Kernel Application (KERNEL)

version 2.10

Typeset in IATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 Kernel Reference Manual 1
11 kernel 29
1.2 application L 33
1.3 auth . . . e e 42
14 COOB . o o 44
15 disk1og . . . 52
1.6 erl_bootserver 66
1.7 erl.ddll e e 68
1.8 erl_prim_loader 71
1.9 erlang 74
1.10 errorhandler e e 127
1.1 errordogger e 129
112 file . .. e e e 135
113 genctep o o e 153
114 gen_udp . . . o 158
115 global 160
1.16 globalgroup L e 165
117 heart e 169
118 net o 171
1.19 NIt . . o e 179
120 netladm 184
121 netkernel 186
122 0S . o o e e 190
1.23 packages e 193
124 PO2 . . . 196
125 IPC . 198
126 SEQEraCe e 203
127 USEI . . o e e e 211
1.28 wrap_logreader e 212
129 PP - . o e 214

Kernel Application (KERNEL) i

1.30

Kernel Application (KERNEL)

Kernel Reference Manual

Short Summaries

e Application kernel [page 29] — The Kernel Application

e Erlang Module application [page 33] — Generic OTP application functions.
e Erlang Module auth [page 42] — The Erlang Network Authentication Server
e Erlang Module code [page 44] — Erlang Code Server

e Erlang Module disk_log [page 52] — A disk based term logging facility

e Erlang Module erl_boot_server [page 66] — Boot Server for Other Erlang Machines
e Erlang Module erl_ddll [page 68] — Dynamic Driver Loader and Linker

e Erlang Module erl_prim_loader [page 71] — The Low Level Erlang Loader.

e Erlang Module erlang [page 74] — The Erlang BIFs

e Erlang Module error_handler [page 127] — Default System Error Handler

e Erlang Module error_logger [page 129] — The Erlang Error Logger

e Erlang Module file [page 135] - File Interface Module

e Erlang Module gen_tcp [page 153] - Interface to TCP/IP sockets

e Erlang Module gen_udp [page 158] - Interface to UDP.

¢ Erlang Module global [page 160] — A Global Name Registration Facility

e Erlang Module global_group [page 165] — Grouping Nodes to Global Name
Registration Groups

e Erlang Module heart [page 169] — Heartbeat Monitoring of an Erlang Runtime
System.

e Erlang Module inet [page 171] — Access to TCP/IP protocols.

e Erlang Module init [page 179] — Called at System Start

e Erlang Module net_adm [page 184] — Various Erlang Net Administration Routines
e Erlang Module net_kernel [page 186] — Erlang Networking Kernel

e Erlang Module os [page 190] — Operating System Specific Functions

¢ Erlang Module packages [page 193] — Packages in Erlang

e Erlang Module pg2 [page 196] — Distributed Named Process Groups

e Erlang Module rpc [page 198] — Remote Procedure Call Services

e Erlang Module seq-trace [page 203] — Sequential Tracing of Messages.

e Erlang Module user [page 211] — Standard 1/O Server

e Erlang Module wrap_log_reader [page 212] — A function to read internally
formatted wrap disk logs

o File app [page 214] — Application resource file.
e File config [page 217] — Configuration file.

Kernel Application (KERNEL) 1

Kernel Reference Manual

kernel

No functions are exported.

application

The following functions are exported:

get_all env() -> Env
[page 33] Get the configuration parameters for an application.

get_all env(Application) -> Env
[page 33] Get the configuration parameters for an application.

get_all key() -> {ok, Keys} | []
[page 33] Get the application specification keys.

get_all key(Application) -> {ok, Keys} | undefined
[page 33] Get the application specification keys.

get_application() -> {ok, Application} | undefined
[page 34] Get the name of an application containing a certain process or module.

get_application(Pid | Module) -> {ok, Application} | undefined
[page 34] Get the name of an application containing a certain process or module.

get_env(Par) -> {ok, Val} | undefined
[page 34] Get the value of a configuration parameter.

get_env(Application, Par) -> {ok, Val} | undefined
[page 34] Get the value of a configuration parameter.

get key(Key) -> {ok, Val} | undefined
[page 34] Get the value of an application specification key.

get key(Application, Key) -> {ok, Val} | undefined
[page 34] Get the value of an application specification key.

load (AppDescr) -> ok | {error, Reason}
[page 34] Load an application.

load(AppDescr, Distributed) -> ok | {error, Reason}
[page 34] Load an application.

loaded_applications() -> [{Application, Description, Vsn}]
[page 35] Get the currently loaded applications.

permit (Application, Bool) -> ok | {error, Reason}
[page 35] Change an application’s permission to run on a node.

set_env(Application, Par, Val) -> ok
[page 36] Set the value of a configuration parameter.

start (Application) -> ok | {error, Reason}
[page 36] Load and start an application.

start(Application, Type) -> ok | {error, Reason}
[page 36] Load and start an application.

start_type() -> StartType | local | undefined
[page 37] Get the start type of an ongoing application startup.

stop(Application) -> ok | {error, Reason}
[page 37] Stop an application.

Kernel Application (KERNEL)

Kernel Reference Manual

e takeover (Application, Type) -> ok | {error, Reason}
[page 38] Take over a distributed application.

e unload(Application) -> ok | {error, Reason}
[page 38] Unload an application.

e unset_env(Application, Par) -> ok
[page 38] Unset the value of a configuration parameter.

e which applications() -> [{Application, Description, Vsn}]
[page 39] Get the currently running applications.

e Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} |
{error, Reason}
[page 39] Start an application.

e Module:start_phase(Phase, StartType, PhaseArgs) -> ok | {error,
Reason}
[page 40] Extended start of an application.

e Module:prep.stop(State) -> NewState
[page 40] Prepare an application for termination.

e Module:stop(State)
[page 40] Clean up after termination of an application.

e Module:config change(Changed, New, Removed) -> ok
[page 41] Update the configuration parameters for an application.

auth

The following functions are exported:
e start()
[page 43] Start the auth server

e stop()
[page 43] Stop the auth server

e is_auth(Node)
[page 43] Return status of communication authorization

e exists(Node)
[page 43] Check if a node exists

e cookie()
[page 43] Read and set cookies

e node_cookie(Node, Cookie)
[page 43] Check if a cookie is known

e node_cookie([Node, Cookie])
[page 43] Check if a cookie is known

e cookie([Cookie])
[page 43] Set the distribution cookie for the local node

Kernel Application (KERNEL) 3

Kernel Reference Manual

code

The following functions are exported:

start() -> {ok, Pid} | {error, What}
[page 44] Start the code server.

start(Flags) -> {ok, Pid} | {error, What}
[page 44] Start the code server.

start 1link() -> {ok, Pid} | {error, What}
[page 45] Start and links to the code server.

start_link(Flags) -> {ok, Pid} | {error, What}
[page 45] Start and links to the code server.

set_path(DirList) -> true | {error, What}
[page 45] Set the code server search path.

get_path() -> Path
[page 45] Return the current path of the code server.

add_path(Dir) -> true | {error, What}
[page 45] Add a directory to the end of path.

add_pathz(Dir) -> true | {error, What}
[page 45] Add a directory to the end of path.

add_patha(Dir) -> true | {error, What}
[page 45] Add a directory to the beginning of path.

add_paths(DirList) -> ok
[page 46] Add directories to the end of path.

add_pathsz(DirList) -> ok
[page 46] Add directories to the end of path.

add_pathsa(DirList) -> ok
[page 46] Add directories to the beginning of path.

del path(NameDir) -> true | false | {error, What}
[page 46] Delete a directory from the path.

replace_path(Name, Dir) -> true | {error, What}
[page 46] Replace a directory with another in the path.

load file(Module) -> {module, Module} | {error, What}
[page 46] Load a module (residing in File).

load_abs(File) -> {module, Module} | {error, What}
[page 47] Load a module (residing in File).

ensure_loaded (Module) -> {module, Module} | {error, What}
[page 47] Try to ensure that a module is loaded.

delete(Module) -> true | false
[page 47] Delete the code in Module.

purge (Module) -> true | false
[page 47] Purges the code in Module.

soft_purge(Module) -> true | false
[page 48] Purge the code in Module if no process uses it.

is_loaded(Module) -> {file, Loaded} | false
[page 48] Test if Module is loaded.

Kernel Application (KERNEL)

Kernel Reference Manual

e all loaded() -> [LoadMod]
[page 48] Get all loaded modules.

e load binary(Module, File, Binary) -> {module, Module} | {error,
What}
[page 48] Load object code as a binary.

e stop() -> stopped
[page 48] Stop the code server.

e root_dir() -> RootDir
[page 48] Return the root directory of Erlang/OTP.

e lib.dir() -> LibDir
[page 49] Return the library directory.

e 1lib dir(Name) -> LibDir | {error, What}
[page 49] Return the directory for name.

e compiler_dir() -> CompDir
[page 49] Return the compiler directory.

e priv.dir(Name) -> PrivDir | {error, What}
[page 49] Return the priv directory for name.

e get_object_code(Module) -> {Module, Bin, AbsFileName} | error
[page 49] Get the object code for a module.

e objfile extension() -> Ext
[page 50] Return the object code file extension.

e rehash() -> ok
[page 50] Rehash or create code path cache.

e stick dir(Dir) -> ok | {error, term()}
[page 50] Mark a directory as ‘sticky’.

e unstick dir(Dir) -> ok | {error, term()}
[page 50] Mark a directory as ‘non-sticky’.

e which(Module) -> WhichFile
[page 50] Return the directory of a module.

e where_is_file(File) -> FullName
[page 50] Return the full name of any file located in a code path directory.

e clash() -> ok
[page 50] Searche for modules with identical names.

disk_log

The following functions are exported:
e accessiblelogs() -> {[Locallogl, [DistributedLog]}
[page 54] Return the accessible disk logs on the current node.

e alog(Log, Term)
[page 54] Asynchronously log an item onto a disk log.

e balog(Log, Bytes) -> ok | {error, Reason}
[page 54] Asynchronously log an item onto a disk log.

e alog terms(Log, TermList)
[page 54] Asynchronously log several items onto a disk log.

Kernel Application (KERNEL)

Kernel Reference Manual

balog terms(Log, BytesList) -> ok | {error, Reason}
[page 54] Asynchronously log several items onto a disk log.

block(Log)
[page 55] Block a disk log.

block(Log, QueueLogRecords) -> ok | {error, Reason}
[page 55] Block a disk log.

change header (Log, Header) -> ok | {error, Reason}
[page 55] Change the head or head_func option for an owner of a disk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}
[page 55] Change the notify option for an owner of a disk log.

change _size(Log, Size) -> ok | {error, Reason}
[page 55] Change the size of an open disk log.

chunk(Log, Continuation)
[page 56] Read a chunk of objects written to a disk log.

chunk(Log, Continuation, N) -> {ContinuationQ, Terms} |
{Continuation2, Terms, Badbytes} | eof | {error, Reason}
[page 56] Read a chunk of objects written to a disk log.

bchunk (Log, Continuation)
[page 56] Read a chunk of objects written to a disk log.

bchunk (Log, Continuation, N) -> {Continuation2, Binaries} |
{Continuation2, Binaries, Badbytes} | eof | {error, Reason}
[page 56] Read a chunk of objects written to a disk log.

chunk_info(Continuation) -> Infolist | {error, Reason}
[page 57] Return information about a chunk continuation of a disk log.

chunk step(Log, Continuation, Step) -> {ok, Continuation2} | {error,
Reason}
[page 57] Step forward or backward among the wrap log files of a disk log.

close(Log) -> ok | {error, Reason}
[page 58] Close a disk log.

format_error(Error) -> character_ 1ist()
[page 58] Return an English description of a disk log error reply.

inc_wrap_file(Log) -> ok | {error, Reason}
[page 58] Change to the next wrap log file of a disk log.

info(Log) -> Infolist | {error, no_such_log}
[page 58] Return information about a disk log.

lclose(Log)
[page 59] Close a disk log on one node.

lclose(Log, Node) -> ok | {error, Reason}
[page 59] Close a disk log on one node.

log(Log, Term)
[page 60] Log an item onto a disk log.

blog(Log, Bytes) -> ok | {error, Reason}
[page 60] Log an item onto a disk log.

log-terms(Log, TermList)
[page 60] Log several items onto a disk log.

blog terms(Log, BytesList) -> ok | {error, Reason}
[page 60] Log several items onto a disk log.

Kernel Application (KERNEL)

Kernel Reference Manual

e open(Argl) -> OpenRet | DistOpenRet

[page 61] Open a disk log file.

pid2name(Pid) -> {ok, Log} | undefined

[page 64] Return the name of the disk log handled by a pid.

reopen(Log, File)
[page 64] Reopen a disk log and save the old log.

reopen(Log, File, Head)
[page 64] Reopen a disk log and save the old log.

breopen(Log, File, BHead) -> ok | {error, Reason}
[page 64] Reopen a disk log and save the old log.

sync(Log) -> ok | {error, Reason}
[page 64] Flush the contents of a disk log to the disk.

truncate(Log)
[page 65] Truncate a disk log.

truncate(Log, Head)
[page 65] Truncate a disk log.

btruncate(Log, BHead) -> ok | {error, Reason}
[page 65] Truncate a disk log.

unblock(Log) -> ok | {error, Reason}
[page 65] Unblock a disk log.

erl_boot_server

The following functions are exported:
e start(Slaves) -> {ok, Pid} | {error, What}
[page 66] Start the boot server.

start_link(Slaves) -> {ok, Pid} | {error, What}
[page 66] Start the boot server and links the caller.

add_slave(Slave) -> ok | {error, What}
[page 66] Add a slave to the list of allowed slaves.

delete_slave(Slave) -> ok | {error, What}
[page 66] Delete a slave from the list of allowed slaves.

which_slaves() -> Slaves
[page 67] Return the current list of allowed slave hosts.

erl_ddll

The following functions are exported:
e start() -> {ok, Pid} | {error, Reason}
[page 68] Start the server.

e start_link() -> {ok, Pid} | {error, Reason}
[page 68] Start the server and links it to the calling process.

e stop() -> ok
[page 68] Stop the server.

e load driver(Path, Name) -> ok | {error, ErrorDescriptor}
[page 68] Load a driver.

Kernel Application (KERNEL)

Kernel Reference Manual

e unload driver(Name) -> ok | {error, ErrorDescriptor}
[page 68] Load a driver.

e loaded drivers() -> {ok, DriverList}
[page 69] List loaded drivers.

e format_error (ErrorDescriptor) -> string()
[page 69] Format an error descriptor

erl_prim_loader

The following functions are exported:
e start(Id,Loader,Hosts) -> {ok, Pid} | {error, What}
[page 71] Start the Erlang low level loader.

e get file(File) -> {ok, Bin, FullName} | error
[page 71] Get afile.

e get_path() -> {ok, Path}
[page 72] Get the path set in the loader.

e set_path(Path) -> ok
[page 72] Set the path of the loader.

erlang

The following functions are exported:
e abs (Number)
[page 74] Arithmetical absolute value

e erlang:append element(Tuple, Term)
[page 74] Append an extra element to a tuple

e apply(Fun, ArgumentList)
[page 74] Apply a function to an argument list

e apply(Module, Function, ArgumentList)
[page 75] Apply a function to an argument list

e atom_to_list(Atom)
[page 75] Convert an atom to a list

e binary_to_list(Binary)
[page 75] Return a list of integers which correspond to the bytes of Binary

e binary to_list(Binary, Start, Stop)
[page 75] Return a list of integers which correspond to the bytes of Binary

e binary to_term(Binary)
[page 75] Return an Erlang term which is the result of decoding the binary Binary

e erlang:bump reductions(Reductions)
[page 76] Increment the reduction counter for the current process

e erlang:cancel_timer (Ref)
[page 76] Cancel a timer

e check process_code(Pid, Module)
[page 76] Check if a process is executing old code

e concat_binary(ListOfBinaries)
[page 77] Concatenate a list of binaries

Kernel Application (KERNEL)

Kernel Reference Manual

e date()
[page 77] Return the current date

e deletemodule(Module)
[page 77] Make the current version of a module old

e erlang:demonitor (Ref)
[page 77] Turn off monitoring

e disconnect_node(Node)
[page 77] Force the disconnection of a node

e erlang:display(Term)
[page 77] Print a term on the standard output

e element (N, Tuple)
[page 78] Return Nth element of a tuple

e erase()
[page 78] Return and delete the process dictionary

e erase(Key)
[page 78] Return and delete a value from the process dictionary

e erlang:error (Reason)
[page 78] Stop execution of the current process with a given reason

e erlang:error(Reason, Args)
[page 78] Stop the execution of the current process with a given reason

e exit(Reason)
[page 79] Stop execution of the current process with a given reason

e exit(Pid, Reason)
[page 79] Send an EXIT signal to a process

e erlang:fault(Reason)
[page 79] Stop execution of the current process with a given reason

e erlang:fault(Reason, Args)
[page 79] Stop the execution of the current process with a given reason

e float (Number)
[page 79] Convert a number to a float

e float_to_list(Float)
[page 80] >Convert a float to a list

e erlang:fun_info(Fun)
[page 80] Return a list containing information about a fun

e erlang:fun info(Fun, Item)
[page 80] Return information about a fun

e erlang:fun to_list(Fun)
[page 80] Return a textual representation of a fun

e erlang:function_exported(Module, Function, Arity)
[page 81] Check if a module is loaded and contains an exported function

e garbage_collect()
[page 81] Force an immediate garbage collection of the currently executing process

e garbage_collect (Pid)
[page 81] Force an immediate garbage collection of any process

e get()
[page 81] Return the process dictionary

Kernel Application (KERNEL) 9

Kernel Reference Manual

10

get (Key)
[page 81] Return a value from the process dictionary

erlang:get_cookie()
[page 81] >Return the magic cookie of the current node

get keys(Value)
[page 81] Return a list of keys from the process dictionary

erlang:get_stacktrace()
[page 82] Get the stacktrace of the last exception

group_leader ()
[page 82] Return the group leader for the calling process

group_leader(Leader, Pid)
[page 82] >Set the group leader for a process

halt ()
[page 82] Halt the Erlang runtime system and indicate normal exit to the calling
environment

halt(Status)
[page 82] Halt the Erlang runtime system

erlang:hash(Term, Range)
[page 83] Return a hash value for a term

hd(List)
[page 83] Head (first element) of a list

erlang:hibernate(Module, Function, ArgumentList)
[page 83] Hibernate a process until a message is sent to it

erlang:info(What)
[page 84] Return various system information

integer_to_list(Integer)
[page 84] Convert an integer to a list

erlang:integer_to_list(Integer, Base)
[page 84] Convert an integer to a list

is_alive()
[page 84] Check whether the current node is alive

is_atom(Term) -> Bool
[page 84] Check whether a term is an atom

is_binary(Term) -> Bool
[page 84] Check whether a term is a binary

is_boolean(Term) -> Bool
[page 84] Check whether a term is a boolean

erlang:is builtin(Module, Function, Arity)
[page 85] Check if a function is a BIF implemented in C

is_float(Term) -> Bool
[page 85] Check whether a term is a floating point number

is_function(Term) -> Bool
[page 85] Check whether a term is a fun

is_integer(Term) -> Bool
[page 85] Check whether a term is an integer

is 1list(Term) -> Bool
[page 85] Check whether a term is a list

Kernel Application (KERNEL)

Kernel Reference Manual

e is_number(Term) -> Bool
[page 85] Check whether a term is a number

e is pid(Term) -> Bool
[page 85] Check whether a term is a pid

e is port(Term) -> Bool
[page 86] Check whether a term is a port

e is process_alive(Pid)
[page 86] Check whether a process is alive

e is record(Term, RecordTag) -> Bool
[page 86] Check whether the given term appears to be a record

e erlang:is_record(Term, RecordTag, Size) -> Bool
[page 86] Check whether the given term appears to be a record

e is_reference(Term) —-> Bool
[page 87] Check whether a term is a reference

e is tuple(Term) -> Bool
[page 87] Check whether a term is a tuple

e length(List)
[page 87] Length of a list

e link(Pid)
[page 87] Create a link to a process (or port)

e list_to_atom(List)
[page 87] Convert a list to an atom

e list_to_binary(DeepList)
[page 88] Convert a deep list to a binary

e list to_float(List)
[page 88] Convert a list to a float

e list_to_integer(List)
[page 88] Convert a list to an integer

e erlang:list to_integer(List, Base)
[page 88] Convert a list to an integer

e list to_pid(List)
[page 88] Convert a list to a pid

e list_to_tuple(List)
[page 89] Converts a list to a tuple

e loadmodule(Module, Binary)
[page 89] Load object code

e erlang:loaded()
[page 89] List of all loaded Erlang modules

e erlang:localtime()
[page 89] Current local date and time

e erlang:localtime to_universaltime(DateTime)
[page 89] Convert local date and time into Universal Time Coordinated (UTC)

e erlang:localtime to_universaltime(DateTime, IsDst)
[page 90] Convert local date and time into Universal Time Coordinated (UTC)

e make ref ()
[page 90] Return an almost unique reference

Kernel Application (KERNEL) 11

Kernel Reference Manual

12

erlang:make_tuple(Arity, InitialValue)

[page 90] Create a new tuple of a given arity

erlang:md5(Data) -> Digest

[page 90] Compute an MD5 message digest

erlang:md5_final(Context) -> Digest

[page 91] Finish the update of an MD5 context and return the computed MD5
message digest

erlang:md5_init() -> Context
[page 91] Create an MD5 context

erlang:md5 update(Context, Data) -> NewContext
[page 91] Update an MD5 context with data, and return a new context

erlang:memory() -> MemList
[page 91] Memory information on dynamically allocated memory

erlang:memory (MemoryTypeSpec) -> MemList | int()
[page 93] Memory information on dynamically allocated memory

module_loaded (Module)
[page 93] Check if a module is loaded

erlang:monitor(Type, Item) -> MonitorReference
[page 93] Start monitoring

monitor node(Node, Flag)
[page 95] Monitor the status of a node

node ()
[page 95] Name of the current node

node (Arg)
[page 95] At which node is a pid, port or reference located

nodes ()
[page 95] All visible nodes in the system

nodes (Arg)
[page 96] Return a list of nodes according to argument given

now ()
[page 96] Elapsed time since 00:00 GMT

open_port (PortName, PortSettings)
[page 96] Open a new Erlang port

erlang:phash(Term, Range)
[page 98] Portable hash function

erlang:phash2(Term [, Range])
[page 98] Portable hash function

pid_to_list(Pid)
[page 98] Convert a pid to a list

port_close(Port)
[page 99] Close an open port

port_command (Port, Data)
[page 99] Send data to a port

port_connect (Port, Pid)
[page 100] Set the port owner (the connected port)

port_control (Port, Operation, Data)
[page 100] Perform a synchronous control operation on a port.

Kernel Application (KERNEL)

Kernel Reference Manual

e erlang:port_call(Port, Operation, Data)
[page 100] Synchronous call to a port with term data.

e erlang:port_info(Port, Item)
[page 101] Return information about a port

e erlang:port_to_list(Port)
[page 101] Convert a port identifier to a list

e erlang:ports()
[page 102] All ports on the current node

e pre_loaded()
[page 102] All pre-loaded modules

e erlang:process_display(Pid, Type)

[page 102] Write information about a local process on standard error
e process_flag(Flag, Option)

[page 102] Set certain flags for the process which calls this function
e process_flag(Pid, Flag, Option)

[page 102] Set certain flags for the process Pid

e process_info(Pid)
[page 103] Information about a process

e process_info(Pid, Item)
[page 104] Information about a process

e processes()
[page 104] All processes on the current node

e purge module (Module)
[page 104] Remove old code for a module

e put(Key, Value)
[page 105] Add a new value to the process dictionary

e erlang:raise(Class, Reason, Stacktrace) <func>
<name>erlang:raise(Class, Reason, Stacktrace)
[page 105] Stop execution of the current process with an exception of given class,
reason and stacktrace

e erlang:read _timer (Ref)
[page 106] Number of milliseconds remaining for a timer

e erlang:ref to_list(Ref)
[page 106] Convert a reference to a list

e register(Name, P)
[page 106] Associate a name with a pid or a port

e registered()
[page 106] Return a list of names which have been registered using register/2

e erlang:resume process(Pid)
[page 106] Resume a suspended process

e round (Number)
[page 107] Return an integer by rounding a number

e self()
[page 107] Pid of the calling process

e erlang:send(Dest, Msg)
[page 107] Send a message

Kernel Application (KERNEL) 13

Kernel Reference Manual

erlang:send(Dest, Msg, Options)
[page 107] Send a message conditionally

erlang:send after(Time, Pid, Msg)
[page 107] Send a message after a certain time

erlang:send nosuspend(Dest, Msg)
[page 108] Try to send a message without ever blocking.

erlang:send nosuspend(Dest, Msg, Options)
[page 108] Try to send a message without ever blocking.

erlang:set_cookie(Node, Cookie)
[page 109] Set the magic cookie of a node

setelement (Index, Tuple, Value)
[page 109] Set Nth element of a tuple

size(Item)
[page 109] Size of a tuple or binary

spawn (Fun)
[page 109] Create a new Erlang process with a fun as entry point

spawn (Node, Fun)
[page 109] Create a new Erlang process with a fun as entry point on a given node

spawn(Module, Function, ArgumentList)
[page 110] Create a new Erlang process with a specified function as entry point

spawn(Node, Module, Function, ArgumentList)
[page 110] Create a new Erlang process with a specified function as entry point on
a given node

spawn_link (Fun)
[page 110] Create a new Erlang process with a fun as entry point and link to the
new process

spawn_link(Node, Fun)
[page 110] Create a new Erlang process with a fun as entry point on a specified
node and link to the new process

spawn_link(Module, Function, ArgumentList)
[page 110] Create a new Erlang process with a specified function as entry point
and link to the new process

spawn_link(Node, Module, Function, ArgumentList)
[page 110] Create a new Erlang process on a specified node with a function as the
entry point and link to the new process

spawn_opt (Fun, Options)
[page 111] Create a new Erlang process with a fun as entry point giving additional
options

spawn_opt (Node, Fun, Options)
[page 111] Create a new Erlang process with a fun as entry point on a specified
node giving additional options

spawn_opt (Module, Function, ArgumentList, Options)
[page 111] Create a new Erlang process with a function as entry point giving
additional options

spawn_opt (Node, Module, Function, ArgumentList, Options)
[page 112] Create a new Erlang process on a specified node with a function as
entry point giving additional options

Kernel Application (KERNEL)

Kernel Reference Manual

e split_binary(Binary, Pos)
[page 112] Return a tuple which contains two binaries which are the result of
splitting Binary into two parts at position Pos

e erlang:start_timer(Time, Proc, Msg)
[page 112] Start a timer and return a reference to it

e statistics(Type)
[page 112] Information about the system

e erlang:suspend process(Pid)
[page 113] Suspend a process

e erlang:system flag(Flag, Value)
[page 113] Set various system properties of an Erlang node

e erlang:system_info(What)
[page 114] Return various system information

e erlang:systemmonitor (MonitorPid, Options)
[page 117] Set system performance monitoring options

e erlang:systemmonitor ({MonitorPid, Options})
[page 117] The same as erlang:system monitor (MonitorPid, Options)

e erlang:systemmonitor (undefined)
[page 118] Clear all system monitoring

e erlang:systemmonitor ()
[page 118] Return the current system monitoring settings

e term to_binary(Term)
[page 118] Return the encoded value of a term

e term to_binary(Term, Options)
[page 118] Return the encoded value of any Erlang term

e throw(Any)
[page 119] Throw an exception

e time()
[page 119] Return the tuple {Hour, Minute, Second} of the current system time

e t1(List)
[page 119] Tail of a list

e erlang:trace(PidSpec, How, Flaglist)
[page 119] Turn on or off the trace flags for a process or processes

e erlang:trace_info(PidOrFunc, Item)
[page 122] Trace information about a process or function

e erlang:tracepattern(MFA, MatchSpec)
[page 123] Set trace patterns for global call tracing

e erlang:trace pattern(MFA, MatchSpec, FlaglList)
[page 123] Set trace patterns for tracing of function calls

e trunc (Number)
[page 124] Return an integer by the truncation of Number

e tuple_to_list(Tuple)
[page 125] Convert a tuple to a list

e erlang:universaltime()
[page 125] Return the current date and time according to Universal Time
Coordinated (UTC)

Kernel Application (KERNEL) 15

Kernel Reference Manual

e erlang:universaltime to_localtime(DateTime)
[page 125] Convert UTC date and time in to local date and time

e unlink(Pid)
[page 125] Remove a link, if there is one, from the calling process to another
process

e unregister(Name)
[page 125] Remove the registered name for a process or port

e whereis(Name)
[page 126] Return the pid or port corresponding to a registered name

e erlang:yield()
[page 126] Let other processes get a chance to execute

error_handler

The following functions are exported:
e undefined function(Module, Func, ArglList) -> term()
[page 127] Called when an undefined function is encountered

e undefined lambda(Module, Fun, ArglList) -> term()
[page 127] Called when an undefined lambda (fun) is encountered

error_logger

The following functions are exported:
e start() -> {ok, Pid} | {error, What}
[page 129] Start the error logger event manager.

e start 1link() -> {ok, Pid} | {error, What}
[page 129] Start the error logger event manager.

e error_report(Report) -> ok
[page 129] Send a standard error report event to the error logger.

e error_report(Type,Report) -> ok
[page 130] Send a user defined error report type event.

e info_report(Report) -> ok
[page 130] Send an information report to the error logger.

e info_report(Type,Report) -> ok
[page 130] Send a user defined information report type event.

e error msg(Format) -> ok
[page 131] Send an error event to the error logger.

e error msg(Format,Args) -> ok
[page 131] Send an error event to the error logger.

e format(Format,Args) -> ok
[page 131] Send an error event to the error logger.

e infomsg(Format) -> ok
[page 131] Send an information event to the error logger.

e infomsg(Format,Args) -> ok
[page 131] Send an information event to the error logger.

16 Kernel Application (KERNEL)

Kernel Reference Manual

file

tty(Flag) -> ok
[page 131] Enable or disables error printouts to the tty.

logfile(Request) -> ok | FileName | {error, What}
[page 131] Enable or disables error printouts to a file.

add_report_handler (Module) -> ok | Other
[page 132] Add a new event handler to the error logger.

add_report_handler (Module,Args) -> ok | Other
[page 132] Add a new event handler to the error logger.

delete report_handler(Module) -> Return | {error, What}
[page 132] Delete an error report handler.

swap_handler (ToHandler) -> ok
[page 132] Swap from a primitive first handler to a standard event handler

warning map() -> TagAtom
[page 132] Determines the current mapping for warning events

warning msg(Format) -> ok
[page 132] Send an warning event to the error logger.

warning msg(Format,Args) -> ok

[page 132] Send an warning event to the error logger.
warning report (Report) -> ok

[page 133] Send a warning report type event.
warning report (Type,Report) -> ok

[page 133] Send a warning report type event.

The following functions are exported:

change group(Filename, Gid)
[page 135] Change owner for a file

change owner (Filename, Uid)
[page 135] Change owner of a file

change owner (Filename, Uid, Gid)
[page 135] Change owner for a file

change time(Filename, Mtime)
[page 135] Change the modification time for a file

change time(Filename, Mtime, Atime)
[page 135] Change the modification time for a file

close(IoDevice)
[page 135] Close a file

consult (Filename)
[page 136] Read Erlang terms from a file

copy(Source, Destination)
[page 136] Copies file contents

copy(Source, Destination, ByteCount)
[page 136] Copies file contents

del_dir(DirName)
[page 136] Delete a directory

Kernel Application (KERNEL) 17

Kernel Reference Manual

18

delete(Filename)
[page 137] Delete a file

eval (Filename)
[page 137] Evaluate expressions in a file

eval (Filename, Bindings)
[page 137] Evaluate expressions in a file

file_info(Filename)
[page 137] Get information about a file

format_error (ErrorDescriptor)
[page 138] Return an English description of an error term

get_cwd ()
[page 138] Get the current working directory

get_cwd(Drive)
[page 138] Get the current working directory for the drive specified

ipread_s32bu_p32bu(IoDevice, Location, MaxSize)
[page 138] Specialized indirect read function for Dets

list_dir (DirName)
[page 139] List files in a directory

make_dir (DirName)
[page 139] Make a directory

make 1ink (Existing, New)
[page 139] Make a hard link to a file

make_symlink(Namel, Name2)
[page 139] Make a symbolic link to a file or directory

open(Filename, ModeList)
[page 140] Open a file

path_consult(Path, Filename)
[page 141] Read Erlang terms from a file

path_eval (Path, Filename)
[page 142] Evaluate expressions in a file

path_open(Path, Filename, Mode)
[page 142] Open a file for access

path_script(Path, Filename)
[page 142] Evaluate and return the value of expressions in a file

path_script(Path, Filename, Bindings)
[page 143] Evaluate and return the value of expressions in a file

pid2name (Pid)
[page 143] Return the name of the file handled by a pid.

position(IoDevice, Location)
[page 143] Set position in a file

pread(IoDevice, [{Location, Number}, ...])
[page 143] Read from a file at certain positions

pread(IoDevice, Location, Number)
[page 143] Read from a file at a certain position

pwrite(IoDevice, [{Location, Bytes}, ...])
[page 143] Write to a file at certain positions

Kernel Application (KERNEL)

Kernel Reference Manual

pwrite(IoDevice, Location, Bytes)
[page 144] Write to a file at a certain position

read(IoDevice, Number)
[page 144] Read from a file

read_file(Filename)
[page 144] Read a file

read_file_info(Filename)
[page 144] Get information about a file

read_link(Linkname)
[page 145] See what a link is pointing to

read_link _info(Filename)
[page 146] Get information about a link or file

rename (Source, Destination)

[page 146] Rename a file

script(Filename)
[page 146] Evaluate and return the value of expressions in a file

script(Filename, Bindings)
[page 147] Evaluate and return the value of expressions in a file

set_cwd (DirName)
[page 147] Set the current working directory

sync (IoDevice)
[page 147] Synchronizes the in-memory state of a file with that on the physical
medium

truncate(IoDevice)
[page 147] Truncate a file

write(IoDevice, Bytes)
[page 147] Write to a file

write file(Filename, Binary)
[page 147] Write a file

write_file(Filename, Binary, ModelList)
[page 148] Write a file

write_file_info(Filename, FileInfo)
[page 148] Change file information

gen_tcp

The following functions are exported:

accept (ListenSocket) -> {ok, Socket} | {error, Reason}
[page 154] Accept an incoming connection request on a listen socket.

accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
[page 154] Accept an incoming connection request on a listen socket.

close(Socket) -> ok | {error, Reason}
[page 154] Close an TCP socket

connect (Address, Port, Options) -> {ok, Socket} | {error, Reason}
[page 154] Connect to a TCP port.

Kernel Application (KERNEL) 19

Kernel Reference Manual

e connect (Address, Port, Options, Timeout) -> {ok, Socket} | {error,
Reason}
[page 154] Connect to a TCP port.

e controlling process(Socket, NewOwner) -> ok | {error, eperm}
[page 155] Assign a new controlling process to a socket

e listen(Port, Options) -> {ok, Socket} | {error, Reason}
[page 155] Set up a socket which listen on Port

e recv(Socket, Length) -> {ok, Packet} | {error, Reason}
[page 156] Receive a packet from a passive socket

e recv(Socket, Length, Timeout)
[page 156] Receive a packet from a passive socket

e send(Socket, Packet) -> ok | {error, Reason}
[page 156] Send a packet

e shutdown(Socket, How) -> ok | {error, Reason}
[page 157] Immediately close a socket in one direction

gen_udp

The following functions are exported:
e close(Socket) -> ok | {error, Reason}
[page 158] Close Socket.

e controlling process(Socket,NewOwner) ->
[page 158] Change controlling process of a Socket.

e open(Port) -> {ok, Socket } | { error, Reason }
[page 158] Associate a UDP port number with the process calling it.

e open(Port,Options) -> {ok, Socket } | { error, Reason }
[page 158] Associate a UDP port number with the process calling it.

e recv(Socket, Length) -> {ok,{Address, Port, Packet}} | {error,
Reason}
[page 159] Receive a packet from a passive socket

e recv(Socket, Length, Timeout)
[page 159] Receive a packet from a passive socket

e send(S,Address,Port,Packet) -> ok | {error, Reason}
[page 159] Send a packet to a specified Address and Port (from port associated
with I4d).

global

The following functions are exported:
e del lock(Id)
[page 161] Delete the lock Id

e del_lock(Id, Nodes) -> wvoid()
[page 161] Delete the lock Id

e notify_all name(Name, Pidl, Pid2) -> none
[page 161] Name resolving function that notifies both Pids

Kernel Application (KERNEL)

Kernel Reference Manual

e random_exit_name (Name, Pidl, Pid2) -> Pidl | Pid2
[page 161] Name resolving function that kills one Pid

e random notify name(Name, Pidl, Pid2) -> Pidl | Pid2
[page 161] Name resolving function that notifies one Pid

e register name(Name, Pid)
[page 161] Globally registers Pid as Name

e register name(Name, Pid, Resolve) -> yes | no
[page 161] Globally registers Pid as Name

e registered names() -> [Name]
[page 162] Return all globally registered names

e re register name(Name, Pid)
[page 162] Atomically re-register Pid for Name

e re register name(Name, Pid, Resolve) -> void()
[page 162] Atomically re-register Pid for Name

e send(Name, Msg) -> Pid
[page 162] Send Msg to the global process Name

e set_lock(Id)
[page 162] Set a lock on the specified nodes

e set_lock(Id, Nodes)
[page 162] Set a lock on the specified nodes

e set_lock(Id, Nodes, Retries) -> boolean()
[page 162] Set a lock on the specified nodes

e start()
[page 163] Start the global name server

e start_link() -> {ok, Pid} | {error, Reason}
[page 163] Start the global name server

e stop() -> void()
[page 163] Stop the global name server

e sync() -> void()
[page 163] Synchronize the global name server

e trans(Id, Fun)
[page 163] Micro transaction facility

e trans(Id, Fun, Nodes)
[page 163] Micro transaction facility

e trans(Id, Fun, Nodes, Retries) -> Res | aborted
[page 163] Micro transaction facility

e unregister name(Name) -> void()
[page 164] Unregister the global name Name

e whereis_name(Name) -> Pid() | undefined
[page 164] Return the Pid of the global process Name

global _group

The following functions are exported:

e global groups() -> {OwnGroupName, [OtherGroupName]} | undefined
[page 166] Return the global group names

Kernel Application (KERNEL)

21

Kernel Reference Manual

22

e info() -> [{state, State}, {own groupname, atom()},
{own_groupnodes, [Nodel}, {syncednodes, [Nodel}, {sync_error,
[Nodel}, {no_contact, [Nodel}, {other_groups, Other grps},
{monitoring, [pid()]}]

[page 166] Return the state of the global group process

e monitor nodes(Flag) -> ok
[page 167] Subscription of node status for nodes in the immediate global group

e ownnodes() -> [Node] | {error, ErrorMsg}

[page 167] Return the global group names

e registered names({node, Node}) -> [Namel | {error, ErrorMsg}
[page 167] Return all globally registered names

e registered names({group, GlobalGroupName}) -> [Name]

[page 167] Return all globally registered names

e send(Name, Msg) -> Pid | {badarg, Msg} | {error, ErrorMsg}
[page 167] Send Msg to a registered process Name

e send({node, Node}, Name, Msg) -> Pid | {badarg, Msg} | {error,
ErrorMsg}

[page 167] Send Msg to a registered process Name

e send({group, GlobalGroupName}, Name, Msg) -> Pid | {badarg, Msg} |
{error, ErrorMsg}

[page 167] Send Msg to a registered process Name

e sync() -> ok
[page 167] Synchronize the immediate global group

e whereis name(Name) -> Pid | undefined | {error, ErrorMsg}
[page 168] Return the Pid of the global process Name

e whereis name({node, Node}, Name) -> Pid | undefined | {error,
ErrorMsg}

[page 168] Return the Pid of the global process Name

e whereis name({group, GlobalGroupName}, Name) -> Pid | undefined |
{error, ErrorMsg}

[page 168] Return the Pid of the global process Name

e start()

[page 168] Start the global group server

e start link() -> {ok, Pid} | {error, Reason}
[page 168] Start the global group server

e stop() -> void(O
[page 168] Stop the global group server

heart

The following functions are exported:

e start() -> {ok, Pid} | ignore | {error, What}
[page 169] Start the heart program.

e set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
[page 170] Set a temporary reboot command.

e clear_cmd() -> ok
[page 170] Clear the temporary boot command.

e get_cmd() -> {ok, Cmd}
[page 170] Get the temporary reboot command.

Kernel Application (KERNEL)

Kernel Reference Manual

inet

The following functions are exported:

init

get_rc()
[page 172] Return list of configuration parameters.

format_error(Tag)
[page 172] Return a diagnostic error string.

gethostbyaddr (Address) -> {ok, Hostent} | {error, Reason}
[page 172] Return a hostent record for the host with the given address

gethostbyname (Name) -> {ok, Hostent} | {error, Reason}
[page 172] Return a hostent record for the host with the given name

gethostbyname (Name, Family) -> {ok, Hostent} | {error, Reason}
[page 172] Return a hostent record for the host with the given name

gethostname() -> {ok, Name} | {error, Reason}
[page 172] Return the local hostname

sockname (Socket) -> {ok, {IP, Port}} | {error, Reason}
[page 172] Return the local address and port number for a socket.

peername (Socket) -> {ok, {Address, Port}} | {error, Reason}
[page 173] Return the address and port for the other end of a connection.

port(Socket) -> {ok, Number}
[page 173] Return the local port number for a socket.

close(Socket) -> ok

[page 173] Close a socket of any type

getaddr (IP,inet) -> {ok,{A1,A2,A3,A4}} | {error, Reason}
[page 173] Return the IP-adress for IP

setopts(Socket, Options) -> ok | {error, Reason}
[page 173] Set one or more options for a socket.

The following functions are exported:

boot (BootArgs) -> void()
[page 179] Start the Erlang runtime system.

get_arguments() -> Flags
[page 179] Get all flag arguments.

get_argument (Flag) -> {ok, Values} | error
[page 180] Get values associated with an argument.

get-args() -> [Arg]
[page 180] Get all (non-flag) arguments.

get_plain_arguments() -> [Arg]
[page 180] Get all (non-flag) arguments.

restart() -> void()
[page 180] Restart the running Erlang node

reboot () -> void()
[page 180] Take down an Erlang node smoothly

Kernel Application (KERNEL) 23

Kernel Reference Manual

24

e stop() -> void(O
[page 180] Take down an Erlang node smoothly<

e get_status() -> {InternalStatus, ProvidedStatus}
[page 181] Get status information during system start.

e script_id() -> Id
[page 181] Get the identity of the used boot script.

net_.adm

The following functions are exported:
e host_file()
[page 184] Read the .hosts.erlang file

e dns_hostname (Host)
[page 184] Call epmd for the fully qualified name (DNS) of Host

e localhost()
[page 184] Return the fully qualified name of the local host

e names(), names(Host)
[page 184] Return {ok, List} or {error, Reason}

e ping(Node)
[page 184] Set up a connection to a node

e world (), world (verbose)
[page 184] Run epmd - names on all hosts which are specified in the Erlang host
file

e worldlist (Hostlist), world_list (Hostlist, verbose)

[page 184] Run epmd - names on all hosts which are specified in the Erlang host
file

net_kernel

The following functions are exported:
e monitor nodes(Flag, OptionList) -> ok | ignored | Error
[page 186] Subscribe/unsubscribe to nodeup and nodedown messages

e monitor nodes(Flag) -> ok | ignored | Error
[page 187] Subscribe/unsubscribe to nodeup and nodedown messages

e allow(NodeList)
[page 188] Limit access to a node from a specific number of named nodes

e connect node(Node)
[page 188] Establish a connection to a node

e setnet_ticktime(NetTicktime, TransitionPeriod) -> Res
[page 188] Set net_ticktime

e set_net_ticktime(NetTicktime) -> Res
[page 189] Set net_ticktime

e get net_ticktime() -> Res
[page 189] Get net_ticktime

Kernel Application (KERNEL)

Kernel Reference Manual

oS

The following functions are exported:

cmd (Command) -> string()
[page 190] Execute Command in a command shell of the target OS.

find executable(Name) -> Filename | false
[page 190] Return the absolute filename of a program.

find_executable(Name, Path) -> Filename | false
[page 190] Return the absolute filename of a program.

getenv() -> List
[page 190] Return a list of all environment variables.

getenv(VarName) -> Value | false
[page 191] Return the Value of the environment variable VarName.

getpid() -> Value

[page 191] Return the process identifier of the emulator process as a string.

putenv(VarName, Value) -> true
[page 191] Set a new Value for the environment variable VarName.

type() -> {Osfamily,Osname} | Osfamily

[page 191] Return the Osfamily and, in some cases, Osname of the current
operating system.

version() -> {Major, Minor, Release} | VersionString

[page 191] Return the Operating System version.

packages

The following functions are exported:

P92

no functions exported

[page 195] x

The following functions are exported:

create(Name) -> void()
[page 196] Create a new, empty process group

delete(Name) -> void()
[page 196] Delete a process group

get_closest_pid(Name) -> Pid | {error, Reason}
[page 196] Common dispatch function

get_members(Name) -> [Pid] | {error, Reason}
[page 197] Return all processes in a group

get_local members(Name) -> [Pid] | {error, Reason}
[page 197] Return all local processes in a group

join(Name, Pid) -> ok | {error, Reason}
[page 197] Join a process to a group

leave (Name, Pid) -> ok | {error, Reason}
[page 197] Make a process leave a group

Kernel Application (KERNEL)

25

Kernel Reference Manual

26

e which groups() -> [Name]
[page 197] Return a list of all known groups

e start()
[page 197] Start the pg2 server

e start_link() -> {ok, Pid} | {error, Reason}
[page 197] Start the pg2 server

rpc
The following functions are exported:

e start()
[page 198] Start the rpc server

e stop()
[page 198] Stop the rpc server

e call(Node, Module, Function, Args)
[page 198] Evaluate a function call on a node

e call(Node, Module, Function, Args, Timeout)
[page 198] Evaluate a function call on a node

e cast(Node, Module, Function, Args)
[page 198] Run a function on a node ignoring the result

e block call(Node, Mod, Fun, Args)
[page 199] Evaluate a function call on a node in the RPC server's context

e block call(Node, Module, Function, Args, Timeout)
[page 199] Evaluate a function call on a node in the RPC server's context

e server_call(Node, Name, ReplyWrapper, Msg)
[page 199] Interact with a server on a node

e abcast(Name, Mess)
[page 199] Broadcast a message asynchronously to a registered process on all nodes

e abcast(Nodes, Name, Mess)
[page 199] Broadcast a message asynchronously to a registered process on specific
nodes

e sbcast(Name, Msg)
[page 199] Broadcast to all nodes synchronously and return a list of the nodes
which have a registered server

e sbcast(Nodes, Name, Msg)
[page 199] Broadcast to specific nodes synchronously and return a list of the nodes
which have a registered server

e eval_everywhere(Mod, Fun, Args)
[page 199] Run a function call on all nodes

e eval everywhere(Nodes, Mod, Fun, Args)
[page 200] Run a function call on a specified set of nodes

e multicall(M, F, A)
[page 200] Evaluate a function call on all nodes

e multicall (Nodes, M, F, A)
[page 200] Evaluate a function call on a set of nodes

Kernel Application (KERNEL)

Kernel Reference Manual

e multicall(M, F, A, Timeout)
[page 200] Evaluate a function call on all nodes, with timeout

e multicall (Nodes, M, F, A, Timeout)
[page 200] Evaluate a function call on a set of nodes, with timeout

e multi_server_call(Name, Msg)
[page 200] Send a message to servers on all nodes and collect the answers

e multi_server_call(Nodes, Name, Msg)
[page 201] Send a message to servers on a specific set of nodes and collect the
answers

e safemulti_server_call(Name, Msg)
[page 201] Send a message to servers on all nodes and collect the answers safely

e safemulti_server_call(Nodes, Name, Msg)
[page 201] >Send a message to servers on a specific set of nodes and collect the
answers safely

e async_call(Node, Mod, Fun, Args)
[page 201] Evaluate a function asyncronously on a node and return a key which
can be used at a later stage to collect results
e yield(Key)
[page 201] Deliver the promised answer from a async_call operation
e nb_yield(Key, Timeout)
[page 201] Deliver the promised answer from a async_call operation
(non-blocking)
e nb_yield(Key)
[page 202] Deliver the promised answer from a async_call operation
(non-blocking)

e parallel eval (List0fTuples)
[page 202] Evaluate several function calls on all nodes in parallel

e pmap({M, F}, Extraargs, List)
[page 202] Execute lists:map/3 in parallel on all nodes

e pinfo(Pid)
[page 202] Get process info for any process

e pinfo(Pid, Item)
[page 202] Get process info for any process

seq._trace

The following functions are exported:
e set_token(Component, ComponentValue) -> {Component, PreviousValue}
[page 203] Set the individual Component of the trace token.

set_token(Token) -> PreviousToken
[page 204] Set the trace token to Value.

get_token(Component) -> {Component, ComponentValue}
[page 204] Return the ComponentValue of the trace token component Component.

get_token() -> TraceToken
[page 204] Return the value of the trace token.

print(TraceInfo) -> void
[page 204] Put the Erlang term TraceInfo into the sequential trace output.

