
Inets

version 4.5

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 Inets User's Guide 1

1.1 Introduction . 1

1.1.1 Purpose . 1

1.1.2 Prerequisites . 1

1.1.3 The Service Concept . 1

1.2 FTP client . 2

1.2.1 Introduction . 2

1.2.2 Using the ftp client API . 2

1.3 HTTP client . 2

1.3.1 Introduction . 2

1.3.2 Configuration . 3

1.3.3 Using the HTTP client API . 3

1.4 HTTP server . 4

1.4.1 Introduction . 4

1.4.2 HTTP Server Setup . 4

1.4.3 Run-Time Configuration . 5

1.4.4 Erlang Web Server API . 6

iiiInets

2 Inets Reference Manual 13

2.1 ftp . 25

2.2 http . 35

2.3 http base 64 . 39

2.4 httpd . 40

2.5 httpd conf . 45

2.6 httpd core . 47

2.7 httpd socket . 56

2.8 httpd util . 57

2.9 mod actions . 63

2.10 mod alias . 65

2.11 mod auth . 68

2.12 mod browser . 79

2.13 mod cgi . 80

2.14 mod dir . 83

2.15 mod disk log . 84

2.16 mod esi . 88

2.17 mod get . 94

2.18 mod head . 95

2.19 mod htaccess . 96

2.20 mod include . 101

2.21 mod log . 104

2.22 mod range . 107

2.23 mod responsecontrol . 108

2.24 mod security . 109

2.25 mod trace . 114

Glossary 115

iv Inets

Chapter 1

Inets User's Guide

The Inets Application provides a set of Internet related services. Currently supported are a HTTP client,
a HTTP server and a ftp client.

1.1 Introduction

1.1.1 Purpose

Inets is a container for Internet clients and servers. Currently, an HTTP server, a FTP client and an
HTTP client has been incorporated into Inets. The HTTP server and client is HTTP 1.1 compliant as
defined in RFC 2616.

The HTTP client is now documented http(3) [page 35] and supported. It is loosely based on the earlier
unsupported client developed by Johan Blom of Mobile Arts AB.

1.1.2 Prerequisites

It is assumed that the reader is familiar with the Erlang programming language, concepts of OTP and
has a basic understanding of the HTTP and FTP protocols.

1.1.3 The Service Concept

Each client and server in inets is viewed as service. When starting the inets application the inets top
supervisor will start a number of subsupervisors and worker processes for handling the different services
provided. Some services require that there exist a configuration file, such as HTTP server(s), in order for
the service(s) to be started. While the HTTP clients main process always will be started (it remains idle
until some process issues a request) in this case the configuration is optional. Other services may not be
configurable and have a more dynamic character, such as ftp clients, that will add worker processes to
the supervision tree every time you do ftp:open/[1,2,3] an remove them every time you do ftp:close/1.

Services that needs configuring should be put into the inets applications configuration file on the form:

[finets, [fservices, ListofConfiguredServicesg]g].

For details of exactly what to put in the list of configured services see the documentation for the
services that needs configuring.

1Inets

Chapter 1: Inets User's Guide

1.2 FTP client

1.2.1 Introduction

Ftp client processes exist only when you use them. When you open a ftp connection a client process
will be spawned and added as a dynamic child to the ftp supervisor in the inets supervision tree. When
you close the connection the client process will be terminated. Only the process that created the
ftp-connection will be permitted to use it, and if that process dies the connection process will terminate.

The client supports ipv6 as long as the underlying mechanisms also do so.

1.2.2 Using the ftp client API

The following is a simple example of an ftp session, where the user guest with password password logs
on to the remote host erlang.org, and where the file appl.erl is transferred from the remote to the
local host. When the session is opened, the current directory at the remote host is /home/guest, and
/home/fred at the local host. Before transferring the file, the current local directory is changed to
/home/eproj/examples, and the remote directory is set to /home/guest/appl/examples.

1> application:start(inets).
ok
2> {ok, Pid} = ftp:open("erlang.org").
{ok,<0.22.0>}
3> ftp:user(Pid, "guest", "password").
ok
4> ftp:pwd(Pid).
{ok, "/home/guest"}
5> ftp:cd(Pid, "appl/examples").
ok
6> ftp:lpwd(Pid).
{ok, "/home/fred"}.
7> ftp:lcd(Pid, "/home/eproj/examples").
ok
8> ftp:recv(Pid, "appl.erl").
ok
9> ftp:close(Pid).
ok

1.3 HTTP client

1.3.1 Introduction

The HTTP client will be started when the inets application is started and is then available to all
processes on that erlang node. The client will spawn a new process to handle each request unless there
is a possibility to pipeline a request. The client will add a host header and an empty te header if there
are no such headers present in the request. The client supports ipv6 as long as the underlying
mechanisms also do so.

2 Inets

1.3: HTTP client

1.3.2 Configuration

It is possible to configure what directory the HTTP client should use to store information. Currently
the only information stored here is cookies. If the HTTP client service is not configured all cookies will
be treated as session cookies. Here follows a description of a configuration entry for the HTTP client in
the application configuration file.

[finets, [fservices, [fhttpc, fProfile, Dirgg]g]g]

Profile = atom() - default is the only valid value, as profiles are currently not supported.

Dir = string()

1.3.3 Using the HTTP client API

1 > application:start(inets).
ok

Use the proxy “www-proxy.mycompany.com:8000”, but not for requsts to localhost. This will apply to
all subsequent requests

2 > http:set_options([{proxy, {{"www-proxy.mycompany.com", 8000},
["localhost"]}}]).
ok

An ordinary synchronous request.

2 > {ok, {{Version, 200, ReasonPhrase}, Headers, Body}} =
http:request(get, {"http://www.erlang.org", []}, [], []).

An ordinary asynchronous request. The result will be sent to the calling process on the form fhttp,
fReqestId, Resultgg

3 > {ok, RequestId} =
http:request(get, {"http://www.erlang.org", []}, [], [{sync, false}]).

In this case the calling process is the shell, so we receive the result.

4 > receive {http, {RequestId, Result}} -> ok after 500 -> error end.
ok

Send a request with a specified connection header.

5 > {ok, {{NewVersion, 200, NewReasonPhrase}, NewHeaders, NewBody}} =
http:request(get, {"http://www.erlang.org", [{"connection", "close"}]},
[], []).

3Inets

Chapter 1: Inets User's Guide

1.4 HTTP server

1.4.1 Introduction

The HTTP server also refered to as httpd handles HTTP requests as described in RFC 2616 with a few
exceptions such as Gateway and Proxy functionality. (The same is true for servers written by NCSA
and others.) The server supports ipv6 as long as the underlying mechanisms also do so.

The server implements numerous features such as SSL [page 48] (Secure Sockets Layer), ESI [page 88]
(Erlang Scripting Interface), CGI [page 80] (Common Gateway Interface), User Authentication [page
68](using Mnesia, dets or plain text database), Common Logfile Format (with [page 84] or without
[page 104] disk log(3) support), URL Aliasing [page 65], Action Mappings [page 63], Directory
Listings [page 83] and SSI [page 101] (Server-Side Includes).

The configuration of the server is done using Apache1-style configuration directives. The goal is to be
plug-in compatible with Apache.

Allmost all server functionality has been implemented using an especially crafted server API, it is
described in the Erlang Web Server API. This API can be used to advantage by all who wants to
enhance the server core functionality, for example custom logging and authentication.

1.4.2 HTTP Server Setup

It is possible to start a number of Web servers in an embedded system using the services config
parameter from an application config file. A minimal application config file (from now on referred to as
inets.config) starting two HTTP servers typically looks as follows:

[finets,
[fservices,[fhttpd,"/var/tmp/server root/conf/8888.conf"g,
fhttpd,"/var/tmp/server root/conf/8080.conf"g]g]g].

A server config file is specified for each HTTP server to be started. The config file syntax and semantics
is described in the run time configuration section.

inets.config can be tested by copying the example server root to a specific installation directory, as
described in the run time configuration section. The example below shows a manual start of an Erlang
node, using inets.config, and the start of two HTTP servers listening listen on ports 8888 and 8080.

$ erl -config ./inets
Erlang (BEAM) emulator version 4.9

Eshell V4.9 (abort with ^G)
1> application:start(inets).
ok

1URL: http://www.apache.org

4 Inets

1.4: HTTP server

1.4.3 Run-Time Configuration

All functionality in the server can be configured using Apache-style configuration directives stored in a
configuration file. Take a look at the example config files in the conf directory2 of the server root for a
complete understanding.

An alphabetical list of all config directives:

� AccessFileName [page 96]

� Action [page 63]

� Alias [page 65]

� allow [page 72]

� AuthName [page 71]

� AuthGroupFile [page 71]

� AuthUserFile [page 70]

� BindAddress [page 48]

� DefaultType [page 49]

� deny [page 72]

� <Directory> [page 68]

� DirectoryIndex [page 65]

� DisableChunkedTransferEncodingSend [page 49]

� DocumentRoot [page 49]

� ErlScriptAlias [page 91]

� ErlScriptNoCache [page 91]

� ErlScriptTimeout [page 91]

� ErrorLog [page 104]

� ErrorDiskLog [page 85]

� ErrorDiskLogSize [page 85]

� EvalScriptAlias [page 92]

� KeepAlive [page 49]

� KeepAliveTimeout [page 50]

� MaxBodySize [page 50]

� MaxBodyAction [page 50]

� MaxClients [page 50]

� MaxHeaderSize [page 51]

� MaxHeaderAction [page 51]

� MaxKeepAliveRequests [page 51]

� Modules [page 51]

� Port [page 52]

� require [page 73]

� SecurityAuthTimeout [page 111]

� SecurityBlockTime [page 110]

2In Windows: %INETS ROOT%\examples\server root\conf\. In UNIX: $INETS ROOT/examples/server root/conf/.

5Inets

Chapter 1: Inets User's Guide

� SecurityCallbackModule [page 111]

� SecurityDataFile [page 109]

� SecurityDiskLog [page 85]

� SecurityDiskLogSize [page 85]

� SecurityFailExpireTime [page 110]

� SecurityLog [page 105]

� SecurityMaxRetries [page 110]

� ServerAdmin [page 52]

� ServerName [page 52]

� ServerRoot [page 52]

� Script [page 63]

� ScriptAlias [page 66]

� ScriptNoCache [page 80]

� ScriptTimeout [page 80]

� SocketType [page 53]

� SSLCACertificateFile [page 53]

� SSLCertificateFile [page 53]

� SSLCertificateKeyFile [page 53]

� SSLCiphers [page 54]

� SSLPasswordCallbackFunction [page 54]

� SSLPasswordCallbackModule [page 55]

� SSLVerifyClient [page 54]

� SSLVerifyDepth [page 54]

� TransferLog [page 105]

� TransferDiskLog [page 86]

� TransferDiskLogSize [page 86]

1.4.4 Erlang Web Server API

Almost all server functionality has been implemented using EWSAPI (Erlang Web Server API)
modules. The following modules are available:

httpd core [page 47] Some core features are not implemented using EWSAPI you can read about
these int the virtual module httpd core.

mod actions [page 63] Filetype/method-based script execution.

mod alias [page 65] Aliases and redirects.

mod auth [page 68] User authentication using text files, mnesia or dets.

mod browser [page 79] Tries to recognize the clients browser and operating system.

mod cgi [page 80] Invoking of CGI scripts.

mod dir [page 83] Basic directory handling.

mod disk log [page 84] Standard logging in the Common Logfile Format using disk log(3).

mod esi [page 88] Efficient Erlang Scripting.

6 Inets

1.4: HTTP server

mod get [page 94] Handle HTTP GET Method.

mod head [page 95] Handle HTTP HEAD Method.

mod htacceess [page 96] User configurable user authentication.

mod include [page 101] Server-parsed documents.

mod log [page 104] Standard logging in the Common Logfile Format using text files.

mod range [page 107] Handles GET requests for parts of files.

mod responsecontrol [page 108] Controls the restrictions in the request i.e. If-Match,
If-Range,If-Modified-Since, and take the appropriate action.

mod security [page 109] Filter authenticated requests.

mod trace [page 114] Handles. HTTP TRACE Method

Each module has a man page that further describe it's functionality.

The Modules [page 51] config directive can be used to alter the server behavior, by alter the EWSAPI
Module Sequence. An example module sequence can be found in the example config directory. If this
needs to be altered read the EWSAPI Module Interaction section below.

EWSAPI Module Programming

Note:
The Erlang/OTP programming knowledge required to undertake an EWSAPI module is quite high
and is not recommended for the average server user. It is best to only use it to add core functionality,
e.g. custom authentication or a RFC 21093 implementation.

EWSAPI should only be used to add core functionality to the server. In order to generate dynamic
content, for example on-the-fly generated HTML, use the standard CGI [page 80] or ESI [page 88]
facilities instead.

As seen above the major part of the server functionality has been realized as EWSAPI modules (from
now on only called modules). If you intend to write your own server extension start with examining the
standard modules4 mod *.erl and note how to they are configured in the example config directory5.

Each module implements do/1 (mandatory), load/2, store/2 and remove/1. The latter functions are
needed only when new config directives are to be introduced.

A module can choose to export functions to be used by other modules in the EWSAPI Module
Sequence (See Modules [page 51] config directive). This should only be done as an exception! The goal
is to keep each module self-sustained thus making it easy to alter the EWSAPI Module Sequence
without any unneccesary module dependencies.

A module can furthermore use data generated by previous modules in the EWSAPI Module Sequence
or generate data to be used by consecutive EWSAPI modules. This is made possible due to an internal
list of key-value tuples.

4In Windows: %INETS ROOT%\src\. In UNIX: $INETS ROOT/src/.
5In Windows: %INETS ROOT%\examples\server root\conf\. In UNIX: $INETS ROOT/examples/server root/conf/.

7Inets

Chapter 1: Inets User's Guide

Note:
The server executes do/1 function of each module listed in the Modules [page 51] config directive.
do/1 takes the record mod as an argument, as described below. See httpd.hrl6:

-record(mod,fdata=[],
socket type=ip comm,
socket,
config db,
method,
absolute uri,
request uri,
http version,
request line,
parsed header=[],
entity body,
connectiong).

The fields of the mod record has the following meaning:

data Type [fInteractionKey,InteractionValueg] is used to propagate data between modules.
Depicted interaction data() in function type declarations.

socket type socket type(), Indicates whether it is a ip socket or a ssl socket.

socket The actual socket in ip comm or ssl format depending on the socket type.

config db The config file directives stored as key-value tuples in an ETS-table. Depicted config db()
in function type declarations.

method Type "GET" | "POST" | "HEAD" | "TRACE", that is the HTTP method.

absolute uri If the request is a HTTP/1.1 request the URI might be in the absolute URI format. In
that case httpd will save the absolute URI in this field. An Example of an absolute URI could
be"http://ServerName:Part/cgi-bin/find.pl?person=jocke"

request uri The Request-URI as defined in RFC 1945, for example
"/cgi-bin/find.pl?person=jocke"

http version The HTTP version of the request, that is “HTTP/0.9”, “HTTP/1.0”, or “HTTP/1.1”.

request line The Request-Line as defined in RFC 1945, for example "GET
/cgi-bin/find.pl?person=jocke HTTP/1.0".

parsed header Type [fHeaderKey,HeaderValueg], parsed header contains all HTTP header fields
from the HTTP-request stored in a list as key-value tuples. See RFC 2616 for a listing of all
header fields. For example the date field would be stored as: f"date","Wed, 15 Oct 1997
14:35:17 GMT"g. RFC 2616 defines that HTTP is a case insensitive protocol and
the header fields may be in lowercase or upper case. Httpd will ensure that all
header field names are in lowe case.

entity body The Entity-Body as defined in RFC 2616, for example data sent from a CGI-script
using the POST method.

connection true | false If set to true the connection to the client is a persistent connections and
will not be closed when the request is served.

8 Inets

1.4: HTTP server

A do/1 function typically uses a restricted set of the mod record's fields to do its stuff and then returns a
term depending on the outcome, The outcome is either fproceed,NewDatag | fbreak,NewDatag |
done. Which has the following meaning:

fproceed,OldDatag Proceed to next module as nothing happened. OldData refers to the data field in
the incoming mod record.

fproceed,[fresponse,fStatusCode,Responsegg|OldData]g A generated response (Response)
should be sent back to the client including a status code (StatusCode) as defined in RFC 2616.

fproceed,[fresponse,fresponse,Head,Bodygg|OldData]g Head is a list of key/value tuples. Each
HTTP-header field that will be in the response header must be in the list. The following atoms
are allowed header field keys:

code,
allow,
cache control,
content MD5,
content encoding,
content encoding,
content language,
content length,
content location,
content range,
content type,
date,
etag,
expires,
last modified
location,
pragma,
retry after,
server,
trailer,
transfer encoding,

The key code is a special case since the value to this key is a integer and not a string. The value
will be used as status code for the response.
The benefit of this method is that the same request may be generated for both HTTP/1.1 and
HTTP/1.0 clients since the list of header fields will be filtered due to the version of the request.
Body is either the tuple fFun,Argg a list or the atom nobody. If Body is fFun,Argg Fun is assumed
to be a fun that returns either close, sent or fok,Bodyg. If close is returned the connection to the
client will be closed. If sent is returned the connection to the client will be maintained if the
connection is persitent. If fok,Bodyg is returned the Body is sent back to the client as the
response body.
This is the preffered response since it makes it a lot easier to generate a response that can be sent
back to both HTTP/1.0 and HTTP/1.1 clients. A warning might be in place that if content length
is not sent to the client, it might hang unless the body is sent with chunked encoding.

fproceed,[fresponse,falready sent,StatusCode,Sizegg|OldData]g A generated response has
already manually been sent back to the client, using the socket provided by the mod record (see
above), including a valid status code (StatusCode) as defined in RFC 1945 and the size (Size) of
the response in bytes.

fproceed,[fstatus,fStatusCode,PhraseArgs,Reasonggg|OldData]g A generic status message

9Inets

Chapter 1: Inets User's Guide

should be sent back to the client (if the next module in the EWSAPI Module Sequence does not
think otherwise!) including at status code (StatusCode) as defined in RFC 1945, a term
describing how the client will be informed (PhraseArgs) and a reason (Reason) to why it
happened. Read more about PhraseArgs in httpd util:message/3 [page 60].

fbreak,NewDatag Has the same semantics as proceed above but with one important exception; No
more modules in the EWSAPI Module Sequence are executed. Use with care!

done No more modules in the EWSAPI Module Sequence are executed and no response should be
sent back to the client. If no response is sent back to the client, using the socket provided by the
mod record, the client will typically get a “Document contains no data...”.

Warning:
Each consecutive module in the EWSAPI Module Sequence can choose to ignore data returned from
the previous module either by trashing it or by “enhancing” it.

Keep in mind that there exist numerous utility functions to help you as an EWSAPI module
programmer, e.g. nifty lookup of data in ETS-tables/key-value lists and socket utilities. You are well
advised to read httpd util(3) [page 57] and httpd socket(3) [page 56].

EWSAPI Module Configuration

An EWSAPI module can define new config directives thus making it configurable for a server end-user.
This is done by implementing load/2 (mandatory), store/2 and remove/1.

The config file is scanned twice (load/2 and store/2) and a cleanup is done (remove/1) during server
shutdown. The reason for this is: “A directive A can be dependent upon another directive B which
occur either before or after directive A in the config file”. If a directive does not depend upon other
directives; store/2 can be left out. Even remove/1 can be left out if neither load/2 nor store/2 open
files or create ETS-tables etc.

load/2 takes two arguments. The first being a row from the config file, that is a config directive in string
format such as "Port 80". The second being a list of key-value tuples (which can be empty!) defining a
context. A context is needed because there are directives which defines inner contexts, that is directives
within directives, such as <Directory> [page 68]. load/2 is expected to return:

eof End-of-file found.

ok Ignore the directive.

fok,ContextListg Introduces a new context by adding a tuple to the context list or reverts to a
previous context by removing a tuple from the context list. See <Directory> [page 68] which
introduces a new context and </Directory> [page 68] which reverts to a previous one (Advice:
Look at the source code for mod auth:load/2).

fok,ContextList,fDirectiveKey,DirectiveValuegg Introduces a new context (see above) and
defines a new config directive, e.g. fport,80g.

fok,ContextList,[fDirectiveKey,DirectiveValueg]g Introduces a new context (see above) and
defines a several new config directives, e.g. [fport,80g,ffoo,ong].

ferror,Reasong An invalid directive.

