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Chapter 1

Introduction

1.1 Introduction to the toric package

This manual describes thetoric package for working with toric varieties inGAP. Toric varieties can
be dealt with more easily than general varieties since often times questions about a toric variety can
be reformulated in terms of combinatorial geometry. Some coding theory commands related to toric
varieties are contained in the error-correcting codesGUAVA package (for example, the command
ToricCode). We refer to theGUAVA manual [DJM] and the expository paper [JV02] for more details.

The toric package also contains several commands unrelated to toric varieties (mostly for list
manipulations). These will not be described in this documention but they are briefly documented in
thelib/util.gd file.

toric is implemented in theGAP language, and runs on any system supportingGAP4.3 and above.
The toric package is loaded with the command

gap> LoadPackage( "toric" );

Please send bug reports, suggestions and other comments abouttoric to
support@gap-system.org.

1.2 Introduction to constructing toric varieties

Rather than sketch the theory of toric varieties, we refer to [JV02] and [Ful93] for details. However,
we briefly describe some terminology and notation.

1.2.1 Generalities

Let F denote a field andR= F [x1, ...,xn] be a ring inn variables. ABINOMIAL EQUATION in R is one
of the form

xk1
1 ...xkn

n = x`1
1 ...x`n

n ,

whereki ≥ 0, ` j ≥ 0 are integers. A binomial variety is a subvariety of affinen-spaceAn
F defined

by a finite set of binomial equations (such a variety need not be normal). A typical “toric variety”
is binomial, though they will be introduced via ana priori independent construction. The basic idea
of the construction is to replace each such binomial equation as above by a relation in a semigroup
contained in a lattice and replaceR by the “group algebra” of this semigroup. By the way, a toric
variety is always normal (see for example, [Ful93], page 29).

4
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1.2.2 Basic combinatorial geometry constructions

Let Q denote the field of rational numbers andZ denote the set of integers. Letn> 1 denote an integer.
Let V = Qn having basisf1 = (1,0, ...,0), ..., fn = (0, ...,0,1). Let L0 = Zn ⊂V be the standard

lattice inV. We identifyV andL0⊗Z Q. We use〈 , 〉 to denote the (standard) inner product onV. Let

L∗0 = Hom(L0,Z) = {v∈V | 〈v,w〉 ∈ Z, ∀w∈ L0}

denote theDUAL LATTICE , so (fixing the standard basise∗1,...,e∗n dual to thef1,...,fn) L∗0 may be iden-
tified with Zn.

A CONE in V is a setσ of the form

σ = {a1v1 + ...+amvm | ai ≥ 0} ⊂V,

wherev1, ...,vm∈V is a given collection of vectors, called (semigroup)GENERATORSof σ. A RATIO-
NAL CONE is one wherev1, ...,vm ∈ L0. A STRONGLY CONVEXcone is one which contains no lines
through the origin.

By abuse of terminology, from now on aCONE of L0 is a strongly convex rational cone.
A FACE of a coneσ is eitherσ itself or a subset of the formH ∩σ, whereH is a codimension one

subspace ofV which intersects the cone non-trivially and such that the cone is contained in exactly
one of the two half-spaces determined byH. A RAY (or edge) of a cone is a one-dimensional face.
Typically, cones are represented intoric by the list of vectors defining their rays. TheDIMENSION of
a cone is the dimension of the vector space it spans. Thetoric package can test if a given vector is in
a given cone (seeInsideCone).

If σ is a cone then theDUAL CONE is defined by

σ∗ = {w∈ L∗0⊗Q | 〈v,w〉 ≥ 0, ∀v∈ σ}.

The toric package can test if a vector is in the dual of a given cone (seeInDualCone).
Associate to the dual coneσ∗ is the semigroup

Sσ = σ∗∩L∗0 = {w∈ L∗0 | 〈v,w〉 ≥ 0, ∀v∈ σ}.

Though L∗0 has $n$ generatorsas a lattice, typically Sσ will have more thann generatorsas a
semigroup. The toric package can compute a minimal list of semigroup generators ofSσ (see
DualSemigroupGenerators).

A fan is a collection of cones which “fit together” well. AFAN in L0 is a set∆ = {σ} of rational
strongly convex cones inV = L0⊗Q such that

• if σ ∈ ∆ andτ ⊂ σ is a face ofσ thenτ ∈ ∆,

• if σ1,σ2 ∈ ∆ then the intersectionσ1∩σ2 is a face of bothσ1 andσ2 (and hence belongs to∆).

