argue that the comparison should really differentiate between in, out
and in-out parameters. However no practical programming language can do this when
resolving an overloaded method invocation, so this critic lumps them all together.

15.4.4. Duplicate End (Role) Names for an Association
The specified association has two (or more) ends (roles) with the same name. One of the well-
formedness rules in UML 1.4 for associations, is that all end (role) names must be unique.

This ensures that there can be unambiguous reference to the ends of the association.

To fix this, manually select the association and change the names of one or more of the offending ends
(roles) using the button 2 pop-up menu or the property sheet.

15.4.5. Role name conflicts with member
A suggestions that good design avoids role names for associations that clash with attributes or opera-
tions of the source class. Roles may be realized in the code as attributes or operations, causing code gen-
eration problems.

15.4.6. Choose a Name (Classes and Interfaces)
The class or interface concerned has been given no name (it will appear in the model as Unnamed).
Suggestion that good design requires that all interfaces and classes are named.

15.4.7. Name conflict in a namespace

The Critics

185

The namespace (e.g. package) concerned contains a class or interface specified that has the same name
as another (in the same namespace), which is bad design and will prevent valid code generation.

15.4.8. Choose a Unique Name for a model element
(Classes and Interfaces)

Suggestion that the class or interface specified has the same name as another (in the namespace), which
is bad design and will prevent valid code generation.

15.4.9. Choose a Name (Attributes)
The attribute concerned has been given no name (it will appear in the model as (Unnamed Attrib-
ute)). Suggestion that good design requires that all attributes are named.

15.4.10. Choose a Name (Operations)
The operation concerned has been given no name (it will appear in the model as (Unnamed Opera-
tion)). Suggestion that good design requires that all operations are named.

15.4.11. Choose a Name (States)
The state concerned has been given no name (it will appear in the model as (Unnamed State)).
Suggestion that good design requires that all states are named.

15.4.12. Choose a Unique Name for a (State related)
model element

Suggestion that the state specified has the same name as another (in the current statechart diagram),
which is bad design and will prevent valid code generation.

15.4.13. Revise Name to Avoid Confusion
Two names in the same namespace have very similar names (differing only by one character). Sugges-
tion this could potentially lead to confusion.

Caution

This critic can be particularly annoying, since at times it is useful and good design to have
a series of model elements var1, var2 etc.

It is important to remember that critics offer guidance, and are not always correct.
ArgoUML lets you dismiss the resulting to-do items through the to-do pane (see
Chapter 14, The To-Do Pane).

15.4.14. Choose a Legal Name
All model element names in ArgoUML must use only letters, digits and underscore characters. This crit-
ic suggests an entity has not met this requirement.

15.4.15. Change a model element to a Non-Reserved

The Critics

186

Word
Suggestion that this model element's name is the same as a reserved word in UML (or within one char-
acter of one), which is not permitted.

15.4.16. Choose a Better Operation Name
Suggestion that an operation has not followed the naming convention that operation names begin with
lower case letters.

Caution

Following the Java and C++ convention most designers give their constructors the same
name as the class, which begins with an upper case character. In ArgoUML, this will trig-
ger this critic, unless the constructor is stereotyped «create».

It is important to remember that critics offer guidance, and are not always correct.
ArgoUML lets you dismiss the resulting to-do items through the to-do pane (see
Chapter 14, The To-Do Pane).

15.4.17. Choose a Better Attribute Name
Suggestion that an attribute has not followed the naming convention that attribute names begin with
lower case letters.

15.4.18. Capitalize Class Name
Suggestion that a class has not followed the naming convention that classes begin with upper case let-
ters.

Note

Although not triggering this critic, the same convention should apply to interfaces.

15.4.19. Revise Package Name
Suggestion that a package has not followed the naming convention of using lower case letters with peri-
ods used to indicated sub-packages.

15.5. Storage
Critics concerning attributes of classes.

The current version of ArgoUML has the following critics in this category.

15.5.1. Revise Attribute Names to Avoid Conflict
This critic is discussed under an earlier design issues category (see Section 15.4.2, “ Revise Attribute
Names to Avoid Conflict ”).

The Critics

187

15.5.2. Add Instance Variables to a Class
Suggestion that no instance variables have been specified for the given class. Such classes may be cre-
ated to specify static attributes and methods, but by convention should then be given the stereotype
«utility».

15.5.3. Add a Constructor to a Class
You have not yet defined a constructor for class class. Constructors initialize new instances such that
their attributes have valid values. This class probably needs a constructor because not all of its attributes
have initial values.

Defining good constructors is key to establishing class invariants, and class invariants are a powerful aid
in writing solid code.

To fix this, add a constructor manually by clicking on class in the explorer and adding an operation us-
ing the context sensitive pop-up menu in the property tab, or select class where it appears on a class dia-
gram and use the Add Operation tool.

In the UML 1.4 standard, a constructor is an operation with the stereotype «create». Although not
strictly standard, ArgoUML will also accept «Create» as a stereotype for constructors.

By convention in Java and C++ a constructor has the same name as the class, is not static, and returns no
value. ArgoUML will also accept any operation that follows these conventions as a constructor even if it
is not stereotyped «create».

Caution

Operators are created in ArgoUML with a default return parameter (named return). You
will need to remove this parameter to meet the Java/C++ convention.

15.5.4. Reduce Attributes on a Class
Suggestion that the class has too many attributes for a good design, and is at risk of becoming a design
bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of attributes allowed
before this critic fires.

Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more attributes until the critic fires again. Restarting ArgoUML
resets this number to its default: 7.

15.6. Planned Extensions
Critics concerning interfaces and subclasses.

Note

It is not clear why this category has the name “Planned Extensions”.

The Critics

188

The current version of ArgoUML has three critics in this category.

15.6.1. Operations in Interfaces must be public
Suggestion that there is no point in having non-public operations in Interfaces, since they must be visible
to be realized by a class.

15.6.2. Interfaces may only have operations
Suggestion that an interfaces has attributes defined. The UML standard defines interfaces to have opera-
tions.

Caution

ArgoUML does not allow you to add attributes to interfaces, so this should never occur in
the ArgoUML model. It might trigger if a project has been loaded with XMI created by an-
other tool.

15.6.3. Remove Reference to Specific Subclass
Suggestion that in a good design, a class should not reference its subclasses directly through attributes,
operations or associations.

15.7. State Machines
Critics concerning state machines.

ArgoUML has the following critics in this category.

15.7.1. Reduce Transitions on <state>
Suggestion given state is involved in so many transitions it may be a maintenance bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of transitions allowed
before this critic fires.

Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more transition until the critic fires again. Restarting ArgoUML
resets this number to its default: 10.

15.7.2. Reduce States in machine <machine>
Suggestion that the given state machine has so many states as to be confusing and should be simplified
(perhaps by breaking into several machines, or using a hierarchy).

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of states allowed be-
fore this critic fires.

Caution

The Critics

189

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more states until the critic fires again. Restarting ArgoUML re-
sets this number to its default: 20.

15.7.3. Add Transitions to <state>
Suggestion that the given state requires both incoming and outgoing transitions.

15.7.4. Add Incoming Transitions to <model element>
Suggestion that the given state requires incoming transitions.

15.7.5. Add Outgoing Transitions from <model element>
Suggestion that the given state requires outgoing transitions.

15.7.6. Remove Extra Initial States
Suggestion that there is more than one initial state in the state machine or composite state, which is not
permitted in UML.

15.7.7. Place an Initial State
Suggestion that there is no initial state in the state machine or composite state.

15.7.8. Add Trigger or Guard to Transition
Suggestion that a transition is missing either a trigger or guard, one at least of which is required for it to
be taken.

15.7.9. Change Join Transitions
Suggestion that the join pseudostate has an invalid number of transitions. Normally there should be one
outgoing and two or more incoming.

15.7.10. Change Fork Transitions
Suggestion that the fork pseudostate has an invalid number of transitions. Normally there should be one
incoming and two or more outgoing.

15.7.11. Add Choice/Junction Transitions
Suggestion that the branch (choice or junction) pseudostate has an invalid number of transitions. Nor-
mally there should be at least one incoming transition and at least one outgoing transition.

15.7.12. Add Guard to Transition
Suggestion that the transition requires a guard.

The Critics

190

Caution

It is not clear that this is a valid critic. It is perfectly acceptable to have a transition without
a guard—the transition is always taken when the trigger is invoked.

15.7.13. Clean Up Diagram
This critic is discussed under an earlier design issues category (see Section 15.3.3, “ Clean Up Diagram
”).

15.7.14. Make Edge More Visible
Suggestion that an edge model element such as an association or abstraction is so short it may be
missed. Move the connected model elements apart to make the edge more visible.

15.7.15. Composite Association End with Multiplicity >1
Zusammengesetztes Assoziationsende mit der
Kardinalität >1

An instance may not belong by composition to more than one composite instance. You must change the
multiplicity at the composite end of the association to either 0..1 or 1..1 (1) for your model to make
sense.

Remember that composition is the stronger aggregation kind and aggregation is the weaker. The prob-
lem can be compared to a model where a finger can be an integral part of several hands at the same time.

This is the second well-formedness rule on AssociationEnd in UML 1.4.

15.8. Design Patterns
Critics concerning design pattern usage in ArgoUML.

These relate to the use of patterns as described by the so called “Gang of Four”. ArgoUML also uses this
category for critics associated with deployment and sequence diagrams. The current version of
ArgoUML has the following critics in this category.

15.8.1. Consider using Singleton Pattern for <class>
The class has no non-static attributes nor any associations that are navigable away from instances of this
class. This means that every instance of this class will be identical to every other instance, since there
will be nothing about the instances that can differentiate them.

Under these circumstances you should consider making explicit that you have exactly one instance of
this class, by using the singleton Pattern. Using the singleton pattern can save time and memory space.
Within ArgoUML this can be done by using the «singleton» stereotype on this class.

If it is not your intent to have a single instance, you should define instance variables (i.e. non-static at-
tributes) and/or outgoing associations that will represent differences bewteen instances.

Having specified class as a singleton, you need to define the class so there can only be a single instance.
This will complete the information representation part of your design. To achieve this you need to do the
following.

The Critics

191

1. You must define a static attribute (a class variable) holding the instance. This must therefore have
class as its type.

2. You must have only private constructors so that new instances cannot be made by other code. The
creation of the single instance could be through a suitable helper operation, which invokes this
private constructor just once.

3. You must have at least one constructor to override the default constructor, so that the default con-
structor is not used to create multiple instances.

For the definition of a constructor under the UML 1.4 standard, and extensions to that definition accep-
ted by ArgoUML see Section 15.5.3, “ Add a Constructor to a Class ” .

15.8.2. Singleton Stereotype Violated in <class>
This class is marked with the «singleton» stereotype, but it does not satisfy the constraints imposed on
singletons (ArgoUML will also accept «Singleton» stereotype as defining a singleton). A singleton class
can have at most one instance. This means that the class must meet the design criteria for a singleton
(see Section 15.8.1, “ Consider using Singleton Pattern for <class> ”).

Whenever you mark a class with a stereotype, the class should satisfy all constraints of the stereotype.
This is an important part of making a self-consistent and understangle design. Using the singleton pat-
tern can save time and memory space.

If you no longer want this class to be a singleton, remove the «singleton» stereotype by clicking on the
class and selecting the blank selection on the stereotype drop-down within the properties tab.

To apply the singleton pattern you should follow the directions in Section 15.8.1, “ Consider using
Singleton Pattern for <class> ” .

15.8.3. Nodes normally have no enclosers
A suggestion that nodes should not be drawn inside other model elements on the deployment diagram,
since they represent an autonomous physical object.

15.8.4. NodeInstances normally have no enclosers
A suggestion that node instances should not be drawn inside other model elements on the deployment
diagram, since they represent an autonomous physical object.

15.8.5. Components normally are inside nodes
A suggestion that components represent the logical entities within physical nodes, and so should be
drawn within a node, where nodes are shown on the deployment diagram.

15.8.6. ComponentInstances normally are inside nodes
A suggestion that component instances represent the logical entities within physical nodes, and so
should be drawn within a node instance, where node instances are shown on the deployment diagram.

15.8.7. Classes normally are inside components
A suggestion that classes, as model elements making up components, should be drawn within compon-
ents on the deployment diagram.

The Critics

192

15.8.8. Interfaces normally are inside components
A suggestion that interfaces, as model elements making up components, should be drawn within com-
ponents on the deployment diagram.

15.8.9. Objects normally are inside components
A suggestion that objects, as instances of model elements making up components, should be drawn
within components or component instances on the deployment diagram.

15.8.10. LinkEnds have not the same locations
A suggestion that a link (e.g. association) connecting objects on a deployment diagram has one end in a
component and the other in a component instance (since objects can be in either). This makes no sense.

15.8.11. Set classifier (Deployment Diagram)
Suggestion that there is an instance (object) without an associated classifier (class, datatype) on a de-
ployment diagram.

15.8.12. Missing return-actions
Suggestion that a sequence diagram has a send or call action without a corresponding return action.

15.8.13. Missing call(send)-action
Suggestion that a sequence diagram has a return action, but no preceding call or send action.

15.8.14. No Stimuli on these links
Suggestion that a sequence diagram has a link connecting objects without an associated stimulus
(without which the link is meaningless).

Warning

Triggering this critic indicates a serious problem, since ArgoUML provides no mechanism
for creating a link without a stimulus. It probably indicates that the diagram was created by
loading a corrupt project, with an XMI file describing a link without a stimulus, possibly
created by a tool other than ArgoUML.

15.8.15. Set Classifier (Sequence Diagram)
Suggestion that there is an object without an associated classifier (class, datatype) on a sequence dia-
gram.

15.8.16. Wrong position of these stimuli
Suggestion that the initiation of send/call-return message exchanges in a sequence diagram does not
properly initiate from left to right.

15.9. Relationships

The Critics

193

Critics concerning associations in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.9.1. Circular Association
Suggestion that an association class has a role that refers back directly to itself, which is not permitted.

Warning

This critic is meaningless in the V0.14 version of ArgoUML which does not support asso-
ciation classes.

15.9.2. Make <association> Navigable
Suggestion that the association referred to is not navigable in either direction. This is permitted in the
UML standard, but has no obvious meaning in any practical design.

15.9.3. Remove Navigation from Interface via
<association>

Associations involving an interface can be not be navigable in the direction from the interface. This is
because interfaces contain only operation declarations and cannot hold pointers to other objects.

This part of the design should be changed before you can generate code from this design. If you do gen-
erate code before fixing this problem, the code will not match the design.

To fix this, select the association and use the Properties tab to select in turn each association end
that is not connected to the interface. Uncheck Navigable for each of these ends.

The association should then appear with a stick arrowhead pointed towards the interface

When an association between a class and interface is created in ArgoUML, it is by default navigable
only from the class to the interface. However, ArgoUML does not prevent to change the navigability af-
terwards into a wrong situation. Which will cause this critic to be triggered.

15.9.4. Add Associations to <model element>
Suggestion that the specified model element (actor, use case or class) has no associations connecting it
to other model elements. This is required for the model element to be useful in a design.

15.9.5. Remove Reference to Specific Subclass
This critic is discussed under an earlier design issues category (see Section 15.6.3, “ Remove Reference
to Specific Subclass ”).

15.9.6. Reduce Associations on <model element>
Suggestion that the given model element (actor, use case, class or interface) has so many associations it
may be a maintenance bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of associations al-
lowed before this critic fires.

The Critics

194

Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more associations until the critic fires again. Restarting
ArgoUML resets this number to its default: 7.

15.9.7. Make Edge More Visible
This critic is discussed under an earlier design issues category (see Section 15.7.14, “ Make Edge More
Visible ”).

15.10. Instantiation
Critics concerning instantiation of classifiers in ArgoUML.

The current version of ArgoUML has no critics in this category.

15.11. Modularity
Critics concerning modular development in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.11.1. Classifier not in Namespace of its Association
One of the well-formedness rules in UML 1.4 for associations, is that all the classifiers attached to the
ends of the association should belong to the same namespace as the association.

If this were not the case, there would be no naming, by which each end could refer to all the others.

This critic is triggered when an association does not meet this criterion. The solution is to delete the as-
sociation, and recreate it on a diagram, whose namespace includes those of all the attached classifiers.

Caution

In the current implementation of ArgoUML this critic does not handle hierarchical
namespaces. As a consequence it will trigger for associations where the immediate
namespaces of the attached classifiers is different, even though they are part of the same
namespace hierarchy.

15.11.2. Add Elements to Package <package>
Suggestion that the specified package has no content. Good design suggests packages are created to put
things in.

Note

This will always trigger when you first create a package, since you cannot create one that
is not empty!

The Critics

195

15.12. Expected Usage
Critics concerning generally accepted good practice in ArgoUML.

The current version of ArgoUML has one critic in this category.

15.12.1. Clean Up Diagram
This critic is discussed under an earlier design issues category (see Section 15.3.3, “ Clean Up Diagram
”).

15.13. Methods
Critics concerning operations in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.13.1. Change Names or Signatures in <model ele-
ment>

This critic is discussed under an earlier design issues category (see Section 15.4.3, “ Change Names or
Signatures in a model element ”).

15.13.2. Class Must be Abstract
Suggestion that a class that inherits or defines abstract operations must be marked abstract.

15.13.3. Add Operations to <class>
Suggestion that the specified class has no operations defined. This is required for the class to be useful
in a design.

15.13.4. Reduce Operations on <model element> Re-
duzieren Sie die Anzahl der Operationen im
<Modellelement>

Suggestion that the model element (class or interface) has too many operations for a good design, and is
at risk of becoming a design bottleneck.

The Wizard of this critic allows setting of the treshold, i.e. the maximum number of operations allowed
before this critic fires.

Caution

This number is not stored persistently, and there is no way to reduce it after it has been set
higher, except by creating more operations until the critic fires again. Restarting ArgoUML
resets this number to its default: 20.

15.14. Code Generation

The Critics

196

Critics concerning code generation in ArgoUML.

The current version of ArgoUML has one critic in this category.

15.14.1. Change Multiple Inheritance to interfaces
Suggestion that a class has multiple generalizations, which is permitted by UML, but cannot be gener-
ated into Java code, because Java does not support multiple inheritance.

15.15. Stereotypes
Critics concerning stereotypes in ArgoUML.

The current version of ArgoUML has no critics in this category.

15.16. Inheritance
Critics concerning generalization and specialization in ArgoUML.

The current version of ArgoUML has the following critics in this category.

15.16.1. Revise Attribute Names to Avoid Conflict
This critic is discussed under an earlier design issues category (see Section 15.4.2, “ Revise Attribute
Names to Avoid Conflict ”).

15.16.2. Remove <class>'s Circular Inheritance
Suggestion that a class inherits from itself, through a chain of generalizations, which is not permitted.

Caution

This critic is marked inactive by default in the current release of ArgoUML (the only one
so marked). It will not trigger unless made active.

15.16.3. Class Must be Abstract
This critic is discussed under an earlier design issues category (see Section 15.13.2, “ Class Must be Ab-
stract ”).

15.16.4. Remove final keyword or remove subclasses
Suggestion that a class that is final has specializations, which is not permitted in UML.

15.16.5. Illegal Generalization
Suggestion that there is a generalization between model elements of different UML metaclasses, which
is not permitted.

Caution

The Critics

197

It is not clear that such a generalization can be created within ArgoUML. It probably indic-
ates that the diagram was created by loading a corrupt project, with an XMI file describing
such a generalization, possibly created by a tool other than ArgoUML.

15.16.6. Remove Unneeded Realizes from <class>
Suggestion that the specified class has a realization relationship both directly and indirectly to the same
interface (by realization from two interfaces, one of which is a generalization of the other for example).
Good design deprecates such duplication.

15.16.7. Define Concrete (Sub)Class
Suggestion that a class is abstract with no concrete subclasses, and so can never be realized.

15.16.8. Define Class to Implement <interface>
Suggestion that the interface referred to has no influence on the running system, since it is never imple-
mented by a class.

15.16.9. Change Multiple Inheritance to interfaces
This critic is discussed under an earlier design issues category (see Section 15.14.1, “ Change Multiple
Inheritance to interfaces ”).

15.16.10. Make Edge More Visible
This critic is discussed under an earlier design issues category (see Section 15.7.14, “ Make Edge More
Visible ”).

15.17. Containment
Critics concerning containment in ArgoUML, that is where one model element forms a component part
of another.

The current version of ArgoUML has the following critics in this category.

15.17.1. Remove Circular Composition
Suggestion that there is a series of composition relationships (associations with black diamonds) that
form a cycle, which is not permitted.

15.17.2. Duplicate Parameter Name
Suggestion that a parameter list to an operation or event has two or more parameters with the same
name, which is not permitted.

15.17.3. Two Aggregate Ends (Roles) in Binary Associ-
ation

The Critics

198

Only one end (role) of a binary association can be aggregate or composite. This a well-formedness rule
of the UML 1.4 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition, the “part”
end cannot be aggregate.

To fix this, identify the “part” end of the association, and use the critic wizard (the Next> button, or
manually set its aggregation to none using the button 2 pop-up menu or the property sheet.

Composition (more correctly called composite aggregation) is used where there is a whole-part relation-
ship that is one-to-one or one-to-many, and the lifetime of the part is inextricably tied to the lifetime of
the whole. Instances of the whole will have responsibility for creating and destroying instances of the as-
sociated part. This also means that a class can only be a part in one composite aggregation.

An example of a composite aggregation might be a database of cars and their wheels. This is a one-
to-four relationship, and the database entry for a wheel is associated with its car. When the car ceases to
exist in the database, so do its wheels.

Aggregation (more correctly called shared aggregation) is used where there is a whole-part relationship,
that does not meet the criteria for a composite aggregation. An example might be a database of uni-
versity courses and the students that attend them. There is a whole-part relationship between courses and
students. However there is no lifetime relationship between students and course (a student continues to
exist even after a course is finished) and the relationship is many-to-many.

15.17.4. Aggregate End (Role) in 3-way (or More) Asso-
ciation

Three-way (or more) associations can not have aggregate ends (roles). This a well-formedness rule of
the UML 1.4 standard.

Aggregation and composition are used to indicate whole-part relationships, and by definition can only
apply to binary associations between model elements.

To fix this, manually select the association, and set the aggregation of each of its ends (roles) to none
using the button 2 pop-up menu or the property sheet.

15.17.5. Wrap DataType
This critic is discussed under an earlier design issues category (see Section 15.3.1, “ Wrap DataType ”).

The Critics

199

Part 3. Model Reference

Chapter 16. Top Level Model Element
Reference
16.1. Introduction

This chapter describes each model element that can be created within ArgoUML. The chapter covers
top-level “general” model elements. The following chapters (see Chapter 17, Use Case Diagram Model
Element Reference through Chapter 23, Deployment Diagram Model Element Reference) cover each of
the ArgoUML diagrams.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers properties in general, in this chapter they are linked to
specific model elements.

16.2. The Model
The model is the top level model element within ArgoUML. In the UML meta-model it is a sub-class of
package. In many respects within ArgoUML it behaves similarly to a package (see Section 18.2, “ Pack-
age ”).

Note

ArgoUML is restricted to one model within the tool.

Standard data types, classes and packages are loaded (the default, see Chapter 24, Profiles) as sub-
packages of the model. These sub-packages are not initially present in the model but are added to the
model when used.

16.2.1. Model Details Tabs
The details tabs that are active for the model are as follows.

ToDoItem
Standard tab.

Properties
See Section 16.2.2, “ Model Property Toolbar ” and Section 16.2.3, “ Property Fields For The Mod-
el ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Stereotype
Standard tab. This contains a a list of the stereotypes applied to this model, and a list of available
stereotypes that may be applied to the model.

Tagged Values
Standard tab. In the UML meta-model, Model has the following standard tagged values defined.

• derived (from the superclass, ModelElement).

201

Values true, meaning the class is redundant — it can be formally derived from other elements,
or false meaning it cannot.

Derived models have their value in analysis to introduce useful names or concepts, and in
design to avoid re-computation.

16.2.2. Model Property Toolbar

Go up

Navigate up through the composition structure of the model.

Since the model is the top package nothing can happen, and this button is allways downlighted.

New Package

This creates a new Package (see Section 18.2, “ Package ”) within the model (which appears on no
diagram), navigating immediately to the properties tab for that package.

Tip

While it can make sense to create Packages of the model this way, it is usually a lot
clearer to create them within diagrams where you want them.

New DataType

This creates a new DataType (see Section 16.3, “ Datatype ”) within the model (which appears on
no diagram), navigating immediately to the properties tab for that DataType.

New Enumeration

This creates a new Enumeration (see Section 16.4, “ Enumeration ”) within the model (which ap-
pears on no diagram), navigating immediately to the properties tab for that Enumeration.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) within the model, navigating imme-
diately to the properties tab for that stereotype.

Delete

This tool is always downlighted, since it is meaningless to delete the model!

16.2.3. Property Fields For The Model

Name

Text box. The name of the model. The name of a model, like all packages, is by convention all

Top Level Model Element Reference

202

lower case.

Note

The default name supplied to a new model by ArgoUML, untitledModel, is thus
erroneous and guarantees that ArgoUML always starts up with at least one problem
being reported by the design critics.

Stereotype

Drop down selector. Model is provided by default with the UML standard stereotypes for model (
systemModel and metamodel) and package (facade, framework, stub).

Stereotyping models is a useful thing, although it is of limited value in ArgoUML where you have
only a single model.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace

Text box. Records the namespace for the model. This is the package hierarchy. However since the
model is at the top of the hierarchy in ArgoUML, this box is always empty.

Visibility

Radio box, with entries public, private, protected, and package.

Records the visibility for the model. Since ArgoUML only permits one model, this has no meaning-
ful use.

Modifiers

Check box, with entries Abstract, Leaf and Root.

• abstract is used to declare that this model cannot be instantiated, but must always be special-
ized.

The meaning of abstract applied to a model is not that clear. It might mean that the model
contains interfaces or abstract classes without realizations. Since ArgoUML only permits one
model, this is not a meaningful box to check.

• Leaf indicates that this model can have no further subpackages, while root indicates it is the
top level model.

Within ArgoUML root only meaningfully applies to the Model, since all packages sit within
the model. In the absence of the topLevel stereotype, this could be used to emphasize that the
Model is at the top level.

Generalizations
Text area. Lists any model that generalizes this model.

Note

Top Level Model Element Reference

203

Since there is only one model in ArgoUML there is no sensible specialization or gen-
eralization that could be created.

Specializations
Text box. Lists any specialized model (i.e. for which this model is a generalization.

Note

Since there is only one model in ArgoUML there is no sensible specialization or gen-
eralization that could be created.

Owned Elements

Text area. A listing of the top level packages, classes, interfaces, datatypes, actors, use cases, asso-
ciations, generalizations, and stereotypes within the model.

Button 1 double click on any of the model elements yields navigating to that model element.

16.3. Datatype
Datatypes can be thought of as simple classes. They have no attributes, and any operations on them must
have no side-effects. A useful analogy is primitive datatypes in a language like Java. The integer “3”
stands on its own—it has no inner structure. There are operations (for example addition) on the integers,
but when I perform 3 + 4 the result is a new number, “3” and “4” are unchanged by the exercise.

Within UML 1.4, DataType is a sub-class of the Classifier metaclass. It embraces the predefined
primitive types (byte, char, double, float, int, long and short), the predefined enumeration,
boolean and user defined enumeration types.

Note

Also void is implemented as a datatype within ArgoUML

Within ArgoUML new datatypes may be created using the New datatype button on the property tabs
of the model and packages (in which case the new datatype is restricted in scope to the package), as well
as the properties tab for datatype. Datatypes can also be created with the tool in the diagram toolbar of a
class diagram.

The UML 1.4 standard allows user defined datatypes to be placed on class diagrams to define their in-
heritence structure. This is also possible in ArgoUML. It is represented on the diagram by a box with
two compartments, of which the top one is marked with «datatype», and contains the name. The
lower one contains operations.

16.3.1. Datatype Details Tabs
The details tabs that are active for datatypes are as follows.

ToDoItem
Standard tab.

Top Level Model Element Reference

204

Properties

See Section 16.3.2, “ Datatype Property Toolbar ” and Section 16.3.3, “ Property Fields For Data-
type ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Source
Standard tab. Unused. One would expect a class declaration for the new datatype to support code
generation.

Tagged Values

Standard tab. In the UML metamodel, Datatype has the following standard tagged values
defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

Tip

Since user defined datatypes are enumerations, they have no state to preserve, and
the value of this tagged value is irrelevant.

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the datatype.

• derived (from the superclass, ModelElement). Values true, meaning the class is redund-
ant—it can be formally derived from other elements, or false meaning it cannot.

Tip

While formally available, a derived datatype does not have an obvious value, and
so datatypes should always be marked with derived=false.

16.3.2. Datatype Property Toolbar

Go up

Navigate up through the package structure.

New datatype

This creates a new datatype (see Section 18.6, “ Class ”) within the same package as the current
datatype.

Tip

While it can make sense to create datatypes this way, it can be clearer to create them

Top Level Model Element Reference

205

within the package or model where you want them.

New Enumeration

This creates a new Enumeration (see Section 16.4, “ Enumeration ”) in the same package as the
datatype, navigating immediately to the properties tab for that Enumeration.

New Operation

This creates a new operation within the datatype, navigating immediately to the properties tab for
that operation.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) within the same package as the
datatype, navigating immediately to the properties tab for that stereotype.

Delete

This deletes the datatype from the model.

16.3.3. Property Fields For Datatype

Name

Text box. The name of the datatype. The primitive datatypes all have lower case names, but there is
no formal convention.

Note

The default name supplied for a newly created datatype is the empty string “”. Data-
types with empty string names will appear with the name (Unnamed Datatype)
in the explorer.

Namespace
Drop down selector with navigate button. Allows changing the namespace for the datatype. This is
the package hierarchy.

Modifiers

Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this datatype cannot be instantiated, but must always be spe-
cialized.

Note

ArgoUML provides no mechanism for specializing datatypes, so this check box is
of little use.

Top Level Model Element Reference

206

• Leaf indicates that this datatype can have no further sub-types, while Root indicates it is a top
level datatype.

Tip

You can define the specialization of datatypes in a class diagram by drawing gen-
eralizations between them.

Visibility

Radio box, with entries public, private, protected, and package.

Records the visibility for the Datatype.

Client Dependencies
Text area. Lists any elements that depend on this datatype.

Caution

It is not clear that dependencies between datatypes makes much sense.

Supplier Dependencies
Text area. Lists any elements that this datatype depends on.

Caution

It is not clear that dependencies between datatypes makes much sense.

Generalizations
Text area. Lists any datatype that generalizes this datatype.

Specializations
Text box. Lists any specialized datatype (i.e. for which this datatype is a generalization.

Operations
Text area. Lists all the operations defined on this datatype. Button 1 double click navigates to the
selected operation. button 2 click brings up a pop up menu with two entries.

• Move Up. Only available where there are two or more operations, and the operation selected is
not at the top. It is moved up one.

• Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It is moved down one.

See Section 18.8, “ Operation ” for details of operations.

Caution

ArgoUML treats all operations as equivalent. Any operations created here will use the
same mechanism as operations for classes. Remember that operations on datatypes
must have no side effects (they are read-only). This means the query modifier must
be checked for all operations.

Top Level Model Element Reference

207

16.4. Enumeration
An enumeration is a primitive datatype that can have a fixed short list of values. It has no attributes, and
any operations on them must have no side-effects. A useful analogy is the primitive datatype boolean in
a language like Java. The boolean stands on its own—it has no inner structure. There are operations (for
example logical xor) on the booleans, but when I perform true xor true the result is a new
boolean, and the original 2 booleans “true” are unchanged by the exercise.

Within UML 1.4, Enumeration is a sub-class of the DataType metaclass.

The big difference with other DataTypes, is that an Enumeration has EnumerationLiterals. E.g.
the Enumeration “boolean” is defined as having 2 EnumerationLiterals, “true” and “false”.

Within ArgoUML new enumerations may be created using the New Enumeration button on the
property tabs of the model and packages (in which case the new enumeration is restricted in scope to the
package), as well as the properties tab for datatype and enumeration. Enumerations can also be created
with the tool in the diagram toolbar of a class diagram.

The UML 1.4 standard allows user defined enumerations to be placed on class diagrams to define their
inheritence structure. This is also possible in ArgoUML. It is represented on the diagram by a box with
three compartments, of which the top one is marked with «enumeration», and contains the name.
The middle compartment shows the enumeration literals. The lower one contains operations.

16.4.1. Enumeration Details Tabs
The details tabs that are active for enumerations are as follows.

ToDoItem
Standard tab.

Properties

See Section 16.4.2, “ Enumeration Property Toolbar ” and Section 16.4.3, “ Property Fields For
Enumeration ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab.

Source
Standard tab.

Stereotype
Standard tab. The UML metamodel has the following stereotypes defined by default for a Classifier,
which also apply to an Enumeration:

• metaclass (from the superclass, Classifier).

• powertype (from the superclass, Classifier).

• process (from the superclass, Classifier).

• thread (from the superclass, Classifier).

• utility (from the superclass, Classifier).

Top Level Model Element Reference

208

Tagged Values

Standard tab. In the UML metamodel, Enumeration has no standard tagged values defined.

16.4.2. Enumeration Property Toolbar

Go up

Navigate up through the composition structure.

New datatype

This creates a new datatype (see Section 18.6, “ Class ”) within the same package as the current
enumeration.

New enumeration

This creates a new enumeration within the same namespace as the current enumeration, navigating
immediately to the properties tab for new enumeration.

New enumeration literal

This creates a new enumeration literal within the enumeration, navigating immediately to the prop-
erties tab for that literal.

New Operation

This creates a new operation within the enumeration, navigating immediately to the properties tab
for that operation.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) within the same package as the
enumeration, navigating immediately to the properties tab for that stereotype.

Delete from Model

This deletes the datatype from the model.

16.4.3. Property Fields For Enumeration

Name

Text box. The name of the enumeration. The primitive enumerations all have lower case names, but
there is no formal convention.

Note

The default name supplied for a newly created datatype is the empty string “”. Enu-
merations with empty string names will appear with the name (Unnamed Enumer-
ation) in the explorer.

Namespace

Top Level Model Element Reference

209

Drop down selector with navigation button. Allows changing the namespace for the enumeration.
This is the composition hierarchy.

Modifiers

Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this enumeration cannot be instantiated, but must always be
specialized.

