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Chapter 1

Introduction

1.1 Introduction to the toric package

This manual describes theric package for working with toric varieties IBAP. Toric varieties can

be dealt with more easily than general varieties since often times questions about a toric variety can
be reformulated in terms of combinatorial geometry. Some coding theory commands related to toric
varieties are contained in the error-correcting co@emVA package (for example, the command
ToricCode). We refer to theGUAVA manual PJM] and the expository papei 07 for more details.

The toric package also contains several commands unrelated to toric varieties (mostly for list
manipulations). These will not be described in this documention but they are briefly documented in
thelib/util.qgd file.

toric is implemented in th&AP language, and runs on any system suppor@ag4.3 and above.
Thetoric package is loaded with the command

gap> LoadPackage( "toric" );

Please send bug reports, suggestions and other comments atooiat to
supportl@gap-system.org.

1.2 Introduction to constructing toric varieties

Rather than sketch the theory of toric varieties, we refedt@p] and [Ful93 for details. However,
we briefly describe some terminology and notation.

1.2.1 Generalities

Let F denote a field anB= F[xy, ..., Xn] be a ring inn variables. ABINOMIAL EQUATION in Ris one
of the form
XL X0 = Xt X

wherek; > 0, ¢; > 0 are integers. A binomial variety is a subvariety of affimepaceA defined

by a finite set of binomial equations (such a variety need not be normal). A typical “toric variety”

is binomial, though they will be introduced via arpriori independent construction. The basic idea

of the construction is to replace each such binomial equation as above by a relation in a semigroup
contained in a lattice and replaéeby the “group algebra” of this semigroup. By the way, a toric
variety is always normal (see for exampley[93, page 29).
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1.2.2 Basic combinatorial geometry constructions

Let Q denote the field of rational numbers ahdenote the set of integers. Lret- 1 denote an integer.
LetV = Q" having basisf; = (1,0,...,0), ..., f,=(0,...,0,1). LetLo = Z" C V be the standard
lattice inV. We identifyV andLo®z Q. We use(, ) to denote the (standard) inner productorLet

Lo =Hom(Lo,Z) ={veV | (vyw) e Z VYwe Lo}

denote theUAL LATTICE, so (fixing the standard bas,... &, dual to thefy,...,f,) Ly may be iden-
tified with Z".
A CONEINn YV is a set of the form

o={avi+...+amvm|a >0} CV,

wherevs, ...,vm € V is a given collection of vectors, called (semigro®NERATORSOf 0. A RATIO-
NAL CONE is one where/q,...,Vm € Lg. A STRONGLY CONVEXcone is one which contains no lines
through the origin.

By abuse of terminology, from now orcaNE of Ly is a strongly convex rational cone.

A FACE of a coneo is eithero itself or a subset of the forid N g, whereH is a codimension one
subspace o¥ which intersects the cone non-trivially and such that the cone is contained in exactly
one of the two half-spaces determinedHby A RAY (or edge) of a cone is a one-dimensional face.
Typically, cones are representedinic by the list of vectors defining their rays. ThevENSION of
a cone is the dimension of the vector space it spans.tdrlegpackage can test if a given vector is in
a given cone (seensideCone).

If ois a cone then theuAL CONE is defined by

o' ={wely®Q|(vw) >0, Wec o}

Thetoric package can test if a vector is in the dual of a given cone1seealCone).
Associate to the dual cor® is the semigroup

S=0"Nky={wely|(vw) >0, Ve o}.

ThoughLgj has $n$ generatoras a lattice typically S will have more thamn generatorsas a
semigroup The toric package can compute a minimal list of semigroup generators; dsee
DualSemigroupGenerators).

A fan is a collection of cones which “fit together” well. BaN in Lo is a setA = {o} of rational
strongly convex cones M = Lo ® Q such that

e if o€ Aandt C ois a face ofo thent € A,

e if 01,0, € A then the intersectioa; N o, is a face of botlo; ando, (and hence belongs ).

In particular, the face of a cone in a fan is a cone is the fan.

If V is the (set-theoretic) union of the conedithen we call the facoMPLETE We shall assume
that all fans are finite. A fan is determined by its list of maximal cones.