Kernel Application (KERNEL) 27

Kernel Reference Manual

print(Label, TracelInfo) -> void
[page 205] Put the Erlang term TraceInfo into the sequential trace output.

reset_trace() -> void
[page 205] Stop all sequential tracing on the Erlang node.

set_system_tracer (ProcessOrPortId) -> PreviousId
[page 205] Set the system tracer.

get_system_tracer() -> pid() | port() | false
[page 205] Return the pid() or port() of the current system tracer.

user

The following functions are exported:

start() -> void()
[page 211] Start the standard 1/O system.

wrap_log_reader

The following functions are exported:

app

chunk (Continuation)
[page 212] Read a chunk of objects written to a wrap log.

chunk(Continuation, N) -> {Continuation2, Terms} | {Continuation2,
Terms, Badbytes} | {Continuation2, eof} | {error, Reason}
[page 212] Read a chunk of objects written to a wrap log.

close(Continuation) -> ok
[page 213] Close a log

open(Filename) -> OpenRet
[page 213] Open a log file
open(Filename, N) -> OpenRet
[page 213] Open a log file

No functions are exported.

config

No functions are exported.

28

Kernel Application (KERNEL)

Kernel Reference Manual

kernel

kernel

Application

The Kernel application is the first application started. It is mandatory in the sense that
the minimal system based on Erlang/OTP consists of Kernel and STDLIB. The Kernel
application contains the following services:

application co
code

disk_log

ntroller, see application(3)

dist_ac, distributed application controller

erl_boot_server

erl_ddll
error_logger
file

global
global_group
heart

inet
net_kernel
os

pg2

rpc
seq-trace

user

Error Logger Event Handlers

Two error logger event handlers are defined in the Kernel application. These are

described in error_logger(3).

Kernel Application (KERNEL)

29

kernel Kernel Reference Manual
Configuration
The following configuration parameters are defined for the Kernel application. See
app (3) for more information about configuration parameters.
browser_cmd = string() | {M,F,A} When pressing the Help button in a tool such as
Debugger or TV, the help text (an HTML file File) is by default displayed in a
Netscape browser which is required to be up and running. This parameter can be
used to change the command for how to display the help text if another browser
than Netscape is preferred, or another platform than Unix or Windows is used.
If set to a string Command, the command "Command File" will be evaluated using
os:cmd/1.
If set to a module-function-args tuple {M,F, A}, the call apply (M,F, [File|A]) will
be evaluated.
distributed = [Distrib] <optional> Specifies which applications are distributed
and on which nodes they may execute. In this parameter:
e Distrib = {App,Nodes} | {App,Time,Nodes}
e App = atom()
e Time = integer() >0
e Nodes = [node() | {node(),...,node()}]
The parameter is described in application(3), function load/2.
dist_auto_connect = Value <optional> Specifies when nodes will be automatically
connected. If this parameter is not specified, a node is always automatically
connected, e.g when a message is to be sent to that node. Value is one of:
never Connections are never automatically connected, they must be explicitly
connected. See net kernel(3).
once Connections will be established automatically, but only once per node. If a
node goes down, it must thereafter be explicitly connected. See
net _kernel(3).
permissions = [Perm] <optional> Specifies the default permission for applications
when they are started. In this parameter:
e Perm = {ApplName,Bool}
e ApplName = atom()
e Bool = boolean()
Permissions are described in application(3), function permit/2.
error_logger = Value <optional> Value is one of:
tty All standard error reports are written to stdio. This is the default option.
{file, FileName} All standard error reports are written to the file FileName,
where FileName is a string.
false No error logger handler is installed.
global groups = [GroupTuple] <optional> Specifies the groups of nodes which
will have their own global name space. In this parameter:
e GroupTuple = {GroupName, [Nodel} | {GroupName,PublishType, [Node]}
e GroupName = atom()
e PublishType = atom()
e Node = atom()
30 Kernel Application (KERNEL)

Kernel Reference Manual kernel

These parameters are described in global_group(3).
inet_parse_error_log = LogMode <optional> LogMode is one of:

silent NoO error_logger messages are generated when erroneous lines are found
and skipped in the various configuration files. The default if the variable is not
set is that erroneous lines are reported via the error_logger.

net_setuptime = SetupTime <optional> Specifies the net _kernel setup time.
SetupTime is given in seconds. This is the maximum time a node will wait for the
other node to answer during connection setup and handshake. If this parameter is
undefined, it defaults to 7 seconds.

net_ticktime = TickTime <optional> Specifies the net _kernel tick time.
TickTime is given in seconds. Once every TickTime/4 second, all connected nodes
are ticked (if anything else has been written to a node) and if nothing has been
received from another node within the last four (4) tick times that node is
considered to be down. This ensures that nodes which are not responding, for
reasons such as hardware errors, are considered to be down.

The time T, in which a node that is not responding is detected, is calculated as:
MinT < T < MaxT where:

MinT = TickTime - TickTime / 4
MaxT = TickTime + TickTime / 4

TickTime is by default 60 (seconds). Thus, 45 < T < 75 seconds.
Note: All communicating nodes should have the same TickTime value specified.
Note: Normally, a terminating node is detected immediately.

syncnodes_mandatory = [NodeName] <optional> Specifies which other nodes
must be alive in order for this node to start properly. If some node in the list does
not start within the specified time, this node will not start either. If this parameter
is undefined, it defaults to [].

sync_nodes_optional = [NodeName] <optional> Specifies which other nodes can
be alive in order for this node to start properly. If some node in this list does not
start within the specified time, this node starts anyway. If this parameter is
undefined, it defaults to the empty list.

sync_nodes_timeout = integer() | infinity <optional> Specifies the amount
of time (in milliseconds) this node will wait for the mandatory and optional nodes
to start. If this parameter is undefined, no node synchronization is performed. This
option also makes sure that global is synchronized.

start_ddll = true | false <optional> Starts the dd11 server if the parameter is
true (See er1.dd11(3)). This parameter should be set to true an embedded
system which uses this service.

The default value is false.
start_ dist_ac = true | false <optional> Starts the dist_ac server if the

parameter is true. This parameter should be set to true for systems that use
distributed applications.

The default value is false. If this parameter is undefined, the server is started if
the parameter distributed is set.

start_boot_server = true | false <optional> Starts the boot_server if the
parameter is true (see erl_boot_server(3)). This parameter should be set to
true in an embedded system which uses this service.

The default value is false.

Kernel Application (KERNEL) 31

kernel

Kernel Reference Manual

32

boot_server_slaves = [SlaveIP] <optional> If the start boot_server
configuration parameter is true, this parameter can be used to initialize
boot_server with a list of slave IP addresses. SlaveIP = string() | atom |
{integer () ,integer () ,integer () ,integer O}
where 0 <= integer() <=255.
Examples of SlaveIP in atom, string and tuple form are:
’150.236.16.70°, "150,236,16,70", {150,236,16,70}.
The default value is [].

start disk log = true | false <optional> Starts the disk log server if the

parameter is true (see disk_log(3)). This parameter should be set to true in an
embedded system which uses this service.

The default value is false.
start_pg2 = true | false <optional> Starts the pg2 server (see pg2(3)) if the

parameter is true. This parameter should be set to true in an embedded system
which uses this service.

The default value is false.
start_timer = true | false <optional> Starts the timer _server if the parameter

IS true (see timer(3)). This parameter should be set to true in an embedded
system which uses this service.

The default value is false.
shutdown func = {Mod,Func} <optional> Where:

e Mod = atom()

e Func = atom()

Sets a function that application_controller calls when it starts to terminate.
The function is called as: Mod:Func (Reason), where Reason is the terminate
reason for application_controller, and it must return as soon as possible for
application controller to terminate properly.

See Also

app(4) [page 214], application(3) [page 33], code(3) [page 44], disk_log(3) [page 52],
erl_boot_server(3) [page 66], erl_ddll(3) [page 68], error_logger(3) [page 129], file(3)
[page 135], global(3) [page 160], global_group(3) [page 165], heart(3) [page 169],
inet(3) [page 171], net_kernel(3) [page 186], 0s(3) [page 190], pg2(3) [page 196],
rpc(3) [page 198], seq-trace(3) [page 203], user(3) [page 211]

Kernel Application (KERNEL)

Kernel Reference Manual application

application

Erlang Module

In OTP, application denotes a component implementing some specific functionality, that
can be started and stopped as a unit, and which can be re-used in other systems as well.
This module interfaces the application controller, a process started at every Erlang
runtime system, and contains functions for controlling applications (for example
starting and stopping applications), and functions to access information about
applications (for example configuration parameters).

An application is defined by an application specification. The specification is normally
located in an application resource file called Application.app, where Application is
the name of the application. Refer to app (4) for more information about the
application specification.

This module can also be viewed as a behaviour for an application implemented
according to the OTP design principles as a supervision tree. The definition of how to
start and stop the tree should be located in an application callback module exporting a
pre-defined set of functions.

Refer to OTP Design Principles for more information about applications and behaviours.

Exports

get_all_env() -> Env
get_all _env(Application) -> Env

Types:

Application = atom()
Env = [{Par,Val}]
Par = atom()

Val = term()

Returns the configuration parameters and their values for Application. If the argument
is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or if the process executing the call does not
belong to any application, the function returns [].

get_all key() -> {ok, Keys} | []
get_all key(Application) -> {ok, Keys} | undefined
Types:
e Application = atom()
e Keys = [{Key,Val}]
e Key = atom()

Kernel Application (KERNEL) 33

application Kernel Reference Manual

e Val =term()

Returns the application specification keys and their values for Application. If the
argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, the function returns undefined. If the process
executing the call does not belong to any application, the function returns [].

get_application() -> {ok, Application} | undefined
get_application(Pid | Module) -> {ok, Application} | undefined

Types:

e Pid = pid()

e Module = atom()

e Application = atom()

Returns the name of the application to which the process Pid or the module Module
belongs. Providing no argument is the same as calling get_application(self()).

If the specified process does not belong to any application, or if the specified process or
module does not exist, the function returns undefined.

get_env(Par) -> {ok, Val} | undefined
get_env(Application, Par) -> {ok, Val} | undefined

Types:

e Application = atom()
e Par = atom()

e Val =term()

Returns the value of the configuration parameter Par for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the configuration parameter does not exist,
or if the process executing the call does not belong to any application, the function

returns undefined.

get key(Key) -> {ok, Val} | undefined
get key(Application, Key) -> {ok, Val} | undefined
Types:
e Application = atom()
e Key = atom()
e Val =term()

Returns the value of the application specification key Key for Application. If the
application argument is omitted, it defaults to the application of the calling process.

If the specified application is not loaded, or the specification key does not exist, or if the
process executing the call does not belong to any application, the function returns

undefined.

load(AppDescr) -> ok | {error, Reason}
load(AppDescr, Distributed) -> ok | {error, Reason}

Types:

34 Kernel Application (KERNEL)

Kernel Reference Manual application

o AppDescr = Application | AppSpec

e Application = atom()

e AppSpec = {application,Application,AppSpecKeys}

e AppSpec = [{Key,Val}]

e Key = atom()

e Val = term()

¢ Distributed = {Application,Nodes} | {Application, Time,Nodes} | default
¢ Nodes = [node() | {node(),..,node()}]

e Time = integer() > 0

e Reason = term()

Loads the application specification for an application into the application controller. It

will also load the application specifications for any included applications. Note that the
function does not load the actual Erlang object code.

The application can be given by its name Application. In this case the application
controller will search the code path for the application resource file Application.app
and load the specification it contains.

The application specification can also be given directly as a tuple AppSpec. This tuple
should have the format and contents as described in app(4).

If Distributed = {Application, [Time,]Nodes}, the application will be distributed.
The argument overrides the value for the application in the Kernel configuration
parameter distributed. Application must be the name of the application (same as in
the first argument). If a node crashes and Time has been specified, then the application
controller will wait for Time milliseconds before attempting to restart the application on
another node. If Time is not specified, it will default to O and the application will be
restarted immediately.

Nodes is a list of node names where the application may run, in priority from left to
right. Node names can be grouped using tuples to indicate that they have the same
priority. Example:

Nodes = [cpl@cave, {cp2@cave, cp3@cavel}]

This means that the application should preferably be started at cpi@cave. If cpl@cave
is down, the application should be started at either cp2@cave or cp3@cave.

If Distributed = default, the value for the application in the Kernel configuration
parameter distributed will be used.

loaded applications() -> [{Application, Description, Vsn}]

Types:

e Application = atom()
e Description = string()
e V/sn = string()

Returns a list with information about the applications which have been loaded using
load/1,2, also included applications. Application is the application name.
Description and Vsn are the values of its description and vsn application
specification keys, respectively.

permit (Application, Bool) -> ok | {error, Reason}

Types:

Kernel Application (KERNEL) 35

application Kernel Reference Manual

e Application = atom()
e Bool = bool()
e Reason = term()

Changes the permission for Application to run at the current node. The application
must have been loaded using 1oad/1,2 for the function to have effect.

If the permission of a loaded, but not started, application is set to false, start will
return ok but the application will not be started until the permission is set to true.

If the permission of a running application is set to false, the application will be
stopped. If the permission later is set to true, it will be restarted.

If the application is distributed, setting the permission to false means that the
application will be started at, or moved to, another node according to how its
distribution is configured (see 1oad/2 above).

The function does not return until the application is started, stopped or successfully
moved to another node. However, in some cases where permission is set to true the
function may return ok even though the application itself has not started. This is true
when an application cannot start because it has dependencies to other applications
which have not yet been started. When they have been started, Application will be
started as well.

By default, all applications are loaded with permission true on all nodes. The
permission is configurable by using the Kernel configuration parameter permissions.

set_env(Application, Par, Val) -> ok
Types:
e Application = atom()
e Par = atom()
e Val =term()
Sets the value of the configuration parameter Par for Application.

Warning:

Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

start (Application) -> ok | {error, Reason}

start (Application, Type) -> ok | {error, Reason}
Types:
e Application = atom()
e Type = permanent | transient | temporary
e Reason = term()

36 Kernel Application (KERNEL)

Kernel Reference Manual application

Starts Application. If it is not loaded, the application controller will first load it using
load/1. It will make sure any included applications are loaded, but will not start them.
That is assumed to be taken care of in the code for Application.

The application controller checks the value of the application specification key
applications, to ensure that all applications that should be started before this
application are running. If not, {error,{not_started,App}} is returned, where App is
the name of the missing application.

The application controller then creates an application master for the application. The
application master is the group leader of all the processes in the application. The
application master starts the application by calling the application callback function
Module:start/2 as defined by the application specification key mod.

The Type argument specifies the type of the application. If omitted, it defaults to
temporary.

¢ If a permanent application terminates, all other applications and the entire Erlang
node are also terminated.

o If a transient application terminates with Reason = normal, this is reported but no
other applications are terminated. If a transient application terminates abnormally,
all other applications and the entire Erlang node are also terminated.

o If a temporary application terminates, this is reported but no other applications are
terminated.

Note that it is always possible to stop an application explicitly by calling stop/1.
Regardless of the type of the application, no other applications will be affected.

Note also that the transient type is of little practical use, since when a supervision tree
terminates, the reason is set to shutdown, Not normal.

start_type() -> StartType | local | undefined

Types:
e StartType = normal | {takeover,Node} | {failover,Node}
e Node = node()

This function is intended to be called by a process belonging to an application, when
the application is being started, to determine the start type which is either StartType
Or local.

See Module:start/2 for a description of StartType.

local is returned if only parts of the application is being restarted (by a supervisor), or
if the function is called outside a startup.

If the process executing the call does not belong to any application, the function returns
undefined.

stop(Application) -> ok | {error, Reason}
Types:

e Application = atom()
e Reason = term()

Kernel Application (KERNEL) 37

application Kernel Reference Manual

Stops Application. The application master calls Module:prep_stop/1, if such a
function is defined, and then tells the top supervisor of the application to shutdown (see
supervisor (3)). This means that the entire supervision tree, including included
applications, is terminated in reversed start order. After the shutdown, the application
master calls Module:stop/1. Module is the callback module as defined by the
application specification key mod.

Last, the application master itself terminates. Note that all processes with the
application master as group leader, i.e. processes spawned from a process belonging to
the application, thus are terminated as well.

When stopped, the application is still loaded.

In order to stop a distributed application, stop/1 has to be called on all nodes where it
can execute (that is, on all nodes where it has been started). The call to stop/1 on the
node where the application currently executes will stop its execution. The application
will not be moved between nodes due to stop/1 being called on the node where the
application currently executes before stop/1 is called on the other nodes.

takeover (Application, Type) -> ok | {error, Reason}
Types:
e Application = atom()
¢ Type = permanent | transient | temporary
e Reason = term()
Performs a takeover of the distributed application Application, which executes at
another node Node. At the current node, the application is restarted by calling
Module:start ({takeover,Node},StartArgs). Module and StartArgs are retrieved
from the loaded application specification. The application at the other node is not

stopped until the startup is completed, i.e. when Module:start/2 and any calls to
Module:start_phase/3 have returned.

Thus two instances of the application will run simultaneously during the takeover,
which makes it possible to transfer data from the old to the new instance. If this is not
acceptable behavior, parts of the old instance may be shut down when the new instance
is started. Note that the application may not be stopped entirely however, at least the
top supervisor must remain alive.

See start/1,2 for a description of Type.

unload(Application) -> ok | {error, Reason}

Types:
e Application = atom()
e Reason = term()

Unloads the application specification for Application from the application controller.
It will also unload the application specifications for any included applications. Note that
the function does not purge the actual Erlang object code.

unset_env(Application, Par) -> ok

Types:
e Application = atom()
e Par = atom()

38 Kernel Application (KERNEL)

Kernel Reference Manual application

Removes the configuration parameter Par and its value for Application.

Warning:

Use this function only if you know what you are doing, that is, on your own
applications. It is very application and configuration parameter dependent when and
how often the value is read by the application, and careless use of this function may
put the application in a weird, inconsistent, and malfunctioning state.

which_applications() -> [{Application, Description, Vsn}]

Types:

e Application = atom()
e Description = string()
e Vsn = string()

Returns a list with information about the applications which are currently running.
Application is the application name. Description and Vsn are the values of its
description and vsn application specfication keys, respectively.

CALLBACK MODULE

The following functions should be exported from an application callback module.

Exports

Module:start(StartType, StartArgs) -> {ok, Pid} | {ok, Pid, State} | {error, Reason}

Types:

e StartType = normal | {takeover,Node} | {failover,Node}
e Node = node()

e StartArgs = term()

e Pid = pid()

e State = term()

This function is called whenever an application is started using
application:start/1,2,and should start the processes of the application. If the
application is structured according to the OTP design principles as a supervision tree,
this means starting the top supervisor of the tree.

StartType defines the type of start:

e normal if its a normal startup.

e normal also if the application is distributed and started at the current node due to
a failover from another node, and the application specification key start_phases
= undefined.

Kernel Application (KERNEL) 39

application

Kernel Reference Manual

¢ {takeover,Node} if the application is distributed and started at the current node
due to a takeover from Node, either because application:takeover/2 has been
called or because the current node has higher priority than Node.

e {failover,Node} if the application is distributed and started at the current node
due to a failover from Node, and the application specification key start_phases
/= undefined.

StartArgs is the StartArgs argument defined by the application specification key mod.

The function should return {ok,Pid} or {ok,Pid,State} where Pid is the pid of the
top supervisor and State is any term. If omitted, State defaults to []. If later the
application is stopped, State is passed to Module:prep_stop/1.

Module:start phase(Phase, StartType, PhaseArgs) -> ok | {error, Reason}

Types:

e Phase = atom()

e StartType = normal | {takeover,Node} | {failover,Node}
¢ Node = node()

e PhaseArgs = term()

e Pid = pid()

e State = state()

This function is used to start an application with included applications, when there is a
need for synchronization between processes in the different applications during startup.

The start phases is defined by the application specification key start_phases =
[{Phase,PhaseArgs}]. For included applications, the set of phases must be a subset of
the set of phases defined for the including application.

The function is called for each start phase (as defined for the primary appliction) for the
primary application and all included applications, for which the start phase is defined.

See Module:start/2 for a description of StartType.

Module:prep_stop(State) -> NewState

Types:
e State = NewState = term()

This function is called when an application is about to be stopped, before shutting
down the processes of the application.

State is the state returned from Module:start/2, or [] if no state was returned.
NewState is any term and will be passed to Module:stop/1.

The function is optional. If it is not defined, the processes will be terminated and then
Module:stop(State) is called.

Module:stop(State)

40

Types:
e State = term()

Kernel Application (KERNEL)

Kernel Reference Manual application

This function is called whenever an application has stopped. It is intended to be the
opposite of Module:start/2 and should do any necessary cleaning up. The return value

is ignored.

State is the return value of Module:prep_stop/1, if such a function exists. Otherwise
State is taken from the return value of Module:start/2.

Module:config change(Changed, New, Removed) -> ok

Types:

e Changed = [{Par,Val}]

e New = [{Par,Val}]

¢ Removed = [Par]

e Par = atom()

e Val =term()

This function is called by an application after a code replacement, if there are any
changes to the configuration parameters.

Changed is a list of parameter-value tuples with all configuration parameters with
changed values, New is a list of parameter-value tuples with all configuration parameters
that have been added, and Removed is a list of all parameters that have been removed.

SEE ALSO

OTP Design Principles, kernel(6) [page 29], app(4) [page 214]

Kernel Application (KERNEL) 41

auth

Kernel Reference Manual

42

auth

Erlang Module

Authentication determines which nodes are allowed to communicate with each other.
In a network of different Erlang nodes, it is built into the system at the lowest possible
level. Each node has its Magic Cookie, which is an Erlang atom.

When nodes connect with eachother, the Magic Cookies are compared. If the Magic
Cookies doesn't match the connected node rejects the connection.

At start-up, the first action of the standard auth server is to read a file named
$HOME/erlang. cookie. An atom is created from the contents of this file and the cookie
of the node is set to this atom with the use of erlang:set_cookie(node(),
CookieAtom).

If the file does not exist, it is created. The UNIX permissions mode of the file is set to
octal 400 (read-only by owner) and filled with a random string. For this reason, the
same user, or group of users with identical cookie files, can have Erlang nodes which can
communicate freely and without interference from the Magic Cookie system. Users
who want to run nodes on separate file systems must be certain that their cookie files
are identical on the different file systems.

Initially, each node has a random atom assigned as its magic cookie. Once the procedure
described above has been concluded, the cookie is set to the contents of the
$HOME/erlang. cookie file.

To communicate with another node, the magic cookie of that node must be known. The
BIF erlang:set_cookie(Node, Cookie) sets the cookie for Node to Cookie. The call
erlang:set_cookie(node(), CookieAtom) will set the current cookie to CookieAtom.
It will, however, also set the cookie of all other unknown nodes to CookieAtom. In the
case of the default auth server, this is the first thing done when the system starts. The
default then, is to assume that a1l nodes which communicate have the same cookie. In
the case of a single user on a single file system, this is indeed true and no further action
is required. The original cookie can also be fetched by the BIF erlang:get_cookie().

If nodes which communicate do not have the same cookie, they can be set explicitly on
each node with the aid of erlang:set_cookie(Node, Cookie). Distributed systems
with multiple User IDs can be handled in this way.

Initially, the system cookie is set to a random atom, and the (assumed) cookie of all
other nodes is initially set to the atom nocookie. Thus, an Erlang node is completely
unprotected when erlang:set_cookie(node(), nocookie) is run. Sometimes, this
may be appropriate for systems which are not normally networked, and it can also be
appropriate for maintenance purposes.

In the standard system, the default when two nodes are connected is to immediately
connect all other involved nodes as well. This way, there is always a fully connected
network. If there are nodes with different cookies, this method might be inappropriate
and the host OS command line option -connect_all false must be issued to the
Erlang runtime system. See global(3).

Kernel Application (KERNEL)

Kernel Reference Manual auth

This module uses the two BIFs erlang:get_cookie () which returns the magic cookie
of the local node, and erlang:set_cookie(Node,Cookie) which sets the magic cookie
of Node to Cookie. If Node is the user's node, the cookie of all other unknown nodes are
also set to Cookie by this BIF.

Exports

start ()

Starts the auth server.

stop()

Stops the auth server.

is_auth(Node)

Returns the value yes if communication with Node is authorized, no if Node does not
exist or communication is not authorized.

exists (Node)

Returns yes if Node exists, otherwise no.

cookie()

Reads cookie from $HOME/ . erlang.cookie and sets it. This function is used by the
auth server at start-up.

node_cookie(Node, Cookie)
If the cookie of Node is known to the user as Cookie but the user's cookie is not known
at Node, this function informs Node of the identity of the user's cookie.

node_cookie([Node, Cookie])

Another version of the previous function with the arguments in a list which can be
given on the host OS command line.

cookie([Cookie])

Equivalent to erlang:set_cookie(node (), Cookie), but with the argument in a list
so it can be given on the host OS command line.

Kernel Application (KERNEL) 43

code

Kernel Reference Manual

code

Erlang Module

This module deals with the loading of compiled code into a running Erlang runtime
system.

The code server dynamically loads modules into the system on demand, which means
the first time the module is referenced. This functionality can be turned off using the
command line flag -mode embedded. In this mode, all code is loaded during system
start-up.

If started in interactive mode, all directories under the $ROOT/Iib directory are
initially added to the search path of the code server (). The $ROOT directory is the
installation directory of Erlang/OTP, code:root_dir (). Directories can be named
Name [-Vsn] and the code server, by default, chooses the greatest (>) directory among
those which have the same Name. The -Vsn suffix is optional.

If an ebin directory exists under a chosen directory, it is added to the directory. The
Name of the directory (or library) can be used to find the full directory name (including
the current version) through the priv_dir/1 and 1ib_dir/1 functions.

The code server incorporates a code path cache. The cache functionality is disabled by
default. To activate it, start the emulator with flag -code_path_cache or call
code:rehash (). When the cache is created (or updated), the code server searches for
modules in the code path directories. This may take some time if the the code path is
long. After the cache creation, the time for loading modules in a large system (one with
a large directory structure) is significantly reduced compared to having the cache
disabled. (The code server is able to look up the location of a module from the cache in
constant time instead of having to search through the code path directories).
Application resource files (. app files) are also stored in the code cache. This feature is
used by application to load applications efficiently in large systems. Note that when
the code path cache is created (or updated), any relative directory names in the code
path are converted to absolute.

Exports

start() -> {ok, Pid} | {error, What}
start(Flags) -> {ok, Pid} | {error, What}

44

Types:
e Flags = [stick | nostick | embedded | interactive]
e Pid = pid()

e What = term()

Kernel Application (KERNEL)

Kernel Reference Manual code

This function starts the code server. start/0 implies that the stick and interactive
flags are set.

Flags can also be entered as the command line flags -stick, -nostick and -mode
embedded | interactive. -stick and -mode interactive are the defaults. The
stick flag indicates that a module can never be re-loaded once it has been loaded from
the kernel, stdlib, or compiler directories.

start.link() -> {ok, Pid} | {error, What}
start_link(Flags) -> {ok, Pid} | {error, What}
Types:
e Flags = [stick | nostick | embedded | interactive]
e Pid = pid()
e What = term()

This function starts the code server and sets up a link to the calling process. This
function should be used if the code server is supervised. start_1ink/0 implies that the
stick and interactive flags are set.

The Flags can also be given as command line flags, -stick, -nostick and -mode
embedded | interactive where -stick and -mode interactive is the default. The
stick flag indicates that a module which has been loaded from the kernel, std1lib or
compiler directories can never be reloaded.

set_path(DirList) -> true | {error, What}
Types:
e DirList = [Dir]
e Dir =string()
e What = bad_directory | bad_path
Sets the code server search path to the list of directories DirList.

get_path() -> Path
Types:
e Path = [Dir]
e Dir = string()
Returns the current path.

add_path(Dir) -> true | {error, What}
add_pathz(Dir) -> true | {error, What}

Types:
e Dir =string()
e What = bad_directory

Adds Dir to the current path. The directory is added as the last directory in the new
path. If Dir already exists in the path, it is not added.

add_patha(Dir) -> true | {error, What}
Types:

Kernel Application (KERNEL) 45

code

Kernel Reference Manual

e Dir = string()
e What = bad_directory

This function adds Dir to the beginning of the current path. If Dir already exists, the
old directory is removed from path.

add_paths(DirList) -> ok
add_pathsz(DirList) -> ok

Types:

e DirList = [Dir]

e Dir = string()

This function adds the directories in DirList to the end of the current path. If aDir

already exists in the path, it is not added. This function always returns ok, regardless of
the validity of each individual Dir.

add_pathsa(DirList) -> ok

Types:

e DirList = [Dir]

e Dir = string()

Adds the directories in DirList to the beginning of the current path. If a Dir already

exists, the old directory is removed from the path. This function always returns ok,
regardless of the validity of each individual Dir.

del_path(NameDir) -> true | false | {error, What}

Types:

e NameDir = Name | Dir
e Name = atom()

e Dir = string()

e What = bad_name

This function deletes an old occurrence of a directory in the current path with the name
.../Name [-*] [/ebin]. It is also possible to give the complete directory name Dir in
order to delete it.

This function returns true if the directory was deleted, and false if the directory was
not found.

replace_path(Name, Dir) -> true | {error, What}

Types:

¢ Name = atom()

e Dir = string()

e What = bad_name | bad_directory | {badarg, term()}

This function replaces an old occurrence of a directory named . . ./Name [-*] [/ebin],
in the current path, with Dir. If Name does not exist, it adds the new directory Dir last

in path. The new directory must also be named . . . /Name [-*] [/ebin]. This function
should be used if a new version of the directory (library) is added to a running system.

load file(Module) -> {module, Module} | {error, What}

46

Kernel Application (KERNEL)

Kernel Reference Manual code

Types:
¢ Module = atom()
e What = nofile | sticky_directory | badarg | term()

This function tries to load the Erlang module Module, using the current path. It looks
for the object code file which has a suffix that corresponds to the Erlang machine used,
for example Module.beam. The loading fails if the module name found in the object
code differs from the name Module. load_binary/3 must be used to load object code
with a module name that is different from the file name.

load_abs(File) -> {module, Module} | {error, What}
Types:
e File = atom() | string()
¢ Module = atom()
e What = nofile | sticky_directory | badarg | term()

This function does the same as 1oad file(Module), but File is either an absolute file
name, or a relative file name. The current path is not searched. It returns a value in the
same way as load_file(Module). Note that File should not contain an extension

(" .beam"); load_abs/1 adds the correct extension itself.

ensure_loaded(Module) -> {module, Module} | {error, What}
Types:
¢ Module = atom()
e What = nofile | sticky_directory | embedded | badarg | term()

This function tries to ensure that the module Module is loaded. To work correctly, a file
with the same name as Module.Suffix must exist in the current search path. Suffix
must correspond to the running Erlang machine, for example .beam. It returns a value
in the same way as load file(File).

If the system is started with the -mode embedded command line flag, this function will
not load a module which has not already been loaded. {error, embedded} is returned.

delete(Module) -> true | false
Types:
¢ Module = atom()

This function deletes the code in Module and the code in Module is marked as old. This
means that no external function calls can be made to this occurrence of Module, but a
process which executes code inside this module continues to do so. Returns true if the
operation was successful (i.e., there was a current version of the module, but no old
version), otherwise false.

purge (Module) -> true | false
Types:
¢ Module = atom()

This function purges the code in Module, that is, it removes code marked as old. If some
processes still execute code in the old occurrence of Module, these processes are killed
before the module is purged. Returns true if a process has been killed, otherwise false.

Kernel Application (KERNEL) 47

code Kernel Reference Manual

soft_purge (Module) -> true | false
Types:
e Module = atom()

This function purges the code in Module, that is, it removes code marked as old, but
only if no process currently runs the old code. It returns false if a process uses the old
code, otherwise true.

is_loaded(Module) -> {file, Loaded} | false
Types:
e Module = atom()
o Loaded = AbsFileName | preloaded
e AbsFileName = string()

This function tests if module Module is loaded. If the module is loaded, the absolute file
name of the file from which the code was obtained is returned.

all loaded() -> [LoadMod]
Types:
LoadMod = {Module, Loaded}
e Module = atom()
e Loaded = AbsFileName | preloaded
e AbsFileName = string()
This function returns a list of tuples of the type {Module, Loaded} for all loaded

modules. Loaded is the absolute file name of the loaded module, or the atom
preloaded if the module was pre-loaded.

load binary(Module, File, Binary) -> {module, Module} | {error, What}

Types:
e Module = atom()
e What = sticky_directory | badarg | term()

This function can be used to load object code on remote Erlang nodes. It can also be
used to load object code where the file name and module name differ. This, however, is
a very unusual situation and should be used with care. The parameter Binary must
contain object code for the module Module. The File parameter is only used by the
code server to keep a record from which file the object code in Module comes.
Accordingly, File is not opened and read by the code server.

stop() -> stopped

Stops the code server.

root_dir() -> RootDir

Types:
e RootDir = string()
Returns the root directory of Erlang/OTP, which is the directory where it is installed.

48 Kernel Application (KERNEL)

Kernel Reference Manual code

lib.dir() -> LibDir
Types:
e LibDir = string()
Returns the library directory.

lib dir(Name) -> LibDir | {error, What}

Types:

¢ Name = atom()

e LibDir = string()
¢ What = bad_name

This function returns the current 1ib directory for the Name[-*] directory (or library).
The current path is searched for a directory named . . . /Name-* (the —* suffix is
optional for directories in the search path and it represents the version of the directory).

compiler dir() -> CompDir
Types:
e CompDir = string()
This function returns the compiler directory.

priv_dir(Name) -> PrivDir | {error, What}
Types:
¢ Name = atom()
e PrivDir = string()
¢ What = bad_name
This function returns the current priv directory for the Name[-*] directory. The current

path is searched for a directory named . . . /Name-* (the -* suffix is optional for
directories in the search path and it represents the version of the directory). The /priv

suffix is added to the end of the found directory.

get_object_code(Module) -> {Module, Bin, AbsFileName} | error

Types:

¢ Module = atom()

e Bin = binary()

e AbsFileName = string()

This function searches the code path in the code server for the object code of the
module Module. It returns {Mod, Bin, Filename} if successful, and error if not. Bin
is a binary data object which contains the object code for the module. This can be
useful if code is to be loaded on a remote node in a distributed system. For example,
loading module Module on node N is done as follows:

{Mod, B, F} = code:get_object_code(Mod),
rpc:call(N,code, load binary, [Mod, F, B]),

Kernel Application (KERNEL) 49

code

Kernel Reference Manual

objfile extension() -> Ext

Types:
e Ext = string()

This function returns the object code file extension for the running Erlang machine, for
example “.beam”.

rehash() -> ok

This function creates or rehashes the code path cache.

stick dir(Dir) -> ok | {error, term()}

Types:
e Dir = string()

This function marks Dir as 'sticky'. The system issues a warning and rejects the request
if a user tries to re-load a module in a sticky directory. Sticky directories are used to
warn the user about inadvertent changes to system software.

unstick dir(Dir) -> ok | {error, term()}

Types:
e Dir = string()

This function unsticks a directory which has been marked sticky. Code which is located
in the unstuck directory can be re-loaded into the system.

which(Module) -> WhichFile

Types:

e Module = atom()

¢ WhichFile = FileName | non_existing | preloaded | cover_compiled
e FileName = string()

If the module is not loaded already, this function returns the directory path to the first
file name in the search path of the code server which contains the object code for
Module. If the module is loaded, it returns the directory path to the file name which
contains the loaded object code. If the module is pre-loaded, preloaded is returned. If
the module is Cover compiled, cover_compiled is returned. non_existing is returned
if the module cannot be found.

where_is_file(File) -> FullName

Types:
e File = string()
e FullName = string() | non_existing

This function searches the directories in the code path for File (a file of arbitrary type).
If found, the full name is returned. non_existing is returned if the file cannot be
found. The function can be useful e.g. to locate application resource files. If the code
path cache is used, the code server will efficiently read the full name from the cache (if
File is an object code file or a . app file, that is).

clash() -> ok

50

Kernel Application (KERNEL)

Kernel Reference Manual code

Searches the entire code space for module names with identical names and writes a
report to stdout.

Notes

Dir has the described type string() in all functions. For backwards compatibility,
atom() is also allowed, but string() is recommended.

The described type for Module is atom() in all functions. For backwards compatibility,
string() is also allowed.

Kernel Application (KERNEL) 51

disk_log

Kernel Reference Manual

52

disk_log

Erlang Module

disk_log is a disk based term logger which makes it possible to efficiently log items on
files. Two types of logs are supported, halt logs and wrap logs. A halt log appends items
to a single file, the size of which may or may not be limited by the disk log module,
whereas a wrap log utilizes a sequence of wrap log files of limited size. As a wrap log file
has been filled up, further items are logged onto to the next file in the sequence, starting
all over with the first file when the last file has been filled up. For the sake of efficiency,
items are always written to files as binaries.

Two formats of the log files are supported, the internal format and the external format.
The internal format supports automatic repair of log files that have not been properly
closed, and makes it possible to efficiently read logged items in chunks using a set of
functions defined in this module. In fact, this is the only way to read internally
formatted logs. The external format leaves it up to the user to read the logged deep byte
lists. The disk log module cannot repair externally formatted logs. An item logged to an
internally formatted log must not occupy more than 4 GB of disk space (the size must
fit in 4 bytes).

For each open disk log there is one process that handles requests made to the disk log;
the disk log process is created when open/1 is called, provided there exists no process
handling the disk log. A process that opens a disk log can either be an owner or an
anonymous user of the disk log. Each owner is linked to the disk log process, and the
disk log is closed by the owner should the owner terminate. Owners can subscribe to
notifications, messages of the form {disk log, Node, Log, Info} that are sent from
the disk log process when certain events occur, see the commands below and in
particular the open/1 option notify [page 62]. There can be several owners of a log, but
a process cannot own a log more than once. One and the same process may, however,
open the log as a user more than once. For a disk log process to properly close its file
and terminate, it must be closed by its owners and once by some non-owner process for
each time the log was used anonymously; the users are counted, and there must not be
any users left when the disk log process terminates.

Items can be logged synchronously by using the functions log/2, blog/2, log_terms/2
and blog_terms/2. For each of these functions, the caller is put on hold until the items
have been logged (but not necessarily written, use sync/1 to ensure that). By adding an
a to each of the mentioned function names we get functions that log items
asynchronously. Asynchronous functions do not wait for the disk log process to actually
write the items to the file, but return the control to the caller more or less immediately.

When using the internal format for logs, the functions 1og/2, log_terms/2, alog/2,
and alog_terms/2 should be used. These functions log one or more Erlang terms. By
prefixing each of the functions with a b (for “binary”) we get the corresponding blog
functions for the external format. These functions log one or more deep lists of bytes or,
alternatively, binaries of deep lists of bytes. For example, to log the string "hello" in
ASCII format, we can use disk log:blog(Log, "hello"), or disk_log:blog(Log,
list_to_binary("hello")). The two alternatives are equally efficient. The blog

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

functions can be used for internally formatted logs as well, but in this case they must be
called with binaries constructed with calls to term_to_binary/1. There is no check to
ensure this, it is entirely the responsibility of the caller. If these functions are called with
binaries that do not correspond to Erlang terms, the chunk/2,3 and automatic repair
functions will fail. The corresponding terms (not the binaries) will be returned when
chunk/2,3 is called.

A collection of open disk logs with the same name running on different nodes is said to
be a a distributed disk log if requests made to any one of the logs are automatically made
to the other logs as well. The members of such a collection will be called individual
distributed disk logs, or just distributed disk logs if there is no risk of confusion. There is
no order between the members of such a collection. For instance, logged terms are not
necessarily written onto the node where the request was made before written onto the
other nodes. One could note here that there are a few functions that do not make
requests to all members of distributed disk logs, namely info, chunk, bchunk,

chunk _step and 1close. An open disk log that is not a distributed disk log is said to be
a local disk log. A local disk log is accessible only from the node where the disk log
process runs, whereas a distributed disk log is accessible from all nodes in the Erlang
system, with exception for those nodes where a local disk log with the same name as
the distributed disk log exists. All processes on nodes that have access to a local or
distributed disk log can log items or otherwise change, inspect or close the log.

It is not guaranteed that all log files of a distributed disk log contain the same log items;
there is no attempt made to synchronize the contents of the files. However, as long as at
least one of the involved nodes is alive at each time, all items will be logged. When
logging items to a distributed log, or otherwise trying to change the log, the replies from
individual logs are ignored. If all nodes are down, the disk log functions reply with a
nonode Error.

Note:

In some applications it may not be acceptable that replies from individual logs are
ignored. An alternative in such situations is to use several local disk logs instead of
one distributed disk log, and implement the distribution without use of the disk log
module.

Errors are reported differently for asynchronous log attempts and other uses of the disk
log module. When used synchronously the disk log module replies with an error
message, but when called asynchronously, the disk log module does not know where to
send the error message. Instead owners subscribing to notifications will receive an
error_status message.

The disk log module itself does not report errors to the error_logger module; it is up
to the caller to decide whether the error logger should be employed or not. The
function format_error/1 can be used to produce readable messages from error replies.
Information events are however sent to the error logger in two situations, namely when
a log is repaired, or when a file is missing while reading chunks.

The error message no_such_log means that the given disk log is not currently open.
Nothing is said about whether the disk log files exist or not.

Kernel Application (KERNEL) 53

disk_log

Kernel Reference Manual

Exports

accessible logs() -> {[Locallog], [DistributedLog]}

Types:
e LocallLog = DistributedLog = term()

The accessible_logs/0 function returns the names of the disk logs accessible on the
current node. The first list contains local disk logs, and the second list contains
distributed disk logs.

alog(Log, Term)
balog(Log, Bytes) -> ok | {error, Reason}

Types:

e Log =term()

e Term = term()

e Bytes = binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255
e Reason = no_such_log

The alog/2 and balog/2 functions asynchronously append an item to a disk log. The
function alog/2 is used for internally formatted logs, and the function balog/2 for
externally formatted logs. balog/2 can be used for internally formatted logs as well
provided the binary was constructed with a call to term_to_binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log Or format_external in case the item cannot be written on the log, and
possibly one of the messages wrap, full and error_status if an item was written on
the log. The message error_status is sent if there is something wrong with the header
function or a file error occurred.

alog_terms(Log, TermList)
balog terms(Log, BytesList) -> ok | {error, Reason}

54

Types:

e Log =term()

e TermList = [term()]

e BytesList = [Bytes]

e Bytes = binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255

e Reason = no_such_log

The alog_terms/2 and balog-terms/2 functions asynchronously append a list of items
to a disk log. The function alog_terms/2 is used for internally formatted logs, and the
function balog_terms/2 for externally formatted logs. balog_terms/2 can be used for
internally formatted logs as well provided the binaries were constructed with calls to
term to_binary/1.

The owners that subscribe to notifications will receive the message read only,
blocked log or format_external in case the items cannot be written on the log, and
possibly one or more of the messages wrap, full and error_status if items were
written on the log. The message error_status is sent if there is something wrong with
the header function or a file error occurred.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

block(Log)
block(Log, QueueLogRecords) -> ok | {error, Reason}

Types:

e Log = term()

e QueuelLogRecords = bool()

¢ Reason = no_such_log | nonode | {blocked_log, Log}

With a call to block/1,2 a process can block a log. If the blocking process is not an
owner of the log, a temporary link is created between the disk log process and the
blocking process. The link is used to ensure that the disk log is unblocked should the
blocking process terminate without first closing or unblocking the log.

Any process can probe a blocked log with info/1 or close it with close/1. The
blocking process can also use the functions chunk/2, 3, bchunk/2, 3, chunk_step/3, and
unblock/1 without being affected by the block. Any other attempt than those hitherto
mentioned to update or read a blocked log suspends the calling process until the log is
unblocked or returns an error message {blocked log, Log}, depending on whether the
value of QueueLogRecords is true or false. The default value of QueueLogRecords is
true, which is used by block/1.

change header(Log, Header) -> ok | {error, Reason}

Types:

Log = term()

Header = {head, Head} | {head_func, {M,F,A}}

e Head = none | term() | binary() | [Byte]

Byte = [Byte] | 0 =< integer() =< 255

Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{badarg, head}

The change_header/2 function changes the value of the head or head_func option of a
disk log.

change notify(Log, Owner, Notify) -> ok | {error, Reason}

Types:

e Log =term()

e Owner = pid()
¢ Notify = bool()

¢ Reason = no_such_log | nonode | {blocked_log, Log} | {badarg, notify} |
{not_owner, Owner}

The change notify/3 function changes the value of the notify option for an owner of
a disk log.

change size(Log, Size) -> ok | {error, Reason}

Types:

e Log = term()

e Size = integer() > O | infinity | {MaxNoBytes, MaxNoFiles}
e MaxNoBytes = integer() > 0

e MaxNoFiles = integer() > 0

Kernel Application (KERNEL) 55

disk_log

Kernel Reference Manual

e Reason = no_such_log | nonode | {read-only_mode, Log} | {blocked_log, Log} |
{new_size_too_small, CurrentSize} | {badarg, size} | {file_error, FileName, FileError}

The change_size/2 function changes the size of an open log. For a halt log it is always
possible to increase the size, but it is not possible to decrease the size to something less
than the current size of the file.

For a wrap log it is always possible to increase both the size and number of files, as long
as the number of files does not exceed 65000. If the maximum number of files is
decreased, the change will not be valid until the current file is full and the log wraps to
the next file. The redundant files will be removed next time the log wraps around, i.e.
starts to log to file number 1.

As an example, assume that the old maximum number of files is 10 and that the new
maximum number of files is 6. If the current file number is not greater than the new
maximum number of files, the files 7 to 10 will be removed when file number 6 is full
and the log starts to write to file number 1 again. Otherwise the files greater than the
current file will be removed when the current file is full (e.g. if the current file is 8, the
files 9 and 10); the files between new maximum number of files and the current file (i.e.
files 7 and 8) will be removed next time file number 6 is full.

If the size of the files is decreased the change will immediately affect the current log. It
will not of course change the size of log files already full until next time they are used.

If the log size is decreased for instance to save space, the function inc_wrap_file/1 can
be used to force the log to wrap.

chunk(Log, Continuation)

chunk(Log, Continuation, N) -> {Continuation2, Terms} | {Continuation2, Terms,

Badbytes} | eof | {error, Reason}

bchunk (Log, Continuation)

bchunk (Log, Continuation, N) -> {Continuation2, Binaries} | {Continuation2, Binaries,

56

Badbytes} | eof | {error, Reason}

Types:

e Log =term()

¢ Continuation = start | cont()

e N =integer() > 0 | infinity

e Continuation2 = cont()

e Terms = [term()]

e Badbytes = integer()

e Reason = no_such_log | {format_external, Log} | {blocked_log, Log} | {badarg,

continuation} | {not_internal_wrap, Log} | {corrupt_log_file, FileName} | {file_error,
FileName, FileError}

e Binaries = [binary()]

The chunk/2, 3 and bchunk/2, 3 functions make it possible to efficiently read the terms
which have been appended to an internally formatted log. It minimizes disk 1/0O by
reading 64 kilobyte chunks from the file. The bchunk/2, 3 functions return the binaries
read from the file; they do not call binary_to_term. Otherwise the work just like
chunk/2, 3.