• Leaf indicates that this enumeration can have no further sub-types, while Root indicates it is a
top level enumeration.

Visibility

Radio box, with entries public, private, protected, and package.

Records the visibility for the Enumeration.

Client Dependencies
Text area. Lists any elements that depend on this enumeration. Button 1 double click navigates to
the selected modelelement. Button 2 click brings up a pop up menu with following entry.

• Add.... This brings up a dialog box that allows to create dependencies from other modelele-
ments.

Supplier Dependencies
Text area. Lists any elements that this enumeration depends on. Button 1 double click navigates to
the selected modelelement. Button 2 click brings up a pop up menu with the following entry.

• Add.... This brings up a dialog box that allows to create dependencies to other modelele-
ments.

Generalizations
Text area. Lists any enumeration that generalizes this enumeration.

Specializations
Text box. Lists any specialized enumerations (i.e. for which this enumeration is a generalization.

Operations
Text area. Lists all the operations defined on this enumeration. Button 1 double click navigates to
the selected operation. Button 2 click brings up a pop up menu with two entries.

• Move Up. Only available where there are two or more operations, and the operation selected is
not at the top. It is moved up one.

• Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It is moved down one.

See Section 18.8, “ Operation ” for details of operations.

Caution

ArgoUML treats all operations as equivalent. Any operations created here will use the
same mechanism as operations for classes. Remember that operations on enumerations
must have no side effects (they are read-only). This means the query modifier must
be checked for all operations.

Literals

Top Level Model Element Reference

210

Text area. Lists all the enumeration literals defined for this enumeration. Button 1 double click nav-
igates to the selected literal, button 2 click brings up a pop up menu with two entries.

• Move Up. Only available where there are two or more literals, and the literal selected is not at
the top. It is moved up one.

• Move Down. Only available where there are two or more literals listed, and the literal selected
is not at the bottom. It is moved down one.

16.5. Enumeration Literal
An enumeration literal is one of the predefined values of an Enumeration.

16.6. Stereotype
Stereotypes are the main extension mechanism of UML, providing a way to derive specializations of the
standard metaclasses. Stereotype is a sub-class of GeneralizableElement in the UML
metamodel. Stereotypes are supplemented by constraints and tagged values.

New stereotypes are added from the property tab of almost any model element. Properties of existing
stereotypes can be reached by selecting the property tab for any model element with that stereotype and
using the navigate button () within the property tab.

16.6.1. Stereotype Details Tabs
The details tabs that are active for stereotypes are as follows.

ToDoItem
Standard tab.

Properties
See Section 16.6.2, “ Stereotype Property Toolbar ” and Section 16.6.3, “ Property Fields For Ste-
reotype ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Stereotype
Standard tab.

Warning

Here you can set stereotypes of stereotypes, not a very usefull thing to do.

Tagged Values
Standard tab. In the UML metamodel, Stereotype has the following standard tagged values
defined.

• derived (from the superclass, ModelElement). Values true, meaning the class is redund-
ant—it can be formally derived from other elements, or false meaning it cannot.

Top Level Model Element Reference

211

Note

This indicates any element with this stereotype has the derived tag set accord-
ingly.

Caution

Tagged values for a stereotype are rather different to those for elements in the UML
core architecture, in that they apply to all model elements to which the stereotype is
applied, not just the stereotype itself.

16.6.2. Stereotype Property Toolbar

Go up

Navigate up through the package structure of the model.

Add stereotype

This creates a new stereotype (see Section 16.6, “ Stereotype ”) within the model (which appears on
no diagram), navigating immediately to the properties tab for that stereotype.

New Tag Definition

This creates a new tag definition (see Section 16.7, “ Tag Definition ”) within the model (which ap-
pears on no diagram), navigating immediately to the properties tab for that tagdefinition.

Delete

This deletes the stereotype from the model.

16.6.3. Property Fields For Stereotype

Name

Text box. The name of the stereotype. There is no convention for naming stereotypes, beyond start-
ing them with a lower case letter. Even the standard UML stereotypes vary between all lower case
(e.g. metamodel), bumpy caps (e.g. systemModel) and space separated (e.g. object
model).

Note

ArgoUML does not enforce any naming convention for stereotypes

Base Class

Drop down selector. Any stereotype must be derived from one of the metaclasses in the UML
metamodel or the model element classes that derive from them. The stereotype will then be avail-
able to model elements that derive from that same metaclass or that model element.

Top Level Model Element Reference

212

Namespace

Drop down selector with navigation button. Records the namespace for the stereotype. This is the
package hierarchy.

Modifiers

Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that model elements that use this stereotype cannot be instanti-
ated, but must always be specialized.

• Leaf indicates that model elements that use this stereotype can have no further sub-types, while
Root indicates it is a top level model element.

Caution

Remember that these modifiers apply to the model elements using the stereotype, not
just the stereotype.

Warning

ArgoUML neither imposes, nor checks that model elements using a stereotype adopt
the stereotype's modifiers.

Visibility

Radio box, with entries public, private, protected, and package.

Records the visibility for the stereotype.

Generalizations
Text area. Lists any stereotype that generalizes this stereotype.

Specializations
Text area. Lists any specialized stereotype (i.e. for which this stereotype is a generalization.

Tag Definitions
Text area. Lists any tag definitions that are defined for this stereotype.

Extended Elements
Text area. Lists all modelelements that are stereotyped by this stereotype.

16.7. Tag Definition
(To Be Written)

16.8. Diagram
The UML standard specifies eight principal diagrams, all of which are supported by ArgoUML.

• Use case diagram. Used to capture and analyse the requirements for any OOA&D project. See
Chapter 17, Use Case Diagram Model Element Reference for details of the ArgoUML use case dia-

Top Level Model Element Reference

213

gram and the model elements it supports.

• Class diagram. This diagram captures the static structure of the system being designed, showing the
classes, interfaces and datatypes and how they are related. Variants of this diagram are used to show
package structures within a system (the package diagram) and the relationships between particular
instances (the object diagram).

The ArgoUML class diagram provides support for class and package diagrams. See Chapter 18,
Class Diagram Model Element Reference for details of the model elements it supports. The object
diagram is suported on the Deployment diagram.

• Behavior diagrams. There are four such diagrams (or strictly speaking, five, since the use case dia-
gram is a type of behavior diagram), which show the dynamic behavior of the system at all levels.

• Statechart diagram. Used to show the dynamic behavior of a single object (class instance). This
diagram is of particular use in systems using complex communication protocols, such as in tele-
communications. See Chapter 20, Statechart Diagram Model Element Reference for details of
the ArgoUML statechart diagram and the model elements it supports.

• Activity diagram. Used to show the dynamic behavior of groups of objects (class instance). This
diagram is an alternative to the statechart diagram, and is better suited to systems with a great
deal of user interaction. See Chapter 22, Activity Diagram Model Element Reference for details
of the ArgoUML activity diagram and the model elements it supports.

• Interaction diagrams. There are two diagrams in this category, used to show the dynamic inter-
action between objects (class instances) in the system.

• Sequence diagram. Shows the interactions (typically messages or procedure calls) between
instances of classes (objects) and actors against a timeline. Particularly useful where the tim-
ing relationships between interactions are important. See Chapter 19, Sequence Diagram
Model Element Reference for details of the ArgoUML sequence diagram and the model ele-
ments it supports.

• Collaboration diagram. Shows the interactions (typically messages or procedure calls)
between instances of classes (objects) and actors against the structural relationships between
those instances. Particularly suitable where it is useful to relate interactions to the static struc-
ture of the system. See Chapter 21, Collaboration Diagram Model Element Reference for de-
tails of the ArgoUML collaboration diagram and the model elements it supports.

• Implementation diagrams. UML defines two implementation diagrams to show the relationship
between the software components that make up a system (the component diagram) and the relation-
ship between the software and the hardware on which it is deployed at run-time (the deployment dia-
gram.

The ArgoUML deployment diagram provides support for both component and deployment diagrams,
and additionally for object diagrams. See Chapter 23, Deployment Diagram Model Element Refer-
ence for details of the diagram and the model elements it supports.

Diagrams are created using the Create drop down menu (see Section 10.6, “ The Create Menu ”), or
with the tools on the toolbar (see Section 9.4, “ Create operations ”), or with the pop-up menus in the ex-
plorer.

Note

ArgoUML uses its deployment diagram to create the UML 1.4 component, deployment
and object diagrams.

Top Level Model Element Reference

214

Caution

Statechart and activity diagrams are associated with a particular class or operation (or the
latter also with a package), and can only be created when this modelelement has been se-
lected.

Warning

In ArgoUML version 0.26, the UML 1.4 object diagram as a variant of the class diagram is
not directly supported. However, it is possible to create object diagrams within the
ArgoUML deployment diagram.

16.8.1. Diagram Details Tabs
The details tabs that are active for diagrams are as follows.

ToDoItem
Standard tab.

Properties
See Section 16.8.3, “ Property Fields For Diagram ” below.

16.8.2. Diagram Property Toolbar

Go up

Navigate up through the package structure of the model.

Delete

This deletes the diagram from the model. As a consequence, in case of a statechart diagram or an
activity diagram, all contained elements are deleted, too.

16.8.3. Property Fields For Diagram

Name

The name of the diagram. There are no conventions for naming diagrams. By default, ArgoUML
uses the (space separated) diagram name and a sequence number, thus Use Case Diagram 1.

Tip

This name is used to generate a filename when activating the “Save Graphics...”
menu-item.

Home Model

The Home Model of the diagram is not something defined in the UML specification. The Home

Top Level Model Element Reference

215

Model is the modelelement represented by the diagram. Hence its type depends on the type of dia-
gram: e.g. it is the namespace represented by a class diagram, or the statemachine in case of a State-
chart diagram.

Top Level Model Element Reference

216

Chapter 17. Use Case Diagram Model
Element Reference
17.1. Introduction

This chapter describes each model element that can be created within a use case diagram. Note that
some sub-model elements of model elements on the diagram may not actually themselves appear on the
diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers properties in general, in this chapter they are linked to
specific model elements.

Figure 17.1, “ Typical model elements on a use case diagram. ” shows a use case diagram with all typic-
al model elements displayed.

Figure 17.1. Typical model elements on a use case diagram.

17.1.1. ArgoUML Limitations Concerning Use Case Dia-
grams

Use case diagrams are now well supported within ArgoUML. There still are some minor limitations
though, especially with extension points.

Note

Earlier versions of ArgoUML (0.9 and earlier) implemented extend and include relation-
ships by using a stereotyped dependency relationship. Although such diagrams will show
correctly on the diagram, they will not link correctly to the use cases, and should be re-
placed by proper extend and include relationships using the current system.

217

17.2. Actor
An actor represents any external entity (human or machine) that interacts with the system, providing in-
put, receiving output, or both.

Within the UML metamodel, actor is a sub-class of classifier.

The actor is represented by a “stick man” figure on the diagram (see Figure 17.1, “ Typical model ele-
ments on a use case diagram. ”).

17.2.1. Actor Details Tabs Detail-Register Akteur
The details tabs that are active for actors are as follows.

ToDoItem
Standard tab.

Properties
See Section 17.2.2, “ Actor Property Toolbar ” and Section 17.2.3, “ Property Fields For Actor ” be-
low.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The fill color is used for the stick man's head.

Source
Standard tab. Usually, no code is provided for an actor, since it is external to the system.

Stereotype
Standard tab.

Tagged Values
Standard tab. In the UML metamodel, Actor has the following standard tagged values defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

Tip

Actors sit outside the system, and so their internal behavior is of little concern, and
this tagged value is best ignored.

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the actor.

• derived (from the superclass, ModelElement). Values true, meaning the actor is redund-
ant—it can be formally derived from other elements, or false meaning it cannot.

Note

Use Case Diagram Model Element Reference

218

Derived actors have limited value, since they sit outside the system being de-
signed. They may have their value in analysis to introduce useful names or con-
cepts.

Checklist
Standard tab for a Classifier.

17.2.2. Actor Property Toolbar

Go up

Navigate up through the package structure of the model.

Add Actor

This creates a new actor within the model, (but not within the diagram), navigating immediately to
the properties tab for that actor.

Tip

This method of creating a new actor may be confusing. It is much better to create an
actor on the diagram.

New Reception

This creates a new reception within the model,(but not within the diagram), navigating immediately
to the properties tab for that rception.

Tip

A reception is a declaration that the actor handles a signal, but the actual handling is
specified by a state machine.

Delete

This deletes the selected actor from the model.

Warning

This is a deletion from the model not just the diagram. To delete an actor from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.2.3. Property Fields For Actor

Use Case Diagram Model Element Reference

219

Name

Text box. The name of the actor. The diagram shows this name below the stick man figure. Since an
actor is a classifier, it would be conventional to Capitalize the first letter (and initial letters of any
component words), e.g. RemoteSensor.

Note

ArgoUML does not enforce any naming convention for actors

Namespace

Text box with navigation button. Records the namespace for the actor. This is the package hier-
archy.

Modifiers

Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this actor cannot be instantiated, but must always be special-
ized.

Caution

While actors can be specialized and generalized, it is not clear that an abstract act-
or has any meaning. Perhaps it might be used to indicate an actor that does not it-
self interact with a use case, but whose children do.

• leaf indicates that this actor can have no further children, while Root indicates it is a top
level actor with no parent.

Generalizations

Text area. Lists any actor that generalizes this actor.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations

Text box. Lists any specialized actor (i.e. for which this actor is a generalization. The specialized
actors can communicate with the same use case instances as this actor.

Button 1 double click navigates to the generalization and opens its property tab.

Association Ends

Text area. Lists any association ends of associations connected to this actor.

Button 1 double click navigates to the selected entry.

17.3. Use Case
A use case represents a complete meaningful “chunk” of activity by the system in relation to its external

Use Case Diagram Model Element Reference

220

users (actors), human or machine. It represents the primary route through which requirements are cap-
tured for the system under construction

Within the UML metamodel, use case is a sub-class of classifier.

The use case icon is an oval (see Figure 17.1, “ Typical model elements on a use case diagram. ”). It
may be split in two, with the lower compartment showing extension points

Caution

By default ArgoUML does not show the extension point compartment. It may be revealed
by the context sensitive Show menu (using button 2 click), or from the Presentation tab.

17.3.1. Use Case Details Tabs
The details tabs that are active for use cases are as follows.

ToDoItem
Standard tab.

Properties
See Section 17.3.2, “ Use Case Property Toolbar ” and Section 17.3.3, “ Property Fields For Use
Case ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The Fill color is used for the use case oval.

The Display: Extension Points check box is used to control whether an extension point
compartment is displayed.

Source
Standard tab. It would not be usual to provide any code for a use case, since it is primarily a vehicle
for capturing requirements about the system under construction, not creating the solution.

Stereotype
Standard tab.

Tagged Values
Standard tab. In the UML metamodel, UseCase has the following standard tagged values defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

Tip

In general the instantiation of use cases is not a major aspect of any design method
(they are mostly concerned with requirements capture. For most OOA&D method-
ologies, this tag can safely be ignored.

• semantics (from the superclass, Classifier). The value is a specification of the se-

Use Case Diagram Model Element Reference

221

mantics of the use case.

• derived (from the superclass, ModelElement). Values true, meaning the use case is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived use cases still have their value in analysis to introduce useful names or
concepts.

Checklist
Standard tab for a Classifier.

17.3.2. Use Case Property Toolbar

Go up

Navigate up through the package structure of the model.

New use case

This creates a new use case within the model, (but not within the diagram), and shows immediately
the properties tab for that use case.

Tip

This method of creating a new use case can be confusing. It is much better to create a
new use case on the diagram of your choice.

New extension point

This creates a new use extension point within the namespace of the current use case, with the cur-
rent use case as its associated use case, navigating immediately to the properties tab for that exten-
sion point.

New Attribute

This creates a new attribute within the current use case, navigating immediately to the properties tab
for that attribute.

New Operation

This creates a new operation within the current use case, navigating immediately to the properties
tab for that operation.

New Reception

This creates a new reception within the current use case, navigating immediately to the properties
tab for that reception.

New Stereotype

Use Case Diagram Model Element Reference

222

This creates a new stereotype within the current use case, navigating immediately to the properties
tab for that stereotype.

Delete

This deletes the selected use case from the model.

Warning

This is a deletion from the model not just the diagram. To delete a use case from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.3.3. Property Fields For Use Case

Name

Text box. The name of the use case. Since a use case is a classifier, it would be conventional to
Capitalize the first letter (and initial letters of any component words), e.g. RemoteSensor. The
name is shown inside the oval representation of the use case on the diagram.

Note

ArgoUML does not enforce any naming convention for use cases

Namespace

Text box with navigation button. Records the namespace for the use case. This is the package hier-
archy.

Modifiers

Check box, with entries Abstract Leaf and Root.

• Abstract is used to declare that this actor cannot be instantiated, but must always be special-
ized. .

• Leaf indicates that this use case can have no further children, while Root indicates it is a top
level use case with no parent.

Client Dependencies
Text area. Lists the “depending” ends of the relationship, i.e. the end that makes use of the other
end.

Button 1 double click navigates to the dependency and opens its property tab.

Button 2 click shows a pop-up menu with one entry Add... that opens a dialog box where you can
add and remove depending modelelements.

Supplier Dependencies
Text area. Lists the “supplying” ends of the relationship, i.e. the end supplying what is needed by
the other end.

Button 1 double click navigates to the dependency and opens its property tab.

Use Case Diagram Model Element Reference

223

Button 2 click shows a pop-up menu with one entry Add... that opens a dialog box where you can
add and remove dependent modelelements.

Generalizations

Text area. Lists use cases which are generalizations of this one. Will be set whenever a generaliza-
tion is created on the from this Use Case. Button 1 Double Click on a generalization will navigate to
that generalization.

Specializations

Text box. Lists any specialized use case (i.e. for which this use case is a generalization.

Button 1 double click navigates to the generalization and opens its property tab.

Extends

Text box. Lists any class that is extended by this use case.

Where an extends relationship has been created, button 1 double click will navigate to that relation-
ship.

Includes

Text box. Lists any use case that this use case includes.

Where an include relationship has been created, button 1 Double Click will navigate to that relation-
ship.

Attributes
Text area. Lists all the attributes (see Section 18.7, “ Attribute ”) defined for this use case. Button 1
double click navigates to the selected attribute. Button 2 gives a pop up menu with two entries,
which allow reordering the attributes.

• Move Up. Only available where there are two or more attributes listed, and the attribute selec-
ted is not at the top. It moves the attribute up one position.

• Move Down. Only available where there are two or more attributes listed, and the attribute se-
lected is not at the bottom. It moves the attribute down one position.

Association Ends
Text box. Lists any association ends (see Section 18.12, “ Association ”) of associations connected
to this use case.

Button 1 double click navigates to the selected entry.

Operations
Text area. Lists all the operations (see Section 18.8, “ Operation ”) defined on this use case. But-
ton 1 click navigates to the selected operation. Button 2 gives a pop up menu with two entries,
which allow reordering the operations.

• Move Up. Only available where there are two or more operations listed, and the operation se-
lected is not at the top. It moves the operation up one position.

• Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It moves the operation down one position.

Extension Points

Use Case Diagram Model Element Reference

224

Text box. If this use case is, or can be extended, this field lists the extension points for the use case.

Note

Extension points are listed by their location point rather than their name.

Where an extension point has been created (see below), button 1 Double Click will navigate to that
relationship. Button 2 gives a pop up menu with the following entries.

• New. Add a new extension point and navigate to it, making this use case the owning use case of
the extension point.

• Move Up. Only available where there are two or more extension points listed, and the exten-
sion point selected is not at the top. It moves the extension point up one position.

• Move Down. Only available where there are two or more extension points listed, and the exten-
sion point selected is not at the bottom. It moves the extension point down one position.

17.4. Extension Point
An extension point describes a point in a use case where an extending use case may provide additional
behavior.

Examples for a travel agent sales system might be the use case for paying for a ticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Extension Point is a sub-class of ModelElement. A use case may
display an extension point compartment (see Section 17.3, “ Use Case ” for details), in which extension
points are shown with the following syntax.

name : location.

17.4.1. Extension Point Details Tabs
The details tabs that are active for extension points are as follows.

ToDoItem
Standard tab.

Properties
See Section 17.4.2, “ Extension Point Property Toolbar ” and Section 17.4.3, “ Property Fields For
Extension Point ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Stereotype
Standard tab.

Extensionpoints do not have any stereotypes defined by default.

Use Case Diagram Model Element Reference

225

Tagged Values
Standard tab. In the UML metamodel, ExtensionPoint has the following standard tagged val-
ues defined.

• derived (from the superclass, ModelElement). Values true, meaning the extension point
is redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

It is not clear how derived extension points could have any value in analysis.

17.4.2. Extension Point Property Toolbar

Go up

Navigate up to the use case which owns this extension point.

New Extension Point

This creates a new Extension Point below the selected extension point, navigating immediately to
the properties tab of the newly created extension point.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected extension point,
navigating immediately to the properties tab for that stereotype.

Delete

This deletes the selected extension point from the model.

17.4.3. Property Fields For Extension Point

Name

Text box. The name of the extension point.

Tip

It is quite common to leave extension points unnamed in use case analysis, since they
are always listed (within use cases and extend relationships) by their location.

Note

ArgoUML does not enforce any naming convention for extension points.

Use Case Diagram Model Element Reference

226

Location

Text box. A description of the location of this extension point within the owning use case.

Tip

Extension points are always listed (within use cases and extend relationships) by their
location. Typically this will be the number/name of the paragraph in the specification.

Base Use Case

Text box. Shows the base use case within which this extension point is defined. Button 1 Double
Click will navigate to the use case.

Extend

Text box. Lists all use cases which extend the base use case through this extension point.

Where an extending use case exists, button 1 double click will navigate to that relationship.

17.5. Association
An association on a use case diagram represents a relationship between an actor and a use case showing
that actor's involvement in the use case. The invocation of the use case will involve some (significant)
change perceived by the actor.

Associations are described fully under class diagrams (see Section 18.12, “ Association ”).

17.6. Association End
Association ends are described under class diagrams (see Section 18.13, “ Association End ”).

17.7. Dependency
Dependencies are described under class diagrams (see Section 18.14, “ Dependency ”).

Caution

Dependency has little use in use case diagrams. It is provided, because earlier versions of
ArgoUML used it (incorrectly) to implement include and extends relationships.

17.8. Generalization
Generalization is a relationship between two use cases or two actors. Where A is a generalization of B, it
means A describes more general behavior and B a more specific version of that behavior.

Examples for a travel agent sales system might be the use case for making a booking as a generalization
of the use case for making a flight booking and a salesman actor being a generalization of a supervisor
actor (since supervisors can also act as salesmen, but not vice versa).

Use Case Diagram Model Element Reference

227

Generalization is analogous to class inheritance within OO programming.

Note

It is easy to confuse extends relationships between use cases with generalization. However
extends is about augmenting a use case's behavior at a specific point. Generalization is
about specializing the behavior throughout the use case.

Within the UML metamodel, Generalization is a sub-class of Relationship.

Generalization is represented as an arrow with white filled head from the specialized use case or actor to
the generalized use case or actor (see Figure 17.1, “ Typical model elements on a use case diagram. ”).

17.8.1. Generalization Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem
Standard tab.

Properties
See Section 17.8.2, “ Generalization Property Toolbar ” and Section 17.8.3, “ Property Fields For
Generalization ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab.

Note

The values in the "bounds" field of the generalization are not editable, since they are
determined by the properties of the endpoints of the line.

Stereotype
Standard tab.

Tagged Values
Standard tab. In the UML metamodel, Generalization has the following standard tagged val-
ues defined.

• derived (from the superclass, ModelElement). Values true, meaning the generalization
is redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived generalizations still have their value in analysis to introduce useful names
or concepts, and in design to avoid re-computation.

Use Case Diagram Model Element Reference

228

17.8.2. Generalization Property Toolbar

Go up

Navigate up through the package structure of the model. For a generalization this will be the pack-
age containing the generalization.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected generalization, nav-
igating immediately to the properties tab for that generalization.

Delete

This deletes the selected generalization from the model.

Warning

This is a deletion from the model not just the diagram. To delete a generalization from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

17.8.3. Property Fields For Generalization

Name

Text box. The name of the generalization.

Textfeld. Der Name der Generalisierung.

Tip

It is quite common to leave generalizations unnamed in use case analysis.

Note

ArgoUML does not enforce any naming convention for associations.

Note

There is no representation of the name of a generalization on the diagram.

Discriminator , Diskriminator

Text box. The name of a discriminator for the specialization. UML 1.4 allows grouping of specializ-
ations into a number of sets, on the basis of this value.

Use Case Diagram Model Element Reference

229

Tip

The empty string “” is a valid entry (and the default) for this field. The discriminator is
only of practical use in cases of multiple inheritance. A (class diagram) example is
shown in Figure 17.2, “ Example use of a discriminator with generalization ”. Here
each type of user should inherit from two sorts of user. One distinguishing between
local or remote user (which can be identified by one discriminator) and one indicating
their function as a user (identified by a different discriminator).

There is little point in using this within a use case diagram.

Namespace

Text box with navigation button. Records the namespace for the generalization. This is the package
hierarchy.

Parent

Text box. Shows the use case or actor that is the parent in this relationship, i.e. the more general end
of the relationship. Button 1 Double Click on this entry will navigate to that use case or actor.

Child

Text box. Shows the use case or actor that is the child in this relationship, i.e. the more specific end
of the relationship. Button 1 Double Click on this entry will navigate to that use case or actor.

Powertype

Drop down selector providing access to all standard UML types provided by ArgoUML and all new
classes created within the current model.

This is the type of the child entity of the generalization.

Tip

This can be ignored for use case analysis. The only sensible value to put in would be
the child use case type (as a classifier, this appears in the drop down list.

Figure 17.2. Example use of a discriminator with generalization

Use Case Diagram Model Element Reference

230

17.9. Extend
Extend is a relationship between two use cases. Where A extends B, it means A describes some addi-
tional behavior that is executed conditionally (under exceptional circumstances) at some point during the
normal behavior of B.

In some respects extend is like generalization. However the key difference is that the extended use case
defines extension points (see Section 17.4, “ Extension Point ”), which are the only places where its be-
havior may be extended. The extending use case must define at which of these extension points it adds
behavior.

This makes the use of extend more tightly controlled than general extension, and it is thus preferred
wherever possible.

Examples for a travel agent sales system might be the use case for paying for a ticket, which has an ex-
tension point in the specification of the payment. Extending use cases may then extend at this point to
pay by cash, credit card etc.

Within the UML metamodel, Extend is a sub-class of Relationship.

An extend relationship is represented as a dotted link with an open arrow head and a label «extend».
If a condition is defined, it is shown under the «extend» label (see Figure 17.1, “ Typical model ele-
ments on a use case diagram. ”).

17.9.1. Extend Details Tabs
The details tabs that are active for extend relationships are as follows.

Use Case Diagram Model Element Reference

231

Note

There is no source tab, since there is no source code that could be generated for an extend
relationship.

ToDoItem
Standard tab.

Properties
See Section 17.9.2, “ Extend Property Toolbar ” and Section 17.9.3, “ Property Fields For Extend ”
below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab

Note

The values in the "bounds" field of the extend are not editable, since they are determ-
ined by the properties of the endpoints of the line.

Stereotype
Standard tab.

Tagged Values
Standard tab. In the UML metamodel, Extend has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning the extend relation-
ship is redundant—it can be formally derived from other elements, or false meaning it can-
not.

Note

Derived extend relationships could have their value in analysis to introduce useful
names or concepts.

17.9.2. Extend Property Toolbar

Go up

Navigate up through the package structure of the model. For a extend this will be the package con-
taining the extend.

New extension point

This creates a new use case extension point within the namespace of the current extend relationship,

Use Case Diagram Model Element Reference

232

with the current extend relationship as its first extending relationship.

Tip

While it is perfectly valid to create extension points from an extend relationship, the
created extension point will have no associated use case (it can subsequently be set
up).

It would be more usual to instead create the extension point within a use case and sub-
sequently link to it from an extend relationship (see Section 17.9.3, “ Property Fields
For Extend ” below).

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected extent relationship,
navigating immediately to the properties tab for that stereotype.

Delete

This deletes the selected extend relationship from the model.

Warning

This is a deletion from the model not just the diagram. To delete a extend from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.9.3. Property Fields For Extend

Name

Text box. The name of the extend relationship.

Tip

It is quite common to leave extends unnamed in use case analysis.

Note

ArgoUML does not enforce any naming convention for extend relationships.

Namespace

Text box. Records the namespace for the extend relationship. This is the package hierarchy.

Button 1 Double Click on the entry will navigate to the package defining this namespace (or the
model for the top level namespace).

Use Case Diagram Model Element Reference

233

Base Use Case

Text box. Shows the use case that is being extended by this extend relationship. Button 1 double
click on this entry will navigate to the base use case.

Extension

Text box. Show the use case that is doing the extending through this extend relationship. Button 1
double click on this entry will navigate to the extension use case.

Extension Points

Text box. Lists the extension points of the base use case where the extension will be applied if the
condition holds.

Note

If the condition is fulfilled, the sequence obeyed by the use-case instance is extended
to include the sequence of the extending use case. The different parts of the extending
use case are inserted at the locations defined by the sequence of extension points in the
relationship -- one part at each referenced extension point. Note that the condition is
only evaluated once: at the first referenced extension point, and if it is fulfilled all of
the extending use case is inserted in the original sequence.

Hence, the sequence of the extension points is irrelevant, except for the position of the
first one; since that one determines where the condition is evaluated.

Where an extension point has been created, button 1 double click will navigate to that relationship.
Button 2 gives a pop up menu with the following entries.

• Add. The “Ad/Remove ExtensionPoints” window opens. In this window it is possible to build a
list of extension points.

• New. Add a new extension point in the list and navigate to it. The current extend relationship is
added as the first in list of extending relationships of the new extension point.

• Move Up. Only available where there are two or more extension points listed, and the exten-
sion point selected is not at the top. It moves the extension point up one position.

• Move Down. Only available where there are two or more extension points listed, and the exten-
sion point selected is not at the bottom. It moves the extension point down one position.

Condition
Text area. Multi-line textual description of any condition attached to the extend relationship.

The text entered here is shown on the diagram.

17.10. Include
Include is a relationship between two use cases. Where A includes B, it means B described behavior that
is to be included in the description of the behavior of A at some point (defined internally by A).

Examples for a travel agent sales system might be the use case for booking travel, which includes use
cases for booking flights and taking payment.

Use Case Diagram Model Element Reference

234

Within the UML metamodel, Include is a sub-class of Relationship.

An include relationship is represented as a dotted link with an open arrow head and a label «include»
(see Figure 17.1, “ Typical model elements on a use case diagram. ”).

17.10.1. Include Details Tabs
The details tabs that are active for include relationships are as follows.

Note

There is no source tab, since there is no source code that could be generated for an include
relationship.

ToDoItem
Standard tab.

Properties
See Section 17.10.2, “ Include Property Toolbar ” and Section 17.10.3, “ Property Fields For In-
clude ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab

Note

The values in the "bounds" field of the include relationships are not editable, since
they are determined by the properties of the endpoints of the line.

Tagged Values
Standard tab. In the UML metamodel, Include has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning the include rela-
tionship is redundant—it can be formally derived from other elements, or false meaning it
cannot.

Note

Derived include relationships could have their value in analysis to introduce useful
names or concepts.

17.10.2. Include Property Toolbar

Go up

Use Case Diagram Model Element Reference

235

Navigate up through the package structure of the model. For a include this will be the package con-
taining the include.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected include relation-
ship, navigating immediately to the properties tab for that stereotype.

Delete

This deletes the selected include relationship from the model.

Warning

This is a deletion from the model not just the diagram. To delete a include from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

17.10.3. Property Fields For Include

Name

Text box. The name of the include relationship.

Tip

It is quite common to leave include relationships unnamed in use case analysis.

Note

ArgoUML does not enforce any naming convention for include relationships.

Namespace

Text box. Records the namespace for the include. This is the package hierarchy.

Button 1 click on the entry will navigate to the package defining this namespace (or the model for
the top level namespace).

Base Use Case

Drop down selector. Records the use case that is doing the including in this include relationship.
Button 1 click on this entry will give a drop down menu of all available use cases which may be se-
lected by button 1 click.

Included Use Case

Drop down selector. Records the use case that is being included by this include relationship. But-
ton 1 click on this entry will give a drop down menu of all available use cases (and an empty entry)
which may be selected by button 1 click.

Use Case Diagram Model Element Reference

236

Chapter 18. Class Diagram Model
Element Reference
18.1. Introduction

This chapter describes each model element that can be created within a class diagram. Note that some
sub-model elements of model elements on the diagram may not actually themselves appear on the dia-
gram.

Class diagrams are used for only one of the UML static structure diagrams, the class diagram itself. Ob-
ject diagrams are represented on the ArgoUML deployment diagram.

In addition, ArgoUML uses the class diagram to show model structure through the use of packages.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers Properties in general, in this chapter they are linked to
specific model elements.

Figure 18.1, “ Possible model elements on a class diagram. ” shows a class diagram with all possible
model elements displayed.

Figure 18.1. Possible model elements on a class diagram.

Figure 18.2, “ Possible model elements on a package diagram. ” shows a package diagram with all pos-
sible model elements displayed.

237

Figure 18.2. Possible model elements on a package diagram.

Figure 18.3, “ Possible model elements on a datatype diagram. ” shows a datatype diagram with a data-
type and an enumeration displayed.

Figure 18.3. Possible model elements on a datatype diagram.

Figure 18.4, “ Possible model elements on a stereotype definition diagram. ” shows a stereotype defini-
tion diagram with all possible model elements displayed.

Figure 18.4. Possible model elements on a stereotype definition diagram.

Class Diagram Model Element Reference

238

18.1.1. Limitations Concerning Class Diagrams in
ArgoUML

Various limitations exist in V0.26 of ArgoUML for stereotype definition diagrams. E.g. the implementa-
tion does not allow stereotype compartments to be shown on stereotype definition diagrams.

Another variant of the class diagram within the UML standard is the object diagram. There is currently
no support for objects or links within ArgoUML class diagrams. Instead the ArgoUML deployment dia-
gram does have both objects and links, and can be used to draw object diagrams.

18.2. Package
The package is the main organizational model element within ArgoUML. In the UML metamodel it is a
sub-class of both Namespace and GeneralizableElement.

