RCWA

Residue-Class-Wise Affine Groups
Version 2.5.4

September 26, 2007

Stefan Kohl

Stefan Kohl — Email: kohl@mathematik.uni-stuttgart.de
— Homepage: http://www.cip.mathematik.uni-stuttgart.de/ kohlsn/
— Address: Institutiir Geometrie und Topologie

Pfaffenwaldring 57

Universitt Stuttgart

70550 Stuttgart

Germany

mailto://kohl@mathematik.uni-stuttgart.de
 http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/

RCWA 2

Abstract

RCWA is a package foGAP 4. It provides implementations of algorithms and methods for computing in certain
infinite permutation groups. In principle, this package can deal at least with the following types of groups and
their subgroups:

e Finite groups, and certain divisible torsion groups which they embed into.

e Free groups of finite rank.

e Free products of finitely many finite groups, thus in particular the modular group PSL(2,
e Direct products of the above groups.

e Wreath products of the above groups with finite groups and (#th-).

With substancial help of this package, the author has found a countable simple group which has an uncountable
series of simple subgroups. This simple group is generated by involutions which interchange disjoint residue
classes of the integers. All the above groups embed into it.

Copyright

(© 2003 - 2007 by Stefan Kohl. This package is distributed under the GNU General Public License.

Acknowledgements

| am very grateful to Bettina Eick for communicating this package and for her kind help in improving its
documentation. Further | would like to thank the two anonymous referees for their constructive criticism and
their helpful suggestions.

| am also very grateful to Laurent Bartholdi for his hint on how to construct wreath products of residue-
class-wise affine groups witt¥, +). Last but not least | would like to thank all the people who have invited
me so far to give talks on the subject in their seminars and on their conferences.

Contents

1 About the RCWA Package

1.1
1.2
1.3
14

Motivation.
Purpose of thispackage.
Groups which this package candealwith

Scopeofthispackage.

2 Residue-Class-Wise Affine Mappings

2.1
2.2

2.3
2.4

2.5

2.6

2.7

2.8

Basic definitions
Entering residue-class-wise affinemappings
2.2.1 ClassShift(r,m)
2.2.2 ClassReflection(r,m). e
2.2.3 ClassTransposition (rl, m1,r2,m2).
2.2.4 ClassRotation (r,m,u). e
2.2.5 RcwaMapping (the general constructar).
2.2.6 LocalizedRcwaMapping (for an rcwa mapping of Z and a prime).
Basic arithmetic for residue-class-wise affine mappings.
Attributes and properties of residue-class-wise affine mappings
2.4.1 LargestSourcesOfAffineMappings (for an rcwa mapping).
2.4.2 FixedPointsOfAffinePartialMappings (for an rcwa mapping)
2.4.3 Multpk (for an rcwa mapping, a prime and an exponent)
2.4.4 Determinant (of anrcwa mappingofz)
2.4.5 Sign (of anrcwa permutationofZ).
Factoring residue-class-wise affine permutations.
2.5.1 FactorizationIntoCSCRCT (for an rcwa permutationof 2).
252 PrimeSwitch(p)
25.3 mKnot(foranoddinteger) oo
Extracting roots of residue-class-wise affine mappings
2.6.1 Root (k-throotofanrcwamapping).
Special functions for non-bijective mappings
2.7.1 Rightinverse (of an injective rcwamapping).
2.7.2 CommonRightinverse (of two injective rcwa mappings).
2.7.3 ImageDensity (of anrcwa mapping).
On trajectories and cycles of residue-class-wise affine mappings
2.8.1 Trajectory (methods for rcwva mappings)
2.8.2 Trajectory (methods for rcwa mappings — “accumulated coefficients”). .
2.8.3 IncreasingOn & DecreasingOn (for an rcwa mapping).

RCWA

2.8.4 TransitionGraph (for an rcwa mapping and amodulus)
2.8.5 OrbitsModulo (for an rcwa mapping and a modulus).

26

2.8.6 FactorizationOnConnectedComponents (for an rcwa mapping and a modulés)

2.8.7 TransitionMatrix (for an rcwa mappingandamodulus)
2.8.8 Sources & Sinks (ofanrcwamapping)
2.8.9 Loops(ofanrcwamapping)o e e e e e
2.8.10 GluckTaylorIlnvariant (of atrajectory)
2.8.11 LikelyContractionCentre (of an rcwa mapping).
2.8.12 GuessedDivergence (of anrcwamapping) L.
2.9 The categories and familiesof rcwamappings
2.9.1 IsRcwaMapping e e
2.9.2 RcwaMappingsFamily (ofaring).

Residue-Class-Wise Affine Groups

3.1 Constructing residue-class-wise affinegroups
3.1.1 RCWA (the group of all rcwa permutations ofaring).
3.1.2 CT (the group generated by all class transpositions ofaring)
3.1.3 IsomorphismRcwaGroup (for a group, overagivenring)
3.1.4 DirectProduct (forrcwagroupsoverZ)
3.1.5 WoreathProduct (for an rcwa group over Z, with a permutation grouf gnj
3.1.6 Restriction (of an rcwa mapping or -group, by an injective rcwa mapping)
3.1.7 Induction (of an rcwa mapping or -group, by an injective rcwa mapping)

3.2 Basic routines for investigating residue-class-wise affine groups.
3.2.1 StructureDescription (foranrcwagroup)
3.2.2 EpimorphismFromFpGroup (for an rcwa group and a search radius) . .

26
27

32
32
33
33
34
34
37

3.2.3 PrelmagesRepresentative (for an epi. from a free group to an rcwa group) 38

3.3 The natural action of an rcwa group on the underlyingring
3.3.1 Orbit (for an rcwa group and either a pointoraset)
3.3.2 DrawOrbitPicture (G, p0, r, h, w, colored, palette, filename).
3.3.3 ShortOrbits (for rcwa groups) & ShortCycles (for rcwa permutations) . .
3.3.4 Ball (for group, element and radius or group, point, radius and action) .
3.3.5 RepresentativeAction (G, source, destination, action).
3.3.6 Projections (foranrcwa groupandamodulus).

39

40
40
41
41
43

3.3.7 RepresentativeAction (for RCWA(R) and 2 partitions of R into residue clasges)

3.4 Special attributes of tame residue-class-wise affine groups.
3.4.1 RespectedPartition (of a tame rcwa group or -permutation).
3.4.2 ActionOnRespectedPartition & KernelOfActionOnRespectedPartition. .

3.5 Generating pseudo-random elements of RCWA(R) and CT(R).

3.6 The categories of residue-class-wise affinegroups.
3.6.1 IsRcwaGroup. e e e e

Residue-Class-Wise Affine Monoids

4.1 Constructing residue-class-wise affinemonoids
4.1.1 Rcwa (the monoid of all rcwa mappings ofaring)

4.2 Computing with residue-class-wise affine monoids.
4.2.1 ShortOrbits (for rcva monoid, set of points and bound on length)
4.2.2 Ball (for monoid, element and radius or monoid, point, radius and action)

44

45
46
47
47

48
48
49
49
50
51

5

6

7

RCWA

Examples

5.1 Factoring Collatz’ permutation of theintegerts.
5.2 Anrcwa mapping which seems to be contracting, butvery slow
5.3 Checkingaresultby P.Andaloro.
5.4 Two examples by Matthewsand Leigh.
5.5 Exploring the structure of awildrcwagroup.
5.6 A wild rcwa mapping which has only finitecycles.
5.7 An abelian rcwa group over a polynomialring.
5.8 A tame group generated by commutators of wild permutations.
5.9 Checkingforsolvability
5.10 Some examples over (semi)localizations of the integers.
5.11 Twisting 257-cycles into an rcwa mapping with modulus 32.
5.12 The behaviour of the moduliof powers.
5.13 Images and preimages under the Collatz mapping.
5.14 A group which acts 4-transitively on the positive integers
5.15 A group which acts 3-transitively, but not 4-transitivelyonzZ.
5.16 Grigorchuk groups e e e e
5.17 Forward orbits of a monoid with 2 generators.
5.18 Representations of the free group ofrank2.
5.19 Representations of the modular group PSL(2,2)

The Algorithms Implemented in RCWA

Installation and auxiliary functions

7.1 RequIremMents. o o e

7.2 Installation
7.3 Thelnfoclassofthepackage.
7.3.1 InfoRCWA
7.4 Thetestingroutine. e
7.41 RCWATESE o e e e e e
7.5 Buildingthemanual e
7.5.1 RCWABUIldManual
7.6 Loading and saving bitmap pictures o oo
7.6.1 SaveAsBitmapPicture (picture, filename). L.
7.7 Runningdemonstrations. e
7.7.1 RunDemonstration (filename) oL
7.8 Some general utility functions. L

Chapter 1

About the RCWA Package

1.1 Motivation

The development of this package has originally been inspired by the famaus-8onjecture, which
asserts that iterated application of fhellatz mapping

n if niseve
T: Z—1Z, n— 5 . &
M2 if nisodd

to any given positive integer eventually yields 1 (¢fap0q).

So far, no attempts have been made to investigate the structure of groups whose elements are
permutations which are “similar to the Collatz mapping”, residue-class-wise affine

After having investigated these groups for a couple of years, the author feels that this is a gap
which is worth to be filled.

1.2 Purpose of this package

The present scope of computational group theory essentially comprises finite permutation groups,
matrix groups, finitely presented groups, polycyclically presented groups and automata groups. For
details, we refer to EO0S.

The purpose of this package is twofold:

e On the one hand, it introduces a new class of groups which are accessible to computational
methods, and it therefore extends the current scope of computational group theory as outlined
above.

¢ On the other, residue-class-wise affine groups are interesting mathematical objects in their own
right, and this package is intended to serve as a tool for obtaining a better understanding of their
rich and often complicated group theoretical and combinatorial structure.

RCWA 7

1.3 Groups which this package can deal with

In principle this package permits to construct and investigate all groups which have faithful repre-
sentations as residue-class-wise affine groups. Among many others, the following groups and their
subgroups belong to this class:

e Finite groups, and certain divisible torsion groups which they embed into.

e Free groups of finite rank.

e Free products of finitely many finite groups, thus in particular the modular group F3L(2,
e Direct products of the above groups.

e Wreath products of the above groups with finite groups and (#th-).

This list permits already to conclude that there are finitely generated residue-class-wise affine groups
which do not have finite presentations, and such with algorithmically unsolvable membership prob-
lem. However the list is certainly by far not exhaustive, and using this package it is easy to construct
groups of types which are not mentioned there.

The group CTZ) which is generated by atlass transpositionsf Z — these are involutions which
interchange two disjoint residue classes,SeessTransposition (2.2.3 —is a simple group which
has subgroups of all types listed above. It is countable, but it has an uncountable series of simple
subgroups which is parametrized by the sets of odd primes.

Proofs of most of the results mentioned here have not yet appeared in print. However they can be
found in the preprintKkoh064, which is available on the author's homepage. Descriptions of many
of the algorithms and methods which are implemented in this package can be fouchiv[j.

1.4 Scope of this package

This package can be applied in various ways to various different problems, and it is just not pos-
sible to say what can be found out with its help about which groups. The best way to get an idea
about this is likely to experiment with the examples discussed in this manual and included in the file
pkg/rcwa/examples/examples.q.

Of course this package often does not provide an out-of-the-box solution for a given problem.
Quite often it is possible to find an answer for a given question by using an interactive trial-and-error
approach.

With substancial help of this package, the author has found the results mentioned in $&ction
Interactive sessions with this package have also lead to the development of most of the algorithms
which are now implemented in it. Just to mention one example, developing the factorization method
for residue-class-wise affine permutations (Be€:orizationIntoCSCRCT (2.5.1) solely by means
of theory would likely have been very hard.

Chapter 2

Residue-Class-Wise Affine Mappings

In this chapter we give the basic definitions, and describe how to enter residue-class-wise affine map-
pings and how to compute with them.

How to compute with residue-class-wise affine groups is described in detail in the next chapter.
The reader is encouraged to look there already after having read the first few pages of this chapter,
and to look up definitions as he needs to.

2.1 Basic definitions

Residue-class-wise affine groups,rowa groups for short, are permutation groups whose elements
are bijective residue-class-wise affine mappings.
A mappingf : Z — Z is calledresidue-class-wise affiner for short arrcwa mapping, if there is
a positive integem such that the restrictions dfto the residue classeém) € Z/mZ are all affine,
i.e. given by
8 (m) N+ Br(m)

f\r(m):r(m)—>Z, n— -
r(m

for certain coefficientsy), brm), Crm) € Z depending om(m). The smallest possibla is called
the modulusof f. Itis understood that all fractions are reduced, i.e. that&gg), b (m), Cr(m) = 1,
and thatc, i, > 0. The Icm of the coefficients, , is called themultiplier of f, and the Icm of the
coefficientsc;) is called thedivisor of f.

Itis easy to see that the residue-class-wise affine mappir#fom a monoid under composition,
and that the residue-class-wise affine permutatioris fafrm a countable subgroup of Sy#) We
denote the former by Rcwaj, and the latter by RCWAY).

An rcwa mapping is callethmeif the set of moduli of its powers is bounded, or equivalently if it
permutes a partition ¢& into finitely many residue classes on all of which it is affine. An rcwa group
is calledtameif there is a common such partition for all of its elements, or equivalently if the set of
moduli of its elements is bounded. Rcwa mappings and -groups which are not tame arevidlled
Tame rcwa mappings and -groups are something which one could call the “trivial cases” or “basic
building blocks”, while wild rcwa groups are the objects of primary interest.

The definitions of residue-class-wise affine mappings and -groups can be generalized in an obvious
way to suitable rings other thah In fact, this package provides also some support for residue-class-
wise affine groups over semilocalizationszband over univariate polynomial rings over finite fields.

The former of these rings have been chosen as examples of rings with only finitely prime elements,
and the latter have been chosen as examples of rings with nonzero characteristic.

8

RCWA 9

2.2 Entering residue-class-wise affine mappings

Entering an rcwa mapping @f requires giving the modulus and the coefficients,), by m andc
for r(m) running over the residue classes (mmuy

This can be done easiest kywaMapping (coeffs), wherecoeffs is a list of m coefficient
triplescoeffs[r+1] = [(m), Br(m), Cr(m 1, With r running from 0 tom— 1.

If some coefficient;) is zero or if images of some integers under the mapping to be defined
would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple[1, 4, 3] is not allowed at the first position. The reason for this is that not all integers
congruent to 10+ 4 = 4 modm are divisible by 3.

For the general constructor for rcwa mappings,se&Mapping (2.2.5.

Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>

gap> [IsSurjective(T), IsInjective(T)];

[true, false]

gap> SetName (T, "T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

(3n + 1)/2

gap> a := RcwaMapping([[2,0,31,04,-1,3],14,1,311); SetName(a,"a");
<rcwa mapping of Z with modulus 3>

gap> IsBijective(a);

true

gap> Display(a); # This is Collatz’ permutation:

Bijective rcwa mapping of Z with modulus 3

n mod 3 | n“a
____________________________________ +____________________________________
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> Support (a);

z\N [-1, 0, 1]

gap> Cycle(a,44);

[44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]

RCWA 10

There is computational evidence for the conjecture that any residue-class-wise affine permutation
of Z can be factored into members of the following three series of permutations of particularly simple
structure (cfFactorizationIntoCSCRCT (2.5.1):

2.2.1 ClassShift (r, m)

{ ClassShift (r, m) (function)
{ ClassShift (cl) (function)

Returns: The class shift,).

The class shiftv,y, is the rcwa mapping o which mapsn € r(m) to n+m and which fixes
Z\ r(m) pointwise.

In the one-argument form, the argument stands for the residue clasém). Enclosing the
argument list in list brackets is permitted.

Example
gap> Display(ClassShift (5,12));
Tame bijective rcwa mapping of Z with modulus 12, of order infinity

n"ClassShift (5,12)

01 2 3 4 6 7 8 91011 n

5 n+ 12
2.2.2 ClassReflection (r, m)
{ ClassReflection(r, m) (function)
{ ClassReflection(cl) (function)

Returns: The class reflectiony).

The class reflectiorg; i, is the rcwa mapping o, which mapsn € r(m) to —n+2r and which
fixesZ \ r(m) pointwise, where it is understood thatOr < m.

In the one-argument form, the argument stands for the residue clasém). Enclosing the
argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));
Bijective rcwa mapping of Z with modulus 9, of order 2
n"ClassReflection(5,9)

012346738
5

RCWA 11

2.2.3 ClassTransposition (r1, m1, r2, m2)

{Q ClassTransposition(rl, ml, r2, m2) (function)
{ ClassTransposition(cll, cl2) (function)

Returns: The class transposition, (m,) r,(m,)-

Given two disjoint residue classes(m;) andry(mp) of the integers, thelass transposition
Try(my) r2(mp) € RCWA(Z) is defined as the involution which interchanges- kmy andr; +kmy, for any
integerk and which fixes all other points. It is understood ttmatandm, are positive, that & r; < my
and that 0< r, < mp. For ageneralized class transpositipthe latter assumptions are not made.

The class transposition, (m,) r,m,) iNterchanges the residue classgsm) andrz(m) and fixes
the complement of their union pointwise.

In the four-argument form, the arguments, m1, r2 andm2stand forry, my, r, andmy, respec-
tively. In the two-argument form, the argumentd andcl2 stand for the residue classegm)
andry(mp), respectively. Enclosing the argument list in list brackets is permitted. The residue classes
r1(m) andrz(my) are stored as an attributeansposedClasses.

A class transposition can be written as a product of any given nuknbkclass transpositions.
Such a decomposition can be obtainedspyittedClassTransposition(ct ,K).

Example

gap> Display(ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

n mod 10 | n"ClassTransposition(1,2,8,10)
____________________________________ +____________________________________
2 4 | n
1 3 5 7 9 | 5n + 3
| (n - 3)/5

The set of all class transpositions of the ring of integers generates the simple grdijpn@tioned
in Chapterl. This group has a representation as4P object — seeT (3.1.2. The set of all general-
ized class transpositions @fgenerates a simple group as well, ¢foh064.

Class shifts, class reflections and class transpositions of Rrgher thanZ are defined in an
entirely analogous way — all one needs to do is to repfabg R and to readk and< in the sense of
the ordering used bgAP. They can also be entered basically as described above — just prepend the
desired ringR to the argument list. Often also a sensible “default ring’’ fefaultRing in the GAP
Reference Manual) is chosen if that optional first argument is omitted.

RCWA 12

On rings which have more than two units, there is another basic series of rcwa permutations which
generalizes class reflections:

2.2.4 ClassRotation (r, m, u)

{) ClassRotation(r, m, u) (function)
{ ClassRotation(cl, u) (function)

Returns: The class rotatiop;) u-

Given a residue claggm) and a unitu of a suitable ringR, theclass rotationp, () , is the rcwa
mapping which mapa € r(m) to un+ (1 —u)r and which fixesR\ r(m) pointwise. Class rotations
generalize class reflections, as we hayg,) 1 = G(m)-

In the two-argument form, the argumecit stands for the residue clasém). Enclosing the
argument list in list brackets is permitted. The argumerst stored as an attributetationFactor.
Example

gap> Display (ClassRotation (ResidueClass (Z_pi(2),2,1),1/3));

Tame bijective rcwa mapping of Z_(2) with modulus 2, of order infinity

n mod 2 | n"ClassRotation(1,2,1/3)
____________________________________ +____________________________________
0 | n
1 | 1/3 n + 2/3
gap> x := Indeterminate(GF(8),1);; SetName(x,"x");

gap> R := PolynomialRing(GF(8),1);;
gap> Display(ClassRotation(l,x,Z(8)*0One(R)));

Bijective rcwa mapping of GF(273) [x] with modulus x, of order 7

P mod x \ P" (ClassRotation(Z(2)"0,x,2(2"3)))
________________________ e
0*7(2) (273) \
2(2°3)"2 72(2°3)"3 \
2(2°3)"4 7(2°3)"5
72(2°3)76 | P
Z2(2)°0 | Z(2°3)*P + 2(273)"3

There are properties IsClassShift, IsClassReflection, IsClassRotation
IsClassTransposition and IsGeneralizedClassTransposition, which indicate whether
a given rcwa mapping belongs to the corresponding series. By default, class shifts, class reflections,
class transpositions and class rotations are given descriptive names of thelfoem .. (...).
They can be given user-defined names upon creation via the aptien Setting thevame attribute
can be avoided by passing the empty string.

RCWA 13

In the sequel, a description of the general-purpose constructor for rcwa mappings is given. This
might look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (the general constructor)

O RewaMapping (R, m, coeffs) (method)
{ RecwaMapping (R, coeffs) (method)
O RcwaMapping (coeffs) (method)
<> RcwaMapping(perm, range) (method)
{ RcwaMapping (m, values) (method)
{ RcwaMapping (pi, coeffs) (method)
{ RcwaMapping (g, m, coeffs) (method)
¢ RcwaMapping (P1, P2) (method)
{ RcwaMapping (cycles) (method)

Returns: An rcwa mapping.

In all cases the argumeRtis the underlying ringmis the modulus andoeffs is the coefficient
list. A coefficient list for an rcwa mapping with modulwus consists ofR/mR coefficient triples
[8¢(m)» Pr(m), Cr(m) 1. Their ordering is determined by the ordering of the representatives of the residue
classes (modn) in the sorted list returned byl 1Residues (R, m) . In caseR = Z this means that
the coefficient triple for the residue clasg® comes first and is followed by the one fof), the
one for Zm) and so on.

In case one or several of the argumeRtsandcoeffs are omitted or replaced by other argu-
ments, the former are either derived from the latter or default values are taken. The meaning of the
other arguments is defined in the detailed description of the particular methods given in the sequel:
The above methods return the rcwa mapping

(a) of Rwith modulusmand coefficientgoeffs ,

(b) of R=Z or R=Zy with modulusLength (coeffs) and coefficientgoeffs ,

(c) of R=7Z with modulusLength (coeffs) and coefficientgoeffs ,

(d) of R=7Z, permuting any saange +k*Length (range) like perm permutesange ,

(e) of R=Z with modulusmand values given by alisal of 2 pairs[preimage imag¢g per residue
class (mod),

(f) of R=Zx with modulusLength (coeffs) and coefficientgoeffs (the set of primestwhich
denotes the underlying ring is passed as arguipiet

(g) of R=GF(q)[x] with modulusmand coefficientgoeffs ,

(h) a bijective rcwa mapping which induces a bijection between the partiBdrendP2 of R into
residue classes and which is affine on the elemen®pbr

(i) a bijective rcwa mapping with “residue class cycles” given by acysties of lists of pairwise
disjoint residue classes which are to be permuted cyclically, each, respectively.

The methods for the operati;rwaMapping perform a number of argument checks, which can be
skipped by usin@cwaMappingNC instead.

RCWA 14

Example

gap> R := PolynomialRing(GF(2),1);; x := X(GF(2),1);; SetName(x,"x");

gap> RcwaMapping (R, x+1,[[1,0,x+One(R)], [x+One(R),0,1]]*0One (R)); ¥ (a)
<rcwa mapping of GF(2) [x] with modulus x+Z(2) "0>

gap> RcwaMapping (Z_pi(2),[[1/3,0,111); # (b)
Rcwa mapping of Z_(2): n -> 1/3 n

gap> a := RcwaMapping([[2,0,3],(4,-1,3]1,14,1,311); # (c)
<rcwa mapping of Z with modulus 3>

gap> RcwaMapping((1,2,3),[1..4]); # (d)
<bijective rcwa mapping of Z with modulus 4, of order 3>

gap> T = RewaMapping (2, [[1,2]1,12,11,13,51,1[4,211); # (e)
true

gap> RcwaMapping (21, [[1/3,0,111); # (f)
Rcwa mapping of Z_(2): n -> 1/3 n

gap> RcwaMapping (2,x+1,[[1,0,x+One(R)], [x+One(R),0,1]1]*0One(R)); # (9)

<rcwa mapping of GF(2) [x] with modulus x+Z(2) "0>

gap> a = RcwaMapping (List ([[0,3]1,(1,3],[2,3]],ResidueClass),

> List ([[0,2],[1,4],(3,4]],ResidueClass)); # (h)
true

gap> RcwaMapping ([List ([[0,2],11,4],13,8],17,16]]1,ResidueClass)]); # (i)
<bijective rcwa mapping of Z with modulus 16, of order 4>

gap> Cycle(last,ResidueClass(0,2));

[0(2), 1(4), 3(8), 7(16)]

Rcwa mappings oZ can be “translated” to rcwa mappings of some semilocalizéignof Z:

2.2.6 LocalizedRcwaMapping (for an rcwa mapping of Z and a prime)

¢ LocalizedRcwaMapping (f, p) (function)
O SemilocalizedRcwaMapping (f, pi) (function)

Returns: The rcwa mapping o, respectivelyZ with the same coefficients as the rcwa
mappingf of Z.

The argumenp or pi must be a prime or a set of primes, respectively. The argumemtst be
an rcwa mapping o, whose modulus is a power @f or whose modulus has only prime divisors
which lie inpi , respectively.

Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]1);; # The Collatz mapping.

gap> Cycle (LocalizedRcwaMapping(T,2),131/13);

[131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13,
419/13, 635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13,
1231/13, 1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13]

Rcwa mappings can baewed,Displayed,Printed and written to &t ring. The output of the’iew

method is kept reasonably short. In most cases it does not describe an rcwa mapping completely. In
these cases the output is enclosed in brackets. The output of the methodsdosy andPrint
describe an rcwa mapping in full. Theinted representation of an rcwa mappin@isP - readable

if and only if thePrinted representation of the elements of the underlying ring is so.

RCWA 15

There is also a method famTex, respectivelyl.aTexobj. The output of this method makes use
of the BTEX macro packagemsmath. If the optionFactorization is set and the argument is
bijective, a factorization into class shifts, class reflections, class transpositions and prime switches is
printed (cf.FactorizationIntoCSCRCT (2.5.). For rcwa mappings with modulus greater than 1, an

indentation byindentation characters can be obtained by setting this option value aatiogly.
Example

gap> Print (LaTeX0bj(T));
n \ \longmapsto \
\begin{cases}
n/2 & \text{if} \ n \in 0(2), \\
(3n + 1)/2 & \text{if} \ n \in 1(2).
\end{cases}

There is an operationaTexAndXDVI which displays an rcwa mapping in advi window. This works
as follows: The string returned by thaTex0bj - method described above is inserted int&‘geX
template file. This file isAIgX’'ed, and the result is shown witkdvi. CallingDisplay with option
xdvi has the same effect. The operatiaTexandxDVI is only available on UNIX systems, and
requires suitable installations &fEX andxdvi.

2.3 Basic arithmetic for residue-class-wise affine mappings

Testing rcwa mappings for equality requires only comparing their coefficient lists, hence is cheap.
Rcwa mappings can be multiplied, thus there is a method fdBijective rcwa mappings can also

be inverted, thus there is a method foiverse. The latter method is usually accessed by raising a
mapping to a power with negative exponent. Multiplying, inverting and computing powers of tame
rcwa mappings is cheap. Computing powers of wild mappings is usually expensive — runtime and
memory requirements normally grow approximately exponentially with the exponent. How expensive
multiplying a couple of wild mappings is, varies very much. In any case, the amount of memory
required for storing an rcwa mapping is proportional to its modulus. Whether a given mapping is
tame or wild can be determined by the operatiename. There is a method farrder, which can not

only compute a finite order, but which can also detect infinite order.

Example
gap> T := RcwaMapping([[1,0,21,1[3,1,211);; # The Collatz mapping.
gap> a := RcwaMapping([[2,0,3],(4,-1,3]1,14,1,311);; # Collatz’ permutation.
gap> List([-4..4],k->Modulus(a’k));
[256, 64, 16, 4, 1, 3, 9, 27, 81]
gap> IsTame(T) or IsTame(a);
false
gap> IsTame(ClassShift (0,1)) and IsTame (ClassTransposition(0,2,1,2));
true
gap> T 2*a*T*a"-3;
<rcwa mapping of Z with modulus 768>
gap> (ClassShift (1,3)*ClassReflection(2,7))"1000000;
<bijective rcwa mapping of Z with modulus 21>

There are methods installed fogInjective, IsSurjective, IsBijective andImage.