The first time chunk (or bchunk) is called, an initial continuation, the atom start, must
be provided. If there is a disk log process running on the current node, terms are read
from that log, otherwise an individual distributed log on some other node is chosen, if
such a log exists.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 64 kilobyte chunk are read. If less than N terms are returned, this does not
necessarily mean that the end of the file has been reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of
terms found in the log. Continuation?2 is yet another continuation which must be
passed on to any subsequent calls to chunk. With a series of calls to chunk it is possible
to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is
opened in read-only mode and the read chunk is corrupt. Badbytes is the number of
bytes in the file which were found not to be Erlang terms in the chunk. Note also that
the log is not repaired. When trying to read chunks from a log opened in read-write
mode, the tuple {corrupt_log file, FileName} is returned if the read chunk is
corrupt.

chunk returns eof when the end of the log is reached, or {error, Reason} if an error
occurs. Should a wrap log file be missing, a message is output on the error log.

When chunk/2, 3 is used with wrap logs, the returned continuation may or may not be
valid in the next call to chunk. This is because the log may wrap and delete the file into
which the continuation points. To make sure this does not happen, the log can be
blocked during the search.

chunk_info(Continuation) -> Infolist | {error, Reason}
Types:
e Continuation = cont()
¢ Reason = {no_continuation, Continuation}

The chunk_info/1 function returns the following pair describing the chunk
continuation returned by chunk/2, 3, bchunk/2, 3, or chunk step/3:

e {node, Node}. Terms are read from the disk log running on Node.

chunk step(Log, Continuation, Step) -> {ok, Continuation2} | {error, Reason}
Types:

Log = term()

Continuation = start | cont()

Step = integer()

Continuation2 = cont()

Reason = no_such_log | end_of_log | {format_external, Log} | {blocked_log, Log} |
{badarg, continuation} | {file_error, FileName, FileError}

The function chunk_step can be used in conjunction with chunk/2,3 and bchunk/2,3
to search through an internally formatted wrap log. It takes as argument a continuation
as returned by chunk/2, 3, bchunk/2, 3, or chunk_step/3, and steps forward (or
backward) Step files in the wrap log. The continuation returned points to the first log
item in the new current file.

If the atom start is given as continuation, a disk log to read terms from is chosen. A
local or distributed disk log on the current node is preferred to an individual distributed
log on some other node.

Kernel Application (KERNEL) 57

disk_log Kernel Reference Manual

If the wrap log is not full because all files have not been used yet, {error, end_of_log}
is returned if trying to step outside the log.

close(Log) -> ok | {error, Reason}
Types:
e Reason = no_such_log | nonode | {file_error, FileName, FileError}
The function close/1 closes a local or distributed disk log properly. An internally
formatted log must be closed before the Erlang system is stopped, otherwise the log is

regarded as unclosed and the automatic repair procedure will be activated next time the
log is opened.

The disk log process in not terminated as long as there are owners or users of the log. It
should be stressed that each and every owner must close the log, possibly by
terminating, and that any other process - not only the processes that have opened the
log anonymously - can decrement the users counter by closing the log. Attempts to
close a log by a process that is not an owner are simply ignored if there are no users.

If the log is blocked by the closing process, the log is also unblocked.

format_error (Error) -> character_list()

Given the error returned by any function in this module, the function format_error
returns a descriptive string of the error in English. For file errors, the function
format_error/1in the file module is called.

inc_wrap_file(Log) -> ok | {error, Reason}
Types:
e Reason = no_such_log | nonode | {read-only_mode, Log} | {blocked_log, Log} |
{halt_log, Log} | {invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The inc_wrap_file/1 function forces the internally formatted disk log to start logging
to the next log file. 1t can be used, for instance, in conjunction with change size/2 to
reduce the amount of disk space allocated by the disk log.

The owners that subscribe to notifications will normally receive a wrap message, but in
case of an error with a reason tag of invalid header or file error an error_status
message will be sent.

info(Log) -> Infolist | {error, no_such_log}

The info/1 function returns a list of {Tag, Value} pairs describing the log. If there is a
disk log process running on the current node, that log is used as source of information,
otherwise an individual distributed log on some other node is chosen, if such a log exists.

The following pairs are returned for all logs:

e {name, Log}, where Log is the name of the log as given by the open/1 option
name.

e {file, File}. For halt logs File is the filename, and for wrap logs File is the
base name.

e {type, Type}, where Type is the type of the log as given by the open/1 option
type.

e {format, Format}, where Format is the format of the log as given by the open/1
option format.

58 Kernel Application (KERNEL)

Kernel Reference Manual disk_log

{size, Size}, where Size is the size of the log as given by the open/1 option
size, or the size set by change_size/2. The value set by change_size/2is
reflected immediately.

{mode, Mode}, where Mode is the mode of the log as given by the open/1 option
mode.

{owners, [{pid(), Notify}]} where Notify is the value set by the open/1
option notify or the function change notify/3 for the owners of the log.

{users, Users} where Users is the number of anonymous users of the log, see
the open/1 option linkto [page 62].

{status, Status}, where Status is ok or {blocked, QueueLogRecords} as set
by the functions block/1,2 and unblock/1.

{node, Node}. The information returned by the current invocation of the info/1
function has been gathered from the disk log process running on Node.

{distributed, Dist}. If the log is local on the current node, then Dist has the
value local, otherwise all nodes where the log is distributed are returned as a list.

The following pairs are returned for all logs opened in read write mode:

e {head, Head}. Depending of the value of the open/1 options head and head_func
or set by the function change header/2, the value of Head is none (default),
{head, H} (head option) or {M,F,A} (head_func option).

e {nowritten_ items, NoWrittenItems}, where NoWrittenItems isthe number of
items written to the log since the disk log process was created.

The following pair is returned for halt logs opened in read_write mode:

e {full, Full}, where Full is true or false depending on whether the halt log is
full or not.

The following pairs are returned for wrap logs opened in read write mode:

e {no_current.bytes, integer() >= 0} is the number of bytes written to the
current wrap log file.

e {no_current_items, integer() >= 0} is the number of items written to the
current wrap log file, header inclusive.

{no_items, integer() >= 0} is the total number of items in all wrap log files.

{current_file, integer ()} is the ordinal for the current wrap log file in the
range 1. .MaxNoFiles, where MaxNoFiles is given by the open/1 option size or
set by change size/2.

e {no_overflows, {SincelLogWasOpened, SincelLastInfo}}, where
SinceLogWasOpened (SinceLastInfo) is the number of times a wrap log file has
been filled up and a new one opened or inc_wrap file/1 has been called since the
disk log was last opened (info/1 was last called). The first time info/2 is called
after a log was (re)opened or truncated, the two values are equal.

Note that the chunk/2, 3, bchunk/2, 3, and chunk_step/3 functions do not affect any
value returned by info/1.

lclose(Log)
lclose(Log, Node) -> ok | {error, Reason}

Kernel Application (KERNEL) 59

disk_log Kernel Reference Manual

Types:

¢ Node = node()

e Reason = no_such_log | {file_error, FileName, FileError}

The function 1close/1 closes a local log or an individual distributed log on the current
node. The function 1close/2 closes an individual distributed log on the specified node

if the node is not the current one. 1close(Log) is equivalent to 1close(Log,node()).
See also close/1 [page 58].

If there is no log with the given name on the specified node, no_such_log is returned.

log(Log, Term)
blog(Log, Bytes) -> ok | {error, Reason}
Types:
e Log =term()
e Term = term()
e Bytes = binary() | [Byte]
e Byte = [Byte] | 0 =< integer() =< 255
e Reason = no_such_log | nonode | {read_only_mode, Log} | {format_external, Log} |

{blocked_log, Log} | {full, Log} | {invalid_header, InvalidHeader} | {file_error,
FileName, FileError}

The log/2 and blog/2 functions synchronously append a term to a disk log. They
return ok or {error, Reason} when the term has been written to disk. If the log is
distributed, ok is always returned, unless all nodes are down. Terms are written by
means of the ordinary write () function of the operating system. Hence, there is no
guarantee that the term has actually been written to the disk, it might linger in the
operating system kernel for a while. To make sure the item is actually written to disk,
the sync/1 function must be called.

The log/2 function is used for internally formatted logs, and blog/2 for externally
formatted logs. blog/2 can be used for internally formatted logs as well provided the
binary was constructed with a call to term to_binary/1.

The owners that subscribe to notifications will be notified of an error with an
error_status message if the error reason tag is invalid header or file error.

log terms(Log, TermList)
blog terms(Log, BytesList) -> ok | {error, Reason}
Types:
e Log =term()
e TermList = [term()]
e BytesList = [Bytes]
e Bytes = binary() | [Byte]
e Byte = [Byte] | 0 =< integer() =< 255
e Reason = no_such_log | nonode | {read_only_mode, Log} | {format_external, Log} |

{blocked_log, Log} | {full, Log} | {invalid_header, InvalidHeader} | {file_error,
FileName, FileError}

60 Kernel Application (KERNEL)

Kernel Reference Manual disk_log

The log_terms/2 and blog_terms/2 functions synchronously append a list of items to
the log. The benefit of using these functions rather than the 1og/2 and blog/2
functions is that of efficiency: the given list is split into as large sublists as possible
(limited by the size of wrap log files), and each sublist is logged as one single item,
which reduces the overhead.

The log_terms/2 function is used for internally formatted logs, and blog-terms/2 for
externally formatted logs. blog_terms/2 can be used for internally formatted logs as
well provided the binaries were constructed with calls to term_to_binary/1.

The owners that subscribe to notifications will be notified of an error with an
error_status message if the error reason tag is invalid header or file error.

open(Argl) -> OpenRet | DistOpenRet

Types:

e ArgL = [Opt]

e Opt = {name, term()} | {file, FileName}, {linkto, LinkTo} | {repair, Repair} | {type,
Type} | {format, Format} | {size, Size} | {distributed, [Node]} | {notify, bool()} |
{head, Head} | {head_func, {M,F,A}} | {mode, Mode}

e FileName = string() | atom()

e LinkTo = pid() | none

e Repair = true | false | truncate

e Type = halt | wrap

e Format = internal | external

e Size = integer() > O | infinity | {MaxNoBytes, MaxNoFiles}

o MaxNoBytes = integer() > 0

e MaxNoFiles = 0 < integer() < 65000

e Rec = integer()

e Bad = integer()

e Head = none | term() | binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255

e Mode = read_write | read_only

e OpenRet = Ret | {error, Reason}

¢ DistOpenRet = {[{Node, Ret}], [{BadNode, {error, DistReason}}]}

¢ Node = BadNode = atom()

e Ret = {ok, Log} | {repaired, Log, {recovered, Rec}, {badbytes, Bad}}

¢ DistReason = nodedown | Reason

¢ Reason = no_such_log | {badarg, Arg} | {size_mismatch, CurrentSize, NewSize} |
{arg_mismatch, OptionName, CurrentValue, Value} | {name_already_open, Log} |
{open_read_write, Log} | {open_read_only, Log} | {need_repair, Log} |
{not_a_logfile, FileName} | {invalid_indexfile, FileName} | {invalid_header,
InvalidHeader} | {file_error, FileName, FileError} | {node_already_open, Log}

The ArgL parameter is a list of options which have the following meanings:

e {name, Log} specifies the name of the log. This is the name which must be passed
on as a parameter in all subsequent logging operations. A nhame must always be
supplied.

Kernel Application (KERNEL) 61

disk_log

Kernel Reference Manual

62

{file, FileName} specifies the name of the file which will be used for logged
terms. If this value is omitted and the name of the log is either an atom or a string,
the file name will default to lists:concat ([Log, ".L0G"]) for halt logs. For
wrap logs, this will be the base name of the files. Each file in a wrap log will be
called <base name>.N, where N is an integer. Each wrap log will also have two
files called <base name>.idx and <base_name>.siz.

{linkto, LinkTo}. If LinkTo is a pid, that pid becomes an owner of the log. If
LinkTo is none the log records that it is used anonymously by some process by
incrementing the users counter. By default, the process which calls open/1 owns
the log.

{repair, Repair}. If Repair is true, the current log file will be repaired, if
needed. As the restoration is initiated, a message is output on the error log. If
false is given, no automatic repair will be attempted. Instead, the tuple {error,
{need_repair, Log}} is returned if an attempt is made to open a corrupt log file.
If truncate is given, the log file will be truncated, creating an empty log. Default
is true, which has no effect on logs opened in read-only mode.

{type, Type} is the type of the log. Default is halt.
{format, Format} specifies the format of the disk log. Default is internal.

{size, Size} specifies the size of the log. When a halt log has reached its
maximum size, all attempts to log more items are rejected. The default size is
infinity, which for halt implies that there is no maximum size. For wrap logs, the
Size parameter may be either a pair {MaxNoBytes, MaxNoFiles} or infinity. In
the latter case, if the files of an already existing wrap log with the same name can
be found, the size is read from the existing wrap log, otherwise an error is
returned. Wrap logs write at most MaxNoBytes bytes on each file and use
MaxNoFiles files before starting all over with the first wrap log file. Regardless of
MaxNoBytes, at least the header (if there is one) and one item is written on each
wrap log file before wrapping to the next file. When opening an existing wrap log,
it is not necessary to supply a value for the option Size, but any supplied value
must equal the current size of the log, otherwise the tuple {error,
{sizemismatch, CurrentSize, NewSize}} is returned.

{distributed, Nodes}. This option can be used for adding members to a
distributed disk log. The default value is [1, which means that the log is local on
the current node.

{notify, bool()}. If true, the owners of the log are notified when certain events
occur in the log. Default is false. The owners are sent one of the following
messages when an event occurs:

— {disk_log, Node, Log, {wrap, NoLostItems}} issent when a wrap log has
filled up one of its files and a new file is opened. NoLostItems is the number
of previously logged items that have been lost when truncating existing files.

- {disk_log, Node, Log, {truncated, NoLostItems}} issent when alog has
been truncated or reopened. For halt logs NoLostItems is the number of items
written on the log since the disk log process was created. For wrap logs
NoLostItems is the number of items on all wrap log files.

— {disk_log, Node, Log, {read_only, Items}} issentwhen an
asynchronous log attempt is made to a log file opened in read-only mode.
Items is the items from the log attempt.

— {disk_log, Node, Log, {blocked log, Items}} issent when an
asynchronous log attempt is made to a blocked log that does not queue log
attempts. Items is the items from the log attempt.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

— {disk_log, Node, Log, {format_external, Items}} issent when alog/2
or alog_terms/2 is used for internally formatted logs. Items is the items from
the log attempt.

— {disk_log, Node, Log, full} issent when an attempt to log items to a
wrap log would write more bytes than the limit set by the size option.

— {disk_log, Node, Log, {error_status, Status}} issent when the error
status changes. The error status is defined by the outcome of the last attempt
to log items to a the log or to truncate the log or the last use of sync/1,
inc_wrap_file/1 or change_size/2. Status is one of ok and {error,
Error}, the former being the initial value.

e {head, Head} specifies a header to be written first on the log file. If the log is a
wrap log, the item Head is written first in each new file. Head should be a term if
the format is internal, and a deep list of bytes (or a binary) otherwise. Default is
none, which means that no header is written first on the file.

e {head_func, {M,F,A}} specifies a function to be called each time a new log file is
opened. The call M:F(4) is assumed to return {ok, Head}. The item Head is
written first in each file. Head should be a term if the format is internal, and a
deep list of bytes (or a binary) otherwise.

e {mode, Mode} specifies if the log is to be opened in read-only or read-write mode.
It defaults to read_write.

The open/1 function returns {ok, Log} if the log file was successfully opened. If the
file was successfully repaired, the tuple {repaired, Log, {recovered, Rec},
{badbytes, Bad}} is returned, where Rec is the number of whole Erlang terms found
in the file and Bad is the number of bytes in the file which were non-Erlang terms. If the
distributed parameter was given, open/1 returns a list of successful replies and a list
of erroneous replies. Each reply is tagged with the node name.

When a disk log is opened in read-write mode, any existing log file is checked for. If
there is none a new empty log is created, otherwise the existing file is opened at the
position after the last logged item, and the logging of items will commence from there.
If the format is internal and the existing file is not recognized as an internally
formatted log, a tuple {error, {not_a_log file, FileName}} is returned.

The open/1 function cannot be used for changing the values of options of an already
open log; when there are prior owners or users of a log, all option values except name,
linkto and notify are just checked against the values that have been supplied before
as option values to open/1, change_header/2, change notify/3 or change_size/2. As
a consequence, none of the options except name is mandatory. If some given value
differs from the current value, a tuple {error, {argmismatch, OptionName,
CurrentValue, Value}} is returned. Caution: an owner's attempt to open a log as
owner once again is acknowledged with the return value {ok, Log}, but the state of the
disk log is not affected in any way.

If a log with a given name is local on some node, and one tries to open the log
distributed on the same node, then the tuple {error, {node_already open, Name}} is
returned. The same tuple is returned if the log is distributed on some node, and one
tries to open the log locally on the same node. Opening individual distributed disk logs
for the first time adds those logs to a (possibly empty) distributed disk log. The option
values supplied are used on all nodes mentioned by the distributed option. Individual
distributed logs know nothing about each other's option values, so each node can be
given unique option values by creating a distributed log with several calls to open/1.

It is possible to open a log file more than once by giving different values to the option
name Or by using the same file when distributing a log on different nodes. It is up to the

Kernel Application (KERNEL) 63

disk_log

Kernel Reference Manual

user of the disk_log module to ensure that no more than one disk log process has write
access to any file, or the the file may be corrupted.

If an attempt to open a log file for the first time fails, the disk log process terminates
with the EXIT message {{failed,Reason}, [{disk_log,open,1}]}. The function
returns {error, Reason} for all other errors.

pid2name(Pid) -> {ok, Log} | undefined

Types:
e Log =term()
e Pid = pid()

The pid2name/1 function returns the name of the log given the pid of a disk log process
on the current node, or undef ined if the given pid is not a disk log process.

This function is meant to be used for debugging only.

reopen(Log, File)

reopen(Log, File, Head)

breopen(Log, File, BHead) -> ok | {error, Reason}

Types:

e Log =term()

e File = string()

e Head =term()

e BHead = binary() | [Byte]

e Byte = [Byte] | 0 =< integer() =< 255

e Reason = no_such_log | nonode | {read-only_mode, Log} | {blocked_log, Log} |

{same_file_name, Log} | {invalid_index_file, FileName} | {invalid_header,
InvalidHeader} | {file_error, FileName, FileError}

The reopen functions first rename the log file to File and then re-create a new log file.
In case of a wrap log, File is used as the base name of the renamed files. By default the
header given to open/1 is written first in the newly opened log file, but if the Head or
the BHead argument is given, this item is used instead. The header argument is used
once only; next time a wrap log file is opened, the header given to open/1 is used.

The reopen/2, 3 functions are used for internally formatted logs, and breopen/3 for
externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

Upon failure to reopen the log, the disk log process terminates with the EXIT message
{{failed,Error}, [{disk log,Fun,Arity}]}, and other processes that have requests
queued receive the message {disk_log, Node, {error, disk log_stopped}}.

sync(Log) -> ok | {error, Reason}

64

Types:
e Log =term()

e Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{file_error, FileName, FileError}

The sync/1 function ensures that the contents of the log are actually written to the
disk. This is usually a rather expensive operation.

Kernel Application (KERNEL)

Kernel Reference Manual disk_log

truncate (Log)
truncate(Log,

Head)
btruncate(Log, BHead) -> ok | {error, Reason}
Types:
e Log = term()

unblock(Log)

Head = term()

BHead = binary() | [Byte]

Byte = [Byte] | 0 =< integer() =< 255

Reason = no_such_log | nonode | {read_only_mode, Log} | {blocked_log, Log} |
{invalid_header, InvalidHeader} | {file_error, FileName, FileError}

The truncate functions remove all items from a disk log. If the Head or the BHead
argument is given, this item is written first in the newly truncated log, otherwise the
header given to open/1 is used. The header argument is only used once; next time a
wrap log file is opened, the header given to open/1 is used.

The truncate/1,2 functions are used for internally formatted logs, and btruncate/2
for externally formatted logs.

The owners that subscribe to notifications will receive a truncate message.

If the attempt to truncate the log fails, the disk log process terminates with the EXIT
message {{failed,Reason}, [{disk log,Fun,Arity}]}, and other processes that have
requests queued receive the message {disk_log, Node, {error,
disk_ log _stopped}}.

-> ok | {error, Reason}

Types:

e Log=term()

e Reason = no_such_log | nonode | {not_blocked, Log} | {not_blocked_by_pid, Log}

The unblock/1 function unblocks a log. A log can only be unblocked by the blocking
process.

See Also

file(3) [page 135], pg2(3) [page 196], wrap_log_reader(3) [page 212]

Kernel Application (KERNEL) 65

erl_boot_server Kernel Reference Manual

erl_boot_server

Erlang Module

This server is used to assist diskless Erlang nodes which fetch all Erlang code from
another machine.

This server is used to fetch all code, including the start script, if an Erlang runtime
system is started with the -1loader inet command line flag. All hosts specified with the
-hosts Host flag must have one instance of this server running.

This server can be started with the kernel configuration parameter start boot_server.
Exports

start(Slaves) -> {ok, Pid} | {error, What}
Types:
e Slaves = [Host]
e Host = atom()
e Pid = pid()
e What = void()

Starts the boot server. Slaves is a list of IP addresses for hosts which are allowed to use
this server as a boot server.

start_link(Slaves) -> {ok, Pid} | {error, What}
Types:
e Slaves = [Host]
e Host = atom()
e Pid = pid()
e What = void()

Starts the boot server and links to the caller. This function is used to start the server if it
is included in a supervision tree.

add_slave(Slave) -> ok | {error, What}
Types:

e Slave = Host
e Host = atom()
e What = void()

Adds a Slave node to the list of allowed slave hosts.

delete_slave(Slave) -> ok | {error, What}

66 Kernel Application (KERNEL)

Kernel Reference Manual erl_boot_server

Types:
e Slave = Host

e Host = atom()
e What = void()

Deletes a S1lave node from the list of allowed slave hosts.

which_slaves() -> Slaves

Types:

e Slaves = [Host]
e Host = atom()

Returns the current list of allowed slave hosts.

SEE ALSO

init(3) [page 179], erl_prim_loader(3) [page 71]

Kernel Application (KERNEL) 67

erl_ddll

Kernel Reference Manual

erl_ddll

Erlang Module

The er1_dd11 module can load and link a linked-in driver, if run-time loading and
linking of shared objects, or dynamic libraries, is supported by the underlying operating
system.

Exports

start() -> {ok, Pid} | {error, Reason}

Starts dd11_server. The error return values are the same as for gen_server.

start_1ink() -> {ok, Pid} | {error, Reason}

stop() -> ok

Starts dd11_server and links it to the calling process. The error return values are the
same as for gen_server.

Stops dd11_server.

load driver(Path, Name) -> ok | {error, ErrorDescriptor}

Types:
e Name = string() | atom()
e Path = string() | atom()

Loads and links the dynamic driver Name. Path is a file path to the directory containing
the driver. Name must be a sharable object/dynamic library. Two drivers with different
Paths cannot be loaded under the same name. The number of dynamically loadable
drivers are limited by the size of driver_tab in config.c.

If the server is not started the caller will crash.

unload driver (Name) -> ok | {error, ErrorDescriptor}

68

Types:
e Name = string() | atom()

Kernel Application (KERNEL)

Kernel Reference Manual erl_ddll

Unloads the dynamic driver Name. This will fail if any port programs are running the
code that is being unloaded. Linked-in drivers cannot be unloaded. The process must
previously have called 1oad driver/1 for the driver.

There is no guarantee that the memory where the driver was loaded is freed. This
depends on the underlying operating system.

If the server is not started the caller will crash.

loaded drivers() -> {ok, DriverList}
Types:
e DriverList = [Driver()]
e Driver = string()

Returns a list of all the available drivers, both (statically) linked-in and dynamically
loaded ones.

If the server is not started the caller will crash.

format_error (ErrorDescriptor) -> string()

Takes an ErrorDescriptor which has been returned by one of 1oad_driver/2 and
unload driver/1 and returns a string which describes the error or warning.

Differences Between Statically Linked-in Drivers and
Dynamically Loaded Drivers

Except for the following minor changes, all information in Appendix E of Concurrent
Programming in Erlang, second edition, still applies.

Before the driver is unloaded, the finish function is called, without arguments, to give
the driver writer a chance to clean up and release memory allocated in driver_init.

After the driver is loaded, the function struct driver_entry *driver_init(void *)
is called with handle as argument. If the operating system loader cannot find a function
called driver_init, the driver will not be loaded. The driver_init function must
initialize a Er1DrvEntry struct and return a pointer to it.

The name of the driver, returned from driver_init must match the name of the driver,
and the file name (with extensions removed).

Example:

#include <stdio.h>
#include "erl_driver.h"
static long my_start(ErlDrvPort, charx*);
static int my_stop(ErlDrvData), my_read(ErlDrvData, char*, int);
static ErlDrvEntry my_driver_entry;
/*
* Initialize and return a driver entry struct
*/
ErlDrvEntry *driver_init(void *handle)
{
memset (my_driver_entry, ’\0’, sizeof(my_driver_entry));
my_driver_entry.start = my_start;
my_driver_entry.stop = my_stop;

Kernel Application (KERNEL) 69

erl_ddll Kernel Reference Manual

my_driver_entry.output = my_read;
my_driver_entry.driver_name = "my_driver";
my_driver_entry.finish = null_func;
return &my_driver_entry;

config.c

The size of the driver_tab array, defined in config. c, limits the number of
dynamically loadable drivers.

Compiling Your Driver
Please refer to your C compiler or operating system documentation for information

about producing a sharable object or DLL.

The include file erl driver.his found in the usr/include directory of the Erlang
installation. Also the older file driver.h is available, but is considered obsolete.

SEE ALSO

erl_driver(4), driver_entry(4)

70 Kernel Application (KERNEL)

Kernel Reference Manual erl_prim_loader

erl_prim_loader

Erlang Module

The erl prim loader is used to load all Erlang modules into the system. The start
script is also fetched with the low level loader.

The erl_prim_loader knows about the environment and how to fetch modules. The
loader could, for example, fetch files using the file system (with absolute file names as
input), or a database (where the binary format of a module is stored).

The -loader Loader command line flag can be used to choose the method used by the
erl prim_loader. Two Loader methods are supported by the Erlang runtime system:
efile and inet. If another loader is required, then it has to be implemented by the
user. The Loader provided by the user must fulfill the protocol defined below, and it is
started with the erl prim loader by evaluating

open_port ({spawn,Loader}, [binaryl).

Exports

start(Id,Loader,Hosts) -> {ok, Pid} | {error, What}

Types:

e Id =term()

e Loader = atom() | string()

e Hosts = [Host]

e Host = atom()

e Pid = pid()

e What = term()

Starts the Erlang low level loader. This function is called by the init process (and

module). The init process reads the command line flags -id Id, -loader Loader, and
-hosts Hosts. These are the arguments supplied to the start/3 function.

If -1loader is not given, the default loader is efile which tells the system to read from
the file system.

If -loader is inet, the -id Id, -hosts Hosts, and -setcookie Cookie flags must also
be supplied. Hosts identifies hosts which this node can contact in order to load
modules. One Erlang runtime system with a erl_boot_server process must be started
on each of hosts given in Hosts in order to answer the requests. See

erl_ boot_server(3).

If -1loader is something else, the given port program is started. The port program is
supposed to follow the protocol specified below.

get_file(File) -> {ok, Bin, FullName} | error

Kernel Application (KERNEL) 71

erl_prim_loader Kernel Reference Manual

Types:

e File = string()

e Bin = binary()

e FullName = string()

This function fetches a file using the low level loader. File is either an absolute file
name or just the name of the file, for example "1lists.beam". If an internal path is set
to the loader, this path is used to find the file. If a user supplied loader is used, the path
can be stripped off if it is obsolete, and the loader does not use a path. FullName is the
complete name of the fetched file. Bin is the contents of the file as a binary.

get_path() -> {ok, Path}

Types:

e Path = [Dir]

e Dir = string()

This function gets the path set in the loader. The path is set by the init process
according to information found in the start script.

set_path(Path) -> ok

72

Types:

e Path = [Dir]

e Dir = string()

This function sets the path of the loader if init interprets a path command in the start
script.

Protocol

The following protocol must be followed if a user provided loader port program is used.
The Loader port program is started with the command
open_port ({spawn,Loader}, [binary]). The protocol is as follows:

Function Send Receive

get_file [102 | FileName] [121 | BinaryFile] (on success)
[122] (failure)

stop eof terminate

Kernel Application (KERNEL)

Kernel Reference Manual erl_prim_loader

Command Line Flags

The erl_prim_loader module interprets the following flags:

-loader Loader Specifies the name of the loader used by erl_prim_loader. Loader can
be efile (use the local file system), or inet (load using the boot_server on
another Erlang node). If Loader is user defined, the defined Loader port program
is started.

If the -loader flag is omitted, it defaults to efile.

-hosts Hosts Specifies which other Erlang nodes the inet loader can use. This flag is
mandatory if the -loader inet flag is present. On each host, there must be on
Erlang node with the erl boot_server which handles the load requests. Hosts is a
list of IP addresses (hostnames are not acceptable).

-id Id Specifies the identity of the Erlang runtime system. If the system runs as a
distributed node, Id must be identical to the name supplied with the -sname or
-name distribution flags.

-setcookie Cookie Specifies the cookie of the Erlang runtime system. This flag is
mandatory if the -loader inet flag is present.

SEE ALSO

init(3) [page 179], erl_boot server(3) [page 66]

Kernel Application (KERNEL) 73

erlang

Kernel Reference Manual

abs (Number)

erlang

Erlang Module

By convention, most built-in functions (BIFs) are seen as being in the module erlang. A
number of the BIFs are viewed more or less as part of the Erlang programming language
and are auto-imported. Thus, it is not necessary to specify the module name and both
the calls atom_to_list (Erlang) and erlang:atom to_list (Erlang) are identical.

In the text, auto-imported BIFs are listed without module prefix. BIFs listed with
module prefix are not auto-imported.

BIFs may fail for a variety of reasons. All BIFs fail with reason badarg if they are called
with arguments of an incorrect type. The other reasons that may make BIFs fail are
described in connection with the description of each individual BIF.

Some BIFs may be used in guard tests, these are marked with “Allowed in guard tests”.

Some BIFs, such as list_to_binary_1 [page 88], take 1/0O lists as documents (written as
iolist () in type descriptions). An I/O list is a deep list of binaries, integers in the range
0 through 255, and other I/O lists. In an 1/0O list, a binary is allowed as the tail of a list.

Exports

Returns an integer or float which is the arithmetical absolute value of the argument
Number (integer or float).

> abs(-3.33).
3.33000

> abs(-3).

3

Allowed in guard tests.
Failure: badarg if Number is not a number.

erlang:append-element (Tuple, Term)

Returns a new tuple which has one element more than Tuple, and contains the
elements in Tuple followed by Term as the last element. Semantically equivalent to
list_to_tuple(tuple_to_list(Tuple ++ [Term]), but much faster.

Failure: badarg if Tuple is not a tuple.

apply (Fun, ArgumentList)

74

Types:

Kernel Application (KERNEL)

Kernel Reference Manual erlang

e Fun =fun()

e ArgumentList = list()

Call a fun, passing the elements in ArgumentList as arguments.

Note: If the number of elements in the arguments are known at compile-time, the call
is better written as Fun(Argl, Arg2, ... ArgN).

Fun can also be given as {Module,Function}, which is equivalent to apply (Module,
Function, ArgumentList). This usage is considered obsolete and may stop working in a
future release of Erlang/OTP.

apply (Module, Function, ArgumentList)

Returns the result of applying Function in Module to ArgumentList. The applied
function must have been exported from Module. The arity of the function is the length

of ArgumentList.

> apply(lists, reverse, [[a, b, c]]).
[c,b,al

apply can be used to evaluate BIFs by using the module name erlang.

> apply(erlang, atom to_list, [’Erlang’]).
"Erlang"

Note: If the number of arguments are known at compile-time, the call is better written
as Module:Function(Argl, Arg2, ... ArgN).

Failure: error handler:undefined function/3is called if Module has not exported
Function/Arity. The error handler can be redefined (see the BIF process_flag/2). If
the error_handler is undefined, or if the user has redefined the default error_handler
so the replacement module is undefined, an error with the reason undef will be
generated.

atom_to_list(Atom)
Returns a list of integers (Latin-1 codes), which corresponds to the text representation
of the argument Atom.

> atom_to_list(’Erlang’).
"Erlang"

Failure: badarg if Atom is not an atom.

binary_to_list(Binary)
Returns a list of integers which correspond to the bytes of Binary.

binary_to_list(Binary, Start, Stop)
As binary_to_list/1, but it only returns the list from position Start to position Stop.

Start and Stop are integers. Positions in the binary are numbered starting from 1.

binary_to_term(Binary)

Kernel Application (KERNEL) 75

erlang Kernel Reference Manual

Returns an Erlang term which is the result of decoding the binary Binary. Binary is
encoded in the Erlang external binary representation. See term_to_binary/1.

erlang:bump_reductions (Reductions)

This implementation-dependent function increments the reduction counter for the
current process. In the Beam emulator, the reduction counter is normally incremented
by one for each function and BIF call, and a context switch is forced when the counter
reaches 1000.

Warning:

This BIF might be removed in a future version of the Beam machine without prior
warning. It is unlikely to be implemented in other Erlang implementations. If you
think that you must use it, encapsulate it your own wrapper module, and/or wrap it
in a catch.

erlang:cancel_timer (Ref)

cancel timer (Ref) cancels a timer, where Ref was returned by either send_after/3 or
start_timer/3. If the timer was there to be removed, cancel _timer/1 returns the
time in ms left until the timer would have expired, otherwise false (which means that
Ref was never a timer, or that it had already been cancelled, or that it had already
delivered its message).

Note: Usually, cancelling a timer does not guarantee that the message has not already
been delivered to the message queue. However, in the special case of a process P
cancelling a timer which would have sent a message to P itself, attempting to read the
timeout message from the queue is guaranteed to remove the timeout in that situation:

cancel_timer (Ref) ->
receive
{timeout, Ref, _} ->
ok
after 0 ->
ok
end

Failure: badarg if Ref is not a reference.

check_process_code(Pid, Module)

Returns true if the process Pid is executing an old version of Module, if the current call
of the process executes code for an old version of the module, if the process has
references to an old version of the module, or if the process contains funs that
references the old version of the module. Otherwise, it returns false.

> check_process_code(Pid, lists).
false

Failure: badarg if Pid is not a pid or Module is not an atom.

76 Kernel Application (KERNEL)

Kernel Reference Manual erlang

concat_binary(ListOfBinaries)

Don't use; use list_to_binary_1 [page 88] instead.

date ()
Returns the current date as {Year, Month, Day}
> date().
{1995, 2, 19}

deletemodule (Module)

Makes the current version of the code of Module to the old version and deletes all export
references of Module. Returns undef ined if the module does not exist, otherwise true.

> delete_module(test).
true

Failure: badarg if there is already an old version of the module (see purge module/1).

Warning:
This BIF is intended for code server (see code (3)) and should not be used elsewhere.

erlang:demonitor (Ref)

If Ref is a reference which the current process obtained by calling erlang:monitor/2
[page 93], the monitoring is turned off. No action is performed if the monitoring
already is turned of before the call. Returns true.

After the call to erlang:monitor/2 the monitoring process will not get any new
’DOWN’ message from this monitor into the receive queue.

It is an error if Ref refers to a monitoring started by another process. Not all such cases
are cheap to check; if checking is cheap, the call fails with badarg (for example if Ref is
a remote reference).

disconnect_node (Node)

Forces the disconnection of a node. This will appear to the node Node as if the current
node has crashed. This BIF is mainly used in the Erlang network authentication
protocols. Returns true if disconnection succeeds, otherwise false.

Failure: badarg if Node is not an atom.

erlang:display(Term)

Kernel Application (KERNEL) 77

erlang Kernel Reference Manual

Prints a text representation of Term on the standard output.

Warning:
This BIF is intended for debugging only.

element (N, Tuple)
Returns the Nth element (numbering from 1) of Tuple.

> element(2, {a, b, c}).
b

Allowed in guard tests.
Failure: badarg if N<1, or N>size (Tuple), or if Tuple is not a tuple.

erase()
Returns the process dictionary and deletes it.

> put(keyl, {1, 2, 3}),
put (key2, [a, b, cl),
erase().
[{key1,{1,2,3}},{key2, [a,b,c]}]

erase (Key)

Returns the value associated with Key and deletes it from the process dictionary.
Returns undefined if no value is associated with Key. Key can be any Erlang term.

> put(keyl, {merry, lambs, are, playing}),
X = erase(keyl),
{X, erase(keyl)}.
{{merry,lambs,are,playing},undefined}

erlang:error (Reason)

Stops the execution of the current process with the reason Reason, where Reason is any
term. The actual EXIT reason will be {Reason, Where}, where Where is a list of the
functions most recently called (the current function first). Since evaluating this function
causes the process to terminate, it has no return value.

erlang:error(Reason, Args)

Stops the execution of the current process with the reason Reason, where Reason is any
term. The actual EXIT reason will be {Reason, Where}, where Where is a list of the
functions most recently called (the current function first). Args is expected to be the
list of arguments for the current function; in Beam it will be used to provide the actual
arguments for the current function in the Where term. Since evaluating this function
causes the process to terminate, it has no return value.

78 Kernel Application (KERNEL)

Kernel Reference Manual erlang

exit (Reason)

Stops the execution of the current process with the reason Reason. Can be caught.
Reason is any Erlang term. Since evaluating this function causes the process to
terminate, it has no return value.

> exit(foobar).

**x exited: foobar *x*
> catch exit(foobar).
{’EXIT’, foobar}

exit(Pid, Reason)
Sends an EXIT signal with reason Reason to the process Pid. Returns true.

> exit(Pid, goodbye).
true

Note:
The above is not necessarily the same as:

Pid ! {’EXIT’, self(), goodbye}

The above two alternatives are the same if the process with the process identity Pid is

trapping exits. However, if Pid is not trapping exits, Pid itself will exit with reason
Reason.

If the reason is the atom kil1, that is if exit (Pid, kill) is called, an untrappable
EXIT signal is sent to Pid which will unconditionally exit with reason killed.

Returns true.
Failure: badarg if Pid is not a pid.

erlang:fault(Reason)
Stops the execution of the current process with the reason Reason. This an old
equivalent to erlang:error(Reason) [page 78].

erlang:fault(Reason, Args)

Stops the execution of the current process with the reason Reason. This an old
equivalent to erlang:error(Reason, Args) [page 78].

float (Number)
Returns a float by converting Number to a float.

> float(55).
55.0000

Kernel Application (KERNEL) 79

erlang Kernel Reference Manual

Note:

float/1 is also allowed in guards. But note that if it used on the top-level in a guard,
it will test whether the argument is a floating point number; for clarity, use is_float/1
[page 85] instead. When float/1 is used in an expression in a guard, such as

'float (A) == 4.0, it behaves in the same way as in a function body.

Failure: badarg if Number is not a number.

float_to_list(Float)
Returns a list of integers (ASCII codes) which corresponds to Float.

> float_to_list(7.0).
"7.00000000000000000000e+00"

Failure: badarg if Float is not a float.

erlang:fun_info(Fun)

Returns a list containing information about the fun Fun. The list returned contains the
following tuples, not necessarily in the order listed here (i.e., you should not depend on
the order).

Warning:
This BIF is intended for debugging only.

{pid,Pid} Pid is the pid of the process that originally created the fun. It will be the
atom undefined if the fun is given in the tuple representation.

{module,Module} Module (an atom) is the module in which the fun is defined.

{name,Name} Name is the name of the (non-exported) function that implements the
fun.

{name,Name} Name is the name of the local function that implements the fun. If no
code is currently loaded for the fun, [1 will be returned instead of an atom.

{arity,Arity} Arity is the number of arguments that the fun should be called with.
{index,Index} Index (an integer) is an index into the module's fun table.
{uniq,Uniq} Uniq (an integer) is a unique value for this fun.

{env,Env} Env (a list) is the environment or free variables for the fun.

erlang:fun_info(Fun, Item)

Returns information about Fun as specified by Item, in the form {Item, Info}. Item
can be any of the atoms id, module, index, uniq, name, arity, or env. See the
erlang:fun_info/1 BIF.

erlang:fun to_list(Fun)

80 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns a textual representation of the fun Fun.

erlang:function_exported(Module, Function, Arity)

Returns true if the module Module is loaded and contains an exported function
Function/Arity; otherwise false.

Returns false for any BIF (functions implemented in C rather than in Erlang).

This function is retained mainly for backwards compatibility. It is not clear why you
really would want to use it.

garbage_collect ()

Forces an immediate garbage collection of the currently executing process. You should
not use this function unless you have noticed or have good reasons to suspect that the
spontaneous garbage collection will occur too late or not at all. Improper use may
seriously degrade system performance.

Compatibility note: In versions of OTP prior to R7, the garbage collection took place at
the next context switch, not immediately. To force a context switch after a call to
erlang:garbage_collect (), it was sufficient to make any function call.

garbage_collect (Pid)

Works like erlang:garbage_collect() but on any process. The same caveats apply. Returns
false if Pid refers to a dead process; true otherwise.

get)
Returns the process dictionary as a list of {Key, Value} tuples.

> put(keyl, merry),

put (key2, lambs),

put (key3, {are, playing}),

get().
[{keyl,merry},{key2,lambs},{key3,{are,playing}}]

get (Key)

Returns the value associated with Key in the process dictionary, or undefined if there is
no such key. Key is any term.

> put(keyl, merry),
put (key2, lambs),
put ({any, [valid, terml}, {are, playing}),
get ({any, [valid, terml}).

{are,playing}

erlang:get_cookie()

Returns the magic cookie of the current node, if the node is alive; otherwise the atom
nocookie.

get keys (Value)

Kernel Application (KERNEL) 81

erlang

Kernel Reference Manual

Returns a list of keys which corresponds to Value in the process dictionary.

> put(mary, {1, 2}),
put(had, {1, 2}),
put(a, {1, 2}),
put(little, {1, 2}),
put(dog, {1, 3}),
put (lamb, {1, 2}),
get keys ({1, 2}).

[mary,had,a,little,lamb]

erlang:get_stacktrace()

Get the stacktrace of the last exception in the running process as a list of
{Module,Function,Arity} tuples. The Arity field in the first tuple may be the
argument list of that function instead of an arity integer, depending on the exception.

If there has not been any exceptions in a process the stacktrace is [1. After a code
change for the process the stacktrace may also be reset to [].

The stacktrace is the same data you get from the catch operator, for example:
{’EXIT’,{badarg,Stacktrace}} = catch abs(x)
See also erlang:error/1 [page 78] and erlang:error/2 [page 78].

group_leader ()

Returns the pid Pid of the group leader for the process which evaluates the function.

Every process is a member of some process group and all groups have a group leader.
When a new process is spawned, the group leader of the spawned process is the same as
that of the process which spawned it. Initially, at system start-up, init is both its own
group leader and the group leader of all processes.

group_leader (Leader, Pid)

halt ()

halt (Status)

82

Sets the group leader of Pid to Leader. Typically, this is used when a processes started
from a certain shell should have another group leader than init. The process Leader is
normally a process with an I/O protocol. All I/O from this group of processes are thus
channeled to the same place.

Halts the Erlang runtime system and indicates normal exit to the calling environment.
Has no return value.

> haltQ).
os_prompt

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Status must be a non-negative integer, or a string. Halts the Erlang runtime system.
Has no return value. If Status is an integer, it is returned as an exit status of Erlang to
the calling environment. If Status is a string, produces an Erlang crash dump with
String as slogan, and then exits with a non-zero status code.

Note that on many platforms, only the status codes 0-255 are supported by the
operating system.

erlang:hash(Term, Range)

hd(List)

Returns a hash value for Term within the range 1. .Range. The allowed range is
1.2°27-1.

Warning:

This BIF is deprecated as the hash value may differ on different architectures. Also
the hash values for integer terms larger than 2-27 as well as large binaries are very
poor. The BIF is retained for backward compatibility reasons (it may have been used
to hash records into a file), but all new code should use one of the BIFs
erlang:phash/2 Or erlang:phash2/1,2 instead.

Returns the first element of List.

> hd([1,2,3,4,5]).
1

Allowed in guard tests.
Failure: badarg if List is the empty list [], or is not a list.

erlang:hibernate(Module, Function, ArgumentList)

erlang:hibernate/3 gives a way to put a process into a wait state where its memory
allocation has been reduced as much as possible, which is useful if the process does not
expect to receive any messages in the near future.

The process will be awaken when a message is sent to it, and control will resume in
Module:Function with the arguments given by ArgumentList with the call stack
emptied, meaning that the process will terminate when that function returns. Thus
erlang:hibernate/3 will never return to its caller.

If the process has any message in its message queue, the process will be awaken
immediately in the same way as described above.

In more technical terms, what erlang:hibernate/3 will do is the following. It will
discard the call stack for the process. Then it will garbage collect the process. After the
garbage collection, all live data will be in one contionous heap. The heap will then be
shrunk to the exact same size as the live data which it holds (even if that size should be
less than the minimum heap size for the process).

If the size of the live data in the process is less than the minimum heap size, the first
garbage collection occurring after the process has been awaken will ensure that the heap
size is changed to a size not smaller than the minimum heap size.

Kernel Application (KERNEL) 83

erlang

Kernel Reference Manual

Failure: badarg if Module or Function is not an atom, or if ArgumentList is not a list.

erlang:info(What)

This BIF is now equivalent to erlang:system_info/1 [page 114].

integer_to_list(Integer)

Returns a list of integers (ASCII codes) which correspond to Integer.

> integer_to_list(77).
ll77ll

Failure: badarg if Integer is not an integer.

erlang:integer_to_list(Integer, Base)

is_alive()

Returns a list of integers (ASCII codes) in base Base which correspond to Integer.

> erlang:integer_to_list (1023, 16).
IISFFII

Failure: badarg if Integer or Base is not an integer, or if Base is not in the range 2..36.

Returns true if the current node is alive; i.e., if the node can be part of a distributed
system. Otherwise, it returns false.

is_atom(Term) -> Bool

Types:
e Term =term()
e Bool = true | false

Returns true if Term is an atom; otherwise returns false. This BIF may be used also in
guards.

is_binary(Term) -> Bool

Types:
e Term =term()
e Bool = true | false

Returns true if Term is a binary; otherwise returns false. This BIF may be used also in
guards.

is_boolean(Term) -> Bool

84

Types:
e Term = term()
e Bool = true | false

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns true if Term is either the atom true or the atom false (i.e. a boolean);
otherwise returns false. This BIF may be used also in guards.

erlang:is builtin(Module, Function, Arity)

Returns true if Module:Function/Arity is a BIF implemented in C; otherwise returns
false. This BIF is useful for builders of cross reference tools.

is_float(Term) -> Bool

Types:
e Term = term()
e Bool = true | false

Returns true if Term is a floating point number; otherwise returns false. This BIF may
be used also in guards.

is_function(Term) -> Bool
Types:

e Term = term()
e Bool = true | false

Returns true if Term is a fun; otherwise returns false. This BIF may be used also in
guards.

is_integer(Term) -> Bool
Types:

e Term = term()
e Bool = true | false

Returns true if Term is an integer; otherwise returns false. This BIF may be used also
in guards.

is_1list(Term) -> Bool

Types:
e Term = term()
e Bool = true | false

Returns true if Term is a list with zero or more elements; otherwise returns false. This
BIF may be used also in guards.

is_number (Term) -> Bool

Types:
e Term = term()
e Bool = true | false

Returns true if Term is either an integer or a floating point number; otherwise returns
false. This BIF may be used also in guards.

is_pid(Term) -> Bool
Types:

Kernel Application (KERNEL) 85

erlang Kernel Reference Manual

e Term =term()
e Bool = true | false

Returns true if Term is a process identifier (pid); otherwise returns false. This BIF may
be used also in guards.

is_port(Term) -> Bool
Types:

e Term =term()
e Bool = true | false

Returns true if Term is a port; otherwise returns false. This BIF may be used also in
guards.

is_process_alive(Pid)

Pid must refer to a process at the current node. Returns true if the process is alive, i.e.,
has not exited. Otherwise, returns false.

is_record(Term, RecordTag) -> Bool
Types:
e Term =term()

e RecordTag = atom()
e Bool = true | false

RecordTag must be an atom. Returns true if Term is a tuple and its first element is
RecordTag. Otherwise, returns false.

