Parse Tools Application
(PARSETOOLYS)

version 1.3

Typeset in IATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 Parsetools Reference Manual
11 VECC . o v o v e e e e e e e e e

Parse Tools Application (PARSETOOLYS)

Parse Tools Application (PARSETOOLYS)

Parsetools Reference Manual

Short Summaries

e Erlang Module yecc [page 2] — LALR-1 Parser Generator

yecc

The following functions are exported:

e yecc(Grammarfile, Parserfile)
[page 2] Give information about resolved and unresolved parse action conflicts

e yecc(Grammarfile, Parserfile, Verboseflag)
[page 2] Give information about resolved and unresolved parse action conflicts

e yecc(Grammarfile, Parserfile, Verboseflag, Includefile)
[page 2] Give information about resolved and unresolved parse action conflicts

Parse Tools Application (PARSETOOLYS)

yecc Parsetools Reference Manual

yecc

Erlang Module

An LALR-1 parser generator for Erlang, similar to yacc. Takes a BNF grammar
definition as input, and produces Erlang code for a parser.

To understand this text, you also have to look at the yacc documentation in the
UNIX(TM) manual. This is most probably necessary in order to understand the idea of
a parser generator, and the principle and problems of LALR parsing with finite
look-ahead.

Exports

yecc(Grammarfile, Parserfile)
yecc(Grammarfile, Parserfile, Verboseflag)
yecc(Grammarfile, Parserfile, Verboseflag, Includefile)

Types:

o Grammarfile = Parserfile = Includefile = atom() | string()
e Verboseflag = bool()

Grammarfile is the file of declarations and grammar rules, and Parserfile is the name
of the file that will contain the Erlang parser code that is generated. The optional
Verboseflag argument determines whether the parser generator should give full
information about resolved and unresolved parse action conflicts (= true), or only about
those conflicts that prevent a parser from being generated from the input grammar (=
false; the default). The optional Includefile argument indicates a customized
prologue file which the user may want to use instead of the default file
lib/parsetools/include/yeccpre.hrl which is otherwise included at the beginning
of the resulting parser file. N.B. The Includefile is included "as is' in the parser file, so
it must not have a module declaration of its own, and it should not be compiled. It
must, however, contain the necessary export declarations.

The value of the Parserfile parameter is used by yecc as the module name of the
generated parser file, and its file name becomes Parserfile.erl.

Yecc will add the extension .yrl to the Grammarfile name, and the extension .hrl to
the Includefile name.

2 Parse Tools Application (PARSETOOLYS)

Parsetools Reference Manual yecc

Pre-Processing

A scanner to pre-process the text (program, etc.) to be parsed is not provided in the
yecc module. The scanner serves as a kind of lexicon look-up routine. It is possible to
write a grammar that uses only character tokens as terminal symbols, thereby
eliminating the need for a scanner, but this would make the parser larger and slower.

The user should implement a scanner that segments the input text, and turns it into one
or more lists of tokens. Each token should be a tuple containing information about
syntactic category, position in the text (e.g. line number), and the actual terminal
symbol found in the text: {Category, LineNumber, Symbol}.

If a terminal symbol is the only member of a category, and the symbol name is identical
to the category name, the token format may be {Symbol, LineNumber}.

A list of tokens produced by the scanner should end with a special end_of _input tuple
which the parser is looking for. The format of this tuple should be {Endsymbol,
LastLineNumber}, where Endsymbol is an identifier that is distinguished from all the
terminal and non-terminal categories of the syntax rules. The Endsymbol may be
declared in the grammar file (see below).

The simplest case is to segment the input string into a list of identifiers (atoms) and use
those atoms both as categories and values of the tokens. For example, the input string
aaa bbb 777, X may be scanned (tokenized) as:

[{aaa, 1}, {bbb, 1}, {777, 1}, {°,> , 1}, {°X’, 1},
{’$end’, 1}1.

This assumes that this is the first line of the input text, and that ’>$end’ is the
distinguished end_of_input symbol.

