
Polenta
Polycyclic presentations for matrix groups

A GAP4 Package

by

Björn Assmann

Mathematical Institute

University of St. Andrews

North Haugh, St. Andrews
Fife, KY16 9SS, Scotland

email: BjoernAssmann@gmx.net

June 2007

Contents

1 Introduction 3

1.1 The package . 3

1.2 Polycyclic groups . 3

2 Methods for matrix groups 4

2.1 Polycyclic presentations of matrix groups 4

2.2 Module series . 5

2.3 Subgroups . 5

2.4 Examples . 6

3 An example application 7

3.1 Presentation for rational matrix groups 7

3.2 Modules series . 8

3.3 Triangularizable subgroups . 8

4 Installation 10

4.1 Installing this package . 10

4.2 Getting and installing KASH . 10

4.3 Loading the Polenta package . 10

4.4 Running the test suite . 11

5 Information Messages 12

5.1 Info Class . 12

5.2 Example . 12

Bibliography 16

Index 17

1 Introduction

1.1 The package

This package provides functions for computation with matrix groups. Let G be a subgroup of GL(d ,R)
where the ring R is either equal to Q, Z or a finite field Fq . Then:

– We can test whether G is solvable.

– We can test whether G is polycyclic.

– If G is polycyclic, then we can determine a polycyclic presentation for G .

A group G which is given by a polycyclic presentation can be largely investigated by algorithms implemented
in the GAP-package Polycyclic [EN00]. For example we can determine if G is torsion-free and calculate the
torsion subgroup. Further we can compute the derived series and the Hirsch length of the group G . Also
various methods for computations with subgroups, factor groups and extensions are available.

As a by-product, the Polenta package provides some functionality to compute certain module series for
modules of solvable groups. For example, if G is a rational polycyclic matrix group, then we can compute
the radical series of the natural Q[G]-module Qd .

1.2 Polycyclic groups

A group G is called polycyclic if it has a finite subnormal series with cyclic factors. It is a well-known
fact that every polycyclic group is finitely presented by a so-called polycyclic presentation (see for example
Chapter 9 in [Sim94] or Chapter 2 in [EN00]). In GAP, groups which are defined by polycyclic presentations
are called polycyclically presented groups, abbreviated PcpGroups.

The overall idea of the algorithm implemented in this package was first introduced by Ostheimer in 1996
[Ost96]. In 2001 Eick presented a more detailed version [Eic01]. This package contains an implementation of
Eick’s algorithm. A description of this implementation together with some refinements and extensions can
be found in [AE05] and [Ass03].

2
Methods for

matrix groups

2.1 Polycyclic presentations of matrix groups

Groups defined by polycyclic presentations are called PcpGroups in GAP. We refer to the Polycyclic manual
[EN00] for further background.

Suppose that a collection X of matrices of GL(d ,R) is given, where the ring R is either Q, Z or a finite field.
Let G =< X >. If the group G is polycyclic, then the following functions determine a PcpGroup isomorphic
to G .

1 I PcpGroupByMatGroup(G)

G is a subgroup of GL(d ,R) where R = Q, Z or Fq . If G is polycyclic, then this function determines a
PcpGroup isomorphic to G . If G is not polycyclic, then this function returns ’fail’.

2 I IsomorphismPcpGroup(G)

G is a subgroup of GL(d ,R) where R = Q, Z or Fq . If G is polycyclic, then this function determines an
isomorphism onto a PcpGroup. If G is not polycyclic, then this function returns ’fail’.

Note that the method IsomorphismPcpGroup, installed in this package, cannot be applied directly to a group
given by the function AlmostCrystallographicGroup. Please use POL AlmostCrystallographicGroup
(with the same parameters as AlmostCrystallographicGroup) instead.

3 I Image(map)
I ImageElm(map, elm)
I ImagesSet(map, elms)
I PreImage(map, pcpelm)

Here map is an isomorphism from a polycyclic matrix group G onto a PcpGroup H calculated by Isomor-
phismPcpGroup(G). These functions can be used to compute with such an isomorphism. If the input elm
is an element of G , then the function ImageElm can be used to compute the image of elm under map. If elm
is not contained in G then the function ImageElm returns ’fail’. The input pcpelm is an element of H .