Note:

Normally the compiler treats calls to is_record/2 specially. It emits code to verify
that Term is a tuple, that its first element is RecordTag, and that the size is correct.
However, if the RecordTag is not a literal atom, the is_record/2 BIF will be called
instead.

If RecordTag is a literal atom, this BIF can also be used in a guard.
Failure: badarg if RecordTag is not an atom.

erlang:is record(Term, RecordTag, Size) -> Bool

Types:

Term = term()
RecordTag = atom()
Size = integer()
Bool = true | false

86 Kernel Application (KERNEL)

Kernel Reference Manual erlang

The RecordTag must be an atom. Returns true if Term is a tuple, its first element is
RecordTag, and its size is Size. Otherwise, returns false.

Note:
This BIF is documented for completeness. In most cases you should use is_record/2.

Failure: badarg if RecordTag is not an atom, or Size is not an integer.

is_reference(Term) -> Bool

Types:
e Term = term()
e Bool = true | false

Returns true if Term is a reference; otherwise returns false. This BIF may be used also
in guards.

is_tuple(Term) -> Bool
Types:

e Term = term()
e Bool = true | false

Returns true if Term is a tuple; otherwise returns false. This BIF may be used also in
guards.

length(List)

Returns the length of List.

> length([1,2,3,4,5,6,7,8,9]).
9

Allowed in guard tests.
Failure: badarg if List is not a proper list.

link(Pid)

Creates a link to the process (or port) Pid, if there is not such a link already. If a process
attempts to create a link to itself, nothing is done. Returns true.

Sends an EXIT signal with reason noproc to the calling process if Pid does no longer
exist.

Failure: badarg if Pid is not a pid or port.

list_to_atom(List)
Returns an atom whose text representation is the integers (Latin-1 codes) in List.

> list_to._atom([69, 114, 108, 97, 110, 103]).
’Erlang’

Kernel Application (KERNEL) 87

erlang Kernel Reference Manual

Failure: badarg if the argument is not a list of integers in the range [0, 255].

list_to_binary(DeepList)
Types:
e DeepList = iolist()

Returns a binary which is made from the integers and binaries in List. List may be
deep and may contain any combination of integers and binaries.

Example: 1ist_to_binary([Binl,1,[2,3,Bin2],4|Bin3])

Failure: badarg if List is not a list, or if it or any sublist contains anything else than
binaries or integers in the range [0, 255].

list_to_float(List)
Returns a float whose text representation is the integers (ASCIl-values) in List.

> list_to_float([50,46,50,48,49,55,55,54,52,101,43,48]).
2.20178

Failure: badarg if List is not a list of integers, or if it contains a bad representation of a
float.

list_to_integer(List)
Returns an integer whose text representation is the integers (ASCIll-values) in List.

> list_to_integer([49, 50, 51]).
123

Failure: badarg if List is not a list of integers, or if it contains a bad representation of
an integer.

erlang:list_to_integer(List, Base)

Returns an integer whose text representation in base Base is the integers (ASCII-values)
in List.

> erlang:list_to_integer ("3FF", 16).
1023

Failure: badarg if List is not a list of integers, contains a bad representation of an
integer, or if Base is not in the range 2..36.

list_to_pid(List)

Returns a pid whose text representation is the integers (ASClI-values) in List.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

88 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> list_to_pid("<0.4.1>").
<0.4.1>

Failure: badarg if List is not a list of integers, or if it contains a bad representation of a
pid.

list_to_tuple(List)
Returns a tuple which corresponds to List. List can contain any Erlang terms.

> list_to_tuple([mary, had, a, little, {dog, cat, lamb}]).
{mary, had, a, little, {dog, cat, lamb}}

Failure: badarg if List is not a proper list.

load-module(Module, Binary)

If Binary contains the object code for the module Module, this BIF loads that object
code. Also, if the code for the module Module already exists, all export references are
replaced so they point to the newly loaded code. The previously loaded code is kept in
the system as old code, as there may still be processes which are executing that code. It
returns either {module,Module}, where Module is the name of the module which has
been loaded, or {error, Reason} if loading fails. Reason is one of the following:

badfile The object code in Binary has an incorrect format.

not_purged Binary contains a module which cannot be loaded because old code for
this module already exists (see the BIFS purge module and delete module).

badfile The object code contains code for another module than Module

Failure: badarg if Module is not an atom, or Binary is not a binary.

Warning:
This BIF is intended for code server (see code (3)) and should not be used elsewhere.

erlang:loaded()

Returns a list of all loaded Erlang modules, including preloaded modules. A module will
be included in the list if it has either current code or old code or both loaded.

erlang:localtime()

Returns the current local date and time {{Year, Month, Day}, {Hour, Minute,
Second}}.

The time zone and daylight saving time correction depend on the underlying OS.

> erlang:localtime().
{{1996,11,6},{14,45,17}}

erlang:localtime to_universaltime(DateTime)

Kernel Application (KERNEL) 89

erlang

Kernel Reference Manual

Converts local date and time in DateTime to Universal Time Coordinated (UTC), if this
is supported by the underlying OS. Otherwise, no conversion is done and DateTime is
returned. The return value is of the form {{Year, Month, Day}, {Hour, Minute,
Second}}.

Failure: badarg if DateTime is not a valid date and time tuple {{Year ,Month,Day},
{Hour ,Minute,Second}}.

> erlang:localtime to_universaltime({{1996,11,6},{14,45,17}}).
{{1996,11,6},{13,45,17}}

erlang:localtime to_universaltime(DateTime, IsDst)

make_ref ()

Converts local date and time in DateTime to Universal Time Coordinated (UTC) just
like erlang:localtime_to_universaltime/1, but the caller decides if daylight saving
time is active or not.

If IsDst == true the DateTime is during daylight saving time, if IsDst == false itis
not, and if IsDst == undefined the underlying OS may guess, which is the same as
calling erlang:localtime_to_universaltime(DateTime).

Failure: badarg if DateTime is not a valid date and time tuple {{Year,Month,Day},
{Hour,Minute,Second}} or if IsDst is not one of the atoms true, false Or undefined.

> erlang:localtime to_universaltime({{1996,11,6},{14,45,17}}, true).
{{1996,11,6},{12,45,17}}

> erlang:localtime to_universaltime({{1996,11,6},{14,45,17}}, false).
{{1996,11,6},{13,45,17}]

> erlang:localtime_to_universaltime({{1996,11,6},{14,45,17}}, undefined).
{{1996,11,6},{13,45,17}}

Returns an almost unique reference.

The returned reference will reoccur after approximately 2~82 calls; therefore it is
unique enough for practical purposes.

> make_ref ().
#Ref<0.0.0.135>

erlang:make_tuple(Arity, InitialValue)

Returns a new tuple of the given Arity, where all elements are InitialValue.

> erlang:make_tuple(4, []).
{0,0,0,0;}

erlang:md5(Data) -> Digest

90

Types:
e Data =iolist() | binary()
o Digest = binary()

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Computes an MD5 message digest from Data, where the length of the digest is 128 bits
(16 bytes). Data is a binary or a list of small integers and binaries.

See The MD5 Message Digest Algorithm (RFC 1321) for more information about
MD5.

Failure: badarg if Data is not a list, or if it or any sublist contains anything else than
binaries or integers in the range [0, 255].

erlang:md5 final (Context) -> Digest
Types:
e Context = Digest = binary()
Finishes the update of an MD5 Context and returns the computed MD5 message digest.

erlang:md5_init() -> Context
Types:
e Context = binary()
Creates an MD5 context, to be used in subsequent calls to md5_update/2.

erlang:md5 update(Context, Data) -> NewContext
Types:
o Data = iolist() | binary()
e Context = NewContext = binary()
Updates an MD5 Context with Data, and returns a NewContext.

erlang:memory () -> MemList
Types:
e MemList = [MemInfo]
¢ Memlinfo = {atom(), int(}
Returns information about memory dynamically allocated by the Erlang emulator.

A list of tuples is returned. Each tuple has two elements. The first element is an atom
describing memory type. The second element is memory size in bytes. A description of
each tuple follows:

total The total amount of memory currently allocated. total is the sum of
processes and system.

processes The total amount of memory currently allocated by the Erlang processes.

processes_used The total amount of memory currently used by the Erlang processes.
This memory is part of the memory presented as processes memory.

system The total amount of memory currently allocated by the emulator that is not
directly related to any Erlang process.

Memory presented as processes is hot included in this memory.

atom The total amount of memory currently allocated for atoms.
This memory is part of the memory presented as system memory.

atom_used The total amount of memory currently used for atoms.
This memory is part of the memory presented as atom memory.

Kernel Application (KERNEL) 91

erlang Kernel Reference Manual

binary The total amount of memory currently allocated for binaries.
This memory is part of the memory presented as system memory.

code The total amount of memory currently allocated for Erlang code.
This memory is part of the memory presented as system memory.

ets The total amount of memory currently allocated for ets tables.
This memory is part of the memory presented as system memory.

maximum The maximum total amount of memory allocated since the emulator was
started.

This tuple is only present when the emulator is run with instrumentation.

For information on how to run the emulator with instrumentation see the
[instrument(3)] and/or [erl(1)] man pages.

Note:

The system value is not complete. Some allocated memory that should be part of the
system value are not. For example, memory allocated by drivers is missing.

When the emulator is run with instrumentation, the system value is more accurate,
but memory directly allocated by malloc (and friends) are still not part of the
system value. Direct calls to malloc are only done from OS specific runtime libraries
and perhaps from user implemented Erlang drivers that do not use the memory
allocation functions in the driver interface.

Since the total value is the sum of processes and system the error in system will
propagate to the total value.

The different values has the following relation to each other. Values beginning with an
uppercase letter is not part of the result.

total = processes + system

processes = processes_used + ProcessesNotUsed
system = atom + binary + code + ets + OtherSystem
atom = atom_used + AtomNotUsed

RealTotal = processes + RealSystem
RealSystem = system + MissedSystem

Note:

The total value is supposed to be the total amount of memory dynamically
allocated by the emulator. Shared libraries, the code of the emulator itself, and the
emulator stack(s) are not supposed to be included. That is, the total value is not
supposed to be equal to the total size of all pages mapped to the emulator.
Furthermore, due to fragmentation and pre-reservation of memory areas, the size of
the memory segments which contain the dynamically allocated memory blocks can
be substantially larger than the total size of the dynamically allocated memory blocks.

More tuples in the returned list may be added in the future.

92 Kernel Application (KERNEL)

Kernel Reference Manual erlang

erlang:memory (MemoryTypeSpec) -> MemList | int()
Types:
e MemoryTypeSpec = MemoryType | [MemoryType]
e MemoryType = atom()
e MemList = [MemInfo]
¢ Memlinfo = {atom(), int()}

erlang:memory/1 returns the same type of information as erlang:memory/0, but
allows the caller to select specific information.

MemoryType is an atom equal to any atom that is used by erlang:memory/0 to describe
a memory type.

When MemoryTypeSpec is an atom the corresponding memory size is returned as an
integer.

When MemoryTypeSpec is a list of atoms the corresponding values are returned as a
MemList. The elements of the list returned are sorted, with regard to the atoms, in the
same order as the MemoryTypeSpec list is sorted with the exception that duplicate
atoms are ignored.

Failure: badarg if MemoryType is not an atom that is used by erlang:memory/0 to
describe a memory type, or if the emulator is not run with instrumentation and
maximum iS used as a MemoryType.

module_loaded (Module)

Returns true if the module Module is loaded, otherwise returns false. It does not
attempt to load the module.

Warning:
This BIF is intended for code server (see code (3)) and should not be used elsewhere.
Use code:is_loaded/1 instead.

> erlang:module loaded(lists).
true

Failure: badarg if Module is not an atom.

erlang:monitor(Type, Item) -> MonitorReference
Types:
e Type = atom()
e Item = pid() | {RegisteredName,NodeName} | RegisteredName
e RegisteredName = atom()
¢ NodeName = atom()
e MonitorReference = reference()

The current process starts monitoring Item which is an object of type Type.

Currently only processes can be monitored, i.e. the only allowed Type is process, but
other types may be allowed in the future.

Valid Items when Type iS process are:

Kernel Application (KERNEL) 93

erlang

Kernel Reference Manual

94

pid() The pid of the process to monitor.

{RegisteredName, NodeName} A tuple consisting of a registered name of a process and
a node name. The process residing on the node NodeName with the registered name
RegisteredName will be monitored.

RegisteredName The same as {RegisteredName, node()}.

Note:

When a process is monitored by registered name, the process that has the registered
name at the time when erlang:monitor/2 is called will be monitored. The monitor
will not be effected, if the registered name is unregistered.

A ’DOWN’ message will be sent to the monitoring process if Item dies, if Item does not
exist, or if the connection is lost to the node which Item resides on. A *DOWN’ message
has the following pattern:

{’DOWN’, MonitorReference, Type, Object, Info}

where:

MonitorReference The reference returned by erlang:monitor/2.
Type The type of the monitored object.

Object A reference to the monitored object.
When Type is process, Object will be:

e the pid of the monitored process, if Item was the pid in the call to
erlang:monitor/2.

¢ {RegisteredName, NodeName}, if Item was {RegisteredName, NodeName} in
the call to erlang:monitor/2.

¢ {RegisteredName, NodeName}, if Item was RegisteredName in the call to
erlang:monitor/2. NodeName will in this case be the name of the local node.

Info When Type is process, Info is either the exit reason of the process, noproc
(non-existing process), or noconnection (N0 connection to Items node).

Note:

If/when erlang:monitor/2 is extended (e.g. to handle other item types than
process), other possible values for Type, Object, and Info in the >DOWN’ message
will be introduced.

The monitoring is turned off either when the >DOWN’ message is sent, or when
erlang:demonitor(MonitorReference) [page 77] is called (MonitorReference is the
value returned by erlang:monitor/2).

If an attempt is made to monitor a process on an older node (where remote process
monitoring is not implemented or one where remote process monitoring by registered
name is not implemented), the call fails with badarg.

Making several calls to erlang:monitor/2 for the same Item is not an error; it results in
several completely independent monitorings.

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Note:

The format of the >DOWN’ message changed in the 5.2 version of the emulator (OTP
release R9B) for monitor by registered name. The Object element of the >DOWN’
message could in earlier versions sometimes be the pid of the monitored process and
sometimes be the registered name. Now the Object element is always a tuple
consisting of the registered name and the node name. Processes on new nodes
(emulator version 5.2 or greater) will always get >DOWN’ messages on the new format
even if they are monitoring processes on old nodes. Processes on old nodes will
always get *DOWN’ messages on the old format.

monitor node(Node, Flag)

node ()

node (Arg)

nodes ()

Monitors the status of the node Node. If Flag is true, monitoring is turned on; if Flag is
false, monitoring is turned off. Calls to the BIF are accumulated. This is shown in the
following example, where a process is already monitoring the node Node and a library
function is called:

monitor_node(Node, true),
some operations
monitor_node(Node, false),

After the call, the process is still monitoring the node.

If Node fails or does not exist, the message {nodedown, Node} is delivered to the
process. If a process has made two calls to monitor node (Node, true) and Node
terminates, two nodedown messages are delivered to the process. If there is no
connection to Node, there will be an attempt to create one. If this fails, a nodedown
message is delivered.

Nodes connected through hidden connections can be monitored as any other node with
erlang:monitor node/2.

Returns true.

Failure: badarg if Flag is not true or false, or if Node is not an atom indicating a
remote node, or if the local node is not alive.

Returns the name of the current node. If it is not a networked node but a local Erlang
runtime system, the atom nonode@nohost is returned.

Allowed in guard tests.

Returns the node where Arg is located. Arg can be a pid, a reference, or a port.
Allowed in guard tests.
Failure: badarg if Arg is not a pid, reference, or port.

Kernel Application (KERNEL) 95

erlang Kernel Reference Manual
Returns a list of all visible nodes in the system, excluding the current node. Same as
nodes (visible).

nodes (Arg)
Types:
e Arg = ArgList | ArgAtom
e ArgList = [ArgAtom]
e ArgAtom = visible | hidden | connected | this | known
Returns a list of nodes according to argument given. The result returned when Arg is an
ArgList is the list of nodes satisfying the disjunction(s) of ArgAtoms in ArgList.
ArgAtom description:
visible Nodes connected to this node through normal connections.
hidden Nodes connected to this node through hidden connections.
connected Nodes connected to this node.
this This node.
known Nodes which are known to this node, i.e., connected, previously connected, etc.
More ArgAtoms may be added in the future.
Some equalities: [node()] = nodes(this),nodes(connected) = nodes([visible,
hidden]), and nodes() = nodes(visible).
Failure: badarg if Arg is not a valid ArgAtom, or a list of validArgAtoms.

now ()

Returns the tuple {MegaSecs,Secs,Microsecs} which is the elapsed time since 00:00
GMT, January 1, 1970 (zero hour) on the assumption that the underlying OS supports
this. Otherwise, some other point in time is chosen. It is also guaranteed that
subsequent calls to this BIF returns continuously increasing values. Hence, the return
value from now () can be used to generate unique time-stamps. It can only be used to
check the local time of day if the time-zone info of the underlying operating system is
properly configured.

open_port (PortName, PortSettings)

96

Returns a port identifier as the result of opening a new Erlang port. A port can be seen
as an external Erlang process. PortName is one of the following:

{spawn, Command} Starts an external program. Command is the name of the external
program which will be run. Command runs outside the Erlang work space unless an
Erlang driver with the name Command is found. If found, that driver will be started.
A driver runs in the Erlang workspace, which means that it is linked with the
Erlang runtime system.

When starting external programs on Solaris, the system call vfork is used in
preference to fork for performance reasons, although it has a history of being less
robust. If there are problems with using vfork, setting the environment variable
ERL_NO_VFORK to any value will cause fork to be used instead.

Atom This use of open_port () is obsolete and will be removed in a future version of
Erlang. Use the file module instead.

Kernel Application (KERNEL)

Kernel Reference Manual erlang

{fd, In, Out} Allows an Erlang process to access any currently opened file descriptors
used by Erlang. The file descriptor In can be used for standard input, and the file
descriptor Out for standard output. It is only used for various servers in the Erlang
operating system (shell and user). Hence, its use is very limited.

PortSettings is a list of settings for the port. Valid values are:

{packet, N} Messages are preceded by their length, sent in N bytes, with the most
significant byte first. Valid values for N are 1, 2, or 4.

stream Output messages are sent without packet lengths. A user-defined protocol must
be used between the Erlang process and the external object.

{line, N} Messages are delivered on a per line basis. Each line (delimited by the
OS-dependent newline sequence) is delivered in one single message. The message
data format is {Flag, Line}, where Flag is either eol or noeol and Line is the
actual data delivered (without the newline sequence).

N specifies the maximum line length in bytes. Lines longer than this will be
delivered in more than one message, with the Flag set to noeol for all but the last
message. If end of file is encountered anywhere else than immediately following a
newline sequence, the last line will also be delivered with the Flag set to noeol. In
all other cases, lines are delivered with Flag set to eol.

The {packet, N} and {line, N} settings are mutually exclusive.

{cd, Dir} Thisisonly valid for {spawn, Command}. The external program starts using
Dir as its working directory. Dir must be a string. Not available on VVxWorks.

{env, Environment} This is only valid for {spawn, Command}. The environment of
the started process is extended using the environment specifications in
Environment. Environment should be a list of tuples {Name, Value}, where Name
is the name of an environment variable, and Value is the value it is to have in the
spawned port process. Both Name and Value must be strings. The one exception is
Value being the atom false (in analogy with os:getenv/1), which removes the
environment variable. Not available on VVxWorks.

exit_status Thisisonly valid for {spawn, Command} where Command refers to an
external program.

When the external process connected to the port exits, a message of the form
{Port,{exit_status,Status}} is sent to the connected process, where Status is
the exit status of the external process. If the program aborts, on Unix the same
convention is used as the shells do (i.e., 128+signal).

If the eof option has been given as well, the eof message and the exit_status
message appear in an unspecified order.

If the port program closes its stdout without exiting, the exit_status option will
not work.

use_stdio This is only valid for {spawn, Command}. It allows the standard input and
output (file descriptors 0 and 1) of the spawned (UNIX) process for
communication with Erlang.

nouse_stdio The opposite of the above. Uses file descriptors 3 and 4 for
communication with Erlang.

stderr_to_stdout Affects ports to external programs. The executed program gets its
standard error file redirected to its standard output file. stderr_to_stdout and
nouse_stdio are mutually exclusive.

in The port can only be used for input.
out The port can only be used for output.

Kernel Application (KERNEL) 97

erlang

Kernel Reference Manual

binary All I/O from the port are binary data objects as opposed to lists of bytes.

eof The port will not be closed at the end of the file and produce an EXIT signal.
Instead, it will remain open and a {Port, eof} message will be sent to the process
holding the port.

The default is stream for all types of port and use_stdio for spawned ports.

Failure: badarg if the format of PortName or PortSettings is incorrect. If the port
cannot be opened, the exit reason is the Posix error code which most closely describes
the error, or einval if no Posix code is appropriate. The following Posix error codes
may appear:

enomem There was not enough memory to create the port.

eagain There are no more available operating system processes.

enametoolong The external command given was too long.

emfile There are no more available file descriptors.

enfile A file or port table is full.

During use of a port opened using {spawn,Name}, errors arising when sending messages
to it are reported to the owning process using signals of the form
{’EXIT’,Port,PosixCode}. Posix codes listed in the documentation for the file
module.

The maximum number of ports that can be open at the same time is 1024 by default,
but can be configured by the environment variable ERL_MAX_PORTS.

erlang:phash(Term, Range)

Portable hash function that will give the same hash for the same Erlang term regardless
of machine architecture and ERTS version (the BIF was introduced in ERTS 4.9.1.1).
Range can be between 1 and 2~32, the function returns a hash value for Term within
the range 1. .Range.

This BIF could be used instead of the old deprecated erlang:hash/2 BIF, as it
calculates better hashes for all datatypes, but consider using phash2/1,2 instead.

erlang:phash2(Term [, Range])

Portable hash function that will give the same hash for the same Erlang term regardless
of machine architecture and ERTS version (the BIF was introduced in ERTS 5.2). Range
can be between 1 and 2~32, the function returns a hash value for Term within the range
0. .Range-1. When called without the Range argument, a value in the range 0. .2°27-1
is returned.

This BIF should always be used for hashing terms. It distributes small integers better
than phash/2, and it is faster for bignums and binaries.

Note that the range 0. .Range-1 is different from the range of phash/2 (1. .Range).

pid_to_list(Pid)

98

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Returns a list which corresponds to the process Pid.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> pid_to_list(whereis(init)).
"<0.0.0>"

Failure: badarg if Pid is not a pid.

port_close(Port)

Closes an open port. Roughly the same as Port ! {self(), close} except for the
error behaviour (see below), and that the port does not reply with {Port, closed}.
Any process may close a port with port_close/1, not only the port owner (the
connected process).

Returns: true.
Failure: badarg if Port is not an open port or the registered name of an open port.

For comparison: Port ! {self(), close} fails with badarg if Port cannot be sent to
(i.e., Port refers neither to a port nor to a process). If Port is a closed port nothing
happens. If Port is an open port and the current process is the port owner, the port
replies with {Port, closed} when all buffers have been flushed and the port really
closes, but if the current process is not the port owner the port owner fails with badsig.

Note that any process can close a port using Port ! {PortOwner, close} justasifit
itself was the port owner, but the reply always goes to the port owner.

In short: port_close(Port) has a cleaner and more logical behaviour than Port !
{self (), close}.

port_command (Port, Data)

Types:
e Port = port()
e Data = iolist() | binary()

Sends data to a port. Same as Port ! {self(), {command, Data}} except for the
error behaviour (see below). Any process may send data to a port with
port_command/2, not only the port owner (the connected process).

Returns: true.

Failure: badarg if Port is not an open port or the registered name of an open port, or if
Data is not an I/O list. An 1/O list is binary or a (possibly) deep list of binaries or
integers in the range 0 through 255.

For comparison: Port ! {self(), {command, Data}} fails with badarg if Port
cannot be sent to (i.e., Port refers neither to a port nor to a process). If Port is a closed
port the data message disappears without a sound. If Port is open and the current
process is not the port owner, the port owner fails with badsig. The port owner fails
withbadsig also if Data is not a legal 1/0O list.

Kernel Application (KERNEL) 99

erlang Kernel Reference Manual

Note that any process can send to a port using Port ! {PortOwner, {command,
Data}} just as if it itself was the port owner.

In short: port_command (Port, Data) has a cleaner and more logical behaviour than
Port ! {self(), {command, Data}}.

port_connect (Port, Pid)

Sets the port owner (the connected port) to Pid. Roughly the same as Port !
{self (), {connect, Pid}} except for the following:

e The error behavior differs, see below.
e The port does not reply with {Port, connected}.
e The new port owner gets linked to the port.

The old port owner stays linked to the port and have to call unlink (Port) if this is not
desired. Any process may set the port owner to be any process with port_connect/2.

Returns: true.

Failure: badarg if Port is not an open port or the registered name of a port, or if Pid is
not a valid local pid.

For comparison: Port ! {self(), {connect, Pid}} fails with badarg if Port cannot
be sent to (i.e., Port refers neither to a port nor to a process). If Port is a closed port
nothing happens. If Port is an open port and the current process is the port owner, the
port replies with {Port, connected} to the old port owner. Note that the old port
owner is still linked to the port, and that the new is not. If Port is an open port and the
current process is not the port owner, the port owner fails with badsig. The port owner
fails with badsig also if Pid is not a valid local pid.

Note that any process can set the port owner using Port ! {PortOwner, {connect,
Pid}} just as if it itself was the port owner, but the reply always goes to the port owner.

In short: port_connect (Port, Pid) has a cleaner and more logical behaviour than
Port ! {self(),{connect,Pid}}.

port_control(Port, Operation, Data)

Types:

e Port = port()

e Operation = integer()

o Data = iolist() | binary()

Performs a synchronous control operation on a port. The meaning of Operation and

Data depends on the port, i.e., on the port driver. Not all port drivers support this
control feature.

Returns: a list of integers in the range 0 through 255, or a binary, depending on the port
driver. The meaning of the returned data also depends on the port driver.

Failure: badarg if Port is not an open port or the registered name of a port, if
Operation cannot fit in a 32-bit integer, if the port driver does not support synchronous
control operations, if Data is not a valid 1/0 list (see port_.command/2), or if the port
driver so decides for any reason (probably something wrong with Operation or Data).

erlang:port_call(Port, Operation, Data)

100 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Performs a synchronous call to a port. The meaning of Operation and Data depends on
the port, i.e., on the port driver. Not all port drivers support this feature.

Port is an Erlang port, referring to a driver.
Operation is an integer, which is passed on to the driver.

Data is any Erlang term. This data is converted to binary term format and sent to the
port.

Returns: a term from the driver. The meaning of the returned data also depends on the
port driver.

Failure: badarg if Port is not an open port or the registered name of a port, if
Operation cannot fit in a 32-bit integer, if the port driver does not support synchronous
control operations, or if the port driver so decides for any reason (probably something
wrong with Operation Or Data).

erlang:port_info(Port, Item)

Returns information about the port Port as specified by Item, which can be any one of
the atoms registered name, id, connected, links, name, input, Or output.

{registered name,Atom} Atom is the registered name of the port. If the port has no
registered name, this tuple is not present in the list.

{id,Index} Index is the internal index of the port. This index may be used to separate
ports.

{connected, Pid} Pid is the process connected to the port.

{links,List0fPids} List0fPids is a list of Pids with processes to which the port has
a link.

{name,String} String is the command name set by open port.

{input,Bytes} Bytes is the total number of bytes read from the port.
{output,Bytes} Bytes is the total number of bytes written to the port.

All implementations may not support all of the above Items. Returns undefined if the
port does not exist.

Failure: badarg if Port is not a process identifier, or if Port is a port identifier of a
remote process.

erlang:port_to_list(Port)

Returns a list which corresponds to the port identifier Port.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> erlang:port_to_list(open port({spawn,ls}, [1)).
"#Port<0.15>"

Failure: badarg if Port is not a port identifier.

Kernel Application (KERNEL) 101

erlang Kernel Reference Manual

erlang:ports()

Returns a list of all ports on the current node.

pre_loaded()

Returns a list of Erlang modules which are pre-loaded in the system. As all loading of
code is done through the file system, the file system must have been loaded previously.
Hence, at least the module init must be pre-loaded.

erlang:process.display(Pid, Type)

Writes information about the local process Pid on standard error. The currently allowed
value for the atom Type is backtrace, which shows the contents of the stack, including
information about the call chain, with the most recent data printed last. The format of
the output is not further defined.

process_flag(Flag, Option)

Sets certain flags for the process which calls this function. Returns the old value of the
flag.

process_flag(trap-exit, Boolean) When trap_exit is set to true, EXIT signals
arriving to a process are converted to {’EXIT’, From, Reason} messages, which
can be received as ordinary messages. If trap_exit is set to false, the process exits
if it receives an EXIT signal other than normal and the EXIT signal is propagated
to its linked processes. Application processes should normally not trap exits.

process_flag(error handler, Module) This is used by a process to redefine the error
handler for undefined function calls and undefined registered processes.
Inexperienced users should not use this flag since code autoloading is dependent
on the correct operation of the error handling module.

process flag(min heap size, MinHeapSize) This changes the minimum heap size
for the current process.

process_flag(priority, Level) This sets the process priority. Level is an atom. All
implementations support three priority levels, 1ow, normal, and high. The default
is normal.

process_flag(save_calls, N) N must be an integer in the interval [0, 10000]. If N >
0, call saving is made active for the process, which means that information about
the N most recent global function calls, BIF calls, sends and receives made by the
process are saved in a list, which can be retrieved with process_info (Pid,
last_calls). A global function call is one in which the module of the function is
explicitly mentioned. Only a fixed amount of information is saved: a tuple
{Module, Function, Arity} for function calls, and the mere atoms send,
’receive’ and timeout for sends and receives (’receive’ when a message is
received and timeout when a receive times out). If N = 0O, call saving is disabled for
the process, which is the default. Whenever the size of the call saving list is set, its
contents are reset.

Failure: badarg if Flag is not an atom, or is not a recognized flag value, or if Option is
not a recognized term for Flag.

process_flag(Pid, Flag, Option)

102 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Sets certain flags for the process Pid, in the same manner as process_flag/2. Returns
the old value of the flag. The allowed values for Flag are only a subset of those allowed
in process_flag/2, namely: save_calls.

Failure: badarg if Pid is not a process on the local node, or if Flag is not an atom, or is
not a recognized flag value, or if Option is not a recognized term for Flag.

process_info (Pid)

Returns a list containing tuples with information about the process Pid. The order of
these tuples are not defined, nor are all the tuples mandatory.

Warning:
This BIF is intended for debugging only.

{current_function, {Module, Function, Args}} Module, Function, Args is the
current function call of the process.

{dictionary, Dictionary} Dictionary is the dictionary of the process.

{error_handler, Module} Module is the error handler module used by the process
(for undefined function calls, for example).

{group_leader, Groupleader} Groupleader is group leader for the 1/O of the
process.

{heap_size, Size} Size is the heap size of the process in heap words.

{initial call, {Module, Function, Arity}} Module, Function, Arity is the
initial function call with which the process was spawned.

{links, ListOfPids} ListO0fPids is a list of Pids, with processes to which the process
has a link.

{message_queue_len, MessageQueuelen} MessageQueueLen is the number of
messages currently in the message queue of the process. This is the length of the
list MessageQueue returned as the info item messages (see below).

{messages, MessageQueue} MessageQueue is a list of the messages to the process,
which have not yet been processed.

riority, Level} Level is the current priority level for the process. Only low and
P y p y p y
normal are always supported.

{reductions, Number} Number is the number of reductions executed by the process.

{registered name, Atom} Atom is the registered name of the process. If the process
has no registered name, this tuple is not present in the list.

{stack_size, Size} Size is the stack size of the process in stack words.

{status, Status} Status is the status of the process. Status is waiting (waiting for
a message), running, runnable (ready to run, but another process is running), or
suspended (suspended on a “busy” port or by the erlang:suspend process/1
BIF).

{trap_exit, Boolean} Boolean is true if the process is trapping exits, otherwise it is
false.

Failure: badarg if Pid is not a pid, or if it is the pid of a remote process.

Kernel Application (KERNEL) 103

erlang

Kernel Reference Manual

process_info(Pid, Item)

processes ()

Returns information about the process Pid as specified by Item, in the form {Item,
Info}. Item can be any one of the atoms backtrace, current_function, dictionary,
error_handler, group_leader, heap_size, initial_call, last_calls, 1links, memory,
message_queue_len, messages, monitored_by, monitors, priority, reductions,
registered name, stack_size, status Or trap_exit.

Returns undefined if no information is known about the process.
Item registered name returns [] if the process has no registered name.

Item memory returns {memory,Size}, where Size is the size of the process in bytes. This
includes stack, heap and internal structures.

Item backtrace returns a binary, which contains the same information as the output
from erlang:process display(Pid, backtrace). Use binary to_list/1 to obtain
the string of characters from the binary.

Item last_calls returns false if call saving is not active for the process (see
process_flag/3 [page 103]). If call saving is active, a list is returned, in which the last
element is the most recent.

Item links returns a list of pids to which the process is linked.

Item monitors returns a list of monitors (started by erlang:monitor/2) that are active
for the process. For a local process monitor or a remote process monitor by pid, the list
item is {process, Pid}, and for a remote process monitor by name, the list item is
{process, {Name, Node}}.

Item monitored by returns a list of pids that are monitoring the process (with
erlang:monitor/2).

Not all implementations support every one of the above Items.
Failure: badarg if Pid is not a pid, or if it is a process identifier of a remote process.

Returns a list of all processes on the current node.

> processes().

[<0.0.0>,
<0.2.0>,
<0.4.0>,
<0.5.0>,
<0.7.0>,
<0.8.0>]

purge module (Module)

104

Kernel Application (KERNEL)

Kernel Reference Manual erlang

Removes old code for Module. Before this BIF is used, erlang: check process_code/2
should be called to check that no processes are executing old code in this module.

Warning:
This BIF is intended for code server (see code (3)) and should not be used elsewhere.

Failure: badarg if Module does not exist.

put (Key, Value)

Adds a new Value to the process dictionary and associates it with Key. If a value is
already associated with Key, that value is deleted and replaced by the new value Value.
It returns any value previously associated with Key, or undefined if no value was
associated with Key. Key and Value can be any valid Erlang terms.

Note:
The values stored when put is evaluated within the scope of a catch will not be
retracted if a throw is evaluated, or if an error occurs.

> X = put(name, walrus), Y = put(name, carpenter),
Z = get(name),
{x, ¥, z}.

{undefined,walrus,carpenter}

erlang:raise(Class, Reason, Stacktrace) <func> <name>erlang:raise(Class, Reason,
Stacktrace)

Stops the execution of the current process with an exception of given class, reason and
stacktrace.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

Class is one of error, exit or throw, so if it were not for the stacktrace
erlang:raise(Class, Reason, Stacktrace) is equivalent to
erlang:Class(Reason). Reason is any term and Stacktrace is a list as returned from
get_stacktrace (), that is a list of 3-tuples {Module,Function,A} where Module and
Function are atoms and A should be an integer arity or an argument list. The stacktrace
may also contain {Fun,A} tuples where Fun is a fun and A is an argument list.

The stacktrace is used as the exception stacktrace for the current process, so it will be
truncated to the current maximum stacktrace depth. Any non-existent functions or
funs it refers to may also be removed, even if they became non-existent after the
stacktrace was stored for example due to code purge. This is because a true stacktrace

Kernel Application (KERNEL) 105

erlang Kernel Reference Manual

can only refer to existing code. (Except for the head element from a function clause
or undef error that refers to the function that did not exist)

Because evaluating this function causes the process to terminate, it has no return value -
unless the arguments are invalid, in which case the function returns the error reason, that
is badarg. If you want to be really sure not to return you can call
erlang:error(erlang:raise(Class, Reason, Stacktrace)) and hope to
distinguish exceptions later.

erlang:read_timer (Ref)

Ref is a timer reference returned by send_after/3 or start_timer/3. If the timer is
active, the function returns the time in milliseconds left until the timer will expire,
otherwise false (which may mean that Ref was never a timer, or that it has been
cancelled, or that it has already delivered its message).

Failure: badarg if Ref is not a reference.

erlang:ref to_list(Ref)

Returns a list which corresponds to the reference Ref.

Warning:
This BIF is intended for debugging and for use in the Erlang operating system. It
should not be used in application programs.

> erlang:ref to_list(makeref()).
"#Ref<0.0.0.134>"

Failure: badarg if Ref is not a reference.

register(Name, P)

Associates the name Name with the port or pid P. Name, which must be an atom, can be
used instead of a port or pid in the send operator (Name ! Message).

Returns true.
Failure: badarg if P is not an active port or process, if P is on another node, if Name is
already in use, if the port or process is already registered (already has a name), if Name is
not an atom, or if Name is the atom undef ined.

registered()
Returns a list of names which have been registered using register/2.

> registered().
[code_server, file_server, init, user, my_db]

erlang:resume_process(Pid)

106 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Resume a suspended process.

Warning:
This BIF is intended for debugging only.

round (Number)
Returns an integer by rounding the number Number.

> round(5.5).
6

Allowed in guard tests.
Failure: badarg if Number is not a number.

self ()
Returns the pid (process identity) of the calling process.

> self(Q).
<0.26.0>

Allowed in guard tests.

erlang:send(Dest, Msg)
Sends a message and returns Msg. This is the same as Dest ! Msg.

Dest may be a remote or local pid, a (local) port, a locally registered name, or a tuple
{Name,Node} for a registered name on another node.

erlang:send(Dest, Msg, Options)

Sends a message and returns ok, or does not send the message but returns something
else (see below). Otherwise the same as send/2. See also send nosuspend/2, 3 for
more detailed explanation and warnings.

Options is a list of options. The possible options are:

nosuspend If the sender would have to be suspended to do the send, nosuspend is
returned instead.

noconnect If the destination node would have to be autoconnected before doing the
send, noconnect is returned instead.

As with send nosuspend/2, 3: Use with extreme care!

erlang:send after(Time, Pid, Msg)

Kernel Application (KERNEL) 107

erlang

Kernel Reference Manual

Time iS a non-negative integer, Pid is either a pid or an atom, and Msg is any Erlang
term. The function returns a reference Ref.

After Time ms, send_after/3 sends Msg to Pid.

If Pid is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process. See also start_timer/3 and cancel timer/1.

Limitations: Pid must be a process on the local node. The timeout value must fit in 32
bits.

Failure: badarg if any arguments are of the wrong type, or do not obey the limitations
noted above.

erlang:send nosuspend(Dest, Msg)

The same as send (Dest, Msg, [nosuspend), but returns true if the message was sent
and false if the message was not sent because the sender would have been suspended.

This function is intended for send operations towards an unreliable remote node
without ever blocking the sending (Erlang) process. If the connection to the remote
node (usually not a real Erlang node, but a node written in C or Java) is overloaded, this
function will not send the message but return false instead.

The same happens, if Dest refers to a local port that is busy. For all other destinations
(allowed for the ordinary send operator ° ! *) this function sends the message and
returns true.

This function is only to be used in very rare circumstances where a process
communicates with Erlang nodes that can disappear without any trace causing the TCP
buffers and the drivers que to be overfull before the node will actually be shut down
(due to tick timeouts) by net_kernel. The normal reaction to take when this happens is
some kind of premature shutdown of the other node.

Note that ignoring the return value from this function would result in unreliable
message passing, which is contradictory to the Erlang programming model. The
message is not sent if this function returns false.

Note also that in many systems, transient states of overloaded queues are normal. The
fact that this function returns false does not in any way mean that the other node is
guaranteed to be nonrespoinsive, it could be a temporary overload. Also a return value
of true does only mean that the message could be sent on the (TCP) channel without
blocking, the message is not guaranteed to have arrived at the remote node. Also in the
case of a disconnected nonresponsive node, the return value is true (mimics the
behaviour of the ! operator). The expected behaviour as well as the actions to take
when the function returns false are application and hardware specific.

Use with extreme care!

erlang:send nosuspend(Dest, Msg, Options)

108

Kernel Application (KERNEL)

Kernel Reference Manual erlang

The same as send (Dest, Msg, [nosuspend | Options]), but with boolean return
value.

This function behaves like send_nosuspend/2, but takes a third parameter, a 1ist () of
options. The only currently implemented option is noconnect. The option noconnect
makes the function return false if the remote node is not currently reachable by the
local Erlang node. The normal behaviour is to try to connect to the node, which may
stall the process for a shorter period. The use of the noconnect option makes it possible
to be absolutely sure not to get even the slightest delay when sending to a remote
process. This is especially useful when communicating with nodes who expect to always
be the connecting part (i.e. nodes written in C or Java).

Whenever the function returns false (either when a suspend would occur or when
noconnect was specified and the node was not already connected), the message is
guaranteed not to have been sent.

Use with extreme care!

erlang:set_cookie(Node, Cookie)

Sets the magic cookie of Node to the atom Cookie. If Node is the current node, the
function also sets the cookie of all other unknown nodes to Cookie (see auth(3)).

setelement (Index, Tuple, Value)

size(Item)

spawn (Fun)

Returns a tuple which is a copy of the argument Tuple with the element given by the
integer argument Index (the first element is the element with index 1) replaced by the
argument Value.

> setelement(2, {10, green, bottles}, red).
{10, red, bottles}

Failure: badarg if Index is not an integer, Tuple is not a tuple, or if Index is less than 1
or greater than the size of Tuple.

Returns an integer which is the size of the argument Item, which must be either a tuple
or a binary.

> size({morni, mulle, bwange}).
3

Allowed in guard tests.
Failure: badarg if Item is not a tuple or a binary.

Returns the pid of a new process started by the application of Fun to the empty
argument list [1. Otherwise works like spawn/3.

spawn(Node, Fun)

Returns the pid of a new process started by the application of Fun to the empty
argument list [1 on node Node. Otherwise works like spawn/4.

Kernel Application (KERNEL) 109

erlang Kernel Reference Manual

spawn(Module, Function, ArgumentList)

Returns the pid of a new process started by the application of Module:Function to
ArgumentList. Note: The new process created will be placed in the system scheduler
queue and will be run some time later.

error_handler:undefined function(Module, Function, ArgumentList)iS
evaluated by the new process if Module:Function/Arity does not exist (where Arity
is the length of ArgumentList). The error handler can be redefined (see BIF
process_flag/2)). Arity is the length of ArgumentList. If error_handler is
undefined, or the user has redefined the default error_handler its replacement is
undefined, a failure with the reason undef will occur.

> spawn(speed, regulator, [high speed, thin_cut]).
<0.13.1>

Failure: badarg if Module and/or Function is not an atom, or if ArgumentList is not a
list.

spawn(Node, Module, Function, ArgumentList)

Works like spawn/3, with the exception that the process is spawned at Node. If Node
does not exist, a useless pid is returned.

Failure: badarg if Node, Module, Or Function are not atoms, or ArgumentList is not a
list.

spawn_link (Fun)

Works like spawn/1 except that a link is made from thed current process to the newly
created one, atomically.

spawn_link(Node, Fun)

Works like spawn/2 except that a link is made from thed current process to the newly
created one, atomically.

Returns the Pid of the newly created process.
Failure: See spawn/3.

spawn_link(Module, Function, ArgumentList)
This BIF is identical to the following code being evaluated in an atomic operation:

> Pid = spawn(Module, Function, ArgumentList),
link(Pid),
Pid.

This BIF is necessary since the process created might run immediately and fail before
link/1 is called.

Returns the pid of the newly created process.
Failure: See spawn/3.

spawn_link(Node, Module, Function, ArgumentList)

110 Kernel Application (KERNEL)

Kernel Reference Manual erlang

Works like spawn_link/3, except that the process is spawned at Node. If an attempt is
made to spawn a process on a hode which does not exist, a useless Pid is returned, and
an EXIT signal will be received.

spawn_opt (Fun, Options)

Returns the pid of a new process started by the application of Fun to the empty
argument list [1. Otherwise works like spawn_opt/4.

spawn_opt (Node, Fun, Options)

Returns the pid of a new process started by the application of Fun to the empty
argument list [1. Otherwise works like spawn_opt/5.

spawn_opt (Module, Function, ArgumentlList, Options)

Works exactly like spawn/3, except that an extra option list can be given when creating
the process.

Warning:

This BIF is only useful for performance tuning. Random tweaking of the parameters
without measuring execution times and memory consumption may actually make
things worse. Furthermore, most of the options are inherently
implementation-dependent, and they can be changed or removed in future versions
of OTP.

link Sets a link to the parent process (like spawn_1ink/3 does).

{priority, Level} Sets the priority of the new process. Equivalent to executing
process_flag(priority, Level) in the start function of the new process, except
that the priority will be set before the process is scheduled in the first time.

{fullsweep._after, Number} The Erlang runtime system uses a generational garbage
collection scheme, using an “old heap” for data that has survived at least one
garbage collection. When there is no more room on the old heap, a fullsweep
garbage collection will be done.

Using the fullsweep_after option, you can specify the maximum number of
generational collections before forcing a fullsweep even if there is still room on the
old heap. Setting the number to zero effectively disables the general collection
algorithm, meaning that all live data is copied at every garbage collection.

Here are a few cases when it could be useful to change fullsweep_after. Firstly,
if you want binaries that are no longer used to be thrown away as soon as possible.
(Set Number to zero.) Secondly, a process that mostly have short-lived data will be
fullsweeped seldom or never, meaning that the old heap will contain mostly
garbage. To ensure a fullsweep once in a while, set Number to a suitable value such
as 10 or 20. Thirdly, in embedded systems with limited amount of RAM and no
virtual memory, you might want to preserve memory by setting Number to zero.
(You probably want to the set the value globally. See system_flag/2 [page 113].)

Kernel Application (KERNEL) 111

erlang Kernel Reference Manual

{min_heap_size, Size} Gives a minimum heap size in words. Setting this value
higher than the system default might speed up some processes because less garbage
collection is done. Setting too high value, however, might waste memory and slow
down the system due to worse data locality. Therefore, it is recommended to use
this option only for fine-tuning an application and to measure the execution time
with various Size values.

spawn_opt (Node, Module, Function, ArgumentList, Options)

Works like spawn_opt/4, except that the process is spawned at Node. If an attempt is
made to spawn a process on a node which does not exist, a useless pid is returned, and
an EXIT signal will be received.

split_binary(Binary, Pos)

Returns a tuple which contains two binaries which are the result of splitting Binary
into two parts at position Pos. This is not a destructive operation. After this operation,
there are three binaries altogether. Returns a tuple consisting of the two new binaries.
For example:

1> B = list_to_binary("0123456789").
<<48,49,50,51,52,53,54,55,56,57>>

2> size(B).

10

3> {B1, B2} = split_binary(B,3).
{<<48,49,50>>,

<<51,52,53,54,55,56,57>>}
4> size(B1).
3
5> size(B2).
7

Failure: badarg if Binary is not a binary, or Pos is not an integer or is out of range.

erlang:start_timer(Time, Proc, Msg)

Time iS a non-negative integer, Proc is either a pid or an atom, and Msg is any Erlang
term. The function returns a reference.

After Time ms, start_timer/3 sends the tuple {timeout, Ref, Msg} to Proc, where
Ref is the reference returned by start_timer/3.

If Proc is an atom, it is supposed to be the name of a registered process. The process
referred to by the name is looked up at the time of delivery. No error is given if the
name does not refer to a process. See also send_after/3 and cancel timer/1.

