RCWA

Residue Class-Wise Affine Groups
(Version 1.7.2)

May 3, 2006

Stefan Kohl

Stefan Kohl — Email: kohl@mathematik.uni-stuttgart.de
— Homepagenttp://www.cip.mathematik.uni-stuttgart.de/ "kohlsn
— Address: Institutiir Geometrie und Topologie

Universitt Stuttgart

70550 Stuttgart

Germany

mailto://kohl@mathematik.uni-stuttgart.de
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn

RCWA 2

Abstract

The RCWA package provides methods for investigatResidueClassWise Affine groups by means of com-
putation. Residue class-wise affine groups are permutation groups acting on the integers, whose elements are
bijective residue class-wise affine mappings. Typically they are infinite.

A mappingf : Z — Z is calledresidue class-wise affingrovided that there is a positive integersuch
that the restrictions of to the residue classes (mag are all affine. This means that for any residue class
r(m) € Z/mz there are coefficientg), brm), ¢ m) € Z such that the restriction of the mappirigo the set
r(m) = {r+kmke Z} is given by

8 (m) - N+br(m)

f\,(m): r(mj—2%Z, ne— -
r(m

Residue class-wise affine groups are countable. “Many” of them act multiply transitivélyasron subsets
thereof. Only relatively basic facts about their structure are known so far. This package is intended to serve
as a tool for obtaining a better understanding of their rich and interesting group theoretical and combinatorial
structure.

Residue class-wise affine groups can be generalized in a natural way to euclidean rings other than the ring
of integers. While this package undoubtedly provides most functionality for residue class-wise affine groups
over the integers, at least rudimentarily it also covers the cases that the underlying ring is a semilocalization
of Z or a polynomial ring in one variable over a finite field.

The original motivation for investigating residue class-wise affine groups comes from the fameus 3
Conjecture, which is an assertion about a surjective, but not injective residue class-wise affine mapping.

Residue class-wise affine groups are introduced in the author’s tResiklassenweise affine Gruppen
This thesis is published atttp://deposit.ddb.de/cgi-bin/dokserv?idn=977164071 (Archivserver
Deutsche Bibliothek) and atttp://elib.uni-stuttgart.de/opus/volltexte/2005/2448/ (OPUS-
Datenbank Universit Stuttgart). A copy of this thesis and an english translation thereof are distributed with
this package (seghesis/thesis.pdf resp.thesis/thesis_e.pdf).

Copyright

(© 2003 - 2006 by Stefan Kohl
This package is distributed under the GNU General Public License.

http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071
http://elib.uni-stuttgart.de/opus/volltexte/2005/2448/

Contents

1 Preface 7
1.1 Motivation. e 7
1.2 Purposeofthispackage. 7
1.3 Scopeofthispackage. e 8
1.4 Acknowledgements 8

2 Residue Class-Wise Affine Mappings 9
2.1 Basicdefinitions L 9
2.2 Entering residue class-wise affinemappings 10

2.2.1 ClassShift(r,m) 11
2.2.2 ClassReflection(r,m). 11
2.2.3 ClassTransposition (rl, m1,r2,m2). 12
224 PrimeSwitch(p) e 12
2.25 RcwaMapping (R, m,coeffs) 13
22,6 LaTeXObj(f) o 15
2.3 Basic functionality forrcwamappings 15
2.4 Factoringrewa mappings o v o i e e e e e e e e e 17
2.4.1 FactorizationIntoCSCRCT (@) . . - .« « v v v v v i e e e 17
242 mKnot(m) e 18
2.5 Determinantandsign e e e 19
2.5.1 Determinant (Sigma). e 19
25.2 Sign(sigma) e e e e e 19
2.6 Attributes and properties derived from the coefficients. 20
2.6.1 Multiplier (f) e 20
2.6.2 Divisor(f). e 20
2.6.3 PrimeSet(f). e 20
2.6.4 Isintegral (f) 21
2.6.5 IsClassWiseOrderPreserving(f) 21
2.7 Functionality related to the affine partial mappings. 21
2.7.1 LargestSourcesOfAffineMappings(f) 21
2.7.2 Multpk (f, p,K) . . o 22
2.7.3 SetOnWhichMappinglsClassWiseOrderPreserving (f). 22
2.7.4 FixedPointsOfAffinePartialMappings (f). 22
2.8 Transition graphs and transitionmatrices 23
2.8.1 TransitionGraph (f, m). 23
2.8.2 OrbitsModulo (f, m) 23

RCWA 4

2.8.3 FactorizationOnConnectedComponents (f,.m). 23
2.8.4 TransitionMatrix (f, m). 24
285 Sources(f) 25
28.6 Sinks(f). e 25
2.8.7 Loops(f) o 25
2.9 TrajeCtories. e e e e e 26
2.9.1 Trajectory (f,n,length) 26
2.9.2 Trajectory (f, n, length, whichcoeffs). 26
2.9.3 IncreasingOn(f) e 27
2.10 Localizations of rcwa mappings of theintegers. 27
2.10.1 LocalizedRcwaMapping (f,p). o 27
2.11 Extracting roots of rcvamappingso e 27
2111 Root (f,K). . . o e 27
2.12 Special functions for non-bijective mappings 28
2.12.1 Rightlnverse (). e 28
2.12.2 CommonRightinverse (I, r) 28
2.12.3 ImageDensity (f). e 28
2.13 Probabilistic guesses on the behaviour of trajectories 29
2.13.1 LikelyContractionCentre (f, maxn,bound). 29
2.13.2 GuessedDivergence (f) oo 29
2.14 The categories and familiesof rcwamappings 30
2.14.1 IsRcwaMapping (). e 30
2.14.2 RewaMappingsFamily (R). 30
Residue Class-Wise Affine Groups 31
3.1 Constructing residue class-wise affinegroups 31
3.1.1 RCWA(R) . . o e e e e 31
3.1.2 Random (RCWA(Integers)) o v i i i it i i i e 32
3.1.3 IsomorphismRcwaGroupOverZ (G) 34
3.2 Attributes and propertiesof rcwagroups. Lo 35
3.21 Modulus (G) e e e 35
3.22 IsTame (G) o v i 35
3.2.3 PrimeSet(G). e 36
3.3 Membership testing, order computation, permutation- / matrix representations. 36
331 \NIN(Q,G) . . . e 36
3.3.2 Size(G). e 36
3.3.3 IsomorphismPermGroup (G). e 37
3.3.4 IsomorphismMatrixGroup (G). 37
3.4 Factoringelementsintogenerators. 0o 38
3.4.1 PrelmagesRepresentative (phi,g). 38
3.4.2 PrelmagesRepresentatives (phi,.g) 39
3.5 The action of an rcwa group on the underlyingringR 40
3.5.1 IsTransitive (G, Integers) o i 40
3.5.2 RepresentativeAction (G, src,dest,act). 41
3.5.3 RepresentativeActionPrelmage (G, src, dest,act,F) 42
3.5.4 RepresentativeAction (RCWA(Integers), P1,P2). 42

3.5.5 ShortOrbits (G,S,maxIng) 43

RCWA 5

3.5.6 OrbitsModulo (G, m). 44
3.5.7 Ball(G,p,d,act). e 44

3.6 Conjugacy INRCWA(R) o o 45
3.6.1 IsConjugate (RCWA(Integers),f,g). 45
3.6.2 RepresentativeAction (RCWA(Integers), f, @) 45
3.6.3 ShortCycles (f, maxing). 46
3.6.4 NrConjugacyClassesOfRCWAZOfOrder(ord) 46

3.7 Restrictionandinduction 47
3.7.1 Restriction(g,f) e 47
3.7.2 Restriction (G, f). 47
3.7.3 Induction(g,f) 47
3.7.4 DirectProduct (G1, G2, ...) e 48
3.7.5 WreathProduct (G,P). e 48

3.8 Special attributes fortame rcwagroups 49
3.8.1 RespectedPartition (G) 49
3.8.2 ActionOnRespectedPartition (G). 50
3.8.3 IntegralConjugate (G). 50
3.8.4 IntegralizingConjugator (G). e 51

3.9 Thecategoriesofrcwagroups e 51
3.9.1 IsRcwaGroup (G) e 51

4 Examples 52
4.1 Factoring Collatz’ permutation of the integets. 52
4.2 Anrcwa mapping which seems to be contracting, butveryslow 59
4.3 Checkingaresultby P.Andaloro. 61
4.4 Two examples by Matthewsand Leigh. 62
4.5 Exploring the structure ofawildrcwagroup. 64
4.6 A wild rcwva mapping which has only finitecycles. 66
4.7 Anabelian rcwa group over a polynomialring. 70
4.8 Anrcwarepresentationofasmallgroup. L. 71
4.9 An rcwa representation of the symmetricgroupon10points. 72
4.10 Checking for solvability. 75
4.11 Some examples over (semi)localizations of the integers. 76
4.12 Twisting 257-cycles into an rcwa mapping with modulus32. 79
4.13 The behaviour of the moduliof powers. 80
4.14 Images and preimages under the Collatz mapping. 81
4.15 A group which acts 4-transitively on the positive integers 83
4.16 A group which acts 3-transitively, but not 4-transitivelyonzZ. 92
4.17 Grigorchuk groups e e e e 95
4.18 Forward orbits of a monoid with 2 generators. 97
4.19 Representations of the free group ofrank2. 98
4.20 Representations of the modular group PSL(2,2) 99

5 The Algorithms Implemented in RCWA 101

RCWA 6

6 Installation and auxiliary functions 108
6.1 Requirements. e e e e e e e 108
6.2 Installation 108
6.3 Thelnfoclassofthepackage. 108

6.3.1 InfoRCWA e e e 108
6.4 Thetestingroutine. e 108
6.4.1 RCWATeSt e e e 108
6.5 Buildingthemanual e 109

6.5.1 RCWABuUIildManual 109

Chapter 1

Preface

1.1 Motivation

The development of this package has originally been motivated by the fameué 3 Conjecture,
which asserts that iterated application of the Collatz mapping

n if neve
T:Z—1Z, n— {3 . "
s if nodd

to any given positive integer eventually yields 1.

This has been conjectured by Lothar Collatz in the 1930s, and is still an unsolved problem today.
Jeffrey C. Lagarias has written and maintains a commented bibliograpb®@{, which currently lists
about 200 references to publications related to Collatz’ conjecture. None of the articles mentioned
there tries to attack the problem by means of group theory, or investigates the structure of groups
generated by bijective mappings which are “similar to the Collatz mapping”résdue class-wise
affine In fact, residue class-wise affine grouppparently have not been treated anywhere in the
literature before.

After having investigated these objects for a couple of years, the author feels that this is a gap
which is worth to be filled.

1.2 Purpose of this package

So far, compared to classes of groups like for example matrix groups, finite permutation groups or
polycyclic groups, only relatively basic facts about residue class-wise affine groups are known. This
package is intended to serve as a tool for obtaining a better understanding of their rich and interesting
group theoretical and combinatorial structure.

This manual is pure software documentation, and as such it does not contain any theorems or
proofs. In a few places, where this is absolutely necessary for understanding what some function is
good for, corresponding mathematical assertions are made. Proofs of all of them as well as a detailed
introduction into the subject can be found in the author’s PhD thé&sis(5. A copy of this thesis
and an english translation thereof are distributed with this package:(eees/thesis.pdf resp.
thesis/thesis_e.pdf).

RCWA 8

1.3 Scope of this package

This package being a research tool which can be applied in various ways to various different problems,
itis simply not possible to say what can be found out with it about which mappings or groups. The best
way to get an idea about this is likely to experiment with the examples discussed in this manual and
included in the filepkg/rcwa/examples/examples.g. Another source of examples is thendom

(3.1.2 - function. If you haveAIEX andxdvi installed, you can nicely display examples of residue
class-wise affine mappings by repeatedly issueinglay (Random (RCWA (Integers)) :xdvi) ;.

Often the package does not provide an out-of-the-box solution for a given problem. At the be-
ginning you will perhaps notice extremely long runtimes for seemingly trivial things. But with some
experience you will learn to estimate in advance how long something will take and to see why raising
some harmlessly-looking mapping to the 20th power would take terabytes of memory, while one can
easily find out nontrivial things about some group which looks much more complicate. Quite often it
is possible to find an answer for a given question by using an interactive trial-and-error approach.

Among many other results, with substancial help of this package the author has found a non-
trivial normal subgroup of the group of all residue class-wise affine permutations of the integers.
Interactive sessions with this package have also lead to the development of a method for factoring
residue class-wise affine permutations into involutions which have a particularly simple structure (see
FactorizationIntoCSCRCT (2.4.1).

1.4 Acknowledgements

| would like to thank Bettina Eick for her kind help in trying to make this package and in particular its
documentation more useful and more interesting for a larger number of people. Furthermore | would
like to thank the two anonymous referees for their constructive criticism and helpful suggestions.

If you useRCWA in some work leading to a publication, | ask you to cite it just as you would cite
a journal article. | would be grateful for any bug reports, comments or suggestions and of course for
reports of results found with the help of this package.

Stuttgart, May 3, 2006 Stefan Kohl

Chapter 2

Residue Class-Wise Affine Mappings

This chapter describes the functionality provided by this package for computing with residue class-
wise affine mappings.

2.1 Basic definitions

The abstract already gave a brief definition of residue class-wise affine groups over the ring of integers.
In the sequel, a slightly generalized and more formal version of this definition is given. In the same
time, some useful notation is introduced.

Let R be an infinite euclidean domain which is not a field and all of whose proper residue class
rings are finite. A mappind : R— Ris calledresidue class-wise affiner for short amcwamapping,
if there is anm € R\ {0} such that the restrictions df to the residue classe$m) € R/mRare all
affine. This means that for any residue cle@s) there are coefficient), by (m), ¢ (m € Rsuch that
the restriction of the mappin§ to the ser(m) = {r + kmk € R} is given by

8 (m) - N+ br(m)

f\r(m): rm—R, n— Com
r(m

The valuem is called themodulusof f. It is understood that all fractions are reduced, i.e. that
ged(@ m), brm), & m)) = 1, and thamis chosen multiplicatively minimal.

Apart from the restrictions imposed by the condition that the image of any residuer Gass
underf must be a subset & and that one cannot divide by 0, the coefficiemis;, bym) andc,m
can be any ring elements.

When talking about th@roduct f-g of some rcwa mapping$ andg it is always meant their
composition as mappings, whefds applied first. By the inverse of a bijective rcwa mapping it is
meant its inverse mapping.

The set RCWAR) := { o€ SymR) | ois residue class-wise affifeis closed under multiplica-
tion and taking inverses (this can be verified easily), hence forms a subgroup dRiSyngubgroup
of RCWA(R) is called aresidue class-wise affirgroup, or for short amcwa group.

There are two entirely different classes of rcwa mappings and -groups. One of these classes
comprises what could be called the “trivial cases”. The members of the other have typically a quite
complicate structure and are in often very difficult to investigate. Accordingly, the former are called
tameand the latter are calledgild. By definition, an rcwa mapping immeif the set of moduli of its
powers is bounded, and an rcwa grougeisieif the set of moduli of its elements is bounded.

RCWA 10

2.2 Entering residue class-wise affine mappings

Entering an rcwa mapping inRCWA in general requires specifying the underlying riRghe mod-
ulusm and the coefficients,), by(m) andc;m) for r(m) running over the residue classes (nmod
For the sake of simplicity, in this section we describe how to enter rcwa mappiRs&. This is
likely the most prominent and certainly the best-supported case. For the general constructor for rcwa
mappings, sekcwaMapping (2.2.5.

The easiest way to enter an rcwa mappin@.a$ by RcwaMapping (coeffs). Herecoeffs is
a list of m coefficient triplescoeffs [r + 11 = [&(m), By(m), Cr(m)], Wherer runs from 0 tom— 1.

If some coefficient;) is zero or if images of some integers under the mapping to be defined
would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple[1, 1, 3] is not allowed at the first position. The reason for this is that not all integers

congruent to O + 1 = 1 mouh are divisible by 3.
Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>

gap> [IsSurjective(T), IsInjective(T)];

[true, false]

gap> SetName (T, "T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

gap> a := RcwaMapping([[3,0,21,1(3,1,4]1,13,0,21,1[3,-1,4]1]); SetName(a,"a");
<rcwa mapping of Z with modulus 4>

gap> IsBijective(a); # Check whether this is a permutation.

true

gap> Display(a);

Bijective rcwa mapping of Z with modulus 4

n mod 4 | n"a
_______________________________________ +______________________________________
02 | 3n/2
1 | (3n + 1)/4
3 | (3n - 1)/4

gap> MovedPoints(a);

z\N [-1, 0, 1]

gap> Cycle(a,44);

[44, 66, 99, 74, 111, 83, 62, 93, 70, 105, 79, 59]

RCWA 11

There is computational evidence for the conjecture that any residue class-wise affine permufation of
can be factored into members of the following three series of rcwa mappings of particularly simple
structure (cpFactorizationIntoCSCRCT (2.4.1):

2.2.1 ClassShift (r, m)

{ ClassShift(r, m) (function)

Returns: Theclass shiftv;).

Theclass shiftv; () is the rcwa mapping df which mapsn € r(m) to n+mand fixesZ \ r (m)
pointwisely. The residue clasesidueClass (r,m) itself can be given in place of the arguments
andm. Enclosing the argument list in list brackets is permitted.

Example

gap> Display(ClassShift (5,12));
Tame bijective rcwa mapping of Z with modulus 12, of order infinity

n"ClassShift (5,12)

2.2.2 ClassReflection (r, m)

{ ClassReflection(r, m) (function)
Returns: Theclass reflectiorg;).
The class reflectiorg,) is the rcwa mapping of which mapsn € r(m) to —n+2r and fixes
Z \ r(m) pointwisely. The residue clasesidueClass (r,m) itself can be given in place of the
arguments andm. Enclosing the argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));
Bijective rcwa mapping of Z with modulus 9, of order 2
n"ClassReflection(5,9)

012346738
5

RCWA 12

2.2.3 ClassTransposition (r1, m1, r2, m2)

{Q ClassTransposition(rl, ml, r2, m2) (function)

Returns: Theclass transposition;, i) r,(m,)-

The class transpositiorn;, i,) r,(m,) IS @n rcwa mapping of, of order 2 which interchanges the
disjoint residue classeg(my) andr,(mp) of Z and fixes the complement of their union pointwisely.
The residue class@asidueClass (r1,ml) andResidueClass (r2,m2) themselves can be given in
place of the argumentsl, n1, r2 andm2. Enclosing the argument list in list brackets is permitted.

The residue classeg(m;) andr,(mp) are stored as an attributeansposedClasses.
Example

gap> Display (ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

n mod 10 | n"ClassTransposition(1,2,8,10)
_______________________________________ +______________________________________
2 4 | n
1 3 5 7 9 | 5n + 3
| (n-3)/5

It can be shown that the group which is generated by all class transpositions is simple.
The permutations of the following kind play an important role in factoring bijective rcwa mappings
into class shifts, class reflections and class transpositiong{eporizationIntoCSCRCT (2.4.1)):

2.2.4 PrimeSwitch (p)

O PrimeSwitch(p) (function)
Q PrimeSwitch(p, k) (function)
Returns: In the one-argument form thgrime switchop, 1= To(g), 1(2p) * T4(8),1(2p) * To4),1(2p) *
To(4),—1(2p) * T2(2p),1(4p) * Ta(2p),2p+1(ap)» @Nd in the two-argument form the restrictionaf by n — kn.
For an odd primep, the prime switchoy, is a bijective rcwa mapping df with modulus 4,

multiplier p (seeMultiplier (2.6.1) and divisor 2 (se@ivisor (2.6.9).
Example

gap> Display (PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

n mod 12 | n"PrimeSwitch (3)

_______________________________________ e

0 | n/2

1 | n+ 1

2 6 10 | (3n + 4)/2

3 | n

4 | n -3

5 811 | n-1

RCWA 13

There are propertieSsClassShift, IsClassReflection, IsClassTransposition and
IsPrimeSwitch which indicate whether a given rcwa mapping belongs to the corresponding series.

In the sequel, a description of the general-purpose constructor for rcwa mappings is given. This
might look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (R, m, coeffs)

Q RcwaMapping(R, m, coeffs) (method)
{ RcwaMapping (R, coeffs) (method)
O RcwaMapping (coeffs) (method)

(
(
(
{ RcwaMapping (perm, range) (method)
(
(
(
(

{ RcwaMapping (m, values) (method)
O RcwaMapping (pi, coeffs) (method)
{ RecwaMapping(g, m, coeffs) (method)
Q RcwaMapping (P1, P2) (method)
{ RcwaMapping (cycles) (method)

Returns: An rcwa mapping.

In all cases the argumentis the underlying ringp is the modulus andoeffs is the coefficient
list. A coefficient list for an rcwa mapping with modulus consists of|R/mR coefficient triples
(8 (m)» br(m), Cr(m) 1. Their ordering is determined by the ordering of the representatives of the residue
classes (modh) in the sorted list returned byl 1Residues (R, m). In caseR = Z this means that the
coefficient triple for the residue clas$rf)) comes first and is followed by the one fofnd), the one
for 2(m) and so on. In case one or several of the argunmenisandcoeffs are omitted or replaced
by other arguments, they are either derived from the latter or default values are taken. The meaning of
the other arguments is defined in the detailed description of the particular methods given in the sequel.
The above methods return the rcwa mapping

(a) of R with modulusmodulus and coefficientgoef s, resp.

(b) of R =Z orRr =Z with modulusLength (coeffs) and coefficientgoeffs, resp.

(c) of R =Z with modulusLength (coeffs) and coefficientgoeffs, resp.

(d) of R =7, acting on any setange+k*Length (range) like the permutatioperm on range, resp.

(e) of R =Z with modulusnodulus and values prescribed by the list1, which consists of Ziodulus
pairs giving preimage and image for 2 points per residue class fwdd us), resp.

(f) of R =Zx with modulusLength (coeffs) and coefficientsoeffs (the set of primestdenoting
the underlying ring is given as argumerif), resp.

(g) of R = GF(g)[x] with modulusmodulus and coefficientgoeffs, resp.

(h) an arbitrary rcwa mapping which induces a bijection between the partitioasdp2 of R into
disjoint single residue classes and which is affine on the elements odsp.

(i) an arbitrary rcwa mapping with “residue class cycles” as givensyyles. The latter is a list of
lists of disjoint residue classes which the mapping should permute cyclically, each.

The methods for the operati;rwaMapping perform a number of argument checks, which can be
skipped by usin@cwaMappingNC instead.

RCWA

Example

14

gap> f := RcwaMapping([[1,1,1],11,-1,11,(1,1,11,1(01,-1,11]
<rcwa mapping of Z with modulus 2>

gap> f = RcwaMapping((2,3),[2..3]1);

true

gap> g := RcwaMapping((1,2,3)(8,9),[4..20]);

<bijective rcwa mapping of Z with modulus 17, of order 2>
gap> Action (Group(qg),[4..20]);

Group ([(5,6) 1)

gap> T = RcwaMapping(2,[[1,21,[2,11,1(3,5],14,211);

true

)i

gap> t := RcwaMapping(1l,[[-1,11,([1,-11]1); # The involution n -> -n.

Rcwa mapping of Z: n -> -n

gap> d := RcwaMapping ([2],1[1/3,0,111);

Rcwa mapping of 2_(2): n -> 1/3 n

gap> RcwaMapping ([2,3],ShallowCopy (Coefficients(T)));
<rcwa mapping of Z_(2, 3) with modulus 2>

gap> u := RcwaMapping([[3,0,5],1(9,1,5],1[3,-1,51,19,-2,51,
<rcwa mapping of Z with modulus 5>

[9,4,511);

gap> x := Indeterminate(GF(2),1);; SetName(x,"x");

gap> R := PolynomialRing(GF(2),1); z := Zero(R);; e := One(R);;
GF (2) [x]

gap> r := RcwaMapping(R, x"2 + e,

> [[x"2 + x+ e, z , X2 +e],

> [X2 + x + e, x , X2 +e],

> [X2 + x + e, x°2 , X2 +e],

> [X2 +x+e, X2+%, x°2+e]11);
<rcwa mapping of GF(2) [x] with modulus x"2+Z(2) 0>

gap> rc := function(r,m) return ReSLdueClass(DefaultRlng (m),m,r); end;;
gap> fl := RcwaMapping([[rc(1,6),rc(0, 8)],[rc(5,6),rc(4, 8)11);;
gap> f2 := RcwaMapping([[rc(l,6),rc(0, 4)]1,[rc(5,6),rc(2, 4)11);;
gap> £3 := RcwaMapping([[rc(2,6),rc(1,12)], [rc (4,6), c(7,12)11);;

gap> List ([fl,£f2,£3],0rder);

[2, 2, 2]

gap> f := f1*f2*£3;

<bijective rcwa mapping of Z with modulus 12>
gap> Order (f);

infinity

gap> a = RcwaMapping([rc(0,2),rc(1,4),rc(3,4)],[rc(0,3),rc

true
gap> [rc(0,2),rc(l,4),rc(3,4)] a;
[0(3), 1(3), 2(3)

(1,3),rc(2,3)1);

RCWA 15

In most cases an rcwa mapping is not determined uniquely by the outputofé¢hebj method. In
these cases the output is enclosed in brackets. There are methods installeshbfar;, Print and
String. ThepPrinted representation of an rcwa mappin@GiP - readable if and only if therinted
representation of the elements of the underlying ring is so. There is also a methaddaob §:

2.2.6 LaTeXObj (f)

O LaTeXObj(f) (method)
Returns: A IATEX representation of the rcwa mappifig
The output makes use of th&lEX macro packagamsmath. If the optionFactorization is
set, a factorization of into class shifts, class reflections, class transpositions and prime switches is
printed (cp.FactorizationIntoCSCRCT (2.4.1)). For rcwa mappings with modulus larger than 1, an
indentation byIndentation characters can be specified by setting this option value accordingly.
Example

gap> Print (LaTeXObj(a));

n \ \longmapsto \

\begin{cases}
\frac{3n}{2} & \text{if} \ n \in 0(2), \\
\frac{3n + 1}{4} & \text{if} \ n \in 1(4), \\
\frac{3n - 1}{4} & \text{if} \ n \in 3(4).

