
AtlasRep — A GAP 4 Package

(Version 1.4)

Robert A. Wilson
Richard A. Parker
Simon Nickerson

John N. Bray
Thomas Breuer

Robert A. Wilson — Email: R.A.Wilson@qmul.ac.uk
— Homepage: http://www.maths.qmw.ac.uk/˜raw

Richard A. Parker — Email: richard@ukonline.co.uk
— Homepage: http://web.ukonline.co.uk/richard

Simon Nickerson — Email: simonn@maths.bham.ac.uk
— Homepage: http://web.mat.bham.ac.uk/S.Nickerson

John N. Bray — Email: J.N.Bray@qmul.ac.uk
— Homepage: http://www.maths.qmw.ac.uk/˜jnb

Thomas Breuer — Email: sam@Math.RWTH-Aachen.De
— Homepage: http://www.math.rwth-aachen.de/˜Thomas.Breuer

mailto://R.A.Wilson@qmul.ac.uk
http://www.maths.qmw.ac.uk/~raw
mailto://richard@ukonline.co.uk
http://web.ukonline.co.uk/richard
mailto://simonn@maths.bham.ac.uk
http://web.mat.bham.ac.uk/S.Nickerson
mailto://J.N.Bray@qmul.ac.uk
http://www.maths.qmw.ac.uk/~jnb
mailto://sam@Math.RWTH-Aachen.De
http://www.math.rwth-aachen.de/~Thomas.Breuer


AtlasRep — A GAP 4 Package 2

Copyright
c© 2002

We adopt the copyright regulations of GAP as detailed in the copyright notice in the GAP Reference
Manual.



Contents

1 Introduction to the AtlasRep Package 6
1.1 An ATLAS of Group Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 The GAP Interface to the ATLAS of Group Representations . . . . . . . . . . . . . . 7
1.3 Web Services for the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Installing the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Loading the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Maintaining the Local Data of the AtlasRep Package . . . . . . . . . . . . . . . . . 9

1.6.1 ReloadAtlasTableOfContents . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.2 StoreAtlasTableOfContents . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.3 ReplaceAtlasTableOfContents . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.4 AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates . . . . . 10

1.7 User Parameters for the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.1 Local or Remote Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.7.2 Adding and Removing Servers . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7.3 Accessing Data Files with the GAP Package IO or with wget . . . . . . . . . 11
1.7.4 Compressed or Uncompressed Data Files . . . . . . . . . . . . . . . . . . . 11
1.7.5 Customizing DisplayAtlasInfo . . . . . . . . . . . . . . . . . . . . . . . 12
1.7.6 Customizing the Access to Data Files . . . . . . . . . . . . . . . . . . . . . 12
1.7.7 Reading Large Matrices over Finite Fields . . . . . . . . . . . . . . . . . . . 12
1.7.8 AtlasOfGroupRepresentationsShowUserParameters . . . . . . . . . . . . . . 12

1.8 Extending the ATLAS Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9 What’s New in AtlasRep, Compared to Older Versions? . . . . . . . . . . . . . . . . 13

1.9.1 What’s New in Version 1.4? . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.9.2 What’s New in Version 1.3.1? . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9.3 What’s New in Version 1.3? . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.9.4 What’s New in Version 1.2? . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9.5 What’s New in Version 1.1? . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.10 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 The User Interface of the AtlasRep Package 17
2.1 Accessing vs. Constructing Representations . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Group Names Used in the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Standard Generators Used in the AtlasRep Package . . . . . . . . . . . . . . . . . . 18
2.4 Class Names Used in the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Definition of ATLAS Class Names . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 AtlasClassNames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3



AtlasRep — A GAP 4 Package 4

2.5 Accessing Data of the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 DisplayAtlasInfo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 AtlasGenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.3 AtlasProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.4 OneAtlasGeneratingSetInfo . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.5 AllAtlasGeneratingSetInfos . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.5.6 AtlasGroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5.7 AtlasSubgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Examples of Using the AtlasRep Package . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.1 Example: Class Representatives . . . . . . . . . . . . . . . . . . . . . . . . 32
2.6.2 Example: Permutation and Matrix Representations . . . . . . . . . . . . . . 33
2.6.3 Example: Outer Automorphisms . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6.4 Example: Using Semi-presentations and Black Box Programs . . . . . . . . 35
2.6.5 Example: Using the GAP Library of Tables of Marks . . . . . . . . . . . . . 37

3 Private Extensions of the AtlasRep Package 38
3.1 Adding a Private Data Directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 AtlasOfGroupRepresentationsNotifyPrivateDirectory . . . . . . . . . . . . . 38
3.1.2 AtlasOfGroupRepresentationsForgetPrivateDirectory . . . . . . . . . . . . . 39

3.2 The Effect of Private Extensions on the User Interface . . . . . . . . . . . . . . . . . 39
3.3 An Example of Extending the AtlasRep Package . . . . . . . . . . . . . . . . . . . 40

4 New Objects and Utility Functions Provided by the AtlasRep Package 43
4.1 Straight Line Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 IsStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 LinesOfStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 NrInputsOfStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.4 ScanStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.5 StraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.6 ResultOfStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.7 Semi-Presentations and Presentations . . . . . . . . . . . . . . . . . . . . . 46
4.1.8 AsStraightLineDecision . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.9 StraightLineProgramFromStraightLineDecision . . . . . . . . . . . . . . . . 48

4.2 Black Box Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.1 IsBBoxProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 ScanBBoxProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.3 RunBBoxProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 ResultOfBBoxProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.5 AsBBoxProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.6 AsStraightLineProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Representations of Minimal Degree . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.1 MinimalRepresentationInfo . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 MinimalRepresentationInfoData . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.3 SetMinimalRepresentationInfo . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.4 Criteria Used to Compute Minimality Information . . . . . . . . . . . . . . 56
4.3.5 AGR TestMinimalDegrees . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3.6 BrowseMinimalDegrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



AtlasRep — A GAP 4 Package 5

4.4 Bibliographies of Sporadic Simple Groups . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.1 BrowseBibliographySporadicSimple . . . . . . . . . . . . . . . . . . . . . . 59

5 Technicalities of the AtlasRep Package 60
5.1 Global Variables Used by the AtlasRep Package . . . . . . . . . . . . . . . . . . . . 60

5.1.1 InfoAtlasRep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.1.2 InfoCMeatAxe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.3 InfoBBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.4 CMeatAxe.FastRead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1.5 AtlasOfGroupRepresentationsInfo . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 How to Customize the Access to Data files . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Reading and Writing MeatAxe Format Files . . . . . . . . . . . . . . . . . . . . . . 63

5.3.1 ScanMeatAxeFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 MeatAxeString . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 FFList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 CMtxBinaryFFMatOrPerm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.5 FFMatOrPermCMtxBinary . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Reading and Writing ATLAS Straight Line Programs . . . . . . . . . . . . . . . . . 66
5.4.1 ScanStraightLineProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4.2 AtlasStringOfProgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Data Types Used in the ATLAS of Group Representations . . . . . . . . . . . . . . . 69
5.5.1 AGRDeclareDataType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Filenames Used in the ATLAS of Group Representations . . . . . . . . . . . . . . . . 72
5.6.1 AGRParseFilenameFormat . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.2 AGRFileContents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 The Tables of Contents of the ATLAS of Group Representations . . . . . . . . . . . 75
5.7.1 AGRGNAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.7.2 AGRRNG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.8 Sanity Checks for the ATLAS of Group Representations . . . . . . . . . . . . . . . . 76
5.8.1 AtlasOfGroupRepresentationsTestGroupOrders . . . . . . . . . . . . . . . . 76
5.8.2 AtlasOfGroupRepresentationsTestSubgroupOrders . . . . . . . . . . . . . . 77
5.8.3 AtlasOfGroupRepresentationsTestStdCompatibility . . . . . . . . . . . . . . 77
5.8.4 AtlasOfGroupRepresentationsTestCompatibleMaxes . . . . . . . . . . . . . 77
5.8.5 AtlasOfGroupRepresentationsTestFileHeaders . . . . . . . . . . . . . . . . 78
5.8.6 AtlasOfGroupRepresentationsTestWords . . . . . . . . . . . . . . . . . . . 78
5.8.7 AtlasOfGroupRepresentationsTestFiles . . . . . . . . . . . . . . . . . . . . 78
5.8.8 AtlasOfGroupRepresentationsTestClassScripts . . . . . . . . . . . . . . . . 78



Chapter 1

Introduction to the AtlasRep Package

The aim of the GAP 4 package AtlasRep is to provide a link between GAP and the “ATLAS of Group
Representations”, a database that comprises representations of many almost simple groups and infor-
mation about their maximal subgroups. This database has been available independent of GAP at

http://brauer.maths.qmul.ac.uk/Atlas
The AtlasRep package consists of this database (see Section 1.1) and a GAP interface (see Sec-

tion 1.2); the latter is extended by further information available via the internet (see Section 1.3).
Information about installing and customizing the package can be found in the sections 1.4, 1.5,

and 1.6, 1.7, 1.8.
Finally, Section 1.9 lists the changes w.r.t. previous releases of the package, and Section 1.10

acknowledges contributions of non-authors to the package.

1.1 An ATLAS of Group Representations

The ATLAS of Group Representations consists of matrices over various rings, permutations, and shell
scripts encoding so-called black box programs (see [Nic06] and Section 4.2). Many of these scripts
are straight line programs (see [BSWW01], [SWW00], and (Reference: Straight Line Programs))
and straight line decisions (see Section 4.1). These programs can be used to compute certain elements
in a group G from its standard generators (see [Wil96] and (Reference: Standard Generators of
Groups)), for example generators of maximal subgroups of G or representatives of conjugacy classes
of G.

The ATLAS of Group Representations has been prepared by Robert Wilson, Peter Walsh, Jonathan
Tripp, Ibrahim Suleiman, Richard Parker, Simon Norton, Simon Nickerson, Steve Linton, John Bray,
and Rachel Abbott (in reverse alphabetical order).

The information was computed and composed using computer algebra systems such as MeatAxe
(see [Rin98]), Magma (see [CP96]), and GAP (in reverse alphabetical order). Part of the constructions
have been documented in the literature on almost simple groups, or the results have been used in such
publications, see for example the references in [CCN+85] and [BN95].

If you use the ATLAS of Group Representations to solve a problem then please send a short email
to R.A.Wilson@qmul.ac.uk about it. The ATLAS of Group Representations database should be ref-
erenced with the entry [Wil] in the bibliography of this manual.

If your work made use of functions of the GAP interface (see Section 1.2) then you should also
reference this interface, as follows.

6

http://brauer.maths.qmul.ac.uk/Atlas
mailto://R.A.Wilson@qmul.ac.uk


AtlasRep — A GAP 4 Package 7

Example
@misc{ AtlasRep1.4,
author = {Wilson, R. A. and Parker, R. A. and Nickerson, S. and

Bray, J. N. and Breuer, T.},
title = {{AtlasRep}, A \textsf{GAP} Interface to the Atlas of

Group Representations,
{V}ersion 1.4},

month = {June},
year = {2008},
note = {Refereed \textsf{GAP} package},
howpublished = {http://www.math.rwth-aachen.de/\˜{}Thomas.Breuer/atlasrep}

}

For referencing the GAP system in general, use the entry [GAP07] in the bibliography of this
manual, see also

http://www.gap-system.org.

1.2 The GAP Interface to the ATLAS of Group Representations

The GAP interface to the ATLAS of Group Representations consists of essentially two parts.
First, there is the user interface which allows the user to get an overview of the contents of the

database, and to access the data in GAP format; this is described in Chapter 2. Advanced users may
add their own data to the database, this is described in Chapter 3.

Second, there is administrational information, which covers also the declaration of GAP objects
such as straight line decisions and black box programs. This is important mainly for users interested in
the actual implementation (e. g., for modifying the package) or in using it together with the C-MeatAxe
standalone (see [Rin98]); this is described in Chapter 5.

Information concerning the C-MeatAxe, including the manual [Rin98], can be found at
http://www.math.rwth-aachen.de/LDFM/homes/MTX
The GAP interface should be regarded as preliminary. Hopefully it will become more user-friendly

when the ATLAS of Group Representations will be integrated into a larger GAP database of groups
and their representations, character tables, and tables of marks.

The interface and this manual have been provided by Thomas Breuer, except for the interpreter
for black box programs (see Section 4.2), which is due to Simon Nickerson. Comments, bug reports,
and hints for improving the interface can be sent to sam@math.rwth-aachen.de.

1.3 Web Services for the AtlasRep Package

The home page of the AtlasRep package is
http://www.math.rwth-aachen.de/˜Thomas.Breuer/atlasrep
Besides package archives and introductory package information, it provides

• the current file with the table of contents (the file gap/atlasprm.g of the package),
cf. ReloadAtlasTableOfContents (1.6.1),

• a starter archive containing many small representations and programs,

http://www.gap-system.org
http://www.math.rwth-aachen.de/LDFM/homes/MTX
mailto://sam@math.rwth-aachen.de
http://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep


AtlasRep — A GAP 4 Package 8

• the list of changes of server files in HTML format
(cf. AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates (1.6.4)),
and

• an overview of the data available via the GAP interface to the ATLAS of Group Representations,
in HTML format; this is similar to the information shown by DisplayAtlasInfo (2.5.1); fur-
ther information can be found on the home page of the ATLAS (see the introduction to this
chapter).

1.4 Installing the AtlasRep Package

To install the package, unpack the archive file in a directory in the pkg directory of your local copy
of GAP 4. This might be the pkg directory of the GAP 4 root directory, see (Reference: Installing
a GAP Package) for details. It is however also possible to keep an additional pkg directory in your
private directories, see Section (Reference: GAP Root Directory). The latter possibility must be
chosen if you do not have write access to the GAP root directory.

Data files (in the subdirectories datagens and dataword of the package)
that are available from an earlier version of the package are in principle kept;
see AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates (1.6.4) for nec-
essary updates.

If it is likely that one will work offline, it makes sense to install the “starter archive” that can be
downloaded from the package’s homepage.

The package consists entirely of GAP code, no external binaries need to be compiled for the
package itself. However, if the GAP package IO [Neu07] is used to access remote data files (see
Section 1.7.3) then its external binary must be available.

After unpacking the package archive, it should be checked whether the subdirectories datagens
and dataword of the package directory have write permissions for those users who will download
files from the servers. The recommended permissions under UNIX are set as follows.

Example
you@unix> chmod 1777 atlasrep/data*
you@unix> ls -ld atlasrep/data*
drwxrwxrwt 3 you you 1024 Oct 31 12:34 datagens
drwxrwxrwt 3 you you 1024 Oct 31 12:34 dataword

For checking the installation of the package, you should start GAP, load the package (see Sec-
tion 1.5), and then call

Example
gap> ReadPackage( "atlasrep", "tst/testinst.g" );

If the installation is o.k. then the GAP prompt appears without anything else being printed; other-
wise the output lines tell you what should be changed.

More test files are available in the tst directory of the package, see Section 5.8 for details.
PDF and HTML versions of the package manual are available in the doc directory of the package.



AtlasRep — A GAP 4 Package 9

1.5 Loading the AtlasRep Package

The AtlasRep package may be loaded automatically when GAP is started, for example when other
GAP packages require it, or it has to be loaded within the GAP session as follows.

Example
gap> LoadPackage( "atlasrep" );
true

See (Reference: Loading a GAP Package) for details about these alternatives.

1.6 Maintaining the Local Data of the AtlasRep Package

The current table of contents of the database is contained in the file gap/atlasprm.g of the AtlasRep
package. This file is read by default when the package is loaded. It may happen that new data files
have been added to the servers since the last release of the AtlasRep package, thus it is useful to update
the table of contents of the package from time to time.

For that, one can fetch the most recent version of the file gap/atlasprm.g from the home page
of the package (see Section 1.3), either by calling ReloadAtlasTableOfContents (1.6.1) in a GAP
session or “by hand”. In the latter case, the new file can then be read into the GAP session via
ReplaceAtlasTableOfContents (1.6.3). Alternatively, one can add a line to the user’s .gaprc file
(see (Reference: The .gaprc file)), which assigns the filename of the current gap/atlasprm.g file
(as an absolute path or relative to the user’s home directory, cf. Directory (Reference: Directory))
to the global variable ATLASREP TOCFILE; in this case, this file is read instead of the one from the
package distribution when the package is loaded.

Users who have write access to the directory where the AtlasRep package is installed can alter-
natively use the maketoc script in the etc directory of the package for regularly updating the file
gap/atlasprm.g. Users without this write access can store the new file in a different place, and read
it with ReplaceAtlasTableOfContents (1.6.3).

1.6.1 ReloadAtlasTableOfContents

♦ ReloadAtlasTableOfContents(dirname) (function)

Returns: fail if the required table of contents could not be reloaded, otherwise true.
Let dirname be a string, which must be one of "remote", "local", or the name of a private

data directory (see Chapter 3).
In the case of "remote", the file atlasprm.g is fetched from the package’s home page, and then

read into GAP. In the case of "local", the subset of the data listed in the "remote" table of contents
is considered that are actually available in the local data directories. In the case of a private directory,
its contents is inspected, and the table of contents for dirname is replaced by the one obtained from
inspecting the actual contents of the data directories (see Section 5.7).

1.6.2 StoreAtlasTableOfContents

♦ StoreAtlasTableOfContents(filename) (function)

Let filename be a string. This function prints the loaded table of contents of the servers to the
file with name filename.



AtlasRep — A GAP 4 Package 10

1.6.3 ReplaceAtlasTableOfContents

♦ ReplaceAtlasTableOfContents(filename) (function)

Let filename be the name of a file that has been created with StoreAtlasTableOfContents
(1.6.2).

ReplaceAtlasTableOfContents first removes the information that GAP has stored about the
table of contents of the servers, and then reads the file with name filename, thus replacing the
previous information by the stored one.

1.6.4 AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates

♦ AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates() (function)

Returns: the list of names of all locally available data files that should be removed.
This function fetches the file changes.html from the package’s home page, extracts the times of

changes for the data files in question, and compares them with the times of the last changes of the
local data files. For that, the GAP package IO [Neu07] is needed; if it is not available then an error
message is printed, and fail is returned.

If the time of the last modification of a server file is later than that of the local copy then the local
file must be updated. (This means that touching files in the local directories will cheat this function.)

It is useful that a system administrator (i. e., someone who has the permission to remove files from
the data directories) runs this function from time to time, and afterwards removes the files in the list
that is returned. This way, new versions of these files will be fetched automatically from the servers
when a user asks for their data.

1.7 User Parameters for the AtlasRep Package

This section lists global parameters for which it might make sense to change their defaults by assign-
ments to global variables, either just for the current GAP session or as user preferences in the user’s
.gaprc file (see (Reference: The .gaprc file)).

1.7.1 Local or Remote Access

There are two possibilities to use the AtlasRep package.

Local access only (offline) You can restrict he access to the data that are actually stored in the local
installation of GAP.

Remote access (online) If your computer is connected to a network that provides access to the ATLAS
data (for example the internet) then the functions of the package may fetch the requested data
automatically from remote servers when they are required for the first time; these data are then
by default stored in the local copy, so later access to them needs no network transfer.

The latter possibility is presently not used by other GAP packages, so it may be regarded as an
important feature of the AtlasRep package. Anyhow it requires a few words of explanation.

The possibility of online access reflects in particular the fact that the ATLAS of Group Represen-
tations is designed as an open database, it is expected to grow. As soon as the developers of the
ATLAS of Group Representations add new information to the servers, these data become available in



AtlasRep — A GAP 4 Package 11

GAP when remote access is enabled, after one has updated the corresponding table of contents (see
Section 1.6).

Remote access is enabled if and only if the value of the remote component of the global variable
AtlasOfGroupRepresentationsInfo (5.1.5) is true. If one wants to work offline, i.e., if one does
not want GAP to attempt accessing remote data then this value must be set to false.

Conversely, if the default value of the remote component in your GAP installation is false then
changing this value to true may be not successful. First, it might be the case that no server is
reachable. And second, if one can in principle download files from a server then it might be impossible
to actually store these files in the data directories of the installed package; in this case, it is advisable
to install the whole package or just its data directories in a private directory, see (Reference: GAP
Root Directory) for details.

1.7.2 Adding and Removing Servers

When access to remote data is enabled (see Section 1.7.1) then the available servers are given by the
servers component of the global variable AtlasOfGroupRepresentationsInfo (5.1.5).

Removing entries from this list means to disable access to the corresponding servers, adding en-
tries makes the corresponding servers available. Of course the latter makes sense only if the new
servers really exist, for example in a local network.

Currently there is just one remote server. As soon as other servers become available, or a server
name is changed which makes it necessary to adjust the servers component, this will be announced
in the GAP Forum, cf. (Tutorial: Further Information about GAP). The same holds when upgrades
of the package become available.

1.7.3 Accessing Data Files with the GAP Package IO or with wget

When access to remote data is enabled (see Section 1.7.1) then one needs either the GAP package IO
[Neu07] or the external program wget for accessing data files.

The chosen alternative is given by the value of the wget component of the global variable
AtlasOfGroupRepresentationsInfo (5.1.5).

If this component has the value true then only wget is tried, if the value is false then only the IO
package is used. If this component is not bound or bound to another value than true or false (this
is also the default) then the IO package is preferred to wget if this package is available, and otherwise
wget is tried.

Note that the system program wget may be not available, and that it may require some work to
install it; hints for that can be found on the home page of the AtlasRep package (see Section 1.3).

