
The Crime Package

Version 1.1

Marcus Bishop

Marcus Bishop — Email: marcus.bishop@gmail.com

mailto://marcus.bishop@gmail.com

The Crime Package 2

Copyright
c© 2006 Marcus Bishop

We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP manual.

Acknowledgements

This project would not have been possible without Jon Carlson. Jon devised the algorithms used by
ProjectiveResolution, CohomologyGenerators, and CohomologyRelators, having already implemented
them in Magma and sharing these programs with me.

Contents

1 Installation and Loading 4

2 Usage 5
2.1 Cohomology Objects . 5

2.1.1 CohomologyObject . 5
2.2 Minimal Projective Resolutions . 5

2.2.1 ProjectiveResolution . 6
2.2.2 BoundaryMap . 6

2.3 Cohomology Generators and Relators . 6
2.3.1 CohomologyGenerators . 6
2.3.2 CohomologyRelators . 6

2.4 Tests for Completion . 7
2.5 Cohomology Rings . 7

2.5.1 CohomologyRing . 7
2.5.2 IsHomogeneous . 8
2.5.3 Degree . 8
2.5.4 LocateGeneratorsInCohomologyRing . 8

2.6 What Happens if n Isn’t Big Enough? . 9
2.7 Induced Maps . 9

2.7.1 InducedHomomorphismOnCohomology . 9
2.7.2 Inclusion . 10

2.8 Massey Products . 10
2.8.1 MasseyProduct . 10

3 Leisure and Recreation: Cohomology Rings of all Groups of Size 16 12

3

Chapter 1

Installation and Loading

Like other GAP packages, you download and unpack this package into GAP’s pkg directory.
For example, if you were using some Unix derivative and GAP were installed in the directory
/usr/local/gap4r4, then you would do the following.

Example

$ cd /usr/local/gap4r4/pkg
$ su
% wget ’http://math.uic.edu/˜marcus/Crime/crime-1.1.tar.gz’
% tar xvzvf crime-1.1.tar.gz

In this situation, users would then load the package with the LoadPackage command.
Example

$ gap
gap> LoadPackage("crime");

Users not having root access, using someone else’s computer, or having bad relationships with their
network administrators, could install the package into their home directories or into some other
writable directory such as /tmp as follows.

Example

$ mkdir /tmp/pkg
$ cd /tmp/pkg
$ wget ’http://math.uic.edu/˜marcus/Crime/crime-1.1.tar.gz’
$ tar xvzvf crime-1.1.tar.gz
$ gap -l ’;/tmp’
gap> LoadPackage("crime");

Finally, it would be a good idea to run the test file to confirm that all the functions work.
Example

gap> ReadPackage("crime","tst/test.g");

You can count yourself lucky if GAP doesn’t complain about anything. There is also a longer running
test file for those having ample free time described in Chapter 3.

4

Chapter 2

Usage

All the functions described below taking an argument n except CohomologyRing,
CohomologyRelators and InducedHomomorphismOnCohomology do whatever the manual
says they do until some stage n, where n is normally the homological degree. These functions are
idempotent in the sense that called a second time with the same argument n, they do nothing, but
called with a bigger n, they continue computing from where the previous calculations left off.

2.1 Cohomology Objects

The computation of group cohomology involves several calculations, the results of which are reused
in later calculations, and are thus collected in an object of type CObject, which is created with the
following command.

2.1.1 CohomologyObject

♦ CohomologyObject(G, M) (operation)

♦ CohomologyObject(G) (operation)

Returns: a cohomology object.
This function creates a cohomology object having components the p-group G and the MeatAxe

kG-module M. The second invocation creates a cohomology object having components the p-group
G and the trivial MeatAxe kG-module where k is the field Fp.

