
DESIGN
A Package for GAP

by

Leonard H. Soicher

School of Mathematical Sciences

Queen Mary, University of London

Contents

1 Design 3

1.1 Installing the DESIGN Package . . 3

1.2 Loading DESIGN 4

1.3 The structure of a block design in
DESIGN 4

1.4 Example of the use of DESIGN . . 4

2 Information from block design
parameters 7

2.1 Information from t-design parameters 7

2.2 Block intersection polynomials . . 9

3 Constructing block designs 11

3.1 Functions to construct block designs 11

4 Determining basic properties of
block designs 19

4.1 The functions for basic properties . 19

5 Automorphism groups and
isomorphism testing for block
designs 23

5.1 Computing automorphism groups . 23

5.2 Testing isomorphism 23

6 Classifying block designs 25

6.1 The function BlockDesigns . . . 25

7 Classifying semi-Latin squares 28

7.1 Semi-Latin squares and SOMAs . . 28

7.2 The function SemiLatinSquareDuals 28

8 Partitioning block designs 30

8.1 Partitioning a block design into block
designs 30

8.2 Computing resolutions 33

9 XML I/O of block designs 35

9.1 Writing lists of block designs and their
properties in XML-format 35

9.2 Reading lists of block designs in
XML-format 36

Bibliography 37

Index 38

1 Design

This manual describes the DESIGN 1.4 package for GAP (version at least 4.4). The DESIGN package is for
constructing, classifying, partitioning and studying block designs.
All DESIGN functions are written entirely in the GAP language. However, DESIGN requires the GRAPE
package [Soi06] (version at least 4.2) to be installed, and makes use of certain GRAPE functions, some of
which make use of B. D. McKay’s nauty package [McK05]. These GRAPE functions can only be used on a
fully installed version of GRAPE in a UNIX environment. DESIGN also requires the GAPDoc package [LN08]
(version at least 0.99), if you want to read lists of designs in the

http://designtheory.org external representation XML format (see [CDMS04]).
The DESIGN package is Copyright c© Leonard H. Soicher 2003–2009. DESIGN is part of a wider project,
which received EPSRC funding under grant GR/R29659/01, to provide a web-based resource for design
theory; see

http://designtheory.org and [BCD+06].
DESIGN is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. For details, see

http://www.gnu.org/licenses/gpl.html

If you use DESIGN to solve a problem then please send a short email about it to L.H.Soicher@qmul.ac.uk,
and reference the DESIGN package as follows:
L. H. Soicher, The DESIGN package for GAP, Version 1.4, 2009,

http://designtheory.org/software/gap design/ .

1.1 Installing the DESIGN Package

The DESIGN package has complete functionality only in a UNIX environment in which the GRAPE and
GAPDoc packages are fully installed.
To install DESIGN 1.4 (on a UNIX system, after installing GAP, GRAPE and GAPDoc), first obtain the
DESIGN archive file design1r4.tar.gz, available from

http://designtheory.org/software/gap design/ and then copy this archive file into the pkg
directory of the GAP root directory. Actually, it is possible to have several GAP root directories, and so it
is easy to install DESIGN locally even if you have no permission to add files to the main GAP installation
(see the GAP reference manual section “ref:gap root directory”). Now go to the appropriate pkg directory
containing design1r4.tar.gz, and then run

gunzip design1r4.tar.gz
tar -xf design1r4.tar

That’s all there is to do.
Both dvi and pdf versions of the DESIGN manual are available (as manual.dvi and manual.pdf respectively)
in the doc directory of the home directory of DESIGN.
If you install DESIGN, then please tell L.H.Soicher@qmul.ac.uk, where you should also send any
comments or bug reports.

4 Chapter 1. Design

1.2 Loading DESIGN

Before using DESIGN you must load the package within GAP by calling the statement

gap> LoadPackage("design");
true

1.3 The structure of a block design in DESIGN

A block design is an ordered pair (X ,B), where X is a non-empty finite set whose elements are called
points, and B is a non-empty finite multiset whose elements are called blocks, such that each block is a
non-empty finite multiset of points.

DESIGN deals with arbitrary block designs. However, at present, some DESIGN functions only work for
binary block designs (i.e. those with no repeated element in any block of the design), but these functions
will check if an input block design is binary.

In DESIGN, a block design D is stored as a record, with mandatory components isBlockDesign, v, and
blocks. The points of a block design D are always 1,2,...,D.v, but they may also be given names in the
optional component pointNames, with D.pointNames[i] the name of point i . The blocks component must
be a sorted list of the blocks of D (including any repeats), with each block being a sorted list of points
(including any repeats).

A block design record may also have some optional components which store information about the design. At
present these optional components include isSimple, isBinary, isConnected, r, blockSizes, blockNum-
bers, resolutions, autGroup, autSubgroup, tSubsetStructure, allTDesignLambdas, and pointNames.

A non-expert user should only use functions in the DESIGN package to create block design records and their
components.

1.4 Example of the use of DESIGN

To give you an idea of the capabilities of this package, we now give an extended example of an application
of the DESIGN package, in which a nearly resolvable non-simple 2-(21,4,3) design is constructed (for Donald
Preece) via a pairwise-balanced design. All the DESIGN functions used here are described in this manual.

The program first discovers the unique (up to isomorphism) pairwise-balanced 2-(21,{4, 5},1) design D
invariant under H = 〈(1, 2, . . . , 20)〉, and then applies the ∗-construction of [MS07] to this design D to obtain
a non-simple 2-(21,4,3) design Dstar with automorphism group of order 80. The program then classifies the
near-resolutions of Dstar invariant under the subgroup of order 5 of H , and finds exactly two such (up to
the action of Aut (Dstar)). Finally, Dstar is printed.

gap> H:=CyclicGroup(IsPermGroup,20);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)])
gap> D:=BlockDesigns(rec(v:=21,blockSizes:=[4,5],
> tSubsetStructure:=rec(t:=2,lambdas:=[1]),
> requiredAutSubgroup:=H));;
gap> Length(D);
1
gap> D:=D[1];;
gap> BlockSizes(D);
[4, 5]
gap> BlockNumbers(D);
[20, 9]
gap> Size(AutGroupBlockDesign(D));
80

Section 4. Example of the use of DESIGN 5

gap> Dstar:=TDesignFromTBD(D,2,4);;
gap> AllTDesignLambdas(Dstar);
[105, 20, 3]
gap> IsSimpleBlockDesign(Dstar);
false
gap> Size(AutGroupBlockDesign(Dstar));
80
gap> near_resolutions:=PartitionsIntoBlockDesigns(rec(
> blockDesign:=Dstar,
> v:=21,blockSizes:=[4],
> tSubsetStructure:=rec(t:=0,lambdas:=[5]),
> blockIntersectionNumbers:=[[[0]]],
> requiredAutSubgroup:=SylowSubgroup(H,5)));;
gap> Length(near_resolutions);
2
gap> List(near_resolutions,x->Size(x.autGroup));
[5, 20]
gap> Print(Dstar,"\n");
rec(
isBlockDesign := true,
v := 21,
blocks := [[1, 2, 4, 15], [1, 2, 4, 15], [1, 2, 4, 15],

[1, 3, 14, 20], [1, 3, 14, 20], [1, 3, 14, 20], [1, 5, 9, 13],
[1, 5, 9, 17], [1, 5, 13, 17], [1, 6, 11, 16], [1, 6, 11, 21],
[1, 6, 16, 21], [1, 7, 8, 10], [1, 7, 8, 10], [1, 7, 8, 10],
[1, 9, 13, 17], [1, 11, 16, 21], [1, 12, 18, 19],
[1, 12, 18, 19], [1, 12, 18, 19], [2, 3, 5, 16], [2, 3, 5, 16],
[2, 3, 5, 16], [2, 6, 10, 14], [2, 6, 10, 18], [2, 6, 14, 18],
[2, 7, 12, 17], [2, 7, 12, 21], [2, 7, 17, 21], [2, 8, 9, 11],
[2, 8, 9, 11], [2, 8, 9, 11], [2, 10, 14, 18], [2, 12, 17, 21],
[2, 13, 19, 20], [2, 13, 19, 20], [2, 13, 19, 20],
[3, 4, 6, 17], [3, 4, 6, 17], [3, 4, 6, 17], [3, 7, 11, 15],
[3, 7, 11, 19], [3, 7, 15, 19], [3, 8, 13, 18], [3, 8, 13, 21],
[3, 8, 18, 21], [3, 9, 10, 12], [3, 9, 10, 12], [3, 9, 10, 12],
[3, 11, 15, 19], [3, 13, 18, 21], [4, 5, 7, 18], [4, 5, 7, 18],
[4, 5, 7, 18], [4, 8, 12, 16], [4, 8, 12, 20], [4, 8, 16, 20],
[4, 9, 14, 19], [4, 9, 14, 21], [4, 9, 19, 21], [4, 10, 11, 13],
[4, 10, 11, 13], [4, 10, 11, 13], [4, 12, 16, 20],
[4, 14, 19, 21], [5, 6, 8, 19], [5, 6, 8, 19], [5, 6, 8, 19],
[5, 9, 13, 17], [5, 10, 15, 20], [5, 10, 15, 21],
[5, 10, 20, 21], [5, 11, 12, 14], [5, 11, 12, 14],
[5, 11, 12, 14], [5, 15, 20, 21], [6, 7, 9, 20], [6, 7, 9, 20],
[6, 7, 9, 20], [6, 10, 14, 18], [6, 11, 16, 21],
[6, 12, 13, 15], [6, 12, 13, 15], [6, 12, 13, 15],
[7, 11, 15, 19], [7, 12, 17, 21], [7, 13, 14, 16],
[7, 13, 14, 16], [7, 13, 14, 16], [8, 12, 16, 20],
[8, 13, 18, 21], [8, 14, 15, 17], [8, 14, 15, 17],
[8, 14, 15, 17], [9, 14, 19, 21], [9, 15, 16, 18],
[9, 15, 16, 18], [9, 15, 16, 18], [10, 15, 20, 21],
[10, 16, 17, 19], [10, 16, 17, 19], [10, 16, 17, 19],
[11, 17, 18, 20], [11, 17, 18, 20], [11, 17, 18, 20]],

autGroup := Group([(2,14,10,18)(3, 7,19,15)(4,20, 8,12)(5,13,17, 9),

6 Chapter 1. Design

(1,17, 5, 9)(2,10,14, 6)(4,16,12,20)(7,15,19,11),
(1,18,19,12)(2,11, 8, 9)(3, 4,17, 6)(5,10,15,20)(7,16,13,14)]),

blockSizes := [4],
isBinary := true,
allTDesignLambdas := [105, 20, 3],
isSimple := false)

2
Information from block

design parameters

2.1 Information from t-design parameters

For t a non-negative integer and v , k , λ positive integers with t ≤ k ≤ v , a t-design with parameters
t , v , k , λ, or a t-(v , k , λ) design, is a binary block design with exactly v points, such that each block has
size k and each t-subset of the points is contained in exactly λ blocks.