An example of a load function from mod log.erl:

10 Inets

1.4: HTTP server

load("TransferLog " ++ TransferLog, []) ->
{ok, [], {transfer_log, httpd_conf:clean(TransferLog)}};

load("ErrorLog " ++ ErrorLog, []) ->
{ok, [], {error_log, httpd_conf:clean(ErrorLog)}}.

store/2 takes two arguments. The first being a tuple describing a directive
(fDirectiveKey,DirectiveValueg) and the second argument a list of tuples describing all directives
([fDirectiveKey,DirectiveValueg]). This makes it possible for directive A to be dependent upon
the value of directive B. store/2 is expected to return:

fok,fDirectiveKey,NewDirectiveValuegg Introduces a new value for the specified directive
replacing the old one generated by load/2.

fok,[fDirectiveKey,NewDirectiveValueg]g Introduces new values for the specified directives
replacing the old ones generated by load/2.

ferror,Reasong An invalid directive.

An example of a store function from mod log.erl:

store({error_log, ErrorLog}, ConfigList) ->
case create_log(ErrorLog, ConfigList) of

{ok, ErrorLogStream} ->
{ok, {error_log, ErrorLogStream}};

{error, Reason} -> {error, Reason}
end.

remove/1 takes the ETS-table representation of the config-file as input. It is up to you to cleanup
anything you opened or created in load/2 or store/2. remove/1 is expected to return:

ok If the cleanup was successful.

ferror,Reasong If the cleanup failed.

A naive example from mod log.erl:

remove(ConfigDB) ->
lists:foreach(fun([Stream]) -> file:close(Stream) end,

ets:match(ConfigDB,{transfer_log,’$1’})),
lists:foreach(fun([Stream]) -> file:close(Stream) end,

ets:match(ConfigDB,{error_log,’$1’})),
ok.

11Inets

Chapter 1: Inets User's Guide

EWSAPI Module Interaction

Modules in the EWSAPI Module Sequence [page 51] uses the mod record's data field to propagate
responses and status messages, as seen above. This data type can be used in a more versatile fashion. A
module can prepare data to be used by subsequent EWSAPI modules, for example the mod alias [page
65] module appends the tuple freal name,string()g to inform subsequent modules about the actual
file system location for the current URL.

Before altering the EWSAPI Modules Sequence you are well advised to observe what types of data each
module uses and propagates. Read the “EWSAPI Interaction” section for each module.

An EWSAPI module can furthermore export functions to be used by other EWSAPI modules but also
for other purposes, for example mod alias:path/3 [page 67] and mod auth:add user/5 [page 74]. These
functions should be described in the module documentation.

Note:
When designing an EWSAPI module try to make it self-contained, that is avoid being dependent on
other modules both concerning exchange of interaction data and the use of exported functions. If
you are dependent on other modules do state this clearly in the module documentation!

You are well advised to read httpd util(3) [page 57] and httpd conf(3) [page 45].

12 Inets

Inets Reference Manual

Short Summaries

� Erlang Module ftp [page 25] – A File Transfer Protocol client

� Erlang Module http [page 35] – A HTTP/1.1 client

� Erlang Module http base 64 [page 39] – Implements base 64 encode and decode,
see RFC2045.

� Erlang Module httpd [page 40] – An implementation of an HTTP 1.1 compliant
Web server, as defined in RFC 2616.

� Erlang Module httpd conf [page 45] – Configuration utility functions to be used
by the EWSAPI programmer.

� Erlang Module httpd core [page 47] – The core functionality of the Web server.

� Erlang Module httpd socket [page 56] – Communication utility functions to be
used by the EWSAPI programmer.

� Erlang Module httpd util [page 57] – Miscellaneous utility functions to be used
when implementing EWSAPI modules.

� Erlang Module mod actions [page 63] – Filetype/method-based script execution.

� Erlang Module mod alias [page 65] – This module creates aliases and redirections.

� Erlang Module mod auth [page 68] – User authentication using text files, dets or
mnesia database.

� Erlang Module mod browser [page 79] – Tries to recognize the browser and
operating-system of the client.

� Erlang Module mod cgi [page 80] – Invoking of CGI scripts.

� Erlang Module mod dir [page 83] – Basic directory handling.

� Erlang Module mod disk log [page 84] – Standard logging using the ”Common
Logfile Format” and disk log(3).

� Erlang Module mod esi [page 88] – Efficient Erlang Scripting

� Erlang Module mod get [page 94] – Handle GET requests.

� Erlang Module mod head [page 95] – Handles HEAD requests to regular files.

� Erlang Module mod htaccess [page 96] – This module provides per-directory user
configurable access control.

� Erlang Module mod include [page 101] – Server-parsed documents.

� Erlang Module mod log [page 104] – Standard logging using the ”Common
Logfile Format” and text files.

� Erlang Module mod range [page 107] – handle requests for parts of a file

13Inets

Inets Reference Manual

� Erlang Module mod responsecontrol [page 108] – Controls that the request
conditions is fullfilled.

� Erlang Module mod security [page 109] – Security Audit and Trailing
Functionality

� Erlang Module mod trace [page 114] – handle trace requests

ftp

The following functions are exported:

� account(Pid, Account) -> ok | ferror, Reasong
[page 26] Specify which account to use.

� append(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong
[page 26] Transfer file to remote server, and append it to Remotefile.

� append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 26] Transfer a binary into a remote file.

� append chunk(Pid, Bin) -> ok | ferror, Reasong
[page 26] append a chunk to the remote file.

� append chunk start(Pid, File) -> ok | ferror, Reasong
[page 26] Start transfer of file chunks for appending to File.

� append chunk end(Pid) -> ok | ferror, Reasong
[page 27] Stop transfer of chunks for appending.

� cd(Pid, Dir) -> ok | ferror, Reasong
[page 27] Change remote working directory.

� close(Pid) -> ok
[page 27] End ftp session.

� delete(Pid, File) -> ok | ferror, Reasong
[page 27] Delete a file at the remote server..

� formaterror(Tag) -> string()
[page 27] Return error diagnostics.

� lcd(Pid, Dir) -> ok | ferror, Reasong
[page 27] Change local working directory.

� lpwd(Pid) -> fok, Dirg
[page 27] Get local current working directory.

� ls(Pid [, Dir]) -> fok, Listingg | ferror, Reasong
[page 28] List contents of remote directory.

� mkdir(Pid, Dir) -> ok | ferror, Reasong
[page 28] Create remote directory.

� nlist(Pid [, Dir]) -> fok, Listingg | ferror, Reasong
[page 28] List contents of remote directory.

� open(Host [, Port] [, Flags]) -> fok, Pidg | ferror, Reasong
[page 28] Start an ftp client.

� open(foption list, Option listg) -> fok, Pidg | ferror, Reasong
[page 28] Start an ftp client.

� pwd(Pid) -> fok, Dirg | ferror, Reasong
[page 30] Get remote current working directory.

14 Inets

Inets Reference Manual

� recv(Pid, RemoteFile [, LocalFile]) -> ok | ferror, Reasong
[page 30] Transfer file from remote server.

� recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong
[page 30] Transfer file from remote server as a binary.

� recv chunk start(Pid, RemoteFile) -> ok | ferror, Reasong
[page 31] Start chunk-reading of the remote file.

� recv chunk(Pid) -> ok | fok, Bing | ferror, Reasong
[page 31] Receive a chunk of the remote file.

� rename(Pid, Old, New) -> ok | ferror, Reasong
[page 31] Rename a file at the remote server..

� rmdir(Pid, Dir) -> ok | ferror, Reasong
[page 31] Remove a remote directory.

� send(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong
[page 31] Transfer file to remote server.

� send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong
[page 32] Transfer a binary into a remote file.

� send chunk(Pid, Bin) -> ok | ferror, Reasong
[page 32] Write a chunk to the remote file.

� send chunk start(Pid, File) -> ok | ferror, Reasong
[page 32] Start transfer of file chunks.

� send chunk end(Pid) -> ok | ferror, Reasong
[page 32] Stop transfer of chunks.

� type(Pid, Type) -> ok | ferror, Reasong
[page 32] Set transfer type to ascii or binary.

� user(Pid, User, Password) -> ok | ferror, Reasong
[page 32] User login.

� user(Pid, User, Password,Account) -> ok | ferror, Reasong
[page 33] User login.

� quote(Pid, Command) -> [FTPLine]
[page 33] Sends an arbitary FTP command.

http

The following functions are exported:

� cancel request(RequestId) -> ok
[page 36] Cancels an asynchronous HTTP-request.

� request(Url) -> fok, Resultg | ferror, Reasong
[page 36] Sends a get HTTP-request

� request(Method, Request, HTTPOptions, Options) -> fok, Resultg |
ferror, Reasong
[page 36] Sends a HTTP-request

� set options(Options) -> ok
[page 37] Sets options to be used for subsequent requests.

� verify cookie(SetCookieHeaders, Url) -> ok
[page 38] Saves the cookies defined in SetCookieHeaders in the client managers
cookie database.

15Inets

Inets Reference Manual

� cookie header(Url) -> header()
[page 38] Returns the cookie header that would be sent when making a request to
Url.

http base 64

The following functions are exported:

� encode(PlainASCII) -> Base64
[page 39] Encodes a plain ASCII string into base64.

� decode(Base64) -> PlainASCII
[page 39] Decodes an base64 encoded string to plain ASCII.

httpd

The following functions are exported:

� start()
[page 40] Start a server as specified in the given config file.

� start(ConfigFile) -> ServerRet
[page 40] Start a server as specified in the given config file.

� start link()
[page 40] Start a server as specified in the given config file.

� start link(ConfigFile) -> ServerRet
[page 40] Start a server as specified in the given config file.

� restart()
[page 40] Restart a running server.

� restart(Port) -> ok | ferror,Reasong
[page 40] Restart a running server.

� restart(ConfigFile) -> ok | ferror,Reasong
[page 40] Restart a running server.

� restart(Address,Port) -> ok | ferror,Reasong
[page 40] Restart a running server.

� stop()
[page 41] Stop a running server.

� stop(Port) -> ServerRet
[page 41] Stop a running server.

� stop(ConfigFile) -> ServerRet
[page 41] Stop a running server.

� stop(Address,Port) -> ServerRet
[page 41] Stop a running server.

� block() -> ok | ferror,Reasong
[page 41] Block a running server.

� block(Port) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(ConfigFile) -> ok | ferror,Reasong
[page 41] Block a running server.

16 Inets

Inets Reference Manual

� block(Address,Port) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(Port,Mode) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(ConfigFile,Mode) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(Address,Port,Mode) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(ConfigFile,Mode,Timeout) -> ok | ferror,Reasong
[page 41] Block a running server.

� block(Address,Port,Mode,Timeout) -> ok | ferror,Reasong
[page 41] Block a running server.

� unblock() -> ok | ferror,Reasong
[page 42] Unblock a blocked server.

� unblock(Port) -> ok | ferror,Reasong
[page 42] Unblock a blocked server.

� unblock(ConfigFile) -> ok | ferror,Reasong
[page 42] Unblock a blocked server.

� unblock(Address,Port) -> ok | ferror,Reasong
[page 42] Unblock a blocked server.

� parse query(QueryString) -> ServerRet
[page 42] Parse incoming data to erl and eval scripts.

� Module:do(Info)-> fproceed, OldDatag | fproceed, NewDatag | fbreak,
NewDatag | done
[page 43] The do/1 i called for each request to the Web server.

� Module:load(Line, Context)-> eof | ok | fok, NewContextg | fok,
NewContext, Directiveg | fok, NewContext, DirectiveListg | ferror,
Reasong
[page 43] Load a configuration directive.

� Module:store(fDirectiveKey, DirectiveValueg, DirectiveList)-> fok,
fDirectiveKey, NewDirectiveValuegg | fok, [fok, fDirectiveKey,
NewDirectiveValuegg | ferror, Reasong
[page 44] Alter the value of one or more configuration directive.

� Module:remove(ConfigDB)-> ok | ferror, Reasong
[page 44] Callback function that is called when the Web server is closed.

httpd conf

The following functions are exported:

� check enum(EnumString,ValidEnumStrings) -> Result
[page 45] Check if string is a valid enumeration.

� clean(String) -> Stripped
[page 45] Remove leading and/or trailing white spaces.

� custom clean(String,Before,After) -> Stripped
[page 45] Remove leading and/or trailing white spaces and custom characters.

� is directory(FilePath) -> Result
[page 45] Check if a file path is a directory.

17Inets

Inets Reference Manual

� is file(FilePath) -> Result
[page 46] Check if a file path is a regular file.

� make integer(String) -> Result
[page 46] Return an integer representation of a string.

httpd core

No functions are exported.

httpd socket

The following functions are exported:

� deliver(SocketType,Socket,Binary) -> Result
[page 56] Send binary data over socket.

� peername(SocketType,Socket) -> fPort,IPAddressg
[page 56] Return the port and IP-address of the remote socket.

� resolve() -> HostName
[page 56] Return the official name of the current host.

httpd util

The following functions are exported:

� convert request date(DateString) -> ErlDate|bad date
[page 57] Convert The the date to the Erlang date format.

� create etag(FileInfo) -> Etag
[page 57] Calculates the Etag for a file.

� decode base64(Base64String) -> ASCIIString
[page 57] Convert a base64 encoded string to a plain ascii string.

� decode hex(HexValue) -> DecValue
[page 57] Convert a hex value into its decimal equivalent.

� day(NthDayOfWeek) -> DayOfWeek
[page 57] Convert the day of the week (integer [1-7]) to an abbreviated string.

� encode base64(ASCIIString) -> Base64String
[page 58] Convert an ASCII string to a Base64 encoded string.

� flatlength(NestedList) -> Size
[page 58] Compute the size of a possibly nested list.

� header(StatusCode,PersistentConn)
[page 58] Generate a HTTP 1.1 header.

� header(StatusCode,Date)
[page 58] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,Date)
[page 58] Generate a HTTP 1.1 header.

� header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader
[page 58] Generate a HTTP 1.1 header.

18 Inets

Inets Reference Manual

� hexlist to integer(HexString) -> Number
[page 58] Convert a hexadecimal string to an integer.

� integer tohexlist(Number) -> HexString
[page 58] Convert an integer to a hexadecimal string.

� key1search(TupleList,Key)
[page 59] Search a list of key-value tuples for a tuple whose first element is a key.

� key1search(TupleList,Key,Undefined) -> Result
[page 59] Search a list of key-value tuples for a tuple whose first element is a key.

� lookup(ETSTable,Key) -> Result
[page 59] Extract the first value associated with a key in an ETS table.

� lookup(ETSTable,Key,Undefined) -> Result
[page 59] Extract the first value associated with a key in an ETS table.

� lookup mime(ConfigDB,Suffix)
[page 59] Return the mime type associated with a specific file suffix.

� lookup mime(ConfigDB,Suffix,Undefined) -> MimeType
[page 59] Return the mime type associated with a specific file suffix.

� lookup mime default(ConfigDB,Suffix)
[page 59] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

� lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType
[page 59] Return the mime type associated with a specific file suffix or the value of
the DefaultType.

� message(StatusCode,PhraseArgs,ConfigDB) -> Message
[page 60] Return an informative HTTP 1.1 status string in HTML.

� month(NthMonth) -> Month
[page 60] Convert the month as an integer (1-12) to an abbreviated string.

� multi lookup(ETSTable,Key) -> Result
[page 60] Extract the values associated with a key in a ETS table.

� reason phrase(StatusCode) -> Description
[page 60] Return the description of an HTTP 1.1 status code.

� rfc1123 date() -> RFC1123Date
[page 61] Return the current date in RFC 1123 format.

� rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date
[page 61] Return the current date in RFC 1123 format.

� split(String,RegExp,N) -> SplitRes
[page 61] Split a string in N chunks using a regular expression.

� split script path(RequestLine) -> Splitted
[page 61] Split a RequestLine in a file reference to an executable and a
QueryString or a PathInfo string.

� split path(RequestLine) -> fPath,QueryStringOrPathInfog
[page 61] Split a RequestLine in a file reference and a QueryString or a
PathInfo string.

� strip(String) -> Stripped
[page 61] Returns String where the leading and trailing space and tabs has been
removed.

� suffix(FileName) -> Suffix
[page 62] Extract the file suffix from a given filename.

19Inets

Inets Reference Manual

� to lower(String) -> ConvertedString
[page 62] Convert upper-case letters to lower-case.

� to upper(String) -> ConvertedString
[page 62] Convert lower-case letters to upper-case.

mod actions

No functions are exported.

mod alias

The following functions are exported:

� default index(ConfigDB,Path) -> NewPath
[page 66] Return a new path with the default resource or file appended.

� path(Data,ConfigDB,RequestURI) -> Path
[page 66] Return the actual file path to a URL.

� real name(ConfigDB,RequestURI,Aliases) -> Ret
[page 67] Expand a request uri using Alias config directives.

� real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret
[page 67] Expand a request uri using ScriptAlias config directives.

mod auth

The following functions are exported:

� add user(UserName, Options) -> true| ferror, Reasong
[page 74] Add a user to the user database.

� add user(UserName, Password, UserData, Port, Dir) -> true | ferror,
Reasong
[page 74] Add a user to the user database.

� add user(UserName, Password, UserData, Address, Port, Dir) -> true |
ferror, Reasong
[page 74] Add a user to the user database.

� delete user(UserName,Options) -> true | ferror, Reasong
[page 74] Delete a user from the user database.

� delete user(UserName, Port, Dir) -> true | ferror, Reasong
[page 74] Delete a user from the user database.

� delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong
[page 74] Delete a user from the user database.

� get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong
[page 74] Returns a user from the user database.

� get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong
[page 74] Returns a user from the user database.

� get user(UserName, Address, Port, Dir) -> fok, #httpd userg |
ferror, Reasong
[page 74] Returns a user from the user database.

20 Inets

Inets Reference Manual

� list users(Options) -> fok, Usersg | ferror, Reasong
<name>list users(Port, Dir) -> fok, Usersg | ferror, Reasong
[page 75] List users in the user database.

� list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong
[page 75] List users in the user database.

� add group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 75] Add a user to a group.

� add group member(GroupName, UserName, Port, Dir) -> true | ferror,
Reasong
[page 75] Add a user to a group.

� add group member(GroupName, UserName, Address, Port, Dir) -> true |
ferror, Reasong
[page 75] Add a user to a group.

� delete group member(GroupName, UserName, Options) -> true | ferror,
Reasong
[page 76] Remove a user from a group.

� delete group member(GroupName, UserName, Port, Dir) -> true |
ferror, Reasong
[page 76] Remove a user from a group.

� delete group member(GroupName, UserName, Address, Port, Dir) -> true
| ferror, Reasong
[page 76] Remove a user from a group.

� list group members(GroupName, Options) -> fok, Usersg | ferror,
Reasong
[page 76] List the members of a group.

� list group members(GroupName, Port, Dir) -> fok, Usersg | ferror,
Reasong
[page 76] List the members of a group.

� list group members(GroupName, Address, Port, Dir) -> fok, Usersg |
ferror, Reasong
[page 76] List the members of a group.

� list groups(Options) -> fok, Groupsg | ferror, Reasong
[page 76] List all the groups.

� list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 76] List all the groups.

� list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong
[page 77] List all the groups.

� delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong
[page 77] Deletes a group

� delete group(GroupName, Address, Port, Dir) -> true | ferror,
Reasong
[page 77] Deletes a group

� update password(Port, Dir, OldPassword, NewPassword, NewPassword) ->
ok | ferror, Reasong
[page 77] Change the AuthAcessPassword

� update password(Address,Port, Dir, OldPassword, NewPassword,
NewPassword) -> ok | ferror, Reasong
[page 77] Change the AuthAcessPassword

21Inets

Inets Reference Manual

mod browser

The following functions are exported:

� getBrowser(AgentString)-> fBrowser,OperatingSystemg
[page 79] Extracts the browser and operating-system from AgentString

mod cgi

The following functions are exported:

� env(Info,Script,AfterScript) -> EnvString
[page 81] Return a CGI-1.1 environment variable string to be used by
open port/2.

� status code(CGIOutput) -> fok,StatusCodeg | ferror,Reasong
[page 81] Parse output from a CGI script and generates an appropriate HTTP
status code.

mod dir

No functions are exported.

mod disk log

The following functions are exported:

� error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok |
no error log
[page 86] Log an error in the error log file.

� security log(User,Event) -> ok | no security log
[page 87] Log an security event in the error log file.

mod esi

The following functions are exported:

� deliver(SessionID, Data) -> ok | ferror,Reasong
[page 92] Sends Data back to client..

� Module:Function(Env, Input)-> Response
[page 93] Creates a dynamic web page and return it as a list.

� Module:Function(SessionID, Env, Input)-> void
[page 93] Creates a dynamic web page and return it as a list.

mod get

No functions are exported.

mod head

No functions are exported.