We emphasize that in the first invocation, M can be any MeatAxe module over kG where k is any
field of characteristic p. But since the case k = Fp, and M = k is probably the most common, the
second invocation is provided for convenience. At the present, ProjectiveResolution works when
M is an arbitrary MeatAxe module, but all the functions dealing with the ring-structure of H∗ (G,k)
require that M be the trivial module.

The cohomology object is used to store, in addition to the items mentioned above, the boundary
maps, the Betti numbers, the multiplication table, etc.

2.2 Minimal Projective Resolutions

Given a p-group G, a field k of characteristic p and a kG-module M, the function below computes the
first few terms of the minimal projective resolution of M

Pn → ··· → P2 → P1 → P0 → M → 0

5

The Crime Package 6

where Pi = (kG)⊕bi for certain numbers bi, the Betti numbers of the resolution. The minimal kG-
projective resolution of M is unique up to chain isomorphism. Then the groups ExtnkG (M,N) are
simply HomkG (Pn,N), and if M = N = k is the trivial kG-module, then Hn (G,k) = ExtnkG (k,k) = kbn .

2.2.1 ProjectiveResolution

♦ ProjectiveResolution(C, n) (operation)

Returns: a list containing the Betti numbers b0,b1, . . . ,bn.
Given a cohomology object C having components G, k, and M, this function computes the first

n+1 terms of the minimal projective resolution P∗ of M of the form Pi = (kG)⊕bi for 0 ≤ i ≤ n, and
returns the numbers bi as a list.

2.2.2 BoundaryMap

♦ BoundaryMap(C, n) (operation)

Returns: the nth boundary map.
Given the cohomology object C, this function computes a projective resolution to degree n if it

hasn’t been computed already, and returns the nth boundary map.
The map returned is a bn× (bn−1 |G|) matrix, having in the ith row the image of the element 1G

from the ith direct summand of Pn.
See the file doc/example.* for an example of the usage and interpretation of the result of this

function.

2.3 Cohomology Generators and Relators

2.3.1 CohomologyGenerators

♦ CohomologyGenerators(C, n) (operation)

Returns: a list containing the degrees of the generators of the cohomology ring.
Given a cohomology object C having components G, k, and M, this function computes the gener-

ators of H∗ (G,k) of degree less than or equal to n, and stores them in C. The function returns a list of
the degrees of these generators.

The actual cohomology generators are represented by maps Pn → k and are stored in C as matrices.
Only their degrees are returned.

2.3.2 CohomologyRelators

♦ CohomologyRelators(C, n) (operation)

Returns: a list of generators and a list of relators.
Given a cohomology object C having components G, k, and M, this function computes a set of

generators of the ideal of relators in H∗ (G,k) , all having multidegree less than or equal to n. Read on
for what this means exactly.

The function returns two lists, the first list containing the variables z, y, x, . . . corresponding to
the generators of H∗ (G,k) if there are fewer than 12 generators and containing the variables x 1, x 2,
x 3, . . . otherwise. The second list is a list of polynomials in the variables from the first list.

These two lists should be interpreted as follows. A degree-n approximation of the cohomology
ring H∗ (G,k) is given by the polynomial ring over k in the non-commuting variables from the first

The Crime Package 7

list, (having degrees given by the list returned by CohomologyGenerators above) and subject to the
relators in the second list. See 2.6 for more details still.

For example, the following commands
Example

gap> C:=CohomologyObject(DihedralGroup(8));
<object>
gap> CohomologyGenerators(C,10);
[1, 1, 2]
gap> CohomologyRelators(C,10);
[[z, y, x], [z*y+yˆ2]]

tell us that for G = D8, the cohomology ring H∗ (G,k) is the graded-commutative polynomial ring in
the variables z, y, and x of degrees 1, 1, and 2, subject to the relation zy + y2. But since H∗ (G,k) is
commutative, k being of characteristic 2, we have H∗ (G,k) = k [z,y,x]

/(
zy+ y2

)
. This result can be

further improved by taking z = z+ y, giving H∗ (G,k) = k [z,y,x]
/
(zy) .

