
Gpd

Groupoids, graphs of groups, and graphs of groupoids

Version 1.05

November 2008

Emma Moore
Chris Wensley

Emma Moore — Email: emmajmoore@yahoo.co.uk

Chris Wensley — Email: c.d.wensley@bangor.ac.uk
— Homepage: http://www.bangor.ac.uk/˜mas023/
— Address: School of Computer Science, Bangor University,

Dean Street, Bangor, Gwynedd, LL57 1UT, U.K.

mailto://emmajmoore@yahoo.co.uk
mailto://c.d.wensley@bangor.ac.uk
http://www.bangor.ac.uk/~mas023/


Gpd 2

Abstract
The Gpd package for GAP4 provides functions for the computation with groupoids (categories with every arrow
invertible) and their morphisms; for graphs of groups, and graphs of groupoids.

It provides normal forms for Free Products with Amalgamation and for HNN-extensions when the initial
groups have rewrite systems and the subgroups have finite index.

The Gpd package was originally implemented in 2000 (as GraphGpd) when the first author was studying
for a Ph.D. in Bangor.

The current version is 1.05, released on 21st November 2008, and now includes the more basic structure of
magma with objects. It had to be released hurriedly, due to the change of website, so some of the function are
no longer available. A new version will be released as soon as possible.

Bug reports, suggestions and comments are, of course, welcome. Please contact the second author at
c.d.wensley@bangor.ac.uk.
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Chapter 1

Introduction

Groupoids are mathematical categories in which every arrow is invertible. The Gpd package provides
functions for the computation with groupoids and their morphisms; for graphs of groups and graphs
of groupoids. The package is far from complete, and development continues.

It was used by Emma Moore in her thesis [Moo01] to calculate normal forms for Free Products
with Amalgamation, and for HNN-extensions, when the initial groups have rewrite systems.

Gpd is implemented using GAP 4.4.
The information parameter InfoGpd takes default value 1 which, for the benefit of new users,

causes more messages to be printed out when operations fail. When raised to a higher value, additional
information is printed out.

Help is available in the usual way.
Example

gap> LoadPackage( "gpd" );
-----------------------------------------------------------
loading Gpd 1.05 for GAP 4.4 - Emma Moore and Chris Wensley
-----------------------------------------------------------
true

For version 1.05 the package has been completely restructured, starting with magmas with objects and
their mappings, and building up to groupoids via semigroups with objects and monoids with objects.
This development is ongoing, and this manual does not mention all the available functions. A new
version will be released as soon as possible.

Once the package is loaded, it is possible to check the correct installation by running the test suite
of the package with the following command. (The test file itself is tst/gpd manual.tst.)

Example

gap> ReadPackage( "gpd", "tst/testall.g" );
+ Testing examples in Chapter 2 of the Gpd manual
+ GAP4stones: 1250
+ Testing examples in Chapter 3 of the Gpd manual
+ GAP4stones: infinity
+ Testing examples in Chapter 4 of the Gpd manual
+ GAP4stones: 416
+ Testing examples in Chapter 5 of the Gpd manual
+ GAP4stones: 2500
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+ Testing examples in Chapter 6 of the Gpd manual
+ GAP4stones: 28

You may reference this package by mentioning [BMPW02] and [Moo01].



Chapter 2

Many-object structures

A magma with objects M consists of a set of objects Ob(M), and a set of arrows Arr(M) together with
tail and head maps t,h : Arr(M)→ Ob(M), and a partial multiplication ∗ : Arr(M)→ Arr(M), with
a∗b defined precisely when the head of a coincides with the tail of b. We write an arrow a with tail u
and head v as (a : u→ v).

When this multiplication is associative we obtain a semigroup with objects.
A loop is an arrow whose tail and head are the same object. An identity arrow at object u is a loop

(1u : u→ u) such that a∗1u = a and 1u ∗b = b whenever u is the head of a and the tail of b. When M
is a semigroup with objects and every object has an identity arrow, we obtain a monoid with objects,
which is just the usual notion of mathematical category.

An arrow (a : u→ v) in a monoid with objects has inverse (a−1 : v→ u) provided a ∗ a−1 = 1u

and a−1 ∗a = 1v. A monoid with objects in which every arrow has an inverse is a group with objects,
usually called a groupoid.

For the definitions of the standard properties of groupoids we refer to R. Brown’s book “Topology”
[Bro88], recently revised and reissued as “Topology and Groupoids” [Bro06].

2.1 Magmas with objects

2.1.1 MagmaWithObjects

♦ MagmaWithObjects(args) (function)

♦ ObjectList(mwo) (attribute)

♦ SemigroupithObjects(args) (function)

♦ MonoidWithObjects(args) (function)

The simplest construction for a magma with objects is to take a magma m and form arrows (u,x,v)
for every x in m and every pair of objects (u,v). Multiplication is defined by (u,x,v) ∗ (v,y,w) =
(u,x∗ y,w).

Any finite, ordered set is in principle acceptable as the objects of M, but we will restrict ourselves
to sets of negative integers here.

Example

gap> tm := [[1,2,4,3],[1,2,4,3],[3,4,2,1],[3,4,2,1]];; Display( tm );
[ [ 1, 2, 4, 3 ],
[ 1, 2, 4, 3 ],

7
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[ 3, 4, 2, 1 ],
[ 3, 4, 2, 1 ] ]

gap> m := MagmaByMultiplicationTable( tm );
<magma with 4 generators>
gap> SetName( m, "m" );
gap> m1 := MagmaElement(m,1);;
gap> m2 := MagmaElement(m,2);;
gap> m3 := MagmaElement(m,3);;
gap> m4 := MagmaElement(m,4);;
gap> One(m);
fail
gap> M78 := MagmaWithObjects( [-8,-7], m );
Magma with objects :-
objects = [ -8, -7 ]

magma = m
gap> [ IsAssociative(M78), IsCommutative(M78) ];
[ false, false ]

2.1.2 MultiplicativeElementWithObjects

♦ MultiplicativeElementWithObjects(mwo, elt, tail, head) (operation)

Elements in a magma with objects lie in the category IsMultiplicativeElementWithObjects.
An attempt to multiply two arrows which do not compose resuts in fail being returned.

Example

gap> a78 := MultiplicativeElementWithObjects( M78, m4, -7, -8 );
[m2 : -7 -> -8]
gap> b87 := MultiplicativeElementWithObjects( M78, m3, -8, -7 );
[m3 : -8 -> -7]
gap> ba := b87*a78;
[m4 : -8 -> -8]
gap> ab := a78*b87;
[m4 : -7 -> -7]
gap> a78ˆ2;
fail
gap> baˆ2;
[m1 : -8 -> -8]

2.1.3 IsSinglePiece

♦ IsSinglePiece(mwo) (property)

♦ IsDirectProductWithCompleteGraph(mwo) (property)

If the partial composition is forgotten, then a digraph is left (usually with multiple edges and
loops). Thus the notion of connected component may be inherited by magmas with objects from
digraphs. Unfortunately the terms Component and Constituent are already in considerably use in
GAP, so (for now?) we use the term IsSinglePiece to describe a connected magma with objects.
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Example

gap> IsSinglePiece( M78 );
true
gap> IsDirectProductWithCompleteGraph( M78 );
true



Chapter 3

Homomorphisms of many-object
structures

A homomorphism f from a magma with objects M to a magma with objects N consists of a map fO

from the objects of M to those of N together with a map fA from the arrows of M to those of N which
is compatible with tail and head and which preserves multiplication:

fA((a : u→ v)∗ f (b : v→ w)) = fA(a∗b : u→ w)

with tail fO(u) and head fO(v).