Note

ArgoUML also implements the UML Model model element as a sub-class of package, but
not the Subsystem model element.

ArgoUML also implements some less common aspects of UML model management. In particular the re-
lationship UML 1.4 defines as Generalization and the sub-class dependency Permission for
use between packages.

18.2.1. Package Details Tabs
The details tabs that are active for packages are as follows.

ToDoItem
Standard tab.

Standard-Register.

Properties , Eigenschaften
See Section 18.2.2, “ Package Property Toolbar ” and Section 18.2.3, “ Property Fields For Package

Class Diagram Model Element Reference

239

” below.

Siehe Section 18.2.2, “ Package Property Toolbar ” und Section 18.2.3, “ Property Fields For Pack-
age ” unten.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The editable Bounds field defines the bounding box for the package on the diagram.

Stereotype
Standard tab.

Tagged Values
Standard tab. In the UML metamodel, Package has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning the package is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

derived (von der Superklasse ModelElement). Der Wert true bedeutet, dass das Paket
redundant ist— es kann formal von anderen Elementen abgeleitet werden. Oder, false
bedeutet, dass es nicht von anderen Elementen abgeleitet werden kann.

Note

Derived packages still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

18.2.2. Package Property Toolbar

Go up

Navigate up through the package structure.

New Package

This creates a new package within the package (which appears on no diagram), navigating immedi-
ately to the properties tab for that package.

New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype ”) for the selected package, navigating
immediately to the properties tab for that datatype.

New Enumeration

This creates a new Enumeration (see Section 16.4, “ Enumeration ”) for the selected package, nav-
igating immediately to the properties tab for that enumeration.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected package, navigating

Class Diagram Model Element Reference

240

immediately to the properties tab for that stereotype.

New Tag Definition

This creates a new tag definition (see Section 16.7, “ Tag Definition ”) within the package (which
appears on no diagram), navigating immediately to the properties tab for that tagdefinition.

Delete Package

Deletes the package from the model.

Warning

This is a deletion from the model not just the diagram. To delete a package from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

18.2.3. Property Fields For Package

Name

Text box. The name of the package. The name of a package, like all packages, is by convention all
lower case, not containing any punctuation marks.

Note

By default a new package has no name defined. The package will appear with the
name (Unnamed Package) in the explorer.

Namespace

Drop down selector. Records the namespace for the package. This is the package hierarchy.

Visibility
Radio box, with four entries public, private, protected, and package. Indicates whether
the package is visible outside the package.

Modifiers

Check box, with entries abstract, leaf and root.

• Abstract is used to declare that this package cannot be instantiated, but must always be spe-
cialized.

Tip

The meaning of abstract applied to a package if not that clear. It might mean
that the package contains interfaces or abstract classes without realizations. This is
probably better handled through stereotyping of the package (for example
«facade»).

• Leaf indicates that this package can have no further subpackages.

Class Diagram Model Element Reference

241

• Root indicates that it is the top level package.

Tip

Within ArgoUML Root only meaningfully applies to the Model, since all pack-
ages sit within the model. This could be used to emphasize that the Model is at the
top level.

Generalizations

Text area. Lists any package that generalizes this package.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations

Text box. Lists any specialized package (i.e. for which this package is a generalization.

button 1 double click navigates to the generalization and opens its property tab.

Owned Elements

Text area. A listing of all the packages, classes, interfaces, datatypes, actors, use cases, associations,
generalizations, stereotypes, etc. within the package.

Button 1 double click on any item listed here navigates to that model element.

Imported Elements

Text Area. A listing of all imported elements, i.e. elements that are owned by a different package,
but are explicitely made visible in this package.

Button 1 double click on any item listed here navigates to that model element. Button 2 gives a pop
up menu with the following entries.

• Add. The “Add/Remove Imported Elements” window opens. In this window it is possible to
build a list of imported elements.

• Remove. Removes the import.

18.3. Datatype
Datatypes are not specific to packages or class diagrams, and are discussed within the chapter on top
level model elements (see Section 16.3, “ Datatype ”).

18.4. Enumeration
Enumeration are not specific to packages or class diagrams, and are discussed within the chapter on top
level model elements (see Section 16.4, “ Enumeration ”).

18.5. Stereotype
Stereotypes are not specific to packages or class diagrams, and are discussed within the chapter on top

Class Diagram Model Element Reference

242

level model elements (see Section 16.6, “ Stereotype ”).

18.6. Class
The class is the dominant model element on a class diagram. In the UML metamodel it is a sub-class of
Classifier and GeneralizableElement.

A class is represented on a class diagram as a rectangle with three compartments. The top compartment
displays the class name (and stereotypes), the second compartment any attributes and the third any oper-
ations. These last two compartments may optionally be hidden.

18.6.1. Class Details Tabs
The details tabs that are active for classes are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.6.2, “ Class Property Toolbar ” and Section 18.6.3, “ Property Fields For Class ” be-
low.

Siehe Section 18.6.2, “ Class Property Toolbar ” und Section 18.6.3, “ Property Fields For Class ”
unten.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The tick boxes, Attributes and Operations allow the attributes and operations
compartments to be shown (the default) or hidden. This is a setting valid for only the current dia-
gram that shows the class. The editable Bounds field defines the bounding box for the package on
the diagram.

Source
Standard tab. This contains a template for the class declaration and declarations of associated
classes.

Constraints
Standard tab. There are no standard constraints defined for Class within the UML metamodel.

Stereotypes
Standard tab.

Tagged Values

Standard tab. In the UML metamodel, Class has the following standard tagged values defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

persistence (von der Superklasse sClassifier). Die Werte transitory, gibt an, dass
der Zustand gelöscht wurde, nachdem die Instanz gelöscht oder persistent wurde, indicat-
ing state is destroyed when an instance is destroyed or persistent, mit der Kennzeichnung,
dass der Zustand erhalten bleibt, wenn die Instanz gelöscht wurde.

Class Diagram Model Element Reference

243

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the class.

• derived (from the superclass, ModelElement). Values true, meaning the class is redund-
ant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived classes still have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for a Classifier.

18.6.2. Class Property Toolbar

Go up

Navigate up through the package structure.

New attribute

This creates a new attribute (see Section 18.7, “ Attribute ”) within the class, navigating immedi-
ately to the properties tab for that attribute.

New operation

This creates a new operation (see Section 18.8, “ Operation ”) within the class, navigating immedi-
ately to the properties tab for that operation.

New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

New inner class

This creates a new inner class (which appears on no diagram) within the class. This belongs to the
class and is restricted to the namespace of the class. It exactly models the Java concept of inner
class. As an inner class it needs no attributes or operations, since it shares those of its owner.

Note

Inner class is not a separate concept in UML. This is a convenient shorthand for creat-
ing a class that is restricted to the namespace of its owning class.

Class Diagram Model Element Reference

244

New class

This creates a new class (which appears on no diagram) within the same namespace as the current
class.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected class, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the class from the model

Warning

This is a deletion from the model not just the diagram. To delete a class from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

18.6.3. Property Fields For Class

Name

Text box. The name of the class. The name of a class has a leading capital letter, with words separ-
ated by “bumpy caps”.

Note

The ArgoUML critics will complain about class names that do not have an initial cap-
ital.

Namespace
Drop down selector with navigation button. Records and allows setting of the namespace for the
class. This is the package hierarchy.

Button 1 click on the entry will move the class to the selected namespace.

Modifiers

Check box, with entries Abstract, Leaf, Root, and Active.

Markierfelder mit den Einträgen Abstract, Leaf, Root und Active.

• Abstract is used to declare that this class cannot be instantiated, but must always be sub-
classed. The name of an abstract class is displayed in italics on the diagram.

Caution

If a class has any abstract operations, then it should be declared abstract.
ArgoUML will not enforce this.

Class Diagram Model Element Reference

245

• Leaf indicates that this class cannot be further subclassed, while Root indicates it can have no
superclass. It is possible for a class to be both Abstract and Leaf, since its static operations may
still be referenced.

• Active indicates that this class exhibits dynamic behavior (and is thus associated with a state
or activity diagram).

Visibility
Radio box, with four entries public, private, protected, and package. Indicates whether
the class is visible outside the namespace.

Client Dependencies
Text area. Lists the “depending” ends of the relationship, i.e. the end that makes use of the other
end.

Button 1 double click navigates to the dependency and opens its property tab.

Button 2 click shows a pop-up menu with one entry Add... that opens a dialog box where you can
add and remove depending modelelements.

Supplier Dependencies
Text area. Lists the “supplying” ends of the relationship, i.e. the end supplying what is needed by
the other end.

Button 1 double click navigates to the dependency and opens its property tab.

Button 2 click shows a pop-up menu with one entry Add... that opens a dialog box where you can
add and remove dependent modelelements.

Generalizations
Text area. Lists any class that generalizes this class.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations
Text box. Lists any specialized class (i.e. for which this class is a generalization).

Button 1 double click navigates to the generalization and opens its property tab.

Attributes
Text area. Lists all the attributes (see Section 18.7, “ Attribute ”) defined for this class. Button 1
double click navigates to the selected attribute. Button 2 gives a pop up menu with two entries,
which allow reordering the attributes.

• Move Up. Only available where there are two or more attributes listed, and the attribute selec-
ted is not at the top. It moves the attribute up one position.

• Move Down. Only available where there are two or more attributes listed, and the attribute se-
lected is not at the bottom. It moves the attribute down one position.

Association Ends
Text box. Lists any association ends (see Section 18.12, “ Association ”) of associations connected
to this class.

Button 1 double click navigates to the selected entry.

Operations
Text area. Lists all the operations (see Section 18.8, “ Operation ”) defined on this class. Button 1
click navigates to the selected operation. Button 2 gives a pop up menu with two entries, which al-

Class Diagram Model Element Reference

246

low reordering the operations.

• Move Up. Only available where there are two or more operations listed, and the operation se-
lected is not at the top. It moves the operation up one position.

• Move Down. Only available where there are two or more operations listed, and the operation
selected is not at the bottom. It moves the operation down one position.

Owned Elements
Text area. A listing of model elements contained within the classes' namespace. This is where any
inner class (see Section 18.6.2, “ Class Property Toolbar ”) will appear

Button 1 double click on any of the model elements navigates to that model element.

Tip

Most namespace hierarchies should be managed through the package mechanism.
Namespace hierarchies through classes are best restricted to inner classes. Conceivable
datatypes, signals and interfaces could also appear here, but actors and use cases
would seem of no value.

18.7. Attribute
Attribute is a named slot within a class (or other Classifier) describing a range of values that may
be held by instances of the class. In the UML metamodel it is a sub-class of StructuralFeature
which is itself a sub-class of Feature.

An attribute is represented in the diagram on a single line within the attribute compartment of the class.
Its syntax is as follows:

visibility attributeName : type [= initialValue]

visibility is +, #, - or ~ corresponding to public, protected, private, or package visibility re-
spectively.

attributeName is the actual name of the attribute being declared.

type is the type (UML datatype, class or interface) declared for the attribute.

initialValue is any initial value to be given to the attribute when an instance of the class is created. This
may be overridden by any constructor operation.

In addition any attribute declared static will have its whole entry underlined on the diagram.

18.7.1. Attribute Details Tabs
The details tabs that are active for attributes are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.7.2, “ Attribute Property Toolbar ” and Section 18.7.3, “ Property Fields For Attrib-

Class Diagram Model Element Reference

247

ute ” below.

Siehe Section 18.7.2, “ Attribute Property Toolbar ” und Section 18.7.3, “ Property Fields For At-
tribute ” unten.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Constraints
Standard tab. There are no standard constraints defined for Attribute within the UML metamod-
el.

Stereotype
Standard tab.

Tagged Values

Standard tab. In the UML metamodel, Attribute has the following standard tagged values
defined.

• transient.

• volatile. This is an ArgoUML extension to the UML 1.4 standard to indicate that this attrib-
ute is realized in some volatile form (for example it will be a memory mapped control register).

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for a Attribute.

18.7.2. Attribute Property Toolbar

Go up

Navigate up through the package structure.

Go to Previous

Navigate to the previous attribute of the class that owns them. This button is downlighted if the cur-
rent attribute is the first one.

Go to Next

Navigate to the next attribute of the class that owns them. This button is downlighted if the current
attribute is the last one.

New attribute

This creates a new attribute within the owning class of the current attribute, navigating immediately
to the properties tab for that attribute.

Class Diagram Model Element Reference

248

Tip

This is a very convenient way to add a number of attributes, one after the other, to a
class.

New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype ”) for the selected attribute, navigating
immediately to the properties tab for that datatype.

New Enumeration

This creates a new Enumeration (see Section 16.4, “ Enumeration ”) for the package that owns the
class, navigating immediately to the properties tab for that enumeration.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected attribute, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the attribute from the model

Warning

This is a deletion from the model not just the diagram. If desired the whole attribute
compartment can be hidden on the diagram using the style tab (see Section 18.7.2, “
Attribute Property Toolbar ”) or the button 2 pop up menu for the class on the dia-
gram.

18.7.3. Property Fields For Attribute

Name

Text box. The name of the attribute. The name of a attribute has a leading lower case letter, with
words separated by “bumpy caps”.

Note

The ArgoUML critics will complain about attribute names that do not have an initial
lower case letter.

Owner
Text box. Records the class which contains this attribute.

Button 1 double click on the entry will navigate to the class.

Multiplicity

Class Diagram Model Element Reference

249

Editable drop down selector with checkmark. The default value (1) is that there is one instance of
this attribute for each instance of the class, i.e. it is a scalar. The drop down provides a number of
commonly used specifications for non-scalar attributes.

When the checkmark is unchecked, then the multiplicity remains undefind in the model (and the
drop down selector is downlighted).

Note

ArgoUML presents a number of predefined ranges for multiplicity for easy access.
The user may also enter any user defined range that follows the UML syntax, such as
“1..3,7,10”.

The value 1..1 is equivalent to the default (exactly one scalar instance). The selec-
tion 0..1 indicates an optional scalar attribute.

Visibility

Radio box, with entries public, private, protected and package.

Auswahlfeld mit den vier Einträgen public, private, protected und package.

• public. The attribute is available to any model element that can see the owning class.

• private. The attribute is available only to the owning class (and any inner classes).

• protected. The attribute is available only to the owning class, or model elements that are
subclasses of the owning class.

• package. The attribute is available only to model elements contained in the same package.

Changeability

Radio box, with entries addOnly, changeable, and frozen.

• addOnly. Meaningful only if the multiplicity is not fixed to a single value. Additional values
may be added to the set of values, but once created a value may not be removed or altered.

• changeable. There are no restrictions of modification.

• frozen. Also named “immutable”. The value of the attribute may not change during the life-
time of the owner class. The value must be set at object creation, and may never change after
that. This implies that there is usually an argument for this value in a constructor and that there
is no operation that updates this value.

Modifiers
Check box for static. If unchecked (the defaults) then the attribute has “instance scope”. If
checked, then the attribute is static, i.e. it has “class scope”. Static attributes are indicated on the
diagram by underlining.

Type

Drop down selector with navigation button. The type of this attribute. This can be any UML Clas-
sifier, although in practice only Class, DataType, or Interface make any sense.

Pressing the navigation button will navigate to the property panel for the currently selected type.
(see Section 18.6, “ Class ”, Section 18.3, “ Datatype ” and Section 18.16, “ Interface ”).

Class Diagram Model Element Reference

250

Note

A type must be declared (it can be void). By default ArgoUML supplies int as the
type.

Initial Value

Text box with 2 compartments. This allows you to set an initial value for the attribute if desired
(this is optional). The drop down menu provides access to the common values 0, 1, 2, and null.

The left hand side of this field contains the body of the expression that forms the initial value. The
right hand side defines the language in which the expression is written.

Hovering the mouse pointer over these fields, reveals a tooltip Body or Language, to help re-
member which is which.

Caution

Any constructor operation may ignore this initial value.

18.8. Operation
An operation is a service that can be requested from an object to effect behavior. In the UML metamodel
it is a sub-class of BehavioralFeature which is itself a sub-class of Feature.

In the diagram, an operation is represented on a single line within the operation compartment of the
class. Its syntax is as follows:

visibility name (parameter list) : return-type-expression {property-string}

You can edit this line directly in the diagram, by double-clicking on it. All elements are optional and, if
left unspecified, the old values will be preserved.

A stereotype can be given between any two elements in the line in the format: <<stereotype>>.

The following properties are recognized to have special meaning: abstract, concurrency, concurrent,
guarded, leaf, query, root and sequential.

The visibility is +, #, - or ~ corresponding to public, protected, private visibility, or pack-
age visibility respectively.

static and final optionally appear if the operation has those modifiers. Any operation declared
static will have its whole entry underlined on the diagram.

There may be zero or more entries in the parameter list separated by commas. Every entry is a pair of
the form:

name : type

The return-type-expression is the type (UML datatype, class or interface) of the result returned.

Finally the whole entry is shown in italics if the operation is declared abstract.

Class Diagram Model Element Reference

251

18.8.1. Operation Details Tabs
The details tabs that are active for operations are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.8.2, “ Operation Property Toolbar ” and Section 18.8.3, “ Property Fields For Opera-
tion ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The Bounds: field does allow editing, but the changes have no effect.

Source
Standard tab. This contains a declaration for the operation.

Constraints
Standard tab. There are no standard constraints defined for Operation within the UML metamod-
el.

Tagged Values

Standard tab. In the UML metamodel, Operation has the following standard tagged values
defined.

• semantics. The value is a specification of the semantics of the operation.

• derived (from the superclass, ModelElement). Values true, meaning the operation is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived operations still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for an Operation.

18.8.2. Operation Property Toolbar

Go up

Class Diagram Model Element Reference

252

Navigate up through the package structure.

New operation

This creates a new operation within the owning class of the current operation, navigating immedi-
ately to the properties tab for that operation.

Tip

This is a very convenient way to add a number of operations, one after the other, to a
class.

New parameter

This creates a new parameter for the operation, navigating immediately to the properties tab for that
parameter.

New raised signal

This creates a new raised signal for the operation, navigating immediately to the properties tab for
that raised signal.

New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype ”) in the namespace of the owner of the
operation, navigating immediately to the properties tab for that datatype.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected operation, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the operation from the model

Warning

This is a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab (see Sec-
tion 18.8.2, “ Operation Property Toolbar ”) or the button 2 pop up menu for the class
on the diagram.

18.8.3. Property Fields For Operation

Name

Text box. The name of the operation. The name of an operation has a leading lower case letter, with
words separated by “bumpy caps”.

Note

Class Diagram Model Element Reference

253

The ArgoUML critics will complain about operation names that do not have an initial
lower case letter.

Tip

If you wish to follow the Java convention of constructors having the same name as the
class, you will violate this rule. Silence the critic by setting the stereotype create for
the constructor operation.

Stereotype

Drop down selector. There are two UML standard stereotypes for Operation (from the parent
metaclass, BehavioralFeature), create and destroy.

Tip

You should use create as the stereotype for constructors, and destroy for de-
structors (which are called “finalize” methods under Java).

Navigate Stereotype
icon. If a stereotype has been selected, clicking button 1 will navigate to the stereotype prop-

erty panel (see Section 18.5, “ Stereotype ”).

Owner
Text box. Records the class which contains this operation.

Button 1 double click on the entry will navigate to the class.

Visibility

Radio box, with entries public, private, protected and package.

• public. The operation is available to any model element that can see the owning class.

• private. The operation is available only to the owning class (and any inner classes).

• protected. The operation is available only to the owning class, or model elements that are
subclasses of the owning class.

• package. The operation is available only model elements contained in the same package.

Modifiers

Check box, with entries abstract, leaf, root, query, and static.

• abstract. This operation has no implementation with this class. The implementation must be
provided by a subclass.

Important

Any class with an abstract operation must itself be declared abstract.

Class Diagram Model Element Reference

254

• leaf. The implementation of this operation must not be overridden by any subclass.

• root. The declaration of this operation must not override a declaration of the operation from a
superclass.

• query. This indicates that the operation must have no side effects (i.e. it must not change the
state of the system). It can only return a value.

Caution

Operations for user defined datatypes must always check this modifier.

• static. There is only one instance of this operation associated with the class (as opposed to
one for each instance of the class). This is the OwnerScope attribute of a Feature metaclass
within UML. Any operation declared static is shown underlined on the class diagram.

Concurrency

Radio box, with entries guarded, sequential, and concurrent.

• guarded. Multiple calls from concurrent threads may occur simultaneously to one instance (on
any guarded operation), but only one is allowed to commence. The others are blocked until the
performance of the first operation is complete.

Caution

It is up to the system designer to ensure that deadlock cannot occur. It is the re-
sponsibility of the operation to implement the blocking behavior (as opposed to the
system).

• sequential. Only one call to an instance (of the class with the operation) may be outstanding
at any one time. There is no protection, and no guarantee of behavior if the system violates this
rule.

• concurrent. Multiple calls to one instance may execute at the same time. The operation is re-
sponsible for ensuring correct behavior. This must be managed even if there are other sequential
or synchronized (guarded) operations executing at the time.

Parameter

Text area, with entries for all the parameters of the operation (see Section 18.9, “ Parameter ”). A
new operation is always created with one new parameter, return to define the return type of the
operation.

Button 1 double click on any of the parameters navigates to that parameter. Button 2 click brings up
a pop up menu with two entries.

• Move Up. Only available where there are two or more parameters, and the parameter selected
is not at the top. It is moved up one position.

• Move Down. Only available where there are two or more parameters listed, and the parameter
selected is not at the bottom. It is moved down one position.

Raised Signals

Text area, with entries for all the signals (see Section 18.10, “ Signal ”) that can be raised by the op-
eration.

Class Diagram Model Element Reference

255

Caution

ArgoUML at present (V0.18) has limited support for signals. In particular they are not
linked to signal events that could drive state machines.

Button 1 double click on any of the signals navigates to that parameter.

18.9. Parameter
A parameter is a variable that can be passed. In the UML metamodel it is a sub-class of ModelEle-
ment.

A parameter is represented within the operation declaration in the operation compartment of a class as
follows.

name : type

name is the name of the parameter.

type is the type (UML datatype, class or interface) of the parameter.

The exception is any parameter representing a return value, whose type only is shown at the end of the
operation declaration.

18.9.1. Parameter Details Tabs
The details tabs that are active for parameters are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.9.2, “ Parameter Property Toolbar ” and Section 18.9.3, “ Property Fields For Para-
meter ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Source
Standard tab. This contains a declaration for the parameter.

Tagged Values

Standard tab. In the UML metamodel, Parameter has the following standard tagged values
defined.

• derived (from the superclass, ModelElement). Values true, meaning the parameter is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Caution

A derived parameter is a meaningless concept.

Class Diagram Model Element Reference

256

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

18.9.2. Parameter Property Toolbar

Go up

Navigate up through the package structure.

New parameter

This creates a new parameter for the for the same operation as the current parameter, navigating im-
mediately to the properties tab for that parameter.

Tip

This is a convenient way to add a series of parameters for the same operation.

New Datatype

This creates a new Datatype (see Section 16.3, “ Datatype ”) in the namespace of the owner of the
operation of the parameter, navigating immediately to the properties tab for that datatype.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected parameter, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the parameter from the model

Warning

This is a deletion from the model not just the diagram. If desired the whole operation
compartment can be hidden on the diagram using the presentation tab or the button 2
pop up menu for the class on the diagram.

18.9.3. Property Fields For Parameter

Name

Text box. The name of the parameter. By convention, the name of a parameter has a leading lower
case letter, with words separated by “bumpy caps”.

Class Diagram Model Element Reference

257

Note

The ArgoUML critics do not complain about parameter names that do not have an ini-
tial lower case letter.

Stereotype

Drop down selector. There are no UML standard stereotypes for Parameter.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Owner
Text box. Records the operation which contains this parameter.

Button 1 double click on the entry will navigate to the operation.

Type

Drop down selector. The type of this parameter. This can be any UML Classifier, although in
practice only Class, DataType, or Interface make any sense.

Note

A type must be declared (it can be void, but this only makes sense for a return para-
meter). By default ArgoUML supplies int as the type the first time a parameter is
created, and thereafter the type of the most recently created parameter.

Default Value

Text box with drop down. This allows you to set an initial value for the parameter if desired (this is
optional). The drop down menu provides access to the common values 0, 1, 2, and null.

Caution

This only makes sense for out or return parameters.

Kind

Radio box, with entries out, in/out, return, and in.

• out. The parameter is used only to pass values back from the operation.

• in/out. The parameter is used both to pass values in and to pass results back out of the opera-
tion.

Note

This is the default for any new parameter.

Class Diagram Model Element Reference

258

• return. The parameter is a return result from the call.

Note

There is nothing to stop you declaring more than one return parameter (some pro-
gramming languages support this concept).

Tip

The name of the return parameter does not appear on the diagram, but it is con-
venient to give it an appropriate name (such as the default return to identify it in
the list of parameters on the operation property tab.

• in. The parameter is used only to pass values in to the operation.

18.10. Signal
A signal is a specification of an asynchronous stimulus communicated between instances. In the UML
metamodel it is a sub-class of Classifier.

Within ArgoUML signals are not fully handled. Their value is when they are received as signal events
driving the asynchronous behavior of state machines and when associated with send actions in state ma-
chines and messages for collaboration diagrams.

Tip

In general there is limited value at present in defining signals within ArgoUML. It may
prove more useful to define signals as classes, with a (user defined) stereotype of
«signal» as suggested in the UML 1.4 standard. This allows any dependency relation-
ships between signals to be shown.

18.10.1. Signal Details Tabs
The details tabs that are active for signals are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.10.2, “ Signal Property Toolbar ” and Section 18.10.3, “ Property Fields For Signal ”
below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Source
Standard tab. There is nothing generated for a signal.

Class Diagram Model Element Reference

259

Tagged Values

Standard tab. In the UML metamodel, Signal has the following standard tagged values defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the signal.

• derived (from the superclass, ModelElement). Values true, meaning the signal is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived signals still have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

18.10.2. Signal Property Toolbar

Go up

Navigate up through the package structure.

New signal

This creates a new signal, navigating immediately to the properties tab for that signal.

Caution

The signal is not associated with the same operation as the original signal, so this will
have to be done afterwards.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected signal, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the signal from the model

Class Diagram Model Element Reference

260

Warning

This is a deletion from the model.

18.10.3. Property Fields For Signal

Name

Text box. The name of the signal. From their similarity to classes, by convention, the name of a sig-
nal has a leading upper case letter, with words separated by “bumpy caps”.

Note

The ArgoUML critics do not complain about signal names that do not have an initial
upper case letter.

Stereotype

Drop down selector. Signal is provided by default with the UML standard stereotypes for its parent
in the UML meta-model, Classifier (metaclass, powerType, process, thread, and
utility).

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows changing the namespace for the signal. This is the package
hierarchy of the signal.

Contexts

Text area. Lists all the contexts defined for this signal. Button 1 double click navigates to the selec-
ted context, button 2 click brings up a pop up menu with one entry.

• Add. Add a new context. This opens the Add/Remove Contexts dialog box (see figure below),
which allows choosing between all possible operations, and adding them to the selected list.

Figure 18.5. The “add/remove context” dialog box

Class Diagram Model Element Reference

261

18.11. Reception (to be written)
A reception is ...

18.12. Association
An association on a class diagram represents a relationship between classes, or between a class and an
interface. On a usecase diagram, an association binds an actor to a usecase.

Within the UML metamodel, Association is a sub-class of both Relationship and General-
izableElement.

The association is represented as a solid line connecting actor and usecase or class or interface (see Fig-
ure 18.1, “ Possible model elements on a class diagram. ”). The name of the association and any stereo-

Class Diagram Model Element Reference

262

type appear above the line.

ArgoUML is not restricted to binary associations. See Section 18.12.1, “ Three-way and Greater Associ-
ations and Association Classes ” for more on this.

Associations are permitted between interfaces and classes, but UML 1.3 specifies they must only be
navigable toward the interface—in other words the interface cannot see the class. ArgoUML will draw
such associations with the appropriate navigation.

Associations are often not named, when their meaning is obvious from the context.

Note

ArgoUML provides no specific way of showing the direction of the association as de-
scribed in the UML 1.4 standard. The naming should attempt to make this clear.

The association contains at least two ends, which may be navigated to via the association property sheet.
See Section 18.13, “ Association End ” for more information.

18.12.1. Three-way and Greater Associations and Asso-
ciation Classes

UML 1.3 provides for N-ary associations and associations that are governed by a third associative class.
Both are supported by ArgoUML.

N-ary associations are created by drawing with the association tool from an existing association to a
third class. The current implementation of ArgoUML does not allow the inverse: drawing from a 3rd
class towards an existing association is not possible.

Association Classes are drawn exactly like a normal association, i.e. between two classes, but with a dif-
ferent dedicated tool from the diagram toolbar.

18.12.2. Association Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.12.3, “ Association Property Toolbar ” and Section 18.12.4, “ Property Fields For
Association ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab.

Note

The values for the bounds of the Association have no meaning, since they are determ-
ined by the location of the connected items. Changing them has no effect on the dia-

Class Diagram Model Element Reference

263

gram.

Source
Standard tab. You would not expect to generate any code for an association, and any code entered
here is ignored (it will have disappeared when you come back to the association.

Tagged Values

Standard tab. In the UML metamodel, Association has the following standard tagged values
defined.

• persistence. Values transitory, indicating state is destroyed when an instance is des-
troyed or persistent, marking state is preserved when an instance is destroyed.

• derived (from the superclass, ModelElement). Values true, meaning the association is
redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived associations still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

18.12.3. Association Property Toolbar

Go up

Navigate up through the package structure of the model. For an association this will be the package
containing the association.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected association, navig-
ating immediately to the properties tab for that stereotype.

Delete

This deletes the selected association from the model.

Warning

This is a deletion from the model not just the diagram. To delete an association from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

Class Diagram Model Element Reference

264

18.12.4. Property Fields For Association

Name

Text box. The name of the association. By convention association names start with a lower case let-
ter, with “bumpy caps” used to indicate words within the name, thus: salesHandling.

Note

ArgoUML does not enforce any naming convention for associations.

Tip

Although the design critics will advise otherwise, it is perfectly normal not to name
associations on a class diagram, since the relationship is often obvious from the
classes (or class and interface) name.

Stereotype

Drop down selector. Association is provided by default with the UML standard stereotype for Asso-
ciation (implicit) .

Stereotyping can be useful when creating associations in the problem domain (requirements cap-
ture) and solution domain (analysis), as well as for processes based on patterns.

The stereotype is shown between « and » below the name of the association on the diagram.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows changing the namespace for the association. This is the
package hierarchy.

Connections

Text area. Lists the ends of this association. An association can have two or more ends. For more on
association ends see Section 18.13, “ Association End ”.

The names of the association ends are listed, unless the association end has no name (the case when
it is first created), in which case (Unnamed AssociationEnd) is shown.

Note

The only representation of association ends on a diagram is that their name appears at
the relevant end of the corresponding association.

Button 1 double click on an association end will navigate to that end.

Class Diagram Model Element Reference

265

Association Roles
Text area. (To be written)

Links
Text area. (To be written)

18.13. Association End
Two or more association ends are associated with each association (see Section 17.5, “ Association ”).

Within the UML metamodel, AssociationEnd is a sub-class of ModelElement.

The association end has no direct access on any diagram for binary associations. The ends of an N-ary
association may be selected by clicking on the line in the diagram. The stereotype, name and multiplicity
are shown at the relevant end of the parent association (see Figure 17.1, “ Typical model elements on a
use case diagram. ”). Where shared or composite aggregation is selected for one association end, the op-
posite end is shown as a solid diamond (composite aggregation) or hollow diamond (shared aggrega-
tion).

Tip

Although you can change attributes of association ends when creating a use case model,
this is often not necessary. Many of the properties of an association end relate to its use in
class diagrams, and are of limited relevance to use cases. The most useful attributes to con-
sider altering are the name (used as the role name) and the multiplicity.

Note

ArgoUML does not currently support showing qualifiers on the diagram, as described in
the UML 1.3 standard.

18.13.1. Association End Details Tabs
The details tabs that are active for associations are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.13.2, “ Association End Property Toolbar ” and Section 18.13.3, “ Property Fields
For Association End ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab.

Source
Standard tab. This tab contains a declaration for the association end as an instance of the model ele-
ment to which it is connected.

Class Diagram Model Element Reference

266

Tagged Values

Standard tab. In the UML metamodel, AssociationEnd has the following standard tagged val-
ues defined.

• derived (from the superclass, ModelElement). Values true, meaning the association end
is redundant—it can be formally derived from other elements, or false meaning it cannot.

Tip

Derived association ends still have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation. However the tag only
makes sense for an association end if it is also applied to the parent association.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

18.13.2. Association End Property Toolbar

Go up

Navigate up to the association to which this end belongs.

Go Opposite

This navigates to the other end of the association.

New Qualifier

This creates a new Qualifier for the selected association-end, navigating immediately to the proper-
ties tab for that qualifier.

Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button
creates a qualifier in the model, which is not shown on the diagram. Also, the proper-
ties panel for a qualifier equals that of a regular attribute.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected association-end,
navigating immediately to the properties tab for that stereotype.

Delete

This deletes the selected association-end from the model.

Class Diagram Model Element Reference

267

Note

This button is downlighted for binary associations, since an association needs at least
two ends. Only for N-ary associations, this button is accessable, and deletes just one
end from the association.

18.13.3. Property Fields For Association End

Name

Text box. The name of the association end, which provides a role name for this end of the associ-
ation. This role name can be used for navigation, and in an implementation context, provides a
name by which the source end of an association can reference the target end.

Note

ArgoUML does not enforce any naming convention for association ends.

Stereotype

Drop down selector. Association end is provided by default with the UML standard stereotypes for
AssociationEnd (association, global, local, parameter, self).

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Association
Text box. Records the parent association for this association end. Button 1 double click on this entry
will navigate to that association.

Type

Drop down selector providing access to all standard UML types provided by ArgoUML and all new
classes created within the current model.

This is the type of the entity attached to this end of the association.

Tip

By default ArgoUML will select the class of the model element to which the linkend
is connected. However, an association can be moved to another class by selecting an-
other entry here.

Multiplicity

Drop down menu with edit box. The value can be chosen from the drop down box, or a new one can
be edited in the text box. Records the multiplicity of this association end (with respect to the other

Class Diagram Model Element Reference

268

end), i.e. how many instances of this end may be associated with an instance of the other end. The
multiplicity is shown on the diagram at that end of the association.