22 Inets

Inets Reference Manual

mod htaccess

No functions are exported.

mod include

No functions are exported.

mod log

The following functions are exported:

� error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok |
no error log
[page 106] Log an error in the a log file.

mod range

No functions are exported.

mod responsecontrol

No functions are exported.

mod security

The following functions are exported:

� list auth users(Port) -> Users | []
[page 111] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port) -> Users | []
[page 111] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Port, Dir) -> Users | []
[page 111] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list auth users(Address, Port, Dir) -> Users | []
[page 111] List users that have authenticated within the SecurityAuthTimeout
time for a given address (if specified), port number and directory (if specified).

� list blocked users(Port) -> Users | []
[page 111] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Address, Port) -> Users | []
[page 111] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� list blocked users(Port, Dir) -> Users | []
[page 111] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

23Inets

Inets Reference Manual

� list blocked users(Address, Port, Dir) -> Users | []
[page 111] List users that are currently blocked from access to a specified port
number, for a given address (if specified).

� block user(User, Port, Dir, Seconds) -> true | ferror, Reasong
[page 112] Block user from access to a directory for a certain amount of time.

� block user(User, Address, Port, Dir, Seconds) -> true | ferror,
Reasong
[page 112] Block user from access to a directory for a certain amount of time.

� unblock user(User, Port) -> true | ferror, Reasong
[page 112] Remove a blocked user from the block list

� unblock user(User, Address, Port) -> true | ferror, Reasong
[page 112] Remove a blocked user from the block list

� unblock user(User, Port, Dir) -> true | ferror, Reasong
[page 112] Remove a blocked user from the block list

� unblock user(User, Address, Port, Dir) -> true | ferror, Reasong
[page 112] Remove a blocked user from the block list

� event(What, Port, Dir, Data) -> ignored
[page 113] This function is called whenever an event occurs in mod security

� event(What, Address, Port, Dir, Data) -> ignored
[page 113] This function is called whenever an event occurs in mod security

mod trace

No functions are exported.

24 Inets

Inets Reference Manual ftp

ftp
Erlang Module

The ftp module implements a client for file transfer according to a subset of the File
Transfer Protocol (see RFC 959). Starting from inets version 4.4.1 the ftp client will
always try to use passive ftp mode and only resort to active ftp mode if this fails. There
is a mode option for open/[1,2,3] where this default behavior may be changed. Also the
mode option replaces the API function force active/1 that now has become deprecated.
(force active/1 is removed from the documentation but is still available in the code for
now.)

For a simple example of an ftp session see Inets User's Guide. [page 2]

In addition to the ordinary functions for receiving and sending files (see recv/2, recv/3,
send/2 and send/3) there are functions for receiving remote files as binaries (see
recv bin/2) and for sending binaries to to be stored as remote files (see send bin/3).

There is also a set of functions for sending and receiving contiguous parts of a file to be
stored in a remote file (for send see send chunk start/2, send chunk/2 and
send chunk end/1 and for receive see recv chunk start/2 and recv chunk/).

The particular return values of the functions below depend very much on the
implementation of the FTP server at the remote host. In particular the results from ls
and nlist varies. Often real errors are not reported as errors by ls, even if for instance
a file or directory does not exist. nlist is usually more strict, but some
implementations have the peculiar behaviour of responding with an error, if the request
is a listing of the contents of directory which exists but is empty.

COMMON DATA TYPES

Here follows type definitions that are used by more than one function in the FTP client
API.

pid() - identifier of an ftp connection.

string() = list of ASCII characters

shortage_reason() = etnospc | epnospc

restriction_reason() = epath | efnamena | elogin | enotbinary
- note not all restrictions may always relevant to all functions

common_reason() = econn | eclosed | term() - some kind of
explanation of what went wrong

25Inets

ftp Inets Reference Manual

Exports

account(Pid, Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Account = string()
� Reason = eacct | common reason()

If an account is needed for an operation set the account with this operation.

append(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = epath | elogin | etnospc | epnospc | efnamena | common reason

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file that the file will be appended to is set to RemoteFile; otherwise the
name is set to LocalFile If the file does not exists the file will be created.

append bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = restriction reason()| shortage reason() | common reason()

Transfers the binary Bin to the remote server and append it to the file RemoteFile. If
the file does not exists it will be created.

append chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = echunk | restriction reason() | common reason()

Transfer the chunk Bin to the remote server, which append it into the file specified in
the call to append chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call
append chunk end to get the proper reason.

append chunk start(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

26 Inets

Inets Reference Manual ftp

Start the transfer of chunks for appending to the file File at the remote server. If the
file does not exists it will be created.

append chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = echunk | restriction reason() | shortage reason()

Stops transfer of chunks for appending to the remote server. The file at the remote
server, specified in the call to append chunk start/2 is closed by the server.

cd(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Changes the working directory at the remote server to Dir.

close(Pid) -> ok

Types:

� Pid = pid()

Ends the ftp session.

delete(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

Deletes the file File at the remote server.

formaterror(Tag) -> string()

Types:

� Tag = ferror, atom()g | atom()

Given an error return value ferror, AtomReasong, this function returns a readable
string describing the error.

lcd(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason()

Changes the working directory to Dir for the local client.

lpwd(Pid) -> fok, Dirg

27Inets

ftp Inets Reference Manual

Types:

� Pid = pid()

Returns the current working directory at the local client.

ls(Pid [, Dir]) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = restriction reason() | common reason()

Returns a listing of the contents of the remote current directory (ls/1) or the specified
directory (ls/2). The format of Listing is operating system dependent (on UNIX it is
typically produced from the output of the ls -l shell command).

mkdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Creates the directory Dir at the remote server.

nlist(Pid [, Dir]) -> fok, Listingg | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Listing = string()
� Reason = restriction reason() | common reason()

Returns a listing of the contents of the remote current directory (nlist/1) or the
specified directory (nlist/2). The format of Listing is a stream of file names, where
each name is separated by <CRLF> or <NL>. Contrary to the ls function, the
purpose of nlist is to make it possible for a program to automatically process file name
information.

open(Host [, Port] [, Flags]) -> fok, Pidg | ferror, Reasong

open(foption list, Option listg) -> fok, Pidg | ferror, Reasong

Types:

� Host = string() | ip address()
� ip address() = fbyte(), byte(), byte(), byte()g fbyte(), byte(), byte(), byte(), byte(),

byte(), byte(), byte()g
� byte() = 0 | 1 | ... | 255
� Port = integer()
� Flags = [Flag]
� Flag = verbose | debug | ip v6 disabled
� Pid = pid()

28 Inets

Inets Reference Manual ftp

� Reason = ehost
� Option list = [Options]
� Options = fhost, Hostg | fport, Portg | fmode, Modeg | fflags, Flagsg | ftimeout,

Timeoutg | fprogress, ProgressOptiong
� Mode = active | passive
� Timeout = integer()
� ProgressOption = ignore | fCBModule, CBFunction, InitProgressg
� CallBackModule = atom()
� CallBackFunction = atom()
� InitProgress = term()

Opens a session with the ftp server at Host. The argument Host is either the name of
the host, its IP address in dotted decimal notation (e.g. "150.236.14.136"), or a tuple
of arity 4 (ipv4) or 8 (ipv6) (ex: f150, 236, 14, 136g).

If Port is supplied, a connection is attempted using this port number instead of the
default (21).

Default value for Mode is passive.

If the atom verbose is included in Flags, response messages from the remote server
will be written to standard output.

The progress option is intended to be used by applications that want create some type
of progress report such as a progress bar in a GUI. The default value for the progress
option is ignore e.i. the option is not used. When the progress option is specified the
following will happen when ftp:send/[3,4] or ftp:recv/[3,4] are called.

� Before a file is transfered the following call will be made to indicate the start of the
file transfer and how big the file is. The return value of the callback function
should be a new value for the UserProgressTerm that will bu used as input next
time the callback function is called.

CBModule:CBFunction(InitProgress, File, {file_size, FileSize})

� Every time a chunk of bytes is transfered the following call will be made:

CBModule:CBFunction(UserProgressTerm, File, {transfer_size, TransferSize})

� At the end of the file the following call will be made to indicate the end of the
transfer.

CBModule:CBFunction(UserProgressTerm, File, {transfer_size, 0})

The callback function should be defined as

CBModule:CBFunction(UserProgressTerm, File, Size) -> UserProgressTerm

CBModule = CBFunction = atom()

UserProgressTerm = term()

File = string()

Size = {transfer_size, integer()} | {file_size, integer()} | {file_size, unknown}

29Inets

ftp Inets Reference Manual

Alas for remote files it is not possible for ftp to determine the file size in a platform
independent way. In this case the size will be unknown and it is left to the application to
find out the size.

Note:
The callback is made by a middleman process, hence the file transfer will not be
affected by the code in the progress callback function. If the callback should crash
this will be detected by the ftp connection process that will print an info-report and
then go one as if the progress option was set to ignore.

The file transfer type is set to the default of the FTP server when the session is opened.
This is usually ASCCI-mode.

The current local working directory (cf. lpwd/1) is set to the value reported by
file:get cwd/1. the wanted local directory.

The timeout value is default set to 60000 milliseconds.

The return value Pid is used as a reference to the newly created ftp client in all other
functions, and they should be called by the process that created the connection. The ftp
client process monitors the process that created it and will terminate if that process
terminates.

pwd(Pid) -> fok, Dirg | ferror, Reasong

Types:

� Pid = pid()
� Reason = restriction reason() | common reason()

Returns the current working directory at the remote server.

recv(Pid, RemoteFile [, LocalFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� RemoteFile = LocalFile = string()
� Reason = restriction reason() | common reason() | file write error reason()
� file write error reason() = see file:write/2

Transfer the file RemoteFile from the remote server to the the file system of the local
client. If LocalFile is specified, the local file will be LocalFile; otherwise it will be
RemoteFile.

If the file write failes (e.g. enospc), then the command is aborted and ferror,
file write error reason()g is returned. The file is however not removed.

recv bin(Pid, RemoteFile) -> fok, Bing | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� RemoteFile = string()
� Reason = restriction reason() | common reason()

30 Inets

Inets Reference Manual ftp

Transfers the file RemoteFile from the remote server and receives it as a binary.

recv chunk start(Pid, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� RemoteFile = string()
� Reason = restriction reason() | common reason()

Start transfer of the file RemoteFile from the remote server.

recv chunk(Pid) -> ok | fok, Bing | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = restriction reason() | common reason()

Receive a chunk of the remote file (RemoteFile of recv chunk start). The return
values has the following meaning:

� ok the transfer is complete.

� fok, Bing just another chunk of the file.

� ferror, Reasong transfer failed.

rename(Pid, Old, New) -> ok | ferror, Reasong

Types:

� Pid = pid()
� CurrFile = NewFile = string()
� Reason = restriction reason() | common reason()

Renames Old to New at the remote server.

rmdir(Pid, Dir) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Dir = string()
� Reason = restriction reason() | common reason()

Removes directory Dir at the remote server.

send(Pid, LocalFile [, RemoteFile]) -> ok | ferror, Reasong

Types:

� Pid = pid()
� LocalFile = RemoteFile = string()
� Reason = restriction reason() | common reason() | shortage reason()

Transfers the file LocalFile to the remote server. If RemoteFile is specified, the name
of the remote file is set to RemoteFile; otherwise the name is set to LocalFile.

31Inets

ftp Inets Reference Manual

send bin(Pid, Bin, RemoteFile) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()()
� RemoteFile = string()
� Reason = restriction reason() | common reason() | shortage reason()

Transfers the binary Bin into the file RemoteFile at the remote server.

send chunk(Pid, Bin) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Bin = binary()
� Reason = echunk | restriction reason() | common reason()

Transfer the chunk Bin to the remote server, which writes it into the file specified in the
call to send chunk start/2.

Note that for some errors, e.g. file system full, it is neccessery to to call send chunk end
to get the proper reason.

send chunk start(Pid, File) -> ok | ferror, Reasong

Types:

� Pid = pid()
� File = string()
� Reason = restriction reason() | common reason()

Start transfer of chunks into the file File at the remote server.

send chunk end(Pid) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Reason = restriction reason() | common reason() | shortage reason()

Stops transfer of chunks to the remote server. The file at the remote server, specified in
the call to send chunk start/2 is closed by the server.

type(Pid, Type) -> ok | ferror, Reasong

Types:

� Pid = pid()
� Type = ascii | binary
� Reason = etype | restriction reason() | common reason()

Sets the file transfer type to ascii or binary. When an ftp session is opened, the
transfer type is set to binary.

user(Pid, User, Password) -> ok | ferror, Reasong

Types:

� Pid = pid()

32 Inets

Inets Reference Manual ftp

� User = Password = string()
� Reason = euser | common reason()

Performs login of User with Password.

user(Pid, User, Password,Account) -> ok | ferror, Reasong

Types:

� Pid = pid()
� User = Password = string()
� Reason = euser | common reason()

Performs login of User with Passwordto the acccount specified by Account .

quote(Pid, Command) -> [FTPLine]

Types:

� Pid = pid()
� Command = string()
� FTPLine = string() - Note the telnet end of line characters, from the ftp protocol

definition, CRLF e.g. ”\r\n” has been removed.

Sends an arbitrary FTP command and returns verbatimly a list of the lines sent back by
the FTP server. This functions is intended to give an application accesses to FTP
commands that are server specific or that may not be provided by this FTP client.

Note:
FTP commands that require a data connection can not be successfully issued with
this function.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
formaterror/1 are as follows:

echunk Synchronisation error during chunk sending.
A call has been made to send chunk/2 or send chunk end/1, before a call to
send chunk start/2; or a call has been made to another transfer function during
chunk sending, i.e. before a call to send chunk end/1.

eclosed The session has been closed.

econn Connection to remote server prematurely closed.

ehost Host not found, FTP server not found, or connection rejected by FTP server.

elogin User not logged in.

enotbinary Term is not a binary.

epath No such file or directory, or directory already exists, or permission denied.

etype No such type.

euser User name or password not valid.

33Inets

ftp Inets Reference Manual

etnospc Insufficient storage space in system [452].

epnospc Exceeded storage allocation (for current directory or dataset) [552].

efnamena File name not allowed [553].

SEE ALSO

file, filename, J. Postel and J. Reynolds: File Transfer Protocol (RFC 959).

34 Inets

Inets Reference Manual http

http
Erlang Module

This module provides the API to a HTTP/1.1 client according to RFC 2616, however
this early version is somewhat limited for instance caching is not supported.

Note:
The functions request/4, and set options/1, will start the inets application if it was
not already started. When starting the inets application the client manager process
that spawns request handlers, keeps track of proxy options etc will be started.
Normaly the application using this API should have started inets application. This is
also true for the ssl application when using https.

Also note that an application that does not set the pipeline-timeout value will benefit
very little from pipelining as the default timeout is 0.

There are some usage examples in the Inets User's Guide. [page 2]

COMMON DATA TYPES

Here follows type definitions that are used more than once in this module.

boolean() = true | false

string() = list of ASCII characters

request_id() = ref()

HTTP DATA TYPES

Here follows type definitions that are related to the HTTP protocol. For more
information about the HTTP protocol see rfc 2616

method() = head | get | put | post | trace | options | delete

request() - {url(), headers()} |
{url(), headers(), content_type(), body()}

url() = string() - Syntax according to the URI definition in rfc 2396, ex: "http://ww

status_line() =
{http_version(), status_code(), reason_phrase()}

http_version() = string() ex: "HTTP/1.1"

status_code() = integer()

35Inets

http Inets Reference Manual

reason_phrase() = string()

content_type() = string()

headers() = [{field(), value()}]

field() = string()

value() = string()

body() = string() | binary()

SSL DATA TYPES

Here follows some type definitions relevant when using https. for details [ssl(3)]

ssl_options() =
{verify, code()} | {depth, depth()} | {certfile, path()}
| {keyfile, path()} | {password, string()} | {cacertfile, path()}
| {ciphers, string()}

Exports

cancel request(RequestId) -> ok

Types:

� RequestId = request id() - A unique identifier as returned by request/4

Cancels an asynchronous HTTP-request.

request(Url) -> fok, Resultg | ferror, Reasong

Types:

� Url = url()
� Result = fstatus line(), headers(), body()g | fstatus code(), body()g | request id()
� Reason = term()

Equivalent to http:request(get, fUrl, []g, [], []).

request(Method, Request, HTTPOptions, Options) -> fok, Resultg | ferror, Reasong

Types:

� Method = method()
� Request - request()
� HTTPOptions - [HttpOption]
� HTTPOption - ftimeout, integer()g | fssl, ssl options()g | fautoredirect, boolean()g

autoredirect - is true by default e.i. the client will automaticly retrive the information
from the new URI and return that as the result instead of a 30X-result code. Note
that for some 30X-result codes automatic redirect is not allowed in these cases the
30X-result will always be returned.

� Options - [option()]
� Option - fsync, boolean()g | fbody format, body format()g | ffull result, boolean()g

The request function will be synchronous and return a full http response by default.

36 Inets

Inets Reference Manual http

� body format() = string() | binary()
The body format options is only valid for the syncronus request and the defult is
string, when making an asynchronous request the body will always be received as a
binary.

� Result = fstatus line(), headers(), body()g | fstatus code(), body()g | request id()
� Reason = term()

Sends a HTTP-request. The function can be both syncronus and asynchronous in the
later case the function will return fok, RequestIdg and later on a message will be sent to
the calling process on the format fhttp, fRequestId, Resultgg or fhttp, fRequestId,
ferror, Reasonggg.

set options(Options) -> ok

Types:

� Options = [Option]
� Option = fproxy, fProxy, NoProxygg | fmax sessions, MaxSessionsg |
fmax pipeline length, MaxPipelineg | fpipeline timeout, PipelineTimeoutg |
fcookies | CookieModeg | fipv6, Ipv6Modeg

� Proxy = fHostname, Portg
� Hostname = string()

ex: ”localhost” or ”foo.bar.se”
� Port = integer()

ex: 8080
� NoProxy = [NoProxyDesc]
� NoProxyDesc = DomainDesc | HostName | IPDesc
� DomainDesc = ”*.Domain”

ex: ”*.ericsson.se”
� IpDesc = string()

ex: ”134.138” or ”[FEDC:BA98” (all IP-adresses starting with 134.138 or
FEDC:BA98), ”66.35.250.150” or ”[2010:836B:4179::836B:4179]” (a compleat
IP-address).

� MaxSessions = integer()
Maximum number of persistent connections to a host.Default is 2.

� MaxPipeline = integer()
Maximum number of outstanding requests on the same connection to a host. Default
is 2.

� PipelineTimeout = integer()
If a persistant connection is idle longer than the pipeline timeout the client will close
the connection. Default is 0. The server may also have a such a time out but you
should not count on it!

� CookieMode = enabled | disabled | verify
Default is disabled. If Cookies are enabled all valid cookies will automaticly be saved
in the client managers cookie database. If the option verify is used the function
http:verify cookie/2 has to be called for the cookie to be saved.

� ipv6Mode = enabled | disabled
By default enabled. This should normally be what you want. When it is enabled you
can use both ipv4 and ipv6. The option is here to provide a workaround for buggy
ipv6 stacks to ensure that ipv4 will always work.

37Inets

http Inets Reference Manual

Sets options to be used for subsequent requests. Later implementations may support
user profiles, but currently these are global settings for all clients running on the same
erlang node.

Note:
If possible the client will keep its connections alive and ues them to pipeline requests
whenever the circumstances allow. The HTTP/1.1 specification does not provide a
guideline for how many requests that would be ideal to pipeline, this very much
depends on the application. Note that a very long pipeline may cause a user precived
delays as earlier request may take a long time to compleate. The HTTP/1.1
specification does suggest a limit of 2 persistent connections per server, which is the
defalt value of the max seesions option.

verify cookie(SetCookieHeaders, Url) -> ok

Types:

� SetCookieHeaders = headers() - where field = ”set-cookie”
� Url = url()

Saves the cookies defined in SetCookieHeaders in the client managers cookie database.
You need to call this function if you set the option cookies to verify.

cookie header(Url) -> header()

Types:

� Url = url()

Returns the cookie header that would be sent when making a request to Url.

SEE ALSO

RFC 2616, [ssl(3)]

38 Inets

Inets Reference Manual http base 64

http base 64
Erlang Module

Implements base 64 encode and decode, see RFC2045.

COMMON DATA TYPES

Here follows type definitions that are used by more than once this module.

string() = list of ASCII characters

Exports

encode(PlainASCII) -> Base64

Types:

� PlainASCII = string()
� Base64 = string()

Encodes a plain ASCII string into base64.

decode(Base64) -> PlainASCII

Types:

� PlainASCII = string()
� Base64 = string()

Decodes an base64 encoded string to plain ASCII.