The Erlang scanner in the io module can be used as a starting point when writing a new
scanner. Study yeccscan.erl in order to see how a filter can be added on top of
io:scan_erl_form/3 to provide a scanner for yecc that tokenizes grammar files before
parsing them with the yecc parser. A more general approach to scanner implementation
is to use a scanner generator. A scanner generator in Erlang called 1eex is under
development.

Grammar Definition Format

Erlang style comments, starting with a *%, are allowed in grammar files.
Each declaration or rule ends with a dot (the character °.).

The grammar starts with a declaration of the nonterminal categories to be used in
the rules. For example:

Nonterminals sentence nounphrase verbphrase.

A non-terminal category can be used at the left hand side (= 1hs, or head) of a grammar
rule. It can also appear at the right hand side of rules.

Next comes a declaration of the terminal categories, which are the categories of
tokens produced by the scanner. For example:

Terminals article adjective noun verb.

Parse Tools Application (PARSETOOLYS) 3

yecc

Parsetools Reference Manual

Terminal categories may only appear in the right hand sides (= rhs) of grammar rules.

Next comes a declaration of the rootsymbol, or start category of the grammar. For
example:

Rootsymbol sentence.

This symbol should appear in the Ihs of at least one grammar rule. This is the most
general syntactic category which the parser ultimately will parse every input string into.

After the rootsymbol declaration comes an optional declaration of the end_of _input
symbol that your scanner is expected to use. For example:

Endsymbol ’$end’.

Next comes one or more declarations of operator precedences, if needed. These are
used to resolve shift-reduce conflicts (see yacc documentation).

Examples of operator declarations:

Right 200 ’=’.
Left 300 ’+’.
Left 400 ’x*’.
Unary 500 ’-’.

These declarations mean that >= is defined as a right associative binary operator
with precedence 200, ’+’ and ’x’ are left associative binary operators, where

’ x> takes precedence over ’+’ (the normal case), and >~ is a unary operator of higher
precedence than ’ .

Next come the grammar rules. Each rule has the general form
Left_hand_side -> Right_hand_side : Associated_code.

The left hand side is a non-terminal category. The right hand side is a sequence of one
or more non-terminal or terminal symbols with spaces between. The associated code is
a sequence of zero or more Erlang expressions (with commas ’, > as separators). If the
associated code is empty, the separating colon °: > is also omitted. A final dot marks the
end of the rule.

Because the parser generator is implemented in Erlang and uses a modified version of
the Erlang scanner in io.erl to scan grammar definition files, all symbols which are
'special’ to Erlang, for example ’if’, *end’, *case’, ’{’, ’.’, etc., have to be enclosed
in single quotes when used as terminal or non-terminal symbols in grammar rules. The
use of the symbols > $empty’, >$end’, and ’$undefined’ should be avoided.

The last part of the grammar file is an optional section with Erlang code (= function
definitions) which is included "as is' in the resulting parser file. This section must start
with the pseudo declaration, or key words

Erlang code.

No syntax rule definitions or other declarations may follow this section. To avoid
conflicts with internal variables, do not use variable names beginning with two
underscore characters (*_.") in the Erlang code in this section, or in the code associated
with the individual syntax rules.

Parse Tools Application (PARSETOOLYS)

Parsetools Reference Manual yecc

Examples

A grammar to parse list expressions (with empty associated code):

Nonterminals list elements element.
Terminals atom > (> ’)’.

Rootsymbol list.

list -=> > (C ’)’.

list -> ’(’ elements ’)’.

elements -> element.

elements -> element elements.
element -> atom.

element -> list.

This grammar can be used to generate a parser which parses list expressions, such as (),
(a), (peter charles), (a (b c) 4 (())), ... provided that your scanner
tokenizes, for example, the input (peter charles) as follows:

({¢, 1} , {atom, 1, peter}, {atom, 1, charles}, {’)’, 1},
{’$end’, 1}]

When a grammar rule is used by the parser to parse (part of) the input string as a
grammatical phrase, the associated code is evaluated, and the value of the last
expression becomes the value of the parsed phrase. This value may be used by the
parser later to build structures that are values of higher phrases of which the current
phrase is a part. The values initially associated with terminal category phrases, i.e. input
tokens, are the token tuples themselves.