\end{cases}

gap> Print (LaTeXObj (Comm(a,ClassShift (0,4)) :Factorization));

&\nu_{8(12)} \cdot \nu_{0(12)}"{-1}

\cdot \tau_{0(12),6(12)} \cdot \tau_{0(12),4(12)}
\cdot \tau_{0(12),8(12)}

TheDisplay method recognizes the optiadvi. If this option is set, the given rcwa mapping is
displayed in arxdvi window. For this purpose, the string returned bytheexobj - method described
above is inserted into &TgX template file. This file isAIgX’ed, and the result is shown witkdvi.
This works only on UNIX systems, and requires suitable installation®&TgKland xdvi.

2.3 Basic functionality for rcva mappings

Checking whether two rcwa mappings are equal is cheap. Rcwa mappings can be multiplied, thus
there is a method for. Bijective rcwa mappings can also be inverted, thus there is a method for
Inverse. The latter method is usually accessed by raising a mapping to some power with negative
exponent. Multiplying, inverting and computing powers of tame rcwa mappings is cheap. Computing
powers of wild mappings is usually expensive — runtime and memory requirements normally grow
approximately exponentially with the exponent. How expensive multiplying a couple of wild map-
pings is, varies very much. In any case, the amount of memory required for storing an rcwa mapping
is proportional to its modulus. Whether a given mapping is tame or wild can be determined by the
operationIsTame. There are methods farrder, which can not only compute a finite order, but can
also detect infinite order.

RCWA 16

Example

gap> List ([-6..6],k->Modulus (f"k)); Order(f);

[324, 108, 108, 36, 36, 12, 1, 12, 24, 48, 96, 192, 384]
infinity

gap> List([a, u, £], IsTame);

[false, false, false]

gap> f"2*u;

<bijective rcwa mapping of Z with modulus 120>
gap> f 2*u*a"2*f"-1;

<bijective rcwa mapping of Z with modulus 3840>
gap> Comm(f,ClassShift (6,12)*f)"1000;
<bijective rcwa mapping of Z with modulus 18>

There are methods installed fogInjective, IsSurjective, IsBijective andImage.
Example

gap> [IsInjective(T), IsSurjective(T), IsBijective(u)];
[false, true, true]

gap> Image (RcwaMapping ([[-4,-8,11]));

0(4)

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed wifthe same symbol as used for exponentiation and

conjugation). The same works for partitions of the source into a finite number of residue classes.
Example

gap> [15°T, 7°d, (x"3+x"2+x+0One(R))"r];
[23, 7/3, x"3+2(2)°0]

gap> A := ResidueClass(Integers,3,2);;
gap> [A"T, A"u];

[1(3) U 8(9), 1(9) U 3(9) U 14(27) U 20(27) U 26(27)]
gap> [rc(0,2),rc(1,4),rc(3,4)]7L;
[0(6) U 1(6) UDS5(6), 2(12) U 4(12) U 9(12), 3(12) U 8(12) U 10(12)]

For computing preimages of elements under rcwa mappings, there are methedsIfargeE1m and

PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue

classes under an rcwa mapping can be computed Bsighage.
Example

gap> [PreImageElm(d,37/17), PreImagesElm(T,8), PreImagesElm(Zero(T),0) 1;

[111/17, [5, 16], Integers

gap> PrelImage (T,ResidueClass (Integers,3,2));

Z \ 0(6) U 2(6)

gap> M := [1];; 1 := [1];;

gap> while Length (M) < 10000 do M := PreImage(T,M); Add(l,Length(M)); od; 1;

(1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208, 277,
367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458, 8608, 11472]

RCWA 17

There is a method for the operationwvedPoints for computing the support of a bijective rcwa
mapping, and there is a method farst rictedPerm for computing the restriction of a bijective rcwa
mapping to a union of residue classes it fixes setwisely.

Example

gap> [MovedPoints (u), MovedPoints(u“2)];

(z\N (-1, 01, z\T[-10, -6, -1, 0, 1, 2, 3, 511

gap> MovedPoints (r);

GF(2) [x] \ [0%Z(2), Z(2)"0, %, x+Z(2)7°0]

gap> RestrictedPerm(f,ResidueClassUnion (Integers,36,[7,8]));
<rcwa mapping of Z with modulus 36>

Rcwa mappings can be added and subtracted pointwisely. However, please note that the set of rcwa
mappings of a ring does not form a ring undeand *.

Example
gap> a := RcwaMapping([[3,0,2]1,103,1,41,13,0,21,13,-1,411);;
gap> b = ClassShift (1,4) * a;;
gap> [Image((a + b)), Image((a - b)) 1;
[0(6) U 4(6) US(6), [-3, 0]]
gap> d+d+d;

IdentityMapping(Z_(2))

There are operationsdulus (abbreviatediod) andCoefficients for extracting the modulus resp.

the coefficient list of a given rcwa mapping. The meaning of the return values is as described in
the previous section. General documentation for most operations mentioned in this section can be
found in theGAP reference manual. For rcwa mappings of rings other thamot for all operations
applicable methods are available.

2.4 Factoring rcwa mappings

Factoring group elements into elements of some “nice” set of generators is often helpful. The fol-
lowing can be seen as an attempt towards getting a satisfactory solution of this problem for the group
RCWA(Z):

2.4.1 FactorizationintoCSCRCT (g)

{Q FactorizationIntoCSCRCT(g) (attribute)
{Q Factorization(g) (method)
Returns: A factorization of the bijective rcwa mappinginto class shifts, class reflections and
class transpositions, provided that such a factorization exists and the method finds it.
The method may returfiail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct. By default, prime switches are taken as one factor. If the
optionExpandPrimeSwitches is set, they are each decomposed into the 6 class transpositions given
in the definition (seérimeSwitch (2.2.4). By default, the factoring process begins with splitting off
factors from the right. This can be changed by setting the optiegction to "from the left".

RCWA 18

By default, a reasonably coarse respected partition of the integral mapping occuring in the final stage
of the algorithm is computed. This can be suppressed by setting the gptiefienPartition equal
to false. By default, at the end it is checked whether the product of the determined factors indeed
equalsy. This check can be suppressed by setting the option

The problem of obtaining a factorization as desired is algorithmically difficult, and this factoriza-
tion routine is currently perhaps the most sophisticated part ®RGwWA package. Information about
the progress of the factorization process can be obtained by setting the info level of the Info class

InfoRCWA (6.3.]) to 2.
Example

gap> Factorization(Comm(a,b));

[ClassShift(7,9), ClassShift(1,9)" -1, ClassTransposition(1,9,4,9),
ClassTransposition(1,9,7,9), ClassTransposition(6,18,15,18),
ClassTransposition(5,9,15,18), ClassTransposition(4,9,15,18),

ClassTransposition(5,9,6,18), ClassTransposition(4,9,6,18)]

For purposes of demonstrating the capabilities of the factorization routine, in Séctiarper-
mutation is factored which has already been mentioned by Lothar Collatz in 1932, and whose cycle
structure is unknown so far.

Obtaining a factorization of a bijective rcwa mapping into class shifts, class reflections and class
transpositions is particularly difficult if multiplier and divisor are coprime. A prototype of permuta-
tions which have this property has been introduced in a different contextiaj):

2.4.2 mKnot (m)

O mKnot (m) (function)
Returns: The permutatiom, as introduced in{el99].
The argument must be an odd integer 3.
Example

gap> Display (mKnot (5));

Wild bijective rcwa mapping of Z with modulus 5

n mod 5 | n"mKnot (5)
_______________________________________ e
0 | 6n/5
1 | (4n + 1)/5
2 | (6n - 2)/5
3 | (4n + 3)/5
4 | (6n - 4)/5

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many
cycles of any given finite length.

RCWA 19

2.5 Determinant and sign

2.5.1 Determinant (sigma)

{Q Determinant (sigma) (method)
Q Determinant (sigma, S) (method)
Returns: The determinant of the bijective rcwa mappingyma.
The determinantof an affine mapping — (an+ b)/c whose source is a residue clags) is
defined byb/|ajm. This definition is extended additively to determinants of rcwa mappings and their
restrictions to unions of residue classes.

Using the notation from the definition of an rcwa mapping, de¢erminantdet(©) of an rcwa
mappingo is given by

m r(m)eR/mR’af(m)’
In the author’s thesis it is shown that the determinant mapping is an epimorphism from the group of
all class-wise order-preserving bijective rcwa mappingé ohto (Z,+) (see Theorem 2.11.9).

If a residue class unios is given as an additional argument, the method returns the determinant
of the restriction okigma to S.

Example
gap> nu := ClassShift(0,1);;
gap> List([nu, a, b, u], Determinant);
(1, 0, 1, 0]
gap> [Determinant (u"2*b"-3), Determinant (nu”7*a”2*nu”-1*b"-1*a"-3) 1;
[-3, 5]
2.5.2 Sign (sigma)
O Sign(sigma) (attribute)

Returns: The sign of the bijective rcwa mappinrg gna.

Using the notation from the definition of an rcwa mapping,stggof a bijective rcwa mapping
of Z is defined by

det(0)+l (m—2r)
m r(m): am<0
(=1)

In the author’s thesis it is shown that the sign mapping is an epimorphism from REMéhe group

7> of units of Z (see Theorem 2.12.8). This means that the kernel of the sign mapping is a normal
subgroup of RCWAZ) of index 2.

Example
gap> List([nu, nu"2, nu"3], Sign);
[-1, 1, -1]
gap> List([t, nu"3*t], Sign);
[-1, 1]
gap> List([a, a*b, (a*b)"2, Comm(a,b)], Sign);
(1, -1, 1, 11

RCWA 20

2.6 Attributes and properties derived from the coefficients
2.6.1 Multiplier (f)

O Multiplier(£) (attribute)
QMult (£) (attribute)
Returns: The multiplier of the rcwa mapping.
In the notation used in the definition of an rcwa mapping,rthatiplier is the lcm of the coeffi-
cientsa, () in the numerators.

Example

gap> List([g, u, T, d, r 1, Multiplier);
[1, 9, 3, 1, x"24+x+7(2)"0]

2.6.2 Divisor (f)

O Divisor(f) (attribute)
ODiv(£) (attribute)
Returns: The divisor of the rcwa mapping
In the notation used in the definition of an rcwa mappingdivesor is the lcm of the coefficients
Cr(m) In the denominators.

Example

gap> List([g, u, T, d, r], Divisor);
[1, 5 2, 1, x°2+2(2)°0]

2.6.3 PrimeSet (f)

O PrimeSet (£) (attribute)
Returns: The prime set of the rcwa mappirig
The prime setof an rcwa mapping is the set of prime divisors of the product of its modulus, its
multiplier and its divisor. See alsrimeset (3.2.3 for rcwa groups.
Example

gap> PrimeSet (T);

[2, 3]

gap> List([u, T'u, T (u"-1)], PrimeSet);
[[3, 51, 012, 31,12, 3 511

gap> PrimeSet (r);

[x+Z(2) "0, x"2+x+Z(2)"0]

RCWA 21

2.6.4 IsIntegral (f)

Q IsIntegral(f) (property)
Returns: true if the rcwa mapping is integral andfalse otherwise.
An rcwa mapping is calledhtegral if its divisor equals 1, thus “if no proper divisions occur”.
Computing with such mappings is particularly easy.
Example

gap> List([u, t, RcwaMapping([[2,0,1],13,5,111) 1, IsIntegral);
[false, true, true]

2.6.5 IsClassWiseOrderPreserving (f)

{Q IsClassWiseOrderPreserving(f) (property)
Returns: true if the rcwa mapping is class-wise order-preserving afall se otherwise.
The termclass-wise order-preservirig defined only for rcwa mappings of ordered rings, &.9.
In the notation introduced in the definition of an rcwa mappihig,class-wise order-preserving if and
only if all coefficientsa, 1, in the numerators of the affine partial mappings are positive.

Example

gap> List([g, u, T, t, d], IsClassWiseOrderPreserving);
[true, true, true, false, true]

2.7 Functionality related to the affine partial mappings

2.7.1 LargestSourcesOfAffineMappings (f)

{ LargestSourcesOfAffineMappings (f) (attribute)
Returns: The coarsest partition Gfource (f) on whose elements the rcwa mappihig affine.

Example

gap> LargestSourcesOfAffineMappings (T);

[0(2), 1(2)]

gap> List([u, u"-1], LargestSourcesOfAffineMappings);

[[0(5), 1(5), 2(5), 3(5), 4(5) 1, [0(3), 1(3), 2(9), 5(9), 8(9) 1 |

gap> LargestSourcesOfAffineMappings (t);

[Integers]

gap> kappa := RcwaMapping(([[1,0,11,11,0,11,13,2,21,11,-1,1],

>

>

gap> SetName (kappa, "kappa") ;

gap> LargestSourcesOfAffineMappings (kappa);

[2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12) 1]

gap> LargestSourcesOfAffineMappings (r);

[0*Z(2) (mod x"2+Z(2)°0), Z(2)°0 (mod x"2+Z(2)°0), x (mod x"2+Z(2)"0),
x+Z(2)70 (mod x"2+Z(2)"0)]

<~ ~
~ S
w
~ ~
I
~ ~
~ =
—
~ =~
w W
R
NN
<7~
NN
~ =~
N
<7~
| |
N
<7~
I
— ~
~.
~e

RCWA 22

2.7.2 Multpk (f, p, K)

O Multpk(£, p, k) (operation)

Returns: The union of the residue classesn) such thatpkHar(m) if k> 0, and the union of the
residue classegm) such thatpX| |Cr(m) if k< 0. In this contextm denotes the modulus aag, and
Cr(m) denote the coefficients afas introduced in the definition of an rcwa mapping.

Example

gap> [Multpk
[Integers,

(T,2,-1), Multpk(T,3,1) 1;

1(2) 1]
gap> [Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1) 1;
[[1, 0(5 U2(5, z\ 0(5 U 2(5, Integers]
gap> [Multpk (kappa,2,1), Multpk(kappa,2,-1), Multpk(kappa,3,1),
> Multpk (kappa, 3,-1) 1;
[4(12) U 11(12), 2(4), 2(4), 8(12)]

2.7.3 SetOnWhichMappinglsClassWiseOrderPreserving (f)

{ SetOnWhichMappingIsClassWiseOrderPreserving(f) (attribute)
Q) SetOnWhichMappingIsClassWiseConstant (f) (attribute)
{ SetOnWhichMappingIsClassWiseOrderReversing(f) (attribute)

Returns: The union of the residue classes (madiulus (f)) on which the rcwa mapping is
class-wise order-preserving, class-wise constant resp. class-wise order-reversing.

The source of the rcwa mappirignust be ordered.
Example

gap> List([T, u, t], SetOnWhichMappingIsClassWiseOrderPreserving);

[Integers, Integers, []]

gap> SetOnWhichMappingIsClassWiseConstant (RcwaMapping([[2,0,11,[0,4,111));
1(2)

2.7.4 FixedPointsOfAffinePartialMappings (f)

{Q FixedPointsOfAffinePartialMappings(£) (attribute)
Returns: A list of the sets of fixed points of the affine partial mappings of the rcwa mapping
the quotient field of its source.
The returned list contains entries for the restrictions ¢ all residue classes modulnd (f).
A list entry can either be an empty set, the source of a set of cardinality 1. The ordering of the

entries is the same as the one which is used in coefficient lists.
Example

gap> FixedPointsOfAffinePartialMappings (ClassShift (0,2));
[[1, Rationals]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings (T k));
rrrtrorl,, r-r11, €6col1, 11,021, 1-111,
rtol1, t-71, 10251, [-51, 04571, [1/51, [-10), [-111]

RCWA 23

2.8 Transition graphs and transition matrices

2.8.1 TransitionGraph (f, m)

{ TransitionGraph(£, m) (operation)
Returns: The transition graph of the rcwa mappindgor modulusm.
Thetransition graphl s m of f for modulusmis defined as follows:

1. The vertices are the residue classes (mmpd
2. There is an edge from (m) to ro(m) if and only if there is soma € r1(m) such than® € ry(m).

The assignment of the residue classes (rmpdo the vertices of the graph is given by the ordering
of the residues irh11Residues (Source (f),m). The result is returned in the format used by the
packageGRAPE.

Example
gap> TransitionGraph (a,Modulus(a));
rec(isGraph := true, order := 4, group := Group(()),
schreierVector := [-1, -2, -3, -4],
adjacencies := [[1, 31, [1, 2, 3, 41, [2,471, [1, 2,3 4711,
representatives := [1, 2, 3, 4], names := [1, 2, 3, 4 1)
2.8.2 OrbitsModulo (f, m)
Q OrbitsModulo(£, m) (operation)

Returns: The partition ofa11Residues (Source (f),m) corresponding to the weakly-connected
components of the transition graph of the rcwa mapgifgr modulusn.

See als@rbitsModulo (3.5.9 for rcwa groups.
Example

gap> OrbitsModulo (Comm(a,b),9);
(101, 01, 45 6 71, 021, [31], 18]

2.8.3 FactorizationOnConnectedComponents (f, m)

{Q FactorizationOnConnectedComponents(£, m) (operation)
Returns: The set of restrictions of the rcwa mappingo the weakly-connected components of
its transition graph ¢ m.
The product of the returned mappingstisThey have pairwise disjoint supports, hence any two
of them commute.

Example
gap> sigma := ClassTransposition(1,4,2,4) * ClassTransposition(l,4,3,4)
> * ClassTransposition(3,9,6,18) * ClassTransposition(l,6,3,9);;

gap> List (FactorizationOnConnectedComponents (sigma, 36), Support);
[33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),
<union of 23 residue classes (mod 36)> \ [-6, 3]]

RCWA 24

2.8.4 TransitionMatrix (f, m)

{ TransitionMatrix(f, m) (operation)
Returns: The transition matrix of the rcwa mappirdgor modulusm.
LetM be this matrix. Then for any two residue classgsn), r2(m) € R/mR the entryM;, i) r,(m)
is defined by

y _ R/mR
I']_(m),l’z(m) T ’R/qu

|{r(m) eR/MR T ery(m)Ar' erp(m)}],

whereni is the product ofn and the square of the modulus &f The assignment of the residue
classes (modh) to the rows and columns of the matrix is given by the ordering of the residues in
AllResidues (Source (f),m).

The transition matrix is a weighted adjacency matrix of the corresponding transition graph
TransitionGraph (f,m). The sums of the rows of a transition matrix are always equal to 1.

Example
gap> Display(TransitionMatrix(a,5));
[[1/2, 1/4, 0, 0, 1/41,
[0, 1/4, 0, 1/4, 1/2 1,
[1/4, 0, 0, 3/4, 01,
[1/4, 0, 3/4, 0, 01,
[o, 1/2, 1/4, 0, 1/4 1]
gap> Display(TransitionMatrix (T, 19) *One (GF (7)));
4 .0 0000 4 .0 00 0.
AL 4 . 000,
4 .0 L L L 4 . 0L L.
..... L
AL s 4
........ 4 . 4 . 000 .
4 0 o4 0L oL s
........... 4 .4 0 0L
44 0 0oL 0L
.............. 1.
..... 44 . 0 0 00000
............... 4 . 4
...... 4 . o4 0000 L.
4 . L0 4
....... 4 e a4 s
4 .0 0L s s 4
........ 4 4
....... 4 .. .0 . L0004
......... 4 ... 0 .04

RCWA 25

2.8.5 Sources (f)

{ Sources(f) (attribute)

Returns: A list of unions of residue classes modulo the modutusf the rcwa mapping, as
described below.

The returned list contains an entry for any strongly connected component of the transition graph
of £ for modulusm which has only outgoing edges. The list entry corresponding to a given such

strongly connected component is the union of the vertices which belong to the respective component.
Example

gap> [Sources (kappa), Sources(a) 1;
(0 1,0 11

gap> Sources (nu*nu”a);

[2(6)]

2.8.6 Sinks (f)

{ Sinks(f) (attribute)
Returns: A list of unions of residue classes modulo the modutusf the rcwa mapping, as
described below.
The returned list contains an entry for any strongly connected component of the transition graph
of £ for modulusm which has only ingoing edges. The list entry corresponding to a given such
strongly connected component is the union of the vertices which belong to the respective component.

Example
gap> [Sinks(kappa), Sinks(a) 1;
(T 1,0 11
gap> Sinks(nu*nu’a);
[3(6)]
gap> Sinks(Product (List([[1,4,2,4]1,(1,4,3,41,13,6,7,12]1,12,4,3,6]11,
> ClassTransposition)));
[3(6) U 1(12) 1

2.8.7 Loops (f)

O Loops(f) (attribute)

Returns: The list of non-isolated vertices of the transition graph of the rcwa mappifay
modulusModulus (£) which carry a loop.

Example

gap> Loops (kappa) ;

[10(12)]

gap> Loops(a);

[0(4), 1(4), 3(4) 1]
gap> Loops (nu*nu”a);
[2(6), 3(6) 1]

RCWA 26

2.9 Trajectories

2.9.1 Trajectory (f, n, length)

O Trajectory(f, n, length) (method)
Q Trajectory(£, n, length, m) (method)
Q Trajectory(f, n, terminal) (method)
Q Trajectory(f, n, terminal, m) (method)

Returns: The firstlength iterates in the trajectory of the rcwa mappihgtarting at, resp. the
initial part of the trajectory of the rcwa mappirgstarting ath which ends at the first occurence of an
iterate in the seterminal. If the argument is given, the iterates are reduced (mgd

To save memory when computing long trajectories containing huge iterates, the reductiar) (mod
is done immediately after any iteration. In place of the ring elemegtite methods also accept a finite
set of ring elements or a union of residue classes.
Example

gap> Trajectory(T,27,16); Trajectory(T,27,25,5);
[27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103, 155]
(2,1, 2,1,2,1,2,1,2,1,2,1,2,1, 3,0 3,00, 3,0 3,0, 0, 31
gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2
[15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1
(1, 1,1,1, 000 0, 1, 0, 0, 0, 1]
gap> Trajectory(T,ResidueClass (Integers,3,0),Integers);
[0(3), 0(3) U 5(9), 0(3) U 5(9) U T(9) U 8(27),

<union of 20 residue classes (mod 27)>, <union of 73 residue classes (mod

81)>, Z \ 10(81) U 37(81), Integers]

)i
]

2.9.2 Trajectory (f, n, length, whichcoeffs)

Q Trajectory(£, n, length, whichcoeffs) (method)

Q Trajectory(f, n, terminal, whichcoeffs) (method)
Returns: Either the listc of triples of coprime coefficients such that for anyit holds that

n" (£°(k-1)) = (c[k][11*n + c[k][2])/c[k][3] or the last entry of that list, depending on

whetherwhichcoeffs iS "Al1Coeffs" Or "LastCoeffs".

The meanings of the argumentength and terminal are the same as in the methods for
the operationrrajectory described above. In general, computing only the last coefficient triple
(whichcoeffs ="LastCoeffs") needs considerably less memory than computing the entire list.
Example

gap> Trajectory(T,27,[1],"LastCoeffs");
[36472996377170786403, 195820718533800070543, 1180591620717411303424]
gap> (last[1]*27+last[2])/last[3];
1
gap> Trajectory(r,x"3, [x"3+x"2+x], "AllCoeffs");
[[2(2)7°0, 0%*2(2), Z(2)°0 1, [x"2+x+72(2)"0, %72, x"2+Z(2)°0 1,
[x™4+x"2+472(2)°0, %, x"4+72(2)°0 1,
[X76+x"54+x"34+x+Z2(2) "0, x"3+x"2+x, x"6+x"4+x"24+7Z(2)°0]]

RCWA 27

2.9.3 IncreasingOn (f)

Q IncreasingOn(f) (attribute)
Q DecreasingOn(f) (attribute)

Returns: The union of all residue classegm) such that|R/a,mR| > |[R/cmR| resp.
IR/a;mR| < |R/c/mR|, whereR denotes the sourcej the modulus an@y (), bym andc;m, the
coefficients off as introduced in the definition of an rcwa mapping.

Example

gap> List([1..3],k->IncreasingOn(T"k));

[1(2), 3(4), 3() U 1(8) U 6(8)]

gap> List([l..3],k->DecreasingOn(T"k));

[0(2), Z \ 3(4), 0(4) U 2(8) U 5(8)]

gap> List([1..3],k->IncreasingOn(a’k));
8

]
)
1 k- i

[0(2), Z \ 1) U 7(8), 0(4) U 2(16) U 5(16) U 11(16) U 14(1le6) 1

2.10 Localizations of rcwva mappings of the integers

2.10.1 LocalizedRcwaMapping (f, p)

{ LocalizedRcwaMapping(f, p) (function)
Q SemilocalizedRcwaMapping(£, pi) (function)
Returns: The rcwa mapping o, resp.Zy with the same coefficients as the rcwa mapping
of Z.
The argumenp resp. pi must be a prime resp. a set of primes, and the argumemnist be an

rcwa mapping ofZ whose modulus is a power of resp. whose modulus has only prime divisors
which lie inpi.

Example

gap> Cycle(LocalizedRcwaMapping(T,2),131/13);

[131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13, 419/13,
635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13, 1231/13,
1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13]

2.11 Extracting roots of rcwa mappings

2.11.1 Root (f, k)

Q Root (£, k) (method)
Returns: Anrcwa mappingy such that"k=f, provided that such a mapping exists and that there

is a method available which can determine it.

Example

gap> Root (Comm(a,b),3) "3 = Comm(a,b);
true

RCWA 28

2.12 Special functions for non-bijective mappings

2.12.1 Rightinverse (f)

O RightInverse(f) (attribute)

Returns: A right inverse of the injective rcwa mappirigi.e. a mapping such thattg = 1.
Example

gap> RcwaMapping ([[2,0,1]]); Display(RightInverse(last));
Rcwa mapping of Z: n -> 2n

Rcwa mapping of Z with modulus 2

2.12.2 CommonRightinverse (I, r)

Q CommonRightInverse(1, r) (operation)
Returns: A mappingd such thatid = rd = 1.
The mappings andr must be injective, and their images must form a partition of their source.

Example
gap> Display (CommonRightInverse (RcwaMapping ([[2,0,1]]),RcwaMapping([[2,1,111)));
Rcwa mapping of Z with modulus 2
n mod 2 | n"f
_______________________________________ +______________________________________
0 | n/2
1 | (n-1)/2
2.12.3 ImageDensity (f)
{Q ImageDensity(f) (attribute)

Returns: Theimage densityf the rcwa mapping.

In the notation introduced in the definition of an rcwa mapping,ithage densityf an rcwa
mappingf is defined byni1 Yrmer/mrIR/CmR|/|R/amR|. The image density of an injective rcwa
mapping is< 1, and the image density of a surjective rcwa mapping Is(this can be seen easily).