RCWA 16

Example

gap> [IsInjective(T), IsSurjective(T), IsBijective(a)];
[false, true, true]

gap> Image (RcwaMapping([[2,0,111));

0(2)

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed wjtthe same symbol as used for exponentiation and

conjugation. The same works for partitions of the source into a finite number of residue classes.
Example

gap> 15°T;

23

gap> ResidueClass(1,2)"T;

2(3)

gap> List ([[0,31,1[1,3],[2,3]],ResidueClass) "a;
[0(2), 1(4), 3(4)]

For computing preimages of elements under rcwa mappings, there are methedsrfargeE 1m and
PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue

classes under an rcwa mapping can be computed -bymage.
Example

gap> PreImagesElm(T,8);
[5 16]
gap> Prelmage (T,ResidueClass (Integers,3,2));
Z \ 0(6) U 2(6)
gap> M := [1];; 1 := [1];;
gap> while Length (M) < 5000 do M := PreImage(T,M); Add(l,Length(M)); od; 1;
(1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208,
277, 367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458]

There is a method for the operatichpport for computing the support of an rcwa mapping. A
synonym forSupport is MovedPoints. There is also a method feestrictedPerm for computing

the restriction of a bijective rcwa mapping to a union of residue classes which it fixes setwise.
Example

gap> List([a,a"2],Support);

(z\N[-1, 0, 11,2\ 1[-3 -2, -1, 0,1, 2, 311

gap> RestrictedPerm(ClassShift (0,2)*ClassReflection(l,2),
> ResidueClass(0,2));

<rcwa mapping of Z with modulus 2>

gap> last = ClassShift(0,2);

true

Rcwa mappings can be added and subtracted pointwise. However, please note that the set of rcwa
mappings of a ring does not form a ring undeand *.

RCWA 17

Example

gap> b := ClassShift (0,3) * a;;
gap> [Image((a + b)), Image((a - b)) 1;
[2(4), [-2, 0]]

There are operationsdulus (abbreviatediod) andcoefficients for retrieving the modulus and
the coefficient list of an rcwa mapping. The meaning of the return values is as described in 3&ction
General documentation for most operations mentioned in this section can be foundiarhe
reference manual. For rcwa mappings of rings other #hamot for all operations applicable methods
are available.
As in general a subring relatid®y, < R, doesnot give rise to a natural embedding of RCWA
into RCWA(R,), there is no coercion between rcwa mappings or rcwa groups over different rings.

2.4 Attributes and properties of residue-class-wise affine mappings

A number of basic attributes and properties of an rcwa mapping are derived immediately from the
coefficients of its affine partial mappings. This holds for example for the multiplier and the divisor.
These two values are stored as attributest iplier andDivisor, or for shortMult andpiv. The

prime setof an rcwa mapping is the set of prime divisors of the product of its modulus and its multi-
plier. Itis stored as an attributerimeSet. An rcwa mapping is callethtegral if its divisor equals 1.

An rcwa mapping is callebalancedif its multiplier and its divisor have the same prime divisors. An
integral mapping has the propeftyintegral and a balanced mapping has the propesalanced.

An rcwa mapping of the ring of integers or of one of its semilocalizations is cales$-wise order-
preservingif and only if all coefficientsa, i, (cf. Section2.1) in the numerators of the affine partial
mappings are positive. The corresponding propertysislassiWiseOrderPreserving. An rcwa
mapping ofZ is calledsign-preservingf it does not map nonnegative integers to negative integers
or vice versa. The corresponding property éSignPreserving. All elements of the simple group
CT(Z) generated by the set of all class transpositions are sign-preserving.

Example

gap> u := RCWﬁMapping(H3,O,5L [9,1,51,13,-1,51,19,-2,51,[9,4,511);;
gap> IsBijective(u);; Display(u);

Bijective rcwa mapping of Z with modulus 5

n mod 5 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> Multiplier (u);
9

gap> Divisor (u);

5

RCWA 18

gap> PrimeSet (u);

[3, 51

gap> IsIntegral (u) or IsBalanced(u);

false

gap> IsClassWiseOrderPreserving(u) and IsSignPreserving(u);
true

There are a couple of further attributes and operations related to the affine partial mappings of an rcwa
mapping:
2.4.1 LargestSourcesOfAffineMappings (for an rcwa mapping)

{ LargestSourcesOfAffineMappings (f) (attribute)
Returns: The coarsest partition ¢fource (f) on whose elements the rcwa mappings affine.

Example

gap> LargestSourcesOfAffineMappings (ClassShift (3,7));

[2\ 3(7), 3(7)]

gap> LargestSourcesOfAffineMappings (ClassReflection(0,1));

[Integers]

gap> u := RcwaMapping([[3,0,51,19,1,51,13,-1,51,109,-2,51,109,4,511);;
gap> List([u, u"-1], LargestSourcesOfAffineMappings);

[T 0(5), 1(5), 2(5), 3(5), 4(5) 1, [0(3), 1(3), 2(9), 5(9), 8(9) 1]
gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)
> * ClassTransposition(3,4,4,6);

<bijective rcwa mapping of Z with modulus 12>
gap> LargestSourcesOfAffineMappings (kappa);
[2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12) 1

2.4.2 FixedPointsOfAffinePartialMappings (for an rcwa mapping)

Q FixedPointsOfAffinePartialMappings (f) (attribute)
Returns: A list of the sets of fixed points of the affine partial mappings of the rcwa magping
in the quotient field of its source.
The returned list contains entries for the restriction$ @b all residue classes modutnd (f).
A list entry can either be an empty set, the sourcé ok a set of cardinality 1. The ordering of the

entries corresponds to the ordering of the residues iResidues (Source (f), m).
Example

gap> FixedPointsOfAffinePartialMappings (ClassShift (0,2));
[[1, Rationals]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings(T°k));
crrol, =111, ttro1, 011,021, 0-111,
ttcol, 0-71,02/51, [-51, (4571, [/5], [-10], [-1 1 1]

RCWA 19

2.4.3 Multpk (for an rcwa mapping, a prime and an exponent)

O Multpk (f, p, k) (operation)

Returns: The union of the residue classgsn) such thatpkHar(m) if k> 0, and the union of the
residue classagm) such thatp| |Cr(m) If k< 0. In this contextmdenotes the modulus 6f, anda, i,
andc; i, denote the coefficients f as introduced in Sectioh 1.

Example

gap> T := RcwaMapping([[1,0,2],13,1,2]1]1);; # The Collatz mapping.
gap> [Multpk(T,2,-1), Multpk(T,3,1) 1;

[Integers, 1(2) 1

gap> u := RcwaMapping([[3,0,5],19,1,5],[3,-1,51,19,-2,5],109,4,511);;
gap> [Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1) 1;
[[T 1, 0(5 U2(5, 2\ 0(5 U 2(5), Integers]

There are attributes ClassWiseOrderPreservingOn, ClassWiseConstantOn and
ClassWiseOrderReversingOn which store the union of the residue classes (mod (f)) on
which an rcwa mappindg of Z or of a semilocalization thereof is class-wise order-preserving,

class-wise constant or class-wise order-reversing, respectively.
Example

gap> List([ClassTransposition(l,2,0,4),ClassShift(2,3),
> ClassReflection(2,5)],ClassWiseOrderPreservingOn);
[Integers, Integers, Z \ 2(5)]

Finally, there are epimorphisms from the subgroup of RC¥JAformed by all class-wise order-
preserving elements t&(+) and from RCWAR) itself to the cyclic group of order 2, respectively:

2.4.4 Determinant (of an rcwa mapping of Z)

{ Determinant (f) (method)

Returns: The determinant of the rcwa mappihgof Z.

The determinantof an affine mapping — (an+ b)/c whose source is a residue clags) is
defined byb/|ajm. This definition is extended additively to determinants of rcwa mappings.

Let f be an rcwa mapping of the integers, andretienote its modulus. Using the notation
flem : N (@ m) - N+ brm)/C(m for the affine partial mappings, thaeterminantdet(f) of f is
given by

br(m)/(|ar(m)’ ’ m)-
r(mez/mz
The determinant mapping is an epimorphism from the group of all class-wise order-preserving bijec-
tive rcwa mappings o to (Z,+), see Koh05, Theorem 2.11.9.

Example

gap> List ([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);
[0, 1]

gap> Determinant (ClassTransposition(0,4,5,12)*ClassShift (3,7)"100);
100

RCWA 20

2.4.5 Sign (of an rcwa permutation of Z)

¢ Sign(Q) (attribute)
Returns: The sign of the bijective rcwa mappimgof Z.
Let o be an rcwa permutation of the integers, andnedenote its modulus. Using the notation
Olr(m) : N+ (& (m) - N+ by m))/Cr(m) for the affine partial mappings, tleggnof o is defined by

m—2r
m

deto)+

(__1) r(m): am<0

The sign mapping is an epimorphism from RCWA\(to the groupZ* of units of Z, see Koh04,
Theorem 2.12.8. Therefore the kernel of the sign mapping is a normal subgroup of REWBIA(
index 2. The simple group CZj is a subgroup of this kernel.

Example

gap> List([ClassTransposition(3,4,2,6),
> ClassShift (0,3),ClassReflection(2,5)],Sign);
(1, -1, -1]

2.5 Factoring residue-class-wise affine permutations

Factoring group elements into the members of some “nice” set of generators is often helpful.
In this section we describe an operation which attempts to solve this problem for the group
RCWA(Z). Elements of finitely generated rcwa groups can be factored into generators “as usual”,
seePreImagesRepresentative (3.2.3.

2.5.1 FactorizationintoCSCRCT (for an rcwa permutation of Z)

{Q FactorizationIntoCSCRCT (Q) (attribute)
Q Factorization(Q) (method)

Returns: A factorization of the bijective rcwa mappinggof Z into class shifts, class reflections
and class transpositions, provided that such a factorization exists and the method finds it.

The method may returfiail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct.

The problem of obtaining a factorization as described is algorithmically difficult, and this factor-
ization routine is currently perhaps the most sophisticated part dqRtwA package. Information
about the progress of the factorization process can be obtained by setting the info level of the Info
classinforcCraA (7.3.7) to 2.

By default, prime switches—+{ PrimeSwitch (2.5.2) are taken as one factor. If the option
ExpandPrimeSwitches is set, they are each decomposed into the 6 class transpositions given
in the definition.

By default, the factoring process begins with splitting off factors from the right. This can be
changed by setting the opti@irection to "from the left".

By default, a reasonably coarse respected partition of the integral mapping occuring in
the final stage of the algorithm is computed. This can be suppressed by setting the option
ShortenPartition equal tofalse.

RCWA 21

By default, at the end it is checked whether the product of the determined factors indeedyequals
This check can be suppressed by setting the ofNiGn

Example

gap> Factorization(Comm(ClassShift (0,3)*ClassReflection(1,2),

> ClassShift (0,2)));

[ClassReflection(2,3), ClassShift(2,6)" -1, ClassTransposition(0,6,2,6),
ClassTransposition(0,6,5,6)]

For purposes of demonstrating the capabilities of the factorization routine, in SBctiGollatz’
permutation is factored. Lothar Collatz has investigated this permutation in 1932. Its cycle structure
is unknown so far.

The permutations of the following kind play an important role in factoring rcwa permutatidfis of
into class shifts, class reflections and class transpositions:

2.5.2 PrimeSwitch (p)

Q¢ PrimeSwitch (P) (function)
Q PrimeSwitch(p, K) (function)

Returns: In the one-argument form thgrime switchap, := To(g) 1(2p) * Ta(8),—1(2p) * To(4),1(2p) *
To(4),—1(2p) * T2(2p),1(4p) * T4(2p),2p+1(ap)» @Nd in the two-argument form the restrictionaf by n — kn.

For an odd primep, the prime switchop, is a bijective rcwa mapping df with modulus 4,
multiplier p and divisor 2. The key mathematical property of a prime switch is that it is a product of
class transpositions, but that its multiplier and its divisor are coprime anyway. Prime switches can be
distinguished from other rcwa mappings by theikP propertyIsPrimeSwitch.

Example

gap> Display (PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

n mod 12 | n"PrimeSwitch (3)

____________________________________ o

0 | n/2

1 | n+ 1

2 6 10 | (3n + 4)/2

3 | n

4 | n -3

5 811 | n -1

gap> Factorization(PrimeSwitch(3));

[ClassTransposition(l,6,0,8), ClassTransposition(5,6,4,8),
ClassTransposition(0,4,1,6), ClassTransposition(2,4,5,6),
ClassTransposition(2,6,1,12), ClassTransposition(4,6,7,12)]

Obtaining a factorization of a bijective rcwa mapping into class shifts, class reflections and class
transpositions is particularly difficult if multiplier and divisor are coprime. A prototype of permuta-
tions which have this property has been introduced in a different contextiaq:

RCWA

2.5.3 mKnot (for an odd integer)

O mKnot (M)
Returns: The permutatiom, as introduced in{el99].

The argumentmmust be an odd integer greater than 1.
Example

22

(function)

gap> Display (mKnot (5));

Wild bijective rcwa mapping of Z with modulus 5

n mod 5 | n"mKnot (5)
____________________________________ +____________________________________
0 | 6n/5
1 | (4n + 1)/5
2 | (6n - 2)/5
3 | (4n + 3)/5
4 | (6n - 4)/5

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many

cycles of any given finite length.

2.6 Extracting roots of residue-class-wise affine mappings

2.6.1 Root (k-th root of an rcwa mapping)
O Root (f, k)

Returns: An rcwa mappingy such thatg"k=f , provided that such a mapping exists and that

there is a method available which can determine it.
Currently, extracting roots is implemented for rcwa permutations of finite order.

(method)

Example

gap> Root (ClassTransposition(0,2,1,2),100);
<bijective rcwa mapping of Z with modulus 8>
gap> Display (last);

Bijective rcwa mapping of Z with modulus 8

gap> last”100 = ClassTransposition(0,2,1,2);
true

RCWA 23

2.7 Special functions for non-bijective mappings

2.7.1 Rightinverse (of an injective rcwa mapping)

Q RightInverse (f) (attribute)
Returns: A right inverse of the injective rcwa mappirig i.e. a mapping such thaf g = 1.

Example

gap> twice := 2*IdentityRcwaMappingOfZ;
Rcwa mapping of Z: n —> 2n

gap> twice * RightInverse (twice);
IdentityMapping(Integers)

2.7.2 CommonRightinverse (of two injective rcwa mappings)

¢ CommonRightInverse(l, r) (operation)
Returns: A mappingd suchthat d=rd=1.
The mapping$ andr must be injective, and their images must form a partition of their source.
Example

gap> twice := 2*IdentityRcwaMappingOfZ; twiceplusl := twice+tl;
Rcwa mapping of Z: n —> 2n

Rcwa mapping of Z: n -> 2n + 1

gap> Display (CommonRightInverse (twice,twiceplusl));

Rcwa mapping of Z with modulus 2

n mod 2 | n~f
____________________________________ +____________________________________
0 | n/2
1 | (n - 1)/2
2.7.3 ImageDensity (of an rcwa mapping)
{ ImageDensity (f) (attribute)

Returns: Theimage densityf the rcwa mapping .

In the notation introduced in the definition of an rcwa mapping,ithage densityof an rcwa
mappingf is defined byné1 Y rmer/mrIR/CmRI/|IR/amRl. The image density of an injective rcwa
mapping is< 1, and the image density of a surjective rcwa mapping s(this can be seen easily).
Thus in particular the image density of a bijective rcwa mapping is 1.

Example

gap> T := RcwaMapping([[1,0,2],13,1,2]11);; # The Collatz mapping.
gap> List([T, ClassShift(0,1), RcwaMapping([[2,0,1]1])], ImageDensity);
[4/3, 1, 1/2]

RCWA 24

Given an rcwa mapping, the functionInjectiveAsMappingFrom returns a se$ such that the
restriction off to s is injective, and such that the imagefindert is the entire image of.
Example

gap> InjectiveAsMappingFrom(T);
0(2)

2.8 On trajectories and cycles of residue-class-wise affine mappings

RCWA provides various methods to compute trajectories of rcwa mappings:

2.8.1 Trajectory (methods for rcwa mappings)

O Trajectory (f, n, length) (method)
¢ Trajectory (f, n, length, m) (method)
O Trajectory (f, n, terminal) (method)
O Trajectory (f, n, terminal, m) (method)

Returns: The firstlength iterates in the trajectory of the rcwa mappihgstarting atn, re-
spectively the initial part of the trajectory of the rcwa mappingtarting atn which ends at the first
occurence of an iterate in the getminal . If the argumeninis given, the iterates are reduced
(modm).

To save memory when computing long trajectories containing huge iterates, the reduction) (mod
is done each time before storing an iterate. In place of the ring eleméné methods also accept a

finite set of ring elements or a union of residue classes.
Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]);; # The Collatz mapping.

gap> Trajectory(T,27,15); Trajectory(T,27,20,5);

[27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103]

(2,1, 2,1,2,1,2,1,2,1,2,1,%2,1, 3,0, 3, 0, 0, 31

gap> Trajectory(T,15,[1]); Trajectory(T,15,[1]1,2);

[15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1]

(1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1]

gap> Trajectory(T,ResidueClass (Integers,3,0), Integers);

[0(3), 0(3) U5(9), 0(3) US(9) U T(9) U 8(27),
<union of 20 residue classes (mod 27)>,
<union of 73 residue classes (mod 81)>, Z \ 10(81) U 37(81), Integers]

2.8.2 Trajectory (methods for rcwa mappings — “accumulated coefficients”)

¢ Trajectory (f, n, length, whichcoeffs) (method)

O Trajectory (f, n, terminal, whichcoeffs) (method)
Returns: Either the listc of triples of coprime coefficients such that for aryit holds that

n~(f " (k-1)) = (c[k][1]1*Nn + c[k][2])/c[k][3] or the last entry of that list, depending on

whethemwhichcoeffs iIS"Al1Coeffs" Or "LastCoeffs".

The meanings of the argumerength andterminal
the operatiorrrajectory described above.

(whichcoeffs

RCWA

Example

gap> Trajectory (T, 27,

[1

[36472996377170786403,

1,
195820718533800070543,

"LastCoeffs");

25

are the same as in the methods for

In general, computing only the last coefficient triple
= "LastCoeffs") needs considerably less memory than computing the entire list.

1180591620717411303424]

(last[1]*27+last[2])/last[3];

gap>
1

When dealing with problems like then3- 1-Conjecture or when determining the degree of tran-
sitivity of the natural action of an rcwa group on its underlying ring, an important task is to determine
the residue classes whose elements get larger or smaller when applying a given rcwa mapping:

2.8.3 IncreasingOn & DecreasingOn (for an rcwa mapping)

{ IncreasingOn (f)
Q DecreasingOn (f)
Returns: The union of all residue classe@n) such thatR/a,mR| > |R/C;m

(attribute)
(attribute)

)R or\R/ar yR| <

IR/c:m) R, respectively, wherR denotes the source denotes the modulus alaqm andc,(m)
denote the coefficients 6f as introduced in Sectioh. 1
Example

gap> List([l..3],k->IncreasingOn(T"k));

[1(2), 3(4), 3(4) U 1(8) U 6(8)]

gap> List([1..3],k->DecreasingOn(T"k));

[0(2), 2\ 3 4), 0(4) U 2(8) U 5(8)]

gap> a := RcwaMapping([[2,0,3]1,14,-1,31,14,1,311);; # Collatz’ permutation

gap> List([-2..2],k->IncreasingOn(a"k));

[2\ 1(8) U7(8), 0(2), [1, 2\ 0(3), 1(9) U 4(9) U 5(9) U 8(9)]

We assign certain directed graphs to rcwa mappings, which encode the order in which trajectories
may traverse the residue classes modulo some modulus:

2.8.4 TransitionGraph (for an rcwa mapping and a modulus)

{ TransitionGraph (f, m)
Returns: The transition graph of the rcwa mappihgor modulusm
Thetransition graphl s m of f for modulusmis defined as follows:

(operation)

1. The vertices are the residue classes (mjd
2. There is an edge from (m) to ro(m) if and only if there is soma € r1(m) such than’ € ry(m).

The assignment of the residue classes (mptb the vertices of the graph corresponds to the ordering
of the residues im11Residues (Source (f), m. The result is returned in the format used by the
packagesRAPE [S0i0].

There are a couple of operations and attributes which are based on these graphs:

RCWA 26

2.8.5 OrbitsModulo (for an rcwa mapping and a modulus)

{ OrbitsModulo(f, m) (operation)
Returns: The partition ofAl11Residues (Source (f), m corresponding to the weakly connected
components of the transition graph of the rcwa mappirigr modulusm

Example

gap> OrbitsModulo(ClassTransposition(0,2,1,4),8);
(ro, 1,471, 02 5¢61], [31, [71]

2.8.6 FactorizationOnConnectedComponents (for an rcwa mapping and a modulus)

Q FactorizationOnConnectedComponents (f, m) (operation)
Returns: The set of restrictions of the rcwa mappihdo the weakly connected components of
its transition graph ¢ m.
The product of the returned mappingd isThey have pairwise disjoint supports, hence any two
of them commute.

Example
gap> sigma := ClassTransposition(l,4,2,4) * ClassTransposition(l,4,3,4)
> * ClassTransposition(3,9,6,18) * ClassTransposition(l,6,3,9);;

gap> List (FactorizationOnConnectedComponents (sigma, 36), Support);
[33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),
<union of 23 residue classes (mod 36)> \ [-6, 3 1]

2.8.7 TransitionMatrix (for an rcwa mapping and a modulus)

Q) TransitionMatrix(f, m) (operation)
Returns: The transition matrix of the rcwa mappihgfor modulusm
LetM be this matrix. Then for any two residue classgsn), r2(m) € R/mR the entryM;, i) r,(m)
is defined by

y _ R/mR
rl(m),rz(m) L |R/mH

{r(m) e R/MRr ery(mAr' erp(m)}

)

wherem is the product ofmand the square of the modulus fof The assignment of the residue
classes (mod) to the rows and columns of the matrix corresponds to the ordering of the residues in
AllResidues (Source (f), m.

The transition matrix is a weighted adjacency matrix of the corresponding transition graph

TransitionGraph (f , m . The sums of the rows of a transition matrix are always equal to 1.
Example

gap> T := RcwaMapping([[1,0,2],13,1,2]1]1);; # The Collatz mapping.
gap> Display (TransitionMatrix(T"3,3));
[[1/8, 1/4, 5/8 1,

[0, 1/4, 3/47,

[0, 3/8, 5/81]

RCWA 27

2.8.8 Sources & Sinks (of an rcwa mapping)

O Sources (f) (attribute)
O Sinks (f) (attribute)

Returns: A list of unions of residue classes modulo the modutusf the rcwa mapping , as
described below.

The returned list contains an entry for any strongly connected component of the transition graph
of f for modulusMod (f) which has only outgoing edges (“source”) or which has only ingoing edges
(“sink”), respectively. The list entry corresponding to such a component is the union of the vertices
belonging to it.

Example
gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;
gap> Sources(g); Sinks(g);
[0(4)]
[1(4)]
2.8.9 Loops (of an rcwa mapping)
O Loops(f) (attribute)

Returns: If f is bijective, the list of non-isolated vertices of the transition graph fufr modulus
Mod (f) which carry aloop. In general, the list of vertices of that transition graph which carry a loop,
but whichf does not fix setwise.

Example

gap> Loops(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[0(4), 1(4)]

There is a nice invariant of trajectories of the Collatz mapping:

2.8.10 GluckTaylorIinvariant (of a trajectory)

Q GluckTaylorInvariant (a) (function)

Returns: The invariant introduced inGT0Z. This is (Y!_;a - & modi+1)/(3!_;a%), wherel
denotes the length @f.

The argument must be a list of integers. INJT07 it is shown that ifa is a trajectory of the
‘original’ Collatz mappingn — (n/2 if n even, 31+ 1 if n odd) starting at an odd integer 3 and
ending at 1, then the invariant lies in the inter}@{13,5/7/.

Example

gap> C := RcwaMapping([[1,0,2],[3,1,111);;

gap> List ([3,5..49],n->Float (GluckTaylorInvariant (Trajectory(C,n, [1]))));

[0.701053, 0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,
0.699714, 0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,
0.714242, 0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,
0.69612, 0.714241, 0.701076]

RCWA 28

Quite often one can make certain “educated guesses” on the overall behaviour of the tra-
jectories of a given rcwa mapping. For example it is reasonably straightforward to make
the conjecture that all trajectories of the Collatz mapping eventually enter the finite set
{-136,—91,—-82, —68 —61,—55 —41 —37,—34,—-25 -17,—-10,—7,—-5,—-1,0,1,2}, or that “on
average” the next number in a trajectory of the Collatz mapping is smaller than the preceding one
by a factor ofv/3/2. However it is clear that such guesses can be wrong, and that they therefore
cannot be used to prove anything. Nevertheless they can sometimes be useful:

2.8.11 LikelyContractionCentre (of an rcwa mapping)

{ LikelyContractionCentre (f, maxn, bound) (operation)

Returns: A list of ring elements (see below).

This operation tries to compute tlw®ntraction centreof the rcwa mapping . Assuming its
existence this is the unique finite subSgf the source of on whichf induces a permutation and
which intersects nontrivially with any trajectory bf The mapping is assumed to beontracting
i.e. to have such a contraction centre. As in general contraction centres are likely not computable, the
methods for this operation are probabilistic and may return wrong results. The argmaremts a
bound on the starting value abdund is a bound on the elements of the trajectories to be searched.

If the limit bound is exceeded, an Info message on Info level 3rafoRCWA is given.
Example

gap> T := RcwaMapping([[1,0,2]1,(3,1,2]]);; # The Collatz mapping.

gap> SO := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5,
-1, 0, 1, 2]

2.8.12 GuessedDivergence (of an rcwa mapping)

{ GuessedDivergence (f) (operation)
Returns: A floating point value which is intended to be a rough guess on how fast the trajectories

of the rcwa mapping diverge (return value greater than 1) or converge (return value smaller than 1).
Nothing particular is guaranteed.

Example

gap> GuessedDivergence (T);

#I Warning: GuessedDivergence: no particular return value is guaranteed.
0.866025

RCWA 29

2.9 The categories and families of rcwa mappings

2.9.1 IsRcwaMapping

¢ IsRcwaMapping () (filter)
{ IsRcwaMappingOfZ (f) (filter)
{ IsRcwaMappingOfZ_pi (f) (filter)
{ IsRcwaMappingOfGFagx (f) (filter)

Returns: trueif f isanrcwa mapping, an rcwa mapping of the ring of integers, an rcwa mapping
of a semilocalization of the ring of integers or an rcwa mapping of a polynomial ring in one variable
over a finite field, respectively, arfd1se otherwise.

Often the same methods can be used for rcwa mappings of the ring of integers and of its
semilocalizations. For this reason there is a categof§cwaMapping0fzOrZ_pi which is the
union of IsRcwaMappingOfZ andIsRcwaMappingOfZ_pi. The internal representation of rcwa map-
pings is calledisRcwaMappingStandardRep. There are methods available fextRepOfObj and
ObjByExtRep.

2.9.2 RcwaMappingsFamily (of a ring)

{ RcwaMappingsFamily (R) (function)
Returns: The family of rcwa mappings of the rirg

Chapter 3

Residue-Class-Wise Affine Groups

In this chapter, we describe how to construct residue-class-wise affine groups and how to compute
with them.

3.1 Constructing residue-class-wise affine groups

As any other groups inGAP, residue-class-wise affine groups can be constructedsdayip,

GroupByGenerators Or GroupWithGenerators.
Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift (0,5));
<rcwa group over Z with 2 generators>

gap> IsTame (G); Size(G); IsSolvable(G); IsPerfect (G);

true

infinity

false

false

There are methods for the operatiatiew, Display, Print andstring which are applicable to rcwa
groups. All rcwa groups over a rirlgare subgroups of RCWA). The group RCWAR) itself is not
finitely generated, thus cannot be constructed as described above. It is handled as a special case:

3.1.1 RCWA (the group of all rcwa permutations of a ring)

O RCWA (R) (function)
Returns: The group RCWAR) of all residue-class-wise affine permutations of the g

Example

gap> RCWA_Z := RCWA (Integers);
RCWA (Z)

gap> IsSubgroup (RCWA_Z,G);
true

Examples of rcwa permutations can be obtainedreiedom (RCWA (R)), see Sectiod.5.