Modifiers

There are 3 modifiers: navigable, ordered and static. All 3 are checkboxes.

• navigable. Indicates that this end can be navigated to from the other end.

Note

The UML 1.4 standard provides a number of options for how navigation is dis-
played on an association end. ArgoUML uses option 3, which means that arrow
heads are shown at the end of an association, when navigation is enabled at only
one end, to indicate the direction in which navigation is possible. This means that
the default, with both ends navigable has no arrows.

• ordered When placed on one end, specifies whether the set of links from the other instance to
this instance is ordered. The ordering must be determined and maintained by Operations that
add links. It represents additional information not inherent in the objects or links themselves.
Possibilities for the checkbox are: Unchecked - The links form a set with no inherent ordering.
Checked - A set of ordered links can be scanned in order.

• Static (To be written)

Specification
List. Designates zero or more Classifiers that specify the Operations that may be applied to an In-
stance accessed by the AssociationEnd across the Association. These determine the minimum inter-
face that must be realized by the actual Classifier attached to the end to support the intent of the As-
sociation. May be an Interface or another Classifier. The type of classifier is indicated by an icon.

Button 1 double click navigates to the selected classifier, button 2 click brings a pop up menu with
one entry.

• Add. Add a new specification classifier. This opens the Add/Remove Specifications dialog box
(see figure below), which allows choosing between all possible classifiers, and adding or remov-
ing them to the selected list.

Figure 18.6. The “Add/Remove Specifications” dialog box

Class Diagram Model Element Reference

269

Qualifiers
Text box. Records the qualifiers for this association end. Button 1 double click on this entry will
navigate to that qualifier. Button 2 click will show a popup menu containing two items: Move Up
and Move Down, which allow reordering the qualifiers.

Aggregation

Radio box, with three entries composite, none and aggregate. Indicates whether the relation-
ship with the far end represents some type of loose whole-part relationship (aggregation) or
tight whole-part relationship (composite).

Shared aggregation is shown by a hollow diamond at the “whole” end of the association. Composite
aggregation is shown by a solid diamond.

Note

Class Diagram Model Element Reference

270

You may not have aggregation at both ends of an association. ArgoUML does not en-
force this constraint.

The “whole” end of a composite aggregation should have a multiplicity of one.
ArgoUML does not enforce this constraint.

Changeability

Radio box, with three entries add only, changeable and frozen. Indicates whether instances
of this end of the association-end may be: i) created but not deleted after the target instance is cre-
ated; ii) created and deleted by the source after the target instance is created; or iii) not created or
deleted by the source after the target instance is created.

Visibility

Radio box, with four entries public, private, protected, and package. Indicates whether
navigation to this end may be by: i) any classifier; ii) only by the source classifier; or iii) only the
source classifier and its children.

18.14. Dependency
Dependency is a relationship between two model elements showing that one depends on the other.

Within the UML metamodel, Dependency is a sub-class of Relationship.

Dependency is represented as a dashed line with an open arrow head from the depending model element
to that which it is dependent upon.

18.14.1. Dependency Details Tabs
The details tabs that are active for dependencies are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.14.2, “ Dependency Property Toolbar ” and Section 18.14.3, “ Property Fields For
Dependency ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab

Note

The values in the "bounds" field of the dependency are not editable, since they are de-
termined by the properties of the endpoints of the line.

Tagged Values

Class Diagram Model Element Reference

271

Standard tab. In the UML metamodel, Dependency has no tagged values of its own, but through
superclasses has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning the dependency re-
lationship is redundant—it can be formally derived from other elements, or false meaning it
cannot.

Note

Derived dependencies still have their value in analysis to introduce useful names
or concepts.

18.14.2. Dependency Property Toolbar

Go up

Navigate up through the package structure of the model. For a dependency this will be the package
containing the dependency.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected dependency, navig-
ating immediately to the properties tab for that stereotype.

Delete

This deletes the selected dependency from the model.

Warning

This is a deletion from the model not just the diagram. To delete a dependency from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

18.14.3. Property Fields For Dependency

Name

Text box. The name of the dependency.

Tip

It is quite common to leave dependencies unnamed.

Note

ArgoUML does not enforce any naming convention for associations.

Class Diagram Model Element Reference

272

Note

There is no representation of the name of a dependency on the diagram.

Stereotype

Drop down selector. Dependency has no standard stereotypes of its own under UML 1.3. and so
ArgoUML does not provide any. The stereotype is shown between « and » above or across the gen-
eralization.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace

Text box. Records the namespace for the dependency. This is the package hierarchy.

Suppliers

Text area. Lists the end of the relationship that is supplying what is needed by the other end.

Button 1 double click on a supplier will navigate to that element.

Clients

Text area. Lists the “depending” ends of the relationship, i.e. the end that makes use of the other
end.

Button 1 double click on a client will navigate to that element.

18.15. Generalization
Generalization is described under use case diagrams (see Section 17.8, “ Generalization ”).

Note

Within the context of classes, generalization and specialization are the UML terms describ-
ing class inheritance.

18.16. Interface
An interface is a set of operations characterizing the behavior of an element. It can be usefully thought
of as an abstract class with no attributes and no non-abstract operations. In the UML metamodel it is a
sub-class of Classifier and through that GeneralizableElement.

An interface is represented on a class diagram as a rectangle with two horizontal compartments. The top
compartment displays the interface name (and above it «interface») and the second any operations.
Just like a class, the operations compartment can be hidden.

Class Diagram Model Element Reference

273

18.16.1. Interface Details Tabs
The details tabs that are active for interfaces are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.16.2, “ Interface Property Toolbar ” and Section 18.16.3, “ Property Fields For Inter-
face ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab. The tick box Display Operations allows the operation compartment to be
shown (the default) or hidden. This is a setting valid for only the current diagram. The Bounds:
field defines the bounding box for the package on the diagram.

Source
Standard tab. This contains a template for the interface declaration and declarations of associated in-
terfaces.

Tagged Values
Standard tab. In the UML metamodel, Interface has the following standard tagged values
defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

Warning

Since interfaces are by definition abstract, they can have no instance, and so this
tagged value must refer to the properties of the realizing class.

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the interface.

• derived (from the superclass, ModelElement). Values true, meaning the interface is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived interfaces still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Class Diagram Model Element Reference

274

Checklist
Standard tab for an Interface.

18.16.2. Interface Property Toolbar

Go up

Navigate up through the package structure.

New operation

This creates a new operation (see Section 18.8, “ Operation ”) within the interface, navigating im-
mediately to the properties tab for that operation.

New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

New interface

This creates a new interface in the same namespace as the selected interface, navigating immedi-
ately to the properties tab for the new interface.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected interface, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the interface from the model

Warning

This is a deletion from the model not just the diagram. To delete an interface from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

18.16.3. Property Fields For Interface

Name
Text box. The name of the interface. The name of an interface has a leading capital letter, with
words separated by “bumpy caps”.

Note

Unlike classes, the ArgoUML critics will not complain about interface names that do
not have an initial capital.

Stereotype

Class Diagram Model Element Reference

275

Drop down selector. Interface is provided by default with the UML standard stereotypes for the par-
ent meta-class, Classifier (metaclass, powertype, process, thread and utility).

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows changing the namespace for the interface. This is the pack-
age hierarchy.

Modifiers
Check box, with entries Abstract, Leaf and Root.

• Abstract is used to declare that this interface cannot be instantiated, but must always be spe-
cialized. The name of an abstract interface is displayed in italics on the diagram.

Caution

This is meaningless, since by definition an interface is an abstract entity. The
UML 1.3 standard offers no clarification.

• Leaf indicates that this interface cannot be further specialized, while Root indicates it can
have no generalizations.

Visibility
Radio box, with three entries public, protected, private and package. Indicates whether
navigation to this end may be by: i) any classifier; ii) only the source classifier and its children; or
iii) only by the source classifier.

Generalizations
Text area. Lists any interface that generalizes this interface.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations
Text box. Lists any specialized interface (i.e. for which this interface is a generalization.

Button 1 double click navigates to the generalization and opens its property tab.

AssociationEnds
Text box. Lists any AssociationEnds (see Section 18.13, “ Association End ”) connected to this in-
terface.

Note

Associations between classes and interfaces must be navigable only from the class to
the interface. ArgoUML will create associations between classes and interfaces with
the correct navigability, but does not prevent the user from altering this.

Button 1 double click navigates to the selected entry.

Operations
Text area. Lists all the operations (see Section 18.8, “ Operation ”) defined on this interface. But-
ton 1 double click navigates to the selected operation. Button 2 click will show a popup menu with

Class Diagram Model Element Reference

276

two items: Move Up and Move Down, which allow reordering the operations.

Caution

All operations on an interface must be public. The ArgoUML critics will complain if
this is not the case.

18.17. Abstraction
An abstraction is a dependency relationship joining two model elements within the model at different
levels of abstraction. Within ArgoUML it is principally used through its specific stereotype realize
to define realization dependencies, which link model elements that specify behavior to the corresponding
model elements that implement the behavior.

In the UML metamodel Abstraction is a sub-class of Dependency and through that Relation-
ship.

An abstraction with stereotype realize is represented on a class diagram as a dotted line with a solid
white head at the specifying end.

Caution

All other stereotypes of abstraction should be represented using an open arrow head, but
this is not supported by ArgoUML.

18.17.1. Abstraction Details Tabs
The details tabs that are active for abstractions are as follows.

ToDoItem
Standard tab.

Properties
See Section 18.17.2, “ Abstraction Property Toolbar ” and Section 18.17.3, “ Property Fields For
Abstraction ” below.

Documentation
Standard tab. See Section 13.4, “ Documentation Tab ”.

Presentation
Standard tab.

Note

The values in the "bounds" field of the abstraction are not editable, since they are de-
termined by the properties of the endpoints of the line.

Source
Standard tab. This contains the single downlighted text N/A.

Tagged Values

Class Diagram Model Element Reference

277

Standard tab. In the UML metamodel, Abstraction has the following standard tagged values
defined.

• derived (from the superclass, ModelElement). Values true, meaning the abstraction is
redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived abstractions still have their value in analysis to introduce useful names or
concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

18.17.2. Abstraction Property Toolbar

Go up

Navigate up through the package structure.

Delete

This deletes the abstraction from the model

Warning

This is a deletion from the model not just the diagram. To delete an abstraction from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

18.17.3. Property Fields For Abstraction

Name
Text box. The name of the abstraction. There are no constraints on the name of an abstraction,
which is not shown on any diagram.

Stereotype
Drop down selector. Abstraction is provided by default with the UML standard stereotypes de-
rive, realize, refine and trace.

Caution

ArgoUML automatically selects the stereotype realize when an abstraction is created.
The user is free to change the stereotype to use the abstraction to indicate for example
a trace relationship. However ArgoUML will not alter the representation on the dia-
gram accordingly.

Class Diagram Model Element Reference

278

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows changing the namespace for the abstraction. This is the
package hierarchy.

Suppliers
Text area. Lists the model element that is the supplier end of this abstraction (for a realization this is
the end providing the implementation).

Note

Although this is a text area there is no mechanism for adding more than one supplier.

Button 1 double click navigates to the selected entry.

Clients
Text area. Lists the model element that is the client end of this abstraction (for a realization this is
the end providing the specification).

Note

Although this is a text area there is no mechanism for adding more than one client.

Button 1 double click navigates to the selected entry.

Class Diagram Model Element Reference

279

Chapter 19. Sequence Diagram Model
Element Reference
19.1. Introduction

This chapter describes each model element that can be created within a sequence diagram. Note that
some sub-model elements of model elements on the diagram may not actually themselves appear on the
diagram.

There is a close relationship between this material and the Properties tab of the details pane (see
Section 13.3, “ Properties Tab ”). That section covers properties in general, in this chapter they are
linked to specific model elements.

Caution

Sequence diagrams are not fully developed yet in ArgoUML. Many aspects are not fully
implemented, or may not behave as expected.

Figure 19.1, “ Possible model elements on a sequence diagram. ” shows a sequence diagram with all
possible model elements displayed.

Figure 19.1. Possible model elements on a sequence diagram.

280

19.1.1. Limitations Concerning Sequence Diagrams in
ArgoUML

The sequence diagram is still rather under-developed in ArgoUML.

The biggest difficulties are with the actions behind the stimuli. These are purely textual in implementa-
tion, and there is no way to link them back to their associated operations or signals.

19.2. Object
An object is an instance of a class. In the UML metamodel Object is a sub-class of Instance. With-
in a sequence diagram objects may be used to represent a specific instance of a class. Unlike collabora-
tion diagrams (see Chapter 21, Collaboration Diagram Model Element Reference), sequence diagrams
cannot show generic behavior between classifier roles.

An object is represented on a sequence diagram in ArgoUML as a plain box labeled with the object
name (if any) and class name, separated by a colon (:). As links with stimuli to and from other objects
are added, a time line grows down from the object. This is thin where the object does not have control
and thick where it does.

Caution

The current release of ArgoUML shows interactions between objects, although the UML
standard for sequence diagrams is for interaction between instances of any classifier).

However the actual implementation in ArgoUML permits any classifier to be used with the
object, and so the diagram can successfully represent instances of actors for example as
well as classes.

19.2.1. Object Details Tabs
The details tabs that are active for objects are as follows.

ToDoItem
Standard tab.

Properties
See Section 19.2.2, “ Object Property Toolbar ” and Section 19.2.3, “ Property Fields For Object ”
below.

Documentation
Standard tab.

Presentation
Standard tab. The values for the bounds of the object notionally define the bounding box of the ob-
ject and its time line. However if you change them it will have no effect, and the original values will
be reset when you next revisit the tab.

Source
Standard tab, but with no contents.

Caution

Sequence Diagram Model Element Reference

281

An object should not generate any code, so having this tab active is probably a mis-
take.

Tagged Values
Standard tab. In the UML metamodel, Object has the following standard tagged values defined.

• persistence (from the superclass, Instance. Showing the permanence of the state in-
formation associated with the object. Values transitory (state is destroyed when the object
is destroyed) and persistent (state is preserved when the object is destroyed).

• derived (from the superclass, ModelElement). Values true, meaning the object is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived objects still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for a Classifier.

19.2.2. Object Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected object, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the object from the model

Warning

This is a deletion from the model not just the diagram. To delete an object from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

Sequence Diagram Model Element Reference

282

19.2.3. Property Fields For Object

Name
Text box. The name of the object. By convention object names start with a lower case letter and use
bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Object has no stereotypes by default in the UML standard.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.5, “ Stereotype ”).

Namespace
Text box. Records the namespace for the object. This is the package hierarchy.

Stimuli Sent
Text area. Lists the stimuli sent to this object.

Stimuli Received
Text area. Lists the stimuli received by this object.

Classifier , Klassifizierer
Drop down selector. The name of the classifier of which this is an object.

Caution

In the current release of ArgoUML the drop down selector will include all classifiers
(i.e. interfaces, actors, use cases and datatypes as well), which is what is wanted on the
diagram, although it should properly be called an instance, rather than an object. In
practice only instances of classes and actors make much sense.

Note

In the current release of ArgoUML the same graphical presentation is used, even if the
object is actually representing an instance of an actor (when a stick-man would be
more usual).

19.3. Stimulus
A stimulus is a communication between two instances and is generated by an action. On a sequence dia-
gram a stimulus is associated with a link—an instance of an association linking two object instances. In
the UML metamodel Stimulus is a sub-class of ModelElement.

Sequence Diagram Model Element Reference

283

The link (see Section 19.9, “ Link ”) associated with a stimulus is represented on a sequence diagram in
ArgoUML as an arrow between the time lines of the object instances (or the object head in the case of
stimulus create, described below) labeled with the name of the action (if any), and the action, separated
by a colon (:). The type of line and arrowhead depends on the type of action that generated the stimulus:

• Stimulus Call. Generated by a call action, itself the result of an operation of a class. Shown as
a solid line with a solid arrowhead to the time line of the object instance receiving the stimulus.

• Stimulus Create. Generated by a create action for the class for which an instance is to be cre-
ated Shown as a solid line with a solid arrowhead to the object head of the object instance being cre-
ated.

• Stimulus Destroy. Generated by a destroy action of the originating object. Shown as a solid
line with an open arrowhead terminating in a diagonal cross at the end of the time line of the receiv-
ing (destroyed) object instance.

• Stimulus Send. Generated by a send action, the result of a signal raised by an operation of the
sending object instance and handled by the receiving object instance. Shown as a solid line with half
an open arrowhead.

• Stimulus Return. Generated by an object instance that has received an earlier call stimulus and
is returning a result to the calling object instance. Shown as a dotted line with an open arrowhead.

Note

ArgoUML does not allow you to create stimuli directly, but instead provides tools to create
stimuli of each of the five types above.

Caution

In the current release of ArgoUML there is no way to show a terminate action where an
object instance destroys itself. One way is to draw a destroy action that loops back to the
object itself, give it an action with no name and use the style tab to set an invisible line, but
this still leaves the arrow head showing, which is unsightly. It is also semantically incor-
rect anyway to use a destroy action to represent a terminate action.

19.3.1. Stimulus Details Tabs
The details tabs that are active for stimuli are as follows.

ToDoItem
Standard tab.

Properties
See Section 19.3.2, “ Stimulus Property Toolbar ” and Section 19.3.3, “ Property Fields For Stimu-
lus ” below.

Documentation
Standard tab.

Style

Sequence Diagram Model Element Reference

284

Standard tab. The values for the bounds of the stimulus notionally define the bounding box of the
stimulus and its time line. However if you change them it will have no effect, and the original val-
ues will be reset when you next revisit the tab.

Altering the Fill and Shadow entries has no effect. Rather bizarrely you can set the Line entry
and it will draw a line around the signal, which is not a standard UML representation.

Tip

To change the color of the line, you should select the associated link (click on it a little
way from the stimulus) and use its style tab (see Section 19.9, “ Link ”).

Caution

In the current release of ArgoUML changing the values of the Bounds field is pos-
sible, but will make only a temporary change to the position of the stimulus. Selecting
any model element on the screen causes the stimulus to return to its original position
and the original values to be restored.

Source
Standard tab, but with no contents.

Caution

A stimulus should not generate any code, so having this tab active is probably a mis-
take.

Constraints
Standard tab. ArgoUML only supports constraints on Classes and Features (Attributes, Operations,
Receptions, and Methods), so this tab is grayed out.

Tagged Values
Standard tab. In the UML metamodel, Stimulus has the following standard tagged values
defined.

• derived (from the superclass, ModelElement). Values true, meaning the stimulus is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived stimuli still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Sequence Diagram Model Element Reference

285

19.3.2. Stimulus Property Toolbar

Go up

Navigate up through the package structure.

Delete

This deletes the stimulus from the model

Warning

This is a deletion from the model not just the diagram. To delete an stimulus from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

19.3.3. Property Fields For Stimulus

Name
Text box. There is no convention for naming stimuli, and it is quite normal to leave them unnamed.
The action is sufficient identification.

Tip

It is sometimes useful to give simple names to stimuli, so they can be referred to in at-
tached notes giving timing constraints.

Action
Text box. This is used to identify the action that generated the stimulus.

Caution

The current release of ArgoUML only implements actions as textual descriptions.

As a practical convention it is suggested that call actions are shown as the name of the
operation generating the action with any arguments in parentheses and that send ac-
tions are shown as the name of the signal generating the action with any arguments in
parentheses. Return actions should be shown as the expression for the value they re-
turn, or empty otherwise. Create and destroy actions should be left empty, since they
are implied by their representation.

Stereotype
Drop down selector. Stimulus has no stereotypes by default in the UML standard, but ArgoUML
provides the stereotypes, machine, organization and person.

Caution

ArgoUML also provides the stereotype realize for stimuli. This appears to be an

Sequence Diagram Model Element Reference

286

error, since this stereotype properly belongs to the Abstraction metaclass.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.5, “ Stereotype ”).

Sender
Text box. Identifies the instance which sent this stimulus.

Button 1 click navigates to the sender instance, button 2 gives a pop up menu with one entry.

• Open. Navigate to the selected sender instance.

Receiver
Text box. Identifies the instance which receives this stimulus.

Button 1 click navigates to the receiver instance, button 2 gives a pop up menu with one entry.

• Open. Navigate to the selected receiver instance.

Warning

In the current release of ArgoUML this field is broken. It always shows the entry
none and the pop-up menu is grayed out.

Namespace
Text box. Records the namespace for the stimulus. This is the package hierarchy.

Button 1 click on the entry will navigate to the package defining this namespace (or the model for
the top level namespace).

19.4. Stimulus Call
This tool creates a stimulus associated with a call action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3, “ Stimulus
”). Its graphical representation on the diagram is that of a stimulus associated with a call action, i.e. a
solid line with a solid arrow head.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a call action.

19.5. Stimulus Create
This tool creates a stimulus associated with a create action on the diagram, creating at the same time the
associated link between sender and receiving instances.

Sequence Diagram Model Element Reference

287

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3, “ Stimulus
”). Its graphical representation on the diagram is that of a stimulus associated with a create action, i.e. a
solid line with a solid arrow head terminating at the head of the created instance.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a create action.

19.6. Stimulus Destroy
This tool creates a stimulus associated with a destroy action on the diagram, creating at the same time
the associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3, “ Stimulus
”). Its graphical representation on the diagram is that of a stimulus associated with a destroy action, i.e. a
solid line with an open arrow head terminating at a cross at the bottom of the destroyed instance's time
line.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a destroy action.

19.7. Stimulus Send
This tool creates a stimulus associated with a send action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3, “ Stimulus
”). Its graphical representation on the diagram is that of a stimulus associated with a send action, i.e. a
solid line with half an open arrow head.

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a send action.

19.8. Stimulus Return
This tool creates a stimulus associated with a return action on the diagram, creating at the same time the
associated link between sender and receiving instances.

All details tabs and properties are identical to to that of stimulus in general (see Section 19.3, “ Stimulus
”). Its graphical representation on the diagram is that of a stimulus associated with a return action, i.e. a
dotted line with an open arrow head.

Sequence Diagram Model Element Reference

288

Note

Because the current release of ArgoUML does not fully implement actions, there is no en-
forcement of the relationship to a return action.

19.9. Link
A link is an instance of an association. In the UML metamodel Link is a sub-class of Instance.
Within a sequence diagram links are created indirectly when an associated stimulus is created.

An link is represented on a sequence diagram in ArgoUML as a line connecting the instances concerned.
However on a sequence diagram the representation is modified to reflect the type of action associated
with the stimulus carried on the link (see Section 19.3, “ Stimulus ”).

19.9.1. Link Details Tabs
The details tabs that are active for links are as follows.

ToDoItem
Standard tab.

Properties
See Section 19.9.2, “ Link Property Toolbar ” and Section 19.9.3, “ Property Fields For Link ” be-
low.

Documentation
Standard tab.

Presentation
Standard tab.

Note

The values in the "bounds" field of the link are not editable, since they are determined
by the properties of the endpoints of the line.

Source
Standard tab, but with no contents.

Caution

A link should not generate any code, so having this tab active is probably a mistake.

Tagged Values
Standard tab. In the UML metamodel, Link has the following standard tagged values defined.

• persistence (from the superclass, Instance. Showing the permanence of the state in-
formation associated with the link. Values transitory (state is destroyed when the link is
destroyed) and persistent (state is preserved when the link is destroyed).

• derived (from the superclass, ModelElement). Values true, meaning the link is redund-

Sequence Diagram Model Element Reference

289

ant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived links still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for a Classifier.

19.9.2. Link Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected link, navigating im-
mediately to the properties tab for that stereotype.

Delete

This deletes the link from the model

Warning

This is a deletion from the model not just the diagram. To delete an link from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

19.9.3. Property Fields For Link

Name
Text box. The name of the link. By convention link names start with a lower case letter and use
bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Sequence Diagram Model Element Reference

290

Stereotype
Drop down selector. Link has no stereotypes by default in the UML standard.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.5, “ Stereotype ”).

Namespace
Text box. Records the namespace for the link. This is the package hierarchy.

Connections
List box. Lists the connections of the link, i.e. the link-ends.

Button 1 double click on the entry will navigate to the link-end.

Sequence Diagram Model Element Reference

291

Chapter 20. Statechart Diagram Model
Element Reference
20.1. Introduction

This chapter describes each model element that can be created within a statechart diagram. Note that
some sub-model elements of model elements on the diagram may not actually themselves appear on the
diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers Properties in general, in this chapter they are linked to
specific model elements.

Figure 20.1, “ Statechart diagram model elements 1. ” and Figure 20.2, “ Statechart diagram model ele-
ments 2. ” show statechart diagrams with most possible model elements displayed.

Figure 20.1. Statechart diagram model elements 1.

Figure 20.2. Statechart diagram model elements 2.

292

20.1.1. Limitations Concerning Statechart Diagrams in
ArgoUML

The statechart diagrams support the 7 action types defined (CallAtion, CreateAction, DestroyAction,
ReturnAction, SendAction, TerminateAction and UninterpretedAction), but there is no way to use the
same action more than once. Also, in a few cases, it is not possible to set or select the related elements;
e.g.there is no way to select a signal for a SendAction.

Code generation from statechart diagrams is not developed yet.

20.2. State
A state models a situation during which some (usually implicit) invariant condition holds for the parent
class. This invariant may be a static situation such as an object waiting for some external event to occur,
or some dynamic activity “in progress”.

A state is represented on a statechart diagram in ArgoUML as a rectangle with rounded corners, with a
horizontal line separating the name at the top from the description of the behavior below. The descrip-
tion of the behavior includes the entry and exit actions and any internal transitions.

20.2.1. State Details Tabs
The details tabs that are active for states are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.2.2, “ State Property Toolbar ” and Section 20.2.3, “ Property Fields For State ” be-
low.

Documentation
Standard tab.

Presentation
Standard tab. The values for the bounds of the state define the bounding box of the state.

Statechart Diagram Model Element Reference

293

Stereotype
Standard tab.

Tagged Values
Standard tab.

20.2.2. State Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected state, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the state from the model

Note

This is a deletion from the model, not just the diagram. You can not just remove a
state from the diagram, and keep it within the model, as is possible in other diagrams.

20.2.3. Property Fields For State

Name
Text box. The name of the state. By convention state names start with a lower case letter and use
bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Container
Text box. Shows the container of the state. This is the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state. All
states are at least contained by the otherwise hidden top-level state (named “top”) that is the root of
the state containment hierarchy.

Entry-Action
Text box. Shows the name of the action (if any) to be executed on entry to this state.

Note

Statechart Diagram Model Element Reference

294

This field shows the name of the action, while on the diagram the expression of the ac-
tion is shown.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries:

• New. Add a new Entry action of a certain kind. This menu has the following submenus to select
the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Exit-Action
Text box. Shows the action (if any) to be executed on exit from this state.

Button 1 click navigates to the selected action, button 2 gives a pop up menu with two entries.

• New. Add a new Exit action of a certain kind. This menu has the following submenus to select
the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the Exit-Action.

Do-Activity
Text box. Shows the action (if any) to be executed while being in this state.

Button 1 click navigates to the selected action, button 2 gives a pop up menu with two entries.

• New. Add a new Do-Activity (action) of a certain kind. This menu has the following submenus
to select the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send
Action, Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the Do-Activity.

Deferrable Events
Text box. Shows a list of events that are candidates to be retained by the state machine if they trig-
ger no transitions out of the state (not consumed).

Button 1 click navigates to the selected event, button 2 on an event gives a pop up menu with the
following entries.

• Select. Allows to add already existing events to the list of deferred ones.

• New. Add a new event of a certain kind. This menu has the following submenus to select the
kind of event: Call Event, Change Event, Signal Event, Time Event.

• Delete From Model. Delete the event.

Incoming
Text area. Lists all the transitions that enter this state.

Button 1 double click navigates to the selected entry.

Outgoing
Text area. Lists all the transitions that leave this state.

Button 1 double click navigates to the selected action.

Statechart Diagram Model Element Reference

295

Internal Transitions
Text area. Lists all the internal transitions of the state. Such transitions neither exit nor enter the
state, so they do not cause a state change. Which means that the Entry and Exit actions are not in-
voked.

Note

This field shows the name of the transition, while on the diagram the name of the trig-
ger is shown, separated with a / from the effect script.

Button 1 double-click navigates to the selected transition, button 2 gives a pop up menu with one
entry.

• New. Add a new internal transition.

20.3. Action
An action specifies an executable statement and is an abstraction of a computational procedure that can
change the state of the model. In the UML metamodel it is a child of ModelElement. Since in the
metamodel an ActionSequence is itself an Action that is an aggregation of other actions (i.e. the "com-
posite" pattern), an ActionSequence may be used anywhere an action may be.

There are a number of different types of action that are children of Action within the UML metamodel.

• CreateAction. Associated with a classifier, this action creates an instance of that classifier.

• CallAction. Associated with an operation, this action calls the given operation.

• ReturnAction. An action used to return a result to an earlier caller.

• SendAction. Associated with a signal, this action causes the signal to be raised.

• TerminateAction. Causes the invoking object to self-destruct.

• UninterpretedAction. An action used to specify language-specific actions that do not classify
under the other types of actions.

• DestroyAction. Destroys the specified target object.

An action is represented on the diagram by the text of its expression.

Caution

The V0.20 release of ArgoUML only partially implements actions. As a practical conven-
tion it is suggested that call actions are shown as the name of the operation generating the
action with any arguments in parentheses and that send actions are shown as the name of
the signal generating the action with any arguments in parentheses. Return actions should
be shown as the expression for the value they return, or empty otherwise. Create and des-
troy actions should shown as create(<target>) and destroy(<target>). Ter-
minate action should be shown as terminate.

Statechart Diagram Model Element Reference

296

20.3.1. Action Details Tabs
The details tabs that are active for actions are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.3.2, “ Action Property Toolbar ” and Section 20.3.3, “ Property Fields For Action ”
below.

Documentation
Standard tab.

Stereotype
Standard tab. In the UML metamodel, Action has no standard stereotypes defined.

Tagged Values
Standard tab. In the UML metamodel, Action has no standard tagged value defined.

20.3.2. Action Property Toolbar

Go up

Navigate up through the hierarchical structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected action, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the Action from the model

20.3.3. Property Fields For Action

Name
Text box. The name of the action. By convention action names start with a lower case letter and use
bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Asynchronous
Check box. Indicates if a dispatched Stimulus is asynchronous or not.

Script
Double text box with the expression that defines the action. This field consists of two parts, the first
one contains the body (script) of the expression, and the second one contains the particular pro-

Statechart Diagram Model Element Reference

297

gramming language used to write the expression.

Recurrence
Double Text box. An expression stating how many times the Action should be performed. The field
consists of two parts: the first one for the expression, the second one for the language it is written in.

Arguments
Text box. This is an ordered list with the arguments of the action.

Button 1 double-click on any of the arguments navigates to that argument, button 2 click brings up a
pop up menu with two entries.

• New. Create a new argument and navigate to it.

• Remove. Deletes the argument from the model.

Instantiation (only for CreateAction)
Text box. This shows the classifier that gets instantiated by the create-action.

Button 1 double-click on the classifier navigates to that argument, button 2 click brings up a pop up
menu with one entry.

• Add.... This brings up a dialog box that allows selecting the one classifier that gets created.

20.4. Composite State
A composite state is a state that contains other states (known as sub-states), allowing hierarchical state
machines to be constructed.

A composite state is represented on a statechart diagram in ArgoUML as a large rectangle with rounded
corners, with a horizontal line separating the name at the top from the description of the behavior and
the model of the sub-state machine below. The description of the behavior includes the entry, exit and
do actions and any internal transitions.

Sub-states are placed within a composite machine by placing them entirely within the composite state.
This can be done at creation time, i.e. when creating the state for the first time in the editing pane. Al-
ternatively, an existing state can be dragged onto a composite state.

The description of a composite state is almost identical to that of a state (see Section 20.2, “ State ” and
so is not duplicated here. The only differences is one additional tool, one missing field, and one addi-
tional field, which are described as follows.

New Concurrent Region

Adds a new concurrent region to the selected composite state.

Deferrable Events
This field is missing from V0.20 of ArgoUML.

Subvertices
Text area. Lists all the sub-states contained within this composite state.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries.

• New. A submenu pops up, with a selection of 7 kinds of states, which can be added to the mod-
el. The 7 kinds of states supported are: Pseudo State, Synch State, Stub State, Composite State,

Statechart Diagram Model Element Reference

298

Simple State, Final State, Submachine State.

Warning

Using this way of adding states to the model is not a good idea, since you will
have to add the state to the diagram later. This can be done by selecting it in the
explorer, and activating the pop-up menu, and selecting “Add to Diagram”. It is
advisable to use the toolbar of the diagram instead.

• Delete From Model Delete the selected state from the model.

20.5. Concurrent Region
A Concurrent Region is an “orthogonal conjunctive” component of a composite state, allowing concur-
rency to be constructed.

A concurrent region is represented on the diagram by a tile of a composite state, separated from other re-
gions by a dashed line.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is identical to that of a composite state (see
Section 20.4, “ Composite State ” and so is not duplicated here.

20.6. Submachine State
A submachine state is a syntactical convenience that facilitates reuse and modularity. It is a shorthand
that implies a macro-like expansion by another state machine and is semantically equivalent to a com-
posite state. The state machine that is inserted is called the referenced state machine while the state ma-
chine that contains the submachine state is called the containing state machine. The same state machine
may be referenced more than once in the context of a single containing state machine. In effect, a sub-
machine state represents a call to a state machine subroutine with one or more entry and exit points. The
entry and exit points are specified by stub states. SubmachineState is a child of State.

The submachine state is depicted as a normal state with the additional include declaration above (and
separated by a line from) its internal transitions compartment. The expression following the include
reserved word is the name of the invoked submachine.

ArgoUML currently only supports a horizontal division of a concurrent composite state in regions.

The description of the details panels of a concurrent region is almost identical to that of a composite
state (see Section 20.4, “ Composite State ” and so is not duplicated here. The only difference is one ad-
ditional field:

Submachine
Drop-down selector. Allows selecting the submachine included within this composite state.