Thus in particular the image density of a bijective rcwa mapping is 1.
Example

gap> List([T, a, RcwaMapping([[2,0,1]1])], ImageDensity);
[4/3, 1, 1/2 1]

RCWA 29

2.13 Probabilistic guesses on the behaviour of trajectories

This section describes some functionality for getting “educated guesses” concerning the overall be-
haviour of the trajectories of a given rcwa mapping. Its contents have deliberately been separated from
the documentation of the non-probabilistic functionality related to trajectories of rcwa mappings.

2.13.1 LikelyContractionCentre (f, maxn, bound)

{Q LikelyContractionCentre(f, maxn, bound) (operation)

Returns: A list of ring elements (see below).

This operation tries to compute tlw@ntraction centreof the rcwa mapping. Assuming its
existence this is the uniquely-determined finite sul&edf the source off on which £ induces a
permutation and which intersects nontrivially with any trajectoryt ofThe mappingt is assumed
to becontracting i.e. to have such a contraction centre. As in general contraction centres are likely
not computable, the methods for this operation are probabilistic and may return wrong results. The
argumentaxn is a bound on the starting value amglind is a bound on the elements of the trajectories

to be searched. If the limitound is exceeded, an Info message on Info level 3rafoRCWA is given.
Example

gap> SO := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for information on how to improve this guess.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, O,
1, 2]

2.13.2 GuessedDivergence (f)

{ GuessedDivergence(f) (operation)
Returns: A floating point value which is intended to be a rough guess on how fast the trajectories

of the rcwa mapping diverge (return value greater than 1) or converge (return value smaller than 1).
Nothing particular is guaranteed.

Example

gap> List([T, a], GuessedDivergence);

#I Warning: GuessedDivergence: no particular return value is guaranteed.
#I Warning: GuessedDivergence: no particular return value is guaranteed.
[0.866025, 1.06066]

RCWA 30

2.14 The categories and families of rcwa mappings

2.14.1 IsRcwaMapping (f)

{ IsRcwaMapping(f) (filter)
Q IsRcwaMappingOfZ(f) (filter)
{ IsRcwaMappingOfZ pi(£) (filter)
Q IsRcwaMappingOfGFgx (f) (filter)

Returns: true if £ is an rcwa mapping resp. an rcwa mapping of the ring of integers resp. an
rcwa mapping of a semilocalization of the ring of integers resp. an rcwa mapping of a polynomial
ring in one variable over a finite field, arid1se otherwise.

2.14.2 RcwaMappingsFamily (R)

{ RcwaMappingsFamily (R) (function)
Returns: The family of rcwa mappings of the rirgy

Chapter 3

Residue Class-Wise Affine Groups

This chapter describes the functionality provided by this package for computing with residue class-
wise affine groups.

3.1 Constructing residue class-wise affine groups

Residue class-wise affine groups can be constructed using eithep, GroupByGenerators Or
GroupWithGenerators, as usual (see theAP reference manual).

Example
gap> g := RcwaMapping([[1,0,1],(1,1,1]1,(3,6,1],
> (1,0,31,[1,1,11,13,6,1]1,
> (1,0,1],1[1,1,11,13,-21,111) ;3
gap> h := RcwaMapping([[1,0,1],[1,1,1],1[3,6,1],
> [1,0,31,11,1,11,1(3,-21,1]1,
> [(1,0,11,(1,1,11,103,6,111);;

gap> List ([g,h],Order);

[9,9

gap> G := Group(g,h);

<rcwa group over Z with 2 generators>
gap> Size (G);

infinity

There are methods for the operatiarisplay andprint which are applicable to rcwa groups.

All rcwa groups over the ringR are subgroups of RCWAR). The group RCWAR) is not finitely
generated, thus cannot be constructed in the way described above. It is handled as a special case:
3.1.1 RCWA (R)

QO RCWA(R) (function)
Returns: The group RCWAK) of all residue class-wise affine permutations of the Ang

31

RCWA 32

Example
gap> RCWA_Z := RCWA (Integers);
RCWA (2)
gap> Size (RCWA_Z);
infinity
gap> IsFinitelyGeneratedGroup (RCWA_Z) ;
false

gap> One (RCWA_Z) ;

IdentityMapping(Integers)

gap> IsSolvable (RCWA_Z);

false

gap> IsPerfect (RCWA_Z);

false

gap> Centre (RCWA_Z);

Trivial rcwa group over Z

gap> IsSubgroup (RCWA_Z, Group(RcwaMapping((1,2,3),[1..4]),
> RcwaMapping (2, [[0,1]1, (1,01, (2,31,13,211)));
true

3.1.2 Random (RCWA(Integers))

{ Random(RCWA_Z) (method)
Returns: A pseudo-random element of the group RCVEA(
This method is designed to be suitable for generating interesting examples. No particular dis-
tribution is guaranteed — in fact, the author has no idea what a “reasonable” random distribution on
RCWA(Z) should be.

Example

gap> elm := Random (RCWA_Z);
<bijective rcwa mapping of Z with modulus 60>
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 60

n mod 60 | n~f
_______________________________________ S
0 4 6 8 10 14 16 18 20 24 26 28 |
30 34 36 38 40 44 46 48 50 54 56 58 | -3n - 5
1 | (n - 1)/5
2 22 42 | (3n + 24)/5
3 915 21 27 33 39 45 51 57 | (-5n + 12)/3
5 11 17 29 35 41 47 59 | -n + 2
7 13 19 25 37 43 49 55 | -n
12 32 52 | (3n + 4)/5
23 | (n - 3)/5
31 | (n+ 19)/5
53 | (n+ 17)/5

RCWA 33

The elements returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1), class reflections (se®assReflection (2.2.2) and class transpositions (see
ClassTransposition (2.2.3). These factors are stored as an attribute value:

Example
gap> Perform(FactorizationIntoCSCRCT (elm),Display);
Rcwa mapping of Z with modulus 6
n mod 6 | n"ClassTransposition(0,2,5,6)
_______________________________________ +______________________________________
024 | 3n + 5
13 | n
5 | (n-5)/3
Rcwa mapping of Z with modulus 6
n mod 6 | n"ClassTransposition(0,2,3,6)
_______________________________________ +______________________________________
024 | 3n + 3
15 | n
3 | (n-3)/3
Rcwa mapping of Z with modulus 10
n mod 10 | n"ClassTransposition(0,2,1,10)
777777777777777777777777777777777777777 +77777777777777777777777777777777777777
2 4 6 8 | 5n + 1
| (n-1)/5
5 7 9 | n
Rcwa mapping of Z with modulus 4
n mod 4 | n"ClassShift (2, 4)
_______________________________________ +______________________________________
013 | n
2 | n+ 4
Rcwa mapping of Z: n -> -n
Rcwa mapping of Z with modulus 2
n mod 2 | n"ClassReflection (0, 2)
_______________________________________ +______________________________________
0 | -n
1 | n

RCWA 34

Another way of constructing an rcwa group is taking the image of an rcwa representation:

3.1.3 IsomorphismRcwaGroupOverZ (G)

Q IsomorphismRcwaGroupOverZ(G) (attribute)
¢ IsomorphismRcwaGroup(G) (attribute)
Returns: A monomorphism from the groupto RCWA(Z).
Currently,IsomorphismRcwaGroup works for finite groups, for free products of finite groups and
for free groups. The method for free products of finite groups uses the Table-Tennis Lemma (cp. e.g.
Section II.B. in fIHOQ]), and the method for free groups uses an adaptation of the construction given
on page 27 inqIHOQ] from PSL(2{C) to RCWA(Z).
In caseG is a finite-degree permutation group, the image under a specific embedding
can be obtained bRcwaGroupByPermGroup (G). The resulting grou satisfies the relation

Action(H"ClassShift (0,1), [1..LargestMovedPoint (G)]) = G.
Example

gap> F := FreeProduct (Group((1,2) (3,4), (1,3) (2,4)),Group((1,2,3)),

> SymmetricGroup(3));
<fp group on the generators [fl, f2, £3, £4, £5 1>
gap> phi := IsomorphismRcwaGroup (F);

[f1, f2, £3, f4, £5] -> [<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 24>,
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 72>,
<bijective rcwa mapping of Z with modulus 36>]
gap> G := Image (phi);
<wild rcwa group over Z with 5 generators>
gap> RelatorsOfFpGroup (F); # For illustrational purposes, do some checks:
[f172, f1°-1*f2*f1*£f2°-1, £2°2, £373, f472, £572, f4*f5*f4*f5*f4*f5]
gap> ForAll([G.1"2, G.1"-1*G.2*G.1*G.2"-1, G.2"2, G.3"3,
> G.472, G.572, (G.4*G.5)"3], IsOne);
true
gap> S := AllResidueClassesModulo (3);
[0(3), 1(3), 2(3) 1]
gap> nonids := grp->Difference(AsList (grp), [One (grp)]
gap> List (S{[2,3]},Si->List (nonids (Group(G.1,G.2)
[[3(12), 6(24), 0(24) 1, [9(12), 18(24), 12(24
gap> Union(Flat (last));
0(3)
gap> List (S{[1,3]},Si->List (nonids (Group(G.3)),g->Si"qg));
[[1(12), 4(12) 1, [7(12), 10(12)]]
gap> Union (Flat (last));
1(3)
gap> List (S{[1,2]},Si->List (nonids (Group(G.4,G.5)),g->5i"q));
[[8(24), 5(36), 17(36), 2(24), 11(36) 1,
[20(24), 23(36), 35(36), 14(24), 29(36) 1 1]
gap> Union (Flat (last));
2(3)

rr

) 1)
1g=>8179));
1]

RCWA 35

Example
gap> phi := IsomorphismRcwaGroup (FreeGroup(2)); F2 := Image(phi);;
[f1, £2] -> [<wild bijective rcwa mapping of Z with modulus 8>,

<wild bijective rcwa mapping of Z with modulus 8>]
gap> Difference (Integers,ResidueClass(0,4)) "F2.1;
1(4)
gap> Difference (Integers,ResidueClass(2,4)) "F2.2;
3(4)

3.2 Attributes and properties of rcwa groups

3.2.1 Modulus (G)

O Modulus (G) (method)
O Mod(G) (method)
Returns: The modulus of the rcwa group
TheModulusof an rcwa group is the Icm of the moduli of its elements in case such an Icm exists
and 0 otherwise.

See alsasTame (3.2.2.
Example

gap> gl := RcwaMapping((1,2),[1..2]);

<bijective rcwa mapping of Z with modulus 2, of order 2>
gap> g2 := RcwaMapping((1,2,3),[1..31);

<bijective rcwa mapping of Z with modulus 3, of order 3>
gap> g3 := RcwaMapping((1,2,3,4,5),([1..5]);

<bijective rcwa mapping of Z with modulus 5, of order 5>
gap> G := Group(gl,g2,93);

<rcwa group over Z with 3 generators>

gap> Modulus (G) ;

30

gap> a := RcwaMapping([[3,0,2]1,1(3,1,4]1,13,0,2],1[3,-1,4]11);; SetName(a,"a");
gap> Modulus (Group(a));

0

3.2.2 IsTame (G)

O IsTame(G) (property)
Returns: true if the rcwa groups is tame andalse otherwise.

An rcwa group is calletmeif its modulus is not equal to O.
Example

gap> b := ClassShift (1,4) * a;; SetName (b, "b");

gap> ¢ := ClassShift(3,4) * a;; SetName(c,"c");

gap> List([G, Group(a,b), Group(Comm(a,b),Comm(a,c))], IsTame);
[true, false, true]

RCWA 36

3.2.3 PrimeSet (G)

O PrimeSet (G) (attribute)
Returns: The prime set of the rcwa group
Theprime setof an rcwa group is the union of the prime sets of its elements.
See als@rimeset (2.6.3 for rcwa mappings.
Example

gap> PrimeSet (G);
[2, 3, 5]

An rcwa group is calledntegral resp. class-wise order-preservin all of its elements are so.
There are corresponding methods availablerfamtegral andIsClassWiseOrderPreserving.

3.3 Membership testing, order computation, permutation- / matrix
representations

3.3.1 \in(g, G)

O\in(g, G) (method)
Returns: true if the rcwa mappingy is an element of the rcwa grogandfalse if not.
This method tries to decide whetheis an element of or not. It can always decide this question
if G is tame and class-wise order-preserving. For wild groups only a number of easy cases are covered.
On Info level 3 ofinfoRCWA the method gives information on reasons wtig an element of or not.
The direct product of two free groups of rank 2 can faithfully be represented as an rcwa group.
In [Mih58] it is shown that this implies that in general the membership problem for rcwa groups is
algorithmically undecidable.
Example

gap> u := RCW&Mappng(H3,O,5L (9,1,51,13,-1,51,19,-2,51,[9,4,511) ;i
gap> u in G;
false

3.3.2 Size (G)

O Size(G) (method)
Returns: The order of the rcwa group

Example

gap> Size(G);
265252859812191058636308480000000

RCWA 37

3.3.3 IsomorphismPermGroup (G)

¢ IsomorphismPermGroup(G) (method)
Returns: An isomorphism from the finite rcwa groupto a finite-degree permutation group.

Example

gap> IsomorphismPermGroup (Group(gl,g2));

[<bijective rcwa mapping of Z with modulus 2, of order 2>,
<bijective rcwa mapping of Z with modulus 3, of order 3>] ->

[(1,2)(3,4)(5,6), (1,2,3)(4,5,6)]

3.3.4 IsomorphismMatrixGroup (G)

Q IsomorphismMatrixGroup(G) (attribute)
Returns: Anisomorphism from the rcwa groupto a matrix group, provided thatembeds into
a matrix group and that there is a suitable method available. Both conditions are fulfifledt#me.

Example

gap> g := RcwaMapping([[2,2,1],[1, 4,11,11,0,2]1,102,2,1],(1,-4,11,11,-2,111);;
gap> h := RcwaMapping(I[[2,2,1],11,-2,11,11,0,2],1(2,2,11,1(1,-1,11,1%, 1,111);;
gap> SetName (g, "g"); SetName(h,"h");
gap> phi := IsomorphismMatrixGroup (Group(g,h));;
gap> FieldOfMatrixGroup (Image (phi));
Rationals
gap> DegreeOfMatrixGroup (Image (phi));
14
gap> Display (GeneratorsOfGroup (Image (phi)) [1]*One (GF (5)));
.11,

RCWA 38

3.4 Factoring elements into generators

3.4.1 PrelmagesRepresentative (phi, g)

{Q PreImagesRepresentative(phi, g) (method)
Returns: A representative of the set of preimagesg ainder the homomorphisphi from a free
group to an rcwa group ovéf.
This method can be used for factoring elements of rcwa groupsZweto generators. It can
also be used for finding nontrivial relations among the generators if the respective group is not free
and the method returns a factorization which does not happen to be equal to one which is known a
priori. The homomorphisnphi must map the generators of the free group to the generators of the
rcwa group one-by-one. This method is also suitable for wild groups. The implementation is based

ONRepresentativeActionPreImage (3.5.3.
Example

gap> G := Group(g,h);

<rcwa group over Z with 2 generators>
gap> phi := EpimorphismFromFreeGroup (G);
[glh]_>[glh]

gap> PrelImagesRepresentative (phi, h*g"3*h"2*g"-1*h*g*h"-3);
h*g"3*h"2*g"-1*h*g*h"-3

gap> nu := RcwaMapping([[1,1,1]11);

Rcwa mapping of Z: n -=> n + 1

gap> SetName (nu, "nu");

gap> G := Group(a,nu);

<rcwa group over Z with 2 generators>
gap> IsTame (G);

false
gap> phi := EpimorphismFromFreeGroup (G);
la nu] ->T[a nu]

gap> F := Source(phi);

<free group on the generators [a, nu]>

gap> w := Comm(F.l1,Comm(F.1,F.272));
a"-1*nu"-2*a"-1*nu"2*a*nu”-2*a*nu”2

gap> f := w'phi;

<bijective rcwa mapping of Z with modulus 18>
gap> IsTame (f);

false

gap> pre := PrelmagesRepresentative (phi, f);

a"-2*nu”-2*a"2*nu”2

gap> one := w*pre"-1; # pre <> w --> We have a non-trivial relation!

a"-1*nu"-2*a"-1*nu"2*a*nu”"-2*a"-1*nu"2*a"2
gap> one phi;
IdentityMapping(Integers)

RCWA

3.4.2 PrelmagesRepresentatives (phi, g)

O PreImagesRepresentatives(phi, g)

Returns: A list of representatives of the set of preimagesyafnder the homomorphismhi

from a free group to an rcwa group ov&r

Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. This operation is callettbyagesRepresentative
(3.4.1), which simply chooses the shortest representative. For a slightly more concise description see

there.
Example

gap> G := Group(g,h);

<rcwa group over Z with 2 generators>

gap> phi := EpimorphismFromFreeGroup (G);
[glh]_>[glh]

gap> f := g"3*h*g"-4*h"5%g;

<bijective rcwa mapping of Z with modulus 12>
gap> RCWAInfo(2);

gap> pre := PrelmagesRepresentatives (phi, f);

#I Orbit lengths after extension step 1: [4, 5]
#I |Candidates]| =1

#I Orbit lengths after extension step 1: [5, 5]
#I Orbit lengths after extension step 2: [17, 15]

#I Orbit lengths after extension step 3: [52, 39]

#I |Candidates| =1

#I Orbit lengths after extension step 1: [5, 5]

#I Orbit lengths after extension step 2: [17, 15]

#I Orbit lengths after extension step 3: [53, 43]

#I Orbit lengths after extension step 4: [158, 119]
#I |Candidates| =1

#I Orbit lengths after extension step 1: [5, 5]

#I Orbit lengths after extension step 2: [17, 17]

#I Orbit lengths after extension step 3: [53, 53]

#I Orbit lengths after extension step 4: [159, 158]
#I Orbit lengths after extension step 5: [472, 462]
#I Orbit lengths after extension step 6: [1356, 1309]
#I Orbit lengths after extension step 7: [3822, 3643]

#I |Candidates| = 11

[g"3*h*g"3*h"5*g, g"-3*h"-4*g"-3*h"-1*g*h*g, g "3*h*g"-4*h"5*qg]
gap> RCWAInfo(0);

gap> List (pre,Length);

[13, 14, 14]
gap> Set (List (pre,w->w’phi)) = [f];
true

gap> w := pre[l]*pre(2]"-1;
g"3*h*g"3*h"4*g"-1*h*g"3*h"4*g"3

gap> Length (w);

23

gap> w'phi; # A relation of length 23.
IdentityMapping(Integers)

RCWA

3.5 The action of an rcwa group on the underlying ring R

The support (set of moved points) of an rcwa group can be determingeddpyrt or MovedPoints

(these are synonyms). Sometimes testing for transitivity on the underlying ring is feasible. This is e.qg.
the case for tame groups ov8r Further it is often possible to determine group elements which map

a given tuple of elements of the underlying ring to a given other tuple, if such elements exist.

3.5.1 IsTransitive (G, Integers)

Q IsTransitive(G, Integers)
Returns: true if the rcwa groups acts transitively orZ. andfalse otherwise.
If G is wild, this may fail or run into an infinite loop.

Example

gap> G := Group(g,h);;

gap> RCWAInfo(3);

gap> IsTransitive (G, Integers);

#I IsTransitive: testing for finiteness and searching short orbits
#I IsTame: balancedness criterion.

#I IsTame: ‘dead end’ criterion.

#I IsTame: loop criterion.

#I IsTame: ‘finite order or integral power’ criterion.

#I Order: the 4th power of the argument is RcwaMapping (
[[171211]1[1112/1]/[11_61211[21_1071]/[11_711}1
2

r2, -8 11, 11,12, 11, 11, 12,21, [1, =10, 21, [2, -10, 1 71,
(1, -7, 11, 002, -8 111);

There is a ‘class shift’ on the residue class 0(12).

#I Trying probabilistic random walk, initial m = 12

#I checking modulus

#I Size: use action on respected partition.

#I KernelOfActionOnRespectedPartition: gen. #1, 1ng =1

#I KernelOfActionOnRespectedPartition: gen. #2, lng = 2

[...]

#I KernelOfActionOnRespectedPartition: gen. #14, Ing = 10

#I Searching for class shifts

#I ... in generators

#I ... in commutators of the generators

#I The cyclic group generated by RcwaMapping (

rri, -9, 11, 11,60, 11, 11, 6, 11, 11, -3, 11, [1, 0,11,
[1, 6, 1 1 1) acts transitively on the residue class 2(6).

#I OrbitUnion: initial set = ResidueClassUnion(Integers, 6, [2])
#I Image = Integers

true

gap> RCWAInfo(0);

RCWA 41

3.5.2 RepresentativeAction (G, src, dest, act)

O RepresentativeAction(G, src, dest, act) (method)
Returns: An element ofc which mapssrc to dest under the action given byct.
If an element satisfying this condition does not exist, this method either retatnsor runs into
an infinite loop. The problem of whetherc anddest lie in the same orbit under the action ®fn
general seems to be hard. The method is basekkpresentativeActionPreImage (3.5.3, and
it basically just computes an image under an epimorphism. As this involves multiplications of rcwa
mappings, this can be quite expensive if the group wild, the preimage is a rather long word and

coefficient explosion happens to occur.
Example

gap> G := Group(a,b);

<rcwa group over Z with 2 generators>

gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],0nTuples);
<bijective rcwa mapping of Z with modulus 12>

gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
_______________________________________ o
0 2 3 6 811 | n
1 710 | n-3
4 ' n+ 1
5 9 | n+ 4

gap> List([7,4,9],n->n"elm);

[4, 5, 13]

gap> elm := RepresentativeAction(G, [5,4,9],[13,5,4],0nTuples);
<bijective rcwa mapping of Z with modulus 9>

gap> Display (elm);

Bijective rcwa mapping of Z with modulus 9

n mod 9 | n~f

_______________________________________ S

0 | 4n/9

1 | (8n - 26)/9

2 | (8n + 2)/9

3 | (8n + 3)/9

4 | (16n - 19)/9

5 | (16n + 37)/9

6 | (8n + 33)/9

7 | (l6n - 49)/9

8 | (16n + 7)/9

gap> List([5,4,9],n->n"elm);

[13, 5, 4]

gap> RepresentativeAction(G, [7,4,9],[4,5,8],0nTuples);
<bijective rcwa mapping of Z with modulus 256>

RCWA 42

3.5.3 RepresentativeActionPrelmage (G, src, dest, act, F)

Q RepresentativeActionPreImage(G, src, dest, act, F) (operation)

Returns: The result oRepresentativeAction (G, src,dest, act) as word in generators.

The argument is a free group whose generators are used as letters of the returned word. Note
that the dependency is just in the opposite direction than suggested abpvedentativeAction
callsrRepresentativeActionPreImage) and that the evaluation of the word sometimes takes much
more time than its determination. This causegresentativeActionPreImage sometimes to be
much faster thamepresentativeaAction. The used algorithm is not inefficient, as the last two of
the examples below suggest. It is based on computing balls of increasing radius aroamdlde st
until they intersect nontrivially. It avoids multiplying rcwa mappings. Of course the other warnings
given in the description afepresentativeAction (3.5.2 apply to this operation as well.

Example

gap> F := FreeGroup("a","b");;

gap> w := RepresentativeActionPrelImage (G, [7,4,9],[4,5,13],0nPoints,F);
b -1*a*b*a"-1

gap> w := RepresentativeActionPrelImage (G, [5,4,9],[13,5,4],0nTuples,F);
b "-1*a"-1*b*a"-1

gap> w := RepresentativeActionPrelImage (G, [7,4,9],[4,5,8],0nPoints,F);

b"2*a”2

gap> phi := GroupHomomorphismByImages (F,G, [F.1,F.2],[a,b]);
la bl ->[a bl

gap> w’ phi;

<bijective rcwa mapping of Z with modulus 256>

gap> w phi = RepresentativeAction(G, [7,4,9],[4,5,8],0nPoints);

true

gap> List([7,4,9],n->n" (w"phi));

[4, 5, 8]

gap> w := RepresentativeActionPrelImage (G, [37,4,9],[4,51,8],0nPoints,F);
a"-1*b"-1*a*b"4*a

gap> w phi;

<bijective rcwa mapping of Z with modulus 4608>

gap> w := RepresentativeActionPrelImage (G, [37,4,9],[4,51,8],0nTuples,F);
b*a"6*b*a"-3*b"-3*a"~-1*b*a”2

gap> w := RepresentativeActionPrelmage (G, [17,14,9],[4,51,8],0nPoints,F);
a"-1*b"-1*a"3*b"2*a*b*a*b"-1*a"2

3.5.4 RepresentativeAction (RCWA(Integers), P1, P2)

Q RepresentativeAction(RCWA_Z, P1, P2) (method)

Returns: An element of RCWAZ) which maps the partitionl to p2.

The arguments1 andp2 must be partitions of the underlying ririgjinto the same number of
disjoint unions of residue classes. The method recognizes the aptiane. If this option is set, the
returned mapping is tame provided that there is a tame mapping which satisfies the given condition. If
the optionIsTame is not set and the partitiorrs andp2 both consist entirely of single residue classes,
then the returned mapping is affine on any residue clagss.in

RCWA 43

Example

gap> rc := function(r,m) return ResidueClass(DefaultRing(m),m,r); end;;
gap> Pl := [rc(0,3),rc(1,3),rc(2,9),rc(5,9),rc(8,9)];

[0(3), 1(3), 2(9), 5(9), 8(9) 1

gap> P2 := [rc(0,2),rc(1,8),rc(5,16),rc(3,4),rc(13,16)];

[0(2), 1(8), 5(16), 3(4), 13(1l6) 1

gap> elm := RepresentativeAction (RCWA (Integers),P1,P2);

<rcwa mapping of Z with modulus 9>

gap> Display (elm);

Rcwa mapping of Z with modulus 9

2n/3

(8n - 5)/3
(l6n + 13)/9
(4n + 7)/9
(lén - 11)/9

gap> Pl elm = P2;

true

gap> elm := RepresentativeAction (RCWA (Integers),P1l,P2:IsTame);
<tame rcwa mapping of Z with modulus 1152>

gap> P := RespectedPartition(elm);;

gap> Length (P);

313

gap> elm := RepresentativeAction (RCWA (Integers),

> [rc(1,3),Union(rc(0,3),rc(2,3))],
> [Union(rc(2,5),rc(4,5)),

> Union(rc(0,5),rc(1,5),rc(3,5))1);
<rcwa mapping of Z with modulus 6>

gap> [rc(1,3),Union(rc(0,3),rc(2,3))] elm;

[2(5) U 4(5), 2 \ 2(5) U 4(5)]

3.5.5 ShortOrbits (G, S, maxing)

{Q ShortOrbits(G, S, maxlng) (operation)
Returns: A list of all finite orbits of the rcwa group of maximal lengthnax1ng, which intersect
nontrivially with the set.