39Inets

httpd Inets Reference Manual

httpd
Erlang Module

Exports

start()

start(ConfigFile) -> ServerRet

start link()

start link(ConfigFile) -> ServerRet

Types:

� ConfigFile = string()
� ServerRet = fok,Pidg | ignore | ferror,EReasong | fstop,SReasong
� Pid = pid()
� EReason = falready started, Pidg | term()
� SReason = string()

start/1 and start link/1 starts a server as specified in the given ConfigFile. The
ConfigFile supports a number of config directives specified below.

start/0 and start/0 starts a server as specified in a hard-wired config file, that is
start("/var/tmp/server root/conf/8888.conf"). Before utilizing start/0 or
start link/0, copy the example server root1 to a specific installation directory2 and
you have a server running in no time.

If you copy the example server root to the specific installation directory it is
furthermore easy to start an SSL enabled server, that is
start("/var/tmp/server root/conf/ssl.conf").

restart()

restart(Port) -> ok | ferror,Reasong

restart(ConfigFile) -> ok | ferror,Reasong

restart(Address,Port) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Reason = term()

1In Windows: %INETS ROOT%\examples\server root\. In UNIX: $INETS ROOT/examples/server root/.
2In Windows: X:\var\tmp\. In UNIX: /var/tmp/.

40 Inets

Inets Reference Manual httpd

restart restarts the server and reloads its config file.

The follwing directives cannot be changed: BindAddress, Port and SocketType. If these
should be changed, then a new server should be started instead.

Note:
Before the restart function can be called the server must be blocked [page 42].
After restart has been called, the server must be unblocked [page 42].

stop()

stop(Port) -> ServerRet

stop(ConfigFile) -> ServerRet

stop(Address,Port) -> ServerRet

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� ServerRet = ok | not started

stop/2 stops the server which listens to the specified Port on Address.
stop(integer()) stops a server which listens to a specific Port. stop(string())
extracts BindAddress and Port from the config file and stops the server which listens to
the specified Port on Address. stop/0 stops a server which listens to port 8888, that is
stop(8888).

block() -> ok | ferror,Reasong

block(Port) -> ok | ferror,Reasong

block(ConfigFile) -> ok | ferror,Reasong

block(Address,Port) -> ok | ferror,Reasong

block(Port,Mode) -> ok | ferror,Reasong

block(ConfigFile,Mode) -> ok | ferror,Reasong

block(Address,Port,Mode) -> ok | ferror,Reasong

block(ConfigFile,Mode,Timeout) -> ok | ferror,Reasong

block(Address,Port,Mode,Timeout) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Mode = disturbing | non disturbing
� Timeout = integer()
� Reason = term()

41Inets

httpd Inets Reference Manual

This function is used to block a server. The blocking can be done in two ways,
disturbing or non-disturbing.

By performing a disturbing block, the server is blocked forcefully and all ongoing
requests are terminated. No new connections are accepted. If a timeout time is given
then on-going requests are given this much time to complete before the server is
forcefully blocked. In this case no new connections is accepted.

A non-disturbing block is more gracefull. No new connections are accepted, but the
ongoing requests are allowed to complete. If a timeout time is given, it waits this long
before giving up (the block operation is aborted and the server state is once more
not-blocked)

Default mode is disturbing.

Default port is 8888

unblock() -> ok | ferror,Reasong

unblock(Port) -> ok | ferror,Reasong

unblock(ConfigFile) -> ok | ferror,Reasong

unblock(Address,Port) -> ok | ferror,Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� ConfigFile = string()
� Reason = term()

Unblocks a server. If the server is already unblocked this is a no-op. If a block is
ongoing, then it is aborted (this will have no effect on ongoing requests).

parse query(QueryString) -> ServerRet

Types:

� QueryString = string()
� ServerRet = [fKey,Valueg]
� Key = Value = string()

parse query/1 parses incoming data to erl and eval scripts (See mod esi(3) [page
88]) as defined in the standard URL format, that is '+' becomes 'space' and decoding of
hexadecimal characters (%xx).

42 Inets

Inets Reference Manual httpd

ESWAPI CALLBACK FUNCTIONS

Exports

Module:do(Info)-> fproceed, OldDatag | fproceed, NewDatag | fbreak, NewDatag | done

Types:

� Info = mod()
� OldData = list()
� NewData = [fresponse,fStatusCode,Bodygg] | [fresponse,fresponse,Head,Body2gg]
| [fresponse,falready sent,Statuscode,Sizeg]

� StausCode = integer()
� Body = String
� Head = [HeaderOption]
� HeaderOption = fKey, Valueg | fcode, StatusCodeg
� Key = allow | cache control | content MD5 | content encoding | content encoding
| content language,Value | content length | content location | content range |
content type | date | etag | expires | last modified | location | pragma | retry after
| server | trailer | transfer encoding

� Value = string()
� Body2 = fFun,Argg | Body | nobody
� Fun = fun(Arg)->sent| close | Body
� Arg = [term()]

Info is a record of type mod, this record is defined in httpd.hrl see EWSAPI Module
programming in the Inets Users Guide [page 4] for more information.

When a valid request reaches httpd it calls do/1 in each module defined by the Modules
configuration directive. The function may generate data for other modules or a response
that can be sent back to the client.

The field data in Info is a list. This list will be the list returned from the from the last
call to do/1.

Body is the body of the http-response that will be sent back to the client an appropriate
header will be appended to the message. StatusCode will be the status code of the
response see RFC2616 for the appropriate values.

Head is a key value list of HTTP header fields. the server will construct a HTTP header
from this data. See RFC 2616 for the appropriate value for each header field. If the
client is a HTTP/1.0 client then the server will filter the list so that only HTTP/1.0
header fields will be sent back to the client.

If Body2 is returned and equal to fFun,Argg The Web server will try apply/2. on Fun
with Arg as argument and excpect that the fun either returns a list (Body) that is a
HTTP-repsonse or the atom sent if the HTTP-response is sent back to the client. If
close is returned from the fun something has gone wrong and the server will signal this
to the client by closing the connection.

Module:load(Line, Context)-> eof | ok | fok, NewContextg | fok, NewContext,
Directiveg | fok, NewContext, DirectiveListg | ferror, Reasong

Types:

� Line = string()

43Inets

httpd Inets Reference Manual

� Context = NewContext = DirectiveList = [Directive]
� Directive = fDirectiveKey , DirectiveValueg
� DirectiveKey = DirectiveValue = term()
� Reason = term()

load/2 takes a row Line from the configuration file and tries to convert it to a key value
tuple. If a directive is dependent on other directives, the directive may create a context.
If the directive is not dependent on other directives return fok, [], Directiveg,
otherwise return a new context, that is fok, NewContextg or fok, Context Directiveg.
If ferror, Reasong is returned the configuration directive is assumed to be invalid.

Module:store(fDirectiveKey, DirectiveValueg, DirectiveList)-> fok, fDirectiveKey,
NewDirectiveValuegg | fok, [fok, fDirectiveKey, NewDirectiveValuegg |
ferror, Reasong

Types:

� DirectiveList = [fDirectiveKey, DirectiveValueg]
� DirectiveKey = DirecitveValue = term()
� Context = NewContext = DirectiveList = [Directive]
� Directive = fKey , Valueg
� Reason = term()

When all rows in the configuration file is read the function store/2 is called for each
configuration directive. This makes it possible for a directive to alter other configuration
directives. DirectiveList is a list of all configuration directives read in from load. If a
directive may update other configuration directives then use this function.

Module:remove(ConfigDB)-> ok | ferror, Reasong

Types:

� ConfigDB = ets table()
� Reason = term()

When httpd shutdown it will try to execute remove/1 in each ewsapi module. The
ewsapi programmer may use this to close ets tables, save data, or close down
background processes.

SEE ALSO

httpd core(3) [page 47], httpd conf(3) [page 45], httpd socket(3) [page 56],
httpd util(3) [page 57],

44 Inets

Inets Reference Manual httpd conf

httpd conf
Erlang Module

This module provides the EWSAPI programmer with utility functions for adding
run-time configuration directives.

Warning:
The current implementation of EWSAPI is under review and feedback is welcomed.

Exports

check enum(EnumString,ValidEnumStrings) -> Result

Types:

� EnumString = string()
� ValidEnumStrings = [string()]
� Result = fok,atom()g | ferror,not validg

check enum/2 checks if EnumString is a valid enumeration of ValidEnumStrings in
which case it is returned as an atom.

clean(String) -> Stripped

Types:

� String = Stripped = string()

clean/1 removes leading and/or trailing white spaces from String.

custom clean(String,Before,After) -> Stripped

Types:

� Before = After = regexp()
� String = Stripped = string()

custom clean/3 removes leading and/or trailing white spaces and custom characters
from String. Before and After are regular expressions, as defined in regexp(3),
describing the custom characters.

is directory(FilePath) -> Result

Types:

� FilePath = string()

45Inets

httpd conf Inets Reference Manual

� Result = fok,Directoryg | ferror,Reasong
� Directory = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

is directory/1 checks if FilePath is a directory in which case it is returned. Please
read file(3) for a description of enoent, eaccess and enotdir. The definition of the
file info record can be found by including file.hrl from the kernel application, see
file(3).

is file(FilePath) -> Result

Types:

� FilePath = string()
� Result = fok,Fileg | ferror,Reasong
� File = string()
� Reason = string() | enoent | eaccess | enotdir | FileInfo
� FileInfo = File info record

is file/1 checks if FilePath is a regular file in which case it is returned. Read
file(3) for a description of enoent, eaccess and enotdir. The definition of the file
info record can be found by including file.hrl from the kernel application, see file(3).

make integer(String) -> Result

Types:

� String = string()
� Result = fok,integer()g | ferror,nomatchg

make integer/1 returns an integer representation of String.

SEE ALSO

httpd(3) [page 40]

46 Inets

Inets Reference Manual httpd core

httpd core
Erlang Module

This manual page summarize the core features of the server not being implemented as
EWSAPI modules. The following core config directives are described:

Note:
There is no erlang module called httpd core. This manual page is just a place to put
the documentation for the core directives.

� BindAddress [page 48]

� DefaultType [page 49]

� DocumentRoot [page 49]

� MaxBodyAction [page 50]

� MaxBodySize [page 50]

� MaxClients [page 50]

� KeepAlive [page 49]

� KeepAliveTimeout [page 50]

� MaxHeaderAction [page 51]

� MaxHeaderSize [page 51]

� MaxKeepAliveRequests [page 51]

� Modules [page 51]

� Port [page 52]

� ServerAdmin [page 52]

� ServerName [page 52]

� ServerRoot [page 52]

� SocketType [page 53]

� SSLCACertificateFile [page 53]

� SSLCertificateFile [page 53]

� SSLCertificateKeyFile [page 53]

� SSLCiphers [page 54]

� SSLPasswordCallbackFunction [page 54]

� SSLPasswordCallbackModule [page 55]

� SSLVerifyClient [page 54]

� SSLVerifyDepth [page 54]

� DisableChunkedTransferEncodingSend [page 49]

47Inets

httpd core Inets Reference Manual

SECURE SOCKETS LAYER (SSL)

The SSL support is realized using the SSL application based on OpenSSL. Please refer
to [ssl(4)] for installation requirements for OpenSSL.

SSLeay is an implementation of Netscape's Secure Socket Layer specification - the
software encryption protocol specification behind the Netscape Secure Server and the
Netscape Navigator Browser.

The SSL Protocol can negotiate an encryption algorithm and session key as well as
authenticate a server before the application protocol transmits or receives it's first byte
of data. All of the application protocol data is transmitted encrypted, ensuring privacy.

The SSL protocol provides “channel security” which has three basic properties:

� The channel is private. Encryption is used for all messages after a simple
handshake is used to define a secret key.

� The channel is authenticated. The server end-point of the conversation is always
authenticated, while the client endpoint is optionally authenticated.

� The channel is reliable. The message transport includes a message integrity check
(using a MAC).

The SSL mechanism can be enabled in the server by using the SSLCACertificateFile
[page 53], SSLCertificateFile [page 53], SSLCertificateKeyFile [page 53], SSLCiphers
[page 54], SSLVerifyDepth [page 54], and the SSLVerifyClient [page 54] config
directives.

MIME TYPE SETTINGS

Files delivered to the client are MIME typed according to RFC 1590. File suffixes are
mapped to MIME types before file delivery.

The mapping between file suffixes and MIME types are specified in the mime.types file.
The mime.types reside within the conf directory of the ServerRoot [page 52]. Refer to
the example server root3. MIME types may be added as required to the mime.types file
and the DefaultType [page 49] config directive can be used to specify a default mime
type.

DIRECTIVE: ”BindAddress”

Syntax: BindAddress address
Default: BindAddress *
Module: httpd core(3) [page 47]

BindAddress defines which address the server will listen to. If the argument is * then
the server listens to all addresses otherwise the server will only listen to the address
specified. Address can be given either as an IP address or a hostname.

3In Windows: %INETS ROOT%\examples\server root. In UNIX: $INETS ROOT/examples/server root.

48 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”DefaultType”

Syntax: DefaultType mime-type
Default: - None - Module: httpd core(3) [page 47]

When the server is asked to provide a document type which cannot be determined by
the MIME Type Settings [page 48], the server must inform the client about the content
type of documents and mime-type is used if an unknown type is encountered.

DIRECTIVE: ”DisableChunkedTransferEncodingSend”

Syntax: DisableChunkedTransferEncodingSend true | false
Default: false
Module: httpd core(3) [page 47]

This directive tells the server whether to use chunked transfer-encoding when sending a
response to a HTTP/1.1 client.

DIRECTIVE: ”DocumentRoot”

Syntax: DocumentRoot directory-filename
Default: - Mandatory - Module: httpd core(3) [page 47]

DocumentRoot points the Web server to the document space from which to serve
documents from. Unless matched by a directive like Alias [page 65], the server appends
the path from the requested URL to the DocumentRoot to make the path to the
document, for example:

DocumentRoot /usr/web

and an access to http://your.server.org/index.htmlwould refer to
/usr/web/index.html.

DIRECTIVE: ”KeepAlive”

Syntax: KeepAlive true | false
Default: true
Module: httpd core(3) [page 47]

This directive tells the server whether to use persistent connection or not when the
client claims to be HTTP/1.1 compliant.Note:the value of KeepAlive has changed from
previous versions to be compliant with Apache.

49Inets

httpd core Inets Reference Manual

DIRECTIVE: ”KeepAliveTimeout”

Syntax: KeepAliveTimeout seconds
Default:150
Module: httpd core(3) [page 47]

The number of seconds the server will wait for a subsequent request from the client
before closing the connection. If the load on the server is high you may want to shorten
this.

DIRECTIVE: ”MaxBodyAction”

Syntax: MaxBodyAction action
Default: MaxBodyAction close Module: httpd core(3) [page 47]

MaxBodyAction specifies the action to be taken when the message body limit has been
passed.

close the default and preferred communication type. ip comm is also used for all
remote message passing in Erlang.

reply414 a reply (status) message with code 414 will be sent to the client prior to
closing the socket. Note that this code is not defined in the HTTP/1.0 version of
the protocol.

DIRECTIVE: ”MaxBodySize”

Syntax: MaxBodySize size
Default: MaxBodySize nolimit Module: httpd core(3) [page 47]

MaxBodySize limits the size of the message body of HTTP request. The reply to this is
specified by the MaxBodyAction directive. Valid size is:

nolimit the default message body limit, e.g. no limit.

integer() any positive number.

DIRECTIVE: ”MaxClients”

Syntax: MaxClients number
Default: MaxClients 150 Module: httpd core(3) [page 47]

MaxClients limits the number of simultaneous requests that can be supported. No
more than this number of child server process's can be created.

50 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”MaxHeaderAction”

Syntax: MaxHeaderAction action
Default: MaxHeaderAction close Module: httpd core(3) [page 47]

MaxHeaderAction specifies the action to be taken when the message Header limit has
been passed.

close the socket is closed without any message to the client. This is the default action.

reply414 a reply (status) message with code 414 will be sent to the client prior to
closing the socket. Note that this code is not defined in the HTTP/1.0 version of
the protocol.

DIRECTIVE: ”MaxHeaderSize”

Syntax: MaxHeaderSize size
Default: MaxHeaderSize 10240 Module: httpd core(3) [page 47]

MaxHeaderSize limits the size of the message header of HTTP request. The reply to
this is specified by the MaxHeaderAction directive. Valid size is:

integer() any positive number (default is 10240)

nolimit no limit should be applied

DIRECTIVE: ”MaxKeepAliveRequests”

Syntax: MaxKeepAliveRequests NumberOfRequests
Default:- Disabled -
Module: httpd core(3) [page 47]

The number of request that a client can do on one connection. When the server has
responded to the number of requests defined by MaxKeepAliveRequests the server
close the connection. The server will close it even if there are queued request.

DIRECTIVE: ”Modules”

Syntax: Modules module module ...
Default: Modules mod get mod head mod log
Module: httpd core(3) [page 47]

Modules defines which EWSAPI modules to be used in a specific server setup. module is
a module in the code path of the server which has been written in accordance with the
Erlang Web Server API in the Inets Users Guide. [page 4] The server executes
functionality in each module, from left to right (from now on called EWSAPI Module
Sequence).

Before altering the EWSAPI Modules Sequence please observe what types of data each
module uses and propagates. Read the “EWSAPI Interaction” section for each module
and the EWSAPI Module Interaction in the Inets Users Guide [page 4] description in
httpd(3).

51Inets

httpd core Inets Reference Manual

DIRECTIVE: ”Port”

Syntax: Port number
Default: Port 80
Module: httpd core(3) [page 47]

Port defines which port number the server should use (0 to 65535). Certain port
numbers are reserved for particular protocols, i.e. examine your OS characteristics4 for
a list of reserved ports. The standard port for HTTP is 80.

All ports numbered below 1024 are reserved for system use and regular (non-root)
users cannot use them, i.e. to use port 80 you must start the Erlang node as root. (sic!)
If you do not have root access choose an unused port above 1024 typically 8000, 8080
or 8888.

DIRECTIVE: ”ServerAdmin”

Syntax: ServerAdmin email-address
Default: ServerAdmin unknown@unknown
Module: httpd core(3) [page 47]

ServerAdmin defines the email-address of the server administrator, to be included in
any error messages returned by the server. It may be worth setting up a dedicated user
for this because clients do not always state which server they have comments about, for
example:

ServerAdmin www-admin@white-house.com

DIRECTIVE: ”ServerName”

Syntax: ServerName fully-qualified domain name
Default: - Mandatory -
Module: httpd core(3) [page 47]

ServerName sets the fully-qualified domain name of the server.

DIRECTIVE: ”ServerRoot”

Syntax: ServerRoot directory-filename
Default: - Mandatory -
Module: httpd core(3) [page 47]

ServerRoot defines a directory-filenamewhere the server has it's operational home,
e.g. used to store log files and system icons. Relative paths specified in the config file
refer to this directory-filename (See mod log(3) [page 104]).

4In UNIX: /etc/services.

52 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”SocketType”

Syntax: SocketType type
Default: SocketType ip comm
Module: httpd core(3) [page 47]

SocketType defines which underlying communication type to be used. Valid socket
types are:

ip comm the default and preferred communication type. ip comm is also used for all
remote message passing in Erlang.

ssl the communication type to be used to support SSL (Read more about Secure
Sockets Layer (SSL) [page 48] in httpd(3)).

DIRECTIVE: ”SSLCACertificateFile”

Syntax: SSLCACertificateFile filename
Default: - None -
Module: httpd core(3) [page 47]

SSLCACertificateFile points at a PEM encoded certificate of the certification
authorities. Read more about PEM encoded certificates in the SSL application
documentation. Read more about PEM encoded certificates in the SSL application
documentation.

DIRECTIVE: ”SSLCertificateFile”

Syntax: SSLCertificateFile filename
Default: - None -
Module: httpd core(3) [page 47]

SSLCertificateFile points at a PEM encoded certificate. Read more about PEM
encoded certificates in the SSL application documentation. The dummy certificate
server.pem5, in the Inets distribution, can be used for test purposes. Read more about
PEM encoded certificates in the SSL application documentation.

DIRECTIVE: ”SSLCertificateKeyFile”

Syntax: SSLCertificateKeyFile filename
Default: - None -
Module: httpd core(3) [page 47]

SSLCertificateKeyFile is used to point at a certificate key file. This directive should
only be used if a certificate key has not been bundled with the certificate file pointed at
by SSLCertificateFile [page 53].

5In Windows: %INETS%\examples\server root\ssl\. In UNIX: $INETS/examples/server root/ssl/.

53Inets

httpd core Inets Reference Manual

DIRECTIVE: ”SSLVerifyClient”

Syntax: SSLVerifyClient type
Default: - None -
Module: httpd core(3) [page 47]

Set type to:

0 if no client certificate is required.

1 if the client may present a valid certificate.

2 if the client must present a valid certificate.

