
System Principles

version 5.4

Typeset in LATEX from SGML source using the DOCBUILDER 3.3.2 Document System.

Contents

1 System Principles 1

1.1 System Principles . 1

1.1.1 Starting the System . 1

1.1.2 Restarting and Stopping the System . 1

1.1.3 Boot Scripts . 2

1.1.4 Code Loading Strategy . 3

1.1.5 File Types . 3

1.2 Error Logging . 4

1.2.1 Error Information From the Runtime System . 4

1.2.2 User Defined Error Information . 4

1.2.3 Logging To Disk . 4

1.2.4 Adding A Customized Event Handler To Error Logger 5

1.2.5 SASL Error Logging . 6

1.3 Creating a First Target System . 6

1.3.1 Introduction . 6

1.3.2 Creating a Target System . 7

1.3.3 Installing a Target System . 8

1.3.4 Starting a Target System . 8

1.3.5 System Configuration Parameters . 9

1.3.6 Differences from the Install Script . 9

1.3.7 Listing of target system.erl . 9

List of Tables 15

iiiSystem Principles

iv System Principles

Chapter 1

System Principles

1.1 System Principles

1.1.1 Starting the System

An Erlang runtime system is started with the command erl:

% erl
Erlang (BEAM) emulator version 5.2.3.5 [hipe] [threads:0]

Eshell V5.2.3.5 (abort with ^G)
1>

erl understands a number of command line arguments, see erl(1). A number of them are also
described in this chapter.

Application programs can access the values of the command line arguments by calling one of the
functions init:get argument(Key), or init:get arguments(). See init(3).

1.1.2 Restarting and Stopping the System

The runtime system can be halted by calling halt/0,1. See erlang(3).

The module init contains function for restarting, rebooting and stopping the runtime system. See
init(3).

init:restart()
init:reboot()
init:stop()

Also, the runtime system will terminate if the Erlang shell is terminated.

1System Principles

Chapter 1: System Principles

1.1.3 Boot Scripts

The runtime system is started using a boot script. The boot script contains instructions on which code to
load and which processes and applications to start.

A boot script file has the extension .script. The runtime system uses a binary version of the script.
This binary boot script file has the extension .boot.

Which boot script to use is specified by the command line flag -boot. The extension .boot should be
omitted. Example, using the boot script start all.boot:

% erl -boot start all

If no boot script is specified, it defaults to ROOT/bin/start, see Default Boot Scripts below.

The command line flag -init debug makes the init process write some debug information while
interpreting the boot script:

% erl -init debug
fprogress,preloadedg
fprogress,kernel load completedg
fprogress,modules loadedg
fstart,heartg
fstart,error loggerg
...

See script(4) for a detailed description of the syntax and contents of the boot script.

Default Boot Scripts

Erlang/OTP comes with two boot scripts:

start clean.boot Loads the code for and starts the applications Kernel and STDLIB.

start sasl.boot Loads the code for and starts the applications Kernel, STDLIB and SASL.

Which of start clean and start sasl to use as default is decided by the user when installing
Erlang/OTP using Install. The user is asked “Do you want to use a minimal system startup instead of
the SASL startup”. If the answer is yes, then start clean is used, otherwise start sasl is used. A
copy of the selected boot script is made, named start.boot and placed in the ROOT/bin directory.

User-Defined Boot Scripts

It is sometimes useful or necessary to create a user-defined boot script. This is true especially when
running Erlang in embedded mode, see Code Loading Strategy [page 3].

It is possible to write a boot script manually. The recommended way to create a boot script, however, is
to generate the boot script from a release resource file Name.rel, using the function
systools:make script/1,2. This requires that the source code is structured as applications according
to the OTP design principles. (The program does not have to be started in terms of OTP applications
but can be plain Erlang).

Read more about .rel files in OTP Design Principles and rel(4).

The binary boot script file Name.boot is generated from the boot script file Name.script using the
function systools:script2boot(File).

2 System Principles

1.1: System Principles

1.1.4 Code Loading Strategy

The runtime system can be started in either embedded or interactive mode. Which one is decided by the
command line flag -mode.

% erl -mode embedded

Default mode is interactive.

� In embedded mode, all code is loaded during system start-up according to the boot script. (Code
can also be loaded later by explicitly ordering the code server to do so).

� In interactive mode, code is dynamically loaded when first referenced. When a call to a function
in a module is made, and the module is not loaded, the code server searches the code path and
loads the module into the system.