Example

gap> A5 := RcwaGroupByPermGroup (AlternatingGroup(5));;

gap> ShortOrbits (A5, [-10..10],100);

([-10, -9, -8, -7, =61, [-5, -4, -3, -2, -1 1, [0, 1, 2, 3, 41,
[5 6, 7,8, 91, [10, 11, 12, 13, 14]]

gap> Action (A5, last[2]);

Group ([(1,2,3,4,5), (3,4,5) 1)

RCWA 44

Example

gap> G := Group (Comm(a,b),Comm(a,c));;
gap> orb := ShortOrbits (G, [-15..15],100);
[[-15, -12, -7, -6, =5, -4, -3, -2, -1, 11,
[-33, -30, -24, -21, -16, -14, -13, -11, -10, -8 1, [=91, [0 1,
[2, 3, 4, 5, 6, 7, 8, 10, 12, 1571, [91,
[11, 13, 14, 16, 17, 19, 21, 24, 30, 33 1 1]
gap> Action(G,orb[1]);
Group([(2,5,8,10,7,6), (1,3,6,9,4,5) 1)
gap> ShortOrbits (Group (u), [-30..30],100);
([-13, -8, -7, -5, -4, -3, =21, [-10, -6], [-2 1, (01, [1, 21,
[3, 51, [24, 36, 39, 40, 44, 48, 60, 65, 67, 71, 80, 86, 93, 100, 112,
128, 138, 155, 167, 187, 230, 248, 312, 446, 520, 803, 867, 1445]]

3.5.6 OrbitsModulo (G, m)

{ OrbitsModulo(G, m) (method)
Returns: A partition of [0..m-1] such that and | lie in the same subset if and only if there is
an elemeng of G which moves an element from the residue cl&sy to the residue clasgm).

The argument must be an rcwa group ov&r See als@rbitsModulo (2.8.2 for rcwa mappings.
Example

gap> OrbitsModulo (G, 36);

rrojJ, 1, 11, 13, 14, 1e, 17, 19, 21, 24, 29, 30, 31, 32, 33, 34, 35 1,
(2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 20, 22, 23, 25, 26, 281, [91, [18 1,
[27]]

3.5.7 Ball (G, p, d, act)

QO Ball(G, p, d, act) (method)
OBall(G, g, d) (method)
Returns: The ball of radiusi around the poinp under the actiornct of the groups, resp. the
ball of radiusd around the elementin the groupG.
All balls are understood w.r.GeneratorsOfGroup (G). As element tests can be expensive, the
latter method does not check whethgeis indeed an element @f. The methods require that point

comparisons resp. element comparisons are cheap. They are not only applicable to rcwa groups.
Example

gap> for d in [1..4] do Print(Ball(G,1,d,OnPoints),"\n"); od;
[-3, -2, 1]

[-5, -4, -3, -2, 1]

[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]

[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]

gap> List([l..11],d->Length(Ball(G, [1,2,3],d,0nSets)));

[5 17, 51, 127, 245, 324, 343, 357, 360, 360, 360]

RCWA 45

Example

gap> List([1..11],d->Length(Ball(G, [1,2,3],d,0nTuples)));

[5, 17, 51, 143, 325, 557, 662, 695, 713, 720, 720]

gap> Ball (Group((1,2),(2,3),(3,4),(4,5),(5,6)),0),2);

[O, (5,6), (4,5), (4,5,6), (4,6,5), (3,4), (3,4)(5,6), (3,4,5), (3,5,4),
(2,3), (2,3)(5,6), (2,3) (4,5, (2,3,4), (2,4,3), (1,2), (1,2)(5,6),

(1,2) (4,5), (1,2)(3,4), (1,2,3), (1,3,2) 1]

3.6 Conjugacy in RCWA(R)

3.6.1 IsConjugate (RCWA(Integers), f, 9)

Q) IsConjugate(RCWA_Z, £, g) (method)

Returns: true if the bijective rcwa mappings andg are conjugate in RCWAY), andfalse
otherwise.

This may fail or run into an infinite loop. In particular the support for wild rcwa mappings is
currently very poor, since the author does not know a way to solve the conjugacy problem for these.

Some easy cases are handled anyway.
Example

gap> IsConjugate (RCWA (Integers),qg,h);
false

gap> IsConjugate (RCWA (Integers),g,g a);
true

gap> IsConjugate (RCWA (Integers),a,b);
false

3.6.2 RepresentativeAction (RCWA(Integers), f, g)

Q RepresentativeAction(RCWA_Z, £, g) (method)
Returns: An rcwa mapping: such thatt"x = g, if such anx exists andfail otherwise.

This method currently works only for tame rcwa mapping& p$ince the author does not know a

way to solve the conjugacy problem for wild rcwa mappings.
Example

gap> elm := RepresentativeAction (RCWA (Integers),h,h’g);

<bijective rcwa mapping of Z with modulus 12>

gap> h"elm = h"g; # check ...

true

gap> Order (elm);

infinity

gap> cent := g*elm™-1;

<bijective rcwa mapping of Z with modulus 12>

gap> Comm(cent,h); # cent must lie in the centralizer of h in RCWA(Z).
IdentityMapping(Integers)

RCWA 46

Example

gap> Order (cent);; Display(cent);

Bijective rcwa mapping of Z with modulus 12, of order 12

n mod 12 | n"f

_______________________________________ e

0 4 610 | n-1

1 7 | 2n

2 | (n-2)/2

3 9 | 2n + 2

511 ' n+ 2

8 | n/2

gap> cent in Group(h); # This particular element is even a power of h.
true

3.6.3 ShortCycles (f, maxing)

Q ShortCycles(£, maxlng) (operation)

Returns: All “single” finite cycles of the rcwa mapping of length at mostax1ng.

In this context, “single” finite cycles are finite cycles which do not belong to an infinite series.
This means that there is no constamssuch that adding any multiple afi to the elements of the
cycle always yields another cycle. SinGaP-permutations cannot move negative integers, rationals
or polynomials, the cycles are returned as lists. For example, thie-list, 2, -2] denotes the cycle

(-3,1,2,-2). Permutations with different sets of finite cycle lengths are obviously not conjugate.
Example

gap> ShortCycles(a,5);
rrol, r11, 1-v1, 02, 31, [-3 -21, [4 6,9 7,51,
[-9, -7, -5, -4, -6
gap> ShortCycles(u,2);
(o1, t-11,01, 21,1
gap> ShortCycles (Comm(a,b),10
[]
gap> ShortCycles(a*b,2);

(rol, 21, 1031, 1-261, 071, [-31,[-111

gap> Vo= RcwaMapping([[_llzl l}l [ll_lll]! [11_1711]);;

gap> w := RcwaMapping([[-1,3,11,(1,-1,1],11,-1,11,1(01,-1,111);;
gap> List([v, w], Order);

[6, 81

gap> [ShortCycles(v,10), ShortCycles(w,10) I;
(rro,2, 111, 0003 2, 1111

3.6.4 NrConjugacyClassesOfRCWAZOfOrder (ord)

{ NrConjugacyClassesOfRCWAZOfOrder (ord) (function)
Returns: The number of conjugacy classes of RC\WAEf elements of ordesrd.

RCWA 47

Example

gap> NrConjugacyClassesOfRCWAZOfOrder (2);
infinity

gap> NrConjugacyClassesOfRCWAZOfOrder (105);
218

3.7 Restriction and induction

3.7.1 Restriction (g, f)

Q Restriction(g, f) (operation)
Returns: Therestrictionof the rcwa mapping by the injective rcwa mapping.
By definition, the restrictiorgs of the rcwa mapping by the injective rcwa mapping is the
uniquely determined rcwa mapping which satisffeqys = g- f and fixes the complement of the
image off pointwisely. If f is bijective, the restriction of by f is just the conjugate of underf.

See als®estriction (3.7.2 for rcwa groups.
Example

gap> Comm(Restriction(a,RcwaMapping([[2,0,1]11)),
> Restriction (u,RcwaMapping ([[2,1,1]1]1)));
IdentityMapping(Integers)

3.7.2 Restriction (G, f)

{Q Restriction(G, f) (operation)
Returns: Therestrictionof the rcwa groups by the injective rcwa mapping.
By definition, the restriction of the rcwa groupby the injective rcwa mapping consists of the
restrictions of the elements afby £. The restriction ofz by f acts on the image of and fixes its

complement pointwisely. See algestriction (3.7.1) for rcwa mappings.
Example

gap> G := Restriction(Group(a,b),RcwaMapping([[5,3,111));
<rcwa group over Z with 2 generators>

gap> MovedPoints (G);

3(5) N[-2, 31

3.7.3 Induction (g, f)

¢Q Induction(g, f) (operation)
¢ Induction(G, f) (operation)
Returns: Theinduction of the rcwa mappingy resp. the rcwa group by the injective rcwa
mappingt.
By definition, induction is the right inverse of restriction. This means that it is
Induction (Restriction(g, f), f) = gresp.Induction(Restriction(G,f),f) = G. The map-
ping g resp. the group must not move points outside the imagefof

RCWA 48

Example

gap> Induction (G,RcwaMapping([[5,3,1]])) = Group(a,b);
true

Restriction monomorphisms permit forming direct products and wreath products of rcwa groups,
regardless of whether they are tame or not:

3.7.4 DirectProduct (G1, G2, ...)

{ DirectProduct (G1, G2, ...) (method)
Returns: An rcwa group isomorphic to the direct product of the rcwa groups @vgiven as
arguments.
There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the groapsG2, G3 ... via restrictions byn — mn

n— mn-+1,n— mn+2 ..., wherandenotes the nlumber of groups given as arguments.
Example

gap> G := DirectProduct (Group(g,h),Group(a,b),Group(u));;

gap> Embedding (G, 1);

[g, h] > [<bijective rcwa mapping of Z with modulus 18, of order 7>,
<bijective rcwa mapping of Z with modulus 18, of order 12>]

gap> List([1..3],i->MovedPoints (Image (Embedding(G,1i))));

[0(3), 1(3) \ [-2, 1], 2(3) \ [-1, 211

gap> Image (Projection(G,2)) = Group(a,b);

true

3.7.5 WreathProduct (G, P)

O WreathProduct (G, P) (method)
O WreathProduct (G, Z) (method)
Returns: An rcwa group isomorphic to the wreath product of the rcwa greoper Z with the
finite permutation group, resp. with the infinite cyclic group.
There is certainly no unique or canonical way to embed a wreath product of rcwa groups into
RCWA(Z). The first-mentioned method embeds thejreeAction (P)th direct power ofc using
the method fopirectProduct, and lets the permutation grogpact naturally on the set of residue
classes modulbegreeaction (P). The second-mentioned method restricts the grotgthe residue
class 3(4), and maps the generator of the infinite cyclic grotgpclassTransposition(0,2,1,2)
* ClassTransposition(0,2,1,4).

Example

gap> G := Group(g,h);;

gap> IsTame (G); Size(G);

true

infinity

gap> H := WreathProduct (G,AlternatingGroup(5));

<tame rcwa group over Z with 12 generators, of size infinity>

RCWA 49

Example

gap> Embedding(H,1);

[g, h] -> [<bijective rcwa mapping of Z with modulus 30, of order 7>,
<bijective rcwa mapping of Z with modulus 30, of order 12>]

gap> Embedding(H,2);

[(1,2,3,4,5), (3,4,5) 1 —>

[<bijective rcwa mapping of Z with modulus 5, of order 5>,
<bijective rcwa mapping of Z with modulus 5, of order 3>]

gap> H := WreathProduct (G, Group(ClassShift (0,1)));

<wild rcwa group over Z with 3 generators>

gap> Support (Image (Embedding (H,1)));

3(4)

gap> Embedding (H, 2);

[ClassShift(0,1)] -> [<wild bijective rcwa mapping of Z with modulus 4>]

3.8 Special attributes for tame rcwa groups

There is a couple of attributes which a priori make only sense for tame rcwa groups. In the sequel,
these attributes are described in detail.

With their help, various structural information about a given tame rcwa group can be obtained.
For example there are methods farsolvable andIsPerfect available for tame rcwa groups (the
latter works in some cases by other means also for wild groups). Often it is also feasible to compute
the derived subgroup of a tame rcwa group.

3.8.1 RespectedPartition (G)

Q RespectedPartition(G) (attribute)
Q RespectedPartition(sigma) (attribute)

Returns: A respected partitiomf G resp.sigma.

A respected partitiorof G resp.sigma is a partition of the underlying rinR into a finite number
of residue classes on whichresp. the cyclic group generated bygma acts in a natural way as a
permutation group, and on whose elements all elemertgesp. all powers ofigma are affine. In
the author’s thesis it is shown that such a partition exists if and ordyrésp. sigma is tame (see
Theorem 2.5.8).

Example

gap> G := Group(g,h);; Size(G);

infinity

gap> P := RespectedPartition(G);

[0(6), 1(6), 3(6), 4(6), 5(6), 2(12), 8(12)]
gap> Permutation(g,P);

(1,6,2,5,3,7,4)

RCWA 50

3.8.2 ActionOnRespectedPartition (G)

{ ActionOnRespectedPartition(G) (attribute)
Returns: The action of the tame rcwa grognRespectedPartition (G).
Example
gap> H := ActionOnRespectedPartition (G);
Group([(1,6,2,5,3,7,4), (1,6,2,5)(3,7,4) 1)
gap> H = Action(G,P);
true
gap> StructureDescription (H);
IIS7II

3.8.3 IntegralConjugate (G)

Q IntegralConjugate(G) (attribute)
{Q IntegralConjugate(f) (attribute)
Returns: Some integral conjugate of the tame rcwa grougesp. of the tame bijective rcwa
mappingf in the group RCWAZ).
In the author’s thesis it is shown that such a conjugate exists (see Theorem 2.5.14). There are
usually infinitely many such conjugates, and methods for this operation may choose any of them.
Example

gap> Display(IntegralConjugate(q));

Bijective rcwa mapping of Z with modulus 7, of order 7

gap> RespectedPartition(IntegralConjugate(G));
L0y, 1(N), 2(7), 3(7), 4(T), 5(1, 6(7)]
gap> Action(IntegralConjugate(G),last);
Group ([(1,6,2,5,3,7,4), (1,6,2,5)(3,7,4) 1)
gap> last = ActionOnRespectedPartition(G);
true

RCWA 51

3.8.4 IntegralizingConjugator (G)

{Q IntegralizingConjugator(G) (attribute)
Q IntegralizingConijugator(f) (attribute)
Returns: An rcwa mapping mapping such that"x resp.£"x is integral.
While there are usually infinitely many such rcwa mappings, it is taken care that the returned ones
always satisfy the relations”"IntegralizingConjugator (G) = IntegralConjugate (G) resp.
f IntegralizingConjugator (f) = IntegralConjugate (f).

Example
gap> Display(IntegralizingConjugator(qg));
Bijective rcwa mapping of Z with modulus 12
n mod 12 | n~f
_______________________________________ +______________________________________
0 6 | Tn/6
1 7 | (7n - 1)/6
2 | (Tn + 46)/12
39 | (Tn - 9)/6
4 10 | (7Tn - 10)/6
5 11 | (7n - 11)/6
8 | (7n + 16)/12
3.9 The categories of rcwa groups
3.9.1 IsRcwaGroup (G)
Q) IsRcwaGroup(G) (filter)
{Q IsRcwaGroupOverZ(G) (filter)
{ IsRcwaGroupOverZ pi(G) (filter)
{ IsRcwaGroupOverGFgx (G) (filter)

Returns: true if G is an rcwa group resp. an rcwa group over the ring of integers resp. an rcwa
group over a semilocalization of the ring of integers resp. an rcwa group over a polynomial ring in
one variable over a finite field, arfd 1se otherwise.

Chapter 4

Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary. In
particular they are not ordered by degree of interestingness or difficulty. The rcwa mappings defined
in this chapter can be found in the fitd.g/rcwa/examples/examples.qg, SO there is no need to
extract them from the manual files. This file can be read into the cu@aRtsession by issueing
RCWAReadExamples() ;.

4.1 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,31,[(4,-1,31,14,1,311);;
gap> SetName (Collatz,"Collatz"); Display(Collatz);

Rcwa mapping of Z with modulus 3

n mod 3 | n"Collatz
_______________________________________ e
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

The cycle structure of this permutation has not been completely determined yet. In particular it is not
known whether the cycle containing 8 is finite or infinite. There are a few finite cycles:
Example

gap> List (ShortOrbits (Group(Collatz), [-100..100],100),

> orb->Cycle(Collatz,Minimum(orb)));
[[-111, -74, -99, -66, -44, -59, -79, -105, -70, -93, -62, -83 1,
[_91 _61 _41 _51 =1 }I [_31 -2 }I [-1]/ [0]l [1]I [21 3]/

[4, 5 7,9, 61, [44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]]

52

RCWA 53

Nevertheless, the factorization routine included in this package can determine a factorization of this
permutation into involutions interchanging two disjoint residue classes, each (for reasons of saving a

bit space in this manual, we factor the inverse mapping instead and revert the list afterwards):
Example

gap> RCWAInfo(2); # Switch Info output on.

gap> Reversed(Factorization(Collatz”-1:ExpandPrimeSwitches));
#I Modulus(<g>) = 4, Multiplier(<g>) = 3, Divisor(<g>) = 4
#I Dividing by PrimeSwitch(3) from the right.

#I Modulus(<g>) = 16, Multiplier(<g>) = 3, Divisor(<g>) = 4
#I Dividing by PrimeSwitch(3) from the right.

#I Modulus(<g>) = 48, Multiplier(<g>) = 6, Divisor(<g>) = 4
#I Dividing by PrimeSwitch(3) from the right.

#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 12
#I p = 3, kmult = 1, kdiv = 1

#I Images of classes being multiplied by g*p kmult:

#I [3(6), 5(12), 7(12), 8(12), 0(48)]

#I Images of classes being divided by g*p“kdiv:

#I [6(8)]

#I Found 5 pairs.

#I After filtering and splitting: 5 pairs.

#I Dividing by ClassTransposition(3,6,6,8) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,5,12) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,7,12) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,8,12) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,0,48) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 6, Divisor(<g>) = 4
#I Dividing by PrimeSwitch(3) from the right.

#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 12
#I p = 3, kmult = 1, kdiv =1

#I Images of classes being multiplied by g*p kmult:

#I [7(12), 8(12), 0(96)]

#I Images of classes being divided by g*p“kdiv:

#I [6(8)]

#I Found 3 pairs.

#I After filtering and splitting: 3 pairs.

#I Dividing by ClassTransposition(6,8,7,12) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,8,12) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by ClassTransposition(6,8,0,96) from the right.

#I Modulus(<g>) = 48, Multiplier(<g>) = 12, Divisor(<g>) = 4
#I Dividing by PrimeSwitch(3) from the right.
#I Modulus(<g>) = 48, Multiplier(<g>) = 24, Divisor(<g>) = 12

#I p = 3, kmult = 1, kdiv =1

#I Images of classes being multiplied by g*p kmult:
#I[7(12), 0(192) 1

#I Images of classes being divided by g*p“kdiv:
#I[2(4)]

#I
#I
#I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I

RCWA

Found 2 pairs.

After filtering and splitting: 2 pairs.

Dividing by ClassTransposition(2,4,7,12) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 24, Divisor(<g>) = 4
Dividing by ClassTransposition(2,4,0,192) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 24, Divisor(<g>) = 4
Dividing by PrimeSwitch(3) from the right.

Modulus (<g>) = 48, Multiplier (<g>) = 48, Divisor(<g>) = 12
p = 3, kmult =1, kdiv =1

Images of classes being multiplied by g*p kmult:

[0(384)]

Images of classes being divided by g*p kdiv:

[2(4)]

Found 1 pairs.

After filtering and splitting: 1 pairs.

Dividing by ClassTransposition(2,4,0,384) from the right.
Modulus (<g>) = 48, Multiplier (<g>) = 128, Divisor(<g>) = 4
p = 2, kmult = 7, kdiv = 2

Images of classes being multiplied by g*p kmult:

[384(1536)]

Images of classes being divided by g*p kdiv:

[2(4), 3(6), 1(12), 11(12) 1

Found 3 pairs.

After filtering and splitting: 5 pairs.

Dividing by ClassTransposition(2,12,384,1536) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 32, Divisor(<g>) = 4
Dividing by ClassTransposition(1,12,384,1536) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 32, Divisor(<g>) = 4
Dividing by ClassTransposition(6,12,384,1536) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 32, Divisor(<g>) = 4
Dividing by ClassTransposition(10,12,384,1536) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 32, Divisor(<g>) = 4
Dividing by ClassTransposition(11,12,384,1536) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 32, Divisor(<g>) = 4
p = 2, kmult = 5, kdiv = 2

Images of classes being multiplied by g*p kmult:

[0(384) 1]

Images of classes being divided by g*p kdiv:

[3(6), 1(12), 6(12), 10(12), 11(12)]

Found 4 pairs.

After filtering and splitting: 4 pairs.

Dividing by ClassTransposition(l,12,0,384) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
Dividing by ClassTransposition(6,12,0,384) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
Dividing by ClassTransposition(10,12,0,384) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
Dividing by ClassTransposition(11,12,0,384) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
p = 2, kmult = 4, kdiv = 2

Images of classes being multiplied by g*p kmult:

[48(192), 192(384)]

Images of classes being divided by g*p kdiv:

54

#I
#I
#I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I

RCWA

[3(6), 6(12), 10(12), 11(12)]

Found 3 pairs.

After filtering and splitting: 3 pairs.

Dividing by ClassTransposition(6,12,48,192) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
Dividing by ClassTransposition(10,12,48,192) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4
Dividing by ClassTransposition(11,12,48,192) from the right.
Modulus (<g>) = 48, Multiplier(<g>) = 16, Divisor(<g>) = 4

p = 2, kmult = 4, kdiv = 2

Images of classes being multiplied by g*p kmult:

[192(384)]

Images of classes being divided by g*p kdiv:

[3(6), 10(12), 11(12)]

Splitting classes being divided by g*p“kdiv.

Found 4 pairs.

After filtering and splitting: 4 pairs.

Dividing by ClassTransposition(10,24,192,384) from the right.

Modulus (<g>) = 96, Multiplier(<g>) = 8, Divisor(<g>) = 4

Dividing by ClassTransposition(11,24,192,384) from the right.

Modulus (<g>) = 96, Multiplier(<g>) = 8, Divisor(<g>) = 4

Dividing by ClassTransposition(22,24,192,384) from the right.

Modulus (<g>) = 96, Multiplier(<g>) = 8, Divisor(<g>) = 4

Dividing by ClassTransposition(23,24,192,384) from the right.

Modulus (<g>) = 96, Multiplier(<g>) = 8, Divisor(<g>) = 4

p = 2, kmult = 3, kdiv = 2

Images of classes being multiplied by g*p kmult:

[72(96), 96(192), 0(384)]

Images of classes being divided by g*p kdiv:

[3(6), 11(12), 22(24)]

Found 2 pairs.

After filtering and splitting: 2 pairs.

Dividing by ClassTransposition(11,12,72,96) from the right.
Dividing by ClassTransposition(22,24,96,192) from the right.
Modulus (<g>) = 96, Multiplier(<g>) = 8, Divisor(<g>) = 4

p = 2, kmult = 3, kdiv = 2

Images of classes being multiplied by g*p kmult:

[0(384)]

Images of classes being divided by g*p kdiv:

[3(6)]

Splitting classes being divided by g*p“kdiv.

Splitting classes being divided by g*p“kdiv.

Splitting classes being divided by g*p“kdiv.

Found 8 pairs.

After filtering and splitting: 8 pairs.

Dividing by ClassTransposition(3,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition(9,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition(15,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition(21,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4

55

#I
#I
#I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I
#I

RCWA

Dividing by ClassTransposition(27,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition(33,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition(39,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
Dividing by ClassTransposition (45,48,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
p = 2, kmult = 2, kdiv = 2

Images of classes being multiplied by g*p kmult:

[44(48), 48(96), 192(384)]

Images of classes being divided by g*p kdiv:

[9(12), 15(24), 27(48)]

Found 2 pairs.

After filtering and splitting: 2 pairs.

Dividing by ClassTransposition(9,12,44,48) from the right.
Dividing by ClassTransposition(15,24,48,96) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 4, Divisor(<g>) = 4
p = 2, kmult = 2, kdiv = 2

Images of classes being multiplied by g*p kmult:

[192(384)]

Images of classes being divided by g*p kdiv:

[27(48) 1]

Splitting classes being divided by g*p kdiv.

Found 2 pairs.

After filtering and splitting: 2 pairs.

Dividing by ClassTransposition(27,96,192,384) from the right.

(
Modulus (<g>) = 384, Multiplier(
Dividing by ClassTransposition (
Modulus (<g>) 384, Multiplier(<g>) = 2, Divisor(<g>) = 4
p = 2, kmult = 1, kdiv = 2
Images of classes being multiplied by g*p kmult:
[4(24), 17(24), 24(48), 96(192), 0(384)]
Images of classes being divided by g*p kdiv:
[75(96) 1]
Found 1 pairs.
After filtering and splitting: 1 pairs.
Dividing by ClassTransposition(75,96,0,384) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 2, Divisor(<g>) = 2
p = 2, kmult = 1, kdiv =1
Images of classes being multiplied by g*p kmult:
[4(24), 17(24), 24(48), 96(192)]
Images of classes being divided by g*p kdiv:
[7(12), 5(24), 12(24), 16(24), 75(96)]
Found 6 pairs.
After filtering and splitting: 6 pairs.
Dividing by ClassTransposition(7,12,4,24) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 2, Divisor(<g>) = 2
Dividing by ClassTransposition(7,12,17,24) from the right.
Dividing by ClassTransposition (5,24,24,48) from the right.
(
(
(

<g>) = 2, Divisor(<g>) = 4

Modulus (<g>) = 192, Multiplier(<g>) = 2, Divisor(<g>) = 2
Dividing by ClassTransposition(12,24,24,48) from the right.
Modulus (<g>) = 192, Multiplier(<g>) = 2, Divisor(<g>) = 2

75,96,192,384) from the right.

56

#I
#I
#I
#I
#I
#1I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#I
#1I
#I

RCWA

Dividing by ClassTransposition(16,24,24,48) from the right.