30

RCWA 31

We denote the group which is generated by all class transpositions of the bpn@T(R). This
group is handled as a special case as well:

3.1.2 CT (the group generated by all class transpositions of a ring)

O CT(R) (function)

Returns: The group CTR) which is generated by all class transpositions of the Rng
Example

gap> CT_Z := CT(Integers);

CT(Z)

gap> IsSimple(CT_Z); # One of a longer list of stored attributes/properties.
true

gap> IsSubgroup (CT_Z,G);

false

Another way of constructing an rcwa group is taking the image of an rcwa representation:

3.1.3 IsomorphismRcwaGroup (for a group, over a given ring)

¢ IsomorphismRcwaGroup (G, R) (attribute)
Q) IsomorphismRcwaGroup (G) (attribute)

Returns: A monomorphism from the grou@ to RCWA(R) or to RCWA(Z), respectively.

The best-supported caseRs= Z. Currently there are methods available for finite groups, for
free products of finite groups and for free groups. The method for free products of finite groups uses
the Table-Tennis Lemma (cf. e.g. Section II.B. @iHO0Q]), and the method for free groups uses an
adaptation of the construction given on page 27 P0] from PSL(2(C) to RCWA(Z).

Example

gap> F := FreeProduct (Group((1,2) (3,4),(1,3)(2,4)),Group((1,2,3)),

> SymmetricGroup(3));

<fp group on the generators [fl, £f2, £3, f4, £5 1>

gap> IsomorphismRcwaGroup (F);

[f1, f2, £3, f4, 5] —>

[<bijective rcwa mapping of
<bijective rcwa mapping of
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 72>,
<bijective rcwa mapping of Z with modulus 36>]

gap> IsomorphismRcwaGroup (FreeGroup(2));

[f1, £2] -> [<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>]

gap> F2 := Image(last);

<wild rcwa group over Z with 2 generators>

with modulus 12>,
with modulus 24>,

N N N N

The class of groups which can faithfully be represented as rcwa groups over the integers is closed
under taking direct products, under taking wreath products with finite groups and under taking wreath
products with the infinite cyclic groufZ,+). Therefore these operations can be used to build rcwa
groups as well:

RCWA 32

3.1.4 DirectProduct (for rcwa groups over Z)

{ DirectProduct (G1, G2, ...) (method)
Returns: An rcwa group isomorphic to the direct product of the rcwa groups @vgiven as
arguments.
There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the gro@ds G2, G3 ... via restrictions byn — mn
n— mn+1,n— mn+2 ... (— Restriction (3.1.6), wherem denotes the number of groups given
as arguments.

Example

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup(2)));;
gap> F2xF2 := DirectProduct (F2,F2);

<wild rcwa group over Z with 4 generators>

gap> Image (Projection (F2xF2,1)) = F2;

true

3.1.5 WreathProduct (for an rcwa group over Z, with a permutation group or (Z,+))

{ WreathProduct (G, P) (method)
{ WreathProduct (G, Z) (method)

Returns: An rcwa group isomorphic to the wreath product of the rcwa gr@ugver Z with the
finite permutation grou or with the infinite cyclic grougz, respectively.

The first-mentioned method embeds thgreeAction (P) th direct power of5 using the method
for DirectProduct, and lets the permutation group act naturally on the set of residue classes
modulo DegreeAction (P). The second-mentioned method restricts Restriction (3.1.9)
the groupG to the residue class 3(4), and maps the generator of the infinite cyclic grdop

ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4).
Example

))

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup (2)
(5))

gap> F2wrA5 := WreathProduct (F2,AlternatingGroup
gap> Embedding (F2wrA5,1);
[<wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8>] ->
[<wild bijective rcwa mapping of Z with modulus 40>,
<wild bijective rcwa mapping of Z with modulus 40>]
gap> Embedding (F2wrA5, 2);
[(1,2,3,4,5), (3,4,5) 1 —>
[<bijective rcwa mapping of Z with modulus 5, of order 5>,
<bijective rcwa mapping of Z with modulus 5, of order 3>]
gap> ZwrZ := WreathProduct (Group(ClassShift (0,1)),Group(ClassShift(0,1)));
<wild rcwa group over Z with 2 generators>
gap> Embedding (ZwrZ,1);
[ClassShift (0,1)] ->
[<tame bijective rcwa mapping of Z with modulus 4, of order infinity>]
gap> Embedding (ZwrZz, 2);
[ClassShift(0,1)] —>
[<wild bijective rcwa mapping of Z with modulus 4>]

rr
rr

RCWA 33

Many of the above group constructions are based on certain monomorphisms from the group
RCWA(R) into itself. The support of the image of such a monomorphism is the image of a given
injective rcwa mapping. For this reason, these monomorphisms are dtedtion monomorphisms
The following operation computes images of rcwa mappings and -groups under them:

3.1.6 Restriction (of an rcwa mapping or -group, by an injective rcwa mapping)

{Q Restriction(g, f) (operation)
{ Restriction (G, f) (operation)

Returns: The restriction of the rcwa mapping(respectively the rcwa group) by the injective
rcwa mapping .

By definition, therestriction g of an rcwa mappingy by an injective rcwa mapping is the
unigue rcwa mapping which satisfies the equafiegs = g- f and which fixes the complement of the
image off pointwise. Iff is bijective, the restriction af by f is just the conjugate af underf .

Therestrictionof an rcwa groups by an injective rcwa mapping is defined as the group whose
elements are the restrictions of the element&bfy f . The restriction ofc by f acts on the image

of f and fixes its complement pointwise.
Example

gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,111));
<wild rcwa group over Z with 2 generators>

gap> Support (F2tilde);

3(5)

3.1.7 Induction (of an rcwa mapping or -group, by an injective rcwa mapping)

¢ Induction(g, f) (operation)
¢ Induction (G, f) (operation)

Returns: The induction of the rcwa mapping (respectively the rcwa group) by the injective
rcwa mapping .

Inductionis the right inverse of restriction, i.e. it &nduction (Restriction(g,f),f) =@
andInduction (Restriction(G,f),f) = G The mappingy respectively the grouf must not
move points outside the image fof

Example
gap> Induction (F2tilde,RcwaMapping([[5,3,11]1)) = F2;

true

Basic attributes of an rcwa group which are derived from the coefficients of its elements are
Modulus, Multiplier, Divisor and PrimeSet. The modulusof an rcwa group is the lcm of
the moduli of its elements if such an lcm exists, i.e. if the group is tame, and 0 otherwise. The
multiplier respectivelydivisor of an rcwa group is the Icm of the multipliers respectively divisors
of its elements in case such an Icm exists andtherwise. Theprime setof an rcwa group is
the union of the prime sets of its elements. There are shorthaswjsMult andbiv defined for
Modulus, Multiplier andDivisor, respectively. An rcwa group is calladtegral respectively
class-wise order-preserving all of its elements are so. There are corresponding methods avail-
able forIsIntegral andIsClassWiseOrderPreserving. There is a propertysSignPreserving

RCWA 34

which indicates whether a given rcwa group o¥egicts on the set of nonnegative integers. The latter
holds for any subgroup of CZj.

Example
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,6),
> ClassReflection(2,4));

<rcwa group over Z with 3 generators>

gap> List ([Modulus,Multiplier,Divisor,PrimeSet, IsIntegral,

> IsClassWiseOrderPreserving, IsSignPreserving], £->£(G));
[24, 2, 2, [2, 3], false, false, false]

3.2 Basic routines for investigating residue-class-wise affine groups

In the previous section we have seen how to construct rcwa groups. The purpose of this section
is to describe how to obtain information on the structure of an rcwa group and on its action on the
underlying ring. The easiest way to get some information on the group structure is a dedicated method
for the operatiorstructureDescription:

3.2.1 StructureDescription (for an rcwa group)

{Q StructureDescription (G) (method)

Returns: A string which describes the structure of the rcwa gr@itp some extent.

The attributest ructureDescription for finite groups is documented in th@AP Reference
Manual. Therefore we describe here only issues which are specific to infinite groups, and in particular
to rcwa groups.

Wreath products are denoted fay, and free products are denoted-hyThe infinite cyclic group
(Z,+) is denoted by, the infinite dihedral group is denoted by and free groups of rank 3,4, ...
are denoted by2, F3, F4, While for finite groups the symbal is used to denote a non-split
extension, for rcwa groups in general it stands for an extension which may be split or not. For wild
groups in most cases it happens that there is a large section on which no structural information can
be obtained. Such sections of the group with unknown structure are denotednyiown>. In
general, the structure of a section denoted<yiknown> can be very complicated and very difficult
to exhibit. While for isomorphic finite groups always the same structure description is computed, this

cannot be guaranteed for isomorphic rcwa groups.
Example

gap> G := Group (ClassTransposition(0,2,1,4),ClassShift(0,5));;
gap> StructureDescription(G);

"(Z x 2 x2x272Zx2Zx17Zzx12) . (C2xST)"
gap> G := Group (ClassTransposition(0,2,1,4),
> ClassShift (2,4),ClassReflection(1,2));;

gap> StructureDescription (G:short);
"7"2.((S3x83):2)"

gap> F2 := Image (IsomorphismRcwaGroup (FreeGroup(2)));;
gap> PSL2Z := Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(3),
> CyclicGroup(2))));;

gap> G := DirectProduct (PSL2Z,F2);
<wild rcwa group over Z with 4 generators>

RCWA 35

gap> StructureDescription(G);

"(C3 * C2) x F2"

gap> G := WreathProduct (G,CyclicGroup (IsRcwaGroupOverZ, infinity));
<wild rcwa group over Z with 5 generators>

gap> StructureDescription (G);

"((C3 * C2) x F2) wr Z"

gap> Collatz := RcwaMapping([[2,0,3],104,-1,31,14,1,311);;

gap> G := Group(Collatz,ClassShift(0,1));;

gap> StructureDescription(G:short);

"<unknown>.z"

However the extent to which the structure of an rcwa group can be exhibited automatically is
certainly limited. In general, one can find out much more about the structure of a given rcwa group in
an interactive session using the functionality described in the rest of this section and elsewhere in this
manual.

The order of an rcwa group can be computed by the operation. An rcwa group is finite if and
only if it is tame and its action on a suitably chosen respected partitiorréggectedPartition
(3.4.0) is faithful. Hence the problem of computing the order of an rcwa group reduces to the problem
of deciding whether it is tame, the problem of deciding whether it acts faithfully on a respected
partition and the problem of computing the order of the finite permutation group induced on the
respected partition.

Example
gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,3),
> ClassReflection(0,5));

<rcwa group over Z with 3 generators>
gap> Size(G);
46080

For a finite rcwa group, an isomorphism to a permutation group can be computed by
IsomorphismPermGroup:

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,3,1,3));;
gap> IsomorphismPermGroup (G);

[ClassTransposition(0,2,1,2), ClassTransposition(0,3,1,3)] ->

[(1,2)(3,4)(5,6), (1,2)(4,5)]

Next we say a few words about the membership test for rcwa groups. For tame rcwa groups, member-
ship or non-membership can always be decided. For wild groups, membership or non-membership
can very often be decided quite quick as well, but not always. On Info level 2f@fRcwa the mem-
bership test provides information on reasons why the given rcwa permutation is an element of the
given rcwa group or not.

The direct product of two free groups of rank 2 can faithfully be represented as an rcwa group.
According to Mih58] this implies that in general the membership problem for rcwa groups is algo-
rithmically undecidable.

RCWA 36

Example

gap> G := Group(ClassShift (0,3),ClassTransposition(0,3,2,6));;
gap> ClassShift(2,6)"7 * ClassTransposition(0,3,2,6)

> * ClassShift (0,3) -3 in G;

true

gap> ClassShift (0,1) in G;

false

The conjugacy problem for rcwa groups is difficult, @aRAWA provides only methods to solve it in
some reasonably easy cases.

Example
gap> IsConjugate (RCWA (Integers),
> ClassTransposition(0,2,1,4),ClassShift (0,1));
false
gap> IsConjugate (CT (Integers),ClassTransposition(0,2,1,6),
> ClassTransposition(1l,4,0,8));
true
gap> g := RepresentativeAction (CT (Integers),ClassTransposition(0,2,1,6),
> ClassTransposition(1,4,0,8));
<bijective rcwa mapping of Z with modulus 48>
gap> ClassTransposition(0,2,1,6)" g = ClassTransposition(l,4,0,8);
true

The number of conjugacy classes of RCVEA(of elements of given order is
known, cf. Corollary 2.7.1 (b) in HohO4. It can be determined by the function

NrConjugacyClassesOfRCWAZOfOrder:
Example

gap> List ([2,105],NrConjugacyClassesOfRCWAZOfOrder) ;
[infinity, 218]

There is a propertysTame which indicates whether an rcwa group is tame or not:
Example

gap> G := Group (ClassTransposition(0,2,1,4),ClassShift(1,3));;
gap> H := Group(ClassTransposition(0,2,1,6),ClassShift(1,3));;
gap> IsTame (G);

true

gap> IsTame (H);

false

For tame rcwa groups, there are methodsifesolvable and IsPerfect available, and usually
derived subgroups and subgroup indices can be computed as well. Linear representations of tame
groups over the rationals can be determined by the operatiatbrphismMatrixGroup. Testing a

RCWA 37

wild group for solvability or perfectness is currently not always feasible, and wild groups have in gen-
eral no faithful finite-dimensional linear representations. There is a methadfonent available,
which works basically for any rcwa group.

Example

gap> G := Group (ClassTransposition(0,2,1,4),ClassShift(1,2));;
gap> IsPerfect (G);

false

gap> IsSolvable (G);

true

gap> D1 := DerivedSubgroup(G);; D2 := DerivedSubgroup (D1);;
gap> IsAbelian (D2);

true

gap> Index (G,D1l); Index(D1,D2);

infinity

9

gap> StructureDescription(G); StructureDescription(Dl);

"(Z x 2 x Z) . S3"

"(Z x Z) . C3"

gap> Q := D1/D2;

Group([(), (1,2,4)(3,5,7)(6,8,9), (1,3,6)(2,5,8)(4,7,9) 1)
gap> StructureDescription(Q);

"C3 x C3"

gap> Exponent (G) ;

infinity

gap> phi := IsomorphismMatrixGroup (G);;

gap> Display (Image (phi,ClassTransposition(0,2,1,4)));

[0, 0, 1/2, -1/2, 0, 01,
[0, 0, 0, 1, 0, 01,
[2, 1, 0, 0, 0, 01,
[0, 1, 0, 0, 0, 017,
[0, 0, 0, 0, 1, 01,
[0 0, 0, 0, 0, 1711

4

When investigating a group, a basic task is to find relations among the generators:

3.2.2 EpimorphismFromFpGroup (for an rcwa group and a search radius)

¢ EpimorphismFromFpGroup (G, I) (method)
Returns: An epimorphism from a finitely presented group to the rcwa grGup
The argument is the “search radius”, i.e. the radius of the ball around 1 which is scanned for
relations. In general, the largeris chosen the smaller the kernel of the returned epimorphism is. If
the groupG has finite presentations, the kernel will in principle get trivial provided thit chosen
large enough.
Both the performance and the returned epimorphism depend on whether the peRK&ge01]
is present or not.

RCWA 38

Example
gap> a := ClassTransposition(2,4,3,4 :Name:="a");;
gap> b := ClassTransposition(4,6,8,12:Name:="b");;
gap> ¢ := ClassTransposition(3,4,4,6 :Name:="c");;
gap> G := Group(a,b,c);

<rcwa group over Z with 3 generators>

gap> phi := EpimorphismFromFpGroup (G, 6);

la, b, ¢c] > 1[a, b, c¢]

gap> RelatorsOfFpGroup (Source (phi));

[a"2, b"2, ¢c"2, c*b*c*b*c*b, c*b*c*a*c*b*c*a*c*b*c*a,
b*a*b*a*b*a*b*a*b*a*b*a]

A related very common task is to factor group elements into generators:

3.2.3 PrelmagesRepresentative (for an epi. from a free group to an rcwa group)

O PreImagesRepresentative (phi, g) (method)
Returns: A representative of the set of preimagegafinder the epimorphismhi from a free
group to an rcwa group.
The epimorphisnphi must map the generators of the free group to the generators of the rcwa
group one-by-one.
This method can be used for factoring elements of rcwa groups into generators. The implementa-
tion is based oRepresentativeActionPreImage, SE€RepresentativeAction (3.3.5.
Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. The operatiomagesRepresentatives takes care
of this. It takes the same argumentsPasImagesRepresentative and returns a list of preimages.
If multiple preimages are found, their quotients give rise to nontrivial relations among the generators

of the image ophi .
Example

gap> a := RcwaMapping([[2,0,3],[4,-1,31,14,1,3]1]);; SetName(a,"a");
gap> b := ClassShift (0,1:Name:="b");;

gap> G := Group(a,b);; # G = <<Collatz permutation>, n -> n + 1>
gap> phi := EpimorphismFromFreeGroup (G);;
gap> g := Comm(a"2*b"4,a*b"3); # a sample element to be factored

<bijective rcwa mapping of Z with modulus 8>

gap> PrelImagesRepresentative (phi,qg); # -> a factorization of g
b -4*a"-1*b"-1*a"-1*b"3*a*b"-1*a*b"3

gap> g = b"-4*a"-1*b"-1*a"~-1*b"3*a*b"-1*a*b"3; # check

true

gap> g := Comm(a*b,Comm(a,b”3));

<bijective rcwa mapping of Z with modulus 8>

gap> pre := PrelmagesRepresentatives (phi,q);

[b"-1*a"-1*b"-1*a"-1*b"3*a*b*a*b"-2, b "-1*a"-1*b*a"-1*b"3*a*b"-1*a*b"-2]
gap> rel := CyclicallyReducedWord (pre[l]/pre[2]); # -> a nontriv. relation

b"-1*a"-1*b"3*a*b"2*a"-1*b"-3*a*b" -1
gap> rel’phi;
IdentityMapping(Integers)

RCWA 39

3.3 The natural action of an rcwa group on the underlying ring

Knowing a natural permutation representation of a group usually helps significantly in computing in
it and in obtaining results on its structure. This holds particularly for the natural action of an rcwa
group on its underlying ring. In this section we desciiti&VA’s functionality related to this action.

The support, i.e. the set of moved points, of an rcwa group can be determirgaghiyrt or
MovedPoints (these are synonyms). Testing for transitivity on the underlying ring is often feasible:
Example

gap> G := Group(ClassTransposition(l,2,0,4),ClassShift (0,2));;
gap> IsTransitive (G, Integers);
true

There are methods to compute orbits under the action of an rcwa group:

3.3.1 Orbit (for an rcwa group and either a point or a set)

¢ orbit (G, point) (method)
O orbit (G, set) (method)

Returns: The orbit of the poinpoint respectively the setet under the natural action of the
rcwa groupG on its underlying ring.

The second argument can either be an element or a subset of the underlying ring of the rcwa
groupG. Since orbits under the action of rcwa groups can be finite or infinite, and since infinite orbits
are not necessarily residue class unions, the orbit may either be returned in the form of a list, in the
form of a residue class union or in the form of an orbit object. It is possible to loop over orbits returned
as orbit objects, they can be compared and there is a membership test for them. However note that

equality and membership for such orbits cannot always be decided.
Example

gap> G := Group(ClassShift (0,2),ClassTransposition(0,3,1,3));
<rcwa group over Z with 2 generators>
gap> Orbit (G,0);

Z \ 5(6)
gap> Orbit (G, 5);
[5]

gap> Orbit (G,ResidueClass(0,2)

)i
[0(2), 1(6) U 2(6) U 3(6), 1(3) U 3(6), 0(3) U 1(6), 0(3) U 4¢(6),
1(3) U 0(6), 0(3) U 2(6), 0(6) U 1(6) U 2(6), 2(6) U 3(6) U 4(6),
1(3) U 2(6) 1]
gap> G := Group (ClassTransposition(0,2,1,2),ClassTransposition(0,2,1,4),
> ClassReflection(0,3));

<rcwa group over Z with 3 generators>

gap> orb := Orbit (G,2);

<orbit of 2 under <wild rcwa group over Z with 3 generators>>

gap> 1015808 in orb;

true

gap> First (orb,n->ForAll ([n,n+2,n+6,n+8,n+30,n+32,n+36,n+38], IsPrime));
-19

RCWA 40

RCWA permits drawing pictures of orbits of rcwa groups@h The pictures are written to files
in bitmap- (bmp-) format. The author has successfully tested this feature both under Linux and under
Windows, and the produced pictures can be processed further with many common graphics programs:

3.3.2 DrawOrhbitPicture (G, p0, r, h, w, colored, palette, filename)

O DrawOrbitPicture (G, p0, r, h, w, colored, palette, filename) (function)

Returns: Nothing.

Draws a picture of the orbit(s) of the point(sp under the action of the group on Z2. The
argumentpO is either one point or a list of points. The argumentlenotes the radius of the ball
aroundpO to be computed. The size of the created pictute xsw pixels. The argumertdolored
is a boolean which indicates whether a 24-bit True-Color picture or a monochrome picture should
be drawn. In the former caspalette must be a list of triples of integers in the range.0, 255,
denoting the RGB values of colors to be used. In the latter gadette is not used, and any value
can be passed. The picture is written in bitmap- (bmp-) format to a file ndilkedme . This is
done using the utility functiosaveAsBitmapPicture (7.6.1).

Example

gap> PSL2Z := Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(2),

> CyclicGroup(3))));;
gap> DrawOrbitPicture (PSL2Z,[0,1],20,512,512,false, fail, "examplel.bmp");
gap> DrawOrbitPicture (PSL2Z,Combinations([1..4],2),20,512,512,true,

> [[255,0,0],[0,255,0],[0,0,255]], "example2.bmp");

The pictures drawn in the examples are showRGRVA’'s webpage.
Finite orbits give rise to finite quotients of a group, and finite cycles can help to check for conju-
gacy. Therefore it is important to be able to determine them:

3.3.3 ShortOrbits (for rcwa groups) & ShortCycles (for rcwa permutations)

¢ ShortOrbits (G, S, maxing) (operation)
¢ ShortCycles (g, S, maxing) (operation)
Q ShortCycles (9, maxlng) (operation)

Returns: In the first form a list of all finite orbits of the rcwa gro@of length at mostaxing
which intersect nontrivially with the s&.

In the second form a list of all cycles of the rcwa permutatjoof length at mosimaxing which
intersect nontrivially with the ses.

In the third form a list of all cycles of the rcwa permutatigrof length at mostnaxing which
do not correspond to cycles consisting of residue classes.

Example

gap> G := Group(ClassTransposition(l,4,2,4)*ClassTransposition(1,4,3,4),
> ClassTransposition(3,9,6,18)*ClassTransposition(1l,6,3,9));;
gap> List (ShortOrbits (G, [-15..15],100),
> orb->StructureDescription (Action (G, orb)));
["Al5", |IA4", "l", "1"’ HCEII’ "lll, n ((C2 X C2 X C2) . c7) : CEII’ "lll,

"l"’ "C3"’ "Al9"]
gap> ShortCycles (mKnot (7),[1..100],20);

RCWA 41

rtrx1,t021, (31,0411, 151, [el, 07,81, 19 1017,
[11, 12 1, [13, 14, 16, 18, 20, 22, 19, 17, 151, [21, 24 1,
[23, 26 1, [25, 28, 32, 36, 31, 27, 30, 34, 38, 33, 29 1,
[35, 40 1, [37, 42, 48, 54, 47, 41, 46, 52, 45, 39, 44, 50, 43 1,
[77, 88, 100, 114, 130, 148, 127, 109, 124, 107, 122, 105, 120, 103,
89 1 1

Frequently one needs to compute balls of certain radius around points or group elements, be it to
estimate the growth of a group, be it to see how an orbit looks like, be it to search for a group element
with certain properties or be it for other purposes:

3.3.4 Ball (for group, element and radius or group, point, radius and action)

QBall(G, g, r) (method)
¢ Ball (G, p, r, action) (method)

Returns: The ball of radiugr around the elemerg in the groupG, respectively the ball of
radiusr around the poinp under the actiomction of the groupG.

All balls are understood with respect tenerators0fGroup (G). As membership tests can be
expensive, the former method does not check whaghierindeed an element @&. The methods
require that element- / point comparisons are cheap. They are not only applicable to rcwa groups. If
the optionSpheres is set, the ball is splitted up and returned as a list of spheres.

Example

gap> PSL2Z := Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(2),
> CyclicGroup(3))));;
gap> List([1..10],k->Length(Ball (PSL2Z, [0,1],%k,OnTuples)));
[4, 8, 14, 22, 34, 50, 74, 106, 154, 218]
gap> Ball (Group((1,2),(2,3),(3,4)), (),2:Spheres);
0O 1,0 3,4, (2,3), (1,2) 1,
[(2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,3,2) 1]

It is possible to determine group elements which map a given tuple of elements of the underlying
ring to a given other tuple, if such elements exist:

3.3.5 RepresentativeAction (G, source, destination, action)

{ RepresentativeAction (G, source, destination, action) (method)

Returns: An element ofG which mapssource to destination under the action given
by action

If an element satisfying this condition does not exist, this method either retatnsor runs into
an infinite loop. The problem whethsource anddestination lie in the same orbit under the
actionaction of Gis hard, and in its general form most likely computationally undecidable.

In cases where rather a word in the generatoiG tifan the actual group element is needed, one
should use the operaticepresentativeActionPreImage instead. This operation takes five argu-
ments. The first four are the same as thoseepfresentativeAction, and the fifth is a free group
whose generators are to be used as letters of the returned word. NateghatéentativeAction

RCWA 42

callsrepresentativeActionPreImage and evaluates the returned word. The evaluation of the word
can very well take most of the time@®is wild and coefficient explosion occurs.

The algorithm is based on computing balls of increasing radius ar@amdce and
destination until they intersect nontrivially.
Example

gap> a := RcwaMapping([[2,0,3],(4,-1,31,14,1,31]1);; SetName(a,"a");
gap> b := ClassShift (1,4:Name:="b");; G := Group(a,b);;

gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],0nTuples);;
gap> Display (elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U
0 2 3 6 811 | n
1 710 | n -3
4 | n+ 1
5 9 | n+ 4

gap> List([7,4,9],n->n"elm);

[4, 5, 13]

gap> elm := RepresentativeAction(G, [6,-3,8],[-9,4,11],0nPoints);;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n"f
____________________________________ e

0 3 6 | 2n/3

1 | (2n - 8)/3

2 811 | (4n + 1)/3

4 710 | (4n - 1)/3

5 | (4n - 17)/3

9 | (4n - 15)/3

gap> [6,-3,8]"elm; List([6,-3,8],n->n"elm); # ‘OnPoints’ allows reordering
[-9, 4, 11]

[4, -9, 11]

gap> F := FreeGroup("a","b");; phi := EpimorphismByGenerators(F,G);;
gap> w := RepresentativeActionPrelImage (G, [10,-4,9,5],1(4,5,13,-8],

> OnTuples, F);
a*b"-1*a"-1*b"-1*a*b"-1*a*b*a*b"-2*a*b*a"-1*b

gap> elm := w'phi;

<bijective rcwa mapping of Z with modulus 324>

gap> List([10,-4,9,5],n->n"elm);

[4, 5, 13, -8 1]

Sometimes an rcwa group fixes a certain partition of the underlying ring into unions of residue
classes. If this happens, then any orbit is clearly a subset of exactly one of these parts. Further, such a
partition often gives rise to proper quotients of the group:

RCWA 43

3.3.6 Projections (for an rcwa group and a modulus)

O Projections (G, m) (operation)
Returns: The projections of the rcwa groupto the unions of residue classes (madwhich it
fixes setwise.
The corresponding partition of a set of representatives for the residue classes(road be
obtained by the operatiarrbitsModulo (G, m .
Example

gap> G := Group (ClassTransposition(0,2,1,2),ClassShift(3,4));;
gap> Projections (G, 4);
[[ClassTransposition(0,2,1,2), ClassShift(3,4)] ->
[<bijective rcwa mapping of Z with modulus 4>,
IdentityMapping(Integers) 1,
[ClassTransposition(0,2,1,2), ClassShift(3,4) 1 ->
[<bijective rcwa mapping of Z with modulus 4>,
<bijective rcwa mapping of Z with modulus 4>]]
gap> List (last,phi->Support (Image (phi)));
[0(4) U 1(4), 2(4) U 3(4)]

Given two partitions of the underlying ring into the same number of unions of residue classes,
there is always an rcwa permutation which maps the one to the other:

3.3.7 RepresentativeAction (for RCWA(R) and 2 partitions of R into residue classes)

Q RepresentativeAction (RCWA(R), P1, P2) (method)

Returns: An element of RCWAR) which maps the partitioR1 to P2.