20.7. Stub State
A stub state only appears on a submachine state.

Statechart Diagram Model Element Reference

299

A submachine state represents the invocation of a state machine defined elsewhere. In the general case,
an invoked state machine can be entered at any of its substates or through its default (initial)
pseudostate. Similarly, it can be exited from any substate or as a result of the invoked state machine
reaching its final state. The non-default entry and exits are specified through stub states. In the UML
metamodel, StubState is a child of State.

Every Stub State has a label on the diagram, which corresponds to the pathname represented by the
“Reference State” attribute of the stub state.

The description of the details panels of a stub state is almost identical to that of a pseudo state (see Sec-
tion 20.11, “ Pseudostate ” and so is not duplicated here. The only difference is one additional field:

Reference State
Drop-down selector. Allows entering the path name of the reference state.

20.8. Transition
A transition is a directed relation between a source state (any kind, e.g. composite state) and a destina-
tion state (any kind, e.g. composite state). Within the UML metamodel, Transition is a sub-class of
ModelElement.

A transition is represented on a statechart diagram in ArgoUML as a line with arrow connecting the
source to the destination state. Next to this line is a string containing the following three parts: The trig-
ger event (e.g. a Call Event), which may have parameters between brackets (). Next follows (if any) the
guard in square brackets ([]). Finally, if there is an effect (e.g. Call Action) defined, a slash (/) fol-
lowed by the expression of the action.

20.8.1. Transition Details Tabs
The details tabs that are active for transitions are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.8.2, “ Transition Property Toolbar ” and Section 20.8.3, “ Property Fields For Trans-
ition ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Note

The values in the "bounds" field of the transition are not editable, since they are de-
termined by the properties of the endpoints of the line.

Stereotype
Standard tab. In the UML metamodel, Transition has no stereotypes defined by default.

Statechart Diagram Model Element Reference

300

Tagged Values
Standard tab. In the UML metamodel, Transition has no standard tagged values defined.

Checklist
Standard tab for a transition.

20.8.2. Transition Property Toolbar

Go up

Navigate up in the hierarchy to the parent state machine.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected transition, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the transition from the model.

Warning

This is a deletion from the model not just the diagram. To delete a transition from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

20.8.3. Property Fields For Transition

Name
Text box. The name of the transition. By convention transition names start with a lower case letter
and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

StateMachine
Text box. Shows the name of the parent StateMachine for the transition.

Button 1 double-click navigates to the StateMachine shown.

State
Text box. Shows the name of the parent State in case of an internal transition.

Button 1 double-click navigates to the State shown.

Source
Text box. Shows the source state for the transition.

Statechart Diagram Model Element Reference

301

Button 1 double-click navigates to the selected entry.

Target
Text box. Shows the target state for the transition.

Button 1 double-click navigates to the selected entry.

Trigger
Text box. Shows the trigger event (if any) which invokes this transition.

Note

UML does not require there to be a trigger, e.g. when a guard is defined. In this case,
the transition is taken immediately if the guard is true.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with three
entries.

• Select - Add.... This Add an existing trigger event. A sub-menu opens with 4 choices:
Call Event, Change Event, Signal Event, Time Event.

• New. Add a new trigger event. A sub-menu opens with 4 choices: Call Event, Change Event,
Signal Event, Time Event.

• Delete From Model. Delete the trigger event from the model. This feature is always down-
lighted in the current version of ArgoUML.

Guard
Text box. Shows the name of a guard (if any). The expression of a guard must be true before this
transition can be taken.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with one entry.

• New. Add a new guard.

Effect
Text box. Shows the action (if any) to be invoked as this transition is taken.

Button 1 double-click navigates to the selected action, button 2 gives a pop up menu with two
entries.

• New. Add a new Effect (action) of a certain kind. This menu has the following submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the selected action from the model.

20.9. Event
An event is an observable occurrence. In the UML metamodel it is a child of ModelElement.

There are a number of different types of events that are children of event within the UML metamodel.

• CallEvent. Associated with an operation of a class, this event is caused by a call to the given op-

Statechart Diagram Model Element Reference

302

eration. The expected effect is that the steps of the operation will be executed.

• SignalEvent. Associated with a signal, this event is caused by the signal being raised.

• TimeEvent. An event cause by expiration of a timing deadline.

• ChangeEvent. An event caused by a particular expression (of attributes and associations) becom-
ing true.

An event is represented by its name.

20.9.1. Event Details Tabs
The details tabs that are active for events are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.9.2, “ Event Property Toolbar ” and Section 20.9.3, “ Property Fields For Event ”
below.

Documentation
Standard tab.

Stereotype
Standard tab. In the UML metamodel, an Event has the following standard stereotypes defined.

• create (for a CallEvent only). Create is a stereotyped call event denoting that the instance
receiving that event has just been created. For state machines, it triggers the initial transition at
the topmost level of the state machine (and is the only kind of trigger that may be applied to an
initial transition).

• destroy (for a CallEvent only). Destroy is a stereotyped call event denoting that the in-
stance receiving the event is being destroyed.

Tagged Values
Standard tab. In the UML metamodel, an Event has no standard tagged values defined.

20.9.2. Event Property Toolbar

Go up

Navigate up through the composition structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected event, navigating
immediately to the properties tab for that stereotype.

New parameter

This creates a new parameter for the event operation as the current parameter, navigating immedi-

Statechart Diagram Model Element Reference

303

ately to the properties tab for that parameter (see Section 18.9, “ Parameter ”).

Delete

This deletes the event from the model.

20.9.3. Property Fields For Event

Name
Text box. The name of the event. By convention event names start with a lower case letter and use
bumpy caps to divide words within the name in the same way as operations.

Note

ArgoUML does not enforce this naming convention.

Tip

For call events it makes sense to use the name of the associated operation. For signal
events it make sense to use the name of the signal, prefixed by [sig]. For time
events use the time expression, prefixed by [time] and for change events the change
expression, prefixed by [change].

Namespace
Text field. Shows the namespace for the event. This is the composition hierarchy.

Parameters
Text area, with entries for all the actual parameter values of the event (see Section 18.9, “ Parameter
”).

Button 1 double-click on any of the parameters navigates to that parameter, button 2 click brings up
a pop up menu with one entry.

• New Parameter. Create a new parameter and navigate to it.

Transition
This shows the transition caused by the event.

button 1 double-click on the transition navigates to that transition.

Operations
Drop-down selector. Only present for a Call Event. This allows specifying the operation that causes
the event when called.

Signal
Text field. Only present for a Signal Event. This allows specifying the signal that causes the event
when called.

Button 1 double-click navigates to the selected signal, button 2 gives a pop up menu with two
entries.

• Add.... This opens a dialog box that allows selecting an already existing signal.

Statechart Diagram Model Element Reference

304

• New Signal. Creates a new Signal, and navigates to it.

When
Double text field. Only present for a Time Event. This allows expressing the time that the event is
called.

The first of the two fields is for the body of the expression, and the second one for the language in
which it is written.

Warning

In ArgoUML V0.20, the properties panel of a change event lacks a field to enter the
change expression.

20.10. Guard
A guard is associated with a transition. At the time an event is dispatched, the guard is evaluated, and if
false, its transition is disabled. In the UML metamodel, Guard is a child of ModelElement.

A guard is shown on the diagram by the text of its expression in square brackets ([]).

20.10.1. Guard Details Tabs
The details tabs that are active for guards are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.10.2, “ Guard Property Toolbar ” and Section 20.10.3, “ Property Fields For Guard ”
below.

Documentation
Standard tab.

Stereotype
Standard tab, containing the stereotypes for the guard. In the UML metamodel, Guard has no
standard stereotypes defined.

Tagged Values
Standard tab. In the UML metamodel, Guard has no standard tagged values defined.

20.10.2. Guard Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

Statechart Diagram Model Element Reference

305

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected guard, navigating
immediately to the properties tab for that stereotype.

Delete from Model

This deletes the guard from the model

Warning

This is a deletion from the model, not just the diagram.

20.10.3. Property Fields For Guard

Name
Text box. The name of the guard. By convention guard names start with a lower case letter and use
bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Transition
Text box, showing the transition that owns this guard.

Button 1 double-click on the transition navigates to that transition.

Expression
Text box. The expression that defines the guard.

Language
Text box. This indicates that the expression is written in a particular interpretation language with
which to evaluate the text.

20.11. Pseudostate
A pseudostate encompasses a number of different transient vertices on a state machine diagram. They
are used, typically, to connect multiple transitions into more complex state transitions paths. For ex-
ample, by combining a transition entering a fork pseudostate with a set of transitions exiting the fork
pseudostate, we get a compound transition that leads to a set of concurrent target states. Pseudostates do
not have the properties of a full state and serve only as a connection point for transactions (but with
some semantic value). Within the UML metamodel, Pseudostate is a sub-class of StateVertex.

The representation of a pseudostate on a statechart diagram in ArgoUML depends on the particular kind
of pseudostate: initial, deepHistory, shallowHistory, join, fork, junction and choice. ArgoUML lets you
place any pseudostate directly by tools for the specific types of pseudostate. These are described in sep-
arate sections below (see Section 20.12, “ Initial State ”, Section 20.14, “ Junction ”, Section 20.15, “
Choice ”, Section 20.16, “ Fork ”, Section 20.17, “ Join ”, Section 20.18, “ Shallow History ” and Sec-
tion 20.19, “ Deep History ”).

Statechart Diagram Model Element Reference

306

20.11.1. Pseudostate Details Tabs
The details tabs that are active for pseudostates are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.11.2, “ Pseudostate Property Toolbar ” and Section 20.11.3, “ Property Fields For
Pseudostate ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Stereotype
Standard tab, containing the stereotypes of the pseudostate. In the UML metamodel,
PseudoState has the no standard stereotypes defined.

Tagged Values
Standard tab. In the UML metamodel, Pseudostate has no standard tagged values defined.

20.11.2. Pseudostate Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected pseudostate, navig-
ating immediately to the properties tab for that stereotype.

Delete from Model

This deletes the pseudostate from the model

Warning

This is a deletion from the model not just the diagram.

20.11.3. Property Fields For Pseudostate

Name
Text box. The name of the pseudostate. By convention pseudostate names start with a lower case
letter and use bumpy caps to divide words within the name.

Note

Statechart Diagram Model Element Reference

307

ArgoUML does not enforce this naming convention.

Tip

Pseudostate names are not shown on the diagram and it is not usually necessary to
give them a name.

Container
Text box. Shows the container of the pseudostate. This is the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that is the root of the state containment hierarchy).

Incoming
Text area. Lists any incoming transitions for the pseudostate.

Button 1 double-click navigates to the selected transition.

Outgoing
Text area. Lists any outgoing transitions for the pseudostate.

Button 1 double-click navigates to the selected transition.

20.12. Initial State
The initial state is a pseudostate (see Section 20.11, “ Pseudostate ”) representing a source for a single
transition to the default state of a composite state. It is the state from which any initial transition is made.

As a consequence it is not permissible to have incoming transitions. ArgoUML will not let you create
such transitions, and if you import a model that has such transitions, a critic will complain.

There can be at most one initial pseudostate in a composite state, which must have (at most) one outgo-
ing transition.

An initial state is represented on the diagram as a solid disc.

20.13. Final State
If a transition reaches a final state, it implies completion of the activity associated with that composite
state, or at the top level, of the complete state machine. In the UML metamodel FinalState is a child
of State.

Note

A final state is a true state (with all its attributes), not a pseudostate.

Completion at the top level implies termination (i.e. destruction) of the owning object instance.

The representation of a final state on the diagram is a circle with a small disc at its center.

Statechart Diagram Model Element Reference

308

20.13.1. Final State Details Tabs
The details tabs that are active for final states are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.13.2, “ Final State Property Toolbar ” and Section 20.13.3, “ Property Fields For Fi-
nal State ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Stereotype
Standard tab, containing the stereotypes of the final state. In the UML metamodel, a Final
State has the no standard tagged values defined.

Tagged Values
Standard tab. In the UML metamodel, Final State has no standard tagged values defined.

20.13.2. Final State Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected state, navigating
immediately to the properties tab for that stereotype.

Delete from Model

This deletes the final state from the model

Warning

This is a deletion from the model not just the diagram.

20.13.3. Property Fields For Final State

Name
Text box. The name of the final state. By convention final state names start with a lower case letter
and use bumpy caps to divide words within the name.

Statechart Diagram Model Element Reference

309

Note

ArgoUML does not enforce this naming convention.

Tip

Final state names are shown on the diagram but it is not usually necessary to give
them a name.

Container
Text box. Shows the container of the final state. This is the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that is the root of the state containment hierarchy).

Entry-Action
Text box. Shows the name of the action (if any) to be executed on entry to this final state.

Button 1 double-click navigates to the selected entry, button 2 gives a pop up menu with two
entries:

• New. Add a new Entry action of a certain kind. This menu has the following 7 submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Incoming
Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Internal Transitions
Text area. Lists all the internal transitions of the state. Such transitions neither exit nor enter the
state, so they do not cause a state change. Which means that the Entry and Exit actions are not in-
voked.

Button 1 double-click navigates to the selected transition

20.14. Junction
Junction is a pseudostate (see Section 20.11, “ Pseudostate ”) which is used to split an incoming trans-
ition into multiple outgoing transition segments with different guard conditions. A Junction is also called
a Merge or Static conditional branch. The chosen transition is that whose guard is true at the time of the
transition.

A predefined guard denoted else may be defined for at most one outgoing transition. This transition is
enabled if all the guards labeling the other transitions are false.

According the UML standard, its symbol is a small black circle. Alternatively, it may be represented by
a diamond shape (in case of "Decision" for Activity diagrams). ArgoUML only represents a junction on
the diagram as a solid (white by default) diamond, and does not support the black circle symbol for a
junction.

Statechart Diagram Model Element Reference

310

20.15. Choice
Choice is a pseudostate (see Section 20.11, “ Pseudostate ”) which is used to split an incoming transition
into multiple outgoing transition segments with different guard conditions. Hence, a Choice allows a dy-
namic choice of outgoing transitions. The chosen transition is that whose guard is true at the time of the
transition (if more than one is true, one is selected at random).

A predefined guard denoted else may be defined for at most one outgoing transition. This transition is
enabled if all the guards labeling the other transitions are false.

Note

This sort of pseudostate was formerly called a Branch by ArgoUML.

A choice is represented on the diagram as a small solid (white by default) circle (reminiscent of a small
state icon).

20.16. Fork
Fork is a pseudostate (see Section 20.11, “ Pseudostate ”) which splits a transition into two or more con-
current transitions.

Caution

The outgoing transitions should not have guards. However ArgoUML will not enforce this.

A fork is represented on the diagram as a solid (black by default) horizontal bar.

Tip

This bar can be made vertical by selecting the fork, and dragging with button 1 one of its
corners.

20.17. Join
Join is a pseudostate (see Section 20.11, “ Pseudostate ”) which joins two or more concurrent transitions
into a single transition.

Caution

The incoming transitions should not have guards. However ArgoUML will not enforce
this.

A join is represented on the diagram as a solid (black by default) horizontal bar.

Tip

Statechart Diagram Model Element Reference

311

This bar can be made vertical by selecting the join, and dragging with button 1 one of its
corners.

20.18. Shallow History
Shallow History is a pseudostate (see Section 20.11, “ Pseudostate ”) that can remember the last state of
its container that was active. The history pseudostate points to its default state with a transition arrow
just like the initial pseudostate does. This transition points to the substate that will become active when
there is no history. When the container composite state has been active before (i.e., when there is his-
tory), the substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the shallow history only remembers the
history for states that have the same container as the history pseudostate. It does not restore substates
deeper in the hierarchy then the history pseudostate itself.

A shallow history is represented on the diagram as a circle containing the letter H.

20.19. Deep History
Deep History is a pseudostate (see Section 20.11, “ Pseudostate ”) that can remember the last state of its
container that was active. The history pseudostate points to its default state with a transition arrow just
like the initial pseudostate does. This transition points to the substate that will become active when there
is no history. When the container composite state has been active before (i.e., when there is history), the
substate that was active when the container state was exited, becomes active again.

When placed within a multi-level hierarchy of composite states, the deep history remembers the history
for all states recursively which are contained in the history pseudostate container. It does restore any
substates no matter how deep in the hierarchy.

A deep history is represented on the diagram as a circle containing the symbols H*.

20.20. Synch State
A synch state is for synchronizing concurrent regions of a state machine. It is used in conjunction with
forks and joins to insure that one region leaves a particular state or states before another region can enter
a particular state or states. The firing of outgoing transitions from a synch state can be limited by spe-
cifying a bound on the difference between the number of times outgoing and incoming transitions have
fired. In the UML metamodel Synch is a child of StateVertex.

A synch state is shown as a small circle with the upper bound inside it. The bound is either a positive in-
teger or a star ('*') for unlimited. Synch states are drawn on the boundary between two regions when
possible.

20.20.1. Synch State Details Tabs
The details tabs that are active for Synch states are as follows.

ToDoItem
Standard tab.

Properties
See Section 20.20.2, “ Synch State Property Toolbar ” and Section 20.20.3, “ Property Fields For

Statechart Diagram Model Element Reference

312

Synch State ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Stereotype
Standard tab, containing the stereotypes of the Synch state. In the UML metamodel, Synch
State has no standard stereotypes defined.

Tagged Values
Standard tab. In the UML metamodel, Synch State has no standard tagged values defined.

20.20.2. Synch State Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected synch state, navig-
ating immediately to the properties tab for that stereotype.

Delete from Model

This deletes the synch state from the model

Warning

This is a deletion from the model not just the diagram.

20.20.3. Property Fields For Synch State

Name
Text box. The name of the Synch state. By convention Synch state names start with a lower case
letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Tip

Synch state names are not shown on the diagram and it is not usually necessary to give
them a name.

Statechart Diagram Model Element Reference

313

Container
Text box. Shows the container of the Synch state. This is the state hierarchy.

Button 1 double click on the entry will navigate to the composite state that contains this state (or the
top-level state that is the root of the state containment hierarchy).

Bound
Editable text box. Shows the Bound of the Synch state. Which is a positive integer or the value un-
limited (represented by a "*") specifying the maximal count of the SynchState. The count is the dif-
ference between the number of times the incoming and outgoing transitions of the synch state are
fired.

Incoming
Text area. Lists any incoming transitions for the final state.

Button 1 double-click navigates to the selected transition.

Outgoing Transitions
Text area. Lists any outgoing transitions for the final state.

Button 1 double-click navigates to the selected transition.

Statechart Diagram Model Element Reference

314

Chapter 21. Collaboration Diagram
Model Element Reference
21.1. Introduction

This chapter describes each model element that can be created within a collaboration diagram. Note that
some sub-model elements of model elements on the diagram may not actually themselves appear on the
diagram.

There is a close relationship between this material and the properties tab of the details pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers Properties in general, in this chapter they are linked to
specific model elements.

Caution

Collaboration diagrams are not fully developed yet in ArgoUML. Many aspects are not
fully implemented, or may not behave as expected. In particular there are some serious
problems with layout of the collaboration roles and messages.

Figure 21.1, “ Possible model elements on a collaboration diagram. ” shows a collaboration diagram
with all possible model elements displayed.

Figure 21.1. Possible model elements on a collaboration diagram.

315

21.1.1. Limitations Concerning Collaboration Diagrams
in ArgoUML

The collaboration diagram is still rather under-developed in ArgoUML. In particular there is no way to
show instance collaborations (based on objects and links) rather than specification collaborations.

The biggest difficulties are with the messages. There are problems with the sequencing of the messages
and their display on the diagram. The actions behind them are purely textual in implementation and
there is no way to link them back to their associated operations or signals.

21.2. Classifier Role
A classifier role is a specialization of a classifier, used to show its behavior in a particular context. In the
UML metamodel Classifier Role is a sub-class of Classifier. Within a collaboration dia-
gram classifier roles may be used in one of two ways:

• To represent the classifier in a particular behavioral context (the specification level); or

• to specify a particular instance of the classifier (the instance level).

In this latter form, classifier roles are identical to the instances used in sequence diagrams (see

Collaboration Diagram Model Element Refer-
ence

316

Chapter 19, Sequence Diagram Model Element Reference) and a collaboration diagram shows the same
information as the sequence diagram, but in a different presentation.

Caution

A collaboration diagram should not mix classifier roles used as the specifier level and the
instance level.

A classifier role is represented on a sequence diagram in ArgoUML as a plain box labeled with the clas-
sifier role name (if any) and classifier, separated by a colon (:).

Caution

A classifier role should properly also show object name (if any) preceding the classifier
role name and separated from it by a slash (/). This allows classifier roles in a specifica-
tion level diagram to be distinguished from instances in an instance level diagram.

ArgoUML does show the slash, but there is no way to define the instances.

21.2.1. Classifier Role Details Tabs
The details tabs that are active for classifier roles are as follows.

ToDoItem
Standard tab.

Properties
See Section 21.2.2, “ Classifier Role Property Toolbar ” and Section 21.2.3, “ Property Fields For
Classifier Role ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Source
Standard tab, but with no contents.

Caution

A classifier role should not generate any code, so having this tab active is probably a
mistake.

Tagged Values
Standard tab. In the UML metamodel, Classifier Role has the following standard tagged val-
ues defined.

• persistence (from the superclass, Classifier. Showing the permanence of the state in-
formation associated with the classifier role. Values transitory (state is destroyed when the
classifier role is destroyed) and persistent (state is preserved when the classifier role is des-
troyed).

Collaboration Diagram Model Element Refer-
ence

317

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the classifier role.

• derived (from the superclass, ModelElement). Values true, meaning the classifier role is
redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived classifier roles still have their value in analysis and design to introduce
useful names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

21.2.2. Classifier Role Property Toolbar

Go up

Navigate up through the package structure.

New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected classifier role, nav-
igating immediately to the properties tab for that stereotype.

Delete

This deletes the classifier role from the model

Warning

This is a deletion from the model not just the diagram. To delete an classifier role
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

21.2.3. Property Fields For Classifier Role

Name
Text box. The name of the classifier role. By convention classifier role names start with a lower
case letter and use bumpy caps to divide words within the name.

Collaboration Diagram Model Element Refer-
ence

318

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Classifier Role is provided by default with the UML standard stereotypes for a
classifier (metaclass, powertype, process, thread and utility).

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Text box. Records the namespace for the classifier role, which is always the containing Collabora-
tion.

Button 1 double click on the entry will navigate to the collaboration.

Multiplicity
Editable drop down selector. The default value is *, which means that there are any number of in-
stances of this classifierrole that play a role in the collaboration. The drop down provides some dif-
ferent multiplicities. E.g. 1..1 would mean that only one instance plays a role in this collaboration.

ArgoUML does not restrict you to the predefined ranges for multiplicity. You can edit this field
freely.

Base
List. The names of the classifiers of which this is a classifierrole. Button 1 double click navigates to
the classifier. Button 2 click gives a pop up menu with the following entries.

• Add. Allows adding or removeing classifiers to the list. To this end, a dialog box pops up, as
shown in the figure below.

Figure 21.2. The “add context” dialog box

Collaboration Diagram Model Element Refer-
ence

319

• Remove. Allows removeing classifiers to the list, without making use of the dialog box.

Generalizations
Text area. Lists any classifierrole that generalizes this classifierrole.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations
Text box. Lists any specialized classifierrole (i.e. for which this classifierrole is a generalization).

button 1 double click navigates to the generalization and opens its property tab.

Association End Role
Text area. Lists the association-end roles that are linked to this classifier role.

Button 1 double click navigates to the selected entry.

Available Contents

Collaboration Diagram Model Element Refer-
ence

320

Text area. Lists the subset of modelelements contained in the base classifier which is used in the
collaboration.

Button 1 double click navigates to the modelelement and opens its property tab.

Available Features
Text box. Lists the subset of features of the base classifier which is used in the collaboration.

button 1 double click navigates to the feature and opens its property tab.

21.3. Association Role
An association role is a specialization of an association, used to describe an associations behavior in a
particular context. In the UML metamodel Association Role is a sub-class of Association.

An association role is represented on a collaboration diagram in ArgoUML as a line connecting the in-
stances concerned. However on a sequence diagram the representation is modified to reflect the type of
action associated with the stimulus carried on the link (see Section 19.3, “ Stimulus ”).

The association role is labeled with the association role name (if any).

An association role shows its name and the association name according the following syntax:

/ AssociationRoleName : AssociationName

in the same manner as a classifier role. The more generic syntax is:

I / R : C

which stands for an Instance named I originating from the Classifier C playing the role R.

21.3.1. Association Role Details Tabs
The details tabs that are active for association roles are as follows.

ToDoItem
Standard tab.

Standard-Register.

Properties
See Section 21.3.2, “ Association Role Property Toolbar ” and Section 21.3.3, “ Property Fields For
Association Role ” below.

Documentation
Standard tab.

Presentation
Standard tab.

Note

The values in the "bounds" field of the association role are not editable, since they are

Collaboration Diagram Model Element Refer-
ence

321

determined by the properties of the endpoints of the line.

Source
Standard tab, but with no contents.

Caution

An association role should not generate any code, so having this tab active is probably
a mistake.

Tagged Values
Standard tab. In the UML metamodel, AssociationRole has the following standard tagged val-
ues defined.

• persistence (from the superclass, Association). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

• derived (from the superclass, ModelElement). Values true, meaning the association is
redundant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived association roles still have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for an Association Role.

21.3.2. Association Role Property Toolbar

Go up

Navigate up through the package structure.

Delete

This deletes the association role from the model

Warning

Collaboration Diagram Model Element Refer-
ence

322

This is a deletion from the model not just the diagram. To delete an association role
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

21.3.3. Property Fields For Association Role

Name
Text box. The name of the association role, which is shown on the diagram. By convention associ-
ation role names start with a lower case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Association role is provided by default with the UML standard stereotype from
the superclass Association: implicit.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 18.5, “ Stereotype ”).

Namespace
Text box. Records the namespace for the association role. This is the package hierarchy.

Button 1 double click on the entry will navigate to the item showm.

Base
Drop down selector. Records the association that is the base for the association role.

The drop down selector shows all associations that exist between the classifiers that correspond
with the connected classifier roles.

Association End Roles
Text area. Lists the ends of this association role. An association role can have any number of ends,
but two is generally the only useful number (link objects can led to a third end on instance level dia-
grams, but this is not supported by ArgoUML). For more on association end roles see Section 21.4,
“ Association End Role ”.

The names are listed, unless the association end role has no name, then it is shown as (Unnamed
AssociationEndRole).

Button 1 double click on an association end role will navigate to that end.

Messages
Text area. Lists the messages that are associated with this association role.

Button 1 double click navigates to the selected entry

Collaboration Diagram Model Element Refer-
ence

323

21.4. Association End Role
An association end role is a specialization of an association end, used to describe an association end's
behavior in a particular context. In the UML metamodel AssociationEndRole is a sub-class of
AssociationEnd.

Two or more association end roles are associated with each association role (see Section 21.3, “ Associ-
ation Role ”), although for ArgoUML, the number of ends can only be two.

The association end role has no direct access on any diagram, although its stereotype, name and multi-
plicity is shown at the relevant end of the parent association role (see Figure 21.1, “ Possible model ele-
ments on a collaboration diagram. ”), and some of its properties can be directly adjusted with button 2
click. Where shared or composite aggregation is selected for one association end role, the opposite end
is shown as a solid diamond (composite aggregation) or hollow diamond (shared aggregation).

Note

ArgoUML does not currently (V0.18) support showing qualifiers on the diagram, as de-
scribed in the UML 1.4 standard.

Caution

An association end role should have the same, or “stricter” attribute values than its base as-
sociation end. In particular its navigability should be no more general. There is as yet no
critic in ArgoUML to offer advice on this rule.

21.4.1. Association End Role Details Tabs
The details tabs that are active for association end roles are as follows.

ToDoItem
Standard tab.

Properties
See Section 21.4.2, “ Association End Role Property Toolbar ” and Section 21.4.3, “ Property Fields
For Association End Role ” below.

Documentation
Standard tab.

Source
Standard tab. There is no code generated for an association end role.

Tagged Values
Standard tab. In the UML metamodel, AssociationEndRole has the following standard tagged
values defined.

• derived (from the superclass, ModelElement). Values true, meaning the association end
role is redundant—it can be formally derived from other elements, or false meaning it cannot.

Tip

Collaboration Diagram Model Element Refer-
ence

324

Derived association end roles still have their value in analysis to introduce useful
names or concepts, and in design to avoid re-computation. However the tag only
makes sense for an association end role if it is also applied to the parent associ-
ation role.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

21.4.2. Association End Role Property Toolbar

Go up

Navigate up to the association role to which this end role belongs.

Go Opposite

This navigates to the other end of the association role.

New Qualifier

This creates a new Qualifier for the selected association-end role, navigating immediately to the
properties tab for that qualifier.

Warning

Qualifiers are only partly supported in ArgoUML V0.18. Hence, activating this button
creates a qualifier in the model, which is not shown on the diagram. Also, the proper-
ties panel for a qualifier equals that of a regular attribute.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected association-end
role, navigating immediately to the properties tab for that stereotype.

Delete

This deletes the selected association-end from the model.

Note

This button is downlighted for binary association roles, since an association needs at
least two ends. Only for N-ary associations, this button is accessable, and deletes just
one end from the association.

Collaboration Diagram Model Element Refer-
ence

325

21.4.3. Property Fields For Association End Role

Name
Text box. The name of the association end role, which provides a role name for this end of the asso-
ciation role. This role name can be used for navigation, and in an implementation context, provides
a name by which the source end of an association role can reference the target end.

Note

ArgoUML does not enforce any naming convention for association end roles.

Stereotype
Drop down selector. Association end role is provided by default with the UML standard stereotypes
for AssociationEndRole (association, global, local, parameter, self).

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Base
Text field that shows the name of the corresponding association end. Button 1 double click navig-
ates to the association end.

AssociationRole
Text box. Records the parent association role for this association end role. Button 1 double click
navigates to the association role.

Type
Drop down selector providing access to all standard UML types provided by ArgoUML and all new
classes created within the current model.

This is the type of the entity attached to this end of the association role.

Multiplicity
Editable drop down text entry. Allows to alter the multiplicity of this association end role (with re-
spect to the other end), i.e. how many instances of this end may be associated with an instance of
the other end. The multiplicity is shown on the diagram at that end of the association role.

All remaining properties
See Section 18.13.3, “ Property Fields For Association End ” . Since these are completely equal to
the fields of an association end, they are not repeated here.

21.5. Message
A message is a communication between two instances of an association role on a specification level col-
laboration diagram. It describes an action which will generate the stimulus associated with the message.
On a collaboration diagram a message is associated with an association role. In the UML metamodel
Message is a sub-class of ModelElement.

The message is represented on a collaboration diagram in ArgoUML by its sequence number separated
by a colon from the expression defining the associated action. It is accompagnied by an arrow pointing

Collaboration Diagram Model Element Refer-
ence

326

in the direction of the communication, i.e. the direction of the AssociationRole. By convention the name
of a message is not shown on the diagram. Instead the diagram displays the message sequence number,
either as an integer or as a decimal number to show hierarchy.

Warning

The current release of ArgoUML does not retaining message positioning after reloading
the project, i.e. as if the positions were not stored in the project file.

21.5.1. Message Details Tabs
The details tabs that are active for messages are as follows.

ToDoItem
Standard tab.

Properties
See Section 21.5.2, “ Message Property Toolbar ” and Section 21.5.3, “ Property Fields For Mes-
sage ” below.

Documentation
Standard tab.

Presentation
Standard tab. The values for the bounds of the message define the bounding box of the message.
The Line field defines the arrow color. Increasing the Shadow size has an esthetically question-
able effect.

Caution

In the V0.18 release of ArgoUML changing the position of the message by editing the
values of the Bounds field is possible, but will make only a temporary change to the
position of the message, as described above.

Source
Standard tab, showing the message number and action expression separated by a colon (when UML
1.4 is selected in the drop-down).

Caution

A message probably should not generated any code of itself. That should be left to the
action and possibly stimulus associated with it. In any case changes to this tab are ig-
nored.

Tagged Values
Standard tab. In the UML metamodel, Message has the following standard tagged values defined.

• derived (from the superclass, ModelElement). Values true, meaning the message is re-
dundant—it can be formally derived from other elements, or false meaning it cannot.

Collaboration Diagram Model Element Refer-
ence

327

Note

Derived messages still have their value in analysis and design to introduce useful
names or concepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

21.5.2. Message Property Toolbar

Go up

Navigate up through the package structure.

New Action

This creates a new Action (see Section 20.3, “ Action ”) for the selected object, navigating immedi-
ately to the properties tab for that action.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected message, navigat-
ing immediately to the properties tab for that stereotype.

Delete

This deletes the message from the model

Warning

This is a deletion from the model not just the diagram. To delete an message from the
diagram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

21.5.3. Property Fields For Message

Name
Text box. The name of a message is usually its sequence number, either an integer, or a decimal
(allowing alternative message hierarchies to be clearly described). ArgoUML will supply an integer
sequence number by default.

Stereotype
Drop down selector. Message has no stereotypes by default in the UML standard.

Collaboration Diagram Model Element Refer-
ence

328

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Interaction
Text box. Records the Interaction of which the message is a part.

Button 1 double click on the entry will navigate to the interaction.

Sender
Text box. Identifies the classifier role which sent this message.

Button 1 double click navigates to the sender classifier role.

Receiver
Text box. Identifies the classifier role which receives this message.

Button 1 double click navigates to the receiver classifier role.

Activator
Drop down selector. Identifies the message which invokes the behavior that causes the sending of
this message.

Button 1 click allows selecting the message.

Action
Text box. Lists the action (see Section 20.3, “ Action ”) this message invokes to raise a stimulus.

Button 1 double click navigates to the selected action, button 2 gives a pop up menu with the fol-
lowing entry.

• New. Add a new action.

This item is downlighted if an action already exists.

Predecessors
Text area. Identifies the messages, the completion of whose execution enables this message.

Button 1 double click navigates to the selected message, button 2 gives a pop up menu with one
entry.

• Add. Opens a dialog box that allows to select any number of messages. See figure below.

This entry is grayed out when no messages exist.

Figure 21.3. The “add predecessors” dialog box

Collaboration Diagram Model Element Refer-
ence

329

Collaboration Diagram Model Element Refer-
ence

330

Chapter 22. Activity Diagram Model
Element Reference
22.1. Introduction

This chapter describes each model element that can be created within an Activity diagram. Note that
some sub-model elements of model elements may not actually themselves appear on the diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers Properties in general, in this chapter they are linked to
specific model elements.