In particular, the face of a cone in a fan is a cone is the fan.
If V is the (set-theoretic) union of the cones in∆ then we call the fanCOMPLETE. We shall assume

that all fans are finite. A fan is determined by its list of maximal cones.
Notation: A fan ∆ is represented intoric as a set of maximal cones. For example, if∆ is the fan

with maximal conesσ1 = Q+ · f1 + Q+ · (− f1 + f2), σ2 = Q+ · (− f1 + f2)+ Q+ · (− f1− f2), σ3 =
Q+ ·(− f1− f2)+Q+ · f1, then∆ is represented by[[[1,0], [−1,1]], [[−1,1], [−1,−1]], [[−1,−1], [1,0]]].

The toric package can compute all cones in a fan of a given dimension (seeConesOfFan). More-
over, toric can compute the set of all normal vectors to the faces (i.e., hyperplanes) of a cone (see
Faces).

The STAR of a coneσ in a fan∆ is the set∆σ of cones in∆ containingσ as a face. Thetoric
package can compute stars (seeToricStar).
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1.2.3 Basic affine toric variety constructions

Let
Rσ = F [Sσ]

denote the “group algebra” of this semigroup. It is a finitely generated commutative F-algebra. It is
in fact integrally closed ([Ful93], page 29). We may interpreteRσ as a subring ofR = F [x1, ...,xn]
as follows: First, identify eache∗i with the variablexi . If Sσ is generated as a semigroup by
vectors of the form̀ 1e∗1 + ... + `ne∗n, where`i is an integer, then its image inR is generated by
monomials of the formx`1

1 . . .x`n
n . The toric package can compute these generating monomials (see

EmbeddingAffineToricVariety). See Lemma 2.14 in [JV02] for more details. This embedding
can also be used to resolve singularities - see section 5 of [JV02] for more details.

Let
Uσ = SpecRσ.

This defines anAFFINE TORIC VARIETY (associated toσ). It is known that the coordinate ringRσ of
the affine toric varietyUσ has the formRσ = F [x1, ...,xn]/J, whereJ is an ideal. Thetoric package can
compute generators of this ideal (seeIdealAffineToricVariety).

Roughly speaking, the toric varietyX(∆) associated to the fan∆ is given by a collection of affine
pieces $U{\sigma1},U {\sigma2},\dots,U{\sigmad}$ which “glue” together (where∆ = {σi}).
The affine pieces are given by the zero sets of polynomial equations in some affine spaces and the
gluings are given by mapsφi, j : Uσi →Uσ j which are defined by ratios of polynomials on open subsets
of the $U{\sigmai}$. Thetoric package doesnot compute these gluings or work directly with these
(non-affine) varietiesX(∆).

A coneσ ⊂V is said to beNONSINGULAR if it is generated by part of a basis for the latticeL0.
A fan ∆ of cones is said to beNONSINGULAR if all its cones are nonsingular. It is known thatUσ is
nonsingular if and only ifσ is nonsingular (Proposition 2.1 in [Ful93]).

EXAMPLE : In three dimensions, consider the conesσε1,ε2,ε3,i, j generated by(ε1 · 1,ε2 · 1,ε3 · 1)
and the standard basis vectorsfi , f j , whereεi = ±1 and 1≤ i 6= j ≤ 3. There are 8 cones per octant,
for a total of 64 cones. Let∆ denote the fan inV = Q3 determined by these maximal cones. The toric
varietyX(∆) is nonsingular.

1.2.4 Riemann-Roch spaces and related constructions

Although the toric package does not work directly with the toric varietiesX(∆), it can com-
pute objects associated with it. For example, it can compute the Euler characteristic (see
EulerCharacteristic), Betti numbers (seeBettiNumberToric), and the number of GF(q)-rational
points (seeCardinalityOfToricVariety) of X(∆), provided∆ is nonsingular.

For an algebraic varietyX the group of WEIL DIVISORS on X is the abelian groupDiv(X) gener-
ated (additively) by the irreducible subvarieties of X of codimension 1. For a toric varietyX(∆) with
dense open torusT, a Weil divisor D is T-INVARIANT if D = T ·D. The group ofT-invariant Weil
divisors is denotedTDiv(X). This is finitely generated by an explicitly given finite set of divisors
{D1, ...,Dr} which correspond naturally to certain cones in∆ (see [Ful93] for details). In particular,
we may represent such a divisorD in TDiv(X) by ank-tuple(d1, ...,dk) of integers.