Below is an example of the grammar above with structure building code added:
list -> >(>)’ : nil.

list -> ’(’ elements ’)’ : ’$2°.

elements -> element : {comns, ’$1’, nil}.

elements -> element elements : {comns, *$1°, ’$2°7}.
element -> atom : ’$1°.
element -> list : ’$1°.

With this code added to the grammar rules, the parser produces the following value
(structure) when parsing the input string (a b c¢) .. This still assumes that this was the
first input line that the scanner tokenized:

{cons, {atom, 1, a,} {cons, {atom, 1, b},
{cons, {atom, 1, c}, nil}}}

The associated code contains pseudo variables ’$1°, >$2°, >$3”, etc. which refer to
(are bound to) the values associated previously by the parser with the symbols of the
right hand side of the rule. When these symbols are terminal categories, the values are
token tuples of the input string (see above).

The associated code may not only be used to build structures associated with phrases,
but may also be used for syntactic and semantic tests, printout actions (for example for
tracing), etc. during the parsing process. Since tokens contain positional (line number)
information, it is possible to produce error messages which contain line numbers. If
there is no associated code after the right hand side of the rule, the value ’>$undefined’
is associated with the phrase.

The right hand side of a grammar rule may be empty. This is indicated by using the
special symbol ’>$empty’ as rhs. Then the list grammar above may be simplified to:

Parse Tools Application (PARSETOOLYS) 5

yecc

Parsetools Reference Manual

list -> ’(’ elements ’)’ : ’$2°.

elements -> element elements : {comns, ’$1’, ’$2°7.
elements -> ’$empty’ : nil.

element -> atom : ’$1°.

element -> list : ’$1°.

Generating a Parser

To call the parser generator, use the following command:
yecc:yecc(Grammarfile, Parserfile, Verbose, Includefile)

Verbose (= true/false), and Includefile are optional (see above).

An error message from yecc will be shown if the grammar is not of the LALR type (for
example too ambiguous). Shift-reduce conflicts are resolved in favor of shifting if there

are no operator precedence declarations. Refer to the yacc documentation on the use of
operator precedence.

The output file contains Erlang source code for a parser module with module name

equal to the Parserfile parameter. After compilation, the parser can be called as
follows (the module name is assumed to be myparser):

myparser :parse (myscanner:scan(Inport))

The call format may be different if a customized prologue file has been included when
generating the parser instead of the default file
lib/parsetools/include/yeccpre.hrl

With the standard prologue, this call will return either {ok, Result}, where Result is
a structure that the Erlang code of the grammar file has built, or {error,
{Line number, Module, Message}} if there was a syntax error in the input.

Message is something which may be converted into a string by calling apply (Module,
format_error, [Message]) and printed with io:format/3.

Note:

By default, the parser that was generated will not print out error messages to the
screen. The user will have to do this either by printing the returned error messages,
or by inserting tests and print instructions in the Erlang code associated with the
syntax rules of the grammar file.

It is also possible to make the parser ask for more input tokens when needed if the
following call format is used:

myparser:parse_and_scan({Mod, Tokenizer, Args})

The call apply(Mod, Tokenizer, Args) isexecuted whenever a new token is needed.
This, for example, makes it possible to parse from a file, token by token.

The Mod: Tokenizer function used above has to be implemented so as to return one of
the following:

{ok, Tokens, Endline}
{eof, Endline}
{error, Error_description, Endline}

Parse Tools Application (PARSETOOLYS)

Parsetools Reference Manual yecc

This conforms to the format used by the scanner in the Erlang io library module.

If {eof, Endline} is returned immediately, the call to parse_and_scan/1 returns {ok,
eof}. If {eof, Endline} is returned before the parser expects end of input,
parse_and_scan/1 will, of course, return an error message (see above). Otherwise {ok,
Result} is returned.

More Examples

1. A grammar for parsing infix arithmetic expressions into prefix notation, without
operator precedence:

Nonterminals ’E’ T’ ’F’.