1 I TDesignLambdas(t, v, k, lambda)

A t-(v , k , λ) design is also an s-(v , k , λs) design for 0 ≤ s ≤ t , where λs = λ
(v−s

t−s

)
/
(k−s

t−s

)
.

Given a non-negative integer t , and positive integers v , k , lambda, with t ≤ k ≤ v , this function returns a
length t + 1 list whose (s + 1)-st element is λs as defined above, if all the λs are integers. Otherwise, fail
is returned.

gap> TDesignLambdas(5,24,8,1);
[759, 253, 77, 21, 5, 1]

2 I TDesignLambdaMin(t, v, k)

Given a non-negative integer t , and positive integers v and k , with t ≤ k ≤ v , this function returns the
minimum positive lambda such that TDesignLambdas(t, v, k, lambda) does not return fail.

See 2.1.1.

gap> TDesignLambdaMin(5,24,8);
1
gap> TDesignLambdaMin(2,12,4);
3

3 I TDesignIntersectionTriangle(t, v, k, lambda)

Suppose D is a t-(v ,k ,lambda) design, let i and j be non-negative integers with i + j ≤ t , and suppose
X and Y are disjoint subsets of the points of D , such that X and Y have respective sizes i and j . The
(i , j)-intersection number is the number of blocks of D that contain X and are disjoint from Y (this
number depends only on t , v , k , lambda, i and j).

Given a non-negative integer t , and positive integers v , k and lambda, with t ≤ k ≤ v , this function returns
the t-design intersection triangle, which is a two dimensional array whose (i + 1, j + 1)-entry is the
(i , j)-intersection number for a t-(v ,k ,lambda) design (assuming such a design exists), such that i , j ≥ 0,
i + j ≤ t . This function returns fail if TDesignLambdas(t,v,k,lambda) does. When lambda = 1, then
more information can be obtained using 2.1.4.

8 Chapter 2. Information from block design parameters

gap> TDesignLambdas(2,12,4,3);
[33, 11, 3]
gap> TDesignIntersectionTriangle(2,12,4,3);
[[33, 22, 14], [11, 8], [3]]
gap> TDesignLambdas(2,12,4,2);
fail
gap> TDesignIntersectionTriangle(2,12,4,2);
fail

4 I SteinerSystemIntersectionTriangle(t, v, k)

A Steiner system is a t-(v ,k ,1) design, and in this case it is possible to extend the notion of intersection
triangle defined in 2.1.3.

Suppose D is a t-(v ,k ,1) design, with B a block of D , let i and j be non-negative integers with i + j ≤ k ,
and suppose X and Y are disjoint subsets of B , such that X and Y have respective sizes i and j . The
(i , j)-intersection number is the number of blocks of D that contain X and are disjoint from Y (this
number depends only on t , v , k , i and j). Note that when i + j ≤ t , this intersection number is the same
as that defined in 2.1.3 for the general t-design case.

Given a non-negative integer t , and positive integers v and k , with t ≤ k ≤ v , this function returns the
Steiner system intersection triangle, which is a two dimensional array whose (i + 1, j + 1)-entry is the
(i , j)-intersection number for a t-(v ,k ,1) design (assuming such a design exists), such that i , j ≥ 0, i + j ≤ k .
This function returns fail if TDesignLambdas(t,v,k,1) does.

See also 2.1.3.

gap> SteinerSystemIntersectionTriangle(5,24,8);
[[759, 506, 330, 210, 130, 78, 46, 30, 30],
[253, 176, 120, 80, 52, 32, 16, 0], [77, 56, 40, 28, 20, 16, 16],
[21, 16, 12, 8, 4, 0], [5, 4, 4, 4, 4], [1, 0, 0, 0], [1, 0, 0],
[1, 0], [1]]

gap> TDesignIntersectionTriangle(5,24,8,1);
[[759, 506, 330, 210, 130, 78], [253, 176, 120, 80, 52],
[77, 56, 40, 28], [21, 16, 12], [5, 4], [1]]

5 I TDesignBlockMultiplicityBound(t, v, k, lambda)

Given a non-negative integer t , and positive integers v , k and lambda, with t ≤ k ≤ v , this function returns
a non-negative integer which is an upper bound on the multiplicity of any block in any t-(v ,k ,lambda) design
(the multiplicity of a block in a block design is the number of times that block occurs in the block list).
In particular, if the value 0 is returned, then this implies that a t-(v ,k ,lambda) design does not exist.

Although our bounds are reasonably good, we do not claim that the returned bound m is always achieved;
that is, there may not exist a t-(v ,k ,lambda) design having a block with multiplicity m.

See also 2.1.6.

gap> TDesignBlockMultiplicityBound(5,16,7,5);
2
gap> TDesignBlockMultiplicityBound(2,36,6,1);
0
gap> TDesignBlockMultiplicityBound(2,36,6,2);
2
gap> TDesignBlockMultiplicityBound(2,15,5,2);
0
gap> TDesignBlockMultiplicityBound(2,15,5,4);
2

Section 2. Block intersection polynomials 9

gap> TDesignBlockMultiplicityBound(2,11,4,6);
3

6 I ResolvableTDesignBlockMultiplicityBound(t, v, k, lambda)

A resolution of a block design is a partition of the blocks into subsets, each of which forms a partition of
the point set, and a block design is resolvable if it has a resolution.

Given a non-negative integer t , and positive integers v , k and lambda, with t ≤ k ≤ v , this function
returns a non-negative integer which is an upper bound on the multiplicity of any block in any resolvable
t-(v ,k ,lambda) design (the multiplicity of a block in a block design is the number of times that block occurs
in the block list). In particular, if the value 0 is returned, then this implies that a resolvable t-(v ,k ,lambda)
design does not exist.

Although our bounds are reasonably good, we do not claim that the returned bound m is always achieved;
that is, there may not exist a resolvable t-(v ,k ,lambda) design having a block with multiplicity m.

See also 2.1.5.

gap> ResolvableTDesignBlockMultiplicityBound(5,12,6,1);
1
gap> ResolvableTDesignBlockMultiplicityBound(2,21,7,3);
0
gap> TDesignBlockMultiplicityBound(2,21,7,3);
1
gap> ResolvableTDesignBlockMultiplicityBound(2,12,4,3);
1
gap> TDesignBlockMultiplicityBound(2,12,4,3);
2

2.2 Block intersection polynomials

In [CS07], Cameron and Soicher introduce block intersection polynomials and their applications to the study
of block designs. Here we give functions to construct and analyze block intersection polynomials.

1 I BlockIntersectionPolynomial(x, m, lambdavec)

For k a non-negative integer, define the polynomial P(x , k) = x (x − 1) · · · (x − k + 1). Let s and t be
non-negative integers, with s ≥ t , and let m0, . . . ,ms and λ0, . . . , λt be rational numbers. Then the block
intersection polynomial for the sequences [m0, . . . ,ms], [λ0, . . . , λt] is defined to be

t∑
j=0

(
t
j

)
P(−x , t − j)[P(s, j)λj −

s∑
i=j

P(i , j)mi],

and is denoted by B(x , [m0, . . . ,ms], [λ0, . . . , λt])·
Now suppose x is an indeterminate over the rationals, and m and lambdavec are non-empty lists of rational
numbers, such that the length of lambdavec is not greater than that of m. Then this function returns the
block intersection polynomial B(x ,m, lambdavec).

The importance of a block intersection polynomial is as follows. Let D = (V ,B) be a block design, let
S ⊆ V , with s = |S |, and for i = 0, . . . , s, suppose that mi is a non-negative integer with mi ≤ ni , where
ni is the number of blocks intersecting S in exactly i points. Let t be a non-negative even integer with
t ≤ s, and suppose that, for j = 0 . . . , t , we have λj = 1/

(s
j

) ∑
T⊆S ,|T |=j λT , where λT is the number of

blocks of D containing T . Then the block intersection polynomial B(x) = B(x , [m0, . . . ,ms], [λ0, . . . , λt]) is a
polynomial with integer coefficients, and B(n) ≥ 0 for every integer n. (These conditions can be checked using
the function 2.2.2.) In addition, if B(n) = 0 for some integer n, then mi = ni for i 6∈ {n,n +1, . . . ,n + t−1}.

10 Chapter 2. Information from block design parameters

For more information on block intersection polynomials and their applications, see [CS07] and [Soi].

gap> x:=Indeterminate(Rationals,1);
x_1
gap> m:=[0,0,0,0,0,0,0,1];;
gap> lambdavec:=TDesignLambdas(6,14,7,4);
[1716, 858, 396, 165, 60, 18, 4]
gap> B:=BlockIntersectionPolynomial(x,m,lambdavec);
1715*x_1^6-10269*x_1^5+34685*x_1^4-69615*x_1^3+84560*x_1^2-56196*x_1+15120
gap> Factors(B);
[1715*x_1-1715,
x_1^5-1222/245*x_1^4+3733/245*x_1^3-6212/245*x_1^2+5868/245*x_1-432/49]

gap> Value(B,1);
0

2 I BlockIntersectionPolynomialCheck(m, lambdavec)

Suppose m is a list of non-negative integers, and lambdavec is a list of non-negative rational numbers, with
the length of lambdavec odd and not greater than the length of m.

Then, for x an indeterminate over the rationals, this function checks whether BlockIntersectionPolyno-
mial(x,m,lambdavec) is a polynomial over the integers and has a non-negative value at each integer. The
function returns true if this is so; else false is returned.

See also 2.2.1.

gap> m:=[0,0,0,0,0,0,0,1];;
gap> lambdavec:=TDesignLambdas(6,14,7,4);
[1716, 858, 396, 165, 60, 18, 4]
gap> BlockIntersectionPolynomialCheck(m,lambdavec);
true
gap> m:=[1,0,0,0,0,0,0,1];;
gap> BlockIntersectionPolynomialCheck(m,lambdavec);
false

3
Constructing
block designs

3.1 Functions to construct block designs

1 I BlockDesign(v, B)
I BlockDesign(v, B, G)

Let v be a positive integer and B a non-empty list of non-empty sorted lists of elements of {1, . . . , v}.
The first version of this function returns the block design with point-set {1, . . . , v} and block multiset C ,
where C is SortedList(B).