Figure 22.1, “ Possible model elements on an activity diagram. ” shows an Activity Diagram with all
possible model elements displayed.

Figure 22.1. Possible model elements on an activity diagram.

331

22.1.1. Limitations Concerning Activity Diagrams in
ArgoUML

Activity diagrams are not fully developed yet in ArgoUML. Some aspects are not fully implemented, or
may not behave as expected. In particular lacking are call states, swim lanes, control icons (signals),
sub-activities, synch states. Interactions with other classifiers are provided by an object-flow-state which
is only partly implemented.

22.2. Action State
An action state represents execution of an atomic action, usually the invocation of an action. Within the
UML metamodel, ActionState is a sub-class of SimpleState. It is a specialized simple state that

Activity Diagram Model Element Reference

332

only has an entry action, and with an implicit trigger as soon as that action is completed.

Caution

As a consequence any outgoing transitions from an action state should not have explicit
triggers defined (ArgoUML will not currently check for this). They may have guards to
provide a choice where there is more than one transition.

Note

Unlike an ordinary state, an internal transition, an exit action and a Do activity are not per-
mitted for action states.

An action state is represented on an activity diagram in ArgoUML as a rectangle with rounded corners
containing the name of the action state.

Caution

The UML standard specifies that the text shown in the action state on the activity diagram
should contain the expression associated with the entry action - which is implemented as
such since ArgoUML V0.18. In past versions of ArgoUML (0.16.1 and before), the dia-
gram used to show the action state name. Loading a project created by one of the older ver-
sions, causes the project file to be converted to the correct format to conform to the UML
standard. This process is designed to be transparent for the user, and the only drawback is,
that the activity diagram in the project will not show correctly when reloaded in an old ver-
sion of ArgoUML again.

22.2.1. Action State Details Tabs
The details tabs that are active for action states are as follows.

ToDoItem
Standard tab.

Properties
See Section 22.2.2, “ Action State Property ToolBar ” and Section 22.2.3, “ Property fields for ac-
tion state ” below.

Documentation
Standard tab.

Presentation
Standard tab. The values for the bounds of the action state define the bounding box of the action
state.

Stereotype
Standard tab that shows the stereotypes of the action state. In the UML metamodel, there are no ste-
reotypes defined by default for a action state.

Tagged Values
Standard tab. In the UML metamodel, ActionState has no standard tagged values defined.

Activity Diagram Model Element Reference

333

22.2.2. Action State Property ToolBar

Go up

Navigate up through the containment structure. Action states are contained by the (otherwise invis-
ible) top state.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected action state, navig-
ating immediately to the properties tab for that stereotype.

Delete from Model

This deletes the action state from the model

Warning

This is a deletion from the model not just the diagram. It is not possible to delete an
action state from the diagram, since that concept does not fit the UML standard.

Hence ArgoUML does also not show the Add to Diagram pop-up menu for action
states.

22.2.3. Property fields for action state

Name
Text box. The name of the action state. By convention action state names start with a lower case let-
ter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Container
Text box. The container of the action state. This shows the otherwise invisible composite state at the
top of the containment hierarchy.

Entry-Action
Text box. Shows the name of the action to be invoked on entry to this action state. According the
UML standard, an Action State is obliged to have an Entry-Action.

Button 1 double-click navigates to the shown entry, button 2 gives a pop up menu with two entries.

• New. Add a new Entry action of a certain kind. This menu has the following 7 submenus to se-
lect the kind of action: Call Action, Create Action, Destroy Action, Return Action, Send Action,
Terminate Action, Uninterpreted Action.

• Delete From Model. Delete the Entry-Action.

Deferrable events

Activity Diagram Model Element Reference

334

Text box. The deferrable events of the action state.

Incoming
Text area. Lists the transitions that enter this action state.

Button 1 double-click navigates to the selected entry.

Outgoing
Text area. Lists the transitions that leave this action state.

Button 1 double-click navigates to the selected entry.

22.3. Action
This model element is described in the context of statechart diagrams (see Section 20.3, “ Action ”).

22.4. Transition
This model element is described in the context of statechart diagrams (see Section 20.8, “ Transition ”).

Caution

Remember that action states do not have explicit triggers. The transition is implicitly
triggered as soon as the entry event of the action state is complete. An explicit trigger
should not therefore be set.

The current release of ArgoUML will not check that this constraint is met.

Note

Transitions to and from an ObjectFlowState are dashed, to distinguish object flow from
control flow.

22.5. Guard
This model element is described in the context of statechart diagrams (see Section 20.10, “ Guard ”).

22.6. Initial State
This model element is described in the context of statechart diagrams (see Section 20.12, “ Initial State
”).

22.7. Final State
This model element is described in the context of statechart diagrams (see Section 20.13, “ Final State
”).

22.8. Junction (Decision)

Activity Diagram Model Element Reference

335

This model element is described in the context of statechart diagrams (see Section 20.14, “ Junction ”).

22.9. Fork
This model element is described in the context of statechart diagrams (see Section 20.16, “ Fork ”).

22.10. Join
This model element is described in the context of statechart diagrams (see Section 20.17, “ Join ”).

22.11. ObjectFlowState
(To Be Written)

Activity Diagram Model Element Reference

336

Chapter 23. Deployment Diagram
Model Element Reference
23.1. Introduction

This chapter describes each model element that can be created within a Deployment Diagram. Note that
some sub-model elements of model elements on the diagram may not actually themselves appear on the
diagram.

There is a close relationship between this material and the Properties Tab of the Details Pane (see Sec-
tion 13.3, “ Properties Tab ”). That section covers Properties in general, in this chapter they are linked to
specific model elements.

Within ArgoUML, the deployment diagram is used for both component diagrams (i.e. without instances,
showing static dependencies of components) and deployment diagrams (showing how instances of com-
ponents are handled by instances of nodes at run-time).

Caution

Deployment diagrams are not fully developed yet in ArgoUML. Some aspects are not fully
implemented or may not behave as expected. Notable omissions are the possibility to draw
new interfaces and proper stereotyping of the various dependency relationships.

Figure 23.1, “ Possible model elements on a component diagram. ” shows a component diagram with all
possible model elements displayed.

Figure 23.1. Possible model elements on a component diagram.

Figure 23.2, “ Possible model elements on a deployment diagram. ” shows a deployment diagram with

337

all possible model elements displayed.

Figure 23.2. Possible model elements on a deployment diagram.

23.1.1. Limitations Concerning Deployment Diagrams in
ArgoUML

The deployment diagram is generally well drawn, but there are only a subset of the relationships that
should be shown available, which restricts the ability to show dynamic behavior of deployed code.

It is not possible to create new interfaces directly on this diagram; they can only be added if they are first
created in the model (by drawing them on a class diagram).

It is an inconvenience that the alternative representation of an interface (as a small circle) is not suppor-
ted.

23.2. Node
A node is a run-time physical object on which components may be deployed. In the UML metamodel it
is a sub-class of Classifier.

A node is represented on a class diagram as a three dimensional box, labeled with its name.

23.2.1. Node Details Tabs
The details tabs that are active for nodes are as follows.

ToDoItem
Standard tab.

Properties

Deployment Diagram Model Element Refer-
ence

338

See Section 23.2.2, “ Node Property Toolbar ” and Section 23.2.3, “ Property Fields For Node ” be-
low.

Documentation
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the node on the diagram.

Warning

Beware that in the 0.18 release of ArgoUML, the bounding box just refers to the front
face of the cube. This means that the three dimensional top and side may be ignored,
for example when determining the limits of a diagram for saving graphics.

Source
Standard tab, but with no contents.

Caution

A node should not generate any code, so having this tab active is probably a mistake.

Tagged Values
Standard tab. In the UML metamodel, Node has the following standard tagged values defined.

• persistence (from the superclass, Classifier). Values transitory, indicating state
is destroyed when an instance is destroyed or persistent, marking state is preserved when
an instance is destroyed.

• semantics (from the superclass, Classifier). The value is a specification of the se-
mantics of the node.

• derived (from the superclass, ModelElement). Values true, meaning the node is redund-
ant—it can be formally derived from other elements, or false meaning it cannot.

Note

Derived nodes still have their value in analysis to introduce useful names or con-
cepts, and in design to avoid re-computation.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

23.2.2. Node Property Toolbar

Deployment Diagram Model Element Refer-
ence

339

Go up

Navigate up through the package structure.

New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected node, navigating
immediately to the properties tab for that stereotype.

Delete

This deletes the node from the model

Warning

This is a deletion from the model not just the diagram. To delete a node from the dia-
gram, but keep it within the model, use the main menu Remove From Diagram
(or press the Delete key).

23.2.3. Property Fields For Node

Name
Text box. The name of the node. The name of a node has a leading capital letter, with words separ-
ated by “bumpy caps”.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Node is a type of classifier, and so it has the default stereotypes of a classifier
as defined in the UML standard. ArgoUML provides the standard stereotypes for a classifier:
metaclass, powertype, process, thread and utility.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Allows altering the namespace for the node. This is the package hierarchy.

Modifiers
Check box, with entries abstract, leaf and root.

• abstract is used to declare that this node cannot be instantiated, but must always be special-

Deployment Diagram Model Element Refer-
ence

340

ized. The name of an abstract node is displayed in italics on the diagram.

• leaf indicates that this node cannot be further specialized.

• root indicates the node can have no generalization.

Generalizations
Text area. Lists any node that generalizes this node.

Button 1 double click navigates to the generalization and opens its property tab.

Specializations
Text box. Lists any specialized node (i.e. for which this node is a generalization.

Button 1 double click navigates to the specialization and opens its property tab.

Residents
Text box. Lists any residents (see Section 23.4, “ Component ”) designed to be deployed on this
type of node.

Button 1 double click navigates to the selected entry.

23.3. Node Instance
A node instance is an instance of a node where component instances (see Section 23.5, “ Component In-
stance ”) may reside. In the UML metamodel NodeInstance is a sub-class of Instance and is spe-
cifically an instance that is derived from a node.

A node instance is represented on a deployment diagram in ArgoUML as a three dimensional box
labeled with the node instance name (if any) and node type, separated by a colon (:).

Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a node instance from a node.

23.3.1. Node Instance Details Tabs
The details tabs that are active for node instances are as follows.

ToDoItem
Standard tab.

Properties
See Section 23.3.2, “ Node Instance Property Toolbar ” and Section 23.3.3, “ Property Fields For
Node Instance ” below.

Documentation
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the node instance on the diagram.

Deployment Diagram Model Element Refer-
ence

341

Warning

Beware that in the current release of ArgoUML, the bounding box just refers to the
front face of the cube. This means that the three dimensional top and side may be ig-
nored, for example when determining the limits of a diagram for saving graphics.

Source
Standard tab, containing just the name of the node instance.

Caution

A node instance should not generate any code, so having this tab active is probably a
mistake.

Tagged Values
Standard tab.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for an Instance.

23.3.2. Node Instance Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected node instance, nav-
igating immediately to the properties tab for that stereotype.

Delete

This deletes the node instance from the model

Warning

This is a deletion from the model not just the diagram. To delete an node instance
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

Deployment Diagram Model Element Refer-
ence

342

23.3.3. Property Fields For Node Instance

Name
Text box. The name of the node instance. By convention node instance names start with a lower
case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Node instance has no stereotypes by default in the UML standard.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records the namespace for the node instance. This is the package hierarchy.

Stimuli sent
(To Be Written).

Stimuli Received
(To Be Written).

Residents
Text box. Lists any residents (see Section 23.4, “ Component ”) designed to be deployed on this
type of node.

Button 1 double click navigates to the selected entry.

Classifiers
Text field. A Node instance type can be selected here.

Caution

ArgoUML V0.18 lists many more items in the dropdown list then solely Nodes. Be-
ware to select Nodes only.

23.4. Component
A component type represents a distributable piece of implementation of a system, including software
code (source, binary, or executable) but also including business documents, etc., in a human system.
Components may be used to show dependencies, such as compiler and run-time dependencies or inform-
ation dependencies in a human organization. In the UML metamodel it is a sub-class of Classifier.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, labeled with its name.

Deployment Diagram Model Element Refer-
ence

343

23.4.1. Component Details Tabs
The details tabs that are active for components are as follows.

ToDoItem
Standard tab.

Properties
See Section 23.4.2, “ Component Property Toolbar ” and Section 23.4.3, “ Property Fields For
Component ” below.

Documentation
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the component on the diagram.

Source
Standard tab, but with no contents.

Caution

A component should not generate any code, so having this tab active is probably a
mistake.

Tagged Values
Standard tab.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

23.4.2. Component Property Toolbar

Go up

Navigate up through the package structure.

New reception

This creates a new reception, navigating immediately to the properties tab for that reception.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected component, navig-
ating immediately to the properties tab for that stereotype.

Delete

Deployment Diagram Model Element Refer-
ence

344

This deletes the component from the model

Warning

This is a deletion from the model not just the diagram. To delete a component from
the diagram, but keep it within the model, use the main menu Remove From Dia-
gram (or press the Delete key).

23.4.3. Property Fields For Component

Name
Text box. The name of the component. The name of a component has a leading capital letter, with
words separated by “bumpy caps”.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Component is provided by default with the UML standard stereotypes docu-
ment, executable, file, library and table. ArgoUML also provides the standard Classi-
fier stereotypes, metaclass, powertype, process, thread and utility.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows altering the namespace for the component. This is the
package hierarchy.

Modifiers
Check box, with entries abstract, leaf and root.

• Abstract is used to declare that this component cannot be instantiated, but must always be
specialized.

• Leaf indicates that this component cannot be further specialized.

• Root indicates the node can have no generalization.

Generalizations
Text box. Lists any component that generalizes this component.

Specializations
Text area. Lists any derived components, i.e those for which this component is a generalization.

Client Dependencies
Text area. Lists outgoing dependencies. Button 1 double click navigates to the dependency.

Supplier Dependencies
Text area. Lists incoming dependencies. Button 1 double click navigates to the dependency.

Deployment Diagram Model Element Refer-
ence

345

Residents
Text box. Lists any residents (see Section 23.4, “ Component ”) designed to be deployed on this
type of node.

Button 1 double click navigates to the selected entry.

23.5. Component Instance
A component instance is an instance of a component (see Section 23.4, “ Component ”) which may
reside on a node instance (see Section 23.3, “ Node Instance ”). In the UML metamodel Compon-
entInstance is a sub-class of Instance and is specifically an instance that is derived from a com-
ponent.

A component is represented on a class diagram as a box with two small rectangles protruding from its
left side, labeled with its name.

A component instance is represented on a sequence diagram in ArgoUML as a box with two small rect-
angles protruding from its left side labeled with the component instance name (if any) and component
type, separated by a colon (:).

Tip

It is the presence of the colon (:) and the underlining of the name and type that distin-
guishes a component instance from a component.

23.5.1. Component Instance Details Tabs
The details tabs that are active for component instances are as follows.

ToDoItem
Standard tab.

Properties
See Section 23.5.2, “ Component Instance Property Toolbar ” and Section 23.5.3, “ Property Fields
For Component Instance ” below.

Documentation
Standard tab.

Presentation
Standard tab. The Bounds: field defines the bounding box for the component on the diagram.

Source
Standard tab, containing just the name of the component instance.

Caution

A component instance should not generate any code, so having this tab active is prob-
ably a mistake.

Tagged Values

Deployment Diagram Model Element Refer-
ence

346

Standard tab.

Note

The UML Element metaclass from which all other model elements are derived in-
cludes the tagged element documentation which is handled by the documentation
tab under ArgoUML

Checklist
Standard tab for an Instance.

23.5.2. Component Instance Property Toolbar

Go up

Navigate up through the package structure.

New Stereotype

This creates a new Stereotype (see Section 16.6, “ Stereotype ”) for the selected component in-
stance, navigating immediately to the properties tab for that stereotype.

Delete

This deletes the component instance from the model

Warning

This is a deletion from the model not just the diagram. To delete a component instance
from the diagram, but keep it within the model, use the main menu Remove From
Diagram (or press the Delete key).

23.5.3. Property Fields For Component Instance

Name
Text box. The name of the component instance. By convention component instance names start
with a lower case letter and use bumpy caps to divide words within the name.

Note

ArgoUML does not enforce this naming convention.

Stereotype
Drop down selector. Component instance has no stereotypes by default in the UML standard.

Navigate Stereotype
icon. If a stereotype has been selected, this will navigate to the stereotype property panel (see

Deployment Diagram Model Element Refer-
ence

347

Section 16.6, “ Stereotype ”).

Namespace
Drop down selector. Records and allows to change the namespace for the component instance. This
is the package hierarchy.

Stimuli sent
(To Be Written).

Stimuli Received
(To Be Written).

Residents
Text box. Lists any residents (see Section 23.4, “ Component ”) designed to be deployed on this
component.

Button 1 double click navigates to the selected entry.

Classifiers
Drop down selector. A Component instance type can be selected here.

Caution

ArgoUML V0.18 lists many more items in the dropdown list then solely Components.
Beware to select Components only.

23.6. Dependency
A key part of any component or deployment diagram is to show dependencies. For details see Sec-
tion 18.14, “ Dependency ”.

Caution

UML relies on stereotyping of dependencies on component and deployment diagrams to
characterize the types of relationship. In the current release of ArgoUML there are limita-
tions in the implementation of dependencies which limit this functionality.

23.7. Class
A component diagram may show the key internal structure of components, including classes within the
component. For details see Section 18.6, “ Class ”.

Caution

Classes can only be added to a component diagram if they already exist in the model (by
selecting them in the explorer and executing the "Add to diagram" button 2 command).
There is no way to create a new class on a component diagram.

23.8. Interface

Deployment Diagram Model Element Refer-
ence

348

A component or deployment diagram may show components or component instances which implement
interfaces. For details see Section 18.16, “ Interface ”.

Caution

The V0.18 release of ArgoUML uses the same representation of an interface as a class dia-
gram. The UML standard suggests that an interface on a component or deployment dia-
gram should just be shown as a small open circle, connected to the component which real-
izes that interface.

Warning

There is no way to show the linking of an interface to a component or component instance
in the V0.18 release of ArgoUML.

23.9. Association
Components may be associated to each other. For details about associations, see Section 18.12, “ Asso-
ciation ”.

Where classes or interfaces are shown within components on component diagrams, they may be shown
linked by associations.

23.10. Object
Just as components may show the classifiers that make up their internal structure, component instances
on deployment diagrams may show the classifier instances that make up their internal structure. In prac-
tice the only instance that is of use is an object (an instance of a class). For details see Section 19.2, “
Object ”.

23.11. Link
Where objects (Node Instances or Class Instances) are shown within component instances on deploy-
ment diagrams, their inter-relationships may be shown as links (instances of an association). See Sec-
tion 19.9, “ Link ” for details.

Deployment Diagram Model Element Refer-
ence

349

Chapter 24. Profiles

Caution

This section used to be called "Built In DataTypes, Classes, Interfaces and Stereotypes",
and has not been updated completely since the introduction of Profiles.

24.1. Introduction
This chapter describes ArgoUML's built in profiles, which contain datatypes, enumerations, classes, in-
terfaces, stereotypes, tag definitions, and critics.

Datatypes, enumerations, classes and interfaces are generally available for use anywhere a class may be
selected in the properties tab. The most common use is for return type and parameter types in method
signatures.

Stereotypes and tag definitions are mostly used for application specific extensions of the model, e.g. to
distinct elements that need to be implemented differently.

Critics are included with profiles to support safeguarding constraints specific to the profile's target ap-
plication.

The model elements in an UML profile are organized as a hierarchy beneath a Model, but they are not
part of your project. Hence, they are loaded separately, and once used, they need to be present with the
project to be able to open it.

Figure 24.1. Hierarchy of default profiles within ArgoUML

Next to the built in profiles, ArgoUML makes it possible to create your own profiles, or use profiles
from a third party.

24.2. The UML 1.4 Standard Elements Profile

350

24.2.1. Datatypes
These are the UML datatypes. For their definition refer to the UML standard.

• Integer

• String

• UnlimitedInteger

24.2.2. Enumerations
These are the UML enumerations. For their definition refer to the UML standard.

• Boolean

24.2.3. Stereotypes
UML 1.4 defines a large number of stereotypes which are all supported by ArgoUML. The table below
lists all these stereotypes.

The UML 1.4 standard also specifies many stereotypes in the chapters “Example Profiles”: one for
“Software Development” and one for “Business Modeling”. Due to the specialized nature of these pro-
files, implementation in ArgoUML is postponed until a yet undetermined moment.

Table 24.1. Stereotypes defined in UML 1.4 and ArgoUML UML 1.4 und
ArgoUML definierte Stereotypen

StereoType Base Element

access Permission

appliedProfile Package

association AssociationEnd

auxiliary Class

become Flow

call Usage

copy Flow

create BehavioralFeature

create CallEvent

Profiles

351

StereoType Base Element

create Usage

derive Abstraction

destroy BehavioralFeature

destroy CallEvent

document Abstraction

executable Abstraction

facade Package

file Abstraction

focus Class

framework Package

friend Permission

global AssociationEnd

implementation Class

implementation Generalization

implicit Association

import Permission

instantiate Usage

invariant Constraint

library Abstraction

local AssociationEnd

metaclass Class

metamodel Package

modelLibrary Package

parameter AssociationEnd

Profiles

352

StereoType Base Element

postcondition Constraint

powertype Class

precondition Constraint

process Classifier

profile Package

realize Abstraction

refine Abstraction

requirement Comment

responsibility Comment

self AssociationEnd

send Usage

signalflow ObjectFlowState

source Abstraction

stateInvariant Constraint

stub Package

systemModel Package

table Abstraction

thread Classifier

topLevel Package

trace Abstraction

type Class

24.2.4. Tag Definitions
These are the built in standard tag definitions. For their definition refer to the UML standard.

Profiles

353

• derived

• documentation

• persistence

• persistent

• semantics

• usage

24.3. The Java Profile
The Java profile contains elements that are not mandated by the UML standard, and should only be used
in a development environment that makes use of Java.

The Java profile is effectively organized as a hierarchy beneath in four packages, lang, math, net and
util, themselves subpackages of java, which is a subpackage of the model itself. Figure 24.2, “ Hier-
archy of the Java profile within ArgoUML ” shows this structure.

Figure 24.2. Hierarchy of the Java profile within ArgoUML

Profiles

354

Profiles

355

24.3.1. Datatypes
These are the built in atomic types. You can change them if you wish. However this is not good practice.

All these can be found in the java.lang subpackage of the main model.

These are the standard datatypes. For their definition refer to the Java standard.

• boolean

• byte

• char

• double

• float

• int

• long

• short

• void

Note

void is not strictly speaking a type, but the absence of type. ArgoUML knows about void
and allows it as an option where a datatype may be selected.

24.3.2. Classes
These are the common classes, corresponding to classes defined within the standard Java environment. It
is up to you if you wish to change them.

These are found in all four subpackages of the java subpackage.

For a definition of these classes see the Java language and library definitions.

24.3.2.1. Classes From java.lang

These are the classes within the java.lang package.

• Boolean

• Byte

• Char

• Double

• Float

Profiles

356

• Integer

• Long

• Object

• Short

• String

24.3.2.2. Classes From java.math

These are the classes within the java.math package.

• Big Decimal

• Big Integer

24.3.2.3. Classes From java.net

These are the classes within the java.net package.

• URL

24.3.2.4. Classes From java.util

These are the classes within the java.util package.

• Date

• Time

• Vector

24.3.3. Interfaces
These are some useful interfaces, corresponding to classes defined within the standard Java environ-
ment. Interfaces have many of the properties of classes (like all types) and you can change them if you
wish.

All these can be found in the java.util subpackage of the main model.

These are the interfaces defined within the java.util package. For their definition consult the Java
language and library references.

• Collection

• Iterator

• List

Profiles

357

• Set

• SortedSet

Profiles

358

Glossary
A

Activity Diagram
A UML diagram capturing the dynamic behavior of a system or sub-
system. See Section 6.10, “ Activity Diagrams (To be written) ” for
more information.

Action
Behavior associated with States or Transitions in State Diagram.
These actions are invocations of Methods and appear on Sequence
and Collaboration Diagrams.

Actor
A representation of an agent (animate or inanimate) on a Use Case
Diagram external to the system being designed.

Analysis
Analysis is the process of taking the “customer” requirements and
re-casting them in the language of, and from the perspective of, a
putative solution.

Association Class
A class that characterizes the association between two other classes.

Association
A relationship between two classes in a Class Diagram or between
Use Cases or Use Cases and Actors in a Use Case Diagram.

Attribute (of a Class or Object)
An attribute of a class or object is a specification of a data element
encapsulated by that object.

C

CASE
Computer Aided Software Engineering.

Class
The encapsulation of the data associated with a model element (its
attributes) and the actions associated with the model element (its
methods).

A class specifies the characteristics of a model element. An object
represents an instance of the model element.

Classes and objects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

Class Diagram
A UML Diagram showing the structural relationship between
classes. See Section 5.2, “ Class Diagrams (To be written) ” for
more information.

359

Collaboration
The process whereby several objects cooperate to provide some
higher level behavior that is greater than the sum of the behaviors of
the objects.

Collaboration Diagram
A UML Diagram showing the dynamic behavior as messages are
passed between objects. Equivalent to a Sequence Diagram. Which
representation is appropriate depends on the problem under consid-
eration.

Collaborator
An object that participates in a Collaboration.

Comprehension and Problem
Solving A design visualization theory within cognitive psychology. The the-

ory notes that designers must bridge a gap between their mental
model of the problem or situation and the formal model of a solution
or system.

This theory suggests that programmers will benefit from:

1. Multiple representations such as program syntactic decomposi-
tion, state transitions, control flow, and data flow. These allow
the programmer to better identify elements and relationships in
the problem and solution and thus more readily create a map-
ping between their situation models and working system mod-
els.

2. Familiar aspects of a situation model, which improve designers'
abilities to formulate solutions.

Concept Class Diagram
A Class Diagram constructed during the Analysis Phase to show the
main structural components of the problem identified in the Require-
ments Phase. See Chapter 5, Analysis for more information.

Critic
A process within ArgoUML that provides suggestions as to how the
design might be improved. Suggestions are based on principles
within three theories of cognitive psychology, reflection-in action,
opportunistic design and comprehension and problem solving.

E

Extend Relationship
A relationship between two Use Cases, where the extended Use
Case describes a special variant of the extending Use Case.

G

Glossary

360

Generalization Relationship
A relationship between one generalizing Use Cases and one or more
generalized Use Cases, where the generalized Use Cases are partic-
ular examples of the generalizing Use Case.

GUI
Graphical User Interface.

H

Hierarchical Statechart Dia-
gram A Statechart Diagram that contains subsidiary statechart diagrams

within individual States.

I

Include Relationship
A relationship between two Use Cases, where the included Use Case
describes part of the functionality of the including Use Case.

Iterative Design Process
A design process where each all phases (requirements, analysis,
design, build, test) are tackled partially in a series of iterations. See
Section 3.2.1, “ Types of Process ” for more information.

J

Java
A fully object oriented programming language introduced by Sun
Microsystems. More strongly typed than C++, it compiles to an in-
terpreted code, the Java Virtual Machine (JVM). The JVM means
that Java code should run on any machine that has implemented the
JVM.

The most significant component of Java was integration of the JVM
into web browsers, allowing code (Applets) to be download and run
over the web.

ArgoUML is written in Java.

M

Mealy Machine
A Statechart Diagram where actions are associated with States.

Method (of a Class or Object)
A method of a class or object is a specification of behavior encapsu-
lated by that object.

Glossary

361

Moore Machine
A Statechart Diagram where actions are associated with
Transitions.

O

Object
An instance of a Class.

Classes and objects in UML are represented on Activity Diagrams,
Class Diagrams, Collaboration Diagrams and Sequence Diagrams.

OCL
Object Constraint Language. A language for describing constraints
within UML.

OMG
The Object Management Group. An international industry standard-
ization body. Best known for CORBA and UML.

OOA&D
Object Oriented Analysis and Design. An approach to software
problem analysis and design based on objects, which encapsulate
both data and code. See See Section 1.1.1, “ Object Oriented Ana-
lysis and Design ” or any standard textbook on Software Engineer-
ing.

UML is a notation to support OOA&D.

Opportunistic Design
A theory within cognitive psychology suggesting that although de-
signers plan and describe their work in an ordered, hierarchical fash-
ion, in actuality, they choose successive tasks based on the criteria
of cognitive cost. Simply stated, designers do not follow even their
own plans in order, but choose steps that are mentally least expens-
ive among alternatives.

P

Pane
A sub-window within the main window of the ArgoUML user inter-
face.

R

Realization Use Case
A Use Case where the Use Case Diagram and Use Case Specifica-
tion are in the language of the solution domain, rather than the prob-
lem domain.

Reflection-in-Action
A theory within cognitive psychology which observes that designers
of complex systems do not conceive a design fully-formed. Instead,

Glossary

362

they must construct a partial design, evaluate, reflect on, and revise
it, until they are ready to extend it further. As developers work
hands-on with the design, their mental model of the problem situ-
ation improves, hence improving their design.

Requirement Capturing
Requirement capturing is the process of identifying what the
“customer” wants from the proposed system. See Chapter 4, Re-
quirements Capture for a fuller description.

Responsibility
Some behavior for which an object is held accountable. A responsib-
ility denotes the obligation of an object to provide a certain behavi-
or.

S

Scenario
A specific sequence of actions that illustrates behavior.

Sequence Diagram
A UML Diagram showing the dynamic behavior as messages are
passed between objects. Equivalent to a Collaboration Diagram.
Which representation is appropriate depends on the problem under
consideration. See Section 5.4, “ Sequence Diagrams (To be written)
” for more information.

SGML
Standard Graphical Markup Language. Defined by ISO 8879:1986.

Simula 67
A procedural programming language intended for simulation. Noted
for its introduction of objects and coroutines.

State
Within a Statechart Diagram a one of the possible configurations of
the machine.

Statechart Diagram
A UML Diagram showing the dynamic behavior of an active Object.
See Section 5.6, “ Statechart Diagrams (To be written) ” for more
information.

Stereotypes and Stereotyping
Any model element within UML can be given a stereotype to indic-
ate its association with a particular role in the design. A stereotype
spqr is generally indicated with the notation <<spqr>>.

A stereotype defines a Namespace within the design. Examples of
stereotypes are <<business>> and <<realization>> for Use
Cases, used to distinguish between Use Cases at the requirements
phase defined in terms of the problem domain, and Use Cases at the
analysis phase defined in terms of the solution domain.

Supplementary Requirement
Specification The document capturing non-functional requirements that cannot be

Glossary

363

associated with Use Cases.

SVG
Scalable Vector Graphics format. A standard representation of
graphics diagrams that use vectors. ArgoUML can export diagrams
in SVG.

System Sequence Diagram
A Sequence Diagram used in the Analysis Phase showing the dy-
namic behavior of the overall system. See Chapter 5, Analysis for
more information.

System Statechart Diagram
A Statechart Diagram used in the Analysis Phase showing the dy-
namic behavior of an active top level system objects. See Chapter 5,
Analysis for more information.

T

To-Do List
A feature of ArgoUML allowing the user to record activities that are
yet to be completed.

Transition
The change between States in a Statechart Diagram..

U

UML
Universal Modeling Language. A graphical notation for OOA&D
processes, standardized by the OMG. ArgoUML supports UML 1.4.
UML 2.0 is in the final stages of standardization and should be com-
plete during 2006.

Use Case
A UML notation for capturing requirements of a system or sub-
system. See Section 4.3, “ Output of the Requirements Capture Pro-
cess ” for more information.

Use Case Diagram
A UML diagram showing the relationships between Actors and Use
Cases. See Section 4.3, “ Output of the Requirements Capture Pro-
cess ” for more information.

Use Case Specification
The document capturing the detailed requirements behind a Use
Case.

V

Vision Document
The top level document describing what the system being developed
is to achieve.

Glossary

364

W

W3C
The World Wide Web Consortium, www.w3c.org
[http://www.w3c.org]. An international standardization body for all
things to do with the World Wide Web.

Waterfall Design Process
A design process where each phase (requirements, analysis, design,
build, test) is completed before the next starts. See Section 3.2.1, “
Types of Process ” for more information.

X

XMI
XML Model Interchange format. A format for file storage of UML
models. Currently incomplete, since it does not carry all graphical
layout information, so must be supplemented by files carrying that
information.

XML
eXtensible Markup Language. A simplified derivative of SGML
defined by W3C

Glossary

365

http://www.w3c.org

Appendix A. Supplementary Material
for the Case Study
A.1. Introduction

The case study requires various material (mostly documents) that live alongside the design diagram

A.2. Requirements Documents (To be written)
To be written...

A.2.1. Vision Document (To be written)
To be written...

A.2.2. Use Case Specifications (To be written)
To be written...

A.2.2.1. UC Specification 1 (To be written)
To be written...

A.2.3. Supplementary Requirements Specification (To
be written)

To be written...

366

Appendix B. UML resources
B.1. The UML specs (To be written)

To be written...

B.2. UML related papers (To be written)
To be written...

B.2.1. UML action specifications (To be written)
To be written...

B.3. UML related websites (To be written)
To be written...

367

Appendix C. UML Conforming CASE
Tools
C.1. Other Open Source Projects (To be writ-
ten)

To be written...

C.2. Commercial Tools (To be written)
To be written...

368

Appendix D. The C++ Module
The ArgoUML C++ Module (C++ module) provides C++ code generation functionalities and C++ nota-
tion within ArgoUML. It works the same way as the other languages' modules.

D.1. Modeling for C++
The C++ programming language has constructs that aren't contained by default in UML. Examples are
pointers, global functions and variables, references and operator overloading. To enable us to apply
these constructs in our models and be capable of taking advantage of it for code generation and C++
notation in UML diagrams, the C++ module uses conventions in the use of the extension features of
UML, such as tagged values, stereotypes and data types.

Since UML and C++ are object oriented, there is an obvious correspondence between the UML model
elements and C++ structural constructs, e.g, the UML Class is related to the C++ class. These obvi-
ous relations will not be described here, since it is assumed that an ArgoUML user that wants to model
for C++ has basic knowledge of both C++ and UML.

The C++ module comes with a UML profile for C++, which defines Stereotypes and Tagged
Definitions which enable the modeling of C++ specific constructs, such as pointers and references.
It also includes Data Types that model the C++ built-in types, such as unsigned long int.

