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Overview

The package IRREDSOL provides a library of irreducible solvable subgroups of matrix groups over finite
fields and a corresponding library of primitive solvable groups.

Currently, IRREDSOL contains all subgroups, up to conjugacy, of GL(n, q), where n is a positive integer and
q is a prime power satisfying ¢" < 2!6. The underlying data base lists 28095 absolutely irreducible groups of
degree > 1 and some additional information needed for constructing all irreducible groups. See Section 2.1
for details.

The groups in the IRREDSOL library can be accessed one at a time (see Section 2.2). In addition, there
are functions which allow to search the library for groups with given properties (see Section 2.3). Moreover,
given an irreducible solvable matrix group G, it is possible to identify the group in the library to which G
is conjugate, including a conjugating matrix, if desired. See Section 3.1.

Apart from this, the IRREDSOL package provides additional functionality for matrix groups, such as the
computation of imprimitivity systems; see Chapter 4.

It is well-known that there is a bijection between the irreducible solvable subgroups of GL(n, p), where p is
a prime, and the conjugacy classes, or equivalently the isomorphism types, of primitive solvable subgroups
of Sym(p"). The IRREDSOL package contains functions to translate between irreducible solvable matrix
groups and primitive groups, to search for primitive solvable groups with given properties, and functions
to recognize them, up to isomorphism (or, equivalently, up to conjugacy in Sym(p")). See Sections 5.1, 5.3,
and 5.4, respectively.

Note that GAP contains another library consisting of all 372 irreducible solvable subgroups of GL(n,p),
where n > 1, p is a prime, and p" < 28. This library was originally created by Mark Short [Sho92], and
two omissions in GL(2,13) were added later; see Section 48.11 in the GAP reference manual. All of these
groups are, of course, also part of the IRREDSOL data base, and the IRREDSOL package provides functions
to identify the groups in the GAP library in IRREDSOL and viceversa. See Section 3.2.

The groups in the IRREDSOL data base were constructed using the methods described by Bettina Eick and
the author in [EHO03], where the construction of all irreducible solvable subgroups of GL(n, q) with ¢" < 3%
is described.

For a historic account of the classification of irreducible matrix groups and primitive permutation groups,
the reader is referred to [Sho92] and, for recent developments, to [EHO03].



Accessing the
data library

This chapter describes the design of the IRREDSOL group library (see Section 2.1) and the various ways of
accessing groups in the data library. It is possible to construct individual groups in the group library (see
Section 2.2), or to search for groups with certain properties (see Section 2.3). Finally, there are functions
for loading and unloading group data manually (see Section 2.4).

2.1 Design of the group library

To avoid redundancy, the package IRREDSOL does not actually store lists of irreducible subgroups of GL(n, q)
but only has lists A, , of subgroups of GL(n, ¢) such that

e each group in A, , is absolutely irreducible and solvable

A, , contains a conjugate of each absolutely irreducible solvable subgroup of GL(n, q)
e no two groups in A, , are conjugate in GL(n, q)

e cach group in A, , has trace field F,.

(For n = 1, such lists are not actually stored but are computed when required.)

We will briefly say that A, , contains, up to conjugacy, all absolutely irreducible solvable subgroups of
GL(n, q) with trace field F,. Here, the trace field of a subgroup G of GL(n, ¢) is the field generated by the
traces of the elements of G. By a theorem of Brauer, an irreducible subgroup of GL(n, ¢) with trace field F,,
has a conjugate lying in GL(n, qo). See also TraceField (4.4.1) and ConjugatingMatTraceField (4.4.2).

Note that by the Deuring-Noether theorem, two subgroups of GL(n, qy) are conjugate in GL(n, qo) if, and
only if, they are conjugate in GL(n, ¢q). Therefore, we obtain, up to conjugacy, all absolutely irreducible
solvable subgroups of GL(n, ¢) by forming the union of the A, , , where F, runs over all subfields of F,.

The lists A, ; are also sufficient to reconstruct lists of all irreducible solvable subgroups of GL(n, ¢). Let d be
a divisor of n, and let G be an absolutely irreducible subgroup of GL(n/d, ¢?). By regarding the underlying
IF ,-vector space of G as an IF-vector space, we obtain an irreducible subgroup G* of GL(n, q) with splitting
field F .. Up to conjugacy, all irreducible subgroups of GL(n, ¢) arise in that way. If two subgroups G; and
G of GL(n,q) are constructed from subgroups Gj and Gjof GL(n/d, q%), then Gy and Gy are conjugate
if, and only if, there exists a Galois automophism o of F,/F, such that (G})” and G5 are conjugate in
GL(n/d, q%). See, e. g., [DH92], Theorem B 5.15. The latter information has been precomputed and is also
part of the IRREDSOL library.

Note that all of the arguments above apply to nonsolvable groups as well.
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2.2 Low level access functions

The access functions described in this section allow to check for the availability of data and to construct
irreducible groups in the IRREDSOL group library.

IsAvailableIrreducibleSolvableGroupData(n, ¢) F

This function tests whether the irreducible solvable subgroups of GL(n, ¢) with trace field F, are part of
the IRREDSOL library.