Limitations: Proc must be a process on the local node. The timeout value must fit in 32
bits.

Failure: badarg if any arguments are of the wrong type, or do not obey the limitations
noted above.

statistics(Type)

Returns information about the system. Type is an atom which is one of:

112 Kernel Application (KERNEL)

Kernel Reference Manual erlang

run_queue Returns the length of the run queue, that is the number of processes that
are ready to run.

runtime Returns {Total Run Time,Time Since Last_Call}.

wall_clock Returns {Total Wallclock.Time, Wallclock. Time Since Last_Call}.
wall_clock can be used in the same manner as the atom runtime, except that real
time is measured as opposed to runtime or CPU time.

reductions Returns {Total_Reductions, Reductions_Since_Last_Call}.

garbage_collection Returns {Number_of_GCs,Words Reclaimed,0}. This
information may not be valid for all implementations.

All times are in milliseconds.

> statistics(runtime).

{1690, 1620}

> statistics(reductions).

{2046, 11}

> statistics(garbage_collection).
{85, 23961, 0}

Failure: badarg if Type is not one of the atoms shown above.

erlang:suspend process(Pid)

Suspends the process Pid.

Warning:
This BIF is intended for debugging only.

erlang:system flag(Flag, Value)

This BIF sets various system properties of the Erlang node. If Flag is a valid name of a
system flag, its value is set to Value, and the old value is returned.

The following values for Flag are currently allowed:

backtrace depth Sets the maximum depth of call stack backtraces in the exit reason
element of *EXIT’ tuples.

fullsweep_after The value of the fullsweep_after is an non-negative integer which
indicates how many times generational garbages collections can be done without
forcing a fullsweep collection. The value applies to new processes; processes
already running are not affected.
In low-memory systems (especially without virtual memory), setting the value to
zero can help to conserve memory.

An alternative way to set this value is through the (operating system) environment
variable ERL_FULLSWEEP_AFTER.

min heap size Sets the default minimum heap size for processes. The size is given in
words. The new min heap_size only effects processes spawned after the change of
min heap_size has been made. The min_heap_size can be set for individual
processes by use of spawn_opt() [page 111] or process_flag/2 [page 102].

Kernel Application (KERNEL) 113

erlang Kernel Reference Manual

trace_control word Sets the value of the node’s trace control word to Value. Value
should be an unsigned integer. For more information see documentation of the
[set_tcw] function in the [match specification] documentation in the ERTS User's
Guide.

Note:

erlang:system flag/2 accepts other arguments than those documented above.
These arguments have intentionally been left undocumented. This either because the
undocumented Flag argument is used for implementation of other documented
functionality, or is used for testing and debugging of the emulator. Do not use the
undocumented arguments of erlang:system flag/2, they may have undesirable
side-effects, and may be changed or removed at any time without prior notice.

erlang:system_info(What)
Types:
e What = atom() | {atom() | term()}
This BIF returns various information about the current system (emulator).
What can be one of the following terms:

allocated _areas Information about miscellaneous allocated memory areas.
A list of tuples is returned. Each tuple contains an atom describing type of
memory as first element and amount of allocated memory in bytes as second
element. In those cases when there is information present about allocated and used
memory, a third element is present. This third element contains the amount of
used memory in bytes.
erlang:system_info(allocated.areas) is intended for debugging, and the
content is highly implementation dependent. The content of the results will
therefore change when needed without prior notice.
Note: The sum of these values is not the total amount of memory allocated by the
emulator. Some values are part of other values, and some memory areas are not
part of the result. If you are interested in the total amount of memory allocated by
the emulator see erlang:memory/0 [page 91] or erlang:memory/1 [page 93].

allocator Returns {Allocator, Version, Features, Settings}.
Types:
e Allocator = atom()
e Version = [int()]
e Features = [atom()]

e Settings = [{Subsystem, [{Parameter, Value}]}]
atom()
e Parameter = atom()

e Subsystem

e Value = term()
Explanation:

e Allocator corresponds to the malloc () implementation used. If Allocator
equals undefined, the malloc () implementation used could not be identified.
Currently elib malloc and glibc can be identified.

114 Kernel Application (KERNEL)

Kernel Reference Manual erlang

e Version is a list of integers (but not a string) representing the version of the
malloc() implementation used.

e Features is a list of atoms representing allocation features used.

e Settings is a list of subsystems, their configurable parameters, and used
values. Settings may differ between different combinations of platforms,
allocators, and allocation features. Memory sizes are given in bytes.

See also the ["System Flags Effecting erts_alloc”] section in the [erts_alloc(3)]
documentation.

{allocator, Alloc} Types:
e Alloc = atom()

Returns information about the Alloc allocator. If Alloc is not a recognized
allocator, undefined is returned. If Alloc is disabled, false is returned.

Note: The information returned is highly implementation dependent and may be
changed, or removed at any time without prior notice. It was initially intended as a
tool when developing new allocators, but since it might be of interest for others it
has been briefly documented.

The returned information more or less speaks for itself once you have read the
[erts_alloc(3)] documentation, but it can be worth explaining some things. Call
counts are presented by two values. The first value is giga calls, and the second
value is calls. mbcs, and sbcs are abbreviations for, respectively, multiblock
carriers, and singleblock carriers. Sizes are presented in bytes. When it is not a size
that is presented, it is the amount of something. Sizes and amounts are often
presented by three values, the first is current value, the second is maximum value
since the last call to erlang:system_info({allocator, Alloc}), and the third is
maximum value since the emulator was started. If only one value is present, it is
the current value. fix_alloc memory block types are presented by two values.
The first value is memory pool size and the second value used memory size.

compat_rel Returns the compatibility mode of the current node as an integer. The
integer returned represents the Erlang/OTP release which the current emulator
has been set to be backward compatible with. The compatibility mode can be
configured at startup by use of the [+R] system flag (see the [erl(1)]
documentation)

creation Returns the creation of the current node as an integer. The creation is
changed when a node is restarted. The creation of a node is stored in process
identifiers, port identifiers, and references. This makes it (to some extent) possible
to distinguish between identifiers from different incarnations of a node. Currently
valid creations are integers in the range [1, 3], but this may (probably will) change
in the future. If the node is not alive O is returned.

dist Returns a binary containing a string of distribution information formatted as in
Erlang crash dumps. For more information see the ["How to interpret the Erlang
crash dumps”] chapter in the ERTS User's Guide.

dist_ctrl Returns a list of tuples {NodeName,ControllingEntity}, one entry for each
connected remote node. The NodeName is the name of the node and the
ControllingEntity is the port () or pid () responsible for the communication to
that node. More specifically, the ControllingEntity for nodes connected via
TCP/IP (the normal case) is the socket actually used in communication with the
specific node.

elibmalloc If the emulator uses the elib.malloc memory allocator, a list of
two-element tuples containing status information of elibmalloc is returned,;
otherwise, false is returned. The list currently contains the following
two-element tuples (all sizes are presented in bytes):

Kernel Application (KERNEL) 115

erlang

Kernel Reference Manual

116

{heap_size, Size} Where Size is the current heap size.

{max_alloced_size, Size} Where Size is the maximum amount of memory
allocated on the heap since the emulator started.

{alloced size, Size} Where Size is the current amount of memory allocated
on the heap.

{free_size, Size} Where Size is the current amount of free memory on the
heap.

{no_alloced blocks, No} Where No is the current number of allocated blocks on
the heap.

{no_freeblocks, No} Where No is the current number of free blocks on the
heap.

{smallest_alloced block, Size} Where Size is the size of the smallest
allocated block on the heap.

{largest_free_block, Size} Where Size is the size of the largest free block on
the heap.

fullsweep_after Returns {fullsweep.after, integer ()} which is the
fullsweep_after garbage collection setting used by default. For more information
see the garbage_collection [page 116] argument described below.

garbage _collection Returns a list describing the default garbage collection settings. A
process spawned on the current node by a spawn () or spawn_link () will use these
garbage collection settings. The default settings can be changed by use of
system_flag/2 [page 113]. spawn_opt() [page 111] can spawn a process that does
not use the default settings.

global heaps_size Returns the current size of the shared (global) heap.

heap_sizes Returns a list of integers representing valid heap sizes in words. All Erlang
heaps are sized from sizes in this list.

heap_type Returns the heap type used by the current emulator. Currently the
following heap types exist:

private Each process has a heap reserved for its use and no references between
heaps of different processes are allowed. Messages passed between processes
are copied between heaps.

shared One heap for use by all processes. Messages passed between processes are
passed by reference.

hybrid A hybrid of the private and shared heap types. A shared heap as well as
private heaps are used.

info Returns a binary containing a string of miscellaneous system information
formatted as in Erlang crash dumps. For more information see the ["How to
interpret the Erlang crash dumps”] chapter in the ERTS User's Guide.

loaded Returns a binary containing a string of loaded module information formatted as
in Erlang crash dumps. For more information see the ["How to interpret the Erlang
crash dumps”] chapter in the ERTS User's Guide.

machine Returns a string containing the Erlang machine name.

process_count Returns the number of processes currently existing on the current node
as an integer. The same value as length(processes()) returns.

process_limit Returnsthe maximum number of concurrently existing processes on
the current node as an integer. This limit can be configured at startup by use of the
[+P] system flag (see the [erl(1)] documentation)

Kernel Application (KERNEL)

Kernel Reference Manual erlang

procs Returns a binary containing a string of process and port information formatted as
in Erlang crash dumps. For more information see the ["How to interpret the Erlang
crash dumps”] chapter in the ERTS User's Guide.

system version Returns a string containing the emulator type and version as well as
some important properties such as the size of the thread pool, etc.

system architecture Returns a string containing the processor and OS architecture
the emulator is built for.

threads Returns true if the emulator has been compiled with thread support;
otherwise, false is returned.

thread pool_size Returns the number of threads used for driver calls as an integer.

trace_control word Returns the value of the node's trace control word. For more
information see documentation of the [get_tcw] function in the [match
specification] documentation in the ERTS User's Guide.

version Returns a string containing the version number of the emulator.

wordsize Returns the word size in bytes as an integer, i.e. on a 32-bit architecture 4 is
returned, and on a 64-bit architecture 8 is returned.

Note:

erlang:system_info/1 accepts other arguments than those documented above.
These arguments have intentionally been left undocumented. This either because the
undocumented argument is used for implementation of other documented
functionality, or is used for testing and debugging of the emulator. Do not use the
undocumented arguments of erlang:system info/1, they may have undesirable
side-effects, and may be changed or removed at any time without prior notice.

Failure: badarg if What is not either one of the arguments documented above or one of
the undocumented arguments.

erlang:systemmonitor (MonitorPid, Options)

Sets system performance monitoring options. MonitorPid is a local pid that will receive
system monitor messages, and Options is a list of monitoring options:

{long_gc, Time} If a garbage collection in the system takes at least Time wallclock
milliseconds, a message {monitor,GcPid,long gc,Info} is sent to MonitorPid.
GcPid is the pid that was garbage collected and Info is a list of two-element tuples
describing the result of the garbage collection. One of the tuples is {timeout,
GcTime} where GeTime is the actual time for the garbage collection in milliseconds.
The other are the tuples tagged with heap_size, stack_size, mbuf_size and
heap_block_size from the gc_start trace message (see erlang:trace/3).

{large heap, Size} If a garbage collection in the system results in the allocated size
of a heap being at least Size words, a message {monitor, GcPid, large heap,
Info} is sent to MonitorPid. GePid and Info are the same as for long _gc above,
except that the tuple tagged with timeout is not present.

busy_port If a process in the system gets suspended because it sends to a busy port, a
message {monitor, SusPid, busy_port, Port} issent to MonitorPid. SusPid is
the pid that got suspended when sending to Port.

Kernel Application (KERNEL) 117

erlang Kernel Reference Manual

busy_dist_port If a process in the system gets suspended because it sends to a process
on a remote node whose inter-node communication was handled by a busy port, a
message {monitor, SusPid, busy_port, Port} issent to MonitorPid. SusPid is
the pid that got suspended when sending through the inter-node communication
port Port.

Returns the previous system monitor settings just like erlang:systemmonitor/O0.

Note:

If a monitoring process gets so large that it itself starts to cause system monitor
messages when garbage collecting, the messages will enlargen the process's message
gueue and probably make the problem worse.

Keep the monitoring process neat and do not set the system monitor limits too tight.

erlang:systemmonitor ({MonitorPid, Options})

The same as erlang:system monitor (MonitorPid, Options).

erlang:systemmonitor (undefined)

Clears all system monitoring set by erlang: system monitor/2.
Returns the previous system monitor settings just like erlang:system monitor/0.

erlang:systemmonitor()

Returns the current system monitoring settings set by erlang:systemmonitor/2 as
{MonitorPid, Options}. The order of the options may be different from the one that
was set.

term_to_binary(Term)

This BIF returns the encoded value of any Erlang term and turns it into the Erlang
external term format. It can be used for a variety of purposes, for example writing a
term to a file in an efficient way, or sending an Erlang term to some type of
communications channel not supported by distributed Erlang.

Returns a binary data object which corresponds to an external representation of the
Erlang term Term.

term_to_binary(Term, Options)

This BIF returns the encoded value of any Erlang term and turns it into the Erlang
external term format. If the Options list contains the atom compressed, the external
term format will be compressed. The compressed format is automatically recognized by
binary_to_term/1in R7.

Returnsa binary data object which corresponds to an external representation of the
Erlang term Term.

Failure: badarg if Options is not a list or if contains something else than the supported
flags (currently only the atom compressed).

118 Kernel Application (KERNEL)

Kernel Reference Manual erlang

throw (Any)

time ()

t1(List)

A non-local return from a function. If evaluated within a catch, catch will return the
value Any.

> catch throw({hello, there}).
{hello, there}

Failure: nocatch if not evaluated within a catch.

Returns the tuple {Hour, Minute, Second} of the current system time. The time zone
correction is implementation-dependent.

> time().
{9, 42, 44}

Returns the tail of List, that is the list minus the first element.

> tl([geesties, guilies, beasties]).
[guilies, beasties]

Allowed in guard tests.
Failure: badarg if List is the empty list [], or is not a list.

erlang:trace(PidSpec, How, Flaglist)

Turns on (if How == true) or off (if How == false) the trace flags in Flaglist for the
process or processes represented by PidSpec. PidSpec is either a pid for a local process,
or one of the following atoms:

existing All processes currently existing.

new All processes that will be created in the future.
all All currently existing processes and all processes that will be created in the future.

Flaglist can contain any number of the following atoms (the “message tags” refers to
the list of messages following below):

all All trace flags except {tracer, Tracer} and cpu_timestamp that are in their
nature different than the others.

send Traces the messages the process Pid sends. Message tags: send,
send_to non_existing process.

‘receive’ Traces the messages the process Pid receives. Message tags: ’receive’.

procs Traces process related events, for example spawn, link, exit. Message tags:
spawn, exit, register, unregister, 1link, unlink, getting linked,
getting unlinked.

call Traces function calls to functions that tracing has been enabled for. Use the
erlang:trace_pattern/3 [page 123] BIF to enable tracing for functions. Message tags:
call, return_from.

Kernel Application (KERNEL) 119

erlang Kernel Reference Manual

silent To be used in conjunction with the call trace flag. Sets the call trace message
mode for the process Pid to silent, i.e, the call tracing is active, match specs are
executed as normal, but no call trace messages are generated.
The silent mode can, of course, be inhibited by executing erlang:trace/3
without the silent flag, but also by a match spec executing the {silent, false}
function.

return_to Traces the actual return of a process from a traced function back to its caller.
This return trace only works together with call trace and functions traced with the
local option to erlang:trace_pattern/3 [page 123]. The semantics is that a
message is sent when a call traced function actually returns, i.e., when a chain of
tail recursive calls is ended. There will be only one trace message sent per chain of
tail recursive calls, why the properties of tail recursiveness for function calls are
kept while tracing with this flag. Using call and return_to trace together makes it
possible to know exactly in which function a process executes at any time.
To get trace messages containing return values from functions, use the
{return_trace} match_spec action instead.

Message tags: return-_to.

running Traces scheduling of processes. Message tags: in, out.

garbage _collection Traces garbage collections of processes. Message tags: gc_start,
gc_end.

timestamp Make a time stamp in all trace messages. The time stamp (Ts) is of the same
form as returned by erlang:now().

cpu_timestamp A global trace flag for the Erlang node that makes all trace timestamps
be in CPU time, not wallclock. It is only allowed with PidSpec==all. If the host
machine operating system does not support high resolution CPU time
measurements, trace/3 exits with badarg.

arity Instead of {Mod, Fun, Args} in call traces, there will be {Mod, Fun, Arity}.

set_on_spawn Makes any process created by Pid inherit the flags of Pid, including the
set_on_spawn flag.

set_on first_spawn Makes the first process created by Pid inherit the flags of Pid
That process does not inherit the set_on first_spawn flag.

set_on_link Makes any process linked by Pid inherit the flags of Pid, including the
set_on link flag.

set_on_first_link Makes the first process linked to by Pid inherit the flags of Pid.
That process does not inherit the set_on_first_link flag.

{tracer, Tracer} Tracer should be the pid for a local process or the port identifier
for a local port. All trace messages will be sent to the given process or port. If this
flag is not given, trace messages will be sent to the process that called
erlang:trace/3.

The effect of combining set_on_first_link with set_on_link is the same as having
set_on_first_link alone. Likewise for set_on_spawn and set_on_first_spawn.

If the timestamp flag is not given, the tracing process will receive the trace messages
described below. If the timestamp flag is given, the first element of the tuple will be
trace_ts and the timestamp will be in the last element of the tuple.

{trace, Pid, ’receive’, Message} When the traced Pid receives something.
{trace, Pid, send, Msg, To} When Pid sends a message.

120 Kernel Application (KERNEL)

Kernel Reference Manual erlang

{trace, Pid, send_to_non existing process, Msg, To} When Pid sends a
message to a non existing process.

{trace, Pid, call, {M,F,A}} When Pid makes a function/BIF call. The return
values of calls are never supplied, only the call and its arguments.

{trace, Pid, return_to, {M,F,A}} When Pid returns to function {M,F,A}. This
message will be sent if both the call and the return_to flags are present and the
function is set to be traced on local function calls. The message is only sent when
returning from a chain of tail recursive function calls where at least one call
generated a call trace message (i.e., the functions match specification matched
and {message,false} was not an action).

{trace, Pid, return_from, {M,F,A}, ReturnValue} When Pid returns from the
function {M,F, A} This trace message is sent when the call flag has been specified,
and the function has a match specification with a return_trace action.

{trace, Pid, spawn, Pid2, {M, F, A}} When Pid spawns a new process Pid2. {M,
F, A} are the initial function call with arguments for the new process.

Note that A is supposed to be the argument list, but may be any term in the case of
an erroneous spawn.

{trace, Pid, exit, Reason} When Pid exits with reason Reason.

{trace, Pid, link, Pid2} When Pid links to a process Pid2.

{trace, Pid, unlink, Pid2} When Pid removes the link from a process Pid2.

{trace, Pid, getting linked, Pid2} When Pid gets linked to a process Pid2.

{trace, Pid, getting unlinked, Pid2} When Pid gets unlinked from a process
Pid2.

{trace, Pid, register, Name} When Pid gets the name Name registered.

{trace, Pid, unregister, Name} When Pid gets the name Name unregistered. Note
that this is done automatically when a registered process exits.

{trace, Pid, in, {M,F,A} | 0} When Pid is scheduled to run. The process will run
in function {M,F,A}, where A is always the arity. On some rare occasions the
current function cannot be determined, then the last element is 0.

{trace, Pid, out, {M,F,A} | 0} When Pid is scheduled out. The process was
running in function {M,F,A} where A is always the arity. On some rare occasions
the current function cannot be determined, then the last element is 0.

{trace, Pid, gc_start, Info} Sent when garbage collection is about to be started.
Info is a list of two-element tuples, where the first element is a key, and the
second is the value. You should not depend on the tuples have any defined order.
Currently, the following keys are defined.
heap_size The size of the used part of the heap.
old heap_size The size of the used part of the old heap.
stack_size The actual size of the stack.
recent_size The size of the data that survived the previous garbage collection.
mbuf_size The combined size of message buffers associated with the process.

All sizes are in words.

{trace, Pid, gc_end, Info} Sent when garbage collection is finished. Info contains
the same kind of list as in the gc_start message, but the sizes reflect the new sizes
after garbage collection.

Kernel Application (KERNEL) 121

erlang Kernel Reference Manual

If the tracing process dies, the flags will be silently removed.

Only one process can trace a particular process. For this reason, attempts to trace an
already traced process will fail.

Returns: A number indicating the number of processes that matched PidSpec. If
PidSped is a pid, the return value will be 1. If PidSpec is all or existing the return
value will be the number of processes running, excluding tracer processes. If PidSpec is
new, the return value will be 0.

Failure: badarg if bad arguments are given. Or if arguments are not supported, for
example cpu_timestamp is not supported on all platforms.

erlang:trace_info(PidOrFunc, Item)

Returns trace information about a process or function.

To get information about a process, Pid0rFunc should be a pid or the atom new. The
atom new means that the default trace state for processes to be created will be returned.
Item must have one of the following values:

flags Return a list of atoms indicating what kind of traces is enabled for the process.
The list will be empty if no traces are enabled, and one or more of the followings
atoms if traces are enabled: send, ’receive’, set_on_spawn, call, return_to,
procs, set_on_first_spawn, set_on_link, running, garbage_collection,
timestamp, and arity. The order is arbitrary.

tracer Return the identifier for process or port tracing this process. If this process is
not being traced, the return value will be [].

To get information about a function, Pid0rFunc should be a three-element tuple:
{Module, Function, Arity} or the atom on_load. No wildcards are allowed. Return
undefined if the function does not exist and false if the function is not traced at all.
Item must have one of the following values:

traced Return global if this function is traced on global function calls, 1ocal if this
function is traced on local function calls (i.e local and global function calls), and
false if neither local nor global function calls are traced.

match_spec Return the match specification for this function, if it has one. If the
function is locally or globally traced but has no match specification defined, the
returned value is [].

meta Return the meta trace tracer process or port for this function, if it has one. If the
function is not meta traced the returned value is false, and if the function is meta
traced but has once detected that the tracer proc is invalid, the returned value is
(1.

meta match_spec Return the meta trace match specification for this function, if it has

one. If the function is meta traced but has no match specification defined, the
returned value is [].

call_count Return the call count value for this function or true for the pseudo
function on_load if call count tracing is active. Return false otherwise. See also
erlang:trace_pattern/3 [page 123].

all Return a list contaning the {Item, Value} tuples for all other items, or return
false if no tracing is active for this function.

122 Kernel Application (KERNEL)

Kernel Reference Manual erlang

The actual return value will be {Item, Value}, where Value is the requested
information as described above. If a pid for a dead process was given, or the name of a
non-existing function, value will be undefined.

If PidOrFunc is the on_load, the information returned refers to the default value for
code that will be loaded.

erlang:tracepattern(MFA, MatchSpec)

The same as erlang:trace pattern(MFA, MatchSpec, []), retained for backward
compatibility.

erlang:trace pattern(MFA, MatchSpec, FlaglList)

This BIF is used to enable or disable call tracing for exported functions. It must be
combined with erlang:trace/3 [page 119] to set the call trace flag for one or more
processes.

Conceptually, call tracing works like this: Inside the Erlang virtual machine there is a set
of processes to be traced and a set of functions to be traced. Tracing will be enabled on
the intersection of the set. That is, if a process included in the traced process set calls a
function included in the traced function set, the trace action will be taken. Otherwise,
nothing will happen.

Use erlang:trace/3 [page 119] to add or remove one or more processes to the set of
traced processes. Use erlang:trace_pattern/2 to add or remove exported functions to
the set of traced functions.

The erlang:trace_pattern/3 BIF can also add match specifications to an exported
function. A match specification comprises a pattern that the arguments to the function
must match, a guard expression which must evaluate to true and action to be
performed. The default action is to send a trace message. If the pattern does not match
or the guard fails, the action will not be executed.

The MFA argument should be a tuple like {Module, Function, Arity} or the atom
on_load (described below). It can be the module, function, and arity for an exported
function (or a BIF in any module). The ’_’> atom can be used to mean any of that kind.
Wildcards can be used in any of the following ways:

{Mod,Func,’_’} All exported functions of any arity named Func in module Mod.
{Mod,’_?,?_?} All exported functions in module Mod.

{’-7,’_7,’_"} All exported functions in all loaded modules.

Other combinations, such as {Mod, ’_’ ,Arity}, are not allowed. Local functions will
match wildcards only if the 1ocal option is in the FlagList.

If the MFA argument is the atom on_load, the match specification and flag list will be
used on all modules that are newly loaded.

The MatchSpec argument can take any of the following forms:

false Disable tracing for the matching function(s). Any match specification will be
removed.

true Enable tracing for the matching function(s).

MatchSpecList A list of match specifications. An empty list is equivalent to true. See
the ERTS User’s Guide for a description of match specifications.

Kernel Application (KERNEL) 123

erlang Kernel Reference Manual

restart For the FlaglList option call _count: restart the existing counters. The
behaviour is undefined for other FlagList options.

pause For the FlagList option call _count: pause the existing counters. The
behaviour is undefined for other FlagList options.

The FlagList parameter is a list of options. The following options are allowed:

global Turn on or off call tracing for global function calls (i.e., calls specifying the
module explicitly). Only exported functions will match and only global calls will
generate trace messages. This is the default.

local Turn on or off call tracing for all types of function calls. Trace messages will be
sent whenever any of the specified functions are called, regardless of how they are
called. If the return_to flag is set for the process, a return_to message will also be
sent when this function returns to its caller.

meta | {meta, Pid} Turn on or off meta tracing for all types of function calls. Trace
messages will be sent to the tracer process or port Pid whenever any of the
specified functions are called, regardless of how they are called. If no Pid is
specified, self () is used as a default tracer process.

Meta tracing traces all processes and does not care about the process trace flags set
by trace/3, the trace flags are instead fixed to [call, timestamp].

The match spec function {return_trace} works with meta trace and send its trace
message to the same tracer process.

call count Starts (MatchSpec == true) or stops (MatchSpec == false) call count
tracing for all types of function calls. For every function a counter is incremented
when the function is called, in any process. No process trace flags need to be
activated.
If call count tracing is started while already running, the count is restarted from
zero. Running counters can be paused with MatchSpec == pause. Paused and
running counters can be restarted from zero with MatchSpec == restart.
The counter value can be read with erlang:trace_info/2 [page 122].

The global and local options are mutually exclusive and global is the default (if no
options are specified). The call_count and meta options perform a kind of local tracing,
and can also not be combined with global. A function can be either globally or locally
traced. If global tracing is specified for a specified set of functions; local, meta and call
count tracing for the matching set of local functions will be disabled, and vice versa.

When disabling trace, the option must match the type of trace that is set on the
function, so that local tracing must be disabled with the 1ocal option and global tracing
with the global option (or no option at all), and so forth.

There is no way to directly change part of a match specification list. If a function has a
match specification, you can replace it with a completely new one. If you need to
change an existing match specification, use the erlang:trace_info/2 [page 122] BIF to
retrieve the existing match specification.

Returns the number of exported functions that matched the MFA argument. This will be
zero if none matched at all.

Failure: badarg for invalid MFA or MatchSpec.

trunc (Number)

Returns an integer by the truncation of Number.

124 Kernel Application (KERNEL)

Kernel Reference Manual erlang

> trunc(5.5).
5

Allowed in guard tests.
Failure: badarg if Number is not a number.

tuple_to_list(Tuple)
Returns a list which corresponds to Tuple. Tuple may contain any valid Erlang terms.

> tuple_to_list({share, {’EricssonB’, 163}}).
[share, {’EricssonB’, 163}]

Failure: badarg if Tuple is not a tuple.

erlang:universaltime()

Returns the current date and time according to Universal Time Coordinated (UTC),
also called GMT, in the form {{Year, Month, Day}, {Hour, Minute, Second}} if
supported by the underlying operating system. If not, erlang:universaltime() is
equivalent to erlang:localtime().

> erlang:universaltime().
{{1996,11,6},{14,18,43}}

erlang:universaltime_to_localtime(DateTime)

Converts UTC date and time in DateTime to local date and time if supported by the
underlying operating system. Otherwise, no conversion is done, and DateTime is
returned. The return value is of the form {{Year, Month, Day}, {Hour, Minute,
Second}}.

> erlang:universaltime to_localtime({{1996,11,6},{14,18,43}}).
{{1996,11,7},{15,18,43}}

Failure: badarg if the argument is not a valid date and time tuple {{Year, Month,
Day}, {Hour, Minute, Second}}.

unlink (Pid)
Removes a link, if there is one, from the calling process to another process given by the
argument Pid.
Returns true. Will not fail if not linked to Pid, or if Pid does not exist.
Failure: badarg if Pid is not a pid.
unregister (Name)

Removes the registered name for a process or port, given by the atom argument Name.
Returns the atom true.

Kernel Application (KERNEL) 125

erlang Kernel Reference Manual

> unregister(db).
true

Failure: badarg if Name is not the name of a registered port or process.
Users are advised not to unregister system processes.

whereis(Name)

Returns the pid or port identifier registered under Name (See register/2). Returns
undefined if no such port or process is registered.

> whereis(user).
<0.3.1>

Failure: badarg if Name is not an atom.
erlang:yield()

Voluntarily let other processes (if any) get a chance to execute. Using yield () is similar
to receive after 1 -> ok end, except that yield() is faster.

126 Kernel Application (KERNEL)

Kernel Reference Manual error_handler

error_handler

Erlang Module

The error handler module defines what happens when certain types of errors occur.

Exports

undefined function(Module, Func, ArgList) -> term()
Types:
e Module = Func = atom()
e ArgList = [term()]

This function is evaluated if a call is made to Module:Func (ArgList) which is
undefined. This function is evaluated inside the process making the original call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Func (ArgList) call is returned.

Otherwise, it returns, if possible, the value of apply (Module, Func, ArgList) after an
attempt has been made to autoload Module. If this is not possible, the function calling
Module:Func (ArgList) is exited.

undefined lambda(Module, Fun, Arglist) -> term()
Types:

e Module = Func = atom()
e ArgList = [term()]
This function is evaluated if a call is made to Fun (ArgList) when the module defining

the fun is not loaded. This function is evaluated inside the process making the original
call.

If Module is interpreted, the interpreter is invoked and the return value of the
interpreted Fun (ArgList) call is returned.

Otherwise, it returns, if possible, the value of apply (Fun, ArgList) after an attempt
has been made to autoload Module. If this is not possible, the process calling the fun is
exited.

Kernel Application (KERNEL) 127

error_handler

Kernel Reference Manual

128

Notes

The code in error_handler is complex and should not be changed without fully
understanding the interaction between the error handler, the init process of the code
server, and the 1/0 mechanism of the code.

Changes in the code which may seem small can cause a deadlock as unforeseen
consequences may occur. The use of input is dangerous in this type of code.

Kernel Application (KERNEL)

Kernel Reference Manual error_logger

error_logger

Erlang Module

The error logger is an event manager behaviour which runs with the registered name
error_logger (See more about event managers/handlers in the Design Principles
chapter and in gen_event(3)). All error messages from the Erlang runtime system are
sent to this process as messages with the format {emulator, Gleader, Str}, where
Str is a string which describes the error in plain English. The Gleader argument is the
group leader process of the process causing the error. This is useful in a distributed
setting as all error messages can be returned to the error_logger process on the
originating node.

Beginning with release R9C of Erlang/OTP, a new class of events, warnings, are added.
By default, a warning is similar to an error, i.e. it shows up as an error report in the logs.
By using the emulator switch +W {e|w|i} one can map warnings to be tagged either as
errors (default), warnings (may require rewrite of custom error loggers) or infos.

How warnings are mapped in the running system can be determined by use of the
function error_logger:warning map/0, see below.

All errors detected by the standard libraries are reported with the error_logger
functions. Errors detected in application modules should also be reported through the
error_logger in order to get uniform reports.

Associated event handlers can be used to add private types of reports to the
error_logger. An event handler which recognizes the specialized report type is first
added to the error_logger (add_report_handler/1,2)

The standard configuration of the error_logger supports the logging of errors to the
tty, or to a specified file. There is also a multi-file logger which logs all events, not
only the standard error events, to several files. (see log-mf_h(3)).

All error events are tagged with the group leader Gleader in order to send the error to
the originating node.

Exports

start() -> {ok, Pid} | {error, What}

start 1link() -> {ok, Pid} | {error, What}
Types:
e Pid = pid()
¢ What = {already_started, Pid} | term()

Starts the error_logger. The start_link function should be used when the
error_logger is supervised

error_report (Report) -> ok

Kernel Application (KERNEL) 129

error_logger Kernel Reference Manual

Types:

e Report = [{Tag, Data}] | [term()] | string() | term()

e Tag = term()

e Data =term()

Sends a standard error report event to the error logger. This report event is handled by
the standard event handler. The report is formatted as follows:

Tagl: Datal
Tag2: Data2
Terml
Term?2

If Report is a string(), the string is written.
The report is written with an error heading.

error_report (Type,Report) -> ok
Types:
e Type =term()
¢ Report = [{Tag, Data}] | [term()] | string() | term()
e Tag =term()
e Data =term()

Sends a user defined error report type event to the error logger. If specialized error
handling is required, an event handler recognizing this Type of report must first be
added to the error_logger.

It is recommended that the Report follows the same structure as error _report/1
above.

info_report (Report) -> ok
Types:
e Report = [{Tag, Data}] | [term()] | string() | term()
e Tag = term()
e Data = term()

Sends an information report to the error logger. This report event is handled by the
standard event handler. The report is formatted as follows:

Tagl: Datal
Tag2: Data2
Terml
Term?2

If Report is a string(), the string is written.
The report is written with an information heading.

info_report(Type,Report) -> ok
Types:
e Type =term()

e Report = [{Tag, Data}] | [term()] | string() | term()
e Tag = term()

130 Kernel Application (KERNEL)

Kernel Reference Manual error_logger

e Data = term()

Sends a user defined information report type event to the error logger. If specialized
error handling is required, an event handler recognizing this Type of report must first be

added to the error_logger.
It is recommended that the Report follows the same structure as info_report/1 above.

error msg(Format) -> ok
error msg(Format,Args) -> ok
format (Format,Args) -> ok
Types:
e Format = string()
e Args = [term()]

Sends an error event to the error logger. The Format and Args arguments are the same
as the arguments of io:format/2. These events are handled by the standard event

handler.

infomsg(Format) -> ok
infomsg(Format,Args) -> ok
Types:
e Format = string()
e Args = [term()]

Sends an information event to the error logger. The Format and Args arguments are the
same as the arguments of io:format/2. These events are handled by the standard event

handler.

tty(Flag) -> ok
Types:
e Flag = true | false

Enables or disables error printouts to the tty. If Flag is false, all text that the error
logger would have sent to the terminal is discarded. If Flag is true, error messages are

sent to the terminal screen.

logfile(Request) -> ok | FileName | {error, What}

Types:

e Request = {open, FileName} | close | filename
e FileName = atom() | string()

e What = term()

This function makes it possible to append a copy of all standard error printouts to a file.
It can be used in combination with the tty(false) function in to have a silent system,

where all errors are logged to a file.
Request can be:

e {open, Filename}. Opens the file Filename to store a copy of all error messages.
Returns ok, or {error, What}.

e close. Closes the current log file. Returns ok, or {error, What}.

Kernel Application (KERNEL) 131

error_logger Kernel Reference Manual

e filename. Returns {error, What} or FileName, where FileName is the name of
the open log file.

There can only be one active log file.

add_report_handler (Module) -> ok | Other
add_report_handler (Module,Args) -> ok | Other

Types:

e Module = atom()
e Args = term()

e Other = term()

Adds a new event handler to the error logger. The event handler is initialized by a call
to the Module:init/1 function. This function must return {ok, State}. If anything else
(Other) is returned, the handler is not added.

The report (event) handler will be called for every error event that the error logger
receives (Module:handle event/2). Errors dedicated to this handler should be handled

accordingly.

delete report_handler (Module) -> Return | {error, What}

Types:

e Module = atom()
e Return = term()
e What = term()

Deletes an error report (event) handler. The Module:terminate/2 function is called in
order to finalize the event handler. The return value of the terminate/2 function is
Return.

swap_handler(ToHandler) -> ok

Types:
e ToHandler = tty | {logfile, File}
e File = atom() | string()

The error_logger event manager is initially started with a primitive event handler
which buffers and prints the raw error events. However, this function does install the
standard event handler to be used according to the system configuration.

warning map() -> TagAtom

Types:
e TagAtom = {error|warning|info}

This function is used to determine how warnings are mapped in the current system. If
warning msg/1, warning msg/2, warning report/1 Or warning report/2 are called,
the events might be tagged either as error, warning or info, depending on the
switches used when the emulator was started (+W {ilwle}).

warning msg(Format) -> ok
warning msg(Format,Args) -> ok

132 Kernel Application (KERNEL)

Kernel Reference Manual error_logger

Types:
e Format = string()
e Args = [term()]

Works like error_msg/1 or error_msg/2 respectively, but the event might be tagged
either as error, warning or info, depending on how the emulator was started.

warning report (Report) -> ok
warning report (Type,Report) -> ok
Types:
e Type = term()
e Report = [{Tag, Data}] | [term()] | string() | term()
e Tag =term()
e Data = term()
Works like error_report/1 or error_report/2 respectively, but the event might be tagged

either as error, warning or info, depending on how the emulator was started. See
description of warnings in the introduction above.

Events

The error logger event manager forwards the following events to all added event
handlers. In the events that follow, Gleader is the group leader process identity of the
error reporting process, and EPid is the process identity of the error_logger. All other
variables are described with the function in which they appear.

{error_report, Gleader, {Epid, std_error, Report}} This event is generated
when the error_report/1 function is called.

{error_report, Gleader, {Epid, Type, Report}} This event is generated when
the error_report/2 function is called.

{info_report, Gleader, {Epid, std_info, Report}} This event is generated when
the info_report/1 function is called.

{info_report, Gleader, {Epid, Type, Report}} This event is generated when the
info_report/2 function is called.

{error, Gleader, {EPid, Format, Args}} This event is generated when the
error msg Or format functions are called.

{infomsg, Gleader, {EPid, Format, Args}} This event is generated when the
info_msg functions are called.

{info, Gleader, {EPid, term(), [1}} This structure is only used by the init
process for erroneously received messages.

{warning msg, Gleader, {EPid, Format, Args}} This structure only appears when
the emulator is started with the +Ww w switch, as a result of someone calling
warning msg/1 Or warning msg/2.

{warning report, Gleader, {Epid, Type, Report}} This structure only appears
when the emulator is started with the +W w switch, as a result of someone calling
warning report/1 Or warning report/2.

Kernel Application (KERNEL) 133

error_logger Kernel Reference Manual

Note:

All events issued by a process which has the group leader Gleader process located on
another node will be passed to this node by the error_logger.

See Also

gen_event(3), log-mf_h(3)

134 Kernel Application (KERNEL)

Kernel Reference Manual file

file

Erlang Module

The module file provides an interface to the file system.

Most functions have a name argument such as a file name or directory name, which is
either an atom, a string, or a deep list of characters, lists, and atoms. The filename
module accepts filenames in the same format.

A path is a list of directory names. If the functions are successful, they return ok, or
{ok, Value}.

If an error occurs, the return value has the format {error, Reason}. Reason is an atom
which is named from the Posix error codes used in Unix, and in the runtime libraries of
most C compilers. In the following descriptions of functions, the most typical error
codes are listed. By matching the error code, applications can use this information for
error recovery. To produce a readable error string, use format_error/1.

On operating systems with thread support (Solaris and Windows), it is possible to let
file operations be performed in threads of their own, allowing other Erlang processes to
continue executing in parallel with the file operations. See the command-line option +A
in the manual page for erl.

EXpOI’tS
change group(Filename, Gid)
Change group of a file. See write file info/2.

change owner (Filename, Uid)

Change owner of a file. See write file info/2.

change owner (Filename, Uid, Gid)

Change owner and group of a file. See write file info/2.

change_time(Filename, Mtime)

Change the modification and access times of a file. See write file_info/2.

change time(Filename, Mtime, Atime)

Change the modification and access times of a file. See write file_info/2.

close(IoDevice)

Kernel Application (KERNEL) 135

file

Kernel Reference Manual

Closes the file referenced by IoDevice. It mostly returns ok, expect for some severe
errors such as out of memory.

Note that if the option delayed write was used when opening the file, close/1 might
return an old write error and not even try to close the file. See open/2.

consult (Filename)

copy(Source,

copy (Source,

Opens file Filename and reads all the Erlang terms in it. Returns one of the following:

{ok, TermList} The file was successfully read.

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

Destination)

Copies the contents of Source to Destination. Source and Destination are either
filenames or open file references from e.g open/2.

The same as copy/3 but with infinite byte count.

Destination, ByteCount)

Copies ByteCount bytes from Source to Destination. Source and Destination are
either filenames or open file references from e.g open/2.

If Source is a tuple {Filename, ModeList} where ModeList is a mode list as for
open/2, the source is opened with read mode prepended to the mode list before the
copy, and closed when done.

If Source is a filename, it is interpreted as {Source, [1}. The file is thereby read from
the beginning.

If Destinationis a tuple {Filename, ModeList} where ModeList is a mode list as for
open/2, the destination is opened with write mode prepended to the mode list before
the copy, and closed when done.

If Destination is a filename, it is interpreted as {Destination, [1}. Thisimplies that
the previous file contents are overwritten.

If both Source and Destination are filenames or {Filename, ModeList} tuples, the
files are opened with [raw, read, binary] and [raw, write, binary] prepended to
their mode lists, respectively, to optimize the copy.

Returns {ok, BytesCopied} where BytesCopied is the number of bytes that actually
was copied, which may be less than ByteCount if end of file was encountered on the
source. If the operation fails, {error, Reason} is returned.

Typical error reasons: As for open/2 if a file had to be opened, and as for read/2 and
write/2.

del_dir(DirName)

136

Tries to delete the directory DirName. The directory must be empty before it can be
deleted. Returns ok if successful.

Typical error reasons are:

Kernel Application (KERNEL)

Kernel Reference Manual file

eacces Missing search or write permissions for the parent directories of DirName.
eexist The directory is not empty.
enoent The directory does not exist.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned instead.

einval Attempt to delete the current directory. On some platforms, eacces is
returned instead.

delete(Filename)

Tries to delete the file Filename. Returns ok if successful.
Typical error reasons are:

enoent The file does not exist.
eacces Missing permission for the file or one of its parents.
eperm The file is a directory and the user is not super-user.

enotdir A component of the file name is not a directory. On some platforms, enocent
is returned instead.

eval (Filename)
Opens the file Filename and evaluates all the expression sequences in it. It returns one
of the following:

ok The file was read and evaluated. The actual result of the evaluation is not returned;
any expression sequence in the file must be there for its side effect.

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

eval (Filename, Bindings)

The same as eval/1 but the variable bindings Bindings are used in the evaluation. See
erl_eval(3) about variable bindings.

file_info(Filename)

Note:
This function is obsolete. Use read_file_info instead.

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise
{error, Reason}. FileInfo is a tuple with the following fields:

{Size,Type,Access,AccessTime,ModifyTime,UnUsedl,UnUsed2}

Size The size of the file in bytes.

Kernel Application (KERNEL) 137

file

Kernel Reference Manual

Type The type of file which is device, directory, regular, Or other.

Access The current system access to the file, which is one of the atoms read, write,
read_write, Or none.

AccessTime The last time the file was read, shown in the format {Year, Month, Day,
Hour, Minute, Second}.

ModifyTime The last time the file was written, shown in the format {Year, Month,
Day, Hour, Minute, Second}.

UnUsed1, UnUsed2 These fields are not used, but reserved for future expansion. They
probably contain unused.

Typical error reasons: Same as for read file info/1.

format_error (ErrorDescriptor)

get_cwd()

Given the error reason returned by any function in this module, it returns a descriptive
string of the error in English.

Returns {ok, CurDir}, where CurDir (a string) is the current working directory of the
file server.

Note:
In rare circumstances, this function can fail on Unix. It may happen if read
permission does not exist for the parent directories of the current directory.

Typical error reasons are:

eacces Missing read permission for one of the parents of the current directory.

get_cwd(Drive)

Drive should be of the form “Letter:”, for example “c:”. Returns {ok, CurDir} or
{error, Reason}, where CurDir (a string) is the current working directory of the drive
specified.

This function returns {error, enotsup} on platforms which have no concept of
current drive (Unix, for example).

Typical error reasons are:

enotsup The operating system have no concept of drives.
eacces The drive does not exist.
einval The format of Drive is invalid.

ipread_s32bu_p32bu(IoDevice, Location, MaxSize)

138

Kernel Application (KERNEL)

Kernel Reference Manual file

Specialised indirect read function for Dets. Equivalent to pread/3 of a header from
Location followed by another pread/3 of the buffer specified by the header.

Warning:
This function is not intended to be used by others than Dets. It is therefore not well
documented.

list_dir(DirName)

Lists all the files in a directory. Returns {ok, FilenameList} if successful. Otherwise,
it returns {error, Reason}. FilenameList is a list of the names of all the files in the
directory. Each name is a string. The names are not sorted.

Typical error reasons are:

eacces Missing search or write permissions for DirName or one of its parent directories.
enoent The directory does not exist.

make_dir (DirName)

Tries to create the directory DirName. Missing parent directories are NOT created.
Returns ok if successful.

Typical error reasons are:

eacces Missing search or write permissions for the parent directories of DirName.
eexist There is already a file or directory named DirName.

enoent A component of DirName does not exist.

enospc There is a no space left on the device.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned instead.

make link(Existing, New)

Makes a hard link from Existing to New, on platforms that support links (Unix). This
function returns ok if the link was successfully created, or {error,Reason}. On
platforms that do not support links, {error,enotsup} will be returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Existing or New.
eexist new already exists.
enotsup Hard links are not supported on this platform.

make_symlink (Namel, Name2)

Kernel Application (KERNEL) 139

file Kernel Reference Manual

This function creates a symbolic link Name2 to the file or directory Name1, on platforms
that support symbolic links (most Unix systems). Name1 need not exist. This function
returns ok if the link was successfully created, or {error,Reason}. On platforms that
do not support symbolic links, {error,enotsup} will be returned.

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Existing or New.
eexist new already exists.
enotsup Symbolic links are not supported on this platform.

open(Filename, ModeList)

Opens the file Filename in the mode determined by ModeList. ModeList may contain
one or more of the following items:

read The file, which must exist, is opened for reading.

write The file is opened for writing. It is created if it does not exist. Otherwise, it is
truncated (unless combined with read).

append The file will be opened for writing, and it will be created it does not exist.
Every write operation to a file openeded with append will take place at the end of
the file.

raw The raw option allows faster access to a file, because no Erlang process is needed to
handle the file. However, a file opened in this way has the following limitations:

e The functions in the io module cannot be used, because they can only talk to
an Erlang process. Instead, use the read/2 and write/2 functions.

e Only the Erlang process which opened the file can use it.

e A remote Erlang file server cannot be used; the computer on which the Erlang
node is running must have access to the file system (directly or through NFS).

binary This option can only be used if the raw option is specified as well. When
specified, read operations on the file using the read/2 function will return binaries
rather than lists.

{delayed write, Size, Delay} If this option is used, the data in subsequent write/2
calls is buffered until there are at least Size bytes buffered, or until the oldest
buffered data is Delay milliseconds old. Then all buffered data is written in one
operating system call. The buffered data is also flushed before some other file
operation than write/2 is executed.

The purpose of this option is to increase performance by reducing the number of
operating system calls, so the write/2 calls should be for sizes significantly less
than Size, and not interspersed by to many other file operations, for this to
happen.

When this option is used, the result of write/2 calls may prematurely be reported
as successful, and if a write error should actually occur the error is reported as the
result of the next file operation, which is not executed.