The argument®1 andP2 must be partitions of the underlying ririginto the same number of
unions of residue classes. The methodRet Z recognizes the optionsTame, which can be used to
demand a tame result. If this option is set and there is no tame rcwa permutation whidhInap2,
the method runs into an infinite loop. This happens if the condition in Theorem 2.&6li0Y is not
satisfied. If the optiorntsTame is not set and the partitiorl31 andP2 both consist entirely of single
residue classes, then the returned mapping is affine on any residue ddss in

Example
gap> Pl := AllResidueClassesModulo (3);
[0(3), 1(3), 2(3)]
gap> P2 := List ([[0,2],[1,4],[3,4]1],ResidueClass);
[0(2), 1(4), 3(4) 1]

gap> elm := RepresentativeAction (RCWA (Integers),Pl,P2);
<bijective rcwa mapping of Z with modulus 3>

gap> Pl elm = P2;

true

gap> IsTame (elm);

false

gap> elm := RepresentativeAction (RCWA (Integers),P1l,P2:IsTame);
<tame bijective rcwa mapping of Z with modulus 24>

gap> Pl elm = P2;

true

gap> elm := RepresentativeAction (RCWA (Integers),

RCWA 44

[ResidueClass (1, 3),
ResidueClassUnion (Integers, 3, [0,2])
[ResidueClassUnion (Integers, 5, [2,4]),
ResidueClassUnion (Integers, 5, [0,1,31)1);
<bijective rcwa mapping of Z with modulus 6>

gap> [ResidueClass(1,3),ResidueClassUnion(Integers,3,[0,2])] elm;
[2(5) U 4(5), 2 \ 2(5) U 4(5)]

1

vV V V V

3.4 Special attributes of tame residue-class-wise affine groups

There are a couple of attributes which a priori make only sense for tame rcwa groups. With their help,
various structural information about a given such group can be obtained. We have already seen above
that there are for example methods fiarSolvable, IsPerfect andDerivedSubgroup available

for tame rcwa groups, while testing wild groups for solvability or perfectness is currently not always
feasible. The purpose of this section is to describe the specific attributes of tame groups which are
needed for these computations.

3.4.1 RespectedPartition (of a tame rcwa group or -permutation)

Q) RespectedPartition (G (attribute)
O RespectedPartition(g) (attribute)

Returns: A respected partition of the rcwa gro@ of the rcwa permutatiog.

A tame elemeng € RCWA(R) permutes a partition dR into finitely many residue classes on all
of which it is affine. Given a tame group < RCWA(R), there is a common such patrtition for all
elements of5. We call the mentioned partitiomsspected partitionsf g or G, respectively.

An rcwa group or an rcwa permutation has a respected partition if and only if it is tame. This holds
either by definition or by Theorem 2.5.8 iKgh05, depending on how one introduces the notion of
tameness.

Related attributes amespectedPartitionShort andRespectedPartitionLong. The first of
these denotes a respected partition consisting of residue clgssesherem divides the modulus
of Gor g, respectively. The second denotes a respected partition consisting of residue rciasses
where the modulus d& (respectivelyg) dividesm.

There is an operatioRespectsPartition (G, P) / RespectsPartition(g,P), which tests
whetherG or g respects a given partitioR. The permutation induced ky on P can be computed

efficiently byPermutationOpNC (g, P, OnPoints).
Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift (0,2));
<rcwa group over Z with 2 generators>

gap> IsTame (G);

true

gap> Size(G);

infinity

gap> P := RespectedPartition (G);

[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]

RCWA

3.4.2 ActionOnRespectedPartition & KernelOfActionOnRespectedPartition

{Q ActionOnRespectedPartition (G) (attribute)
{Q KernelOfActionOnRespectedPartition (G) (attribute)
Returns: The action of the tame rcwa gro®on RespectedPartition (G) or the kernel of

this action, respectively.

The method foKernelOfActionOnRespectedPartition uses the packageolycyclic [ENOEG.
The rank of the largest free abelian subgroup of the kernel of the actiGoaofits stored respected

partition can be computed lankOfKernelOfActionOnRespectedPartition (G).
Example

gap> G := Group (ClassTransposition(0,4,1,6),ClassShift(0,2));;
gap> H := ActionOnRespectedPartition(G);

Group ([(3,7)(5,8), (3,4,5,6) 1)

gap> H = Action(G,P);

true

gap> Size (H);

48

gap> K := KernelOfActionOnRespectedPartition(G);

<rcwa group over Z with 3 generators>

gap> RankOfKernelOfActionOnRespectedPartition(G);

3

gap> Index (G,K);

48

gap> List (GeneratorsOfGroup (K),Factorization);

[[ClassShift(0,4)"2], [ClassShift(2,4)"2], [ClassShift(1,6)"2]]
gap> Image (IsomorphismPcpGroup (K));

Pcp-group with orders [0, 0, 0]

Let G be a tame rcwa group ovér, let P be a respected partition & and putm:= |?|. Then
there is an rcwa permutatianwhich mapsP to the partition ofZ into the residue classes (mat,

and the conjugat&? of G under such a permutation is integral (dfoh05, Theorem 2.5.14).

The conjugatés? can be determined by the operatinitegralConjugate, and the conjugating
permutationg can be determined by the operatiittegralizingConjugator. Both operations are
applicable to rcwa permutations as well. Note that a tame rcwa group does not determine its integral

conjugate uniquely.
Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift (0,2));;
gap> G IntegralizingConjugator(G) = IntegralConjugate(G);

true

gap> RespectedPartition(G);

[3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12)]

gap> RespectedPartition(G) “IntegralizingConjugator (G);

[0(8), 1(8), 2(8), 3(8), 4(8), 5(8), 6(8), 7(8)]

gap> last = RespectedPartition(IntegralConjugate(G));

true

RCWA

3.5 Generating pseudo-random elements of RCWA(R) and CT(R)

46

There are methods for the operatimdom for RCWA(R) and CTR). These methods are designed

to be suitable for generating interesting examples. No particular distribution is guaranteed.
Example

gap> elm := Random (RCWA (Integers));;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U
0 2 4 6 810 | 3n + 2
1 5 9 | -n + 2
3 7 | (n-7)/2
11 | (-n + 20)/3

The elements which are returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1), class reflections (se®lassReflection (2.2.9) and class transpositions (see

ClassTransposition (2.2.3). These factors can be retrieved by factoring:
Example

gap> Factorization(elm);
[ClassTransposition(0,2,3,4), ClassTransposition(3,4,4,6),
ClassShift (0,2)"-1, ClassReflection(3,4), ClassReflection(l,4)]

There is an auxiliary functiomlassPairs ([R,] m, which is used in this context. In its
argument form, this function returns a list of 4-tup(es, my, r2,mp) of integers corresponding t

one-
o the

unordered pairs of disjoint residue classg@mn) andrz(nmy) with mg,my; < m. In its two-argument

form, it does “the equivalent” for the ring.

gap> List (ClassPairs
[ClassTransposition
ClassTransposition
ClassTransposition
ClassTransposition
ClassTransposition
ClassTransposition
ClassTransposition
gap> List (last,Trans
[[0(2), 1(2) 1, [
[0(3), 2
[1(2), 0
[1(4), 3

Example
(4),ClassTransposition);
(0,2,1,2), ClassTransposition(0,2,1,4),
(0,2,3,4), ClassTransposition(0,3,1,3),
(0,3,2,3), ClassTransposition(0,4,1,4),
(0,4,2,4), ClassTransposition(0,4,3,4),
(1,2,0,4), ClassTransposition(l,2,2,4),
(1,3,2,3), ClassTransposition(1,4,2,4),
(1,4,3,4), ClassTransposition(2,4,3,4)]
posedClasses) ;
0(2), 1(4) 1, [0(2), 3(4) 1, [0(3), 1(3)
0(4), 1(4) 1, 1 0(4), 2(4) 1, [0(4), 3(4)
1(2), 2(¢4) 1, [1(3), 2(3) 1, [1(4), 2(4)
2(4), 3(4) 1]

RCWA 47

3.6 The categories of residue-class-wise affine groups

3.6.1 IsRcwaGroup

{ IsRcwaGroup (G) (filter)
Q IsRcwaGroupOver?Z (G) (filter)
{ IsRcwaGroupOverZ_pi (G) (filter)
Q IsRcwaGroupOverGFgx (G) (filter)

Returns: true if Gis an rcwa group, an rcwa group over the ring of integers, an rcwa group over
a semilocalization of the ring of integers or an rcwa group over a polynomial ring in one variable over

a finite field, respectively, anth1se otherwise.

Often the same methods can be used for rcwa groups over the ring of integers and over its semilo-

calizations. For this reason there is a categdycwaGroupOverZOrz_pi which is the union of
IsRcwaGroupOverZ andIsRcwaGroupOver?Z _pi.

To allow distinguishing the groups RCWRf and CTR) from others, they have the characteristic

propertyIsNaturalRCWA Or IsNaturalCT, respectively.

Chapter 4

Residue-Class-Wise Affine Monoids

In this short chapter, we describe how to compute with residue-class-wise affine mdrRegidue-
class-wise affinenonoids, orcwa monoids for short, are monoids whose elements are residue-class-
wise affine mappings.

4.1 Constructing residue-class-wise affine monoids

As any other monoids iBAP, residue-class-wise affine monoids can be constructecbyid or
MonoidByGenerators.

Example

gap> M := Monoid(RcwaMapping([[O0,1,1],[1,1,111),
> RcwaMapping ([[-1,3,11,10,2,111));
<rcwa monoid over Z with 2 generators>

gap> Size(M);

11

gap> Display (MultiplicationTable (M));

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111,
[2, 8, 5, 11, 8, 3, 10, 5, 2, 8, 51,
[3, 10, 11, 5, 5, 5, 8, 8, 8, 2, 31
[4, 9, 6, 8, 8, 8, 5, 5, 5, 7, 47,
[5, 8, 5, 8, 8, 8, 5, 5, 5, 8, 51,
[6, 7, 4, 8, 8, 8, 5, 5, 5, 9, 61,
[7, 5, 8, 6, 5, 4, 9, 8, 7, 5, 81,
[8, 5, 8, 5, 5, 5, 8, 8, 8, 5, 8 1,
[9, 5, 8, 4, 5, 6, T, 8, 9, 5, 8 1,
[10, 8, 5, 3, 8, 11, 2, 5, 10, 8, 51,
[11, 2, 3, 5, 5, 5, 8, 8, 8, 10, 11 1 1]

There are methods for the operationew, Display, Print andString which are applicable to rcwa
monoids. All rcwa monoids over a rirlgare submonoids of Rew). The monoid Rewd) itself is
not finitely generated, thus cannot be constructed as described above. It is handled as a special case:

48

RCWA 49

4.1.1 Rcwa (the monoid of all rcwa mappings of a ring)

O Rewa (R) (function)
Returns: The monoid Rcwdf) of all residue-class-wise affine mappings of the fiig
Example
gap> RcwaZ := Rcwa (Integers);
Rcwa (2)
gap> IsSubset (Rcwaz,M);
true

In our methods to construct rcwa groups, two kinds of mappings played a crucial role,
namely the restriction monomorphisms (g&striction (3.1.6) and the induction epimorphisms
(cf. Induction (3.1.7). The restriction monomorphisms extend in a natural way to the monoids
RcwaR), and the induction epimorphisms have corresponding generalizations, also. Therefore the
operationRestriction andInduction can be applied to rcwa monoids as well:
Example

gap> M2 := Restriction (M, 2*One (Rcwa (Integers)));
<rcwa monoid over Z with 2 generators, of size 11>
gap> Support (M2);

0(2)

gap> Action(M2,ResidueClass(1l,2));

Trivial rcwa group over Z

gap> Induction (M2,2*0One (Rcwa (Integers))) = M;

true

4.2 Computing with residue-class-wise affine monoids

There is a method fogize which computes the order of an rcwa monoid. Further there is a method
for in which checks whether a given rcwa mapping lies in a given rcwa monoid (membership test),
and there is a method fassubset which checks for a submonoid relation.

There are also methods foBupport, Modulus, IsTame, PrimeSet, IslIntegral,
IsClassWiseOrderPreserving andIsSignPreserving available for rcwa monoids.

The supportof an rcwa monoid is the union of the supports of its elements. fibdulusof an
rcwa monoid is the lcm of the moduli of its elements in case such an Icm exists and 0 otherwise. An
rcwa monoid is calledameif its modulus is nonzero, andild otherwise. Therime setof an rcwa
monoid is the union of the prime sets of its elements. An rcwa monoid is daliegral, class-wise
order-preservingr sign-preservingf all of its elements are so.

Example
gap> fl := RcwaMapping([[-1, 1, 11,[0,-1, 111);;
gap> f2 := RcwaMapping([[1,-1, 11,I[-1,-2, 11,I[-1, 2, 111);;
gap> f3 := RcwaMapping([[1, O, 11,([-1, 0, 111);;
gap> N := Monoid(fl,f2,£3);;
gap> Size(N);
366

RCWA

gap> List ([Monoid(fl,f2),Monoid(f1l, £3),Monoid(f2,£3)],Size);
[96, 6, 66]
gap> f1*f2*£f3 in N;

true

gap> IsSubset (N,M);

false

gap> IsSubset (N,Monoid(f1*£2,£3*£2));

true

gap> Support (N);

Integers

gap> Modulus (N);

6

gap> IsTame(N) and IsIntegral (N);

true

gap> IsClassWiseOrderPreserving (N) or IsSignPreserving (N);

false

gap> Collected(List (AsList (N),Image)); # The images of the elements of N.

[[Integers, 2 1, [1(2), 21, [2\ 1(3), 321, [O¢(6), 44 7,
[0(6) U 1(6), 41, [2\ 4(6) US5(6), 321, [0(6) U 2(6), 41,
[0(6) US(6), 41, [1(6), 441, [1(6) U [-11, 21,
[1(6) U 3(6), 41, [1(6) US(6), 40], [2(6), 44 1,
[2(6) U 3(6), 41, [3(6), 441, [3(6) UDS(6), 41, [5(6), 44 1,
(S6)u 11,21, 10-51, 11, (0 [0-41,11,[[-31,11,
rr-1t1, 1, tcog, 1, ey, 1, 0021, 11, 0031,11,
(51,11, 0061, 111

50

Finite forward orbits under the action of an rcwa monoid can be found by the opesationorbits:

4.2.1 ShortOrbits (for rcwa monoid, set of points and bound on length)

{ ShortOrbits (M, S, maxing)

(method)

Returns: A list of finite forward orbits of the rcwa monoilfl of length at mostnaxing which

start at points in the s&.

Example

gap> ShortOrbits (M, [-5..5],20);
[[-5 -4, 1, 2, 7,81, [-3, -2, 1, 2, 5, 61, [-1, 0, 1, 2, 3, 41]
gap> Display(Action (M, last[1]));
Monoid([Transformation([2, 3, 4, 3, 6, 3 1),
Transformation([4, 5, 4, 3, 4, 11) 1, ...)

gap> orbs := ShortOrbits (N, [0..10],100);
([-5 -4, -3, -1, 0, 1, 2, 3, 5, 61,
[-11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
11, 12 71,
[-17, -16, -15, -13, -12, -11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1,
2, 3, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 17, 18]]
gap> quots := List (orbs,orb->Action (N,orb));;
gap> List (quots,Size);
[268, 332, 366]

RCWA 51

Balls of given radius around an element of an rcwa monoid can be computed by the operation
Ball. This operation can also be used for computing forward orbits or subsets of such under the
action of an rcwa monoid:

4.2.2 Ball (for monoid, element and radius or monoid, point, radius and action)

OBall(M, f, r) (method)
¢ Ball (M, p, r, action) (method)
Returns: The ball of radiug around the elemerit in the monoidM, respectively the ball of
radiusr around the poinp under the actiomction of the monoidW.
All balls are understood with respect teneratorsOfMonoid (M). As membership tests can
be expensive, the first-mentioned method does not check wHetisendeed an element &f. The
methods require that point- / element comparisons are cheap. They are not only applicable to rcwa

monoids. If the optiorSpheres is set, the ball is splitted up and returned as a list of spheres.
Example

gap> List ([0..12],k->Length(Ball(N,One (N),k)));
[1, 4, 11, 26, 53, 99, 163, 228, 285, 329, 354, 364, 366]
gap> Ball (N, [0..3],2,0nTuples);
(-3 3 331, 1-1, -3 0 21, -1, -1, -1, -1 1,
(-1, -1, 1, -1, (-1, 1, 1, 11, [-1, 3, 0, =471, [O, -1, 2, -3 1,
(o, 1, 2,31, 11,-1, -1, -1, 101, 3,0, 271, [3, -4 -1, 011
gap> 1 := 2*IdentityRcwaMappingOfZ; r := 1+1;
Rcwa mapping of Z: n -> 2n
Rcwa mapping of Z: n -> 2n + 1
gap> Ball (Monoid(l,r),1,4,0nPoints:Spheres);
(r21, 102,31, 145, 6,771,118, 9, 10, 11, 12, 13, 14, 15],
[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 1]

Chapter 5

Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary.
In particular they are not ordered by degree of interestingness or difficulty.

Please note that now since quite a while no further examples have been added to this chapter, and
that the capabilities of this package have been extended considerably in the meantime.

The rcwa mappings defined in this chapter (and in fact many more) can be found in the file
pkg/rcwa/examples/examples.g, SO there is no need to extract them from the manual files. This
file can be read into the curreB\P session by issueirkCiAReadExamples () ;.

The examples are typically far from discussing the respective aspects exhaustively. It is quite
likely that in many instances by just a few little modifications or additional easy commands you can
find out interesting things yourself — have fun!

5.1 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,31,[4,-1,31,14,1,311);;
gap> SetName (Collatz,"Collatz"); Display(Collatz);

Rcwa mapping of Z with modulus 3

n mod 3 \ n"Collatz
____________________________________ S
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> ShortCycles(Collatz, [-50..50],50); # There are some finite cycles:
[[-111, -74, -99, -66, -44, -59, -79, -105, -70, -93, -62, -83],
[_9/ _61 _41 _5/ _7}1 [_31 _2}1 [_1]/ [O]l [1]1 [21 3]/
[4, 5,7, 9, 61, [44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66]]

The cycle structure of Collatz’ permutation has not been completely determined yet. In particular it is
not known whether the cycle containing 8 is finite or infinite. Nevertheless, the factorization routine

52

RCWA 53

included in this package can determine a factorization of this permutation into class transpositions,
i.e. involutions interchanging two disjoint residue classes:
Example

gap> Collatz in CT(Integers); # ‘Collatz’ lies in the simple group CT(Z).
true

gap> Length (Factorization(Collatz));

212

Setting the Info level of nfoRCWA equal to 2 (Simply iSSURCWATInfo (2) ;) causes the factorization
routine to display detailed information on the progress of the factoring process. For reasons of saving
space, this is not done in this manual.

We would like to get a factorization into fewer factors. Firstly, we try to factor the inverse — just
like the various options interpreted by the factorization routine, this has influence on decisions taken
during the factoring process:

Example

gap> Length(Factorization(Collatz"-1));
129

This is already a shorter product, but can still be improved. We remembekithe’s, of which the
permutatiomKnot (3) looks very similar to Collatz’ permutation. Therefore it is straightforward to
try to factor bothnknot (3) andCollatz/mKnot (3), and to look whether the sum of the numbers of

factors is less than 129:
Example

gap> KnotFacts := Factorization (mKnot (3));;

gap> QuotFacts := Factorization(Collatz/mKnot (3));;

gap> List ([KnotFacts,QuotFacts],Length);

[59, 91

gap> CollatzFacts := Concatenation(QuotFacts,KnotFacts);

[ClassTransposition(0,6,4,6), ClassTransposition(0,6,5,6),

ClassTransposition(0,6,3,6), ClassTransposition(0,6,1,6),

)
)

)
ClassTransposition(0,6,2,6), ClassTransposition(2,3,4,6),
ClassTransposition(0,3,4,6), ClassTransposition(2,3,1,6),
ClassTransposition(0,3,1,6), ClassTransposition(0,36,35,36),
ClassTransposition(0,36,22,36), ClassTransposition(0,36,18,36),
ClassTransposition(0,36,17,36), ClassTransposition(0,36,14,36),
ClassTransposition(0,36,20,36), ClassTransposition(0,36,4,36),

ClassTransposition(2,36,13,36), ClassTransposition(2,36,9,36),
ClassTransposition(2,36,7,36), ClassTransposition(2,36,6,36),
ClassTransposition(2,36,3,36), ClassTransposition(2,36,10,36),
ClassTransposition(2,36,15,36), ClassTransposition(2,36,12,36),
ClassTransposition(2,36,5,36), ClassTransposition(21,36,28,36),

ClassTransposition(21,36,33,36),
ClassTransposition(21,36,23,36),
ClassTransposition(21,36,31,36)

ClassTransposition(21,36,25,36),

I

(
(
(
(
(
(
(
(0,
ClassTransposition(2,36,8,36), ClassTransposition(2,36,16,36),
(
(
(
(
(
(
(
(
(

ClassTransposition(21,36,30,36),
ClassTransposition(21,36,34,36),
ClassTransposition(21,36,27,36),
ClassTransposition(21,36,24,36),

RCWA

ClassTransposition(26,36,32,36), ClassTransposition
ClassTransposition(10,18,35,36), ClassTransposition

(26,36,29,36)
(5,18,35,36),
ClassTransposition(10,18,17,36), ClassTransposition(5,18,17,36),
ClassTransposition(8,12,14,24), ClassTransposition(6,9,17,18),
ClassTransposition(3,9,17,18), ClassTransposition(0,9,17,18),
ClassTransposition(6,9,16,18), ClassTransposition(3,9,16,18),
ClassTransposition(0,9,16,18), ClassTransposition(6,9,11,18),
ClassTransposition(3,9,11,18), ClassTransposition(0,9,11,18),

(

(

(

(

(

(

(

ClassTransposition(6,9,4,18), ClassTransposition(3,9,4,18),
ClassTransposition(0,9,4,18), ClassTransposition(0,6,14,24),
ClassTransposition(0,6,2,24), ClassTransposition(8,12,17,18),
ClassTransposition(7,12,17,18), ClassTransposition(8,12,11,18),
ClassTransposition(7,12,11,18), PrimeSwitch(3) -1,
ClassTransposition(7,12,17,18), ClassTransposition(2,6,17,18),
ClassTransposition(0,3,17,18), PrimeSwitch(3)" -1, PrimeSwitch(3)
PrimeSwitch(3) "-1]

gap> Product (CollatzFacts) = Collatz; # Check.

true

’

-1,

54

The factorsprimeSwitch (3) are products of 6 class transpositions (fimeSwitch (2.5.9). At

the end of Sectio®.6, a much smaller factorization task is performed “manually” for purposes of

illustration.

5.2 Anrcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mapgirgeem to approach its contraction centre — this
is the finite set where all trajectories end up after a finite number of steps — rather quickly and do not

get very large before doing so (of course this is a purely heuristic statement as-ttie@Gonjecture

has not been proved so far!):

Example

gap> T := RcwaMapping([[1,0,21,1[3,1,211);;

gap> SO0 := LikelyContractionCentre(T,100,1000);

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

[-136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7,
-1, 0, 1, 2]

true

gap> List([1..30],n->Length(Trajectory(T,n,S0)));

(1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14,
11, 11, 8, 16, 8, 70, 13, 13, 13]

gap> Maximum(List ([1..1000],n->Length(Trajectory(T,n,S0))));

113

gap> Maximum(List ([1..1000],n->Maximum(Trajectory(T,n,S0))));

125252

-5,

gap> SO°T = S0; # This holds by definition of the contraction centre.

6, 6,

RCWA 55

The following mapping seems to be contracting as well, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping(I[[1,0,61,[5, 1,61, 7,-2,6],

> [11,3,61,111,-2,6],111,-1,611);;
gap> SetName (f6,"f6");

gap> Display (£6);

Rcwa mapping of Z with modulus 6

n mod 6 | n"f6
____________________________________ S

0 | n/6

1 | (5n + 1)/6

2 | (7n - 2)/6

3 | (1ln + 3)/6

4 | (11n - 2)/6

5 | (1ln - 1)/6

gap> SO := LikelyContractionCentre(£6,1000,100000);;

#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.

The returned result can only be regarded as a rough guess.

See ?LikelyContractionCentre for more information.

gap> Trajectory(£6,25,S0);

[25, 21, 39, 72, 12, 2]

gap> List ([1..100],n->Length(Trajectory(f6,n,S0)));

(1,1, 3, 4,1,2,3, 2,1,5,17, 2,8, 17, 3, 16, 1, 4, 17, 6, 5, 2,
5 5, 6,1, 4, 2, 15, 1, 1, 3, 2, 5, 13, 3, 2, 3, 4, 1, 8, 4, 4, 2, 7,
19, 23517, 3, 9, 3, 1, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 1, 4, 19,
12, 23511, 8, 23513, 10, 1, 13, 13, 3, 1, 23517, 7, 20, 7, 9, 9, 6,
12, 8, 6, 18, 14, 23516, 31, 12, 23545, 4, 21, 19, 5, 1, 17, 17, 13,
19, 6, 23515]

gap> Maximum(Trajectory(£6,47,50));

7363391777762473304431877054771075818733690108051469808715809256737742295\

45698886054

Computing the trajectory of 3224 takes quite a while — this trajectory ascends to abib@ff%,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mappirtg, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than thedulus (£6)th power of the denominator. In the
example we have & - 113 = 46585 and 6= 46656.

Although the trajectories of are much shorter than those of, it seems likely that this does
not make the problem of deciding whether the mappirig contracting essentially easier — even for
mappings with much shorter trajectories ttate problem seems to be equally hard. A solution can
usually only be found in trivial cases, i.e. for example when there is $osneh that applying thkth
power of the respective mapping to any integer decreases its absolute value.

RCWA

5.3 Checking a result by P. Andaloro

In [AndOd], P. Andaloro has shown that proving that trajectories of integets1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3 Conjecture. In the sequel,
this result is verified bRCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mapping containsZ \ 0(3) is obviously enough. Thus we p8t= 1(16), and

successively unite the sBwith its image under :

Example
gap> S := ResidueClass(Integers,16,1);
1(16)
gap> S := Union(S,S"T);
1(16) U 2(24)
gap> S := Union(S,S"T);

1(12) U 2(24) U 17(48) U 33(48)

gap> S := Union(S5,S°T);

<union of 30 residue classes (mod 144)>
gap> S := Union(S,S"T);

<union of 42 residue classes (mod 144)>
gap> S := Union(S5,S°7T);

<union of 172 residue classes (mod 432)>
gap> S := Union(S,S°T);

<union of 676 residue classes (mod 1296)>
gap> S := Union(S,S"T);

<union of 810 residue classes (mod 1296)>
gap> S := Union(S,S°7T);

<union of 2638 residue classes (mod 3888)>
gap> S := Union(S,S"T);

<union of 33 residue classes (mod 48)>
gap> S := Union(S,S"T);

<union of 33 residue classes (mod 48)>

Integers

gap> Union(S,ResidueClass (Integers,3,0)); # Et voila ...