3.1 Homomorphisms of magmas with objects

3.1.1 MagmaWithObjectsHomomorphism

♦ MagmaWithObjectsHomomorphism(args) (function)

♦ MagmaHomomorphismFromSinglePiece(src, rng, hom, imobs) (operation)

♦ HomomorphismToSinglePiece(src, rng, images) (operation)

♦ HomomorphismByUnion(src, rng, homs) (operation)

As usual, there are a variety of homomorphism constructors. The basic construction
is a homomorphism M → N with both M and N connected, which is implemented as
IsHomomorphismToSinglePieceRep with attributes Source, Range and PieceImages. We require
the following information:

• a magma homomorphism f from the underlying of M to the underlying magma of N.

• a list imobs of the images of the objects of M;

In the example we construct endomappings of m and M78.
Example

gap> tup1 := [ Tuple([m1,m2]), Tuple([m2,m1]), Tuple([m3,m4]), Tuple([m4,m3]) ];
gap> f1 := GeneralMappingByElements( m, m, tup1 );
f1 = <general mapping: m -> m >
gap> IsMagmaHomomorphism( f1 );
true

10
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gap> tup2 := [ Tuple([m1,m1]), Tuple([m2,m1]), Tuple([m3,m1]), Tuple([m4,m1]) ];;
gap> f2 := GeneralMappingByElements( m, m, tup2 );;
gap> IsMagmaHomomorphism( f2 );
true
gap> map1 := HomomorphismFromSinglePiece( M78, M78, [-8,-7], f1 );
magma with objects homomorphism : M78 -> M78
gap> Display( map1 );
Mapping to single piece magma:
[ M78 ] -> [ M78 ]
magma mapping: <mapping: m -> m >

object map: [ -8, -7 ] -> [ -8, -7 ]
Homomorphism to connected magma:
[ M78 ] -> [ M78 ]
object map = [ [ -8, -7 ], [ -8, -7 ] ]

homomorphism = <homomorphism: m -> m >
gap> idm := f1*f1;;
gap> idmap := HomomorphismFromSinglePiece( M78, M78, idm, [-7,-8] );
gap> map2 := HomomorphismFromSinglePiece( M78, M78, f2, [-7,-8] );



Chapter 4

Groupoids

Many of the names of the functions described in this chapter have changed, due to the introduction
of magmas with objects, so the chapter is full of errors. A new version will be released as soon as
possible.

A groupoid is a (mathematical) category in which every element is invertible. It consists of a set
of pieces, each of which is a connected groupoid. (The usual terminology is ‘connected component’,
but in GAP ‘component’ is used for ‘record component’.)

A single piece groupoid is determined by a set of objects obs and an object group grp. The objects
of a single piece groupoid are generally chosen to be consecutive negative integers, but any suitable
ordered set is acceptable, and ‘consecutive’ is not a requirement. The object groups will usually be
taken to be permutation groups, but pc-groups and fp-groups are also supported.

A group is a single piece groupoid with one object.
A groupoid is a set of one or more single piece groupoids, its single piece pieces, and is represented

as IsGroupoidRep, with attribute PiecesOfGroupoid.
For the definitions of the standard properties of groupoids we refer to R. Brown’s book “Topology”

[Bro88], recently revised and reissued as “Topology and Groupoids” [Bro06].

4.1 Groupoids: their elements and attributes

4.1.1 SinglePieceGroupoid

♦ SinglePieceGroupoid(grp, obs) (operation)

♦ Groupoid(args) (function)

There are a variety of constructors for groupoids, with one or two parameters. The global function
Groupoid will normally find the appropriate one to call, the options being:

• the object group, a list of objects;

• a group being converted to a groupoid, a single object;

• a list of groupoids which have already been constructed.

Methods for ViewObj, PrintObj and Display are provided for groupoids and the other types
of object in this package. Users are advised to supply names for all the groups and groupoids they
construct.

12
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Example

gap> d8 := Group( (1,2,3,4), (1,3) );;
gap> SetName( d8, "d8" );
gap> Gd8 := SinglePieceGroupoid( d8, [-9,-8,-7] );
Perm single piece groupoid:
< d8, [ -9, -8, -7 ] >
gap> c6 := Group( (5,6,7)(8,9) );;
gap> SetName( c6, "c6" );
gap> Gc6 := DomainWithSingleObject( c6, -6 );
Perm SinglePiece Groupoid:
< c6, [ -6 ] >
gap> Gd8c6 := UnionOfPieces( [ Gd8, Gc6 ] );;
gap> Display( Gd8c6 );
Perm Groupoid with 2 pieces:
< objects: [ -9, -8, -7 ]

group: d8 = <[ (1,2,3,4), (1,3) ]> >
< objects: [ -6 ]

group: c6 = <[ (5,6,7)(8,9) ]> >
gap> SetName( Gd8, "Gd8" ); SetName( Gc6, "Gc6" ); SetName( Gd8c6, "Gd8+Gc6" );

4.1.2 Pieces

♦ Pieces(gpd) (attribute)

♦ ObjectList(gpd) (attribute)

When a groupoid consists of two or more pieces, we require their object lists to be disjoint.
The pieces are sorted by the first object in their object lists, which must be disjoint. The list
ObjectsOfGroupoid of a groupoid is the sorted concatenation of the objects in the pieces.

Example

gap> Pieces( Gd8c6 );
[ Gd8, Gc6 ]
gap> ObjectList( Gd8c6 );
[ -9, -8, -7, -6 ]

4.1.3 IsPermGroupoid

♦ IsPermGroupoid(gpd) (property)

♦ IsPcGroupoid(gpd) (property)

♦ IsFpGroupoid(gpd) (property)

A groupoid is a permutation groupoid if all its pieces have permutation groups. Most of the
examples in this chapter are permutation groupoids, but in principle any type of group known to GAP
may be used.