1.7.4 Compressed or Uncompressed Data Files

When used with UNIX, GAP can read gzipped files, see (Reference: Saving and Loading a
Workspace). If the component compress of AtlasOfGroupRepresentationsInfo (5.1.5) has the
value true then each MeatAxe format file that is fetched from a remote server is afterwards com-
pressed with gzip. This saves a lot of space if many MeatAxe format files are accessed. (Note that
data files in other formats are very small.) For example, at the time of the release of version 1.4 there
were about 8400 data files in MeatAxe format, which needed about 1400 MB in uncompressed text
format and about 275 MB in compressed text format. The default value for the component compress
is false.



AtlasRep — A GAP 4 Package 12

1.7.5 Customizing DisplayAtlasInfo

The way how DisplayAtlasInfo (2.5.1) shows the requested overview is controlled by the com-
ponent displayFunction of AtlasOfGroupRepresentationsInfo (5.1.5). The default value is
Print (Reference: Print), another useful value is Pager (Reference: Pager).

1.7.6 Customizing the Access to Data Files

By default, local data files are stored in the subdirectories datagens and dataword of the package,
and the files are exactly the text files provided on the servers. However, a more flexible approach may
be useful.

First, one may want to use different file formats, for example the MeatAxe binary files that are
provided by the servers parallel to the MeatAxe text files. Second, one may want to use a different
directory structure, for example the same structure as used on the servers –this makes sense for exam-
ple if a local mirror of a server is available, because then one can read the server files directly, without
transferring/copying them to another directory.

As a consequence, one would like to customize the meaning of the following three access steps.

Are the required filed locally available? The required files may have a different name or a different
path, and the data can be available in one file or can be distributed to several files.

How can a file be made locally available? A different server file may be fetched or some postpro-
cessing may be required.

How is the data of a file accessed by GAP? A different function may be needed to read the file.

Details how to achieve this can be found in Section 5.2.

1.7.7 Reading Large Matrices over Finite Fields

Matrices over finite fields in GAP can be represented in a compressed format that needs less space
than the corresponding text file. Such a MeatAxe format text file can be read by ScanMeatAxeFile
(5.3.1) either line by line (which is the default) or as a whole; the latter is faster but needs more space
than the former. For example, a 4370 by 4370 matrix over the field with two elements (as occurs
for an irreducible representation of the Baby Monster) requires less than 3 MB space in GAP but the
corresponding MeatAxe format text file is more than 19 MB large, which means that when one reads
the file with the fast variant, GAP will temporarily grow by more than this value. One can change the
mode by setting the global variable CMeatAxe.FastRead (5.1.4) to true or false, respectively.

Note that this parameter is meaningful only when ScanMeatAxeFile (5.3.1) is used. It has no
effect for example if MeatAxe binary files are read, cf. FFMatOrPermCMtxBinary (5.3.5).

1.7.8 AtlasOfGroupRepresentationsShowUserParameters

♦ AtlasOfGroupRepresentationsShowUserParameters() (function)

This function prints an overview of the current values of the user parameters introduced in this
section.



AtlasRep — A GAP 4 Package 13

1.8 Extending the ATLAS Database

Users who have computed new representations that might be interesting for inclusion into the ATLAS
of Group representations can send the data in question to R.A.Wilson@qmul.ac.uk.

It is also possible to store “private” representations and programs in local directories, and to use
them in the same way as the “official” data. See Chapter 3 for details.

1.9 What’s New in AtlasRep, Compared to Older Versions?

1.9.1 What’s New in Version 1.4?

• In addition to the group orders that were added in version 1.3 (see Section 1.9.3), also many
orders of maximal subgroups are now available. These values occur in the records returned
by AtlasProgram (2.5.3) (for the case of "maxes" type programs) and of the three argument
version of AtlasGenerators (2.5.2); now a size component may be bound. In these cases,
the groups returned by AtlasSubgroup (2.5.7) have the Size (Reference: Size) attribute set.

For this feature, the function AGRGNAN (5.7.1) was generalized, the function
AtlasOfGroupRepresentationsTestWords (5.8.6) was improved for "maxes" type
programs, and the function AtlasOfGroupRepresentationsTestSubgroupOrders (5.8.2)
for preparing the values was added; this function serves also as a consistency check.

• The information about the number of maximal subgroups, if available, is now used in
DisplayAtlasInfo (2.5.1).

• In many cases, straight line programs for computing generators of maximal subgroups of a
group G, say, can in fact be used to compute also generators of maximal subgroups of down-
ward extensions of G; if not then it may suffice to extend the given straight line programs by
additional generators, see AtlasOfGroupRepresentationsTestCompatibleMaxes (5.8.4).

Currently this yields more than 200 more possibilities to compute maximal subgroups, this
means a growth by about 25 percent. For example, all maximal subgroups of 12.M22 and 2.Fi22
can now be accessed via AtlasGenerators (2.5.2).

(Of course this extension means only that one can access the straight line programs in question
automatically via the GAP interface. In principle one could have used them already before,
by explicitly applying a straight line program for a factor group to generators of a group, and
perhaps adding some element in the kernel of the natural epimorphism.)

For this feature, information about the compatibility of standard generators of groups and
their factor groups was added, see AtlasOfGroupRepresentationsTestStdCompatibility
(5.8.3).

• The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the ATLAS of
Brauer Characters [JLPW95] are now available, see Section 4.4.

• If the GAP package Browse (see [BL08]) is loaded then the new functions
BrowseMinimalDegrees (4.3.6) and BrowseBibliographySporadicSimple (4.4.1) are
available; these functions can be called also by choosing the corresponding menu entries of the
Browse application BrowseGapData (Browse: BrowseGapData).

mailto://R.A.Wilson@qmul.ac.uk


AtlasRep — A GAP 4 Package 14

• The function AtlasGroup (2.5.6) now admits also the return value of
OneAtlasGeneratingSetInfo (2.5.4) as its argument.

1.9.2 What’s New in Version 1.3.1?

This version was mainly released in order to fix a few problems. Now one does not get warnings about
unbound variables when the package is loaded and the GAP package IO [Neu07] is not available, and
pathological situations in FFMatOrPermCMtxBinary (5.3.5) (concerning extremely short corrupted
data files and different byte orderings in binary files) are handled more carefully.

Besides this, the two functions AtlasGroup (2.5.6) and AtlasSubgroup (2.5.7) were in-
troduced, and the extended function QuaternionAlgebra (Reference: QuaternionAlgebra) of
GAP 4.4.10 can now be used for describing base rings in OneAtlasGeneratingSetInfo (2.5.4) and
AllAtlasGeneratingSetInfos (2.5.5). (This is the reason why this version of the package requires
at least version 4.4.10 of GAP.)

1.9.3 What’s New in Version 1.3?

• The database was extended, see Section 1.7.4 for the number and size of files.

• New data types and corresponding GAP objects have been introduced, for representing semi-
presentations, presentations, and programs for finding standard generators. For details, see
AtlasProgram (2.5.3), Chapter 4, and Section 5.6.

• The records returned by the functions AtlasGenerators (2.5.2),
OneAtlasGeneratingSetInfo (2.5.4), and AllAtlasGeneratingSetInfos (2.5.5) now
contain the name and (if known) the order of the group in question, and also components
describing the degree in the case of permutation representations or the dimension and the base
ring of the natural module in the case of matrix representations.

• For many of the groups, information about the minimal degree of faithful permutation rep-
resentations and the minimal dimensions of faithful matrix representations in various charac-
teristics is available for DisplayAtlasInfo (2.5.1), OneAtlasGeneratingSetInfo (2.5.4),
and AllAtlasGeneratingSetInfos (2.5.5), see also Section 4.3. For these functions, also
properties such as IsPrimeInt (Reference: IsPrimeInt) can be used to describe the intended
restriction of the output.

• One can now use Pager (Reference: Pager) in DisplayAtlasInfo (2.5.1), see Section 1.7.5.

An interactive alternative to DisplayAtlasInfo (2.5.1) is provided by the function
BrowseAtlasInfo (Browse: BrowseAtlasInfo) from the new (recommended) GAP package
Browse [BL08].

• The functions OneAtlasGeneratingSetInfo (2.5.4) and AllAtlasGeneratingSetInfos
(2.5.5) now admit also a list of group names as the first argument.

• The functions for actually accessing the data are more flexible now, see Section 1.7.6.

• For transferring remote data, the GAP package IO [Neu07] can now be used (and is recom-
mended) as an alternative to wget, see Section 1.7.3.



AtlasRep — A GAP 4 Package 15

• The address of the data server has changed. Since the access to the server is no longer possible
via ftp, the mechanim used up to version 1.2, which was based on ftp, had to be rewritten.

The main consequence of this change is that information about updates of the table of contents
is now provided at the package’s homepage. This means that on the one hand, now package
users cannot compute the table of contents directly from the server data, but on the other hand
the update information can be downloaded without the necessity to install perl.

Another consequence is that the system program ls is no longer needed, see Section 1.9.5.

• The package manual has been restructured, extended and improved. It is now based on the
package GAPDoc [LN08].

1.9.4 What’s New in Version 1.2?

Not much.
The release of Version 1.2 became necessary first of all in order to provide a package version that

is compatible with GAP 4.4, since some cross-references into the GAP Reference Manual were broken
due to changes of section names. Additionally, several web addresses concerning the package itself
were changed and thus had to be adjusted.

This opportunity was used

• to upgrade the administrational part for loading the package to the mechanism that is recom-
mended for GAP 4.4,

• to extend the test suite, which now covers more consistency checks using the GAP Character
Table Library [Bre04],

• to make the function ScanMeatAxeFile (5.3.1) more robust, due to the fact that the GAP func-
tion PermList (Reference: PermList) now returns fail instead of raising an error,

• to change the way how representations with prescribed properties are accessed (the
new function OneAtlasGeneratingSetInfo (2.5.4) is now preferred to the former
OneAtlasGeneratingSet, and AllAtlasGeneratingSetInfos (2.5.5) has been added in or-
der to provide programmatic access in parallel to the human readable descriptions printed by
DisplayAtlasInfo (2.5.1)),

• and last but not least to include the current table of contents of the underlying database.

For AtlasRep users, the new feature of GAP 4.4 is particularly interesting that due to better kernel
support, reading large matrices over finite fields is now faster than it was in GAP 4.3.

1.9.5 What’s New in Version 1.1?

The biggest change w.r.t. Version 1.1 is the addition of private extensions (see Chapter 3). It includes
a new “free format” for straight line programs (see Section 3.2). Unfortunately, this feature requires
the system program ls, so it may be not available for example under MS Windows operating systems.
[But see Section 1.9.3.]

In order to admit the addition of other types of data, the implementation of several functions has
been changed. Data types are described in Section 5.5. An example of a new data type are quaternionic
representations (see Section 5.6). The user interface itself (see Chapter 2) remained the same.



AtlasRep — A GAP 4 Package 16

As an alternative to perl, one can use wget now for transferring data files (see 1.7).
Data files can be read much more efficiently in GAP 4.3 than in GAP 4.2. In Version 1.1 of

the AtlasRep package, this feature is used for reading matrices and permutations in MeatAxe text
format with ScanMeatAxeFile (5.3.1). As a consequence, (at least) GAP 4.3 is required for AtlasRep
Version 1.1.

The new compress component of the global variable AtlasOfGroupRepresentationsInfo
(5.1.5) allows one to store data files automatically in gzipped form.

For matrix representations in characteristic zero, invariant forms and gener-
ators for the centralizer algebra are now accessible in GAP if they are con-
tained in the source files –this information had been ignored in Version 1.0
(see AtlasOfGroupRepresentationsTestTableOfContentsRemoteUpdates (1.6.4) for nec-
essary updates).

Additional information is now available via the internet (see 1.3).
The update facilities have been extended (see 1.6).
The manual is now distributed also in pdf and HTML format; on the other hand, the PostScript

format manual is no longer contained in the archives.
Apart from these changes, a few minor bugs in the handling of MeatAxe files have been fixed, typos

in the documentation have been corrected, and the syntax checks for ATLAS straight line programs
(see 5.4) have been improved.

1.10 Acknowledgments

The perl script that had been used for fetching remote data until version 1.2 had been kindly provided
by Frank Lübeck and Max Neunhöffer. Thanks also to Greg Gamble and Alexander Hulpke for
technical hints concerning “standard” perl.

Ulrich Kaiser helped with preparing the package for MS Windows.
The idea to support private extensions of the package (see Chapter 3) is due to Klaus Lux. He

used a preliminary version of AtlasRep Version 1.1, and helped to fix several bugs.
The functions CMtxBinaryFFMatOrPerm (5.3.4) and FFMatOrPermCMtxBinary (5.3.5) were con-

tributed by Frank Lübeck.
The GAPDoc package [LN08], which is used for processing the package manual, was written by

Frank Lübeck and Max Neunhöffer.
The GAP package IO [Neu07], which is recommended for transferring data, was written by Max

Neunhöffer.
Max has also suggested the generalization of the data access described in Section 1.7.6.
Gunter Malle had suggested to make the information about representations of minimal degree

accessible.



Chapter 2

The User Interface of the AtlasRep
Package

The user interface is the part of the GAP interface that allows one to display information about the
current contents of the database and to access individual data (perhaps from a remote server, see
Section 1.7.1). The corresponding functions are described in this chapter. See Section 2.6 for some
small examples how to use the functions of the interface.

Extensions of the AtlasRep package are regarded as another part of the GAP interface, they are
described in Chapter 3. Finally, the low level part of the interface are described in Chapter 5.

As stated in Section 1.2, the user interface is preliminary. It will be extended when the GAP
version of the ATLAS of Group Representations is connected to other GAP databases such as the
libraries of character tables and tables of marks.

For some of the examples in this chapter, the GAP packages CTblLib [Bre04] and TomLib are
needed.

Example
gap> LoadPackage( "ctbllib" );
true
gap> LoadPackage( "tomlib" );
true

2.1 Accessing vs. Constructing Representations

Note that accessing the data means in particular that it is not the aim of this package to con-
struct representations from known ones. For example, if at least one permutation representa-
tion for a group G is stored but no matrix representation in a positive characteristic p, say, then
OneAtlasGeneratingSetInfo (2.5.4) returns fail when it is asked for a description of an available
set of matrix generators for G in characteristic p, although such a representation can be obtained by
reduction modulo p of an integral matrix representation, which in turn can be constructed from any
permutation representation.

2.2 Group Names Used in the AtlasRep Package

The AtlasRep package refers to data of the ATLAS of Group Representations by the name of the group
in question plus additional information. Thus it is essential to know this name, which is called the

17



AtlasRep — A GAP 4 Package 18

GAP name of the group in the following.
For an almost simple group, the GAP name is equal to the Identifier (Reference: Identi-

fier!for character tables) value of the character table of this group in the GAP library (see Access
to Library Character Tables (CTblLib: Access to Library Character Tables)); this name is
usually very similar to the name used in the ATLAS of Finite Groups [CCN+85]. For example, "M22"
is the GAP name of the Mathieu group M22, and "12 1.U4(3).2 1" is the GAP name of 121.U4(3).21.

Internally, for example as part of filenames (see Section 5.6), the package uses names that may
differ from the GAP names; these names are called ATLAS-file names. For example, A5, TE62, and
F24 are possible values for groupname. Of these, only A5 is also a GAP name, but the other two are
not; the corresponding GAP names are 2E6(2) and Fi24’, respectively.

2.3 Standard Generators Used in the AtlasRep Package

For the general definition of standard generators of a group, see Section (Reference: Standard
Generators of Groups); details can be found in [Wil96].

Several different standard generators may be defined for a group, the definitions can be found at
http://brauer.maths.qmul.ac.uk/Atlas
When one specifies the standardization, the i-th set of standard generators is denoted by the num-

ber i. Note that when more than one set of standard generators is defined for a group, one must be
careful to use compatible standardization. For example, the straight line programs, straight line deci-
sions and black box programs in the database refer to a specific standardization of their inputs. That
is, a straight line program for computing generators of a certain subgroup of a group G is defined only
for a specific set of standard generators of G, and applying the program to matrix or permutation gen-
erators of G but w.r.t. a different standardization may yield unpredictable results. Therefore the results
returned by the functions described in this chapter contain information about the standardizations they
refer to.

2.4 Class Names Used in the AtlasRep Package

For each straight line program (see AtlasProgram (2.5.3)) that is used to compute lists of class
representatives, it is essential to describe the classes in which these elements lie. Therefore, in these
cases the records returned by the function AtlasProgram (2.5.3) contain a component outputs with
value a list of class names.

Currently we define these class names only for simple groups and automorphic extensions and
central extensions of simple groups, see Section 2.4.1. The function AtlasClassNames (2.4.2) can
be used to compute the list of class names from the character table in the GAP Library.

2.4.1 Definition of ATLAS Class Names

For the definition of class names of an almost simple group, we assume that the ordinary character
tables of all nontrivial normal subgroups are shown in the ATLAS of Finite Groups [CCN+85].

Each class name is a string consisting of the element order of the class in question followed by
a combination of capital letters, digits, and the characters ’ and - (starting with a capital letter). For
example, 1A, 12A1, and 3B’ denote the class that contains the identity element, a class of element
order 12, and a class of element order 3, respectively.

http://brauer.maths.qmul.ac.uk/Atlas


AtlasRep — A GAP 4 Package 19

1. For the table of a simple group, the class names are the same as returned by the two argument
version of the GAP function ClassNames (Reference: ClassNames), cf. [CCN+85, Chapter 7,
Section 5]: The classes are arranged w.r.t. increasing element order and for each element order
w.r.t. decreasing centralizer order, the conjugacy classes that contain elements of order n are
named nA, nB, nC, . . .; the alphabet used here is potentially infinite, and reads A, B, C, . . ., Z, A1,
B1, . . ., A2, B2, . . ..

For example, the classes of the alternating group A5 have the names 1A, 2A, 3A, 5A, and 5B.

2. Next we consider the case of an upward extension G.A of a simple group G by a cyclic group
of order A. The ATLAS defines class names for each element g of G.A only w.r.t. the group G.a,
say, that is generated by G and g; namely, there is a power of g (with the exponent coprime to
the order of g) for which the class has a name of the same form as the class names for simple
groups, and the name of the class of g w.r.t. G.a is then obtained from this name by appending
a suitable number of dashes ’. So dashed class names refer exactly to those classes that are not
printed in the ATLAS.

For example, those classes of the symmetric group S5 that do not lie in A5 have the names 2B,
4A, and 6A. The outer classes of the group L2(8).3 have the names 3B, 6A, 9D, and 3B’, 6A’,
9D’. The outer elements of order 5 in the group Sz(32).5 lie in the classes with names 5B, 5B’,
5B’’, and 5B’’’.

In the group G.A, the class of g may fuse with other classes. The name of the class of g in G.A
is obtained from the names of the involved classes of G.a by concatenating their names after
removing the element order part from all of them except the first one.

For example, the elements of order 9 in the group L2(27).6 are contained in the subgroup
L2(27).3 but not in L2(27). In L2(27).3, they lie in the classes 9A, 9A’, 9B, and 9B’; in L2(27).6,
these classes fuse to 9AB and 9A’B’.

3. Now we define class names for general upward extensions G.A of a simple group G. Each
element g of such a group lies in an upward extension G.a by a cyclic group, and the class names
w.r.t. G.a are already defined. The name of the class of g in G.A is obtained by concatenating
the names of the classes in the orbit of G.A on the classes of cyclic upward extensions of G,
after ordering the names lexicographically and removing the element order part from all of them
except the first one. An exception is the situation where dashed and non-dashed class names
appear in an orbit; in this case, the dashed names are omitted.

For example, the classes 21A and 21B of the group U3(5).3 fuse in U3(5).S3 to the class 21AB,
and the class 2B of U3(5).2 fuses with the involution classes 2B’, 2B’’ in the groups U3(5).2′

and U3(5).2′′ to the class 2B of U3(5).S3.

It may happen that some names in the outputs component of a record returned by
AtlasProgram (2.5.3) do not uniquely determine the classes of the corresponding elements.
For example, the (algebraically conjugate) classes 39A and 39B of the group Co1 have not been
distinguished yet. In such cases, the names used contain a minus sign -, and mean “one of
the classes in the range described by the name before and the name after the minus sign”; the
element order part of the name does not appear after the minus sign. So the name 39A-B for the
group Co1 means 39A or 39B, and the name 20A-B’’’ for the group Sz(32).5 means one of the
classes of element order 20 in this group (these classes lie outside the simple group Sz).



AtlasRep — A GAP 4 Package 20

4. For a central downward extension m.G of a simple group G by a cyclic group of order m, let π

denote the natural epimorphism from m.G onto G. Each class name of m.G has the form nX 0,
nX 1 etc., where nX is the class name of the image under π, and the indices 0, 1 etc. are chosen
according to the position of the class in the lifting order rows for G, see [CCN+85, Chapter 7,
Section 7, and the example in Section 8]).

For example, if m = 6 then 1A 1 and 1A 5 denote the classes containing the generators of the
kernel of π, that is, central elements of order 6.

2.4.2 AtlasClassNames

♦ AtlasClassNames(tbl) (function)

Returns: a list of class names.
Let tbl be the ordinary character table of a group G that is simple or an automorphic or a central

extension of a simple group and such that tbl is an ATLAS table from the GAP Character Table
Library, according to its InfoText (Reference: InfoText) value. Then AtlasClassNames returns
the list of class names for G, as defined in Section 2.4.1. The ordering of class names is the same as
the ordering of the columns of tbl.