Let ∆ denote a fan inV = Qn with rays (or edges)τi , 1≤ i ≤ k, and letvi denote the first lattice
point onτi . Associated to the T-invariant Weil divisorD = d1D1 + ...+dkDk, is thePOLYTOPE

PD = {x = (x1, ...,xn) | 〈x,vi〉 ≥ −di , ∀1≤ i ≤ k}.
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Thetoric package can computePD (seeDivisorPolytope), as well as the set of all lattice points con-
tained in this polytope (seeDivisorPolytopeLatticePoints). Also associated to theT-invariant
Weil divisorD = d1D1+ ...+dkDk, is the Riemann-Roch space,L(D). This is a space of functions on
X(∆) whose zeros and poles are “controlled” byD (for a more precise definition, see [Ful93]). The
toric package can compute a basis forL(D) (seeRiemannRochBasis), provided∆ is complete and
nonsingular.



Chapter 2

Cones and semigroups

2.1 Cones

This section introduces thetoric commands which deal with cones and related combinatorial-
geometric objects. Recall, aCONE is a strongly convex polyhedral cone ([Ful93], page 4).

2.1.1 InsideCone

♦ InsideCone(v, L ) (function)

This command returns ‘true‘ if the vectorv belongs to the interior of the (strongly convex poly-
hedral) cone generated by the vectors inL.

This procedure does not check ifL generates a strongly convex polyhedral cone.
Example

gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];; v:=[0,0,1];;
gap> InsideCone(v,L);
false
gap> L:=[[1,0],[3,4]];;
gap> v:=[1,-7]; InsideCone(v,L);
[ 1, -7 ]
false
gap> v:=[4,-3]; InsideCone(v,L);
[ 4, -3 ]
false
gap> v:=[4,-4]; InsideCone(v,L);
[ 4, -4 ]
false
gap> v:=[4,1]; InsideCone(v,L);
[ 4, 1 ]
true

2.1.2 InDualCone

♦ InDualCone(v, L ) (function)

This command returns ‘true‘ ifv belongs to the dual of the cone generated by the vectors inL.

8
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Example
gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];; v:=[0,0,1];;
gap> InDualCone(v,L);
true
gap> L:=[[1,0],[3,4]];
[ [ 1, 0 ], [ 3, 4 ] ]
gap> v:=[1,-7]; InDualCone(v,L);
[ 1, -7 ]
false
gap> v:=[4,-3]; InDualCone(v,L);
[ 4, -3 ]
true
gap> v:=[4,-4]; InDualCone(v,L);
[ 4, -4 ]
false
gap> v:=[4,1]; InDualCone(v,L);
[ 4, 1 ]
true

2.1.3 PolytopeLatticePoints

♦ PolytopeLatticePoints(A, Perps ) (function)

Input: Perps = [v1, ...,vk] is the list of “inward normal” vectors perpendicular to the walls of a
polytopeP in the vector spaceL∗0⊗Q,
A= [a1, ...,ak] is a k-tuple of integers, whereai denotes the amount the i-th “wall” (defined by the
normalvi) is shifted from the origin (eachai is assumed non-negative).
For example, the polytope P with faces [x=0, x=a, y=0, y=b] has Perps =
[[1,0], [−1,0], [0,1], [0,−1]] andA= [0,a,0,b].
Output: the list of points inP∩L∗0.

Example
gap> Perps:=[[1,0],[-1,0],[0,1],[0,-1]];
[ [ 1, 0 ], [ -1, 0 ], [ 0, 1 ], [ 0, -1 ] ]
gap> A:=[0,4,0,3];
[ 0, 4, 0, 3 ]
gap> PolytopeLatticePoints(A,Perps);
[ [ 0, 0 ], [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 0 ], [ 1, 1 ], [ 1, 2 ],
[ 1, 3 ], [ 2, 0 ], [ 2, 1 ], [ 2, 2 ], [ 2, 3 ], [ 3, 0 ], [ 3, 1 ],
[ 3, 2 ], [ 3, 3 ], [ 4, 0 ], [ 4, 1 ], [ 4, 2 ], [ 4, 3 ] ]

gap> Length(last);
20

2.1.4 Faces

♦ Faces(Rays) (function)