To have these constructs available in our model, we need to configure the UML profile for C++ in the
model explicitly via the Project Properties dialog, in the Profiles tab (see Section 10.3.14, “ Project

Properties ”).

Tagged values are one of the main means by which we can define code generation behavior. They have
a name - the tag - and a value, and are applied to model elements. For each of the possible Tagged val-
ues, the C++ profile contains a tag definition, which is contained in a stereotype, applicable to the mod-
els elements to which we can define a tagged value's value to specify specific behaviour. So, for in-
stance, to define that the parameter x is a reference, you apply the stereotype cppParameter to it,
them you add the tagged value reference with the value true.

The tagged values in use for the C++ module have two categories:

• free format values - any String is valid, except the empty String

• formated values - the value must obey some restrictions, e.g., be one of true or false
(abbreviated to true || false)

For Boolean tagged values, only the values "true" or " false" are applicable. If a Boolean
tagged value does not exist or is invalid for one model element, a default value is assumed by the code
generator. In the bellow documentation the default value is marked.

Free format tagged values are only significant if present and if the value isn't an empty String. When
the value must follow some sort of format, that is explicitly stated. In this case, there is the chance that
the value is invalid. If the value is invalid, no assumptions are made; the generator will trace the problem
and ignore the tagged value.

D.1.1. Class tagged values
To make the tag definitions applicable to a C++ class available we apply the cppClass stereotype to
it.

369

constructor
true - generates a default constructor for the class.

false (default) - no default constructor is generated, unless it is explicitly modeled with the
«create» stereotype.

header_incl
Name of the file to include in the header.

Note

If we desire to have multiple headers included this way, just use multiple tagged val-
ues with header_incl as the tag.

Other tagged values used for C++ modeling may also be used this way. This note
won't be repeated in those cases.

source_incl
Name of the file to include in the source (.cpp file).

typedef_public
<source type> <type_name> - creates typedef line in the public area of the class with
typedef <source type> <type name>.

typedef_protected
Same as typedef_public, but, in protected area.

typedef_private
Same as typedef_public, but, in the private area.

typedef_global_header
Same as typedef_public, but, in the global area of the header.

typedef_global_source
Same as typedef_global_source, but, in the source file.

TemplatePath
Directory - will search in the specified directory for the template files "header_template" and
"cpp_template" which are placed in top of the corresponding file. The following tags in the template
file are replaced by model values: |FILENAME|, |DATE|, |YEAR|, |AUTHOR|, |EMAIL|. If no such
tag is specified, the templates are searched in the subdirectory of the root directory for the code gen-
eration.

email
name@domain.country - replaces the tag |EMAIL| of the template file.

author
name - replaces the tag |AUTHOR| of the template file.

Note

You may simply use the Author property in the documentation property panel.

The C++ Module

370

D.1.2. Attribute tagged values
UML Attributes are mapped to class member variables. To make the tag definitions ap-
plicable to a C++ member variable available we apply the cppAttribute stereotype to it.

pointer
true - the type of the member variable will be a pointer to the attribute type.

For example, if you have the UML Attribute: name: std::string, with the pointer
tagged value set to true, the generated member variable would be: std::string* name;

false (default) - no pointer modifier is applied.

reference
true - the type of the member variable will be a reference to the attribute type.

false (default) - no reference modifier is applied.

usage
header - will lead for class types to a pre-declaration in the header, and the include of the remote
class header in the header of the generated class.

MultiplicityType
list || slist || vector || map || stack || stringmap - will define a multi-
plicity as the corresponding STL container, if the Multiplicity range of the attribute is variable
(for fixed size ranges this setting is ignored).

set
private || protected || public - creates a simple function to set the attribute by a
function (call by reference is used for class-types, else call by value); place the function in the given
visibility area.

get
private || protected || public - as for set.

D.1.3. Parameters

To make the tag definitions applicable to a C++ argument available we apply the cppParameter ste-
reotype to it.

D.1.3.1. Variable passing semantics

If a Parameter for an Operation is marked as out or inout the variable will be passed by refer-
ence (default) or pointer (needs tagged value pointer - see above), otherwise by value.

Return values in UML are simply Parameters marked as return, therefore everything here applies
to them, except where explicitly noted.

Warning

Note that UML allows multiple return values. This is possible to support in C++ as out
parameters, but, currently the generator doesn't supports it.

This problem is being handled in issue #3553 - handle multiple return parameters
[http://argouml.tigris.org/issues/show_bug.cgi?id=3553].

The C++ Module

371

http://argouml.tigris.org/issues/show_bug.cgi?id=3553

D.1.3.2. Parameter tagged values

pointer
true || false (default) - same as for Attributes.

reference
ditto

D.1.4. Generalization

To make the tag definitions applicable to a C++ generalization available we apply the cppGeneral-
ization stereotype to it.

D.1.4.1. Generalization tagged values

cpp_virtual_inheritance
true || false (default) - used to specify virtual inheritance.

cpp_inheritance_visibility
public (default) || private || protected – use this to specify the inheritance visibility
of the generalization.

D.1.5. Realization

To make the tag definitions applicable to a C++ realization available we apply the cppRealization
stereotype to it.

D.1.5.1. Realization tagged values

cpp_inheritance_visibility
public (default) || private || protected – use this to specify the inheritance visibility
of the generalization.

D.1.6. Preserved sections
With each code generation, special comments around the member function definitions will be generated
like this:

function Testclass::Testclass()
// section -64--88-0-40-76f2e8:ec37965ae0:-7fff begin
{
}
// section -64--88-0-40-76f2e8:ec37965ae0:-7fff end

All code you put within the "begin" and "end" lines will be preserved when you generate the code again.
Please do not change anything within these lines because the sections are recognized by this comment
syntax. As the curly braces are placed within the preserved area, attribute initializers are preserved on

The C++ Module

372

constructors.

This also works if you change Method Names after the generation.

void newOperation(std::string test = "fddsaffa")
// section 603522:ec4c7ff768:-7ffc begin
{
}
// section 603522:ec4c7ff768:-7ffc end

If you delete an Operation in the model. The next time the class is generated, the lost code - i.e., the
whole member function definition - will be added as comment to the end of the file.

The C++ Module

373

Appendix E. Limits and Shortcomings
As all products, ArgoUML has some limits. Those important to the user are listed in this section.

E.1. Diagram Canvas Size
Due to the underlying diagram editing software, the canvas size for diagrams is limited to 6000 units in
height and width.

E.2. Missing functions

374

Appendix F. Open Publication License
This Appendix contains the applied version of the license of this User Manual i.e. the Open Publication
License v1.0 with. The latest version is presently available at http://www.opencontent.org/openpub/
[http://www.opencontent.org/openpub/].

F.1. Introduction
The Open Publication works may be reproduced and distributed in whole or in part, in any medium
physical or electronic, provided that the terms of this license are adhered to, and that this license or an
incorporation of it by reference (with any options elected by the author(s) and/or publisher) is displayed
in the reproduction.

Proper form for an incorporation by reference is as follows:

Copyright (c) <year> by <author's name or designee>. This material may be distrib-
uted only subject to the terms and conditions set forth in the Open Publication Li-
cense, vX.Y or later (the latest version is presently available at ht-
tp://www.opencontent.org/openpub/ [http://www.opencontent.org/openpub/]).

Commercial redistribution of Open Publication-licensed material is permitted.

Any publication in standard (paper) book form shall require the citation of the original publisher and au-
thor. The publisher and author's names shall appear on all outer surfaces of the book. On all outer sur-
faces of the book the original publisher's name shall be as large as the title of the work and cited as pos-
sessive with respect to the title.

F.2. Copyright
The copyright to each Open Publication is owned by its author(s) or designee.

F.3. Scope Of License
The following license terms apply to all Open Publication works, unless otherwise explicitly stated in
the document.

Mere aggregation of Open Publication works or a portion of an Open Publication work with other works
or programs on the same media shall not cause this license to apply to those other works. The aggregate
work shall contain a notice specifying the inclusion of the Open Publication material and appropriate
copyright notice.

SEVERABILITY. If any part of this license is found to be unenforceable in any jurisdiction, the remain-
ing portions of the license remain in force.

NO WARRANTY. Open Publication works are licensed and provided “as is” without warranty of any
kind, express or implied, including, but not limited to, the implied warranties of merchantability and fit-
ness for a particular purpose or a warranty of non-infringement.

F.4. Requirements On Modified Works
All modified versions of documents covered by this license, including translations, anthologies, compil-
ations and partial documents, must meet the following requirements:

375

http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

1. The modified version must be labeled as such.

2. The person making the modifications must be identified and the modifications dated.

3. Acknowledgement of the original author and publisher if applicable must be retained according to
normal academic citation practices.

4. The location of the original unmodified document must be identified.

5. The original author's (or authors') name(s) may not be used to assert or imply endorsement of the
resulting document without the original author's (or authors') permission.

F.5. Good-Practice Recommendations
In addition to the requirements of this license, it is requested from and strongly recommended of redis-
tributors that:

1. If you are distributing Open Publication works on hardcopy or CD-ROM, you provide email noti-
fication to the authors of your intent to redistribute at least thirty days before your manuscript or
media freeze, to give the authors time to provide updated documents. This notification should de-
scribe modifications, if any, made to the document.

2. All substantive modifications (including deletions) be either clearly marked up in the document or
else described in an attachment to the document.

3. Finally, while it is not mandatory under this license, it is considered good form to offer a free copy
of any hardcopy and CD-ROM expression of an Open Publication-licensed work to its author(s).

Open Publication License

376

Appendix G. The CRC Card
Methodology

A CRC card is ostensibly an index card that is used to represent classes, their responsibilities, and the in-
teractions between them. The term CRC card is also used to refer to a methodology for object oriented
modeling based on their use.

Kent Beck and Ward Cunningham introduced CRC cards in a paper "A Laboratory for Teaching Object-
Oriented Thinking" that was presented at the OOPSLA (Object-Oriented Programming, Systems, Lan-
guages & Applications) conference in 1989. A tutorial on the subject can be found at ht-
tp://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/. The CRC card methodology was originally
designed as a teaching tool but has proved useful as a modeling tool as well.

The three parts of the CRC acronym were felt by the authors of the paper to represent the essential di-
mensions of object oriented modeling. The term Responsibilities refers to the contract that the class un-
der discussion offers to the rest of the world (Interface and Contract are similar concepts). Responsibilit-
ies model the things that a class can do. Services, Methods, or Operations will result from these. The
term Collaborators refers to the classes whose services the class under discussion will use. Kent Beck
tried unsuccessfully to use ther term Helpers instead of Collaborators to indicate classes that were sup-
porting the class under discussion. It is widely believed that the terminology was chosen because CRC
are the initials of Ward Cunningham's son.

Why use CRC cards?

• They are portable. No computers are required so they can be used anywhere. Even away from the of-
fice.

• They allow the participants to experience first hand how the system will work. No computer tool can
replace the interaction that happens by physically picking up the cards and playing the role of that
object.

• They are a useful tool for teaching people the object-oriented paradigm.

• They can be used as a methodology themselves or as a front end to a more formal methodology such
as Booch, Wirfs-Brock, Jacobson, etc. Although CRC cards were created for teaching, they have
proven useful for much more.

• They have become an accepted method for analysis and design. The biggest contributing factor to
their success is the fact that they provide an informal and non threatening environment that is pro-
ductive to working and learning.

G.1. The Card
The exact format of the card can be customized to the preferences of the group, but the minimal required
information is the name of the class, it's subclasses and superclasses, it's responsibilities and the collab-
orators for each of those responsibilities. The back of the card can be used for a description of the class.
During the design phase attributes of the class can be recorded on the back as well. One way to think of
the card is that the front contains the public information, and the back contains the encapsulated, imple-
mentation details. As a class is defined a card is made for that class with its name entered. When a class
is assigned to an individual that has only a class name on it, the individual (or the group) selects an ini-
tial set of responsibilities for the class. This initial set should be whatever (if anything) is immediately
obvious.

377

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/

G.2. The Group
Whether they are implicitly or explicitly defined the requirements for the system need to be familiar to
the people participating in the group.

The ideal group size for a CRC card session is five or six people. This size generally allows everyone to
productively participate. In groups of larger size productivity is cut by more disagreements and the
amount of participation by each is lower. If there are more than six people, one solution is to have the
extra people be present strictly as observers.

The group five or six people in the core group should be composed of developers, domain experts, and
an object-oriented technology facilitator.

G.3. The Session
Before starting a session a part of the problem needs to be selected for the session to focus on. Essen-
tially, this means picking the set of classes that are to be used.

Pick the scenarios that are to be walked through that use the classes picked above. Start with scenarios
that are part of the systems normal operation first, and then exceptional scenarios, like error recover,
later.

Assign each class to a member of the group. Each person should be responsible for at least one class.
They are the owner of that class for the session. Each person records the name of their class on a card.
One class per card.

Walk-throughs are the heart of the CRC card session. To walk through a scenario address each action in
it one at a time. First decide which class is responsible for this function. The owner of the class then
picks up his card and holds it up in the air. When a card is up in the air it is an object and can do things.
The owner announces that he needs to fulfill his responsibility. The responsibility is refined into smaller
tasks if possible. These smaller tasks can be fulfilled by the object is appropriate or they can be fulfilled
by interacting with other objects (collaborators). If no other appropriate class exists, you may need to
make one and assign it to someone. This is the fundamental procedure of the scenario execution.

G.4. The Process
CRC Cards are used in the Analysis and Design phases. The process for these phases differ primarily in
how the classes and scenarios are chosen.

In the Analysis phase the classes and scenarios are in the problem space and generally derive from the
requirements. In the Design phase solution space classes and scenarios are added. Additionally in the
Analysis phase the very first session starts with no classes or scenarios to select from so a special session
creates them.

The CRC Card Methodology

378

Index
The use of the index in the document is done a little at
random and cannot be trusted. Please help in suggesting
new index entries!

A
Action, 359
Active Actor, 40
Activity Diagram, 359
Actor, 37, 48, 218, 359
Actor Association Ends, 220
Actor Details Tabs, 218
Actor Generalizations, 220
Actor Modifiers, 220
Actor Name, 220
Actor Namespace, 220
Actor Specializations, 220
Add Action, 328
Add Actor, 219
Add DataType, 202
Add Datatype, 240, 249, 253, 257
Add Enumeration, 202, 206, 240, 249
Add Extend Relationship, 232
Add Extension Point, 222, 226
Add Package, 202
Add Qualifier, 267, 325
Add Reception, 219
Add Stereotype, 202, 206, 209, 226, 229, 233, 236, 240,
245, 249, 253, 257, 260, 264, 267, 272, 275, 282, 290,
294, 297, 301, 303, 305, 307, 309, 313, 318, 325, 328,
334, 340, 342, 344, 347
Add Use Case, 222
Aggregation

of Association End, 270
Alternate Flows

of Use Case, 45, 46
Alternative scenarios, 46
Analysis, 1, 8, 12, 359

Object Oriented, 362
Arrange Menu, 25
Association, 262, 359

in a Use Case Diagram, 50
Association Class, 359
Association Details Tabs, 263
Association End, 266
Association End Aggregation, 270
Association End Changeability, 271
Association End Details Tabs, 266
Association End Modifiers, 269
Association End Multiplicity, 268
Association End Name, 268
Association End Property Fields, 268
Association End Property Toolbar, 267
Association End Stereotype, 268

Association End Tagged Values, 267
Association End Type, 268
Association End Visibility, 271
Association Ends

of Actor, 220
of Association, 265

Association Name, 265
Association Property Fields, 265
Association Property Toolbar, 264
Association Stereotype, 265
Association Tagged Values, 264
Attribute, 247

of a Class, 359
of an Object, 359

Attribute Changeability, 250
Attribute Details Tabs, 247
Attribute Initial Value, 251
Attribute Multiplicity, 249
Attribute Name, 249
Attribute Property Fields, 249
Attribute Property Toolbar, 248
Attribute Tagged Values, 248
Attribute Type, 250
Attribute Visibility, 250

B
Base

of Include Relationship, 236
Base Class

of Stereotype, 212
Base Use Case

of Extend Relationship, 234
of Extension Point, 227

Basic Flow
of Use Case, 45, 46

Build, 12, 16

C
CASE, 359
Changeability

of Association End, 271
of Attribute, 250

Child
of Generalization, 230

Class, 243, 359
Class Details Tabs, 243
Class Diagram, 237, 359
Class Method, 361
Class Modifiers, 245
Class Name, 245
Class Property Fields, 245
Class Property Toolbar, 244
Class Tagged Values, 243
Clients

of Dependency, 273
Code Generation, 74
Collaboration, 360

379

Collaboration Diagram, 360
Collaborator, 360
Comprehension, xviii, 13, 360
Concept Class Diagram, 360
Concurrency

of Operation, 255
Connections

of Association, 265
Constraints

in the Vision document, 39
Contexts

of Signal, 261
Contributing

to ArgoUML, 2
to the User Manual, 4

Cookbook, 2
Create Diagram Menu, 25
Create Diagram Toolbar, 25
Create New

Action, 328
Actor, 48, 219
Association in a Use CaseDiagram, 50
DataType, 202
Datatype, 240, 249, 253, 257
Enumeration, 202, 206, 240, 249
Extend Relationship, 232
Extend Relationship in a Use Case Diagram, 51
Extension Point, 49, 222, 226
Generalization relationship in a Use Case Diagram ,
52
Include Relationship in a Use Case Diagram , 51
Package, 202
Qualifier, 267, 325
Reception, 219
Stereotype, 202, 206, 209, 226, 229, 233, 236, 240,
245, 249, 253, 257, 260, 264, 267, 272, 275, 282,
290, 294, 297, 301, 303, 305, 307, 309, 313, 318,
325, 328, 334, 340, 342, 344, 347
Use Case, 48, 222

Critic, 360
Critique Menu, 25

D
Datatype, 204
Datatype Details Tabs, 204
Datatype Modifiers, 206
Datatype Name, 206
Datatype Properties, 205
Datatype Property Fields, 206
Datatype Property Toolbar, 205
Datatype Tagged Values, 205
Datatype Visibility, 207
Default Value

of Parameter, 258
Delete From Model, 100
Dependency, 271
Dependency Clients, 273
Dependency Details Tabs, 271

Dependency Name, 272
Dependency Namespace, 273
Dependency Stereotype, 273
Dependency Suppliers, 273
Design, xviii, 1, 8, 12

Object Oriented, 362
Opportunistic, 362

Design Process
Iterative, 361
Waterfall, 365

Details Tabs
for Actor, 218
for Association, 263
for Association End, 266
for Attribute, 247
for Class, 243
for Datatype, 204
for Dependency, 271
for Diagrams, 215
for Enumeration, 208
for Extend Relationship, 231
for Extension Point, 225
for Generalization, 228
for Include Relationship, 235
for Model, 201
for Operation, 252
for Package, 239
for Parameter, 256
for Signal, 259
for Stereotype, 211
for Use Case, 221

Developer Zone, 2
Developers' Cookbook, The, 2
Diagram, 213

Activity, 359
Class, 359
Collaboration, 360
Sequence, 363
State, 363
System Sequence, 364
System State, 364
Use Case, 39, 364

Diagram Details Tabs, 215
Diagram Name, 215
Diagram Property Fields, 215
Discriminator

of Generalization, 229
Documentation in Use Case Diagrams, 53

E
Edit Menu, 21
Edit Toolbar, 25
Enumeration, 208
Enumeration Details Tabs, 208
Enumeration Literal, 211
Enumeration Literals, 210
Enumeration Modifiers, 210
Enumeration Name, 209

Index

380

Enumeration Properties, 208
Enumeration Property Fields, 209
Enumeration Property Toolbar, 209
Enumeration Tagged Values, 209
Enumeration Visibility, 210
EPS, 14
Exit, 99
Explorer, 130

MouseBehavior, 130
Extend Relationship, 43, 231, 360

in a Use Case Diagram, 51
of Use Case, 224

Extend Relationship Base Use Case, 234
Extend Relationship Details Tabs, 231
Extend Relationship Extension, 234
Extend Relationship Extension Point, 234
Extend Relationship Name, 233
Extend Relationship Namespace, 233
Extending Use Cases

of Extension Point, 227
Extension

of Extend Relationship, 234
Extension Point, 49, 225

of Extend Relationship, 234
of Use Case, 224

Extension Point Base Use Case, 227
Extension Point Details Tabs, 225
Extension Point Extending Use Cases, 227
Extension Point Location, 227
Extension Point Name, 226
External entity, 218

F
FAQ, 2
Feedback, 4
File Menu, 20
File Toolbar, 25

G
Generalization, 227
Generalization Child, 230
Generalization Details Tabs, 228
Generalization Discriminator, 229
Generalization Name, 229
Generalization Namespace, 230
Generalization Parent, 230
Generalization Powertype, 230
Generalization Relationship, 361

in a Use Case Diagram, 52
Generalizations

of Actor, 220
of Package, 242
of Use Case, 224

Generalize a Use Case, 44
Generate All Classes, 121
Generating Code

from Collaboration Diagrams, 75

from Interactions, 75
from Sequence Diagrams, 75
from Statechart Diagrams, 75
from the Static Structure, 74

Generation Menu, 25
GIF, 14
Goal

of Use Case, 44
Goals

in the Vision document, 39
GUI, 361

H
Help Menu, 25
Hierarchical Statechart Diagram, 361
Hierarchical Use Cases, 51
Hierarchy of Use Cases, 42
Home Model, 215

of Diagrams, 215

I
Imported Elements

of Package, 242
Include Relationship, 42, 234, 361

in a Use Case Diagram, 51
of Use Case, 224

Include Relationship Base, 236
Include Relationship Details Tabs, 235
Include Relationship Included Use Case, 236
Include Relationship Name, 236
Include Relationship Namespace, 236
Included Use Case

of Include Relationship, 236
Initial Value

of Attribute, 251
of Parameter, 258

Iteration, 9
Iterative Design Process, 361
Iterative Processes, 9

J
Jason Robbins, 2
Java, 361

K
Key features

in the Vision document, 39
Kind

of Parameter, 258

L
Literals

of Enumeration, 210
Location

of Extension Point, 227

Index

381

M
Mailing lists, 2, 2
Market Context

in the Vision document, 39
Mealy Machine, 361
Menu Bar, 20
Method

of a Class, 361
of an Object, 361

Model Details Tabs, 201
Model Modifiers, 203
Model Name, 202
Model Namespace, 203
Model Owned Elements, 204
Model Stereotype, 203
Model Visibility, 203
Model, The, 201
Modifiers

of Actor, 220
of Association End, 269
of Class, 245
of Datatype, 206
of Enumeration, 210
of Model, 203
of Operation, 254
of Package, 241
of Stereotype, 213
of Use Case, 223

Moore Machine, 362
Mouse Behavior

in the Explorer, 130
Multiplicity

in a Use Case Diagram, 41
of Association End, 268
of Attribute, 249
Setting, 51

N
Name

of Actor, 220
of Association, 265
of Association End, 268
of Attribute, 249
of Class, 245
of Datatype, 206
of Dependency, 272
of Diagrams, 215
of Enumeration, 209
of Extend Relationship, 233
of Extension Point, 226
of Generalization, 229
of Include Relationship, 236
of Model, 202
of Operation, 253
of Package, 241
of Parameter, 257

of Signal, 261
of Stereotype, 212
of Use Case, 44, 223

Namespace
of Actor, 220
of Dependency, 273
of Extend Relationship, 233
of Generalization, 230
of Include Relationship, 236
of Model, 203
of Package, 241
of Stereotype, 213
of Use Case, 223

Navigation
Pane, 130
Setting, 50
Tree, 130

Navigator
Pane, 130
Tree, 130

New, 87
New Action, 328
New Actor, 219
New DataType, 202
New Datatype, 240, 249, 253, 257
New Enumeration, 202, 206, 240, 249
New Extend Relationship, 232
New Extension Point, 222, 226
New Package, 202
New Qualifier, 267, 325
New Reception, 219
New Stereotype, 202, 206, 209, 226, 229, 233, 236, 240,
245, 249, 253, 257, 260, 264, 267, 272, 275, 282, 290,
294, 297, 301, 303, 305, 307, 309, 313, 318, 325, 328,
334, 340, 342, 344, 347
New Use Case, 222
Non-functional constraints, 47
Non-functional parameters

in the Vision document, 39
Non-functional requirements, 38, 47

O
Object, 362
Object Constraint Language, 362
Object Diagrams, 237
Object Management Group, 362
Object Method, 361
OCL, 362
OMG, 362
OOA&D, 362
Open Project..., 87
Operation, 251
Operation Concurrency, 255
Operation Details Tabs, 252
Operation Modifiers, 254
Operation Name, 253
Operation Parameter, 255
Operation Property Fields, 253

Index

382

Operation Property Toolbar, 252
Operation Raised Signals, 255
Operation Stereotype, 254
Operation Tagged Values, 252
Operation Visibility, 254
Opportunistic Design, xviii, 13, 362
Owned Elements

of Model, 204
of Package, 242

P
Package, 239
Package Details Tabs, 239
Package Diagrams, 237
Package Generalizations, 242
Package Imported Elements, 242
Package Modifiers, 241
Package Name, 241
Package Namespace, 241
Package Owned Elements, 242
Package Specializations, 242
Page Setup ..., 93
Pane, 362
Parameter, 256

of Operation, 255
Parameter Default Value, 258
Parameter Details Tabs, 256
Parameter Initial Value, 258
Parameter Kind, 258
Parameter Name, 257
Parameter Property Fields, 257
Parameter Property Toolbar, 257
Parameter Stereotype, 258
Parameter Tagged Values, 256
Parameter Type, 258
Parent

of Generalization, 230
Passive Actor, 40
PGML, 14
PNG, 14
Post-assumptions

of Use Case, 45
Post-conditions

of Use Case, 45
Powertype

of Generalization, 230
Pre-assumptions

of Use Case, 44
Pre-condition

of Use Case, 44
Print ..., 93
Problem Solving, xviii, 13, 360
Properties

of Datatype, 205
of Enumeration, 208

Property Fields
for Association, 265
for Association End, 268

for Attribute, 249
for Class, 245
for Datatype, 206
for Diagrams, 215
for Enumeration, 209
for Operation, 253
for Parameter, 257
for Signal, 261
for Stereotype, 212

Property Toolbar
for Association, 264
for Association End, 267
for Attribute, 248
for Class, 244
for Datatype, 205
for Enumeration, 209
for Operation, 252
for Parameter, 257
for Signal, 260
for Stereotype, 212

PS, 15

R
Raised Signals

of Operation, 255
Realization Use Case, 362
Reflection-in-Action, xviii, 13, 362
Relationship

Extend, 43, 51, 360
Generalization, 52, 361
Include, 42, 51, 361

Remove From Diagram, 100
Requirement

Capturing, 37
Requirement Capturing, 363
Responsibility, 363
Reverse Engineering, 76
Robbins, Jason, 2
Round-Trip Engineering, 76

S
Save Project, 88
Scenario, 45, 363
Select All, 99
Sequence Diagram, 363
Setting Multiplicity

to an association in a Use Case Diagram, 51
Setting Navigation

to an association in a Use Case Diagram, 50
SGML, 363
Shortcut key

Alt-F4., 99
Ctrl-A, 99
Ctrl-Delete, 100
Ctrl-N, 87
Ctrl-O, 87
Ctrl-P, 93

Index

383

Ctrl-S, 88
Delete, 100
F7, 121

Signal, 259
Signal Contexts, 261
Signal Details Tabs, 259
Signal Name, 261
Signal Property Fields, 261
Signal Property Toolbar, 260
Signal Stereotype, 261
Signal Tagged Values, 260
Simula 67, 363
Specializations

of Actor, 220
of Package, 242
of Use Case, 44, 224

Specification
of Use Case, 38, 44

Stakeholders
in the Vision document, 39

Standard Graphical Markup Language, 363
State, 363
State Diagram, 363
Statechart Diagram, 363
Statechart Diagram, Hierarchical, 361
Stereotype, 211, 363

in Use Case Diagrams, 52
of Association, 265
of Association End, 268
of Dependency, 273
of Model, 203
of Operation, 254
of Parameter, 258
of Signal, 261

Stereotype Base Class, 212
Stereotype Details Tabs, 211
Stereotype Modifiers, 213
Stereotype Name, 212
Stereotype Namespace, 213
Stereotype Property Fields, 212
Stereotype Property Toolbar, 212
Stereotype Visibility, 213
Stereotyping, 363
Supplementary Requirement Specification, 38, 38, 47,
363
Suppliers

of Dependency, 273
SVG, 15, 364
System Boundary Box in Use Case Diagram, 53
System Sequence Diagram, 364
System Statechart Diagram, 364

T
Tagged Values

of Association, 264
of Association End, 267
of Attribute, 248
of Class, 243

of Datatype, 205
of Enumeration, 209
of Operation, 252
of Parameter, 256
of Signal, 260

To-Do List, 364
Toolbars, 20
Tools Menu, 25
Transition, 364
Type

of Association End, 268
of Attribute, 250
of Parameter, 258

U
UML, 364
Use Case, 37, 38, 48, 220, 364

Alternate Flows, 45, 46
Basic Flow, 45, 46
Hierarchy, 42

Use Case Details Tabs, 221
Use Case Diagram, 39, 217, 364
Use Case Extend Relationships, 224
Use Case Extension Points, 224
Use Case Generalization, 44, 224
Use Case Goal, 44
Use Case Include Relationships, 224
Use Case Modifiers, 223
Use Case Name, 44, 223
Use Case Namespace, 223
Use Case Post-conditions, 45
Use Case Pre-condition, 44
Use Case Realization, 362
Use Case Scenario, 44
Use Case Specialization, 44, 224
Use Case Specification, 38, 44, 364
Use Case, Hierarchical, 51
User Feedback, 4

V
View Menu, 24
View Toolbar, 25
Visibility

of Association End, 271
of Attribute, 250
of Datatype, 207
of Enumeration, 210
of Model, 203
of Operation, 254
of Stereotype, 213

Vision Document, 37, 38, 39, 364
Case Study, 53

W
W3C, 365
Waterfall Design Process, 365

Index

384

X
XMI, xviii, 14, 30, 32, 32, 365
XML, xviii, xix, 365

Index

385

	ArgoUML User Manual
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Origins and Overview of ArgoUML
	1.1.1. Object Oriented Analysis and Design
	1.1.2. The Development of ArgoUML
	1.1.3. Finding Out More About the ArgoUML Project
	1.1.3.1. How ArgoUML is Developed
	1.1.3.2. More on Infrastructure

	1.2. Scope of This User Manual
	1.2.1. Target Audience
	1.2.2. Scope

	1.3. Overview of the User Manual
	1.3.1. Tutorial Manual Structure
	1.3.2. Reference Manual Structure
	1.3.3. User Feedback

	1.4. Assumptions

	Part 1. Tutorial
	Chapter 2. Introduction (being written)
	Chapter 3. UML Based OOA&D
	3.1. Background to UML
	3.2. UML Based Processes for OOA&D
	3.2.1. Types of Process
	3.2.1.1. The Waterfall Process
	3.2.1.2. Iterative Development Processes
	3.2.1.2.1. The Rational Unified Process
	3.2.1.2.2. Iteration Size

	3.2.1.3. Recursive Development Processes

	3.2.2. A Development Process for This Tutorial
	3.2.2.1. Requirements Capture
	3.2.2.2. Analysis
	3.2.2.3. Design
	3.2.2.4. Build

	3.3. Why ArgoUML is Different
	3.3.1. Cognitive Psychology
	3.3.1.1. Theory
	3.3.1.2. Practical Application in ArgoUML

	3.3.2. Open Standards
	3.3.2.1. XML Metadata Interchange (XMI)
	3.3.2.2. Graphics Formats - EPS, GIF, PGML, PNG, PS, SVG
	3.3.2.3. Object Constraint Language (OCL)

	3.3.3. 100% Pure Java
	3.3.4. Open Source

	3.4. ArgoUML Basics
	3.4.1. Getting Started
	3.4.1.1. System Requirements
	3.4.1.2. Downloading Options
	3.4.1.3. ArgoUML Using Java Web Start ArgoUML mit Java Web Start aufrufen
	3.4.1.4. Using the Windows installer
	3.4.1.5. Downloading the Binary Executable
	3.4.1.6. Problems Downloading and Installing
	3.4.1.7. Running ArgoUML
	3.4.1.8. Problems Running ArgoUML

	3.4.2. The ArgoUML User Interface
	3.4.2.1. The Menu Bar and Toolbars
	3.4.2.2. The Explorer Pane
	3.4.2.3. The Editing Pane
	3.4.2.4. The Details Pane
	3.4.2.5. The To-Do Pane
	3.4.2.6. Drawing Diagrams
	3.4.2.6.1. Moving Diagram Elements
	3.4.2.6.1.1. Using the Mouse Keys
	3.4.2.6.1.2. Using the Edit Pane Toolbar

	3.4.2.6.2. Arranging Elements

	3.4.2.7. Working with Projects
	3.4.2.7.1. The Start-Up Window
	3.4.2.7.2. Saving a Project - The File Menu
	3.4.2.7.3. The File Chooser Dialog

	3.4.3. Output
	3.4.3.1. Loading and Saving
	3.4.3.1.1. Saving XMI files in ArgoUML

	3.4.3.2. Graphics and Printing
	3.4.3.2.1. The Graph Editing Framework (GEF)
	3.4.3.2.2. Precision Graphics Markup Language (PGML)
	3.4.3.2.3. Applications Which Open PGML
	3.4.3.2.4. Printing Diagrams
	3.4.3.2.5. Scalable Vector Graphics (SVG)
	3.4.3.2.6. Saving Diagrams as SVG

	3.4.3.3. XMI
	3.4.3.3.1. Using XMI from Rational Rose
	3.4.3.3.2. Using Models Created by Poseidon
	3.4.3.3.3. Using Models Created by MagicDraw
	3.4.3.3.4. XMI Compatibility with other versions of ArgoUML
	3.4.3.3.5. Importing Other XMI Formats into ArgoUML Andere XMI-Formate in ArgoUML importieren
	3.4.3.3.6. Generating XMI Format

	3.4.3.4. Code Generation
	3.4.3.4.1. Code Generated by ArgoUML
	3.4.3.4.2. Generating Code for Methods

	3.4.4. Working With Design Critics
	3.4.4.1. Messages From the Design Critics
	3.4.4.2. Design Critics at Work: The Rename Package Wizard