(The function may work also for character tables that are not ATLAS tables, but then clearly the
class names returned are somewhat arbitrary.)

Example
gap> AtlasClassNames( CharacterTable( "L3(4).3" ) );
[ "1A", "2A", "3A", "4ABC", "5A", "5B", "7A", "7B", "3B", "3B’", "3C", "3C’",
"6B", "6B’", "15A", "15A’", "15B", "15B’", "21A", "21A’", "21B", "21B’" ]

gap> AtlasClassNames( CharacterTable( "U3(5).2" ) );
[ "1A", "2A", "3A", "4A", "5A", "5B", "5CD", "6A", "7AB", "8AB", "10A", "2B",
"4B", "6D", "8C", "10B", "12B", "20A", "20B" ]

gap> AtlasClassNames( CharacterTable( "L2(27).6" ) );
[ "1A", "2A", "3AB", "7ABC", "13ABC", "13DEF", "14ABC", "2B", "4A", "26ABC",
"26DEF", "28ABC", "28DEF", "3C", "3C’", "6A", "6A’", "9AB", "9A’B’", "6B",
"6B’", "12A", "12A’" ]

gap> AtlasClassNames( CharacterTable( "L3(4).3.2_2" ) );
[ "1A", "2A", "3A", "4ABC", "5AB", "7A", "7B", "3B", "3C", "6B", "15A",
"15B", "21A", "21B", "2C", "4E", "6E", "8D", "14A", "14B" ]

gap> AtlasClassNames( CharacterTable( "3.A6" ) );
[ "1A_0", "1A_1", "1A_2", "2A_0", "2A_1", "2A_2", "3A_0", "3B_0", "4A_0",
"4A_1", "4A_2", "5A_0", "5A_1", "5A_2", "5B_0", "5B_1", "5B_2" ]

2.5 Accessing Data of the AtlasRep Package

(Note that the output of the examples in this section refers to a perhaps outdated table of contents; the
current version of the database may contain more information than is shown here.)

2.5.1 DisplayAtlasInfo

♦ DisplayAtlasInfo() (function)

♦ DisplayAtlasInfo(listofnames) (function)

♦ DisplayAtlasInfo(gapname[, std][, ...]) (function)



AtlasRep — A GAP 4 Package 21

This function lists the information available via the AtlasRep package, for the given input. De-
pending on whether remote access to data is enabled (see Section 1.7.1), all the data provided by the
ATLAS of Group Representations or only those in the local installation are considered.

(An interactive alternative to DisplayAtlasInfo is the function BrowseAtlasInfo (Browse:
BrowseAtlasInfo), see [BL08]; this function provides also the functionality of AtlasGenerators
(2.5.2).)

Called without arguments, DisplayAtlasInfo prints an overview what information the ATLAS
of Group Representations provides. One line is printed for each group G, with the following columns.

group the GAP name of G (see Section 2.2),

# the number of representations stored for G,

maxes the available straight line programs for computing generators of maximal subgroups of G,

cl a + sign if at least one program for computing representatives of conjugacy classes of elements of
G is stored, and a - sign otherwise,

cyc a + sign if at least one program for computing representatives of classes of maximally cyclic
subgroups of G is stored, and a - sign otherwise,

out descriptions of outer automorphisms of G for which at least one program is stored,

check a + sign if at least one program is available for checking whether a set of generators is a set
of standard generators, and a - sign otherwise,

pres a + sign if at least one program is available that encodes a presentation, and a - sign otherwise,

find a + sign if at least one program is available for finding standard generators, and a - sign
otherwise,

Called with a list listofnames of strings that are GAP names for a group from the ATLAS of
Group Representations, DisplayAtlasInfo prints the overview described above but restricted to the
groups in this list.

Called with a string gapname that is a GAP name for a group from the ATLAS of Group Repre-
sentations, DisplayAtlasInfo prints an overview of the information that is available for this group.
One line is printed for each representation, showing the number of this representation (which can be
used in calls of AtlasGenerators (2.5.2)), and a string of one of the following forms; in both cases,
id is a (possibly empty) string.

G <= Sym(nid) denotes a permutation representation of degree n, for example G <= Sym(40a)
and G <= Sym(40b) denote two (nonequivalent) representations of degree 40.

G <= GL(nid,descr) denotes a matrix representation of dimension n over a coefficient ring
described by descr, which can be a prime power, Z (denoting the ring of integers), a descrip-
tion of an algebraic extension field, C (denoting an unspecified algebraic extension field), or
Z/mZ for an integer m (denoting the ring of residues mod m); for example, G <= GL(2a,4) and
G <= GL(2b,4) denote two (nonequivalent) representations of dimension 2 over the field with
four elements.



AtlasRep — A GAP 4 Package 22

After the representations, the programs available for gapname are listed.
If the first argument is a string gapname, the following optional arguments can be used to restrict

the overview.

std must be a positive integer or a list of positive integers; if it is given then only those representa-
tions are considered that refer to the std-th set of standard generators or the i-th set of standard
generators, for i in std (see Section 2.3),

IsPermGroup and true restrict to permutation representations,

NrMovedPoints and n for a positive integer, a list of positive integers, or a property n, restrict to
permutation representations of degree equal to n, or in the list n, or satisfying the function n,

NrMovedPoints and the string "minimal" restrict to faithful permutation representations of
minimal degree (if this information is available),

IsMatrixGroup and true restrict to matrix representations,

Characteristic and p for a prime integer, a list of prime integers, or a property p, restrict to
matrix representations over fields of characteristic equal to p, or in the list p, or satisfying
the function p (representations over residue class rings that are not fields can be addressed by
entering fail as the value of p),

Dimension and n for a positive integer, a list of positive integers, or a property n, restrict to matrix
representations of dimension equal to n, or in the list n, or satisfying the function n,

Characteristic, p, Dimension, and the string "minimal" for a prime integer p, restrict to
faithful matrix representations over fields of characteristic p that have minimal dimension (if
this information is available),

Ring and R for a ring or a property R, restrict to matrix representations over this ring or satisfying
this function (note that the representation might be defined over a proper subring of R), and

Ring, R, Dimension, and the string "minimal" for a ring R, restrict to faithful matrix repre-
sentations over this ring that have minimal dimension (if this information is available),

IsStraightLineProgram restricts to straight line programs, straight line decisions (see Sec-
tion 4.1), and black box programs (see Section 4.2).

If “minimality” information is requested and no available representation matches this condition
then either no minimal representation is available or the information about the minimality is miss-
ing. See MinimalRepresentationInfo (4.3.1) for checking whether the minimality information is
available for the group in question. Note that in the cases where the string "minimal" occurs as
an argument, MinimalRepresentationInfo (4.3.1) is called with third argument "lookup"; this is
because the stored information was computed just for the groups in the ATLAS of Group Representa-
tions, so trying to compute non-stored minimality information (using other available databases) will
hardly be successful.

The representations are ordered as follows. Permutation representations come first (ordered ac-
cording to their degrees), followed by matrix representations over finite fields (ordered first according
to the field size and second according to the dimension), matrix representations over the integers,
and then matrix representations over algebraic extension fields (both kinds ordered according to the



AtlasRep — A GAP 4 Package 23

dimension), the last representations are matrix representations over residue class rings (ordered first
according to the modulus and second according to the dimension).

The maximal subgroups are ordered according to decreasing group order. For an extension G.p of
a simple group G by an outer automorphism of prime order p, this means that G is the first maximal
subgroup and then come the extensions of the maximal subgroups of G and the novelties; so the n-
th maximal subgroup of G and the n-th maximal subgroup of G.p are in general not related. (This
coincides with the numbering used for the Maxes (CTblLib: Maxes) attribute for character tables.)

Example
gap> DisplayAtlasInfo( [ "M11", "A5" ] );
group # maxes cl cyc out find check pres
---------------------------------------------------
M11 42 5 + + + + +
A5 18 3 - - - + +

The above output means that the ATLAS of Group Representations contains 42 representations of
the Mathieu group M11, straight line programs for computing generators of representatives of all five
classes of maximal subgroups, for computing representatives of the conjugacy classes of elements and
of generators of maximally cyclic subgroups, contains no straight line program for applying outer au-
tomorphisms (well, in fact M11 admits no nontrivial outer automorphism), and contains a straight line
decision that checks generators for being standard generators. Analogously, 18 representations of the
alternating group A5 are available, straight line programs for computing generators of representatives
of all three classes of maximal subgroups, and no straight line programs for computing representatives
of the conjugacy classes of elements, of generators of maximally cyclic subgroups, and no for com-
puting images under outer automorphisms; a straight line decision for checking the standardization of
generators is contained.

Example
gap> DisplayAtlasInfo( "A5", IsPermGroup, true );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
1: G <= Sym(5)
2: G <= Sym(6)
3: G <= Sym(10)
gap> DisplayAtlasInfo( "A5", NrMovedPoints, [ 4 .. 9 ] );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
1: G <= Sym(5)
2: G <= Sym(6)

The first three representations stored for A5 are (in fact primitive) permutation representations.
Example

gap> DisplayAtlasInfo( "A5", Dimension, [ 1 .. 3 ] );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
8: G <= GL(2a,4)
9: G <= GL(2b,4)

10: G <= GL(3,5)
12: G <= GL(3a,9)
13: G <= GL(3b,9)
17: G <= GL(3a,Field([Sqrt(5)]))
18: G <= GL(3b,Field([Sqrt(5)]))



AtlasRep — A GAP 4 Package 24

gap> DisplayAtlasInfo( "A5", Characteristic, 0 );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
14: G <= GL(4,Z)
15: G <= GL(5,Z)
16: G <= GL(6,Z)
17: G <= GL(3a,Field([Sqrt(5)]))
18: G <= GL(3b,Field([Sqrt(5)]))

The representations with number between 4 and 13 are (in fact irreducible) matrix representations
over various finite fields, those with numbers 14 to 16 are integral matrix representations, and the last
two are matrix representations over the field generated by

√
5 over the rational number field.

Example
gap> DisplayAtlasInfo( "A5", NrMovedPoints, IsPrimeInt );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
1: G <= Sym(5)
gap> DisplayAtlasInfo( "A5", Characteristic, IsOddInt );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
6: G <= GL(4,3)
7: G <= GL(6,3)

10: G <= GL(3,5)
11: G <= GL(5,5)
12: G <= GL(3a,9)
13: G <= GL(3b,9)
gap> DisplayAtlasInfo( "A5", Dimension, IsPrimeInt );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
8: G <= GL(2a,4)
9: G <= GL(2b,4)

10: G <= GL(3,5)
11: G <= GL(5,5)
12: G <= GL(3a,9)
13: G <= GL(3b,9)
15: G <= GL(5,Z)
17: G <= GL(3a,Field([Sqrt(5)]))
18: G <= GL(3b,Field([Sqrt(5)]))
gap> DisplayAtlasInfo( "A5", Ring, IsFinite and IsPrimeField );
Representations for G = A5: (all refer to std. generators 1)
---------------------------
4: G <= GL(4a,2)
5: G <= GL(4b,2)
6: G <= GL(4,3)
7: G <= GL(6,3)

10: G <= GL(3,5)
11: G <= GL(5,5)

The above examples show how the output can be restricted using a property (a unary function
that returns either true or false) that follows NrMovedPoints (Reference: NrMovedPoints),
Characteristic (Reference: Characteristic), Dimension (Reference: Dimension), or Ring
(Reference: Ring) in the argument list of DisplayAtlasInfo (2.5.1).



AtlasRep — A GAP 4 Package 25

Example
gap> DisplayAtlasInfo( "A5", IsStraightLineProgram, true );
Programs for G = A5: (all refer to std. generators 1)
--------------------
available maxes of G: [ 1 .. 3 ] (all)
standard generators checker available
presentation available

Straight line programs are available for computing generators of representatives of the three
classes of maximal subgroups of A5, and a straight line decision for checking whether given generators
are in fact standard generators ia available as well as a presentation in terms of standard generators,
see AtlasProgram (2.5.3).

2.5.2 AtlasGenerators

♦ AtlasGenerators(gapname, repnr[, maxnr]) (function)

♦ AtlasGenerators(identifier) (function)

Returns: a record containing generators for a representation, or fail.
In the first form, gapnamemust be a string denoting a GAP name (see Section 2.2) of a group, and

repnr a positive integer. If the ATLAS of Group Representations contains at least repnr represen-
tations for the group with GAP name gapname then AtlasGenerators, when called with gapname
and repnr, returns an immutable record describing the repnr-th representation; otherwise fail is
returned. If a third argument maxnr, a positive integer, is given then an immutable record describing
the restriction of the repnr-th representation to the maxnr-th maximal subgroup is returned.

The result record has the following components.

groupname the GAP name of the group (see Section 2.2),

generators a list of generators for the group,

standardization the positive integer denoting the underlying standard generators,

size (only if known) the order of the group,

identifier a GAP object (a list of filenames plus additional information) that uniquely determines
the representation; the value can be used as identifier argument of AtlasGenerators.

repnr the number of the representation in the current session, equal to the argument repnr if this
is given.

Additionally, there are describing components dependent on the data type of the representation:
For permutation representations, these are p for the number of moved points and id for the distin-
guishing string as described for DisplayAtlasInfo (2.5.1); for matrix representations, these are dim
for the dimension of the matrices, ring (if known) for the ring generated by the matrix entries, and
id for the distinguishing string.

It should be noted that the number repnr refers to the number shown by DisplayAtlasInfo
(2.5.1) in the current session; it may be that after the addition of new representations, repnr refers
to another representation.

The alternative form of AtlasGenerators, with only argument identifier, can be used to
fetch the result record with identifier value equal to identifier. The purpose of this variant is
to access the same representation also in different GAP sessions.



AtlasRep — A GAP 4 Package 26

Example
gap> gens1:= AtlasGenerators( "A5", 1 );
rec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5",
standardization := 1, repnr := 1,
identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], p := 5,
id := "", size := 60 )

gap> gens8:= AtlasGenerators( "A5", 8 );
rec(
generators := [ [ [ Z(2)ˆ0, 0*Z(2) ], [ Z(2ˆ2), Z(2)ˆ0 ] ], [ [ 0*Z(2), Z(2

)ˆ0 ], [ Z(2)ˆ0, Z(2)ˆ0 ] ] ], groupname := "A5",
standardization := 1, repnr := 8,
identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ],
dim := 2, id := "a", ring := GF(2ˆ2), size := 60 )

gap> gens17:= AtlasGenerators( "A5", 17 );
rec(
generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)ˆ4, -E(5)-E(5)ˆ4,

1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ],
groupname := "A5", standardization := 1, repnr := 17,
identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], dim := 3, id := "a",
ring := NF(5,[ 1, 4 ]), size := 60 )

Each of the above pairs of elements generates a group isomorphic to A5.
Example

gap> gens1max2:= AtlasGenerators( "A5", 1, 2 );
rec( generators := [ (1,2)(3,4), (2,3)(4,5) ], standardization := 1,
repnr := 1, identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5,

2 ], p := 5, id := "", size := 10 )
gap> id:= gens1max2.identifier;;
gap> gens1max2 = AtlasGenerators( id );
true
gap> max2:= Group( gens1max2.generators );;
gap> Size( max2 );
10
gap> IdGroup( max2 ) = IdGroup( DihedralGroup( 10 ) );
true

The elements stored in gens1max2.generators describe the restriction of the first representation
of A5 to a group in the second class of maximal subgroups of A5 according to the list in the ATLAS of
Finite Groups [CCN+85]; this subgroup is isomorphic to the dihedral group D10.

2.5.3 AtlasProgram

♦ AtlasProgram(gapname[, std], ...) (function)

♦ AtlasProgram(identifier) (function)

Returns: a record containing a program, or fail.
In the first form, gapname must be a string denoting a GAP name (see Section 2.2) of a group G,

say. If the ATLAS of Group Representations contains a straight line program (see Section (Reference:
Straight Line Programs)) or straight line decision (see Section 4.1) or black box program (see Sec-
tion 4.2) as described by the remaining arguments (see below) then AtlasProgram returns an im-
mutable record containing this program. Otherwise fail is returned.



AtlasRep — A GAP 4 Package 27

If the optional argument std is given, only those straight line programs/decisions are considered
that take generators from the std-th set of standard generators of G as input, see Section 2.3.

The result record has the following components.

program the required straight line program/decision, or black box program,

standardization the positive integer denoting the underlying standard generators of G,

identifier a GAP object (a list of filenames plus additional information) that uniquely determines
the program; the value can be used as identifier argument of AtlasProgram (see below).

In the first form, the last arguments must be as follows.

(the string "maxes" and) a positive integer maxnr the required program computes generators of
the maxnr-th maximal subgroup of the group with GAP name gapname.

In this case, the result record of AtlasProgram also may contain a component size, whose
value is the order of the maximal subgroup in question.

one of the strings "classes" or "cyclic" the required program computes representatives of
conjugacy classes of elements or representatives of generators of maximally cyclic subgroups
of G, respectively.

See [BSWW01] and [SWW00] for the background concerning these straight line programs. In
these cases, the result record of AtlasProgram also contains a component outputs, whose
value is a list of class names of the outputs, as described in Section 2.4.

the strings "automorphism" and autname the required program computes images of standard
generators under the outer automorphism of G that is given by this string.

the string "check" the required result is a straight line decision that takes a list of generators for G
and returns true if these generators are standard generators w.r.t. the standardization std, and
false otherwise.

the string "presentation" the required result is a straight line decision that takes a list of group
elements and returns true if these elements are standard generators of G w.r.t. the standardiza-
tion std, and false otherwise.

the string "find" the required result is a black box program that takes G and returns a list of stan-
dard generators of G, w.r.t. the standardization std.

the string "restandardize" and an integer std2 the required result is a straight line program
that computes standard generators of G w.r.t. the std2-th set of standard generators of G; in
this case, the argument std must be given.

the strings "other" and descr the required program is described by descr.

The second form of AtlasProgram, with only argument the list identifier, can be used to
fetch the result record with identifier value equal to identifier.



AtlasRep — A GAP 4 Package 28

Example
gap> prog:= AtlasProgram( "A5", 2 );
rec( program := <straight line program>, standardization := 1,
identifier := [ "A5", "A5G1-max2W1", 1 ], size := 10, groupname := "A5" )

gap> StringOfResultOfStraightLineProgram( prog.program, [ "a", "b" ] );
"[ a, bbab ]"
gap> gens1:= AtlasGenerators( "A5", 1 );
rec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5",
standardization := 1, repnr := 1,
identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], p := 5,
id := "", size := 60 )

gap> maxgens:= ResultOfStraightLineProgram( prog.program, gens1.generators );
[ (1,2)(3,4), (2,3)(4,5) ]
gap> maxgens = gens1max2.generators;
true

The above example shows that for restricting representations given by standard generators to a
maximal subgroup of A5, we can also fetch and apply the appropriate straight line program. Such a
program (see (Reference: Straight Line Programs)) takes standard generators of a group –in this
example A5– as its input, and returns a list of elements in this group –in this example generators of
the D10 subgroup we had met above– which are computed essentially by evaluating structured words
in terms of the standard generators.

Example
gap> prog:= AtlasProgram( "J1", "cyclic" );
rec( program := <straight line program>, standardization := 1,
identifier := [ "J1", "J1G1-cycW1", 1 ],
outputs := [ "6A", "7A", "10B", "11A", "15B", "19A" ], groupname := "J1" )

gap> gens:= GeneratorsOfGroup( FreeGroup( "x", "y" ) );;
gap> ResultOfStraightLineProgram( prog.program, gens );
[ x*y*x*yˆ2*x*y*x*yˆ2*x*y*x*y*x*yˆ2*x*yˆ2, x*y, x*y*x*yˆ2*x*y*x*y*x*yˆ2*x*yˆ2,
x*y*x*y*x*yˆ2*x*yˆ2*x*y*x*yˆ2*x*y*x*y*x*yˆ2*x*yˆ2*x*y*x*yˆ2*x*y*x*y*x*yˆ

2*x*yˆ2, x*y*x*y*x*yˆ2*x*yˆ2, x*y*x*yˆ2 ]

The above example shows how to fetch and use straight line programs for computing generators
of representatives of maximally cyclic subgroups of a given group.

2.5.4 OneAtlasGeneratingSetInfo

♦ OneAtlasGeneratingSetInfo([gapname, ][std, ][...]) (function)

Returns: a record describing a representation that satisfies the conditions, or fail.
Let gapname be a string denoting a GAP name (see Section 2.2) of a group G, say. If the

ATLAS of Group Representations contains at least one representation for G with the required properties
then OneAtlasGeneratingSetInfo returns a record r whose components are the same as those of
the records returned by AtlasGenerators (2.5.2), except that the component generators is not
contained; the component identifier of r can be used as input for AtlasGenerators (2.5.2) in
order to fetch the generators. If no representation satisfying the given conditions ia available then
fail is returned.

If the argument std is given then it must be a positive integer or a list of positive integers, denoting
the sets of standard generators w.r.t. which the representation shall be given (see Section 2.3).



AtlasRep — A GAP 4 Package 29

The argument gapname can be missing (then all available groups are considered), or a list of
group names can be given instead.

Further restrictions can be entered as arguments, with the same meaning as described for
DisplayAtlasInfo (2.5.1). The result of OneAtlasGeneratingSetInfo describes the first gen-
erating set for G that matches the restrictions, in the ordering shown by DisplayAtlasInfo (2.5.1).