In the following example Gf2 is an fp-groupoid, while Gq8 is a pc-groupoid.
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Example

gap> f2 := FreeGroup( 2 );;
gap> SetName( f2, "f2" );
gap> Gf2 := Groupoid( f2, -22 );;
gap> q8 := SmallGroup( 8, 4 );;
gap> Gq8 := Groupoid( q8, [ -28, -27 ] );;
gap> SetName( q8, "q8" ); SetName( Gq8, "Gq8" );
gap> Gf2q8 := Groupoid( [ Gf2, Gq8 ] );;
gap> [ IsFpGroupoid( Gf2 ), IsPcGroupoid( Gq8 ), IsPcGroupoid( Gf2q8 ) ];
[ true, true, false ]
gap> G4 := Groupoid( [ Gd8c6, Gf2, Gq8 ] );;
gap> Display( G4 );
Groupoid with 4 pieces:
< objects: [ -28, -27 ]

group: q8 = <[ f1, f2, f3 ]> >
< objects: [ -22 ]

group: f2 = <[ f1, f2 ]> >
< objects: [ -9, -8, -7 ]

group: d8 = <[ (1,2,3,4), (1,3) ]> >
< objects: [ -6 ]

group: c6 = <[ (5,6,7)(8,9) ]> >
gap> G4 = Groupoid( [ Gq8, Gf2, Gd8c6 ] );
true

4.1.4 GroupoidElement

♦ GroupoidElement(gpd, elt, tail, head) (operation)

♦ IsElementOfGroupoid(elt) (property)

♦ Arrow(elt) (attribute)

♦ Arrowtail(elt) (attribute)

♦ Arrowhead(elt) (attribute)

♦ Size(gpd) (attribute)

A groupoid element e is a triple consisting of a group element, Arrow(e) or e![1]; the tail
(source) object, Arrowtail(e) or e![2]; and the head (target) object, Arrowhead(e) or e![3].

The Size of a groupoid is the number of its elements which, for a single piece groupoid, is the
product of the size of the group with the square of the number of objects.

Groupoid elements have a partial composition: two elements may be multiplied when the head of
the first coincides with the tail of the second.

Example

gap> e1 := GroupoidElement( Gd8, (1,2)(3,4), -9, -8 );
[(1,2)(3,4) : -9 -> -8]
gap> e2 := GroupoidElement( Gd8, (1,3), -8, -7 );;
gap> Print( [ Arrow( e2 ), Arrowtail( e2 ), Arrowhead( e2 ) ], "\n" );
[ (1,3), -8, -7 ]
gap> prod := e1*e2;
[(1,2,3,4) : -9 -> -7]
gap> e3 := GroupoidElement( Gd8, (1,3)(2,4), -7, -9 );;
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gap> cycle := prod*e3;
[(1,4,3,2) : -9 -> -9]
gap> cycleˆ2;
[(1,3)(2,4) : -9 -> -9]
gap> Order( cycle );
4
gap> cycleˆe1;
[(1,2,3,4) : -8 -> -8]
gap> [ Size( Gd8 ), Size( Gc6 ), Size( Gd8c6 ), Size( Gf2q8 ) ];
[ 72, 6, 78, infinity ]

4.1.5 IsSinglePiece

♦ IsSinglePiece(gpd) (property)

♦ IsDiscrete(gpd) (property)

The forgetful functor, which forgets the composition of elements, maps the category of groupoids
and their morphisms to the category of digraphs and their morphisms. Applying this functor to a
particular groupoid gives the underlying digraph of the groupoid. A groupoid is connected if its
underlying digraph is connected (and so complete). A groupoid is discrete if it is a union of groups,
so that all the arcs in its underlying digraph are loops. It is sometimes convenient to call a groupoid
element a loop when its tail and head are the same object.

4.2 Subgroupoids

4.2.1 SubgroupoidByPieces

♦ SubgroupoidByPieces(gpd, obhoms) (operation)

♦ Subgroupoid(args) (function)

♦ FullSubgroupoid(gpd, obs) (operation)

♦ MaximalDiscreteSubgroupoid(gpd) (attribute)

♦ DiscreteSubgroupoid(gpd, obs, sgps) (operation)

♦ FullIdentitySubgroupoid(gpd) (attribute)

♦ DiscreteIdentitySubgroupoid(gpd) (attribute)

A subgroupoid sgpd of gpd has as objects a subset of the objects of gpd. It is wide if all the
objects are included. It is full if, for any two objects in sgpd, the Homset is the same as in gpd. The
elements of sgpd are a subset of those of gpd, closed under multiplication and with tail and head in
the chosen object set.

There are a variety of constructors for a subgroupoid of a groupoid. The operation
SubgroupoidByPieces is the most general. Its two parameters are a groupoid and a list of pieces,
where each piece is specified as a list [obs,sgp], obs is a subset of the objects in one of the pieces
of gpd, and sgp is a subgroup of the group in that piece.

The FullSubgroupoid of a groupoid gpd on a subset obs of its objects contains all the elements
of gpd with tail and head in obs.

A subgroupoid is discrete if it is a union of groups. The MaximalDiscreteSubgroupoid of gpd
is the union of all the single-object full subgroupoids of gpd.
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An identity subgroupoid has trivial object groups, but need not be discrete. A single piece identity
groupoid is sometimes called a tree groupoid.

The global function Subgroupoid should call the appropriate operation.
Example

gap> c4d := Subgroup( d8, [ (1,2,3,4) ] );;
gap> k4d := Subgroup( d8, [ (1,2)(3,4), (1,3)(2,4) ] );;
gap> SetName( c4d, "c4d" ); SetName( k4d, "k4d" );
gap> Ud8 := Subgroupoid( Gd8, [ [ k4d,[-9] ], [ c4d, [-8,-7] ] ] );;
gap> SetName( Ud8, "Ud8" );
gap> Display( Ud8 );
Perm Groupoid with 2 pieces:
< objects: [ -9 ]

group: k4d = <[ (1,2)(3,4), (1,3)(2,4) ]> >
< objects: [ -8, -7 ]

group: c4d = <[ (1,2,3,4) ]> >
gap> FullSubgroupoid( Gd8c6, [-7,-6] );
Perm Groupoid with pieces:
< [ -7 ], d8 >
< [ -6 ], c6 >
gap> DiscreteSubgroupoid( Gd8c6, [-9,-8], [ c4d, k4d ] );
Perm Groupoid with pieces:
< [ -9 ], c4d >
< [ -8 ], k4d >
gap> FullIdentitySubgroupoid( Ud8 );
Perm Groupoid with pieces:
< [ -9 ], id(k4d) >
< [ -8, -7 ], id(c4d) >

4.3 Stars, Costars and Homsets

4.3.1 ObjectStar

♦ ObjectStar(gpd, obj) (operation)

♦ ObjectCostar(gpd, obj) (operation)

♦ Homset(gpd, tail, head) (operation)

The star at obj is the set of groupoid elements which have obj as tail, while the costar is the set
of elements which have obj as head. The homset from obj1 to obj2 is the set of elements with the
specified tail and head, and so is bijective with the elements of the group. Thus every star and every
costar is a union of homsets.

In order not to create unneccessary long lists, these operations return objects of type
IsHomsetCosetsRep for which an Iterator is provided. (An Enumerator is not yet implemented.)