Initially, the code path consists of the current working directory and all object code directories under
ROOT/lib, where ROOT is the installation directory of Erlang/OTP. Directories can be named
Name[-Vsn] and the code server, by default, chooses the directory with the highest version number
among those which have the same Name. The -Vsn suffix is optional. If an ebin directory exists under
the Name[-Vsn] directory, it is this directory which is added to the code path.

The code path can be extended by using the command line flags -pa Directories and -pz
Directories. These will add Directories to the head or end of the code path, respectively. Example

% erl -pa /home/arne/mycode

The code server module code contains a number of functions for modifying and checking the search
path, see code(3).

1.1.5 File Types

The following file types are defined in Erlang/OTP:

File Type File Name/Extension Documented in

module .erl Erlang Reference Manual

include file .hrl Erlang Reference Manual

release resource file .rel rel(4)

application resource file .app app(4)

boot script .script script(4)

binary boot script .boot -

configuration file .config config(4)

application upgrade file .appup appup(4)

release upgrade file relup relup(4)

Table 1.1: File Types

3System Principles

Chapter 1: System Principles

1.2 Error Logging

1.2.1 Error Information From the Runtime System

There is a system process with the registered name error logger. This process receives all error
messages from the Erlang runtime system and, by default, writes them to the terminal (tty):

=ERROR REPORT==== 9-Dec-2003::13:25:02 ===
Error in process <0.27.0> with exit value: {{badmatch,[1,2,3]},[{m,f,1},{shell,eval_loop,2}]}

The exit values used by the runtime system are described in Erlang Reference Manual, in the chapter
about Errors and Error Handling.

The process error logger and its user interface (with the same name) are described in
error logger(3). Among other things, it is possible to define that error information should be written
to a specified file instead of the tty.

The error logger is part of the Kernel application and it is also possible to use the Kernel configuration
parameter error logger to define if error information should be written to terminal, file or not be
written at all. See kernel(6).

During system start-up, errors are written unformatted to standard out and also kept in a buffer. All
buffered errors are written again when the intended handler (tty or file) is installed.

When the error logger process is notified about an error, the message is passed to the the
error logger on the node which is the group leader process for the process which caused the error.

1.2.2 User Defined Error Information

The user can use the standard error logger process to report errors in the application code by calling
the error logger module interface functions error msg/1, error msg/2, info msg/1, info msg/2,
format/2, error report/1, and info report/1. See error logger(3).

For example, some of the OTP applications call these functions to report serious errors.

1.2.3 Logging To Disk

The standard configuration of the error logger supports the logging of errors to the tty, or to a specified
file. There is also a multi-file logger which logs all events, not only the standard error events, to several
files. See log mf h(3).

4 System Principles

1.2: Error Logging

1.2.4 Adding A Customized Event Handler To Error Logger

The error logger process is an event manager, implemented using the standard behaviour gen event.
See OTP Design Principles and gen event(3).

It is thus possible to add customized error report event handlers. This may be desirable in order to
satisfy one of the following purposes:

� to perform additional processing of standard error messages,

� to override the standard behaviour (the standard event handlers must be deleted), or

� to handle new types of error messages.

The following two functions are used to add and delete handlers:

� add report handler to add a handler, and

� delete report handler to delete a handler.

New types of error message can be reported with the error logger:error report/2 and
error logger:info report/2 functions. Errors which are reported this way are ignored by the
standard error logger event handlers.

The following event is generated by a process Pid calling error logger:error report(Type,
Report):

{error_report, Gleader, {Type, Pid, Report}}

Gleader is the group leader for the process where the call originated, i.e. normally Pid unless, for
example, the function was evaluated using rpc:call/4).

The following event is generated by a process Pid calling error logger:info report(Type, Report):

{info_report, Gleader, {Type, Pid, Report}}

Example:

-module(my_error_logger_h).
-behaviour(gen_event).

-export([start/0, stop/0]).
-export([report/1]).
-export([init/1, handle_event/2, terminate/2]).

start() ->
error_logger:add_report_handler(my_error_logger_h).

stop() ->
error_logger:delete_report_handler(my_error_logger_h).

report(MyError) ->
error_logger:error_report(my_error, MyError).

init(_Arg) ->
{ok, []}.

handle_event({error_report, GL, {Pid, my_error, MyError}}, State) ->

5System Principles

Chapter 1: System Principles

io:format("==MY ERROR=======~n", []),
io:format("~p ~p ~p~n~n", [GL, Pid, MyError]),
{ok, State};

handle_event(_Event, State) ->
{ok, State}.

terminate(_Arg, _State) ->
ok.