	3.5. The Case Study (To be written)

	Chapter 4. Requirements Capture
	4.1. Introduction
	4.2. The Requirements Capture Process
	4.2.1. Process Steps

	4.3. Output of the Requirements Capture Process
	4.3.1. Vision Document
	4.3.2. Use Case Diagram
	4.3.2.1. Active and Passive Actors
	4.3.2.2. Multiplicity
	4.3.2.3. Hierarchies of Use Cases

	4.3.3. The Use Case Specification
	4.3.3.1. Specifying the Basic Flow
	4.3.3.2. Specifying the Alternate Flows
	4.3.3.3. Iterative Development of Use Case Specifications

	4.3.4. Supplementary Requirement Specification

	4.4. Using Use Cases in ArgoUML
	4.4.1. Actors Akteure
	4.4.2. Use Cases
	4.4.2.1. Adding an Extension Point to a Use Case

	4.4.3. Associations
	4.4.3.1. Setting Navigation
	4.4.3.2. Setting Multiplicity

	4.4.4. Hierarchical Use Cases
	4.4.4.1. Includes
	4.4.4.2. Extends
	4.4.4.3. Generalization

	4.4.5. Stereotypes
	4.4.6. Documentation
	4.4.7. System Boundary Box

	4.5. Case Study
	4.5.1. Vision Document
	4.5.1.1. Summary
	4.5.1.2. Goals
	4.5.1.3. Market Context
	4.5.1.4. Stakeholders
	4.5.1.5. Key Features
	4.5.1.6. Constraints
	4.5.1.7. Appendix

	4.5.2. Identifying Actors and Use Cases
	4.5.3. Associations (To be written)
	4.5.4. Advanced Diagram Features (To be written)
	4.5.5. Use Case Specifications (To be written)
	4.5.6. Supplementary Requirements Specification (To be written)

	Chapter 5. Analysis
	5.1. The Analysis Process
	5.1.1. Class, Responsibilities, and Collaborators (CRC) Cards
	5.1.2. Concept Diagram (To be written)
	5.1.3. System Sequence Diagram (To be written)
	5.1.4. System Statechart Diagram (To be written)
	5.1.5. Realization Use Case Diagram (To be written)
	5.1.6. Documents (To be written)

	5.2. Class Diagrams (To be written)
	5.2.1. The Class Diagram (To be written)
	5.2.2. Advanced Class Diagrams (To be written)
	5.2.2.1. Association Classes (To be written)

	5.3. Creating Class Diagrams in ArgoUML
	5.3.1. Classes
	5.3.1.1. Using the Note Icon in the Tool Bar

	5.3.2. Associations (To be written)
	5.3.2.1. Aggregation (To be written)

	5.3.3. Class Attributes and Operations (To be written)
	5.3.3.1. Entering Data Into Attributes and Methods Windows
	5.3.3.2. Class Attributes (To be written)
	5.3.3.3. Class Operations (To be written)

	5.3.4. Advanced Class Features (To be written)
	5.3.4.1. Association Classes (To be written)
	5.3.4.2. Stereotypes (To be written)

	5.4. Sequence Diagrams (To be written)
	5.4.1. The Sequence Diagram (To be written)
	5.4.2. Identifying Actions (To be written)
	5.4.3. Advanced Sequence Diagrams (To be written)

	5.5. Creating Sequence Diagrams in ArgoUML
	5.5.1. Sequence Diagrams
	5.5.1.1. Creating a Sequence Diagram

	5.5.2. Actions (To be written)
	5.5.3. Advanced Sequence Diagrams (To be written) Erweiterte Sequenzdiagramme (Noch zu beschreiben)

	5.6. Statechart Diagrams (To be written)
	5.6.1. The Statechart Diagram (To be written)
	5.6.2. Advanced Statechart Diagrams (To be written)
	5.6.2.1. Hierarchical Statechart Diagrams (To be written)

	5.7. Creating Statechart Diagrams in ArgoUML
	5.7.1. Statechart Diagrams (To be written)
	5.7.1.1. Creating a Statechart Diagram

	5.7.2. States (To be written)
	5.7.2.1. Editing a Composite State

	5.7.3. Transitions (To be written)
	5.7.4. Actions (To be written)
	5.7.5. Advanced Statechart Diagrams (To be written)
	5.7.5.1. Hierarchical Statechart Diagrams (To be written)

	5.8. Realization Use Cases (To be written)
	5.9. Creating Realization Use Cases in ArgoUML (To be written)
	5.10. Case Study (To be written)
	5.10.1. CRC Cards
	5.10.2. Concept Class Diagrams (To be written)
	5.10.2.1. Identifying classes (To be written)
	5.10.2.2. Identifying associations (To be written)

	5.10.3. System Sequence Diagrams (To be written)
	5.10.3.1. Identifying actions (To be written)

	5.10.4. System Statechart Diagrams (To be written)
	5.10.5. Realization Use Cases (To be written)

	Chapter 6. Design
	6.1. The Design Process (To be written)
	6.1.1. Class, Responsibilities, and Collaborators (CRC) Cards
	6.1.2. Package Diagram (To be written)
	6.1.3. Realization Class Diagrams (To be written)
	6.1.4. Sequence Diagrams and Collaboration Diagrams (To be written)
	6.1.5. Statechart Diagrams and Activity Diagrams (To be written)
	6.1.6. Deployment Diagram (To be written)
	6.1.7. Documents (To be written)

	6.2. Package Diagrams (To be written)
	6.2.1. The Package Diagram (To be written)
	6.2.2. Advanced Package Diagrams (To be written)
	6.2.2.1. Subpackages (To be written)
	6.2.2.2. Adding DataTypes (To be written)
	6.2.2.3. Adding Stereotypes (To be written)

	6.3. Creating Package Diagrams in ArgoUML
	6.3.1. Packages
	6.3.1.1. Subpackages (To be written)

	6.3.2. Relationships between packages (To be written)
	6.3.2.1. Dependency (To be written)
	6.3.2.2. Generalization (To be written)
	6.3.2.3. Realization and Abstraction (To be written)

	6.3.3. Advanced Package Features (To be written)
	6.3.3.1. Creating New Datatypes (To be written)
	6.3.3.2. Creating New Stereotypes (To be written)

	6.4. More on Class Diagrams (To be written)
	6.4.1. The Class Diagram (To be written)
	6.4.1.1. Class Attributes (To be written)
	6.4.1.2. Class Operations (To be written)

	6.4.2. Advanced Class Diagrams (To be written)
	6.4.2.1. Realization and Abstraction (To be written)

	6.5. More on Class Diagrams in ArgoUML (To be written)
	6.5.1. Classes (To be written)
	6.5.2. Class Attributes and Operations (To be written)
	6.5.2.1. Class Attributes (To be written)
	6.5.2.2. Class Operations (To be written)

	6.5.3. Advanced Class Features
	6.5.3.1. Operations on Interfaces
	6.5.3.1.1. Interfaces that extend interfaces

	6.5.3.2. Stereotypes (To be written)

	6.6. Sequence and Collaboration Diagrams (To be written)
	6.6.1. More on the Sequence Diagram (To be written)
	6.6.2. The Collaboration Diagram (To be written)
	6.6.2.1. Messages (To be written)
	6.6.2.2. Actions (To be written)

	6.6.3. Advanced Collaboration Diagrams (To be written)

	6.7. Creating Collaboration Diagrams in ArgoUML (To be written)
	6.7.1. Collaboration Diagrams (To be written)
	6.7.2. Messages (To be written)
	6.7.2.1. Actions (To be written)

	6.7.3. Advanced Collaboration Diagrams (To be written)

	6.8. Statechart Diagrams (To be written)
	6.8.1. The Statechart Diagram (To be written)
	6.8.2. Advanced Statechart Diagrams (To be written)
	6.8.2.1. Actions (To be written)
	6.8.2.2. Transitions (To be written)
	6.8.2.2.1. Triggers (To be written)
	6.8.2.2.2. Guards (To be written)
	6.8.2.2.3. Effectss (To be written)

	6.8.2.3. Pseudo States (To be written)
	6.8.2.3.1. Junction and Choice (To be written)
	6.8.2.3.2. Fork and Join (To be written)

	6.8.2.4. Hierarchical State Machines (To be written)
	6.8.2.5. Models for State History (To be written)

	6.9. Creating Statechart Diagrams in ArgoUML (To be written)
	6.9.1. Statechart Diagrams (To be written)
	6.9.2. States (To be written)
	6.9.3. Transitions (To be written)
	6.9.4. Actions (To be written)
	6.9.5. Advanced Statechart Diagrams (To be written)
	6.9.5.1. Transitions (To be written)
	6.9.5.1.1. Triggers (To be written)
	6.9.5.1.2. Guards (To be written)
	6.9.5.1.3. Effectss (To be written)

	6.9.5.2. Pseudo States (To be written)
	6.9.5.2.1. Junction and Choice (To be written)
	6.9.5.2.2. Fork and Join (To be written)

	6.9.5.3. Hierarchical State Machines (To be written)
	6.9.5.4. History (To be written)

	6.10. Activity Diagrams (To be written)
	6.10.1. The Activity Diagram (To be written)
	6.10.1.1. Action States (To be written)

	6.11. Creating Activity Diagrams in ArgoUML (To be written)
	6.11.1. Activity Diagrams (To be written)
	6.11.1.1. Creating an Activity Diagram

	6.11.2. Action States (To be written)

	6.12. Deployment Diagrams (To be written)
	6.12.1. The Deployment Diagram (To be written)

	6.13. Creating Deployment Diagrams in ArgoUML (To be written)
	6.13.1. Nodes (To be written)
	6.13.1.1. Node Instances (To be written)

	6.13.2. Components (To be written)
	6.13.2.1. Component Instances (To be written)

	6.13.3. Relationships between nodes and components (To be written)
	6.13.3.1. Dependency (To be written)
	6.13.3.2. Associations (To be written)
	6.13.3.3. Links (To be written)

	6.14. System Architecture (To be written)
	6.15. Case Study (To be written)
	6.15.1. CRC Cards (To be written)
	6.15.2. Packages (To be written)
	6.15.2.1. Identifying Packages (To be written)
	6.15.2.2. Datatypes and Stereotypes (To be written) Datentypen und Stereotypen (Noch zu beschreiben)

	6.15.3. Class Diagrams (To be written)
	6.15.3.1. Identifying classes (To be written)
	6.15.3.2. Identifying associations (To be written)
	6.15.3.3. Specifying Attributes and Operations (To be written)

	6.15.4. Sequence Diagrams (To be written)
	6.15.4.1. Identifying actions (To be written)

	6.15.5. Collaboration Diagrams (To be written)
	6.15.5.1. Identifying Messages (To be written)

	6.15.6. Statechart Diagrams (To be written)
	6.15.7. Activity Diagrams (To be written)
	6.15.8. The Deployment Diagram (To be written)
	6.15.9. The System Architecture (To be written)

	Chapter 7. Code Generation, Reverse Engineering, and Round Trip Engineering
	7.1. Introduction
	7.2. Code Generation
	7.2.1. Generating Code from the Static Structure
	7.2.2. Code aus Interaktionen und Zustandsautomaten generieren

	7.3. Code Generation in ArgoUML
	7.3.1. Static Structure
	7.3.2. Interactions and statechart diagrams

	7.4. Reverse Engineering
	7.5. Round-Trip Engineering

	Part 2. User Interface Reference
	Chapter 8. Introduction
	8.1. Overview of the Window
	8.2. General Mouse Behavior in ArgoUML
	8.2.1. Mouse Button Terminology
	8.2.2. Button 1 Click
	8.2.2.1. Selection
	8.2.2.2. Activation
	8.2.2.3. Navigation
	8.2.2.4. General Behavior When Editing Text

	8.2.3. Button 1 Double Click
	8.2.3.1. General Behavior When Editing Text

	8.2.4. Button 1 Motion
	8.2.4.1. General Behavior When Editing Text

	8.2.5. Shift and Ctrl modifiers with Button 1
	8.2.5.1. Within Lists
	8.2.5.2. General Behavior When Editing Text

	8.2.6. Alt with Button 1: Panning
	8.2.7. Ctrl with Button 1: Constrained Drag
	8.2.8. Button 2 Actions
	8.2.9. Button 2 Double Click
	8.2.10. Button 2 Motion

	8.3. General Information About Panes
	8.3.1. Re-sizing Panes

	8.4. The status bar

	Chapter 9. The Toolbar
	9.1. File operations
	9.2. Edit operations
	9.3. View operations
	9.4. Create operations

	Chapter 10. The Menu bar
	10.1. Introduction
	10.2. Mouse Behavior in the Menu Bar
	10.3. The File Menu
	10.3.1. New
	10.3.2. Open Project...
	10.3.3. Save Project
	10.3.4. Save Project As...
	10.3.5. Revert to Saved Projekt speichern rückgängig machen
	10.3.6. Import XMI...
	10.3.7. Export XMI...
	10.3.8. Import Sources...
	10.3.9. Page Setup...
	10.3.10. Print...
	10.3.11. Export Graphics... Grafik exportieren...
	10.3.12. Export All Graphics...
	10.3.13. Notation
	10.3.14. Project Properties
	10.3.15. Most Recent Used Files
	10.3.16. Exit

	10.4. The Edit Menu
	10.4.1. Select
	10.4.2. Remove From Diagram
	10.4.3. Delete From Model
	10.4.4. Perspektiven konfigurieren...
	10.4.5. Einstellungen...
	10.4.5.1. Preferences Tab
	10.4.5.2. Environment Tab
	10.4.5.3. User Tab
	10.4.5.4. Appearance Tab
	10.4.5.5. Profiles Tab
	10.4.5.6. Configure Shortcuts Tab
	10.4.5.7. Notation Tab
	10.4.5.8. Diagram Appearance Tab
	10.4.5.9. Modules Tab
	10.4.5.10. Extra Tabs added by Plugins

	10.5. The View Menu
	10.5.1. Goto Diagram...
	10.5.2. Find...
	10.5.3. Zoom
	10.5.4. Adjust Grid
	10.5.5. Adjust Snap
	10.5.6. Page Breaks
	10.5.7. Toolbars
	10.5.8. XML Dump

	10.6. The Create Menu
	10.6.1. New Use Case Diagram
	10.6.2. New Class Diagram Klassendiagramm
	10.6.3. New Sequence Diagram
	10.6.4. New Collaboration Diagram
	10.6.5. New Statechart Diagram
	10.6.6. New Activity Diagram
	10.6.7. New Deployment Diagram

	10.7. The Arrange Menu
	10.7.1. Align
	10.7.2. Distribute
	10.7.3. Reorder
	10.7.4. Size To Fit Contents
	10.7.5. Layout

	10.8. The Generation Menu
	10.8.1. Generate Selected Classes ...
	10.8.2. Generate All Classes...
	10.8.3. Generate Code for Project... (To be Written)
	10.8.4. Settings for Generate for Project... (To be Written)

	10.9. The Critique Menu
	10.9.1. Toggle Auto-Critique
	10.9.2. Design Issues...
	10.9.3. Design Goals...
	10.9.4. Browse Critics...

	10.10. The Tools Menu
	10.11. The Help Menu
	10.11.1. System Information
	10.11.2. About ArgoUML

	Chapter 11. The Explorer
	11.1. Introduction
	11.2. Mouse Behavior in the Explorer
	11.2.1. Button 1 Click
	11.2.2. Button 1 Double Click
	11.2.3. Button 1 Motion
	11.2.3.1. From Explorer to Explorer
	11.2.3.2. From Explorer to Diagram

	11.2.4. Button 2 Actions
	11.2.5. Button 2 Double Click

	11.3. Keyboard Behavior in the Explorer
	11.4. Perspective Selection
	11.5. Configuring Perspectives
	11.5.1. The Configure Perspectives dialog

	11.6. Context Sensitive Menu
	11.6.1. Create Diagram
	11.6.2. Create ModelElement
	11.6.3. Copy Diagram to Clipboard as Image
	11.6.4. Add to Diagram
	11.6.5. Delete From Model
	11.6.6. Set Source Path... (To be written)
	11.6.7. Add Package
	11.6.8. New Stereotype
	11.6.9. Add All Classes in Namespace Alle Klassen im Namensraum hinzufügen

	Chapter 12. The Editing Pane
	12.1. Introduction
	12.2. Mouse Behavior in the Editing Pane
	12.2.1. Button 1 Click
	12.2.2. Button 1 Double Click
	12.2.3. Button 1 Motion
	12.2.4. Shift and Ctrl modifiers with Button 1
	12.2.5. Alt with Button 1 motion
	12.2.6. Button 2 Actions
	12.2.7. Button 2 Double Click
	12.2.8. Button 2 Motion

	12.3. Keyboard Behavior in the Editing Pane
	12.3.1. Nudging a model element
	12.3.2. Moving across the model elements

	12.4. The tool bar
	12.4.1. Layout Tools
	12.4.2. Annotation Tools
	12.4.3. Drawing Tools
	12.4.4. Use Case Diagram Specific Tools
	12.4.5. Class Diagram Specific Tools
	12.4.6. Sequence Diagram Specific Tools
	12.4.7. Collaboration Diagram Specific Tools
	12.4.8. Statechart Diagram Specific Tools
	12.4.9. Activity Diagram Specific Tools
	12.4.10. Deployment Diagram Specific Tools

	12.5. The Broom
	12.6. Selection Action Buttons
	12.7. Clarifiers
	12.8. The Drawing Grid
	12.9. The Diagram Tab
	12.10. Pop-Up Menus
	12.10.1. Critiques
	12.10.2. Ordering
	12.10.3. Add
	12.10.4. Show
	12.10.5. Modifiers
	12.10.6. Multiplicity
	12.10.7. Aggregation
	12.10.8. Navigability

	12.11. Notation
	12.11.1. Notation Languages
	12.11.2. Notation Editing on the diagram
	12.11.3. Notation Parsing

	Chapter 13. The Details Pane
	13.1. Introduction
	13.2. To Do Item Tab
	13.2.1. Wizards
	13.2.2. The Help Button

	13.3. Properties Tab
	13.4. Documentation Tab
	13.5. Presentation Tab
	13.6. Source Tab
	13.7. Constraints Tab
	13.7.1. The Constraint Editor

	13.8. Stereotype Tab
	13.9. Tagged Values Tab
	13.10. Checklist Tab

	Chapter 14. The To-Do Pane
	14.1. Introduction
	14.2. Mouse Behavior in the To-Do Pane
	14.2.1. Button 1 Click
	14.2.2. Button 1 Double Click
	14.2.3. Button 2 Actions
	14.2.4. Button 2 Double Click

	14.3. Presentation Selection
	14.4. Item Count

	Chapter 15. The Critics
	15.1. Introduction
	15.1.1. Terminology
	15.1.2. Design Issues

	15.2. Uncategorized
	15.3. Class Selection
	15.3.1. Wrap DataType
	15.3.2. Reduce Classes in namespace <namespace>
	15.3.3. Clean Up Diagram

	15.4. Naming
	15.4.1. Resolve Association Name Conflict
	15.4.2. Revise Attribute Names to Avoid Conflict
	15.4.3. Change Names or Signatures in a model element
	15.4.4. Duplicate End (Role) Names for an Association
	15.4.5. Role name conflicts with member
	15.4.6. Choose a Name (Classes and Interfaces)
	15.4.7. Name conflict in a namespace
	15.4.8. Choose a Unique Name for a model element (Classes and Interfaces)
	15.4.9. Choose a Name (Attributes)
	15.4.10. Choose a Name (Operations)
	15.4.11. Choose a Name (States)
	15.4.12. Choose a Unique Name for a (State related) model element
	15.4.13. Revise Name to Avoid Confusion
	15.4.14. Choose a Legal Name
	15.4.15. Change a model element to a Non-Reserved Word
	15.4.16. Choose a Better Operation Name
	15.4.17. Choose a Better Attribute Name
	15.4.18. Capitalize Class Name
	15.4.19. Revise Package Name

	15.5. Storage
	15.5.1. Revise Attribute Names to Avoid Conflict
	15.5.2. Add Instance Variables to a Class
	15.5.3. Add a Constructor to a Class
	15.5.4. Reduce Attributes on a Class

	15.6. Planned Extensions
	15.6.1. Operations in Interfaces must be public
	15.6.2. Interfaces may only have operations
	15.6.3. Remove Reference to Specific Subclass

	15.7. State Machines
	15.7.1. Reduce Transitions on <state>
	15.7.2. Reduce States in machine <machine>
	15.7.3. Add Transitions to <state>
	15.7.4. Add Incoming Transitions to <model element>
	15.7.5. Add Outgoing Transitions from <model element>
	15.7.6. Remove Extra Initial States
	15.7.7. Place an Initial State
	15.7.8. Add Trigger or Guard to Transition
	15.7.9. Change Join Transitions
	15.7.10. Change Fork Transitions
	15.7.11. Add Choice/Junction Transitions
	15.7.12. Add Guard to Transition
	15.7.13. Clean Up Diagram
	15.7.14. Make Edge More Visible
	15.7.15. Composite Association End with Multiplicity >1 Zusammengesetztes Assoziationsende mit der Kardinalität >1

	15.8. Design Patterns
	15.8.1. Consider using Singleton Pattern for <class>
	15.8.2. Singleton Stereotype Violated in <class>
	15.8.3. Nodes normally have no enclosers
	15.8.4. NodeInstances normally have no enclosers
	15.8.5. Components normally are inside nodes
	15.8.6. ComponentInstances normally are inside nodes
	15.8.7. Classes normally are inside components
	15.8.8. Interfaces normally are inside components
	15.8.9. Objects normally are inside components
	15.8.10. LinkEnds have not the same locations
	15.8.11. Set classifier (Deployment Diagram)
	15.8.12. Missing return-actions
	15.8.13. Missing call(send)-action
	15.8.14. No Stimuli on these links
	15.8.15. Set Classifier (Sequence Diagram)
	15.8.16. Wrong position of these stimuli

	15.9. Relationships
	15.9.1. Circular Association
	15.9.2. Make <association> Navigable
	15.9.3. Remove Navigation from Interface via <association>
	15.9.4. Add Associations to <model element>
	15.9.5. Remove Reference to Specific Subclass
	15.9.6. Reduce Associations on <model element>
	15.9.7. Make Edge More Visible

	15.10. Instantiation
	15.11. Modularity
	15.11.1. Classifier not in Namespace of its Association
	15.11.2. Add Elements to Package <package>

	15.12. Expected Usage
	15.12.1. Clean Up Diagram

	15.13. Methods
	15.13.1. Change Names or Signatures in <model element>
	15.13.2. Class Must be Abstract
	15.13.3. Add Operations to <class>
	15.13.4. Reduce Operations on <model element> Reduzieren Sie die Anzahl der Operationen im <Modellelement>

	15.14. Code Generation
	15.14.1. Change Multiple Inheritance to interfaces

	15.15. Stereotypes
	15.16. Inheritance
	15.16.1. Revise Attribute Names to Avoid Conflict
	15.16.2. Remove <class>'s Circular Inheritance
	15.16.3. Class Must be Abstract
	15.16.4. Remove final keyword or remove subclasses
	15.16.5. Illegal Generalization
	15.16.6. Remove Unneeded Realizes from <class>
	15.16.7. Define Concrete (Sub)Class
	15.16.8. Define Class to Implement <interface>
	15.16.9. Change Multiple Inheritance to interfaces
	15.16.10. Make Edge More Visible

	15.17. Containment
	15.17.1. Remove Circular Composition
	15.17.2. Duplicate Parameter Name
	15.17.3. Two Aggregate Ends (Roles) in Binary Association
	15.17.4. Aggregate End (Role) in 3-way (or More) Association
	15.17.5. Wrap DataType

	Part 3. Model Reference
	Chapter 16. Top Level Model Element Reference
	16.1. Introduction
	16.2. The Model
	16.2.1. Model Details Tabs
	16.2.2. Model Property Toolbar
	16.2.3. Property Fields For The Model

	16.3. Datatype
	16.3.1. Datatype Details Tabs
	16.3.2. Datatype Property Toolbar
	16.3.3. Property Fields For Datatype

	16.4. Enumeration
	16.4.1. Enumeration Details Tabs
	16.4.2. Enumeration Property Toolbar
	16.4.3. Property Fields For Enumeration

	16.5. Enumeration Literal
	16.6. Stereotype
	16.6.1. Stereotype Details Tabs
	16.6.2. Stereotype Property Toolbar
	16.6.3. Property Fields For Stereotype

	16.7. Tag Definition
	16.8. Diagram
	16.8.1. Diagram Details Tabs
	16.8.2. Diagram Property Toolbar
	16.8.3. Property Fields For Diagram

	Chapter 17. Use Case Diagram Model Element Reference
	17.1. Introduction
	17.1.1. ArgoUML Limitations Concerning Use Case Diagrams

	17.2. Actor
	17.2.1. Actor Details Tabs Detail-Register Akteur
	17.2.2. Actor Property Toolbar
	17.2.3. Property Fields For Actor

	17.3. Use Case
	17.3.1. Use Case Details Tabs
	17.3.2. Use Case Property Toolbar
	17.3.3. Property Fields For Use Case

	17.4. Extension Point
	17.4.1. Extension Point Details Tabs
	17.4.2. Extension Point Property Toolbar
	17.4.3. Property Fields For Extension Point

	17.5. Association
	17.6. Association End
	17.7. Dependency
	17.8. Generalization
	17.8.1. Generalization Details Tabs
	17.8.2. Generalization Property Toolbar
	17.8.3. Property Fields For Generalization

	17.9. Extend
	17.9.1. Extend Details Tabs
	17.9.2. Extend Property Toolbar
	17.9.3. Property Fields For Extend

	17.10. Include
	17.10.1. Include Details Tabs
	17.10.2. Include Property Toolbar
	17.10.3. Property Fields For Include

	Chapter 18. Class Diagram Model Element Reference
	18.1. Introduction
	18.1.1. Limitations Concerning Class Diagrams in ArgoUML

	18.2. Package
	18.2.1. Package Details Tabs
	18.2.2. Package Property Toolbar
	18.2.3. Property Fields For Package

	18.3. Datatype
	18.4. Enumeration
	18.5. Stereotype
	18.6. Class
	18.6.1. Class Details Tabs
	18.6.2. Class Property Toolbar
	18.6.3. Property Fields For Class

	18.7. Attribute
	18.7.1. Attribute Details Tabs
	18.7.2. Attribute Property Toolbar
	18.7.3. Property Fields For Attribute

	18.8. Operation
	18.8.1. Operation Details Tabs
	18.8.2. Operation Property Toolbar
	18.8.3. Property Fields For Operation

	18.9. Parameter
	18.9.1. Parameter Details Tabs
	18.9.2. Parameter Property Toolbar
	18.9.3. Property Fields For Parameter

	18.10. Signal
	18.10.1. Signal Details Tabs
	18.10.2. Signal Property Toolbar
	18.10.3. Property Fields For Signal

	18.11. Reception (to be written)
	18.12. Association
	18.12.1. Three-way and Greater Associations and Association Classes
	18.12.2. Association Details Tabs
	18.12.3. Association Property Toolbar
	18.12.4. Property Fields For Association

	18.13. Association End
	18.13.1. Association End Details Tabs
	18.13.2. Association End Property Toolbar
	18.13.3. Property Fields For Association End

	18.14. Dependency
	18.14.1. Dependency Details Tabs
	18.14.2. Dependency Property Toolbar
	18.14.3. Property Fields For Dependency

	18.15. Generalization
	18.16. Interface
	18.16.1. Interface Details Tabs
	18.16.2. Interface Property Toolbar
	18.16.3. Property Fields For Interface

	18.17. Abstraction
	18.17.1. Abstraction Details Tabs
	18.17.2. Abstraction Property Toolbar
	18.17.3. Property Fields For Abstraction

	Chapter 19. Sequence Diagram Model Element Reference
	19.1. Introduction
	19.1.1. Limitations Concerning Sequence Diagrams in ArgoUML

	19.2. Object
	19.2.1. Object Details Tabs
	19.2.2. Object Property Toolbar
	19.2.3. Property Fields For Object

	19.3. Stimulus
	19.3.1. Stimulus Details Tabs
	19.3.2. Stimulus Property Toolbar
	19.3.3. Property Fields For Stimulus

	19.4. Stimulus Call
	19.5. Stimulus Create
	19.6. Stimulus Destroy
	19.7. Stimulus Send
	19.8. Stimulus Return
	19.9. Link
	19.9.1. Link Details Tabs
	19.9.2. Link Property Toolbar
	19.9.3. Property Fields For Link

	Chapter 20. Statechart Diagram Model Element Reference
	20.1. Introduction
	20.1.1. Limitations Concerning Statechart Diagrams in ArgoUML

	20.2. State
	20.2.1. State Details Tabs
	20.2.2. State Property Toolbar
	20.2.3. Property Fields For State

	20.3. Action
	20.3.1. Action Details Tabs
	20.3.2. Action Property Toolbar
	20.3.3. Property Fields For Action

	20.4. Composite State
	20.5. Concurrent Region
	20.6. Submachine State
	20.7. Stub State
	20.8. Transition
	20.8.1. Transition Details Tabs
	20.8.2. Transition Property Toolbar
	20.8.3. Property Fields For Transition

	20.9. Event
	20.9.1. Event Details Tabs
	20.9.2. Event Property Toolbar
	20.9.3. Property Fields For Event

	20.10. Guard
	20.10.1. Guard Details Tabs
	20.10.2. Guard Property Toolbar
	20.10.3. Property Fields For Guard

	20.11. Pseudostate
	20.11.1. Pseudostate Details Tabs
	20.11.2. Pseudostate Property Toolbar
	20.11.3. Property Fields For Pseudostate

	20.12. Initial State
	20.13. Final State
	20.13.1. Final State Details Tabs
	20.13.2. Final State Property Toolbar
	20.13.3. Property Fields For Final State

	20.14. Junction
	20.15. Choice
	20.16. Fork
	20.17. Join
	20.18. Shallow History
	20.19. Deep History
	20.20. Synch State
	20.20.1. Synch State Details Tabs
	20.20.2. Synch State Property Toolbar
	20.20.3. Property Fields For Synch State

	Chapter 21. Collaboration Diagram Model Element Reference
	21.1. Introduction
	21.1.1. Limitations Concerning Collaboration Diagrams in ArgoUML

	21.2. Classifier Role
	21.2.1. Classifier Role Details Tabs
	21.2.2. Classifier Role Property Toolbar
	21.2.3. Property Fields For Classifier Role

	21.3. Association Role
	21.3.1. Association Role Details Tabs
	21.3.2. Association Role Property Toolbar
	21.3.3. Property Fields For Association Role

	21.4. Association End Role
	21.4.1. Association End Role Details Tabs
	21.4.2. Association End Role Property Toolbar
	21.4.3. Property Fields For Association End Role

	21.5. Message
	21.5.1. Message Details Tabs
	21.5.2. Message Property Toolbar
	21.5.3. Property Fields For Message

	Chapter 22. Activity Diagram Model Element Reference
	22.1. Introduction
	22.1.1. Limitations Concerning Activity Diagrams in ArgoUML

	22.2. Action State
	22.2.1. Action State Details Tabs
	22.2.2. Action State Property ToolBar
	22.2.3. Property fields for action state

	22.3. Action
	22.4. Transition
	22.5. Guard
	22.6. Initial State
	22.7. Final State
	22.8. Junction (Decision)
	22.9. Fork
	22.10. Join
	22.11. ObjectFlowState

	Chapter 23. Deployment Diagram Model Element Reference
	23.1. Introduction
	23.1.1. Limitations Concerning Deployment Diagrams in ArgoUML

	23.2. Node
	23.2.1. Node Details Tabs
	23.2.2. Node Property Toolbar
	23.2.3. Property Fields For Node

	23.3. Node Instance
	23.3.1. Node Instance Details Tabs
	23.3.2. Node Instance Property Toolbar
	23.3.3. Property Fields For Node Instance

	23.4. Component
	23.4.1. Component Details Tabs
	23.4.2. Component Property Toolbar
	23.4.3. Property Fields For Component

	23.5. Component Instance
	23.5.1. Component Instance Details Tabs
	23.5.2. Component Instance Property Toolbar
	23.5.3. Property Fields For Component Instance

	23.6. Dependency
	23.7. Class
	23.8. Interface
	23.9. Association
	23.10. Object
	23.11. Link

	Chapter 24. Profiles
	24.1. Introduction
	24.2. The UML 1.4 Standard Elements Profile
	24.2.1. Datatypes
	24.2.2. Enumerations
	24.2.3. Stereotypes
	24.2.4. Tag Definitions

	24.3. The Java Profile
	24.3.1. Datatypes
	24.3.2. Classes
	24.3.2.1. Classes From java.lang
	24.3.2.2. Classes From java.math
	24.3.2.3. Classes From java.net
	24.3.2.4. Classes From java.util

	24.3.3. Interfaces

	Glossary
	Appendix A. Supplementary Material for the Case Study
	A.1. Introduction
	A.2. Requirements Documents (To be written)
	A.2.1. Vision Document (To be written)
	A.2.2. Use Case Specifications (To be written)
	A.2.2.1. UC Specification 1 (To be written)

	A.2.3. Supplementary Requirements Specification (To be written)

	Appendix B. UML resources
	B.1. The UML specs (To be written)
	B.2. UML related papers (To be written)
	B.2.1. UML action specifications (To be written)

	B.3. UML related websites (To be written)

	Appendix C. UML Conforming CASE Tools
	C.1. Other Open Source Projects (To be written)
	C.2. Commercial Tools (To be written)

	Appendix D. The C++ Module
	D.1. Modeling for C++
	D.1.1. Class tagged values
	D.1.2. Attribute tagged values
	D.1.3. Parameters
	D.1.3.1. Variable passing semantics
	D.1.3.2. Parameter tagged values

	D.1.4. Generalization
	D.1.4.1. Generalization tagged values

	D.1.5. Realization
	D.1.5.1. Realization tagged values

	D.1.6. Preserved sections

	Appendix E. Limits and Shortcomings
	E.1. Diagram Canvas Size
	E.2. Missing functions

	Appendix F. Open Publication License
	F.1. Introduction
	F.2. Copyright
	F.3. Scope Of License
	F.4. Requirements On Modified Works
	F.5. Good-Practice Recommendations

	Appendix G. The CRC Card Methodology
	G.1. The Card
	G.2. The Group
	G.3. The Session
	G.4. The Process

	Index