Further similar computations are shown in Sectoh3

RCWA 57

5.4 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (mgdnd divergent:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF (2) [x]

gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)"3,1,x]]1*0One(R));;
gap> ML2 := RcwaMapping(R,x,[[1,0,x], [(x+1)"2,1,x]]1*0One(R));;
gap> SetName (ML1,"ML1"); SetName (ML2,"ML2");

gap> Display (ML1);

Rcwa mapping of GF(2) [x] with modulus x

gap> Display (ML2);

Rcwa mapping of GF(2) [x] with modulus x

X"2472(2)70)*P + Z(2)°0)/x

gap> List ([ML1,ML2],IsSurjective);

[true, true]

gap> List ([ML1,ML2],IsInjective);

[false, false]

gap> trajl := Trajectory(ML1l,One(R),16);

[2(2)70, x"2+x+7Z(2)70, x"44x"2+x, x"3+x+7Z(2)70, x"5+x"4+x"2, x"4+x"3+x,
X"3+x"2472(2) 70, x"5+x"2+47Z(2)70, x"7+x"6+x"5+x"3+7Z(2) "0,

X9+ TTHRT6+X 754X T 34+x+72 (2) "0, xT114+x710+x78+x"T+x"6+x"5+x72,
x"10+x"9+x " T+ 6+x"5+x 7 4+x, X"9+x"8+x"6+x"5+x"4+x"3+7 (2) "0,
Xx"T11+x"8+x"T+x"6+x"4+x+Z (2) 70, x"13+x"12+x"11+x"8+x"7+x"6+x"4,
x"124x7114+x710+x"7+x76+x"5+x"3]

gap> traj2 := Trajectory(ML2, (x"3+x+1)*One(R),16);

[Xx"3+4x+2(2) "0, x"4+x+Z(2)"0, x"5+x"3+x"2+x+Z2(2) "0, x"6+x"3+Z(2) "0,
XTTHX 54X 44x724x, XTO0+xT44+x"34+x+7(2) "0, x"T+x744+x"3+x+7Z(2) "0,
X"8+x"60+x"5+x T 4+x"3+x+7Z (2) "0, x"9+x"6+x"3+x+Z(2) "0,
XxT104+x"84+x"T+x"5+x " 44+x+7 (2) "0, x"114+x"8+x"T+x"5+x"4+x"3+x"2+x+Z2(2) "0,
XxT124+x7104+x79+x 784" T+x 542 (2) "0, x"13+x710+x"T7+x"4+x,
X"T124x79+x764+x"34+Z2(2) "0, xT134x7114x7104+x"84+x"THx"54+x"T4+x"2+x%,
XxT124x7104x"9+x 7T+ T 64+x 7 44x " 34+x+Z2 (2) "0]

RCWA 58

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states @ amatl
1 modx:

Example

gap> trajlmodx := Trajectory(ML1,One(R),400,x);;

gap> traj2modx := Trajectory(ML2, (x"3+x+1)*One(R),600,x);;

gap> List (trajlmodx{[l..150]},val->Position([Zero(R),One(R)],val)-1);

(i, 1, o0, 1,690,8¢0,1,1,1,1,¢0¢01,11,4090001,1, 1,1, 1,
i, 1,1, o0, 90606o01,1,1,1,0000°0°0°0,0111,1,
i, 1, 1,1,1,1,1,1,1%1,11,1,1, 0 0, 0, 0, O, O, O, O, 1, 1, 1,
i, 1, 1, 1, 1, 0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O, O, 1, 1,
i, 1, 1,1, 1, 1, 1,111,711, 1,1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1 1,1, 1, 1, 1, 0, O, O, O, O, O, O, O, O, O, O, O, O, O, O, O,
i, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> List(traj2modx{[1l..150]},val->Position([Zero(R),0One(R)],val)-1);

(1, 1,1, 1,¢90,1,11,11,1, 1,1, 1,0, 1, 0, 1,1, 1, 1,1, 1, 1, 1,
i, 1, 1,1, 1, 0, 1, 0, 1, 0, 1, O, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 0, 1, O, 1, O, 1, O, 1, O,
i, 0, 1, 0, 2,0, 1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1,1, 0,1, 0, 2, O, 1, O, 1, O, 1, O, 1, O, 1,
o, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]

What is important here are the lengths of the intervals between two changes from one state to the
other:

Example

gap> ChangePoints := 1->Filtered([l..Length(l)-1],pos->1[pos]<>1[pos+l]);;

gap> Diffs := 1->List([1l..Length(l)-1],pos->1[pos+l]-1[pos]);;

gap> Diffs(ChangePoints(trajlmodx)); # The pattern in the first

(1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, 16, 32, 64, 32,
32, 64]

gap> Diffs(ChangePoints(traj2modx)); # ... and in the second example.

(i1, 7,1, 1,1, 13, 1,1, 1, 1,1, 1, 1, 25,1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1,1, 1, 97, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1, 1, 1,1, 11,11, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 193, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1,1, 1,1, 1,1, 1,1, 1,1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1,1, 1,1, 1,1, 1,1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
i, 1, 1, 1, 1, 1, 1, 1, 1, 1]

gap> Diffs(ChangePoints(last)); # Make this a bit more obvious.

(1, 3, 1, 7, 1, 15, 1, 31, 1, 63, 1]

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.

RCWA 59

5.5 Exploring the structure of a wild rcwa group

In this example, a simple attempt to should be made to investigate the structure of a given wild group
by finding orders of torsion elements. In general, determining the structure of a given wild group
seems to be a very hard task. First of all, the group in question has to be defined:

Example

gap> u = RCW&MappiNQ([H,O/E)L [91175]1 [37_11517 [91_275]/ [97415]1);;
gap> SetName (u, "u");
gap> Display(u);

Rcwa mapping of Z with modulus 5

n mod 5 | n"u
____________________________________ +____________________________________
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> nu := ClassShift(0,1);;

gap> G := Group(u,nu);

<rcwa group over Z with 2 generators>
gap> IsTame (G);

false

Now we would like to know which orders torsion elementsafan have — taking a look at the above

generators it seems to make sense to try commutators:
Example

gap> 1 := Filtered([0..100],k->IsTame (Comm(u,nu’k)));

(o, 2, 3,5 6,9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30,
32, 33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58,
60, 62, 63, 65, 66, 69, 70, 72, 173, 75, 77, 78, 80, 81, 84, 85, 87,
88, 90, 92, 93, 95, 96, 99, 100]

gap> List (1,k->Order (Comm(u,nu’k)));

[1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity,
infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity,
infinity, infinity, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3,
infinity, infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5,
infinity, infinity, infinity, 5, 3, 5, 5, 31

RCWA 60

Example
gap> Display (Comm(u,nu”13));

Bijective rcwa mapping of Z with modulus 9

gap> Order (Comm(u,nu”13));

7

gap> u2 := u"2;

<wild bijective rcwa mapping of Z with modulus 25>

gap> Filtered([1..16],k->IsTame (Comm(u2,nu’k))); # k < 15 -> commutator wild!

[15]

gap> Order (Comm(u2,nu”15));
infinity

gap> u2nul7 := Comm(u2,nu”17);

<bijective rcwa mapping of Z with modulus 81>

gap> cycs := ShortCycles(u2nul7,[-100..100],100);;

gap> List (cycs,Length);

[72, 72, 173, 12, 73, 172, 12, 73, 12, 72, 72, 13, 72, 72, 73, 72, 172,
73, 72, 72, 13, 72, 72 1]

gap> Lcm(last);

5256

gap> u2nul7°5256; # This element has indeed order 273*372*73 = 5256.

IdentityMapping(Integers)

gap> u2nul8 := Comm(u2,nu”18);

<bijective rcwa mapping of Z with modulus 81>

gap> cycs := ShortCycles(u2nul8, [-100..100],100);;

gap> List (cycs,Length);

[22, 22, 22, 21, 22, 22, 22, 21, 21, 22, 22, 21, 22, 21, 22, 22, 21,
22, 22, 21, 22, 22, 21]

gap> Lcm(last);

462

gap> u2nul8°462; # This is an element of order 2*3*7*11 = 462.

IdentityMapping(Integers)

gap> Order (Comm (u2,nu”20));

29
gap> Order (Comm(u2,nu”25));
9
gap> Order (Comm(u2,nu”30));
15

Thus even this rather simple-minded approach reveals various different orders of torsion elements,
and the involved primes are also not all very “small”.

RCWA 61

5.6 A wild rcwa mapping which has only finite cycles

Some wild rcwa mappings &t have only finite cycles. In this section, a permutation is examined
which can be shown to be such a mapping and which is likely to be something like a “minimal
example.

OverR = GF(Q)[X], the degree function gives rise to a partitionRinto finite sets which is left
invariant by suitable wild rcwa mappings. OMeE= Z the situation looks different — there is no such

“natural” partition into finite sets which can be fixed by a wild rcwa mapping.
Example

gap> kappa := RcwaMapping([[1,0,1],(1,0,1]1,13,2,2]1,11,-1,1],

> [2,0,11,11,0,11,13,2,21,11,-1,11,

> [1,1,31,11,0,11,13,2,21,12,-2,111) ;;
gap> SetName (kappa, "kappa") ;

gap> List ([-5..5],k->Modulus (kappa“k));

[7776, 1296, 432, 72, 24, 1, 12, 72, 144, 864, 1728]

gap> Display (kappa);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n"kappa

____________________________________ b

0 5 9 | n

2 610 | (3n + 2)/2

3 | n -1

4 | 2n

8 | (n+1)/3

11 | 2n - 2

gap> List ([-32..32],n->Length (Cycle (kappa,n)));

(4, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 7, 1, 10, 10, 4, 1, 7, 7, 1, 1,
1, 7, 4, 1, 4, 4, 2, 1, 1, 2, 1, 1, 4, 4, 4, 1, 7, 7, 4, 1, 7, 7, 1,
i, 10, 10, 7, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 4, 1, 13, 13, 7]

gap> List([2..14],k->Maximum(List ([1..2"k],n->Length(Cycle (kappa,n)))));

[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

gap> List([2..14],k->Length(Cycle (kappa,2°k-2)));

[4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

gap> Cycle (kappa,2°12-2);

[4094, 6142, 9214, 13822, 20734, 31102, 46654, 69982, 104974, 157462,
236194, 354292, 708584, 236195, 472388, 157463, 314924, 104975,
209948, 69983, 139964, 46655, 93308, 31103, 62204, 20735, 41468,
13823, 27644, 9215, 18428, 6143, 12284, 4095]

gap> last mod 12;

(2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 8, 11, 8, 11, 8, 11, 8,
11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 3]

gap> lengthstats := Collected(List (ShortCycles (kappa, [1..127°4],100),

> Length));

[[1, 6912 1, [4, 1728 1, [7, 864 1, [10, 432 7], [13, 216],

[16, 108 1, [19, 54 1, [22, 27 1, [25, 13 1, [28, 71, [31, 31,

[34, 21, [37, 11, [40, 111

RCWA

We would like to determine a partition @ into unions of cycles of equal length:

62

Example
gap> C := [Difference(Integers,MovedPoints (kappa))]l;; pow := [kappa”0];;
gap> rc := function(r,m) return ResidueClass(r,m); end;;
gap> for i in [1..3] do
> Add (pow, kappa”i);
> C[i+1] := Difference(rc(2,4),
> Union (Union(C{[1..1]}),
> Union(List ([0..1], j->Intersection (
S rc(2,4) "pow[j+1],
> rc(2,4)" (pow[i-3+11°-1))))));
> od;
gap> C;
[1(4) U 0(12) U [-2 1, 2(24) U 18(24), 6(48) U 38(48) U 10(72) U 58(72)

, <union of 38 residue classes (mod 864)>]
gap> List (C,S->Length(Cycle (kappa,S)));
[1, 4, 7, 10]
gap> Cycle (kappa,C[1]);
[1(4) UO0(12) U [-2 1]
gap> Cycle (kappa,Cl2]);

[2(24) U 18(24), 4(36) U 28(36), 8(72) U 56(72), 3(24) U 19(24)]
gap> cycle7 := Cycle(kappa,C[3]);;

gap> for S in cycle7 do View(S); Print("\n"); od;

6(48) U 38(48) U 10(72) U 58(72)

10(72) U 58(72) U 16(108) U 88(108)

16(108) U 88(108) U 32(216) U 176(216)

11(72) U 59(72) U 32(216) U 176(216)

11(72) U 59(72) U 20(144) U 116(144)

7(48) U 39(48) U 20(144) U 116(144)

6(48) U 7(48) U 38(48) U 39(48)

gap> cyclel(Q := Cycle(kappa,C[4]);;

gap> for S in cyclel(O do View(S); Print("\n"); od;

<union of 38 residue classes (mod 864)>

<union of 38 residue classes (mod 1296)>

<union of 12 residue classes (mod 648)>

<union of 12 residue classes (mod 648)>

<union of 22 residue classes (mod 1296)>

<union of 12 residue classes (mod 432)>

<union of 22 residue classes (

<union of 12 residue classes (

<union of 14 residue classes (

<union of 16 residue classes (

gap> List (cyclelO,Density);

[19/432, 19/648, 1/54, 1/54, 11/648, 1/36, 11/432, 1/24, 7/144, 1/18]

gap> List (last,Float);

[0.0439815, 0.029321, 0.0185185, 0.0185185, 0.0169753, 0.0277778,
0.025463, 0.0416667, 0.0486111, 0.0555556]

gap> Sum(last2);

47/144

gap> Density(Union(cyclel0));

47/432

RCWA 63

Example

gap> P := List (C,S->Union(Cycle (kappa,S)));;

gap> for S in P do View(S); Print("\n"); od;

1(4) U 0(12) U [-2 1]

<union of 18 residue classes (mod 72)>

<union of 78 residue classes (mod 432)>

<union of 282 residue classes (mod 2592)>

gap> P2 := AsUnionOfFewClasses(P[2]);

[2(24), 3(24), 18(24), 19(24), 4(36), 28(36), 8(72), 56(72)]

gap> Permutation (kappa,P2);

(1,5,7,2) (3,6,8,4)

gap> P3 := AsUnionOfFewClasses(P[3]);

[6(48), 7(48), 38(48), 39(48), 10(72), 11(72), 58(72), 59(72), 16(108),
88(108), 20(144), 116(144), 32(216), 176(216)]

gap> Permutation (kappa,P3);

(1,5,9,13,6,11,2) (3,7,10,14,8,12,4)

gap> P4 := AsUnionOfFewClasses(P[4]);

[14(96), 15(96), 78(96), 79(96), 22(144), 23(144), 118(144), 119(144),
34(216), 35(216), 178(216), 179(216), 44(288), 236(288), 52(324),
268(324), 68(432), 356(432), 104(648), 536(648)]

gap> Permutation (kappa,P4);

(1,5,9,15,19,10,17,6,13,2) (3,7,11,16,20,12,18,8,14,4)

gap> List (P,S->Set (List (Intersection([1..1274],S),n->Length(Cycle (kappa,n)))));

ctr1i1, 0471, 071, [107]]

gap> Set (List (Intersection([1l..1274],Difference(Integers,Union(P))),

> n->Length (Cycle (kappa,n))));

[13, 16, 19, 22, 25, 28, 31, 34, 37, 40]

Finally, the permutatiokrappa should be factored into involutions (this time “by hand”, for purposes
of illustration):
Example

gap> elml := kappa;

kappa

gap> Multpk(elml,2,1) "elml;
8(12)

gap> Multpk(elml,2,-1) "elml;
4(6)

gap> factl := ClassTransposition(4,6,8,12);;

RCWA

64

Example
gap> elm2 := elml/factl;
<bijective rcwa mapping of Z with modulus 12>

gap> Display(elm2);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
0 4 5 9 | n
2 610 | 3n + 2
3 711 | n -1
8 | (n+1)/3
gap> Multpk(elm2,3,1) "elm2;
8(12)
gap> Multpk (elm2,3,-1) "elm2;
3(4)
gap> fact2 := ClassTransposition(3,4,8,12);;
gap> elm3 := elm2/fact2;
<bijective rcwa mapping of Z with modulus 4>
gap> Display(elm3);
Bijective rcwa mapping of Z with modulus 4
n mod 4 | n~f
____________________________________ o
01 | n
2 | n+ 1
3 | n -1

gap> fact3 := ClassTransposition(2,4,3,4);;

gap> elmd := elm3/fact3;

IdentityMapping(Integers)

gap> kappafacts := [fact3, fact2, factl];

[ClassTransposition(2,4,3,4), ClassTransposition(3,4,8,12),
ClassTransposition(4,6,8,12)]

gap> kappa = Product (kappafacts);

true

RCWA 65

5.7 An abelian rcwa group over a polynomial ring

In this section, a wild rcwa group over GF(4)should be invstigated, which happens to be abelian.
Of course in general, rcwa groups also over this ring are usually far from being abelian (see below).
We start by defining this group:

Example
gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing (GF(4),1);
GF (2°2) [x]
gap> e := One(GF(4));;
gap> p = X2 + x + e;; q:=x"2+ e;;
gap> r = x"2 + x + Z(4);; s = x"2 + x + Z(4)"2;;
gap> cg := List(AllResidues(R,x72), pol -> [p, p * pol mod q, g 1);;
gap> ch := List(AllResidues(R,x72), pol -> [r, r * pol mod s, s]);;

gap> g := RcwaMapping(R, q, cg);

<rcwa mapping of GF(2°2) [x] with modulus x"2+Z(2) "0>
gap> h := RcwaMapping(R, s, ch);

<rcwa mapping of GF(272) [x] with modulus x"2+x+Z(272) "2>
gap> List ([g,h],Order);

[infinity, infinity]

gap> List([g,h],IsTame);

[false, false]

gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> IsAbelian (G);

true

Now we compute the action of the groamn one of its orbits, and make some statistics of the orbits
of G containing polynomials of degree less than 4:
Example

gap> orb := Orbit (G,x"5);

[x°5, x"5+x"4+x"24+72(2) "0, x"5+x"3+x"2+Z(272)*x+Z(2) "0, x"5+x"3,
X5+ TA+xT3+x 7247 (272) "2*x+7(272) "2, x"5+x, x"5+x74+x"3,
X"5+X"247(272) "2*%x, XT54+xTA4XT24x, XTH+x"34x72+7Z(27°2) "2*x+7(2) "0,
X "5+XTAHZ(272) *x+Z(272), xT5+x734x, xT5+XTA+XT34XT24Z(272) *x+2(272),
X5+ T4+ T34x+2(2) 70, xT54xT247(272) *x, xT5+xXTA+7Z(27°2) "2*x+7(272) "2]

gap> H := Action (G, orb);

Group([(1,2,4,7,6,9,12,14) (3,5,8,11,10,13,15,16),
(1,3,6,10)(2,5,9,13) (4,8,12,15) (7,11,14,16) 1)

gap> IsBAbelian (H); # check ...

true

gap> Exponent (H);

8

gap> Collected(List (ShortOrbits (G,AllResidues(R,x"4),100),Length));

(01, 41,02 61, [4 121, [8 241]

RCWA 66

Changing the generators a little causes the group structure to change a lot:

Example
gap> cg[l][2] := cg[l][2] + (x"2 + &) * p * g;;
gap> ch[7]1[2] := ch[7][2] + x * r * 5;;
gap> g := RcwaMapping(R, g, cg);; h := RcwaMapping(R, s, ch);;
gap> G := Group(g,h);

<rcwa group over GF(2°2) [x] with 2 generators>

gap> orb := Orbit (G,Zero(R));;

gap> Length (orb);

87

gap> Collected(List (orb,DegreeOfLaurentPolynomial));
(1, 21, 02,471, [3, 161, [4 64171, [infinity, 1 1]
gap> H := Action (G, orb);

<permutation group with 2 generators>

gap> IsNaturalAlternatingGroup (H);

true

gap> orb := Orbit (G,x"6);;

gap> Length(orb);

512

gap> H := Action (G, orb);

<permutation group with 2 generators>

gap> IsNaturalSymmetricGroup(H) or IsNaturalAlternatingGroup (H);
false

gap> blk := Blocks(H,[1..512]);;

gap> List (blk,Length);

[128, 128, 128, 128]

gap> Action(H,blk,OnSets);

Group ([(1,2)(3,4), (1,3)(2,4) 1)

Thus the modified group has a quotient isomorphic to the alternating group of degree 87, and a quotient
isomorphic to some wreath product or a subgroup thereof acting transitively, but not primitively on
512 points.

5.8 A tame group generated by commutators of wild permutations

In this section, we have a look at 3 wild rcwa mappings whose commutators generate tame groups:

Example
gap> a := RcwaMapping([[3,0,2]1,([3, 1,41,13,0,21,13,-1,411);;
gap> b := RcwaMapping([[3,0,2],13,13,41,13,0,21,1(3,-1,411);;
gap> ¢ := RcwaMapping([[3,0,2], (3, 1,41,13,0,21,13,11,411);;
gap> SetName (a,"a"); SetName (b, "b"); SetName (c,"c");
gap> List([a,b,c],IsTame);
[false, false, false]
gap> ab := Comm(a,b);; ac := Comm(a,c);; bc := Comm(b,c);;
gap> SetName (ab,"[a,b]"); SetName (ac,"[a,c]"); SetName (bc,"[b,c]");
gap> List ([ab,ac,bc],Order);
[6, 6, 12]

RCWA 67

Now we would like to have a look aa[b] ...

Example
gap> Display(ab);

Bijective rcwa mapping of Z with modulus 18, of order 6

n mod 18 | n”[a,b]
____________________________________ o

0 2 3 8 911 12 17 | n

110 | 2n = 5

4 7 13 16 | n+ 3

5 14 | 2n - 4

6 | (n+2)/2
15 | (n - 5)/2

.. form the group generated bg,p] and [a,c] and compute its action on one of its orbits:
Example

gap> G := Group(ab,ac);

<rcwa group over Z with 2 generators>

gap> orb := Orbit (G,1);

[-15, -12, -7, -6, -5, -4, -3, -2, -1, 1]
Action (G, orb);

gap> H :=

Group ([(2,5,8,10,7,6), (1,3,6,9,4,5) 1)
gap> Size(H);

3628800

gap> Size(G); # G acts faithfully on orb.
3628800

Hence the grous is isomorphic to the symmetric group on 10 points and acts faithfully on the orbit
containing 1. Another question is which groups arise if we take as generatorsadittaer or bc and

the involution which maps any integer to its additive inverse:
Example

gap> t := ClassReflection(0,1);;

gap> Display(t);

Bijective rcwa mapping of Z: n -> -n
gap> G := Group(ab,t);

<rcwa group over Z with 2 generators>
gap> Size(G);

7257600
gap> phi := IsomorphismPermGroup (G);
[[a,b], ClassReflection(0,1)] —>

[(1,36,12,27,9,15) (2,34,10,25,7,13) (3,35,11,26,8,14),
(1,18) (2,17) (3,16) (4,15) (5,14) (6,13) (7,12) (8,11) (9,10) (20,21) (22,
36) (23,35) (24,34) (25,33) (26,32) (27,31) (28,30) 1]
gap> StructureDescription (Image (phi));
"C2 x S10"

RCWA 68

Thus the group generated ki andt is isomorphic to G x S;p. The next group is an extension of
a perfect group of order 960:

Example

gap> G := Group(ac,t);;

gap> Size (G);

3840

gap> H := Image (IsomorphismPermGroup (G));;
gap> P := DerivedSubgroup (H);;

gap> Size(P);

960

gap> IsPerfect (P);

true

gap> PerfectGroup (PerfectIdentification(P));
A5 2747

The last group is infinite:
Example

gap> G := Group(bc,t);;

gap> Size(G);

infinity

gap> Order (bc*t);

infinity

gap> Modulus (G) ;

18

gap> RespectedPartition(G);

[1(9), 2(9), 4(9), 5(9), 7(9), 8(9), 0(18), 3(18), 6(18), 9(18),
12(18), 15(18)]

gap> ActionOnRespectedPartition(G);

Group ([(1,5,8,2,4,12)(3,9,6,11), (1,6)(2,5) (3,4) (8,12)(9,11) 1)

gap> StructureDescription(last);

"s10"

gap> RankOfKernelOfActionOnRespectedPartition(G);

9

RCWA

5.9 Checking for solvability

Is the group generated by the permutatiarendb from the last paragraph solvable?

This group is wild. Presently there is no general method available for testing wild rcwa groups
for solvability. But nevertheless, for the given group we can obtain a negative answer to this question.
The idea is to find a subgroup which acts on a finite s of integers, and which induces &a

non-solvable finite permutation group:
Example

gap> a := RcwaMapping([[3,0,2],[3, 1,41,13,0,2]1,(3,-1,4]1]1);; SetName(a,"a");

gap> b := RcwaMapping([[3,0,2]1,(3,13,4]1,13,0,2]1,1[3,-1,4]1]1);; SetName (b, "b");

gap> G := Group(a,b);;

gap> ShortOrbits (Group (Comm(a,b)), [-10..10],100);

((-101, [-91, [-30, -21, -14, -13, -11, -8 1, [-7 1, [-6 1,
[-12, -5, -4, -3, -2, 11, [-1 1, [01, [2

[4, 5, 6, 7, 10, 151, [81, [911

[

(

’
gap> S := 4, 5, 6, 7, 10, 15 1;;
gap> Cycle (Comm(a,b),4);
[4, 7, 10, 15, 5, 6]
gap> elm := RepresentativeAction(G,S,Permuted(S, (1,4)),0nTuples);
<bijective rcwa mapping of Z with modulus 81>
gap> List(S,n->n"elm);
[7, 5, 6, 4, 10, 15]
gap> U := Group (Comm(a,b),elm);
<rcwa group over Z with 2 generators>
gap> Action(U,S);
Group([(1,4,5,6,2,3), (1,4) 1)
gap> IsNaturalSymmetricGroup (last);
true

Thus the subgroup induces or§ a natural symmetric group of degree 6. Therefore the géismot
solvable, as claimed. We conclude this example by factoring the group eleinetinto generators:

Example

gap> F := FreeGroup("a","b");

<free group on the generators [a, b]>

gap> RepresentativeActionPrelImage (G, S,Permuted(S, (1,4)),0nTuples,F);
a"-2*b"-2*a*b*a"-1*b*a*b"-2*a

gap> a"-2*b"-2*a*b*a”"-1*b*a*b"-2*a = elm;

true

RCWA 70

5.10 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations:
Example

gap> a2 := LocalizedRcwaMapping(a,2);
<rcwa mapping of Z_(2) with modulus 4>
gap> IsSurjective(a2); # As expected
true

gap> IsInjective(a2); # Why not??

false

gap> 07a2;

0

gap> (1/3)"a2; # That’s the reason!

0

The above can also be explained easily by pointing out that the modulus of the inverse3fand
that 3 is a unit ofZ3). Moving toZ; 3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a, [2,3]);
<rcwa mapping of Z_(2, 3) with modulus 4>
gap> IsBijective(a23);

true

We get additional finite cycles, e.g.:
Example

gap> List (ShortOrbits (Group(a23),[0..50]1/5,50),orb->Cycle(a23,0rb[1]));
[101, [1/5 2/5 3/51,

[4/5, /5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5 1,

(11, (2, 31, [14/5, 21/5, 17/5 1,

[16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 178/5, 117/5,
89/5, 68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5,
113/5, 86/5, 129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5,
51/5, 37/5, 29/5, 23/5 1, [4, 6, 9, 7, 511

gap> List (last,Length);
(1, 3, 11, 1, 2, 3, 34, 5]
gap> List (ShortOrbits (Group(a23),[0..50]1/7,50),orb—->Cycle(a23,0rb[1]));
rro1l1, [-1/7,1/771, (2/7, 3/7, 4/7, 6/7, 9/7, 5/7 1, [11,
[2, 31, [4 6,9, 7, 5]
gap> List (last,Length);
(1, 2, 6, 1, 2, 51

RCWA 71

But the group structure remains invariant under the “transfer” of a group with priri{@ s3tfrom Z
to Z(273)Z
Example

gap> b23 := SemilocalizedRcwaMapping (b, [2,3]1);;

gap> c23 := SemilocalizedRcwaMapping(c, [2,3]1);;

gap> ab23 := Comm(a23,b23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> acz23 := Comm(a23,c23);

<rcwa mapping of Z_(2, 3) with modulus 18>

gap> G := Group (ab23,ac23);

<rcwa group over Z_(2, 3) with 2 generators>

gap> S := Intersection(Enumerator (Rationals){[1..128]1},Z_pi([2,3]));

[-10, -9, -8, -7, -6, -5, -4, -3, -2, -9/5, -8/5, -10/7, -7/5, -9/7,
-6/5, -8/7, -1, -¢/7, -4/5, -5/7, -3/5, -4/7, -3/7, -2/5, -2/7, -1/5,
-1/7, 0, 1/11, 1/7, 1/5, 2/7, 2/5, 3/7, 4/1, 3/5, 5/7, 4/5, 6/7, 1,
8/7, 6/5, 9/7, 7/5, 10/7, 8/5, 9/5, 2, 3, 4, 5, 6, 7, 8, 9, 10]

gap> orbs := ShortOrbits(G,S,50);;

gap> List (orbs, Length);

(10, 1, 10, 1, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10,
10, 1, 1, 10, 1]

gap> ForAll (orbs,orb->IsNaturalSymmetricGroup (Action (G, orb)));

true

“Transferring” a non-invertible rcwa mapping from the ring of integers to some of its

(semi)localizations can also turn it into an invertible one:
Example

gap> v := RcwaMapping([[6,0,1],(1,-7,2],16,0,17,11,-1,17,

> (6,0,11,11, 1,21,06,0,11,[1,-1,111);;
gap> SetName (v, "v");

gap> Display(v);

Rcwa mapping of Z with modulus 8

n mod 8 | n"v
____________________________________ o
0246 | 6n
1 | (n - 7)/2
37 | n -1
5 | (n+ 1)/2

RCWA 72

Example

gap> IsInjective(v);

true

gap> IsSurjective (v);

false

gap> Image (v);

Zz \ 4(12) U 8(12)

gap> Difference (Integers, last);

4(12) U 8(12)

gap> v2 := LocalizedRcwaMapping (v, 2);
<rcwa mapping of Z_(2) with modulus 8>
gap> IsBijective(v2);

true

gap> Display(v2"-1);

Bijective rcwa mapping of Z_(2) with modulus 4

n mod 4 | n"f
____________________________________ +____________________________________
0 | 1/3 n / 2
1 | 2 n+ 7
2 | n+ 1
3 | 2 n 1
gap> S := ResidueClass(Z_pi(2),2,0);; 1 := [S];;

gap> for i in [1..10] do Add(l,1l[Length(l)]"v2); od;

gap> 1; # Visibly v2 is wild ...