Notation A fan A is represented itoric as a set of maximal cones. For example) i the fan
with maximal cone®1 = Q- f1+ Q4 - (—f1+ ), 02 =Q4 - (—f1+ f2) + Q1 - (—f1 — f2), O3 =
Qi (—f1—f2)+ Q4 - f1, thenAis represented by[1,0],[—1,1]],[[-1,1], -1, —-1]],[[-1, 1], [1,0]]].

Thetoric package can compute all cones in a fan of a given dimensiort(seeofFan). More-
over, toric can compute the set of all normal vectors to the faces (i.e., hyperplanes) of a cone (see
Faces).

The STAR of a coneo in a fanA is the setA; of cones inA containingo as a face. Theoric
package can compute stars (§eeicStar).
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1.2.3 Basic affine toric variety constructions

Let
Ro = F[S]

denote the “group algebra” of this semigroup. It is a finitely generated commutative F-algebra. It is
in fact integrally closed {ul93, page 29). We may interpref®; as a subring oR = F[Xy, ..., Xn]
as follows: First, identify eacl®” with the variablex. If & is generated as a semigroup by
vectors of the form/,1€] + ... 4 /h€;, where/; is an integer, then its image IR is generated by
monomials of the form(i1 ...xin. Thetoric package can compute these generating monomials (see
EmbeddingAffineToricVariety). See Lemma 2.14 inJi/07 for more details. This embedding
can also be used to resolve singularities - see sectionB/6] for more details.

Let

Ug = SpecRg.

This defines amFFINE TORIC VARIETY (associated t@). It is known that the coordinate rifg, of
the affine toric varietyJ; has the formR; = F[xa,...,X|/J, whereJ is an ideal. Theoric package can
compute generators of this ideal (SealAffineToricVariety).

Roughly speaking, the toric varie¥/(A) associated to the fahis given by a collection of affine
pieces $U{\sigmal},U_{\sigma2},\dots,U { \sigmad}$ which “glue” together (wher& = {o;}).
The affine pieces are given by the zero sets of polynomial equations in some affine spaces and the
gluings are given by maps j : Us, — Ug; which are defined by ratios of polynomials on open subsets
of the $U {\sigmai}$. Thetoric package doesotcompute these gluings or work directly with these
(non-affine) varietieX(A).

A coneo C V is said to beNONSINGULAR if it is generated by part of a basis for the latticg
A fan A of cones is said to beRONSINGULAR if all its cones are nonsingular. It is known thag is
nonsingular if and only it is nonsingular (Proposition 2.1 ifr[il93).

EXAMPLE: In three dimensions, consider the comese, ¢, ; generated bye, - 1,€>-1,€3-1)
and the standard basis vectdysfj, wheregj = +1 and 1<i # j < 3. There are 8 cones per octant,
for a total of 64 cones. L&k denote the fan iv = Q° determined by these maximal cones. The toric
variety X(A) is nonsingular.

1.2.4 Riemann-Roch spaces and related constructions

Although thetoric package does not work directly with the toric varieti¥$A), it can com-
pute objects associated with it. For example, it can compute the Euler characteristic (see
EulerCharacteristic), Bettinumbers (seBettiNumberToric), and the number of GF(q)-rational
points (se€ardinalityOfToricVariety) of X(A), providedA is nonsingular.

For an algebraic varietf the group of VEIL DIVISORS on X is the abelian groupiv(X) gener-
ated (additively) by the irreducible subvarieties of X of codimension 1. For a toric va{ig@y with
dense open torus, a Weil divisor D is TINVARIANT if D =T -D. The group ofT -invariant Weil
divisors is denoted Div(X). This is finitely generated by an explicitly given finite set of divisors
{Dy,...,Dr} which correspond naturally to certain conegiiisee Ful93 for details). In particular,
we may represent such a dividorin T Div(X) by ank-tuple (ds, ..., dx) of integers.