4 I IsSolvableGroup(G)

G is a subgroup of GL(d ,R) where R = Q, Z or Fq . This function tests if G is solvable and returns ’true’ or
’false’.

5 I IsTriangularizableMatGroup(G)

G is a subgroup of GL(d , Q). This function tests if G is triangularizable and returns ’true’ or ’false’.

6 I IsPolycyclicMatGroup(G)

G is a subgroup of GL(d ,R) where R = Q, Z or Fq . This function tests if G is polycyclic and returns ’true’
or ’false’.

Section 3. Subgroups 5

2.2 Module series

Let G be a finitely generated solvable subgroup of GL(d , Q). The vector space Qd is a module for the algebra
Q[G]. The following functions provide the possibility to compute certain module series of Qd . Recall that
the radical RadG(Qd) is defined to be the intersection of maximal Q[G]-submodules of Qd . Also recall that
the radical series

0 = Rn < Rn−1 < . . . < R1 < R0 = Qd

is defined by Ri+1 := RadG(Ri).

1 I RadicalSeriesSolvableMatGroup(G)

This function returns a radical series for the Q[G]-module Qd , where G is a solvable subgroup of GL(d , Q).

A radical series of Qd can be refined to a homogeneous series.

2 I HomogeneousSeriesAbelianMatGroup(G)

A module is said to be homogeneous if it is the direct sum of pairwise irreducible isomorphic submodules. A
homogeneous series of a module is a submodule series such that the factors are homogeneous. This function
returns a homogeneous series for the Q[G]-module Qd , where G is an abelian subgroup of GL(d , Q).

3 I HomogeneousSeriesTriangularizableMatGroup(G)

A module is said to be homogeneous if it is the direct sum of pairwise irreducible isomorphic submodules. A
homogeneous series of a module is a submodule series such that the factors are homogeneous. This function
returns a homogeneous series for the Q[G]-module Qd , where G is a triangularizable subgroup of GL(d , Q).

A homogeneous series can be refined to a composition series.

4 I CompositionSeriesAbelianMatGroup(G)

A composition series of a module is a submodule series such that the factors are irreducible. This function
returns a composition series for the Q[G]-module Qd , where G is an abelian subgroup of GL(d , Q).

5 I CompositionSeriesTriangularizableMatGroup(G)

A composition series of a module is a submodule series such that the factors are irreducible. This function
returns a composition series for the Q[G]-module Qd , where G is a triangularizable subgroup of GL(d , Q).

2.3 Subgroups

1 I SubgroupsUnipotentByAbelianByFinite(G)

G is a subgroup of GL(d ,R) where R = Q or Z. If G is polycyclic, then this function returns a record
containing two normal subgroups T and U of G . The group T is unipotent-by-abelian (and thus triangu-
larizable) and of finite index in G . The group U is unipotent and is such that T/U is abelian. If G is not
polycyclic, then the algorithm returns ’fail’.

6 Chapter 2. Methods for matrix groups

2.4 Examples

1 I PolExamples(l)

Returns some examples for polycyclic rational matrix groups, where l is an integer between 1 and 24. These
can be used to test the functions in this package. Some of the properties of the examples are summarised in
the following table.

PolExamples number generators subgroup of Hirsch length
1 3 GL(4,Z) 6
2 2 GL(5,Z) 6
3 2 GL(4,Q) 4
4 2 GL(5,Q) 6
5 9 GL(16,Z) 3
6 6 GL(4,Z) 3
7 6 GL(4,Z) 3
8 7 GL(4,Z) 3
9 5 GL(4,Q) 3
10 4 GL(4,Q) 3
11 5 GL(4,Q) 3
12 5 GL(4,Q) 3
13 5 GL(5,Q) 4
14 6 GL(5,Q) 4
15 6 GL(5,Q) 4
16 5 GL(5,Q) 4
17 5 GL(5,Q) 4
18 5 GL(5,Q) 4
19 5 GL(5,Q) 4
20 7 GL(16,Z) 3
21 5 GL(16,Q) 3
22 4 GL(16,Q) 3
23 5 GL(16,Q) 3
24 5 GL(16,Q) 3

3 An example application

In this section we outline three example computations with functions from the previous chapter.