Note that even in the case that the user parameter “remote” has the value true (see Section 1.7.1),
OneAtlasGeneratingSetInfo does not attempt to transfer remote data files, just the table of con-
tents is evaluated. So this function (as well as AllAtlasGeneratingSetInfos (2.5.5)) can be used
to check for the availability of certain representations, and afterwards one can call AtlasGenerators
(2.5.2) for those representations one wants to work with.

In the following example, we try to access information about permutation representations for the
alternating group A5.

Example
gap> info:= OneAtlasGeneratingSetInfo( "A5" );
rec( groupname := "A5", standardization := 1, repnr := 1,
identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], p := 5,
id := "", size := 60 )

gap> gens:= AtlasGenerators( info.identifier );
rec( generators := [ (1,2)(3,4), (1,3,5) ], groupname := "A5",
standardization := 1, repnr := 1,
identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ], p := 5,
id := "", size := 60 )

gap> info = OneAtlasGeneratingSetInfo( "A5", IsPermGroup, true );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, "minimal" );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, [ 1 .. 10 ] );
true
gap> OneAtlasGeneratingSetInfo( "A5", NrMovedPoints, 20 );
fail

Note that a permutation representation of degree 20 could be obtained by taking twice the prim-
itive representation on 10 points; however, the ATLAS of Group Representations does not store this
imprimitive representation (cf. Section 2.1).

We continue this example a little. Next we access matrix representations of A5.
Example

gap> info:= OneAtlasGeneratingSetInfo( "A5", IsMatrixGroup, true );
rec( groupname := "A5", standardization := 1, repnr := 4,
identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ],
dim := 4, id := "a", ring := GF(2), size := 60 )

gap> gens:= AtlasGenerators( info.identifier );
rec(
generators := [ <an immutable 4x4 matrix over GF2>, <an immutable 4x4 matrix\

over GF2> ], groupname := "A5", standardization := 1, repnr := 4,
identifier := [ "A5", [ "A5G1-f2r4aB0.m1", "A5G1-f2r4aB0.m2" ], 1, 2 ],
dim := 4, id := "a", ring := GF(2), size := 60 )

gap> info = OneAtlasGeneratingSetInfo( "A5", Dimension, 4 );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", Characteristic, 2 );
true



AtlasRep — A GAP 4 Package 30

gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, GF(2) );
true
gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 2 );
rec( groupname := "A5", standardization := 1, repnr := 8,
identifier := [ "A5", [ "A5G1-f4r2aB0.m1", "A5G1-f4r2aB0.m2" ], 1, 4 ],
dim := 2, id := "a", ring := GF(2ˆ2), size := 60 )

gap> OneAtlasGeneratingSetInfo( "A5", Characteristic, [2,5], Dimension, 1 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Characteristic, 0, Dimension, 4 );
rec( groupname := "A5", standardization := 1, repnr := 14,
identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], dim := 4, id := "",
ring := Integers, size := 60 )

gap> gens:= AtlasGenerators( info.identifier );
rec(
generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1,

-1, -1 ] ],
[ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ],

groupname := "A5", standardization := 1, repnr := 14,
identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], dim := 4, id := "",
ring := Integers, size := 60 )

gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, Integers );
true
gap> info = OneAtlasGeneratingSetInfo( "A5", Ring, CF(37) );
true
gap> OneAtlasGeneratingSetInfo( "A5", Ring, Integers mod 77 );
fail
gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, CF(5), Dimension, 3 );
rec( groupname := "A5", standardization := 1, repnr := 17,
identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], dim := 3, id := "a",
ring := NF(5,[ 1, 4 ]), size := 60 )

gap> gens:= AtlasGenerators( info.identifier );
rec(
generators := [ [ [ -1, 0, 0 ], [ 0, -1, 0 ], [ -E(5)-E(5)ˆ4, -E(5)-E(5)ˆ4,

1 ] ], [ [ 0, 1, 0 ], [ 0, 0, 1 ], [ 1, 0, 0 ] ] ],
groupname := "A5", standardization := 1, repnr := 17,
identifier := [ "A5", "A5G1-Ar3aB0.g", 1, 3 ], dim := 3, id := "a",
ring := NF(5,[ 1, 4 ]), size := 60 )

gap> OneAtlasGeneratingSetInfo( "A5", Ring, GF(17) );
fail

2.5.5 AllAtlasGeneratingSetInfos

♦ AllAtlasGeneratingSetInfos([gapname, ][std, ][...]) (function)

Returns: the list of all records describing representations that satisfy the conditions.
AllAtlasGeneratingSetInfos is similar to OneAtlasGeneratingSetInfo (2.5.4). The differ-

ence is that the list of all records describing the available representations with the given properties
is returned instead of just one such component. In particular an empty list is returned if no such
representation is available.

Example
gap> AllAtlasGeneratingSetInfos( "A5", IsPermGroup, true );
[ rec( groupname := "A5", standardization := 1, repnr := 1,



AtlasRep — A GAP 4 Package 31

identifier := [ "A5", [ "A5G1-p5B0.m1", "A5G1-p5B0.m2" ], 1, 5 ],
p := 5, id := "", size := 60 ),

rec( groupname := "A5", standardization := 1, repnr := 2,
identifier := [ "A5", [ "A5G1-p6B0.m1", "A5G1-p6B0.m2" ], 1, 6 ],
p := 6, id := "", size := 60 ),

rec( groupname := "A5", standardization := 1, repnr := 3,
identifier := [ "A5", [ "A5G1-p10B0.m1", "A5G1-p10B0.m2" ], 1, 10 ],
p := 10, id := "", size := 60 ) ]

Note that a matrix representation in any characteristic can be obtained by reducing a permutation
representation or an integral matrix representation; however, the ATLAS of Group Representations
does not store such a representation (cf. Section 2.1).

2.5.6 AtlasGroup

♦ AtlasGroup([gapname, ][std, ][...]) (function)

Returns: a group that satisfies the conditions, or fail.
AtlasGroup takes the same arguments as OneAtlasGeneratingSetInfo (2.5.4), and re-

turns the group generated by the generators component of the record that is returned by
OneAtlasGeneratingSetInfo (2.5.4) with these arguments; if OneAtlasGeneratingSetInfo
(2.5.4) returns fail then also AtlasGroup returns fail.

Alternatively, a record as returned by OneAtlasGeneratingSetInfo (2.5.4) or
AllAtlasGeneratingSetInfos (2.5.5) can be given as the only argument.

Example
gap> g:= AtlasGroup( "A5" );
Group([ (1,2)(3,4), (1,3,5) ])

2.5.7 AtlasSubgroup

♦ AtlasSubgroup(gapname[, std][, ...], maxnr) (function)

Returns: a group that satisfies the conditions, or fail.
The arguments of AtlasSubgroup, except the last argument maxn, are the same as for

AtlasGroup (2.5.6). If the ATLAS of Group Representations provides a straight line program for
restricting representations of the group with name gapname (given w.r.t. the std-th standard gen-
erators) to the maxnr-th maximal subgroup and if a representation with the required properties is
available, in the sense that calling AtlasGroup (2.5.6) with the same arguments except maxnr yields
a group, then AtlasSubgroup returns the restriction of this representation to the maxnr-th maximal
subgroup. In all other cases, fail is returned.

Note that the conditions refer to the group and not to the subgroup. It may happen that in the
restriction of a permutation representation to a subgroup, fewer points are moved, or that the restriction
of a matrix representation turns out to be defined over a smaller ring. Here is an example.

Example
gap> g:= AtlasSubgroup( "A5", NrMovedPoints, 5, 1 );
Group([ (1,5)(2,3), (1,3,5) ])
gap> NrMovedPoints( g );
4



AtlasRep — A GAP 4 Package 32

2.6 Examples of Using the AtlasRep Package

2.6.1 Example: Class Representatives

First we show the computation of class representatives of the Mathieu group M11, in a 2-modular
matrix representation. We start with the ordinary and Brauer character tables of this group.

Example
gap> tbl:= CharacterTable( "M11" );;
gap> modtbl:= tbl mod 2;;
gap> CharacterDegrees( modtbl );
[ [ 1, 1 ], [ 10, 1 ], [ 16, 2 ], [ 44, 1 ] ]

The output of CharacterDegrees (Reference: CharacterDegrees) means that the 2-modular
irreducibles of M11 have degrees 1, 10, 16, 16, and 44.

Using DisplayAtlasInfo (2.5.1), we find out that matrix generators for the irreducible 10-
dimensional representation are available in the database.

Example
gap> DisplayAtlasInfo( "M11", Characteristic, 2 );
Representations for G = M11: (all refer to std. generators 1)
----------------------------
6: G <= GL(10,2)
7: G <= GL(32,2)
8: G <= GL(44,2)

16: G <= GL(16a,4)
17: G <= GL(16b,4)

So we decide to work with this representation. We fetch the generators and compute the list of
class representatives of M11 in the representation. The ordering of class representatives is the same
as that in the character table of the ATLAS of Finite Groups ([CCN+85]), which coincides with the
ordering of columns in the GAP table we have fetched above.

Example
gap> info:= OneAtlasGeneratingSetInfo( "M11", Characteristic, 2,
> Dimension, 10 );;
gap> gens:= AtlasGenerators( info.identifier );;
gap> ccls:= AtlasProgram( "M11", gens.standardization, "classes" );
rec( program := <straight line program>, standardization := 1,
identifier := [ "M11", "M11G1-cclsW1", 1 ],
outputs := [ "1A", "2A", "3A", "4A", "5A", "6A", "8A", "8B", "11A", "11B" ],
groupname := "M11" )

gap> reps:= ResultOfStraightLineProgram( ccls.program, gens.generators );;

If we would need only a few class representatives, we could use the GAP library function
RestrictOutputsOfSLP (Reference: RestrictOutputsOfSLP) to create a straight line program that
computes only specified outputs. Here is an example where only the class representatives of order
eight are computed.

Example
gap> ord8prg:= RestrictOutputsOfSLP( ccls.program,
> Filtered( [ 1 .. 10 ], i -> ccls.outputs[i][1] = ’8’ ) );
<straight line program>



AtlasRep — A GAP 4 Package 33

gap> ord8reps:= ResultOfStraightLineProgram( ord8prg, gens.generators );;
gap> List( ord8reps, m -> Position( reps, m ) );
[ 7, 8 ]

Let us check that the class representatives have the right orders.
Example

gap> List( reps, Order ) = OrdersClassRepresentatives( tbl );
true

From the class representatives, we can compute the Brauer character we had started with. This
Brauer character is defined on all classes of the 2-modular table. So we first pick only those repre-
sentatives, using the GAP function GetFusionMap (Reference: GetFusionMap); in this situation, it
returns the class fusion from the Brauer table into the ordinary table.

Example
gap> fus:= GetFusionMap( modtbl, tbl );
[ 1, 3, 5, 9, 10 ]
gap> modreps:= reps{ fus };;

Then we call the GAP function BrauerCharacterValue (Reference: BrauerCharacterValue),
which computes the Brauer character value from the matrix given.

Example
gap> char:= List( modreps, BrauerCharacterValue );
[ 10, 1, 0, -1, -1 ]
gap> Position( Irr( modtbl ), char );
2

2.6.2 Example: Permutation and Matrix Representations

The second example shows the computation of a permutation representation from a matrix represen-
tation. We work with the 10-dimensional representation used above, and consider the action on the
210 vectors of the underlying row space.

Example
gap> grp:= Group( gens.generators );;
gap> v:= GF(2)ˆ10;;
gap> orbs:= Orbits( grp, AsList( v ) );;
gap> List( orbs, Length );
[ 1, 396, 55, 330, 66, 165, 11 ]

We see that there are six nontrivial orbits, and we can compute the permutation actions on these
orbits directly using Action (Reference: Action). However, for larger examples, one cannot write
down all orbits on the row space, so one has to use another strategy if one is interested in a particular
orbit.

Let us assume that we are interested in the orbit of length 11. The point stabilizer is the first
maximal subgroup of M11, thus the restriction of the representation to this subgroup has a nontrivial
fixed point space. This restriction can be computed using the AtlasRep package.

Example
gap> gens:= AtlasGenerators( "M11", 6, 1 );;



AtlasRep — A GAP 4 Package 34

Now computing the fixed point space is standard linear algebra.
Example

gap> id:= IdentityMat( 10, GF(2) );;
gap> sub1:= Subspace( v, NullspaceMat( gens.generators[1] - id ) );;
gap> sub2:= Subspace( v, NullspaceMat( gens.generators[2] - id ) );;
gap> fix:= Intersection( sub1, sub2 );
<vector space of dimension 1 over GF(2)>

The final step is of course the computation of the permutation action on the orbit.
Example

gap> orb:= Orbit( grp, Basis( fix )[1] );;
gap> act:= Action( grp, orb );; Print( act, "\n" );
Group( [ ( 1, 2)( 4, 6)( 5, 8)( 7,10), ( 1, 3, 5, 9)( 2, 4, 7,11) ] )

Note that this group is not equal to the group obtained by fetching the permutation representation
from the database. This is due to a different numbering of the points, so the groups are permutation
isomorphic.

Example
gap> permgrp:= Group( AtlasGenerators( "M11", 1 ).generators );;
gap> Print( permgrp, "\n" );
Group( [ ( 2,10)( 4,11)( 5, 7)( 8, 9), ( 1, 4, 3, 8)( 2, 5, 6, 9) ] )
gap> permgrp = act;
false
gap> IsConjugate( SymmetricGroup(11), permgrp, act );
true

2.6.3 Example: Outer Automorphisms

The straight line programs for applying outer automorphisms to standard generators can of course be
used to define the automorphisms themselves as GAP mappings.

Example
gap> DisplayAtlasInfo( "G2(3)", IsStraightLineProgram );
Programs for G = G2(3): (all refer to std. generators 1)
-----------------------
available maxes of G: [ 1 .. 10 ] (all)
class repres. of G available
repres. of cyclic subgroups of G available
available automorphisms: [ "2" ]
standard generators checker available
presentation available
gap> prog:= AtlasProgram( "G2(3)", "automorphism", "2" ).program;;
gap> info:= OneAtlasGeneratingSetInfo( "G2(3)", Dimension, 7 );;
gap> gens:= AtlasGenerators( info ).generators;;
gap> imgs:= ResultOfStraightLineProgram( prog, gens );;

If we are not suspicious whether the script really describes an automorphism then we should tell
this to GAP, in order to avoid the expensive checks of the properties of being a homomorphism and
bijective (see Section (Reference: Creating Group Homomorphisms)). This looks as follows.



AtlasRep — A GAP 4 Package 35

Example
gap> g:= Group( gens );;
gap> aut:= GroupHomomorphismByImagesNC( g, g, gens, imgs );;
gap> SetIsBijective( aut, true );

If we are suspicious whether the script describes an automorphism then we might have the idea to
check it with GAP, as follows.

Example
gap> aut:= GroupHomomorphismByImages( g, g, gens, imgs );;
gap> IsBijective( aut );
true

(Note that even for a comparatively small group such as G2(3), this was a difficult task for GAP
before version 4.3.)

Often one can form images under an automorphism α, say, without creating the homomorphism
object. This is obvious for the standard generators of the group G themselves, but also for generators
of a maximal subgroup M computed from standard generators of G, provided that the straight line
programs in question refer to the same standard generators. Note that the generators of M are given
by evaluating words in terms of standard generators of G, and their images under α can be obtained
by evaluating the same words at the images under α of the standard generators of G.

Example
gap> max1:= AtlasProgram( "G2(3)", 1 ).program;;
gap> mgens:= ResultOfStraightLineProgram( max1, gens );;
gap> comp:= CompositionOfStraightLinePrograms( max1, prog );;
gap> mimgs:= ResultOfStraightLineProgram( comp, gens );;

The list mgens is the list of generators of the first maximal subgroup of G2(3), mimgs is the
list of images under the automorphism given by the straight line program prog. Note that applying
the program returned by CompositionOfStraightLinePrograms (Reference: CompositionOfS-
traightLinePrograms) means to apply first prog and then max1, Since we have already constructed
the GAP object representing the automorphism, we can check whether the results are equal.

Example
gap> mimgs = List( mgens, x -> xˆaut );
true

However, it should be emphasized that using aut requires a huge machinery of computations be-
hind the scenes, whereas applying the straight line programs prog and max1 involves only elementary
operations with the generators. The latter is feasible also for larger groups, for which constructing the
GAP automorphism might be impossible.

2.6.4 Example: Using Semi-presentations and Black Box Programs

Let us suppose that we want to restrict a representation of the Mathieu group M12 to a non-maximal
subgroup of the type L2(11). The idea is that this subgroup can be found as a maximal subgroup of a
maximal subgroup of the type M11, which is itself maximal in M12. For that, we fetch a representation
of M12 and use a straight line program for restricting it to the first maximal subgroup, which has the
type M11.



AtlasRep — A GAP 4 Package 36

Example
gap> info:= OneAtlasGeneratingSetInfo( "M12", NrMovedPoints, 12 );
rec( groupname := "M12", standardization := 1, repnr := 1,
identifier := [ "M12", [ "M12G1-p12aB0.m1", "M12G1-p12aB0.m2" ], 1, 12 ],
p := 12, id := "a", size := 95040 )

gap> gensM12:= AtlasGenerators( info.identifier );;
gap> restM11:= AtlasProgram( "M12", "maxes", 1 );;
gap> gensM11:= ResultOfStraightLineProgram( restM11.program,
> gensM12.generators );
[ (3,9)(4,12)(5,10)(6,8), (1,4,11,5)(2,10,8,3) ]

Now we cannot simply apply a straight line program for M11 to these generators of M11, since
they are not necessarily standard generators of M11. We check this using a semi-presentation for M11.

Example
gap> checkM11:= AtlasProgram( "M11", "check" );
rec( program := <straight line decision>, standardization := 1,
identifier := [ "M11", "M11G1-check1", 1, 1 ], groupname := "M11" )

gap> ResultOfStraightLineDecision( checkM11.program, gensM11 );
true

So we are lucky that applying the appropriate program for M11 will give us the required generators
for L2(11).

Example
gap> restL211:= AtlasProgram( "M11", "maxes", 2 );;
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, gensM11 );
[ (3,9)(4,12)(5,10)(6,8), (1,11,9)(2,12,8)(3,6,10) ]
gap> G:= Group( gensL211 );; Size( G ); IsSimple( G );
660
true

Usually representations are not given in terms of standard generators. For example, let us take the
M11 type group returned by the GAP function MathieuGroup (Reference: MathieuGroup).

Example
gap> G:= MathieuGroup( 11 );;
gap> gens:= GeneratorsOfGroup( G );
[ (1,2,3,4,5,6,7,8,9,10,11), (3,7,11,8)(4,10,5,6) ]
gap> ResultOfStraightLineDecision( checkM11.program, gens );
false

If we want to compute an L2(11) type subgroup of this group, we can use a black box program for
computing standard generators, and then apply the straight line program for computing the restriction.

Example
gap> find:= AtlasProgram( "M11", "find" );
rec( program := <black box program>, standardization := 1,
identifier := [ "M11", "M11G1-find1", 1, 1 ], groupname := "M11" )

gap> stdgens:= ResultOfBBoxProgram( find.program, Group( gens ) );;
gap> List( stdgens, Order );
[ 2, 4 ]
gap> ResultOfStraightLineDecision( checkM11.program, stdgens );



AtlasRep — A GAP 4 Package 37

true
gap> gensL211:= ResultOfStraightLineProgram( restL211.program, stdgens );;
gap> List( gensL211, Order );
[ 2, 3 ]
gap> G:= Group( gensL211 );; Size( G ); IsSimple( G );
660
true

2.6.5 Example: Using the GAP Library of Tables of Marks

The GAP library of tables of marks provides, for many almost simple groups, information for con-
structing representatives of all conjugacy classes of subgroups. If this information is compatible with
the standard generators of the ATLAS of Group Representations then we can use it to restrict any rep-
resentation from the ATLAS to prescribed subgroups. This is useful in particular for those subgroups
for which the ATLAS of Group Representations itself does not contain a straight line program.

Example
gap> tom:= TableOfMarks( "A5" );
TableOfMarks( "A5" )
gap> info:= StandardGeneratorsInfo( tom );
[ rec( generators := "a, b", description := "|a|=2, |b|=3, |ab|=5",

script := [ [ 1, 2 ], [ 2, 3 ], [ 1, 1, 2, 1, 5 ] ], ATLAS := true ) ]

The true value of the component ATLAS indicates that the information stored on tom refers to the
standard generators of type 1 in the ATLAS of Group Representations.

We want to restrict a 4-dimensional integral representation of A5 to a Sylow 2 subgroup of A5, and
use RepresentativeTomByGeneratorsNC (Reference: RepresentativeTomByGeneratorsNC) for
that.