Dividing by ClassTransposition(75,96,96,192) from the right.

Modulus (<g>) = 96, Multiplier(<g>) = 2, Divisor(<g>) = 2

p =2, kmult = 1, kdiv =1

Images of classes being multiplied by g*p kmult:

[17(24)]

Images of classes being divided by g*p kdiv:

[12(24), 16(24) 1

Splitting classes being multiplied by g*p“kmult.

Found 4 pairs.

After filtering and splitting: 4 pairs.

Dividing by ClassTransposition(12,24,17,48) from the right.
Modulus (<g>) = 96, Multiplier(<g>) = 2, Divisor (<g>)
Dividing by ClassTransposition(16,24,17,48) from the right.
Dividing by ClassTransposition(12,24,41,48) from the right.
Modulus (<g>) = 96, Multiplier(<g>) = 2, Divisor (<g>)
Dividing by ClassTransposition(16,24,41,48) from the right.
Modulus (<g>) = 96, Multiplier(<g>) = 1, Divisor(<g>) =1
Determining largest sources of affine mappings.

Computing respected partition.

Il
N

Il
V]

#I Computing induced permutation on respected partition

[12(24), 14(24), 18(24), 13(48), 22(48), 23(48), 28(48), 31(48
33(48), 34(48), 35(48), 39(48), 44(48), 45(48), 0(96) 1(96),
4(96), 5(96), 6(96), 7(96), 8(96), 9(96), 10(96) 1(96), 15¢(
17(96), 19(96), 20(96), 21(96), 24(96), 25(96), (96), 27(96
30(96), 37(96), 40(96), 41(96), 43(96), 46(96), 47(96), 48(9
50(96), 51(96), 52(96), 53(96), 54(96), 55(96), 56(96), (96
59(96), 63(96), 64(96), 65(96), 67(96), 68(96), 69(96), 72(96
74(96), 75(96), 77(96), 78(96), 85(96), 88(96), 89(96), 91(96
95(96) 1.

#I Factoring the rest into class shifts.

#I Checking the result.

[ClassTransposition(4,6,7,12), ClassTransposition(2,6,1,12),
ClassTransposition(2,4,5,6), ClassTransposition(0,4,1,6),
ClassTransposition(5,6,4,8), ClassTransposition(l,6,0,8),
ClassTransposition(4,6,7,12), ClassTransposition(2,6,1,12),
ClassTransposition(2,4,5,6), ClassTransposition(0,4,1,6),
ClassTransposition(5,6,4,8), ClassTransposition(l,6,0,8),
ClassTransposition(4,6,7,12), ClassTransposition(2,6,1,12),
ClassTransposition(2,4,5,6), ClassTransposition(0,4,1,6),
ClassTransposition(5,6,4,8), ClassTransposition(l,6,0,8),
ClassTransposition(3,6,6,8), ClassTransposition(6,8,5,12),
ClassTransposition(6,8,7,12), ClassTransposition(6,8,8,12),
ClassTransposition(6,8,0,48), ClassTransposition(4,6,7,12),
ClassTransposition(2,6,1,12), ClassTransposition(2,4,5,6),
ClassTransposition(0,4,1,6), ClassTransposition(5,6,4,8),
ClassTransposition(l,6,0,8), ClassTransposition(6,8,7,12),
ClassTransposition(6,8,8,12), ClassTransposition(6,8,0,96),
ClassTransposition(4,6,7,12), ClassTransposition(2,6,1,12),
ClassTransposition(2,4,5,6), ClassTransposition(0,4,1,6),
ClassTransposition(5,6,4,8), ClassTransposition(l,6,0,8),
ClassTransposition(2,4,7,12), ClassTransposition(2,4,0,192),
ClassTransposition(4,6,7,12), ClassTransposition(2,6,1,12),

),

57

RCWA

ClassTransposition(2,

4,5,6), ClassTransposition(0,4,1,6),
,6,4,8), ClassTransposition(1,6,0,8),
4,

ClassTransposition (5
ClassTransposition(2,4,0,384), ClassTransposition(2,12,384,1536),
ClassTransposition(1,12,384,1536), ClassTransposition(6,12,384,1536),

ClassTransposition(10,12,384,1536), ClassTransposition(11l,12,384,1536),

ClassTransposition(1,12,0,384), ClassTransposition(6,12,0,384),
ClassTransposition(10,12,0,384), ClassTransposition(11,12,0,384),
ClassTransposition(6,12,48,192), ClassTransposition(10,12,48,192),
ClassTransposition(11,12,48,192), ClassTransposition(10,24,192,384),
ClassTransposition(11,24,192,384), ClassTransposition(22,24,192,384),
ClassTransposition(23,24,192,384), ClassTransposition(11,12,72,96),
ClassTransposition(22,24,96,192), ClassTransposition(3,48,0,384),
ClassTransposition(9,48,0,384), ClassTransposition(15,48,0,384),
ClassTransposition(21,48,0,384), ClassTransposition(27,48,0,384),
ClassTransposition(33,48,0,384), ClassTransposition(39,48,0,384),
ClassTransposition(45,48,0,384), ClassTransposition(9,12,44,48),
ClassTransposition(15,24,48,96), ClassTransposition(27,96,192,384),
ClassTransposition(75,96,192,384), ClassTransposition(75,96,0,384),
ClassTransposition(7,12,4,24), ClassTransposition(7,12,17,24),
ClassTransposition(5,24,24,48), ClassTransposition(12,24,24,48),
ClassTransposition(16,24,24,48), ClassTransposition(75,96,96,192),
ClassTransposition(12,24,17,48), ClassTransposition(16,24,17,48),
ClassTransposition(12,24,41,48), ClassTransposition(16,24,41,48),

ClassTransposition(3,96,43,96),

ClassTransposition(3,96,26,96),
ClassTransposition(3,96,24,96),
)I
ClassTransposition(3,96,10,96),
ClassTransposition(3,96,27,96),
ClassTransposition(3,96,91,96),
ClassTransposition(3,96,74,96),
ClassTransposition(3,96,72,96),
ClassTransposition(3,96,77,96),
ClassTransposition(3,96,58,96),
ClassTransposition(3,96,75,96),
ClassTransposition(0, 96,94, 96),
ClassTransposition(0,96,89,96),
ClassTransposition(0,96,53,96),
ClassTransposition (0, 96,56,96),
ClassTransposition(0,96,52,96),
ClassTransposition(0,96,68,96),
ClassTransposition(0,96,67,96),
ClassTransposition(0,96,50,96),
ClassTransposition (0, 96,48,96),
ClassTransposition(0,96,46,96),
ClassTransposition(0,96,41,96),

ClassTransposition(3,96,40,96),
ClassTransposition(3,96,30,96),
ClassTransposition(3,96,25,96),
ClassTransposition(3,96,11,96),
ClassTransposition(3,96,15,96),
ClassTransposition(3,96,51,96),
ClassTransposition(3,96,88,96),
ClassTransposition(3,96,78,96),
ClassTransposition(3,96,73,96),
ClassTransposition(3,96,59,96),
ClassTransposition(3,96,63,96),
ClassTransposition (0, 96,95,96),
ClassTransposition(0,96,85,96),
ClassTransposition(0,96,49,96),
ClassTransposition(0,96,57,96),
ClassTransposition (0, 96,55,96),
ClassTransposition (0, 96,69,96),
ClassTransposition (0, 96,65,96),
ClassTransposition(0,96,64,96),
ClassTransposition (0, 96,54, 96),
ClassTransposition(0,96,47,96),
ClassTransposition(0,96,37,96),
ClassTransposition(0,96,1,96),

ClassTransposition(0,96,5,96), ClassTransposition(0,96,9,96),
ClassTransposition(0,96,8,96), ClassTransposition(0,96,7,96),
ClassTransposition(0,96,4,96), ClassTransposition(0,96,21,96),
ClassTransposition(0,96,20,96), ClassTransposition(0,96,17,96),
ClassTransposition(0,96,19,96), ClassTransposition(0,96,16,96),
ClassTransposition(0,96,2,96), ClassTransposition(0,96,6,96),

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
ClassTransposition(3,96,29,96
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
ClassTransposition(13,48,35,48), ClassTransposition(13,48,34,48),

58

ClassTransposition(13,48,39,48),
ClassTransposition(13,48,32,48),
ClassTransposition(13,48,28,48),
ClassTransposition(13,48,44,48),
ClassTransposition(13,48,22,48),
ClassTransposition(12,24,18,24)

true
gap> Length(last2);
159

gap> Product (last) = Collatz; # Check the result.

gap> RCWAInfo(0); # Switch Info output off again.

RCWA 59

ClassTransposition(13,48,33,48),
ClassTransposition(13,48,31,48),
ClassTransposition(13,48,45,48),
ClassTransposition(13,48,23,48),
ClassTransposition(12,24,14,24),

See the end of Sectich6 for a much smaller factorization task which is performed “manually” for

purposes of illustration.

4.2 Anrcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mapgirgeem to approach its contraction centre — this
is the finite set where all trajectories end up after a finite number of steps — rather quickly and do not
get very large before doing so (of course this is a purely heuristic statement asttle@Gonjecture

has not been proven so far!):

Example

gap> T := RcwaMapping([[1,0,2],[3,1,211);;

gap> SO0 := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for information on how to improve this guess.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5, -1, O,
1, 2]

gap> SO°T = S0; # This holds by definition of the contraction centre.

true

gap> Trajectory(T,27,50);

[27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103, 155,
233, 350, 175, 263, 395, 593, 890, 445, 668, 334, 167, 251, 377, 566, 283,
425, 638, 319, 479, 719, 1079, 1619, 2429, 3644, 1822, 911, 1367, 2051,
3077, 4616, 2308, 1154, 577, 866, 433, 650, 325, 488, 244, 122, 61, 92, 4e,
23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2]

gap> List([1..40],n->Length(Trajectory(T,n,S0)));

(1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6, 11,
11, 8, 16, 8, 70, 13, 13, 13, 67, 5, 18, 10, 10, 15, 15, 15, 23, 7]

gap> Maximum(List ([1..1000],n->Length(Trajectory(T,n,S0))));
113
gap> Maximum(List ([1..1000],n->Maximum(Trajectory(T,n,S0))));

125252

RCWA 60

The following mapping also seems to be contracting, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping([[1,0,6]1,[5, 1,61, 7,-2,6],

> [11/316]1[11172/6}1[1177116]});;
gap> SetName (f6,"f6");

gap> Display (£6);

Rcwa mapping of Z with modulus 6

n mod 6 | n"f6
_______________________________________ S

0 | n/6

1 | (5n + 1)/6

2 | (Tn - 2)/6

3 | (11n + 3)/6

4 | (11In - 2)/6

5 | (11In - 1)/6

gap> SO := LikelyContractionCentre (£6,1000,100000);;

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

gap> Trajectory(f6,25,S0);

[25, 21, 39, 72, 12, 2]

gap> List([1..100],n->Length(Trajectory(f6,n,S0)));

(2, 2, 3, 4, 2, 2, 3, 2, 2, 5,7, 2, 8, 17, 3, 16, 2, 4, 17, 6, 5, 2, 5, 5,
6, 2, 4, 2, 15, 2, 2, 3, 2, 5, 13, 3, 2, 3, 4, 2, 8, 4, 4, 2, 7, 19, 23517,
3, 9, 3, 2, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 2, 4, 19, 12, 23511, 8,
23513, 10, 2, 13, 13, 3, 2, 23517, 7, 20, 7, 9, 9, 6, 12, 8, 6, 18, 14,
23516, 31, 12, 23545, 4, 21, 19, 5, 2, 17, 17, 13, 19, 6, 23515]

gap> Maximum(Trajectory (£6,47,50));;

736339177776247330443187705477107581873369010805146980871580925673774229545698\

886054

Computing the trajectory of 3224 takes quite a while — this trajectory ascends to atbftt%,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mappirntg, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than thedulus (£6)th power of the denominator. In the
example we have & - 113 = 46585 and 6= 46656.

Although the trajectories of are much shorter than those of, it seems likely that this does
not make the problem of deciding whether the mappirng contracting essentially easier — even for
mappings with much shorter trajectories ttatie problem seems to be equally hard. A solution can
usually only be found in trivial cases, i.e. for example when there is $osneh that applying thigth
power of the respective mapping to any integer decreases its absolute value.

RCWA

4.3 Checking a result by P. Andaloro

In [AndOd], P. Andaloro has shown that proving that trajectories of integets1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3 Conjecture. In the sequel,
this result is verified bRCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mapping containsZ \ 0(3) is obviously enough. Thus we proceed by setting

S:=1(16) and successively uniting the swith its image under :

Example

gap> S := ResidueClass(Integers,16,1);

1(16)

gap> S := Union(S,S"7T);

1(16) U 2(24)

gap> S := Union(S,S"T);

1(12) U 2(24) U 17(48) U 33(48)
gap> S := Union(S,S"T);

<union of 30 residue classes (mod 144)>
gap> S := Union(S,S°7T);

<union of 42 residue classes (mod 144)>
gap> S := Union(S,S"T);

<union of 172 residue classes (mod 432)>
gap> S := Union(S,S"T);

<union of 676 residue classes (mod 1296)>
gap> S := Union(S,S°7T);

<union of 810 residue classes (mod 1296)>
gap> S := Union(S,S"T);

<union of 2638 residue classes (mod 3888)>
gap> S := Union(S,S"7T);

<union of 33 residue classes (mod 48)>
gap> S := Union(S,S°7T);

<union of 33 residue classes (mod 48)>
gap> Union(S,ResidueClass (Integers,3,0)); # Et voila ...
Integers

Further similar computations are shown in Sectiohvd

RCWA 62

4.4 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (mgdnd divergent:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF (2) [x]

gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)"3,1,x]]1*0One(R));;
gap> ML2 := RcwaMapping(R,x,[[1,0,x], [(x+1)"2,1,x]]1*0One(R));;
gap> SetName (ML1,"ML1"); SetName (ML2,"ML2");

gap> Display (ML1);

Rcwa mapping of GF(2) [x] with modulus x

gap> Display (ML2);

Rcwa mapping of GF(2) [x] with modulus x

gap> List ([ML1,ML2],IsSurjective);

[true, true]

gap> List ([ML1,ML2],IsInjective);

[false, false]

gap> trajl := Trajectory(ML1l,One(R),16);

[2(2)70, x"2+x+7Z(2)70, x"44+x"2+x, x"3+x+7Z(2)70, x"5+x"4+x"2, x"4+x"3+x,
X"3+x72472(2) 70, x"5+x"2+47Z(2)°0, x"7+x"6+x"5+x"3+Z(2) "0,

X9+ TTHRT6+X 754X 34+x+72 (2) "0, xT114+x710+x"8+x"T+x"6+x"5+x72,
x"10+x"9+x " T+ 6+x " 5+x "7 4+x, X"9+x"8+x"6+x"5+x"4+x"3+Z (2) "0,
Xx"11+x"8+x"T+x"6+x"4+x+Z (2) "0, x"13+x"12+x"11+x"8+x"7+x"6+x"4,
x"124x7114+x710+x"7+x76+x"5+x"3]

gap> traj2 := Trajectory(ML2, (x"3+x+1)*One(R),16);

[X"3+x+2(2) "0, x"4+x+Z(2)"0, x"5+x"3+x"2+x+Z2(2) "0, x"6+x"3+Z(2) "0,
XTTHX 54X 44x724x, XT0+xT44+x"3+x+72(2) "0, x"T+x744+x"34+x+72(2) "0,
X"8+x"60+x"5+x T 4+x"3+x+7Z (2) "0, x"9+x"6+x"3+x+Z(2) "0,
Xx"104+x"84+x"T+x"5+x 7 44+x+7 (2) "0, x"114+x"8+x"T+x"5+x"4+x"3+x"2+x+Z2(2) 0,
Xx"T124+x7104+x79+x "84k T+x 542 (2) "0, x"13+x710+x"T7+x"4+x,
X"T124x79+x764+x"34+Z2(2) "0, xT134x"114x7104+x"84+x"THx"54+x"T4+x"2+%,
XxT124x7104x79+x 7T+ T 6+x 7 44x " 34+x+Z2 (2) "0]

RCWA 63

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states @ amatl
1 modx:

Example

gap> trajlmodx := Trajectory(ML1l,One(R),400,x);;

gap> traj2modx := Trajectory(ML2, (x"3+x+1)*One(R),600,x);;

gap> List (trajlmodx{[1..200]},val->Position([Zero(R),One(R)],val)-1);

(1, 1, 0, 2, 0, 0, 2, 1, 1, 1, 0, 0, 1, 1, O, O, O, O, 2, 1, 1, 1, 1, 1, 1,
i, o, 0, 0, 0, 2, 1, 1, 1, 0, O, O, O, O, O, O, O, 2, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1, 0 0 0, O, O, O, O, O, 2, 1, 2, 21, 1, 1, 1, 1, O,
o, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, O, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1, 1,111,111, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 0, O, O,
6, 0, 0, 0, 0, 0, 0, 0, 0, 0, O, O, O, 2, 2, 1, 1, 1,1, 1, 1,1, 1, 1, 1,
i, 1, 1,1, 0, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
6, o, 0, 0, 0o, 0, 0, 0, 0, O, O, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> List (traj2modx{[1..200]},val->Position([Zero(R),0One(R)],val)-1);

(1, 1,1, 1,¢90,1,11,11,1, 1,1, 1,¢0, 1, 0 1, 1, 1,1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1,1, 1, 0, 1, O, 1, O, 1, O, 1, O, 1, O, 1, 0, 1, O,
i, 1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, O,
i, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, O, 1, O, 1, O, 1, O, 1, O, 1, 0, 1, O, 1,
o, 1, 0, 1, 0, 1,1, 1,1, 1,1, 1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1,1, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

What is important here are the lengths of the intervals between two changes from one state to the

other:
Example

gap> ChangePoints := 1 -> Filtered([l..Length(l)-1],pos->1[pos]<>1[pos+l]);;
gap> Diffs := 1 -> List([l..Length(l)-1],pos->1[pos+l]-1[pos]);;
gap> Diffs(ChangePoints(trajlmodx)); # The pattern in the first
(1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, l6, 32, 64, 32, 32,

gap> Diffs(ChangePoints
(1, 3 1, 7,1, 15,1, 31, 1, 6

64]

gap> Diffs(ChangePoints (traj2modx)); # ... and in the second example.

(1, 7,1, 1,1, 13, 1,1, 1, 1,1, 1,1, 25 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1, 49, 1,1, 1,1, 1,1, 1,1,11,11, 1,1, 1,1, 1,1, 1, 1, 1,
i, 1 1,1,1,1,1,1,1%1,11,1,1, 9, 1,1,11, 1,1, 1,1, 1,1, 11,1, 1,
1,11, 1,1,1,1%1,1,1,1,11,1,1,11,1,1,1, 11,1, 1,1, 1,1, 1, 1,
1,11, 1,1,1,1%,1,1,1,1,1,1,11,1,1,1, 11,1, 1,1, 1,1, 1, 1,
i, 193, 1, 1, 1, 1,1, 1,11, 11, 1, 1, 1,1, 1,1, 1, 1, 1, 1,1, 1, 1, 1,
1, 1,1, 1,1,1,11,1,1,1,1,1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1,
i, 1,1, 1,1,1,1%1,1,1,1,11,1,1,11, 1, 1,1, 1,1, 1,1, 1, 1,1, 1,
1,11, 1,1,1,11,1,1,11, 1, 1,1, 1, 1,1, 1, 1, 1]

()i #
3

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.

RCWA 64

4.5 Exploring the structure of a wild rcwa group

In this example, a simple attempt to should be made to investigate the structure of a given wild group
by finding orders of torsion elements. In general, determining the structure of a given wild group
computationally seems to be a very hard task. First of all, the group in question has to be defined:
Example

gap> u := RcwaMapping([[3,0,5],19,1,5],[3,-1,51,19,-2,5],109,4,511);;

gap> SetName (u, "u");
gap> Display(u);

Rcwa mapping of Z with modulus 5

n mod 5 | n"u
_______________________________________ e
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> nu := RcwaMapping ([[1,1,1]]);
Rcwa mapping of Z: n > n + 1

gap> SetName (nu, "nu");

gap> G := Group(u,nu);

<rcwa group over Z with 2 generators>
gap> IsTame (G);

false

Now we would like to know which orders torsion elementsafan have — taking a look at the above

generators it seems to make sense to try commutators:
Example

gap> 1 := Filtered([0..100],k->IsTame (Comm(u,nu’k)));

[0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30, 32,
33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58, 60, 62, 63,
65, 66, 69, 70, 72, 73, 75, 71, 78, 80, 81, 84, 85, 87, 88, 90, 92, 93, 95,
96, 99, 100]

gap> List (1,k->Order (Comm(u,nu’k)));

[1, 6, 5, 3, 5 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, infinity, 3,
5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity, infinity, infinity,
5 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity, infinity, 3, 5, 7,
infinity, 7, infinity, 3, 5, 5, 3, 5, infinity, infinity, infinity, 5, 3,
5 5, 3]

RCWA 65

Example

gap> Display (Comm(u,nu”13));

Bijective rcwa mapping of Z with modulus 9

n mod 9 | n"f
_______________________________________ e
036 | n+ 5
147 | 3n - 9
2 8 | n - 11
5 | (n + 16)/3

gap> Order (Comm(u,nu”13));

7

gap> u2 := u"2;

<wild bijective rcwa mapping of Z with modulus 25>

gap> Filtered([1..16],k->IsTame (Comm(u2,nu’k))); # k < 15 -> commutator wild!

[15]

gap> Order (Comm(u2,nu”15));
infinity

gap> u2nul7 := Comm(u2,nu”17);

<bijective rcwa mapping of Z with modulus 81>

gap> orbs := ShortOrbits (Group(u2nul7), [-100..100],100);;

gap> List (orbs,Length);

[72, 72, 13, 12, 73, 12, 12, 13, 12, 72, 72, 13, 72, 12, 73, 72, 12, 13, 12,
72, 13, 72, 72]

gap> Lcm(last);

5256

gap> u2nul7°5256; # This element has indeed order 273*372*73 = 5256.

IdentityMapping(Integers)

gap> u2nul8 := Comm(u2,nu”18);

<bijective rcwa mapping of Z with modulus 81>

gap> orbs := ShortOrbits (Group(u2nul8), [-100..100],100);;

gap> List (orbs,Length);

[22, 22, 22, 21, 22, 22, 22, 21, 21, 22, 22, 21, 22, 21, 22, 22, 21, 22, 22,
21, 22, 22, 21]

gap> Lcm(last);

462

gap> u2nul8°462; # This is an element of order 2*3*7*11 = 462.

IdentityMapping(Integers)

gap> Order (Comm (u2,nu”20));

29
gap> Order (Comm(u2,nu”25));
9
gap> Order (Comm (u2,nu”30));
15

Thus even this rather simple-minded approach reveals various different orders of torsion elements,
and the involved primes are also not all quite “small”.

RCWA 66

4.6 A wild rcwa mapping which has only finite cycles

Some wild rcwa mappings &t have only finite cycles. In this section, a permutation is examined
which can be shown to be such a mapping and which is likely to be something like a “minimal”
example.