For the second version of this function, we require G to be a group of permutations of {1, . . . , v}, and the
function returns the block design with point-set {1, . . . , v} and block multiset C , where C is the sorted list
of the concatenation of the G-orbits of the elements of B .

gap> BlockDesign(2, [[1,2],[1],[1,2]]);
rec(isBlockDesign := true, v := 2, blocks := [[1], [1, 2], [1, 2]])
gap> D:=BlockDesign(7, [[1,2,4]], Group((1,2,3,4,5,6,7)));
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 3, 7], [1, 5, 6], [2, 3, 5],

[2, 6, 7], [3, 4, 6], [4, 5, 7]],
autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> AllTDesignLambdas(D);
[7, 3, 1]

2 I AGPointFlatBlockDesign(n, q, d)

Let n be positive integer, q a prime-power, and d a non-negative integer less than or equal to n. Then this
function returns the block design whose points are the points of the affine space AG(n, q), and whose blocks
are the d -flats of AG(n, q), considering a d -flat as a set of points.

Note that the affine space AG(n, q) consists of all the cosets of all the subspaces of the vector space
V (n, q), with the points being the cosets of the 0-dimensional subspace and the d-flats being the cosets
of the d -dimensional subspaces. As is usual, we identify the points with the vectors in V (n, q), and these
vectors are given as the point-names.

gap> D:=AGPointFlatBlockDesign(2,4,1);
rec(isBlockDesign := true, v := 16,
blocks := [[1, 2, 3, 4], [1, 5, 9, 13], [1, 6, 11, 16],

[1, 7, 12, 14], [1, 8, 10, 15], [2, 5, 12, 15], [2, 6, 10, 14],
[2, 7, 9, 16], [2, 8, 11, 13], [3, 5, 10, 16], [3, 6, 12, 13],
[3, 7, 11, 15], [3, 8, 9, 14], [4, 5, 11, 14], [4, 6, 9, 15],
[4, 7, 10, 13], [4, 8, 12, 16], [5, 6, 7, 8], [9, 10, 11, 12],
[13, 14, 15, 16]],

autSubgroup := Group([(5,9,13)(6,10,14)(7,11,15)(8,12,16),
(2,5,6)(3,9,11)(4,13,16)(7,14,12)(8,10,15),
(1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16),

12 Chapter 3. Constructing block designs

(3,4)(7,8)(9,13)(10,14)(11,16)(12,15)]),
pointNames := [[0*Z(2), 0*Z(2)], [0*Z(2), Z(2)^0], [0*Z(2), Z(2^2)],

[0*Z(2), Z(2^2)^2], [Z(2)^0, 0*Z(2)], [Z(2)^0, Z(2)^0],
[Z(2)^0, Z(2^2)], [Z(2)^0, Z(2^2)^2], [Z(2^2), 0*Z(2)],
[Z(2^2), Z(2)^0], [Z(2^2), Z(2^2)], [Z(2^2), Z(2^2)^2],
[Z(2^2)^2, 0*Z(2)], [Z(2^2)^2, Z(2)^0], [Z(2^2)^2, Z(2^2)],
[Z(2^2)^2, Z(2^2)^2]])

gap> AllTDesignLambdas(D);
[20, 5, 1]

3 I PGPointFlatBlockDesign(n, q, d)

Let n be a non-negative integer, q a prime-power, and d a non-negative integer less than or equal to n.
Then this function returns the block design whose points are the (projective) points of the projective space
PG(n, q), and whose blocks are the d -flats of PG(n, q), considering a d -flat as a set of projective points.

Note that the projective space PG(n, q) consists of all the subspaces of the vector space V (n +1, q), with
the projective points being the 1-dimensional subspaces and the d-flats being the (d + 1)-dimensional
subspaces.

gap> D:=PGPointFlatBlockDesign(3,2,1);
rec(isBlockDesign := true, v := 15,
blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[1, 10, 11], [1, 12, 13], [1, 14, 15], [2, 4, 6], [2, 5, 7],
[2, 8, 10], [2, 9, 11], [2, 12, 14], [2, 13, 15], [3, 4, 7],
[3, 5, 6], [3, 8, 11], [3, 9, 10], [3, 12, 15], [3, 13, 14],
[4, 8, 12], [4, 9, 13], [4, 10, 14], [4, 11, 15], [5, 8, 13],
[5, 9, 12], [5, 10, 15], [5, 11, 14], [6, 8, 14], [6, 9, 15],
[6, 10, 12], [6, 11, 13], [7, 8, 15], [7, 9, 14],
[7, 10, 13], [7, 11, 12]],

autSubgroup := Group([(8,12)(9,13)(10,14)(11,15),
(1,2,4,8)(3,6,12,9)(5,10)(7,14,13,11)]),

pointNames := [<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>])

gap> AllTDesignLambdas(D);
[35, 7, 1]

4 I WittDesign(n)

Suppose n ∈ {9, 10, 11, 12, 21, 22, 23, 24}.

Section 1. Functions to construct block designs 13

If n = 24 then this function returns the large Witt design W24, the unique (up to isomorphism) 5-(24,8,1)
design. If n = 24− i , where i ∈ {1, 2, 3}, then the i -fold point-derived design of W24 is returned; this is the
unique (up to isomorphism) (5− i)-(24− i , 8− i , 1) design.

If n = 12 then this function returns the small Witt design W12, the unique (up to isomorphism) 5-(12,6,1)
design. If n = 12− i , where i ∈ {1, 2, 3}, then the i -fold point-derived design of W12 is returned; this is the
unique (up to isomorphism) (5− i)-(12− i , 6− i , 1) design.

gap> W24:=WittDesign(24);;
gap> AllTDesignLambdas(W24);
[759, 253, 77, 21, 5, 1]
gap> DisplayCompositionSeries(AutomorphismGroup(W24));
G (3 gens, size 244823040)
M(24)

1 (0 gens, size 1)
gap> W10:=WittDesign(10);;
gap> AllTDesignLambdas(W10);
[30, 12, 4, 1]
gap> DisplayCompositionSeries(AutomorphismGroup(W10));
G (4 gens, size 1440)
Z(2)

S (4 gens, size 720)
Z(2)

S (3 gens, size 360)
A(6) ~ A(1,9) = L(2,9) ~ B(1,9) = O(3,9) ~ C(1,9) = S(2,9) ~ 2A(1,9) = U(2,\

9)
1 (0 gens, size 1)

5 I DualBlockDesign(D)

Suppose D is a block design for which every point lies on at least one block. Then this function returns the
dual of D , the block design in which the roles of points and blocks are interchanged, but incidence (including
repeated incidence) stays the same. Note that, since the list of blocks of a block design is always sorted, the
block list of the dual of the dual of D may not be equal to the block list of D .

gap> D:=BlockDesign(4,[[1,3],[2,3,4],[3,4]]);;
gap> dualD:=DualBlockDesign(D);
rec(isBlockDesign := true, v := 3,
blocks := [[1], [1, 2, 3], [2], [2, 3]],
pointNames := [[1, 3], [2, 3, 4], [3, 4]])

gap> DualBlockDesign(dualD).blocks;
[[1, 2], [2, 3, 4], [2, 4]]

6 I ComplementBlocksBlockDesign(D)

Suppose D is a binary incomplete-block design. Then this function returns the block design on the same
point-set as D , whose blocks are the complements of those of D (complemented with respect to the point-set).

gap> D:=PGPointFlatBlockDesign(2,2,1);
rec(isBlockDesign := true, v := 7,
pointNames := [<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,

14 Chapter 3. Constructing block designs

<vector space of dimension 1 over GF(2)>],
blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [2, 4, 6],

[2, 5, 7], [3, 4, 7], [3, 5, 6]])
gap> AllTDesignLambdas(D);
[7, 3, 1]
gap> C:=ComplementBlocksBlockDesign(D);
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4, 7], [1, 2, 5, 6], [1, 3, 4, 6], [1, 3, 5, 7],

[2, 3, 4, 5], [2, 3, 6, 7], [4, 5, 6, 7]],
pointNames := [<vector space of dimension 1 over GF(2)>,

<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>,
<vector space of dimension 1 over GF(2)>])

gap> AllTDesignLambdas(C);
[7, 4, 2]

7 I DeletedPointsBlockDesign(D, Y)

Suppose D is a block design and Y is a proper subset of the point-set of D .

Then this function returns the block design DP obtained from D by deleting the points in Y from the
point-set, and from each block. It is an error if the resulting design contains an empty block. The points of
DP are relabelled 1, 2, · · ·, preserving the order of the corresponding points of D ; the point-names of DP
(listed in DP.pointNames) are those of these corresponding points of D .

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],
> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];
rec(isBlockDesign := true, v := 11,
blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],
[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],
[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,
isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,
autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))
gap> AllTDesignLambdas(D);
[11, 5, 2]
gap> DP:=DeletedPointsBlockDesign(D,[5,8]);
rec(isBlockDesign := true, v := 9,
blocks := [[1, 2, 3, 4], [1, 2, 7, 8, 9], [1, 3, 5, 6, 7],

[1, 4, 6, 8], [1, 5, 9], [2, 3, 5, 8], [2, 4, 5, 6, 9],
[2, 6, 7], [3, 4, 7, 9], [3, 6, 8, 9], [4, 5, 7, 8]],

pointNames := [1, 2, 3, 4, 6, 7, 9, 10, 11])
gap> PairwiseBalancedLambda(DP);
2

8 I DeletedBlocksBlockDesign(D, Y)

Suppose D is a block design, and Y is a proper sublist of the block-list of D (Y need not be sorted).