Example

gap> star9 := ObjectStar( Gd8, -9 );
<star at [ -9 ] with group d8>
gap> for e in star9 do
> if ( Order( e![1] ) = 4 ) then Print( e, "\n" ); fi;
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> od;
[(1,4,3,2) : -9 -> -9]
[(1,4,3,2) : -9 -> -8]
[(1,4,3,2) : -9 -> -7]
[(1,2,3,4) : -9 -> -9]
[(1,2,3,4) : -9 -> -8]
[(1,2,3,4) : -9 -> -7]
gap> costar6 := ObjectCostar( Gc6, -6 );
<costar at [ -6 ] with group c6>
gap> hset78 := Homset( Ud8, -7, -8 );
<homset -7 -> -8 with group c4d>
gap> for e in hset78 do Print( e, "\n" ); od;
[() : -7 -> -8]
[(1,3)(2,4) : -7 -> -8]
[(1,4,3,2) : -7 -> -8]
[(1,2,3,4) : -7 -> -8]

4.3.2 IdentityElement

♦ IdentityElement(gpd, obj) (operation)

The identity groupoid element 1\ {o} of gpd at object o is [e,o,o] where e is the identity group
element in the object group. It is a left identity for the star and a right identity for the costar at that
object.

Example

gap> i7 := IdentityElement( Gd8, -7 );;
gap> i8 := IdentityElement( Gd8, -8 );;
gap> L := [ i7, i8 ];;
gap> for e in hset78 do Add( L, i7*e*i8 = e ); od;
gap> L;
[ [() : -7 -> -7], [() : -8 -> -8], true, true, true, true ]

4.4 Left, right and double cosets

4.4.1 RightCoset

♦ RightCoset(G, U, elt) (operation)

♦ RightCosetRepresentatives(G, U) (operation)

♦ RightCosetsNC(G, U) (operation)

♦ LeftCoset(G, U, elt) (operation)

♦ LeftCosetRepresentatives(G, U) (operation)

♦ LeftCosetRepresentativesFromObject(G, U, obj) (operation)

♦ LeftCosetsNC(G, U) (operation)

♦ DoubleCoset(G, U, elt, V) (operation)

♦ DoubleCosetRepresentatives(G, U, V) (operation)
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♦ DoubleCosetsNC(G, U, V) (operation)

If U is a wide subgroupoid of G, the right cosets of U in G are the equivalence classes of the
relation on the elements of G where g1 is related to g2 if and only if g2 = u∗g1 for some element u
of U . The right coset containing g is written Ug. These right cosets refine the costars of G and, in
particular, U1 o is the costar of U at o, so that (unlike groups) U is itself a coset only when G has a
single object.

The right coset representatives for U in G form a list containing one groupoid element for each
coset where, in a particular piece of U , the group element chosen is the right coset representative of
the group of U in the group of G.

Similarly, the left cosets gU refine the stars of G, while double cosets are unions of left cosets and
of right cosets. The operation LeftCosetRepresentativesFromObject( G, U, obj ) is used in
Chapter 4, and returns only those representatives which have tail at obj.

As with stars and homsets, these cosets are implemented with representation IsHomsetCosetsRep
and provided with an iterator. Note that, when U has more than one piece, cosets may have differing
lengths.

Example

gap> re2 := RightCoset( Gd8, Ud8, e2 );
RightCoset(c4d,[(1,3) : -8 -> -7])
gap> for x in re2 do Print( x, "\n" ); od;
[(1,3) : -8 -> -8]
[(1,3) : -7 -> -8]
[(2,4) : -8 -> -8]
[(2,4) : -7 -> -8]
[(1,4)(2,3) : -8 -> -8]
[(1,4)(2,3) : -7 -> -8]
[(1,2)(3,4) : -8 -> -8]
[(1,2)(3,4) : -7 -> -8]
gap> rcrd8 := RightCosetRepresentatives( Gd8, Ud8 );
[ [() : -9 -> -9], [() : -9 -> -8], [() : -9 -> -7], [(2,4) : -9 -> -9],
[(2,4) : -9 -> -8], [(2,4) : -9 -> -7], [() : -8 -> -9], [() : -8 -> -8],
[() : -8 -> -7], [(2,4) : -8 -> -9], [(2,4) : -8 -> -8], [(2,4) : -8 -> -7]

]
gap> lcr7 := LeftCosetRepresentativesFromObject( Gd8, Ud8, -7 );
[ [() : -7 -> -9], [(2,4) : -7 -> -9], [() : -7 -> -8], [(2,4) : -7 -> -8] ]

4.5 Conjugation

4.5.1 \ˆ

♦ \ˆ(e1, e2) (operation)

When e2 = c : p−> q and e1 has group element b, the conjugate e1e2 has a complicated definition,
but may be remembered as follows. All objects are fixed except p,q, which are interchanged. For p,q
as source, multiply b on the left by c−1,c respectively; and for p,q as target, multiply b on the right
by c,c−1. This product gives the group element of the conjugate.
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Example

gap> x := GroupoidElement( Gd8, (2,4), -9, -9 );;
gap> y := GroupoidElement( Gd8, (1,2,3,4), -8, -9 );;
gap> z := GroupoidElement( Gd8, (1,3)(2,4), -7, -8 );;
gap> Print( "\nConjugation with elements x, y, and z in Gd8:\n" );
gap> Print( "x = ", x, ", y = ", y, ", z = ", z, "\n" );
x = [(2,4) : -9 -> -9], y = [(1,2,3,4) : -8 -> -9], z = [(1,3) : -8 -> -8]
gap> Print( "xˆx = ", xˆx, ", xˆy = ", xˆy, ", xˆz = ", xˆz, "\n" );
xˆx = [(2,4) : -9 -> -9], xˆy = [(1,3) : -8 -> -8], xˆz = [(2,4) : -9 -> -9]
gap> Print( "yˆx = ", yˆx, ", yˆy = ", yˆy, ", yˆz = ", yˆz, "\n" );
yˆx = [() : -8 -> -9], yˆy = [(1,4,3,2) : -9 -> -8], yˆz = [(1,4)(2,3) : -8 -> -9]
gap> Print( "zˆx = ", zˆx, ", zˆy = ", zˆy, ", zˆz = ", zˆz, "\n" );
zˆx = [(1,3) : -8 -> -8], zˆy = [(2,4) : -9 -> -9], zˆz = [(1,3) : -8 -> -8]

More examples of all these operations may be found in the example file gpd/examples/gpd.g.



Chapter 5

Homomorphisms of Groupoids

A homomorphism m from a groupoid G to a groupoid H consists of a map from the objects of G to
those of H together with a map from the elements of G to those of H which is compatible with tail
and head and which preserves multiplication:

m(g1 : o1→ o2)∗m(g2 : o2→ o3) = m(g1∗g2 : o1→ o3).

Note that when a homomorphism is not injective on objects, the image of the source need not be
a subgroupoid of the range. The simplest example of this is given by homomorphism the two-object
groupoid with trivial group to the free group 〈a〉 on one generator, when the image is [1,a,a−1].