E.g when delayed write is used, after a number of write/2 calls, close/1 might
return {error, enospc} because there was not enough space on the disc for
previously written data, and close/1 should probably be called again since the file
is still open.

delayed write The same as {delayed write, Size, Delay} with reasonable default
values for Size and Delay. (Roughly some 64 KBytes, 2 seconds)

140 Kernel Application (KERNEL)

Kernel Reference Manual file

{read_ahead, Size} This option activates read data buffering. If read/2 calls are for
significantly less than Size bytes, read operations towards the operating system are
still performed for blocks of Size bytes. The extra data is buffered and returned in
subsequent read/2 calls, giving a performance gain since the number of operating
system calls is reduced.

If read/2 calls are for sizes not significantly less than, or even greater than Size
bytes, no performance gain can be expected.

read_ahead The same as {read_ahead, Size} with a reasonable default value for
Size. (Roughly some 64 KBytes)

compressed Makes it possible to read and write gzip compressed files. Note that the
file size obtained with read file_info/1 will most probably not match the
number of bytes that can be read from a compressed file.

If both read and write are specified, the file is created if it does not exists. It is not
truncated if it exists.

Returns:

{ok, IoDevice} The file has been opened in the requested mode. IoDevice is a
reference to the file.

{error, Reason} The file could not be opened.

A file descriptor is the Pid of the process which handles the file. The file process is
linked to the process which originally opened the file. If any process to which the file
process is linked terminates, the file will be closed by the file process and the process
itself will be terminated. The file descriptor returned from this call can be used as an
argument to the 1/O functions (see io).

Note:

In previous versions of £ile, modes were given as on of the atoms read, write, Or
read_write instead of a list. This is still allowed for reasons of backwards
compatibility, but should not be used for new code. Also note that read write is not
allowed in a mode list.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file or searching one of the parent
directories.

eisdir The named file is not a regular file. It may be a directory, a fifo, or a device.

enotdir A component of the file name is not a directory. On some platforms, enocent
is returned instead.

enospc There is a no space left on the device (if write access was specified).

path_consult(Path, Filename)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The file is opened and all the terms
in it are read. The function returns one of the following:

Kernel Application (KERNEL) 141

file Kernel Reference Manual

{ok, TermList, FullName} The file was successfully read. FullName is the full name
of the file which was opened and read.

{error, enoent} The file could not be found in any of the directories in Path.

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

path_eval (Path, Filename)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The file is opened and all the
expression sequences in it are evaluated. The function returns one of the following:

{ok, FullName} The file was read. FullName is the full name of the file which was
opened and evaluated.

{error, enocent} The file could not be found in any of the directories in Path.

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

path_open(Path, Filename, Mode)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The function returns one of the
following:

{ok, IoDevice, FullName} The file was opened in the requested mode. IoDevice is a
reference to the file and FullName is the full name of the file which was opened.

{error, enoent} Filename was not found in the path.
{error, Reason} There was an error opening Filename.

path_script(Path, Filename)

Searches the path Path (a list of directory names) until the file Filename is found. If
Filename is an absolute file name, Path is ignored. The file is opened, all the expression
sequences in it are evaluated and the result value is returned. The function returns one
of the following:

{ok, Value, FullName} The file was read. FullName is the full name of the file which
was opened and evaluated with the result value Value.

{error, enocent} The file could not be found in any of the directories in Path.

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

142 Kernel Application (KERNEL)

Kernel Reference Manual file

path_script(Path, Filename, Bindings)

The same as path_script/2 but the variable bindings Bindings are used in the
evaluation. See erl_eval(3) about variable bindings.

pid2name (Pid)
If Pid is a pid previously returned from open/2, this function returns the filename, or
rather:

{ok, Filename} if this node’s file server is not a slave, the file was opened by this
node's file server, (this implies that Pid must be a local pid) and the file is not
closed. Filename is the filename in flat string format.

undefined in all other cases.

This function is meant for debugging only.

position(IoDevice, Location)

Sets the position of the file referenced by IoDevice to Location. Returns {ok,
NewPosition} (as absolute offset) if successful, otherwise {error, Reason}. Location
is one of the following:

{vof, Offset} Absolute offset
{cur, Offset} Offset from the current position
{eof, Offset} Offset from the end of file

Integer The same as {bof, Integer}
bof || cur || eof The same as above with 0Offset O.

Typical error reasons are:

einval Either the Location was illegal, or it evaluated to a negative offset in the file.
Note that if the resulting position is a negative value you will get an error but after
the call it is undefined where the file position will be.

pread(IoDevice, [{Location, Number}, ...1)

Performs a sequence of pread/3 in one operation, which is more efficient than calling
them one at a time. Returns {ok, [Data, ...]}or {error, Reason}, where Data is
either a list or a binary depending on the mode of the file, or eof if the requested
position was beyond end of file.

pread(IoDevice, Location, Number)

Combines position/2 and read/2 in one operation, which is more efficient than
calling them one at a time. If ToDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

pwrite(IoDevice, [{Location, Bytes}, ...1)

Kernel Application (KERNEL) 143

file Kernel Reference Manual

Performs a sequence of pwrite/3 in one operation, which is more efficient than calling
them one at a time. Returns ok or {error, {NumberWritten, Reason}}, where
NumberWritten is the number of successful writes that was done before the failure.

pwrite(IoDevice, Location, Bytes)

Combines position/2 and write/2 in one operation, which is more efficient than
calling them one at a time. If IoDevice has been opened in raw mode, some restrictions
apply: Location is only allowed to be an integer; and the current position of the file is
undefined after the operation.

read(IoDevice, Number)

Reads Number bytes from the file described by IoDevice. This function is the only way
to read from a file opened in raw mode (although it works for normally opened files,
too). Returns:

{ok, ListOrBinary} If the file was opened in binary mode, the read bytes are returned
in a binary, otherwise in a list. The list or binary will be shorter than the the
number of bytes requested if the end of the file is reached.

eof eof is returned if the Number was greater than zero and end of file was reached
before anything at all could be read.

{error, Reason} A Posix error code will be returned if an error occurred.
Typical error reasons:

ebadf The file is not opened for reading.

read_file(Filename)

Returns {ok, Binary}, where Binary is a binary data object that contains the contents
of Filename, or {error, Reason} if an error occurs.

Typical error reasons:

enoent The file does not exist.

eacces Missing permission for reading the file, or for searching one of the parent
directories.

eisdir The named file is a directory.

enotdir A component of the file name is not a directory. On some platforms, enocent
is returned instead.

enomem There is not enough memory for the contents of the file.

read_file_info(Filename)

Retrieves information about a file. Returns {ok, FileInfo} if successful, otherwise
{error, Reason}. FileInfo isa record. Its definition can be found by including
file.hrl from the kernel application:

-include_lib("kernel/include/file.hrl").

The record contains the following fields.

size Size of file in bytes.
type The type of the file which can be device, directory, regular, or other.

144 Kernel Application (KERNEL)

Kernel Reference Manual file

access The current system access to the file, which is one of the atoms read, write,
read_write, Or none.

atime The last (local) time the file was read, in the format {{Year, Month, Day},
{Hour, Minute, Second}}.

mtime The last (local) time the file was written, in the format {{Year, Month, Day},
{Hour, Minute, Second}}.

ctime The interpretation of this time field depends on the operating system. On Unix,
it is the last time the file or or the inode was changed. In Windows, it is the create
time. The format is {{Year, Month, Day}, {Hour, Minute, Second}}.

mode An integer which gives the file permissions as a sum of the following bit values:
8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other
8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution
On Unix platforms, other bits than those listed above may be set.
links Number of links to the file (this will always be 1 for file systems which have no
concept of links).

major_device An integer which identifies the file system where the file is located. In
Windows, the number indicates a drive as follows: 0 means A:, 1 means B:, and so
on.

minor _device Only valid for character devices on Unix. In all other cases, this field is
zero.

inode An integer which gives the inode humber. On non-Unix file systems, this field
will be zero.

uid An integer which indicates the owner of the file. Will be zero for non-Unix file
systems.

gid An integer which gives the group that the owner of the file belongs to. Will be zero
for non-Unix file systems.

Typical error reasons:

eacces Missing search permission for one of the parent directories of the file.
enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enoent
is returned instead.

read_link(Linkname)

Kernel Application (KERNEL) 145

file Kernel Reference Manual

This function returns {ok,Filename} if Linkname refers to a symbolic link or
{error,Reason} otherwise. On platforms that do not support symbolic links, the
return value will be {error,enotsup}.

Typical error reasons:

einval Linkname does not refer to a symbolic link.
enoent The file does not exist.
enotsup Symbolic links are not supported on this platform.

read_link_info(Filename)

This function works like read file_info/1, except that if Filename is a symbolic link,
information about the link will be returned in the file_info record and the type field
of the record will be set to symlink. If Filename is not a symbolic link, this function
returns exactly the same result as read_file_info/1. On platforms that do not support
symbolic link, this function is always equvivalent to read_file_info/1.

rename (Source, Destination)

Tries to rename the file Source to Destination. It can be used to move files (and
directories) between directories, but it is not sufficient to specify the destination only.
The destination file name must also be specified. For example, if bar is a normal file and
foo and baz are directories, rename ("foo/bar", "baz") returns an error, but

rename ("foo/bar", "baz/bar") succeeds. Returns ok if it is successful.

Note:
Renaming of open files is not allowed on most platforms (see eacces below).

Typical error reasons:

eacces Missing read or write permissions for the parent directories of Source or
Destination. On some platforms, this error is given if either Source or
Destination iS open.

eexist Destination is not an empty directory. On some platforms, also given when
Source and Destination are not of the same type.

einval Source is a root directory, or Destination is a sub-directory of Source.
eisdir Destination is a directory, but Source is not.

enoent Source does not exist.

enotdir Source is a directory, but Destination is not.

exdev Source and Destination are on different file systems.

script(Filename)

Opens the file Filename, evaluates all the expression sequences in it and returns the
result value. It returns one of the following:

{ok, Value} The file was read and evaluated with the value Value.

146 Kernel Application (KERNEL)

Kernel Reference Manual file

{error, Atom} An error occurred when opening the file or reading it. The Atom is a
Posix error code. See the description of open/2 for a list of typical error codes.

{error, {Line, Mod, Term}} An error occurred when interpreting the Erlang terms
in the file. Use the format_error/1 function to convert the three-element tuple to
an English description of the error.

script(Filename, Bindings)

The same as script/1 but the variable bindings Bindings are used in the evaluation.
See erl_eval(3) about variable bindings.

set_cwd (DirName)

Sets the current working directory of the file server to DirName. Returns ok if successful.
Typical error reasons are:

enoent The directory does not exist.

enotdir A component of DirName is not a directory. On some platforms, enoent is
returned.

eacces Missing permission for the directory or one of its parents.

sync(IoDevice)

Makes sure that any buffers kept by the operating system (not by the Erlang runtime
system) are written to disk. On some platforms, this function might have no effect .

Typical error reasons are:

enospc Not enough space left to write the file.

truncate(IoDevice)

Truncates the file referenced by IoDevice at the current position. Returns ok if
successful, otherwise {error, Reason}.

write(IoDevice, Bytes)

Writes Bytes (possibly a deep list of characters, or a binary) to the file described by
IoDevice. This function is the only way to write to a file opened in raw mode (although
it works for normally opened files, t00).

This function returns ok if successful, and {error, Reason} otherwise.
Typical error reasons are:

ebadf The file is not opened for writing.
enospc There is a no space left on the device.

write file(Filename, Binary)

Writes the contents of the binary data object Binary to the file Filename. The file is
created if it does not exist already. If it exists, the previous contents are overwritten.
Returns ok, or {error, Reason}.

Typical error reasons are:

Kernel Application (KERNEL) 147

file

Kernel Reference Manual

enoent A component of the file name does not exist.

enotdir A component of the file name is not a directory. On some platforms, enocent
is returned instead.

enospc There is a no space left on the device.
eacces Missing permission for writing the file or searching one of the parent directories.
eisdir The named file is a directory.

write_file(Filename, Binary, ModelList)

Same as write_file/2, but allows file open mode flags to be specified in ModeList. Mode
flags binary and write are implicit so they should not be used.

See also open/2.

write_file_info(Filename, FileInfo)

148

Change file information. Returns ok if successful, otherwise {error, Reason}.
FileInfo is arecord. Its definition can be found by including file.hrl from the kernel
application:

-include_lib("kernel/include/file.hrl").

The following fields are used from the record if they are given.

atime The last (local) time the file was read, in the format {{Year, Month, Day},
{Hour, Minute, Second}}.

mtime The last (local) time the file was written, in the format {{Year, Month, Day},
{Hour, Minute, Second}}.

ctime On Unix, any value give for this field will be ignored (the “ctime” for the file will
be set to the current time). On Windows, this field is the new creation time to set
for the file. The format is {{Year, Month, Day}, {Hour, Minute, Second}}.

mode An integer which gives the file permissions as a sum of the following bit values:

8#00400 read permission: owner
8#00200 write permission: owner
8#00100 execute permission: owner
8#00040 read permission: group
8#00020 write permission: group
8#00010 execute permission: group
8#00004 read permission: other
8#00002 write permission: other
8#00001 execute permission: other
16#800 set user id on execution
16#400 set group id on execution

On Unix platforms, other bits than those listed above may be set.
uid An integer which indicates the owner of the file. Ignored for non-Unix file systems.

gid An integer which gives the group that the owner of the file belongs to. Ignored
non-Unix file systems.

Typical error reasons:

Kernel Application (KERNEL)

Kernel Reference Manual file

eacces Missing search permission for one of the parent directories of the file.
enoent The file does not exist.

enotdir A component of the file name is not a directory. On some platforms, enocent
is returned instead.

POSIX Error Codes

eacces permission denied

eagain resource temporarily unavailable
ebadf bad file number

ebusy file busy

edquot disk quota exceeded

eexist file already exists

efault bad address in system call argument
efbig file too large

eintr interrupted system call

einval invalid argument

eio 1/O error

eisdir illegal operation on a directory
eloop too many levels of symbolic links
emfile too many open files

emlink too many links
enametoolong file name too long
enfile file table overflow

enodev no such device

enoent no such file or directory
enomem not enough memory
enospc no space left on device
enotblk block device required
enotdir not a directory

enotsup operation not supported
enxio no such device or address
eperm not owner

epipe broken pipe

erofs read-only file system

espipe invalid seek

esrch no such process

estale stale remote file handle

exdev cross-domain link

Kernel Application (KERNEL) 149

file

Kernel Reference Manual

150

Performance

Some operating system file operations, for example a sync/1 or close/1 on a huge file,
may block their calling thread for seconds. If this befalls the emulator main thread the
response time is no longer in the order of milliseconds, depending on the definition of
“soft” in soft real-time system.

If the device driver thread pool is active, file operations are done through those threads
instead, so the emulator can go on executing erlang processes. Unfortunately, the time
for serving a file operation increases due to the extra scheduling required from the
operating system.

If the device driver thread pool is disabled or of size 0, large file reads and writes are
segmented into several smaller, which enables the emulator so server other processes
during the file operation. This gives the same effect as when using the thread pool, but
with larger overhead. Other file operations, for example sync/1 or close/1 on a huge
file, still is a problem.

For increased performance, raw files are recommended. Raw files, uses the file system of
the node's host machine. For normal files (non-raw) the file server is used to find the
files, and if the node is running its file server as slave to another node’s, and the other
node runs on some other host machine, they may have different file systems. This is
seldom a problem, but you have now been warned.

A normal file is really a process so it can be used as an I/O device (see io). Therefore
when data is written to a normal file, the sending of the data to the file process copies all
data that is not binaries. Opening the file in binary mode and writing binaries is
therefore recommended. If the file is opened on another node, or if the file server runs
as slave to another node’s, also binaries are copied.

Caching data to reduce the number of file operations, or rather the number of calls to
the file driver, will generally increase performance. The following function writes 4
MBytes in 23 seconds on my machine:

create_file_slow(Name, N) when integer(N), N >= 0 ->
{ok, FD} =
file:open(Name, [raw, write, delayed_write, binary]),
ok = create_file_slow(FD, 0, N),
ok = ?FILE_MODULE:close(FD),
ok.

create_file_slow(FD, M, M) ->
ok;

create_file_slow(FD, M, N) —>
ok = file:write(FD, <<M:32/unsigned>>),
create_file_slow(FD, M+1, N).

The following functionallyequivalent function collects 1024 entries into a list of 128
32-byte binaries before each call to file:write/2 and so does the same work in 0.52
seconds, which is 44 times faster.

create_file(Name, N) when integer(N), N >= 0 ->
{ok, FD} = file:open(Name, [raw, write, delayed_write, binary]),
ok = create_file(FD, 0, N),
ok = 7?FILE_MODULE:close(FD),
ok.

Kernel Application (KERNEL)

Kernel Reference Manual file

create_file(FD, M, M) ->
ok;
create_file(FD, M, N) when M + 1024 =< N ->
create_file(FD, M, M + 1024, [1),
create_file(FD, M + 1024, N);
create_file(FD, M, N) ->
create_file(FD, M, N, []).

create_file(FD, M, M, R) —>
ok = file:write(FD, R);
create_file(FD, M, NO, R) when M + 8 =< NO —>
N1 = NO-1, N2 = NO-2, N3 = NO-3, N4 = NO-4,
N5 = NO-5, N6 = NO-6, N7 = NO-7, N8 = NO-8,
create_file(FD, M, N8,
[<<N8:32/unsigned, N7:32/unsigned,
N6:32/unsigned, N5:32/unsigned,
N4:32/unsigned, N3:32/unsigned,
N2:32/unsigned, N1:32/unsigned>> | R]);
create_file(FD, M, NO, R) —->
N1 = NO-1,
create_file(FD, M, N1, [<<N1:32/unsigned>> | R]).

Note:

Trust only your own benchmarks. If the list length in create file/2 above is
increased, it will run slightly faster, but consume more memory and cause more
memory fragmentation. How much this affects your application is something that
this simple benchmark can not predict.

If the size of each binary is increased to 64 bytes, it will also run slightly faster, but
the code will be twice as clumsy. In the current implementation are binaries larger
than 64 bytes stored in memory common to all processes and not copied when sent
between processes, while these smaller binaries are stored on the process heap and
copied when sent like any other term.

So, with a binary size of 68 bytes create file/2 runs 30 percent slower then with
64 bytes, and will cause much more memory fragmentation. Note that if the binaries
were to be sent between processes (for example a non-raw file) the results would
probably be completely different.

A raw file is really a port. When writing data to a port, it is efficient to write a list of
binaries. There is no need to flatten a deep list before writing. On Unix hosts, scatter
output, which writes a set of buffers in one operation, is used when possible. In this way
file:write(FD, [Binl, Bin2 | Bin3]) will write the contents of the binaries
without copying the data at all except for perhaps deep down in the operating system
kernel.

For raw files, pwrite/2 and pread/2 are efficiently implemented. The file driver is
called only once for the whole operation, and the list iteration is done in the file driver.

The options delayed write and read_ahead to file:open/2 makes the file driver
cache data to reduce the number of operating system calls. The function
create_file/2 in the example above takes 60 seconds seconds without the
delayed write option, which is 2.6 times slower.

Kernel Application (KERNEL) 151

file

Kernel Reference Manual

152

And, as a really bad example, create_file_slow/2 above without the raw, binary and
delayed_write options, thatis it calls file:open(Name, [write]), needs 1 min 20
seconds for the job, which is 3.5 times slower than the first example, and 150 times
slower than the optimized create file/2.

Warnings

If an error occurs when accessing an open file with the io module, the process which
handles the file will exit. The dead file process might hang if a process tries to access it
later. This will be fixed in a future release.

See Also

filename(3)

Kernel Application (KERNEL)

Kernel Reference Manual gen_tcp

gen_tcp

Erlang Module

The gen_tcp module provides functions for communicating with sockets using the
TCP/IP protocol.

The available options are described in the setopts/2 [page 173] function in the inet
manual page.

The possible {error, Reason} results are described in the inet [page 175] manual page.

The following code fragment provides a simple example of a client connecting to a
server at port 5678, transferring a binary and closing the connection.

client() ->
SomeHostInNet = "localhost" 7 to make it runnable on one machine
{ok, Sock} = gen_tcp:connect(SomeHostInNet, 5678,
[binary, {packet, 0}1),
ok = gen tcp:send(Sock, "Some Data"),
ok = gen_tcp:close(Sock).

At the other end a server is listening on port 5678, accepts the connection and receives
the binary.

server() ->
{ok, LSock} = gen_tcp:listen(5678, [binary, {packet, 0},
{active, false}l),
{ok, Sock} = gen_tcp:accept(LSock),
{ok, Bin} = do_recv(Sock, [1),
ok = gen_tcp:close(Sock),
Bin.

do_recv(Sock, Bs) ->
case gen_tcp:recv(Sock, 0) of
{ok, B} ->
do_recv(Sock, [Bs, B]);
{error, closed} ->
{ok, list_to_binary(Bs)}
end.

Kernel Application (KERNEL) 153

gen_tcp Kernel Reference Manual

Exports

accept (ListenSocket) -> {ok, Socket} | {error, Reason}
accept(ListenSocket, Timeout) -> {ok, Socket} | {error, Reason}
Types:
e ListenSocket = socket()
e Socket = socket()
e Timeout = integer()
e Reason = atom()

Accepts an incoming connection request on a listen socket. Socket must be a socket
returned from listen/1. If no Timeout argument is specified, or it is infinity, the
accept function will not return until a connection has been established or the
ListenSocket has been closed. If accept returns because the ListenSocket has been
closed {error, closed} isreturned. If Timeout is specified and no connection is
accepted within the given time, accept will return {error, timeout}.

Packets can be sent to the returned socket using the send/2 function. Packets sent from
the peer will be delivered as messages

{tcp, Socket, Data}

unless {active, false} was specified in the option list for the listen socket, in which
case packets should be retrieved by calling recv/2.

close(Socket) -> ok | {error, Reason}
Types:
e Socket = socket()
e Reason = atom()
Closes an TCP socket.

connect (Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect (Address, Port, Options, Timeout) -> {ok, Socket} | {error, Reason}
Types:
e Address = string() | atom() | ip_address()
e Port = Timeout = integer()
e Options = list()
e Socket = socket()
e Reason = atom()

Connects to a server on TCP port Port on the host with IP address Address. The
Address argument can be either a hostname, or an IP address.

The available options are:

list Received Packet is delivered as a list.
binary Received Packet is delivered as a binary.

{ip,IPAddress} If the host has several network interfaces, this option specifies which
one to use.

154 Kernel Application (KERNEL)

Kernel Reference Manual gen_tcp

{port,Port} Specify which local port number to use.

{£d,Fd} If asocket has somehow been connected without using gen_tcp, use this
option to pass in the file descriptor for it and create a Socket for it.

inet6 Set up the socket for IPv6

inet Set up the socket for IPv4

common inet options The common inet options available are described in the
setopts/2 [page 173] function in the inet manual page.

Packets can be sent to the returned socket using the send/2 function. Packets sent from
the peer will be delivered as messages

{tcp, Socket, Data}

If the socket was closed the following message is delivered:

{tcp—closed, Socket}

If an error occurred on the socket the following message is delivered:

{tcp_error, Socket, Reason}

unless the socket is in passive mode, in which case packets are retrieved by calling
recv/2.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

Note:

The default values for options given to connect can be affected by the

inet default_connect options kernel application variable. See the description in
the inet reference page for details.

controlling process(Socket, NewOwner) -> ok | {error, eperm}

listen(Port,

Types:
e Socket = socket()
e NewOwner = pid()

Assigns a new controlling process to Socket. The controlling process is the process
which will receive messages from the socket. If called by any other process than the
current owner {error, eperm} will be returned.

Options) -> {ok, Socket} | {error, Reason}
Types:

e Port = integer()

e Options = list()

e Socket = socket()

e Reason = atom()

Kernel Application (KERNEL) 155

gen_tcp

Kernel Reference Manual

recv(Socket,
recv(Socket,

send (Socket,

156

Sets up socket to listen on the port Port on the local host.

If the port number is zero, the 1isten function picks an available port number (use
inet:port/1 to retrieve it); otherwise, the specified port number is used.

The available options are described in the setopts/2 [page 173] function in the inet
manual page.

Additionally, the following options can be given.

{backlog, B} B isan integer >= 0. The backlog value defaults to 5. The backlog value
defines the maximum length the queue of pending connections may grow to.

{ip,IPAddress} If the host has several network interfaces, this option specifies which
one to listen on.

{fd,Fd} If alisten socket has somehow been opened without using gen_tcp, use this
option to pass in the file descriptor for it and create a Socket for it.

inet6 Set up the socket for IPv6
inet Set up the socket for IPv4

The returned socket can only be used in calls to accept.

Note:

The default values for options given to 1isten can be affected by the
inet_default_listen options kernel application variable. See the description in
the inet reference page for details.

Length) -> {ok, Packet} | {error, Reason}
Length, Timeout)

Types:

e Socket = socket()

e Length = integer()

e Packet = list() | binary()

e Timeout = integer()

e Reason = atom()

This function receives a packet from a socket in passive mode. A closed socket is
indicated by a return value of {error, closed}.

The Length argument is only meaningful when the socket is in raw mode and denotes
number of bytes to read. If Length = O all available bytes are returned.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

Packet) -> ok | {error, Reason}

Types:

e Socket = socket()

e Packet = list() | binary()
e Reason = atom()

Kernel Application (KERNEL)

Kernel Reference Manual gen_tcp

Sends a packet on a socket.

shutdown (Socket, How) -> ok | {error, Reason}

Types:

e Socket = socket()

e Reason = atom()

e How =read | write | read_write

Immediately close a socket in one or two directions.
Closing a socket in the write allows you to still read from the socket.

To be able to handle that the peer has done a shutdown on the write side, you'll need to
set the exit_on_close option for the socket to false as described in the setopts/2

[page 173] function in inet manual page.

Kernel Application (KERNEL) 157

gen_udp

Kernel Reference Manual

gen_udp

Erlang Module

The gen_udp module is an interface to User Datagram Protocol (UDP).
The possible {error, Reason} results are described in the inet [page 175] manual page.

Exports

close(Socket) -> ok | {error, Reason}

Types:
e Socket = Reason = term()
Removes the Socket created with open/1 or open/2.

controlling process(Socket,NewOwner) ->

Types:
e Socket = term()
e NewOwner = pid()

The process associated with a Socket is changed to NewOwner. The NewOwner will
receive all subsequent data.

open(Port) -> {ok, Socket } | { error, Reason }
open(Port,Options) -> {ok, Socket } | { error, Reason }

158

Types:

e Port = integer(0..65535)
e Options = list()

e Socket = term()

e Reason = term()

Associates a UDP port number (Port) with the calling process. It returns {ok,
Socket}, or {error, Reason}. The returned Socket is used to send packets from this
port with the send/4 function. Options is a list of options associated with this port.

When UDP packets arrive at the opened Port they will be delivered as messages of the
type {udp, Socket, IP, InPortNo, Packet}. Note that arriving UDP packets that
are longer than the receive buffer option specifies might be truncated without warning.

IP and InPortNo define the address from which Packet came. Packet is a list of bytes if
the option 1ist was specified. Packet is a binary if the option binary was specified.

The available options are:

list Received Packet is delivered as a list.

Kernel Application (KERNEL)

Kernel Reference Manual gen_udp

recv(Socket,
recv(Socket,

binary Received Packet is delivered as a binary.

{ip,IPAddress} If the host has several network interfaces, this option specifies which
one to use.

{fd,Fd} If a UDP socket has somehow been opened without using gen_udp, use this
option to pass in the file descriptor for it and create a Socket for it.

inet6 Set up the socket for IPv6
inet Set up the socket for IPv4

common inet options The common inet options available are described in the
setopts/2 [page 173] function in the inet manual page. Default value for the
receive buffer option is {recbuf, 8192}.

If you set Port to 0, the underlying Operating System assigns a free UDP port. (You can
find out which port by calling inet : port (Socket).)

If any of the following functions are called with a Socket that was not opened by the
calling process, they will return {error,not_owner}. The ownership of a Socket can be
transferred to another process with controlling process/2.

Length) -> {ok,{Address, Port, Packet}} | {error, Reason}
Length, Timeout)

Types:

e Socket = socket()

e Address = { integer(), integer(), integer(), integer()}

e Port = integer(0..65535)

e Length = integer()

e Packet = list() | binary()

e Timeout = integer()

e Reason = atom()

This function receives a packet from a socket in passive mode.

The optional Timeout parameter specifies a timeout in milliseconds. The default value
is infinity.

send(S,Address,Port,Packet) -> ok | {error, Reason}

Types:

Address = { integer(), integer(), integer(), integer()} | atom() | string()
Port = integer(0..65535)

Packet = [byte()] | binary()

Reason = term()

Sends Packet to the specified address (address, port). It returns ok, or {error,
Reason}. Address can be an IP address expressed as a tuple, for example {192, 0, 0,
1}. It can also be a host name expressed as an atom or a string, for example
'somehost.some.domain’. Port is an integer, and Packet is either a list of bytes or a
binary.

Kernel Application (KERNEL) 159

global

Kernel Reference Manual

160

global

Erlang Module

This documentation describes the Global module which consists of the following
functionalities:

1. Registration of global names

2. Global locks

3. Monitoring nodes

4. Maintenance of the fully connected network

These services are controlled via the process global which exists on every node. global
is started automatically when a node is started.

The ability to globally register names is a central concept in the programming of
distributed Erlang systems. In this module, the equivalent of the register/2 and
whereis/1 BIFs are implemented, but for a network of Erlang nodes. A registered name
is an alias for a process identity Pid. The system monitors globally registered Pids. If a
process terminates, the name will also be globally unregistered.

The registered names are stored in replica global name tables on every node. There is no
central storage point. Thus, the translation of a name to a Pid is extremely quick
because it is never a network operation. When any action in taken which results in a
change to the global name table all tables on other nodes are automatically updated.

Global locks have lock identities and are set on a specific resource. For instance, the
specified resource could be a Pid of a process. When a global lock is set access to the
locked resource is denied for all other resources other than the lock requester.

Both the registration and lock functionalities are atomic. All nodes involved in these
actions will have the same view of the information.

The server also performs the critical task of continuously monitoring changes in node
configuration, if a node which runs a globally registered process goes down, the name
will be globally unregistered. The server will also maintain a fully connected network.
For example, if node N1 connects to node N2 (which is already connected to N3), the
global server on N1 then N3 will make sure that also N1 and N3 are connected. If this is
not desired, the command line flag -connect_all false must be passed to init at
boot time. In this case, the name registration facility cannot be used (but the lock
mechanism will still work.)

Kernel Application (KERNEL)

Kernel Reference Manual global

Exports

del_lock(Id)
del_lock(Id, Nodes) -> void()
Types:
e Id = {Resourceld, LockRequesterld}
e Resourceld = term()
e LockRequesterld = term()
e Nodes = [node()]
Deletes the lock Id synchronously.

notify_all name(Name, Pidl, Pid2) -> none

This function can be used as a name resolving function for register name/3 and
re_register name/3. It unregisters both Pids, and sends the message
{global name_conflict, Name, OtherPid} to both processes.

random exit name(Name, Pidl, Pid2) -> Pidl | Pid2

This function can be used as a name resolving function for register name/3 and

re_register name/3. It randomly chooses one of the Pids for registration and kills the
other one.

random notify name (Name, Pidl, Pid2) -> Pidl | Pid2

This function can be used as a name resolving function for register name/3 and
re_register name/3. It randomly chooses one of the Pids for registration, and sends
the message {global name_conflict, Name} to the other Pid.

register name(Name, Pid)
register name(Name, Pid, Resolve) -> yes | no

Types:

¢ Name = term()

e Pid = Pid()

e Resolve = {M, F} where M:F(Name, Pid, Pid2) -> Pid | Pid2 | none
Globally notifies all nodes of a new global name in a network of Erlang nodes.

When new nodes are added to the network, they are informed of the globally registered
names that already exist. The network is also informed of any global hames in newly
connected nodes. If any name clashes are discovered, the Resolve function is called. Its
purpose is to decide which Pid is correct. This function blocks the global name server
during its execution. If the function crashes, or returns anything other than one of the
Pids, the name is unregistered. This function is called once for each name clash.

There are three pre-defined resolve functions, random_exit_name, random notify name
and notify_all name. If N0 Resolve function is defined, random exit name is used.
This means that one of the two registered processes will be selected as correct while the
other is killed.

This function is completely synchronous. This means that when this function returns,
the name is either registered on all nodes or none.

Kernel Application (KERNEL) 161

global

Kernel Reference Manual

The function returns yes if successful, no if it fails. For example, no is returned if an
attempt is made to register a process with a name that is already in use.

If a process with a registered name dies, or the node goes down, the name is
unregistered on all nodes.

registerednames() -> [Name]

Types:
e Name = term()
Returns a lists of all globally registered names.

re_register name(Name, Pid)

re_register name(Name, Pid, Resolve) -> void()

Types:

e Name = term()

e Pid = Pid()

e Resolve = {M, F} where M:F(Name, Pid, Pid2) -> Pid | Pid2 | none
Atomically changes the registered name Name on all nodes to refer to Pid.
The Resolve function has the same behavior as in register name.

send (Name, Msg) -> Pid

set_lock(Id)
set_lock(Id,
set_lock(Id,

162

Types:

e Name = term()
e Msg = term()

e Pid = Pid()

Sends the message Msg to the globally registered process Name. If Name is not a globally
registered name, the calling function will exit with reason {badarg, {Name, Msg}}.

Nodes)

Nodes, Retries) -> boolean()
Types:

e |d = {Resourceld, LockRequesterld}
e Resourceld = term()
LockRequesterld = term()

Nodes = [node()]

Retries = int() > O | infinity

Kernel Application (KERNEL)

Kernel Reference Manual global

Sets a lock on the specified nodes (or on all nodes if none are specified) on ResourceId
for LockRequesterId. If a lock already exists on ResourceId for another requester than
LockRequesterId, and Retries is not equal to O, the process sleeps for a while and will
try to execute the action later. When Retries attempts have been made, false is
returned, otherwise true. If Retries is infinity, true is eventually returned (unless
the lock is never released).

If no value for Retries is given, infinity is used.

This function is completely synchronous.

If a process which holds a lock dies, or the node goes down, the locks held by the
process are deleted.

global keeps track of all processes sharing the same lock, i.e. if two processes set the
same lock both processes must delete the lock.

This function does not address the problem of a deadlock. A deadlock can never occur
as long as processes only lock one resource at a time. But if some processes try to lock
two or more resources, a deadlock may occur. It is up to the application to detect and
rectify a deadlock.

start ()
start 1link() -> {ok, Pid} | {error, Reason}

This function starts the global name server. Normally, the server is started automatically.

stop() -> void()

Stops the global name server.

sync() -> void()

Synchronizes the global name server with all nodes known to this node. These are the
nodes which are returned from erlang:nodes (). When this function returns, the
global name server will receive global information from all nodes. This function can be
called when new nodes are added to the network.

trans(Id, Fun)
trans(Id, Fun, Nodes)
trans(Id, Fun, Nodes, Retries) -> Res | aborted

Types:

e Id = {Resourceld, LockRequesterld}
e Resourceld = term()

e LockRequesterld = term()

e Fun="fun() | {M, F}

e Nodes = [node()]

e Retries = int() > 0 | infinity

e Res =term()

Sets a lock on Id (using set_lock/3). Evaluates Res = Fun() if successfully locked and
returns Res. Returns aborted if the lock attempt failed. If Retries isset to infinity,
the transaction will not abort.

infinity is the default setting and will be used if no value is given for Retries.

Kernel Application (KERNEL) 163

global Kernel Reference Manual

unregister name (Name) -> void()
Types:
e Name = term()
Globally removes Name from the network of Erlang nodes.

whereis name (Name) -> Pid() | undefined
Types:
e Name = term()
Returns either an atom undefined, or a Pid which is globally associated with Name.

164 Kernel Application (KERNEL)

Kernel Reference Manual global_group

global _group

Erlang Module

The global group function makes it possible to group the nodes in a system into
partitions, each partition having its own global name space, refer to global(3). These
partitions are called global groups.

The main advantage of dividing systems to global groups is that the background load
decreases while the number of nodes to be updated is reduced when manipulating
globally registered names.

The global_groups-key in the . config file defines the global groups:
{global groups, [GroupTuplel}
Types:

e GroupTuple = {GroupName, [Nodel} | {GroupName, PublishType, [Nodel}
e GroupName = atom() (naming a global group)

e PublishType = normal | hidden

e Node = atom() (naming a node)

A GroupTuple without PublishType is the same as a GroupTuple with PublishType
equal to normal.

The command erl -config File starts a node with a configuration file named
File.config. If the global _groups-key is not defined the system will start as a whole,
without any partitions. When the key is not defined, the services of this function will
not give any extra value to global(3).

A hidden node will establish hidden connections to nodes not part of the same global
group, and normal (visible) connections to nodes part of the same global group. Hidden
connections aren't published on neither of the connected nodes, i.e. neither of the
connected nodes are part of the result from nodes/0 on the other node.

In a hidden global group (a global group defined with PublishType equal to hidden) all
nodes are hidden nodes.

Hidden nodes can also be part of normal global groups. Nodes started with the ~hidden
switch will be hidden nodes even if they are part of a normal group, see erl(1). Other
nodes in the group will not be affected by this.

For the processes and nodes to run smoothly using this function the following criteria
must be met:

e The global group function must have a server process, global_group, funning on
each node.
NOTE: The processes are automatically started and synchronized when a node is
started.

Kernel Application (KERNEL) 165

global_group

Kernel Reference Manual

e All processes must agree with the group definition in the immediate global group.
If two nodes do not agree, these nodes will not synchronize their name space and
an error message will be logged in the error logger.

Example: If one node has an illegal global group definition, such a node will run
isolated from the other nodes regarding the global name space; but not regarding
other system functions, e.g distribution of applications, refer to chapter NOTE
below.

¢ Nodes can only belong to one global group.

When the global group definitions are to be changed in a system upgrade, the upgrade
must fulfill the following steps:

1. First, all nodes which are to be removed from a global group must be taken down.

2. Nodes which are not affected by the redefinition of the global groups are to be
upgraded to be aware of the new global group definitions.
NOTE: All nodes in the system, also nodes in unchanged global groups, must be
upgraded. This because e.g send must have an accurate view of the total system.

3. Finally, all nodes which are new to a global group can be started.

When a non partitioned system is to be upgraded to become a partitioned system, all
nodes belonging to a global group will be disconnected from all nodes not belonging to
its immediate global group.

Exports

global groups() -> {OwnGroupName, [OtherGroupNamel} | undefined

Types:

e OwnGroupName = atom()
e OtherGroupName = atom()
e ErrorMsg = term()

Returns the names of all the global groups known to the immediate global group.

info() -> [{state, State}, {own_groupname, atom()}, {own groupnodes, [Nodel},

166

{synced nodes, [Nodel}, {sync_error, [Nodel}, {no_contact, [Nodel},
{other_groups, Other_grps}, {monitoring, [pid()1}]

Types:

e State = no_conf | synced

e Other_grps = [{OtherGrpName, [Node]}]
e OtherGrpName = atom()

e Node = atom()

Returns the state of the global group process. In the following ‘nodes" refers to nodes in
the immediate global group. synced nodes lists the nodes this node is synchronized
with at this moment. lists the nodes defining the own global group. sync_error lists
the nodes with this node could not be synchronize. no_contact lists nodes with this
node do not yet have established contact. other_groups shows the definition of the
other global groups in the system. monitoring lists the processes which have subscribed
on nodeup and nodedown messages.

Kernel Application (KERNEL)

Kernel Reference Manual global_group

monitor nodes(Flag) -> ok
Types:
e Flag = bool()

The requesting process receives {nodeup,Node} and {nodedown,Node} messages about
the nodes from the immediate global group. If the flag Flag is set to true the service is
turned on; false turns it off.

ownnodes() -> [Node] | {error, ErrorMsg}
Types:

¢ Node = atom()
e ErrorMsg = term()

Returns the names of all nodes from the immediate global group, despite of the status of
the nodes. Use info/0 to get the information of the current status of the nodes.

registerednames({node, Node}) -> [Name] | {error, ErrorMsg}
registered names ({group, GlobalGroupName}) -> [Name]

Types:

Name = term()

Node = atom()
GlobalGroupName = atom()
ErrorMsg = term()

Returns a lists of all globally registered names on the specified node or from the
specified global group.

send(Name, Msg) -> Pid | {badarg, Msg} | {error, ErrorMsg}
send({node, Node}, Name, Msg) -> Pid | {badarg, Msg} | {error, ErrorMsg}
send({group, GlobalGroupName}, Name, Msg) -> Pid | {badarg, Msg} | {error, ErrorMsg}

Types:
¢ GlobalGroupName = atom()
e Msg = term()

Name = term()
Node = atom()
Pid = pid()
ErrorMsg = term()

send/2 searches for the registered Name in all global groups defined, in the order of
appearance in the . config-file, until the registered name is found or all groups are
searched. If Name is found, the message Msg is sent to it. If it is not found, the function
exits with reason {badarg, {Name, Msg}}.

send/ 3 searches for the registered Name in either the specified node or the specified
global group. If the registered name is found, the message Msg is sent to that process. If
Name is not found, the function exits with reason {badarg, {Name, Msg}}.

sync() -> ok

Kernel Application (KERNEL) 167

global_group Kernel Reference Manual

sync synchronizes the global name servers on the nodes in the immediate global group.
It also unregisters the names registered in the immediate global group on known nodes
outside to the immediate global group.

If it the global_groups definition is unvalid, the function exits with reason {error,
{’invalid global groups definition’, NodeGrpDef}}.

whereis name(Name) -> Pid | undefined | {error, ErrorMsg}
whereis name({node, Node}, Name) -> Pid | undefined | {error, ErrorMsg}
whereis name ({group, GlobalGroupName}, Name) -> Pid | undefined | {error, ErrorMsg}

Types:

e GlobalGroupName = atom()

e Name = term()

e Node = atom()

e Pid = pid()

whereis name/1 searches for the registered Name in all global groups defined, in the
order of appearance in the . config-file, until the registered name is found or all groups
are searched.

whereis_name/2 searches for the registered Name in either the specified node or the
specified global group.

Returns either the atom undefined, or the Pid which is associated with Name.

start ()
start_1ink() -> {ok, Pid} | {error, Reason}

This function starts the global group server. Normally, the server is started
automatically.

stop() -> void()
Stop the global group server.

NOTE

In the situation where a node has lost its connections to other nodes in its global group
but has connections to nodes in other global groups, a request from the other global
group may produce an incorrect or misleading result. When this occurs the isolated
node may not have accurate information, for example, about registered names in its
global group.

Note also that the send function is not secure.

Distribution of applications is highly dependent of the global group definitions. It is not
recommended that an application is distributed over several global groups of the
obvious reason that the registered names may be moved to another global group at
failover/takeover. There is nothing preventing doing this, but the application code must
in such case handle the situation.

SEE ALSO

erl(1), global(3) [page 160]

168 Kernel Application (KERNEL)

Kernel Reference Manual heart

heart

Erlang Module

The heart module sends periodic heartbeats to an external port program, which is also
named heart. The purpose of the heart port program is to check that the Erlang
runtime system it is supervising is still running. If the port program has not received any
heartbeats within HEART BEAT_TIMEQUT (default is 60 seconds) from the last one, the
system can be rebooted. Also, if the system is equipped with a hardware watchdog
timer and is running Solaris, the watchdog can be used to supervise the entire system.

This module is started by the init module during system start-up. The -heart
command line flag determines if the heart module should start .

If the system should be rebooted because of missing heart-beats, or a terminated Erlang
runtime system, the environment variable HEART_COMMAND has to be set before the
system is started. If this variable is not set, a warning text will be printed but the system
will not reboot. However, if the hardware watchdog is used, it will trigger a reboot
HEART BEAT BOOT_DELAY seconds later nevertheless (default is 60).

To reboot on the WINDOWS platform HEART_COMMAND can be set to heart -shutdown
(included in the Erlang delivery) or of course to any other suitable program which can
activate a reboot.

The hardware watchdog will not be started under Solaris if the environment variable
HW_WD_DISABLE is set.

The HEART BEAT _TIMEOUT and HEART BEAT BOOT_DELAY environment variables can be
used to configure the heart timeouts, they can be set in the operating system shell
before erl -heart is started or can be passed on the command line like this: erl
~heart -env HEART BEAT_TIMEQUT 30.

The value (in seconds) must be in the range 10 < X <= 65535.

It should be noted that if the system clock is adjusted with more than
HEART_BEAT_TIMEOUT seconds heart will timeout and try to reboot the system.
This can happen for example if the system clock is adjusted automatically by use of
NTP (Network Time Protocol).

Exports

start() -> {ok, Pid} | ignore | {error, What}
Types:
e Pid = pid()
e What = void()

Starts the heart program. This function returns ignore if the ~-heart command line flag
is not supplied.

Kernel Application (KERNEL) 169

heart Kernel Reference Manual

set_cmd(Cmd) -> ok | {error, {bad_cmd, Cmd}}
Types:
e Cmd = string()

Sets a temporary reboot command. This command is used if a HEART_COMMAND other
than the one specified with the environment variable should be used in order to reboot
the system. The new Erlang runtime system will (if it misbehaves) use the environment
variable HEART_COMMAND to reboot.

The length of the Cmd command string must be less than 2047 characters.

clear_cmd() -> ok

Clears the temporary boot command. If the system terminates, the normal
HEART_COMMAND is used to reboot.

get_cmd() -> {ok, Cmd}
Types:
e Cmd = string()

Get the temporary reboot command. If the command is cleared the empty string will
be returned.

170 Kernel Application (KERNEL)

Kernel Reference Manual inet

Inet

Erlang Module

Inet provides access to TCP/IP protocols.

Some functions returns a hostent record. Use this line in your module
-include_1ib("kernel/include/inet.hrl").
to include the record definition.

h_addr_list List of addresses for this host
h_addrtype Type of address: inet Or inet6
h_aliases List of aliases (additional names for host)
h_length Length of address in bytes

h name Official name for host

Addresses as inputs to functions can be either a string or a tuple. For instance, the IP
address 150.236.20.73 can be passed to gethostbyaddr/1 either as the string
“150.236.20.73” or as the tuple {150, 236, 20, 73}. Addresses returned by any
function in the inet module will be a tuple.

Hostnames may be specified as either atoms or a strings.

Where an address family is required, valid values are inet (standard IPv4 addresses) or
inet6 (IPv6).

Two kernel application variables affect the behaviour of all sockets opened on an erlang
node. The kernel application variable inet_default_connect_options can contain a list
of default options used for all sockets returned when doing connect and

inet default_listen options can contain a list of default options used when issuing a
listen call. When accept is issued, the values of the listensocket options are inherited,
why no such application variable is needed for accept.

Using the kernel application variables mentioned above, one can set default options for
all TCP sockets on a node. This should be used with care, but options like
{delay_send,true} might be specified in this way. An example of starting an erlang
node with all sockets using delay send would look like this:

$ erl -sname test -kernel inet_default_connect_options \n > [{delay_sen

Note that the default {active,true} currently cannot be changed with these
application variables, for internal reasons.

Kernel Application (KERNEL) 171

inet Kernel Reference Manual

Exports

get_rc()

Returns the state of the inet configuration database in form of a list of recorded

configuration parameters. (See the ERTS User's Guide for more information). Only
parameters with other than default values are returned.

format_error(Tag)

Types:
e Tag = atom()

Returns a diagnostic error string. See the section below for possible Tag values and the
corresponding strings.
gethostbyaddr (Address) -> {ok, Hostent} | {error, Reason}
Types:

e Address = address()
e Hostent = hostent()

Returns a hostent record given an address.

gethostbyname (Name) -> {ok, Hostent} | {error, Reason}
Types:

e Hostname = hostname()
e Hostent = hostent()

Returns a hostent record given a hostname.

gethostbyname (Name, Family) -> {ok, Hostent} | {error, Reason}
Types:

e Hostname = hostname()
e Family = family()
e Hostent = hostent()

Returns a hostent record given a hostname, restricted to the given address family.

gethostname() -> {ok, Name} | {error, Reason}
Types:
e Hostname = hostname()

Returns the local hostname. Will never fail.

sockname (Socket) -> {ok, {IP, Port}} | {error, Reason}
Types:
e Socket = socket()

e Address = address()
e Port = integer()

172 Kernel Application (KERNEL)

Kernel Reference Manual inet

Returns the local address and port number for a socket.

peername (Socket) -> {ok, {Address, Port}} | {error, Reason}

port (Socket)

Types:

e Socket = socket()

e Address = address()

e Port = integer()

Returns the address and port for the other end of a connection.

