
singular

the GAP interface to Singular

Version 06.07.23

23 July 2006

Marco Costantini
Willem A. de Graaf

Marco Costantini — Email: costanti@science.unitn.it
— Homepage:http://www-math.science.unitn.it/˜costanti/

Willem A. de Graaf — Email: degraaf@science.unitn.it
— Homepage:http://www.science.unitn.it/˜degraaf/

mailto://costanti@science.unitn.it
http://www-math.science.unitn.it/~costanti/
mailto://degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf/

singular 2

Copyright

c© 2003, 2004, 2005, 2006 Marco Costantini and Willem A. de Graaf

Contents

1 singular : the GAP interface to Singular 5
1.1 Introduction . 5

1.1.1 Package evolution . 5
1.1.2 The systemSingular . 6
1.1.3 The systemGAP . 6

1.2 Installation . 7
1.2.1 Installing the systemSingular . 7
1.2.2 Installing the systemGAP . 7
1.2.3 Installing the packagesingular . 8
1.2.4 sing exec . 8

1.3 Interaction withSingular . 9
1.3.1 StartSingular . 9
1.3.2 SingularHelp . 10
1.3.3 Rings and orderings. 10
1.3.4 Supported coefficients fields. 10
1.3.5 SetTermOrdering. 11
1.3.6 SingularSetBaseRing. 12
1.3.7 SingularLibrary. 12
1.3.8 SingularInterface. 12
1.3.9 SingularType . 14

1.4 Interaction withSingular at low level . 14
1.4.1 SingularCommand. 14
1.4.2 GapInterface . 15

1.5 Other mathematical functions of the package. 15
1.5.1 GroebnerBasis. 15
1.5.2 SINGULARGBASIS . 15
1.5.3 HasTrivialGroebnerBasis. 16
1.5.4 GcdUsingSingular . 16
1.5.5 FactorsUsingSingularNC. 16
1.5.6 FactorsUsingSingular. 17
1.5.7 GeneratorsOfInvariantRing. 17

1.6 Algebraic-geometric codes functions. 18
1.6.1 AllPointsOnCurve . 18
1.6.2 AGCode . 18

1.7 Troubleshooting and technical stuff. 19
1.7.1 Supported platforms and underlyingGAP functions 19

3

singular 4

1.7.2 How different versions ofGAP display polynomial rings and polynomials. . 20
1.7.3 Test file . 20
1.7.4 Common problems. 20
1.7.5 Errors on theSingular side . 21
1.7.6 Sending a report . 21
1.7.7 SingularReportInformation. 21
1.7.8 InfoSingular . 22

Chapter 1

singular : the GAP interface to Singular

1.1 Introduction

This is the manual of theGAP package “singular” that provides an interface from theGAP computer
algebra system to theSingular computer algebra system.

This package allows theGAP user to access functions ofSingular from within GAP, and to apply
these functions to theGAP objects. With this package, the user keeps working withGAP and, if he
needs a function ofSingular that is not present inGAP, he can use this function via the interface; see
the functionSingularInterface (1.3.8).

This package provides also a function that computes Groebner bases of ideals in polynomial
rings of GAP. This function uses theSingular implementation, which is very fast; see the function
GroebnerBasis (1.5.1).

The interface is expected to work with every version ofGAP 4, every (not very old) version of
Singular, and on every platform, on which bothGAP andSingular run; see paragraph1.7.1for details.

If you have used this package in the preparation of a paper please cite it as described in
http://www.gap-system.org/Contacts/cite.html.

If GAP, Singular, and theGAP packagesingular are already installed and working on his computer,
the user of this interface needs to read only the subsectionsing exec (1.2.4), the section1.4, and in
case of problems the subsection1.7.4.

1.1.1 Package evolution

The work for the packagesingular has been started by Willem de Graaf, that planned this package as
an interface to the function ofSingular that calculates the Groebner bases. To this purpose, Willem de
Graaf wrote the code for the conversion of rings and ideals fromGAP to Singular, and the code for
the conversion of numbers and polynomials in both directions.

Marco Costantini has widened the aim of the package, in order to make it a general interface to
each possible function ofSingular: with the functionSingularInterface (1.3.8) it is possible to use
from within GAP any function ofSingular, including user-defined ones and future implementations.
To this purpose, Marco Costantini has generalized the previous code for the conversion of objects in
the new more general context, has written the code for the conversion of the various other types of
objects, and has written the code for the low-level communication betweenGAP andSingular.

David Joyner has developed the code for the algebraic-geometric codes functions, and has written
the corresponding section1.6of this manual.

Gema M. Diaz has helped with some testing and reports.

5

http://www.gap-system.org/Contacts/cite.html

singular 6

1.1.2 The systemSingular

Singular is “A Computer Algebra System for Polynomial Computations” developed by G.-M. Greuel,
G. Pfister, and H. Scḧonemann, at Centre for Computer Algebra, University of Kaiserslautern. The
authors of theGAP packagesingular are not involved in the development of the systemSingular, and
vice versa.

Singular is not included in this package, and can be obtained for free from
http://www.singular.uni-kl.de. There, one can find also its documentation, installing in-
structions, the source code if wanted, and support if needed.Singular is available for several
platforms.

A description ofSingular, copied from its manual (paragraph “2.1 Background”), version 2-0-5,
is the following:

“ Singular is a Computer Algebra system for polynomial computations with emphasis on the
special needs of commutative algebra, algebraic geometry, and singularity theory.

Singular’s main computational objects are ideals and modules over a large variety of baserings.
The baserings are polynomial rings or localizations thereof over a field (e.g., finite fields, the rationals,
floats, algebraic extensions, transcendental extensions) or quotient rings with respect to an ideal.

Singular features one of the fastest and most general implementations of various algorithms for
computing Groebner resp. standard bases. The implementation includes Buchberger’s algorithm (if
the ordering is a well ordering) and Mora’s algorithm (if the ordering is a tangent cone ordering) as
special cases. Furthermore, it provides polynomial factorizations, resultant, characteristic set and gcd
computations, syzygy and free-resolution computations, and many more related functionalities.