IndicesIrreducibleSolvableMatrixGroups(n, ¢, d) F

Let n and d be positive integers and ¢ a prime power. This function returns a set of integers parametrising
the groups in the IRREDSOL library which are subgroups of GL(n, ¢) with trace field F, and splitting field
IF 4. This set is empty unless d divides n. An error is raised if the relevant data is not available, cf. 2.2.1.

gap> IndicesIrreducibleSolvableMatrixGroups (6, 2, 2);
[1, 2, 3, 4, 5, 6, 7,8, 10, 11, 12 1]

IrreducibleSolvableMatrixGroup(n, ¢q, d, k) F

Let n, d and k be positive integers and ¢ a prime power. This function returns the irreducible solvable
subgroup of GL(n,q) with trace field F,, splitting field F ., and index k. An error is raised if the relevant
data is not available, or if k is not in IndicesIrreducibleSolvableMatrixGroups(n, ¢, d); cf. 2.2.1 and
2.2.2. The groups returned have the attributes and properties described in Chapter 4 set to their appropriate
values.

IsAvailableAbsolutelyIrreducibleSolvableGroupData(n, ¢) F

This function tests whether the absolutely irreducible solvable subgroups of GL(n, ¢) with trace field F, are
in the IRREDSOL library.

IndicesMaximalAbsolutelyIrreducibleSolvableMatrixGroups(n, g¢) F

Let n be a positive integer and ¢ a prime power. This function returns a set of integers parametrising those
subgroups of GL(n, ¢) in the IRREDSOL library that are maximal among the absolutely irreducible solvable
subgroups with trace field F, and that are maximal with respect to being solvable. An error is raised if
the relevant data is not available (see 2.2.4 for information how to check this first). An integer & in the
list return corresponds to IrreducibleSolvableMatrixGroup(n, ¢, 1, k), which is the same group as
AbsolutelyIrreducibleSolvableMatrixGroup(n, ¢, k)

gap> inds := IndicesMaximalAbsolutelyIrreducibleSolvableMatrixGroups (2,3);
(2]
gap> max := IrreducibleSolvableMatrixGroup (2,3,1,2);

Group([ [ [ Z2(3), 0%Z2(3) 1, [ 0%xZ(3), z(3)"0 1 1, [ [ z2(3)70, z(3) 1, [ 0%Z2(3), Z(3)"0 1] 1,

[ [z, 2301, [ 2370, z(3)701 1, [ [ 0%2(3), 2(3)70 1, [ z(3), 0%z(3) 1 1,
[ [ 23, 0x2(3) 1, [ 0%Z2(3), Z(3) 1 1 1)
gap> max = GL(2,3); # it is the whole GL

true
IndicesAbsolutelyIrreducibleSolvableMatrixGroups(n, ¢) F
AbsolutelyIrreducibleSolvableMatrixGroup(n, ¢, k) F

These functions are not available any longer. Please use IndicesIrreducibleSolvableMatrixGroups(n,
¢, 1) and IrreducibleSolvableMatrixGroup(n, ¢, 1, k) instead.
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2.3 Finding matrix groups with given properties

This section describes three functions (AllIrreducibleSolvableMatrixGroups, OnelrreducibleSolv-
ableMatrixGroup, IteratorIrreducibleSolvableMatrixGroups) which allow to find matrix groups with
prescribed properties. Using these functions can be more efficient than to construct each group in the li-
brary using the functions in Section 2.2 because they can access additional information about a group in
the IRREDSOL library before actually constructing the group. See the discussion following the description
of Al1TrreducibleSolvableMatrixGroups for details.

Al1TrreducibleSolvableMatrixGroups (func_1, arg-1, func 2, arg-2, ...) F

This function returns a list of all irreducible solvable matrix groups G in the IRREDSOL library for which the
return value of func_i(G) lies in arg_i. The arguments func_1, func_2, ..., must be GAP functions which take
a matrix group as their only argument and return a value, and arg_1, arg_2, ..., must be lists. If arg_i is not
a list, arg_i is replaced by the list [arg_i]. The functions DegreeOfMatrixGroup and FieldOfMatrixGroup
(or their equivalents, see below) must be among the func_i. TraceField). Note that all groups in the data
library have the property that TraceField(G) = Field0fMatrixGroup(G); see Section 2.1 for details.

Note that there is also a function IteratorIrreducibleSolvableMatrixGroups (see 2.3.3) which allows
to run through the list produced by AllIrreducibleSolvableMatrixGroups without having to store all of
the groups simultaneously.

The following functions func_i are handled particularly efficiently, because the return values of these functions
can be read off the IRREDSOL library without actually constructing the relevant matrix group. For the
definitions of these functions, see Chapter 4.

e DegreeOfMatrixGroup (or Degree, Dimension, DimensionOfMatrixGroup),
e CharacteristicOfField (or Characteristic)
e FieldOfMatrixGroup (or Field or TraceField)
e Order (or Size)
e IsMaximalAbsolutelyIrreducibleSolvableMatrixGroup
e IsAbsolutelylrreducibleMatrixGroup (or IsAbsolutelyIrreducible)
e MinimalBlockDimensionOfMatrixGroup (or MinimalBlockDimension)
e IsPrimitiveMatrixGroup (or IsPrimitive, IsLinearlyPrimitive)
The groups G passed to the func_i and the groups returned have the attributes and properties described

in Chapter 4 set to their appropriate values. Note that you may speed up computations in G by using an
isomorphic copy of G, which can be obtained via RepresentationIsomorphism (see 4.1.6).