Let A denote a fan itv = Q" with rays (or edges}i, 1 <i <k, and letv; denote the first lattice
point ont;. Associated to the T-invariant Weil divis@r = d1D1 + ... + dkDy, is thePoOLYTOPE

I:>D = {X: (X17"‘7Xn) ’ <X7Vi> Z _di7 VJ- S I S k}
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Thetoric package can compuB (seebivisorPolytope), as well as the set of all lattice points con-
tained in this polytope (sekivisorPolytopelLatticePoints). Also associated to th€-invariant
Weil divisorD = d1D; + ... + dkDy, is the Riemann-Roch spadgD). This is a space of functions on
X(A) whose zeros and poles are “controlled” Dyfor a more precise definition, seeUl93). The

toric package can compute a basis EgD) (seeRiemannRochBasis), providedA is complete and
nonsingular.



Chapter 2

Cones and semigroups

2.1 Cones

This section introduces thric commands which deal with cones and related combinatorial-
geometric objects. Recall,@ONE s a strongly convex polyhedral coné-([193, page 4).

2.1.1 InsideCone

{ InsideCone(v, L) (function)

This command returns ‘true’ if the vectar belongs to the interior of the (strongly convex poly-
hedral) cone generated by the vector&in

This procedure does not checK.ifgenerates a strongly convex polyhedral cone.
Example
gap> L:=[[1,0,0],[1,1,01,[1,1,11,[1,0,111;; v:=[0,0,11;;
gap> InsideCone (v, L) ;
false
gap> L:=[[1,0],[3,411;;
gap> v:=[1,-7]; InsideCone(v,L);
(1, =71
false
gap> v:=[4,-3]; InsideCone(v,L);
[ 4, -3 ]
false
gap> v:=[4,-4]; InsideCone(v,L);
[ 4, -4]
false
gap> v:=[4,1]; InsideCone(v,L);
[ 4, 1]
true

2.1.2 InDualCone

¢ InDualCone(v, L) (function)

This command returns ‘true‘ if belongs to the dual of the cone generated by the vectdrs in
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Example
gap> L:=[[1,0,07,(1,1,0],11,1,1],(1,0,111;; v:=[0,0,11;;
gap> InDualCone(v,L);
true
gap> L:=[[1,0],[3,4]];

(11, 01, [3 4 11

gap> v:=[1,-7]; InDualCone(v L);
(1, =71

false

gap> v:=[4,-3]; InDualCone(v,L);
[ 4, -3 ]

true

gap> v:=[4,-4]; InDualCone(v,L);
[ 4, -4 ]

false

gap> v:=[4,1]; InDualCone(v,L);
[ 4, 11

true

2.1.3 PolytopeLatticePoints

Q PolytopelLatticePoints (A, Perps ) (function)

Input Perps = [vi,..., ] is the list of “inward normal” vectors perpendicular to the walls of a
polytopeP in the vector spackj® Q,
A= [a1,...,a] is a k-tuple of integers, whera denotes the amount the i-th “wall” (defined by the
normaly;) is shifted from the origin (each is assumed non-negative).
For example, the polytopeP with faces [x=0, x=a, y=0, y=b] has Perps =
[[1,0],[—1,0],[0,1], [0, —1]] andA= [0, a,0,b].
Output the list of points inPNLy,.

Example
gap> Perps:=[[1,0],[-1,0],[0,1],[0,-111;
(r, 01, -1, 01, 006, 21, [0 -111
gap> A:=[0,4,0,31;

[ 0, 4, 0, 3]

gap> PolytopelatticePoints (A, Perps);

rro, o013, 10,231,060, 273,060,371, 01,071, 01, 171, (1 21,

(i, 31, 12,01, 02,321, 102,21, 1012,31, 13 01,113 11,

(3,21, 03, 31, 0401, 0411, 04 21, [4 311

gap> Length(last);

20
2.1.4 Faces
QE@C@S(RayS) (function)

Input Rays is a list of rays for the fa
Output All the normals to the faces (hyperplanes of the cone).
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Example
gap> Conesl:=[[[2,-1],[-1,2]1],((-1,2],[-1,-111,((-1,-1),1(2,-1011;;
gap> Faces (Conesl[1]);
(112, 11, 02 11]
gap> Faces(Conesl[2]);
(-2, -11, [ -1, 111
gap> Cones2:=[[[ 2 01,10,2,01,10,0,211, [[2,0,0], [0,2,0], [2,-2,1],11,2,-2]111;;
[