Based on an easy-to-use interactive shell and a C-like programming language,Singular’s internal
functionality is augmented and user-extendible by libraries written in theSingular programming lan-
guage. A general and efficient implementation of communication links allowsSingular to make its
functionality available to other programs.

Singular’s development started in 1984 with an implementation of Mora’s Tangent Cone algorithm
in Modula-2 on an Atari computer (K.P. Neuendorf, G. Pfister, H. Schönemann; Humboldt-Universität
zu Berlin). The need for a new system arose from the investigation of mathematical problems coming
from singularity theory which none of the existing systems was able to compute.

In the early 1990sSingular’s “home-town” moved to Kaiserslautern, a general standard basis
algorithm was implemented in C, andSingular was ported to Unix, MS-DOS, Windows NT, and
MacOS.

Continuous extensions (like polynomial factorization, gcd computations, links) and refinements
led in 1997 to the release ofSingular version 1.0 and in 1998 to the release of version 1.2 (much faster
standard and Groebner bases computations based on Hilbert series and on improved implementations
of the algorithms, libraries for primary decomposition, ring normalization, etc.) ”.

1.1.3 The systemGAP

GAP stands for “Groups, Algorithms, and Programming”, and is developed by several people (“The
GAP Group”).

GAP is not included in this package, and can be obtained for free from
http://www.gap-system.org/. There, one can find also its documentation, installing in-
structions, the source code, and support if needed. TheGAP system will run on any machine with an
Unix-like or recent Windows or MacOS operating system and with a reasonable amount of ram and
disk space.

http://www.singular.uni-kl.de
http://www.gap-system.org/

singular 7

A description ofGAP, copied from its web site, is the following: “GAP is a system for compu-
tational discrete algebra, with particular emphasis on Computational Group Theory.GAP provides a
programming language, a library of thousands of functions implementing algebraic algorithms writ-
ten in theGAP language as well as large data libraries of algebraic objects. See the web site the
overview and the description of the mathematical capabilities.GAP is used in research and teaching
for studying groups and their representations, rings, vector spaces, algebras, combinatorial structures,
and more. The system, including source, is distributed freely. You can study and easily modify or
extend it for your special use.”

1.2 Installation

In order to use this interface one must have bothGAP version 4 andSingular installed.

1.2.1 Installing the systemSingular

Follow theSingular installing instructions.
However, for a Unix system, one needs to download two files:

• Singular-<version>-share.tar.gz, that contains architecture independent data like doc-
umentation and libraries;

• Singular-<version>-<uname>.tar.gz, that contains architecture dependent executables,
like theSingular program (precompiled).<uname> is a description of the processor and oper-
ating system for whichSingular is compiled.

Singular specific subdirectories will be created in such a way that multiple versions and multiple
architecture dependent files ofSingular can peaceably coexist under the same/usr/local/ tree.

Before trying the interface, make sure thatSingular is installed and working as stand-alone pro-
gram.

1.2.2 Installing the systemGAP

Follow theGAP installing instructions.
However, the basic steps of aGAP installation are:

• Choose your preferred archive format and download the archives.

• Unpack the archives.

• On Unix: CompileGAP. (Compiled executables for Windows and Mac are in the archives.)

• On Unix: Some packages need further installation for full functionality (which is not available
on Windows or Mac).

• Adjust some links/scripts/icons ..., depending on your system, to make the new version ofGAP
available to the users of your machine.

• Optional: Run a few tests.

• Optional, but appreciated: Give some feedback on your installation.

singular 8

There is also an experimental Linux binary distribution via remote synchronization with a reference in-
stallation, which includes all packages and some optimizations. Furthermore, the Debian GNU/Linux
distribution contains .deb-packages with the core part ofGAP and some of theGAP packages.

1.2.3 Installing the packagesingular

The packagesingular is installed and loaded as a normalGAP package: see theGAP documentation
(Reference: GAP Packages).

Starting with version 4.4 ofGAP, the packagesingular is distributed together withGAP. Hence, if
GAP is already installed with all the distributed packages, then also the packagesingular is installed.
However, if the packagesingular is not included in yourGAP installation, it can be downloaded and
unpacked in thepkg/ directory of theGAP installation. If you don’t have write access to thepkg/
directory in your mainGAP installation you can use private directories as explained in theGAP doc-
umentation (Reference: GAP Root Directory). The packagesingular doesn’t require compilation.

1.2.4 sing exec

♦ sing exec (global variable)

♦ sing exec options (global variable)

♦ SingularTempDirectory (global variable)

In order to use the interface,GAP has to be told where to findSingular. This can be done in three
ways. First, if theSingular executable file is in the search path, thenGAP will find it. Second, it is pos-
sible to edit (before loading the package) one of the first lines of the filesingular/gap/singular.g
(that comes with this package). Third, it is possible to give the path of theSingular executable file
directly during eachGAP session assigning it to the variablesing exec (after this package has been
loaded, and before startingSingular), as in the example below.

Example
gap> LoadPackage("singular");
The GAP interface to Singular, by Marco Costantini and Willem de Graaf
true
gap> sing_exec:= "/home/wdg/Singular/2-0-3/ix86-Linux/Singular";;

The directory separator is always ’/’, even under DOS/Windows or MacOS. The value ofsing exec
must refer to the text-only version ofSingular (Singular), and not to the Emacs version (ESingular),
nor to the terminal window version (TSingular).

In a similar way, it is possible to supplySingular with some command line options (or files
to read containing user defined functions), assigning them to the variablesing exec options.
This can be done by editing (before loading the package) one of the first lines of the file
singular/gap/singular.g (that comes with this package), or directly during eachGAP session
(after this package has been loaded, and before startingSingular), as in the example below.

Example
gap> Add(sing_exec_options, "--no-rc");
gap> Add(sing_exec_options, "/full_path/my_file");

The variablesing exec options is initialized to["-t"]; the user can add further options, but
must keep"-t", which is required. The possible options are described in theSingular documentation,
paragraph “3.1.6 Command line options”.

singular 9

Singular is not executed in the current directory, but in a user-specified one, or in a temporary
one. It is possible to supply this directory assigning it to the variableSingularTempDirectory.
This can be done by editing (before loading the package) one of the first lines of the file
singular/gap/singular.g (that comes with this package), or directly during eachGAP session
(after this package has been loaded, and before startingSingular), as in the example below. If
SingularTempDirectory is not assigned,GAP will create and use a temporary directory, which
will be removed whenGAP quits.