1.2.5 SASL Error Logging

The application SASL provides additional error information in the form of crash reports, which are
especially useful in a system structured according to the OTP Design Principles. See SASL User's Guide
for more information.

1.3 Creating a First Target System

1.3.1 Introduction

When creating a system using Erlang/OTP, the most simple way is to install Erlang/OTP somewhere,
install the application specific code somewhere else, and then start the Erlang runtime system, making
sure the code path includes the application specific code.

Often it is not desirable to use an Erlang/OTP system as is. A developer may create new Erlang/OTP
compliant applications for a particular purpose, and several original Erlang/OTP applications may be
irrelevant for the purpose in question. Thus, there is a need to be able to create a new system based on
a given Erlang/OTP system, where dispensable applications are removed, and a set of new applications
that are included in the new system. Documentation and source code is irrelevant and is therefore not
included in the new system.

This chapter is about creating such a system, which we call a target system.

In the following sections we consider creating target systems with different requirements of
functionality:

� a basic target system that can be started by calling the ordinary erl script,

� a simple target system where also code replacement in run-time can be performed, and

� an embedded target system where there is also support for logging output from the system to file
for later inspection, and where the system can be started automatically at boot time.

We only consider the case when Erlang/OTP is running on a UNIX system.

There is an example Erlang module target system.erl that contains functions for creating and
installing a target system. That module is used in the examples below. The source code of the module is
listed at the end of this chapter.

6 System Principles

1.3: Creating a First Target System

1.3.2 Creating a Target System

It is assumed that you have a working Erlang/OTP system structured according to the OTP Design
Principles.

Step 1. First create a .rel file (see rel(4)) that specifies the erts version and lists all applications that
should be included in the new basic target system. An example is the following mysystem.rel file:

%% mysystem.rel
{release,
{"MYSYSTEM", "FIRST"},
{erts, "5.1"},
[{kernel, "2.7"},
{stdlib, "1.10"},
{sasl, "1.9.3"},
{pea, "1.0"}]}.

The listed applications are not only original Erlang/OTP applications but possibly also new applications
that you have written yourself (here examplified by the application pea).

Step 2. From the directory where the mysystem.rel file reside, start the Erlang/OTP system:

erl -pa /home/user/target_system/myapps/pea-1.0/ebin

where also the path to the pea-1.0 ebin directory is provided.

Step 2. Now create the target system:

1> target_system:create("mysystem").

The target system:create/1 function does the following:

1. Reads the mysystem.rel file, and creates a new file plain.rel which is identical to former,
except that it only lists the kernel and stdlib applications.

2. From the mysystem.rel and plain.rel files creates the files mysystem.script, mysystem.boot,
plain.script, and plain.boot through a call to systools:make script/2.

3. Creates the file mysystem.tar.gz by a call to systools:make tar/2. That file has the following
contents:

erts-5.1/bin/
releases/FIRST/start.boot
releases/mysystem.rel
lib/kernel-2.7/
lib/stdlib-1.10/
lib/sasl-1.9.3/
lib/pea-1.0/

The file releases/FIRST/start.boot is a copy of our mysystem.boot, and a copy of the original
mysystem.rel has been put in the releases directory.

4. Creates the temporary directory tmp and extracts the tar file mysystem.tar.gz into that directory.

5. Deletes the erl and start files from tmp/erts-5.1/bin. XXX Why.

6. Creates the directory tmp/bin.

7. Copies the previously creates file plain.boot to tmp/bin/start.boot.

7System Principles

Chapter 1: System Principles

8. Copies the files epmd, run erl, and to erl from the directory tmp/erts-5.1/bin to the directory
tmp/bin.

9. Creates the file tmp/releases/start erl.data with the contents “5.1 FIRST”.

10. Recreates the file mysystem.tar.gz from the directories in the directory tmp, and removes tmp.

1.3.3 Installing a Target System

Step 3. Install the created target system in a suitable directory.

3> target_system:install("mysystem", "/usr/local/erl-target").