Example
gap> info:= OneAtlasGeneratingSetInfo( "A5", Ring, Integers, Dimension, 4 );;
gap> stdgens:= AtlasGenerators( info.identifier );
rec(
generators := [ [ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1,

-1, -1 ] ],
[ [ 0, 1, 0, 0 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ], [ 1, 0, 0, 0 ] ] ],

groupname := "A5", standardization := 1, repnr := 14,
identifier := [ "A5", "A5G1-Zr4B0.g", 1, 4 ], dim := 4, id := "",
ring := Integers, size := 60 )

gap> orders:= OrdersTom( tom );
[ 1, 2, 3, 4, 5, 6, 10, 12, 60 ]
gap> pos:= Position( orders, 4 );
4
gap> sub:= RepresentativeTomByGeneratorsNC( tom, pos, stdgens.generators );
<matrix group of size 4 with 2 generators>
gap> GeneratorsOfGroup( sub );
[ [ [ 1, 0, 0, 0 ], [ -1, -1, -1, -1 ], [ 0, 0, 0, 1 ], [ 0, 0, 1, 0 ] ],
[ [ 1, 0, 0, 0 ], [ 0, 0, 1, 0 ], [ 0, 1, 0, 0 ], [ -1, -1, -1, -1 ] ] ]



Chapter 3

Private Extensions of the AtlasRep
Package

It may be interesting to use the functions of the GAP interface also for representations or programs
that are not part of the ATLAS of Group Representations. This chapter describes how to achieve this.

The main idea is that users can notify directories containing the “private” data files, which may
consist of

1. new representations and programs for groups that are declared already in the “official” ATLAS
of Group Representations,

2. the declaration of groups that are not declared in the “official” ATLAS of Group Representations,
and representations and programs for them, and

3. the definition of new kinds of representations and programs.

The first two kinds are dealt with in Section 3.1 and Section 3.2. The last is described in Sec-
tion 5.5.

Finally, an example of using private extensions is given in Section 3.3.
Several of the sanity checks for the official part of the AtlasRep package make sense also for

private extensions, see Section 5.8 for more information.

3.1 Adding a Private Data Directory

After the AtlasRep package has been loaded into the GAP session, one can add private data. However,
one should not add private files to the local data directories of the package, or modify files in these
directories. It should be noted that a data file is fetched from a server only if the local data directories
do not contain a file with this name, independent of the contents of the files. (As a consequence,
corrupted files in the local data directories are not automatically replaced by a correct server file.)

3.1.1 AtlasOfGroupRepresentationsNotifyPrivateDirectory

♦ AtlasOfGroupRepresentationsNotifyPrivateDirectory(dir[, dirid]) (function)

Returns: true if none of the filenames with admissible format in the directory dir is contained
in other data directories and if the data belongs to groups whose names have been declared, otherwise
false.

38



AtlasRep — A GAP 4 Package 39

Let dir be a directory (see (Reference: Directories)) or a string denoting the name of a directory
(such that the GAP object describing this directory can be obtained by calling Directory (Reference:
Directory) with the argument dir). In the following, let dirname be the name of the directory. So
dirname can be an absolute path or a path relative to the home directory of the user (starting with a
tilde character ˜) or a path relative to the directory where GAP was started.

If the second argument dirid is given, it must be a string. This value will be used in the
identifier components of the records that are returned by interface functions (see Section 2.5) for
data contained in the directory dir. Note that the directory name may be different in different GAP
sessions or for different users who want to access the same data, whereas the identifier components
shall be independent of such differences. The default for dirid is dirname.

AtlasOfGroupRepresentationsNotifyPrivateDirectory notifies the data in the directory
dir to the AtlasRep package. First the pair [ dirname, dirid ] is added to the private compo-
nent of AtlasOfGroupRepresentationsInfo (5.1.5). If the directory contains a file with the name
toc.g then this file is read; this file is useful for adding new group names (see AGRGNAN (5.7.1)),
for adding field information for characteristic zero representations (see AGRRNG (5.7.2)), or for adding
new data types (see Section 5.5). Next the table of contents of the private directory is built from the
list of files contained in the private directory or in its subdirectories (one layer deep).

Only those files are considered whose names match an admissible format (see Section 5.6). File-
names that are already contained in another data directory of the AtlasRep package are ignored, and
messages about these filenames are printed if the info level of InfoAtlasRep (5.1.1) is at least 1.

Note that this implies that the files of the “official” (i.e. non-private) data directories have priority
over files in private directories.

If the directory contains files for groups whose names have not been declared before and if the
info level of InfoAtlasRep (5.1.1) is at least 1 then a message about these names is printed.

For convenience, the user may collect the notifications of private data directories in the file .gaprc
(see Section (Reference: The .gaprc file)).

3.1.2 AtlasOfGroupRepresentationsForgetPrivateDirectory

♦ AtlasOfGroupRepresentationsForgetPrivateDirectory(dirid) (function)

If dirid is the identifier of a private data directory that has been noti-
fied with AtlasOfGroupRepresentationsNotifyPrivateDirectory (3.1.1) then
AtlasOfGroupRepresentationsForgetPrivateDirectory removes the directory from the
list of notified private directories; this means that from then on, the data in this directory cannot be
accessed anymore in the current session.

3.2 The Effect of Private Extensions on the User Interface

First suppose that only new groups or new data for known groups are added.
In this case, DisplayAtlasInfo (2.5.1) lists the private representations and programs in the same

way as the “official” data, except that private parts are marked with the string stored in the component
markprivate of AtlasOfGroupRepresentationsInfo (5.1.5); by default, this is a star *. The or-
dering of representations listed by DisplayAtlasInfo (2.5.1) (and referred to by AtlasGenerators
(2.5.2)) will in general change when private directories are notified. If several private directories are
used then the ordering of data may depend on the ordering of notifications. For the other interface



AtlasRep — A GAP 4 Package 40

functions described in Chapter 2, the only difference is that also the private data can be accessed. In
particular the “free format” groupnameGi-XdescrWn for straight line programs (see Section 5.6)
may be used in private directories; the data can be accessed with AtlasProgram (2.5.3), where the
last two arguments are the strings "other" and descr.

If also private data types are introduced (see Section 5.5) then additional columns or rows can
appear in the output of DisplayAtlasInfo (2.5.1), and new inputs can become meaningful for all
interface functions. Examples for these changes can be found in Section 3.3.

3.3 An Example of Extending the AtlasRep Package

In the beginning we set the info level of InfoAtlasRep (5.1.1) to 1.
Example

gap> level:= InfoLevel( InfoAtlasRep );;
gap> SetInfoLevel( InfoAtlasRep, 1 );

Let us assume that the directory privdir contains data for the cyclic group C4 of order 4 and for
the symmetric group S5 on 5 points, respectively. Note that it is obvious what the term “standard
generators” means for the group C4.

Further let us assume that privdir contains the following files.

C4G1-p4B0.m1 a faithful permutation representation of C4 on 4 points,

C4G1-max1W1 the straight line program that returns the square of its unique input,

C4G1-a2W1 the straight line program that applies an outer automorphism to its unique input,

C4G1-XtestW1 the straight line program that returns the square of its unique input,

S5G1-p2B0.m1 and S5G1-p2B0.m2 the permutation representation of the commutator factor
group of S5, on 2 points.

The directory and the files can be created as follows.
Example

gap> pkg:= Filename( DirectoriesPackageLibrary( "atlasrep", "" ), "" );;
gap> prv:= DirectoryTemporary( "privdir" );;
gap> FileString( Filename( prv, "C4G1-p4B0.m1" ),
> MeatAxeString( [ (1,2,3,4) ], 4 ) );;
gap> FileString( Filename( prv, "C4G1-max1W1" ),
> "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-XtestW1" ),
> "inp 1\npwr 2 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-a2W1" ),
> "inp 1\npwr 3 1 2\noup 1 2\n" );;
gap> FileString( Filename( prv, "C4G1-Ar1aB0.g" ),
> "return rec( generators:= [ [[E(4)]] ] );\n" );;
gap> FileString( Filename( prv, "S5G1-p2B0.m1" ),
> MeatAxeString( [ (1,2) ], 2 ) );;
gap> FileString( Filename( prv, "S5G1-p2B0.m2" ),
> MeatAxeString( [ (1,2) ], 2 ) );;



AtlasRep — A GAP 4 Package 41

(We could also introduce intermediate directories C4 and S5, say, each with the data for one group
only. Here we do not show this because creating directories seems to be not possible without the GAP
package IO.)

Now we create a file whose name is not admissible because it occurs already in the official part of
the database. (This will cause an info line below.)

Example
gap> FileString( Filename( prv, "S5G1-p5B0.m1" ),
> MeatAxeString( [ (1,2) ], 5 ) );;

The official part of the AtlasRep package does not contain information about C4, so we first notify
this group, in the file privdir/toc.g. (The group S5 is known with name A5.2 in the official part of
the AtlasRep package, so it cannot be notified.)

Example
gap> FileString( Filename( prv, "toc.g" ),
> "AGRGNAN(\"C4\",\"C4\");\n" );;

Then we notify the private directory.
Example

gap> AtlasOfGroupRepresentationsNotifyPrivateDirectory( prv, "priv" );
#I file ‘S5G1-p5B0.m1’ was already in another t.o.c.
false

(The nonadmissible filename S5G1-p5B0.m1 was ignored for the private directory. If this file
would not be present then the return value would be true.) Now we can use the interface functions
for accessing the data in the private directory.

Example
gap> DisplayAtlasInfo( [ "C4" ] );
group # maxes cl cyc out find check pres
--------------------------------------------------
C4* 2 1 - - 2 - - -
gap> DisplayAtlasInfo( "C4" );
Representations for G = C4: (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)*
2: G <= GL(1a,C)*

Programs for G = C4: (all refer to std. generators 1)
--------------------
available maxes of G: [ 1 ]*
available automorphisms: [ "2" ]*
available other scripts:

"test"*
gap> DisplayAtlasInfo( "C4", IsPermGroup, true );
Representations for G = C4: (all refer to std. generators 1)
---------------------------
1: G <= Sym(4)*
gap> DisplayAtlasInfo( "C4", IsMatrixGroup );
Representations for G = C4: (all refer to std. generators 1)
---------------------------



AtlasRep — A GAP 4 Package 42

2: G <= GL(1a,C)*
gap> DisplayAtlasInfo( "C4", Dimension, 2 );
gap> DisplayAtlasInfo( "A5.2", NrMovedPoints, 2 );
Representations for G = A5.2: (all refer to std. generators 1)
-----------------------------
4: G <= Sym(2)*
gap> info:= OneAtlasGeneratingSetInfo( "C4" );
rec( groupname := "C4", standardization := 1, repnr := 1,
identifier := [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ], p := 4,
id := "" )

gap> AtlasGenerators( info.identifier );
rec( generators := [ (1,2,3,4) ], groupname := "C4", standardization := 1,
repnr := 1, identifier := [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ],
p := 4, id := "" )

gap> AtlasProgram( "C4", 1 );
rec( program := <straight line program>, standardization := 1,
identifier := [ [ "priv", "C4" ], "C4G1-max1W1", 1 ], groupname := "C4" )

gap> AtlasProgram( "C4", "maxes", 1 );
rec( program := <straight line program>, standardization := 1,
identifier := [ [ "priv", "C4" ], "C4G1-max1W1", 1 ], groupname := "C4" )

gap> AtlasProgram( "C4", "maxes", 2 );
fail
gap> AtlasGenerators( "C4", 1 );
rec( generators := [ (1,2,3,4) ], groupname := "C4", standardization := 1,
repnr := 1, identifier := [ [ "priv", "C4" ], [ "C4G1-p4B0.m1" ], 1, 4 ],
p := 4, id := "" )

gap> AtlasGenerators( "C4", 2 );
rec( generators := [ [ [ E(4) ] ] ], groupname := "C4", standardization := 1,
repnr := 2, identifier := [ [ "priv", "C4" ], "C4G1-Ar1aB0.g", 1, 1 ],
dim := 1, id := "a" )

gap> AtlasGenerators( "C4", 3 );
fail
gap> AtlasProgram( "C4", "other", "test" );
rec( program := <straight line program>, standardization := 1,
identifier := [ [ "priv", "C4" ], "C4G1-XtestW1", 1 ], groupname := "C4" )

For checking the data in the private directory, we apply some of the sanity checks (see Section 5.8).
Example

gap> AtlasOfGroupRepresentationsTestWords( "priv" );
true
gap> AtlasOfGroupRepresentationsTestFileHeaders( "priv" );
true

Finally, we “uninstall” the private directory, and reset the info level that had been set to 1 in the
beginning. (Also the group name C4 is removed this way, which is an advantage of using a toc.g
file over calling AGRGNAN (5.7.1) directly.), Note that we need not remove the data in the temporary
directory, GAP will do this automatically.

Example
gap> AtlasOfGroupRepresentationsForgetPrivateDirectory( "priv" );
gap> SetInfoLevel( InfoAtlasRep, level );



Chapter 4

New Objects and Utility Functions
Provided by the AtlasRep Package

This chapter describes GAP objects and functions that are provided in the AtlasRep package but that
might be of general interest.

The new objects are straight line decisions (see Section 4.1) and black box programs (see Sec-
tion 4.2).

The new functions are concerned with representations of minimal degree, see Section 4.3.

4.1 Straight Line Decisions

Straight line decisions are similar to straight line programs (see Section (Reference: Straight Line
Programs)) but return true or false. A straight line decisions checks a property for its inputs. An
important example is to check whether a given list of group generators is in fact a list of standard
generators (cf. Section2.3) for this group.

A straight line decision in GAP is represented by an object in the category
IsStraightLineDecision (4.1.1) that stores a list of “lines” each of which has one of the
following three forms.

1. a nonempty dense list l of integers,

2. a pair [l, i] where l is a list of form 1. and i is a positive integer,

3. a list ["Order", i,n] where i and n are positive integers.

The first two forms have the same meaning as for straight line programs (see Section (Reference:
Straight Line Programs)), the last form means a check whether the element stored at the label i-th
has the order n.

For the meaning of the list of lines, see ResultOfStraightLineDecision (4.1.6).
Straight line decisions can be constructed using StraightLineDecision (4.1.5), defin-

ing attributes for straight line decisions are NrInputsOfStraightLineDecision (4.1.3)
and LinesOfStraightLineDecision (4.1.2), an operation for straight line decisions is
ResultOfStraightLineDecision (4.1.6).

Special methods applicable to straight line decisions are installed for the operations Display
(Reference: Display), IsInternallyConsistent (Reference: IsInternallyConsistent), PrintObj
(Reference: PrintObj), and ViewObj (Reference: ViewObj).

43



AtlasRep — A GAP 4 Package 44

For a straight line decision prog, the default Display (Reference: Display) method prints the
interpretation of prog as a sequence of assignments of associative words and of order checks; a
record with components gensnames (with value a list of strings) and listname (a string) may be
entered as second argument of Display (Reference: Display), in this case these names are used, the
default for gensnames is [ g1, g2, . . . ], the default for listname is r.

4.1.1 IsStraightLineDecision

♦ IsStraightLineDecision(obj) (Category)

Each straight line decision in GAP lies in the category IsStraightLineDecision.

4.1.2 LinesOfStraightLineDecision

♦ LinesOfStraightLineDecision(prog) (operation)

Returns: the list of lines that define the straight line decision.
This defining attribute for the straight line decision prog (see IsStraightLineDecision

(4.1.1)) corresponds to LinesOfStraightLineProgram (Reference: LinesOfStraightLinePro-
gram) for straight line programs.

Example
gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ],
[ "Order", 3, 5 ] ]

4.1.3 NrInputsOfStraightLineDecision

♦ NrInputsOfStraightLineDecision(prog) (operation)

Returns: the number of inputs required for the straight line decision.
This defining attribute corresponds to NrInputsOfStraightLineProgram (Reference: NrIn-

putsOfStraightLineProgram).
Example

gap> NrInputsOfStraightLineDecision( dec );
2

4.1.4 ScanStraightLineDecision

♦ ScanStraightLineDecision(string) (function)

Returns: a record containing the straight line decision, or fail.
Let string be a string that encodes a straight line decision in the sense that it consists of the

lines listed for ScanStraightLineProgram (5.4.1), except that oup lines are not allowed, and instead
lines of the following form may occur.

chor a b means that it is checked whether the order of the element at label a is b.



AtlasRep — A GAP 4 Package 45

ScanStraightLineDecision returns a record containing as the value of its component program
the corresponding GAP straight line decision (see IsStraightLineDecision (4.1.1)) if the input
string satisfies the syntax rules stated above, and returns fail otherwise. In the latter case, information
about the first corrupted line of the program is printed if the info level of InfoCMeatAxe (5.1.2) is at
least 1.

Example
gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );
rec( program := <straight line decision> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
if Order( r[1] ) <> 2 then return false; fi;
if Order( r[2] ) <> 3 then return false; fi;
r[3]:= r[1]*r[2];
if Order( r[3] ) <> 5 then return false; fi;
# return value:
true

4.1.5 StraightLineDecision

♦ StraightLineDecision(lines[, nrgens]) (function)

♦ StraightLineDecisionNC(lines[, nrgens]) (function)

Returns: the straight line decision given by the list of lines.
Let lines be a list of lists that defines a unique straight line decision

(see IsStraightLineDecision (4.1.1)); in this case StraightLineDecision returns this
program, otherwise an error is signalled. The optional argument nrgens specifies the number of
input generators of the program; if a list of integers (a line of form 1. in the definition above) occurs
in lines then this number is not determined by lines and therefore must be specified by the
argument nrgens; if not then StraightLineDecision returns fail.

StraightLineDecisionNC does the same as StraightLineDecision, except that the internal
consistency of the program is not checked.

4.1.6 ResultOfStraightLineDecision

♦ ResultOfStraightLineDecision(prog, gens[, orderfunc]) (operation)

Returns: true if all checks succeed, otherwise false.
ResultOfStraightLineDecision evaluates the straight line decision

(see IsStraightLineDecision (4.1.1)) prog at the group elements in the list gens.
The function for computing the order of a group element can be given as the optional argument

orderfunc. For example, this may be a function that gives up at a certain limit if one has to be
aware of extremely huge orders in failure cases.

The result of a straight line decision with lines p1, p2, . . . , pk when applied to gens is defined as
follows.

(a) First a list r of intermediate values is initialized with a shallow copy of gens.



AtlasRep — A GAP 4 Package 46

(b) For i ≤ k, before the i-th step, let r be of length n. If pi is the external representation of an
associative word in the first n generators then the image of this word under the homomorphism
that is given by mapping r to these first n generators is added to r. If pi is a pair [l, j], for a list
l, then the same element is computed, but instead of being added to r, it replaces the j-th entry
of r. If pi is a triple ["Order", i,n] then it is checked whether the order of r[i] is n; if not then
false is returned immediately.

(c) If all k lines have been processed and no order check has failed then true is returned.

Here are some examples.
Example

gap> dec:= StraightLineDecision( [ ], 1 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ () ] );
true

The above straight line decision dec returns true –for any input of the right length.
Example

gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> LinesOfStraightLineDecision( dec );
[ [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 1, 2 ], [ "Order", 2, 3 ],
[ "Order", 3, 5 ] ]

gap> ResultOfStraightLineDecision( dec, [ (), () ] );
false
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,4,5) ] );
true

The above straight line decision admits two inputs; it tests whether the orders of the inputs are 2
and 3, and the order of their product is 5.

4.1.7 Semi-Presentations and Presentations

We can associate a finitely presented group F/R to each straight line decision dec, say, as follows.
The free generators of the free group F are in bijection with the inputs, and the defining relators
generating R as a normal subgroup of F are given by those words wk for which dec contains a check
whether the order of w equals k.

So if dec returns true for the input list [g1,g2, . . . ,gn] then mapping the free generators of F to
the inputs defines an epimorphism Φ from F to the group G, say, that is generated by these inputs,
such that R is contained in the kernel of Φ.

(Note that “satisfying dec” is a stronger property than “satisfying a presentation”. For example,
〈x | x2 = x3 = 1〉 is a presentation for the trivial group, but the straight line decision that checks whether
the order of x is both 2 and 3 clearly always returns false.)

The ATLAS of Group Representations contains the following two kinds of straight line decisions.

• A presentation is a straight line decision dec that is defined for a set of standard generators of
a group G and that returns true if and only if the list of inputs is in fact a sequence of such
standard generators for G. In other words, the relators derived from the order checks in the



AtlasRep — A GAP 4 Package 47

way described above are defining relators for G, and moreover these relators are words in terms
of standard generators. (In particular the kernel of the map Φ equals R whenever dec returns
true.)

• A semi-presentation is a straight line decision dec that is defined for a set of standard gener-
ators of a group G and that returns true for a list of inputs that is known to generate a group
isomorphic with G if and only if these inputs form in fact a sequence of standard generators for
G. In other words, the relators derived from the order checks in the way described above are
not necessarily defining relators for G, but if we assume that the gi generate G then they are
standard generators. (In particular, F/R may be a larger group than G but in this case Φ maps
the free generators of F to standard generators of G.)

More about semi-presentations can be found in [NW05].

Available presentations and semi-presentations are listed by DisplayAtlasInfo (2.5.1), they can
be accessed via AtlasProgram (2.5.3). (Clearly each presentation is also a semi-presentation. So
a semi-presentation for some standard generators of a group is regarded as available whenever a
presentation for these standard generators and this group is available.)

Note that different groups can have the same semi-presentation. We illustrate this with an example
that is mentioned in [NW05]. The groups L2(7) ∼= L3(2) and L2(8) are generated by elements of the
orders 2 and 3 such that their product has order 7, and no further conditions are necessary to define
standard generators.