Example
gap> SingularTempDirectory := Directory("/tmp");
dir("/tmp/")

On Windows, Singular version 3 may be not executed directly, but may be exe-
cuted as bash Singular. In this case, the variablessing exec, sing exec options,
SingularTempDirectory must reflect this, otherwise Windows complains thatcygwin1.dll
is not found. The following works on my Windows machine.

Example
gap> LoadPackage("singular");
true
gap> SingularTempDirectory := Directory("c:/cygwin/bin");
dir("c:/cygwin/bin/")
gap> sing_exec := "c:/cygwin/bin/bash.exe";
"c:/cygwin/bin/bash.exe"
gap> sing_exec_options := ["Singular", "-t"];
["Singular", "-t"]
gap> StartSingular();

Another possibility is to run Gap from within the Cygwin shell. In this case, with a standard installa-
tion of Cygwin andSingular, no change is required,

1.3 Interaction with Singular

The user must load the packagesingular with LoadPackage (Reference: LoadPackage) (or with
RequirePackage (Reference: RequirePackage) if using GAP version 4.x, x< 4).

1.3.1 StartSingular

♦ StartSingular() (function)

♦ CloseSingular() (function)

After the packagesingular has been loaded,Singular is started automatically when one of
the functions of the interface is called. Alternatively, one can startSingular with the command
StartSingular.

Example
gap> StartSingular();

See1.7.1for technical details. Explicit use ofStartSingular is not necessary. IfStartSingular
is called when a previousSingular session is running, than session will be closed, and a new session
will be started.

If at some pointSingular is no longer needed, then it can be closed (in order to save system
resources) with the commandCloseSingular.

singular 10

Example
gap> CloseSingular();

However, whenGAP exits, it is expected to close Singular, and remove any temporary directory,
except in the case of abnormalGAP termination.

1.3.2 SingularHelp

♦ SingularHelp(topic) (function)

Heretopic is a string containing the name of aSingular topic. This function provides help on that
topic using theSingular help system: see theSingular documentation, paragraphs “3.1.3 The online
help system” and “5.1.43 help”. Iftopic is the empty string ””, then the title/index page of the manual
is displayed.

This function can be used to display theSingular documentation referenced in this manual;topic
must be given without the leading numbers.

Example
gap> SingularHelp(""); # a Mozilla window appears
#I // ** Displaying help in browser ’mozilla’.
// ** Use ’system("--browser", <browser>);’ to change browser,
// ** where <browser> can be: "mozilla", "xinfo", "info", "builtin", "dummy", \
"emacs".

TheSingular functionsystem can be accessed via the functionSingularInterface (1.3.8). Some
only-text browsers may be not supported by the interface.

1.3.3 Rings and orderings

All non-trivial algorithms inSingular require the prior definition of a (polynomial) ring, that will be
called the “base-ring”. Any polynomial (respectively vector) inSingular is ordered with respect to a
term ordering (or, monomial ordering), that has to be specified together with the declaration of a ring.
See the documentation ofSingular, paragraph “3.3 Rings and orderings”, for further information.

After defining in GAP a ring, a term ordering can be assigned to it using the function
SetTermOrdering (1.3.5), andafter the term ordering is assigned, the interface andSingular can
be told to use this ring as the base-ring, with the functionSingularSetBaseRing (1.3.6).

1.3.4 Supported coefficients fields

Let p be a prime,pol an irreducible polynomial, andarg an appropriate argument for the given
function. The coefficient fields of the base-ring may be of the following form:

• Rationals,

• CyclotomicField(arg),

• AlgebraicExtension(Rationals, pol),

• GaloisField(arg) (both prime and non-prime),

• AlgebraicExtension(GaloisField(p), pol).

singular 11

For some example see those for the functionSetTermOrdering (1.3.5).
Let us remember thatCyclotomicField andGaloisField can be abbreviated respectively toCF

andGF; these forms are used also whenGAP prints cyclotomic or Galois fields. See theGAP doc-
umentation about the functions:CyclotomicField (Reference: CyclotomicField), GaloisField
(Reference: GaloisField), AlgebraicExtension (Reference: AlgebraicExtension), and the chap-
ters: (Reference: Rational Numbers), (Reference: Abelian Number Fields), (Reference: Finite
Fields), (Reference: Algebraic extensions of fields).

1.3.5 SetTermOrdering

♦ SetTermOrdering(R) (function)

♦ TermOrdering(R) (attribute)

Let R be a polynomial ring. The value ofTermOrdering(R) describes the term ordering of
R, and can be a string, a list, or a monomial ordering ofGAP. (The term orderings ofSingular are
explained in its documentation, paragraphs “3.3.3 Term orderings” and “B.2.1 Introduction to order-
ings”.)

If this value is a string, for instance"lp" (lexicographical ordering),"dp" (degree reverse lexico-
graphical ordering), or"Dp" (degree lexicographical ordering), this value will be passed toSingular
without being interpreted or parsed by the interface.

If this value is a list, it must be of the form[str 1, d 1, str 2, d 2, ...], where each
str i is aSingular ordering given as a string. Eachd i must be a number, and specifies the number
of variables having that ordering; however, ifstr i is a weighted order, like"wp" (weighted reverse
lexicographical ordering) or"Wp" (weighted lexicographical ordering), then the correspondingd i
must be a list of positive integers that specifies the weight of each variable. The sum of thed i’s (if
numbers) or of their lengths (if lists) must be equal to the number of variables of the ringR.

This value can also be a monomial ordering ofGAP: currently supported are
MonomialLexOrdering, MonomialGrevlexOrdering, andMonomialGrlexOrdering (Reference:
Monomial Orderings).

TermOrdering is a mutable attribute, see theGAP documentation ofDeclareAttribute (Prg
Tutorial: DeclareAttribute); if it is changed on theGAP side, it is necessary thereafter to send again
the ring toSingular with SingularSetBaseRing (1.3.6).