Section 1. Functions to construct block designs 15

Then this function returns the block design obtained from D by deleting the blocks in Y (counting repeats)
from the block-list of D .

gap> D:=BlockDesign(7,[[1,2,4],[1,2,4]],Group((1,2,3,4,5,6,7)));
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],
[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))
gap> DeletedBlocksBlockDesign(D,[[2,3,5],[2,3,5],[4,5,7]]);
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 6, 7], [2, 6, 7], [3, 4, 6],
[3, 4, 6], [4, 5, 7]])

9 I AddedPointBlockDesign(D, Y)
I AddedPointBlockDesign(D, Y , pointname)

Suppose D is a block design, and Y is a sublist of the block-list of D (Y need not be sorted).
Then this function returns the block design obtained from D by adding the new point D.v+1 to the point-set,
and adding this new point (once) to each block of Y (where repeats count).
The optional parameter pointname specifies a point-name for the new point.

gap> D:=BlockDesign(7,[[1,2,4],[1,2,4]],Group((1,2,3,4,5,6,7)));
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],
[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]],

autSubgroup := Group([(1,2,3,4,5,6,7)]))
gap> AddedPointBlockDesign(D,[[2,3,5],[2,3,5],[4,5,7]],"infinity");
rec(isBlockDesign := true, v := 8,
blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5, 8], [2, 3, 5, 8], [2, 6, 7],
[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7, 8]],

pointNames := [1, 2, 3, 4, 5, 6, 7, "infinity"])

10 I AddedBlocksBlockDesign(D, Y)

Suppose Y is a list of multisets of points of the block design D . Then this function returns a new block
design, whose point-set is that of D , and whose block list is that of D with the elements of Y (including
repeats) added.

gap> D:=BlockDesign(7,[[1,2,4]],Group((1,2,3,4,5,6,7)));
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 3, 7], [1, 5, 6], [2, 3, 5],

[2, 6, 7], [3, 4, 6], [4, 5, 7]],
autSubgroup := Group([(1,2,3,4,5,6,7)]))

gap> AddedBlocksBlockDesign(D,D.blocks);
rec(isBlockDesign := true, v := 7,
blocks := [[1, 2, 4], [1, 2, 4], [1, 3, 7], [1, 3, 7],

[1, 5, 6], [1, 5, 6], [2, 3, 5], [2, 3, 5], [2, 6, 7],
[2, 6, 7], [3, 4, 6], [3, 4, 6], [4, 5, 7], [4, 5, 7]])

11 I DerivedBlockDesign(D, x)

Suppose D is a block design, and x is a point or block of D . Then this function returns the derived design
DD of D , with respect to x .

16 Chapter 3. Constructing block designs

If x is a point then DD is the block design whose blocks are those of D containing x , but with x deleted
from these blocks, and the points of DD are those which occur in some block of DD .

If x is a block, then the points of DD are the points in x , and the blocks of DD are the blocks of D other
than x containing at least one point of x , but with all points not in x deleted from these blocks. Note that
any repeat of x , but not x itself, is a block of DD .

It is an error if the resulting block design DD has no blocks or an empty block.

The points of DD are relabelled 1, 2, · · ·, preserving the order of the corresponding points of D ; the point-
names of DD (listed in DD.pointNames) are those of these corresponding points of D .

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],
> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];
rec(isBlockDesign := true, v := 11,
blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],
[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],
[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,
isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,
autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))
gap> AllTDesignLambdas(D);
[11, 5, 2]
gap> DD:=DerivedBlockDesign(D,6);
rec(isBlockDesign := true, v := 10,
blocks := [[1, 3, 6, 8], [1, 5, 7, 10], [2, 3, 7, 9],

[2, 4, 6, 10], [4, 5, 8, 9]],
pointNames := [1, 2, 3, 4, 5, 7, 8, 9, 10, 11])

gap> AllTDesignLambdas(DD);
[5, 2]
gap> DD:=DerivedBlockDesign(D,D.blocks[6]);
rec(isBlockDesign := true, v := 5,
blocks := [[1, 2], [1, 3], [1, 4], [1, 5], [2, 3], [2, 4],

[2, 5], [3, 4], [3, 5], [4, 5]],
pointNames := [2, 3, 6, 8, 10])

gap> AllTDesignLambdas(DD);
[10, 4, 1]

12 I ResidualBlockDesign(D, x)

Suppose D is a block design, and x is a point or block of D . Then this function returns the residual design
RD of D , with respect to x .

If x is a point then RD is the block design whose blocks are those of D not containing x , and the points of
RD are those which occur in some block of RD .

If x is a block, then the points of RD are those of D not in x , and the blocks of RD are the blocks of D
(including repeats) containing at least one point not in x , but with all points in x deleted from these blocks.

It is an error if the resulting block design RD has no blocks.

The points of RD are relabelled 1, 2, · · ·, preserving the order of the corresponding points of D ; the point-
names of RD (listed in RD.pointNames) are those of these corresponding points of D .

Section 1. Functions to construct block designs 17

gap> D:=BlockDesigns(rec(v:=11,blockSizes:=[5],
> tSubsetStructure:=rec(t:=2,lambdas:=[2])))[1];
rec(isBlockDesign := true, v := 11,
blocks := [[1, 2, 3, 4, 5], [1, 2, 9, 10, 11], [1, 3, 6, 7, 9],

[1, 4, 7, 8, 10], [1, 5, 6, 8, 11], [2, 3, 6, 8, 10],
[2, 4, 6, 7, 11], [2, 5, 7, 8, 9], [3, 4, 8, 9, 11],
[3, 5, 7, 10, 11], [4, 5, 6, 9, 10]],

tSubsetStructure := rec(t := 2, lambdas := [2]), isBinary := true,
isSimple := true, blockSizes := [5], blockNumbers := [11], r := 5,
autGroup := Group([(2,4)(3,5)(7,11)(8,9), (1,3)(2,5)(7,9)(10,11),

(1,5,3)(6,11,7)(8,10,9), (1,10,5,2,11,3)(4,9,7)(6,8)]))
gap> AllTDesignLambdas(D);
[11, 5, 2]
gap> RD:=ResidualBlockDesign(D,6);
rec(isBlockDesign := true, v := 10,
blocks := [[1, 2, 3, 4, 5], [1, 2, 8, 9, 10], [1, 4, 6, 7, 9],

[2, 5, 6, 7, 8], [3, 4, 7, 8, 10], [3, 5, 6, 9, 10]],
pointNames := [1, 2, 3, 4, 5, 7, 8, 9, 10, 11])

gap> AllTDesignLambdas(RD);
[6, 3]
gap> RD:=ResidualBlockDesign(D,D.blocks[6]);
rec(isBlockDesign := true, v := 6,
blocks := [[1, 2, 3], [1, 2, 4], [1, 3, 6], [1, 4, 5],

[1, 5, 6], [2, 3, 5], [2, 4, 6], [2, 5, 6], [3, 4, 5],
[3, 4, 6]], pointNames := [1, 4, 5, 7, 9, 11])

gap> AllTDesignLambdas(RD);
[10, 5, 2]

13 I TDesignFromTBD(D, t, k)

For t a non-negative integer, K a set of positive integers, and v , λ positive integers with t ≤ v , a t-wise
balanced design, or a t-(v ,K , λ) design, is a binary block design with exactly v points, such that each
block has size in K and each t-subset of the points is contained in exactly λ blocks.

Now let t and k be positive integers, D be a t-(v ,K , λ) design (for some set K), and t ≤ k ≤ k1, where
exactly s distinct block-sizes k1 < · · · < ks occur in D . Then this function returns the t-design D∗ = D∗(t , k)
described and studied in [MS07].

The point set of D∗ is that of D , and the block multiset of D∗ consists of, for each i = 1, . . . , s and
each block B of D of size ki (including repeats), exactly n/

(ki−t
k−t

)
copies of every k -subset of B , where

n := lcm (
(ki−t

k−t

)
: 1 ≤ i ≤ s).

It is shown in [MS07] that D∗ is a t-(v , k ,nλ) design, that Aut (D) ⊆ Aut (D∗), and that if λ = 1 and t < k ,
then Aut (D) = Aut (D∗).

gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],
> tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];
rec(isBlockDesign := true, v := 10,
blocks := [[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 10],

[2, 6, 8], [2, 7, 9], [3, 5, 9], [3, 6, 10], [3, 7, 8],
[4, 5, 8], [4, 6, 9], [4, 7, 10]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,
isSimple := true, blockSizes := [3, 4], blockNumbers := [9, 3],
autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10),

(2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)])

18 Chapter 3. Constructing block designs

)
gap> PairwiseBalancedLambda(D);
1
gap> Dstar:=TDesignFromTBD(D,2,3);
rec(isBlockDesign := true, v := 10,
blocks := [[1, 2, 3], [1, 2, 4], [1, 3, 4], [1, 5, 6],

[1, 5, 7], [1, 6, 7], [1, 8, 9], [1, 8, 10], [1, 9, 10],
[2, 3, 4], [2, 5, 10], [2, 5, 10], [2, 6, 8], [2, 6, 8],
[2, 7, 9], [2, 7, 9], [3, 5, 9], [3, 5, 9], [3, 6, 10],
[3, 6, 10], [3, 7, 8], [3, 7, 8], [4, 5, 8], [4, 5, 8],
[4, 6, 9], [4, 6, 9], [4, 7, 10], [4, 7, 10], [5, 6, 7],
[8, 9, 10]],

autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10), (2,3,4)(5,7,6)(8,9,
10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)]))

gap> AllTDesignLambdas(Dstar);
[30, 9, 2]

4
Determining

basic properties
of block designs

4.1 The functions for basic properties
1 I IsBlockDesign(obj)

This boolean function returns true if and only if obj , which can be an object of arbitrary type, is a block
design.

gap> IsBlockDesign(5);
false
gap> IsBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));
true

2 I IsBinaryBlockDesign(D)

This boolean function returns true if and only if the block design D is binary, that is, if no block of D has
a repeated element.

gap> IsBinaryBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));
true
gap> IsBinaryBlockDesign(BlockDesign(2,[[1],[1,2],[1,2,2]]));
false

3 I IsSimpleBlockDesign(D)

This boolean function returns true if and only if the block design D is simple, that is, if no block of D is
repeated.

gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]]));
false
gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2],[1,2,2]]));
true

4 I IsConnectedBlockDesign(D)

This boolean function returns true if and only if the block design D is connected, that is, if its incidence
graph is a connected graph.

gap> IsConnectedBlockDesign(BlockDesign(2,[[1],[2]]));
false
gap> IsConnectedBlockDesign(BlockDesign(2,[[1,2]]));
true

5 I BlockDesignPoints(D)

This function returns the set of points of the block design D , that is [1..D.v]. The returned result is
immutable.

20 Chapter 4. Determining basic properties of block designs

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec(isBlockDesign := true, v := 3,
blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> BlockDesignPoints(D);
[1 .. 3]

6 I NrBlockDesignPoints(D)

This function returns the number of points of the block design D .

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec(isBlockDesign := true, v := 3,
blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> NrBlockDesignPoints(D);
3

7 I BlockDesignBlocks(D)

This function returns the (sorted) list of blocks of the block design D . The returned result is immutable.