-> {ok, Number}
Types:

e Socket = socket()
e Number = integer()

Returns the local port number for a socket.

close(Socket) -> ok

Types:
e Socket = socket()
Closes a socket of any type.

getaddr (IP,inet) -> {ok,{A1,A2,A3,A4}} | {error, Reason}

Types:

o IP={A1,A2,A3,A4} | string() | atom()

e Al =A2=A3= A4 =integer()

e Reason = term()

Returns the IP-address as a tuple with integers for IP which can be an IP-address a
single hostname or a fully qualified hostname. At present only IPv4 adresses (the inet
argument) is supported, but the function is prepared to support IPv6 (inet6) in a near
future.

setopts(Socket, Options) -> ok | {error, Reason}

Types:

e Socket = term()

e Options = list()

Sets one or more options for a socket. The following options are available:

Kernel Application (KERNEL) 173

inet Kernel Reference Manual

{active, Boolean} If the active option is true, which is the default, everything
received from the socket will be sent as messages to the receiving process. If the
active option is set to false (passive mode), the process must explicitly receive
incoming data by calling gen_tcp:recv/N or gen_udp:recv/N (depending on the
type of socket). If the active option is set to once (active once), one data message
from the socket will be sent to the process. To receive one more message,
setopts/2 must be called again with the {active,once} option. Note: Active
mode provides no flow control; a fast sender could easily overflow the receiver
with incoming messages. Use active mode only if your high-level protocol provides
its own flow control (for instance, acknowledging received messages) or the
amount of data exchanged is small. Passive mode or active-once mode provides
flow control; the other side will not be able send faster than the receiver can read.

{broadcast, Boolean} Enable/disable permission to send broadcasts. (UDP)

{delay_send, Boolean} Normally, when an erlang process sends to a socket, the
driver will try to immediately send the data. If that fails, the driver will use any
means available to que up the message to be sent whenever the operating system
says it can handle it. Setting {delay_send, true} will make all messages que up.
This makes the messages actually sent onto the network be larger but fewer. The
option actually affects the scheduling of send requests versus Erlang processes
instead of changing any real property of the socket. Needless to say it is an
implementation specific option. Default is false.

{dontroute, Boolean} Use {dontroute, true} to enable/disable routing bypass for
outgoing messages.

{exit_on_close, Boolean} By default this option is set to true. The only reason to
set it to false is if you want to continue sending data to the socket after a close has
been detected, for instance if the peer has used gen_tcp:shutdown/2 [page 157] to
shutdown the write side.

{header, Size} This option is only meaningful if the binary option was specified
when the socket was created. If the header option is specified, the first Size
number bytes of data received from the socket will be elements of a list, and the
rest of the data will be a binary given as the tail of the same list. If for example
Size=2 the data received will match [Bytel,Byte2|Binary].

{keepalive, Boolean} (TCP/IP sockets) Enables periodic transmission on a
connected socket, when no other data is being exchanged. If the other end does
not respond, the connection is considered broken and an error message will be sent
to the controlling process. Default disabled.

{nodelay, Boolean} If Boolean is true, the TCP_NODELAY option is turned on for the
socket, which means that even small amounts of data will be sent immediately.
(TCP/IP sockets)

{packet, PacketType} (TCP/IP sockets) Defines the type of packets to use for a
socket. The following values are valid:

raw | 0 No packaging is done.

1 | 2 | 4 Packets consist of a header specifying the number of bytes in the
packet, followed by that number of bytes. The length of header can be one,
two, or four bytes; the order of the bytes is big-endian. Each send operation
will generate the header, and the header will be stripped off on each receive
operation.

asnl | cdr | sunrm | fcgi | tpkt | line These packet types only have
effect on receiving. When sending a packet, it is the responsibility of the
application to supply a correct header. On receiving, however, there will be

174 Kernel Application (KERNEL)

Kernel Reference Manual inet

one message sent to the controlling process for each complete packet received,
and, similarly, each call to gen_tcp:recv/N returns one complete packet. The
header is not stripped off. The meanings of the packet types are as follows:
asnl - ASN.1 BER,

sunrm - Sun's RPC encoding,

cdr - CORBA (GIOP 1.1),

fcgi - Fast CGl,

tpkt - TPKT format [RFC1006],

line - Line mode, a packet is a line terminated with newline, lines longer than
the receive buffer are truncated.

{packet_size, Integer} (TCP/IP sockets) Sets the max allowed length of the packet
body. If the packet header indicates that the length of the packet is longer than the
max allowed length, the packet is considered invalid. The same happens if the
packet header is too big for the socket receive buffer.

{recbuf, Integer} Gives the size of the receive buffer to use for the socket.

{reuseaddr, Boolean} Allows or disallows local reuse of port numbers. By default,
reuse is disallowed.

{sndbuf, Integer} Gives the size of the send buffer to use for the socket.

Please note that the default options for TCP sockets can be changed with the kernel
application variables mentioned in the beginning of this document.

ERRORS

The possible error reasons and the corresponding diagnostic strings returned by
format_error/1 are as follows:

e2big argument list too long

eacces permission denied

eaddrinuse address already in use
eaddrnotavail cannot assign requested address
eadv advertise error

eafnosupport address family not supported by protocol family
eagain resource temporarily unavailable
ealign EALIGN

ealready operation already in progress

ebade bad exchange descriptor

ebadf bad file number

ebadfd file descriptor in bad state

ebadmsg not a data message

ebadr bad request descriptor

ebadrpc RPC structure is bad

ebadrqc bad request code

ebadslt invalid slot

Kernel Application (KERNEL) 175

inet Kernel Reference Manual

ebfont bad font file format

ebusy file busy

echild no children

echrng channel number out of range

ecomm communication error on send
econnaborted software caused connection abort
econnrefused connection refused
econnreset connection reset by peer
edeadlk resource deadlock avoided
edeadlock resource deadlock avoided
edestaddrreq destination address required
edirty mounting a dirty fs w/o force

edom math argument out of range

edotdot cross mount point

edquot disk quota exceeded

eduppkg duplicate package name

eexist file already exists

efault bad address in system call argument
efbig file too large

ehostdown host is down

ehostunreach host is unreachable

eidrm identifier removed

einit initialization error

einprogress operation now in progress
eintr interrupted system call

einval invalid argument

eio I/O error

eisconn socket is already connected

eisdir illegal operation on a directory
eisnam is a named file

el2hlt level 2 halted

el2nsync level 2 not synchronized

el3hlt level 3 halted

el3rst level 3 reset

elbin ELBIN

elibacc cannot access a needed shared library
elibbad accessing a corrupted shared library
elibexec cannot exec a shared library directly
elibmax attempting to link in more shared libraries than system limit
elibscn .lib section in a.out corrupted
elnrng link number out of range

176 Kernel Application (KERNEL)

Kernel Reference Manual inet

eloop too many levels of symbolic links
emfile too many open files

emlink too many links

emsgsize message too long

emultihop multihop attempted
enametoolong file name too long
enavail not available

enet ENET

enetdown network is down

enetreset network dropped connection on reset
enetunreach network is unreachable
enfile file table overflow

enoano anode table overflow

enobufs no buffer space available
enocsi no CSI structure available
enodata no data available

enodev Nno such device

enoent no such file or directory
enoexec exec format error

enolck no locks available

enolink link has be severed

enomem Not enough memory

enomsg NO message of desired type
enonet Machine is not on the network
enopkg package not installed
enoprotoopt bad proocol option
enospc NO space left on device

enosr out of stream resources or not a stream device
enosym unresolved symbol name
enosys function not implemented
enotblk block device required
enotconn socket is not connected
enotdir not a directory

enotempty directory not empty
enotnam not a named file

enotsock socket operation on non-socket
enotsup operation not supported
enotty inappropriate device for ioctl
enotuniq name not unigue on network
enxio no such device or address
eopnotsupp operation not supported on socket

Kernel Application (KERNEL) 177

inet Kernel Reference Manual

eperm not owner

epfnosupport protocol family not supported
epipe broken pipe

eproclim t0OO many processes
eprocunavail bad procedure for program
eprogmismatch program version wrong
eprogunavail RPC program not available
eproto protocol error

eprotonosupport protocol not supported
eprototype protocol wrong type for socket
erange math result unrepresentable
erefused EREFUSED

eremchg remote address changed

eremdev remote device

eremote pathname hit remote file system
eremoteio remote i/o error
eremoterelease EREMOTERELEASE
erofs read-only file system

erpcmismatch RPC version is wrong
erremote object is remote

eshutdown cannot send after socket shutdown
esocktnosupport socket type not supported
espipe invalid seek

esrch no such process

esrmnt srmount error

estale stale remote file handle

esuccess Error 0

etime timer expired

etimedout connection timed out
etoomanyrefs too many references

etxtbsy text file or pseudo-device busy
euclean structure needs cleaning

eunatch protocol driver not attached
eusers t0O many users

eversion version mismatch

ewouldblock operation would block

exdev cross-domain link

exfull message tables full

nxdomain the hostname or domain name could not be found

178 Kernel Application (KERNEL)

Kernel Reference Manual init

INit

Erlang Module

init is pre-loaded into the system before the system starts and it coordinates the
start-up of the system. The first function evaluated at start-up is boot (Bootargs),
where Bootargs is a list of the arguments supplied to the Erlang runtime system from
the local operating system. The Erlang code for the module init is always pre-loaded.

init reads a boot script which contains instructions on how to initiate the system. The
default boot script (start.boot) is in the directory <ERL_INSTALL DIR>/bin.

init contains functions to fetch command line flags, or arguments, supplied to the
Erlang runtime system.

init also contains functions to restart, reboot, and stop the system.

Exports

boot (BootArgs) -> void()
Types:
e BootArgs = [binary()]
Erlang is started with the command erl <script-flags> <user-flags>.

erl is the name of the Erlang start-up script. <script-flags>, described in erl(1), are
read by the script. <user-flags> are put into a list and passed as Args to boot/1.

The boot/1 function interprets the boot, mode, and s flags. These are described in
COMMAND LINE FLAGS.

If the boot function finds other arguments starting with the character -, that argument
is interpreted as a flag with zero or more values. It ends the previous argument. For
example:

erl -run foo bar -charles peterson

This starts the Erlang runtime system, evaluates foo:bar (), and sets the flag -charles,
which has the associated value peterson.

Other arguments which are passed to the boot function, and do not fit into the above
description, are passed to the init loop as plain arguments.

The special flag -- can be used to separate plain arguments to boot from a preceding
flag argument.

The special flag -extra causes all following arguments to become plain arguments, and
not be subjected to any interpretation by Erlang.

get_arguments () -> Flags
Types:

Kernel Application (KERNEL) 179

init Kernel Reference Manual

Flags = [{Flag,FValue}]
Flag = atom()

FValue = [Value]
Value = string()

Returns all flags given to the system.

get_argument (Flag) -> {ok, Values} | error
Types:
e Flag = atom()
e Values = [FValue]
e FValue = [Value]
e Value = string()

Returns all values associated with Flag. If Flag is provided several times, each FValue is
returned in preserved order.

get_args() -> [Arg]
Types:
e Arg = atom()

Returns the additional plain arguments as a list of atoms (possibly empty). It is

recommended that get_plain_arguments/1 be used instead, because of the limited
length of atoms.

get_plain_arguments() -> [Arg]
Types:
e Arg = string()

Returns the additional plain arguments as a list of strings (possibly empty).

restart() -> void()

The system is restarted inside the running Erlang node, which means that the emulator
is not restarted. All applications are taken down smoothly, all code is unloaded, and all
ports are closed before the system is booted again in the same way as initially started.
The same BootArgs are used again.

To limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown_time command line flag should be used.

reboot() -> wvoid()

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the Erlang node terminates. If the -heart system flag was given, the heart
program will try to reboot the system. Refer to the heart module for more information.

In order to limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown_time command line flag should be used.

stop() -> void()

180 Kernel Application (KERNEL)

Kernel Reference Manual init

All applications are taken down smoothly, all code is unloaded, and all ports are closed
before the system terminates. If the -heart system flag was given, the heart program is
terminated before the Erlang node terminates. Refer to the heart module for more
information.

In order to limit the shutdown time, the time init is allowed to spend taking down
applications, the -shutdown_time command line flag should be used.

get_status() -> {InternalStatus, ProvidedStatus}
Types:

¢ InternalStatus = starting | started | stopping
e ProvidedStatus = term()

The current status of the init process can be inspected. During system start
(initialization), InternalStatus iS starting, and ProvidedStatus indicates how long
the boot script has been interpreted. Each {progress,Info} term interpreted in the
boot script affects the ProvidedStatus status, i.e., ProvidedStatus gets the value of
Info.

script_id() -> Id
Types:
e Id =term()

Get the identity of the boot script used to boot the system. Id can be any Erlang term.
In the delivered boot scripts, Id is {Name,Vsn}. Name and Vsn are strings.

Command Line Flags

The init module interprets the following flags:

-boot File Specifies the name of the boot script, File.boot, used to start the system.
Unless File contains an absolute path, the system searches for File.boot in the
current and <ERL_INSTALL DIR>/bin directories

If this flag is omitted, the <ERL_INSTALL DIR>/bin/start.boot boot script is
used.

-boot_var Var Directory [Var Directory] If the boot script used contains another path
variable than $ROOT, that variable must have a value assigned in order to start the
system. A boot variable is used if user applications are installed in a different
location than underneath the <ERL_INSTALL DIR>/1ib directory. $Var is
expanded to Directory in the boot script.

-mode Mode The mode flag indicates if the system will load code automatically at
runtime, or if all code should be loaded during system initialization. Mode can be
either interactive (allow automatic code loading) or embedded (load all code
during start-up).

-shutdown_time Time Specifies how long time (in ms) the init process is allowed to
spend shutting down the system. If Time milliseconds has elapsed, all processes
still existing are killed.

If -shutdown_time is not specified, the default time is infinity.

Kernel Application (KERNEL) 181

init Kernel Reference Manual

-run Module [Function [Args]] Evaluate the function during system initialization.
Function defaults to start and Args to []. If the function call ends abnormally,
the Erlang runtime system stops with an error message.

The arguments after -run are used as arguments to Erlang functions. All
arguments are passed as strings. For example:

erl -run foo -run foo bar -run foo bar baz 1 2

This starts the Erlang runtime system and then evaluates the following Erlang
functions:

foo:start()
foo:bar()
foo:bar(["baz", "1", "2"]).

The functions are executed sequentially in the initialization process, which then
terminates normally and passes control to the user. This means that a -run call
which does not terminate will block further processing; to avoid this, use some
variant of spawn in such cases.

-s Module [Function [Args]] Evaluate the function during system initialization.
Function defaults to start and Args to []. If the function call ends abnormally,
the Erlang runtime system stops with an error message.

The arguments after -s are used as arguments to Erlang functions. All arguments
are passed as atoms. For example:

erl -s foo -s foo bar -s foo bar baz 1 2

This starts the Erlang runtime system and then evaluates the following Erlang
functions:

foo:start()
foo:bar()
foo:bar([baz, ’1’, ’2°]).

The functions are executed sequentially in the initialization process, which then
terminates normally and passes control to the user. This means that a -s call which
does not terminate will block further processing; to avoid this, use some variant of
spawn in such cases.

Due to the 255 character limit on atoms, it is recommended that -run be used
instead.

-eval Expr Scans, parses and evaluates an arbitrary expression Expr during system
initialization. If any of these steps fail (syntax error, parse error or crash during
evaluation), the Erlang runtime system stops with an error message. Here's an
example that seeds the random number generator:

$ erl -eval ’{X,Y,Z} = now(), random:seed(X, Y, Z).’
This example uses Erlang as a hexadecimal calculator:

$ erl -noshell -eval ’R = 16#1F+16#A0, io:format("~.16B"n", [R])’ -s erlang
BF

182 Kernel Application (KERNEL)

Kernel Reference Manual init

If multiple -eval expressions are specified, they will be evaluated sequentially in
the order specified. -eval expressions are evaluated sequentially with -s and -run
function calls (this also in the order specified). As with -s and -run, an evaluation
that doesn't terminate, blocks the system initialization process.

-init.debug The init process writes some debug information while interpreting the
boot script.

Example

erl —— a b -children thomas claire -ages 7 3 -- X y
1> init:get_plain arguments().

[llall’ llbll’ llel’ llyll]

2> init:get_argument (children).

{ok, [["thomas", "claire"]]}

3> init:get_argument (ages) .

{Ok, [[u7u , ngn]] }

4> init:get_argument(silly).

error

See also

erl_prim_loader(3) [page 71], heart(3) [page 169]

Kernel Application (KERNEL) 183

net_adm

Kernel Reference Manual

host_file()

net_adm

Erlang Module

This module contains various network utility functions.

Exports

This function reads the .hosts.erlang file. It returns the hosts in this file as a list, or it
returns {error, Reason} if the file cannot be found.

dns_hostname (Host)

localhost ()

This function calls epmd for the fully qualified name (DNS) of Host. It returns {ok,
Longhostname} if the call is successful, or {error, Host} if Host cannot be located by
DNS.

This function returns the fully qualified name of the local host, if it can be found by
DNS.

names (), names(Host)

ping(Node)

This function returns {ok, List} or {error, Reason}. List is a list of tuples on the
form {Name, Port}. For example: net_adm:names (elrond) ->
{ok, [{"foo",61178},{"ts",61160}]1}.

This function tries to set up a connection to Node. It returns pang if it fails, and pong if
it is successful.

world (), world (verbose)

This function runs epmd - names on all hosts which are specified in the Erlang host file
.hosts.erlang, collects the replies and then evaluates ping on all those nodes.
Accordingly, connections are created to all nodes which are running on the hosts
specified in the .hosts.erlangfile. An error message is printed if another user node is
found when this is done.

This function can be useful when a node is started, but the names of the other nodes in
the network are not initially known.

world_list (Hostlist), world_list (Hostlist, verbose)

184

Kernel Application (KERNEL)

Kernel Reference Manual net_adm

These functions are the same as wor1d/0 and world/1, but instead of reading the
hostfile from .hosts.erlang the hosts are specified in Hostlist.

Files

The .hosts.erlang file consists of a number of host names written as Erlang terms. It
can be located in the current work directory, $H0ME/ . hosts.erlang, Or
code:rootdir()/.hosts.erlang. The format of the .hosts.erlang file must be one
host name per line. The host names must be within quotes as shown in the following
examples:

’super.eua.ericsson.se’.
’renat.eua.ericsson.se’.
’grouse.eua.ericsson.se’.
’gauffinl.eua.ericsson.se’.
~ (new line)

Kernel Application (KERNEL) 185

net_kernel Kernel Reference Manual

net_kernel

Erlang Module

The net kernel is a system process which must be running for distributed Erlang to
work. The purpose of this process is to implement parts of the BIFs spawn/4 and
spawn_link/4, and to provide authentication and monitoring of the network.

An Erlang runtime system can be started from the UNIX command line as follows:

% erl -name foobar

With this command line, the net_kernel is started as net_kernel:start ([foobar]).
See erl(1).

This is done by the system itself, but the start ([Name]) function can also be called
directly from the normal Erlang shell prompt, and a normal Erlang runtime system is
then converted to a node. The kernel can be shut down with the function stop (), but
only if the kernel was not started by the system itself. The node is then converted into a
normal Erlang runtime system. All other nodes on the network will regard this as a total
node crash.

If the system is started as % erl -sname foobar, the node name of the node will be
foobar@Host, where Host is the short name of the host (not the fully qualified domain
name). The -name flag gives a node with the fully qualified domain name. See erl(1).

The system can be started with the flag -dist_auto_connect to control automatic
connection of remote nodes. See connect_node/1 below and erl(1).

Exports

monitor nodes(Flag, OptionList) -> ok | ignored | Error

Types:

Flag = true | false

OptionList = [Option]

Option = atom() | {atom(), term()}
Error = error | {error, term() }

186 Kernel Application (KERNEL)

Kernel Reference Manual net_kernel

The process evaluating monitor nodes/2 subscribes or unsubscribes for
nodeup/nodedown messages. nodeup messages are delivered to all processes that have
subscribed for nodeup/nodedown messages when a new node is connected, and
nodedown messages are delivered when a node is disconnected.

If Flag is true, a new subscription is made. If Flag is false, all previous subscriptions
with the same OptionList are unsubscribed. Two option lists are considered the same
if [lists:usort/1] on the two lists evaluates to terms that are equal.

If OptionList == [] when subscribing, {nodeup, Node}, and {nodedown, Node}
messages will be delivered; otherwise, {nodeup, Node, Infolist}, and {nodedown,
Node, Infolist} messages will be delivered. Where:

e Node = atom() (the nodename)

e Infolist = [{atom(), term()}]

Also, when OptionList == [] only visible nodes, i.e. nodes that appear in the result of
nodes/0 [page 95] and the current node, are monitored.

Currently the following Options are valid:

{node_type, NodeType} Currently valid NodeTypes are:

visible nodeup and nodedown messages will be delivered when visible nodes
connect/disconnect. A {node_type, visible} tuple will be part of the
Infolist element.

hidden nodeup and nodedown messages will be delivered when hidden nodes
connect/disconnect. A {node_type, hidden} tuple will be part of the
Infolist element.

all nodeup and nodedown messages will be delivered when a node
connect/disconnect. A {node_type, visible} tuple will be part of the
InfoList element when the node is visible, and a {node_type, hidden} tuple
will be part of the InfoList element when the node is hidden.

nodedown reason A {nodedown.reason, Reason} tuple will be part of the InfoList
element in nodedown messages. Reason can currently be:

connection_setup_failed The connection setup failed (after nodeup messages
had been sent).

no_network No network available.

net kernel terminated The net _kernel process terminated.

shutdown Unspecified connection shutdown.

connection_closed The connection was closed.

disconnect The connection was disconnected (forced from the current node).

net_tick timeout No traffic from the connected node during net_ticktime [page
31] seconds.

sendnet_tick_failed Failed to send net tick over the connection.

get_status_failed Status information retrieval from the Port holding the
connection failed.

monitor nodes(Flag) -> ok | ignored | Error
Types:

e Flag = atom()
e Error =error | {error, term()}

Kernel Application (KERNEL) 187

net_kernel Kernel Reference Manual

The same as evaluating net kernel:monitor nodes(Flag, []).

allow(NodeList)

In a simple way, this function limits access to a node from a specific number of named
nodes. A node which evaluates this function can only be accessed from nodes listed in
the NodeList variable. Any access attempts made from nodes not listed in NodeList are
rejected.

connect_node (Node)

Explicitly establishes a connection to the node specified by the atom Node. Returns
true if successful, false if not, and ignored if net _kernel is not started.

This function is only necessary if the system is started with the flag
-dist_auto_connect. See erl(1).

set net_ticktime(NetTicktime, TransitionPeriod) -> Res

Types:

e NetTicktime = integer() (> 0)

e TransitionPeriod = integer() (>=0)

e Res =atom() | {atom(), integer()}

Sets net_ticktime (See kernel(6)) to NetTicktime Seconds.
Some definitions:

The minimum transition traffic interval (MTTI) minimum(NetTicktime,
PreviousNetTicktime)*1000 div 4 milliseconds.

The transition period The time of the least number of consecutive MTTIs to cover
TransitionPeriod seconds following the call to set net_ticktime() (i.e.
((TransitionPeriod*1000 - 1) div MTTI + 1)+MTTI milliseconds).

If NetTicktime < PreviousNetTicktime, the actual net_ticktime change will be
done at the end of the transition period; otherwise, at the beginning. During the
transition period the net_kernel will ensure that there will be outgoing traffic on all
connections at least every MTTI millisecond.

Note:

The net_ticktime changes have to be initiated on all nodes in the network (with the
same NetTicktime) before the end of any transition period on any node; otherwise,
connections may erroneously be disconnected.

Currently defined return values (Res):

unchanged The net_ticktime already had the value of NetTicktime and was left
unchanged.

change initiated The net _kernel has initiated the change of the net_ticktime to
NetTicktime seconds.

{ongoing change to, NewNetTicktime} The request was ignored; because, the
net_kernel was busy changing the net_ticktime to NewTicktime Seconds.

188 Kernel Application (KERNEL)

Kernel Reference Manual net_kernel

set net_ticktime(NetTicktime) -> Res
Types:
e NetTicktime = integer()
e Res =atom() | {atom(), integer()}
The same as the call set net_ticktime(NetTicktime, 60).

getnet_ticktime() -> Res
Types:

e Res=integer() | {atom(), integer()}
Gets the net_ticktime.
Currently defined return values (Res):

NetTicktime The net_ticktime is NetTicktime seconds.

{ongoing change to, NetTicktime} The net_kernel is currently changing the
net_ticktime to NetTicktime seconds.

Kernel Application (KERNEL) 189

0os

Kernel Reference Manual

cmd (Command)

OS

Erlang Module

The functions in this module are operating system specific. Careless use of these
functions will result in programs that will only run on a specific platform. On the other
hand, with careful use these functions can be of help in enabling a program to run on
most platforms.

Exports

-> string()
Types:
e Command = string() | atom()

Executes Command in a command shell of the target OS and returns the result as a string.
This function is a replacement of the previous unix:cmd/1; on a Unix platform they are
equivalent.

Examples:

LsOut = os:cmd("1s"), % on unix platform
DirQut = os:cmd("dir"), % on Win32 platform

find_executable(Name) -> Filename | false
find_executable(Name, Path) -> Filename | false

getenv() ->

190

Types:

e Name = string()

e Path = string()

e Filename = string()

These two functions look up an executable program given its name and a search path, in
the same way as the underlying operating system. find_executable/1 uses the current
execution path (i.e., the environment variable PATH on Unix and Windows). Path, if
given, should conform to the syntax of execution paths on the operating system. The
absolute filename of the executable program Name is returned, or false if the program
was not found.

List
Types:
e List = list() of string

Kernel Application (KERNEL)

Kernel Reference Manual 0s

Returns a list of all environement variables. Each environment variable is a single string,
containing the name of the variable, followed by =, followed by the value.

getenv(VarName) -> Value | false
Types:

e Varname = string()
e Value = string()

Returns the Value of the environment variable VarName, or false if the environment
variable is undefined.

getpid() -> Value
Types:
e Value = string()

Returns the process identifier of the current Erlang emulator in the format most
commonly used by the operating system environment. Value is returned as a string
containing the (usually) numerical identifier for a process. On Unix, this is typically the
return value of the getpid () system call. On VxWorks, Value contains the task id
(decimal notation) of the Erlang task. On Windows, the process id as returned by the
GetCurrentProcessId() system call is used.

putenv(VarName, Value) -> true

Types:

e Varname = string()
e Value = string()

Sets a new Value for the environment variable VarName.

type() -> {Osfamily,Osname} | Osfamily
Types:

e Osfamily = atom() = win32 | unix | vxworks
e Osname = atom()

Returns the Osfamily and, in some cases, Osname Of the current operating system.

On Unix, Osname will be same string that uname -s returns, but in lower case. For
instance, on Solaris 1 and 2, the atom sunos will be returned.

In Windows, Osname will be either nt (on Windows NT), or windows (on Windows 95).
On VxWorks Osfamily alone is returned, i.e. the atom vxworks.

Note:

Think twice before using this function. Use the filename module if you want to
inspect or build file names in a portable way. Avoid matching on the Osname atom.

version() -> {Major, Minor, Release} | VersionString

Types:

Kernel Application (KERNEL) 191

0os

Kernel Reference Manual

192

e Major = Minor = Release = integer()
e \ersionString = string()

Returns the operating system version. On most systems, this function returns a tuple,
but a string will be returned instead if the system has versions which cannot be

expressed as three numbers.

Note:
Think twice before using this function. If you still need to use it, always call

os:type () first.

Kernel Application (KERNEL)

Kernel Reference Manual packages

packages

Erlang Module

Introduction

Packages are simply namespaces for modules. All old Erlang modules automatically
belong to the top level (“empty-string”) namespace, and do not need any changes.

The full name of a packaged module is written as e.g. “fee.fie.foe.fo0”, i.e., as atoms
separated by periods, where the package name is the part up to but not including the
last period; in this case “fee.fie.foe”. A more concrete example is the module
erl.lang.term, Which is in the package erl.lang. Package names can have any
number of segments, as in erl.lang.list.sort. The atoms in the name can be
guoted, as in foo.’Bar’ .baz, or even the whole name, as in ’foo.bar.baz’ but the
concatenation of atoms and periods must not contain two consecutive period characters
or end with a period, as in >foo. .bar’, foo.’ .bar’, or foo.’bar.’. The periods must
not be followed by whitespace.

The code loader maps module names onto the file system directory structure. E.g., the
module erl.lang.termcorresponds to afile . ../erl/lang/term.beamin the search
path. Note that the name of the actual object file corresponds to the last part only of
the full module name. (Thus, old existing modules such as 1ists simply map to
.../lists.beam, exactly as before.)

A packaged module in a file “foo/bar/fred.erl” is declared as:
-module(foo.bar.fred).

This can be compiled and loaded from the Erlang shell using c(fred), if your current
directory is the same as that of the file. The object file will be named fred.bean.

The Erlang search path works exactly as before, except that the package segments will
be appended to each directory in the path in order to find the file. E.g., assume the path
is ["/usr/lib/erl", "/usr/local/lib/otp/legacy/ebin", "/home/barney/erl"].
Then, the code for a module named foo.bar.fred will be searched for first as
"/usr/lib/erl/foo/bar/fred.beam", then
"/usr/local/lib/otp/legacy/ebin/foo/bar/fred.beam" and lastly
"/home/barney/erl/foo/bar/fred.beam". A module like 1ists, which is in the
top-level package, will be looked for as " /usr/lib/erl/lists.beam",
"/usr/local/lib/otp/legacy/ebin/lists.beam" and
"/home/barney/erl/lists.beam".

Programming

Normally, if a call is made from one module to another, it is assumed that the called
module belongs to the same package as the source module. The compiler automatically
expands such calls. E.g., in:

-module(foo.bar.mil).
—export ([£/1]).

f(X) -> m2:g(X).

Kernel Application (KERNEL) 193

packages Kernel Reference Manual

m2:g(X) becomes a call to foo.bar.m2 If this is not what was intended, the call can be
written explicitly, as in

-module(foo.bar.ml).
-export ([£/1]).

£f(X) -> fee.fie.foe.m2:g(X).

Because the called module is given with an explicit package name, no expansion is done
in this case.

If a module from another package is used repeatedly in a module, an import declaration
can make life easier:

-module(foo.bar.mi).
-export ([£/1, g/11).
-import(fee.fie.foe.m2).

£(X) -> m2:g(X).
g(X) -> m2:h(X).
will make the calls to m2 refer to fee.fie.foe.m2. More generally, a declaration

-import (Package.Module) . will cause calls to Module to be expanded to
Package.Module.

Old-style function imports work as normal (but full module names must be used); e.qg.:
-import(fee.fie.foe.m2, [g/1, h/1]).

however, it is probably better to avoid this form of import altogether in new code, since
it makes it hard to see what calls are really “remote”.

If it is necessary to call a module in the top-level package from within a named package,
the module name can be written either with an initial period as in e.g. “.1ists”, or with
an empty initial atom, as in “’’ . 1ists”. However, the best way is to use an import
declaration - this is most obvious to the eye, and makes sure we don't forget adding a
period somewhere:

-module(foo.bar.fred) .
-export ([£/1]).
-import(lists).

£f(X) -> lists:reverse(X).

The dot-syntax for module names can be used in any expression. All segments must be
constant atoms, and the result must be a well-formed package/module name. E.g.:

spawn(foo.bar.fred, £, [X])
is equivalent to spawn(’foo.bar.fred’, £, [X]).
The Erlang Shell

The shell also automatically expands remote calls, however currently no expansions are
made by default. The user can change the behaviour by using the import/1 shell
function (or its abbreviation use/1). E.g.:

1> import(foo.bar.m).
ok
2> m:f().

194 Kernel Application (KERNEL)

Kernel Reference Manual packages

will evaluate foo.bar.m:£ (). If a new import is made of the same name, this overrides
any previous import. (It is likely that in the future, some system packages will be
pre-imported.)

In addition, the function import_all/1 (and its alias use_all/1) imports all modules
currently found in the path for a given package name. E.g., assuming the files
“.../foo/bar/fred.beam”,“.../foo/bar/barney.bean” and
“.../foo/bar/bambam.beam” can be found from our current path,

1> import_all(foo.bar).

will make fred, barney and bambam expand to foo.bar.fred, foo.bar.barney and
foo.bar.bambam, respectively.

Note: The compiler does not have an “import all” directive, for the reason that Erlang
has no compile time type checking. E.g. if the wrong search path is used at compile
time, acall m:£(...) could be expanded to foo.bar.m:f (.. .) without any warning,
instead of the intended frob.ozz.m:£(...), if package foo.bar happens to be found
first in the path. Explicitly declaring each use of a module makes for safe code.

Exports

no functions exported

Kernel Application (KERNEL) 195

pg2

Kernel Reference Manual

create (Name)

delete(Name)

P92

Erlang Module

This module implements process groups. The groups in this module differ from the
groups in the module pg in several ways. In pg, each message is sent to all members in
the group. In this module, each message may be sent to one, some, or all members.

A group of processes can be accessed by a common name. For example, if there is a
group named foobar, there can be a set of processes (which can be located on different
nodes) which are all members of the group foobar. There is no special functions for
sending a message to the group. Instead, client functions should be written with the
functions get_members/1 and get_local members/1 to find out which process are
members of the group. Then the message can be sent to one or more members of the

group.
If a member terminates, it is automatically removed from the group.

Warning:

This module is used by the disk_log module for managing distributed disk logs. The
disk log names are used as group names, which means that some action may need to
be taken to avoid name clashes.

Exports

-> void()
Types:
e Name = term()

Creates a new, empty process group. The group is globally visible on all nodes. If the
group exists, nothing happens.

-> void()

Types:

e Name = term()
Deletes a process group.

get_closest_pid(Name) -> Pid | {error, Reason}

196

Types:
e Name = term()

Kernel Application (KERNEL)

Kernel Reference Manual po2

This is a useful dispatch function which can be used from client functions. It returns a
process on the local node, if such a process exist. Otherwise, it chooses one randomly.

get_members (Name) -> [Pid] | {error, Reason}
Types:
e Name =term()

Returns all processes in the group Name. This function should be used from within a
client function that accesses the group. It is then optimized for speed.

get_local members(Name) -> [Pid] | {error, Reason}
Types:
e Name = term()

Returns all processes running on the local node in the group Name. This function should
to be used from within a client function that accesses the group. It is then optimized for
speed.

join(Name, Pid) -> ok | {error, Reason}
Types:
¢ Name = term()
Joins the process Pid to the group Name.

leave(Name, Pid) -> ok | {error, Reason}
Types:
¢ Name = term()
Makes the process Pid leave the group Name.

which_groups() -> [Name]
Types:
e Name =term()
Returns a list of all known groups.

start ()
start 1link() -> {ok, Pid} | {error, Reason}

Starts the pg2 server. Normally, the server does not need to be started explicitly, as it is
started dynamically if it is needed. This is useful during development, but in a target
system the server should be started explicitly. Use configuration parameters for kernel
for this.

See Also

kernel(6) [page 29], pg(3)

Kernel Application (KERNEL) 197

Kernel Reference Manual

rpc
Erlang Module
This module contains services which are similar to remote procedure calls. It also
contains broadcast facilities and parallel evaluators. A remote procedure call is a method
to call a function on a remote node and collect the answer. It is used for collecting
information on a remote node, or for running a function with some specific side effects
on the remote node.
Exports

start ()
Starts the rpc server. Normally, this is not necessary because the rpc server is started
automatically.

stop()

Stops the rpc server.

call(Node, Module, Function, Args)

Evaluates apply(Mod, Fun, Args) on the node Node and returns a value, or {badrpc,
Reason} if the call fails.

call(Node, Module, Function, Args, Timeout)

Evaluates apply (Mod, Fun, Args) on the node Node and returns a value, or {badrpc,
Reason} if the call fails. If the call times out, Reason is timeout.

If the reply arrives after the call times out, no message will contaminate the caller’s
message queue, since this function spawns off a middleman process to act as (a void)
destination for such an orphan reply. This feature also makes this function more
expensive than call/4 at the caller's end.

cast(Node, Module, Function, Args)

198

Causes the expression apply(Mod, Fun, Args) to be evaluated on Node. No response
is delivered and the process which makes the call is not suspended until the evaluation is
complete, as is the case with call/4. The function immediately returns true. Example:

> rpc:cast(Node, erlang, halt, [])

This function shuts down the node Node.

The following function also shuts down the node, but the call returns the tuple
{badrpc, noconnection}

Kernel Application (KERNEL)

Kernel Reference Manual rpc

> rpc:call(Node, erlang, halt, [])

block_call(Node, Mod, Fun, Args)

The call/4 function causes the server at Node to create a new process for each request.
This means that several RPCs can be active concurrently. The rpc server is not affected
if a request does not return a value. This function can be used if the intention of the call
is to block the rpc server from any other incoming requests until the request has been
handled. The function can also be used for efficiency reasons when very small fast
functions are evaluated, for example BIFs that are guaranteed not to suspend.

> rpc:block_call(Node, erlang, whereis, [file_server]),

Returns the Pid of the file server at Node.

block_call(Node, Module, Function, Args, Timeout)

See call/4 and block_call/4. This is a combination of both. Returns a value, or
{badrpc,Reason} if the call fails. If the call times out, Reason is timeout.

server_call(Node, Name, ReplyWrapper, Msg)

This function is used when interacting with a server called Name at node Node. It is
assumed that the server receives messages in the format {From, Request} and replies
in the format From ! {ReplyWrapper, node(), Reply}. This function makes such a
server call and ensures that the entire call is packed into an atomic transaction which
either succeeds or fails. It never hangs, unless the server itself hangs.

The function returns {error, Reason}, or the answer as produced by the server Name.

abcast (Name, Mess)

Broadcasts the message Mess asynchronously to the registered process Name on all nodes,
including the current node.

abcast (Nodes, Name, Mess)

The same as abcast/2, but only to the nodes Nodes.

sbcast (Name, Msg)

Broadcasts to all nodes synchronously and returns a list of the nodes which have Name as
a registered server. Returns {Goodnodes, Badnodes}.

It is synchronous in the sense that it is known that all servers have received the message
when we return from the call. It is not possible to know that the servers have actually
processed the message.

Any further messages sent to the servers, after this function has returned, will be
received by all servers after this message .

sbcast (Nodes, Name, Msg)

As sbcast/2 but only to the nodes in Nodes.

eval_everywhere(Mod, Fun, Args)

Kernel Application (KERNEL) 199

rpc

Kernel Reference Manual

Evaluates the expression apply (Mod, Fun, Args) on all nodes. No answers are
collected.

eval_everywhere(Nodes, Mod, Fun, Args)

multicall (M,

Evaluates the expression apply (Mod, Fun, Args) on the nodes Nodes. No answers are
collected.

F, b

The same as multicall(M, F, A, infinity)

multicall (Nodes, M, F, A)

multicall (M,

The same asmulticall(Nodes, M, F, A, infinity), where Nodes is a list of nodes.

F, A, Timeout)

In contrast to an RPC, a multicall is an RPC which is sent concurrently from one client
to multiple servers. This is useful for collecting some information from a set of nodes, or
for calling a function on a set of nodes to achieve some side effects. It is semantically the
same as iteratively making a series of RPCs on all the nodes, but the multicall is faster as
all the requests are sent at the same time and are collected one by one as they come
back.

The function multicall/3 evaluates the expression apply (M, F, A) on all nodes and
collects the answers. It returns {Replies, Badnodes}, where Badnodes is a list of the
nodes that terminated or timed out during computation, and Replies is a list of the
return values. Timeout is a time (integer) in milliseconds, or infinity.

The following example is useful when new object code is to be loaded on all nodes in
the network, and also indicates some side effects RPCs may produce:

%% Find object code for module Mod
{Mod, Bin, File} = code:get_object_code(Mod),

%% and load it on all nodes including this one
{Replies, _} = rpc:multicall(code, load binary, [Mod, Bin, File,]),

%% and then maybe check the Replies list.

multicall (Nodes, M, F, A, Timeout)

Executes the multicall with timeout, but only on the nodes Nodes.

multi_server_call(Name, Msg)

200

Kernel Application (KERNEL)

Kernel Reference Manual rpc

The function sends Msg to Name on all nodes, and collects the answers. It returns
{Replies, Badnodes}, where Badnodes is a list of the nodes which failed during the
call. This function assumes that if a request sent to a server called Name, the server
replies in the form {Name, node(), Reply}. Otherwise, the function will hang. It also
assumes that the server receives messages in the form {From, Msg}, and then replies as
From ! {Name, node(), Reply}.

If any of the nodes or servers does not exist or crashes during the call, they appear in the
Badnodes list.

Warning:
If any of the nodes are of an older release of Erlang, the server cannot be monitored,
and this function hangs if the server does not exist.

If all nodes are of the current release of Erlang, safe multi_server call/2,3 is now
obsolete and much more inefficient than multi_server_call/2, 3.

The replies are not ordered in any particular way.

multi_server_call(Nodes, Name, Msg)

The same as above, but Msg is only sent to Nodes.

safemulti_server_call(Name, Msg)

The same as the multi_server_call/2, except that this function handles the case
where the remote node exists, but no server called Name exists there, and the remote
node is of an older release of Erlang. This call is also slightly slower than
multi_server_call/2 since all request go via the rpc server at the remote sites.

safemulti_server_call(Nodes, Name, Msg)

The same as above, but only on the nodes Nodes.

async_call(Node, Mod, Fun, Args)

Call streams with promises is a type of rpc which does not suspend the caller until
the result is finished. They return a Key which can be used at a later stage to collect the
value. The key can be viewed as a promise to deliver the answer. The expression
apply(Mod, Fun, Args) is evaluated for this function on Node. Returns Key which can
be used in a subsequent yield/1 (see below).

yield(Key)

Delivers the promised answer from a previous async_call operation. If the answer is
available, it is returned immediately. Otherwise, the caller of yield/1 is suspended until
the answer arrives from Node.

nb_yield(Key, Timeout)

Kernel Application (KERNEL) 201

rpc Kernel Reference Manual

This is a non-blocking version of yield. It returns the tuple {value, V} when the
computation has finished, or the atom timeout when Timeout elapses.

Timeout is either a non-negative integer or the atom infinity.

nb_yield(Key)
Same as nb_yield(Key, 0).

parallel_eval(List0fTuples)

Evaluates the list of size 3 tuples List0fTuples. Each tuple must be of the type {Mod,
Fun, Args}. Each tuple is sent for evaluation to neighboring nodes, and the replies are
collected and returned as a list of individual values. The return values are presented in
the same order as the original list ListOfTuples.

pmap({M, F}, Extraargs, List)
Takes exactly the same arguments and has the same return value as the 1ists:map/3

function, except that everything is evaluated in parallel on different nodes.

pinfo(Pid)

Location transparent version of process_info/1.

pinfo(Pid, Item)

Location transparent version of process_info/2.

202 Kernel Application (KERNEL)

Kernel Reference Manual seq-trace

seq_trace

Erlang Module

Sequential tracing makes it possible to trace all messages resulting from one initial
message. Sequential tracing is completely independent of the ordinary tracing in Erlang,
which is controlled by the erlang:trace/3 BIF. See the chapter "What is Sequential
Trace” [page 206] below for more information about what sequential tracing is and how
it can be used.

seq_trace provides functions which control all aspects of sequential tracing. There are
functions for activation, deactivation, inspection and for collection of the trace output.

Note:

The implementation of sequential tracing is in beta status. This means that the
programming interface still might undergo minor adjustments (possibly
incompatible) based on feedback from users.

Exports

set_token(Component, ComponentValue) -> {Component, PreviousValue}

Types:

e Component = label | serial | Flag

e Flag = send | 'receive’ | print | timestamp

e ComponentValue = FlagValue | LabelValue | SerialValue

e FlagValue = bool() (for Flag)

e LabelValue = integer() (for label)

¢ SerialValue = {Previous, Current}

e Previous = Current = integer()

Sets the individual Component of the trace token to ComponentValue. Returns the

previous value of the trace token Component. The valid Component, ComponentValue
combinations are:

label, integer() The label component is an integer which identifies all events
belonging to the same sequential trace. If several sequential traces can be active
simultaneously label is used to identify the separate traces. Default is 0.

send, bool() A trace token flag (true | false) which enables/disables tracing on
message sending. Default is false.

’receive’, bool() A trace token flag (true | false) which enables/disables tracing
on message reception. Default is false.

Kernel Application (KERNEL) 203

seq_trace Kernel Reference Manual

print, bool() A trace token flag (true | false) which enables/disables tracing on
explicit calls to seq_trace:print/1. Default is false.

timestamp, bool() A trace token flag (true | false) which enables/disables a
timestamp to be generated for each traced event. Default is false.

serial, SerialValue SerialValue = {Previous, Current}. The serial
component contains counters which enables the traced messages to be sorted,
should never be set explicitly by the user as these counters are updated
automatically. Default is {0, 0}.

set_token(Token) -> PreviousToken
Types:
e Token = PreviousToken = term() | []

Sets the trace token for the current process to Token. If Token = [] then tracing is
disabled, otherwise Token should be an Erlang term returned from get_token/0 or
set_token/1. set_token/1 can be used to temporarily exclude message passing from
the trace by setting the trace token to empty like this:

01dToken = seq-trace:set_token([]), % set to empty and save
% old value
% do something that should not be part of the trace
io:format ("Exclude the signalling caused by this™n"),
seq-trace:set_token(0ldToken), % activate the trace token again

Returns the previous value of the trace token.

get_token(Component) -> {Component, ComponentValue}

Types:

e Component = label | serial | Flag

o ComponentValue = FlagValue | LabelValue | SerialValue
e Flag = send | ‘receive’ | print | timestamp

¢ FlagValue = bool() (for Flag)

e LabelValue = integer() (for label)

e SerialValue = {Previous, Current} (for serial)

e Previous = Current = integer()

Returns the value of the trace token componentComponent.

get_token() -> TraceToken
Types:
e TraceToken =term() | []

Returns the value of the trace token for the current process. If [] is returned it means
that tracing is not active. Any other value returned is the value of an active trace token.
The value returned can be used as input to the set_token/1 function.

print(TraceInfo) -> void
Types:

204 Kernel Application (KERNEL)

Kernel Reference Manual seq-trace

print(Label,

e Tracelnfo = term()

Puts the Erlang term TraceInfo into the sequential trace output if the process currently
is executing within a sequential trace and the print flag of the trace token is set.

TraceInfo) -> void
Types:

e Label =integer()

e Tracelnfo = term()

Same as print/1 with the additional condition that TraceInfo is output only if Label
is equal to the label of the executing process's sequential trace token.

reset_trace() -> void

Sets the trace token to empty for all processes in the node. The process internal
counters used to create the serial of the trace token is set to 0. The trace token is set to
empty for all messages in message queues. Together this will effectively stop all ongoing
sequential tracing in the Erlang node.

set_system_tracer (ProcessOrPortId) -> PreviousId

Types:

e Pid = Previousld = pid() | port() | false

Sets the system tracer. The system tracer can be either a pid or port denoted by
ProcessOrPortId. Returns the previous value (which can be false if no system tracer

is active). The function will generate {’EXIT’, {badarg,Info}} if Pid is not the pid of
an existing local process.

get_system_tracer() -> pid() | port() | false

Returns the pid or port identifier of the current system tracer or false if no system
tracer is activated.

Trace Messages Sent To the System Tracer

The format of the messages are:

{seq_trace, Label, SeqTracelnfo, TimeStamp}
or

{seq-trace, Label, SeqTraceInfo}

depending on whether the timestamp flag of the trace token is set to true or false.
Where :

Label = integer()
TimeStamp = {Seconds, Milliseconds, Microseconds}
Seconds = Milliseconds = Microseconds = integer()

The SeqTraceInfo can have the following formats:

{send, Serial, From, To, Message} Used when a process From with its trace token
flag print set to true has sent a message.