# get just those groups with trace field GF(9)

gap> 1 := AllIrreducibleSolvableMatrixGroups (Degree, 1, Field, GF(9));;
gap> List (1, Order);

[ 4, 81

# get all irreducible subgroups

gap> 1 := AllIrreducibleSolvableMatrixGroups (Degree, 1, Field, Subfields (GF(9)));;
gap> List (1, Order);

[1, 2, 4, 8]

# get only maximal absolutely irreducible ones

gap> 1 := AllIrreducibleSolvableMatrixGroups (Degree, 4, Field, GF(3),
> IsMaximalAbsolutelyIrreducibleSolvableMatrixGroup, true);;
gap> SortedList (List (1, Order));

[ 320, 640, 2304, 4608 ]
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# get only absolutely irreducible groups

gap> 1 := AllIrreducibleSolvableMatrixGroups (Degree, 4, Field, GF(3),

> IsAbsolutelyIrreducibleMatrixGroup, true);;

gap> Collected (List (1, Order));

(f20,11, (32,71, [ 40,2171, [ 64, 101, [ 80, 271, [ 96, 61,
[ 128, 91, [ 160, 31, [ 192, 91, [ 256, 61, 288, 11, [ 320, 21,
[ 384, 4], [ 512, 1], [ 576, 3], [ 640, 1 ], [ 768, 1 ], [ 1162, 4],
[ 2304, 31, [ 4608, 1] 1]

o/

OnelrreducibleSolvableMatrixGroup (func_1, arg-1, func 2, arg-2, ...) F

This function returns a matrix group G from the IRREDSOL library such that func_i(G) lies in arg_i,
or fail if no such group exists. The arguments func_1, func_2, ..., must be GAP functions taking one
argument and returning a value, and arg_1, arg-2, ..., must be lists. If arg_i is not a list, arg_i is replaced
by the list [arg_i]l. The functions Degree0fMatrixGroup and FieldOfMatrixGroup (or their equivalents,
see below) must be among the func_i. Note that all groups in the data library have the property that
TraceField(G) = FieldOfMatrixGroup(G); see Section 2.1 for details. The groups passed to the func_i
and the groups returned have the attributes and properties described in Chapter 4 set to their appropriate
values.

To use this function efficiently, please see the comments in 2.3.1.
IteratorIrreducibleSolvableMatrixGroups (func_1, arg-1, func 2, arg.2, ...) F

This function returns an iterator which runs through the list of all matrix groups G in the IRREDSOL library
such that func_i(G) lies in arg_i. The arguments func_1, func_2, ..., must be GAP functions taking one
argument and returning a value, and arg_1, arg-2, ..., must be lists. If arg_i is not a list, arg_i is replaced
by the list [arg-i]. The functions DegreeOfMatrixGroup and FieldOfMatrixGroup (or their equivalents,
see below) must be among the func_i.

Using

IteratorIrreducibleSolvableMatrixGroups(func_1, arg-1, func-2, arg-2, ...))

is functionally equivalent to
Iterator(AllIrreducibleSolvableMatrixGroups(func_1, arg-1, func_2, arg-2, ...))

(see Section 28.7 in the GAP reference manual for details) but, unlike Al11IrreducibleSolvableMatrix-
Groups, does not store all relevant matrix groups at the same time. This may save a considerable amount
of memory.

To use this function efficiently, please see the comments in 2.3.1.

2.4 Loading and unloading group data manually

The data required by the IRREDSOL library is loaded into GAP’s workspace automatically whenever required,
but is never unloaded automatically. The functions described in this and the following section describe how
to load and unload this data manually. They are only relevant if timing or conservation of memory is an
issue.

LoadAbsolutelyIrreducibleSolvableGroupData(n, ¢) F

This function loads the data for GL(n,q) into the GAP workspace and does some pre-processing. If the
data is already loaded, the function does nothing. This function is called automatically when you access the
IRREDSOL library, so most users will not need this function.

LoadedAbsolutelyIrreducibleSolvableGroupData() F

This function returns a list. Each entry consists of an integer n and a set [. The set [ contains all prime
powers ¢ such that the group data for GL(n, ¢) is currently in memory.
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3» UnloadAbsolutelydIrreducibleSolvableGroupData([n [, ¢11) F

This function can be used to delete data for GL(n, q) from the GAP workspace. If no argument is given, all
data will be deleted. If only n is given, all data for degree n (and any ¢) will be deleted. If n and ¢ are
given, only the data for GL(n, ¢) will be deleted from the GAP workspace. Use this function if you run out
of GAP workspace. The data is automatically re-loaded when required.
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Recognition of
matrix groups

This chapter describes some functions which, given an irreducible matrix group, identify a group in the
IRREDSOL library which is conjugate to that group, see Section 3.1. Moreover, Section 3.2 describes how
to translate between groups in the IRREDSOL library and the GAP library of irreducible solvable groups.
Section 3.3 describes some functions which allow to load and unload the recognition data in the IRREDSOL
package manually.