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec(isBlockDesign := true, v := 3,
blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> BlockDesignBlocks(D);
[[1, 2], [1, 3], [2, 3], [2, 3]]

8 I NrBlockDesignBlocks(D)

This function returns the number of blocks of the block design D .

gap> D:=BlockDesign(3,[[1,2],[1,3],[2,3],[2,3]]);
rec(isBlockDesign := true, v := 3,
blocks := [[1, 2], [1, 3], [2, 3], [2, 3]])

gap> NrBlockDesignBlocks(D);
4

9 I BlockSizes(D)

This function returns the set of sizes (actually list-lengths) of the blocks of the block design D .

gap> BlockSizes(BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]));
[1, 3]

10 I BlockNumbers(D)

Let D be a block design. Then this function returns a list of the same length as BlockSizes(D), such that
the i -th element of this returned list is the number of blocks of D of size BlockSizes(D)[i].

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);
rec(isBlockDesign := true, v := 3,
blocks := [[1], [1, 2, 2], [1, 2, 3], [2], [3]])

gap> BlockSizes(D);
[1, 3]
gap> BlockNumbers(D);
[3, 2]

11 I ReplicationNumber(D)

If the block design D is equireplicate, then this function returns its replication number; otherwise fail is
returned.

Section 1. The functions for basic properties 21

A block design D is equireplicate with replication number r if, for every point x of D , r is equal to the
sum over the blocks of the multiplicity of x in a block. For a binary block design this is the same as saying
that each point x is contained in exactly r blocks.

gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3,3],[4,4]]));
2
gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3],[4,4]]));
fail

12 I PairwiseBalancedLambda(D)

A binary block design D is pairwise balanced if D has at least two points and every pair of distinct points
is contained in exactly λ blocks, for some positive constant λ.

Given a binary block design D , this function returns fail if D is not pairwise balanced, and otherwise the
positive constant λ such that every pair of distinct points of D is in exactly λ blocks.

gap> D:=BlockDesigns(rec(v:=10, blockSizes:=[3,4],
> tSubsetStructure:=rec(t:=2,lambdas:=[1])))[1];
rec(isBlockDesign := true, v := 10,
blocks := [[1, 2, 3, 4], [1, 5, 6, 7], [1, 8, 9, 10], [2, 5, 10],

[2, 6, 8], [2, 7, 9], [3, 5, 9], [3, 6, 10], [3, 7, 8],
[4, 5, 8], [4, 6, 9], [4, 7, 10]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,
isSimple := true, blockSizes := [3, 4], blockNumbers := [9, 3],
autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,7)(8,10),

(2,3,4)(5,7,6)(8,9,10), (2,3,4)(5,9,6,8,7,10), (2,6,9,3,7,10)(4,5,8)])
)

gap> PairwiseBalancedLambda(D);
1

13 I TSubsetLambdasVector(D, t)

Let D be a block design, t a non-negative integer, and v=D.v. Then this function returns an integer vector
L whose positions correspond to the t-subsets of {1, . . . , v}. The i -th element of L is the sum over all blocks
B of D of the number of times the i -th t-subset (in lexicographic order) is contained in B . (For example,
if t = 2 and B = [1, 1, 2, 3, 3, 4], then B contains [1, 2] twice, [1, 3] four times, [1, 4] twice, [2, 3] twice, [2, 4]
once, and [3, 4] twice.) In particular, if D is binary then L[i] is simply the number of blocks of D containing
the i -th t-subset (in lexicographic order).

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]]);;
gap> TSubsetLambdasVector(D,0);
[5]
gap> TSubsetLambdasVector(D,1);
[3, 4, 2]
gap> TSubsetLambdasVector(D,2);
[3, 1, 1]
gap> TSubsetLambdasVector(D,3);
[1]

14 I AllTDesignLambdas(D)

If the block design D is not a t-design for some t ≥ 0 then this function returns an empty list. Otherwise D
is a binary block design with constant block size k , say, and this function returns a list L of length T + 1,
where T is the maximum t ≤ k such that D is a t-design, and, for i = 1, . . . ,T + 1, L[i] is equal to the
(constant) number of blocks of D containing an (i − 1)-subset of the point-set of D . The returned result is
immutable.

22 Chapter 4. Determining basic properties of block designs

gap> AllTDesignLambdas(PGPointFlatBlockDesign(3,2,1));
[35, 7, 1]

15 I AffineResolvableMu(D)

A block design is affine resolvable if the design is resolvable and any two blocks not in the same parallel
class of a resolution meet in a constant number µ of points.

If the block design D is affine resolvable, then this function returns its value of µ; otherwise fail is returned.

The value 0 is returned if, and only if, D consists of a single parallel class.

gap> P:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3
gap> AffineResolvableMu(P);
fail
gap> A:=ResidualBlockDesign(P,P.blocks[1]);; # affine plane of order 3
gap> AffineResolvableMu(A);
1

5
Automorphism groups

and isomorphism
testing for block designs

The functions in this chapter depend on nauty via the GRAPE package, which must be fully installed on a
computer running UNIX in order for these functions to work.

5.1 Computing automorphism groups

1 I AutGroupBlockDesign(D)

This function returns the automorphism group of the block design D . The automorphism group Aut (D)
of D is the group consisting of all the permutations of the points {1, . . . ,D.v} which preserve the block-
multiset of D .

This function is not yet implemented for non-binary block designs.

This function can also be called via AutomorphismGroup(D).

gap> D:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3
gap> Size(AutGroupBlockDesign(D));
5616

5.2 Testing isomorphism

1 I IsIsomorphicBlockDesign(D1, D2)

This boolean function returns true if and only if block designs D1 and D2 are isomorphic, that is, there
is a bijection from the point-set of D1 to that of D2 which maps the block-multiset of D1 to that of D2 .

This function is not yet implemented for non-binary block designs.

For pairwise isomorphism testing for three or more binary block designs, see 5.2.2.

gap> D1:=BlockDesign(3,[[1],[1,2,3],[2]]);;
gap> D2:=BlockDesign(3,[[1],[1,2,3],[3]]);;
gap> IsIsomorphicBlockDesign(D1,D2);
true
gap> D3:=BlockDesign(4,[[1],[1,2,3],[3]]);;
gap> IsIsomorphicBlockDesign(D2,D3);
false
gap> # block designs with different numbers of points are not isomorphic

2 I BlockDesignIsomorphismClassRepresentatives(L)

Given a list L of binary block designs, this function returns a list consisting of pairwise non-isomorphic
elements of L, representing all the isomorphism classes of elements of L. The order of the elements in the
returned list may differ from their order in L.

24 Chapter 5. Automorphism groups and isomorphism testing for block designs

gap> D1:=BlockDesign(3,[[1],[1,2,3],[2]]);;
gap> D2:=BlockDesign(3,[[1],[1,2,3],[3]]);;
gap> D3:=BlockDesign(4,[[1],[1,2,3],[3]]);;
gap> BlockDesignIsomorphismClassRepresentatives([D1,D2,D3]);
[rec(isBlockDesign := true, v := 4, blocks := [[1], [1, 2, 3], [3]],

isBinary := true),
rec(isBlockDesign := true, v := 3, blocks := [[1], [1, 2, 3], [2]],

isBinary := true)]

6
Classifying

block designs

This chapter describes the function BlockDesigns which can classify block designs with given properties.
The possible properties a user can specify are many and varied, and are described below. Depending on
the properties, this function can handle block designs with up to about 20 points (sometimes more and
sometimes less, depending on the problem).

6.1 The function BlockDesigns

1 I BlockDesigns(param)

This function returns a list DL of block designs whose properties are specified by the user in the record
param. The precise interpretation of the output depends on param, described below. Only binary designs
are generated by this function, if param.blockDesign is unbound or is a binary design.

The required components of param are v, blockSizes, and tSubsetStructure.

param.v must be a positive integer, and specifies that for each block design in the list DL, the points are
1,...,param.v.

param.blockSizes must be a set of positive integers, and specifies that the block sizes of each block design
in DL will be contained in param.blockSizes.

param.tSubsetStructure must be a record, having components t, partition, and lambdas. Let t be
equal to param.tSubsetStructure.t, partition be param.tSubsetStructure.partition, and lambdas be
param.tSubsetStructure.lambdas. Then t must be a non-negative integer, partition must be a list of non-
empty sets of t-subsets of [1..param.v], forming an ordered partition of all the t-subsets of [1..param.v],
and lambdas must be a list of distinct non-negative integers (not all zero) of the same length as partition.
This specifies that for each design in DL, each t-subset in partition[i] will occur exactly lambdas[i] times,
counted over all blocks of the design. For binary designs, this means that each t-subset in partition[i] is
contained in exactly lambdas[i] blocks. The partition component is optional if lambdas has length 1.
We require that t is less than or equal to each element of param.blockSizes, and if param.blockDesign
is bound, then each block of param.blockDesign must contain at least t distinct elements. Note that if
param.tSubsetStructure is equal to rec(t:=0,lambdas:=[b]), for some positive integer b, then all that
is being specified is that each design in DL must have exactly b blocks.

The optional components of param are used to specify additional constraints on the designs in DL or
to change default parameter values. These optional components are blockDesign, r, b, blockNumbers,
blockIntersectionNumbers, blockMaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel.

param.blockDesign must be a block design with param.blockDesign.v equal to param.v. Then each
block multiset of a design in DL will be a submultiset of param.blockDesign.blocks (that is, each block
of a design D in DL will be a block of param.blockDesign, and the multiplicity of a block of D will be less
than or equal to that block’s multiplicity in param.blockDesign). The blockDesign component is useful
for the computation of subdesigns, such as parallel classes.

param.r must be a positive integer, and specifies that in each design in DL, each point will occur exactly
param.r times in the list of blocks. In other words, each design in DL will have replication number param.r.

param.b must be a positive integer, and specifies that each design in DL will have exactly param.b blocks.

26 Chapter 6. Classifying block designs

param.blockNumbers must be a list of non-negative integers, the i -th element of which specifies the
number of blocks whose size is equal to param.blockSizes[i] (for each design in DL). The length of
param.blockNumbers must equal that of param.blockSizes, and at least one entry of param.blockNumbers
must be positive.

param.blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i][j]-
element of which specifies the set of possible sizes for the intersection of a block B of size param.blockSizes[i]
with a different block (but possibly a repeat of B) of size param.blockSizes[j] (for each design in DL).
In the case of multisets, we take the multiplicity of an element in the intersection to be the minimum of
its multiplicities in the multisets being intersected; for example, the intersection of [1,1,1,2,2,3] with
[1,1,2,2,2,4] is [1,1,2,2], having size 4. The dimension of param.blockIntersectionNumbers must
equal the length of param.blockSizes.

param.blockMaxMultiplicities must be a list of non-negative integers, the i -th element of which specifies
an upper bound on the multiplicity of a block whose size is equal to param.blockSizes[i] (for each design
in DL). The length of param.blockMaxMultiplicities must equal that of param.blockSizes.