SetTermOrdering can be used to set the term ordering of a ring. It is not mandatory to assign
a term ordering: if no term ordering is set, then the default"dp" will be used. If it is set, the term
ordering must be setbeforethe ring is sent toSingular with SingularSetBaseRing (1.3.6), otherwise,
Singular will ignore that term ordering, and will use the previous value if any, or the default"dp".

Example
gap> R1:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SetTermOrdering(R1, "lp");
gap> R2:= PolynomialRing(GaloisField(9), 3);;
gap> SetTermOrdering(R2, ["wp", [1,1,2]]);
gap> R3:= PolynomialRing(CyclotomicField(25), ["x","y","z"] : old);;
gap> SetTermOrdering(R3, MonomialLexOrdering());
gap> x:=Indeterminate(Rationals);;
gap> F:=AlgebraicExtension(Rationals, xˆ5+4*x+1);;
gap> R4:= PolynomialRing(F, 6);;
gap> SetTermOrdering(R4, ["dp", 1, "wp", [1,1,2], "lp", 2]);

singular 12

1.3.6 SingularSetBaseRing

♦ SingularSetBaseRing(R) (function)

♦ SingularBaseRing (global variable)

HereR is a polynomial ring.SingularSetBaseRing sets the base-ring inSingular equal toR.
This ring will be also kept inGAP in the variableSingularBaseRing. After this assignment, all the
functions of the interface will work with this ring. However, for some functions (those having rings,
ideals, or modules as arguments) it is not necessary to explicitly set the base ring first, because in
these cases the functions arguments contains information about a ring that will be used as a base-ring.
This will be specified for each function in the corresponding section of this manual. (Unnecessary
use ofSingularSetBaseRing doesn’t harm; forgetting to useSingularSetBaseRing produces the
problem described in the paragraph1.7.4.) The results of the computations may depend on the choice
of the base-ring: see an example atFactorsUsingSingular (1.5.6), in which the factorization of
x2 +y2 is calculated.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);

The value of SingularBaseRing when the package is loaded is
PolynomialRing(GF(32003), 3), in order to match the default base-ring ofSingular.

1.3.7 SingularLibrary

♦ SingularLibrary(string) (function)

In Singular some functionality is provided by separate libraries that must be explicitly loaded in
order to be used (see theSingular documentation, chapter “D. SINGULAR libraries”), see the example
in SingularInterface (1.3.8).

The argumentstring is a string containing the name of aSingular library. This function makes
sure that this library is loaded intoSingular.

The functions provided by the libraryring.lib could be not yet supported by the interface.
Example

gap> SingularLibrary("general.lib");

1.3.8 SingularInterface

♦ SingularInterface(singcom, arguments, type output) (function)

The functionSingularInterface provides the general interface that enables to apply theSingu-
lar functions to theGAP objects. Its arguments are the following:

• singcom is aSingular command or function (given as a string).

• arguments is a list ofGAP objects,O1,O2, ...,On, that will be used as arguments ofsingcom
(it may be the empty list).arguments may also be a string: in this case it is assumed that
it contains one or moreSingular identifiers, or aSingular valid expression, or something else
meaningful forSingular, and it is passed toSingular without parsing or checking on theGAP
side.

singular 13

• type output is the data type (given as a string) inSingular of the output. The data types
are the following (see theSingular documentation, chapter “4. Data types”): ”bigint”, ”def”,
”ideal”, ”int”, ”intmat”, ”intvec”, ”link”, ”list”, ”map”, ”matrix”, ”module”, ”number”, ”poly”,
”proc”, ”qring”, ”resolution”, ”ring”, ”string”, ”vector” (some of them were not available in
previous versions ofSingular). The empty string ”” can be used if no output is expected. If in
doubt you can use ”def” (see theSingular documentation, paragraph “4.1 def”). Usually, in the
documentation of eachSingular function is given its output type.

Of course, the objects in the listarguments and thetype output must be appropriate for the function
singcom: no check is done by the interface.

The functionSingularInterface does the following:

1. converts each objectO1,O2, ...,On in arguments into the corresponding objectP1,P2, ...,Pn, of
Singular,

2. sends toSingular the command to calculatesingcom(P1,P2, ...,Pn),

3. gets the output (of typetype output) from Singular,

4. converts it to the corresponding Gap object, and returns it to the user.

The functionSingularInterface is oriented towards the kind-of-objects/data-types, and not
to the functions ofSingular, because in this way it is much more general. The user can use “all”
the existing functions ofSingular and the interface is not bounded to the state of implementation of
Singular: future functions and user-defined functions will be automatically supported.

The conversion of objects from Gap toSingular and from it back to Gap is done using some
‘ad hoc’ functions. Currently, the conversion of objects fromGAP to Singular is implemented for
the following types: ”ideal”, ”int”, ”intmat”, ”intvec”, ”list”, ”matrix”, ”module”, ”number”, ”poly”,
”ring”, ”string”, ”vector”. Objects of other types are not supported, or are even not yet implemented
in GAP.

The conversion of objects fromSingular to GAP is currently implemented for the following types:
”bigint”, ”def”, ”ideal”, ”int”, ”intmat”, ”intvec”, ”list”, ”matrix”, ”module”, ”number”, ”poly”,
”proc” (experimental), ”string”, ”vector”. Objects of other types are returned as strings.

Before passing polynomials (or numbers, vectors, matrices, or lists of them) toSingular, it is
necessary to have sent the base-ring toSingular with the functionSingularSetBaseRing (1.3.6), in
order to ensure thatSingular knows about them. This is not necessary if in the input there is a ring, an
ideal, or a module (before the polynomials), because these objects contain information about the ring
to be used as base-ring. All the input must be relative to at most one ring; furthermore, at most one
object of type ”ring” can be in the input.

As SingularInterface is a rather general function, it is not guaranteed that it always works, and
some functions are not supported. For instance, inSingular there is the functionpause that waits until
a keystroke is pressed; but the interface instead waits for theSingular prompt before sending it any
new keystroke, and so callingpause would hang the interface. However, the unsupported functions
like pause are only a few, and are not mathematically useful. SingularInterface tries to block calls to
known unsupported functions.