3.1 Identification of irreducible groups
IsAvailableIdIrreducibleSolvableMatrixGroup(G) F

This function returns true if IdIrreducibleSolvableMatrixGroup (see 3.1.3) will work for the irreducible
matrix group G, and false otherwise.

IsAvailableIdAbsolutelyIrreducibleSolvableMatrixGroup(G) F

This function returns true if IdIrreducibleSolvableMatrixGroup (see 3.1.3) will work for the absolutely
irreducible matrix group G, and false otherwise.

IdIrreducibleSolvableMatrixGroup(G) A

If the matrix group G is solvable and irreducible over F' = FieldOfMatrixGroup(G), (see 42.1.3 in the GAP
reference manual), and a conjugate in GL(n, F) of G belongs to the data base of irreducible solvable groups
in IRREDSOL, this function returns a list [n, ¢, d, k] such that G is conjugate to IrreducibleSolv-
ableMatrixGroup(n, ¢, d, k) (see 2.2.3).

gap> G := IrreducibleSolvableMatrixGroup (12, 2, 3, 52) RandomInvertibleMat (12, GF(8));
<matrix group of size 2340 with 6 generators>

gap> IdIrreducibleSolvableMatrixGroup (G);

[ 12, 2, 3, 52 ]

RecognitionIrreducibleSolvableMatrixGroup(G, wantmat, wantgroup) F
RecognitionIrreducibleSolvableMatrixGroupNC(G, wantmat,wantgroup) F

Let G be an irreducible solvable matrix group over a finite field, and let wantmat and wantmat be true or
false. These functions identify a conjugate H of G group in the library. They return a record which has
the following entries:

id
contains the id of H (and thus of G); cf. IdIrreducibleSolvableMatrixGroup (3.1.3)

mat (present if wantmat is true)
a matrix z such that G* = H

group (present if wantmat is true)
the group H

Note that in most cases, RecognitionIrreducibleSolvableMatrixGroup and RecognitionIrreducible-
SolvableMatrixGroupNC are much slower if wantmat is set to true.
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RecognitionIrreducibleSolvableMatrixGroupNC does not check its arguments. If the group G is beyond
the scope of the IRREDSOL library (see 3.1.1), RecognitionIrreducibleSolvableMatrixGroupNC returns
fail, while RecognitionIrreducibleSolvableMatrixGroup raises an error.

gap> G := IrreducibleSolvableMatrixGroup (6, 2, 3, 5) ~

> RandomInvertibleMat (6, GF(4));

<matrix group of size 42 with 3 generators>

gap> r := RecognitionIrreducibleSolvableMatrixGroup (G, true, false);;
gap> r.id;

[6, 2, 3, 5]
gap> G r.mat = CallFuncList (IrreducibleSolvableMatrixGroup, r.id);
true

IdAbsolutelyIrreducibleSolvableMatrixGroup(G) A
RecognitionAbsolutelyIrreducibleSolvableMatrixGroup(G, wantmat, wantgroup) F
RecognitionAbsolutelyIrreducibleSolvableMatrixGroupNC(G, wantmat,wantgroup) F

These functions are no longer available. These functions have been replaced by the functions IdIrre-
ducibleSolvableMatrixGroup (3.1.3), RecognitionIrreducibleSolvableMatrixGroup (3.1.4), or Recog-
nitionIrreducibleSolvableMatrixGroupNC (3.1.4).

Note that the ids returned by the functions for absolutely irreducible groups was a triple [n, d, k], while
the replacement functions use ids of the form [n, d, d, k], where d = 1 in the absolutely irreducible
case.

3.2 Compatibility with other data libraries

A library of irreducible solvable subgroups of GL(n,p), where p is a prime and p" < 255 already exists in
GAP, see Section 48.11 in the GAP reference manual. The following functions allow one to translate between
between that library and the IRREDSOL library.

IdIrreducibleSolvableMatrixGroupIndexMS(n, p, k) F

This function returns the id (see 3.1.3) of G, where G is IrreducibleSolvableGroupMS(n, p, k) (see 48.11.1
in the GAP reference manual).

gap> IdIrreducibleSolvableMatrixGroupIndexMS (6, 2, 5);
[6, 2, 2, 4]

gap> G := IrreducibleSolvableGroupMS (6,2,5);

<matrix group of size 27 with 2 generators>

gap> H := IrreducibleSolvableMatrixGroup (6, 2, 2, 4);
<matrix group of size 27 with 3 generators>

gap> G = H;
false # groups in the libraries need not be the same
gap> r := RecognitionIrreducibleSolvableMatrixGroup (G, true, false);;
gap> G r.mat = H;
true
IndexMSIdIrreducibleSolvableMatrixGroup(n, ¢, d, k) F

This function returns a triple [n, p, ] such that IrreducibleSolvableGroupMS(n, p, I) (see 48.11.1 in the
GAP reference manual) is conjugate to IrreducibleSolvableMatrixGroup(n, ¢, d, k) (see 2.2.3).
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gap> IndexMSIdIrreducibleSolvableMatrixGroup (6, 2, 2, 7);
[6, 2, 13 ]

gap> G := IrreducibleSolvableGroupMS (6,2,13);

<matrix group of size 27 with 2 generators>

gap> H := IrreducibleSolvableMatrixGroup (6, 2, 2, 7);
<matrix group of size 27 with 3 generators>

gap> G = H;

false # groups in the libraries need not be the same

gap> r := RecognitionIrreducibleSolvableMatrixGroup (G, true, false);;
gap> G r.mat = H;

true

3.3 Loading and unloading recognition data manually

The data required by the IRREDSOL library is loaded into GAP’s workspace automatically whenever required,
but is never unloaded automatically. The functions described in this and the previous section describe how
to load and unload this data manually. They are only relevant if timing or conservation of memory is an
issue.