Over R = GF()[x], constructing such mappings is easy since the degree function gives rise to
a partition ofR into finite sets which is left invariant by suitable wild rcwa mappings. (Qref Z
however the situation looks different — there is no such “natural” partition into finite sets which can

be fixed by a wild rcwa mapping.
Example

gap> kappa := RcwaMapping([[1,0,1
>
> 1,1
gap> SetName (kappa, "kappa") ;
gap> List ([-5..5],k->Modulus (kappa’k));

[7776, 1296, 432, 72, 24, 1, 12, 72, 144,
gap> Display (kappa);

[N}
~

864, 1728]

Bijective rcwa mapping of Z with modulus 12

- — 4 —

gap>
[4

gap>

gap>
[2,

8,
gap>
>

[4094,
236194,
69983,
9215,

(1
[16,
[34,

List ([-32..32],n->Length(Cycle (kappa,n)));

1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 7, 1, 10,

1, 4, 4, 2, 1,1, 2,1, 1, 4, 4, 4, 1, 7, 7, 4, 1, 17,

1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 4, 1, 13, 13, 7]

List ([2..14],k->Maximum(List ([1..27k],n->Length(Cycle (kappa,n)))));

7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

List([2..14],k->Length(Cycle (kappa,2°k-2)));

7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

Cycle (kappa,2°12-2);

6142, 9214, 13822, 20734, 31102,

354292, 708584, 236195, 472388,

139964, 46655, 93308, 31103, 62204,

18428, 6143, 12284, 4095]

last mod 12;

10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 8,

11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 3]

lengthstatistics := Collected(List (ShortOrbits (Group (kappa),
[1..1274],100),Length));

432 1, [13, 216 1,

131, [28, 771, [31,

10, 4, 1,

10,

46654, 69982, 104974,
157463, 314924, 104975,
20735, 41468, 13823,

157462,
209948,
27644,

11, 8, 11, 8, 11, 8, 11,

6912],
108 1,
21, 10

4, 1728 1, [7, 864 1,
19, 54 1, [22, 27 1,
T, 11, [40, 1 1]

[10,

(
[[25, 31,
3

RCWA

We would like to determine a partition @ into unions of cycles of equal length:

67

Example
gap> C := [Difference(Integers,MovedPoints (kappa))]l;; pow := [kappa”0];;
gap> rc := function(r,m) return ResidueClass(r,m); end;;
gap> for i in [1..3] do
> Add (pow, kappa“i);
> C[i+1] := Difference(rc(2,4),
> Union (Union(C{[1..1]}),
> Union(List ([0..1],
> j->Intersection(rc(2,4) "pow[j+1],
> rc(2,4)" (pow[i-Jj+11°-1))))))
> od;
gap> C;
[

1(4) U 0(12) U [-2 1, 2(24) U 18(24), 6(48) U 38(48) U 10(72) U 58(72),
<union of 38 residue classes (mod 864)>]

gap> List (C,S->Length(Cycle (kappa,S)));

[1, 4, 7, 10]

gap> Cycle (kappa,C[1l]);

[1(4) UO0(12) U [-2 1]

gap> Cycle (kappa,Cl2]);

[2(24) U 18(24), 4(36) U 28(36), 8(72) U 56(72), 3(24) U 19(24)]
gap> cycle7 := Cycle(kappa,C[3]);;

gap> for S in cycle7 do View(S); Print("\n"); od;

6(48) U 38(48) U 10(72) U 58(72)

10(72) U 58(72) U 16(108) U 88(108)

16(108) U 88(108) U 32(216) U 176(216)

11(72) U 59(72) U 32(216) U 176(216)

11(72) U 59(72) U 20(144) U 116(144)

7(48) U 39(48) U 20(144) U 116(144)

6(48) U 7(48) U 38(48) U 39(48)

gap> cyclel(Q := Cycle(kappa,Cl[4]);;

gap> for S in cyclel0 do View(S); Print("\n"); od;

<union of 38 residue classes (mod 864)>

<union of 38 residue classes (mod 1296)>

<union of 12 residue classes (mod 648)>

<union of 12 residue classes (mod 648)>

<union of 22 residue classes (mod 1296)>

<union of 12 residue classes (mod 432)>

<union of 22 residue classes (

<union of 12 residue classes (

<union of 14 residue classes (

<union of 16 residue classes (

gap> List (cyclelO,Density);

[19/432, 19/648, 1/54, 1/54, 11/648, 1/36, 11/432, 1/24, 7/144, 1/18]

gap> List (last,Float);

[0.0439815, 0.029321, 0.0185185, 0.0185185, 0.0169753, 0.0277778, 0.025463,
0.0416667, 0.0486111, 0.0555556]

gap> Sum(last2);

47/144

gap> Density(Union(cyclel0));

47/432

RCWA 68

Example

gap> P := List (C,S->Union(Cycle (kappa,S)));;

gap> for S in P do View(S); Print ("\n"); od;

1(4) U 0(12) U [-2]

<union of 18 residue classes (mod 72)>

<union of 78 residue classes (mod 432)>

<union of 282 residue classes (mod 2592)>

gap> P2 := AsUnionOfFewClasses(P[2]);

[2(24), 3(24), 18(24), 19(24), 4(36), 28(36), 8(72), 56(72)]

gap> Permutation (kappa,P2);

(1,5,7,2) (3,6,8,4)

gap> P3 := AsUnionOfFewClasses(P[3]);

[6(48), 7(48), 38(48), 39(48), 10(72), 11(72), 58(72), 59(72), 16(108),
88(108), 20(144), 116(144), 32(216), 176(216)]

gap> Permutation (kappa,P3);

(1,5,9,13,6,11,2) (3,7,10,14,8,12,4)

gap> P4 := AsUnionOfFewClasses(P[4]);

[14(96), 15(96), 78(96), 79(96), 22(144), 23(144), 118(144), 119(144),
34(216), 35(216), 178(216), 179(216), 44(288), 236(288), 52(324), 268(324),
68(432), 356(432), 104(648), 536(648)]

gap> Permutation (kappa,P4);

(1,5,9,15,19,10,17,6,13,2) (3,7,11,16,20,12,18,8,14,4)

gap> List (P,S->Set (List (Intersection([1..1274],S),n->Length(Cycle (kappa,n)))));

ctr1i1, 0471, 071, [107]]

gap> Set (List (Intersection([l..1274],Difference(Integers,Union(P))),

> n->Length (Cycle (kappa,n))));

[13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

Finally, the permutatiokrappa should be factored into involutions (this time “by hand”, for purposes
of illustration):
Example

gap> elml := kappa;

kappa

gap> Multpk(elml,2,1) "elml;

8(12)

gap> Multpk(elml,2,-1) "elml;

4(6)

gap> Multpk(elml,3,1) "elml;

4(6)

gap> Multpk (elml, 3,-1) "elml;

3(4)

gap> factl := RcwaMapping([[rc(4,6),rc(8,12)11);
<rcwa mapping of Z with modulus 12>

RCWA

Example

69

gap> elm2 := elml/factl;
<bijective rcwa mapping of Z with modulus 12>
gap> Display (elm2);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
0 4 5 9 | n
2 610 | 3n + 2
3 711 | n-1
8 | (n+1)/3
gap> Multpk(elm2,3,1) "elm2;
8(12)
gap> Multpk (elm2,3,-1) "elm2;
3(4)
gap> fact2 := RcwaMapping([[rc(3,4),rc(8,12)]1]);
<rcwa mapping of Z with modulus 12>
gap> elm3 := elm2/fact2;
<bijective rcwa mapping of Z with modulus 4>
gap> Display(elm3);
Bijective rcwa mapping of Z with modulus 4
n mod 4 | n"f
_______________________________________ o
01 | n
2 | n+ 1
3 | n-1

gap> fact3 := RcwaMapping ([[rc(2,4),rc(3,4)1]1);

<rcwa mapping of Z with modulus 4>

gap> elm4 := elm3/fact3;

IdentityMapping(Integers)

gap> kappafacts := [fact3, fact2, factl];

[<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 12>]

gap> List (kappafacts,Order);

[2, 2, 2]

gap> kappa = Product (kappafacts);

true

RCWA 70

4.7 An abelian rcwa group over a polynomial ring

In this section, a wild rcwa group over GF(4)should be invstigated, which happens to be abelian.
Of course in general, rcwa groups also over this ring are usually far from being abelian (see below).
We start by defining this group:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(4),1);
GF (272) [x]
gap> e := One(GF(4));;
gap> p = X2 + x + e;; q:=x"2+ e;;
gap> r = x"2 + x + Z(4);; s = x"2 + x + Z(4)"2;;
gap> cg := List(AllResidues(R,x72), pol -> [p, p * pol mod q, g 1);;
gap> ch := List(AllResidues(R,x72), pol -> [r, r * pol mod s, s]);;

gap> g := RcwaMapping(R, q, cg);

<rcwa mapping of GF(2°2) [x] with modulus x"2+Z(2) "0>
gap> h := RcwaMapping(R, s, ch);

<rcwa mapping of GF(272) [x] with modulus x"2+x+Z(272) "2>
gap> List([g,h],Order);

[infinity, infinity]

gap> List([g,h],IsTame);

[false, false]

gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> IsAbelian(G);

true

Now we compute the action of the groamn one of its orbits, and make some statistics of the orbits
of G containing polynomials of degree less than 4:
Example

gap> orb := Orbit (G,x"5);
[x°5, x"5+x"4+x"24+72(2) "0, x"5+x"3+x"2+Z(272)*x+Z(2) "0, x"5+x"3,
X5+ TA+XT3+x 7247 (272) "2*x+Z(272) "2, x75+x, x"5+x74+x73, x"5+x"2+7(2°2) "2*x,
XTE5EXTA4RT24%, XTHHXT34XT247Z(272) "2*%x+7(2) "0, x"5+x74+47Z(272)*x+7Z(272),
X"5+x 734, XT5+XTA+XT34XT24Z(272) *x+2(272), x"5+xT4+x"3+x+7Z(2) "0,
X 54X72+42(27°2) *x, X 54xT44Z(272) "2*x+7(27°2) "2]
gap> H := Action (G, orb);
Group ([(1,2,4,7,6,9,12,14) (3,5,8,11,10,13,15,16),
(1,3,6,10) (2,5,9,13) (4,8,12,15) (7,11,14,16) 1)
gap> IsBAbelian (H); # check ...
true
gap> Exponent (H);
8
gap> Collected(List (ShortOrbits (G,AllResidues(R,x"4),100),Length));
(11,41, 12,61, [4 1271, [8, 241]

RCWA 71

Changing the generators a little causes the group structure to change a lot:

Example
gap> cgll][2] := cgl[l][2] + (x"2 + &) *p * q;;
gap> ch[7]1[2] := ch[7][2] + x * r * 5;;
gap> g := RcwaMapping(R, g, cg);; h := RcwaMapping(R, s, ch);;
gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> orb := Orbit (G,Zero(R));;

gap> Length (orb);

87

gap> Collected(List (orb,DegreeOfLaurentPolynomial));
(11, 21, 02,41, 13,161, [4, 641, [infinity, 1]]
gap> H := Action(G,orb);

<permutation group with 2 generators>

gap> IsNaturalAlternatingGroup (H);

true

gap> orb := Orbit (G,x"6);;

gap> Length(orb);

512

gap> H := Action (G, orb);

<permutation group with 2 generators>

gap> IsNaturalSymmetricGroup(H) or IsNaturalAlternatingGroup (H);
false

gap> blk := Blocks(H,[1..512]);;

gap> List (blk,Length);

[128, 128, 128, 128]

gap> Action(H,blk,OnSets);

Group ([(1,2)(3,4), (1,3)(2,4) 1)

Thus the modified group has a quotient isomorphic to the alternating group of degree 87, and a quotient
isomorphic to some wreath product or a subgroup thereof acting transitively, but not primitively on
512 points.

4.8 An rcwa representation of a small group

In the sequel, an rcwa representation of the 3-Sylow-subgroup of the symmetric group on 9 points
is given. Of course this group has a very nice permutation representation, hence for computational
purposes one does not gain anything here.

Example
gap> r := RcwaMapping([[1,0,1]1,[1,1,1],1[3,-3,11,
> [1,0,31,11,1,11,13,-3,11,
> [(1,0,11,11,1,11,13,-3,111);;
gap> s := RcwaMapping([[1,0,1],[1,1,1],([3,6,11,
> (1,0,31,11,1,11,1(3,6,1],
> (1,0,11,1[1,1,11,103,-21,111) ;3
gap> SetName(r,"r"); SetName(s,"s");

RCWA 72

Example
gap> Display(r);
Rcwa mapping of Z with modulus 9
n mod 9 | n'r

_______________________________________ +______________________________________

06 | n

147 ' n+1

258 | 3n - 3

3 | n/3
gap> Display(s);
Rcwa mapping of Z with modulus 9

n mod 9 | n"s

_______________________________________ +______________________________________

06 | n

147 ' n+1

25 | 3n + 6

3 | n/3

8 | 3n - 21
gap> G := Group(r,s);
<rcwa group over Z with 2 generators>
gap> H := SylowSubgroup (SymmetricGroup(9),3);
Group ([(1,2,3), (4,5,6), (7,8,9), (1,4,7)(2,5,8)(3,6,9) 1)
gap> phi := InverseGeneralMapping (IsomorphismGroups(G,H));;
gap> (1,2,3) "phi;
<bijective rcwa mapping of Z with modulus 27>

4.9 An rcwa representation of the symmetric group on 10 points

In this section, an rcwa representation of the symmetric group on 10 points should be investigated.
We start by defining some bijections of infinite order and computing commutators:

Example
gap> a := RcwaMapping([[3,0,2]1,([3, 1,4]1,13,0,21,13,-1,411);;
gap> b := RcwaMapping([[3,0,2],13,13,41,13,0,21,13,-1,411);;
gap> ¢ := RcwaMapping([[3,0,2], (3, 1,41,13,0,21,13,11,411);;
gap> SetName (a,"a"); SetName (b, "b"); SetName (c,"c");
gap> List([a,b,c],Order);
[infinity, infinity, infinity]
gap> ab := Comm(a,b);; ac := Comm(a,c);; bc := Comm(b,c);;
gap> SetName (ab,"[a,b]"); SetName (ac,"[a,c]"); SetName (bc,"[b,c]");
gap> List ([ab,ac,bc],Order);
[6, 6, 12]

RCWA 73

Now we would like to have a look at[o] ...
Example

gap> Display(ab);

Bijective rcwa mapping of Z with modulus 18, of order 6

n mod 18 | n”"[a,b]
_______________________________________ e

0 2 3 8 911 12 17 | n

110 | 2n = 5

4 7 13 16 | n+ 3

5 14 | 2n - 4

6 | (n+ 2)/2
15 | (n-5)/2

.. form the group generated by,}] and [a,c] and compute its action on one of its orbits:
Example

gap> G := Group(ab,ac);

<rcwa group over Z with 2 generators>

gap> orb := Orbit (G,1);

[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]

gap> H := Action(G,orb);

Group ([(2,5,8,10,7,6), (1,3,6,9,4,5) 1)
gap> Size (H)

3628800

gap> Size(G); # G acts faithfully on orb.
3628800

Hence the group is isomorphic to the symmetric group on 10 points and acts faithfully on the orbit
containing 1. Another question is which groups arise if we take as generatorsagitheror bc and

the mapping:, which maps each integer to its additive inverse:
Example

gap> t := ClassReflection(0,1);;

gap> Display(t);

Bijective rcwa mapping of Z: n -> -n
gap> G := Group(ab,t);

<rcwa group over Z with 2 generators>
gap> Size (G);

7257600
gap> phi := IsomorphismPermGroup (G);
[[a,b], ClassReflection(0,1)] —> 3,4,6,9,13) (5,8,11,16,10,15),

(1,2)(3,5) (4,7) (6,10) (8,12) (9,14
gap> H := Group((1,2),(1,2,3,4,5,6,
gap> IsomorphismGroups (Image (phi),
true

)
+9,10), (11,12));;

[(2,
(11,17) (13,18) (15,19) (16,20)]
7,8
H) <> fail; # G = C2 x S10

RCWA 74

Thus the group generated by andt is isomorphic to G x S;p. The next group is an extension of a
perfect group of order 960:

Example

gap> G := Group(ac,t);;

gap> Size (G);

3840

gap> H := Image (IsomorphismPermGroup (G));;
gap> P := DerivedSubgroup (H);;

gap> Size(P);

960

gap> IsPerfect (P);

true

gap> PerfectGroup (PerfectIdentification(P));
A5 2747

The last group is infinite:
Example

gap> G := Group(bc,t);;

gap> Size(G);

infinity

gap> Order (bc*t);

infinity

gap> Modulus (G) ;

18

gap> RespectedPartition(G);

[1(9), 2(9), 4(9), 5(9), 7(9), 8(9), 0(18), 3(18), 6(18), 9(18), 12(18),
15(18)]

gap> ActionOnRespectedPartition(G);

Group ([(1,5,8,2,4,12)(3,9,6,11), (1,6)(2,5)(3,4)(8,12) (9,11) 1)

gap> IsNaturalSymmetricGroup (last);

true

gap> RankOfKernelOfActionOnRespectedPartition (G:ProperSubgroupAllowed);

9

RCWA 75

4.10 Checking for solvability

Is the group generated by the mappiagandb from the last paragraph solvable?

This group is wild. Presently there is no general method available for testing wild rcwa groups
for solvability. But nevertheless, for the given group this question can be decided to the negative. The
idea is to find a subgroup which acts on a finite set of integers, and induces agna non-solvable
finite permutation group:

Example

gap> G := Group(a,b);;

gap> ShortOrbits (Group (Comm(a,b)), [-10..10],100);

(r-wo1J1,1-91, [-3, -21, -14, -13, -11, -8 1, [=71, [-6 1,
[-12, -5, -4, -3, =2, 11, [-1 1, [01, 2
[4, 5 6, 7, 10, 151, [81, [911

gap> S := [4, 5, 6, 7, 10, 15 1;;

gap> Cycle (Comm(a,b),4);

[4, 7, 10, 15, 5, 6]

gap> elm := RepresentativeAction(G,S,Permuted(S, (1,4)),0nTuples);

<bijective rcwa mapping of Z with modulus 81>

gap> List(S,n->n"elm);

[7, 5, 6, 4, 10, 15]

gap> U := Group (Comm(a,b),elm);

<rcwa group over Z with 2 generators>

gap> Action(U,S);

Group ([(1,4,5,6,2,3), (1,4) 1)

gap> IsNaturalSymmetricGroup(last);

true

Thus, the subgroup induces org a natural symmetric group of degree 6. Hence the grmignot
solvable, as claimed. We finish this example by factoring the group elernemito generators:
Example

gap> F := FreeGroup("a","b");

<free group on the generators [a, b]>

gap> RepresentativeActionPrelImage (G, S,Permuted(S, (1,4)),0nTuples,F);
a"-2*p"-2*a*b*a"-1*b*a*b"-2*a

gap> a"-2*b"-2*a*b*a"-1*b*a*b"-2*a = elm;

true

RCWA 76

4.11 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations (we take the mappifigom the previous examples):
Example

gap> a2 := LocalizedRcwaMapping(a,2);
<rcwa mapping of Z_(2) with modulus 4>
gap> IsSurjective(a2); # As expected
true

gap> IsInjective(a2); # Why not??

false

gap> 07a2;

0

gap> (1/3)"a2; # That’s the reason!

0

The above can also be explained easily by pointing out that the modulus of the inverse3fand
that 3 is a unit ofZ3). Moving toZ, 3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a, [2,3]);
<rcwa mapping of Z_(2, 3) with modulus 4>
gap> IsBijective(a23);

true

We get additional finite cycles, e.g.:
Example

gap> List (ShortOrbits (Group(a23),[0..50]1/5,50),orb->Cycle(a23,0rb[1]));
[101, [1/5 2/5 3/51,

[4/5, /5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5 1, [11,

[2, 31, [14/5, 21/5, 17/5 1,

[16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5, 89/5,
68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5, 113/5, 86/5,
129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5, 51/5, 37/5, 29/5,
23/5 1, [4, 6, 9, 7, 51 1]

gap> List (last,Length);

(1, 3, 11, 1, 2, 3, 34, 5]

gap> List (ShortOrbits (Group(a23),[0..50]/7,50),orb->Cycle(a23,0rb[1]))

rro1l1, (-1/7, /71, [2/7, 3/7, 4/7, /7, 9/7, 5/7 1, [11, [2,
[4, 6, 9, 7, 511

gap> List (last,Length);

(1, 2, 6, 1, 2, 51

31,

RCWA

77

But the group structure remains invariant under the “transfer” of a group with priri{@ $3tfrom Z

to Z(273)Z

Example

gap> b23 := SemilocalizedRcwaMapping (b, [2,3]1);;

gap> c23 := SemilocalizedRcwaMapping(c, [2,3]1);;

gap> ab23 := Comm(a23,b23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> acz23 := Comm(a23,c23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> G := Group (ab23,ac23);

<rcwa group over Z_(2, 3) with 2 generators>

gap> S := Intersection (Enumerator (Rationals) {[1..200]},Z_pi([2,3]));

([-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -12/5, -11/5, -2, -9/5, -12/7,
-8/5, -11/7, -10/7, -7/5, -9/7, -6/5, -8/7, -12/11, -1, -10/11, -6/17,
-9/11, -4/5, -8/11, -5/7, -7/11, -3/5, -4/7, -6/11, -5/11, -3/7, -2/5,
-4/11, -2/7, -3/11, -1/5, -2/11, -1/7, -1/11, O, 1/13, 1/11, 1/7, 2/13,
2/11, 1/5, 3/13, 3/11, 2/7, 4/13, 4/11, 5/13, 2/5, 3/17, 5/11, 6/13, 7/13,
6/11, 4/7, 3/5, 8/13, 7/11, 9/13, 5/7, 8/11, 10/13, 4/5, 9/11, 11/13, 6/17,
10/11, 12/13, 1, 12/11, 8/7, 13/11, /5, 9/7, 7/5, 10/7, 11/7, 8/5, 12/17,
9/5, 2, 11/5, 12/5, 3, 4, 5, 6, 71, 8, 9, 10, 11, 12]

gap> orbs := ShortOrbits(G,S,50);;

gap> List (orbs,Length);

(w0, 10, 1, 10, 1, 10, 10, 10, 10, 10, 1, 10, 10, 10, 1, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1,
10, 1, 10, 10, 10, 1, 1, 10, 1, 101

gap> ForAll (orbs,orb->IsNaturalSymmetricGroup (Action (G, orb)));

true

“Transferring” a non-invertible rcwa mapping from the ring of integers to some
(semi)localizations can also turn it into an invertible one:
Example

of

gap> v := RcwaMapping([[6,0,1],(1,-7,2],16,0,17,11,-1,17,

> (6,0,11,11, 1,2],[6,0,1],[1,-1,111);;
gap> SetName (v, "v");

gap> Display(v);

Rcwa mapping of Z with modulus 8

n mod 8 | n"v
_______________________________________ o
0246 | 6n
1 [(n-T7)/2
37 | n -1
5 [(n+ 1)/2

its

RCWA 78

Example

gap> IsInjective (v);

true

gap> IsSurjective (v);

false

gap> Image (v);

Z \ 4(12) U 8(12)

gap> Difference (Integers, last);

4(12) U 8(12)

gap> v2 := LocalizedRcwaMapping(v,2);
<rcwa mapping of Z_(2) with modulus 8>
gap> IsBijective(v2);

true

gap> Display(v2"-1);

Bijective rcwa mapping of Z_(2) with modulus 4

n mod 4 | n"f
_______________________________________ +______________________________________
0 | 1/3 n/ 2
1 | 2 n+ 7
2 | n+ 1
3 | 2 n 1
gap> S := ResidueClass(Z_pi(2),2,0);; 1 := [S];;

gap> for i in [1..10] do Add(l,1l[Length(l)]"v2); od;
gap> 1; # Visibly v2 is wild ...
[0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512), 0(1024),

0(2048)]
gap> w2 := RcwaMapping(Z_pi(2),[[1,0,2],12,-1,1],(1,1,11,102,-1,111);;
gap> v2w2 := Comm(v2,w2);; SetName (v2w2,"[v2,w2]"); v2w2"-1;;

gap> Display(v2w2);

Bijective rcwa mapping of Z_(2) with modulus 8

_ — — — 4+ —

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.

RCWA 79

4.12 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mapping of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Example

gap> x := RcwaMapping (

> [r 16, 2, 11, [16, 18, 11, [1, 16, 11, [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> ([1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,

> [1, 0O, 16], [16, 18, 11, [1,-14, 11, [16, 18, 1],

> ([1,-14, 11, [16, 18, 11, [1,-14, 11, [16, 18, 1],

> [1,-14, 11, [16, 18, 11, [1,-14, 1], [16, 18, 11,

> [1,-14, 11, [16, 18, 11, [1,-14, 11, [1,-31, 111);;

gap> SetName (x,"x"); Display(x);

Rcwa mapping of Z with modulus 32

n mod 32 | n"x

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U

0 | lé6n + 2
1 3 5 7 911 13 15 17 19 21 23 |
25 27 29 | 16n + 18
2 4 6 810 12 14 | n+ 16
16 | n/l6
18 20 22 24 26 28 30 | n - 14
31 | n - 31

gap> Order (x);

257

gap> Cycle(x,[1],0);

[0, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30, 16, 1, 34, 50, 36,
52, 38, 54, 40, 56, 42, 58, 44, 60, 46, 62, 48, 3, 66, 82, 68, 84, 70, 86,
12, 88, 74, 90, 76, 92, 78, 94, 80, 5, 98, 114, 100, 116, 102, 118, 104,
120, 106, 122, 108, 124, 110, 126, 112, 7, 130, 146, 132, 148, 134, 150,
136, 152, 138, 154, 140, 156, 142, 158, 144, 9, 162, 178, 164, 180, 166,
182, 168, 184, 170, 186, 172, 188, 174, 190, 176, 11, 194, 210, 196, 212,
198, 214, 200, 216, 202, 218, 204, 220, 206, 222, 208, 13, 226, 242, 228,
244, 230, 246, 232, 248, 234, 250, 236, 252, 238, 254, 240, 15, 258, 274,
260, 276, 262, 278, 264, 280, 266, 282, 268, 284, 270, 286, 272, 17, 290,
306, 292, 308, 294, 310, 296, 312, 298, 314, 300, 316, 302, 318, 304, 19,
322, 338, 324, 340, 326, 342, 328, 344, 330, 346, 332, 348, 334, 350, 336,
21, 354, 370, 356, 372, 358, 374, 360, 376, 362, 378, 364, 380, 366, 382,
368, 23, 386, 402, 388, 404, 390, 406, 392, 408, 394, 410, 396, 412, 398,
414, 400, 25, 418, 434, 420, 436, 422, 438, 424, 440, 426, 442, 428, 444,
430, 446, 432, 27, 450, 466, 452, 468, 454, 470, 456, 472, 458, 474, 460,
476, 462, 478, 464, 29, 482, 498, 484, 500, 486, 502, 488, 504, 490, 506,
492, 508, 494, 510, 496, 31]

gap> Length(last);

257

RCWA 80

4.13 The behaviour of the moduli of powers

In this section some examples are given, which illustrate how different the series of the moduli of
powers of a given rcwa mapping of the integers can look like.

Example
gap> List ([0..4],1i->Modulus(a”1i));
[1, 4, 16, 64, 256]
gap> List ([0..6],1i->Modulus (ab”1i));
[1, 18, 18, 18, 18, 18, 1]
gap> List ([0..3],i->Modulus(r”i));
(1, 9, 9, 11
gap> List ([0..9],i->Modulus(s”i));
(1, 9,9, 27, 27, 27, 27, 27, 27, 1]
gap> g := RcwaMapping([[2,2,1],[1,4,1]1,1(1,0,2],12,2,11,11,-4,11,101,-2,111);;
gap> List ([0..7],i->Modulus(g”i));
[1, 6, 12, 12, 12, 12, 6, 1
gap> u := RcwaMapping([[3,0,51,19,1,5],13,-1,51,19,-2,51,19,4,511);;
gap> List ([0..3],i->Modulus(u”i));
[1, 5, 25, 125]
gap> v6 := RcwaMapping([[-1,2,1],(1,-1,1],11,-1,111);;
gap> List ([0..6],i->Modulus(v6~1i));
(1, 3, 3, 3, 3, 3, 1]
gap> w8 := RcwaMapping([[-1,3,11,([1,-1,1],11,-1,11,10%,-1,111);;
gap> List ([0..8],1i->Modulus(w871));
[1, 4, 4, 4, 4, 4, 4, 4, 1]
gap> z := RcwaMapping([[2, 1, 11,([1, 1,11,[2, -1,11,12, -2,1]1,
> 1, o6, 21,11, 1,11,11, -6,2],[2, 5,11,
> 1, 6, 21,11, 1,131,111, 1,11,12, -5,1],
> (L, o, 11,11, -4,11,11, 0,11,12,-10,111);;
gap> SetName(z,"z");
gap> IsBijective(z);
true
gap> Display(z);
Bijective rcwa mapping of Z with modulus 16
n mod 16 | n"z

_______________________________________ +______________________________________

0 | 2n + 1

1 5 910 | n+1

2 | 2n - 1

3 | 2n - 2

4 8 | (n+ 6)/2

6 | (n - 6)/2

7 | 2n + 5

11 | 2n - 5

12 14 | n

13 | n -4

15 | 2n - 10

RCWA

Example

81

gap> List ([0..25],i->Modulus(z”1i));

[1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256,
256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024]

gap> el := RcwaMapping([[1,4,1]1,(2,0,1],11,0,21,12,0,111);;

gap> e2 := RcwaMapping([[1,4,1],[2,0,11,[1,0,2],[1,0,1]

> (1,4,11,12,0,11,(1,0,17,11,0,1]

gap> List([el,e2],0rder);

[infinity, infinity]

gap> List([1..20],i->Modulus(el”™i));

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

gap> List([1..20],i->Modulus(e271));

(8, 4,8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4]

gap> SetName (el,"el"); SetName (e2,"e2");

gap> Display(e2);

)i

Bijective rcwa mapping of Z with modulus 8, of order infinity

n mod 8 | n“e2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 4 | n+ 4
15 | 2n
2 | n/2
367 | n

gap> €272 = Restriction(RcwaMapping([[1,2,1]1]),RcwaMapping([[4,0,111));
true

4.14 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.

