[Andaloro00] Andaloro, P. On Total Stopping Times under 3x+1 Iteration, Fibonacci Quarterly, 38, (2000), p. 73-78
[Polycyclic] Eick, B. and Nickel, W. Polycyclic --
Computation with polycyclic groups; Version 2.1,
(2006)
(\textsfGAP package, published at
http://www.gap-system.org/Packages/polycyclic.html)
[GluckTaylor02] Gluck, D. and Taylor, B. D. A New Statistic for the 3x+1 Problem, Proc. Amer. Math. Soc., 130 (5), (2002), p. 1293-1301
[Grigorchuk80] Grigorchuk, R. I. Burnside's Problem on Periodic Groups, Functional Anal. Appl., 14, (1980), p. 41-43
[LaHarpe00] de la Harpe, P. Topics in Geometric Group Theory, Chicago Lectures in Mathematics, (2000)
[HoltEickOBrien05] Holt, D. F. and Eick, B. and O'Brien, E. A. Handbook of Computational Group Theory, Chapman \& Hall / CRC, Boca Raton, FL, Discrete Mathematics and its Applications (Boca Raton), (2005), p. xvi+514
[Keller99] Keller, T. P. Finite Cycles of Certain Periodically Linear Permutations, Missouri J. Math. Sci., 11 (3), (1999), p. 152-157
[Kohl05] Kohl, S. Restklassenweise affine Gruppen,
Universität Stuttgart,
(2005)
(http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071)
[Kohl06b] Kohl, S. A Simple Group Generated by Involutions Interchanging
Residue Classes of the Integers,
(2006)
(Preprint, available at
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/simplegp.pdf)
[Kohl06a] Kohl, S. Wildness of Iteration of Certain
Residue-Class-Wise Affine Mappings,
Adv. in Appl. Math.,
(2006)
(doi:10.1016/j.aam.2006.08.003)
[Kohl07a] Kohl, S. A New Class of Groups which are Accessible to
Computational Methods,
(2007)
(Preprint, available at
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/compute.pdf)
[Lagarias06] Lagarias, J. C. 3x+1 Problem Annotated Bibliography,
(2006)
(http://arxiv.org/abs/math.NT/0309224)
[GAPDoc] Lübeck, F. and Neunhöffer, M. GAPDoc (Version 0.99999),
RWTH Aachen,
(2006)
(\textsfGAP package, published at
http://www.gap-system.org/Packages/gapdoc.html)
[MatthewsLeigh87] Matthews, K. R. and Leigh, G. M. A Generalization of the Syracuse Algorithm in GF(q)[x], J. Number Theory, 25, (1987), p. 274-278
[Mihailova58] Mihailova, K. A. The Occurence Problem for Direct Products of Groups, Dokl. Acad. Nauk. SSSR, 119, (1958), p. 1103-1105
[GRAPE] Soicher, L. GRAPE -- GRaph Algorithms using PErmutation
groups (Version 4.3),
Queen Mary, University of London,
(2006)
(\textsfGAP package, published at
http://www.gap-system.org/Packages/grape.html)
generated by GAPDoc2HTML