Input: Rays is a list of rays for the fan∆
Output: All the normals to the faces (hyperplanes of the cone).
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Example
gap> Cones1:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> Faces(Cones1[1]);
[ [ 1/2, 1 ], [ 2, 1 ] ]
gap> Faces(Cones1[2]);
[ [ -2, -1 ], [ -1, 1 ] ]
gap> Cones2:=[[[ 2,0,0],[0,2,0],[0,0,2]], [[2,0,0], [0,2,0], [2,-2,1],[1,2,-2]]];;
gap> Faces(Cones2[1]);
[ [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, 0, 0 ] ]
gap> Faces(Cones2[2]);
[ [ 1/3, 5/6, 1 ], [ 1/2, 0, -1 ], [ 2, 0, 1 ] ]
gap>

2.1.5 ConesOfFan

♦ ConesOfFan(Delta, k ) (function)

Input: Delta is the fan of cones,
k is the dimension of the cones desired.
Output: Thek -dimensional cones in the fan.

2.1.6 NumberOfConesOfFan

♦ NumberOfConesOfFan(Delta, k ) (function)

Input: Delta is the fan of cones inV = Qn,
k is the dimension of the cones counted.
Output: The number ofk -dimensional cones in the fan.

Idea: The fanDelta is represented as a set of maximal cones. For each maximal cone, look at the
k -dimensional faces obtained by takingn choosek subsets of the rays describing the cone. Certain of
thesek -subsets yield the desired cones.

Example
gap> Delta0:=[ [ [2,0,0],[0,2,0],[0,0,2] ], [ [2,0,0],[0,2,0],[2,-2,1],[1,2,-2] ] ];;
gap>
gap> NumberOfConesOfFan(Delta0,2);
6
gap> ConesOfFan(Delta0,2);
[ [ [ 0, 0, 2 ], [ 0, 2, 0 ] ], [ [ 0, 0, 2 ], [ 2, 0, 0 ] ],
[ [ 0, 2, 0 ], [ 1, 2, -2 ] ], [ [ 0, 2, 0 ], [ 2, -2, 1 ] ],
[ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 1, 2, -2 ], [ 2, -2, 1 ] ] ]

gap> ConesOfFan(Delta0,1);
[ [ [ 0, 0, 2 ] ], [ [ 0, 2, 0 ] ], [ [ 1, 2, -2 ] ],
[ [ 2, -2, 1 ] ], [ [ 2, 0, 0 ] ] ]

gap> NumberOfConesOfFan(Delta0,1);
5
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2.1.7 ToricStar

♦ ToricStar(sigma, Delta ) (function)

Input: sigma is a cone in the fan, represented by its set of maximal (i.e., highest dimensional)
cones.
Delta is the fan of cones inV = Qn.
Output: The star of the conesigma in Delta , i.e., the conesτ which havesigma as a face.

Example
gap> MaxCones:=[ [ [2,0,0],[0,2,0],[0,0,2] ],

[ [2,0,0],[0,2,0],[2,-2,1],[1,2,-2] ] ];;
gap> #this is the set of maximal cones in the fan Delta
gap> ToricStar([[1,0]],MaxCones);
[ ]
gap> ToricStar([[2,0,0],[0,2,0]],MaxCones);
[ [ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 2 ] ],
[ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 2, -2, 1 ], [ 1, 2, -2 ] ] ]

gap>
gap> MaxCones:=[ [ [2,0,0],[0,2,0],[0,0,2] ], [ [2,0,0],[0,2,0],[1,1,-2] ] ];;
gap> ToricStar([[2,0,0],[0,2,0]],MaxCones);
[ [ [ 0, 2, 0 ], [ 2, 0, 0 ] ], [ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 0, 0, 2 ] ],
[ [ 2, 0, 0 ], [ 0, 2, 0 ], [ 1, 1, -2 ] ] ]

gap> ToricStar([[1,0]],MaxCones);
[ ]

2.2 Semigroups

2.2.1 DualSemigroupGenerators

♦ DualSemigroupGenerators(L) (function)

Input: L is a list of integraln-vectors generating a coneσ.
Output: the generators ofSσ,

Idea: letM be the maximum of the absolute values of the coordinates of theL[i]’s, for each vector
v in [1..M]n, test ifv is in the dual coneσ∗. If so, addv to list of possible generators. Once this for loop
is finished, one can check this list for redundant generators. The trick is to simply omit those elements
which are of the formd1 +d2, whered1 andd2 are “small” elements in the integral dual cone.