Example
gap> T := RcwaMapping([[1,0,2]1,(3,1,2]1]1);; SO := ResidueClass(Integers,2,1);;
gap> S1 := SO0°T;

2(3)

gap> S2 := S1°T;
1(3) U 8(9)

gap> S3 := S2°T;
2(3) U 4(9)

gap> S4 := S3°T;
Z \ 0(3) U 5(9)
gap> S5 := 54°T;
Z\ 0(3) U 7(9)
gap> S6 := S5°T;
Z \ 0(3)

gap> S7 := S6°T;
Z \ 0(3)

RCWA 82

Thus the image gets stable after applying the mappifigy the 6th time. Henc&® maps the residue

class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), which is setwisely stabilized
by T. Now we would like to determine the preimages of 1(3) resp. 2(3) in 1(2) uRfleFhe residue

class 1(2) has to be the disjoint union of these sets.

Example
gap> U := Intersection(PreImage(T"6,ResidueClass (Integers,3,1)),S0);
<union of 11 residue classes (mod 64)>
gap> V := Intersection(PreImage (T"6,ResidueClass (Integers,3,2)),S0);

<union of 21 residue classes (mod 64)>

gap> AsUnionOfFewClasses (U);

[1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64), 51(64),
59 (64)]

gap> AsUnionOfFewClasses (V) ;

[3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),
37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64)]

gap> Union(U,V) = SO and Intersection(U,V) = []; # consistency check

true

The images of the residue class 0(3) under powefslobk as follows:
Example

gap> SO := ResidueClass(Integers,3,0);

0(3)

gap> S1 := S0°T;

0(3) U 5(9)

gap> S2 := S1°T;

0(3) U 5(9) U 7(9) U 8(27)
gap> S3 := S2°T;

<union of 20 residue classes (mod 27)>
gap> S4 := S3°T;
<union of 73 residue classes (mod 81)>

gap> S5 := S4°T;

Z \ 10(81) U 37(81)
gap> S6 := S5°T;
Integers

gap> S7 := S6°T;
Integers

Thus every integer is the image of a multiple of 3 un@ir This means that it would be sufficient to
prove the 8+ 1 Conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];
[0(5)]
gap> for i in [1..12] do Add(S,S[i]°T); od;

RCWA 83
Example

gap> for s in S do View(s); Print("\n"); od;

0(5)

0(5))

U 8(15
0(5) U 4(15) U 8(15)
0(5) U 2(15) U 4(15) U 8(15) U 29(45)
<union of 73 residue classes (mod 135)>
<union of 244 residue classes (mod 405)>
<union of 784 residue classes (mod 1215)>
<union of 824 residue classes (mod 1215)>
<union of 2593 residue classes (mod 3645)>
mod 3645)>
mod 3645)>
mod 3645)>

<union of 2647 residue classes

<union of 2665 residue classes

<union of 2671 residue classes

1(3) U 2(3) U 0(15)

gap> Union(S[13],ResidueClass (Integers,3,0));

Integers

gap> List(S,Si->Float (Density(Si)));

[0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267, 0.678189,
0.711385, 0.7262, 0.731139, 0.732785, 0.733333]

(
(
(
(

4.15 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the groBmenerated by the two wild mappings

Example

gap> a := RcwaMapping([[3,0,2],(3,1,4],1(3,0,2],[3,-1,411);;
gap> u := RcwaMapping([[3,0,5],19,1,5],[3,-1,5]1,19,-2,5],109,4,511);;
gap> SetName (a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller

ones by a suitable group element:
Example

gap> List([a,a”-1,u,u"-1],DecreasingOn);
[1(2), 0(3), 0(5) U 2(5), 2(3) 1]

gap> Union(last);

Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their

inverses — otherwise the union would he:egers.

RCWA

Example

84

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2],DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9)]

gap> Union(last); # Still not enough ...

Z \ 4(90) U 58(90) U 76(90)

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,

> DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8) 3
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U
3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3),

gap> Union(last); # . but that’s it!

Integers

8

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa

mappings introduced at the beginning of this manual. d:.gf > a;m. Then we easily see that

(@ (mN+br(m))/Cr(m) > nimpliesn < by /(Cr(m) — &(m))- Thus we can restrict our considerations
to integeran < bmax, Wherebmax is the largest second entry of a coefficient triple of one of the group

elements in our list;
Example

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,
> f->Maximum (List (Coefficients (f),c->c[2])));

(1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11]

gap> Maximum(last);

56

Thus this upper bound is 56. The rest is easy — all we have to do is to check that the orbit containing 1

contains also all other positive integers less than or equal to 56:

Example
gap> S := [1];;
gap> while not IsSubset(S,[l1..56]) do
> S := Union(S,S"a,S"u,S" (a"-1),8" (u"-1));
> od;
gap> IsSubset (S, [1..56]);
true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the actiorGodn the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most

4-generator products would not suffice!):

RCWA 85

Example

gap> gens := [a,u,a"-1,u"-1];;
gap> tups := Concatenation(List ([1..5],k->Tuples([1..4],k)));;
gap> Length (tups);

1364

gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,1]1,1(2,4],[4,211,

> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);

484

gap> stab := [];;
gap> for tup in tups do

> n :=1;

> for i in tup do n := n"gens[i]; od;
> if n = 1 then Add(stab,tup); fi;

> od;

gap> Length(stab);

118

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;
gap> ForAll (stabelm,elm->1"elm=1); # Check.
true

The resulting products have various different not quite small moduli:
Example

gap> List (stabelm,Modulus);

[4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243, 25¢,
400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135, 150, 75, 225,
81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561, 1024, 1600, 192,
1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100, 180, 192, 192, 108,
972, 1728, 972, 8748, 1600, 400, 320, 80, 1600, 2500, 300, 2500, 625, 625,
75, 675, 75, 75, 135, 405, 600, 120, 600, 1875, 75, 225, 405, 225, 225,
675, 243, 2187, 729, 2187, 216, 216, 243, 2187, 1944, 2187, 19683, 576,
144, 576, 432, 81, 81, 729, 2187, 5184, 324, 8748, 243, 2187, 19683, 26244,
19683]

gap> Lcm(last);

12597120000

gap> Collected(Factors(last));

(02,101, [03, 91, 5411

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largest i, - coefficient of the respective mapping are mapped to smaller integers:

RCWA 86

Example

gap> decs := List (stabelm,DecreasingOn);;

gap> List (decs,Modulus);

(2, 3, 8 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400, 48,
200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81, 243, 81,
243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400, 400, 48, 144,
1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324, 144, 324, 972, 400,
400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25, 75, 75, 75, 45, 135, 600,
120, 150, 1875, 75, 225, 135, 225, 225, 675, 243, 729, 243, 729, 108, 216,
243, 729, 162, 729, 2187, 144, 144, 144, 144, 81, 81, 243, 729, 1296, 324,
972, 243, 729, 2187, 1458, 2187]

gap> Lcm(last);

174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

Example
gap> SortParallel (decs, stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial (k) mod Modulus(S1l) = 0)
> < First([1..100],k->Factorial (k) mod Modulus(S2) = 0);
> end) ;
gap> S := Integers;;
gap> for i1 in [l..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
0(2)
2(6) U 4(6)

<union of 8 residue classes (mod 30)>
<union of 19 residue classes (mod 90)>
<union of 114 residue classes (mod 720)>
<union of 99 residue classes (mod 720)>
<union of 57 residue classes (mod 720)>
<union of 54 residue classes (mod 720
<union of 41 residue classes (mod 720
<union of 35 residue classes (mod 720
<union of 8 residue classes (mod 720)>
4(720) U 94(720) U 148(720) U 238(720)
<union of 24 residue classes (mod 5760)>
<union of 72 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>

)
)
)
)

>
>
>

<union of 192 residue classes (mod 259200)
<union of 168 residue classes (mod 259200)
<union of 120 residue classes (mod 259200)
<union of 96 residue classes (mod 259200)>

>
>
>

RCWA 87

259200)
mod 259200)
mod 259200)
)
)
)

<union of 72 residue classes d

d

d

od 259200
d

d

d

<union of 60 residue classes
<union of 48 residue classes

(m
(
(
<union of 24 residue classes (
(
(
(

o]
o]

=]

<union of 12 residue classes (mod 259200
<union of 24 residue classes (mod 777600
<union of 12 residue classes (mod 777600)>

111604 (194400) U 14404 (777600) U 208804 (777600)

[]

>
>
>
>
>
>

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some

suitably chosen element of the stabilizer under consideration:
Example

gap> Maximum(List (stabelm{[l..maxind]},

> f->Maximum (List (Coefficients(f),c->c[2]))));
6581

gap> Filtered([3..6581],n->Minimum(List (stabelm,elm->n"elm))>=n);
[4]

We have to treat 4 separately:
Example

gap> 17 (u*a*u”2*a”"-1*u);
1
gap> 47 (u*a*u"2*a"-1*u);
3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 inG as 2, thus that this stabilizer acts transitivelyMdi {1}. But this means that we
have established the 2-transitivity of the actiorGoén N.

In the following, we essentially repeat the above steps to show that this action is indeed 3-
transitive:

Example
gap> tups := Concatenation(List([l..6],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,11,1([2,4],14,2]1],
> 1->PositionSublist (tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> 1 :=11,21;
> for i in tup do 1 := List(l,n->n"gens[i]); od;
> if 1 = [1,2] then Add(stab,tup); fi;
> od;

gap> Length(stab);

RCWA 88
Example

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm,

> function(S1,S2) return First([1..100],k->Factorial (k) mod Modulus(S1) = 0)

> < First([1..100],k->Factorial (k) mod Modulus(S2) = 0);

> end) ;

gap> S := Integers;;

gap> for i in [1l..Length(decs)] do

> S_old := S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;

> if S = [] then break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 151 residue classes (mod 240)>

<union of 208 residue classes (mod 720)>

<union of 51 residue classes (mod 720)>

<union of 45 residue classes (mod 720)>

<union of 39 residue classes (mod 720)>

<union of 33 residue classes (mod 720)>

<union of 23 residue classes (mod 720)>

<union of 19 residue classes (mod 720)>

<union of 17 residue classes (mod 720)>

<union of 16 residue classes (mod 720)>

<union of 14 residue classes (mod 720)>

<union of 8 residue classes (mod 720)>
<union of 7 residue classes (mod 720)>
238(360) U 4(720) U 148(720) U 454 (720

)
<union of 38 residue classes (mod 5760)>
<union of 37 residue classes (mod 5760)>
<union of 25 residue classes (mod 5760)>
<union of 21 residue classes (mod 5760)>
<union of 17 residue classes (mod 5760)>
<union of 16 residue classes (mod 5760)>

<union of 138 residue classes (mod 51840)>

<union of 48 residue classes (mod 51840)>
<union of 32 residue classes (mod 51840)>
<union of 20 residue classes (mod 51840)>
<union of 16 residue classes (mod 51840)>
<union of 68 residue classes (mod 259200)>
<union of 42 residue classes (mod 259200)>
<union of 32 residue classes (mod 259200)>
<union of 26 residue classes (mod 259200)>
<union of 25 residue classes (mod 259200)>
<union of 11 residue classes (mod 259200)>
<union of 10 residue classes (mod 259200)>

<union of 7 residue classes (mod 259200)>

13414 (129600) U 2164(259200) U 66964 (259200) U 228964 (259200)
2164 (259200) U 66964 (259200) U 228964 (259200)

[]

RCWA 89
Example

gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->c[2]))));

515816

gap> smallnum := [4..515816];;

gap> for i in [1l..Length(stabelm)] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

[]

The same for 4-transitivity:

Example

gap> tups := Concatenation(List([l..8],k->Tuples([1..4],k)));;

gap> tups := Filtered(tups,tup->ForAll([[1,3],([3,11,12,4],1[4,211,

> 1->PositionSublist (tup,l)=£fail));;
gap> stab := [];;

gap> for tup in tups do

> 1 :=1[1,2,3];

> for i in tup do 1 := List(l,n->n"gens[i]); od;

> if 1 = [1,2,3] then Add(stab,tup); fi;

> od;

gap> Length (stab);

528

gap> stabelm := [];;

gap> for i in [1l..Length(stab)] do

> elm := One(G);

> for j in stab[i] do

> if Modulus(elm) > 10000 then elm := fail; break; fi;

> elm := elm * gens[j];

> od;

> if elm <> fail then Add(stabelm,elm); fi;

> od;

gap> Length (stabelm);

334

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm,

> function(S1,S2)

> return First([1..100],k->Factorial (k) mod Modulus(S1)
> < First([1..100],k->Factorial (k) mod Modulus (S2)
> end) ;

RCWA

Example

90

gap> S := Integers;;

gap> for i in [l..Length(decs)] do

> S_old :=S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;
> if S = [] then maxind := i; break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 46 residue classes (mod 72)>

<union of 20 residue classes (mod 72)>

4(18)

<union of 28 residue classes (mod 576)>
<union of 22 residue classes (mod 576)>
<union of 21 residue classes (mod 576)>

40(72) U 4(144) U 94(144) U 346(576) U 418(576)
<union of 16 residue classes (mod 576)>

<union of 15 residue classes (mod 576)>

4(144) U 94(144) U 346(576) U 418(576)

<union of 30 residue classes (mod 5184)>
<union of 26 residue classes (mod 5184)>
<union of 6 residue classes (mod 1296)>

<union of 504 residue classes (mod 129600)>
<union of 324 residue classes (mod 129600)>
<union of 282 residue classes (mod 129600)>
<union of 239 residue classes (mod 129600)>
<union of 218 residue classes (mod 129600)>
<union of 194 residue classes (mod 129600)>
<union of 154 residue classes (mod 129600)>

<union of 97 residue classes (mod 129600)>
<union of 85 residue classes (mod 129600)>
<union of 77 residue classes (mod 129600)>
<union of 67 residue classes (mod 129600)>

<union of 125 residue classes (mod 259200)>
<union of 108 residue classes (mod 259200)>
<union of 107 residue classes (mod 259200)>
<union of 101 residue classes (mod 259200)>
<union of 100 residue classes (mod 259200)>
<union of 84 residue classes (mod 259200)>
<union of 80 residue classes (mod 259200)>
<union of 76 residue classes (mod 259200)>
<union of 70 residue classes (mod 259200)>
<union of 66 residue classes (mod 259200)>
<union of 54 residue classes (mod 259200)>
<union of 53 residue classes (mod 259200)>
<union of 47 residue classes (mod 259200)>
<union of 43 residue classes (mod 259200)>
<union of 31 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 23 residue classes (mod 259200)>
<union of 13 residue classes (mod 259200)>

57406(129600) U 115006(129600) U 192676 (259200)
57406(129600) U 192676(259200) U 250276 (259200)

U 250276(259200)
U 374206(388800)

RCWA 91

57406 (129600) U 192676(259200) U 250276(259200)

250276 (259200) U 57406(388800) U 316606(388800) U 451876(777600)
316606(388800) U 451876 (777600) U 509476 (777600) U 768676(777600)

<union of 18 residue classes (mod 3110400)>

451876 (777600) U 509476 (777600) U 705406 (777600) U 768676(777600) U 2649406 (
3110400)

451876 (777600) U 705406(777600) U 768676(777600) U 2649406(3110400)
451876 (777600) U 705406(777600) U 2649406(3110400)

705406 (777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)
<union of 14 residue classes (mod 9331200)>

2260606 (2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)
4593406 (6998400) U 15091006(27993600) U 17559076(27993600) U 24557476 (
27993600)

<union of 14 residue classes (mod 83980800)>

18590206 (20995200) U 24557476 (83980800) U 45552676(83980800) U 71078206 (
83980800)

[]

gap> Maximum(List (stabelm{[1l..maxind]},

> f->Maximum (List (Coefficients(f),c->c[2]))));

58975

gap> smallnum := [5..58975];;

gap> for i in [1l..maxind] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

(]

There is even some evidence that the degree of transitivity of the acti@ronfthe positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup (G);
la, ul] > T[a ul

gap> F := Source(phi);

<free group on the generators [a, u]>
gap> words := List([5..20],

> n->RepresentativeActionPreImage (G, [1,2,3,4,5],
> [1,2,3,4,n],0nTuples,F));
[<identity ...>, a"-3*u"4*a*u"-2*a"2, a"-2*u*a"-l*u*a"-l*u*a’"-l*u*a"-1*u"-1*a

, a“4*u”-2*a"-4, a"-1*u"-4*a, u"2*a"-1*u"2*a"-1*u"-2, u"-2*a"-2*u"4,
a"-1*u"2*a, a"-l*u"-6*a, a"2*u”4*a"2*u"2, u ' -4*a*u"-2*a"-3,
a"-1*u"-2*a"-3*u”4*a"2, a"3*u”"2*a*u”2, a*u’"-4*ar*u"-4*a"-2,
u"-2*a*u"2*a*u"-2, u " -4*a"2*u”2]

RCWA 92

4.16 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the wild groGpgenerated by the two tame mappings

n— n+1andty) o4) acts 3-transitively, but not 4-transitively on the set of integers.
Example

gap> G := Group(ClassShift (0,1),ClassTransposition(l,2,0,4));

<rcwa group over Z with 2 generators>

gap> IsTame (G);

false

gap> (G.1"-2*G.2)"3*(G.1"°2*G.2)"3; # G is not the free product C_infty * C_2.
IdentityMapping(Integers)

gap> Display(G);

Wild rcwa group over Z, generated by

[

Tame bijective rcwa mapping of Z: n -> n + 1

Bijective rcwa mapping of Z with modulus 4, of order 2

This group acts transitively o#, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the
example in the previous section, by checking that the stabilizer of 0 acts transitively {0y.

Example
gap> gens := [ClassShift(0,1)"-1,ClassTransposition(1,2,0,4),ClassShift(0,1)]1;;
gap> tups := Concatenation(List([l..6],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> 1->PositionSublist (tup,l)=£fail));;
gap> Length (tups);
189
gap> stab := [];;
gap> for tup in tups do
> n :=0;
> for i in tup do n := n"gens[i+2]; od;
> if n = 0 then Add(stab,tup); fi;
> od;
gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;
gap> Collected(List (stabelm,Modulus));
[[4 61, [8 41, [16, 311

RCWA 93

Example
gap> decs := List (stabelm,DecreasingOn);
[0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4), 0(8),
3(8) 1]
gap> Union(decs);
Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of O:

Example
gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->AbsInt(c[2])))));
21
gap> S := [1];;
gap> for elm in stabelm do S := Union(S,S"elm,S" (elm™-1)); od;
gap> IsSubset (S,Difference([-21..21],[0])); # Not yet ..
false
gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (S,Difference([-21..21],([0]1)); # ... but now!
true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of0,1} which properly divides its elements, we also have to take additions

and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:
Example

gap> tups := Concatenation(List ([1..10],k->Tuples([-1,0,1]1,k)));;

gap> tups := Filtered(tups,tup->ForAll([[0,0],([-1,1],([1,-111,

> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);

3069

gap> stab := [];

[]
gap> for tup in tups do

> 1 :=1[0,1];

> for i in tup do 1 := List(l,n->n"gens[i+2]); od;

> if 1 = [0,1] then Add(stab,tup); £fi;

> od;

gap> Length (stab);

10

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;

gap> Maximum(List (stabelm,Modulus));

8

gap> Maximum(List (stabelm, f->Maximum(List (Coefficients (f),c->AbsInt (c[2])))));

RCWA 94

Example

gap> decsp := List (stabelm,elm->Filtered([9..16],n->n"elm<n));

rr9, 131, [10, 12, 14, 161, [12, 161, [9, 131, [12, 16 1,
9, 11, 13, 151, 19, 11, 13, 1571, [12, 16 1, [12, 16 1,
[9, 11, 13, 1571 1]

gap> Union (decsp);

(9, 10, 11, 12, 13, 14, 15, 16]

gap> decsm := List (stabelm,elm->Filtered([-16..-9],n->n"elm>n));

[[-15, -13, -11, -9 1, [-16, -12 1, [-16, -12 1, [-15, -11 7,
[-16, -14, -12, -10 1, [-15, -11 71, [-15, -11 1, [-le6, -14, -12, -10 1,
[-16, -14, -12, -10 1, [-15, -11 1]

gap> Union (decsm);

[-16, -15, -14, -13, -12, -11, -10, -9]

gap> S := [2];;

gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (5,Difference([-8..81,[0,1]1));

true

At this point we have established 3-transitivity. It remains to check that the geodpes not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Simoed 8
determines the image afunder a generator @ (mod 4), it suffices to compute (mod 8):

Example
gap> orb := [[0,1,2,311;;
gap> extend := function ()
> local gen;
> for gen in gens do
> orb := Union(orb,List (orb,1->List (1,n->n"gen) mod 8));
> od;
> end;;
gap> repeat
> old := ShallowCopy (orb);
> extend(); Print (Length(orb),"\n");
> until orb = old;
7
27
97
279
573
916
1185
1313
1341
1344
1344
gap> Length (Set (List (orb,1->1 mod 4)));
120
gap> last < 47°4;
true

RCWA 95

This shows tha is not 4-transitive ofZ.. The corresponding calculation for 3-tuples looks as follows:
Example

gap> orb := [[0,1,2]];;

gap> repeat

> old := ShallowCopy (orb);

> extend(); Print (Length(orb),"\n");
> until orb = old;

7

27

84

207

363

459

503

512

512

gap> Length (Set (List (orb,1->1 mod 4)));
64

gap> last = 473;

true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

4.17 Grigorchuk groups

In this section, we show how construct finite quotients of the two infinite periodic groups intro-
duced by Rostislav Grigorchuk in5fi80] with the help of RCWA. The first of these, nowadays
known as “Grigorchuk group”, is investigated in an example given onGhAe website — see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. The RCWA package permits a
simpler and more elegant construction of the finite quotients of this group: The funeti@nemnent

given on the mentioned webpage gets unnecessary, and the fusieigshceElement can be sim-
plified as follows:

SequenceElement := function (r, level)

return Permutation (Product (Filtered([1l..level-1],k->k mod 3 <> r),
k->ClassTransposition (27 (k-1)-1, 27 (k+1),
2°k+2" (k-1)-1, 27 (k+1))),
[0..271evel-1]);
end;

http://www.gap-system.org/Doc/Examples/grigorchuk.html

RCWA 96

The actual constructors for the generators are modified as follows:

:= level -> Permutation(ClassTransposition(0,2,1,2),[0..2"1level-1]);
level -> SequenceElement (0, level);
:= level -> SequenceElement (2, level);
level -> SequenceElement (1, level);

Q. Q O w
Il

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, finite quotients of the second group introduced
in [Gri80] are constructed:

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);
<bijective rcwa mapping of Z with modulus 4, of order 4>
gap> GrigorchukGroup2Generator := function (level)

> if level = 1 then return FourCycle; else

> return Restriction(FourCycle, RcwaMapping([[4,1,11]1))

> * Restriction(FourCycle, RcwaMapping([[4,3,11]))

> * Restriction(GrigorchukGroup2Generator (level-1),

> RcwaMapping ([[4,0,111));

> fi;

> end;;

gap> GrigorchukGroup2 := level -> Group (FourCycle,

> GrigorchukGroup2Generator (level));;

We can do similar things as shown in the example onGhe webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1l..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.
[<rcwa group over Z with 2 generators>, <rcwa group over Z with 2 generators>
, <rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>]
gap> H := List([l..4],lev->Action(G[lev],[0..4"1lev-1])); # Isomorphic perm.-gps.
[Group([(1,2,3,4), (1,2,3,4) 1),

Group ([(1,2,3,4)(5,6,7,8)(9,10,11,12) (13,14,15,16),

(1,5,9,13) (2,6,10,14) (4,8,12,16) 1),

<permutation group with 2 generators>,

<permutation group with 2 generators>]
gap> List (H,Size);
[4, 1024, 4294967296, 1329227995784915872903807060280344576]
gap> List (last,n->Collected(Factors(n)));
(trtz2,211,10102,10711, 1002,32711, [[2 120111
gap> List (H,NilpotencyClassOfGroup);
[1, 6, 14, 40]

RCWA 97

4.18 Forward orbits of a monoid with 2 generators

The 3+ 1 Conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

n
T5iZZ—>Z, n— {2 !fneven
=L if nodd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappigigandT;" indeed contains 1. First of

all, we enter the generators:

Example

gap> Tom := RcwaMapping([[l/ 072]1 [57_112JJ);;
gap> T5p := RcwaMapping([[1,0,2]1,([5, 1,2]11);;

We look for a numbek such that for any residue clas&®) there is a product of k mappingsTsi
whose restriction to(2¥) is given byn— (an+ b)/c wherec > a:
Example

gap> k := 1;;

gap> repeat

> maps := List (Tuples([T5m,T5p],k),Product);
decr := List (maps,DecreasingOn);
decreasable := Union(decr);
Print (k,": "); View(decreasable); Print ("\n");
k :=k + 1;

until decreasable = Integers;

0(2)

0(4)

Z \ 1(8) U 7(8)

0(4) U 3(16) U 6(16) U 10(16) U 13(1l6)

Z \ 7(32) U 25(32)

<union of 48 residue classes (mod 64)>

Integers

o U1 W NV V VYV YV

Thusk = 7 serves our purposes. To be sure that for any positive integer monoid contains a
mappingf such than® < n, we still need to check this condition for “smalti. Since in case > a
we have(an+b)/c > nif only if n<b/(c—a), we only need to check thosewhich are not larger
than the largest coefficiebt ,; occuring in any of the products under consideration:

Example
gap> maxb := Maximum(List (maps, f->Maximum(List (Coefficients(f),t->t[2]))));
25999
gap> small := Filtered([l..maxb],n->ForAll (maps,f->n"£f>=n));
(1, 7, 9, 11]

