Example

A GAP4 Package

Version 2.0

Werner Nickel
AG 2, Fachbereich Mathematik, TU Darmstadt
Schlossgartenstr. 7, 64289 Darmstadt, Germany

email: nickel@mathematik.tu-darmstadt.de

January 2006

Contents

1 The Example Package 3
1.1 The main functions 3
2 Installing and Loading the Example Package 5
2.1 Installing the Example Package 5
2.2 Loading the Example Package)
A Hints for writing a GAP Package 6
A.1 Structure of a GAP Package 6
A2 Documentation Software Tools Needed 8
A.3 Functions and Variables and Choices of Their Names 9
A.4 Having an InfoClass 10
A.5 The Banner 10
A.6 Packing up your GAP Package 10
A.7 New versions of your GAP Package 10
A8 CVS 10
Index 11

1»

2>

3

4»

5»

6>

The Example Package

This chapter describes the GAP package Example. As its name suggests it is an example of how to create a
GAP package. It has little functionality except for being a package.

See Sections 2.1 and 2.2 for how to install and load the Example package, or Appendix A for hints on how
to write a GAP package.

If you are viewing this with on-line help, type:

gap> 7>

to see the functions provided by the Example package.

1.1 The main functions

The following functions are available:

ListDirectory([dir]) F
lists the files in directory dir (a string) or the current directory if called with no arguments.

FindFile(directory-name, file_name) F

searches for the file file_name in the directory tree rooted at directory_name and returns the absolute path
names of all occurrences of this file as a list of strings.

LoadedPackages () F
returns a list with the names of the packages that have been loaded so far. All this does is execute

gap> RecNames(GAPInfo.PackagesLoaded);

You might like to check out some of the other information in the GAPInfo record.
Which(prg) F
returns the path of the program executed if Exec(prg) ; is called, e.g.

gap> Which("date");
"/bin/date"

gap> Exec("date");

Sun Oct 7 16:23:45 CEST 2001

WhereIsPkgProgram(prg) F
returns a list of paths of programs with name prg in the current packages loaded. Try:

gap> WherelIsPkgProgram("hello");
HelloWorld() F

executes the C program hello provided by the Example package.

4 Chapter 1. The Example Package

7» FruitCake Vv

is a record with the bits and pieces needed to make a boiled fruit cake. Its fields satisfy the criteria for
Recipe (see 1.1.8);

8» Recipe(cake) M

displays the recipe for cooking cake, where cake is a record. The fields of cake recognised are name (a string
giving the type of cake or cooked item), ovenTemp (a string), cookingTime (a string), ingredients (a list
of strings each containing an _ which is used to line up the entries and is replaced by a blank), method (a
list of steps, each of which is a string or list of strings), and notes (a list of strings).

Installing and Loading
the Example Package

2.1 Installing the Example Package

To install the Example package, unpack the archive file, which should have a name of form example- XXX .zoo
for some version number XXX, by typing

unzoo -x example-XXX

in the pkg directory of your version of GAP 4, or in a directory named pkg (e.g. in your home directory). (The
only essential difference with installing Example in a pkg directory different to the GAP 4 home directory is
that one must start GAP with the -1 switch, e.g. if your private pkg directory is a subdirectory of mygap in
your home directory you might type:

gap -1 ";myhomedir/mygap"
where myhomedir is the path to your home directory, which (since GAP 4.3) may be replaced by a tilde.
The empty path before the semicolon is filled in by the default path of the GAP 4 home directory.)

After unpacking the archive, go to the newly created example directory and call ./configure path where
path is the path to the GAP home directory. So for example if you install the package in the main pkg
directory call

./configure ../..
This will fetch the architecture type for which GAP has been compiled last and create a Makefile. Now
simply call

make

to compile the binary and to install it in the appropriate place.

2.2 Loading the Example Package

To use the Example Package you have to request it explicitly. This is done by calling
gap> LoadPackage("example");

Loading Example 2.0

by Werner Nickel (http://www.mathematik.tu-darmstadt.de/ nickel)
Greg Gamble (http://www.math.rwth-aachen.de/ Greg.Gamble)

For help, type: 7Example package

The LoadPackage command is described in Section 75.2.1 in the GAP Reference Manual.

If GAP cannot find a working binary, the call to LoadPackage will still succeed but a warning is issued
informing that the HelloWorld () function will be unavailable.

If you want to load the Example package by default, you can put the LoadPackage command into your
.gaprec file (see Section 3.4 in the GAP Reference Manual).

Hints for writing
a GAP Package

The Example package is intended to be a prototype for a package. Here we describe just what features one
should emulate when writing one’s own GAP package for popular consumption, and a few pointers as to
where to go for more information. Much of what is written here is amplified in the section 4 in the Extending
GAP Manual.