5.1 Homomorphisms to a connected groupoid

5.1.1 GroupoidHomomorphism

♦ GroupoidHomomorphism(args) (function)

♦ GroupoidHomomorphismFromSinglePiece(src, rng, hom, imobs) (operation)

♦ Source(hom) (attribute)

♦ Range(hom) (attribute)

As usual, there are a variety of homomorphism constructors. The basic con-
struction is a homomorphism G → H with H connected, which is implemented as
IsHomomorphismToSinglePieceGroupoidRep with attributes Source, Range and PieceImages.
If G is also connected, we may apply HomomorphismOfSinglePieceGroupoids, requiring:

• a homomorphism hom from the group of G to the group of H.

• a list imobs of the images of the objects of G;
Example

gap> d12 := Group( (15,16,17,18,19,20, (15,20)(16,19)(17,18) );;
gap> Gd12 := SinglePieceGroupoid( [-37,-36,-35,-34], d12 );;
gap> SetName( d12, "d12" ); SetName( Gd12, "Gd12" );
gap> s3d := Subgroup( d12, [ (15,17,19)(16,18,20), (15,20)(16,19)(17,18) ] );
gap> Gs3d := SubgroupoidByPieces( Gd12, [ [[-36,-35,-34], s3d] ] );;
gap> SetName( s3d, "s3d" ); SetName( Gs3d, "Gs3d" );
gap> gend8 := GeneratorsOfGroup( d8 );;

20
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gap> imhd8 := [ ( ), (15,20)(16,19)(17,18) ];;
gap> hd8 := GroupHomomorphismByImages( d8, s3d, gend8, imhd8 );
gap> homd8 := GroupoidHomomorphism( Gd8, Gs3d, hd8, [-34,-35,-36] );
groupoid homomorphism : Gd8 -> Gs3d
gap> IsBijectiveOnObjects( homd8 );
true
gap> Display( homd8 );
groupoid mapping: [ Gd8 ] -> [ Gs3d ]
root homomorphism: [ [ (1,2,3,4), (1,3) ], [ (), (15,20)(16,19)(17,18) ] ]
images of objects: [ -34, -35, -36 ]

images of rays: [ (), (), () ]



Chapter 6

Graphs of Groups and Groupoids

This package was originally designed to implement graphs of groups, a notion introduced by Serre in
[Ser80]. It was only when this was extended to graphs of groupoids that the functions for groupoids,
described in the previous chapters, were required. The methods described here are based on Philip
Higgins’ paper [Hig76]. For further details see Chapter 2 of [Moo01]. Since a graph of groups
involves a directed graph, with a group associated to each vertex and arc, we first define digraphs with
edges weighted by the generators of a free group.

6.1 Digraphs

6.1.1 FpWeightedDigraph

♦ FpWeightedDigraph(verts, arcs) (attribute)

♦ IsFpWeightedDigraph(dig) (attribute)

♦ InvolutoryArcs(dig) (attribute)

A weighted digraph is a record with two components: vertices, which are usually taken to be
positive integers (to distinguish them from the objects in a groupoid); and arcs, which take the form
of 3-element lists [weight,tail,head]. The tail and head are the two vertices of the arc. The
weight is taken to be an element of a finitely presented group, so as to produce digraphs of type
IsFpWeightedDigraph.

Example

gap> V1 := [ 5, 6 ];;
gap> f1 := FreeGroup( "y" );;
gap> y := f1.1;;
gap> A1 := [ [ y, 5, 6 ], [ yˆ-1, 6, 5 ] ];
gap> D1 := FpWeightedDigraph( V1, A1 );
weighted digraph with vertices: [ 5, 6 ]
and arcs: [ [ y, 5, 6 ], [ yˆ-1, 6, 5 ] ]
gap> inv1 := InvolutoryArcs( D1 );
[ 2, 1 ]

The example illustrates the fact that we require arcs to be defined in involutory pairs, as though they
were inverse elements in a groupoid. We may in future decide just to give [y,5,6] as the data and
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get the function to construct the reverse edge. The attribute InvolutoryArcs returns a list of the
positions of each inverse arc in the list of arcs. In the second example the graph is a complete digraph
on three vertices.

Example

gap> f3 := FreeGroup( 3, "z" );;
gap> z1 := f3.1;; z2 := f3.2;; z3 := f3.3;;
gap> V3 := [ 7, 8, 9 ];;
gap> A3 := [[z1,7,8],[z2,8,9],[z3,9,7],[z1ˆ-1,8,7],[z2ˆ-1,9,8],[z3ˆ-1,7,9]];;
gap> D3 := FpWeightedDigraph( V3, A3 );
weighted digraph with vertices: [ 7, 8, 9 ]
and arcs: [ [ z1, 7, 8 ], [ z2, 8, 9 ], [ z3, 9, 7 ], [ z1ˆ-1, 8, 7 ],
[ z2ˆ-1, 9, 8 ], [ z3ˆ-1, 7, 9 ] ]

[gap> inv3 := InvolutoryArcs( D3 );
[ 4, 5, 6, 1, 2, 3 ]

6.2 Graphs of Groups

6.2.1 GraphOfGroups

♦ GraphOfGroups(dig, gps, sgps, isos) (operation)

♦ DigraphOfGraphOfGroups(gg) (attribute)

♦ GroupsOfGraphOfGroups(gg) (attribute)

♦ SubgroupsOfGraphOfGroups(gg) (attribute)

♦ IsomorphismsOfGraphOfGroups(gg) (attribute)

A graph of groups is traditionally defined as consisting of:

• a digraph with involutory pairs of arcs;

• a vertex group associated to each vertex;

• a group associated to each pair of arcs;

• an injective homomorphism from each arc group to the group at the head of the arc.

We have found it more convenient to associate to each arc:

• a subgroup of the vertex group at the tail;

• a subgroup of the vertex group at the head;

• an isomorphism between these subgroups, such that each involutory pair of arcs determines
inverse isomorphisms.

These two viewpoints are clearly equivalent.
In this implementation we require that all subgroups are of finite index in the vertex groups.
The four attributes provide a means of calling the four items of data in the construction of a graph

of groups.
We shall be representing free products with amalgamation of groups and HNN extensions of

groups, so we take as our first example the trefoil group with generators a,b and relation a3 = b2.
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For this we take digraph D1 above with an infinite cyclic group at each vertex, generated by a and b
respectively. The two subgroups will be generated by a3 and b2 with the obvious isomorphisms.