Example
gap> check:= AtlasProgram( "L2(8)", "check" );
rec( program := <straight line decision>, standardization := 1,
identifier := [ "L2(8)", "L28G1-check1", 1, 1 ], groupname := "L2(8)" )

gap> gens:= AtlasGenerators( "L2(8)", 1 );
rec( generators := [ (1,2)(3,4)(6,7)(8,9), (1,3,2)(4,5,6)(7,8,9) ],
groupname := "L2(8)", standardization := 1, repnr := 1,
identifier := [ "L2(8)", [ "L28G1-p9B0.m1", "L28G1-p9B0.m2" ], 1, 9 ],
p := 9, id := "", size := 504 )

gap> ResultOfStraightLineDecision( check.program, gens.generators );
true
gap> gens:= AtlasGenerators( "L3(2)", 1 );
rec( generators := [ (2,4)(3,5), (1,2,3)(5,6,7) ], groupname := "L3(2)",
standardization := 1, repnr := 1,
identifier := [ "L3(2)", [ "L27G1-p7aB0.m1", "L27G1-p7aB0.m2" ], 1, 7 ],
p := 7, id := "a", size := 168 )

gap> ResultOfStraightLineDecision( check.program, gens.generators );
true

4.1.8 AsStraightLineDecision

♦ AsStraightLineDecision(bbox) (attribute)

Returns: an equivalent straight line decision for the given black box program, or fail.
For a black box program (see IsBBoxProgram (4.2.1)) bbox, AsStraightLineDecision returns

a straight line decision (see IsStraightLineDecision (4.1.1)) with the same output as bbox, in the
sense of AsBBoxProgram (4.2.5), if such a straight line decision exists, and fail otherwise.

Example
gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
> [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;



AtlasRep — A GAP 4 Package 48

gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> asdec:= AsStraightLineDecision( bboxdec );
<straight line decision>
gap> LinesOfStraightLineDecision( asdec );
[ [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ [ 1, 1, 2, 1 ], 3 ],
[ "Order", 3, 5 ] ]

4.1.9 StraightLineProgramFromStraightLineDecision

♦ StraightLineProgramFromStraightLineDecision(dec) (operation)

Returns: the straight line program associated to the given straight line decision.
For a straight line decision dec (see IsStraightLineDecision (4.1.1),

StraightLineProgramFromStraightLineDecision returns the straight line program (see
IsStraightLineProgram (Reference: IsStraightLineProgram) obtained by replacing each line
of type 3. (i.e, each order check) by an assignment of the power in question to a new slot, and by
declaring the list of these elements as the return value.

This means that the return value describes exactly the defining relators of the presentation that is
associated to the straight line decision, see 4.1.7.

For example, one can use the return value for printing the relators with
StringOfResultOfStraightLineProgram (Reference: StringOfResultOfStraightLinePro-
gram), or for explicitly constructing the relators as words in terms of free generators, by applying
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) to the program and
to these generators.

Example
gap> dec:= StraightLineDecision( [ [ [ 1, 1, 2, 1 ], 3 ],
> [ "Order", 1, 2 ], [ "Order", 2, 3 ], [ "Order", 3, 5 ] ] );
<straight line decision>
gap> prog:= StraightLineProgramFromStraightLineDecision( dec );
<straight line program>
gap> Display( prog );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[4]:= r[1]ˆ2;
r[5]:= r[2]ˆ3;
r[6]:= r[3]ˆ5;
# return values:
[ r[4], r[5], r[6] ]
gap> StringOfResultOfStraightLineProgram( prog, [ "a", "b" ] );
"[ aˆ2, bˆ3, (ab)ˆ5 ]"
gap> gens:= GeneratorsOfGroup( FreeGroup( "a", "b" ) );
[ a, b ]
gap> ResultOfStraightLineProgram( prog, gens );
[ aˆ2, bˆ3, a*b*a*b*a*b*a*b*a*b ]



AtlasRep — A GAP 4 Package 49

4.2 Black Box Programs

Black box programs formalize the idea that one takes some group elements, forms arithmetic expres-
sions in terms of them, tests properties of these expressions, executes conditional statements (includ-
ing jumps inside the program) depending on the results of these tests, and eventually returns some
result.

A specification of the language can be found in [Nic06], see also
http://brauer.maths.qmul.ac.uk/Atlas/info/blackbox.html.
The inputs of a black box program may be explicit group elements, and the program may also

ask for random elements from a given group. The program steps form products, inverses, conjugates,
commutators, etc. of known elements, tests concern essentially the orders of elements, and the result
is a list of group elements or true or false or fail.

Examples that can be modeled by black box programs are

straight line programs, which require a fixed number of input elements and form arithmetic expres-
sions of elements but do not use random elements, tests, conditional statements and jumps; the
return value is always a list of elements; these programs are described in Section (Reference:
Straight Line Programs).

straight line decisions, which differ from straight line programs only in the sense that also order tests
are admissible, and that the return value is true if all these tests are satisfied, and false as
soon as the first such test fails; they are described in Section 4.1.

scripts for finding standard generators, which take a group and a function to generate a random ele-
ment in this group but no explicit input elements, admit all control structures, and return either
a list of standard generators or fail; see ResultOfBBoxProgram (4.2.4) for examples.

In the case of general black box programs, currently GAP provides only the possibility to read
an existing program via ScanBBoxProgram (4.2.2), and to run the program using RunBBoxProgram
(4.2.3). The aim is not to write such programs in GAP.

The special case of the “find” scripts mentioned above is also admissible as an argument of
ResultOfBBoxProgram (4.2.4), which returns either the set of generators or fail.

Contrary to the general situation, more support is provided for straight line programs and straight
line decisions in GAP, see Section (Reference: Straight Line Programs) for functions that manipu-
late them (compose, restrict etc.).

The functions AsStraightLineProgram (4.2.6) and AsStraightLineDecision (4.1.8) can be
used to transform a general black box program object into a straight line program or a straight line
decision if this is possible.

Conversely, one can create an equivalent general black box program from a straight line program
or from a straight line decision with AsBBoxProgram (4.2.5).

(Computing a straight line program related to a given straight line decision is supported in the
sense of StraightLineProgramFromStraightLineDecision (4.1.9).)

Note that none of these three kinds of objects is a special case of another: Running a black
box program with RunBBoxProgram (4.2.3) yields a record, running a straight line program with
ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) yields a list of el-
ements, and running a straight line decision with ResultOfStraightLineDecision (4.1.6) yields
true or false.

http://brauer.maths.qmul.ac.uk/Atlas/info/blackbox.html


AtlasRep — A GAP 4 Package 50

4.2.1 IsBBoxProgram

♦ IsBBoxProgram(obj) (Category)

Each black box program in GAP lies in the category IsBBoxProgram.

4.2.2 ScanBBoxProgram

♦ ScanBBoxProgram(string) (function)

Returns: a record containing the black box program encoded by the input string, or fail.
For a string string that describes a black box program, e.g., the return value of StringFile

(GAPDoc: StringFile), ScanBBoxProgram computes this black box program. If this is successful
then the return value is a record containing as the value of its component program the corresponding
GAP object that represents the program, otherwise fail is returned.

As the first example, we construct a black box program that tries to find standard generators for
the alternating group A5; these standard generators are any pair of elements of the orders 2 and 3,
respectively, such that their product has order 5.

Example
gap> findstr:= "\
> set V 0\n\
> lbl START1\n\
> rand 1\n\
> ord 1 A\n\
> incr V\n\
> if V gt 100 then timeout\n\
> if A notin 1 2 3 5 then fail\n\
> if A noteq 2 then jmp START1\n\
> lbl START2\n\
> rand 2\n\
> ord 2 B\n\
> incr V\n\
> if V gt 100 then timeout\n\
> if B notin 1 2 3 5 then fail\n\
> if B noteq 3 then jmp START2\n\
> # The elements 1 and 2 have the orders 2 and 3, respectively.\n\
> set X 0\n\
> lbl CONJ\n\
> incr X\n\
> if X gt 100 then timeout\n\
> rand 3\n\
> cjr 2 3\n\
> mu 1 2 4 # ab\n\
> ord 4 C\n\
> if C notin 2 3 5 then fail\n\
> if C noteq 5 then jmp CONJ\n\
> oup 2 1 2";;
gap> find:= ScanBBoxProgram( findstr );
rec( program := <black box program> )

The second example is a black box program that checks whether its two inputs are standard gen-
erators for A5.



AtlasRep — A GAP 4 Package 51

Example
gap> checkstr:= "\
> chor 1 2\n\
> chor 2 3\n\
> mu 1 2 3\n\
> chor 3 5";;
gap> check:= ScanBBoxProgram( checkstr );
rec( program := <black box program> )

4.2.3 RunBBoxProgram

♦ RunBBoxProgram(prog, G, input, options) (function)

Returns: a record describing the result and the statistics of running the black box program prog,
or fail, or the string "timeout".

For a black box program prog, a group G, a list input of group elements, and a record
options, RunBBoxProgram applies prog to input, where G is used only to compute random
elements.

The return value is fail if a syntax error or an explicit fail statement is reached at runtime,
and the string "timeout" if a timeout statement is reached. (The latter might mean that the random
choices were unlucky.) Otherwise a record with the following components is returned.

gens a list of group elements, bound if an oup statement was reached,

result true if a true statement was reached, false if either a false statement or a failed order
check was reached,

The other components serve as statistical information about the numbers of the various operations
(multiply, invert, power, order, random, conjugate, conjugateinplace, commutator), and the
runtime in milliseconds (timetaken).

The following components of options are supported.

randomfunction the function called with argument G in order to compute a random element of
G (default PseudoRandom (Reference: PseudoRandom))

orderfunction the function for computing element orders (the default is Order (Reference:
Order)),

quiet ignore echo statements (default false),

verbose print information about the line that is currently processed, and about order checks (default
false),

allowbreaks call Error (Reference: Error) when a break statement is reached (default true).

As an example, we run the black box programs constructed in the example for ScanBBoxProgram
(4.2.2).

Example
gap> g:= AlternatingGroup( 5 );;
gap> res:= RunBBoxProgram( find.program, g, [], rec() );;
gap> IsBound( res.gens ); IsBound( res.result );



AtlasRep — A GAP 4 Package 52

true
false
gap> List( res.gens, Order );
[ 2, 3 ]
gap> Order( Product( res.gens ) );
5
gap> res:= RunBBoxProgram( check.program, "dummy", res.gens, rec() );;
gap> IsBound( res.gens ); IsBound( res.result );
false
true
gap> res.result;
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= RunBBoxProgram( check.program, "dummy", othergens, rec() );;
gap> res.result;
false

4.2.4 ResultOfBBoxProgram

♦ ResultOfBBoxProgram(prog, G) (function)

Returns: a list of group elements or true, false, fail, or the string "timeout".
This function calls RunBBoxProgram (4.2.3) with the black box program prog and second argu-

ment either a group or a list of group elements; the default options are assumed. The return value is
fail if this call yields fail, otherwise the gens component of the result, if bound, or the result
component if not.

As an example, we run the black box programs constructed in the example for ScanBBoxProgram
(4.2.2).

Example
gap> g:= AlternatingGroup( 5 );;
gap> res:= ResultOfBBoxProgram( find.program, g );;
gap> List( res, Order );
[ 2, 3 ]
gap> Order( Product( res ) );
5
gap> res:= ResultOfBBoxProgram( check.program, res );
true
gap> othergens:= GeneratorsOfGroup( g );;
gap> res:= ResultOfBBoxProgram( check.program, othergens );
false

4.2.5 AsBBoxProgram

♦ AsBBoxProgram(slp) (attribute)

Returns: an equivalent black box program for the given straight line program or straight line
decision.

Let slp be a straight line program (see IsStraightLineProgram (Reference: IsStraight-
LineProgram)) or a straight line decision (see IsStraightLineDecision (4.1.1)). Then
AsBBoxProgram returns a black box program bbox (see IsBBoxProgram (4.2.1)) with the
“same” output as slp, in the sense that ResultOfBBoxProgram (4.2.4) yields the same result



AtlasRep — A GAP 4 Package 53

for bbox as ResultOfStraightLineProgram (Reference: ResultOfStraightLineProgram) or
ResultOfStraightLineDecision (4.1.6), respectively, for slp.

Example
gap> f:= FreeGroup( "x", "y" );; gens:= GeneratorsOfGroup( f );;
gap> slp:= StraightLineProgram( [ [1,2,2,3], [3,-1] ], 2 );
<straight line program>
gap> ResultOfStraightLineProgram( slp, gens );
yˆ-3*xˆ-2
gap> bboxslp:= AsBBoxProgram( slp );
<black box program>
gap> ResultOfBBoxProgram( bboxslp, gens );
[ yˆ-3*xˆ-2 ]
gap> lines:= [ [ "Order", 1, 2 ], [ "Order", 2, 3 ],
> [ [ 1, 1, 2, 1 ], 3 ], [ "Order", 3, 5 ] ];;
gap> dec:= StraightLineDecision( lines, 2 );
<straight line decision>
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfStraightLineDecision( dec, [ (1,2)(3,4), (1,3,4) ] );
false
gap> bboxdec:= AsBBoxProgram( dec );
<black box program>
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,5) ] );
true
gap> ResultOfBBoxProgram( bboxdec, [ (1,2)(3,4), (1,3,4) ] );
false

4.2.6 AsStraightLineProgram

♦ AsStraightLineProgram(bbox) (attribute)

Returns: an equivalent straight line program for the given black box program, or fail.
For a black box program (see AsBBoxProgram (4.2.5)) bbox, AsStraightLineProgram returns

a straight line program (see IsStraightLineProgram (Reference: IsStraightLineProgram)) with
the same output as bbox if such a straight line program exists, and fail otherwise.

Example
gap> Display( AsStraightLineProgram( bboxslp ) );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]ˆ2;
r[4]:= r[2]ˆ3;
r[5]:= r[3]*r[4];
r[3]:= r[5]ˆ-1;
# return values:
[ r[3] ]
gap> AsStraightLineProgram( bboxdec );
fail



AtlasRep — A GAP 4 Package 54

4.3 Representations of Minimal Degree

This section deals with minimal degrees of permutation and matrix representations. We do not provide
an algorithm that computes these degrees for an arbitrary group, we only provide some tools for
evaluating known databases, mainly concerning nearly simple groups, in order to derive the minimal
degrees, see Section 4.3.4.

In the AtlasRep package, this information is used in DisplayAtlasInfo (2.5.1),
OneAtlasGeneratingSetInfo (2.5.4), and AllAtlasGeneratingSetInfos (2.5.5).

4.3.1 MinimalRepresentationInfo

♦ MinimalRepresentationInfo(grpname, conditions) (function)

Returns: a record with the components value and source, or fail
Let groupname be the GAP name of a group G, say. If the information described by

conditions about minimal representations of this group can be computed or is stored then
MinimalRepresentationInfo returns a record with the components value and source, otherwise
fail is returned.

The following values for conditions are supported.

• If conditions is NrMovedPoints (Reference: NrMovedPoints) then value, if known, is
the degree of a minimal faithful permutation representation for G.

• If conditions consists of Characteristic (Reference: Characteristic) and a prime in-
teger p then value, if known, is the dimension of a minimal faithful matrix representation in
characteristic p for G.

• If conditions consists of Size (Reference: Size) and a prime power q then value, if
known, is the dimension of a minimal faithful matrix representation over the field of size q for
G.

In all cases, the value of the component source is a list of strings that describe sources of the
information, which can be the ordinary or modular character table of G (see [CCN+85], [JLPW95],
[HL89]), the table of marks of G, or [Jan05]. For an overview of minimal degrees of faithful matrix
representations for sporadic simple groups and their covering groups, see also

http://www.math.rwth-aachen.de/˜MOC/mindeg/.
Note that this function does not give any information about minimal representations over pre-

scribed fields in characteristic zero.
Information about groups that occur in the AtlasRep package is precomputed in

MinimalRepresentationInfoData (4.3.2), so the packages CTblLib and TomLib are not needed
when MinimalRepresentationInfo is called for these groups. (The only case that is not covered
by this list is that one asks for the minimal degree of matrix representations over a prescribed field in
characteristic coprime to the group order.)

One of the following strings can be given as an additional last argument.

"cache" means that the function tries to compute (and then store) values that are not stored in
MinimalRepresentationInfoData (4.3.2), but stored values are preferred; this is also the
default.

http://www.math.rwth-aachen.de/~MOC/mindeg/


AtlasRep — A GAP 4 Package 55

"lookup" means that stored values are returned but the function does not attempt to compute values
that are not stored in MinimalRepresentationInfoData (4.3.2).

"recompute" means that the function always tries to compute the desired value, and checks the
result against stored values.

Example
gap> MinimalRepresentationInfo( "A5", NrMovedPoints );
rec( value := 5,
source := [ "computed (alternating group)", "computed (char. table)",

"computed (subgroup tables)",
"computed (subgroup tables, known repres.)",
"computed (table of marks)" ] )

gap> MinimalRepresentationInfo( "A5", Characteristic, 2 );
rec( value := 2, source := [ "computed (char. table)" ] )
gap> MinimalRepresentationInfo( "A5", Size, 2 );
rec( value := 4, source := [ "computed (char. table)" ] )

4.3.2 MinimalRepresentationInfoData

♦ MinimalRepresentationInfoData (global variable)

This is a record whose components are GAP names of groups for which information about minimal
permutation and matrix representations were known in advance or have been computed in the current
GAP session. The value for the group G, say, is a record with the following components.

NrMovedPoints a record with the components value (the degree of a smallest faithful permuta-
tion representation of G) and source (a string describing the source of this information).

Characteristic a record whose components are at most 0 and strings corresponding to prime
integers, each bound to a record with the components value (the degree of a smallest faithful
matrix representation of G in this characteristic) and source (a string describing the source of
this information).

CharacteristicAndSize a record whose components are strings corresponding to prime in-
tegers p, each bound to a record with the components sizes (a list of powers q of p),
dimensions (the corresponding list of minimal dimensions of faithful matrix representations
of G over a field of size q), sources (the corresponding list of strings describing the source
of this information), and complete (a record with the components val (true if the minimal
dimension over any finite field in characteristic p can be derived from the values in the record,
and false otherwise) and source (a string describing the source of this information)).

The values are set by SetMinimalRepresentationInfo (4.3.3).

4.3.3 SetMinimalRepresentationInfo

♦ SetMinimalRepresentationInfo(grpname, op, value, source) (function)

Returns: true if the values were successfully set, false if stored values contradict the given
ones.

This function sets an entry in MinimalRepresentationInfoData (4.3.2) for the group G, say,
with GAP name grpname.



AtlasRep — A GAP 4 Package 56

Supported values for op are

• "NrMovedPoints" (see NrMovedPoints (Reference: NrMovedPoints)), which means that
value is the degree of minimal faithful permutation representations of G,

• a list of length two with first entry "Characteristic" (see Characteristic (Reference:
Characteristic)) and second entry char either zero or a prime integer, which means that
value is the dimension of minimal faithful matrix representations of G in characteristic char,

• a list of length two with first entry "Size" (see Size (Reference: Size)) and second entry a
prime power q , which means that value is the dimension of minimal faithful matrix represen-
tations of G over the field with q elements, and

• a list of length three with first entry "Characteristic" (see Characteristic (Reference:
Characteristic)), second entry a prime integer p, and third entry the string "complete", which
means that the information stored for characteristic p is complete in the sense that for any given
power q of p, the minimal faithful degree over the field with q elements equals that for the
largest stored field size of which q is a power.

In each case, source is a string describing the source of the data; computed values are detected
from the prefix "comp" of source.

If the intended value is already stored and differs from value then an error message is printed.
Example

gap> SetMinimalRepresentationInfo( "A5", "NrMovedPoints", 5,
> "computed (alternating group)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 0 ], 3,
> "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 2 ], 2,
> "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 2 ], 4,
> "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Size", 4 ], 2,
> "computed (char. table)" );
true
gap> SetMinimalRepresentationInfo( "A5", [ "Characteristic", 3 ], 3,
> "computed (char. table)" );
true

4.3.4 Criteria Used to Compute Minimality Information

Let grpname be the GAP name of a group G, say.
The information about the minimal degree of a faithful matrix representation of G in a given

characteristic or over a given field in positive characteristic is derived from the relevant (ordinary or
modular) character table of G, except in a few cases where this table itself is not known but enough
information about the degrees is available in [HL89] and [Jan05].

The following criteria are used for deriving the minimal degree of a faithful permutation repre-
sentation of G from the information in the GAP libraries of character tables and of tables of marks.



AtlasRep — A GAP 4 Package 57

• If grpname has the form An or An.2 (denoting alternating and symmetric groups, respectively)
then the minimal degree is n, except if n is smaller than 3 or 2, respectively.

• If grpname has the form L2(q) (denoting projective special linear groups in dimension two)
then the minimal degree is q+1, except if q ∈ {2,3,5,7,9,11}, see [Hup67, Satz II.8.28].

• If the largest maximal subgroup of G is core-free then the index of this subgroup is the minimal
degree. (This is used when the two character tables in question and the class fusion are available
in the GAP Character Table Library; this happens for many character tables of simple groups.)

• If G has a unique minimal normal subgroup then each minimal faithful permutation representa-
tion is transitive.

In this case, the minimal degree can be computed directly from the information in the table of
marks of G if this is available in GAP’s library of tables of marks.

Suppose that the largest maximal subgroup of G is not core-free but simple and normal in G,
and that the other maximal subgroups of G are core-free. In this case, we take the minimum of
the indices of the core-free maximal subgroups and of the product of index and minimal degree
of the normal maximal subgroup. (This suffices since no core-free subgroup of the whole group
can contain a nontrivial normal subgroup of a normal maximal subgroup.)

Let N be the unique minimal normal subgroup of G, and assume that G/N is simple and has
minimal degree n, say. If there is a subgroup U of index n · |N| in G that intersects N trivially
then the minimal degree of G is n · |N|. (This is used for the case that N is central in G and
N×U occurs as a subgroup of G.)