Let G be the automorphism group of param.blockDesign if bound, and G be SymmetricGroup(param.v)
otherwise. Let H be the subgroup of G stabilizing param.tSubsetStructure.partition (as an ordered
list of sets of sets) if bound, and H be equal to G otherwise.

param.isoGroup must be a subgroup of H , and specifies that we consider two designs with the required prop-
erties to be equivalent if their block multisets are in the same orbit of param.isoGroup (in its action on mul-
tisets of multisets of [1..param.v]). The default for param.isoGroup is H . Thus, if param.blockDesign
and param.isoGroup are both unbound, equivalence is the same as block-design isomorphism for the re-
quired designs.

param.requiredAutSubgroup must be a subgroup of param.isoGroup, and specifies that each design
in DL must be invariant under param.requiredAutSubgroup (in its action on multisets of multisets of
[1..param.v]). The default for param.requiredAutSubgroup is the trivial permutation group.

param.isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that DL will contain at most
one block design, and will contain one block design with the required properties if and only if such a block
design exists; the value 1 specifies that DL will contain (perhaps properly) a list of param.isoGroup-orbit
representatives of the required designs; the value 2 specifies that DL will consist precisely of param.isoGroup-
orbit representatives of the required designs.

For an example, we classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular group
of automorphisms of order 5, and then classify all parallel classes of these designs, up to the action of the
automorphism groups of these designs.

gap> DL:=BlockDesigns(rec(
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=2,lambdas:=[1]),
> requiredAutSubgroup:=
> Group((1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15))));;
gap> List(DL,AllTDesignLambdas);
[[35, 7, 1], [35, 7, 1], [35, 7, 1]]
gap> List(DL,D->Size(AutGroupBlockDesign(D)));
[20160, 5, 60]
gap> parclasses:=List(DL,D->
> BlockDesigns(rec(
> blockDesign:=D,
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=1,lambdas:=[1]))));
[[rec(isBlockDesign := true, v := 15,

blocks := [[1, 2, 6], [3, 4, 8], [5, 7, 14], [9, 12, 15],

Section 1. The function BlockDesigns 27

[10, 11, 13]],
tSubsetStructure := rec(t := 1, lambdas := [1]),
isBinary := true, isSimple := true, blockSizes := [3],
blockNumbers := [5], r := 1,
autSubgroup := Group([(2,6)(3,11)(4,10)(5,14)(8,13)(12,15),

(2,6)(4,8)(5,12)(7,9)(10,13)(14,15),
(2,6)(3,12)(4,9)(7,14)(8,15)(11,13),
(3,12,5)(4,15,7)(8,9,14)(10,11,13),
(1,6,2)(3,4,8)(5,7,14)(9,12,15)(10,11,13),
(1,8,11,2,3,10)(4,13,6)(5,15,14,9,7,12)]))],

[rec(isBlockDesign := true, v := 15,
blocks := [[1, 7, 12], [2, 8, 13], [3, 9, 14],

[4, 10, 15], [5, 6, 11]],
tSubsetStructure := rec(t := 1, lambdas := [1]),
isBinary := true, isSimple := true, blockSizes := [3],
blockNumbers := [5], r := 1,
autSubgroup := Group([(1,5,4,3,2)(6,10,9,8,7)(11,15,14,13,12)]))

],
[rec(isBlockDesign := true, v := 15, blocks := [[1, 2, 6], [3, 10, 13

], [4, 11, 12], [5, 7, 15], [8, 9, 14]],
tSubsetStructure := rec(t := 1, lambdas := [1]),
isBinary := true, isSimple := true, blockSizes := [3],
blockNumbers := [5], r := 1,
autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),

(1,11,8)(2,12,9)(3,13,10)(4,14,6)(5,15,7)])),
rec(isBlockDesign := true, v := 15,

blocks := [[1, 8, 11], [2, 9, 12], [3, 10, 13],
[4, 6, 14], [5, 7, 15]],

tSubsetStructure := rec(t := 1, lambdas := [1]),
isBinary := true, isSimple := true, blockSizes := [3],
blockNumbers := [5], r := 1,
autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),

(1,3,4,2)(6,9,8,10)(11,13,14,12),
(1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14),
(1,11,8)(2,12,9)(3,13,10)(4,14,6)(5,15,7)]))]]

gap> List(parclasses,Length);
[1, 1, 2]
gap> List(parclasses,L->List(L,parclass->Size(parclass.autSubgroup)));
[[360], [5], [6, 60]]

7
Classifying

semi-Latin squares

This chapter describes the function SemiLatinSquareDuals which can classify semi-Latin squares with
certain given properties, and return a list of their duals as block designs.

7.1 Semi-Latin squares and SOMAs

Let n and k be positive integers. An (n × n)/k semi-Latin square is an n by n array A, whose entries
are k -subsets of a kn-set X (the symbol-set), such that each element of X occurs exactly once in each row
and exactly once in each column of A. (Thus an (n × n)/1 semi-Latin square is the same thing as a Latin
square of order n.) For extensive useful information on semi-Latin squares, see

http://www.maths.qmul.ac.uk/~rab/sls.html .

A SOMA(k ,n) is an (n × n)/k semi-Latin square A, with n ≥ 2, in which no 2-subset of the symbol-set is
contained in more than one entry of A. For extensive useful information on SOMAs, see

http://www.maths.qmul.ac.uk/~leonard/soma/ .

Let A and B be (n × n)/k semi-Latin squares. We say that B is (weakly) isomorphic to A if B can
be obtained from A by applying one or more of: a row permutation; a column permutation; transposing;
renaming the symbols. If transposing is not allowed then we get the concept of strong isomorphism. More
formally, B is strongly isomorphic to A if B can be obtained from A by applying one or more of: a row
permutation; a column permutation; renaming the symbols.

Let A be an (n × n)/k semi-Latin square. Then the dual of A can be represented as a binary block design
as follows. The point-set of D is taken to be the Cartesian square of {1, . . . ,n}, with [x , y] representing the
[x , y]-entry of A. The blocks of D are in one-to-one correspondance with the symbols of A, with the i -th
block of D consisting of the ordered pairs [x , y] such that the i -th symbol of A is contained in the [x , y]-entry
of A. Given D , the semi-Latin square A can be recovered, up to the naming of its symbols.

7.2 The function SemiLatinSquareDuals

1 I SemiLatinSquareDuals(n, k)
I SemiLatinSquareDuals(n, k, maxmult)
I SemiLatinSquareDuals(n, k, maxmult, blockintsizes)
I SemiLatinSquareDuals(n, k, maxmult, blockintsizes, isolevel)

Let n and k be positive integers. Then this function (which makes heavy use of the function BlockDesigns)
returns a list DL of block designs which are the duals of the (n × n)/k semi-Latin squares whose properties
are specified by the given parameters, described below. In practice, depending on the specified properties,
this function can be useful for n up to about 6 or 7.

The parameter maxmult , if given, must be a positive integer or the string "default". If it is a positive
integer, then maxmult specifies an upper bound on the multiplicity of each block in each semi-Latin square
dual in DL. The default value for maxmult (if omitted or if given as "default") is k , which poses no
constraint on the block multiplicities.

Section 2. The function SemiLatinSquareDuals 29

The parameter blockintsizes, if given, must be a set of non-negative integers or the string "default". If
it is given as a set, then blockintsizes specifies, for each semi-Latin square dual in DL, the set of possible
sizes for the intersection of a block B with a different block (but possibly a repeat of B). The default
value for blockintsizes (if omitted or if given as "default") is [0..n], which poses no constraint on the
block intersection sizes. Note that block intersection sizes in the dual of a semi-Latin square correspond to
concurrencies of points in the semi-Latin square itself. Also note that if n ≥ 2 and blockintsizes is specified
to be [0,1] then the (n × n)/k semi-Latin squares being considered are SOMA(k ,n)s.

The parameter isolevel , if given, must be 0, 1, 2, 3, 4 or the string "default" (the default value is 2). The
value 0 specifies that DL will contain at most one (semi-Latin square dual given as a) block design, and will
contain one such block design if and only if a semi-Latin square with the required properties exists. The
value 1 specifies that DL will contain a list of duals representing all weak isomorphism classes of semi-Latin
squares with the required properties (possibly with some classes represented more than once) and the value 2
specifies that DL will contain precisely one dual semi-Latin square representative for each weak isomorphism
class of semi-Latin squares with the required properties. The values 3 and 4 for isolevel play the roles of 1
and 2, respectively, but with weak isomorphism replaced by strong isomorphism. Thus, isolevel = 3 specifies
that DL will contain a list of duals representing all strong isomorphism classes of semi-Latin squares with
the required properties (possibly with some classes represented more than once) and isolevel = 4 specifies
that DL will contain precisely one dual semi-Latin square representative for each strong isomorphism class
of semi-Latin squares with the required properties.

For example, we determine the numbers of weak and strong isomorphism classes of (4 × 4)/k semi-Latin
squares for k = 1, . . . , 6. (These numbers disagree with P. E. Chigbu’s classification for the cases k = 3, 4
[BC97].)

gap> List([1..6],k->Length(SemiLatinSquareDuals(4,k))); # weak
[2, 10, 40, 164, 621, 2298]
gap> List([1..6],k->Length(SemiLatinSquareDuals(4,k,"default","default",4))); # strong
[2, 11, 46, 201, 829, 3343]

Next, we determine one SOMA(3, 6).

gap> SemiLatinSquareDuals(6,3,"default",[0,1],0);
[rec(isBlockDesign := true, v := 36,

blocks := [[1, 8, 15, 22, 29, 36], [1, 9, 16, 23, 30, 32],
[1, 12, 14, 21, 28, 35], [2, 9, 17, 24, 25, 34],
[2, 11, 18, 22, 27, 31], [2, 12, 16, 19, 29, 33],
[3, 10, 14, 24, 29, 31], [3, 11, 16, 20, 25, 36],
[3, 12, 13, 23, 26, 34], [4, 7, 14, 23, 27, 36],
[4, 8, 17, 21, 30, 31], [4, 9, 18, 19, 26, 35],
[5, 7, 15, 20, 30, 34], [5, 8, 13, 24, 28, 33],
[5, 10, 18, 21, 25, 32], [6, 7, 17, 22, 26, 33],
[6, 10, 13, 20, 27, 35], [6, 11, 15, 19, 28, 32]],

tSubsetStructure := rec(t := 1, lambdas := [3]), isBinary := true,
isSimple := true, blockSizes := [6], blockNumbers := [18], r := 3,
autSubgroup := <permutation group of size 72 with 3 generators>,
pointNames := [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5],

[1, 6], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5],
[2, 6], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5],
[3, 6], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5],
[4, 6], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5],
[5, 6], [6, 1], [6, 2], [6, 3], [6, 4], [6, 5],
[6, 6]])]

8
Partitioning

block designs

This chapter describes the function PartitionsIntoBlockDesigns which can classify partitions of (the block
multiset of) a given block design into (the block multisets of) block designs having user-specified properties.
We also describe MakeResolutionsComponent which is useful for the special case when the desired partitions
are resolutions.