A.1 Structure of a GAP Package

This section is intended to amplify the recommendations made in Section 4.1 of the Extending GAP Manual.

A GAP package should have an alphanumeric name (package-name, say); mixed case is fine, but there
should be no whitespace. The directory package-dir containing the files of package package-name should
be just package-name converted to lowercase (the restriction that package-dir must contain only lowercase
characters may change in the future).

The directory package-dir should be a subdirectory of pkg and preferably should have the following structure
(below, a trailing / distinguishes directories from ordinary files):

package-dir/
README
configure
Makefile.in
PackagelInfo.g
init.g
read.g
doc/
1lib/
src/

We now describe the above files and directories:

README
This should contain “how to get it” (from the GAP ftp- and web-sites) instructions, as well as
installation instructions and names of the package authors and their email addresses. The installation
instructions and authors’ names and addresses should be repeated in the package’s documentation
(which should be in the doc directory).

configure, Makefile.in
These files are only necessary if the package has a non-GAP component, e.g. some C code (the files of
which should be in the src directory). The configure and Makefile. in files of the Example package
provide prototypes. The configure file typically takes a path path to the GAP root directory as
argument and uses the value assigned to GAParch in the file sysinfo.gap (created when GAP was
compiled) to determine the compilation architecture, inserts this in place of the string @GAPARCH@ in
Makefile.in and creates a file Makefile. When make is run (which, of course, reads the constructed
Makefile), a directory bin (if necessary) and a subdirectory of bin with name equal to the string

Section 1. Structure of a GAP Package 7

assigned to GAParch in the file sysinfo. gap should be created; any binaries constructed by compiling
the code in src should end up in this subdirectory of bin.

Packagelnfo.g

Since GAP 4.4, a GAP package must have a PackageInfo.g file. The Example package’s Package-
Info.g file is well-commented and should be used as a prototype.

init.g, read.g

doc

A GAP package must have a file init.g (see Section 4.1 in the Extending GAP Manual). As of
GAP 4.4, the typical init.g and read.g files should normally consist entirely of ReadPackage
(see 75.3.1 in the GAP 4 Reference Manual) commands (and possibly also Read commands). If the
“declaration” and “implementation” parts of the package are separated (and this is recommended),
there should be a read.g file. The “declaration” part of a package consists of function and variable
name declarations and these go in files with .gd extensions; these files are read in via ReadPackage
commands in the init.g file. The “implementation” part of a package consists of the actual defini-
tions of the functions and variables whose names were declared in the “declaration” part, and these
go in files with .gi extensions; these files are read in via ReadPackage commands in the read.g file.
The reason for following the above dichotomy is that the read.g file is read after the init.g file,
thus enabling the possibility of a function’s implementation to refer to another function whose name
is known but is not actually defined yet. The GAP code (whether or not it is split into “declaration”
and “implementation” parts) should go in the package’s 1ib directory (see below).

This directory should contain the package’s documentation. Traditionally, a TEX-based system has
been used for GAP documentation, which is thoroughly described in Section 2 of the Extending GAP
Manual. There is now an alternative XMI-based system provided by the GAP package GAPDoc
(see Chapter 1 of the GAPDoc Manual). Please spend some time reading the documentation for
whichever system you decide to use for writing your package’s documentation. The Example package’s
documentation was written using the traditional TEX-based system. If you plan on using this, please
use the Example package’s doc directory as a prototype, which you will observe contains the following
files:

manual.tex # master file

chapi.tex # chapter file(s) ... 1 for each chapter
manual .mst # MakeIndex style file

make_doc # script that generates the manuals

1ib

Src

Generally, one should also provide a manual.bib BibTEX database file (or write one’s own bibli-
ography manual.bbl file). Generating the various formats of the manuals requires various software
tools which are called directly or indirectly by make_doc and these are listed in Section A.2. The file
manual .mst is needed for generating a manual index; it should be a copy of the one provided in the
Example package. The only adjustments that a package writer should need to make to make_doc is
to replace occurrences of the word Example with package-name.

This is the preferred place for the GAP code, i.e. the .g, .gd and .gi files (other than PackageInfo.g,
init.g and read.g). For some packages (the Example package included), the directory gap has been
used instead of 1ib; 1ib has the slight advantage that it is the default subdirectory of a package
directory searched for by the DirectoriesPackageLibrary command (see 75.3.4 in the GAP 4
Reference Manual).

If the package has non-GAP code, e.g. C code, then this “source” code should go in the src directory.
If there are .h “include” files you may prefer to put these all together in a separate include directory.

8 Appendiz A. Hints for writing a GAP Package

A.2 Documentation Software Tools Needed

Whether you use the traditional gapmacro.tex TEX-based system or GAPDoc you will need to have the
various following TEX tools installed:

tex (or latex for GAPDoc), bibtex and makeindex
for generating .dvi;

dvips
for generating .ps; and

pdftex or gs and ps2pdf (or pdflatex for GAPDoc)
for generating .pdf;

Note that using gs and ps2pdf in lieu of pdftex or pdflatex is a poor substitute unless your gs is at least
version 6.zz for some zz.