3.1 Presentation for rational matrix groups

gap> mats :=
[[[1, 0, -1/2, 0], [0, 1, 0, 1], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 1/2, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]],
[[1, 0, 0, 1], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, -1/2, -3, 7/6], [0, 1, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]],
[[-1, 3, 3, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]];

gap> G := Group(mats);
<matrix group with 5 generators>

calculate an isomorphism from G to a pcp-group
gap> nat := IsomorphismPcpGroup(G);;

gap> H := Image(nat);
Pcp-group with orders [2, 2, 3, 5, 5, 5, 0, 0, 0]

gap> h := GeneratorsOfGroup(H);
[g1, g2, g3, g4, g5, g6, g7, g8, g9]

gap> mats2 := List(h, x -> PreImage(nat, x));;

take a random element of G
gap> exp := [1, 1, 1, 1, 0, 0, 0, 0, 1];;
gap> g := MappedVector(exp, mats2);
[[-1, 17/2, -1, 233/6],
[0, 1, 0, -2],
[0, 1, -1, 2],
[0, 0, 0, 1]]

map g into the image of nat
gap> i := ImageElm(nat, g);
g1*g2*g3*g4*g9

exponent vector
gap> Exponents(i);
[1, 1, 1, 1, 0, 0, 0, 0, 1]

8 Chapter 3. An example application

compare the preimage with g
gap> PreImagesRepresentative(nat, i);
[[-1, 17/2, -1, 233/6],
[0, 1, 0, -2],
[0, 1, -1, 2],
[0, 0, 0, 1]]

gap> last = g;
true

3.2 Modules series

gap> gens :=
[[[1746/1405, 524/7025, 418/1405, -77/2810],

[815/843, 899/843, -1675/843, 415/281],
[-3358/4215, -3512/21075, 4631/4215, -629/1405],
[258/1405, 792/7025, 1404/1405, 832/1405]],

[[-2389/2810, 3664/21075, 8942/4215, -35851/16860],
[395/281, 2498/2529, -5105/5058, 3260/2529],
[3539/2810, -13832/63225, -12001/12645, 87053/50580],
[5359/1405, -3128/21075, -13984/4215, 40561/8430]]];

gap> H := Group(gens);
<matrix group with 2 generators>

gap> RadicalSeriesSolvableMatGroup(H);
[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 0, 0, 79/138], [0, 1, 0, -275/828], [0, 0, 1, -197/414]],
[[1, 0, -3, 2], [0, 1, 55/4, -55/8]],
[[1, 4/15, 2/3, 1/6]],
[]]

3.3 Triangularizable subgroups

gap> G := PolExamples(3);
<matrix group with 2 generators>

gap> GeneratorsOfGroup(G);
[[[73/10, -35/2, 42/5, 63/2],

[27/20, -11/4, 9/5, 27/4],
[-3/5, 1, -4/5, -9],
[-11/20, 7/4, -2/5, 1/4]],

[[-42/5, 423/10, 27/5, 479/10],
[-23/10, 227/20, 13/10, 231/20],
[14/5, -63/5, -4/5, -79/5],
[-1/10, 9/20, 1/10, 37/20]]]

Section 3. Triangularizable subgroups 9

gap> subgroups := SubgroupsUnipotentByAbelianByFinite(G);
rec(T := <matrix group with 2 generators>,
U := <matrix group with 4 generators>)

gap> GeneratorsOfGroup(subgroups.T);
[[[73/10, -35/2, 42/5, 63/2],

[27/20, -11/4, 9/5, 27/4],
[-3/5, 1, -4/5, -9],
[-11/20, 7/4, -2/5, 1/4]],

[[-42/5, 423/10, 27/5, 479/10],
[-23/10, 227/20, 13/10, 231/20],
[14/5, -63/5, -4/5, -79/5],
[-1/10, 9/20, 1/10, 37/20]]]

so G is triangularizable!