1
, 0

gap> Faces (Cones2[1]);

(ro, 0,113, [0

gap> Faces(Cones2[2]);

[ [1/3, 5/6, 1 1, [ 1/2, 0, =21, [ 2, 0, 11 ]

gap>

I

)
1, 071, 1, 0, 0]
)

2.1.5 ConesOfFan

{) ConesOfFan (Delta, k ) (function)

Input Delta is the fan of cones,
k is the dimension of the cones desired.
Output Thek-dimensional cones in the fan.

2.1.6 NumberOfConesOfFan

{ NumberOfConesOfFan (Delta, k ) (function)

Input Delta is the fan of cones i = Q",
k is the dimension of the cones counted.
Output The number ok -dimensional cones in the fan.
Idea: The farDelta is represented as a set of maximal cones. For each maximal cone, look at the

k-dimensional faces obtained by takinghoosek subsets of the rays describing the cone. Certain of
thesek -subsets yield the desired cones.

Example

gap> Deltal:=[ [ [2,0,0],[0,2,0],(0,0,2] 1, [ [2,0,01,100,2,01,12,-2,11,1[1,2,-21 1 1;§

gap>

gap> NumberOfConesOfFan (Deltal,2);

6

gap> ConesOfFan (Delta0,2);

(rrto, 021,002, 011, 0000 21, 02,0 011,
[[01210]/[1121_2]}1[[01210]1[21_211}]1
(to6, 2,01, 02 007171, 001 2 21,12, -2,111]1

gap> ConesOfFan (Deltal,1);

(rto,0 211, 000 2,011, [[1 2,-211,
(tz2,-2,111, 002, 0001711

gap> NumberOfConesOfFan (Deltal,1);

5
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2.1.7 ToricStar

11

O ToricStar (sigma, Delta ) (function)

Input sigma is a cone in the fan, represented by its set of maximal (i.e., highest dimensional)

cones.
Delta is the fan of cones iV = Q".

Output The star of the consigma in Delta , i.e., the cones which havesigma as a face.
Example

gap> MaxCones:=[ [ [2,0,0],([0,2,0],1[0,0,2] 1,

[ 12,0,01,100,2,01,12,-2,11,(1,2,-21 1 1;;
gap> #this is the set of maximal cones in the fan Delta
gap> ToricStar([[1,0]],MaxCones);

[ ]

gap> ToricStar([[2,0,0],[0,2,0]],MaxCones) ;
rrro,2,01,7t142,0011,7 1002 06071, T00,2,01, 160,60, 211,
[ 12,001, 1060,2,01, 112, -2,11, 11,2, -2111
gap>
gap> MaxCones:=| 2,0,01,10,2,01,1(0,0,2) 1, [ [2,0,01,100,2,01,11,1,-21 1 1;;
gap> ToricStar([[2,0,0],[0,2,0]],MaxCones) ;
01 ] (2, 0,01, [0, 2,071, 10,0, 211,

(L2 0 0]
gap> ToricStar (

(]

01

[
2

(10 00,2 01, I
[ 117_21]]
1

— =
~ = —

2.2 Semigroups

2.2.1 DualSemigroupGenerators

Q DualSemigroupGenerators (L) (function)

Input L is a list of integrah-vectors generating a cowe
Output the generators d&;,

Idea: letM be the maximum of the absolute values of the coordinates dfftli® for each vector
vin [1..M]", testifvis in the dual cone™*. If so, addv to list of possible generators. Once this for loop
is finished, one can check this list for redundant generators. The trick is to simply omit those elements

which are of the fornd; + d,, whered; andd, are “small” elements in the integral dual cone.