3 if the client may present a valid certificate but it is not required to have a valid CA.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLVerifyDepth”

Syntax: SSLVerifyDepth integer
Default: - None -
Module: httpd core(3) [page 47]

This directive specifies how far up or down the (certification) chain we are prepared to
go before giving up.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLCiphers”

Syntax: SSLCiphers ciphers
Default: - None -
Module: httpd core(3) [page 47]

SSLCihers is a colon separated list of ciphers.

Read more about SSL in the application documentation.

DIRECTIVE: ”SSLPasswordCallbackFunction”

Syntax: SSLPasswordCallbackFunction function
Default: - None -
Module: httpd core(3) [page 47]

The SSLPasswordCallbackFunction function in module
SSLPasswordCallbackModule is called in order to retrieve the user's password.

Read more about SSL in the application documentation.

54 Inets

Inets Reference Manual httpd core

DIRECTIVE: ”SSLPasswordCallbackModule”

Syntax: SSLPasswordCallbackModule function
Default: - None -
Module: httpd core(3) [page 47]

The SSLPasswordCallbackFunction function in the SSLPasswordCallbackModule
module is called in order to retrieve the user's password.

Read more about SSL in the application documentation.

SEE ALSO

httpd(3) [page 40]

55Inets

httpd socket Inets Reference Manual

httpd socket
Erlang Module

This module provides the EWSAPI module programmer with utility functions for
generic sockets communication. The appropriate communication mechanism is
transparently used, that is ip comm or ssl.

Exports

deliver(SocketType,Socket,Binary) -> Result

Types:

� SocketType = socket type()
� Socket = socket()
� Binary = binary()
� Result = socket closed | void()

deliver/3 sends the Binary over the Socket using the specified SocketType. Socket
and SocketType should be the socket and the socket type form the mod record as
defined in httpd.

peername(SocketType,Socket) -> fPort,IPAddressg

Types:

� SocketType = socket type()
� Socket = socket()
� Port = integer()
� IPAddress = string()

peername/3 returns the Port and IPAddress of the remote Socket.

resolve() -> HostName

Types:

� HostName = string()

resolve/0 returns the official HostName of the current host.

SEE ALSO

httpd(3) [page 40]

56 Inets

Inets Reference Manual httpd util

httpd util
Erlang Module

This module provides the Erlang Web Server API in the Inets Users Guide [page 4]
module programmer with miscellaneous utility functions.

Exports

convert request date(DateString) -> ErlDate|bad date

Types:

� DateString = string()
� ErlDate = ffYear,Month,Dateg,fHour,Min,Secgg
� Year = Month = Date = Hour = Min = Sec = integer()

convert request date/1 converts DateString to the Erlang date format. DateString
must be in one of the three date formats that is defined in the RFC 2616.

create etag(FileInfo) -> Etag

Types:

� FileInfo = file info()
� Etag = string()

create etag/1 calculates the Etag for a file, from it's size and time for last
modification. fileinfo is a record defined in kernel/include/file.hrl

decode base64(Base64String) -> ASCIIString

Types:

� Base64String = ASCIIString = string()

Deprecated use http base 64:decode/1 [page 39]

decode hex(HexValue) -> DecValue

Types:

� HexValue = DecValue = string()

Converts the hexadecimal value HexValue into it's decimal equivalent (DecValue).

day(NthDayOfWeek) -> DayOfWeek

Types:

� NthDayOfWeek = 1-7
� DayOfWeek = string()

57Inets

httpd util Inets Reference Manual

day/1 converts the day of the week (NthDayOfWeek) as an integer (1-7) to an
abbreviated string, that is:

1 = “Mon”, 2 = “Tue”, ..., 7 = “Sat”.

encode base64(ASCIIString) -> Base64String

Types:

� ASCIIString = string()
� Base64String = string()

Deprecated use http base 64:decode/1 [page 39]

flatlength(NestedList) -> Size

Types:

� NestedList = list()
� Size = integer()

flatlength/1 computes the size of the possibly nested list NestedList. Which may
contain binaries.

header(StatusCode,PersistentConn)

header(StatusCode,Date)

header(StatusCode,MimeType,Date)

header(StatusCode,MimeType,PersistentConn,Date) -> HTTPHeader

Types:

� StatusCode = integer()
� Date = rfc1123 date()
� MimeType = string()
� PersistentConn = true | false

header returns a HTTP 1.1 header string. The StatusCode is one of the status codes
defined in RFC 2616 and the Date string is RFC 1123 compliant. (See rfc1123 date/0
[page 61]).

Note that the two version of header/n that does not has a PersistentConn argument is
there only for backward compability, and must not be used in new EWSAPI modules.
that will support persistent connections.

hexlist to integer(HexString) -> Number

Types:

� Number = integer()
� HexString = string()

hexlist to integer Convert the Hexadecimal value of HexString to an integer.

integer tohexlist(Number) -> HexString

Types:

� Number = integer()
� HexString = string()

58 Inets

Inets Reference Manual httpd util

integer to hexlist/1 Returns a string that represents the Number in a Hexadecimal
form.

key1search(TupleList,Key)

key1search(TupleList,Key,Undefined) -> Result

Types:

� TupleList = [tuple()]
� Key = term()
� Result = term() | undefined | Undefined
� Undefined = term()

key1search searches the TupleList for a tuple whose first element is Key.
key1search/2 returns undefined and key1search/3 returns Undefined if no tuple is
found.

lookup(ETSTable,Key) -> Result

lookup(ETSTable,Key,Undefined) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = term() | undefined | Undefined
� Undefined = term()

lookup extracts fKey,Valueg tuples from ETSTable and returns the Value associated
with Key. If ETSTable is of type bag only the first Value associated with Key is returned.
lookup/2 returns undefined and lookup/3 returns Undefined if no Value is found.

lookup mime(ConfigDB,Suffix)

lookup mime(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined
� Undefined = term()

lookup mime returns the mime type associated with a specific file suffix as specified in
the mime.types file (located in the config directory6).

lookup mime default(ConfigDB,Suffix)

lookup mime default(ConfigDB,Suffix,Undefined) -> MimeType

Types:

� ConfigDB = ets table()
� Suffix = string()
� MimeType = string() | undefined | Undefined
� Undefined = term()

6In Windows: %SERVER ROOT%\conf\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.

59Inets

httpd util Inets Reference Manual

lookup mime default returns the mime type associated with a specific file suffix as
specified in the mime.types file (located in the config directory7). If no appropriate
association can be found the value of DefaultType [page 49] is returned.

message(StatusCode,PhraseArgs,ConfigDB) -> Message

Types:

� StatusCode = 301 | 400 | 403 | 404 | 500 | 501 | 504
� PhraseArgs = term()
� ConfigDB = ets table
� Message = string()

message/3 returns an informative HTTP 1.1 status string in HTML. Each StatusCode
requires a specific PhraseArgs:

301 string(): A URL pointing at the new document position.

400 | 401 | 500 none (No PhraseArgs)

403 | 404 string(): A Request-URI as described in RFC 2616.

501 fMethod,RequestURI,HTTPVersiong: The HTTP Method, Request-URI and
HTTP-Version as defined in RFC 2616.

504 string(): A string describing why the service was unavailable.

month(NthMonth) -> Month

Types:

� NthMonth = 1-12
� Month = string()

month/1 converts the month NthMonth as an integer (1-12) to an abbreviated string,
that is:

1 = “Jan”, 2 = “Feb”, ..., 12 = “Dec”.

multi lookup(ETSTable,Key) -> Result

Types:

� ETSTable = ets table()
� Key = term()
� Result = [term()]

multi lookup extracts all fKey,Valueg tuples from an ETSTable and returns all Values
associated with the Key in a list.

reason phrase(StatusCode) -> Description

Types:

� StatusCode = 100| 200 | 201 | 202 | 204 | 205 | 206 | 300 | 301 | 302 | 303 |
304 | 400 | 401 | 402 | 403 | 404 | 405 | 406 | 410 411 | 412 | 413 | 414 415 |
416 | 417 | 500 | 501 | 502 | 503 | 504 | 505

� Description = string()

7In Windows: %SERVER ROOT%\conf\mime.types. In UNIX: $SERVER ROOT/conf/mime.types.

60 Inets

Inets Reference Manual httpd util

reason phrase returns the Description of an HTTP 1.1 StatusCode, for example 200
is “OK” and 201 is “Created”. Read RFC 2616 for further information.

rfc1123 date() -> RFC1123Date

rfc1123 date(ffYYYY,MM,DDg,fHour,Min,Secggg) -> RFC1123Date

Types:

� YYYY = MM = DD = Hour = Min =Sec = integer()
� RFC1123Date = string()

rfc1123 date/0 returns the current date in RFC 1123 format. rfc date/1 converts the
date in the Erlang format to the RFC 1123 date format.

split(String,RegExp,N) -> SplitRes

Types:

� String = RegExp = string()
� SplitRes = fok, FieldListg | ferror, errordesc()g
� Fieldlist = [string()]
� N = integer

split/3 splits the String in N chunks using the RegExp. split/3 is is equivalent to
regexp:split/2with one exception, that is N defines the number of maximum number
of fields in the FieldList.

split script path(RequestLine) -> Splitted

Types:

� RequestLine = string()
� Splitted = not a script | fPath, PathInfo, QueryStringg
� Path = QueryString = PathInfo = string()

split script path/1 is equivalent to split path/1 with one exception. If the longest
possible path is not a regular, accessible and executable file not a script is returned.

split path(RequestLine) -> fPath,QueryStringOrPathInfog

Types:

� RequestLine = Path = QueryStringOrPathInfo = string()

split path/1 splits the RequestLine in a file reference (Path) and a QueryString or a
PathInfo string as specified in RFC 2616. A QueryString is isolated from the Path
with a question mark (?) and PathInfo with a slash (/). In the case of a QueryString,
everything before the ? is a Path and everything after a QueryString. In the case of a
PathInfo the RequestLine is scanned from left-to-right on the hunt for longest
possible Path being a file or a directory. Everything after the longest possible Path,
isolated with a /, is regarded as PathInfo. The resulting Path is decoded using
decode hex/1 before delivery.

strip(String) -> Stripped

Types:

� String = Stripped = string()

61Inets

httpd util Inets Reference Manual

strip/1 removes any leading or trailing linear white space from the string. Linear white
space should be read as horisontal tab or space.

suffix(FileName) -> Suffix

Types:

� FileName = Suffix = string()

suffix/1 is equivalent to filename:extension/1with one exception, that is Suffix is
returned without a leading dot (.).

to lower(String) -> ConvertedString

Types:

� String = ConvertedString = string()

to lower/1 converts upper-case letters to lower-case.

to upper(String) -> ConvertedString

Types:

� String = ConvertedString = string()

to upper/1 converts lower-case letters to upper-case.

SEE ALSO

httpd(3) [page 40]

62 Inets

Inets Reference Manual mod actions

mod actions
Erlang Module

This module runs CGI scripts whenever a file of a certain type or HTTP method (See
RFC 1945) is requested. The following config directives are described:

� Action [page 63]

� Script [page 63]

DIRECTIVE: ”Action”

Syntax: Action mime-type cgi-script
Default: - None -
Module: mod actions(3) [page 63]

Action adds an action, which will activate a cgi-script whenever a file of a certain
mime-type is requested. It propagates the URL and file path of the requested document
using the standard CGI PATH INFO and PATH TRANSLATED environment variables.

Examples:

Action text/plain /cgi-bin/log and deliver text
Action home-grown/mime-type1 /~bob/do special stuff

DIRECTIVE: ”Script”

Syntax: Script method cgi-script
Default: - None -
Module: mod actions(3) [page 63]

Script adds an action, which will activate a cgi-script whenever a file is requested
using a certain HTTP method. The method is either GET or POST as defined in RFC
1945. It propagates the URL and file path of the requested document using the
standard CGI PATH INFO and PATH TRANSLATED environment variables.

Examples:

Script GET /cgi-bin/get
Script POST /~bob/put and a little more

63Inets

mod actions Inets Reference Manual

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 65].

Exports the following EWSAPI interaction data, if possible:

fnew request uri,RequestURIg An alternative RequestURI has been generated.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod alias(3) [page 65]

64 Inets

Inets Reference Manual mod alias

mod alias
Erlang Module

This module makes it possible to map different parts of the host file system into the
document tree. The following config directives are described:

� Alias [page 65]

� DirectoryIndex [page 65]

� ScriptAlias [page 66]

DIRECTIVE: ”Alias”

Syntax: Alias url-path directory-filename
Default: - None -
Module: mod alias(3) [page 65]

The Alias directive allows documents to be stored in the local file system instead of the
DocumentRoot [page 49] location. URLs with a path that begins with url-path is
mapped to local files that begins with directory-filename, for example:

Alias /image /ftp/pub/image

and an access to http://your.server.org/image/foo.gif would refer to the file
/ftp/pub/image/foo.gif.

DIRECTIVE: ”DirectoryIndex”

Syntax: DirectoryIndex file file ...
Default: - None -
Module: mod alias(3) [page 65]

DirectoryIndex specifies a list of resources to look for if a client requests a directory
using a / at the end of the directory name. file depicts the name of a file in the
directory. Several files may be given, in which case the server will return the first it
finds, for example:

DirectoryIndex index.html

and access to http://your.server.org/docs/ would return
http://your.server.org/docs/index.html if it existed.

65Inets

mod alias Inets Reference Manual

DIRECTIVE: ”ScriptAlias”

Syntax: ScriptAlias url-path directory-filename
Default: - None -
Module: mod alias(3) [page 65]

The ScriptAlias directive has the same behavior as the Alias [page 65] directive, except
that it also marks the target directory as containing CGI scripts. URLs with a path
beginning with url-path are mapped to scripts beginning with directory-filename,
for example:

ScriptAlias /cgi-bin/ /web/cgi-bin/

and an access to http://your.server.org/cgi-bin/foo would cause the server to run
the script /web/cgi-bin/foo.

EWSAPI MODULE INTERACTION

Exports the following EWSAPI interaction data, if possible:

freal name,fPath,AfterPathgg Path and AfterPath is as defined in
httpd util:split path/1 [page 61] with one exception - Path has been run through
default index/2 [page 66].

Uses the following exported EWSAPI functions:

� mod alias:default index/2 [page 66]

� mod alias:path/3 [page 67]

� mod alias:real name/3 [page 67]

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

default index(ConfigDB,Path) -> NewPath

Types:

� ConfigDB = config db()
� Path = NewPath = string()

If Path is a directory, default index/2, it starts searching for resources or files that are
specified in the config directive DirectoryIndex [page 65]. If an appropriate resource or
file is found, it is appended to the end of Path and then returned. Path is returned
unaltered, if no appropriate file is found, or if Path is not a directory. config db() is
the server config file in ETS table format as described in EWSAPI Module Programming
in the Inets Users Guide. [page 4].

path(Data,ConfigDB,RequestURI) -> Path

Types:

66 Inets

Inets Reference Manual mod alias

� Data = interaction data()
� ConfigDB = config db()
� RequestURI = Path = string()

path/3 returns the actual file Path in the RequestURI (See RFC 1945). If the
interaction data freal name,fPath,AfterPathgg has been exported by mod alias(3)
[page 66]; Path is returned. If no interaction data has been exported, ServerRoot [page
52] is used to generate a file Path. config db() and interaction data() are as
defined in EWSAPI Module Programming in the Inets Users Guide [page 4].

real name(ConfigDB,RequestURI,Aliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� Aliases = [fFakeName,RealNameg]
� Ret = fShortPath,Path,AfterPathg
� ShortPath = Path = AfterPath = string()

real name/3 traverses Aliases, typically extracted from ConfigDB, and matches each
FakeName with RequestURI. If a match is found FakeName is replaced with RealName in
the match. The resulting path is split into two parts, that is ShortPath and AfterPath
as defined in httpd util:split path/1 [page 61]. Path is generated from ShortPath, that
is the result from default index/2 [page 66] with ShortPath as an argument.
config db() is the server config file in ETS table format as described in EWSAPI
Module Programming in the Inets User Guide. [page 4].

real script name(ConfigDB,RequestURI,ScriptAliases) -> Ret

Types:

� ConfigDB = config db()
� RequestURI = string()
� ScriptAliases = [fFakeName,RealNameg]
� Ret = fShortPath,AfterPathg | not a script
� ShortPath = AfterPath = string()

real name/3 traverses ScriptAliases, typically extracted from ConfigDB, and matches
each FakeName with RequestURI. If a match is found FakeName is replaced with
RealName in the match. If the resulting match is not an executable script not a script
is returned. If it is a script the resulting script path is in two parts, that is ShortPath and
AfterPath as defined in httpd util:split script path/1 [page 61]. config db() is the
server config file in ETS table format as described in EWSAPI Module Programming in
the Inets Users Guide. [page 4].

SEE ALSO

httpd(3) [page 40]

67Inets

mod auth Inets Reference Manual

mod auth
Erlang Module

This module provides for basic user authentication using textual files, dets databases as
well as mnesia databases. The following config directives are supported:

� <Directory> [page 68]
� AuthDBType [page 69]
� AuthAccessPassword [page 72]
� AuthUserFile [page 70]
� AuthGroupFile [page 71]
� AuthName [page 71]
� allow [page 72]
� deny [page 72]
� require [page 73]

The Directory [page 68] config directive is central to be able to restrict access to certain
areas of the server. Please read about the Directory [page 68] config directive.

DIRECTIVE: ”Directory”

Syntax: <Directory regexp-filename>
Default: - None -
Module: mod auth(3) [page 68]
Related: allow [page 72], deny [page 72], AuthAccessPassword [page 72] AuthUserFile
[page 70], AuthGroupFile [page 71], AuthName [page 71], require [page 73]

<Directory> and </Directory> are used to enclose a group of directives which
applies only to the named directory and sub-directories of that directory.
regexp-filename is an extended regular expression (See regexp(3)). For example:

<Directory /usr/local/httpd[12]/htdocs>
AuthAccessPassword sOmEpAsSwOrD
AuthDBType plain
AuthName My Secret Garden
AuthUserFile /var/tmp/server root/auth/user
AuthGroupFile /var/tmp/server root/auth/group
require user ragnar edward
require group group1
allow from 123.145.244.5

</Directory>

If multiple directory sections match the directory (or its parents), then the directives are
applied with the shortest match first. For example if you have one directory section for
garden/ and one for garden/flowers, the garden/ section matches first.

68 Inets

Inets Reference Manual mod auth

DIRECTIVE: ”AuthDBType”

Syntax: AuthDBType plain | dets | mnesia
Default: - None -
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthAccessPassword [page 72], AuthName
[page 71], AuthUserFile [page 70], AuthGroupFile [page 71], require [page 73]

AuthDBType sets the type of authentication database that is used for the directory.The
key difference between the different methods is that dynamic data can be saved when
Mnesia and Dets is used.

If Mnesia is used as storage method, Mnesia must be started prio to the webserver. The
first time Mnesia is started the schema and the tables must be created before Mnesia is
started. A naive example of a module with two functions that creates and start mnesia
is provided here. The function shall be sued the first time. first start/0 creates the
schema and the tables. The second function start/0 shall be used in consecutive
startups. start/0 Starts Mnesia and wait for the tables to be initiated. This function
must only be used when the schema and the tables already is created.

-module(mnesia_test).
-export([start/0,load_data/0]).
-include("mod_auth.hrl").

first_start()->
mnesia:create_schema([node()]),
mnesia:start(),
mnesia:create_table(httpd_user,

[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_user)}]),

mnesia:create_table(httpd_group,
[{type,bag},{disc_copies,[node()]},
{attributes,record_info(fields,httpd_group)}]),

mnesia:wait_for_tables([httpd_user,httpd_group],60000).

start()->
mnesia:start(),
mnesia:wait_for_tables([httpd_user,httpd_group],60000).

To create the Mnesia tables we use two records defined in mod auth.hrl so the file must
be included.

The first function first start/0 creates a schema that specify on which nodes the
database shall reside. Then it starts Mnesia and creates the tables. The first argument is
the name of the tables, the second argument is a list of options how the table will be
created, see Mnesia documentation for more information. Since the current
implementation of the mod auth mnesia saves one row for each user the type must be
bag.

When the schema and the tables is created the second function start/0shall be used to
start Mensia. It starts Mnesia and wait for the tables to be loaded. Mnesia use the
directory specified as mnesia dir at startup if specified, otherwise Mnesia use the
current directory.

69Inets

mod auth Inets Reference Manual

Warning:
For security reasons, make sure that the Mnesia tables are stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download the tables.

Note:
Only the dets and mnesia storage methods allow writing of dynamic user data to
disk. plain is a read only method.

DIRECTIVE: ”AuthUserFile”

Syntax: AuthUserFile filename
Default: - None -
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthDBType [page 69], AuthAccessPassword
[page 72], AuthGroupFile [page 71], AuthName [page 71], require [page 73]

AuthUserFile sets the name of a file which contains the list of users and passwords for
user authentication. filename can be either absolute or relative to the ServerRoot.