Example

gap> ## free vertex group at 5
gap> fa := FreeGroup( "a" );;
gap> a := fa.1;;
gap> SetName( fa, "fa" );
gap> hy := Subgroup( fa, [aˆ3] );;
gap> SetName( hy, "hy" );
gap> ## free vertex group at 6
gap> fb := FreeGroup( "b" );;
gap> b := fb.1;;
gap> SetName( fb, "fb" );
gap> hybar := Subgroup( fb, [bˆ2] );;
gap> SetName( hybar, "hybar" );
gap> ## isomorphisms between subgroups
gap> homy := GroupHomomorphismByImagesNC( hy, hybar, [aˆ3], [bˆ2] );;
gap> homybar := GroupHomomorphismByImagesNC( hybar, hy, [bˆ2], [aˆ3] );;
gap> ## defining graph of groups G1
gap> G1 := GraphOfGroups( D1, [fa,fb], [hy,hybar], [homy,homybar] );
Graph of Groups: 2 vertices; 2 arcs; groups [ fa, fb ]
gap> Display( G1 );
Graph of Groups with :-

vertices: [ 5, 6 ]
arcs: [ [ y, 5, 6 ], [ yˆ-1, 6, 5 ] ]

groups: [ fa, fb ]
subgroups: [ hy, hybar ]

isomorphisms: [ [ [ aˆ3 ], [ bˆ2 ] ], [ [ bˆ2 ], [ aˆ3 ] ] ]

6.2.2 IsGraphOfFpGroups

♦ IsGraphOfFpGroups(gg) (property)

♦ IsGraphOfPcGroups(gg) (property)

♦ IsGraphOfPermGroups(gg) (property)

This is a list of properties to be expected of a graph of groups. In principle any type of group
known to GAP may be used as vertex groups, though these types are not normally mixed in a single
structure.

Example

gap> IsGraphOfFpGroups( G1 );
true
gap> IsomorphismsOfGraphOfGroups( G1 );
[ [ aˆ3 ] -> [ bˆ2 ], [ bˆ2 ] -> [ aˆ3 ] ]
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6.2.3 RightTransversalsOfGraphOfGroups

♦ RightTransversalsOfGraphOfGroups(gg) (attribute)

♦ LeftTransversalsOfGraphOfGroups(gg) (attribute)

Computation with graph of groups words will require, for each arc subgroup ha, a set of represen-
tatives for the left cosets of ha in the tail vertex group. As already pointed out, we require subgroups
of finite index. Since GAP prefers to provide right cosets, we obtain the right representatives first, and
then invert them.

When the vertex groups are of type FpGroup we shall require normal forms for these groups, so
we assume that such vertex groups are provided with Knuth Bendix rewriting systems using functions
from the main GAP library, (e.g. IsomorphismFpSemigroup).

Example

gap> RTG1 := RightTransversalsOfGraphOfGroups( G1 );
[ [ <identity ...>, a, aˆ2 ], [ <identity ...>, b ] ]
gap> LTG1 := LeftTransversalsOfGraphOfGroups( G1 );
[ [ <identity ...>, aˆ-1, aˆ-2 ], [ <identity ...>, bˆ-1 ] ]

6.3 Words in a Graph of Groups and their normal forms

6.3.1 GraphOfGroupsWord

♦ GraphOfGroupsWord(gg, tv, list) (operation)

♦ IsGraphOfGroupsWord(w) (property)

♦ GraphOfGroupsOfWord(w) (attribute)

♦ WordOfGraphOfGroupsWord(w) (attribute)

♦ GGTail(w) (attribute)

♦ GGHead(w) (attribute)

If G is a graph of groups with underlying digraph D, the following groupoids may be considered.
First there is the free groupoid or path groupoid on D. Since we want each involutory pair of arcs
to represent inverse elements in the groupoid, we quotient out by the relations y\ˆ{}-1 = ybar to
obtain PG(D). Secondly, there is the discrete groupoid VG(D), namely the union of all the vertex
groups. Since these two groupoids have the same object set (the vertices of D) we can form A(G), the
free product of PG(D) and VG(D) amalgamated over the vertices. For further details of this universal
groupoid construction see [Moo01]. (Note that these groupoids are not implemented in this package.)

An element of A(G) is a graph of groups word which may be represented by a list of the form
w = [g1,y1,g2,y2, ...,gn,yn,gn+1]. Here each yi is an arc of D; the head of yi−1 is a vertex vi which is
also the tail of yi; and gi is an element of the vertex group at vi.

The attributes GGTail and GGHead are temporary names for the tail and head of a graph of groups
word, and are likely to be replaced in future versions.

So a graph of groups word requires as data the graph of groups; the tail vertex for the word; and a
list of arcs and group elements. We may specify each arc by its position in the list of arcs.

In the following example, where gw1 is a word in the trefoil graph of groups, the yi are specified
by their positions in A1. Both arcs are traversed twice, so the resulting word is a loop at vertex 5.
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Example

gap> L1 := [ aˆ7, 1, bˆ-6, 2, aˆ-11, 1, bˆ9, 2, aˆ7 ];;
gap> gw1 := GraphOfGroupsWord( G1, 5, L1 );
(5)aˆ7.y.bˆ-6.yˆ-1.aˆ-11.y.bˆ9.yˆ-1.aˆ7(5)
gap> IsGraphOfGroupsWord( gw1 );
true
gap> [ GGTail(gw1), GGHead(gw1) ];
[ 5, 5 ]
gap> GraphOfGroupsOfWord(gw1);
Graph of Groups: 2 vertices; 2 arcs; groups [ fa, fb ]
gap> WordOfGraphOfGroupsWord( gw1 );
[ aˆ7, 1, bˆ-6, 2, aˆ-11, 1, bˆ9, 2, aˆ7 ]

6.3.2 ReducedGraphOfGroupsWord

♦ ReducedGraphOfGroupsWord(w) (operation)

♦ IsReducedGraphOfGroupsWord(w) (property)

A graph of groups word may be reduced in two ways, to give a normal form. Firstly, if part of
the word has the form [yi, identity, yibar] then this subword may be omitted. This is known
as a length reduction. Secondly there are coset reductions. Working from the left-hand end of the
word, subwords of the form [gi,yi,gi+1] are replaced by [ti,yi,mi(hi) ∗ gi+1] where gi = ti ∗ hi is the
unique factorisation of gi as a left coset representative times an element of the arc subgroup, and mi

is the isomorphism associated to yi. Thus we may consider a coset reduction as passing a subgroup
element along an arc. The resulting normal form (if no length reductions have taken place) is then
[t1,y1, t2,y2, ..., tn,yn,k] for some k in the head group of yn. For further details see Section 2.2 of
[Moo01].

The reduction of the word gw1 in our example includes one length reduction. The four stages of
the reduction are as follows:

a7b−6a−11b9a7 7→ a−2b0a−11b9a7 7→ a−13b9a7 7→ a−1b−8b9a7 7→ a−1b−1a10.
Example

gap> nw1 := ReducedGraphOfGroupsWord( gw1 );
(5)aˆ-1.y.bˆ-1.yˆ-1.aˆ10(5)

6.4 Free products with amalgamation and HNN extensions

6.4.1 FreeProductWithAmalgamation

♦ FreeProductWithAmalgamation(gp1, gp2, iso) (operation)

♦ IsFpaGroup(fpa) (property)

♦ GraphOfGroupsRewritingSystem(fpa) (attribute)

♦ NormalFormGGRWS(fpa, word) (attribute)



Gpd 27

As we have seen with the trefoil group example, graphs of groups can be used to obtain a normal
form for free products with amalgamation G1 ∗H G2 when G1,G2 both have rewrite systems, and H is
of finite index in both G1 and G2.