4 Installation

4.1 Installing this package

The Polenta package is part of the standard distribution of GAP and so normally there should be no need to
install it separately. If by any chance it is not part of your GAP distribution, then the standard method is to
unpack the package into the pkg directory of your GAP distribution. This will create a polenta subdirectory.
For other non-standard options please see Chapter 75.1 of the GAP Reference Manual.

Note that the GAP-Packages Alnuth and Polycyclic are needed for this package. Normally they should be
contained in your distribution. If not, they can be obtained at

www.gap-system.org/Packages/packages.html

4.2 Getting and installing KASH

Note that the GAP package Alnuth whose functionality is used by the Polenta package requires the installa-
tion of KANT respectively KASH, the shell of the computational algebraic number theory system KANT.
KASH itself is not part of Alnuth. It has to be obtained and installed independently.

KASH is available at

www.math.tu-berlin.de/~kant/download.html

Note that you have to download two files for a complete installation of KASH. To install version 2.4 of
KASH on a Linux system you should do the following:

1. Download the files kash 2.4.common.tar.gz and kash 2.4.1.linux.tar.gz into the same directory on your
system.

2. Unpack the files using tar. This will create a directory KASH 2.4 containing, amongst other files, the
KASH executable called kash. The place where KASH is put is independent of the place where the
Alnuth or Polenta package is installed.

4.3 Loading the Polenta package

If the Polenta Package is not already loaded then you have to request it explicitly. This can be done by
LoadPackage("polenta"). The LoadPackage command is described in Section 75.2.1 in the GAP Reference
Manual.

Section 4. Running the test suite 11

4.4 Running the test suite

Once the package is installed, it is possible to check the correct installation by running the test suite of the
package.

gap> ReadPackage("Polenta", "tst/testall.g");

For more details on Test Files see Section 7.9 of the GAP Reference Manual.

If the test suite runs into an error, even though the packages Polycyclic and Alnuth and the computa-
tional algebraic number theory system KANT have been correctly installed, then please send a message to
BjoernAssmann@gmx.net including the error message.

5 Information Messages

It is possible to get informations about the status of the computation of the functions of Chapter 2 of this
manual.

5.1 Info Class

1 I InfoPolenta

is the Info class of the Polenta package (for more details on the Info mechanism see Section 7.4 of the GAP
Reference Manual). With the help of the function SetInfoLevel(InfoPolenta,level) you can change the
info level of InfoPolenta.

– If InfoLevel(InfoPolenta) is equal to 0 then no information messages are displayed.

– If InfoLevel(InfoPolenta) is equal to 1 then basic informations about the process are provided.
For further background on the displayed informations we refer to [Ass03] (publicly available via the
Internet address http://cayley.math.nat.tu-bs.de/software/assmann/).

– If InfoLevel(InfoPolenta) is equal to 2 then, in addition to the basic information, the generators
of computed subgroups and module series are displayed.

5.2 Example

gap> SetInfoLevel(InfoPolenta, 1);

gap> PcpGroupByMatGroup(PolExamples(11));
#I Determine a constructive polycyclic sequence

for the input group ...
#I
#I Chosen admissible prime: 3
#I
#I Determine a constructive polycyclic sequence

for the image under the p-congruence homomorphism ...
#I finished.
#I Finite image has relative orders [3, 2, 3, 3, 3].
#I
#I Compute normal subgroup generators for the kernel

of the p-congruence homomorphism ...
#I finished.
#I
#I Compute the radical series ...
#I finished.
#I The radical series has length 4.
#I
#I Compute the composition series ...