The rest of this section describes the various additional tools needed for the gapmacro.tex documentation
system.

To produce the .dvi, .ps and .pdf manual formats, the following GAP tools (usually located in GAP’s main
doc directory) are needed (provided by tools XXX .zoo for some version number XXX at the GAP ftp- or
web-sites, or can be obtained by emailing support@gap-system.org).

gapmacro.tex
The macros file that dictates the style and mark-up for the traditional TEX-based system of GAP
documentation.

manualindex
This is an awk script that adjusts the TEX-produced index entries and calls makeindex to process
them.

mrabbrev.bib
This is usually supplied with your TEX tools but nevertheless a copy of mrabbrev.bib should be
located in GAP’s main doc directory. To find it on your system, try:

kpsewhich mrabbrev.bib

or if that doesn’t work and you can’t otherwise find it check out a CTAN site, e.g. search for it at:

http://www.dante.de/cgi-bin/ctan-index

If your manual cross-refers to other gapmacro.tex-produced manuals (and so has \UseReferences com-
mands in its manual.tex), then a manual.lab file (generated by running tex manual) for each such other
manual is needed (this includes the “main” manuals, e.g. those in the doc/ref, doc/ext etc. directories).

If your manual cross-refers to GAPDoc-produced manuals (and so has \UseGapDocReferences commands
in its manual.tex), then manual.lab files need to be generated for these too. Since GAP 4.3, this is done
by starting GAP and running;:

gap> GapDocManualLab("package");

for each package whose manual is cross-referred to.

To produce an HTML version of the manual one needs the Perl 5 program convert.pl which is usually
located in the subdirectory etc of the GAP root directory. The etc directory is not part of the usual GAP
distribution. The etc directory files are obtained from tools XXX .zoo for some version number XXX at
the GAP ftp- or web-sites, or can be obtained by emailing support@gap-system.org.

Finally, to ensure the mathematics formulae are rendered as well as they can be in the HTML version, one
should also have the program tth (TEX to HTML converter); convert.pl calls tth to translate mathmode
formulae to HTML (if it’s available). The tth program is easy to compile and can be obtained from

Section 3. Functions and Variables and Choices of Their Names 9

http://hutchinson.belmont.ma.us/tth/tth-noncom/download.html

As a package author, you are not obliged to provide an HTML version of your package manual, but if
you have kept to the guidelines in Section 2 of the Extending GAP Manual, you should have no trouble in
producing one. A prototype of the command to execute is in the file make_doc; note that the HTML manual
is produced in files with .htm extensions in a directory htm outside the doc directory. The beginning of the
file convert.pl contains instructions on its usage should you need them.

A.3 Functions and Variables and Choices of Their Names

In writing the GAP code for your package you need to be a little careful on just how you define your functions
and variables.

Firstly, in general one should avoid defining functions and variables via assignment statements in the way
you would interactively, e.g.

gap> Cubed := function(x) return x"3; end;

The reason for this is that such functions and variables are easily overwritten and what’s more you are
not warned about it when it happens.

To protect a function or variable against overwriting there is the command BindGlobal (see 4.9.7 in the
GAP Reference Manual), or alternatively (and equivalently) you may define a global function via a Declare-
GlobalFunction and InstallGlobalFunction pair or a global variable via a DeclareGlobalVariable and
InstallValue pair. There are also operations and their methods, and related objects like attributes and
filters which also have Declare. .. and Install... pairs.

Secondly, it’s a good idea to reduce the chance of accidental overwriting by choosing names for your
functions and variables that begin with a string that identifies it with the package, e.g. some of the undoc-
umented functions in the Example package begin with Eg. This is especially important in cases where you
actually want the user to be able to change the value of a function or variable defined by your package,
for which you haved used direct assignments (for which the user will receive no warning if she accidentally
overwrites them). It’s also important for functions and variables defined via BindGlobal, DeclareGlobal-
Function/InstallGlobalFunction and DeclareGlobalVariable/InstallValue, in order to avoid name
clashes that may occur with (extensions of) the GAP library and other packages. On the other hand, op-
erations and their methods (defined via DeclareOperation, InstallMethod etc. pairs) and their relatives
do not need this consideration, as they avoid name clashes by allowing for more than one “method” for the
same-named object.

The method Recipe was included in the Example package to demonstrate the definition of a function via a
DeclareOperation/InstallMethod pair; Recipe(FruitCake); gives a “method” for making a fruit cake
(forgive the pun).