LoadAbsolutelyIrreducibleSolvableGroupFingerprints(n, ¢)  FThis function loads the fingerprint
data required for the recognition of absolutely irreducible solvable subgroups of GL(n, q).

LoadedAbsolutelyIrreducibleSolvableGroupFingerprints () F

This function returns a list. Each entry consists of an integer n and a set [. The set [ contains all prime
powers ¢ such that the recognition data for GL(n, q) is currently in memory.

UnloadAbsolutelyIrreducibleSolvableGroupFingerprints([n [,ql]) F

This function can be used to delete recognition data for irreducible groups from the GAP workspace. If no
argument is given, all data will be deleted. If only n is given, all data for degree n (and any ¢) will be
deleted. If n and ¢ are given, only the data for GL(n, ¢) will be deleted from the GAP workspace. Use this
function if you run out of GAP workspace. The data is automatically re-loaded when required.
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Additional functionality
for matrix groups

This chapter explains some attributes, properties, and operations which may be useful for working with
matrix groups. Some of these are part of the GAP library and are listed for the sake of completeness, and
some are provided by the package IRREDSOL. Note that groups constructed by functions in IRREDSOL
already have the appropriate properties and attributes.

4.1 Basic attributes for matrix groups

DegreeOfMatrixGroup(G)
Degree (G)
DimensionOfMatrixGroup(G)
Dimension(G)

> > O >

This is the degree of the matrix group or, equivalently, the dimension of the natural underlying vector space.
See also 42.1.1 in the GAP reference manual.

Field0fMatrixGroup(G) A

This is the field generated by the matrix entries of the elements of G. See also 42.1.3 in the GAP reference
manual.

DefaultField0fMatrixGroup(G) A
This is a field containing all matrix entries of the elements of G. See also 42.1.2 in the GAP reference manual.
SplittingField(G) A

Let G be an irreducible subgroup of GL(n, F'), where F = Field0fMatrixGroup(G) is a finite field. This
attribute stores the splitting field E for G, that is, the (unique) smallest field £ containing F' such that the
natural EG-module E" is the direct sum of absolutely irreducible EG- submodules. The number of these
absolutely irreducible summands equals the dimension of E as an F-vector space.

CharacteristicOfField(G) A
Characteristic(G) O

This is the characteristic of Field0OfMatrixGroup(G) (see 4.1.2).
RepresentationIsomorphism(G) A

This attribute stores an isomorphism H — G, where H is a group in which computations can be carried
out more efficiently than in G, and the isomorphism can be evaluated easily. Every group in the IRREDSOL
library has such a representation isomorphism from a pc group H to G.

In this way, computations which only depend on the isomorphism type of G can be carried out in the group
H and translated back to the group G via the representation isomorphism. Possible applications are the
conjugacy classes of G, Sylow subgroups, composition and chief series, normal subgroups, group theoretical
properties of G, and many more.

The concept of a representation isomorphism is related to nice monomorphisms; see Section 38.5 in the GAP
reference manual. However, unlike nice monomorphisms, RepresentationIsomorphism need not be efficient
for computing preimages (and, indeed, will not usually be, in the case of the groups in the IRREDSOL
library).
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4.2 Irreducibility and maximality of matrix groups

IsIrreducibleMatrixGroup(G) P
IsIrreducibleMatrixGroup(G, F) 0O
IsIrreducible(G [, F1) O

The matrix group G of degree d is irreducible over the field F' if no subspace of F* is invariant under the
action of G. If F is not specified, F' = Field0OfMatrixGroup(G) is assumed.

gap> G := IrreducibleSolvableMatrixGroup (4, 2, 2, 3);
<matrix group of size 10 with 2 generators>

gap> IsIrreducibleMatrixGroup (G);

true

gap> IsIrreducibleMatrixGroup (G, GF(2));

true

gap> IsIrreducibleMatrixGroup (G, GF(4));

false

IsAbsolutelyIrreducibleMatrixGroup(G) P
IsAbsolutelyIrreducible(G) Q)

If present, this operation returns true if G is absolutely irreducible, i. e., irreducible over any extension field
of FieldOfMatrixGroup(G).

gap> G := IrreducibleSolvableMatrixGroup (4, 2, 2, 3);
<matrix group of size 10 with 2 generators>

gap> IsAbsolutelylIrreducibleMatrixGroup(G) ;

false;

IsMaximalAbsolutelyIrreducibleSolvableMatrixGroup(G) P

This property, if present, is true if, and only if, G is absolutely irreducible and maximal among the solvable
subgroups of GL(d, F'), where d = DegreeOfMatrixGroup(G) and F' = FieldOfMatrixGroup(G).