8.1 Partitioning a block design into block designs

1 I PartitionsIntoBlockDesigns(param)

Let D equal param.blockDesign. This function returns a list PL of partitions of (the block multiset of) D .
Each element of PL is a record with one component partition, and, in most cases, a component autGroup.
The partition component gives a list P of block designs, all with the same point set as D , such that the list
of (the block multisets of) the designs in P.partition forms a partition of (the block multiset of) D . The
component P.autGroup, if bound, gives the automorphism group of the partition, which is the stabilizer of
the partition in the automorphism group of D . The precise interpretation of the output depends on param,
described below.

The required components of param are blockDesign, v, blockSizes, and tSubsetStructure.

param.blockDesign is the block design to be partitioned.

param.v must be a positive integer, and specifies that for each block design in each partition in PL, the
points are 1,...,param.v. It is required that param.v be equal to param.blockDesign.v.

param.blockSizes must be a set of positive integers, and specifies that the block sizes of each block design
in each partition in PL will be contained in param.blockSizes.

param.tSubsetStructure must be a record, having components t, partition, and lambdas. Let t be
equal to param.tSubsetStructure.t, partition be param.tSubsetStructure.partition, and lambdas be
param.tSubsetStructure.lambdas. Then t must be a non-negative integer, partition must be a list of non-
empty sets of t-subsets of [1..param.v], forming an ordered partition of all the t-subsets of [1..param.v],
and lambdas must be a list of distinct non-negative integers (not all zero) of the same length as partition.
This specifies that for each design in each partition in PL, each t-subset in partition[i] will occur exactly
lambdas[i] times, counted over all blocks of the design. For binary designs, this means that each t-subset
in partition[i] is contained in exactly lambdas[i] blocks. The partition component is optional if lambdas
has length 1. We require that t is less than or equal to each element of param.blockSizes, and that each
block of param.blockDesign contains at least t distinct elements.

The optional components of param are used to specify additional constraints on the partitions in PL, or to
change default parameter values. These optional components are r, b, blockNumbers, blockIntersection-
Numbers, blockMaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel. Note that the last
three of these optional components refer to the partitions and not to the block designs in a partition.

param.r must be a positive integer, and specifies that in each design in each partition in PL, each point
must occur exactly param.r times in the list of blocks.

param.b must be a positive integer, and specifies that each design in each partition in PL has exactly
param.b blocks.

Section 1. Partitioning a block design into block designs 31

param.blockNumbers must be a list of non-negative integers, the i -th element of which specifies the number
of blocks whose size is equal to param.blockSizes[i] (in each design in each partition in PL). The length of
param.blockNumbers must equal that of param.blockSizes, and at least one entry of param.blockNumbers
must be positive.

param.blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i][j]-
element of which specifies the set of possible sizes for the intersection of a block B of size param.blockSizes[i]
with a different block (but possibly a repeat of B) of size param.blockSizes[j] (in each design in each par-
tition in PL). In the case of multisets, we take the multiplicity of an element in the intersection to be the min-
imum of its multiplicities in the multisets being intersected; for example, the intersection of [1,1,1,2,2,3]
with [1,1,2,2,2,4] is [1,1,2,2], having size 4. The dimension of param.blockIntersectionNumbers
must equal the length of param.blockSizes.

param.blockMaxMultiplicities must be a list of non-negative integers, the i -th element of which spec-
ifies an upper bound on the multiplicity of a block whose size is equal to param.blockSizes[i] (for
each design in each partition in PL). The length of param.blockMaxMultiplicities must equal that
of param.blockSizes.

param.isoGroup must be a subgroup of the automorphism group of param.blockDesign. We consider two
elements of PL to be equivalent if they are in the same orbit of param.isoGroup (in its action on multisets
of block multisets). The default for param.isoGroup is the automorphism group of param.blockDesign.

param.requiredAutSubgroup must be a subgroup of param.isoGroup, and specifies that each partition in
PL must be invariant under param.requiredAutSubgroup (in its action on multisets of block multisets).
The default for param.requiredAutSubgroup is the trivial permutation group.

param.isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that PL will contain at most one
partition, and will contain one partition with the required properties if and only if such a partition exists;
the value 1 specifies that PL will contain (perhaps properly) a list of param.isoGroup orbit-representatives
of the required partitions; the value 2 specifies that PL will consist precisely of param.isoGroup-orbit
representatives of the required partitions.

For an example, we first classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular
group of automorphisms of order 5, and then use PartitionsIntoBlockDesigns to classify all the resolutions
of these designs, up to the actions of the respective automorphism groups of the designs.

gap> DL:=BlockDesigns(rec(
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=2,lambdas:=[1]),
> requiredAutSubgroup:=
> Group((1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15))));;
gap> List(DL,D->Size(AutGroupBlockDesign(D)));
[20160, 5, 60]
gap> PL:=PartitionsIntoBlockDesigns(rec(
> blockDesign:=DL[1],
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
[rec(

partition := [rec(isBlockDesign := true, v := 15, blocks := [[1, 2,
6], [3, 4, 8], [5, 7, 14], [9, 12, 15],

[10, 11, 13]]),
rec(isBlockDesign := true, v := 15, blocks :=

[[1, 3, 11], [2, 4, 12], [5, 6, 8], [7, 13, 15],
[9, 10, 14]]),

rec(isBlockDesign := true, v := 15, blocks :=
[[1, 4, 14], [2, 5, 15], [3, 10, 12], [6, 7, 11],

32 Chapter 8. Partitioning block designs

[8, 9, 13]]),
rec(isBlockDesign := true, v := 15, blocks :=

[[1, 5, 10], [2, 9, 11], [3, 14, 15], [4, 6, 13],
[7, 8, 12]]),

rec(isBlockDesign := true, v := 15, blocks :=
[[1, 7, 9], [2, 8, 10], [3, 5, 13], [4, 11, 15],
[6, 12, 14]]),

rec(isBlockDesign := true, v := 15, blocks :=
[[1, 8, 15], [2, 13, 14], [3, 6, 9], [4, 7, 10],
[5, 11, 12]]),

rec(isBlockDesign := true, v := 15, blocks :=
[[1, 12, 13], [2, 3, 7], [4, 5, 9], [6, 10, 15],
[8, 11, 14]])],

autGroup := Group([(1,10)(2,11)(3,8)(6,13)(7,14)(12,15),
(1,13)(2,11)(3,14)(4,5)(6,10)(7,8),
(1,13,7)(2,11,5)(6,10,14)(9,12,15),
(2,11,5,15,4,9,12)(3,10,8,14,7,13,6)])),

rec(partition := [rec(isBlockDesign := true, v := 15,
blocks := [[1, 2, 6], [3, 4, 8], [5, 7, 14],

[9, 12, 15], [10, 11, 13]]),
rec(isBlockDesign := true, v := 15,

blocks := [[1, 3, 11], [2, 4, 12], [5, 6, 8],
[7, 13, 15], [9, 10, 14]]),

rec(isBlockDesign := true, v := 15,
blocks := [[1, 4, 14], [2, 5, 15], [3, 10, 12],

[6, 7, 11], [8, 9, 13]]),
rec(isBlockDesign := true, v := 15,

blocks := [[1, 5, 10], [2, 13, 14], [3, 6, 9],
[4, 11, 15], [7, 8, 12]]),

rec(isBlockDesign := true, v := 15,
blocks := [[1, 7, 9], [2, 8, 10], [3, 14, 15],

[4, 6, 13], [5, 11, 12]]),
rec(isBlockDesign := true, v := 15,

blocks := [[1, 8, 15], [2, 9, 11], [3, 5, 13],
[4, 7, 10], [6, 12, 14]]),

rec(isBlockDesign := true, v := 15,
blocks := [[1, 12, 13], [2, 3, 7], [4, 5, 9],

[6, 10, 15], [8, 11, 14]])],
autGroup := Group([(1,15)(2,9)(3,4)(5,7)(6,12)(10,13),

(1,12)(2,9)(3,5)(4,7)(6,15)(8,14),
(1,14)(2,5)(3,8)(6,7)(9,12)(10,13),
(1,8,10)(2,5,15)(3,14,13)(4,9,12)]))]

gap> List(PL,resolution->Size(resolution.autGroup));
[168, 168]
gap> PL:=PartitionsIntoBlockDesigns(rec(
> blockDesign:=DL[2],
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
[]
gap> PL:=PartitionsIntoBlockDesigns(rec(
> blockDesign:=DL[3],
> v:=15,blockSizes:=[3],

Section 2. Computing resolutions 33

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
[]

8.2 Computing resolutions

1 I MakeResolutionsComponent(D)
I MakeResolutionsComponent(D, isolevel)

This function computes resolutions of the block design D , and stores the result in D.resolutions. If
D.resolutions already exists then it is ignored and overwritten. This function returns no value.

A resolution of a block design D is a partition of the blocks into subsets, each of which forms a partition
of the point set. We say that two resolutions R and S of D are isomorphic if there is an element g in the
automorphism group of D , such that the g-image of R is S . (Isomorphism defines an equivalence relation
on the set of resolutions of D .)

The parameter isolevel (default 2) determines how many resolutions are computed: isolevel=2 means to
classify up to isomorphism, isolevel=1 means to determine at least one representative from each isomorphism
class, and isolevel=0 means to determine whether or not D has a resolution.

When this function is finished, D.resolutions will have the following three components:

list: a list of distinct partitions into block designs forming resolutions of D ;

pairwiseNonisomorphic: true, false or "unknown", depending on the resolutions in list and what is
known. If isolevel=0 or isolevel=2 then this component will be true;

allClassesRepresented: true, false or "unknown", depending on the resolutions in list and what is
known. If isolevel=1 or isolevel=2 then this component will be true.