Observe that in this case, we knew in advance that there was a set of generators for H∗ (G,k) all
having degree less than 10, and that there was a set of generators of the ideal of relators all having
multidegree less than 10. See see 2.6 for details.

While this isn’t likely to occur, we point out that if there are 12 or more generators and
some of the indeterminates x 1, x 2, x 3, . . . have already been named, say by a previous call to
CohomologyRelators, then these variables will retain their old names. If this is confusing, restart
GAP and do it again.

2.4 Tests for Completion

A test or series of tests for completion of the calculation will hopefully be implemented soon. See [2]
for the details.

2.5 Cohomology Rings

See [2] for the details of the calculation of cohomology products using composition of chain maps.
See also the file doc/explanation.* for an explanation of the implementation.

2.5.1 CohomologyRing

♦ CohomologyRing(C, n) (operation)

♦ CohomologyRing(G, n) (operation)

Returns: the cohomology ring of G.
Given a cohomology object C having module component the trivial kG-module and possibly hav-

ing a projective resolution already computed, this function returns the degree-n truncation of the
cohomology ring H∗ (G,k) . See 2.6 for what this means exactly. The object returned is a structure
constant algebra.

Users interested only in working with the cohomology ring of a group as a GAP object, and not
in calculating generators, relators, induced maps, etc, can use the second invocation of this func-
tion, which returns the cohomology ring of the group G immediately, throwing away all intermediate
calculations.

The Crime Package 8

Observe that the object returned is a degree n truncation of the infinite-dimensional cohomology
ring. A consequence of this is that multiplying two elements whose product has degree greater than n
results in zero, whether or not the product is really zero.

Observe also that calling CohomologyRing a second time with a bigger n does not extend the
previous ring, but rather, recalculates the entire ring from the beginning. Extending the previous ring
appears not to be worth the effort for technical reasons, since almost everything would need to be
recalculated again anyway.

2.5.2 IsHomogeneous

♦ IsHomogeneous(e) (operation)

Returns: true or false.
Given an element e of some cohomology ring A, this operation determines whether or not e is

homogeneous, that is, whether or not e is contained in some hom component of A.

2.5.3 Degree

♦ Degree(e) (method)

Returns: the degree of e.
This function is intended to return the degree of the possibly non-homogeneous element e of some

cohomology ring A, but in principle, works for any element of any graded SCAlgebra. Specifically, if
A = A0⊕A1⊕A2⊕·· ·where Ai are the hom components of A, then this function returns the minimum
n such that e is in A0⊕A1⊕·· ·⊕An.

Example
gap> A:=CohomologyRing(DihedralGroup(8),10);
<algebra of dimension 66 over GF(2)>
gap> b:=Basis(A);
CanonicalBasis(<algebra of dimension 66 over GF(2)>)
gap> x:=b[2]+b[4];
v.2+v.4
gap> IsHomogeneous(x);
false
gap> Degree(x);
2

2.5.4 LocateGeneratorsInCohomologyRing

♦ LocateGeneratorsInCohomologyRing(C) (function)

Returns: a list containing the cohomology generators.
Having already called CohomologyRing (see 2.5.1), this function returns a list of elements of the

cohomology ring which together with the identity element generate the cohomology ring.
This function is a wrapper for CohomologyGenerators (see 2.3.1), indicating which elements of

the cohomology ring correspond with the generators found by CohomologyGenerators.
Example

gap> C:=CohomologyObject(SmallGroup(8,4));
<object>
gap> A:=CohomologyRing(C,10);
<algebra of dimension 17 over GF(2)>
gap> L:=LocateGeneratorsInCohomologyRing(C);

The Crime Package 9

[v.2, v.3, v.7]
gap> A=Subalgebra(A,Concatenation(L,[One(A)]));
true

2.6 What Happens if n Isn’t Big Enough?

Since P∗ is a minimal resolution, the cohomology group H i (G,k) is the dual of Pn, so that H i (G,k)
has a natural basis consisting of the maps sending the element 1G of the jth direct summand of Pi to
1k and all other direct summands to 0k for 1 ≤ j ≤ bi.