When gp1 and gp2 are fp-groups, the operation FreeProductWithAmalgamation constructs the
required fp-group. When the two groups are permutation groups, the IsomorphismFpGroup operation
is called on both gp1 and gp2, and the resulting isomorphism is transported to one between the two
new subgroups.

The attribute GraphOfGroupsRewritingSystem of fpa is the graph of groups which has under-
lying digraph D1, with two vertices and two arcs; the two groups as vertex groups; and the specified
isomorphisms on the arcs. Despite the name, graphs of groups constructed in this way do not belong
to the category IsRewritingSystem. This anomaly may be dealt with when time permits.

The example below shows a computation in the the free product of the symmetric s3 and the
alternating a4, amalgamated over a cyclic subgroup c3.

Example

gap> ## set up the first group s3 and a subgroup c3=<a1>
gap> f1 := FreeGroup( 2, "a" );;
gap> rel1 := [ f1.1ˆ3, f1.2ˆ2, (f1.1*f1.2)ˆ2 ];;
gap> s3 := f1/rel1;;
gap> gs3 := GeneratorsOfGroup(s3);;
gap> SetName( s3, "s3" );
gap> a1 := gs3[1];; a2 := gs3[2];;
gap> H1 := Subgroup(s3,[a1]);;
gap> ## then the second group a4 and subgroup c3=<b1>
gap> f2 := FreeGroup( 2, "b" );;
gap> rel2 := [ f2.1ˆ3, f2.2ˆ3, (f2.1*f2.2)ˆ2 ];;
gap> a4 := f2/rel2;;
gap> ga4 := GeneratorsOfGroup(a4);;
gap> SetName( a4, "a4" );
gap> b1 := ga4[1]; b2 := ga4[2];;
gap> H2 := Subgroup(a4,[b1]);;
gap> ## form the isomorphism and the fpa group
gap> iso := GroupHomomorphismByImages(H1,H2,[a1],[b1]);;
gap> fpa := FreeProductWithAmalgamation( s3, a4, iso );
<fp group on the generators [ fa1, fa2, fa3, fa4 ]>
gap> RelatorsOfFpGroup( fpa );
[ fa1ˆ3, fa2ˆ2, fa1*fa2*fa1*fa2, fa3ˆ3, fa4ˆ3, fa3*fa4*fa3*fa4, fa1*fa3ˆ-1 ]
gap> gg1 := GraphOfGroupsRewritingSystem( fpa );;
gap> Display( gg1 );
Graph of Groups with :-

vertices: [ 5, 6 ]
arcs: [ [ y, 5, 6 ], [ yˆ-1, 6, 5 ] ]

groups: [ s3, a4 ]
subgroups: [ Group( [ a1 ] ), Group( [ b1 ] ) ]

isomorphisms: [ [ [ a1 ], [ b1 ] ], [ [ b1 ], [ a1 ] ] ]
gap> LeftTransversalsOfGraphOfGroups( gg1 );
[ [ <identity ..>, a2ˆ-1 ], [ <identity ..>, b2ˆ-1, b1ˆ-1*b2ˆ-1, b1*b2ˆ-1 ] ]
gap> ## choose a word in fpa and find its normal form
gap> gfpa := GeneratorsOfGraphOfGroups( fpa );;
gap> w2 := (gfpa[1]*gfpa[2]*gfpa[3]ˆgfpa[4])ˆ3;
fa1*fa2*fa4ˆ-1*fa3*fa4*fa1*fa2*fa4ˆ-1*fa3*fa4*fa1*fa2*fa4ˆ-1*fa3*fa4
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gap> n2 := NormalFormGGRWS( fpa, w2 );
fa2*fa3*fa4ˆ-1*fa2*fa4ˆ-1*fa2*fa3ˆ-1*fa4*fa3ˆ-1

6.4.2 HnnExtension

♦ HnnExtension(gp, iso) (operation)

♦ IsHnnGroup(hnn) (property)

For HNN extensions, the appropriate graph of groups has underlying digraph with just one vertex
and one pair of loops, weighted with FpGroup generators z,z−1. There is one vertex group G, two
isomorphic subgroups H1,H2 of G, with the isomorphism and its inverse on the loops. The presentation
of the extension has one more generator than that of G and corresponds to the generator z.

The functions GraphOfGroupsRewritingSystem and NormalFormGGRWS may be applied to hnn-
groups as well as to fpa-groups.

In the example we take G=a4 and the two subgroups are cyclic groups of order 3.
Example

gap> H3 := Subgroup(a4,[b2]);;
gap> i23 := GroupHomomorphismByImages( H2, H3, [b1], [b2] );;
gap> hnn := HnnExtension( a4, i23 );
<fp group on the generators [ fe1, fe2, fe3 ]>
gap> phnn := PresentationFpGroup( hnn );;
gap> TzPrint( phnn );
#I generators: [ fe1, fe2, fe3 ]
#I relators:
#I 1. 3 [ 1, 1, 1 ]
#I 2. 3 [ 2, 2, 2 ]
#I 3. 4 [ 1, 2, 1, 2 ]
#I 4. 4 [ -3, 1, 3, -2 ]
gap> gg2 := GraphOfGroupsRewritingSystem( hnn );
Graph of Groups: 1 vertices; 2 arcs; groups [ a4 ]
gap> LeftTransversalsOfGraphOfGroups( gg2 );
[ [ <identity ...>, b2ˆ-1, b1ˆ-1*b2ˆ-1, b1*b2ˆ-1 ],
[ <identity ...>, b1ˆ-1, b1, b2ˆ-1*b1 ] ]

gap> gh := GeneratorsOfGroup( hnn );;
gap> w3 := (gh[1]ˆgh[2])*gh[3]ˆ-1*(gh[1]*gh[3]*gh[2]ˆ2)ˆ2*gh[3]*gh[2];
fe2ˆ-1*fe1*fe2*fe3ˆ-1*fe1*fe3*fe2ˆ2*fe1*fe3*fe2ˆ2*fe3*fe2
gap> n3 := NormalFormGGRWS( hnn, w3 );
fe2*fe1*fe3*fe2*fe1*fe3

Both fpa-groups and hnn-groups are provided with a record attribute, FpaInfo(fpa) and
HnnInfo(hnn) respectively, storing the groups and isomorphisms involved in their construction.