If using the plain storage method, this file is a plain text file, where each line contains a
user name followed by a colon, followed by the non-encrypted password. The behavior is
undefined if user names are duplicated. For example:

ragnar:s7Xxv7
edward:wwjau8

If using the dets storage method, the user database is maintained by dets and should
not be edited by hand. Use the API [page 74] in this module to create / edit the user
database.

This directive is ignored if using the mnesia storage method.

Warning:
For security reasons, make sure that the AuthUserFile is stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download it.

70 Inets

Inets Reference Manual mod auth

DIRECTIVE: ”AuthGroupFile”

Syntax: AuthGroupFile filename
Default: - None -
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthName [page 71], AuthUserFile [page
70], AuthDBType [page 69], AuthAccessPassword [page 72], require [page 73]

AuthGroupFile sets the name of a file which contains the list of user groups for user
authentication. filename can be either absolute or relative to the ServerRoot.

If you use the plain storage method, the group file is a plain text file, where each line
contains a group name followed by a colon, followed by the member user names
separated by spaces. For example:

group1: bob joe ante

If using the dets storage method, the group database is maintained by dets and should
not be edited by hand. Use the API [page 74] in this module to create / edit the group
database.

This directive is ignored if using the mnesia storage method.

Warning:
For security reasons, make sure that the AuthGroupFile is stored outside the
document tree of the Web server. If it is placed in the directory which it protects,
clients will be able to download it.

DIRECTIVE: ”AuthName”

Syntax: AuthName auth-domain
Default: - None -
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthGroupFile [page 71], AuthUserFile
[page 70], AuthDBType [page 69], AuthAccessPassword [page 72], require [page 73]

AuthName sets the name of the authorization realm (auth-domain) for a directory. This
string informs the client about which user name and password to use.

71Inets

mod auth Inets Reference Manual

DIRECTIVE: ”AuthAccessPassword”

Syntax: AuthAccessPassword password
Default: NoPassword
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthGroupFile [page 71], AuthUserFile
[page 70], AuthDBType [page 69], AuthName [page 71], require [page 73]

If AuthAccessPassword is set to other than NoPassword the password is required for all
API calls. If the password is set to DummyPassword the password must be changed
before any other API calls. To secure the authenticating data the password must be
changed after the webserver is started since it otherwise is written in clear text in the
configuration file.

DIRECTIVE: ”allow”

Syntax: allow from host host ...
Default: allow from all
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: AuthAccessPassword [page 72], deny [page 72], AuthUserFile [page 70],
AuthGroupFile [page 71], AuthName [page 71], AuthDBType [page 69] require [page
73]

allow defines a set of hosts which should be granted access to a given directory. host is
one of the following:

all All hosts are allowed access.

A regular expression (Read regexp(3)) All hosts having a numerical IP address
matching the specific regular expression are allowed access.

For example:

allow from 123.34.56.11 150.100.23

The host 123.34.56.11 and all machines on the 150.100.23 subnet are allowed access.

DIRECTIVE: ”deny”

Syntax: deny from host host ...
Default: deny from all
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], AuthUserFile [page 70], AuthGroupFile [page 71],
AuthName [page 71], AuthDBType [page 69], AuthAccessPassword [page 72], require
[page 73]

deny defines a set of hosts which should not be granted access to a given directory. host
is one of the following:

all All hosts are denied access.

72 Inets

Inets Reference Manual mod auth

A regular expression (Read regexp(3)) All hosts having a numerical IP address
matching the specific regular expression are denied access.

For example:

deny from 123.34.56.11 150.100.23

The host 123.34.56.11 and all machines on the 150.100.23 subnet are denied access.

DIRECTIVE: ”require”

Syntax: require entity-name entity entity ...
Default: - None -
Module: mod auth(3) [page 68]
Context: <Directory> [page 68]
Related: allow [page 72], deny [page 72], AuthUserFile [page 70], AuthGroupFile
[page 71], AuthName [page 71], AuthDBType [page 69], AuthAccessPassword [page
72]

require defines users which should be granted access to a given directory using a secret
password. The allowed syntaxes are:

require user user-name user-name ... Only the named users can access the
directory.

require group group-name group-name ... Only users in the named groups can
access the directory.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name, fPath, AfterPathgg as defined in mod alias(3) [page 65].

Exports the following EWSAPI interaction data, if possible:

fremote user, Userg The user name with which the user has authenticated himself.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 67]

73Inets

mod auth Inets Reference Manual

Exports

add user(UserName, Options) -> true| ferror, Reasong

add user(UserName, Password, UserData, Port, Dir) -> true | ferror, Reasong

add user(UserName, Password, UserData, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fpassword,Passwordg | fuserData,UserDatag | fport,Portg |
faddr,Addressg | fdir,Directoryg | fauthPassword,AuthPasswordg

� Password = string()
� UserData = term()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword =string()
� Reason = term()

add user/2, add user/5 and add user/6 adds a user to the user database. If the
operation is succesful, this function returns true. If an error occurs, ferror,Reasong is
returned. When add user/2 is called the Password, UserData Port and Dir options is
mandatory.

delete user(UserName,Options) -> true | ferror, Reasong

delete user(UserName, Port, Dir) -> true | ferror, Reasong

delete user(UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

delete user/2, delete user/3 and delete user/4 deletes a user from the user
database. If the operation is succesful, this function returns true. If an error occurs,
ferror,Reasong is returned. When delete user/2 is called the Port and Dir options
are mandatory.

get user(UserName,Options) -> fok, #httpd userg |ferror, Reasong

get user(UserName, Port, Dir) -> fok, #httpd userg | ferror, Reasong

get user(UserName, Address, Port, Dir) -> fok, #httpd userg | ferror, Reasong

Types:

� UserName = string()

74 Inets

Inets Reference Manual mod auth

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

get user/2, get user/3 and get user/4 returns a httpd user record containing the
userdata for a specific user. If the user cannot be found, ferror, Reasong is returned.
When get user/2 is called the Port and Dir options are mandatory.

list users(Options) -> fok, Usersg | ferror, Reasong <name>list users(Port, Dir) ->
fok, Usersg | ferror, Reasong

list users(Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()
� AuthPassword = string()
� Reason = atom()

list users/1, list users/2 and list users/3 returns a list of users in the user
database for a specific Port/Dir. When list users/1 is called the Port and Dir options
are mandatory.

add group member(GroupName, UserName, Options) -> true | ferror, Reasong

add group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

add group member(GroupName, UserName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� GroupName = string()
� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

75Inets

mod auth Inets Reference Manual

add group member/3, add group member/4 and add group member/5 adds a user to a
group. If the group does not exist, it is created and the user is added to the group. Upon
successful operation, this function returns true. When add group members/3 is called
the Port and Dir options are mandatory.

delete group member(GroupName, UserName, Options) -> true | ferror, Reasong

delete group member(GroupName, UserName, Port, Dir) -> true | ferror, Reasong

delete group member(GroupName, UserName, Address, Port, Dir) -> true | ferror,
Reasong

Types:

� GroupName = string()
� UserName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� AuthPassword = string()
� Reason = term()

delete group member/3, delete group member/4 and delete group member/5
deletes a user from a group. If the group or the user does not exist, this function returns
an error, otherwise it returns true. When delete group member/3 is called the Port
and Dir options are mandatory.

list group members(GroupName, Options) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Port, Dir) -> fok, Usersg | ferror, Reasong

list group members(GroupName, Address, Port, Dir) -> fok, Usersg | ferror, Reasong

Types:

� GroupName = string()
� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list()
� AuthPassword = string()
� Reason = term()

list group members/2, list group members/3 and list group members/4 lists the
members of a specified group. If the group does not exist or there is an error, ferror,
Reasong is returned. When list group members/2 is called the Port and Dir options
are mandatory.

list groups(Options) -> fok, Groupsg | ferror, Reasong

list groups(Port, Dir) -> fok, Groupsg | ferror, Reasong

76 Inets

Inets Reference Manual mod auth

list groups(Address, Port, Dir) -> fok, Groupsg | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Groups = list()
� AuthPassword = string()
� Reason = term()

list groups/1, list groups/2 and list groups/3 lists all the groups available. If
there is an error, ferror, Reasong is returned. When list groups/1 is called the Port
and Dir options are mandatory.

delete group(GroupName, Options) -> true | ferror,Reasong
<name>delete group(GroupName, Port, Dir) -> true | ferror, Reasong

delete group(GroupName, Address, Port, Dir) -> true | ferror, Reasong

Types:

� Options = [Option]
� Option = fport,Portg | faddr,Addressg | fdir,Directoryg |
fauthPassword,AuthPasswordg

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� AuthPassword = string()
� Reason = term()

delete group/2, delete group/3 and delete group/4 deletes the group specified
and returns true. If there is an error, ferror, Reasong is returned. When
delete group/2 is called the Port and Dir options are mandatory.

update password(Port, Dir, OldPassword, NewPassword, NewPassword) -> ok | ferror,
Reasong

update password(Address,Port, Dir, OldPassword, NewPassword, NewPassword) -> ok |
ferror, Reasong

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� GroupName = string()
� OldPassword = string()
� NewPassword = string()
� Reason = term()

77Inets

mod auth Inets Reference Manual

update password/5 and update password/6 Updates the AuthAccessPassword for the
specified directory. If NewPassword is equal to “NoPassword” no password is requires to
change authorisation data. If NewPassword is equal to “DummyPassword” no changes
can be done without changing the password first.

SEE ALSO

httpd(3) [page 40], mod alias(3) [page 65],

78 Inets

Inets Reference Manual mod browser

mod browser
Erlang Module

When a client requests for an asset the request-header may contain a string that
identifies the product. Many browsers also sends information about which
operating-system the client use. This can be used in conjunction with mod esi to tailor
the response according to the users operating-system and browser.

This module can be used to recognize the browser and operating-system of the client in
two ways either as a module in the EWSAPI response chain or by a separate call to the
function getBrowser/1.

Exports

getBrowser(AgentString)-> fBrowser,OperatingSystemg

Types:

� AgentString = string()
� Browser = fName,Versiong|unknown
� OperatingSystem = win3x|win95|win98|winnt|win2k|sunos4|sunos5|

sun|aix|linux|sco|freebsd|bsd|macosx|unknown
� Name = opera|msie|netscape|lynx|mozilla| emacs|soffice|mosaic|safari
� Version = float().

The function getBrowser/1, tries to detect which browser and operating system the
user has. Note that the answer is just a best guess since some browsers can identify
themselves as other browsers, read Opera.

EWSAPI MODULE INTERACTION

Exports the following EWSAPI interaction data, if possible:

f’user-agent’,AgentDatag Where AgentData is the same as the return value from
getBrowser/1. Note that the answer is just a best guess, since some browsers can
identify themselves as other browsers, read Opera.

79Inets

mod cgi Inets Reference Manual

mod cgi
Erlang Module

This module makes it possible to execute vanilla CGI (Common Gateway Interface)
scripts in the server. A file that matches the definition of a ScriptAlias [page 66] config
directive is treated as a CGI script. A CGI script is executed by the server and it's
output is returned to the client.

The CGI Script response comprises a message-header and a message-body, separated by
a blank line. The message-header contains one or more header fields. The body may be
empty. Example:

"Content-Type:text/plain\nAccept-Ranges:none\n\nsome very plain text"

The server will interpret the cgi-headers and most of them will be transformed into
HTTP headers and sent back to the client.

Support for CGI-1.1 is implemented in accordance with the RFC 38758.

� ScriptNoCache [page 80]

� ScriptTimeout [page 80]

DIRECTIVE: ”ScriptNoCache”

Syntax: ScritpNoCache true | false
Default: - false -
Module: mod cgi(3) [page 80]

If ScriptNoCache is set to true the Web server will by default add the header fields
necessary to prevent proxies from caching the page. Generally this is something you
want.

ScriptNoCache true

DIRECTIVE: ”ScriptTimeout”

Syntax: ScritpTimeout Seconds
Default: 15
Module: mod cgi(3) [page 80]

The time in seconds the web server will wait between each chunk of data from the
script. If the CGI-script not delivers any data before the timeout the connection to the
client will be closed.

ScriptTimeout 15

8URL: http://www.faqs.org/rfcs/rfc3875.html

80 Inets

Inets Reference Manual mod cgi

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fnew request uri,NewRequestURIg as defined in mod actions(3) [page 64].
fremote user,RemoteUserg as defined in mod auth(3) [page 73].

Uses the following EWSAPI functions:

� mod alias:real name/3 [page 67]
� mod alias:real script name/3 [page 67]
� mod cgi:env/3 [page 81]
� mod cgi:status code:env/1 [page 81]

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

env(Info,Script,AfterScript) -> EnvString

Types:

� Info = mod record()
� Script = AfterScript = EnvString = string()

Note:
This function should only be used when implementing CGI-1.1 functionality on
UNIX platforms.

open port/2 is normally used to start and interact with CGI scripts. open port/2 takes
an external program as input; env(1) (GNU Shell Utility) is typically used in the case
of a CGI script. env(1) execute the CGI script in a modified environment and takes the
CGI script and a string of environment variables as input. env/3 returns an appropriate
CGI-1.1 environment variable string to be used for this purpose. The environment
variables in the string are those defined in the RFC 38759 mod record() is a record as
defined in the EWSAPI Module Programming in the Inets Users Guide [page 4].

status code(CGIOutput) -> fok,StatusCodeg | ferror,Reasong

Types:

� CGIOutput = Reason = string()
� StatusCode = integer()

Certain output from CGI scripts has a special meaning, as described in the RFC 387510

, for example if "Location: http://www.yahoo.com\n\n" is returned from a CGI
script the client gets automatically redirected to Yahoo!11, using the HTTP 302 status
code.

9URL: http://www.faqs.org/rfcs/rfc3875.html
10URL: http://www.faqs.org/rfcs/rfc3875.html
11URL: http://www.yahoo.com

81Inets

mod cgi Inets Reference Manual

SEE ALSO

httpd(3) [page 40], mod auth(3) [page 68], mod security(3) [page 109], mod alias(3)
[page 65], mod esi(3) [page 88], mod include(3) [page 101]

82 Inets

Inets Reference Manual mod dir

mod dir
Erlang Module

This module generates an HTML directory listing (Apache-style) if a client sends a
request for a directory instead of a file. This module is not configurable and it needs to
be removed from the Modules [page 51] config directive if directory listings is
unwanted.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 48] section of httpd core(3).

Uses the following EWSAPI functions:

� mod alias:default index/2 [page 66]

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod alias(3) [page 65]

83Inets

mod disk log Inets Reference Manual

mod disk log
Erlang Module

This module uses disk log(3) to make it possible to log all incoming requests to an
access log file. The de-facto standard Common Logfile Format is used for this purpose.
There are numerous statistic programs available to analyze Common Logfile Format log
files. The Common Logfile Format looks as follows:

remotehost rfc931 authuser [date] “request” status bytes

remotehost Remote hostname (or IP number if the DNS hostname is not available).

rfc931 The client's remote username (RFC 931).

authuser The username with which the user has authenticated himself.

[date] Date and time of the request (RFC 1123).

“request” The request line exactly as it came from the client (RFC 1945).

status The HTTP status code returned to the client (RFC 1945).

bytes The content-length of the document transferred.

This module furthermore uses disk log(3) to support the use of an error log file to
record internal server errors. The error log format is more ad hoc than Common Logfile
Format, but conforms to the following syntax:

[date] access to path failed for remotehost, reason: reason

DIRECTIVE: ”DiskLogFormat”

Syntax: DiskLogFormat internal|external
Default: - external -
Module: mod disk log(3) [page 84]

DiskLogFormat defines the file-format of the log files see disk log for more information.
If the internal file-format is used, the logfile will be repaired after a crash. When a log
file is repaired data might get lost. When the external file-format is used httpd will not
start if the log file is broken.

DiskLogFormat external

84 Inets

Inets Reference Manual mod disk log

DIRECTIVE: ”ErrorDiskLog”

Syntax: ErrorDiskLog filename
Default: - None -
Module: mod disk log(3) [page 84]

ErrorDiskLog defines the filename of the (disk log(3)) error log file to be used to
log server errors. If the filename does not begin with a slash (/) it is assumed to be
relative to the ServerRoot [page 52], for example:

ErrorDiskLog logs/error disk log 8080

and errors will be logged in the server root12 space.

DIRECTIVE: ”ErrorDiskLogSize”

Syntax: ErrorDiskLogSize max-bytes max-files
Default: ErrorDiskLogSize 512000 8
Module: mod disk log(3) [page 84]

ErrorDiskLogSize defines the properties of the (disk log(3)) error log file. The
disk log(3) error log file is of type wrap log and max-bytes will be written to each file
and max-files will be used before the first file is truncated and reused.

DIRECTIVE: ”SecurityDiskLog”

Syntax: SecurityDiskLog filename
Default: - None -
Module: mod disk log(3) [page 84]

SecurityDiskLog defines the filename of the (disk log(3)) access log file which logs
incoming security events i.e authenticated requests. If the filename does not begin
with a slash (/) it is assumed to be relative to the ServerRoot [page 52], see
TransferDiskLog [page 86] for more information.

DIRECTIVE: ”SecurityDiskLogSize”

Syntax: SecurityDiskLogSizemax-bytes max-files
Default: SecurityDiskLogSize 512000 8
Module: mod disk log(3) [page 84]

SecurityDiskLogSize defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

12In Windows: %SERVER ROOT%\logs\error disk log 8080. In UNIX: $SERVER ROOT/logs/error disk log 8080.

85Inets

mod disk log Inets Reference Manual

DIRECTIVE: ”TransferDiskLog”

Syntax: TransferDiskLog filename
Default: - None -
Module: mod disk log(3) [page 84]

TransferDiskLog defines the filename of the (disk log(3)) access log file which logs
incoming requests. If the filename does not begin with a slash (/) it is assumed to be
relative to the ServerRoot [page 52], for example:

TransferDiskLog logs/transfer disk log 8080

and errors will be logged in the server root13 space.

DIRECTIVE: ”TransferDiskLogSize”

Syntax: TransferDiskLogSize max-bytes max-files
Default: TransferDiskLogSize 512000 8
Module: mod disk log(3) [page 84]

TransferDiskLogSize defines the properties of the disk log(3) access log file. The
disk log(3) access log file is of type wrap log and max-bytes will be written to each
file and max-files will be used before the first file is truncated and reused.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 73].

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

Exports

error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok | no error log

Types:

� Socket = socket()
� SocketType = ip comm | ssl
� ConfigDB = config db()
� Date = Reason = string()

error log/5 uses disk log(3) to log an error in the error log file. Socket is a handler
to a socket of type SocketType and config db() is the server config file in ETS table
format as described in httpd(3) [page 40]. Date is a RFC 1123 date string as generated
by httpd util:rfc1123 date/0 [page 61].

13In Windows: %SERVER ROOT%\logs\transfer disk log 8080. In UNIX: $SERVER ROOT/logs/transfer disk log 8080.

86 Inets

Inets Reference Manual mod disk log

security log(User,Event) -> ok | no security log

Types:

� User = String()
� Event = String

security log/2 uses disk log(3) to log a security event in the security log file. User is
the users name.

SEE ALSO

httpd(3) [page 40], mod auth(3) [page 68], mod security(3) [page 109], mod log(3)
[page 104]

87Inets

mod esi Inets Reference Manual

mod esi
Erlang Module

The Erlang Scripting Interface (ESI) provides a tight and efficient interface to the
execution of Erlang functions. Erlang functions can be executed with two alternative
schemes, eval and erl. Both of these schemes can utilize the functionality in an Erlang
node efficiently.

Even though the server supports CGI-1.1 [page 80] the use of the Erlang Scripting
Interface (ESI) is encouraged for reasons of efficiency. CGI is resource intensive because
of it's design. CGI requires the server to fork a new OS process for each executable it
needs to start.

An Erlang function can be written and executed as a CGI script by using erl call(3)
in the erl interface library, for example. The cost is a forked OS process, as described
above. This is a waste of resources, at least when the Web server itself is written in
Erlang (as in this case).

The following config directives are described:

� ErlScripAlias [page 91]

� EvalScriptAlias [page 92]

� ErlScriptNoCache [page 91]

� ErlScriptTimeout [page 92]

ERL SCHEME

The erl scheme is designed to mimic plain CGI, but without the extra overhead. An
URL which calls an Erlang erl function has the following syntax (regular expression):

http://your.server.org/***/Mod[:/]Func(?QueryString|/PathInfo)

The module (Mod) referred to must be found in the code path, and it must define a
function (Func) with an arity of two or three i.e. Func(Env,Input) or
Func(SessionID,Env,Input). Env contains information about the connecting client (see
below), and Input the QueryString or PathInfo as defined in the CGI specification14.
SessionID is a identifier that is used to send parts of the web page back to the user
through the function mod esi:deliver/2

*** above depends on how the ErlScriptAlias [page 91] config directive has been used.
Data returned from the function with arity of two must furthermore take the form as
specified in the CGI specification15.