[0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512),
0(1024), 0(2048)]

gap> w2 := RcwaMapping(Z_pi(2),[11,0,21,12,-1,11,101,1,11,12,-1,111);;

gap> v2w2 := Comm(v2,w2);; SetName (v2w2,"[v2,w2]"); v2w2"-1;;

gap> Display (v2w2);

Bijective rcwa mapping of Z_(2) with modulus 8

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.

RCWA 73

5.11 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mapping of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Bijective rcwa mapping of Z with modu

n mod 32 |
____________________________________ n
0 \

1 3 5 7 911 13 1517 19 21 |

23 25 27 29 |

2 4 6 810 12 14 \

16 |
18 20 22 24 26 28 30 |
31 |

gap> Cycle(x,[1],0);

[0, 2, 18, 4, 20, 6, 22, 8, 24, 10,
36, 52, 38, 54, 40, 56, 42, 58, 44,
70, 86, 72, 88, 74, 90, 76, 92, 78,
118, 104, 120, 106, 122, 108, 124,
148, 134, 150, 136, 152, 138, 154,
178, 164, 180, 166, 182, 168, 184,
11, 194, 210, 196, 212, 198, 214, 2
222, 208, 13, 226, 242, 228, 244, 2
252, 238, 254, 240, 15, 258, 274, 2
282, 268, 284, 270, 286, 272, 17, 2
312, 298, 314, 300, 316, 302, 318,
342, 328, 344, 330, 346, 332, 348,
372, 358, 374, 360, 376, 362, 378,
402, 388, 404, 390, 406, 392, 408,
25, 418, 434, 420, 436, 422, 438, 4
446, 432, 27, 450, 466, 452, 468, 4
476, 462, 478, 464, 29, 482, 498, 4
506, 492, 508, 494, 510, 496, 31]

gap> Length(last);

257

Example
gap> x := RcwaMapping(
> (r 16, 2, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,
> [1, 16, 11, [16, 18, 11, [1, 16, 11, [16, 18, 11,
> [1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,
> [1, 16, 11, [16, 18, 11, [1, 16, 1], [16, 18, 11,
> [1, 0, 16], [16, 18, 11, [1,-14, 1], [16, 18, 11,
> [1,-14, 11, [16, 18, 11, [1,-14, 1], [16, 18, 11,
> [1,-14, 11, [16, 18, 11, [1,-14, 11, [16, 18, 11,
> [1,-14, 11, [16, 18, 11, [1,-14, 11, [1,-31, 111);;
gap> SetName (%, "x"); Order(x);; Display(x);

lus 32, of order 257

16n + 18
n+ 1o
n/16

n - 14

n - 31

26, 12, 28, 14, 30, 16, 1, 34, 50,
60, 46, 62, 48, 3, 66, 82, 68, 84,
94, 80, 5, 98, 114, 100, 116, 102,

110, 126, 112, 7, 130, 146, 132,

140, 156, 142, 158, 144, 9, 162,

170, 186, 172, 188, 174, 190, 176,

00, 216, 202, 218, 204, 220, 206,

30, 246, 232, 248, 234, 250, 236,

60, 276, 262, 278, 264, 280, 266,

90, 306, 292, 308, 294, 310, 296,

304, 19, 322, 338, 324, 340, 326,

334, 350, 336, 21, 354, 370, 356,

364, 380, 366, 382, 368, 23, 386,

394, 410, 396, 412, 398, 414, 400,

24, 440, 426, 442, 428, 444, 430,

54, 470, 456, 472, 458, 474, 460,

84, 500, 486, 502, 488, 504, 490,

RCWA

5.12 The behaviour of the moduli of powers

In this section some examples are given, which illustrate how different the series of the moduli of

powers of a given rcwa mapping of the integers can look like.
Example

74

gap> List ([0..4],1i->Modulus(a”1i));
[1, 4, 16, 64, 256]

gap> List ([0..6],1i->Modulus(ab”i));
[1, 18, 18, 18, 18, 18, 1]
gap> g:=RcwaMapping([[2,2,1],[1,
gap> h:=RcwaMapping([[2,2,1],[1,~-
gap> List ([0..7],1i->Modulus(g”i));
[1, 6, 12, 12, 12, 12, 6, 1]
gap> List([1..18],1i->Modulus((g”"3*h)"i));

[12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6]
gap> u := RcwaMapping([[3,0,51,19,1,5],13,-1,51,109,-2,51,19,4,511);;
gap> List ([0..3],i->Modulus(u”i));

[1, 5, 25, 125]

gap> v6 := RcwaMapping([[-1,2,11,[1,-1,11,[1,-1,111);;

gap> List ([0..6],i->Modulus(v6~1i));
(1, 3, 3, 3, 3, 3, 1]

gap> w8 := RcwaMapping([[-1,3,11,[1,-1,1],(1,-1,11,1(1,-1,111);;
gap> List ([0..8],1i->Modulus(w871));

[1, 4, 4, 4, 4, 4, 4, 4, 1]
gap> z := RcwaMapping([(2, 1, 11,11, 1,11,(2, -1,11,12, -2,1],
> (1, e, 23,11, 1,173,111, -6,2],12, 5,17,
> (1, 6, 21,11, 1,171,101, 1,11,12, -5,11,
> (1, o, 11,11, -4,11,11, ©0,11,12,-10,111);;
gap> SetName(z,"z");
gap> IsBijective(z);
true
gap> Display(z);
Bijective rcwa mapping of Z with modulus 16
n mod 16 | n"z

____________________________________ +____________________________________

0 | 2n + 1

1 5 910 | n+1

2 | 2n - 1

3 | 2n - 2

4 8 | (n+ 6)/2

6 | (n - 6)/2

7 | 2n + 5

11 | 2n - 5

12 14 | n

13 | n -4

15 | 2n - 10

411}1 [11012]1 [2121111 [11_411]/ [11_2/1}1);;
2,11,11,0,21,12,2,17,(1,-1,11, (1, 1,110);;

RCWA

75

Example

gap> List ([0..25],i->Modulus(z”1i));

[1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256,
256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024]

gap> el := RcwaMapping([[1,4,1]1,(2,0,1],11,0,21,12,0,111);;

gap> e2 := RcwaMapping([[1,4,1],[2,0,11,11,0,2],([1,0,1],

> [1,4,11,12,0,11,101,0,11,11,0,111);;

gap> List([el,e2],0rder);

[infinity, infinity]

gap> List([1..20],i->Modulus(el”™i));

[4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4]

gap> List([1..20],i->Modulus(e271));

(8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4]

gap> SetName (el,"el"); SetName (e2,"e2"); Display(e2);

Bijective rcwa mapping of Z with modulus 8, of order infinity

n mod 8 | n-e2
____________________________________ +____________________________________
04 | n+ 4
15 | 2n
2 | n/2
367 | n

gap> €272 = Restriction(RcwaMapping([[1,2,1]]),RcwaMapping([[4,0,111));
true

5.13 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.

Example

gap> T := RcwaMapping ([[1,0,21,103,1,2]11);;
gap> SO := ResidueClass(Integers,2,1);;

gap> S1 := SO0°T;
2(3)

gap> S2 := S1°T;
1(3) U 8(9)

gap> S3 := S2°T;
2(3) U 4(9)

gap> S4 := S3°T;
Z \ 0(3) U 5(9)
gap> S5 := 54°T;

Z\ 0(3) U 7(9)
gap> S6 := S5°T;
Z \ 0(3)
gap> S7 :
z \ 0(3)

1]
wn
(o))

>
i
~

RCWA 76

Thus the image gets stable after applying the mappifigy the 6th time. Henc&® maps the residue
class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), Whielbilizes setwise.
Now we would like to determine the preimages of 1(3) and 2(3) in 1(2) ufiflehe residue class
1(2) has to be the disjoint union of these sets.

Example
gap> U := Intersection(PreImage(T"6,ResidueClass (Integers,3,1)),S0);
<union of 11 residue classes (mod 64)>
gap> V := Intersection(PreImage (T"6,ResidueClass (Integers,3,2)),S0);

<union of 21 residue classes (mod 64)>

gap> AsUnionOfFewClasses (U);

[1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64),
51(64), 59(64)]

gap> AsUnionOfFewClasses (V) ;

[3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),
37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64)]

gap> Union(U,V) = SO and Intersection(U,V) = []; # consistency check

true

The images of the residue class 0(3) under powefslobk as follows:
Example

gap> SO := ResidueClass(Integers,3,0);

0(3)

gap> S1 := S0°T;

0(3) U 5(9)

gap> S2 := S1°T;

0(3) U 5(9) U 7(9) U 8(27)
gap> S3 := S2°T;

<union of 20 residue classes (mod 27)>
gap> S4 := S3°T;
<union of 73 residue classes (mod 81)>

gap> S5 := S4°T;

Z \ 10(81) U 37(81)
gap> S6 := S5°T;
Integers

gap> S7 := S6°T;
Integers

Thus every integer is the image of a multiple of 3 un@ir This means that it would be sufficient to
prove the 8+ 1 Conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];
[0(5)]
gap> for i in [1..12] do Add(S,S[i]°T); od;

RCWA 77
Example

gap> for s in S do View(s); Print("\n"); od;

0(5)

0(5))

U 8(15
0(5) U 4(15) U 8(15)
0(5) U 2(15) U 4(15) U 8(15) U 29(45)
<union of 73 residue classes (mod 135)>
<union of 244 residue classes (mod 405)>
<union of 784 residue classes (mod 1215)>
<union of 824 residue classes (mod 1215)>
<union of 2593 residue classes (mod 3645)>
mod 3645

<union of 2647 residue classes) >
mod 3645)>
) >

<union of 2665 residue classes

<union of 2671 residue classes

1(3) U 2(3) U 0(15)

gap> Union(S[13],ResidueClass (Integers,3,0));

Integers

gap> List(S,Si->Float (Density(Si)));

[0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267,
0.678189, 0.711385, 0.7262, 0.731139, 0.732785, 0.733333]

(
(
(
(mod 3645

5.14 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the groBmenerated by the two wild mappings
Example

gap> a := RcwaMapping([[3,0,2],(3,1,4],1(3,0,2],[3,-1,411);;
gap> u := RcwaMapping([[3,0,5],19,1,5],[3,-1,5],19,-2,5],109,4,511);;
gap> SetName (a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller

ones by a suitable group element:
Example

gap> List([a,a”-1,u,u"-1],DecreasingOn) ;
[1(2), 0(3), 0(5) U 2(5), 2(3) 1]

gap> Union(last);

Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their

inverses — otherwise the union would he:egers.

RCWA

Example

78

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2],DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9)]

gap> Union(last); # Still not enough ...

Z \ 4(90) U 58(90) U 76(90)

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,

> DecreasingOn) ;

[1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8) 3
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U
3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3),

gap> Union(last); # . but that’s it!

Integers

8

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa

mappings introduced at the beginning of this manual. d:gf > a;m. Then we easily see that

(@ (mN+brm))/Cr(m) > nimpliesn < by /(Cr(m) — &(m))- Thus we can restrict our considerations
to integera < bmax, Wherebmax is the largest second entry of a coefficient triple of one of the group

elements in our list;

Example

gap> List([a,a"-1,u,u"-1,a"2,a"-2,u"2,u"-2,a*u,u*a, (a*u) "-1, (u*a) "-11,
> f->Maximum (List (Coefficients(f),c—>c[2])));

(1, 1, 4, 2, 7, 1, 56, 28, 25, 17, 17, 11]

gap> Maximum(last);

56

Thus this upper bound is 56. The rest is easy — all we have to do is to check that the orbit containing 1

contains also all other positive integers less than or equal to 56:

Example
gap> S := [11;;
gap> while not IsSubset(S,[l1..56]) do
> S := Union(S,S"a,S"u,S " (a"-1),S" (u™-1));
> od;
gap> IsSubset (S, [1..56]);
true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the actiorGodn the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most

4-generator products would not suffice!):

RCWA 79

Example

gap> gens := [a,u,a"-1,u"-1];;
gap> tups := Concatenation(List ([1..5],k->Tuples([1..4],k)));;
gap> Length (tups);

1364

gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,1],1(2,4],1(4,211,

> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);

484

gap> stab := [];;
gap> for tup in tups do

> n :=1;

> for i in tup do n := n"gens[i]; od;
> if n = 1 then Add(stab,tup); fi;

> od;

gap> Length(stab);

118

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;
gap> ForAll (stabelm,elm->1"elm=1); # Check.
true

The resulting products have various different not quite small moduli:
Example

gap> List (stabelm,Modulus);

[4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243,
256, 400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135,
150, 75, 225, 81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561,
1024, 1600, 192, 1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100,
180, 192, 192, 108, 972, 1728, 972, 8748, 1600, 400, 320, 80, 1600,
2500, 300, 2500, 625, 625, 75, 675, 75, 75, 135, 405, 600, 120, 600,
1875, 75, 225, 405, 225, 225, 675, 243, 2187, 729, 2187, 216, 216,
243, 2187, 1944, 2187, 19683, 576, 144, 576, 432, 81, 81, 729, 2187,
5184, 324, 8748, 243, 2187, 19683, 26244, 19683]

gap> Lcm(last);

12597120000

gap> Collected(Factors(last));

(02,101, [03, 91, [5 411

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largest ., - coefficient of the respective mapping are mapped to smaller integers:

RCWA 80

Example

gap> decs := List (stabelm,DecreasingOn);;

gap> List (decs,Modulus);

(2, 3, 8 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400,
48, 200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81,
243, 81, 243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400,
400, 48, 144, 1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324,
144, 324, 972, 400, 400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25,
75, 175, 75, 45, 135, 600, 120, 150, 1875, 75, 225, 135, 225, 225, 675,
243, 729, 243, 729, 108, 216, 243, 729, 162, 729, 2187, 144, 144, 144,
144, 81, 81, 243, 729, 1296, 324, 972, 243, 729, 2187, 1458, 2187]

gap> Lcm(last);

174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

Example

gap> SortParallel (decs, stabelm,

>
>
>

>
>
>
> o]

function(S1,S2)
return First ([1..100],k->Factorial (k) mod Modulus (S1)=0)
< First([1..100],k->Factorial (k) mod Modulus (S2)=0);

> end) ;
gap> S := Integers;;
gap> for i in [1l..Length(decs)] do

S_old :=S; S := Difference(S,decs[i]);
if S <> S_old then ViewObj(S); Print ("\n"); fi;
if S = [] then maxind := i; break; fi;

d;

0(2)

<union of
<union of
<union of
<union of
<union of
<union of

2(6) U 4(6)
<union of 8 residue classes

19 residue

classes

(mod 30)>
(mod 90) >

114 residue classes (mod 720)>

99 residue
57 residue
54 residue
41 residue

classes
classes
classes
classes

mod 720)>
mod 720)>

mod 720

<union
<union
4(720)
<union
<union
<union
<union
<union
<union
<union

(

()
(mod 720)>
()>
(mod 720) >
of 8 residue classes (mod 720)>

U 94(720) U 148(720) U 238(720)

of 24 residue classes (mod 5760)>
of 72 residue classes (mod 51840)>
of 48 residue classes (mod 51840)>
of 192 residue classes (mod 259200)
of 168 residue classes (mod 259200)
of 120 residue classes (mod 259200)
of 96 residue classes (mod 259200)>

of 35 residue classes

>
>
>

RCWA 81

259200) >
mod 259200) >
mod 259200) >
) >
) >
) >

<union of 72 residue classes d
d
d
od 259200
d
d
d

<union of 60 residue classes
<union of 48 residue classes

(mo
(mo
(
<union of 24 residue classes (
(
(
(

=]

<union of 12 residue classes 259200
<union of 24 residue classes (mod 777600
<union of 12 residue classes (mod 777600)>
111604 (194400) U 14404 (777600) U 208804 (777600)

[]

mo

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some

suitably chosen element of the stabilizer under consideration:
Example

gap> Maximum (List (stabelm{[l..maxind]},

> f->Maximum (List (Coefficients(f),c->c[2]))));
6581

gap> Filtered([3..6581],n->Minimum(List (stabelm,elm->n"elm))>=n);
[4]

We have to treat 4 separately:

Example

gap> 17 (u*a*u”2*a”"-1*u);
1
gap> 47 (u*a*u"2*a"-1*u);
3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 inG as 2, thus that this stabilizer acts transitivelyMdi {1}. But this means that we
have established the 2-transitivity of the actiorGoén N.

In the following, we essentially repeat the above steps to show that this action is indeed 3-

transitive:
Example

gap> tups := Concatenation(List([l..6],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,11,1([2,4],14,2]1],

> 1->PositionSublist (tup,l)=fail));;
gap> stab := [];;

gap> for tup in tups do

> 1 :=11,21;

> for i in tup do 1 := List(l,n->n"gens[i]); od;

> if 1 = [1,2] then Add(stab,tup); fi;

> od;

gap> Length(stab);

RCWA 82
Example

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i])));;

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm, function (S1,S2)

> return First([1..100],k->Factorial (k) mod Mod(S1)=0)

> < First([1..100],k->Factorial (k) mod Mod(S2)=0); end);

gap> S := Integers;;

gap> for i in [l..Length(decs)] do

> S_old :=S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;

> if S = [] then break; fi;

> od;

Z \ 1(8) U 7(8)

<union of 151 residue classes (mod 240)>

<union of 208 residue classes (mod 720)>

<union of 51 residue classes (mod 720)>

<union of 45 residue classes (mod 720)>

<union of 39 residue classes (mod 720)>

<union of 33 residue classes (mod 720)>

<union of 23 residue classes (mod 720)>

<union of 19 residue classes (mod 720)>

<union of 17 residue classes (mod 720)>

<union of 16 residue classes (mod 720)>

<union of 14 residue classes (mod 720)>

<union of 8 residue classes (mod 720)>
<union of 7 residue classes (mod 720)>
238(360) U 4(720) U 148(720) U 454(720

)
<union of 38 residue classes (mod 5760)>
<union of 37 residue classes (mod 5760)>
<union of 25 residue classes (mod 5760)>
<union of 21 residue classes (mod 5760)>
<union of 17 residue classes (mod 5760)>
<union of 16 residue classes (mod 5760)>

<union of 138 residue classes (mod 51840)>

<union of 48 residue classes (mod 51840)>
<union of 32 residue classes (mod 51840)>
<union of 20 residue classes (mod 51840)>
<union of 16 residue classes (mod 51840)>
<union of 68 residue classes (mod 259200)>
<union of 42 residue classes (mod 259200)>
<union of 32 residue classes (mod 259200)>
<union of 26 residue classes (mod 259200)>
<union of 25 residue classes (mod 259200)>
<union of 11 residue classes (mod 259200)>
<union of 10 residue classes (mod 259200)>

<union of 7 residue classes (mod 259200)>

13414 (129600) U 2164(259200) U 66964 (259200) U 228964 (259200)
2164 (259200) U 66964 (259200) U 228964(259200)

[]

RCWA 83
Example

gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->c[2]))));

515816

gap> smallnum := [4..515816];;

gap> for i in [l..Length(stabelm)] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

[]

The same for 4-transitivity:

Example

gap> tups := Concatenation(List([l..8],k->Tuples([1..4],k)));;

gap> tups := Filtered(tups,tup->ForAll([[1,3],I[3,11,1([2,4],14,21],

> 1->PositionSublist (tup,l)=£fail));;
gap> stab := [];;

gap> for tup in tups do

> 1 :=1[1,2,3];

> for i in tup do 1 := List(l,n->n"gens[i]); od;

> if 1 = [1,2,3] then Add(stab,tup); fi;

> od;

gap> Length (stab);

528

gap> stabelm := [];;

gap> for i in [1l..Length(stab)] do

> elm := One(G);

> for j in stab[i] do

> if Modulus(elm) > 10000 then elm := fail; break; fi;

> elm := elm * gens[jl;

> od;

> if elm <> fail then Add(stabelm,elm); fi;

> od;

gap> Length (stabelm);

334

gap> decs := List (stabelm,DecreasingOn);;

gap> SortParallel (decs, stabelm,

> function(S1,S2)

> return First([1..100],k->Factorial (k) mod Modulus(S1l) = 0)
> < First([1..100],k->Factorial (k) mod Modulus(S2) = 0);
> end) ;

RCWA

84

Example

gap> S := Integers;;
gap> for i in [1l..Length(decs)] do
> S_old :=S; S := Difference(S,decs[i]);

> if S <> S_old then ViewObj(S); Print ("\n"); fi;

> if S = [] then maxind := i; break; fi;
> od;

Zz \ 1(8) U 7(8)

<union of 46 residue classes (mod 72)>
<union of 20 residue classes (mod 72)>

4(18)

<union of 28 residue classes (mod 576)>
<union of 22 residue classes (mod 576)>
<union of 21 residue classes (mod 576)>

40(72) U 4(144) U 94(144) U 346(576) U 418(576)
<union of 16 residue classes (mod 576)>

<union of 15 residue classes (mod 576)>

4(144) U 94(144) U 346(576) U 418(576)

<union of 30 residue classes (mod 5184)>
<union of 26 residue classes (mod 5184)>
<union of 6 residue classes (mod 1296)>

<union of 504 residue classes (mod 129600)>
<union of 324 residue classes (mod 129600)>
<union of 282 residue classes (mod 129600)>
<union of 239 residue classes (mod 129600)>
<union of 218 residue classes (mod 129600)>
<union of 194 residue classes (mod 129600)>
<union of 154 residue classes (mod 129600)>

mod 129600) >
mod 129600) >
mod 129600) >
mod 129600) >

mod 259200) >

<union of 97 residue classes
<union of 85 residue classes
<union of 77 residue classes
<union of 67 residue classes
<union of 125 residue classes

(
(
(
(

(
<union of 108 residue classes (mod 259200)>
<union of 107 residue classes (mod 259200)>
<union of 101 residue classes (mod 259200)>
<union of 100 residue classes (mod 259200)>
<union of 84 residue classes (mod 259200)>
<union of 80 residue classes (mod 259200)>
<union of 76 residue classes (mod 259200)>
<union of 70 residue classes (mod 259200)>
<union of 66 residue classes (mod 259200)>
<union of 54 residue classes (mod 259200)>
<union of 53 residue classes (mod 259200)>
<union of 47 residue classes (mod 259200)>
<union of 43 residue classes (mod 259200)>
<union of 31 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 23 residue classes (mod 259200)>
<union of 13 residue classes (mod 259200)>

57406(129600) U 115006(129600) U 192676 (259200)
57406(129600) U 192676(259200) U 250276 (259200)

U 250276(259200)
U 374206(388800)

RCWA 85

57406 (129600) U 192676(259200) U 250276(259200)

250276 (259200) U 57406(388800) U 316606(388800) U 451876(777600)
316606(388800) U 451876 (777600) U 509476 (777600) U 768676(777600)
<union of 18 residue classes (mod 3110400)>

451876 (777600) U 509476(777600) U 705406 (777600) U 768676(777600) U
2649406(3110400)

451876 (777600) U 705406(777600) U 768676(777600) U 2649406(3110400)
451876 (777600) U 705406(777600) U 2649406(3110400)

705406 (777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)
<union of 14 residue classes (mod 9331200)>

2260606 (2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)
4593406 (6998400) U 15091006(27993600) U 17559076(27993600) U 24557476 (
27993600)

<union of 14 residue classes (mod 83980800)>

18590206 (20995200) U 24557476 (83980800) U 45552676(83980800) U 71078206 (
83980800)

[]

gap> Maximum(List (stabelm{[l..maxind]},

> f->Maximum (List (Coefficients (f),c->c[2]))));

58975

gap> smallnum := [5..58975];;

gap> for i in [1l..maxind] do

> smallnum := Filtered(smallnum,n->n"stabelm[i]>=n);

> od;

gap> smallnum;

(]

There is even some evidence that the degree of transitivity of the acti@ronfthe positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup (G);

la ul >1[a ul

gap> F := Source(phi);

<free group on the generators [a, u]>

gap> List ([5..20],

> n->RepresentativeActionPreImage (G, [1, 2,3

> [1,2,3,4,n],0nTuples,F));

[<identity ...>, a"-3*u"4*a*u"-2*a"2,
a"-2*u*a"-l*u*a”"-l*u*a"-l*u*a"-1*u"-1*a, a"4*u”"-2*a"-4, a"-1*u"-4+*a,
u“2*a“-1*u"2*a"-1*u"-2, u"-2*a"-2*u"4, a"-1*u"2*a, a"-1*u"-6*a,
a"2*u4*a"2*u”2, u"-4*a*u"-2*a"-3, a"-1*u"-2*a"-3*u"4*a’2,
a“3*u"2*a*u”2, a*u"-4*a*u’-4*a"-2, u"-2*a*u2*a*u"-2, u " -4*a"2*u”2]

RCWA 86

5.15 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the wild groGpgenerated by the two tame mappings

n— n+1andty) o4) acts 3-transitively, but not 4-transitively on the set of integers.
Example

gap> G := Group(ClassShift (0,1),ClassTransposition(l,2,0,4));

<rcwa group over Z with 2 generators>

gap> IsTame (G);

false

gap> (G.1"-2*G.2)"3*(G.1"2*G.2)"3; # G <> the free product C_infty * C_2.
IdentityMapping(Integers)

gap> Display(G);

Wild rcwa group over Z, generated by

[

Tame bijective rcwa mapping of Z: n -> n + 1

Bijective rcwa mapping of Z with modulus 4, of order 2

n mod 4 | n"ClassTransposition(1,2,0,4)
____________________________________ o
0 | (n+2)/2
13 | 2n - 2
2 | n

This group acts transitively o#, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the

example in the previous section, by checking that the stabilizer of 0 acts transitively {0y.
Example

gap> gens := [ClassShift(0,1)"-1,ClassTransposition(1,2,0,4),ClassShift(0,1)]1;;
gap> tups := Concatenation(List ([l..6],k->Tuples([-1,0,1],k)));;

gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],([1,-1]],

> 1->PositionSublist (tup,l)=£fail));;
gap> Length (tups);

189

gap> stab := [];;

gap> for tup in tups do

> n :=0;

> for i in tup do n := n"gens[i+2]; od;

> if n = 0 then Add(stab,tup); fi;

> od;

gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;
gap> Collected(List (stabelm,Modulus));
(4 61, [8 41, [16, 311

RCWA 87

Example
gap> decs := List (stabelm,DecreasingOn);
[0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4),
0(8), 3(8) 1
gap> Union(decs);
Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of O:

Example
gap> Maximum(List (stabelm, f->Maximum (List (Coefficients (f),c->AbsInt(c[2])))));
21
gap> S := [11;;
gap> for elm in stabelm do S := Union(S,S"elm,S" (elm™-1)); od;
gap> IsSubset (S,Difference([-21..21],[0])); # Not yet ..
false
gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (S,Difference([-21..21],([0]1)); # ... but now!
true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of0,1} which properly divides its elements, we also have to take additions
and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:

Example
gap> tups := Concatenation(List ([1..10],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],([-1,1],[1,-111,
> 1->PositionSublist (tup,l)=fail));;
gap> Length (tups);
3069
gap> stab := [1];;
gap> for tup in tups do
> 1 := [0,171;
> for i in tup do 1 := List(l,n->n"gens[i+2]); od;
> if 1 = [0,1] then Add(stab,tup); fi;
> od;
gap> Length(stab);
10
gap> stabelm := List (stab,tup->Product (List (tup,i->gens[i+2])));;
gap> Maximum (List (stabelm,Modulus));
8
gap> Maximum(List (stabelm,
> f->Maximum (List (Coefficients (f),c->AbsInt(c([2])))));
8