Thirdly, functions or variables with Set XXX or Has XXX names (even if they are defined as operations)
should be avoided as these may clash with objects associated with attributes or properties (attributes and
properties XXX declared via the DeclareAttribute and DeclareProperty commands have associated with
them testers of form Has XXX and setters of form Set XXX).

Fourthly, it is a good idea to have some convention for internal functions and variables (i.e. the functions
and variables you don’t intend for the user to use). For example, they might be entirely capitalised.

Finally, note the advantage of using DeclareGlobalFunction/InstallGlobalFunction, DeclareGlobal-
Variable/InstallValue, etc. pairs (rather than BindGlobal) to define functions and variables, which allow
the package author to organise her function- and variable- definitions in any order without worrying about
any interdependence. The Declare. .. statements should go in files with .gd extensions and be loaded by
ReadPackage statements in the package init.g file, and the Install. .. definitions should go in files with
.gi extensions and be loaded by ReadPackage statements in the package read.g file; this ensures that the
.gi files are read after the .gd files. All other package code should go in .g files (other than the init.g
and read.g files themselves) and be loaded via ReadPackage statements in the init.g file.

10 Appendiz A. Hints for writing a GAP Package

A.4 Having an InfoClass

It is a good idea to declare an InfoClass for your package. This gives the package user the opportunity
to control the verbosity of output and/or the possibility of receiving debugging information (see 7.4 in the
GAP Reference Manual). Below, we give a quick overview of its utility.

An InfoClass is defined with a DeclareInfoClass(InfoPkgname); statement and may be set to have
an initial InfoLevel other than the zero default (which means no Info statement is to output information)
via a SetInfoLevel(InfoPkgname, level); statement. An initial InfoLevel of 1 is typical.

Info statements have the form: Info(InfoPkgname, level, exprl, expr2, ...); where the expression
list exprl, expr2, ... appears just like it would in a Print statement. The only difference is that the
expression list is only printed (or even executed) if the InfoLevel of InfoPkgname is at least level.

A.5 The Banner

Since GAP 4.4, the package banner, if one is desired, should be provided by assigning a string to the
BannerString field of the record argument of SetPackageInfo in the PackageInfo.g file.

It is a good idea to have a hook into your package documentation from your banner. The Example package
suggests to the GAP user:

For help, type: 7Example package

In order for this to display the introduction of the Example package an \atindex equivalent of the following
index-entry:

\index{Example package}

was added just before the first paragraph of the introductory section in the file example.tex. The Example
package uses the gapmacro.tex system (see Section A.2) for documentation (you will need some different
scheme to achieve this using GAPDoc).

A.6 Packing up your GAP Package

In the past, it was recommended that your GAP package should be packed via the zoo program, but now any
of four different archive formats are accepted (see Section 4.14 in the Extending GAP Manual for the details).
The Example package file make_zoo provides a template packing-up script that uses zoo. The etc directory
obtained from tools XXX .zoo for some version number XXX (this is described above in Section A.2)
contains a file packpack which provides a more versatile packing-up script.

A.7 New versions of your GAP Package

You will notice that there is a file VERSION which contains the current version of the Example package. Such
a file is entirely optional. Note that this file is not read at all when GAP loads the package. GAP establishes
the package version by reading the PackageInfo.g file. The current maintainer of the Example package
finds it convenient to have a file VERSION that is read both by doc/manual .tex and make_zoo. It is however
important that each new version of a package has a new number and that version numbers of successive
package versions increase (see 4.13 in the Extending GAP Manual for the details).

It’s also useful to have a CHANGES file that records the main changes between versions of your package.

A.8 CVS

When your package is ready to be refereed and/or made available as an “accepted” GAP package, it may be
of benefit to obtain CVS access to GAP; as a first step towards this you should make a request to the GAP
team via an email to support@gap-system.org.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”

comes before “permutation group”.

C
CVS, 10

D

Documentation Software Tools Needed, 8

E

Example package, 3

F

FindFile, 3

FruitCake, 4

Functions and Variables and Choices of Their
Names, 9

H

Having an InfoClass, 10
HelloWorld, 3

Installing the Example Package, 5

L

ListDirectory, 3
LoadedPackages, 3
Loading the Example Package, 5

N

New versions of your GAP Package, 10

P
Packing up your GAP Package, 10

R

Recipe, 4

S

Structure of a GAP Package, 6

T
The Banner, 10
The main functions, 3

W

WhereIsPkgProgram, 3
Which, 3

	Contents
	The Example Package
	The main functions

	Installing and Loading the Example Package
	Installing the Example Package
	Loading the Example Package

	Hints for writing a GAP Package
	Structure of a GAP Package
	Documentation Software Tools Needed
	Functions and Variables and Choices of Their Names
	Having an InfoClass
	The Banner
	Packing up your GAP Package
	New versions of your GAP Package
	CVS
	Index
	C
	D
	E
	F
	H
	I
	L
	N
	P
	R
	S
	T
	W