• If we know a subgroup of G whose minimal degree is n, say, and if we know either (a class
fusion from) a core-free subgroup of index n in G or a faithful permutation representation of
degree n for G then n is the minimal degree for G. (This happens often for tables of almost
simple groups.)

4.3.5 AGR TestMinimalDegrees

♦ AGR TestMinimalDegrees() (function)

Returns: true if no contradiction was found, and false otherwise.
This function checks that the (permutation and matrix) representations available in the ATLAS of

group representations do not have smaller degree than the claimed minimum.
An error message is printed for each contradiction found.

4.3.6 BrowseMinimalDegrees

♦ BrowseMinimalDegrees([groupnames]) (function)

Returns: the list of info records for the clicked representations.
If the GAP package Browse (see [BL08]) is loaded then the function BrowseMinimalDegrees is

available. It opens a browse table whose rows correspond to the groups for which the ATLAS of Group
Representations contains some information about minimal degrees, whose columns correspond to the
characteristics that occur, and whose entries are the known minimal degrees.

Example
gap> if LoadPackage( "browse", "1.2" ) = true then
> down:= NCurses.keys.DOWN;; DOWN:= NCurses.keys.NPAGE;;



AtlasRep — A GAP 4 Package 58

> right:= NCurses.keys.RIGHT;; END:= NCurses.keys.END;;
> enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];;
> # just scroll in the table
> BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN,
> right, right, right ], "sedddrrrddd", nop, nop, "Q" ) );
> BrowseMinimalDegrees();;
> # restrict the table to the groups with minimal ordinary degree 6
> BrowseData.SetReplay( Concatenation( "scf6",
> [ down, down, right, enter, enter ] , nop, nop, "Q" ) );
> BrowseMinimalDegrees();;
> BrowseData.SetReplay( false );
> fi;

If an argument groupnames is given then it must be a list of group names of the ATLAS of Group
Representations; the browse table is then restricted to the rows corresponding to these group names
and to the columns that are relevant for these groups. A perhaps interesting example is the subtable
with the data concerning sporadic simple groups and their covering groups, which has been published
in [Jan05]. This table can be shown as follows.

Example
gap> if LoadPackage( "browse", "1.2" ) = true then
> # just scroll in the table
> BrowseData.SetReplay( Concatenation( [ DOWN, DOWN, DOWN, END ],
> "rrrrrrrrrrrrrr", nop, nop, "Q" ) );
> BrowseMinimalDegrees( BibliographySporadicSimple.groupNamesJan05 );;
> fi;

(The browse table does not contain rows for the groups 6.M22, 12.M22, 6.Fi22. Note that in spite
of the title of [Jan05], the entries in Table 1 of this paper are in fact the minimal degrees of faithful
irreducible representations, and in the above three cases, these degrees are larger than the minimal
degrees of faithful representations. The underlying data of the browse table is about the minimal
faithful degrees.)

The return value of BrowseMinimalDegrees is the list of OneAtlasGeneratingSetInfo (2.5.4)
values for those representations that have been “clicked” in visual mode.

The variant without arguments of this function is also available in the menu shown by
BrowseGapData (Browse: BrowseGapData).

4.4 Bibliographies of Sporadic Simple Groups

The bibliographies contained in the ATLAS of Finite Groups [CCN+85] and in the
ATLAS of Brauer Characters [JLPW95] are available online in HTML format, see
http://www.gap-system.org/Manuals/pkg/atlasrep/bibl/index.html.

The source data in BibXMLext format is part of the AtlasRep package, in four files with suffix
xml in the package’s bibl directory. Note that each of the two books contains two bibliographies.

Details about the BibXMLext format, including information how to transform the data into other
formats such as BibTeX, can be found in the GAP package GAPDoc (see [LN08]).

These source files are used also by the function BrowseBibliographySporadicSimple (4.4.1).

http://www.gap-system.org/Manuals/pkg/atlasrep/bibl/index.html


AtlasRep — A GAP 4 Package 59

4.4.1 BrowseBibliographySporadicSimple

♦ BrowseBibliographySporadicSimple() (function)

Returns: a record as returned by ParseBibXMLExtString (GAPDoc: ParseBibXM-
LextString).

If the GAP package Browse (see [BL08]) is loaded then this function is available. It opens a
browse table whose rows correspond to the entries of the bibliographies of the ATLAS of Finite Groups
[CCN+85] and the ATLAS of Brauer Characters [JLPW95].

The function is based on BrowseBibliography (Browse: BrowseBibliography), see the docu-
mentation of this function for details, e.g., about the return value.

The returned record encodes the bibliography entries corresponding to those rows of the table
that are “clicked” in visual mode, in the same format as the return value of ParseBibXMLExtString
(GAPDoc: ParseBibXMLextString), see the manual of the GAP package GAPDoc [LN08] for de-
tails.

BrowseBibliographySporadicSimple can be called also via the menu shown by
BrowseGapData (Browse: BrowseGapData).

Example
gap> if LoadPackage( "browse", "1.2" ) = true then
> enter:= NCurses.keys.ENTER;; nop:= [ 14, 14, 14 ];;
> BrowseData.SetReplay( Concatenation(
> # choose the application
> "/Bibliography of Sporadic Simple Groups", [ enter, enter ],
> # search in the title column for the Atlas of Finite Groups
> "scr/Atlas of finite groups", [ enter,
> # and quit
> nop, nop, nop, nop ], "Q" ) );
> BrowseGapData();;
> BrowseData.SetReplay( false );
> fi;



Chapter 5

Technicalities of the AtlasRep Package

This chapter describes those parts of the GAP interface to the ATLAS of Group Representations that
do not belong to the user interface (cf. Chapter 2).

Besides global variables used for administrational purposes (see Section 5.1) and several sanity
checks (see Section 5.8), they can be regarded as the interface between the data actually contained
in the files and the corresponding GAP objects (see Section 5.2, 5.3, 5.4, and 5.5), and the interface
between the remote and the local version of the database (see Section 5.6 and 5.7). The former
interface contains functions to read and write files in MeatAxe format, which may be interesting for
users familiar with MeatAxe standalones (see for example [Rin98]). Other low level functions may be
undocumented in the sense that they are not described in this manual. Users interested in them may
look at the actual implementation in the gap directory of the package, but it may happen that this will
be changed in future versions of the package.

5.1 Global Variables Used by the AtlasRep Package

For debugging purposes, the functions from the GAP interface to the ATLAS of Group Represen-
tations print information depending on the info level of the info classes InfoAtlasRep (5.1.1),
InfoCMeatAxe (5.1.2), and InfoBBox (5.1.3) (cf. (Reference: Info Functions)).

The info level of an info class can be changed using SetInfoLevel (Reference: SetInfoLevel).
For example, the info level of InfoAtlasRep (5.1.1) can be set to the nonnegative integer n using
SetInfoLevel( InfoAtlasRep, n ).

Information about files being read can be obtained by setting the value of the global variable
InfoRead1 to Print (Reference: Print).

5.1.1 InfoAtlasRep

♦ InfoAtlasRep (info class)

If the info level of InfoAtlasRep is at least 1 then information about fail results of functions in
the AtlasRep package is printed. If the info level is at least 2 then information about calls to external
programs is printed. The default level is 0, no information is printed on this level.

60



AtlasRep — A GAP 4 Package 61

5.1.2 InfoCMeatAxe

♦ InfoCMeatAxe (info class)

If the info level of InfoCMeatAxe is at least 1 then information about fail results of C-MeatAxe
functions is printed. The default level is zero, no information is printed on this level.

5.1.3 InfoBBox

♦ InfoBBox (info class)

If the info level of InfoBBox is at least 1 then information about fail results of functions dealing
with black box programs (see Section 4.2) is printed. The default level is 0, no information is printed
on this level.

5.1.4 CMeatAxe.FastRead

♦ CMeatAxe.FastRead (global variable)

If this component is bound and has the value true then ScanMeatAxeFile (5.3.1) reads text
files via StringFile (GAPDoc: StringFile). Otherwise each file containing a matrix over a finite
field is read line by line via ReadLine (Reference: ReadLine), and the GAP matrix is constructed
line by line, in a compressed representation (see (Reference: Row Vectors over Finite Fields)
and (Reference: Matrices over Finite Fields)), which makes it possible to read large matrices in a
reasonable amount of space. The StringFile (GAPDoc: StringFile) approach is faster but needs
more intermediate space when text files containing matrices over finite fields are read.

5.1.5 AtlasOfGroupRepresentationsInfo

♦ AtlasOfGroupRepresentationsInfo (global variable)

This is a record that is defined in the file gap/types.g of the package, with the following com-
ponents.

Components corresponding to user parameters (see Section 1.7) are

remote a boolean that controls what files are available; if the value is true then GAP is allowed to
try remotely accessing any ATLAS file from the servers (see below) and thus all files listed in
the global table of contents are available, if the value is false then GAP may access only those
files that are stored in the database directories of the local GAP installation (see Section 1.7.1),

servers a list of pairs [ server, path ], where server is a string denoting the http address
of a server where files can be fetched that are not stored in the local database, and path is a
string describing the path where the data directories on the server reside,

wget a boolean that controls whether the GAP package IO[Neu07] or the external program wget is
used to fetch data files, see 1.7.3,

compress a boolean that controls whether MeatAxe format text files are stored in compressed form;
if the value is true then these files are compressed with gzip after they have been fetched from
a server, see Section 1.7.4,



AtlasRep — A GAP 4 Package 62

displayFunction the function that is used by DisplayAtlasInfo (2.5.1) for printing the for-
matted data, see Section 1.7.5,

accessFunctions a list of records, each describing how to access the data files, see Sections
1.7.6 and 5.2.

markprivate a string used in DisplayAtlasInfo (2.5.1) to mark private data, see Section 3.2,
and

System components (which are computed automatically) are

GAPnames a list of pairs, each containing the GAP name and the ATLAS-file name of a group, see
Section 2.2,

groupnames a list of triples, each containing at the first position the name of the directory on each
server that contains data about the group G in question, at the second position the name of the
(usually simple) group for which a subdirectory exists that contains the data about G, and at the
third position the ATLAS-file name used for G, see Section 5.6,

ringinfo a list of triples, each containing at the first position the name of a file with the matrix
generators, at the second position a string describing the ring generated by the matrix entries,
and at the third position this ring itself; DisplayAtlasInfo (2.5.1) displays this information
for example for representations over proper extensions of the rational number field only if the
representation is mentioned in the ringinfo list,

private a list of pairs of strings used for administrating private data (see Chapter 3); the
value is changed by AtlasOfGroupRepresentationsNotifyPrivateDirectory (3.1.1) and
AtlasOfGroupRepresentationsForgetPrivateDirectory (3.1.2),

TableOfContents a record with at most the components local, remote, types, and the names
of private data directories. The values of the components local and remote can be computed
automatically by ReloadAtlasTableOfContents (1.6.1), the value of the component types is
set in AGRDeclareDataType (5.5.1), and the values of the components for local data directories
are created by AtlasOfGroupRepresentationsNotifyPrivateDirectory (3.1.1).

5.2 How to Customize the Access to Data files

We discuss the three steps listed in Section 1.7.6.
For creating an overview of the locally available data, the first of these steps must be available in-

dependent of actually accessing the file in question. For updating the local copy of the server data, the
second of the above steps must be available independent of the third one. Therefore, the package pro-
vides the possibility to extend the default behaviour by adding new records to the accessFunctions
component of AtlasOfGroupRepresentationsInfo (5.1.5), the components of which are as fol-
lows.

location( filename, groupname, dirname, type ) Let filename be the de-
fault filename (without path) of the required file, or a list of such filenames. Let groupname be
the ATLAS name of the group to which the data in these files belong, dirname be the default di-
rectory name (one of "datagens", "dataword", or the dirid value of a private directory, see



AtlasRep — A GAP 4 Package 63

AtlasOfGroupRepresentationsNotifyPrivateDirectory (3.1.1)), and type be the data
type (see AGRDeclareDataType (5.5.1)). This function must return either the absolute path(s)
where the mechanism implemented by the current record expects the local version of the given
file(s), or fail if this function does not feel responsible for these file(s). In the latter case, the
location function in another record will know a path.

The file(s) is/are regarded as not locally available if all installed location functions return
either fail or paths of nonexisting files, in the sense of IsExistingFile (Reference: IsEx-
istingFile).

fetch( filepath, filename, groupname, dirname, type ) This function is
called when a file is not locally available and if the location function in the current record has
returned a path or a list of paths. The arguments dirname and type must be the same as for
the location function, and filepath and filename must be strings (not lists of strings).

The return value must be true if the function succeeded with making the file locally available
(including postprocessing if applicable), and false otherwise.

contents( filepath, type ) This function is called when the location function in the
current record has returned the path(s) filepath, and if either these are paths of existing files
or the fetch function in the current record has been called for these paths, and the return value
was true. The argument type must be the same as for the location and the fetch functions.

The return value must be the contents of the file(s), in the sense that the GAP matrix, matrix
list, permutation, permutation list, or program described by the file(s) is returned. This means
that besides reading the file(s) via the appropriate function, it may be necessary to interpret the
contents.

description This must be a short string that describes for which kinds of files the functions in
the current record are intended, which file formats are supported etc. The value is shown when
AtlasOfGroupRepresentationsShowUserParameters (1.7.8) is called.

active The current accessFunctions record is ignored by AGRFileContents (5.6.2) if the value
is not true.

In AGRFileContents (5.6.2), the records in the accessFunctions component of
AtlasOfGroupRepresentationsInfo (5.1.5) are considered in reversed order.

By default, the accessFunctions list contains three records. Only for one of them, the active
component has the value true. One of the other two records can be used to change the access to
permutation representations and to matrix representations over finite fields such that MeatAxe binary
files are transferred and read instead of MeatAxe text files. The fourth record makes sense only if a
local server is accessible, i. e., if the server files can be read directly, without being transferred into
the data directories of the package.

5.3 Reading and Writing MeatAxe Format Files

5.3.1 ScanMeatAxeFile

♦ ScanMeatAxeFile(filename[, q][, "string"]) (function)

Returns: the matrix or list of permutations stored in the file or encoded by the string.



AtlasRep — A GAP 4 Package 64

Let filename be the name of a GAP readable file (see (Reference: Filename)) that contains
a matrix or a permutation or a list of permutations in MeatAxe text format (see the section about the
program zcv in the MeatAxe manual [Rin98]), and let q be a prime power. ScanMeatAxeFile returns
the corresponding GAP matrix or list of permutations, respectively.

If the file contains a matrix then the way how it is read by ScanMeatAxeFile depends on the value
of the global variable CMeatAxe.FastRead (5.1.4). If the parameter q is given then the result matrix
is represented over the field with q elements, the default for q is the field size stored in the file.

If the file contains a list of permutations then it is read with StringFile (GAPDoc: StringFile);
the parameter q , if given, is ignored in this case.

If the string "string" is entered as the third argument then the first argument must be a string as
obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference:
InputTextFile)). Also in this case, ScanMeatAxeFile returns the corresponding GAP matrix or list
of permutations, respectively.

5.3.2 MeatAxeString

♦ MeatAxeString(mat, q) (operation)

♦ MeatAxeString(perms, degree) (operation)

♦ MeatAxeString(perm, q, dims) (operation)

Returns: a string encoding the GAP objects given as input in MeatAxe format.
In the first form, for a matrix mat whose entries lie in the finite field with q elements,

MeatAxeString returns a string that encodes mat as a matrix over GF(q), in MeatAxe text format.
In the second form, for a nonempty list perms of permutations that move only points up to the

positive integer degree, MeatAxeString returns a string that encodes perms as permutations of
degree degree, in MeatAxe text format (see [Rin98]).

In the third form, for a permutation perm with largest moved point n, say, a prime power q , and
a list dims of length 2 containing two positive integers larger than or equal to n, MeatAxeString
returns a string that encodes perm as a matrix over GF(q), of dimensions dims, whose first n rows
and columns describe the permutation matrix corresponding to perm, and the remaining rows and
columns are zero.

When strings are printed to files using PrintTo (Reference: PrintTo) or AppendTo (Reference:
AppendTo) then line breaks are inserted whenever lines exceed the number of characters given by
the second entry of the list returned by SizeScreen (Reference: SizeScreen), see (Reference:
Operations for Output Streams). This behaviour is not desirable for creating data files. So the
recommended functions for printing the result of MeatAxeString to a file are FileString (GAPDoc:
FileString) and WriteAll (Reference: WriteAll).

Example
gap> mat:= [ [ 1, -1 ], [ 0, 1 ] ] * Z(3)ˆ0;;
gap> str:= MeatAxeString( mat, 3 );
"1 3 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( mat, 9 );
"1 9 2 2\n12\n01\n"
gap> mat = ScanMeatAxeFile( str, "string" );
true
gap> perms:= [ (1,2,3)(5,6) ];;
gap> str:= MeatAxeString( perms, 6 );



AtlasRep — A GAP 4 Package 65

"12 1 6 1\n2\n3\n1\n4\n6\n5\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true
gap> str:= MeatAxeString( perms, 8 );
"12 1 8 1\n2\n3\n1\n4\n6\n5\n7\n8\n"
gap> perms = ScanMeatAxeFile( str, "string" );
true
gap> perm:= (1,2,4);;
gap> str:= MeatAxeString( perm, 3, [ 5, 6 ] );
"2 3 5 6\n2\n4\n3\n1\n5\n"
gap> mat:= ScanMeatAxeFile( str, "string" );; Print( mat, "\n" );
[ [ 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3) ],
[ Z(3)ˆ0, 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3) ],
[ 0*Z(3), 0*Z(3), 0*Z(3), 0*Z(3), Z(3)ˆ0, 0*Z(3) ] ]

gap> MeatAxeString( mat, 3 ) = str;
true

5.3.3 FFList

♦ FFList(F) (function)

Returns: a list of elements in the given finite field.
♦ FFLists (global variable)

FFList is a utility program for the conversion of vectors and matrices from MeatAxe format to
GAP format and vice versa. It is used by ScanMeatAxeFile (5.3.1) and MeatAxeString (5.3.2).

For a finite field F, FFList returns a list l giving the correspondence between the MeatAxe num-
bering and the GAP numbering of the elements in F.

The element of F corresponding to MeatAxe number n is l[n+ 1], and the MeatAxe number of
the field element z is Position( l, z ) - 1.

The global variable FFLists is used to store the information about F once it has been computed.
Example

gap> FFList( GF(4) );
[ 0*Z(2), Z(2)ˆ0, Z(2ˆ2), Z(2ˆ2)ˆ2 ]
gap> IsBound( FFLists[4] );
true

5.3.4 CMtxBinaryFFMatOrPerm

♦ CMtxBinaryFFMatOrPerm(elm, def, outfile) (function)

Let the pair (elm,def) be either of the form (M,q) where M is a matrix over a finite field F ,
say, with q≤ 256 elements, or of the form (π,n) where π is a permutation with largest moved point at
most n. Let outfile be a string. CMtxBinaryFFMatOrPerm writes the C-MeatAxe binary format of
M, viewed as a matrix over F , or of π, viewed as a permutation on the points up to n, to the file with
name outfile.

(The binary format is described in the C-MeatAxe manual [Rin98].)



AtlasRep — A GAP 4 Package 66

Example
gap> tmpdir:= DirectoryTemporary();;
gap> mat:= Filename( tmpdir, "mat" );;
gap> q:= 4;;
gap> mats:= GeneratorsOfGroup( GL(10,q) );;
gap> CMtxBinaryFFMatOrPerm( mats[1], q, Concatenation( mat, "1" ) );
gap> CMtxBinaryFFMatOrPerm( mats[2], q, Concatenation( mat, "2" ) );
gap> prm:= Filename( tmpdir, "prm" );;
gap> n:= 200;;
gap> perms:= GeneratorsOfGroup( SymmetricGroup( n ) );;
gap> CMtxBinaryFFMatOrPerm( perms[1], n, Concatenation( prm, "1" ) );
gap> CMtxBinaryFFMatOrPerm( perms[2], n, Concatenation( prm, "2" ) );

5.3.5 FFMatOrPermCMtxBinary

♦ FFMatOrPermCMtxBinary(fname) (function)

Returns: the matrix or permutation stored in the file.
Let fname be the name of a file that contains the C-MeatAxe binary format of a matrix over

a finite field or of a permutation, as is described in [Rin98]. FFMatOrPermCMtxBinary returns the
corresponding GAP matrix or permutation.

Example
gap> FFMatOrPermCMtxBinary( Concatenation( mat, "1" ) ) = mats[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( mat, "2" ) ) = mats[2];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "1" ) ) = perms[1];
true
gap> FFMatOrPermCMtxBinary( Concatenation( prm, "2" ) ) = perms[2];
true

5.4 Reading and Writing ATLAS Straight Line Programs

5.4.1 ScanStraightLineProgram

♦ ScanStraightLineProgram(filename[, "string"]) (function)

Returns: a record containing the straight line program.
Let filename be the name of a file that contains a straight line program in the sense that it

consists only of lines in the following form.