4.3 Primitivity of matrix groups

MinimalBlockDimensionOfMatrixGroup(G) A
MinimalBlockDimensionOfMatrixGroup(G, F) O
MinimalBlockDimension(G [, F1) O

Let @ be a matrix group of degree d over the field F. A decomposition Vi @---@ V; of F? into F-subspaces
Vi is a block system of G if the V; are permuted by the natural action of G. Obviously, all V; have the
same dimension; this is the dimension of the block system V; @---@® Vj. The function MinimalBlockDimen-—
sionOfMatrixGroup returns the minimum of the dimensions of all block systems of G. If F' is not specified,
F = Field0fMatrixGroup(G) is assumed. At present, only methods for groups which are irreducible over
F are available.

gap> G := AbsolutelyIrreducibleSolvableMatrixGroup (2,3,4);;
gap> MinimalBlockDimension (G, GF(3));

2

gap> MinimalBlockDimension (G, GF(9));

1
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IsPrimitiveMatrixGroup(G) P
IsPrimitiveMatrixGroup(G, F) @)
IsPrimitive(G [, F1) O
IsLinearlyPrimitive(G [, F1) O

An irreducible matrix group G of degree d is primitive over the field F' if it only has the trivial block
system F? or, equivalently, if MinimalBlockDimensionOfMatrixGroup(G, F) = d. If F is not specified,
F = FieldOfMatrixGroup(G) is assumed.

gap> G := IrreducibleSolvableMatrixGroup (2,2,1,1);

Group([ <an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2> 1)
gap> IsPrimitiveMatrixGroup (G, GF(2));

true

gap> IsIrreducibleMatrixGroup (G, GF(4));

true

gap> IsPrimitiveMatrixGroup (G, GF(4));

false

ImprimitivitySystems(G [, F1) O

This function returns the list of all imprimitivity systems of the irreducible matrix group G over the field
F.If F is not given, Field0fMatrixGroup (@) is used. Each imprimitivity system is given by a record with
the following entries:

bases
a list of the bases of the subspaces which form the imprimitivity system. Note that a basis here
is just a list of vectors, not a basis in the sense of GAP (see 59.4.2 in the GAP reference manual).
Each basis is in Hermite normal form so that the action of G on the imprimitivity system can be
determined by OnSubspacesByCanonicalBasis

stabl
the subgroup of G stabilizing the subspace W spanned by bases[1]

min
is true if the imprimitivity system is minimal, that is, if stabl acts primitively on W, and false
otherwise

gap> G := IrreducibleSolvableMatrixGroup (6, 2, 1, 9);

<matrix group of size 54 with 4 generators>

gap> impr := ImprimitivitySystems(G, GF(2));;

gap> List (ImprimitivitySystems(G, GF(2)), r -> Length (r.bases));

(3,3, 1]
gap> List (ImprimitivitySystems(G, GF(4)),
> r -> Action (G, r.bases, OnSubspacesByCanonicalBasis));

[ Group([ O, (1,2)(3,6)(4,5), (1,3,4)(2,5,6), (1,4,3)(2,6,5) 1),
Group([ (1,2,4)(3,5,6), (1,3)(2,5)(4,6), O, O 1),
Group([ (1,2,4)(3,5,6), (1,3)(2,5)(4,6), (1,2,4)(3,6,5), (1,4,2)(3,5,6) 1),
Group([ (1,2,4)(3,5,6), (1,3)(2,5)(4,6), (1,4,2)(3,5,6), (1,2,4)(3,6,5) 1),
Group([ O, (1,2), O, O 1), Group([ (1,2,3), O, O, O 1,
Group([ O, (2,3), (1,2,3), (1,3,2) 1),
Group([ O, (2,3), (1,2,3), (1,3,2) 1),
Group([ O, (2,3), (1,2,3), (1,3,2) 1), Group(() ]
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4.4 Conjugating matrix groups into smaller fields
TraceField(G) A

This is the field generated by the traces of the elements of the matrix group G. If G is an irreducible matrix
group over a finite field then, by a theorem of Brauer, G has a conjugate which is a matrix group over
TraceField(G).

gap> repeat

> G := IrreducibleSolvableMatrixGroup (8, 2, 2, 7) RandomInvertibleMat (8, GF(8));
> until FieldOfMatrixGroup (G) = GF(8);

gap> TraceField (G);

GF(2)

ConjugatingMatTraceField(G) A

If bound, this is a matrix z over FieldOfMatrixGroup(G) such that G is a matrix group over Trace-
Field(@G). Currently, there are only methods available for irreducible matrix groups G over finite fields and
certain trivial cases. The method for absolutely irreducible groups is described in [GH97]. Note that, for
matrix groups over infinite fields, such a matrix x need not exist.

gap> repeat

> G := IrreducibleSolvableMatrixGroup (8, 2, 2, 7) ~
> RandomInvertibleMat (8, GF(8));

> until FieldOfMatrixGroup(G) = GF(8);

gap> FieldOfMatrixGroup (G"ConjugatingMatTraceField (G));
GF(2)



Primitive
solvable groups

A finite group G is called primitive if it has a maximal subgroup M with trivial core; the group acts faithfully
and primitively on the cosets of such a maximal subgroup.