Some Singular functions may return more than one value, see theSingular documenta-
tion, paragraph “6.2.7 Return type of procedures”. In order to use one of these functions via
SingularInterface, the typetype output must be ”list”. The output inGAP will be a list con-
taining the values returned by theSingular function.

singular 14

In the next example we compute the primary decomposition of an ideal. Note that for that we
need to load theSingular library primdec.lib.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> i:= IndeterminatesOfPolynomialRing(R);;
gap> x:= i[1];; y:= i[2];; z:= i[3];;
gap> f:= (x*y-z)*(x*y*z+yˆ2*z+xˆ2*z);;
gap> g:= (x*y-z)*(x*y*zˆ2+x*yˆ2*z+xˆ2*y*z);;
gap> I:= Ideal(R, [f,g]);;
gap> SingularLibrary("primdec.lib");
gap> SingularInterface("primdecGTZ", [I], "def");
#I Singular output of type "list"
[[<two-sided ideal in Rationals[x,y,z], (1 generators)>,

<two-sided ideal in Rationals[x,y,z], (1 generators)>],
[<two-sided ideal in Rationals[x,y,z], (1 generators)>,

<two-sided ideal in Rationals[x,y,z], (1 generators)>],
[<two-sided ideal in Rationals[x,y,z], (2 generators)>,

<two-sided ideal in Rationals[x,y,z], (2 generators)>],
[<two-sided ideal in Rationals[x,y,z], (3 generators)>,

<two-sided ideal in Rationals[x,y,z], (2 generators)>]]

In the next example are calculated the first syzygy module of an ideal, and the resultant of two poly-
nomials with respect a variable. Note that in this case it is not necessary to set the base-ring with
SingularSetBaseRing (1.3.6), in the first case because the inputI is of type ”ideal”, and in the
second case because the base-ring was already sent toSingular in the former case.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> i:= IndeterminatesOfPolynomialRing(R);;
gap> x:= i[1];; y:= i[2];; z:= i[3];;
gap> f:= 3*(x+2)ˆ3+y;;
gap> g:= x+y+z;;
gap> I:= Ideal(R, [f,g]);;
gap> M := SingularInterface("syz", [I], "module");;
gap> GeneratorsOfLeftOperatorAdditiveGroup(M);
[[-x-y-z, 3*xˆ3+18*xˆ2+36*x+y+24]]
gap> SingularInterface("resultant", [f, g, z], "poly");
3*xˆ3+18*xˆ2+36*x+y+24

1.3.9 SingularType

♦ SingularType(obj) (function)

to be written

1.4 Interaction with Singular at low level

1.4.1 SingularCommand

♦ SingularCommand(precommand, command) (function)

to be written

singular 15

1.4.2 GapInterface

♦ GapInterface(func, arg, out) (function)

to be written

1.5 Other mathematical functions of the package

1.5.1 GroebnerBasis

♦ GroebnerBasis(I) (operation)

HereI is an ideal of a polynomial ring. This function computes a Groebner basis ofI (that will
be returned as a list of polynomials). For this function it isnot necessary to set the base-ring with
SingularSetBaseRing (1.3.6).

As term ordering,Singular will use the value ofTermOrdering (1.3.5) of the polynomial ring
containingI. Again, if this value is not set, then the degree reverse lexicographical ordering ("dp")
will be used.

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> x := R.1;; y := R.2;; z := R.3;;
gap> r:= [x*y*z -xˆ2*z, xˆ2*y*z-x*yˆ2*z-x*y*zˆ2, x*y-x*z-y*z];;
gap> I:= Ideal(R, r);
<two-sided ideal in Rationals[x,y,z], (3 generators)>
gap> GroebnerBasis(I);
[x*y-x*z-y*z, xˆ2*z-x*zˆ2-y*zˆ2, x*zˆ3+y*zˆ3, -x*zˆ3+yˆ2*zˆ2-y*zˆ3]

1.5.2 SINGULARGBASIS

♦ SINGULARGBASIS (global variable)

This variable is a record containing the componentGroebnerBasis. When the variable SIN-
GULARGBASIS is assigned to theGAP global variableGBASIS, then the computations of Groebner
bases viaGAP’s internal function for that,GroebnerBasis (Reference: GroebnerBasis), are done
by Singular.

Singular claims that it “features one of the fastest and most general implementations of various
algorithms for computing Groebner bases”. TheGAP’s internal function claims to be “a naı̈ve imple-
mentation of Buchberger’s algorithm (which is mainly intended as a teaching tool): it might not be
sufficient for serious problems.”

(Note in the following example that the Groebner bases calculated by theGAP internal function are
in general not reduced; for reduced bases see theGAP functionReducedGroebnerBasis (Reference:
ReducedGroebnerBasis).)

Example
gap> R:= PolynomialRing(Rationals, 3);;
gap> i:= IndeterminatesOfPolynomialRing(R);;
gap> pols:= [i[1]+i[2]+i[3], i[1]*i[2]+i[1]*i[3]+i[2]*i[3], i[1]*i[2]*i[3]];;
gap> o:= MonomialLexOrdering();;
gap> GBASIS:= GAPGBASIS;;
gap> GroebnerBasis(pols, o); # This is the internal GAP method.

singular 16

[x+y+z, x*y+x*z+y*z, x*y*z, -yˆ2-y*z-zˆ2, zˆ3]
gap> GBASIS:= SINGULARGBASIS;;
gap> GroebnerBasis(pols, o); # This uses Singular via the interface.
[zˆ3, yˆ2+y*z+zˆ2, x+y+z]

1.5.3 HasTrivialGroebnerBasis

♦ HasTrivialGroebnerBasis(I) (function)

The functionHasTrivialGroebnerBasis returnstrue if the Groebner basis of the idealI is
trivial, false otherwise. This function can be used if it is not necessary to know the Groebner basis of
an ideal, but it suffices to know only whether it is trivial or not.