The command CohomologyRing(C,n) concatenates these bases for 1 ≤ i ≤ n and computes all
products of basis elements x and y for which degx + degy ≤ n. Thinking of H∗ (G,k) in terms of
it’s multiplication table, then this means that the function computes the upper left-hand corner of the
multiplication table. If degx + degy > n then the product xy is taken to be zero. Therefore, the ring
returned by CohomologyGenerators is H∗ (G,k)

/
J>n where J>n is the ideal of all elements of degree

> n.
The ring determined by CohomologyGenerators and CohomologyRelators is somewhat differ-

ent. CohomologyGenerators proceeds inductively, taking all standard basis elements of H1 (G,k) as
generators, and for 1<i ≤ n, taking all standard basis elements of H i (G,k) which are not products
of lower-degree elements as generators. Therefore, unless you have some reason to believe that there
exists a generating set for H∗ (G,k) consisting of elements of degree ≤ n, then you are not guaranteed
that the elements returned by the CohomologyGenerators generate H∗ (G,k) as a ring.

Similarly, CohomologyRelators proceeds inductively until degree n, returning a list of polyno-
mials of multidegree ≤ n.

The impact of the preceeding information is that there is a homomorphism f :
k 〈x1,x2, . . .xm〉 /I → H∗ (G,k) where x1,x2, . . . ,xm represent the elements returned by
CohomologyGenerators(C,n), k 〈x1,x2, . . .xm〉 is the polynomial ring over k in the non-commuting
variables x1,x2, . . . ,xm, and I is the ideal in k 〈x1,x2, . . . ,xm〉 generated by the elements returned by
CohomologyRelators(C,n).

Therefore, if there is a generator of degree > n, then f won’t be surjective. If there is a relator of
multidegree > n which is not a consequence of lower degree relators, then f won’t be injective. See
2.4 for how big n needs to be to ensure that f be an isomorphism.

2.7 Induced Maps

Let f : H → G be a group homomorphism. Then f induces a homomorphism on cohomology
H∗ (G,k)→ H∗ (H,k) which is returned by the following function.

2.7.1 InducedHomomorphismOnCohomology

♦ InducedHomomorphismOnCohomology(C, D, f, n) (function)

Returns: the induced homomorphism on cohomology rings.
This function returns the induced homomorphism on cohomology H∗ (G,k) → H∗ (H,k) where

the groups H and G are the components of the cohomology objects C and D and f : H → G is a group
homomorphism. If the cohomology rings have not yet been calculated, they will be computed to
degree n, and in this case, they can then be accessed by calling CohomologyRing (see 2.5.1).

The Crime Package 10

2.7.2 Inclusion

♦ Inclusion(H, G) (function)

Returns: the inclusion H → G
This function returns the group homomorphism H →G when H is a subgroup of G. The returned

map can be used as the f argument of InducedHomomorphismOnCohomology, in which case the
induced homomorphism is the restriction map ResG

H : H∗ (G,k)→ H∗ (H,k).
The following example calculates the homomorphism on cohomology induced by the inclusion of

the cyclic group of size 4 into the dihedral group of size 8.
Example

gap> G:=DihedralGroup(8);H:=Subgroup(G,[G.2]);
<pc group of size 8 with 3 generators>
Group([f2])
gap> C:=CohomologyObject(H);D:=CohomologyObject(G);
<object>
<object>
gap> i:=Inclusion(H,G);
[f2] -> [f2]
gap> Res:=InducedHomomorphismOnCohomology(C,D,i,10);;
gap> A:=CohomologyRing(D,10);
<algebra of dimension 66 over GF(2)>
gap> LocateGeneratorsInCohomologyRing(D);
[v.2, v.3, v.6]
gap> A.1ˆRes; A.2ˆRes; A.3ˆRes; A.6ˆRes;
v.1
0*v.1
v.2
v.3

2.8 Massey Products

See [3] for the definitions and [1] for the details of the calculation using the Yoneda cocomplex. See
also the file doc/explanation.* for an explanation of the implementation.