Now assume that G is primitive and solvable. Then there exists a unique conjugacy class of such maximal
subgroups; the index of M in G is called the degree of G. Moreover, M complements the socle N of G.
THe socle N coincides with the Fitting subgroup of G; it is the unique minimal normal subgroup N of G.
Therefore, the index of M in G is a prime power, p", say. Regarding N as a IF,-vector space, M acts as
an irreducible subgroup of GL(n,p) on N. Conversely, if M is an irreducible solvable subgroup of GL(n, p),
and V =}, then the split extension of V by M is a primitive solvable group. This establishes a well known
bijection between the isomorphism types (or, equivalently, the Sym(p")-conjugacy classes) of primitive
solvable groups of degree p™ and the conjugacy classes of irreducible solvable subgroups of GL(n, p).

The IRREDSOL package provides functions for translating between primitive solvable groups and irreducible
solvable matrix groups, which are described in Section 5.1. Moreover, there are functions for finding primitive
solvable groups with given properties, see Section 5.2 and 5.3.

5.1 Translating between irreducible solvable matrix groups and primitive solvable
groups

PrimitivePcGroupIrreducibleMatrixGroup(G) F
PrimitivePcGroupIrreducibleMatrixGroupNC(G) F

For a given irreducible solvable matrix group G over a prime field, this function returns a primitive pc group
H which is the split extension of G with its natural underlying vector space V. The NC version does not
check whether G is over a prime field, or whether G is irreducible. The group H has an attribute Socle
(see 37.12.10 in the GAP reference manual, corresponding to V. If the package CRISP is loaded, then the
attribute SocleComplement (see 4.3.2 in the CRISP manual) is set to a subgroup of H isomorphic with G.

gap> PrimitivePcGroupIrreducibleMatrixGroup (
> IrreducibleSolvableMatrixGroup (4,2,2,3));
<pc group of size 160 with 6 generators>

PrimitivePermutationGroupIrreducibleMatrixGroup(G) F
PrimitivePermutationGroupIrreducibleMatrixGroupNC(G) F

For a given irreducible solvable matrix group G over a prime field, this function returns a primitive permu-
tation group H, representing the affine action of G on its natural vector space V. The NC version does not
check whether G is over a prime field, or whether G is irreducible. The group H has an attribute Socle
(see 37.12.10 in the GAP reference manual, corresponding to V. If the package CRISP is loaded, then the
attribute SocleComplement (see 4.3.2 in the CRISP manual) is set to a subgroup of H isomorphic with G.
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gap> PrimitivePermutationGroupIrreducibleMatrixGroup (
> IrreducibleSolvableMatrixGroup (4,2,2,3));
<permutation group of size 160 with 6 generators>

IrreducibleMatrixGroupPrimitiveSolvableGroup(G) F
IrreducibleMatrixGroupPrimitiveSolvableGroupNC(G) F

For a given primitive solvable group G, this function returns a matrix group obtained from the conjugation
action of G on its unique minimal normal subgroup N, regarded as a vector space over IF,, where p is the
exponent of N. The F,-basis of N is chosen arbitrarily, so that the matrix group returned is unique only up
to conjugacy in the relevant GL(n, p). The NC version does not check whether G is primitive and solvable.

gap> IrreducibleMatrixGroupPrimitiveSolvableGroup (SymmetricGroup (4));
Group([ <an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2>
, <an immutable 2x2 matrix over GF2>, <an immutable 2x2 matrix over GF2>

D

5.2 Finding primitive pc groups with given properties

A11PrimitivePcGroups (func_1, arg-1, func.2, arg-2, ...) F
This function returns a list of all primitive solvable pc groups G in the IRREDSOL library for which the
return value of func_i(G) lies in arg_i. The arguments func_1, func_2, ..., must be GAP functions which
take a pc group as their only argument and return a value, and arg_1, arg_2, ..., must be lists. If arg_i is

not a list, arg_i is replaced by the list [arg_i]. One of the functions must be Degree or one of its equivalents,
see below.

The following functions func_i are handled particularly efficiently.

— Degree, NrMovedPoints, LargestMovedPoint

— Order, Size

Note that there is also a function IteratorPrimitivePcGroups (see 5.2.3) which allows one to run through
the list produced by A11PrimitivePcGroups without having to store all the groups in the list simultaneously.

gap> AllPrimitivePcGroups (Degree, [1..255], Order, [168]);
[ <pc group of size 168 with 5 generators> ]

OnePrimitivePcGroup (func_1, arg-1, func.2, arg-2, ...) F

This function returns one primitive solvable pc group G in the IRREDSOL library for which the return value
of func_i(G) lies in arg_i, or fail if no such group exists. The arguments func_1, func_2, ..., must be GAP
functions which take a pc group as their only argument and return a value, and arg_1, arg_2, ..., must be
lists. If arg_i is not a list, arg_i is replaced by the list [arg-i]. One of the functions must be Degree or one
of its, equivalents, NrMovedPoints or LargestMovedPoint.