This program is not very efficient and should not be used in “large ex-
amples” involving semigroups with “many” generators. For example, if
you take L:=[[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]]; then
DualSemigroupGenerators(L); can exhaust GAP’s memory allocation.

Example
gap> L:=[[1,0],[3,4]];; DualSemigroupGenerators([[1,0],[3,4]]);
[ [ 0, 0 ], [ 0, 1 ], [ 1, 0 ], [ 2, -1 ], [ 3, -2 ], [ 4, -3 ] ]
gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];;
gap> DualSemigroupGenerators(L);
[ [ 0, 0, 0 ], [ 0, 0, 1 ], [ 0, 1, 0 ], [ 1, -1, 0 ], [ 1, 0, -1 ] ]
gap>



Chapter 3

Affine toric varieties

This chapter concernstoric commands which deal with the coordinate rings of affine toric varieties
Uσ.

3.1 Ideals defining affine toric varieties

3.1.1 IdealAffineToricVariety

♦ IdealAffineToricVariety(L) (function)

Input: L is a list generating a cone (as inDualSemigroupGenerators).
Output: theGAP ideal defining the toric variety associated to the cone generated by the vectors inL.

This computation is not very efficient and should not be used for ideals with many genera-
tors. For example, if you takeL:=[[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]];
thenIdealAffineToricVariety(L); can exhaust GAP’s memory allocation.

Example
gap> J:=IdealAffineToricVariety([[1,0],[3,4]]);
[ two-sided ideal in PolynomialRing(..., [ x_1, x_2 ]), (3 generators) ]
gap> GeneratorsOfIdeal(J);
[ -x_2ˆ2+x_1, -x_2ˆ3+x_1ˆ2, -x_2ˆ4+x_1ˆ3 ]

3.1.2 EmbeddingAffineToricVariety

♦ EmbeddingAffineToricVariety(L) (function)

Input: L is a list generating a cone (as inDualSemigroupGenerators).
Output: the toroidal embedding ofX = Spec(IdealAffineToricVariety(L)) (given as a list of
multinomials).

Example
gap> phi:=EmbeddingAffineToricVariety([[1,0],[3,4]]);
[ x_2, x_1, x_1ˆ2/x_4, x_1ˆ3/x_4ˆ2, x_1ˆ4/x_4ˆ3 ]
gap> L:=[[1,0,0],[1,1,0],[1,1,1],[1,0,1]];;
gap> phi:=EmbeddingAffineToricVariety(L);
[ x_3, x_2, x_1/x_5, x_1/x_6 ]

12



Chapter 4

Toric varieties X(∆)

This chapter concernstoric commands which deal with certain objects associated to the (non-affine)
toric varietiesX(∆).

4.1 Riemann-Roch spaces

Let ∆ denote a complete nonsingular fan.

4.1.1 DivisorPolytope

♦ DivisorPolytope(D, Rays ) (function)

Input: Rays is the list of smallest integer vectors in the rays for the fan∆ which determine the
Weil divisors ofX(∆).
D is the list of coefficients for the a Weil divisor.
Output: the linear expressions in the affine coordinates of the space of the cone which must be positive
for a point to be in the desired polytope.

Example
gap> DivisorPolytope([6,6,0],[[2,-1],[-1,2],[-1,-1]]);
[ 2*x_1-x_2+6, -x_1+2*x_2+6, -x_1-x_2 ]

See also Example 6.13 in [JV02].

4.1.2 DivisorPolytopeLatticePoints

♦ DivisorPolytopeLatticePoints(D, Delta, Rays ) (function)

Input: Delta is the fan
Rays is theorderedlist of rays forDelta
D is the list of coefficients for a Weil divisor.
Output: the list of points inPD ∩ L∗0 which parameterize the elements in the Riemann-Roch space
L(D), wherePD is the polytope associated to the divisorD (seeDivisorPolytope).