Example

gap> fpainfo := FpaInfo( fpa );
rec( groups := [ s3, a4 ], positions := [ [ 1, 2 ], [ 3, 4 ] ],
isomorphism := [ a1 ] -> [ b1 ] )
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gap> hnninfo := HnnInfo( hnn );
rec( group := a4, isomorphism := [ b1 ] -> [ b2 ] )

6.5 GraphsOfGroupoids and their Words

6.5.1 GraphOfGroupoids

♦ GraphOfGroupoids(dig, gpds, subgpds, isos) (operation)

♦ IsGraphOfPermGroupoids(gg) (property)

♦ IsGraphOfFpGroupoids(gg) (property)

♦ GroupoidsOfGraphOfGroupoids(gg) (attribute)

♦ DigraphOfGraphOfGroupoids(gg) (attribute)

♦ SubgroupoidsOfGraphOfGroupoids(gg) (attribute)

♦ IsomorphismsOfGraphOfGroupoids(gg) (attribute)

♦ RightTransversalsOfGraphOfGroupoids(gg) (attribute)

♦ LefvtTransversalsOfGraphOfGroupoids(gg) (attribute)

Graphs of groups generalise naturally to graphs of groupoids, forming the class
IsGraphOfGroupoids. There is now a groupoid at each vertex and the isomorphism on an arc identi-
fies wide subgroupoids at the tail and at the head. Since all subgroupoids are wide, every groupoid in
a connected constituent of the graph has the same number of objects, but there is no requirement that
the object sets are all the same.

The example below generalises the trefoil group example in subsection 4.4.1, taking at each vertex
of D1 a two-object groupoid with a free group on one generator, and full subgroupoids with groups
〈a3〉 and 〈b2〉.

Example

gap> Gfa := SinglePieceGroupoid( [-2,-1], fa );;
gap> ofa := One( fa );;
gap> SetName( Gfa, "Gfa" );
gap> Uhy := Subgroupoid( Gfa, [ [[-2,-1], hy ] ] );;
gap> SetName( Uhy, "Uhy" );
gap> Gfb := SinglePieceGroupoid( [-4,-3], fb );;
gap> ofb := One( fb );;
gap> SetName( Gfb, "Gfb" );
gap> Uhybar := Subgroupoid( Gfb, [ [[-4,-3], hybar ] ] );;
gap> SetName( Uhybar, "Uhybar" );
gap> mory := GroupoidMappingOfSinglePieces(
gap> Uhy, Uhybar, homy, [-4,-3], [ofb,ofb] );;
gap> morybar := GroupoidMappingOfSinglePieces(
gap> Uhybar, Uhy, homybar, [-2,-1], [ofa,ofa] );;
gap> gg3 := GraphOfGroupoids( D1, [Gfa,Gfb], [Uhy,Uhybar], [mory,morybar] );;
gap> Display( gg3 );
Graph of Groupoids with :-

vertices: [ 5, 6 ]
arcs: [ [ y, 5, 6 ], [ yˆ-1, 6, 5 ] ]

groupoids:
Fp single piece groupoid: Gfa
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objects: [ -2, -1 ]
group: fa = <[ a ]>

Fp single piece groupoid: Gfb
objects: [ -4, -3 ]

group: fb = <[ b ]>
subgroupoids: single piece groupoid: Uhy
objects: [ -2, -1 ]

group: hy = <[ aˆ3 ]>
single piece groupoid: Uhybar
objects: [ -4, -3 ]

group: hybar = <[ bˆ2 ]>
isomorphisms: [ groupoid mapping : Uhy -> Uhybar,
groupoid mapping : Uhybar -> Uhy ]

6.5.2 GraphOfGroupoidsWord

♦ GraphOfGroupoidsWord(gg, tv, list) (operation)

♦ IsGraphOfGroupoidsWord(w) (property)

♦ GraphOfGroupoidsOfWord(w) (attribute)

♦ WordOfGraphOfGroupoidsWord(w) (attribute)

♦ ReducedGraphOfGroupoidsWord(w) (operation)

♦ IsReducedGraphOfGroupoidsWord(w) (property)

Having produced the graph of groupoids gg3, we may construct left coset representatives; choose
a graph of groupoids word; and reduce this to normal form. Compare the nw3 below with the normal
form nw1 in subsection 4.3.2.

Example

gap> f1 := GroupoidElement( Gfa, aˆ7, -1, -2);;
gap> f2 := GroupoidElement( Gfb, bˆ-6, -4, -4 );;
gap> f3 := GroupoidElement( Gfa, aˆ-11, -2, -1 );;
gap> f4 := GroupoidElement( Gfb, bˆ9, -3, -4 );;
gap> f5 := GroupoidElement( Gfa, aˆ7, -2, -1 );;
gap> L3 := [ f1, 1, f2, 2, f3, 1, f4, 2, f5 ];
[ [aˆ7 : -1 -> -2], 1, [bˆ-6 : -4 -> -4], 2, [aˆ-11 : -2 -> -1], 1,
[bˆ9 : -3 -> -4], 2, [aˆ7 : -2 -> -1] ]

gap> gw3 := GraphOfGroupoidsWord( gg3, 5, L3);
(5)[aˆ7 : -1 -> -2].y.[bˆ-6 : -4 -> -4].yˆ-1.[aˆ-11 : -2 -> -1].y.[bˆ9 :
-3 -> -4].yˆ-1.[aˆ7 : -2 -> -1](5)
gap> nw3 := ReducedGraphOfGroupoidsWord( gw3 );
(5)[aˆ-1 : -1 -> -2].y.[bˆ-1 : -4 -> -4].yˆ-1.[aˆ10 : -2 -> -1](5)

More examples of these operations may be found in the example file gpd/examples/ggraph.g.
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Development History

7.1 Versions of the Package

The first version, GraphGpd 1.001, formed part of Emma Moore’s thesis [Moo01] in December 2000,
but was not made generally available.

Version 1.002 of GraphGpd was prepared to run under GAP 4.4 in January 2004; was submitted
to the GAP council to be considered as an accepted package; but suggestions from the referee were
not followed up.

In April 2006 the manual was converted to GAPDoc format. Variables Star, Costar and
CoveringGroup were found to conflict with usage in other packages, and were renamed VertexStar,
VertexCostar and CoveringGroupOfGroupoid respectively. Similarly, the Vertices and Arcs of
an FpWeightedDigraph were changed from attributes to record components.

In the spring of 2006 the package was extensively rewritten and renamed Gpd. Version 1.01
was submitted as a deposited package in June 2006. Version 1.03, of October 2007, fixed some file
protections, and introduced the test file gpd manual.tst.

Version 1.05, of November 2008, was released because the website at Bangor changed.
A further extensive rewrite is in progress, introducing magmas with objects and their mappings,

but many of the functions fail to work at present, and this manual is far from correct.

7.2 What needs to be done next?

Computationally, there are three types of connected groupoid:

• those with identical object groups,

• those with object groups conjugate in some supergroup,

• those with object groups which are simply isomorphic.

GraphGpd attempted to implement the second case, while Gpd 1.01 and 1.03 considered only the first
case, and Gpd 1.05 extended 1.03 to the second case. Here are some other immediate requirements:

• Automorphism group of a groupoid.

• normal subgroupoids and quotient groupoids;

• more methods for morphisms of groupoids, particularly when the range is not connected;

31
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• ImageElm and ImagesSource for the cases of groupoid morphisms not yet covered;

• Enumerator for IsHomsetCosetsRep;

• free groupoid on a graph;

• methods for FreeProductWithAmalgamation and HnnEntension for pc-groups;

• convert GraphOfGroupsRewritingSystem to the category IsRewritingSystem;

• in XMod, implement crossed modules over groupoids.
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