2.8.1 MasseyProduct

♦ MasseyProduct(x1, x2, ..., xn) (function)

Returns: the Massey product 〈x1,x2, . . . ,xn〉.
Given elements x1,x2, . . . ,xn of a cohomology ring returned by CohomologyRing (see 2.5), this

function computes the n-fold Massey product 〈x1,x2, . . . ,xn〉 provided that the lower-degree Massey
products

〈
xi,xi+1, . . . ,x j

〉
vanish for all 1 ≤ i < j ≤ n, and returns fail otherwise.

As an example, recall that the cohomology rings of the cyclic groups C3 and C9 of size 3 and
9 over k = F3 are both given by k 〈z,y〉

/(
z2

)
, that is, they are isomorphic as rings. However, the

following example shows that 〈 z,z,z 〉 is non-zero in H∗ (C3,k) but is zero in H∗ (C9,k).
Example

gap> A:=CohomologyRing(CyclicGroup(3),10);
<algebra of dimension 11 over GF(3)>

The Crime Package 11

gap> z:=Basis(A)[2];
v.2
gap> MasseyProduct(z,z);
0*v.1
gap> MasseyProduct(z,z,z);
v.3
gap> A:=CohomologyRing(CyclicGroup(9),10);
<algebra of dimension 11 over GF(3)>
gap> z:=Basis(A)[2];
v.2
gap> MasseyProduct(z,z);
0*v.1
gap> MasseyProduct(z,z,z);
0*v.1
gap> MasseyProduct(z,z,z,z,z,z,z,z,z);
v.3

Chapter 3

Leisure and Recreation: Cohomology
Rings of all Groups of Size 16

Below is the output of the test file tst/batch.g. The file runs through all groups of size
n, which is initially set to 16, and runs ProjectiveResolution, CohomologyGenerators and
CohomologyRelators for each group, and prints the results as well as the timings for each opera-
tion to a file. The output below was computed on a 3.06 GHz Intel processor with 3.71 GB of RAM.
The projective resolutions are calculated initially to degree 10 and the generators and relators to de-
gree 6, due to the fact that I already knew all the generators and relators to be of degree less than
6, see http://www.math.uga.edu/˜lvalero/cohointro.html. See also the file tst/README for
suggestions on dealing with other users when running long-running batch processes.

Example

SmallGroup(16,1)
Betti Numbers: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Time: 0:00:05.864
Generators in degrees: [1, 2]
Time: 0:00:00.086
Relators: [[z, y], [zˆ2]]
Time: 0:00:00.245

SmallGroup(16,2)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Time: 0:00:00.931
Generators in degrees: [1, 1, 2, 2]
Time: 0:00:02.874
Relators: [[z, y, x, w], [zˆ2, yˆ2]]
Time: 0:00:12.227

SmallGroup(16,3)
Betti Numbers: [1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36]
Time: 0:00:05.292
Generators in degrees: [1, 1, 2, 2, 2]
Time: 0:00:21.770
Relators: [[z, y, x, w, v], [zˆ2, z*y, z*x, yˆ2*v+xˆ2]]
Time: 0:01:26.166

SmallGroup(16,4)

12

http://www.math.uga.edu/~lvalero/cohointro.html

The Crime Package 13

Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Time: 0:00:01.047
Generators in degrees: [1, 1, 2, 2]
Time: 0:00:03.253
Relators: [[z, y, x, w], [zˆ2, z*y+yˆ2, yˆ3]]
Time: 0:00:14.294