The function target system:install/2 does the following:

1. Extracts the tar file mysystem.tar.gz into the target directory /usr/local/erl-target.

2. In the target directory reads the file releases/start erl.data in order to find the Erlang
runtime system version (“5.1”).

3. Substitutes %FINAL ROOTDIR% and %EMU% for /usr/local/erl-target and beam, respectively, in
the files erl.src, start.src, and start erl.src of the target erts-5.1/bin directory, and puts
the resulting files erl, start, and run erl in the target bin directory.

4. Finally the target releases/RELEASES file is created from data in the releases/mysystem.rel
file.

1.3.4 Starting a Target System

Now we have a target system that can be started in various ways.

We start it as a basic target system by invoking

/usr/local/erl-target/bin/erl

where only the kernel and stdlib applications are started, i.e. the system is started as an ordinary
development system. There are only two files needed for all this to work: bin/erl file (obtained from
erts-5.1/bin/erl.src) and the bin/start.boot file (a copy of plain.boot).

We can also start a distributed system (requires bin/epmd).

To start all applications specified in the original mysystem.rel file, use the -boot flag as follows:

/usr/local/erl-target/bin/erl -boot /usr/local/erl-target/releases/FIRST/start

We start a simple target system as above. The only difference is that also the file releases/RELEASES is
present for code replacement in run-time to work.

To start an embedded target system the shell script bin/start is used. That shell script calls
bin/run erl, which in turn calls bin/start erl (roughly, start erl is an embedded variant of erl).

The shell script start is only an example. You should edit it to suite your needs. Typically it is
executed when the UNIX system boots.

run erl is a wrapper that provides logging of output from the run-time system to file. It also provides a
simple mechanism for attaching to the Erlang shell (to erl).

start erl requires the root directory ("/usr/local/erl-target"), the releases directory
("/usr/local/erl-target/releases"), and the location of the start erl.data file. It reads the

8 System Principles

1.3: Creating a First Target System

run-time system version ("5.1") and release version ("FIRST") from the start erl.data file, starts the
run-time system of the version found, and provides -boot flag specifying the boot file of the release
version found ("releases/FIRST/start.boot").

start erl also assumes that there is sys.config in release version directory
("releases/FIRST/sys.config). That is the topic of the next section (see below).

The start erl shell script should normally not be altered by the user.

1.3.5 System Configuration Parameters

As was pointed out above start erl requires a sys.config in the release version directory
("releases/FIRST/sys.config"). If there is no such a file, the system start will fail. Hence such a file
has to added as well.

If you have system configuration data that are neither file location dependent nor site dependent, it may
be convenient to create the sys.config early, so that it becomes a part of the target system tar file
created by target system:create/1. In fact, if you create, in the current directory, not only the
mysystem.rel file, but also a sys.config file, that latter file will be tacitly put in the apropriate
directory.

1.3.6 Differences from the Install Script

The above install/2 procedure differs somewhat from that of the ordinary Install shell script. In
fact, create/1 makes the release package as complete as possible, and leave to the install/2
procedure to finish by only considering location dependent files.

1.3.7 Listing of target system.erl

-module(target_system).
-include_lib("kernel/include/file.hrl").
-export([create/1, install/2]).
-define(BUFSIZE, 8192).

%% Note: RelFileName below is the *stem* without trailing .rel,
%% .script etc.
%%

%% create(RelFileName)
%%
create(RelFileName) ->

RelFile = RelFileName ++ ".rel",
io:fwrite("Reading file: \"~s\" ...~n", [RelFile]),
{ok, [RelSpec]} = file:consult(RelFile),
io:fwrite("Creating file: \"~s\" from \"~s\" ...~n",

["plain.rel", RelFile]),
{release,
{RelName, RelVsn},
{erts, ErtsVsn},
AppVsns} = RelSpec,

PlainRelSpec = {release,
{RelName, RelVsn},
{erts, ErtsVsn},

9System Principles

Chapter 1: System Principles

lists:filter(fun({kernel, _}) ->
true;

({stdlib, _}) ->
true;