13
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Example
gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;
gap> Delta0:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> P_Div:=DivisorPolytopeLatticePoints(Div,Delta0,Rays);
[ [ -6, -6 ], [ -5, -5 ], [ -5, -4 ], [ -4, -5 ], [ -4, -4 ], [ -4, -3 ],
[ -4, -2 ], [ -3, -4 ], [ -3, -3 ], [ -3, -2 ], [ -3, -1 ], [ -3, 0 ],
[ -2, -4 ], [ -2, -3 ], [ -2, -2 ], [ -2, -1 ], [ -2, 0 ], [ -2, 1 ],
[ -2, 2 ], [ -1, -3 ], [ -1, -2 ], [ -1, -1 ], [ -1, 0 ], [ -1, 1 ],
[ 0, -3 ], [ 0, -2 ], [ 0, -1 ], [ 0, 0 ], [ 1, -2 ], [ 1, -1 ], [ 2, -2 ] ]

gap>

4.1.3 RiemannRochBasis

♦ RiemannRochBasis(D, Delta, Rays ) (function)

Input: Delta is a complete and nonsingular fan
D is the list of coefficients for the Weil divisor
Rays is a list of rays for the fan used to describe the Weil divisors.
Output: A basis (a list of monomials) for the Riemann-Roch space of the divisor represented byD.

For details on how the Weil divisors can be expressed in terms of the rays of the fan, please see
section 3.3 in [Ful93]. This procedure does not check if the fan is complete and nonsingular.

Example
gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;
gap> Delta:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> RiemannRochBasis(Div,Delta,Rays);
[ 1/(x_1ˆ6*x_2ˆ6), 1/(x_1ˆ5*x_2ˆ5), 1/(x_1ˆ5*x_2ˆ4), 1/(x_1ˆ4*x_2ˆ5),
1/(x_1ˆ4*x_2ˆ4), 1/(x_1ˆ4*x_2ˆ3), 1/(x_1ˆ4*x_2ˆ2), 1/(x_1ˆ3*x_2ˆ4),
1/(x_1ˆ3*x_2ˆ3), 1/(x_1ˆ3*x_2ˆ2), 1/(x_1ˆ3*x_2), 1/x_1ˆ3, 1/(x_1ˆ2*x_2ˆ4),
1/(x_1ˆ2*x_2ˆ3), 1/(x_1ˆ2*x_2ˆ2), 1/(x_1ˆ2*x_2), 1/x_1ˆ2, x_2/x_1ˆ2,
x_2ˆ2/x_1ˆ2, 1/(x_1*x_2ˆ3), 1/(x_1*x_2ˆ2), 1/(x_1*x_2), 1/x_1, x_2/x_1,
1/x_2ˆ3, 1/x_2ˆ2, 1/x_2, 1, x_1/x_2ˆ2, x_1/x_2, x_1ˆ2/x_2ˆ2 ]

4.2 Topological invariants

Throughout this section,X(∆) must be non-singular.

4.2.1 EulerCharacteristic

♦ EulerCharacteristic(Delta ) (function)

Input: Delta is a nonsingular fan of cones, represented by its list of maximal cones.
Output: the Euler characteristic of the toric varietyX(∆), where∆ is a fan determined byDelta .

Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> EulerCharacteristic(Cones);
3
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Note: X(∆) must be non-singularhere.

4.2.2 BettiNumberToric

♦ BettiNumberToric(Delta, k ) (function)

Input: Delta represents a nonsingular fan∆ (represented by maximal cones),
k is an integer.
Output: thek -th Betti number of the toric varietyX(∆).

The BettiNumberToric procedure does not check ifDelta is nonsingular. It is possible that
this procedure outputs nonsense whenDelta is not represented by maximal cones or is nonsingular.

Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> BettiNumberToric(Cones,1);
0
gap> BettiNumberToric(Cones,2);
1
gap> Cones:=[[[2,-1],[-1,1]],[[-1,1],[-1,0]],[[-1,0],[2,-1]]];;
gap> BettiNumberToric(Cones,1);
0
gap> BettiNumberToric(Cones,2);
1

Not to be confused with the Betti number of a polycyclically presented torsion free group, already
available inGAP.

4.3 Points over a finite field

4.3.1 CardinalityOfToricVariety

♦ CardinalityOfToricVariety(Cones, q ) (function)

Input: Cones is the list of maximal cones of a fan∆, q is a prime power.
Output: The size of the set ofGF(q)-rational points of the toric varietyX(∆).

Note: X(∆) must be non-singularhere.
Example

gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1]]];;
gap> CardinalityOfToricVariety(Cones,3);
13
gap> CardinalityOfToricVariety(Cones,4);
21
gap> CardinalityOfToricVariety(Cones,5);
31
gap> CardinalityOfToricVariety(Cones,7);
57
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