Section 2. Example 13

#I finished.
#I The composition series has length 5.
#I
#I Compute a constructive polycyclic sequence

for the induced action of the kernel to the composition series ...
#I finished.
#I This polycyclic sequence has relative orders [].
#I
#I Calculate normal subgroup generators for the

unipotent part ...
#I finished.
#I
#I Determine a constructive polycyclic sequence

for the unipotent part ...
#I finished.
#I The unipotent part has relative orders
#I [0, 0, 0].
#I
#I ... computation of a constructive

polycyclic sequence for the whole group finished.
#I
#I Compute the relations of the polycyclic

presentation of the group ...
#I Compute power relations ...
#I ... finished.
#I Compute conjugation relations ...
#I ... finished.
#I Update polycyclic collector ...
#I ... finished.
#I finished.
#I
#I Construct the polycyclic presented group ...
#I finished.
#I
Pcp-group with orders [3, 2, 3, 3, 3, 0, 0, 0]

gap> SetInfoLevel(InfoPolenta, 2);

gap> PcpGroupByMatGroup(PolExamples(11));
#I Determine a constructive polycyclic sequence

for the input group ...
#I
#I Chosen admissible prime: 3
#I
#I Determine a constructive polycyclic sequence

for the image under the p-congruence homomorphism ...
#I finished.
#I Finite image has relative orders [3, 2, 3, 3, 3].
#I
#I Compute normal subgroup generators for the kernel

of the p-congruence homomorphism ...

14 Chapter 5. Information Messages

#I finished.
#I The normal subgroup generators are
#I [[[1, -3/2, 0, 0], [0, 1, 0, 0], [0, 0, 1, 3], [0, 0, 0, 1]],
[[1, 0, 0, 24], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 3, 3, 15], [0, 1, 0, 6], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3, 3, 9], [0, 1, 0, 6], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3/2, 3/2, 3/2], [0, 1, 0, 3], [0, 0, 1, -3], [0, 0, 0, 1]],
[[1, -3/2, 9/2, -69/2], [0, 1, 0, 9], [0, 0, 1, 3], [0, 0, 0, 1]]
, [[1, 0, 0, -24], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],

[[1, -3, -3, -9], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, -3, -15], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, 0, 9], [0, 1, 0, 0], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, -3, -9], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, 0, 9], [0, 1, 0, 0], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3/2, -3/2, -9/2], [0, 1, 0, -3], [0, 0, 1, 3], [0, 0, 0, 1]

],
[[1, -3, -3, -12], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, 3, -3/2, -21], [0, 1, 0, -3], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3/2, 3/2, 9/2], [0, 1, 0, 3], [0, 0, 1, -3], [0, 0, 0, 1]]]

#I
#I Compute the radical series ...
#I finished.
#I The radical series has length 4.
#I The radical series is
#I [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], [[0, 0, 0, 1]],
[]]

#I
#I Compute the composition series ...
#I finished.
#I The composition series has length 5.
#I The composition series is
#I [[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, 0, 1, 0], [0, 0, 0, 1]], [[0, 0, 0, 1]], []]

#I
#I Compute a constructive polycyclic sequence

for the induced action of the kernel to the composition series ...
#I finished.
#I This polycyclic sequence has relative orders [].
#I
#I Calculate normal subgroup generators for the

unipotent part ...
#I finished.
#I The normal subgroup generators for the unipotent part are
#I [[[1, -3/2, 0, 0], [0, 1, 0, 0], [0, 0, 1, 3], [0, 0, 0, 1]],
[[1, 0, 0, 24], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 3, 3, 15], [0, 1, 0, 6], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3, 3, 9], [0, 1, 0, 6], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3/2, 3/2, 3/2], [0, 1, 0, 3], [0, 0, 1, -3], [0, 0, 0, 1]],
[[1, -3/2, 9/2, -69/2], [0, 1, 0, 9], [0, 0, 1, 3], [0, 0, 0, 1]]
, [[1, 0, 0, -24], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],