Example
gap> x:= Indeterminate(Rationals, "x" : old);;
gap> y:= Indeterminate(Rationals, "y", [x] : old);;
gap> z:= Indeterminate(Rationals, "z", [x, y] : old);;
gap> R:= PolynomialRing(Rationals, [x, y, z]);;
gap> f:= (x*y-z)*(x*y*z+yˆ2*z+xˆ2*z);;
gap> g:= (x*y-z)*(x*y*zˆ2+x*yˆ2*z+xˆ2*y*z);;
gap> I:= Ideal(R, [f,g]);;
gap> HasTrivialGroebnerBasis(I);
false

1.5.4 GcdUsingSingular

♦ GcdUsingSingular(pol 1, pol 2, ..., pol n) (function)

♦ GcdUsingSingular([pol 1, pol 2, ..., pol n]) (function)

The arguments of this function are (possibly multivariate) polynomials separated by commas,
or it is a list of polynomials. This function returns the greatest common divisor of these poly-
nomials. For this function it isnecessaryfor the polynomials to lie in the base-ring, as set by
SingularSetBaseRing (1.3.6).

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);
gap> i:= IndeterminatesOfPolynomialRing(R);;
gap> x:= i[1];; y:= i[2];; z:= i[3];;
gap> f:= (x*y-z)*(x*y*z+yˆ2*z+xˆ2*z);
xˆ3*y*z+xˆ2*yˆ2*z+x*yˆ3*z-xˆ2*zˆ2-x*y*zˆ2-yˆ2*zˆ2
gap> g:= (x*y-z)*(x*y*zˆ2+x*yˆ2*z+xˆ2*y*z);
xˆ3*yˆ2*z+xˆ2*yˆ3*z+xˆ2*yˆ2*zˆ2-xˆ2*y*zˆ2-x*yˆ2*zˆ2-x*y*zˆ3
gap> GcdUsingSingular(f, g);
-x*y*z+zˆ2

1.5.5 FactorsUsingSingularNC

♦ FactorsUsingSingularNC(f) (function)

singular 17

Heref is a (possibly multivariate) polynomial. This function returns the factorization off into
irreducible factors. The first element in the output is a constant coefficient, and the others may be
monic (with respect to the term ordering) polynomials, as returned bySingular. For this function it is
necessarythatf lies in the base-ring, as set bySingularSetBaseRing (1.3.6).

The function does not check that the product of these factors givesf (for that use
FactorsUsingSingular (1.5.6)): Singular version 2-0-3 contains a bug so that theSingular func-
tion factorize may give wrong results (thereforeSingular version at least 2-0-4 is recommended).

Example
gap> R:= PolynomialRing(Rationals, ["x","y","z"] : old);;
gap> SingularSetBaseRing(R);
gap> i:= IndeterminatesOfPolynomialRing(R);;
gap> x:= i[1];; y:= i[2];; z:= i[3];;
gap> f:= (x*y-z)*(3*x*y*z+4*yˆ2*z+5*xˆ2*z);
5*xˆ3*y*z+3*xˆ2*yˆ2*z+4*x*yˆ3*z-5*xˆ2*zˆ2-3*x*y*zˆ2-4*yˆ2*zˆ2
gap> FactorsUsingSingularNC(f);
[1, -5*xˆ2-3*x*y-4*yˆ2, -x*y+z, z]
gap> f:= (x*y-z)*(5/3*x*y*z+4*yˆ2*z+6*xˆ2*z);
6*xˆ3*y*z+5/3*xˆ2*yˆ2*z+4*x*yˆ3*z-6*xˆ2*zˆ2-5/3*x*y*zˆ2-4*yˆ2*zˆ2
gap> FactorsUsingSingularNC(f);
[1/3, -18*xˆ2-5*x*y-12*yˆ2, -x*y+z, z]

1.5.6 FactorsUsingSingular

♦ FactorsUsingSingular(f) (function)

This does the same asFactorsUsingSingularNC (1.5.5), except that on theGAP level it is
checked that the product of these factors givesf. Again it isnecessarythatf lies in the base-ring, as
set bySingularSetBaseRing (1.3.6).

Example
gap> R:= PolynomialRing(Rationals, ["x","y"] : old);;
gap> SingularSetBaseRing(R);
gap> x := R.1;; y := R.2;;
gap> FactorsUsingSingular(xˆ2 + yˆ2);
[1, xˆ2+yˆ2]
gap> R:= PolynomialRing(GaussianRationals, ["x","y"] : old);;
gap> SingularSetBaseRing(R);
gap> x := R.1;; y := R.2;;
gap> FactorsUsingSingular(xˆ2 + yˆ2);
[1, x+E(4)*y, x-E(4)*y]

1.5.7 GeneratorsOfInvariantRing

♦ GeneratorsOfInvariantRing(R, G) (function)

HereR is a polynomial ring, andG a finite group, which is either a matrix group or a permutation
group. IfG is a matrix group, then its degree must be less than or equal to the number of indeterminates
of R. If G is a permutation group, then its maximal moved point must be less than or equal to the
number of indeterminates ofR. This function computes a list of generators of the invariant ring ofG,
corresponding to its action onR. This action is taken to be from the left.

For this function it isnot necessary to set the base-ring withSingularSetBaseRing (1.3.6).

singular 18

Example
gap> m:=[[1,1,1],[0,1,1],[0,0,1]] * One(GF(3));;
gap> G:= Group([m]);;
gap> R:= PolynomialRing(GF(3), 3);;
gap> GeneratorsOfInvariantRing(R, G);
[x_3, x_1*x_3+x_2ˆ2+x_2*x_3, x_1ˆ3+x_1ˆ2*x_3-x_1*x_2ˆ2-x_1*x_2*x_3]

1.6 Algebraic-geometric codes functions

This section ofGAP’s singular package and the corresponding code were written by David Joyner,
wdj@usna.edu, (with help from Christoph Lossen and Marco Costantini). It has been tested with
Singular versrion 2.0.x.

To start off, several newSingular commands must be loaded. The following command loads the
necessarySingular andGAP commands, the packagessingular andGUAVA (if not already loaded),
and (re)startsSingular.