This program is not very efficient and should not be wused in “large ex-
amples” involving semigroups with “many” generators. For example,
you take L:=[[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]]; then

DualSemigroupGenerators (L); can exhaust GAP's memory allocation.
Example

gap> L:=[[1,0],[3,4]1];; DualSemigroupGenerators([[1,0],([3,4]1]1);
[ [0,0], [ l]l [1,0}, [27 -1 }r [37 -2 ]r [4/ _3] }
gap> L:=[[1,0, ] (1,1,01,11,1,11,11,0,1]1;;

gap> DualSemigroupGenerators (L) ;
tro6 o0, 013, 1606013, 90601, 071, 01 -1, 071, 1, 0 -171]1]
gap>

if
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Affine toric varieties

This chapter concernsric commands which deal with the coordinate rings of affine toric varieties
Us.

3.1 Ideals defining affine toric varieties

3.1.1 lIdealAffineToricVariety

Q IdealAffineToricVariety (L) (function)

Input L is a list generating a cone (aslinalSemigroupGenerators).
Output the GAP ideal defining the toric variety associated to the cone generated by the vedtors in
This computation is not very efficient and should not be used for ideals with many genera-
tors. For example, if you take:=[[1,2,3,4],[0,1,0,7],[3,1,0,2],[0,0,1,0]];
thenIdealAffineToricVariety (L); can exhaust GAP’s memory allocation.
Example
gap> J:=IdealAffineToricVariety([[1,0],[3,411);
[ two-sided ideal in PolynomialRing (..., [ x_1, x_2 1), (3 generators)
gap> GeneratorsOfIdeal (J);
[ -x_272+x_1, -x_2"3+x_172, -x_2"4+x_1"3 ]

3.1.2 EmbeddingAffineToricVariety

Q EmbeddingAffineToricVariety (L) (function)

Input L is a list generating a cone (aslinalSemigroupGenerators).
Output the toroidal embedding ok = Spe¢IdealAffineToricVariety (L)) (given as a list of
multinomials).

Example
gap> phi:=EmbeddingAffineToricVariety ([[1,0],[3,411);
[ % 2, x_ 1, x_1°2/x_4, x_1°3/x_4"2, x_1"4/x_4"3 ]
gap> L:=[[1,0,0],12,1,01,11,1,11,11,0,111;;

gap> phi:=EmbeddingAffineToricVariety(L);

[ x 3, x2, x1/%x.5, x_1/x_6 ]

12
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Toric varieties X(A)

This chapter concernsric commands which deal with certain objects associated to the (non-affine)
toric varietiesX(A).

4.1 Riemann-Roch spaces

Let A denote a complete nonsingular fan.

4.1.1 DivisorPolytope

¢ DivisorPolytope (D, Rays ) (function)

Input Rays is the list of smallest integer vectors in the rays for the &awhich determine the
Weil divisors of X (A).
Dis the list of coefficients for the a Weil divisor.
Output the linear expressions in the affine coordinates of the space of the cone which must be positive
for a point to be in the desired polytope.
Example
gap> DivisorPolytope([6,6,0]1,[[2,-1],[-1,2],[-1,-111);
[ 2*x_1-x_2+6, -x_1+2*x_2+6, -x_1-x_2 ]

See also Example 6.13 idy{07].

4.1.2 DivisorPolytopelatticePoints

{ DivisorPolytopeLatticePoints (D, Delta, Rays ) (function)

Input Delta is the fan
Rays is theorderedlist of rays forDelta
Dis the list of coefficients for a Weil divisor.
Output the list of points inPp NL§ which parameterize the elements in the Riemann-Roch space
L(D), wherePy is the polytope associated to the divigd{seeDivisorPolytope).

13
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Example

gap> Div:=[6,6,0];; Rays:=[[2,-1],[-1,2],[-1,-1]];;

gap> Delta0:=[[[2,-1],(-1,2]1],((-1,2],[-1,-1]],((-1,-1),1(2,-1)11;;

gap> P_Div:=DivisorPolytopelLatticePoints (Div,Deltal,Rays);

([-6, 61, [ -5 =51, [ -5 41, [-4 -51, [ -4, -
[ -4, =21, [ -3, =471, [ -3, =31, 10-3, -21,1-3, -
(-2, 41, (-2, 31, [-2,-21,[-2,-11,1-2,01,1-2,11,
[_212]1 [_lr _3}1 [_lr _2}1 [
(o6, 31,00 -21,100,-11, [0

gap>

RS
<
|
=N
<
w
<

4.1.3 RiemannRochBasis

{ RiemannRochBasis (D, Delta, Rays ) (function)

Input: Delta is a complete and nonsingular fan

D is the list of coefficients for the Weil divisor

Rays is a list of rays for the fan used to describe the Weil divisors.