Note that D.resolutions may be changed to contain more information as a side-effect of other functions
in the DESIGN package.

gap> L:=BlockDesigns(rec(v:=9,blockSizes:=[3],
> tSubsetStructure:=rec(t:=2,lambdas:=[1])));;
gap> D:=L[1];;
gap> MakeResolutionsComponent(D);
gap> D;
rec(isBlockDesign := true, v := 9,
blocks := [[1, 2, 3], [1, 4, 5], [1, 6, 7], [1, 8, 9],

[2, 4, 6], [2, 5, 8], [2, 7, 9], [3, 4, 9], [3, 5, 7],
[3, 6, 8], [4, 7, 8], [5, 6, 9]],

tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,
isSimple := true, blockSizes := [3], blockNumbers := [12], r := 4,
autGroup := Group([(1,2)(5,6)(7,8), (1,3,2)(4,8,7)(5,6,9), (1,2)(4,7)(5,9),

(1,2)(4,9)(5,7)(6,8), (1,4,8,6,9,2)(3,5,7)]),
resolutions := rec(list := [rec(partition :=

[rec(isBlockDesign := true, v := 9,
blocks := [[1, 2, 3], [4, 7, 8], [5, 6, 9]]),

rec(isBlockDesign := true, v := 9,
blocks := [[1, 4, 5], [2, 7, 9], [3, 6, 8]]),

rec(isBlockDesign := true, v := 9,
blocks := [[1, 6, 7], [2, 5, 8], [3, 4, 9]]),

rec(isBlockDesign := true, v := 9,
blocks := [[1, 8, 9], [2, 4, 6], [3, 5, 7]])],

autGroup := Group(
[(2,3)(4,5)(6,7)(8,9), (1,3,2)(4,8,7)(5,6,9),

34 Chapter 8. Partitioning block designs

(1,8,9)(2,4,6)(3,7,5), (1,2)(5,6)(7,8), (1,2)(4,7)(5,9),
(1,2,9,6,8,4)(3,7,5)]))], pairwiseNonisomorphic := true,

allClassesRepresented := true))

9
XML I/O of
block designs

This chapter describes functions to write and read lists of binary block designs in the

http://designtheory.org external representation XML-format (see [CDMS04]).

9.1 Writing lists of block designs and their properties in XML-format

1 I BlockDesignsToXMLFile(filename, designs)
I BlockDesignsToXMLFile(filename, designs, include)
I BlockDesignsToXMLFile(filename, designs, include, list id)

This function writes a list of (assumed distinct) binary block designs (given in DESIGN package format) to
a file in external representation XML-format (version 2.0).

The parameter filename is a string giving the name of the file, and designs is a record whose compo-
nent list contains the list of block designs (designs can also be a list, in which case it is replaced by
rec(list:=designs)).

The record designs should have the following components:

list: the list of distinct binary block designs in DESIGN package format;

pairwiseNonisomorphic (optional): should be true or false or the string "unknown", specifying the
pairwise-nonisomorphism status of the designs in designs.list;

infoXML (optional): should contain a string in XML format for the info element of the list of designs which
is written.

The combinatorial and group-theoretical properties output for each design depend on include (default:
empty list), which should be a list containing zero or more of the strings "indicators", "resolvable",
"combinatorial properties", "automorphism group", and "resolutions". A shorthand for the list con-
taining all these strings is "all". The strings "indicators", "combinatorial properties", "automor-
phism group", and "resolutions" are used to specify that those subtrees of the external representation
of each design are to be expanded and written out. In the case of "resolutions" being in include, all
resolutions up to isomorphism will be determined and written out. The string "resolvable" is used to
specify that the resolvable indicator must be set (usually this is not forced), if the indicators subtree is
written out, and also that if a design is resolvable but "resolutions" is not in include, then one and only
one resolution should be written out in the resolutions subtree.

If list id is given then the id’s of the output designs will be list id-0, list id-1, list id-2, ...

gap> D:=[BlockDesign(3, [[1,2],[1,3]]),
> BlockDesign(3, [[1,2],[1,2],[2,3]])];;
gap> designs:=rec(list:=D, pairwiseNonisomorphic:=true);;
gap> BlockDesignsToXMLFile("example.xml",designs,[],"example");

36 Chapter 9. XML I/O of block designs

9.2 Reading lists of block designs in XML-format

1 I BlockDesignsFromXMLFile(filename)

This function reads a file with name filename, containing a list of distinct binary block designs in external
representation XML-format, and returns a record designs in DESIGN package format containing the essential
information in this file.

The record designs contains the following components:

list: a list of block designs in DESIGN package format of the list of block designs in the file (certain elements
such as statistical properties are stored verbatim as strings; certain other elements are not stored since it is
usually easier and more reliable to recompute them – this can be done when the block designs are written
out in XML format);

pairwiseNonisomorphic is set according to the attribute pairwise nonisomorphic of the XML element
list of designs. The component pairwiseNonisomorphic is false if this attribute is false, true if this
attribute is true, and "unknown" otherwise;

infoXML is bound iff the info element occurs as a child of the XML list of designs element, and if bound,
contains this info element in a string.

gap> BlockDesignsFromXMLFile("example.xml");
rec(
list := [rec(isBlockDesign := true, v := 3, id := "example-0", blocks :=

[[1, 2], [1, 3]], isBinary := true),
rec(isBlockDesign := true, v := 3, id := "example-1",

blocks := [[1, 2], [1, 2], [2, 3]], isBinary := true)],
pairwiseNonisomorphic := true)

Bibliography

[BC97] R. A. Bailey and P. E. Chigbu. Enumeration of semi-latin squares. Discrete Math., 167-168:73–84,
1997.

http://dx.doi.org/10.1016/S0012-365X(96)00217-8.

[BCD+06] R. A. Bailey, P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher. Designs on the web.
Discrete Math., 306:3014–3027, 2006.

http://dx.doi.org/10.1016/j.disc.2004.10.027.

[CDMS04] P. J. Cameron, P. Dobcsányi, J. P. Morgan, and L. H. Soicher. The external representation of block
designs, Version 2.0, 2004.

http://designtheory.org/library/extrep/.

[CS07] P. J. Cameron and L. H. Soicher. Block intersection polynomials. Bull. London Math. Soc., 39:559–
564, 2007.

http://dx.doi.org/10.1112/blms/bdm034.

[LN08] F. Lübeck and M. Neunhöffer. The GAPDoc package for GAP, Version 1.2, 2008.

http://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc/.

[McK05] B. D. McKay. nauty, Version 2.2, 2005.

http://cs.anu.edu.au/people/bdm/nauty/.

[MS07] J. P. McSorley and L. H. Soicher. Constructing t-designs from t-wise balanced designs. European
J. Combinatorics, 28:567–571, 2007.

http://dx.doi.org/10.1016/j.ejc.2005.02.003.

[Soi] L. H. Soicher. More on block intersection polynomials and new applications to graphs and block
designs. preprint at:

http://designtheory.org/library/preprints/.

[Soi06] L. H. Soicher. The GRAPE package for GAP, Version 4.3, 2006.

http://www.maths.qmul.ac.uk/~leonard/grape/.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
AddedBlocksBlockDesign, 15
AddedPointBlockDesign, 15
AffineResolvableMu, 22
AGPointFlatBlockDesign, 11
AllTDesignLambdas, 21
AutGroupBlockDesign, 23

B
binary block design, 4
BlockDesign, 11
block design, 4
BlockDesignBlocks, 20
BlockDesignIsomorphismClassRepresentatives,

23
BlockDesignPoints, 19
BlockDesigns, 25
BlockDesignsFromXMLFile, 36
BlockDesignsToXMLFile, 35
BlockIntersectionPolynomial, 9
BlockIntersectionPolynomialCheck, 10
Block intersection polynomials, 9
BlockNumbers, 20
BlockSizes, 20

C
ComplementBlocksBlockDesign, 13
Computing automorphism groups, 23
Computing resolutions, 33

D
DeletedBlocksBlockDesign, 14
DeletedPointsBlockDesign, 14
DerivedBlockDesign, 15
derived design, 15
DualBlockDesign, 13

E
Example of the use of DESIGN, 4

F

Functions to construct block designs, 11

I
Information from t-design parameters, 7
Installing the DESIGN Package, 3
IsBinaryBlockDesign, 19
IsBlockDesign, 19
IsConnectedBlockDesign, 19
IsIsomorphicBlockDesign, 23
IsSimpleBlockDesign, 19

L
Loading DESIGN, 4

M
MakeResolutionsComponent, 33

N
NrBlockDesignBlocks, 20
NrBlockDesignPoints, 20

P
PairwiseBalancedLambda, 21
Partitioning a block design into block designs, 30
PartitionsIntoBlockDesigns, 30
PGPointFlatBlockDesign, 12

R
Reading lists of block designs in XML-format, 36
ReplicationNumber, 20
ResidualBlockDesign, 16
residual design, 16
ResolvableTDesignBlockMultiplicityBound, 9

S
semi-latin square, 28
Semi-Latin squares and SOMAs, 28
SemiLatinSquareDuals, 28
soma, 28
SteinerSystemIntersectionTriangle, 8

T

Index 39

t-design, 7
TDesignBlockMultiplicityBound, 8
TDesignFromTBD, 17
TDesignIntersectionTriangle, 7
TDesignLambdaMin, 7
TDesignLambdas, 7
Testing isomorphism, 23
The function BlockDesigns, 25

The function SemiLatinSquareDuals, 28
The functions for basic properties, 19
The structure of a block design in DESIGN, 4
TSubsetLambdasVector, 21

W
WittDesign, 12
Writing lists of block designs and their properties in

XML-format, 35

	Contents
	Design
	Installing the DESIGN Package
	Loading DESIGN
	The structure of a block design in DESIGN
	Example of the use of DESIGN

	Information from block design parameters
	Information from t-design parameters
	Block intersection polynomials

	Constructing block designs
	Functions to construct block designs

	Determining basic properties of block designs
	The functions for basic properties

	Automorphism groups and isomorphism testing for block designs
	Computing automorphism groups
	Testing isomorphism

	Classifying block designs
	The function BlockDesigns

	Classifying semi-Latin squares
	Semi-Latin squares and SOMAs
	The function SemiLatinSquareDuals

	Partitioning block designs
	Partitioning a block design into block designs
	Computing resolutions

	XML I/O of block designs
	Writing lists of block designs and their properties in XML-format
	Reading lists of block designs in XML-format

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	I
	L
	M
	N
	P
	R
	S
	T
	W