RCWA 88

Example

gap> decsp := List (stabelm,elm->Filtered([9..16],n->n"elm<n));
rr9, 131, [10, 12, 14, 161, [12, 161, [9, 131, [12, 16 1,
[9, 11, 13, 151, 9, 11, 13, 1571, [12, 161, [12, 16],
[9, 11, 13, 1571 1]
gap> Union (decsp);
(9, 10, 11, 12, 13, 14, 15, 16]
gap> decsm := List (stabelm,elm->Filtered([-16..-9],n->n"elm>n));
[[-15, -13, -11, -9 1, [-16, -12 1, [-16, -12], [-15, -11 7],
[-16, -14, -12, -10 1, [-15, -11 1, [-15, -11 1,
[-16, -14, -12, -10], [-16, -14, -12, -10], [-15, -11]]
gap> Union (decsm);
[-16, -15, -14, -13, -12, -11, -10, -9]

gap> S := [2];;

gap> for elm in stabelm do S := Union(S,S"elm,S” (elm”-1)); od;
gap> IsSubset (5,Difference([-8..81,[0,1]1));

true

At this point we have established 3-transitivity. It remains to check that the geodpes not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Simoed 8
determines the image afunder a generator @ (mod 4), it suffices to compute (mod 8):

Example
gap> orb := [[0,1,2,311;;
gap> extend := function ()
> local gen;
> for gen in gens do
> orb := Union(orb,List (orb,1->List (1,n->n"gen) mod 8));
> od;
> end;;
gap> repeat
> old := ShallowCopy (orb);
> extend(); Print (Length(orb),"\n");
> until orb = old;
7
27
97
279
573
916
1185
1313
1341
1344
1344
gap> Length (Set (List (orb,1->1 mod 4)));
120
gap> last < 47°4;
true

RCWA 89

This shows thaG acts not 4-transitively ofZ.. The corresponding calculation for 3-tuples looks as

follows:
Example

gap> orb := [[0,1,2]];;

gap> repeat

> old := ShallowCopy (orb);

> extend(); Print (Length (orb),"\n");
> until orb = old;

7

277

84

207

363

459

503

512

512

gap> Length (Set (List (orb,1->1 mod 4)));
64

gap> last = 473;

true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

5.16 Grigorchuk groups

In this section, we show how to construct finite quotients of the two infinite periodic groups in-
troduced by Rostislav Grigorchuk ir5fi80] with the help of RCWA. The first of these, nowa-
days known as “Grigorchuk group”, is investigated in an example given oeMRewebsite — see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. TheRCWA package permits a
simpler and more elegant construction of the finite quotients of this group: The fumeti@hement

given on the mentioned webpage gets unnecessary, and the fupetiotnceElement can be sim-
plified as follows:

SequenceElement := function (r, level)

return Permutation (Product (Filtered([1l..level-1],k->k mod 3 <> r),
k->ClassTransposition (27 (k-1)-1,2" (k+1),
2°k+2" (k-1)-1,2" (k+1))),

[0..271evel-1]);
end;

http://www.gap-system.org/Doc/Examples/grigorchuk.html

RCWA 90

The actual constructors for the generators are modified as follows:

:= level -> Permutation(ClassTransposition(0,2,1,2),[0..2"1level-1]);
level -> SequenceElement (0, level);
:= level -> SequenceElement (2, level);
level -> SequenceElement (1, level);

Q. Q O w
Il

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, we construct finite quotients of the second group
introduced in {5ri80):

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);
<bijective rcwa mapping of Z with modulus 4, of order 4>
gap> GrigorchukGroup2Generator := function (level)

> if level = 1 then return FourCycle; else

> return Restriction(FourCycle, RcwaMapping([[4,1,11]1))

> * Restriction(FourCycle, RcwaMapping([[4,3,11]))

> * Restriction(GrigorchukGroup2Generator (level-1),

> RcwaMapping ([[4,0,111));

> fi;

> end;;

gap> GrigorchukGroup2 := level -> Group (FourCycle,

> GrigorchukGroup2Generator (level));;

We can do similar things as shown in the example onGhe webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1l..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.
[<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>,

<rcwa group over Z with 2 generators>]
gap> H := List([l..4],lev->Action(G[lev],[0..4"1ev-1])); # Isom. perm.-gps.
[Group([(1,2,3,4), (1,2,3,4) 1),

Group ([(1,2,3,4)(5,6,7,8)(9,10,11,12) (13,14,15,16),

(1,5,9,13) (2,6,10,14) (4,8,12,16) 1),

<permutation group with 2 generators>,

<permutation group with 2 generators>]
gap> List (H,Size);
[4, 1024, 4294967296, 1329227995784915872903807060280344576]
gap> List (last,n->Collected(Factors(n)));
(rt2,211, 1002 1011, [[2 32711, [[2, 120111
gap> List (H,NilpotencyClassOfGroup);
[1, 6, 14, 40]

RCWA 91

5.17 Forward orbits of a monoid with 2 generators

The 3+ 1 Conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

n
T5iZZ—>Z, ne— {2 !fneven
=L if nodd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappigigandT;" indeed contains 1. First of
all, we enter the generators:

Example

gap> TSm := RcwaMapping([[1,0,21,([5,-1,211);;
gap> T5p := RcwaMapping([[1,0,2]1,(5, 1,211);;

We look for a numbek such that for any residue clas&®) there is a product of k mappingsTsi
whose restriction to(2¥) is given byn— (an+ b)/c wherec > a:
Example

gap> k := 1;;

gap> repeat

> maps := List (Tuples([T5m,T5p],k),Product);
decr := List (maps,DecreasingOn);
decreasable := Union(decr);
Print (k,": "); View(decreasable); Print ("\n");
k :=k + 1;

until decreasable = Integers;

0(2)

0(4)

Z \ 1(8) U 7(8)

0(4) U 3(16) U 6(16) U 10(16) U 13(1l6)

7z \ 7(32) U 25(32)

<union of 48 residue classes (mod 64)>

Integers

o U1 W NV V VYV YV

Thusk = 7 serves our purposes. To be sure that for any positive integer monoid contains a
mappingf such than® < n, we still need to check this condition for “smalti Since in case > a
we have(an+b)/c > nif only if n<b/(c—a), we only need to check thosewhich are not larger
than the largest coefficiebt ,; occuring in any of the products under consideration:

Example
gap> maxb := Maximum(List (maps, f->Maximum(List (Coefficients(f),t->t[2]))));
25999
gap> small := Filtered([l..maxb],n->ForAll (maps,f->n"f>=n));
(1, 7, 9 11]

RCWA

92

This means that except of 1, only fare {7,9,11} there is no product of 7 mapping'g‘t which
mapsn to a smaller integer. We check that also the forward orbits of these three integers contain 1 by

successively computing preimages of 1:

Example
gap> S := [1];; k :=0;;
gap> repeat
> S := Union(S,PreImage (T5m,S),PreImage (T5p,S));
> k := k+1;
> until IsSubset (S, small);
gap> k;
17

5.18 Representations of the free group of rank 2

The free group of rank 2 embeds into RCV¥A(- in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (aflHIOQ], page 27) from PSL(Z) to RCWA(Z)

(we use the notation from the cited book):
Example

gap> D := AllResidueClassesModulo (4);

[0(4), 1(4), 2(4), 3(4)]

gap> gammal := RepresentativeAction (RCWA (Integers),

> Difference (Integers,D[1]),D[2]);;
gap> gamma2 := RepresentativeAction (RCWA (Integers),

> Difference (Integers,D[3]),D[4]);;
gap> F2 := Group(gammal,gamma?2);

<rcwa group over Z with 2 generators>

We can do some checks:

Example

gap> X1 := Union(D{[1,2]1});; X2 := Union(D{[3,4]1});;

gap> IsSubset (X1,X2"gammal) and IsSubset (X1,X2" (gammal”-1))
> and IsSubset (X2,X1"gamma2) and IsSubset (X2,X1" (gamma2"-1));
true

The generators are products of 3 class transpositions, each:
Example

gap> Factorization(gammal);

[ClassTransposition(0,2,1,2), ClassTransposition(3,4,5,8),
ClassTransposition(0,2,1,8) 1]

gap> Factorization (gamma?2) ;

[ClassTransposition(0,2,1,2), ClassTransposition(1,4,7,8),
ClassTransposition(0,2,3,8)]

RCWA 93

The above construction is used bgomorphismRcwaGroup (3.1.3 to embed free groups of any
rank> 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-calld@ble-Tennis Lemm@ee e.g.qIHOQ], Section 11.B.) to the

infinite cyclic groups generated by the two generators and to the same twa setdx2 as above:
Example

gap> rl := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);
gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);
gap> F2 := Group(rl®2,r2"2);; SetName (F2,"F_2");

gap> List (GeneratorsOfGroup(F2),IsTame);

[false, false]

gap> IsSubset (X1,X2°F2.1) and IsSubset (X1,X2" (F2.17-1))
> and IsSubset (X2,X17F2.2) and IsSubset (X2,X1"(F2.2°-1));
true

gap> ources (rl),Sinks(rl),Loops(rl) # compare with X1

gap> ources (r2),Sinks(r2),Loops (r
[0) 1, [3(4) 1, [2(4), 3(4)
gap> IsSubset (X1,Union (Sinks (rl)
> and IsSubset (X2,Union (Sinks (r2)
true

gap> IsSubset (Union(Sinks(rl)),X2°F2.1) and

> IsSubset (Union (Sinks (rl™-1)),X2" (F2.1°-1));
true

gap> IsSubset (Union(Sinks(r2)),X1°F2.2) and

> IsSubset (Union (Sinks (r2°-1)),X1" (F2.2"-1));
true

(s 1;

[L 0(4) 1, [1(4) 1, [0(4), 1(4) 11
[S)1; # compare with X2
2(4]

) and IsSubset (X1,Union(Sinks(rl1”-1)))

2)
]
)
)) and IsSubset (X2,Union (Sinks(r2°-1)));

(
(

Drawing the transition graphs afi andr2 for modulus 4 may help understanding what is actually

done in this calculation. It is easy to see that the group generated &iydr2 is notfree:
Example

gap> Order (rl/r2);
3

5.19 Representations of the modular group PSL(2,2)

The modular group PSL(Z) embeds in the group generated by all class transpositions as well. We
give an embedding, and check that it really is one by applying the Table Tennis Lemma as in the
previous section:

Example
gap> PSL2Z :=
> Group (ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),
> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;

gap> List (GeneratorsOfGroup (PSL2Z),0rder);
[3, 2]

RCWA 94

Example
gap> X1 := Difference(Integers,ResidueClass(0,3));
Z \ 0(3)
gap> X2 := ResidueClass (0, 3);
0(3)
gap> IsSubset (X1,X2°PSL2Z.1) and IsSubset (X1,X2" (PSL2Z.1°2));
true
gap> IsSubset (X2,X1°PSL2Z.2);
true

A slightly different representation of PSLIR, can be obtained by usirRiCWA'’s general method for
IsomorphismRcwaGroup for free products of finite groups:
Example

gap> Display (Image (IsomorphismRcwaGroup (FreeProduct (CyclicGroup(3),
N CyclicGroup(2)))));

Wild rcwa group over Z, generated by

Bijective rcwa mapping of Z with modulus 4

n mod 4 | n~f
____________________________________ o
0 | n+ 2
13 | 2n - 2
2 | n/2
Bijective rcwa mapping of Z with modulus 2
n mod 2 | n~f
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
0 | n+ 1
1 | n -1

Chapter 6

The Algorithms Implemented in RCWA

This chapter lists brief descriptions of many of the algorithms and methods implemented in this pack-
age. These descriptions are kept very informal and short, and some of them provide only rudimentary
information. They are listed in alphabetical order. The word “trivial” as a description means that
essentially nothing is done except of storing or recalling one or several values, and “straightforward”
means that no sophisticated algorithm is used. Note that “trivial” and “straightforward” are to be
read asnathematicallytrivial respectively straightforward, and that the code of a function or method
attributed in this way can still be reasonably long and complicated. Longer and better descriptions of
many of the algorithms and methods can be foundizhD71.

ActionOnRespectedPartition(G) “Straightforward” after having computed a respected
partition byRespectedPartition. One only needs to know how to compute images of residue
classes under affine mappings.

Ball G, g,r) “Straightforward”.
Ball G, p,r,act) “Straightforward”.

ClassPairs Run over all 4-tuples, and filter by divisibility criteria, size comparisons, ordering of
the entries etc.

ClassReflection(r,m “Trivial”.
ClassRotation(r, mu) “Trivial”.

ClassShift(r, m “Trivial".

ClassTransposition(rl,ml r2,m2 “Trivial"

ClassWiseOrderPreservingOn(f), etc. Forms the union of the residue classes modulo the
modulus off in whose corresponding coefficient triple the first entry is positive, zero or nega-
tive, respectively.

Coefficients(f) “Trivial”.
CommonRightinverse(|, r) (SeeRightInverse.)

CT(R) Attributes and properties are set accordingiolj064.

95

RCWA 96

DecreasingOn(f) Forms the union of the residue classes which are determined by the coeffi-
cients as indicated.

DerivedSubgroup(G) No genuine method -GAP Library methods already work for tame
groups.

Determinant(g) Evaluation of the given expression. For the mathematical meaning (epimor-
phism!), see Theorem 2.11.9 iK¢hO04].

DirectProduct(GL G2 ...) Restricts the group&1, G2, ... to disjoint residue classes.
SeeRestriction and Corollary 2.3.3 infoh05.

Display(f) “Trivial”.
Divisor(f) Lcm of coefficients, as indicated.

DrawOrbitPicture Compute spheres of radius. 1 ,r around the given point(s). Choose the
origin either in the lower left corner of the picture (if all points lie in the first quadrant) or in
the middle of the picture (if they don’t). Mark points of the ball with black pixels in case of a
monochrome picture. Choose colors from the given palette depending on the distance from the
starting points in case of a colored picture.

EpimorphismFromFpGroup(G, r) If the package R [Bar07 is loaded, then use its function
FindGroupRelations to find relations. Otherwise proceed as follows: First compute the ball
of radiusr around 1 in the free group whose rank is the number of stored generat@r3bén
compute the images of the elements of that ball under the natural projection onto the=group
Take pairs of elements of the ball whose images coincide, and add their quotients to the set of
known relations. For images which have finite order, add the corresponding power relations.
Finally, regardless of wheth&R is present or not, simplify the finitely presented group with
the determined relations by the operatitsbmorphismSimplifiedFpGroup from the GAP
Library, and return the natural epimorphism from itGo

Exponent(G) Check whetheGis finite. If it is, then use th&AP Library method, applied to
Image (IsomorphismPermGroup (G)). Check whetheG is tame. If yes, returinfinity. If
not, run a loop ovelG until finding an element of infinite order. Once one is found, return
infinity.
The final loop to find a non-torsion element can be left away under the assumption that any
finitely generated wild rcwa group has a wild element. It looks likely that this holds, but cur-
rently the author does not know a proof.

FactorizationIntoCSCRCT(g) This uses a rather sophisticated method which will likely
some time be published elsewhere. At the moment termination is not guaranteed, but in case of
termination the result is certain. The strategy is roughly first to make the mapping class-wise
order-preserving and balanced, and then to remove all prime factors from multiplier and divisor
one after the other in decreasing order by dividing by appropriate class transpositions. The
remaining integral mapping can be factored almost similarly easily as a permutation of a finite
set can be factored into transpositions.

FactorizationOnConnectedComponents(f, m CallsGRAPE to get the connected com-
ponents of the transition graph, and then computes a partition of the suitably “blown up” coef-
ficient list corresponding to the connected components.

RCWA 97

FixedPointsOfAffinePartialMappings(f) “Straightforward”.
GluckTaylorInvariant(a(Evaluation of the given expression.

GuessedDivergence(f) Numerical computation of the limit of some series, which seems to
converge “often”. Caution!!!

Image(f),Image(f,S) “Straightforward” if one can compute images of residue classes under
affine mappings and unite and intersect residue classes (Chinese Remainder Theorem). See
Lemma 1.2.1 inKoh04].

ImageDensity(f) Evaluation of the given expression.

g in G (membership test for rcwa groups) Test whether the mapping or its inverse is in the
list of generators o6. If it is, returntrue. Test whether its prime set is a subset of the prime
set of G. If not, returnfalse. Test whether the multiplier or the divisor gfhas a prime factor
which does not divide the multiplier . If yes, returnfalse. Testif Gis class-wise order-
preserving, ang is not. If so, returnfalse. Test if the sign ofy is -1 and all generators &
have sign 1. If yes, returfalse. Test ifGis class-wise order-preserving, all generator§of
have determinant O argl has determinang 0. If yes, returnfalse. Test whether the support
of g is a subset of the support & If not, returnfalse. Test whethef fixes the nonnegative
integers setwise, bt does not. If yes, returfalse.

If Gis tame, proceed as follows: Test whether the modulgsdifides the modulus d&. If not,
returnfalse. Test whetheGis finite andg has infinite order. If so, returfulse. Test whether

g istame. If not, returrialse. Compute a respected partitierof G and the finite permutation
groupH induced byG on it (seeRespectedPartition). Check whetheg permute. If not,
returnfalse. Leth be the permutation induced loyon p. Check whetheh lies in H. If not,
returnfalse. Compute an element of Gwhich acts ore like g. For this purpose, factdrinto
generators oft usingPreImagesRepresentative, and compute the corresponding product of
generators o6. Letk := g/gl. The mapping is always integral. Compute the kermedf the
action of Gon P usingKkernelOfActionOnRespectedPartition. Check whethek lies ink.
This is done using the packagelycyclic [ENOE, and uses an isomorphism from a supergroup
of K which is isomorphic to thep | -fold direct product of the infinite dihedral group and which
always containg to a polycyclically presented group. #kflies in X, returntrue, otherwise
returnfalse.

If Gis not tame, proceed as follows: Look for finite orbits®flf some are found, test whether

g acts on them, and whether the induced permutations lie in the permutation groups induced
by G. If for one of the examined orbits one of the latter two questions has a negative answer,
then returnfalse. Look for a positive integem such thag does not leave a partition @ into

unions of residue classes (mad invariant which is fixed byG. If successful, returrfalse.

If not, try to factorg into generators o6 usingPreImagesRepresentative. If successful,
returntrue. If g is in G, this terminates after a finite number of steps. Both runtime and
memory requirements are exponential in the word lengthg i$ not in G at this stage, the
method runs into an infinite loop.

f in M(membership test for rcva monoids) Test whether the mapping is in the list of gen-
erators ofG. If it is, returntrue. Test whether the multiplier df is zero, but all generators
of M have nonzero multiplier. If yes, retufialse. Test if neithef nor any generator d¥l has

RCWA 98

multiplier zero. If so, check whether the prime seff ofs a subset of the prime set bf and
whether the set of prime factors of the multiplieifofs a subset of the union of the sets of prime
factors of the multipliers of the generatorsMf If one of these is not the case, retufsl se.
Check whether the set of prime factors of the divisof a$ a subset of the union of the sets of
prime factors of the divisors of the generatordwflf not, returntalse. If the underlying ring

is Z or a semilocalization thereof, then check whethés not class-wise order-preserving, but
Mis. If so, returnfalse.

If f is not injective, but all generators bfare, then returmalse. If f is not surjective, but all
generators oM are, then returrfalse. If the support of is not a subset of the support i
then returnfalse. If f is not sign-preserving, b¥l is, then returnfalse. Check whether
Mis tame. If so, then returfalse provided that one of the following three conditions hold:
1. The modulus of does not divide the modulus 8. 2.f is not tame. 3Mis finite, andf

is bijective and has infinite order. If membership has still not been decidedhuseorbits

to look for finite orbits ofM, and check whethdr fixes all of them setwise. If a finite orbit is
found whichf does not map to itself, then retufalse.

Finally compute balls of increasing radius around 1 unis found to lie in one of them. If that
happens, returoirue. If f is an element o, this will eventually terminate, but if at this stage
f is not an element df/, this will run into an infinite loop.

point in orbit (membership test for orbits) Uses the equality test for orbits: The orbit
equality test computes balls of increasing radius around the orbit representatives until they in-
tersect nontrivially. Once they do so, it retutns:e. If it finds that one or both of the orbits are
finite, it makes use of that information, and retumas se if appropriate. In between, i.e. after
having computed balls to a certain extent depending on the properties of the group, it chooses
a suitable modulusr and computes orbits (modulo). If the representatives of the orbits to be
compared belong to different orbits (mad, it returnsfalse. If this is not the case although
the orbits are different, the equality test runs into an infinite loop.

IncreasingOn(f) Forms the union of the residue classes which are determined by the coeffi-
cients as indicated.

Index(G, H) Ingeneral, i.e. if the underlying ring is n@t, proceed as follows: If both groups
G andH are finite, return the quotient of their orders. Gfis infinite, butH is finite, return
infinity. Otherwise return the number of right cosetstbin G, computed by thesAP
Library functionRightCosets.

If the underlying ring iZ, do additionally the following before attempting to compute the list of
right cosets: If the grougs is class-wise order-preserving, check whether one of its generators
has nonzero determinant, and whether all generatoks$ ltdve determinant zero. If so, then
returninfinity. Check whetheH is tame, butGis not. If so, then returinfinity. If G

is tame, then check whether the rank of the largest free abelian subgroup of the kernel of the
action ofGon a respected partition is higher than the corresponding rark fBor this check,
UseRankOfKernelOfActionOnRespectedPartition. Ifitis, thenreturninfinity.

Induction(g,f) Computes * g * RightInverse(f).

Induction(G, f) Gets a set of generators by applyingduction(g,f) to the generatorg
of G.

RCWA 99

InjectiveAsMappingFrom(f) The function starts with the entire sourcefofs “preimage”
pre and the empty set as “imageth. It loops over the residue classes (mad (f)). For any
such residue classl the following is done: Firstly, the image efi underf is added toim.
Secondly, the intersection of the preimage of the intersection of the imageuniderf andim
underf andcl is subtracted frompre.

IntegralConjugate(f), IntegralConjugate(G) Uses the algorithm described in the
proof of Theorem 2.5.14 infoh04].

IntegralizingConjugator(f), IntegralizingConjugator(G) Uses the algorithm
described in the proof of Theorem 2.5.14 ikoh05.

Inverse(f) Essentially inversion of affine mappings. See Lemma 1.3.1, Part (Bpim(3.

IsBalanced(f) Checks whether the sets of prime factors of the multiplier and the divisior of
are the same.

IsClassReflection(g) Computes the support gf, and compareg with the corresponding
class reflection.

IsClassRotation(g) Computes the support gf, extracts the possible rotation factor from the
coefficients and compargswith the corresponding class rotation.

IsClassShift(g) Computes the support @f, and compareg with the corresponding class
shift.

IsClassTransposition(g) Computes the support gf, writes it as a disjoint union of two
residue classes and compagewith the class transposition which interchanges them.

IsClassWiseOrderPreserving(f) Tests whether the first entry of all coefficient triples is
positive.
IsConjugate(RCWA(Integers), f,g) Test whethef andg have the same order, and

whether either both or none of them is tame. If not, rettiahse.

If the mappings are wild, usehortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, returtialse.

If the mappings are tame, use the method described in the proof of Theorem 2.5bA0&|[

to construct integral conjugates bfandg. Then essentially use the algorithm described in
the proof of Theorem 2.6.7 irkKph05 to compute “standard representatives” of the conjugacy
classes which the integral conjugatesfoindg belong to. Finally compare these standard
representatives, and returnue if they are equal andalse if not.

IsInjective(f) Seelmage.
Isintegral(f) “Trivial”.

IsomorphismMatrixGroup(G) Uses the algorithm described in the proof of Theorem 2.6.3
in [Koh04.

RCWA 100

IsomorphismPermGroup(G) If the group G is finite and class-wise order-preserving, use

ActionOnRespectedPartition. If Gis finite, but not class-wise order-preserving, compute
the action on the respected partition which is obtained by splitting any residuer giass
RespectedPartition (Ginto three residue classe&@m),r +m(3m),r +2m(3m). If Gis infi-
nite, there is no isomorphism to a finite permutation group, thus return.

IsomorphismRcwaGroup(G) The method for finite groups useswaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known asPing-Pong Lemmecf. e.g. Section II.B. indIHOQ]). It uses regular permutation rep-
resentations of the factofs; (r =0,...,m— 1) of the free product on residue classes modulo

nr :=|G;|. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under bijective rcwa mappings
or which satisfy @n;)° = Z\ r(m).

The method for free groups uses an adaptation of the construction given on pagel 200 [
from PSL(2) to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsPerfect(G) If the groupGis trivial, then returncrue. Otherwise if it is abelian, then return

false.

If the underlying ring isZ, then do the following: If one of the generators®thas sign -1,
then returnfalse. If Gis class-wise order-preserving and one of the generators has nonzero
determinant, then returfalse.

If Gis wild, and perfectness has not been decided so far, then give up.islfinite, then
check the image of somorphismPermGroup (G) for perfectness, and retutirue or false
accordingly.

If the group G is tame and if it acts transitively on its stored respected parti-
tion, then returntrue or false depending on whether the finite permutation group
ActionOnRespectedPartition (G) is perfect or not. If5does not act transitively on its stored
respected partition, then give up.

IsPrimeSwitch(g) Checks whether the multiplier @f is an odd prime, and compargswith

the corresponding prime switch.

IsSignPreserving(f) |If f is not class-wise order-preserving, then rettunse. Otherwise

letc > 1 be greater than or equal to the maximum of the absolute values of the coeffigignts
of the affine partial mappings éf, and check whether the minimum of the imag€g of...,c}
underf is nonnegative and whether the maximum of the imag¢-ed,...,—1} underf is
negative. If both is the case, then returtue, otherwise returrialse.

IsSolvable(G) If Gis abelian, then returnrue. If Gis tame, then returirue or false

depending on whetheatctionOnRespectedPartition (G) is solvable or not. IfGis wild,
then give up.

IsSubset(G, H) (checking for a subgroup relation) Check whether the set of stored genera-

tors ofH is a subset of the set of stored generator&.off so, returntrue. Check whether the

RCWA 101

prime set oH is a subset of the prime set@f If not, returnfalse. Check whether the support
of H is a subset of the support & If not, returnfalse. Check whethe is tame, buH is
wild. If so, returnfalse.

If G andH are both tame, then proceed as follows: If the multiplietHotloes not divide
the multiplier of G, then returnfalse. If H does not respect the stored respected parti-
tion of G, then returnfalse. Check whether the finite permutation group induced-bgn
RespectedPartition (G) is a subgroup ofictionOnRespectedPartition(G). If yes, re-
turn true. Check whether the order éfis greater than the order & If so, returnfalse.

Finally use the membership test to check whether all generatatdiefin G, and returr:rue
or false accordingly.

IsSurjective(f) Seelmage.
IsTame(G) Checks whether the modulus of the group is nonzero.

IsTame(f) Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8
and A.11 in Koh0Y, as well as of the criteria given irKkph074. The criterion “surjective, but
not injective means wild” (Theorem A.8 irKph09) is the subject of Koh06H. The package
GRAPE is needed for the application of the criterion which says that an rcwa permutation is
wild if a transition graph has a weakly-connected component which is not strongly-connected
(cf. Theorem A.11 inlkoh09).

IsTransitive(G,Integers) Look for finite orbits, usinghortOrbits on a couple of inter-
vals. If a finite orbit is found, returfialse. Test ifGis finite. If yes, returrtalse.

Search for an elementand a residue claggm) such that the restriction afto r(m) is given

by n— n+m. Then the cyclic group generated bycts transitively om(m). The element

is searched among the generator§pits powers, its commutators, powers of its commutators
and products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitableg andr(m) are found, proceed as follows:

PutS:=r(m). PutS:= SUS for all generatorg of G, and repeat this unt$remains constant.
This may run into an infinite loop.

If it terminates: IfS= 7Z, returntrue, otherwise returrfalse.

KernelOfActionOnRespectedPartition(G) Firstdetermine the abelian invariants of the
kernelk. For this, compute sufficiently many quotients of orders of permutation groups induced
by G on refinements of the stored respected partitidoy the order of the permutation group
induced byG on P itself. Then use a random walk through the gr@aapCompute powers of
elements encountered along the way whictefiXranslate these kernel elements into elements
of a polycyclically presented group isomorphic to the|-fold direct product of the infinite
dihedral groupX certainly embeds into this group). UBelycyclic [ENOE] to collect indepen-
dent “nice” generators &f. Proceed until the permutation groups inducedcimn the refined
respected partitions all equal the initially stored quotients.