Output A basis (a list of monomials) for the Riemann-Roch space of the divisor represeniied by

For details on how the Weil divisors can be expressed in terms of the rays of the fan, please see
section 3.3 inFul93. This procedure does not check if the fan is complete and nonsingular.

Example

gap> Div:=[6,6,0];; Rays:=[[2,71],[71,2],%L1,71}};;

gap> Delta:=[[[2,-1],[-1,2]],([[-1,2],([-1,-1]],[[-1,-11,12,-1111;;

gap> RiemannRochBasis (Div,Delta,Rays);

[ 1/(x_176*x_2"6), 1/(x_1"5*x_2"5), 1/(x_1"5*x_2"4), 1/(x_1"4*x_2"5),
1/(x_174*x_2"4), 1/(x_174*x_2°3), 1/(x_1"4*x_2"2), 1/(x_1"3*x_2"4),
1/(x_1°3*x_2"3), 1/(x_1°3*x_2°2), 1/(x_1"3*x_2), 1/x_1"3, 1/(x_1"2*x_2"4),
1/(x_172*x_2"3), 1/(x_172*x_2"2), 1/(x_1"2*x_2), 1/x_1"2, x 2/x_1"2,

X 2°2/%x 172, 1/(x_1*x.2"3), 1/(x_1*x_2"2), 1/(x_1*x_2), 1/x_1, x_ 2/x_1,
1/%x_2°3, 1/x.2"°2, 1/%x_2, 1, x_1/x. 272, x_1/%_2, x_1"°2/x.2"2 ]

1
1

4.2 Topological invariants

Throughout this sectiorX (A) must be non-singular

4.2.1 EulerCharacteristic

{ EulerCharacteristic (Delta ) (function)

Input Delta is a nonsingular fan of cones, represented by its list of maximal cones.
Output the Euler characteristic of the toric varietyA), whereA is a fan determined bRelta .
Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-1]],[[-1,-1],[2,-1111;;
gap> EulerCharacteristic(Cones);

3
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Note: X(A) must be non-singulahnere.

4.2.2 BettiNumberToric

{ BettiNumberToric (Delta, k ) (function)

Input: Delta represents a nonsingular fAr(represented by maximal cones),
k is an integer.
Output thek-th Betti number of the toric varietf(A).

The BettiNumberToric procedure does not checkDfelta is nonsingular. It is possible that
this procedure outputs nonsense whegita is not represented by maximal cones or is nonsingular.

Example
gap> Cones:=[[[2,-1],[-1,2]],[[-1,2],[-1,-11],[[-1,-1],1(2,-1111;;
gap> BettiNumberToric (Cones,1);
0
gap> BettiNumberToric (Cones,2);
1
gap> Cones:=[[[2,-1],([-1,1]],[(-1,1],[-1,0]],[[-1,01,(2,-1111;;

gap> BettiNumberToric (Cones,1);
0
gap> BettiNumberToric (Cones,?2);
1

Not to be confused with the Betti number of a polycyclically presented torsion free group, already
available inGAP.

4.3 Points over a finite field

4.3.1 CardinalityOfToricVariety

Q CardinalityOfToricVariety (Cones, q ) (function)

Input Cones is the list of maximal cones of a fak q is a prime power.
Output The size of the set dbF(q)-rational points of the toric variet{(A).
Note: X(A) must be non-singuldnere.

Example

gap> Cones:=[[[2,-1],[-1,2]1],([-1,2],([-1,-11],[[(-1,-11,12,-1111;;
gap> CardinalityOfToricVariety (Cones, 3);

13

gap> CardinalityOfToricVariety(Cones,4);

21

gap> CardinalityOfToricVariety (Cones,5);

31

gap> CardinalityOfToricVariety(Cones,7);

57
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