Example
gap> ReadPackage("singular", "contrib/agcode.g");;

1.6.1 AllPointsOnCurve

♦ AllPointsOnCurve(f, F) (function)

Let F be a finite and prime field. The functionAllPointsOnCurve(f, F) computes a list of
generators of maximal ideals representing rationals points on a curveX defined byf (x,y) = 0.

Example
gap> F:=GF(7);;
gap> R2:= PolynomialRing(F, 2);;
gap> SetTermOrdering(R2, "lp");; # --- the term ordering must be "lp"
gap> indet:= IndeterminatesOfPolynomialRing(R2);;
gap> x:= indet[1];; y:= indet[2];;
gap> f:=xˆ7-yˆ2-x;;
gap> AllPointsOnCurve(f,F);
[[x_1], [x_1-Z(7)ˆ0], [x_1+Z(7)ˆ4], [x_1+Z(7)ˆ5], [x_1+Z(7)ˆ0],
[x_1+Z(7)], [x_1+Z(7)ˆ2]]

1.6.2 AGCode

♦ AGCode(f, G, D) (function)

Let f be a polynomial in x,y over F=GF(p) representing plane curveX defined by f (x,y) = 0,
where p is a prime (prime powers are not yet supported by the underlyingSingular function). Let G, D
be disjoint rational divisors onX, where D is a sum of distinct points,supp(D) = P1, ...,Pn. The AG
code associated to f, G, D is the F defined to be the image of the evaluation mapf 7→ (f (P1), ..., f (Pn)).
The functionAGCode computes a list of length three, [G, n, k], where G is a generator matrix of the
AG code C, n is its length, and k is its dimension.

Example
gap> F:=GF(7);;
gap> R2:= PolynomialRing(F, 2);;

mailto://wdj@usna.edu

singular 19

gap> SetTermOrdering(R2, "lp");; # --- the term ordering must be "lp"
gap> SingularSetBaseRing(R2);
gap> indet:= IndeterminatesOfPolynomialRing(R2);;
gap> x:= indet[1];; y:= indet[2];;
gap> f:=xˆ7-yˆ2-x;;
gap> G:=[2,2,0,0,0,0,0]; D:=[4..8];
[2, 2, 0, 0, 0, 0, 0]
[4 .. 8]
gap> agc:=AGCode(f,G,D);
[[[Z(7)ˆ3, Z(7), 0*Z(7), Z(7)ˆ4, Z(7)ˆ5],

[0*Z(7), Z(7)ˆ4, Z(7)ˆ0, Z(7)ˆ5, Z(7)ˆ3],
[0*Z(7), 0*Z(7), Z(7)ˆ3, Z(7), Z(7)ˆ2]], 5, 3]

This generator matrix can be fed into theGUAVA commandGeneratorMatCode (GUAVA: Gener-
atorMatCode) to create a linear code inGAP, which in turn can be fed into theGUAVA command
MinimumDistance (GUAVA: MinimumDistance) to compute the minimum distance of the code.

Example
gap> ag_mat:=agc[1];;
gap> C := GeneratorMatCode(ag_mat, GF(7));
a linear [5,3,1..3]2 code defined by generator matrix over GF(7)
gap> MinimumDistance(C);
3

1.7 Troubleshooting and technical stuff

1.7.1 Supported platforms and underlying GAP functions

This package has been developed mainly on a Linux platform, withGAP version 4.4, andSingular
version 2-0-4. A reasonable work has been done to ensure backward compatibility with previous
versions ofGAP 4, but some features may be missing. This package has been tested also with some
other versions of Singular, including 2-0-3, 2-0-5, and 2-0-6, and on other Unix systems. It has been
tested also on Windows, but it is reported to be slower that on Linux.

There is an extension ofSingular, namedPlural, which deals with certain noncommutative poly-
nomial rings; see theSingular documentation, section “7. PLURAL”. Currently,GAP doesn’t support
these noncommutative polynomial rings. The user of theSingular may use the features ofPlural
by calling theSingular functionncalgebra via SingularInterface. In this case, extreme care is
needed, because on theGAP side the polynomial will still be commutative.

For the low-level communication withSingular, the interface relies on theGAP function
InputOutputLocalProcess (Reference: InputOutputLocalProcess), and this function is avail-
able only inGAP 4.2 (or newer) on a Unix environment or inGAP 4.4 (or newer) on Windows;
auto-detection is used. In this case,GAP interacts with a unique continuous session ofSingular.

In the case that theGAP function InputOutputLocalProcess is not available, then the sin-
gular interface will use theGAP function Process (Reference: Process). In this case only a
limited subset of the functionality of the interface are available: for exampleStartSingular
(1.3.1) andGeneratorsOfInvariantRing (1.5.7) are not available, butGroebnerBasis (1.5.1) is;
SingularInterface (1.3.8) supports less data types. In this case, for each function call, a new
session ofSingular is started and quitted.

singular 20

1.7.2 How different versions of GAP display polynomial rings and polynomials

The way in whichGAP displays polynomials has changed passing from version 4.3 to 4.4 and the way
in which GAP displays polynomial rings has changed passing from version 4.4 to 4.5.

Example
gap> # GAP 4.3 or older
gap> R := PolynomialRing(Rationals, ["x"] : new);
PolynomialRing(..., [x])
gap> x := IndeterminatesOfPolynomialRing(R)[1];;
gap> xˆ2 + x;
x+xˆ2

Example
gap> # GAP 4.4
gap> R := PolynomialRing(Rationals, ["x"] : new);
PolynomialRing(..., [x])
gap> x := IndeterminatesOfPolynomialRing(R)[1];;
gap> xˆ2 + x;
xˆ2+x

Example
gap> # GAP 4.5 or newer
gap> R := PolynomialRing(Rationals, ["x"] : new);
Rationals[x]
gap> x := IndeterminatesOfPolynomialRing(R)[1];;
gap> xˆ2 + x;
xˆ2+x

The examples in this manual use the way of displaying of the newestGAP.