It is preferable to use the callback function with an arity of three, since the function can
send the data back to the clients in parts instead of generating the whole page before it

14URL: http://hoohoo.ncsa.uiuc.edu/cgi/
15URL: http://hoohoo.ncsa.uiuc.edu/cgi/

88 Inets

Inets Reference Manual mod esi

is sent. The Web server sends the data back to HTTP/1.1 compliant clients with
chunked encoding this means that the Content-Length header field is not necessary, and
should indeed be avoided.

mod esi assumes that if the first chunk of data delivered to the client through the
function mod esi:deliver/2 contains all HTTP-header fields the script will generate. I
the first chunk does not contain the string "\r\n\r\n"c mod esi assumes that the script
not will generate any header data.

Take a look at httpd example.erl in the code release16 for a clarifying example. Start
an example server as described in httpd:start/0 [page 40] and test the following from a
browser (The server name for your example server will differ!):

http://your.server.org:8888/cgi-bin/erl/httpd example/newformat and a call
will be made to httpd example:newformat/3 Something like this will promptly
be shown in the browser:

This new format is nice.
This new format is nice.
This new format is nice.

http://your.server.org:8888/cgi-bin/erl/httpd example/get and a call will be
made to httpd example:get/2 and two input fields and a Submit button will
promptly be shown in the browser. Enter text into the input fields and click on the
Submit button. Something like this will promptly be shown in the browser:

Environment:
[fquery string,"input1=blaha&input2=blaha"g,
fserver software,"eddie/2.2"g,
fserver name,"localhost"g,
fgateway interface,"CGI/1.1"g,
fserver protocol,"HTTP/1.0"g,
fserver port,8080g,
frequest method,"GET"g,
fremote addr,"127.0.0.1"g,
fscript name,"/cgi-bin/erl/httpd example:get?input1=blaha&

input2=blaha"g,
fhttp accept charset,"iso-8859-1,*,utf-8"g,
fhttp accept language,"en"g,
fhttp accept,"image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, */*"g,
fhttp host,"localhost:8080"g,
fhttp user agent, "Mozilla/4.03 [en] (X11;

I; Linux 2.0.30 i586)"g,
fhttp connection,"Keep-Alive"g,
fhttp referer,
"http://localhost:8080/cgi-bin/erl/

httpd example/get"g]
Input:
input1=blaha&input2=blaha

Parsed Input:

16In Windows: %INETS\src. In UNIX: $INETS/src.

89Inets

mod esi Inets Reference Manual

[f"input1","blaha"g,f"input2","blaha"g]

http://your.server.org:8888/cgi-bin/erl/httpd example:post A call will be
made to httpd example:post/2. The same thing will happen as in the example
above but the HTTP POST method will be used instead of the HTTP GET
method.

http://your.server.org:8888/cgi-bin/erl/httpd example:yahoo A call will be
made to to httpd example:yahoo/2 and the Yahoo!17 site will promptly be shown
in your browser.

Note:
httpd:parse query/1 [page 42] is used to generate the Parsed Input: ... data in
the example above.

If a client closes the connection prematurely a message will be sent to the function,
that is either ftcp closed, g or f ,fsocket closed, gg.

EVAL SCHEME

Warning:
The eval scheme can seriously threaten the integrity of the Erlang node housing a
Web server, for example:

http://your.server.org/eval?httpd_example:
print(atom_to_list(apply(erlang,halt,[])))

which effectively will close down the Erlang node, that is use the erl scheme instead
until this security breach has been fixed.

Today there are no good way of solving this problem and therefore Eval Scheme may
be removed in future release-s of Inets.

The eval scheme is straight-forward and does not mimic the behavior of plain CGI. An
URL which calls an Erlang eval function has the following syntax:

http://your.server.org/***/Mod:Func(Arg1,...,ArgN)

The module (Mod) referred to must be found in the code path, and data returned by the
function (Func) is passed back to the client. *** depends on how the EvalScriptAlias
[page 92] config directive has been used. Data returned from the function must
furthermore take the form as specified in the CGI specification18.

Take a look at httpd example.erl in the code release19 for an example. Start an
example server as described in httpd:start/0 [page 40] and test the following from a
browser (The server name for your example server will differ!):

17URL: http://www.yahoo.com
18URL: http://hoohoo.ncsa.uiuc.edu/cgi/
19In Windows: %INETS\src. In UNIX: $INETS/src.

90 Inets

Inets Reference Manual mod esi

http://your.server.org:8888/eval?httpd example:print("Hi!") and a call will
be made to httpd example:print/1 and “Hi!” will promptly be shown in your
browser.

DIRECTIVE: ”ErlScriptAlias”

Syntax: ErlScriptAlias url-path allowed-module allowed-module ...
Default: - None -
Module: mod esi(3) [page 88]

ErlScriptAlias marks all URLs matching url-path as erl scheme [page 88] scripts. A
matching URL is mapped into a specific module and function. The module must be one
of the allowed-module:s. For example:

ErlScriptAlias /cgi-bin/hit me httpd example md4

and a request to http://your.server.org/cgi-bin/hit me/httpd example:yahoo
would refer to httpd example:yahoo/2. Refer to the Erl Scheme [page 88] description
above.

DIRECTIVE: ”ErlScriptNoCache”

Syntax: ErlScriptNoCache true | false
Default: false
Module: mod esi(3) [page 88]

If ErlScriptNoCache is set to true the server will add http header fields that prevents
proxies from caching the page. This is generally a good idea for dynamic content, since
the content often vary between each request.

ErlScriptNoCache true

DIRECTIVE: ”ErlScriptTimeout”

Syntax: ErlScriptTimeout seconds
Default: 15
Module: mod esi(3) [page 88]

If ErlScriptTimeout sets the time in seconds the server will wait between each chunk
of data is delivered through mod esi:deliver/2 when the new Erl Scheme format, that
takes three argument is used.

ErlScriptTimeout 15

91Inets

mod esi Inets Reference Manual

DIRECTIVE: ”EvalScriptAlias”

Syntax: EvalScriptAlias url-path allowed-module allowed-module ...
Default: - None -
Module: mod esi(3) [page 88]

EvalScriptAlias marks all URLs matching url-path as eval scheme [page 90] scripts.
A matching URL is mapped into a specific module and function. The module must be
one of the allowed-module:s. For example:

EvalScriptAlias /cgi-bin/hit me to httpd example md5

and a request to
http://your.server.org/cgi-bin/hit me to/httpd example:print("Hi!") would
refer to httpd example:print/1. Refer to the Eval Scheme [page 90] description
above.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 73].

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 48] section of httpd core(3).

Uses the following EWSAPI functions:

� mod alias:real name/3 [page 67]

� mod cgi:status code/1 [page 81]

Exports

deliver(SessionID, Data) -> ok | ferror,Reasong

Types:

� SessionID = term()
� Data = string()
� Reason = term()

This function is only intended to be used from functions called by the Erl Scheme
interface to deliver parts of the content to the user.

Sends data from a Erl Scheme script back to the client. Note that if any HTTP-header
fields will be sent back to the client they must be in the first call to deliver/2. Do not
assume anything about the data type of SessionID, the SessionID must be the SessionID
from the Erl Scheme call.

92 Inets

Inets Reference Manual mod esi

ESWAPI CALLBACK FUNCTIONS

Exports

Module:Function(Env, Input)-> Response

Types:

�

� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length, server software, gateway interface,

server protocol, server port, request method, remote addr, script name. <v>Input =
Response = string()

The Module must be found in the code path and export Function with an arity of two.
An erlScriptAlias must also be set up in the configuration file for the Web server.

If the HTTP request is a post request and a body is sended then content length will be
the length of the posted data. If get is used query string will be the data after ? in the
url.

ParsedHeader is the HTTP request as a key value tuple list. The keys in parsed header
will be the in lower case.

This callback format consumes quite much memory since the whole response must be
generated before it is sent to the user. Therefore it is better to use the callback function
with an arity of three.

Module:Function(SessionID, Env, Input)-> void

Types:

� SessionID = term()
� Env = [EnvironmentDirectives] ++ ParsedHeader
� EnvironmentDirectives = fKey,Valueg
� Key = query string | content length, server software, gateway interface,

server protocol, server port, request method, remote addr, script name. <v>Input =
Response = string()

For information about Environment and Input see Module:Function/2 above.
SessionID is a identifier the server use when deliver/2 is called, do not assume
any-thing about the datatype.

Use this callback function to dynamicly generate dynamic web content. when a part of
the page is generated send the data back to the client through deliver/2. Note that the
first chunk of data sent to the client must at least contain all HTTP header fields that
the response will generate. If the first chunk not contains End of HTTP header that is
"\r\n\r\n" the server will assume that no HTTP header fields will be generated.

SEE ALSO

httpd(3) [page 40], mod alias(3) [page 65], mod auth(3) [page 68], mod security(3)
[page 109], mod cgi(3) [page 80]

93Inets

mod get Inets Reference Manual

mod get
Erlang Module

This module is responsible for handling GET requests to regular files. GET requests for
parts of files is handled by mod range.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

Exports the following EWSAPI interaction data, if possible:

Uses the following EWSAPI functions:

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod range(3) [page 107]

94 Inets

Inets Reference Manual mod head

mod head
Erlang Module

This module is responsible for handling HEAD requests to regular files. HEAD requests
for dynamic content is handled by each module responsible for dynamic content.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

Exports the following EWSAPI interaction data, if possible:

Uses the following EWSAPI functions:

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod esi(3) [page 88]mod cgi(3) [page 88]

95Inets

mod htaccess Inets Reference Manual

mod htaccess
Erlang Module

This module provides per-directory runtime configurable user-authentication. Each
directory in the path to the requested asset is searched for an access-file (default
.htaccess), that restricts the webservers rights to respond to a request. If an access-file is
found the rules in that file is applied to the request.

The rules in an access-file applies both to files in the same directories and in
subdirectories. If there exists more than one access-file in the path to an asset, the rules
in the access-file nearest the requested asset will be applied.

If many users have web pages on the webserver and every user needs to manage the
security issues alone, use this module.

To change the rules that restricts the use of an asset. The user only needs to have write
access to the directory where the asset exists.

When a request comes, the path to the requested asset is searched for access-files with
the name specified by the AccessFileName parameter, default .htaccess. When such a
file is found it is parsed and the restrictions in the file is applied to the request. This
means that a user do not need to have access to the webservers configuration-file to
limit the access to an asset. Furthermore the user can change the rules and the changes
will be applied immediately.

All the access-files in the path to a requested asset is read once per request, this means
that the load on the server will increase when this module is used.

The following configuration directives are supported

� AccessFileName [page 96]

DIRECTIVE: ”AccessFileName”

Syntax: AccessFileNameFileName1 FileName2
Default: .htaccess Module: mod htaccess(3) [page 96]

AccessFileName Specify which filenames that are used for access-files. When a request
comes every directory in the path to the requested asset will be searched after files with
the names specified by this parameter. If such a file is found the file will be parsed and
the restrictions specified in it will be applied to the request.

96 Inets

Inets Reference Manual mod htaccess

Access Files Directives

In every directory under the DocumentRoot or under an Alias a user can place an
access-file. An access-file is a plain text file that specify the restrictions that shall be
considered before the webserver answer to a request. If there are more than one
access-file in the path to the requested asset, the directives in the access-file in the
directory nearest the asset will be used.

� allow [page 97]

� AllowOverRide [page 97]

� AuthGroupFile [page 98]

� AuthName [page 98]

� AuthType [page 98]

� AuthUserFile [page 98]

� deny [page 99]

� <Limit> [page 99]

� order [page 99]

� require [page 100]

DIRECTIVE: ”allow”

Syntax: Allow from subnet subnet|from all
Default: from all
Module: mod htaccess(3) [page 96]
Context: <Limit> [page 99]
Related: mod auth(3), [page 68]

See the allow directive in the documentation of mod auth(3) for more information.

DIRECTIVE: ”AllowOverRide”

Syntax: AllowOverRide all | none | Directives
Default: - None -
Module: mod htaccess(3) [page 96]
AllowOverRide Specify which parameters that not access-files in subdirectories are
allowed to alter the value for. If the parameter is set to none no more access-files will be
parsed.

If only one access-file exists setting this parameter to none can lessen the burden on the
server since the server will stop looking for access-files.

97Inets

mod htaccess Inets Reference Manual

DIRECTIVE: ”AuthGroupfile”

Syntax: AuthGroupFile Filename
Default: - None -
Module: mod htaccess(3) [page 96]
Related: mod auth(3) [page 68],

AuthGroupFile indicates which file that contains the list of groups. Filename must
contain the absolute path to the file. The format of the file is one group per row and
every row contains the name of the group and the members of the group separated by a
space, for example:

GroupName: Member1 Member2 MemberN

DIRECTIVE: ”AuthName”

Syntax: AuthName auth-domain
Default: - None -
Module: mod htaccess(3) [page 96]
Related: mod auth(3) [page 68],

See the AuthName directive in the documentation of mod auth(3) for more
information.

DIRECTIVE: ”AuthType”

Syntax: AuthType Basic
Default: Basic
Module: mod htaccess(3) [page 96]
AuthType Specify which authentication scheme that shall be used. Today only Basic
Authenticating using UUEncoding of the password and user ID is implemented.

DIRECTIVE: ”AuthUserFile”

Syntax: AuthUserFile Filename
Default: - None -
Module: mod htaccess(3) [page 96]
Related: mod auth(3) [page 68],

AuthUserFile indicate which file that contains the list of users. Filename must contain
the absolute path to the file. The users name and password are not encrypted so do not
place the file with users in a directory that is accessible via the webserver. The format of
the file is one user per row and every row contains User Name and Password separated
by a colon, for example:

UserName:Password
UserName:Password

98 Inets

Inets Reference Manual mod htaccess

DIRECTIVE: ”deny”

Syntax: deny from subnet subnet|from all
Default: from all
Module: mod htaccess(3) [page 96]
Context: <Limit> [page 99]
Related: mod auth(3) [page 68],

See the deny directive in the documentation of mod auth(3) for more information.

DIRECTIVE: ”Limit”

Syntax: <Limit RequestMethods>
Default: - None -
Module: mod auth(3) [page 68]
Related: order [page 99], allow [page 97], deny [page 99], require [page 100]

<Limit> and </Limit> are used to enclose a group of directives which applies only to
requests using the specified methods. If no request method is specified all request
methods are verified against the restrictions.

<Limit POST GET HEAD>
order allow deny
require group group1
allow from 123.145.244.5
</Limit>

DIRECTIVE: ”order”

Syntax: order allow deny | deny allow
Default: allow deny
Module: mod htaccess(3) [page 96]
Context: order [page 99]
Related: allow [page 97], deny [page 99]

order, defines if the deny or allow control shall be preformed first.

If the order is set to allow deny, then first the users network address is controlled to be
in the allow subset. If the users network address is not in the allowed subset he will be
denied to get the asset. If the network-address is in the allowed subset then a second
control will be preformed, that the users network address is not in the subset of
network addresses that shall be denied as specified by the deny parameter.

If the order is set to deny allow then only users from networks specified to be in the
allowed subset will succeed to request assets in the limited area.

99Inets

mod htaccess Inets Reference Manual

DIRECTIVE: ”require”

Syntax: require group group1 group2...|user user1 user2...
Default: - None -
Context: <Limit> [page 99]
Module: mod htaccess(3) [page 96]
Related: mod auth(3) [page 68],

See the require directive in the documentation of mod auth(3) for more information.

EWSAPI MODULE INTERACTION

If a directory is limited both by mod auth and mod htaccess the user must be allowed
to request the asset for both of the modules.

Uses the following EWSAPI interaction data, if available:

freal name, fPath, AfterPathgg as defined in mod alias(3) [page 65].

Exports the following EWSAPI interaction data, if possible:

fremote user name, Userg The user name with which the user has authenticated
himself.

Uses the following exported EWSAPI functions:

� mod alias:path/3 [page 67]

100 Inets

Inets Reference Manual mod include

mod include
Erlang Module

This module makes it possible to expand “macros” embedded in HTML pages before
they are delivered to the client, that is Server-Side Includes (SSI). To make this possible
the server parses HTML pages on-the-fly and optionally includes the current date, the
requested file's last modification date or the size (or last modification date) of other files.
In its more advanced form, it can include output from embedded CGI and /bin/sh
scripts.

Note:
Having the server parse HTML pages is a double edged sword! It can be costly for a
heavily loaded server to perform parsing of HTML pages while sending them.
Furthermore, it can be considered a security risk to have average users executing
commands in the name of the Erlang node user. Carefully consider these items
before activating server-side includes.

SERVER-SIDE INCLUDES (SSI) SETUP

The server must be told which filename extensions to be used for the parsed files. These
files, while very similar to HTML, are not HTML and are thus not treated the same.
Internally, the server uses the magic MIME type text/x-server-parsed-html to
identify parsed documents. It will then perform a format conversion to change these
files into HTML for the client. Update the mime.types file, as described in the Mime
Type Settings [page 48] section of httpd(3), to tell the server which extension to use
for parsed files, for example:

text/x-server-parsed-html shtml shtm

This makes files ending with .shtml and .shtm into parsed files. Alternatively, if the
performance hit is not a problem, all HTML pages can be marked as parsed:

text/x-server-parsed-html html htm

101Inets

mod include Inets Reference Manual

SERVER-SIDE INCLUDES (SSI) FORMAT

All server-side include directives to the server are formatted as SGML comments within
the HTML page. This is in case the document should ever find itself in the client's
hands unparsed. Each directive has the following format:

<!--#command tag1="value1" tag2="value2" -->

Each command takes different arguments, most only accept one tag at a time. Here is a
breakdown of the commands and their associated tags:

config The config directive controls various aspects of the file parsing. There are two
valid tags:

errmsg controls the message sent back to the client if an error occurred while
parsing the document. All errors are logged in the server's error log.

sizefmt determines the format used to display the size of a file. Valid choices are
bytes or abbrev. bytes for a formatted byte count or abbrev for an
abbreviated version displaying the number of kilobytes.

include will insert the text of a document into the parsed document. This command
accepts two tags:

virtual gives a virtual path to a document on the server. Only normal files and
other parsed documents can be accessed in this way.

file gives a pathname relative to the current directory. ../ cannot be used in
this pathname, nor can absolute paths. As above, you can send other parsed
documents, but you cannot send CGI scripts.

echo prints the value of one of the include variables (defined below). The only valid
tag to this command is var, whose value is the name of the variable you wish to
echo.

fsize prints the size of the specified file. Valid tags are the same as with the include
command. The resulting format of this command is subject to the sizefmt
parameter to the config command.

flastmod prints the last modification date of the specified file. Valid tags are the same
as with the include command.

exec executes a given shell command or CGI script. Valid tags are:

cmd executes the given string using /bin/sh. All of the variables defined below
are defined, and can be used in the command.

cgi executes the given virtual path to a CGI script and includes its output. The
server does not perform error checking on the script output.

SERVER-SIDE INCLUDES (SSI) ENVIRONMENT
VARIABLES

A number of variables are made available to parsed documents. In addition to the CGI
variable set, the following variables are made available:

DOCUMENT NAME The current filename.

DOCUMENT URI The virtual path to this document (such as
/docs/tutorials/foo.shtml).

102 Inets

Inets Reference Manual mod include

QUERY STRING UNESCAPED The unescaped version of any search query the client sent,
with all shell-special characters escaped with \.

DATE LOCAL The current date, local time zone.

DATE GMT Same as DATE LOCAL but in Greenwich mean time.

LAST MODIFIED The last modification date of the current document.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

fremote user,RemoteUserg as defined in mod auth(3) [page 73]

Exports the following EWSAPI interaction data, if possible:

fmime type,MimeTypeg The file suffix of the incoming URL mapped into a MimeType
as defined in the Mime Type Settings [page 48] section of httpd core(3).

Uses the following EWSAPI functions:

� mod cgi:env/3 [page 81]

� mod alias:path/3 [page 67]

� mod alias:real name/3 [page 67]

� mod alias:real script name/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod alias(3) [page 65], mod auth(3) [page 68], mod security(3)
[page 109], mod cgi(3) [page 80]

103Inets

mod log Inets Reference Manual

mod log
Erlang Module

This module makes it possible to log all incoming requests to an access log file. The
de-facto standard Common Logfile Format is used for this purpose. There are numerous
statistics programs available to analyze Common Logfile Format. The Common Logfile
Format looks as follows:

remotehost rfc931 authuser [date] “request” status bytes

remotehost Remote hostname

rfc931 The client's remote username (RFC 931).

authuser The username with which the user authenticated himself.

[date] Date and time of the request (RFC 1123).