(_) ->
false

end, AppVsns)
},

{ok, Fd} = file:open("plain.rel", [write]),
io:fwrite(Fd, "~p.~n", [PlainRelSpec]),
file:close(Fd),

io:fwrite("Making \"plain.script\" and \"plain.boot\" files ...~n"),
make_script("plain"),

io:fwrite("Making \"~s.script\" and \"~s.boot\" files ...~n",
[RelFileName, RelFileName]),

make_script(RelFileName),

TarFileName = io_lib:fwrite("~s.tar.gz", [RelFileName]),
io:fwrite("Creating tar file \"~s\" ...~n", [TarFileName]),
make_tar(RelFileName),

io:fwrite("Creating directory \"tmp\" ...~n"),
file:make_dir("tmp"),

io:fwrite("Extracting \"~s\" into directory \"tmp\" ...~n", [TarFileName]),
extract_tar(TarFileName, "tmp"),

TmpBinDir = filename:join(["tmp", "bin"]),
ErtsBinDir = filename:join(["tmp", "erts-" ++ ErtsVsn, "bin"]),
io:fwrite("Deleting \"erl\" and \"start\" in directory \"~s\" ...~n",

[ErtsBinDir]),
file:delete(filename:join([ErtsBinDir, "erl"])),
file:delete(filename:join([ErtsBinDir, "start"])),

io:fwrite("Creating temporary directory \"~s\" ...~n", [TmpBinDir]),
file:make_dir(TmpBinDir),

io:fwrite("Copying file \"plain.boot\" to \"~s\" ...~n",
[filename:join([TmpBinDir, "start.boot"])]),

copy_file("plain.boot", filename:join([TmpBinDir, "start.boot"])),

io:fwrite("Copying files \"epmd\", \"run_erl\" and \"to_erl\" from \n"
"\"~s\" to \"~s\" ...~n",
[ErtsBinDir, TmpBinDir]),

copy_file(filename:join([ErtsBinDir, "epmd"]),
filename:join([TmpBinDir, "epmd"]), [preserve]),

copy_file(filename:join([ErtsBinDir, "run_erl"]),
filename:join([TmpBinDir, "run_erl"]), [preserve]),

copy_file(filename:join([ErtsBinDir, "to_erl"]),
filename:join([TmpBinDir, "to_erl"]), [preserve]),

10 System Principles

1.3: Creating a First Target System

StartErlDataFile = filename:join(["tmp", "releases", "start_erl.data"]),
io:fwrite("Creating \"~s\" ...~n", [StartErlDataFile]),
StartErlData = io_lib:fwrite("~s ~s~n", [ErtsVsn, RelVsn]),
write_file(StartErlDataFile, StartErlData),

io:fwrite("Recreating tar file \"~s\" from contents in directory "
"\"tmp\" ...~n", [TarFileName]),

{ok, Tar} = erl_tar:open(TarFileName, [write, compressed]),
{ok, Cwd} = file:get_cwd(),
file:set_cwd("tmp"),
erl_tar:add(Tar, "bin", []),
erl_tar:add(Tar, "erts-" ++ ErtsVsn, []),
erl_tar:add(Tar, "releases", []),
erl_tar:add(Tar, "lib", []),
erl_tar:close(Tar),
file:set_cwd(Cwd),
io:fwrite("Removing directory \"tmp\" ...~n"),
remove_dir_tree("tmp"),
ok.

install(RelFileName, RootDir) ->
TarFile = RelFileName ++ ".tar.gz",
io:fwrite("Extracting ~s ...~n", [TarFile]),
extract_tar(TarFile, RootDir),
StartErlDataFile = filename:join([RootDir, "releases", "start_erl.data"]),
{ok, StartErlData} = read_txt_file(StartErlDataFile),
[ErlVsn, RelVsn| _] = string:tokens(StartErlData, " \n"),
ErtsBinDir = filename:join([RootDir, "erts-" ++ ErlVsn, "bin"]),
BinDir = filename:join([RootDir, "bin"]),
io:fwrite("Substituting in erl.src, start.src and start_erl.src to\n"

"form erl, start and start_erl ...\n"),
subst_src_scripts(["erl", "start", "start_erl"], ErtsBinDir, BinDir,

[{"FINAL_ROOTDIR", RootDir}, {"EMU", "beam"}],
[preserve]),

io:fwrite("Creating the RELEASES file ...\n"),
create_RELEASES(RootDir,

filename:join([RootDir, "releases", RelFileName])).

%% LOCALS

%% make_script(RelFileName)
%%
make_script(RelFileName) ->

Opts = [no_module_tests],
systools:make_script(RelFileName, Opts).

%% make_tar(RelFileName)
%%
make_tar(RelFileName) ->

RootDir = code:root_dir(),
systools:make_tar(RelFileName, [{erts, RootDir}]).