Kernel Application (KERNEL) 205

seq-trace

Kernel Reference Manual

206

{’receive’, Serial, From, To, Message} Used when a process To receives a
message with a trace token that has the *receive’ flag set to true.

{print, Serial, From, _, Info} Used when a process From has called
seq_trace:print(Label,Info) and has a trace token with print set to true and
label set to Label.

Serial = {PreviousSerial, ThisSerial}
PreviousSerial = ThisSerial = integer ()
From = To = pid()

Serial is a tuple consisting of two integers where the first PreviousSerial denotes the
serial counter passed in the last received message which carried a trace token. If the
process is the first one in a new sequential trace the PreviousSerial is set to the value
of the process internal “trace clock”. The second integer ThisSerial is the serial
counter that a process sets on outgoing messages and it is based on the process internal
“trace clock” which is incremented by one before it is attached to the trace token in the
message.

What is Sequential Tracing

Sequential tracing is a way to trace a sequence of messages sent between different local
or distributed processes where the sequence is initiated by one single message. In short
it works like this:

Each process has a trace token which can be empty or not empty. When not empty the
trace token can be seen as the tuple {Label, Flags, Serial, From}. The trace token
is passed invisibly with each message.

In order to start a sequential trace the user must explicitly set the trace token in the
process that will send the first message in a sequence.

The trace token of a process is set each time the process matches a message in a receive
statement, according to the trace token carried by the received message, empty or not.

On each Erlang node a process can be set as the system tracer. This process will receive
trace messages each time a message with a trace token is sent or received (if the trace
token flag send or *receive’ is set). The system tracer can then print each trace event,
write it to a file or whatever suitable.

Note:

The system tracer will only receive those trace events that occur locally within the
Erlang node. To get the whole picture of a sequential trace that involves processes on
several Erlang nodes, the output from the system tracer on each involved node must
be merged (off line).

In the following sections Sequential Tracing and its most fundamental concepts are
described.

Kernel Application (KERNEL)

Kernel Reference Manual seq-trace

Trace Token

Each process has a current trace token. Initially the token is empty. When the process
sends a message to another process, a copy of the current token will be sent “invisibly”
along with the message. The current token of a process is set in two ways, either

1. explicitly by the process itself, through a call to seq_trace:set_token, or
2. when a message is received.

In both cases the current token will be set. In particular, if the token of a message
received is empty, the current token of the process is set to empty.

A trace token contains a label, and a set of flags. Both the label and the flags are set in 1
and 2 above.

Serial

The trace token contains a component which we call the Serial which consists of two
integers Previous and Current. The purpose of Serial is uniquely identify each traced
event within a trace sequence and to order the messages chronologically and in the
different branches if any.

The algorithm for updating Serial can be described as follows:

Let each process have two counters prev_cnt and curr_cnt which both are set to 0
when a process is created. The counters are updated at the following occasions:

¢ When the process is about to send a message and the trace token is not empty.
Let the Serial of the trace token be tprev and tcurr.

curr_cnt := curr_cnt + 1
tprev := prev_cnt
tcurr := curr_cnt

The trace token with tprev and tcurr is then passed along with the message.

e When the process calls seq_trace:print (Label,Info), the Label matches the label
part of the trace token and the trace token print flag is true.

The same algorithm as for send above.

e When a message is received and contains a nonempty trace token.
The process trace token is set to the trace token from the message.

Let the Serial of the trace token be tprev and tcurr.
if (curr_cnt < tcurr)

curr_cnt := tcurr
prev_cnt := tprev

The curr_cnt of a process is incremented each time the process is involved in a
sequential trace. The counter can reach its limit (27 bits) if a process is very long-lived
and is involved in much sequential tracing. If the counter overflows it will not be
possible to use the Serial for ordering of the trace events. To prevent the counter from
overflowing in the middle of a sequential trace the function seq_trace:reset_trace/0
can be called to reset the prev_cnt and curr_cnt of all processes in the Erlang node.
This function will also set all trace tokens in processes and their message queues to
empty and will thus stop all ongoing sequential tracing.

Kernel Application (KERNEL) 207

seq-trace

Kernel Reference Manual

208

Performance considerations

The performance degradation for a system which is enabled for Sequential tracing is
negligible as long as no tracing is activated. When tracing is activated there will of course
be an extra cost for each traced message but all other messages will be unaffected.

Ports

Sequential tracing is not performed across ports.

If the user for some reason wants to pass the trace token to a port this has to be done
manually in the code of the port controlling process. The port controlling processes
have to check the appropriate sequential trace settings (as obtained from
seq-trace:get_token/1 and include trace information in the message data sent to their
respective ports.

Similarly, for messages received from a port, a port controller has to retrieve trace
specific information, and set appropriate sequential trace flags through calls to
seq-trace:set_token/2

Distribution

Sequential tracing between nodes is performed transparently. This applies to C-nodes
built with Erl_interface too. A C-node built with Erl_interface only maintains one trace
token which means that the C-node will appear as one process from the sequential
tracing point of view.

In order to be able to perform sequential tracing between distributed Erlang nodes, the
distribution protocol has been extended (in a backward compatible way). An Erlang
node which supports sequential tracing can communicate with an older (OTP R3B)
node but messages passed within that node can of course not be traced.

Example of Usage

The example shown here will give rough idea of how the new primitives can be used
and what kind of output it will produce.

Assume that we have an initiating process with Pid = <0.30.0> like this:

-module (seqgex) .
-compile (export_all).

loop(Port) ->
receive

{Port,Message} ->
seq-trace:set_token(label,17),
seq-trace:set_token(’receive’,true),
seq,trace:set_token(print,true),
seq-trace:print (17, "**** Trace Started *x*x"),
call server ! {self(),themessage};

{ack,Ack} ->
ok

Kernel Application (KERNEL)

Kernel Reference Manual seq-trace

end,
loop(Port).

And a registered process "call_server* with Pid = <0.31.0> like this:

loop() ->
receive
{PortController,Message} ->

Ack = {received, Message},
seq-trace:print(17,"We are here now"),
PortController ! {ack,Ack}

end,

loopQ).

A possible output from the system’s sequential_tracer (inspired by AXE-10 and
MD-110) could look like:

17:<0.30.0> Info {0,1} WITH

"sxx*x Trace Started *xix"

17:<0.31.0> Received {0,2} FROM <0.30.0> WITH
{<0.30.0>,the message}

17:<0.31.0> Info {2,3} WITH

"We are here now"

17:<0.30.0> Received {2,4} FROM <0.31.0> WITH
{ack,{received, themessage}}

The implementation of a system tracer process that produces the printout above could
look like this:

tracer() ->
receive
{seq_trace,Label,Tracelnfo} ->
print_trace(Label,TraceInfo,false);
{seq_trace,Label,TraceInfo,Ts} ->
print_trace(Label,TraceInfo,Ts);
Other -> ignore
end,
tracer().

print_trace(Label,TraceInfo,false) ->
io:format("“p:", [Labell),
print_trace(TracelInfo);

print_trace(Label,TraceInfo,Ts) ->
io:format(""p “p:", [Label,Ts]),
print_trace(TracelInfo).

print_trace({print,Serial,From,_,Info}) ->
io:format(""p Info "p WITH n"p~n", [From,Serial,Info]);
print_trace({’receive’,Serial,From,To,Message}) ->
io:format(""p Received “p FROM “p WITH n"p~n",
[To,Serial,From,Messagel);
print_trace({send,Serial,From,To,Message}) —->
io:format(""p Sent "p TO “p WITH n"p~n",
[From,Serial,To,Message]) .

The code that creates a process that runs the tracer function above and sets that process
as the system tracer could look like this:

Kernel Application (KERNEL) 209

seq_trace Kernel Reference Manual

start() ->
Pid = spawn(7MODULE,tracer, []),
seq_trace:set_system_tracer(Pid), % set Pid as the system tracer
ok.

With a function like test/0 below the whole example can be started.

test() ->
P = spawn(7MODULE, loop, [port]),
register(call_server, spawn(7MODULE, loop, [1)),
start(),
P ! {port,message}.

210 Kernel Application (KERNEL)

Kernel Reference Manual user

usSer

Erlang Module

user is a server which responds to all the messages defined in the 1/O interface. The
code in user.erl can be used as a model for building alternative 1/O servers.

Exports

start() -> void()
Starts the basic standard 1/O server for the user interface port.

Kernel Application (KERNEL) 211

wrap_log_reader Kernel Reference Manual

wrap_log_reader

Erlang Module

wrap_log_reader is a function to read internally formatted wrap disk logs, refer to
disk_log(3). wrap_log reader does not interfere with disk_log activities; there is
however a known bug in this version of the wrap_log reader, see chapter bugs below.

A wrap disk log file consists of several files, called index files. A log file can be opened
and closed. It is also possible to open just one index file separately. If an non-existent or
a non-internally formatted file is opened, an error message is returned. If the file is
corrupt, no attempt to repair it will be done but an error message is returned.

If a log is configured to be distributed, there is a possibility that all items are not loggen
on all nodes. wrap_log reader does only read the log on the called node, it is entirely
up to the user to be sure that all items are read.

Exports

chunk (Continuation)

chunk(Continuation, N) -> {Continuation2, Terms} | {Continuation2, Terms, Badbytes}

212

{Continuation2, eof} | {error, Reason}

Types:

Continuation = continuation()
N =int() > 0 | infinity
Continuation2 = continuation()
Terms= [term()]

Badbytes = integer()

This function makes it possible to efficiently read the terms which have been appended
to a log. It minimises disk I/O by reading large 8K chunks from the file.

The first time chunk is called an initial continuation returned from the open/1, open/2
must be provided.

When chunk/3 is called, N controls the maximum number of terms that are read from
the log in each chunk. Default is infinity, which means that all the terms contained in
the 8K chunk are read. If less than N terms are returned, this does not necessarily mean
that end of file is reached.

The chunk function returns a tuple {Continuation2, Terms}, where Terms is a list of
terms found in the log. Continuation2 is yet another continuation which must be
passed on into any subsequent calls to chunk. With a series of calls to chunk it is then
possible to extract all terms from a log.

The chunk function returns a tuple {Continuation2, Terms, Badbytes} if the log is
opened in read only mode and the read chunk is corrupt. Badbytes indicates the
number of non-Erlang terms found in the chunk. Note also that the log is not repaired.

Kernel Application (KERNEL)

Kernel Reference Manual wrap_log_reader

chunk returns {Continuation2, eof} when the end of the log is reached, and {error,
Reason} if an error occurs.

The returned continuation may or may not be valid in the next call to chunk. This is
because the log may wrap and delete the file into which the continuation points. To
make sure this does not happen, the log can be blocked during the search.

close(Continuation) -> ok
Types:
e Continuation = continuation()
This function closes a log file properly.

open(Filename) -> OpenRet
open(Filename, N) -> OpenRet

Types:
e File = string() | atom()
e N =integer()

OpenRet = {ok, Continuation} | {error, Reason}
e Continuation = continuation()
Filename specifies the name of the file which is to be read.

N specifies the index of the file which is to be read. If N is omitted the whole wrap log
file will be read; if it is specified only the specified index file will be read.

The open function returns {ok, Continuation} if the log/index file was successfully
opened. The Continuation is to be used when chunking or closing the file.

The function returns {error, Reason} for all errors.

Bugs

This version of the wrap_log_reader does not detect if the disk_log wraps to a new
index file between a wrap_log reader:open and the first wrap_log reader: chunk. In
this case the chuck will actually read the last logged items in the log file, because the
opened index file was truncated by the disk_log.

See Also

disk_log(3) [page 52]

Kernel Application (KERNEL) 213

app

Kernel Reference Manual

214

app

File

The application resource file specifies the resources an application uses, and how the
application is started. There must always be one application resource file for each
application in the system.

This file is read by the application controller when an application is loaded. It is also
used by the functions in systools when generating start scripts etc.

FILE SYNTAX

The application resource file should be called Application.app where Application is
the name of the application. The file should be located in the ebin directory for the
application.

The . app file contains one single Erlang term, which is called an application specification.
The file has the following syntax:

{application, Application,
[{description, Description},
{id, Id},
{vsn, Vsn},
{modules, [Modulel, .., ModuleN]},
{maxP, MaxP},
{maxT, MaxT},
{registered, [Namel, .., NameN]},
{included_applications, [Appll, .., ApplN]l},
{applications, [Appll, .., ApplN]},
{env, [{Par1, Valil}, .., {ParN, ValN}]},
{mod, {Module, StartArgs}},
{start_phases, [{Phasel, PhaseArgsl}, .., {PhaseN, PhaseArgsN}]}]}.

Application = atom() is the name of the application.

For the application controller, all keys are optional. The respective default values are
used for any omitted keys.

The functions in systools require more information. If they are used, the following
keys are mandatory: description, vsn, modules, registered and applications. The
other keys are ignored by systools.

e {description,Description}
Description = string() is a textual description of the application. Defaults to
the empty string.

e {id,Id}
Id = string() is the product identification of the application. Defaults to the
empty string.

Kernel Application (KERNEL)

Kernel Reference Manual app

e {vsn,Vsn}
Vsn = string() is the version of the application. Defaults to the empty string.

e {modules,Modules}
Modules = [atom()] is a list of all the modules introduced by this application.
systools uses this list when generating start scripts and tar files. A module can
only be defined in one application. Defaults to the empty list.

It is also allowed to list a module as {Module,Vsn}, where Vsn = term(). This has
no practical implication, however, as there is no check that Vsn is the same value as
the vsn attribute of the module. The format is retained for backwards
compatibility only.

e {maxP,MaxP}
Deprecated - will be ignored
MaxP = int() | infinity is the maximum number of processes allowed in the
application. Defaults to infinity.

e {maxT,MaxT}
MaxT = int() | infinity is the maximum time in milliseconds that the
application is allowed to run. After the specified time the application will
automatically terminate. Defaults to infinity.

e {registered,Registered}
Registered = [atom()] is a list of all the names of registered processes started in
this application. systools uses this list to detect name clashes between different
applications. Defaults to the empty list.

e {included_applications,Applications}
Applications = [atom()] is a list of all the names of applications which are
included by this application. When this application is started, all included
application will automatically be loaded, but not started, by the application
controller. Processes implemented in an included application should be placed
underneath a supervisor in the primary application. Defaults to the empty list.

e {applications,Applications}
Applications = [atom()] is a list of all the names of applications which must be
started before this application is started. systools uses this list to generate correct
start scripts. Defaults to the empty list, but note that all applications have
dependencies to (at least) kernel and stdlib.

e {env,Env}
Env = [{Par,Val}]l, where Par = atom() and Val = term(), is a list of
configuration parameters used by the application. The value of a configuration
parameter is retrieved by calling application:get_env/1,2. The values in the
application resource file can be overridden by values in a configuration file (see
config(4)) or by command line flags (see erl(1)). Defaults to the empty list.

e {mod,Mod}
Mod = {Module,StartArgs}, where Module = atom() and StartArgs = term()
specifies the application callback module and the start argument, see
application(3).
The mod key is mandatory for applications implemented as supervision trees, but
should be omitted for applications which are code libraries, such as the application
STDLIB.

e {start_phases,StartPhases}
StartPhases = [{Phase,PhaseArgs}], where Phase = atom() and PhaseArgs
= term(), is a list of start phases and the attached start arguments for the
application. After starting the application, the application master will evaluate the

Kernel Application (KERNEL) 215

app Kernel Reference Manual

function Mod: start_phase (Phase, Type ,PhaseArgs) for each defined start phase,
where Mod is the callback module as defined by mod key. This extended start
procedure is intended for synchronized startup of included applications, refer to
the chapter about OTP Design Principles for more information. Defaults to
undefined.

SEE ALSO

application(3) [page 33], systools(3)

216 Kernel Application (KERNEL)

Kernel Reference Manual config

config

File

A configuration file contains values for configuration parameters for the applications in
the system. The erl command line argument -config Name tells the system to use data
in the system configuration file Name . config.

Configuration parameter values in the configuration file will override the values in the
application resource files (see app(4)). The values in the configuration file can be
overridden by command line flags (see er1(1)).

The value of a configuration parameter is retrieved by calling
application:get_env/1,2

FILE SYNTAX

The configuration file should be called Name . config where Name is an arbitrary name.
The .config file contains one single Erlang term. The file has the following syntax:

[{Applicationl, [{Paril, Valil}, ..1},

{ApplicationN, [{ParN1, ValNi1}, ..J1}].

e Application = atom() is the name of the application.
e Par = atom() is the name of a configuration parameter.
e Val = term() is the value of a configuration parameter.

sys.config

When starting Erlang in embedded mode, it is assumed that exactly one system
configuration file is used, named sys.config. This file should be located in
$RO0T/releases/Vsn, where $ROOT is the Erlang/OTP root installation directory and
Vsn is the release version.

Release handling relies on this assumption. When installing a new release version, the
new sys.config is read and used to update the application configurations.

This means that specifying another, or additional, . config files would lead to
inconsistent update of application configurations. Therefore, in Erlang 5.4/OTP R10B,
the syntax of sys.config was extended to allow pointing out other .config files:

[{Application, [{Par, Val}l} | File].

e File = string() is the name of another . config file. The extension .config
may be omitted. It is recommended to use absolute paths. A relative path is
relative the current working directory of the emulator.

Kernel Application (KERNEL) 217

config

Kernel Reference Manual

218

When traversing the contents of sys.config and a filename is encountered, its contents
are read and merged with the result so far. When an application configuration tuple
{Application, Env} is found, it is merged with the result so far. Merging means that
new parameters are added and existing parameter values overwritten. Example:

sys.config:

[{myapp, [{par1,vall},{par2,val2}]},
"/home/user/myconfig"] .

myconfig.config:

[{myapp, [{par2,val3},{par3,vald}]}].
This will yield the following environment for myapp:
[{parl,vall},{par2,val3},{par3,valsd}]

The behaviour if a file specified in sys.config does not exist or is erroneous in some
other way, is backwards compatible. Starting the runtime system will fail. Installing a
new release version will not fail, but an error message is given and the erroneous file is
ignored.

SEE ALSO

app(4), erl (1), OTP Design Principles

Kernel Application (KERNEL)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

abcast/2
rpc, 199

abcast/3
rpc, 199

abs/1
erlang , 74

accept/1
gen_tcp , 154

accept/2
gen_tcp , 154

accessible_logs/0
disk_log , 54

add_path/1
code , 45

add_patha/1
code , 45

add_paths/1
code , 46

add_pathsa/1
code , 46

add_pathsz/1
code , 46

add_pathz/1
code , 45

add_report_handler/1
error_logger , 132

add_report_handler/2
error_logger , 132

add_slave/1
erl_boot_server , 66

all_loaded/O0
code , 48

allow/1

net_kernel , 188

alog/2
disk_log , 54

alog_terms/2
disk_log , 54

application
get_all_env/0, 33
get_all_env/1, 33
get_all_key/0, 33
get_all_key/1,33

get_application/0, 34
get_application/1, 34

get_env/1, 34
get_env/2, 34
get_key/1, 34
get_key/2, 34
load/1, 34
load/2, 34

loaded_applications/0, 35
Module:config_change/3,41
Module:prep_stop/1,40

Module:start/2, 39

Module:start_phase/3, 40

Module:stop/1, 40
permit/2, 35
set_env/3, 36
start/1, 36
start/2, 36
start_type/0, 37
stop/1, 37
takeover/2, 38
unload/1, 38
unset_env/2, 38

which_applications/0, 39

apply/2
erlang , 74

apply/3
erlang , 75

Kernel Application (KERNEL)

219

async_call/4
rpc, 201

atom_to_list/1
erlang , 75

auth

cookie/0, 43
cookie/1, 43
exists/1,43
is_auth/1, 43
node_cookie/2,43
start/0, 43
stop/0, 43

balog/2
disk_log , 54

balog_terms/2
disk_log , 54

bchunk/2
disk_log , 56

bchunk/3
disk_log , 56

binary_to_list/1
erlang , 75

binary_to_list/3
erlang , 75

binary_to_term/1
erlang , 75

block/1
disk_log , 55

block/2
disk_log , 55

block_call/4
rpc, 199

block_call/5
rpc, 199

blog/2
disk_log , 60

blog_terms/2
disk_log , 60

boot/1
init, 179

breopen/3
disk_log , 64

btruncate/2
disk_log , 65

220

call/4
rpc, 198

call/b
rpc, 198

cast/4
rpc, 198

change_group/2
file , 135

change_header/2
disk_log , 55

change_notify/3
disk_log , 55

change_owner/2
file, 135

change_owner/3
file , 135

change_size/2
disk_log , 55

change_time/2
file, 135

change_time/3
file , 135

check_process_code/2

erlang , 76
chunk/1

wrap_log_reader , 212

chunk/2
disk_log , 56

wrap_log_reader , 212

chunk/3
disk_log , 56

chunk_info/1
disk_log , 57

chunk_step/3
disk_log , 57

clash/0
code , 50

clear_cmd/0
heart , 170

close/1
disk_log , 58
file, 135
gen_tcp , 154
gen_udp , 158

Kernel Application (KERNEL)

inet, 173
wrap_log_reader , 213

cmd/1
0s, 190

code
add_path/1, 45
add_patha/1, 45
add_paths/1, 46
add_pathsa/1, 46
add_pathsz/1, 46
add_pathz/1, 45
all_loaded/0, 48
clash/0, 50
compiler_dir/0, 49
del_path/1, 46
delete/1, 47
ensure_loaded/1, 47
get_object_code/1,49
get_path/0, 45
is_loaded/1, 48
1ib_dir/0, 49
lib_dir/1, 49
load_abs/1, 47
load_binary/3, 48
load_file/1, 46
objfile_extension/0, 50
priv_dir/1,49
purge/1, 47
rehash/0, 50
replace_path/2, 46
root_dir/0, 48
set_path/1, 45
soft_purge/1, 48
start/0, 44
start/1, 44
start_1link/0, 45
start_link/1, 45
stick_dir/1, 50
stop/0, 48
unstick_dir/1, 50
where_is_file/1,50
which/1, 50

compiler_dir/0
code , 49

concat_binary/1
erlang , 77

connect/3
gen_tcp , 154

connect/4
gen_tcp , 154

connect_node/1
net_kernel , 188

consult/1
file , 136

controlling_process/2
gen_tcp , 155
gen_udp , 158

cookie/0
auth , 43

cookie/1
auth , 43

copy/2
file , 136

copy/3
file, 136

create/1
pg2, 196

date/0
erlang , 77

del_dir/1
file , 136

del_lock/1
global , 161

del_lock/2
global , 161

del_path/1
code , 46

delete/1
code , 47
file , 137
pg2, 196

delete_module/1
erlang , 77

delete_report_handler/1
error_logger , 132

delete_slave/1
erl_boot_server , 66

disconnect_node/1
erlang , 77

disk_log
accessible_logs/0, 54
alog/2, 54
alog_terms/2, 54
balog/2, 54

Kernel Application (KERNEL) 221

balog_terms/2, 54
bchunk/2, 56
bchunk/3, 56
block/1, 55
block/2, 55
blog/2, 60
blog_terms/2, 60
breopen/3, 64
btruncate/2, 65
change_header/2, 55
change_notify/3,55
change_size/2, 55
chunk/2, 56
chunk/3, 56
chunk_info/1, 57
chunk_step/3, 57
close/1, 58
format_error/1, 58
inc_wrap_file/1,58
info/1, 58
lclose/1,59
lclose/2, 59
log/2, 60
log_terms/2, 60
open/1, 61
pid2name/1, 64
reopen/2, 64
reopen/3, 64
sync/1, 64
truncate/1, 65
truncate/2, 65
unblock/1, 65

dns_hostname/1
net.adm , 184

element/2
erlang , 78

ensure_loaded/1
code , 47

erase/0
erlang , 78

erase/1
erlang , 78

erl_boot_server
add_slave/1, 66
delete_slave/1, 66
start/1, 66
start_link/1, 66
which_slaves/0, 67

erl_ddll

222

format_error/1, 69
load_driver/2, 68
loaded_drivers/0, 69
start/0, 68
start_link/0, 68
stop/0, 68
unload_driver/1, 68

erl_prim_loader

get_file/1,71
get_path/0, 72
set_path/1, 72
start/3, 71

erlang

abs/1, 74
apply/2, 74
apply/3, 75
atom_to_list/1,75
binary_to_list/1,75
binary_to_list/3,75
binary_to_term/1, 75
check_process_code/2, 76
concat_binary/1, 77
date/0, 77
delete_module/1, 77
disconnect_node/1,77
element/2, 78
erase/0, 78
erase/1, 78

erlang

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

:append_element/2, 74

bump_reductions/1, 76
cancel_timer/1,76
demonitor/1, 77
display/1,77
error/1,78
error/2,78
fault/1,79
fault/2,79
fun_info/1, 80
fun_info/2, 80
fun_to_list/1, 80
function_exported/3, 81
get_cookie/0, 81
get_stacktrace/0, 82
hash/2, 83
hibernate/3, 83
info/1, 84
integer_to_list/2, 84
is_builtin/3, 85
is_record/3, 86
list_to_integer/2, 88
loaded/0, 89
localtime/0, 89

Kernel Application (KERNEL)

erlang:

89

erlang:

90

erlang:
erlang:
erlang:
erlang:
erlang:
:memory/0, 91

erlang

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
:port_to_list/1,101

erlang

erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:
erlang:

125
erlang:
exit/1,
exit/2,

localtime_to_universaltime/1,

localtime_to_universaltime/2

make_tuple/2, 90
md5/1, 90
md5_final/1, 91
md5_init/0, 91
md5_update/2, 91

memory/1, 93
monitor/2, 93
phash/2, 98
phash2/2, 98
port_call/3, 100
port_info/2, 101

ports/0, 102
process_display/2, 102
raise/3,105
read_timer/1, 106
ref_to_list/1,106
resume_process/1, 106
send/2, 107

send/3, 107
send_after/3, 107
send_nosuspend/2, 108
send_nosuspend/3, 108
set_cookie/2,109
start_timer/3,112
suspend_process/1, 113
system_flag/2, 113
system_info/1, 114
system_monitor/0, 118
system_monitor/1, 118

system_monitor/2, 117, 118

trace/3,119
trace_info/2,122
trace_pattern/2, 123
trace_pattern/3, 123
universaltime/0, 125

universaltime_to_localtime/1,

yield/0,126
79
79

float/1,79
float_to_list/1,80
garbage_collect/0, 81
garbage_collect/1,81
get/0, 81

get/1, 81
get_keys/1,81

group_leader/0, 82
group_leader/2, 82
halt/0, 82
halt/1, 82

hd/1, 83
integer_to_list/1,84
is_alive/O0, 84
is_atom/1, 84
is_binary/1, 84
is_boolean/1, 84
is_float/1, 85
is_function/1, 85
is_integer/1, 85
is_list/1,85
is_number/1, 85
is_pid/1, 85
is_port/1, 86
is_process_alive/1, 86
is_record/2, 86
is_reference/1, 87
is_tuple/1, 87
length/1, 87
link/1, 87
list_to_atom/1, 87
list_to_binary/1, 88
list_to_float/1,88
list_to_integer/1, 88
list_to_pid/1, 88
list_to_tuple/1, 89
load_module/2, 89
make_ref/0, 90
module_loaded/1, 93
monitor_node/2, 95
node/0, 95
node/1, 95
nodes/0, 95
nodes/1, 96
now/0, 96
open_port/2, 96
pid_to_list/1, 98
port_close/1,99
port_command/2, 99
port_connect/2, 100
port_control/3, 100
pre_loaded/0, 102
process_flag/2,102
process_flag/3, 102
process_info/1, 103
process_info/2, 104
processes/0, 104
purge_module/1, 104
put/2, 105
register/2, 106

Kernel Application (KERNEL)

223

registered/0, 106
round/1, 107

self/0, 107
setelement/3, 109
size/1, 109
spawn/1, 109
spawn/2, 109
spawn/3, 110
spawn/4, 110
spawn_link/1, 110
spawn_link/2, 110
spawn_link/3, 110
spawn_link/4, 110
spawn_opt/2, 111
spawn_opt/3, 111
spawn_opt/4, 111
spawn_opt/5, 112
split_binary/2, 112
statistics/1, 112
term_to_binary/1, 118
term_to_binary/2,118
throw/1, 119

time/0, 119

t1/1, 119
trunc/1, 124
tuple_to_list/1,125
unlink/1, 125
unregister/1, 125
whereis/1, 126

erlang:append_element/2
erlang , 74

erlang:bump_reductions/1
erlang , 76

erlang:cancel_timer/1
erlang , 76

erlang:demonitor/1
erlang , 77

erlang:display/1
erlang , 77

erlang:error/1
erlang , 78

erlang:error/2
erlang , 78

erlang:fault/1
erlang , 79

erlang:fault/2
erlang , 79

erlang:fun_info/1

224

erlang , 80

erlang:fun_info/2
erlang , 80

erlang:fun_to_list/1
erlang , 80

erlang:function_exported/3
erlang , 81

erlang:get_cookie/0
erlang , 81

erlang:get_stacktrace/0
erlang , 82

erlang:hash/2
erlang , 83

erlang:hibernate/3
erlang , 83

erlang:info/1
erlang , 84

erlang:integer_to_list/2
erlang , 84

erlang:is_builtin/3
erlang , 85

erlang:is_record/3
erlang , 86

erlang:list_to_integer/2
erlang , 88

erlang:loaded/0
erlang , 89

erlang:localtime/0
erlang , 89

erlang:localtime_to_universaltime/1
erlang , 89

erlang:localtime_to_universaltime/2
erlang , 90

erlang:make_tuple/2
erlang , 90

erlang:md5/1
erlang , 90

erlang:md5_final/1
erlang , 91

erlang:md5_init/0
erlang , 91

erlang:md5_update/2
erlang , 91

Kernel Application (KERNEL)

erlang:memory/0
erlang , 91

erlang:memory/1
erlang , 93

erlang:monitor/2
erlang , 93

erlang:phash/2
erlang , 98

erlang:phash2/2
erlang , 98

erlang:port_call/3
erlang , 100

erlang:port_info/2
erlang , 101

erlang:port_to_list/1
erlang , 101

erlang:ports/0
erlang , 102

erlang:process_display/2
erlang , 102

erlang:raise/3
erlang , 105

erlang:read_timer/1
erlang , 106

erlang:ref_to_list/1
erlang , 106

erlang:resume_process/1
erlang , 106

erlang:send/2
erlang , 107

erlang:send/3
erlang , 107

erlang:send_after/3
erlang , 107

erlang:send_nosuspend/2
erlang , 108

erlang:send_nosuspend/3
erlang , 108

erlang:set_cookie/2
erlang , 109

erlang:start_timer/3
erlang , 112

erlang:suspend_process/1

erlang , 113

erlang:system_flag/2
erlang , 113

erlang:system_info/1
erlang , 114

erlang:system_monitor/0
erlang , 118

erlang:system_monitor/1
erlang , 118

erlang:system_monitor/2
erlang , 117, 118

erlang:trace/3
erlang , 119

erlang:trace_info/2
erlang , 122

erlang:trace_pattern/2
erlang , 123

erlang:trace_pattern/3
erlang , 123

erlang:universaltime/0
erlang , 125

erlang:universaltime_to_localtime/1

erlang , 125

erlang:yield/0
erlang , 126

error_handler

undefined_function/3, 127
undefined_lambda/3,127

error_logger

add_report_handler/1, 132
add_report_handler/2, 132
delete_report_handler/1,132

error_msg/1, 131
error_msg/2, 131
error_report/1, 129
error_report/2, 130
format/2, 131
info_msg/1, 131
info_msg/2, 131
info_report/1, 130
info_report/2, 130
logfile/1,131
start/0, 129
start_link/0, 129
swap_handler/1, 132
tty/1, 131

Kernel Application (KERNEL)

225

warning_map/0, 132
warning_msg/1, 132
warning_msg/2, 132
warning_report/1,133
warning_report/2,133

error_msg/1

error_logger , 131

error_msg/2

error_logger , 131

error_report/1

error_logger , 129

error_report/2

error_logger , 130

eval/1

file , 137

eval/2

file , 137

eval_everywhere/3

rpc, 199

eval_everywhere/4

rpc, 200

exists/1

auth , 43

exit/1

erlang , 79

exit/2

file

226

erlang , 79

change_group/2, 135
change_owner/2, 135
change_owner/3, 135
change_time/2, 135
change_time/3, 135
close/1, 135
consult/1, 136
copy/2, 136

copy/3, 136
del_dir/1,136
delete/1,137
eval/1, 137

eval/2, 137
file_info/1, 137
format_error/1, 138
get_cwd/0, 138
get_cwd/1, 138

ipread_s32bu_p32bu/3, 138

list_dir/1, 139
make_dir/1, 139
make_link/2, 139
make_symlink/2, 139
open/2, 140
path_consult/2, 141
path_eval/2, 142
path_open/3, 142
path_script/2, 142
path_script/3, 143
pid2name/1, 143
position/2, 143
pread/3, 143
pread/4, 143
pwrite/3, 144
pwrite/4, 143
read/2, 144
read_file/1,144

read_file_info/1,144

read_link/1, 145

read_link_info/1, 146

rename/2, 146
script/1, 146
script/2, 147
set_cwd/1, 147
sync/1, 147
truncate/1, 147
write/2, 147
write_file/2,147
write_file/3, 148

write_file_info/2, 148

file_info/1
file , 137

find_executable/1
0s, 190

find_executable/2
0s, 190

float/1
erlang , 79

float_to_list/1
erlang , 80

format/2
error_logger , 131

format_error/1
disk_log , 58
erl_ddll , 69
file , 138
inet, 172

Kernel Application (KERNEL)

garbage_collect/0
erlang , 81

garbage_collect/1
erlang , 81

gen_tcp
accept/1, 154
accept/2, 154
close/1, 154
connect/3, 154
connect/4, 154
controlling_process/2, 155
listen/2, 155
recv/2, 156
recv/3, 156
send/2, 156
shutdown/2, 157

gen_udp
close/1, 158
controlling_process/2, 158
open/1, 158
open/2, 158
recv/2, 159
recv/3, 159
send/4, 159

get/0
erlang , 81

get/1
erlang , 81

get_all_env/0
application , 33

get_all_env/1
application , 33

get_all_key/0
application , 33

get_all_key/1
application , 33

get_application/0
application , 34

get_application/1
application , 34

get_args/0
init , 180

get_argument/1
init , 180

get_arguments/0
init , 179

get_closest_pid/1
pg2, 196

get_cmd/0
heart , 170

get_cwd/0
file , 138

get_cwd/1
file , 138

get_env/1
application , 34

get_env/2
application , 34

get_file/1
erl_prim_loader , 71

get_key/1
application , 34
get_key/2
application , 34
get_keys/1
erlang , 81

get_local_members/1
pg2, 197

get_members/1
pg2, 197

get_net_ticktime/0
net_kernel , 189

get_object_code/1
code , 49

get_path/0
code , 45
erl_prim_loader , 72

get_plain_arguments/0
init , 180

get_rc/0
inet, 172

get_status/0
init, 181

get_system_tracer/0
seq-trace , 205

get_token/0
seq_trace , 204

get_token/1
seq-trace , 204

Kernel Application (KERNEL)

227

getaddr/2
inet, 173

getenv/0
os, 190

getenv/1
os, 191

gethostbyaddr/1
inet, 172

gethostbyname/1
inet, 172

gethostbyname/2
inet, 172

gethostname/0
inet, 172

getpid/0
0s,191
global

del_lock/1,161
del_lock/2,161

notify_all_name/3, 161
random_exit_name/3, 161

random_notify_name/3, 161

re_register_name/2, 162
re_register_name/3,162
register_name/2, 161
register_name/3, 161
registered_names/0, 162
send/2, 162
set_lock/1, 162
set_lock/2, 162
set_lock/3, 162
start/0, 163
start_link/0, 163
stop/0, 163

sync/0, 163
trans/2, 163
trans/3, 163
trans/4, 163
unregister_name/1, 164
whereis_name/1, 164

global_group

global_groups/0, 166
info/0, 166
monitor_nodes/1, 167
own_nodes/0, 167
registered_names/2, 167
send/2, 167

send/4, 167
start/0, 168

start_link/0, 168
stop/0, 168

sync/0, 167
whereis_name/1, 168
whereis_name/3, 168

global_groups/0
global_group , 166

group_leader/0
erlang , 82

group_leader/2
erlang , 82

halt/0
erlang , 82

halt/1
erlang , 82

hd/1
erlang , 83

heart
clear_cmd/0,170
get_cmd/0, 170
set_cmd/1,170
start/0, 169

host_£file/0
net.adm , 184

inc_wrap_file/1
disk_log , 58

inet
close/1,173
format_error/1,172
get_rc/0, 172
getaddr/2, 173
gethostbyaddr/1, 172
gethostbyname/1, 172
gethostbyname/2, 172
gethostname/0, 172
peername/1, 173
port/1,173
setopts/2, 173
sockname/1, 172

info/0
global_group , 166

info/1
disk_log , 58

info_msg/1
error_logger , 131

Kernel Application (KERNEL)

info_msg/2
error_logger , 131

info_report/1
error_logger , 130

info_report/2
error_logger , 130

init
boot/1, 179
get_args/0, 180
get_argument/1, 180
get_arguments/0, 179
get_plain_arguments/0, 180
get_status/0, 181
reboot/0, 180
restart/0, 180
script_id/0, 181
stop/0, 180

integer_to_list/1
erlang , 84

ipread_s32bu_p32bu/3
file , 138

is_alive/0
erlang , 84

is_atom/1
erlang , 84

is_auth/1
auth , 43

is_binary/1
erlang , 84

is_boolean/1
erlang , 84

is_float/1
erlang , 85

is_function/1

erlang , 85

is_integer/1
erlang , 85

is_list/1
erlang , 85

is_loaded/1
code , 48

is_number/1
erlang , 85

is_pid/1
erlang , 85

is_port/1
erlang , 86

is_process_alive/1
erlang , 86

is_record/2
erlang , 86

is_reference/1
erlang , 87

is_tuple/1
erlang , 87

join/2
pg2, 197

lclose/1
disk_log , 59

lclose/2
disk_log , 59

leave/2
pg2, 197

length/1
erlang , 87

1lib_dir/0
code , 49

lib_dir/1
code , 49

link/1
erlang , 87

list_dir/1
file , 139

list_to_atom/1
erlang , 87

list_to_binary/1
erlang , 88

list_to_float/1
erlang , 88

list_to_integer/1
erlang , 88

list_to_pid/1
erlang , 88

list_to_tuple/1
erlang , 89

listen/2
gen_tcp , 155

Kernel Application (KERNEL) 229

load/1
application , 34

load/2
application , 34

load_abs/1
code , 47

load_binary/3
code , 48

load_driver/2
erl_ddll , 68

load_file/1
code , 46

load_module/2
erlang , 89

loaded_applications/0
application , 35

loaded_drivers/0

erl_ddll , 69
localhost/0

net.adm , 184
log/2

disk_log , 60
log_terms/2

disk_log , 60
logfile/1

error_logger , 131

make_dir/1
file , 139

make_link/2
file , 139

make_ref/0
erlang , 90

make_symlink/2
file , 139

Module:config_change/3
application , 41

Module:prep_stop/1
application , 40

Module:start/2
application , 39

Module:start_phase/3
application , 40

230

Module:stop/1
application , 40

module_loaded/1
erlang , 93

monitor_node/2
erlang , 95

monitor_nodes/1
global_group , 167
net_kernel , 187

monitor_nodes/2
net_kernel , 186

multi_server_call/2
rpc, 200

multi_server_call/3
rpc, 201

multicall/3
rpc, 200

multicall/4
rpc, 200

multicall/5
rpc, 200

names/0
net.adm , 184

nb_yield/1
rpc, 202

nb_yield/2
rpc, 201

net.adm

dns_hostname/1, 184
host_file/0, 184
localhost/0, 184
names/0, 184
ping/1, 184
world/0, 184
world_list/2,184

net_kernel

allow/1, 188
connect_node/1, 188
get_net_ticktime/0, 189
monitor_nodes/1, 187
monitor_nodes/2, 186
set_net_ticktime/1, 189
set_net_ticktime/2, 188

no functions exported

packages , 195

Kernel Application (KERNEL)

node/0
erlang , 95

node/1
erlang , 95

node_cookie/2
auth , 43

nodes/0
erlang , 95

nodes/1
erlang , 96

notify_all_name/3
global , 161

now/0
erlang , 96

objfile_extension/0
code , 50

open/1
disk_log , 61
gen_udp , 158
wrap_log_reader , 213

open/2
file , 140
gen_udp , 158
wrap_log_reader , 213

open_port/2
erlang , 96

oS

cmd/1, 190
find_executable/1, 190
find_executable/2, 190
getenv/0, 190
getenv/1, 191
getpid/0, 191
putenv/2, 191

type/0, 191
version/0, 191

own_nodes/0
global_group , 167

packages
no functions exported, 195

parallel_eval/1
rpc, 202

path_consult/2
file , 141

path_eval/2
file, 142

path_open/3
file , 142

path_script/2
file, 142

path_script/3
file, 143

peername/1
inet, 173

permit/2
application , 35

pg2
create/1, 196
delete/1, 196
get_closest_pid/1, 196
get_local_members/1, 197
get_members/1, 197
join/2,197
leave/2, 197
start/0, 197
start_link/0, 197
which_groups/0, 197

pid2name/1
disk_log , 64
file, 143

pid_to_list/1
erlang , 98

pinfo/1
rpc, 202

pinfo/2
rpc, 202

ping/1
net.adm , 184

pmap/4
rpc, 202

port/1
inet, 173

port_close/1
erlang , 99

port_command/2
erlang , 99

port_connect/2
erlang , 100

port_control/3

Kernel Application (KERNEL) 231

erlang , 100

position/2
file, 143

pre_loaded/0
erlang , 102

pread/3
file , 143

pread/4
file, 143

print/1
seq-trace , 204

print/2
seq-trace , 205

priv_dir/1
code , 49

process_flag/2
erlang , 102

process_flag/3
erlang , 102

process_info/1
erlang , 103

process_info/2
erlang , 104

processes/0
erlang , 104

purge/1
code , 47

purge_module/1
erlang , 104

put/2
erlang , 105

putenv/2
os, 191

pwrite/3
file, 144

pwrite/4
file, 143

random_exit_name/3

global , 161

random_notify_name/3
global , 161

re_register_name/2

232

global , 162

re_register_name/3
global , 162

read/?2
file , 144

read_file/1
file , 144

read_file_info/1
file , 144

read_link/1
file , 145

read_link_info/1
file , 146

reboot/0
init , 180

recv/2
gen_tcp , 156
gen_udp , 159

recv/3
gen_tcp , 156
gen_udp , 159

register/2
erlang , 106

register_name/2
global , 161

register_name/3
global , 161

registered/0
erlang , 106

registered_names/0
global , 162

registered_names/2
global_group , 167

rehash/0
code , 50

rename/?2
file , 146

reopen/2
disk_log , 64

reopen/3
disk_log , 64

replace_path/2
code , 46

Kernel Application (KERNEL)

reset_trace/0

seq-trace , 205

restart/0

init , 180

root_dir/0

code , 48

round/1

rpc

erlang , 107

abcast/2, 199
abcast/3, 199
async_call/4, 201
block_call/4, 199
block_call/5, 199
call/4, 198

call/s, 198

cast/4, 198
eval_everywhere/3, 199
eval_everywhere/4, 200
multi_server_call/2, 200
multi_server_call/3,201
multicall/3, 200
multicall/4, 200
multicall/5, 200
nb_yield/1, 202
nb_yield/2, 201
parallel_eval/1, 202
pinfo/1, 202
pinfo/2, 202

pmap/4, 202
safe_multi_server_call/2, 201
safe_multi_server_call/3, 201
sbcast/2, 199
sbcast/3, 199
server_call/4, 199
start/0, 198

stop/0, 198

yield/1, 201

safe_multi_server_call/2

rpc, 201

safe_multi_server_call/3

rpc, 201

sbcast/2

rpc, 199

sbcast/3

rpc, 199

script/1

file , 146

script/2
file, 147

script_id/0
init , 181

self/0
erlang , 107

send/2
gen_tcp , 156
global , 162
global_group , 167

send/4
gen_udp , 159
global_group , 167

seq_trace
get_system_tracer/0, 205
get_token/0, 204
get_token/1, 204
print/1, 204
print/2, 205
reset_trace/0, 205
set_system_tracer/1, 205
set_token/1, 204
set_token/2, 203

server_call/4
rpc, 199

set_cmd/1
heart , 170

set_cwd/1
file , 147

set_env/3
application , 36

set_lock/1
global , 162

set_lock/2
global , 162

set_lock/3
global , 162

set_net_ticktime/1
net_kernel , 189

set_net_ticktime/2
net_kernel , 188

set_path/1
code , 45
erl_prim_loader , 72

set_system_tracer/1

Kernel Application (KERNEL)

233

seq-trace , 205

set_token/1
seq-trace , 204

set_token/2
seq-trace , 203

setelement/3
erlang , 109

setopts/2
inet, 173

shutdown/2
gen_tcp , 157

size/1
erlang , 109

sockname/1
inet, 172

soft_purge/1
code , 48

spawn/1
erlang , 109

spawn/2
erlang , 109

spawn/3
erlang , 110

spawn/4
erlang , 110

spawn_link/1
erlang , 110

spawn_link/2
erlang , 110

spawn_link/3
erlang , 110

spawn_link/4
erlang , 110

spawn_opt/2
erlang , 111

spawn_opt/3
erlang , 111

spawn_opt/4
erlang , 111

spawn_opt/5
erlang , 112

split_binary/2
erlang , 112

234

start/0

auth , 43

code , 44
erl_ddll, 68
error_logger , 129
global , 163
global_group , 168
heart , 169

pg2, 197

rpc, 198

user, 211

start/1
application , 36
code, 44
erl_boot_server , 66

start/2
application , 36

start/3
erl_prim_loader , 71

start_link/0
code , 45
erl_ddll, 68
error_logger , 129
global , 163
global_group , 168
pg2, 197

start_link/1
code , 45
erl_boot_server , 66

start_type/0
application , 37

statistics/1
erlang , 112

stick_dir/1
code , 50

stop/0

auth , 43

code , 48

erl_ddll, 68
global , 163
global_group , 168
init , 180

rpc, 198

stop/1
application , 37

swap_handler/1
error_logger , 132

Kernel Application (KERNEL)

sync/0
global , 163
global_group , 167

sync/1
disk_log , 64
file, 147

takeover/2
application , 38

term_to_binary/1
erlang , 118

term_to_binary/2
erlang , 118

throw/1
erlang , 119

time/0
erlang , 119

t1l/1
erlang , 119

trans/2
global , 163

trans/3
global , 163

trans/4
global , 163

trunc/1
erlang , 124

truncate/1
disk_log , 65
file , 147

truncate/2
disk_log , 65

tty/1
error_logger , 131

tuple_to_list/1
erlang , 125

type/0
0s, 191

unblock/1
disk_log , 65

undefined_function/3
error_handler , 127

undefined_lambda/3

error_handler , 127

unlink/1
erlang , 125

unload/1
application , 38
unload_driver/1

erl_ddll , 68

unregister/1
erlang , 125

unregister_name/1

global , 164
unset_env/2
application , 38
unstick_dir/1
code , 50

user
start/0, 211

version/0
0s,191

warning_map/0
error_logger , 132

warning_msg/1
error_logger , 132

warning_msg/2

error_logger , 132

warning_report/1

error_logger , 133

warning_report/2
error_logger , 133

where_is_file/1
code , 50

whereis/1
erlang , 126

whereis_name/1
global , 164
global_group , 168

whereis_name/3
global_group , 168

which/1
code , 50

which_applications/0
application , 39

Kernel Application (KERNEL) 235

which_groups/0
pg2, 197

which_slaves/0
erl_boot_server , 67

world/0
net.adm, 184

world_list/2
net.adm , 184

wrap_log_reader
chunk/1, 212
chunk/2, 212
close/1, 213
open/1, 213
open/2, 213

write/2
file , 147

write_file/2
file , 147

write_file/3
file , 148

write_file_info/2
file , 148

yield/1
rpc, 201

236 Kernel Application (KERNEL)