Terminals ’+’ %’ >(’> ’)’ a.

Rootsymbol ’E’.

<KC>'E? => PE? 4 T . [:$1:’)$2)’ 1$3°] .
YE? => T o 0810,

YT => T2 %) IR [>$1>’ :$2:, >$3>].
YT => F) >$1>.

Fo=> :(: B2 ;); . :$2:‘

’F’ -> number : ’$1°.

2. The same with operator precedence becomes simpler:

Nonterminals ’E’.

Terminals ’+’ ’%’ ’>(’ ’)’ number.
Rootsymbol ’E’.

Left 100 ’+’.

Left 200 ’x*’.

YE? => PE? 4 DR . [:$1:’ >$2>’ >$3>].
YE? => PE? % R . [:$1:’ >$2>’ >$3>].
YR => (2 YR) s 2§27,

’E’ -> number : ’$1°.

3. The yecc grammar that is used for parsing grammar files, including itself:

Nonterminals

grammar declaration rule head symbol symbols attached_code
token tokens.

Terminals

atom float integer reserved_symbol string var ’->’ ’:’.
Rootsymbol grammar.

Endsymbol ’$end’.

grammar -> declaration : ’$1°.

grammar -> rule : *$1°.

declaration -> symbol symbols : {’$1°> , ’$2°}.

rule -> head ’->’ symbols attached_code : {rule, [’$1’ | ’$3’],
>$4>}.

head -> symbol : ’$1°.
symbols -> symbol : [’$1°].
symbols -> symbol symbols : [’$1° | ’$2°].
attached_code -> ’:’ tokens : {erlang_code, ’$2’}.
attached_code -> ’$empty’ : {erlang_code,

[{atom, O, ’$undefined’}]}.
tokens -> token : [’$1°].

Parse Tools Application (PARSETOOLYS) 7

Parsetools Reference Manual

yecc

tokens -> token tokens : [’$1° | ’$2°].

symbol -> var : value_of (’$1’).

symbol -> atom : value_of (’$1°).

symbol -> integer : value_of (°$1°).

token -> var : $1°.

token -> atom : ’$1°.

token -> float : ’$1°.

token -> integer : ’$1°.

token -> string : ’$1°.

token -> reserved_symbol : {value_of(’$1’), line of(’$1°)}.

token -> ’->’ : {’->’, line_of (’$1°)}.

token -> ’:’ : {’:’, line_of(°$1°)}.

Erlang code.

value_of (Token) ->

element (3, Token).
line_of (Token) ->
element (2, Token).

Note:

The symbols >->~,and ’:’> have to be treated in a special way, as they are
metasymbols of the grammar notation, as well as terminal symbols of the yecc
grammar.

4. The file esyntax.yrl in the 1ib/yecc/src directory contains a grammar for Erlang.
Note:
Syntactic tests are used in the code associated with some rules, and an error is thrown
(and caught by the generated parser to produce an error message) when a test fails.
The same effect can be achieved with a call to return_error (Error_line,
Message_string), which is defined in the yeccpre.hrl default header file.
Note:
Operator precedence declarations do not have to be applied to terminal operator
symbols (as in yacc), but may be defined one level up. This is practical when an
operator is overloaded (as in the case of the minus operator ’>-).

Files

lib/parsetools/include/yeccpre.hrl

8 Parse Tools Application (PARSETOOLYS)

Parsetools Reference Manual yecc

See Also

Aho & Johnson: 'LR Parsing’, ACM Computing Surveys, vol. 6:2, 1974.

Parse Tools Application (PARSETOOLYS) 9

yecc Parsetools Reference Manual

10 Parse Tools Application (PARSETOOLYS)

Index of Modules and Functions

Modules are typed in this way.
Functions are typed in this way.

yecc
yecc/2, 2
yecc/3, 2
yecc/4, 2

yecc/2
yecc, 2

yecc/3
yecc, 2

yecc/4
yecc, 2

Parse Tools Application (PARSETOOLYS)

11

12

Parse Tools Application (PARSETOOLYS)