11System Principles

Chapter 1: System Principles

%% extract_tar(TarFile, DestDir)
%%
extract_tar(TarFile, DestDir) ->

erl_tar:extract(TarFile, [{cwd, DestDir}, compressed]).

create_RELEASES(DestDir, RelFileName) ->
release_handler:create_RELEASES(DestDir, RelFileName ++ ".rel").

subst_src_scripts(Scripts, SrcDir, DestDir, Vars, Opts) ->
lists:foreach(fun(Script) ->

subst_src_script(Script, SrcDir, DestDir,
Vars, Opts)

end, Scripts).

subst_src_script(Script, SrcDir, DestDir, Vars, Opts) ->
subst_file(filename:join([SrcDir, Script ++ ".src"]),

filename:join([DestDir, Script]),
Vars, Opts).

subst_file(Src, Dest, Vars, Opts) ->
{ok, Conts} = read_txt_file(Src),
NConts = subst(Conts, Vars),
write_file(Dest, NConts),
case lists:member(preserve, Opts) of

true ->
{ok, FileInfo} = file:read_file_info(Src),
file:write_file_info(Dest, FileInfo);

false ->
ok

end.

%% subst(Str, Vars)
%% Vars = [{Var, Val}]
%% Var = Val = string()
%% Substitute all occurrences of %Var% for Val in Str, using the list
%% of variables in Vars.
%%
subst(Str, Vars) ->

subst(Str, Vars, []).

subst([$%, C| Rest], Vars, Result) when $A =< C, C =< $Z ->
subst_var([C| Rest], Vars, Result, []);

subst([$%, C| Rest], Vars, Result) when $a =< C, C =< $z ->
subst_var([C| Rest], Vars, Result, []);

subst([$%, C| Rest], Vars, Result) when C == $_ ->
subst_var([C| Rest], Vars, Result, []);

subst([C| Rest], Vars, Result) ->
subst(Rest, Vars, [C| Result]);

subst([], _Vars, Result) ->
lists:reverse(Result).

subst_var([$%| Rest], Vars, Result, VarAcc) ->
Key = lists:reverse(VarAcc),

12 System Principles

1.3: Creating a First Target System

case lists:keysearch(Key, 1, Vars) of
{value, {Key, Value}} ->

subst(Rest, Vars, lists:reverse(Value, Result));
false ->

subst(Rest, Vars, [$%| VarAcc ++ [$%| Result]])
end;

subst_var([C| Rest], Vars, Result, VarAcc) ->
subst_var(Rest, Vars, Result, [C| VarAcc]);

subst_var([], Vars, Result, VarAcc) ->
subst([], Vars, [VarAcc ++ [$%| Result]]).

copy_file(Src, Dest) ->
copy_file(Src, Dest, []).

copy_file(Src, Dest, Opts) ->
{ok, InFd} = file:rawopen(Src, {binary, read}),
{ok, OutFd} = file:rawopen(Dest, {binary, write}),
do_copy_file(InFd, OutFd),
file:close(InFd),
file:close(OutFd),
case lists:member(preserve, Opts) of

true ->
{ok, FileInfo} = file:read_file_info(Src),
file:write_file_info(Dest, FileInfo);

false ->
ok

end.

do_copy_file(InFd, OutFd) ->
case file:read(InFd, ?BUFSIZE) of

{ok, Bin} ->
file:write(OutFd, Bin),
do_copy_file(InFd, OutFd);

eof ->
ok

end.

write_file(FName, Conts) ->
{ok, Fd} = file:open(FName, [write]),
file:write(Fd, Conts),
file:close(Fd).

read_txt_file(File) ->
{ok, Bin} = file:read_file(File),
{ok, binary_to_list(Bin)}.

remove_dir_tree(Dir) ->
remove_all_files(".", [Dir]).

remove_all_files(Dir, Files) ->
lists:foreach(fun(File) ->

FilePath = filename:join([Dir, File]),
{ok, FileInfo} = file:read_file_info(FilePath),

13System Principles

Chapter 1: System Principles

case FileInfo#file_info.type of
directory ->

{ok, DirFiles} = file:list_dir(FilePath),
remove_all_files(FilePath, DirFiles),
file:del_dir(FilePath);

_ ->
file:delete(FilePath)

end
end, Files).

14 System Principles

List of Tables

1.1 File Types . 3

15System Principles