RCWA

98

This means that except of 1, only fare {7,9,11} there is no product of 7 mapping'g‘t which
mapsn to a smaller integer. We check that also the forward orbits of these three integers contain 1 by

successively computing preimages of 1:

Example
gap> S := [1];; k := 0;;
gap> repeat
> S := Union(S,Prelmage (T5m,S),PreImage (T5p,S));
> k := k+1;
> until IsSubset (S, small);
gap> k;
17

4.19 Representations of the free group of rank 2

The free group of rank 2 embeds in RCVWA(- in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (cplHO0], page 27) from PSL(Z}) to RCWA(Z)

(we use the notation from the cited book):

Example

gap> D := AllResidueClassesModulo (4);

[0(4), 1(4), 2(4), 3(4)]

gap> gammal := RepresentativeAction (RCWA (Integers),Difference(Integers,D[1]),DI[2
gap> gamma2 := RepresentativeAction (RCWA (Integers),Difference(Integers,D[3]),D[4
gap> F2 := Group(gammal, gamma?2) ;

<rcwa group over Z with 2 generators>

1)
1)ii

We can do some checks:

Example

gap> X1 := Union(D{[1,2]});; X2 := Union(D{I[3,41});;

gap> IsSubset (X1,X2"gammal) and IsSubset (X1,X2" (gammal”-1))
> and IsSubset (X2,X1"gamma2) and IsSubset (X2,X1" (gamma2”-1));
true

The generators are products of 3 class transpositions, each:
Example

gap> Factorization(gammal);

[ClassTransposition(0,2,1,2), ClassTransposition(3,4,5,8),
ClassTransposition(0,2,1,8)]

gap> Factorization(gamma2);

[ClassTransposition(0,2,1,2), ClassTransposition(l,4,7,8),
ClassTransposition(0,2,3,8) 1

RCWA 99

The above construction is used bgomorphismRewaGroup (3.1.3 to embed free groups of any
rank> 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-calld@ble-Tennis Lemm@ee e.g.qIHOQ], Section 11.B.) to the
infinite cyclic groups generated by the two generators and to the same twa setdx2 as above:

Example
gap> rl := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);
gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);
gap> F2 := Group(rl®2,r2"2);; SetName (F2,"F_2");
gap> List (GeneratorsOfGroup (F2), IsTame);
[false, false]
gap> IsSubset (X1,X2°F2.1) and IsSubset (X1,X2" (F2.17-1))
> and IsSubset (X2,X17F2.2) and IsSubset (X2,X1" (F2.2°-1));
true
gap> [Sources(rl),Sinks(rl),Loops(rl)]; # compare with X1
[[0(4) 1, [1(4) 1, [0(4), 1(4) 11
gap> [Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2
[0 2(4) 1, [3(4) 1, [2(4), 3(4) 11
gap> IsSubset (X1,Union (Sinks(rl))) and IsSubset (X1,Union(Sinks(rl1”-1)))
> and IsSubset (X2,Union(Sinks(r2))) and IsSubset (X2,Union (Sinks(r2°-1)));
true
gap> IsSubset (Union(Sinks(rl)),X2°F2.1) and
> IsSubset (Union(Sinks (rl1™-1)),X2" (F2.17°-1));
true
gap> IsSubset (Union(Sinks(r2)),X1°F2.2) and
> IsSubset (Union(Sinks (r2°-1)),X1" (F2.2"-1));

true

Drawing the transition graphs afi andr2 for modulus 4 may help understanding what is actually

done in this calculation. It is easy to see that the group generated déaydr2 is notfree:
Example

gap> Order (rl/r2);
3

4.20 Representations of the modular group PSL(2,2)

The modular group PSL(Z) embeds in the group generated by all class transpositions as well. We
give an explicit embedding, and check that it really is one by applying the Table Tennis Lemma as in
the previous section:

[3

2]

Example
gap> PSL2Z := Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),
> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;
gap> List (GeneratorsOfGroup (PSL2Z),0rder);

RCWA 100

Example
gap> X1 := Difference(Integers,ResidueClass(0,3));
Z \ 0(3)
gap> X2 := ResidueClass (0, 3);
0(3)
gap> IsSubset (X1,X2°PSL2Z.1) and IsSubset (X1,X2" (PSL2Z.1°2));
true
gap> IsSubset (X2,X1°PSL2Z.2);
true

A slightly different representation of PSLIR, can be obtained by usirRiCWA'’s general method for

IsomorphismRcwaGroup for free products of finite groups:
Example

gap> Display (Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(3),
N CyclicGroup(2)))));

Wild rcwa group over Z, generated by

Bijective rcwa mapping of Z with modulus 4

n mod 4 | n~f
_______________________________________ o
0 | n+ 2
13 | 2n - 2
2 | n/2
Bijective rcwa mapping of Z with modulus 2
n mod 2 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 | n+ 1
1 | n -1

Chapter 5

The Algorithms Implemented in RCWA

Apart from the method for factoring residue class-wise affine permutatiofsimto class transpo-
sitions, class shifts and class reflections, most mathematically interesting algorithms implemented in
this package are described in the author’s theshDg in the form of constructive proofs. This
chapter provides references to the corresponding theorems, and lists short descriptions of the other
algorithms and methods implemented in this package. The word “trivial” as a description means that
essentially nothing is done except of storing or recalling one or several values, and “straightforward”
means that no sophisticated algorithm is used. The descriptions are kept very informal and short.
They are listed in alphabetical order.

ActionOnRespectedPartition(G) “Straightforward” after having computed a respected
partition byRespectedPartition. One only needs to know how to compute images of residue
classes under affine mappings.

Ball(G,g,d) “Straightforward”.

Ball(G,p,d,act) “Straightforward”.

ClassReflection(r,m) “Trivial”.

ClassShift(r,m) “Trivial”.

ClassTransposition(rl,m1,r2,m2) See Remark 2.9.2 irkKph04.

Coefficients(f) “Trivial”.

CoefficientsOnTrajectory(f,n,val,cond,all) Iterated application of an rcwa map-

ping, and composition of affine mappings.

CommonRightinverse(l,r) “Straightforward” if one knows how to compute images of
residue classes under affine mappings, and how to compute inverses of affine mappings.

DecreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

Determinant(sigma) Evaluation of the given expression. For the mathematical meaning (epi-
morphism!), see Theorem 2.11.9 idh05.

101

RCWA 102

DirectProduct(G1,G2, ...) Restrict the groupsi, G2, ... to disjoint residue classes.
SeeRestriction and Corollary 2.3.3 infoh04.

Display(f) “Trivial”.

Divisor(f) Lcm of coefficients, as indicated.

FactorizationintoCSCRCT(Q) This uses a rather sophisticated method which will likely

some time be published elsewhere. At the moment termination is not guaranteed, but in case of
termination the result is certain. The strategy is roughly first to make the mapping class-wise
order-preserving and balanced, and then to remove all prime factors from multiplier and divisor
one after the other in decreasing order by dividing by appropriate class transpositions. The
remaining integral mapping can be factored almost similarly easily as a permutation of a finite
set can be factored into transpositions.

FactorizationOnConnectedComponents(f,m) Call GRAPE to get the connected com-
ponents of the transition graph, and then compute a partition of the suitably “blown up” coeffi-
cient list corresponding to the connected components.

FixedPointsOfAffinePartialMappings(f) “Straightforward”.

GuessedDivergence(f) Numerical computation of the limit of some series, which seems to
converge “often”. Caution!!!

Image(f) , Image(f,S) “Straightforward” if one can compute images of residue classes under
affine mappings and unite and intersect residue classes (Chinese Remainder Theorem). See
Lemma 1.2.1 inKoh04].

ImageDensity(f) Evaluation of the given expression.

g in G (membership test) Test whether the mappingor its inverse is in the list of generators
of G. Ifitis, returntrue. Test whether its prime set is a subset of the prime set df not,
returnfalse. Test ifG is class-wise order-preserving, amds not. If so, returntalse. Test
if the sign ofg is -1 and all generators af have sign 1. If yes, returfialse. Test ifG is
class-wise order-preserving, all generators bave determinant O anghas determinang 0.

If yes, returnfalse. Test whether the support gfis a subset of the support 6f If not, return
false.

If G is not tame, try to factoy into generators of usingPreImagesRepresentative. If
successful, returarue. If g is in G, this terminates after a finite number of steps. Both runtime
and memory requirements are exponential in the word length.idfnot in G, it runs into an
infinite loop. If G is tame, proceed as follows:

Test whether the modulus afdivides the modulus of. If not, returnfalse. Test whether
G is finite andg has infinite order. If so, returfalse. Test whetheg is tame. If not, return
false. Compute a respected partitiorof ¢ and the finite permutation groupinduced byc
on it (seeRespectedPartition). Check whetheg permute®. If not, returnfalse. Leth be
the permutation induced byonp. Check whethen lies inH. If not, returnfalse.

If G is class-wise order-preserving, do the following: Compute an elegieat ¢ which acts
onP like g. For this purpose, factarinto generators of usingPreImagesRepresentative.

RCWA 103

Compute the corresponding product of generatorscof Setk := g/gl. The map-
ping k is necessarily integral. Compute the kernelof the action ofG on P using
KernelOfActionOnRespectedPartition. Check whethek lies in the kernel of the ac-
tion of G on P by using SolutionIntMat to decide membership of the coefficient vec-
tor (second entry of each triple) of in the lattice spanned by the rows of the matrix
KernelOfActionOnRespectedPartitionHNFMat (G). Ifitis contained, returnrue.

If membership still has not been decided yet, try to factointo generators ofs using
PreImagesRepresentative. If successful, returirue. If g is in G, this terminates after a
finite number of steps. Both runtime and memory requirements are exponential in the word
length. Ifg is not inG, the method runs into an infinite loop.

IncreasingOn(f) Form the union of the residue classes which are determined by the coeffi-
cients as indicated.

IntegralConjugate(f) , IntegralConjugate(G) Uses the algorithm described in the
proof of Theorem 2.5.14 infoh04].

IntegralizingConjugator(f) , IntegralizingConjugator(G) Uses the algorithm
described in the proof of Theorem 2.5.14 iKoh04.

Inverse(f) Essentially inversion of affine mappings. See Lemma 1.3.1, Part (BpimJH].

IsClassWiseOrderPreserving(f) Test whether the first entry of all coefficient triples is
positive.

IsConjugate(RCWA(Integers),f,g) Test whethert and g have the same order, and

whether either both or none of them is tame. If not, retiahse.

If the mappings are wild, usehortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, returfalse.

If the mappings are tame, use the method described in the proof of Theorem 2.5<bh 04|

to construct integral conjugates ofandg. Then essentially use the algorithm described in
the proof of Theorem 2.6.7 irkKph05 to compute “standard representatives” of the conjugacy
classes which the integral conjugatesfoand g belong to. Finally compare these standard
representatives, and returnue if they are equal andalse if not.

IsInjective(f) SeeImage.

Isintegral(f) “Trivial”.

IsomorphismMatrixGroup(G) Use the algorithm described in the proof of Theorem 2.6.3
in [Koh0g.

IsomorphismPermGroup(G) If Gis wild or KernelOfActionOnRespectedPartition iS not

trivial, returnfail. Otherwise us@ctionOnRespectedPartition.

IsomorphismRcwaGroup(G) The method for finite groups useswaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known asPing-Pong Lemmecp. e.g. Section I1.B. indIHOQ]). It uses regular permutation rep-
resentations of the factofs: (r =0,...,m— 1) of the free product on residue classes modulo

RCWA 104

nr :=|G;|. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under bijective rcwa mappings
or which satisfy @n;)° = Z\ r(m).

The method for free groups uses an adaptation of the construction given on pagel 200 [
from PSL(2() to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsSurjective(f) Seelmage.
IsTame(G) Checks whether the modulus of the group is non-zero.

IsTame(f) Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8
and A.11 in Koh03. For applying the last-mentioned criterium (existence of weakly-connected
components of the transition graph which are not strongly-conne@&#)PE is needed.

In addition, some probabilistic methods are used. If the result depends on one of these, a
warning is displayed.

IsTransitive(G,Integers) Look for finite orbits, usinghortOrbits on a couple of inter-
vals. If a finite orbit is found, returfialse. TestifG is finite. If yes, returrtalse.

Search for an elementand a residue claggm) such that the restriction afto r(m) is given

by n— n-+m. Then the cyclic group generated dwcts transitively om(m). The element is
searched among the generators,dfs powers, its commutators, powers of its commutators and
products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitableg andr (m) are found, proceed as follows:

SetS:=r(m). SetS:= SUS for all generatorg of G, and repeat this untfremains constant.
This may run into an infinite loop.

If it terminates: IfS= Z, returntrue, otherwise returrfalse.

KernelOfActionOnRespectedPartition(G) Use a random walk through the groap
Compute powers of elements encountered along the way which fix the respected patrtition of
G which has been computed bByspectedpartition. Get vectors from these powers by tak-
ing the second entry of each coefficient triple. Form a lattice out of these vectors. Stop if for a
while all found vectors already belong to this lattice (this is probabilistic). Bring the lattice to
Hermite Normal Form, and transform the rows of the resulting matrix back to rcwa mappings
generating the kernel.

KernelOfActionOnRespectedPartitionHNFMat(G) This is a “spin-off” of
KernelOfActionOnRespectedPartition.

LargestSourcesOfAffineMappings(f) Form unions of residue classes modulo the mod-
ulus of the mapping, whose corresponding coefficient triples are equal.

LaTeXObj(f) Collect residue classes those corresponding coefficient triples are equal.

RCWA 105

LikelyContractionCentre(f,maxn,bound) Compute trajectories with starting values
from a given interval, until a cycle is reached. Abort if the trajectory exceeds the prescribed
bound. Form the union of the detected cycles.

LocalizedRcwaMapping(f,p) “Trivial”.
mKnot(m) “Straightforward”, following the definition given indel99].

Modulus(G) Searches for a wild element in the group. If unsuccessful, tries to construct a re-
spected partition (se&spectedPartition).

Modulus(f) “Trivial”.

MovedPoints(G) Needs only forming unions of residue classes and determining fixed points of
affine mappings.

Multiplier(f) Lcm of coefficients, as indicated.

Multpk(f,p,Kk) Form the union of the residue classes modulo the modulus of the mapping,
which are determined by the given divisibility criteria for the coefficients of the corresponding
affine mapping.

NrConjugacyClassesOfRCWAZOfOrder(ord) The class numbers are taken from Corol-
lary 2.7.1 in Koh04.

OrbitsModulo(f,m) Use GRAPE to compute the connected components of the transition
graph.

OrbitsModulo(G,m) “Straightforward”.

Order(f) Test for IsTame. If the mapping is not tame, then retutnfinity. Otherwise use
Corollary 2.5.10 in Koh05.

Prelmage(f,S) Seelmage.

PrelmagesRepresentative(phi,g) , PrelmagesRepresentatives(phi,g) As
indicated in the documentation of these methods. The underlying idea to successively compute
two balls around 1 and until they intersect non-trivially is standard in computational group
theory. For rcwa groups it would mean wasting both memory and runtime to actually compute
group elements. Thus only images of tuples of points are computed and stored.

PrimeSet(f) , PrimeSet(G) “Straightforward”.

PrimeSwitch(p) Multiplication of rcwa mappings as indicated.

Print(f) “Trivial”.

f*g Essentially composition of affine mappings. See Lemma 1.3.1, Part (&piDf].

Random(RCWA(Integers)) Computes a product of “randomly” chosen class shifts, class re-
flections and class transpositions. This seems to be suitable for generating reasonably good
examples.

RCWA 106

RankOfKernelOfActionOnRespectedPartition(G) This is a “spin-off” of
KernelOfActionOnRespectedPartition.

RCWA(R) Attributes are set according to Theorem 2.1.1, Theorem 2.1.2, Corollary 2.1.6 and The-
orem 2.12.8 inlkoh04].

RcwaGroupByPermGroup(G) UsesRcwaMapping, Part (d).

RcwaMapping (a)-(c): “trivial”, (d): n"perm - n for determining the coefficients, (e): “affine
mappings by values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to
Lemma 2.1.4 inlKoh09).

RepresentativeAction(G,src,dest,act) , RepresentativeActionPrelmage
As indicated in the documentation of these methods. The underlying idea to successively
compute two balls aroundrc and dest until they intersect non-trivially is standard in
computational group theory. Words standing for products of generatoraraf stored for any
image ofsrc or dest.

RepresentativeAction(G,P1,P2) Arbitrary mapping: see Lemma 2.1.4 ikgh05. Tame
mapping: see proof of Theorem 2.8.9 Kih05. The former is almost trivial, while the latter
is a bit complicate and takes usually also much more time.

RepresentativeAction(RCWA(Integers),f,g) The algorithm used by sConjugate
constructs actually also an elemearguch thatt "x = q.

RespectedPartition(f) , RespectedPartition(G) Uses the algorithm described in
the proof of Theorem 2.5.8 irkKph045.

Restriction(g,f) Computes imagesn“g) “f and preimagea” £ for sufficiently many in-
tegersn under the image of under the restriction monomorphism associated.torhen it
constructs the desired mapping kywaMapping (m, values). Finally, the result is checked by
a direct verification that the diagram in Definition 2.3.1 iftoh05 commutes.

Restriction(G,f) Get a set of generators by applyirRgstriction (g, f) to the generators
g of G.
Root(f,k) If £ is bijective, class-wise order-preserving and has finite order:

Find a conjugate of which is a product of class transpositions. Slice cyqfl|é:§zrr1(ml)7n(m)
of £ a respected partitioff into cyclesﬂ}:1 Hlj(;é-[rl(knh),riJrjmi(km) of thek-fold length on the
refined partition which one gets froA by decomposing ang(m) € P into residue classes
(modkm). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.

SemilocalizedRcwaMapping(f,pi) “Trivial”.

ShortCycles(f,maxing) Look for fixed points of affine partial mappings of powersfof
ShortOrbits(G,S,maxIng) “Straightforward”.
SetOnWhichMappinglsClassWiseOrderPreserving(f) , etc. Form the union of the

residue classes modulo the modulus of the mapping, in whose corresponding coefficient triple
the first entry is positive, zero resp. negative.

RCWA 107

Sign(sigma) Evaluation of the given expression. For the mathematical meaning (epimorphism!),
see Theorem 2.12.8 irKph05.

Size(G) Test whether the groug is tame. If not, returninfinity. Otherwise use
ActionOnRespectedPartition to compute the permutation growpinduced byG on a re-
spected partitiom, andkernelOfActionOnRespectedPartition to compute the kerne&l of
the action ofc onP. The grougx is infinite if and only if one of its generators has infinite order.
Return the product of the order Bfand the order of.

f+g Pointwise addition of affine mappings.

Trajectory(f,n,...) Iterated application of an rcwa mapping. In the methods computing
“accumulated coefficients” additionally composition of affine mappings.

TransitionGraph(f,m) “Straightforward” — just check a sufficiently long interval.
TransitionMatrix(f,m) Evaluation of the given expression.
ViewODbij(f) “Trivial”.

WreathProduct(G,P) UsesbDirectProduct to embed theegreeaction (P)th direct power
of G, andRcwaMapping, Part (d) to embed the finite permutation graup

WreathProduct(G,2) RestrictsG to the residue class 3(4), and encodes the generatoasf
To(2),1(2) * To(2),1(4)- Itis used that the images of 3(4) under powers of this mapping are pairwise
disjoint residue classes.

Chapter 6

Installation and auxiliary functions

6.1 Requirements

The RCWA package needs at leaSAP 4.4.7, ResClasses 2.2.2, GRAPE 4.0 [Soi0] and GAP-

Doc 0.999 [LNOZ2]. It can be used under UNIX, under Windows and on the MaclntdsbwaA is
completely written in theGAP language and does neither contain nor require external binaries. In
particular, warnings concerning missing binaries WB&#PE is loaded can savely be ignored.

6.2 Installation

Like any otheiGAP packageRCWA must be installed in thekg subdirectory of th&AP distribution.
This is accomplished by extracting the distribution file in this directory. If you have done this, you
can load the package as usual vimdPackage ("rcwa");.

6.3 The Info class of the package
6.3.1 InfoRCWA
¢ InfoRCWA (info class)

This is the Info class of th@CWA package. See sectidnfo Functionsin the GAP Reference
Manual for a description of the Info mechanism. For convenieRc&rInfo (n) is a shorthand for
SetInfolLevel (InfoRCWA,n).

6.4 The testing routine

6.4.1 RCWATest

O RCWATest () (function)
Returns: Nothing.
Performs tests of thRCWA package. Errors, i.e. differences to the correct results of the test
computations, are reported. The processed test files are in the dirgktgmewa/tst.

108

RCWA 109

6.5 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

6.5.1 RCWABuildManual

{) RCWABuildManual ()
Returns: Nothing.
This function builds the manual of tiRCWA package in the file formatsTgX, DVI, Postscript,

PDF, HTML and ASCII text. This is accomplished using tAaPDoc package by Frank libeck

and Max Neuntiffer. Building the manual is possible only on UNIX systems and requitgsXL
PDFETEX anddvips.

(function)

References

[And0Q] P. Andaloro. On total stopping times under 3x+1 iteratiBitnonacci Quarterly 38:73-78,

[dIHOO]

[Gri80]

[Kel9g]

[KohOS]

[Lag06]

[LNO2]

[Mih58]

[ML87]

[S0i02]

2000. 61

Pierre de la HarpeTopics in Geometric Group ThearZhicago Lectures in Mathematics,
2000. 34, 98,99, 103 104

Rostislav I. Grigorchuk. Bernside’s problem on periodic groupanctional Anal. Appl.
14:41-43, 1980.95, 96

Timothy P. Keller. Finite cycles of certain periodically linear permutatiodMissouri J.
Math. Sci, 11(3):152-157, 199918, 105

Stefan Kohl.Restklassenweise affine Grupp@&issertation, Universiit Stuttgart, 2005.7,
101, 102 103 104, 105,106, 107

Jeffrey C. Lagarias. 3x+1 problem annotated bibliography, 2006.
http://arxiv.org/abs/math.NT/030922%.

Frank Lilbeck and Max Neuriiffer. GAPDoc (version 0.99)RWTH Aachen, 2002. GAP
package, available at http://www.math.rwth-aachen.de/ Frank.Luetexk.

K. A. Mihailova. The occurence problem for direct products of groupskl. Acad. Nauk.
SSSR119:1103-1105, 195836

K. R. Matthews and G. M. Leigh. A generalization of the Syracuse algorithgixin J.
Number Theory25:274-278, 198762

Leonard Soicher.GRAPE — GRaph Algorithms using PErmutation groups (version 4.1)
Queen Mary, University of London, 2002. GAP package, available at http://www.gap-
system.org.108

110

Index

ActionOnRespectedPartition
G,50

Ball
G,g,d,44
G, p, d, act44

ClassReflection

r,m,11
ClassShift

r,m,11
ClassTransposition

ri, mi, r2, m212
Collatz conjecture?
Collatz mapping7
CommonRightInverse

l, 1,28

DecreasingOn
f, 27
Determinant
sigma,19
sigma, S19
DirectProduct
G1, G2, ...48
Div
f, 20
Divisor

f, 20

Factorization
g,17
FactorizationIntoCSCRCT
g,17
FactorizationOnConnectedComponents
f, m, 23
FixedPointsOfAffinePartialMappings
f, 22

GuessedDivergence

111

f, 29

ImageDensity
f, 28
\in
g, G,36
IncreasingOn
f, 27
Induction
G, f,47
g, f, 47
InfoRCWA, 108
IntegralConjugate
f, 50
G, 50
IntegralizingConjugator
f, 51
G,51
IsClassWiseOrderPreserving
f, 21
IsConjugate
RCWA(Integers), f, g45
IsIntegral
f, 21
IsomorphismMatrixGroup
G,37
IsomorphismPermGroup
G,37
IsomorphismRcwaGroup
G,34
IsomorphismRcwaGroupOver?Z
G,34
IsRcwaGroup
G,51
IsRcwaGroupOverGFgx
G,51
IsRcwaGroupOverz
G,51
IsRcwaGroupOverZ_pi

RCWA

G,51
IsRcwaMapping

f, 30
IsRcwaMappingOfGFgx

f, 30
IsRcwaMappingOf?Z

f, 30
IsRcwaMappingOfZ_pi

f, 30
IsTame

G, 35
IsTransitive

G, Integers40

LargestSourcesOfAffineMappings
f, 21
LaTeX0bj
f, 15
LikelyContractionCentre
f, maxn, bound29
LocalizedRcwaMapping
f, p, 27
Loops
f, 25

mKnot

m, 18
Mod

G,35
Modulus

G,35
Mult

f, 20
Multiplier

f, 20
Multpk

f, p, k, 22

NrConjugacyClassesOfRCWAZOfOrder
ord, 46

OrbitsModulo
f,m, 23
G, m,44

PreImagesRepresentative
phi, g,38

PreImagesRepresentatives

phi, g,39
PrimeSet

f, 20

G, 36
PrimeSwitch

p,12

p, k,12

Random

RCWA(Integers)32

RCWA
R,31
rcwa group
definition,9
element testing36
rcwa mapping
definition,9
modulus,9
transition graph23
transition matrix 24
RCWABuildManual, 109
RcwaMapping
coeffs, 13
cycles,13
m, values]13
P1,P213
perm, rangel3
pi, coeffs,13
g, m, coeffs13
R, coeffs,13
R, m, coeffs13
RcwaMappingsFamily
R, 30
RCWATest, 108
RepresentativeAction
G, src, dest, acgl

RCWA(Integers), f, g45
RCWA(Integers), P1, P22

RepresentativeActionPreImage

G, src, dest, act, B2
RespectedPartition

G, 49

sigma,49
Restriction

G, f,47

g, f, 47
RightInverse

112

RCWA

f, 28
Root
f, k, 27

SemilocalizedRcwaMapping
f, pi, 27
SetOnWhichMappingIsClassWiseConstant
f, 22
SetOnWhichMappingIsClassWiseOrderPreserving
f, 22
SetOnWhichMappingIsClassWiseOrderReversing
f, 22
ShortCycles
f, maxing,46
ShortOrbits
G, S, maxing43
Sign
sigma,19
Sinks
f, 25
Size
G, 36
Sources

f, 25

Trajectory

f, n, length,26

f, n, length, m26

f, n, length, whichcoeff26

f, n, terminal,26

f, n, terminal, m26

f, n, terminal, whichcoeffs26
TransitionGraph

f, m, 23
TransitionMatrix

f,m, 24

WreathProduct
G, P48
G, Z,48

113