“request” The request line exactly as it came from the client (RFC 1945).

status The HTTP status code returned to the client (RFC 1945).

bytes The content-length of the document transferred.

This module furthermore supports the use of an error log file to record internal server
errors. The error log format is more ad hoc than Common Logfile Format, but conforms
to the following syntax:

[date] access to path failed for remotehost, reason: reason

DIRECTIVE: ”ErrorLog”

Syntax: ErrorLog filename
Default: - None -
Module: mod log(3) [page 104]

ErrorLog defines the filename of the error log file to be used to log server errors. If the
filename does not begin with a slash (/) it is assumed to be relative to the ServerRoot
[page 52], for example:

ErrorLog logs/error log 8080

and errors will be logged in the server root20 space.

20In Windows: %SERVER ROOT%\logs\error log 8080. In UNIX: $SERVER ROOT/logs/error log 8080.

104 Inets

Inets Reference Manual mod log

DIRECTIVE: ”SecurityLog”

Syntax: SecurityLog filename
Default: - None -
Module: mod log(3) [page 104]

SecurityLog defines the filename of the access log file to be used to log security
events. If the filename does not begin with a slash (/) it is assumed to be relative to the
ServerRoot [page 52]. For example:

SecurityLog logs/security log 8080

and security events will be logged in the server root21 space.

DIRECTIVE: ”TransferLog”

Syntax: TransferLog filename
Default: - None -
Module: mod log(3) [page 104]

TransferLog defines the filename of the access log file to be used to log incoming
requests. If the filename does not begin with a slash (/) it is assumed to be relative to
the ServerRoot [page 52]. For example:

TransferLog logs/access log 8080

and errors will be logged in the server root22 space.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

fremote user,RemoteUserg as defined in mod auth(3) [page 73].

This module furthermore exports a batch of functions to be used by other EWSAPI
modules:

21In Windows: %SERVER ROOT%\logs\security log 8080. In UNIX: $SERVER ROOT/logs/security log 8080.
22In Windows: %SERVER ROOT%\logs\access log 8080. In UNIX: $SERVER ROOT/logs/access log 8080.

105Inets

mod log Inets Reference Manual

Exports

error log(Socket,SocketType,ConfigDB,Date,Reason) -> ok | no error log

Types:

� Socket = socket()
� SocketType = ip comm | ssl
� ConfigDB = config db()
� Date = Reason = string()

error log/5 logs an error in a log file. Socket is a handler to a socket of type
SocketType and config db() is the server config file in ETS table format as described
in httpd(3) [page 40]. Date is a RFC 1123 date string as generated by
httpd util:rfc1123 date/0 [page 61].

SEE ALSO

httpd(3) [page 40], mod auth(3) [page 68], mod security(3) [page 109],
mod disk log(3) [page 84]

106 Inets

Inets Reference Manual mod range

mod range
Erlang Module

This module response to requests for one or many ranges of a file. This is especially
useful when downloading large files, since a broken download may be resumed.

Note that request for multiple parts of a document will report a size of zero to the log
file.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

Uses the following EWSAPI functions:

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod get(3) [page 65]

107Inets

mod responsecontrol Inets Reference Manual

mod responsecontrol
Erlang Module

This module controls that the conditions in the requests is fullfilled. For example a
request may specify that the answer only is of interest if the content is unchanged since
last retrieval. Or if the content is changed the range-request shall be converted to a
request for the whole file instead.

If a client sends more then one of the header fields that restricts the servers right to
respond, the standard does not specify how this shall be handled. httpd will control
each field in the following order and if one of the fields not match the current state the
request will be rejected with a proper response.
1.If-modified
2.If-Unmodified
3.If-Match
4.If-Nomatch

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

freal name,fPath,AfterPathgg as defined in mod alias(3) [page 66].

Exports the following EWSAPI interaction data, if possible:

fif range,send fileg The conditions for the range request was not fullfilled. The
response must not be treated as a range request, instead it must be treated as a
ordinary get request.

Uses the following EWSAPI functions:

� mod alias:path/3 [page 67]

SEE ALSO

httpd(3) [page 40], mod get(3) [page 65]

108 Inets

Inets Reference Manual mod security

mod security
Erlang Module

This module serves as a filter for authenticated requests handled in mod auth. It
provides possibility to restrict users from access for a specified amount of time if they
fail to authenticate several times. It logs failed authentication as well as blocking of
users, and it also calls a configurable call-back module when the events occur.

There is also an API to manually block, unblock and list blocked users or users, who
have been authenticated within a configurable amount of time.

This module understands the following configuration directives:

� <Directory> [page 68]

� SecurityDataFile [page 109]

� SecurityMaxRetries [page 110]

� SecurityBlockTime [page 110]

� SecurityFailExpireTime [page 110]

� SecurityAuthTimeout [page 111]

� SecurityCallbackModule [page 111]

DIRECTIVE: ”SecurityDataFile”

Syntax: SecurityDataFile filename
Default: - None -
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityMaxRetries [page 110], SecurityBlockTime [page 110],
SecurityFailExpireTime [page 110], SecurityAuthTimeout [page 111],
SecurityCallbackModule [page 111]

SecurityDataFile sets the name of the security modules for a directory. The filename
can be either absolute or relative to the ServerRoot. This file is used to store persistent
data for the mod security module.

Note:
Several directories can have the same SecurityDataFile.

109Inets

mod security Inets Reference Manual

DIRECTIVE: ”SecurityMaxRetries”

Syntax: SecurityMaxRetries integer() | infinity
Default: 3
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityDataFile [page 109], SecurityBlockTime [page 110],
SecurityFailExpireTime [page 110], SecurityAuthTimeout [page 111],
SecurityCallbackModule [page 111]

SecurityMaxRetries specifies the maximum number of tries to authenticate a user has
before he is blocked out. If a user successfully authenticates when he is blocked, he will
receive a 403 (Forbidden) response from the server.

Note:
For security reasons, failed authentications made by this user will return a message
401 (Unauthorized), even if the user is blocked.

DIRECTIVE: ”SecurityBlockTime”

Syntax: SecurityBlockTime integer() | infinity
Default: 60
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityDataFile [page 109], SecurityMaxRetries [page 110],
SecurityFailExpireTime [page 110], SecurityAuthTimeout [page 111],
SecurityCallbackModule [page 111]

SecurityBlockTime specifies the number of minutes a user is blocked. After this
amount of time, he automatically regains access.

DIRECTIVE: ”SecurityFailExpireTime”

Syntax: SecurityFailExpireTime integer() | infinity
Default: 30
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityDataFile [page 109], SecurityMaxRetries [page 110],
SecurityFailExpireTime [page 110], SecurityAuthTimeout [page 111],
SecurityCallbackModule [page 111]

SecurityFailExpireTime specifies the number of minutes a failed user authentication
is remembered. If a user authenticates after this amount of time, his previous failed
authentications are forgotten.

110 Inets

Inets Reference Manual mod security

DIRECTIVE: ”SecurityAuthTimeout”

Syntax: SecurityAuthTimeout integer() | infinity
Default: 30
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityDataFile [page 109], SecurityMaxRetries [page 110],
SecurityFailExpireTime [page 110], SecurityFailExpireTime [page 110],
SecurityCallbackModule [page 111]

SecurityAuthTimeout specifies the number of seconds a successful user authentication
is remembered. After this time has passed, the authentication will no longer be
reported by the list auth users [page 111] function.

DIRECTIVE: ”SecurityCallbackModule”

Syntax: SecurityCallbackModule atom()
Default: - None -
Module: mod security(3) [page 109]
Context: <Directory> [page 68]
Related: SecurityDataFile [page 109], SecurityMaxRetries [page 110],
SecurityFailExpireTime [page 110], SecurityFailExpireTime [page 110],
SecurityAuthTimeout [page 111]

SecurityCallbackModule specifies the name of a callback module. This module only
has one export, event/4 [page 113], which is called whenever a security event occurs.
Read the callback module [page 112] documentation to find out more.

Exports

list auth users(Port) -> Users | []

list auth users(Address, Port) -> Users | []

list auth users(Port, Dir) -> Users | []

list auth users(Address, Port, Dir) -> Users | []

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list auth users/1, list auth users/2 and list auth users/3 returns a list of users
that are currently authenticated. Authentications are stored for SecurityAuthTimeout
seconds, and are then discarded.

list blocked users(Port) -> Users | []

list blocked users(Address, Port) -> Users | []

list blocked users(Port, Dir) -> Users | []

list blocked users(Address, Port, Dir) -> Users | []

111Inets

mod security Inets Reference Manual

Types:

� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Users = list() = [string()]

list blocked users/1, list blocked users/2 and list blocked users/3 returns a
list of users that are currently blocked from access.

block user(User, Port, Dir, Seconds) -> true | ferror, Reasong

block user(User, Address, Port, Dir, Seconds) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Seconds = integer() | infinity
� Reason = no such directory

block user/4 and block user/5 blocks the user User from the directory Dir for a
specified amount of time.

unblock user(User, Port) -> true | ferror, Reasong

unblock user(User, Address, Port) -> true | ferror, Reasong

unblock user(User, Port, Dir) -> true | ferror, Reasong

unblock user(User, Address, Port, Dir) -> true | ferror, Reasong

Types:

� User = string()
� Port = integer()
� Address = fA,B,C,Dg | string() | undefined
� Dir = string()
� Reason = term()

unblock user/2, unblock user/3 and unblock user/4 removes the user User from
the list of blocked users for the Port (and Dir) specified.

The SecurityCallbackModule

The SecurityCallbackModule is a user written module that can receive events from the
mod security EWSAPI module. This module only exports one function, event/4 [page
113], which is described below.

112 Inets

Inets Reference Manual mod security

Exports

event(What, Port, Dir, Data) -> ignored

event(What, Address, Port, Dir, Data) -> ignored

Types:

� What = atom()
� Port = integer()
� Address = fA,B,C,Dg | string() <v>Dir = string()
� What = [Info]
� Info = fName, Valueg

event/4 or event/4 is called whenever an event occurs in the mod security EWSAPI
module (event/4 is called if Address is undefined and event/5 otherwise). The What
argument specifies the type of event that has occurred, and should be one of the
following reasons; auth fail (a failed user authentication), user block (a user is being
blocked from access) or user unblock (a user is being removed from the block list).

Note:
Note that the user unblock event is not triggered when a user is removed from the
block list explicitly using the unblock user function.

113Inets

mod trace Inets Reference Manual

mod trace
Erlang Module

This module is responsible for handling of TRACE requests. Trace is a new request
method in HTTP/1.1. The intended use of trace requests is for testing. The body of the
trace response is the request message that the responding Web server or proxy received.

EWSAPI MODULE INTERACTION

Uses the following EWSAPI interaction data, if available:

SEE ALSO

httpd(3) [page 40],

114 Inets

Glossary

Gateway

A server which acts as an intermediary for some other server. Unlike a proxy, a gateway receives
requests as if it were the origin server for the requested resource; the requesting client may not be
aware that it is communicating with a gateway.

HTTP

Hypertext Transfer Protocol.

MIME

Multi-purpose Internet Mail Extensions.

Proxy

An intermediary program which acts as both a server and a client for the purpose of making requests on
behalf of other clients.

RFC

A ”Request for Comments” used as a proposed standard by IETF.

115Inets

Glossary

116 Inets

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

account/2
ftp , 26

add_group_member/3
mod auth , 75

add_group_member/4
mod auth , 75

add_group_member/5
mod auth , 75

add_user/2
mod auth , 74

add_user/5
mod auth , 74

add_user/6
mod auth , 74

append/3
ftp , 26

append_bin/3
ftp , 26

append_chunk/2
ftp , 26

append_chunk_end/1
ftp , 27

append_chunk_start/2
ftp , 26

block/0
httpd , 41

block/1
httpd , 41

block/2
httpd , 41

block/3
httpd , 41

block/4

httpd , 41

block_user/4
mod security , 112

block_user/5
mod security , 112

cancel_request/1
http , 36

cd/2
ftp , 27

check_enum/2
httpd conf , 45

clean/1
httpd conf , 45

close/1
ftp , 27

convert_request_date/1
httpd util , 57

cookie_header/1
http , 38

create_etag/1
httpd util , 57

custom_clean/3
httpd conf , 45

day/1
httpd util , 57

decode/1
http base 64 , 39

decode_base64/1
httpd util , 57

decode_hex/1
httpd util , 57

default_index/2

117Inets

Index of Modules and Functions

mod alias , 66

delete/2
ftp , 27

delete_group/2
mod auth , 77

delete_group/4
mod auth , 77

delete_group_member/3
mod auth , 76

delete_group_member/4
mod auth , 76

delete_group_member/5
mod auth , 76

delete_user/2
mod auth , 74

delete_user/3
mod auth , 74

delete_user/4
mod auth , 74

deliver/2
mod esi , 92

deliver/3
httpd socket , 56

encode/1
http base 64 , 39

encode_base64/1
httpd util , 58

env/3
mod cgi , 81

error_log/5
mod disk log , 86
mod log , 106

event/4
mod security , 113

event/5
mod security , 113

flatlength/1
httpd util , 58

formaterror/1
ftp , 27

ftp
account/2, 26

append/3, 26
append_bin/3, 26
append_chunk/2, 26
append_chunk_end/1, 27
append_chunk_start/2, 26
cd/2, 27
close/1, 27
delete/2, 27
formaterror/1, 27
lcd/2, 27
lpwd/1, 27
ls/2, 28
mkdir/2, 28
nlist/2, 28
open/2, 28
open/3, 28
pwd/1, 30
quote/2, 33
recv/3, 30
recv_bin/2, 30
recv_chunk/1, 31
recv_chunk_start/2, 31
rename/3, 31
rmdir/2, 31
send/3, 31
send_bin/3, 32
send_chunk/2, 32
send_chunk_end/1, 32
send_chunk_start/2, 32
type/2, 32
user/3, 32
user/4, 33

get_user/2
mod auth , 74

get_user/3
mod auth , 74

get_user/4
mod auth , 74

getBrowser/1
mod browser , 79

header/2
httpd util , 58

header/3
httpd util , 58

header/4
httpd util , 58

hexlist_to_integer/1
httpd util , 58

118 Inets

Index of Modules and Functions

http
cancel_request/1, 36
cookie_header/1, 38
request/1, 36
request/4, 36
set_options/1, 37
verify_cookie/2, 38

http base 64
decode/1, 39
encode/1, 39

httpd
block/0, 41
block/1, 41
block/2, 41
block/3, 41
block/4, 41
Module:do/1, 43
Module:load/2, 43
Module:remove/1, 44
Module:store/3, 44
parse_query/1, 42
restart/0, 40
restart/1, 40
restart/2, 40
start/0, 40
start/1, 40
start_link/0, 40
start_link/1, 40
stop/0, 41
stop/1, 41
stop/2, 41
unblock/0, 42
unblock/1, 42
unblock/2, 42

httpd conf
check_enum/2, 45
clean/1, 45
custom_clean/3, 45
is_directory/1, 45
is_file/1, 46
make_integer/1, 46

httpd socket
deliver/3, 56
peername/2, 56
resolve/0, 56

httpd util
convert_request_date/1, 57
create_etag/1, 57
day/1, 57
decode_base64/1, 57

decode_hex/1, 57
encode_base64/1, 58
flatlength/1, 58
header/2, 58
header/3, 58
header/4, 58
hexlist_to_integer/1, 58
integer_tohexlist/1, 58
key1search/2, 59
key1search/3, 59
lookup/2, 59
lookup/3, 59
lookup_mime/2, 59
lookup_mime/3, 59
lookup_mime_default/2, 59
lookup_mime_default/3, 59
message/3, 60
month/1, 60
multi_lookup/2, 60
reason_phrase/1, 60
rfc1123_date/0, 61
rfc1123_date/6, 61
split/3, 61
split_path/1, 61
split_script_path/1, 61
strip/1, 61
suffix/1, 62
to_lower/1, 62
to_upper/1, 62

integer_tohexlist/1
httpd util , 58

is_directory/1
httpd conf , 45

is_file/1
httpd conf , 46

key1search/2
httpd util , 59

key1search/3
httpd util , 59

lcd/2
ftp , 27

list_auth_users/1
mod security , 111

list_auth_users/2
mod security , 111

list_auth_users/3

119Inets

Index of Modules and Functions

mod security , 111

list_blocked_users/1
mod security , 111

list_blocked_users/2
mod security , 111

list_blocked_users/3
mod security , 111

list_group_members/2
mod auth , 76

list_group_members/3
mod auth , 76

list_group_members/4
mod auth , 76

list_groups/1
mod auth , 76

list_groups/2
mod auth , 76

list_groups/3
mod auth , 77

list_users/1
mod auth , 75

list_users/3
mod auth , 75

lookup/2
httpd util , 59

lookup/3
httpd util , 59

lookup_mime/2
httpd util , 59

lookup_mime/3
httpd util , 59

lookup_mime_default/2
httpd util , 59

lookup_mime_default/3
httpd util , 59

lpwd/1
ftp , 27

ls/2
ftp , 28

make_integer/1
httpd conf , 46

message/3

httpd util , 60

mkdir/2
ftp , 28

mod alias
default_index/2, 66
path/3, 66
real_name/3, 67
real_script_name/3, 67

mod auth
add_group_member/3, 75
add_group_member/4, 75
add_group_member/5, 75
add_user/2, 74
add_user/5, 74
add_user/6, 74
delete_group/2, 77
delete_group/4, 77
delete_group_member/3, 76
delete_group_member/4, 76
delete_group_member/5, 76
delete_user/2, 74
delete_user/3, 74
delete_user/4, 74
get_user/2, 74
get_user/3, 74
get_user/4, 74
list_group_members/2, 76
list_group_members/3, 76
list_group_members/4, 76
list_groups/1, 76
list_groups/2, 76
list_groups/3, 77
list_users/1, 75
list_users/3, 75
update_password/5, 77
update_password/6, 77

mod browser
getBrowser/1, 79

mod cgi
env/3, 81
status_code/1, 81

mod disk log
error_log/5, 86
security_log/2, 87

mod esi
deliver/2, 92
Module:Function/2, 93
Module:Function/3, 93

mod log

120 Inets

Index of Modules and Functions

error_log/5, 106

mod security
block_user/4, 112
block_user/5, 112
event/4, 113
event/5, 113
list_auth_users/1, 111
list_auth_users/2, 111
list_auth_users/3, 111
list_blocked_users/1, 111
list_blocked_users/2, 111
list_blocked_users/3, 111
unblock_user/2, 112
unblock_user/3, 112
unblock_user/4, 112

Module:do/1
httpd , 43

Module:Function/2
mod esi , 93

Module:Function/3
mod esi , 93

Module:load/2
httpd , 43

Module:remove/1
httpd , 44

Module:store/3
httpd , 44

month/1
httpd util , 60

multi_lookup/2
httpd util , 60

nlist/2
ftp , 28

open/2
ftp , 28

open/3
ftp , 28

parse_query/1
httpd , 42

path/3
mod alias , 66

peername/2
httpd socket , 56

pwd/1
ftp , 30

quote/2
ftp , 33

real_name/3
mod alias , 67

real_script_name/3
mod alias , 67

reason_phrase/1
httpd util , 60

recv/3
ftp , 30

recv_bin/2
ftp , 30

recv_chunk/1
ftp , 31

recv_chunk_start/2
ftp , 31

rename/3
ftp , 31

request/1
http , 36

request/4
http , 36

resolve/0
httpd socket , 56

restart/0
httpd , 40

restart/1
httpd , 40

restart/2
httpd , 40

rfc1123_date/0
httpd util , 61

rfc1123_date/6
httpd util , 61

rmdir/2
ftp , 31

security_log/2
mod disk log , 87

send/3

121Inets

Index of Modules and Functions

ftp , 31

send_bin/3
ftp , 32

send_chunk/2
ftp , 32

send_chunk_end/1
ftp , 32

send_chunk_start/2
ftp , 32

set_options/1
http , 37

split/3
httpd util , 61

split_path/1
httpd util , 61

split_script_path/1
httpd util , 61

start/0
httpd , 40

start/1
httpd , 40

start_link/0
httpd , 40

start_link/1
httpd , 40

status_code/1
mod cgi , 81

stop/0
httpd , 41

stop/1
httpd , 41

stop/2
httpd , 41

strip/1
httpd util , 61

suffix/1
httpd util , 62

to_lower/1
httpd util , 62

to_upper/1
httpd util , 62

type/2

ftp , 32

unblock/0
httpd , 42

unblock/1
httpd , 42

unblock/2
httpd , 42

unblock_user/2
mod security , 112

unblock_user/3
mod security , 112

unblock_user/4
mod security , 112

update_password/5
mod auth , 77

update_password/6
mod auth , 77

user/3
ftp , 32

user/4
ftp , 33

verify_cookie/2
http , 38

122 Inets