LargestSourcesOfAffineMappings(f) Forms unions of residue classes modulo the mod-
ulus of the mapping, whose corresponding coefficient triples are equal.

RCWA 102

LaTeXObj(f) Collects residue classes those corresponding coefficient triples are equal.

LikelyContractionCentre(f , maxn, bound) Computes trajectories with starting values
from a given interval, until a cycle is reached. Aborts if the trajectory exceeds the prescribed
bound. Form the union of the detected cycles.

LocalizedRcwaMapping(f, p) “Trivial".

Loops(f) Runsoverthe residue classes modulo the modulfisahd selects those of them which
f does not map to themselves, but which intersect nontrivially with their images tinder

mKnot(m) “Straightforward”, following the definition given indel99].

Modulus(G) Searches for a wild element in the group. If unsuccessful, tries to construct a re-
spected partition (se&spectedPartition).

Modulus(f) “Trivial”.

MovedPoints(G) Needs only forming unions of residue classes and determining fixed points of
affine mappings.

Multiplier(f) Lcm of coefficients, as indicated.

Multpk(f, p, k) Forms the union of the residue classes modulo the modulus of the mapping,
which are determined by the given divisibility criteria for the coefficients of the corresponding
affine mapping.

NrConjugacyClassesOfRCWAZOfOrder(ord) The class numbers are taken from Corol-
lary 2.7.1 in KohOg.

Orbit(G, pnt, gens, acts , act) Check if the orbit has length less than a certain bound. If
so, then return it as a list. Otherwise test whether the g®istame or wild.

If Gis tame, then test wheth& is finite. If yes, then compute the orbit by tieP Library
method. Otherwise proceed as follows: Compute a respected pafitodi®. UseP to find a
residue class(m) which is a subset of the orbit to be computed. In gene(ah) will not be
one of the residue classes# but a subset of one of them. Fat=r(m). Unite the sef2 with
its images under all the generators®and their inverses. Repeat that uflidoes not change
any more. Retur@.

If Gis wild, then return an orbit object which stores the grdghe representativeep and
the actionact .

OrbitsModulo(f, m UsesGRAPE to compute the connected components of the transition
graph.

OrbitsModulo(G, m) “Straightforward”.

Order(f) Test forIsTame. If the mapping is not tame, then retutnfinity. Otherwise use
Corollary 2.5.10 in Koh05.

Prelmage(f,S) SeelImage.

RCWA 103

PrelmagesRepresentative(phi , g), PreimagesRepresentatives(phi , g) As
indicated in the documentation of these methods. The underlying idea to successively compute
two balls around 1 and until they intersect nontrivially is standard in computational group
theory. For rcwa groups it would mean wasting both memory and runtime to actually compute
group elements. Thus only images of tuples of points are computed and stored.

PrimeSet(f),PrimeSet(G) “Straightforward”.

PrimeSwitch(p) Multiplication of rcwa mappings as indicated.

Print(f) “Trivial”.

f *g Essentially composition of affine mappings. See Lemma 1.3.1, Part (apirDf.

Projections(G, m UseorbitsModulo to determine the supports of the images of the epimor-
phisms to be determined, and usestrictedPerm to compute the images of the generators
of Gunder these epimorphisms.

Random(RCWA(Integers)) Computes a product of “randomly” chosen class shifts, class re-
flections and class transpositions. This seems to be suitable for generating reasonably good
examples.

RankOfKernelOfActionOnRespectedPartition(G) This performs basically the first
part of the computations done ByrnelOfActionOnRespectedPartition.

RCWAR) Attributes and properties are set according to Theorem 2.1.1, Theorem 2.1.2, Corol-
lary 2.1.6 and Theorem 2.12.8 iK§h05.

RcwaGroupByPermGroup(G) UsesRcwaMapping, Part (d).

RcwaMapping (a)-(c): “trivial”, (d): n"perm - n for determining the coefficients, (e): “affine
mappings by values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to
Lemma 2.1.4 inKoh09).

RepresentativeAction(G, src , dest , act), RepresentativeActionPrelmage
As indicated in the documentation of these methods. The underlying idea to successively
compute two balls aroundrc and dest until they intersect nontrivially is standard in
computational group theory. Words standing for products of generat@s# stored for any
image ofsrc ordest .

RepresentativeAction(RCWA(Integers), P1, P2) Arbitrary mapping: see
Lemma 2.1.4 in Koh05. Tame mapping: see proof of Theorem 2.8.9 iKplj0g. The
former is almost trivial, while the latter is a bit complicated and takes usually also much more
time.

RepresentativeAction(RCWA(Integers), f,g) The algorithm used bysConjugate
constructs actually also an elemerguch thaf "x = g.

RespectedPartition(f), RespectedPartition(G) Uses the algorithm described in
the proof of Theorem 2.5.8 irkph03.

RespectsPartition(G, P) “Straightforward”.

RCWA 104

RestrictedPerm(g, S “Straightforward”.
Restriction(g, f) Computes the action GfightInverse(f) * g * f ontheimage of .

Restriction(G, f) Getsasetofgenerators by applymagstriction(g,f) tothe generators
g of G.

Rightinverse(f) *“Straightforward” if one knows how to compute images of residue classes
under affine mappings, and how to compute inverses of affine mappings.

Root(f, k) If f is bijective, class-wise order-preserving and has finite order:

Find a conjugate of which is a product of class transpositions. Slice cyqfl|ég§2rr1(ml)7n(m)
of f arespected partitiof? into cycles|‘|}:1 r]'j‘;érrl(km,nﬂmi(km) of thek-fold length on the
refined partition which one gets frod by decomposing ang(m) € P into residue classes
(modkm). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.
RotationFactor(g) “Trivial”.
SemilocalizedRcwaMapping(f,pi) “Trivial”.
ShortCycles(f, maxing) Looks for fixed points of affine partial mappings of powerg of
ShortOrbits(G, S, maxing) “Straightforward”.

Sign(g) Evaluation of the given expression. For the mathematical meaning (epimorphism!), see
Theorem 2.12.8 infoh05.

Sinks(f) Computes the strongly connected components of the transition graph by the function
STRONGLY_CONNECTED_COMPONENTS_DIGRAPH, and selects those which are proper subsets of
their preimages and proper supersets of their images dinder

Size(G) (order of an rcwa group) Test whether one of the generators of the grGuas infinite
order. If so, returninfinity. Test whether the grou@ is tame. If not, returninfinity.
Test whetheRankOfKernelOfActionOnRespectedPartition (G) is nonzero. If so, return
infinity. Otherwise ifG is class-wise order-preserving, return the size of the permutation
group induced on the stored respected patrtitiors i not class-wise order-preserving, return
the size of the permutation group induced on the refinement of the stored respected partition
which is obtained by splitting each residue class into three residue classes with equal moduli.

Size(M) (order of an rcwa monoid) Check whetheM is in fact an rcwa group. If so, use the
method for rcwa groups instead. Check whether one of the generatbtésaurjective, but
not injective. If so, returinfinity. Check whether for all generatofsf M, the image of the
union of the loops off underf is finite. If not, returninfinity. Check whether one of the
generators oM is bijective and has infinite order. If so, returafinity. Check whether one
of the generators d¥lis wild. If so, returninfinity. Apply the above criteria to the elements
of the ball of radius 2 around 1, and returt inity if appropriate. Finally attempt to compute
the list of elements of. If this is successful, return the length of the resulting list.

RCWA 105

Sources(f) Computes the strongly connected components of the transition graph by the function
STRONGLY_CONNECTED_COMPONENTS_DIGRAPH, and selects those which are proper supersets of
their preimages and proper subsets of their images under

SplittedClassTransposition(ct , k) “Straightforward”.

StructureDescription(G) This method uses a combination of techniques to obtain some
basic information on the structure of an rcwa group. The returned description reflects the way
the group has been buitt{rectProduct, WreathProduct, etc.).

f +g Pointwise addition of affine mappings.
Support(G) “Straightforward”.

Trajectory(f,n,..) Iterated application of an rcwa mapping. In the methods computing
“accumulated coefficients”, additionally composition of affine mappings.

TransitionGraph(f, m “Straightforward” — just check a sufficiently long interval.
TransitionMatrix(f, m Evaluation of the given expression.
TransposedClasses(g) “Trivial”.

View(f) “Trivial".

WreathProduct(G, P) UsesDirectProduct to embed th@egreeaction (P)th direct power
of G, andrcwaMapping, Part (d) to embed the finite permutation grdp

WreathProduct(G, Z) RestrictsG to the residue class 3(4), and encodes the generaibasf
To(2),1(2) * To(2),1(4)- Itis used that the images of 3(4) under powers of this mapping are pairwise
disjoint residue classes.

Chapter 7

Installation and auxiliary functions

7.1 Requirements

The RCWA package needs at leaSiAP 4.4.7, ResClasses 2.5.1, GRAPE 4.0 [So0i07], Poly-

cyclic 2.1 [ENOg and GAPDoc 1.0 [LNO7]. With possible exception of the most recent version of
ResClasses, all needed packages are already present in an up-to-date st@rdaidstallation. The
RCWA package can be used under UNIX, under Windows and on the Maclntosh. It is completely
written in the GAP language and does neither contain nor require external binaries. In particular,
warnings concerning missing binaries issued3®APE or other packages can savely be ignored.

7.2 Installation

Like any othelGAP packageRCWA must be installed in thekg subdirectory of th&AP distribution.
This is accomplished by extracting the distribution file in this directory. If you have done this, you
can load the package as usual vimdPackage ("rcwa");.

7.3 The Info class of the package
7.3.1 InfoRCWA
O InfoRCWA (info class)

This is the Info class of theCWA package. See sectidnfo Functionsin the GAP Reference
Manual for a description of the Info mechanism. For convenieRC8AInfo (n) is a shorthand for
SetInfolLevel (InfoRCWA,N).

7.4 The testing routine

7.4.1 RCWATest

{ RCWATest () (function)
Returns: Nothing.
Performs tests of thRCWA package. Errors, i.e. differences to the correct results of the test
computations, are reported. The processed test files are in the dirgktgmewa/tst.

106

RCWA 107

7.5 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

7.5.1 RCWABuildManual

{) RCWABuildManual () (function)
Returns: Nothing.
This function builds the manual of tHrECWA package in the file formatsTgX, PDF, HTML and
ASCII text. This is accomplished using tl@&PDoc package by Frankiibeck and Max Neuriffer.
Building the manual is possible only on UNIX systems and requires MBXL

7.6 Loading and saving bitmap pictures

RCWA provides functions to create bitmap picture files from suitable pixel matrices and vice versa.
The author has successfully tested this feature both under Linux and under Windows, and the produced
pictures can be processed further with many common graphics programs:

7.6.1 SaveAsBitmapPicture (picture, filename)

{ SaveAsBitmapPicture (picture, filename) (function)

Returns: Nothing.

Writes the pixel matrixicture to a bitmap- (bmp-) picture file namdidename . The file-
name should include the entire pathname. The argupienire can be a GF(2) matrix, in which
case a monochrome picture file is generated. In this case, zeros stand for black pixels and ones stand
for white pixels. The argumenmicture can also be an integer matrix, in which case a 24-bit True
Color picture file is generated. In this case, the entries of the matrix are supposed to be integers
n= 65536 red+ 256- greer+bluein the range 0..., 2?4 — 1 specifying the RGB values of the colors
of the pixels.

The picture can be read back ine@P by the functiorReadFromBitmapPicture (filename).
Example

gap> color := n->32*(n mod 8)+256*32* (Int (n/8) mod 8)+65536*32*Int (n/64);;
gap> picture := List([1l..512],y->List([1..512],x->color (Gecd(x,y)-1)));;
gap> SaveAsBitmapPicture (picture,"”/images/gcd.bmp");

7.7 Running demonstrations

RCWA provides a routine to run demonstrations of its functionality or of other features\ef It is
intended for being used in talks.
7.7.1 RunDemonstration (flename)

{ RunDemonstration (filename) (function)
Returns: Nothing.

RCWA 108

This function executes the code in the file nanfiéghame . It shows a command and the
corresponding output, waits for a keystroke, shows the next command and the corresponding output,
waits again for a keystroke, and so on until the end of the file. The demonstration can be stopped by
pressingg. The function is adapted from the functioemonstration in the filelib/demo.qg of the
main GAP distribution.

7.8 Some general utility functions

RCWA introduces a couple of small utility functions which can be used in a more general con-
text: The functionGeneratorsAndInverses (G) returns a list of generators @ and their in-
versesEpimorphismByGenerators (G, H) is a shorthand fosroupHomomorphismByImages (G, H,
GeneratorsOfGroup (G) , GeneratorsOfGroup (H)) (there is also amc version of this), the func-

tion ListOfPowers(g,exp) returns the list(g,g"2,...,g"exp] of powers ofg, the func-

tion AllProducts(l ,k) returns the list of all products df entries of the listl , the function
DifferencesList (I) returns the list of differences of consecutive entries of the lisind the func-
tionFloatQuotients (I) returns the list of floating point approximations of quotients of consecutive
entries of the list .

There are also methodgjuivalenceClasses (I ,inv) andEquivalenceClasses(l ,rel),
which decompose a lidt into equivalence classes under an equivalence relation. The equivalence
relation is given either as a functionv computing a class invariant of a given list entry or as a
functionrel which takes as arguments two list entries and returns either or false depending
on whether the arguments belong to the same equivalence class or not.

References

[And00]

[Bar07]

[dIHOO]

[ENOB]

[Gri80]

[GT02]

[HEOO5]

[Kel9g]

[KohOS]

P. Andaloro. On total stopping times under31 iteration.Fibonacci Quarterly 38:73-78,
2000. 56

L. Bartholdi. FR — Computations with functionally recursive groups. Version 0.714285
2007. GAP package:tp://mad.epfl.ch/ " laurent/FR/. 37, 96

P. de la Harpe.Topics in Geometric Group ThearyChicago Lectures in Mathematics,
2000. 31, 92,93, 100

B. Eick and W. Nickel. Polycyclic — Computation with polycyclic groups; Version,2.1
2006. GAP packageytp://www.gap-system.org/Packages/polycyclic.html. 45
97,101, 106

R. I. Grigorchuk. Burnside’s problem on periodic groupsinctional Anal. Appl.14:41—
43, 1980. 89, 90

D. Gluck and B. D. Taylor. A new statistic for th&3- 1 problem.Proc. Amer. Math. Sog¢.
130(5):1293-1301, 200227

D. F. Holt, B. Eick, and E. A. O’'BrienHandbook of Computational Group Theomis-
crete Mathematics and its Applications (Boca Raton). Chapman & Hall/ CRC, Boca Raton,
FL, 2005. 6

T. P. Keller. Finite cycles of certain periodically linear permutatioMissouri J. Math.
Sci, 11(3):152-157, 199921, 22, 102

S. Kohl. Restklassenweise affine Gruppemissertation, Universitt Stuttgart, 2005.
http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071. 19, 20, 36, 43, 44, 45,
96, 97, 99, 101, 102, 103 104

[Koh06a] S. Kohl. A simple group generated by involutions interchanging residue classes of the inte-

gers, 2006.http://www.cip.mathematik.uni-stuttgart.de/ kohlsn/preprints/
simplegp.pdf. 7,11, 95

[Koh06b] S. Kohl. Wildness of iteration of certain residue-class-wise affine mappAds.in Appl.

Math, 2006. doi:10.1016/j.aam.2006.08.00801

[KohO7a] S. Kohl. Graph theoretical criteria for the wildness of residue-class-wise affine permuta-

tions, 2007 http://www.cip.mathematik.uni-stuttgart.de/ kohlsn/preprints/
graphcrit.pdf. 101

109

http://mad.epfl.ch/~laurent/FR/
http://www.gap-system.org/Packages/polycyclic.html
http://deposit.ddb.de/cgi-bin/dokserv?idn=977164071
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/simplegp.pdf
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/simplegp.pdf
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/graphcrit.pdf
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/graphcrit.pdf

RCWA 110

[Koh0O7b] S. Kohl. A new class of groups which are accessible to computational meth-

[Lag06]

[LNO7]

[Mih58]

[ML87]

[S0i02]

ods, 2007. http://www.cip.mathematik.uni-stuttgart.de/ kohlsn/preprints/
compute.pdf. 7,95

J. C. Lagarias. 3x+1 problem annotated bibliography, 2006.p://arxiv.org/abs/
math.NT/0309224. 6

F. Lubeck and M. Neuriffer. GAPDoc (Version 1.0)RWTH Aachen, 2007. GAP pack-
age,http://www.gap-system.org/Packages/gapdoc.html. 106

K. A. Mihailova. The occurence problem for direct products of groupskl. Acad. Nauk.
SSSR119:1103-1105, 195835

K. R. Matthews and G. M. Leigh. A generalization of the Syracuse algorithm i)(3(
J. Number Theory25:274-278, 198757

L. Soicher. GRAPE — GRaph Algorithms using PErmutation groups (Version Qlipen
Mary, University of London, 2002. GAP packagettp://www.gap-system.org/
Packages/grape.html. 25,106

http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/compute.pdf
http://www.cip.mathematik.uni-stuttgart.de/~kohlsn/preprints/compute.pdf
http://arxiv.org/abs/math.NT/0309224
http://arxiv.org/abs/math.NT/0309224
http://www.gap-system.org/Packages/gapdoc.html
http://www.gap-system.org/Packages/grape.html
http://www.gap-system.org/Packages/grape.html

Index

ActionOnRespectedPartition
for a tame rcwa groupls
AllProducts, 108

balanced
definition, 17
Ball
for group, element and radiuél
for group, point, radius and actioal
for monoid, element and radiusl
for monoid, point, radius and actiosl

ClassPairs

m, 46

R, m,46
ClassReflection

cl, 10

r,m,10
ClassRotation

cl,u,12

r,m,u,12
ClassShift

cl, 10

r, m,10
ClassTransposition

cl1, cl2,11

rl, ml, r2, m211
ClassWiseConstantOn, 19
ClassWiseOrderPreservingOn, 19
ClassWiseOrderReversingOn, 19
Coefficients

of an rcwa mappingl7
Collatz conjecture6
Collatz mapping6
CommonRightInverse

of two injective rcwa mapping£3
CT

the group generated by all class transposi-

tions of aring,31

111

DecreasingOn

for an rcwa mapping25

DerivedSubgroup

of an rcwa group36

Determinant

of an rcwa mapping of Z19

DifferencesList, 108
DirectProduct

for rcwa groups over Z32

Display

Div

for an rcwa group30
for an rcwa mappingl4
for an rcwa monoid48

for an rcwa group33
for an rcwa mappingl7

Divisor

of an rcwa group33
of an rcwa mappingl7

divisor

definition, 8

DrawOrbitPicture

G, pO, r, h, w, colored, palette, filename,
40

EpimorphismByGenerators

for two groups,108

EpimorphismFromFpGroup

for an rcwa group and a search radi8g,

EquivalenceClasses

for a list and a function computing a class
invariant,108

for a list and a function describing an
equivalence relatior],08

Exponent

of an rcwa group36

ExtRepOfObi, 29

Factorization

RCWA

for an rcwa permutation of 20
FactorizationIntoCSCRCT

for an rcwa permutation of 20
FactorizationOnConnectedComponents

for an rcwa mapping and a modul®§
FixedPointsOfAffinePartialMappings

for an rcwa mappingl 8
FloatQuotients, 108

GeneratorsAndInverses

for a group,108
GluckTaylorInvariant

of a trajectory27
Group, 30
GroupByGenerators, 30
GroupWithGenerators, 30
GuessedDivergence

of an rcwa mapping?8

Image
of an rcwa mappingl5
ImageDensity
of an rcwa mapping?3
IncreasingOn
for an rcwa mapping25
Index
for rcwa groups36
Induction
of an rcwa group, by an injective rcwa
mapping,33
of an rcwa mapping, by an injective rcwa
mapping,33
Induction
for an rcwa monoid, by an injective rcwa
mapping 49
InfoRCWA, 106
InjectiveAsMappingFrom
for an rcwa mapping24
integral
definition, 17
IntegralConjugate
of a tame rcwa groupl5
of a tame rcwa permutatiodb
IntegralizingConjugator
of a tame rcwa groupl5
of a tame rcwa permutatiodb
IsBalanced

for an rcwa mappingl7
IsBijective

for an rcwa mappingl5
IsClassReflection

for an rcwa mappingl 2
IsClassRotation

for an rcwa mappingl 2
IsClassShift

for an rcwa mappingl 2
IsClassTransposition

for an rcwa mappingl 2
IsClassWiseOrderPreserving

for an rcwa group33

for an rcwa mappingl7

for an rcwa monoid49
IsConjugate

for elements of CT(R)36

for elements of RCWA(R)36
IsGeneralizedClassTransposition

for an rcwa mappingl 2
IsInjective

for an rcwa mappingl5
IsIntegral

for an rcwa group33

for an rcwa mappingl7

for an rcwa monoid49
IsNaturalCT, 47
IsNaturalRCWA, 47
IsomorphismMatrixGroup

for an rcwa group36
IsomorphismPermGroup

for a finite rcwa group35
IsomorphismRcwaGroup

for a group,31

for a group, over a given rin@®1
IsPerfect

for an rcwa group36
IsPrimeSwitch

for an rcwa mapping21
IsRcwaGroup, 47
IsRcwaGroupOverGFgx, 47
IsRcwaGroupOverz, 47
IsRcwaGroupOverzOrz_pi, 47
IsRcwaGroupOver? pi, 47
IsRcwaMapping, 29
IsRcwaMappingOfGFgx, 29
IsRcwaMappingO£fz, 29

112

RCWA

IsRcwaMapping0fz0rz _pi, 29
IsRcwaMappingOfZz _pi, 29
IsRcwaMappingStandardRep, 29
IsSignPreserving

for an rcwa group33

for an rcwa mappingl7

for an rcwa monoid49
IsSolvable

for an rcwa group36
IsSubset

for two rcwa monoids49
IsSurjective

for an rcwa mappingl5
IsTame

for an rcwa group36

for an rcwa mappingl5

for an rcwa monoid49
IsTransitive

for an rcwa group, on its underlying ring,

39

KernelOfActionOnRespectedPartition
for a tame rcwa groupl5

LargestSourcesOfAffineMappings

for an rcwa mappingl 8
LaTeX

for an rcwa mappingl4
LaTeXAndXDVI

for an rcwa mappingl5
LaTeX0bj

for an rcwa mappingl4
LikelyContractionCentre

of an rcwa mapping28
ListOfPowers, 108
LocalizedRcwaMapping

for an rcwa mapping of Z and a prim&4
Loops

of an rcwa mapping27

mKnot

for an odd integer22
Mod

for an rcwa group33

for an rcwa mappingl7
Modulus

of an rcwa group33

of an rcwa mappingl7

113

of an rcwa monoid49
modulus

definition, 8
ModulusOfRcwaMonoid

for an rcwa group33
Monoid, 48
MonoidByGenerators, 48
MovedPoints

of an rcwa group39

of an rcwa mappingl6
Mult

for an rcwa group33

for an rcwa mappingl7
Multiplier

of an rcwa group33

of an rcwa mappingl7
multiplier

definition, 8
Multpk

for an rcwa mapping, a prime and an ex-

ponent,19

Name
forcs/cr/ctl2
NrConjugacyClassesOfRCWAZOfOrder, 36

ObjByExtRep, 29
Orbit

for an rcwa group and a poir29

for an rcwa group and a s&9
OrbitsModulo

for an rcwa mapping and a modul2g
OrbitsModulo

for an rcwa group and a modulu&3
Order

of an rcwa permutatiori,5

PermutationOpNC
g, P, OnPoints44
PreImage
of a residue class union under an rcwa
mapping,16
of a set of ring elements under an rcwa
mapping,16
PreImageElm
of a ring element under an rcwa mapping,
16

PreImagesElm

RCWA

of a ring element under an rcwa mapping,
16
PreImagesRepresentative
for an epi. from a free group to an rcwa
group,38
PrelmagesRepresentatives
for an epi. from a free group to an rcwa
group,38
PrimeSet
of an rcwa group33
of an rcwa mappingl7
of an rcwa monoid49
PrimeSwitch
p,21
p, k,21
Print
for an rcwa group30
for an rcwa mappingl4
for an rcwa monoid48
Projections
for an rcwa group and a modulué3

Random
CT(R),46
RCWA(R), 46
RCWA
the group of all rcwa permutations of a
ring, 30
Rcwa
the monoid of all rcwa mappings of a ring,
49
rcwa group
class-wise order-preserving3
coercion,17
conjugacy problem36
definition, 8
divisor, 33
integral,33
membership tes85
modulus,33
multiplier, 33
prime set33
tame,8
wild, 8
rcwa mapping
arithmetic operations,5
balancedl7

114

class-wise order-preservingy
coercion,17
definition, 8
divisor, 8
images under 6
integral,17
modulus 8
multiplier, 8
prime set,17
tame,8
transition graph25
wild, 8
rcwa monoid
class-wise order-preserving®
definition,48
integral, 49
modulus 49
prime set49
sign-preserving49
tame 49
wild, 49
rcwa monoids
membership test9
RCWABuildManual, 107
RCWAInfo, 106
RcwaMapping
by finite field size, modulus and list of co-
efficients,13
by list of coefficients 13
by modulus and list of value43
by permutation and rang&3
by residue class cycle$3
by ring and list of coefficients] 3
by ring, modulus and list of coefficients,
13
by set of noninvertible primes and list of
coefficients 13
by two partitions of a ring into residue
classesl3
RcwaMappingsFamily
of aring,29
RCWATest, 106
ReadFromBitmapPicture
filename, 107
RepresentativeAction
for RCWA(R) and 2 partitions of R into
residue classed3

RCWA

G, source, destination, actiofil
RepresentativeActionPreImage
G, source, destination, action,43,
RespectedPartition
of a tame rcwa groupl4
of a tame rcwa permutatiod4
RespectedPartitionLong
for a tame rcwa groupi4
for a tame rcwa permutatiod4
RespectedPartitionShort
for a tame rcwa groupl4
for a tame rcwa permutatiod4
RespectsPartition
for an rcwa group44
for an rcwa permutatior}4
RestrictedPerm
for an rcwa permutation and a residue
class unionl6
Restriction
of an rcwa group, by an injective rcwa
mapping,33
of an rcwa mapping, by an injective rcwa
mapping,33
Restriction
for an rcwa monoid, by an injective rcwa
mapping 49
RightInverse
of an injective rcwa mappin@3
Root
k-th root of an rcwa mapping.2
RotationFactor
of a class rotation] 2
RunDemonstration
filename, 107

SaveAsBitmapPicture
picture, filenamel07
SemilocalizedRcwaMapping
for an rcwa mapping of Z and a set of
primes,14
ShortCycles
for rcwa permutation and bound on length,
40
for rcwa permutation, set of points and
bound on length40
ShortOrbits

115

for rcwa group, set of points and bound on
length,40
for rcwa monoid, set of points and bound
on length 50
Sign
of an rcwa permutation of 20
Sinks
of an rcwa mapping27
Size
for an rcwa group35
for an rcwa monoid49
Sources
of an rcwa mapping27
SplittedClassTransposition
for a class transposition and a number of
factors,11
String
for an rcwa group30
for an rcwa mappingl4
for an rcwa monoid48
StructureDescription
for an rcwa group34
Support
of an rcwa group39
of an rcwa mappingl6
of an rcwa monoid49

tame
rcwa group8
rcwa mapping8
Trajectory
for rcwa mapping, starting point, length,
24
for rcwa mapping, starting point, length,
coeff.-spec.24
for rcwa mapping, starting point, length,
modulus,24
for rcwa mapping, starting point, set of
end points24
for rcwa mapping, starting point, set of
end points, coeff.-spe4
for rcwa mapping, starting point, set of
end points, modulug4
TransitionGraph
for an rcwa mapping and a modul®g
TransitionMatrix
for an rcwa mapping and a modul®§

RCWA

TransposedClasses
of a class transpositio,1

View
for an rcwa group30
for an rcwa mappingl4
for an rcwa monoid48

wild
rcwa group 8
rcwa mapping8
WreathProduct
for an rcwa group over Z and a permuta-
tion group,32
for an rcwa group over Z and the infinite
cyclic group,32

116