1.7.3 Test file

The following performs a test of the package functionality using a test file (Reference: Test Files).
Example

gap> fn := Filename(DirectoriesPackageLibrary("singular", "tst"), "test");;
gap> ReadTest(fn);
true

1.7.4 Common problems

A common error is forgetting to useSingularSetBaseRing (1.3.6). In the next example,
SingularInterface works only after having usedSingularSetBaseRing.

Example
gap> a:=Indeterminate(Rationals);;
gap> F:=AlgebraicExtension(Rationals, aˆ5+4*a+1);;
gap> R:=PolynomialRing(F, ["x","y"] : old);;
gap> x := R.1;; y := R.2;;
gap> SingularInterface("lead", [xˆ3*y+x*y+yˆ2], "poly");
Error, sorry: Singular, or the interface to Singular, or the current
SingularBaseRing, do not support the object xˆ3*y+x*y+yˆ2.
Did you remember to use ’SingularSetBaseRing’ ?
[...]

singular 21

brk> quit;
gap> SingularSetBaseRing(R);
gap> SingularInterface("lead", [xˆ3*y+x*y+yˆ2], "poly");
xˆ3*y

A corresponding problem would happen if the user works directly withSingular and forgets to define
the base-ring at first.

As explained in theGAP documentation (Reference: Polynomials and Rational Functions),
given a ringR, GAP does not considerR as a subset of a polynomial ring overR: for example the zero
of R (0) and the zero of the polynomial ring (0x0) are different objects.GAP prints these different
objects in the same way, and this fact may be misleading. This is a feature ofGAP independent from
the packagesingular, but it is important to keep it in mind, as most of the objects used bySingular are
polynomials, or their coefficients.

1.7.5 Errors on the Singular side

Errors may occur on theSingular side, for instance usingSingularInterface (1.3.8) if the arguments
supplied are not appropriate for the called function. In general, it is still an open problem to find a
satisfactory way to handle inGAP the errors of this kind.

At the moment, when an error on theSingular side happens,Singular may print an error message
on the so-called “standard error”; this message may appear on the screen, but it is not logged by the
GAP function LogTo (Reference: LogTo). The interface printsNo output from Singular, and
then the trivial object (of the type specified as the third argument ofSingularInterface) may be
returned.

1.7.6 Sending a report

As every software, also this package may contain bugs. If you find a bug, or a missing feature, or
some other problem, or if you have comments and suggestions, or if you need some help, write an
e-mail to both the authors. Please use an e-mail subject that begins with “singular package: ”.
Please include in the report the code that causes the problem, so that we can replicate the problem.

If appropriate, you can setInfoSingular (1.7.8) to 3, to see what happens betweenGAP and
Singular (but this may give a lot of output). Note thatLogTo (Reference: LogTo) does not log
messages written directly on the screen bySingular.

Every report about this package is welcome, however the probability that your prob-
lem will be fixed quickly increases if you read the text “How to Report Bugs Effectively”,
http://www.chiark.greenend.org.uk/˜sgtatham/bugs.html , and send a bug report accord-
ing to this text. If the report is about the manual, please cite also its revision:

@()Id : singular.xml,v1.302006/07/2320 : 05 : 30gapExp.

1.7.7 SingularReportInformation

♦ SingularReportInformation() (function)

The functionSingularReportInformation collects a description of the system, which should
be included in any bug report.

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html

singular 22

Example
gap> SingularReportInformation();
Pkg_Version := "4.04.15";
Gap_Version := "4.dev";
Gap_Architecture := "i686-pc-linux-gnu-gcc";
Gap_BytesPerVariable := 4;
uname := "Linux 2.4.20 i686";
Singular_Version: := 2004;
Singular_Name: := "/usr/local/Singular/2-0-4/ix86-Linux/Singular";

"Pkg_Version := \"4.04.15\";\nGap_Version := \"4.dev\";\nGap_Architecture := \
\"i686-pc-linux-gnu-gcc\";\nGap_BytesPerVariable := 4;\nuname := \"Linux 2.4.2\
0 i686\";\nSingular_Version: := 2004;\nSingular_Name: := \"/usr/local/Singular\
/2-0-4/ix86-Linux/Singular\";\n"

1.7.8 InfoSingular

♦ InfoSingular (info class)

This is the info class (Reference: Info Functions) used by the interface. It can be set to levels 0,
1, 2, and 3. At level 0 no information is printed on the screen. At level 1 (default) the interface prints
a message about thetype output, when ”def” is used inSingularInterface, see the example at
SingularInterface (1.3.8). At level 2, information on the activities of the interface is printed (e.g.,
messages when aSingular session, or a Groebner basis calculation, is started or terminated). At level
3 all strings thatGAP sends toSingular are printed, as well as all strings thatSingular sends back.

Example
gap> SetInfoLevel(InfoSingular, 2);
gap> G:= SymmetricGroup(3);;
gap> R:= PolynomialRing(GF(2), 3);;
gap> GeneratorsOfInvariantRing(R, G);
#I running SingularInterface("invariant_ring", ["matrix", "matrix"
], "list")...
#I done SingularInterface.
[x_1+x_2+x_3, x_1*x_2+x_1*x_3+x_2*x_3, x_1*x_2*x_3]
gap> I:= Ideal(R, last);;
gap> GroebnerBasis(I);
#I running GroebnerBasis...
#I done GroebnerBasis.
[x_1+x_2+x_3, x_2ˆ2+x_2*x_3+x_3ˆ2, x_3ˆ3]
gap> SetInfoLevel(InfoSingular, 1);

Index

AGCode, 18
AllPointsOnCurve, 18

CloseSingular, 9

FactorsUsingSingular, 17
FactorsUsingSingularNC, 16

GapInterface, 15
GcdUsingSingular, 16
GeneratorsOfInvariantRing, 17
GroebnerBasis, 15

HasTrivialGroebnerBasis, 16

InfoSingular, 22

SetTermOrdering, 11
sing exec, 8
sing exec options, 8
SingularBaseRing, 12
SingularCommand, 14
SINGULARGBASIS, 15
SingularHelp, 10
SingularInterface, 12
SingularLibrary, 12
SingularReportInformation, 21
SingularSetBaseRing, 12
SingularTempDirectory, 8
SingularType, 14
StartSingular, 9

TermOrdering, 11

23