SmallGroup(16,5)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Time: 0:00:01.065
Generators in degrees: [1, 1, 2]
Time: 0:00:02.493
Relators: [[z, y, x], [zˆ2]]
Time: 0:00:13.573

SmallGroup(16,6)
Betti Numbers: [1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6]
Time: 0:00:00.446
Generators in degrees: [1, 1, 3, 4]
Time: 0:00:01.566
Relators: [[z, y, x, w], [zˆ2, z*yˆ2, z*x, xˆ2]]
Time: 0:00:04.132

SmallGroup(16,7)
Betti Numbers: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
Time: 0:00:01.076
Generators in degrees: [1, 1, 2]
Time: 0:00:02.495
Relators: [[z, y, x], [z*y]]
Time: 0:00:13.862

SmallGroup(16,8)
Betti Numbers: [1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6]
Time: 0:00:00.465
Generators in degrees: [1, 1, 3, 4]
Time: 0:00:01.570
Relators: [[z, y, x, w], [z*y, zˆ3, z*x, yˆ2*w+xˆ2]]
Time: 0:00:04.350

SmallGroup(16,9)
Betti Numbers: [1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2]
Time: 0:00:00.140
Generators in degrees: [1, 1, 4]
Time: 0:00:00.255
Relators: [[z, y, x], [z*y, zˆ3+yˆ3, yˆ4]]
Time: 0:00:00.718

SmallGroup(16,10)
Betti Numbers: [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
Time: 0:00:20.139
Generators in degrees: [1, 1, 1, 2]
Time: 0:01:04.158
Relators: [[z, y, x, w], [zˆ2]]

The Crime Package 14

Time: 0:06:27.688

SmallGroup(16,11)
Betti Numbers: [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66]
Time: 0:00:20.428
Generators in degrees: [1, 1, 1, 2]
Time: 0:01:04.678
Relators: [[z, y, x, w], [z*y]]
Time: 0:06:33.808

SmallGroup(16,12)
Betti Numbers: [1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17]
Time: 0:00:02.438
Generators in degrees: [1, 1, 1, 4]
Time: 0:00:08.927
Relators: [[z, y, x, w], [zˆ2+z*y+yˆ2, yˆ3]]
Time: 0:00:44.464

SmallGroup(16,13)
Betti Numbers: [1, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17]
Time: 0:00:02.389
Generators in degrees: [1, 1, 1, 4]
Time: 0:00:09.247
Relators: [[z, y, x, w], [z*y+xˆ2, z*xˆ2+y*xˆ2, yˆ2*xˆ2+xˆ4]]
Time: 0:00:44.323

SmallGroup(16,14)
Betti Numbers: [1, 4, 10, 20, 35, 56, 84, 120, 165, 220, 286]
Time: 0:07:00.973
Generators in degrees: [1, 1, 1, 1]
Time: 0:15:40.874
Relators: [[z, y, x, w], []]
Time: 1:54:28.052

Total time: 2:38:14.841

References

[1] Inger Christin Borge. A cohomological approach to the classification of p-groups.
http://www.maths.abdn.ac.uk/˜bensondj/html/archive/borge.html, 2001. 10

[2] Jon F. Carlson, Lisa Townsley, Luis Valeri-Elizondo, and Mucheng Zhang. Cohomology rings of
finite groups, volume 3 of Algebras and Applications. Kluwer Academic Publishers, Dordrecht,
2003. 7

[3] David Kraines. Massey higher products. Trans. Amer. Math. Soc., 124:431–449, 1966. 10

15

Index

BoundaryMap, 6

CohomologyGenerators, 6
CohomologyObject, 5
CohomologyRelators, 6
CohomologyRing, 7

Degree, 8

Inclusion, 10
InducedHomomorphismOnCohomology, 9
IsHomogeneous, 8

LocateGeneratorsInCohomologyRing, 8

MasseyProduct, 10

ProjectiveResolution, 6

16