Section 2. Example 15

[[1, -3, -3, -9], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, -3, -15], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, 0, 9], [0, 1, 0, 0], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, -3, -9], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3, 0, 9], [0, 1, 0, 0], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, -3/2, -3/2, -9/2], [0, 1, 0, -3], [0, 0, 1, 3], [0, 0, 0, 1]

],
[[1, -3, -3, -12], [0, 1, 0, -6], [0, 0, 1, 6], [0, 0, 0, 1]],
[[1, 3, -3/2, -21], [0, 1, 0, -3], [0, 0, 1, -6], [0, 0, 0, 1]],
[[1, 3/2, 3/2, 9/2], [0, 1, 0, 3], [0, 0, 1, -3], [0, 0, 0, 1]]]

#I
#I Determine a constructive polycyclic sequence

for the unipotent part ...
#I finished.
#I The unipotent part has relative orders
#I [0, 0, 0].
#I
#I ... computation of a constructive

polycyclic sequence for the whole group finished.
#I
#I Compute the relations of the polycyclic

presentation of the group ...
#I Compute power relations ...
.....
#I ... finished.
#I Compute conjugation relations ...
..
#I ... finished.
#I Update polycyclic collector ...
#I ... finished.
#I finished.
#I
#I Construct the polycyclic presented group ...
#I finished.
#I
Pcp-group with orders [3, 2, 3, 3, 3, 0, 0, 0]

Bibliography

[AE05] B. Assmann and B. Eick. Computing polycyclic presentations for polycyclic rational matrix groups.
Accepted by J. Symb. Comput., 2005.

[Ass03] Björn Assmann. Polycyclic presentations for matrix groups. Diplomarbeit, TU Braunschweig, 2003.

http://www.icm.tu-bs.de/ag algebra/software/assmann.

[Eic01] Bettina Eick. Algorithms for polycyclic groups. Habilitationsschrift, Gesamthochschule Kassel,
2001.

[EN00] Bettina Eick and Werner Nickel. Polycyclic, 2000. A GAP 4 package, see [GAP04].

[GAP04] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.4, 2004.

http://www.gap-system.org.

[Ost96] Gretchen Ostheimer. Algorithms for Polycyclic-by-finite groups. PhD thesis, Rutgers University,
1996.

[Sim94] Charles C. Sims. Computation with finitely presented groups. Cambridge University Press, 1994.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

C
CompositionSeriesAbelianMatGroup, 5
CompositionSeriesTriangularizableMatGroup, 5

E
Example, 12
Examples, 6

G
Getting and installing KASH, 10

H
HomogeneousSeriesAbelianMatGroup, 5
HomogeneousSeriesTriangularizableMatGroup, 5

I
Image, 4
ImageElm, 4
ImagesSet, 4
Info Class, 12
InfoPolenta, 12
Installation, 10
IsomorphismPcpGroup, 4
IsPolycyclicMatGroup, 4
IsSolvableGroup, 4
IsTriangularizableMatGroup, 4

L

loading the Polenta package, 10

M
Module series, 5
Modules series, 8

P
PcpGroupByMatGroup, 4
Polenta, 3
PolExamples, 6
Polycyclic, 3
Polycyclic groups, 3
Polycyclic presentations of matrix groups, 4
PreImage, 4
Presentation for rational matrix groups, 7

R
RadicalSeriesSolvableMatGroup, 5
Running the test suite, 11

S
Subgroups, 5
SubgroupsUnipotentByAbelianByFinite, 5

T
The package, 3
Triangularizable subgroups, 8

	Contents
	Introduction
	The package
	Polycyclic groups

	Methods for matrix groups
	Polycyclic presentations of matrix groups
	Module series
	Subgroups
	Examples

	An example application
	Presentation for rational matrix groups
	Modules series
	Triangularizable subgroups

	Installation
	Installing this package
	Getting and installing KASH
	Loading the Polenta package
	Running the test suite

	Information Messages
	Info Class
	Example

	Bibliography
	Index
	C
	E
	G
	H
	I
	L
	M
	P
	R
	S
	T