For a list of functions which are handled particularly efficiently, see 5.2.1.

gap> OnePrimitivePcGroup (Degree, [256], Order, [256%255]);
<pc group of size 65280 with 11 generators>

IteratorPrimitivePcGroups (func_1, arg-1, func.2, arg-2, ...) F

This function returns an iterator which runs through the list of all primitive solvable pc groups G in the
IRREDSOL library such that func_i(G) lies in arg_i. The arguments func_1, func_2, ..., must be GAP
functions taking a pc group as their only argument and returning a value, and arg_1, arg_2, ..., must be
lists. If arg_i is not a list, arg_i is replaced by the list [arg-i]. One of the functions must be Degree or
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one of its, equivalents, NrMovedPoints or LargestMovedPoint. For a list of functions which are handled
particularly efficiently, see 5.2.1.

Using

IteratorPrimitivePcGroups(func_1, arg_1, func-2, arg-2, ...))

is functionally equivalent to
Iterator(Al1PrimitivePcGroups(func_1, arg_1, func_2, arg 2, ...))

(see 28.7 in the GAP reference manual for details) but does not compute all relevant pc groups at the same
time. This may save some memory.

5.3 Finding primitive solvable permutation groups with given properties
Al1PrimitiveSolvablePermutationGroups (func-1, arg-1, func 2, arg-2, ...) F

This function returns a list of all primitive solvable permutation groups G corresponding to irreducible
matrix groups in the IRREDSOL library for which the return value of func_i(G) lies in arg_i. The arguments
func_1, func_2, ..., must be GAP functions which take a permutation group as their only argument and
return a value, and arg_1, arg_2, ..., must be lists. If arg_i is not a list, arg_i is replaced by the list [arg_i].
One of the functions must be Degree or one of its equivalents, see below.

The following functions func_i are handled particularly efficiently.

— Degree, NrMovedPoints, LargestMovedPoint

— Order, Size

Note that there is also a function IteratorPrimitivePermutationGroups (see 5.3.3) which allows one
to run through the list produced by Al1PrimitivePcGroups without having to store all of the groups
simultaneously.

gap> AllPrimitiveSolvablePermutationGroups (Degree, [1..100], Order, [72]);
[ Group([ (1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,4)(3,7)(6,8),
(2,3)(5,6)(8,9), (4,7(5,8)(6,9) 1),
Group([ (1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,5,3,9)(4,8,7,6),
(2,7,3,4)(5,8,9,6), (2,3)(4,7)(5,9)(6,8) 1),
Group([ (1,4,7)(2,5,8)(3,6,9), (1,2,3)(4,5,6)(7,8,9), (2,5,6,7,3,9,8,4) 1) 1
gap> List (last, IdGroup);
[ [72, 4071, [ 72, 411, [ 72, 391 1]

OnePrimitiveSolvablePermutationGroup(func_1, arg-1, func 2, arg-2, ...) F

This function returns one primitive solvable permutation group G corresponding to irreducible matrix groups
in the IRREDSOL library for which the return value of func_i(G) lies in arg_i, or fail if no such group exists.
The arguments func_1, func_2, ..., must be GAP functions which take a permutation group as their only
argument and return a value, and arg_1, arg_2, ..., must be lists. If arg_i is not a list, arg_i is replaced
by the list [arg_i]. One of the functions must be Degree or one of its, equivalents, NrMovedPoints or
LargestMovedPoint.

For a list of functions which are handled particularly efficiently, see 5.3.1.

gap> OnePrimitiveSolvablePermutationGroup (Degree, [1..100], Size, [123321]);
fail

IteratorPrimitivePermutationGroups (func_1, arg-1, func2, arg-2, ...) F

This function returns an iterator which runs through the list of all primitive solvable groups G in the
IRREDSOL library such that func_i(G) lies in arg_i. The arguments func_1, func_2, ..., must be GAP
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functions taking a pc group as their only argument and returning a value, and arg_1, arg_2, ..., must be
lists. If arg_i is not a list, arg_i is replaced by the list [arg-i]. One of the functions must be Degree or
one of its, equivalents, NrMovedPoints or LargestMovedPoint. For a list of functions which are handled
particularly efficiently, see 5.3.1.

Using

IteratorPrimitiveSolvablePermutationGroups(func-1, arg_1, func_2, arg-2, ...))

is functionally equivalent to
Iterator(AllPrimitiveSolvablePermutationGroups(func-1, arg-1, func.2, arg-2, ...))

(see 28.7 in the GAP reference manual for details) but does not compute all relevant pc groups at the same
time. This may save some memory.

5.4 Recognizing primitive solvable groups

IdPrimitiveSolvableGroup(G) F
IdPrimitiveSolvableGroupNC(G) F

returns the id of the primitive solvable group G. This is the same as the id of IrreducibleMatrixGroup-
PrimitiveSolvableGroup(G), see 5.1.3 and 3.1.3. Note that two primitive solvable groups are isomorphic
if, and only if, their ids returned by IdPrimitivePcGroup are the same. The NC version does not check
whether G is primitive and solvable.

gap> G := PrimitivePcGroupIrreducibleMatrixGroup (\

> IrreducibleSolvableMatrixGroup (6,2,3,3));
<pc group of size 8064 with 10 generators>

gap> IdPrimitiveSolvableGroup (G);

[6, 2,3, 3]
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