#anything lines starting with a hash sign # are ignored,

echo anything lines starting with echo are ignored for the program component of the result
record (see below), they are used to set up the bijection between the labels used in the program
and conjugacy class names in the case that the program computes dedicated class representa-
tives,

inp n means that there are n inputs, referred to via the labels 1, 2, . . ., n,

inp k a1 a2 ... ak means that the next k inputs are referred to via the labels a1, a2, ...,
ak,



AtlasRep — A GAP 4 Package 67

cjr a b means that a is replaced by bˆ(-1) * a * b,

cj a b c means that c is defined as bˆ(-1) * a * b,

com a b c means that c is defined as aˆ(-1) * bˆ(-1) * a * b,

iv a b means that b is defined as aˆ(-1),

mu a b c means that c is defined as a * b,

pwr a b c means that c is defined as bˆa,

cp a b means that b is defined as a copy of a,

oup l means that there are l outputs, stored in the labels 1, 2, . . ., l, and

oup l b1 b2 ... bl means that the next l outputs are stored in the labels b1, b2, ... bl.

Each of the labels a, b, c can be any nonempty sequence of digits and alphabet characters, except
that the first argument of pwr must denote an integer.

If the inp or oup statements are missing then the input or output, respectively, is assumed to be
given by the labels 1 and 2. There can be multiple inp lines at the beginning of the program and
multiple oup lines at the end of the program. Only the first inp or oup line may omit the names of
the elements. For example, an empty file filename or an empty string string represent a straight
line program with two inputs that are returned as outputs.

No command except cjr may overwrite its own input. For example, the line mu a b a is not
legal. (This is not checked.)

ScanStraightLineProgram returns a record containing as the value of its component program
the corresponding GAP straight line program (see IsStraightLineProgram (Reference: IsStraight-
LineProgram)) if the input string satisfies the syntax rules stated above, and returns fail otherwise.
In the latter case, information about the first corrupted line of the program is printed if the info level
of InfoCMeatAxe (5.1.2) is at least 1.

If the string "string" is entered as the second argument then the first argument must be a string as
obtained by reading a file in MeatAxe text format as a text stream (see InputTextFile (Reference:
InputTextFile)). Also in this case, ScanStraightLineProgram returns either a record with the
corresponding GAP straight line program or fail.

If the input describes a straight line program that computes certain class representatives of the
group in question then the result record also contains the component outputs. Its value is a list of
strings, the entry at position i denoting the name of the class in which the i output of the straight line
program lies; see Section 2.4 for the definition of the class names that occur.

Such straight line programs must end with a sequence of output specifications of the following
form.

Example
echo "Classes 1A 2A 3A 5A 5B"
oup 5 3 1 2 4 5

This example means that the list of outputs of the program contains elements of the classes 1A,
2A, 3A, 5A, and 5B (in this order), and that inside the program, these elements are referred to by the
names 3, 1, 2, 4, and 5.



AtlasRep — A GAP 4 Package 68

5.4.2 AtlasStringOfProgram

♦ AtlasStringOfProgram(prog[, outputnames]) (function)

♦ AtlasStringOfProgram(prog[, "mtx"]) (function)

Returns: a string encoding the straight line program/decision in the format used in ATLAS files.
For a straight line program or straight line decision prog (see IsStraightLineProgram

(Reference: IsStraightLineProgram) and IsStraightLineDecision (4.1.1)), this function re-
turns a string describing the input format of an equivalent straight line program or straight line de-
cision as used in the ATLAS of Group Representations, that is, the lines are of the form described
in ScanStraightLineProgram (5.4.1).

A list of strings that is given as the optional second argument outputnames is interpreted as
the class names corresponding to the outputs; this argument has the effect that appropriate echo
statements appear in the result string.

If the string "mtx" is given as the second argument then the result has the format used in the
C-MeatAxe (see [Rin98]) rather than the format described in Section 5.4. (Note that the C-MeatAxe
format does not make sense if the argument outputnames is given, and that this format does not
support inp and oup statements.)

The argument prog must not be a black box program (see IsBBoxProgram (4.2.1)).
Example

gap> str:= "inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2 1 2";;
gap> prg:= ScanStraightLineProgram( str, "string" );
rec( program := <straight line program> )
gap> prg:= prg.program;;
gap> Display( prg );
# input:
r:= [ g1, g2 ];
# program:
r[3]:= r[1]*r[2];
r[2]:= r[3]*r[1];
r[1]:= r[2]ˆ-1;
# return values:
[ r[1], r[2] ]
gap> StringOfResultOfStraightLineProgram( prg, [ "a", "b" ] );
"[ (aba)ˆ-1, aba ]"
gap> AtlasStringOfProgram( prg );
"inp 2\nmu 1 2 3\nmu 3 1 2\niv 2 1\noup 2\n"
gap> prg:= StraightLineProgram( "(aˆ2bˆ3)ˆ-1", [ "a", "b" ] );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 2 1 4
pwr 3 2 5
mu 4 5 3
iv 3 4
oup 1 4
gap> prg:= StraightLineProgram( [ [2,3], [ [3,1,1,4], [1,2,3,1] ] ], 2 );
<straight line program>
gap> Print( AtlasStringOfProgram( prg ) );
inp 2
pwr 3 2 3
pwr 4 1 5



AtlasRep — A GAP 4 Package 69

mu 3 5 4
pwr 2 1 6
mu 6 3 5
oup 2 4 5
gap> Print( AtlasStringOfProgram( prg, "mtx" ) );
# inputs are expected in 1 2
zsm pwr3 2 3
zsm pwr4 1 5
zmu 3 5 4
zsm pwr2 1 6
zmu 6 3 5
echo "outputs are in 4 5"
gap> str:= "inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5";;
gap> prg:= ScanStraightLineDecision( str );;
gap> AtlasStringOfProgram( prg.program );
"inp 2\nchor 1 2\nchor 2 3\nmu 1 2 3\nchor 3 5\n"

5.5 Data Types Used in the ATLAS of Group Representations

Each representation or program that is administrated by the AtlasRep package belongs to a unique data
type. Informally, examples of data types are “permutation representation”, “matrix representation over
the integers”, or “straight line program for computing class representatives”.

The idea is that for each data type, there can be

• a column of its own in the output produced by DisplayAtlasInfo (2.5.1) when called without
arguments or with only argument a list of group names,

• a line format of its own for the output produced by DisplayAtlasInfo (2.5.1) when called
with first argument a group name,

• an input format of its own for AtlasProgram (2.5.3),

• an input format of its own for OneAtlasGeneratingSetInfo (2.5.4), and

• specific tests for the data of this data type; these functions are used by the global tests described
in Section 5.8.

Formally, a data type is defined by a record whose components are used by the interface functions.
The details are described in the following.

5.5.1 AGRDeclareDataType

♦ AGRDeclareDataType(kind, name, record) (function)

Let kind be one of the strings "rep" or "prg", and record be a record. AGRDeclareDataType
declares a new data type of representations (if kind is "rep") or of programs (if kind is "prg").
For each group used in the AtlasRep package, the record that contains the information about the data
will have a component name whose value is a list containing the data about the new type. Examples
of name are "perm", "matff", and "classes".

Mandatory components of record are



AtlasRep — A GAP 4 Package 70

FilenameFormat This defines the format of the filenames containing data of the type in question.
The value must be a list that can be used as the second argument of AGRParseFilenameFormat
(5.6.1), such that only filenames of the type in question match. (It is not checked whether this
“detection function” matches exactly one type, so one must be very careful here when declaring
a new type.)

AddFileInfo This defines the information stored in the table of contents for the data of the type.
The value must be a function that takes three arguments (the current list of data for the type and
the given group, a list returned by AGRParseFilenameFormat (5.6.1) for the given type, and a
filename). This function adds the necessary parts of the data entry to the list, and returns true
if the data belongs to the type, otherwise false is returned; note that the latter case occurs if
the filename matches the format description but additional conditions on the parts of the name
are not satisfied (for example integer parts may be required to be positive or prime powers).

ReadAndInterpretDefault This is the function that does the work for the default contents
value of the accessFunctions component of AtlasOfGroupRepresentationsInfo (5.1.5),
see Section 5.2. This function must take a path and return the GAP object given by this file.

AddDescribingComponents (for rep only) This function takes two arguments, a record (that
will be returned by AtlasGenerators (2.5.2), OneAtlasGeneratingSetInfo (2.5.4), or
AllAtlasGeneratingSetInfos (2.5.5)) and the type record record. It sets the components
p, dim, id, and ring that are promised for return values of the abovementioned three functions.

DisplayGroup (for rep only) This defines the format of the lines printed by DisplayAtlasInfo
(2.5.1) for a given group. The value must be a function that takes a list as returned by the
function given in the component AddFileInfo, and returns the string to be printed for the
representation in question.

Optional components of record are

DisplayOverviewInfo This is used to introduce a new column in the output of
DisplayAtlasInfo (2.5.1) when this is called without arguments or with a list of group names
as its only argument. The value must be a list of length three, containing at its first position a
string used as the header of the column, at its second position one of the strings "r" or "l",
denoting right or left aligned column entries, and at its third position a function that takes two
arguments (a list of tables of contents of the AtlasRep package and a group name), and returns
a list of length two, containing the string to be printed as the column value and true or false,
depending on whether private data is involved or not. (The default is to print no column for the
data type.)

DisplayPRG (for prg only) This is used in DisplayAtlasInfo (2.5.1) for ATLAS programs. The
value must be a function that takes four arguments (a list of tables of contents to examine,
the name of the given group, a list of integers or true for the required standardization, and a
list of all available standardizations), and returns the list of lines (strings) to be printed as the
information about the available programs of the current type and for the given group. (The
default is to return an empty list.)

AccessGroupCondition (for rep only) This is used in DisplayAtlasInfo (2.5.1) and
OneAtlasGeneratingSetInfo (2.5.4). The value must be a function that takes two arguments



AtlasRep — A GAP 4 Package 71

(a list as returned by AGRParseFilenameFormat (5.6.1), and a list of conditions), and returns
true or false, depending on whether the first argument satisfies the conditions. (The default
value is ReturnFalse (Reference: ReturnFalse).)

The function must support conditions such as [ IsPermGroup, true ] and [
NrMovedPoints, [ 5, 6 ] ], in general a list of functions followed by a prescribed
value, a list of prescribed values, another (unary) function, or the string "minimal". For an
overview of the interesting functions, see DisplayAtlasInfo (2.5.1).

AccessPRG (for prg only) This is used in AtlasProgram (2.5.3). The value must be a function
that takes three arguments (the record with the information about the given group in the current
table of contents, an integer or a list of integers or true for the required standardization, and a
list of conditions given by the optional arguments of AtlasProgram (2.5.3)), and returns either
fail or a list that together with the group name forms the identifier of a program that matches
the conditions. (The default value is ReturnFail (Reference: ReturnFail).)

AtlasProgram (for prg only) This is used in AtlasProgram (2.5.3) to create the result value
from the identifier. (The default value is AtlasProgramDefault, which works whenever the
second entry of the identifier is the filename; this is not the case for example if the program is
the composition of several programs.)

TOCEntryString This is used in StoreAtlasTableOfContents (1.6.2). The value must be
a function that takes two arguments (the name name of the type and a list as returned by
AGRParseFilenameFormat (5.6.1) and returns a string that describes the appropriate function
call. (The default value is TOCEntryStringDefault.)

PostprocessFileInfo This is used in the construction of a table of contents via
ReloadAtlasTableOfContents (1.6.1), for testing or rearranging the data of the current ta-
ble of contents. The value must be a function that takes two arguments, the table of contents
record and the record in it that belongs to one fixed group. (The default function does nothing.)

SortTOCEntries This is used in the construction of a table of contents (see
ReloadAtlasTableOfContents (1.6.1)), for sorting the entries after they have been
added and after the value of the component PostprocessFileInfo has been called. The value
must be a function that takes a list as returned by AGRParseFilenameFormat (5.6.1), and
returns the sorting key. (There is no default value, which means that no sorting is needed.)

TestFileHeaders (for rep only) This is used in the function
AtlasOfGroupRepresentationsTestFileHeaders (5.8.5). The value must be a func-
tion that takes the same four arguments as AGRFileContents (5.6.2), except that the first
argument "datagens" can be replaced by "local" and that the third argument is a list as
returned by AGRParseFilenameFormat (5.6.1). (The default value is ReturnTrue (Reference:
ReturnTrue).)

TestFiles (for rep only) This is used in the function AtlasOfGroupRepresentationsTestFiles
(5.8.7). The format of the value and the default are the same as for the value of the component
TestFileHeaders.

TestWords (for prg only) This is used in the function AtlasOfGroupRepresentationsTestWords
(5.8.6). The value must be a function that takes five arguments where the first four are the same



AtlasRep — A GAP 4 Package 72

arguments as for AGRFileContents (5.6.2), except that the first argument "dataword" can be
replaced by "local", and the fifth argument is true or false, indicating verbose mode or not.

5.6 Filenames Used in the ATLAS of Group Representations

The data of each local GAP version of the ATLAS of Group Representations is either private (see
Chapter 3) or is stored in the two directories datagens and dataword. In the following, we describe
the format of filenames in the latter two directories, as a reference of the “official” part of the ATLAS.

In the directory datagens, the generators for the representations available are stored, the directory
dataword contains the programs to compute conjugacy class representatives, generators of maximal
subgroups, images of generators under automorphisms of a given group G from standard generators
of G, and to check and compute standard generators (see Section 2.3).

The name of each data file in the ATLAS of Group Representations describes the contents of the
file. This section lists the definitions of the filenames used.

Each filename consists of two parts, separated by a minus sign -. The first part is al-
ways of the form groupnameGi, where the integer i denotes the i-th set of standard gener-
ators for the group G, say, with ATLAS-file name groupname (see 2.2). The translations of
the name groupname to the name(s) used within GAP is given by the component GAPnames of
AtlasOfGroupRepresentationsInfo (5.1.5).

The filenames in the directory dataword have one of the following forms. In each of these cases,
the suffix Wn means that n is the version number of the program.

groupnameGi-cycWn In this case, the file contains a straight line program that returns a list of
representatives of generators of maximally cyclic subgroups of G. An example is Co1G1-cycW1.

groupnameGi-cclsWn In this case, the file contains a straight line program that returns a list of
conjugacy class representatives of G. An example is RuG1-cclsW1.

groupnameGicycWn-cclsWm In this case, the file contains a straight line program that takes the
return value of the program in the file groupnameGi-cycWn (see above), and returns a list of
conjugacy class representatives of G. An example is M11G1cycW1-cclsW1.

groupnameGi-maxkWn In this case, the file contains a straight line program that takes generators
of G w.r.t. the i-th set of standard generators, and returns a list of generators (in general not
standard generators) for a subgroup U in the k-th class of maximal subgroups of G. An example
is J1G1-max7W1.

groupnameGimaxkWn-subgroupnameGjWm In this case, the file contains a straight line pro-
gram that takes the return value of the program in the file groupnameGi-maxkWn (see above),
which are generators for a group U , say; subgroupname is a name for U , and the return value
is a list of standard generators for U , w.r.t. the j-th set of standard generators. (Of course this
implies that the groups in the k-th class of maximal subgroups of G are isomorphic to the group
with name subgroupname.) An example is J1G1max1W1-L211G1W1; the first class of maxi-
mal subgroups of the Janko group J1 consists of groups isomorphic to the linear group L2(11),
for which standard generators are defined.

groupnameGi-aoutnameWn In this case, the file contains a straight line program that takes gen-
erators of G w.r.t. the i-th set of standard generators, and returns the list of their images under



AtlasRep — A GAP 4 Package 73

the outer automorphism α of G given by the name outname; if this name is empty then α is the
unique nontrivial outer automorphism of G; if it is a positive integer k then α is a generator of
the unique cyclic order k subgroup of the outer automorphism group of G; if it is of the form 2 1
or 2a, 4 2 or 4b, 3 3 or 3c . . . then α generates the cyclic group of automorphisms induced on
G by G.21, G.42, G.33 . . .; finally, if it is of the form kpd, with k one of the above forms and d
an integer then d denotes the number of dashes appended to the automorphism described by k;
if d = 1 then d can be omitted. Examples are A5G1-aW1, L34G1-a2 1W1, U43G1-a2 3pW1, and
O8p3G1-a2 2p5W1; these file names describe the outer order 2 automorphism of A5 (induced
by the action of S5) and the order 2 automorphisms of L3(4), U4(3), and O+

8 (3) induced by the
actions of L3(4).21, U4(3).2′2, and O+

8 (3).2′′′′′2 , respectively.

groupnameGi-GjWn In this case, the file contains a straight line program that takes generators of
G w.r.t. the i-th set of standard generators, and returns standard generators of G w.r.t. the j-th
set of standard generators. An example is L35G1-G2W1.

groupnameGi-checkn In this case, the file contains a straight line decision that takes generators
of G, and returns true if these generators are standard generators w.r.t. the i-th standardization,
and false otherwise.

groupnameGi-Pn In this case, the file contains a straight line decision that takes some group
elements, and returns true if these elements are standard generators for G, w.r.t. the i-th stan-
dardization, and false otherwise.

groupnameGi-findn In this case, the file contains a black box program that takes a group, and
returns (if it is successful) a set of standard generators for G, w.r.t. the i-th standardization.

groupnameGi-XdescrWn In this case, the file contains a straight line program that takes gen-
erators of G w.r.t. the i-th set of standard generators, and whose return value corresponds to
descr. This format is used only in private extensions (see Chapter 3), such a script can be
accessed with descr as the third argument of AtlasProgram (2.5.3).

The filenames in the directory datagens have one of the following forms. In each of these cases,
id is a (possibly empty) string that starts with a lowercase alphabet letter (see IsLowerAlphaChar
(Reference: IsLowerAlphaChar)), and m is a nonnegative integer, meaning that the generators are
written w.r.t. the m-th basis (the meaning is defined by the ATLAS developers).

groupnameGi-fqrdimidBm.mnr a file in MeatAxe text file format containing the nr-th gener-
ator of a matrix representation over the field with q elements, of dimension dim. An example
is S5G1-f2r4aB0.m1.

groupnameGi-pnidBm.mnr a file in MeatAxe text file format containing the nr-th generator of
a permutation representation on n points. An example is M11G1-p11B0.m1.

groupnameGi-ArdimidBm.g a GAP readable file containing all generators of a matrix repre-
sentation of dimension dim over an algebraic number field not specified further. An example
is A5G1-Ar3aB0.g.

groupnameGi-ZrdimidBm.g a GAP readable file containing all generators of a matrix repre-
sentation over the integers, of dimension dim. An example is A5G1-Zr4B0.g.



AtlasRep — A GAP 4 Package 74

groupnameGi-HrdimidBm.g a GAP readable file containing all generators of a matrix repre-
sentation over a quaternion algebra over an algebraic number field, of dimension dim. An
example is 2A6G1-Hr2aB0.g.

groupnameGi-ZnrdimidBm.g a GAP readable file containing all generators of a matrix repre-
sentation of dimension dim over the ring of integers mod n. An example is 2A8G1-Z4r4aB0.g.

5.6.1 AGRParseFilenameFormat

♦ AGRParseFilenameFormat(string, format) (function)

Returns: a list of strings and integers if string matches format, and fail otherwise.
Let string be a filename, and format be a list [[c1,c2, . . . ,cn], [ f1, f2, . . . , fn]] such that each

entry ci is a list of strings and of functions that take a character as their argument and return true
or false, and such that each entry fi is a function for parsing a filename, such as the currently
undocumented functions ParseForwards and ParseBackwards.

AGRParseFilenameFormat returns a list of strings and integers such that the concatenation of
their String (Reference: String) values yields string if string matches format, and fail
otherwise. Matching is defined as follows. Splitting string at each minus character (-) yields
m parts s1,s2, . . . ,sm. The string string matches format if si matches the conditions in ci, for
1≤ i≤ n, in the sense that applying fi to si and ci yields a non-fail result.

Example
gap> format:= [ [ [ IsChar, "G", IsDigitChar ],
> [ "p", IsDigitChar, IsLowerAlphaOrDigitChar,
> "B", IsDigitChar, ".m", IsDigitChar ] ],
> [ ParseBackwards, ParseForwards ] ];;
gap> AGRParseFilenameFormat( "A6G1-p10B0.m1", format );
[ "A6", "G", 1, "p", 10, "", "B", 0, ".m", 1 ]
gap> AGRParseFilenameFormat( "A6G1-p15aB0.m1", format );
[ "A6", "G", 1, "p", 15, "a", "B", 0, ".m", 1 ]
gap> AGRParseFilenameFormat( "A6G1-f2r16B0.m1", format );
fail

5.6.2 AGRFileContents

♦ AGRFileContents(dirname, groupname, filename, type) (function)

Returns: the GAP object obtained from reading and interpreting the file(s) with name(s)
filename.

Let dirname and groupname be strings, filename be a string or a list of
strings, and type be a data type (see AGRDeclareDataType (5.5.1)). dirname must
be one of "datagens", "dataword", or the dirid value of a private directory, see
AtlasOfGroupRepresentationsNotifyPrivateDirectory (3.1.1). If groupname is the ATLAS-
file name of a group G (see Section 2.2), and if filename is either the name of an accessible file
in the dirname directory of the ATLAS, or a list of such filenames, with data concerning G and for
the data type type, then AGRFileContents returns the contents of the corresponding file(s), in the
sense that the file(s) (or equivalent ones, see Section 1.7.6) is/are read, and the result is interpreted if
necessary; otherwise fail is returned.

Note that if filename refers to file(s) already stored in the dirname directory then
AGRFileContents does not check whether the table of contents of the ATLAS of Group Representa-
tions actually contains filename.



AtlasRep — A GAP 4 Package 75

5.7 The Tables of Contents of the ATLAS of Group Representations

The list of data currently available is stored in several tables of contents, one for the local GAP data,
one for the data on remote servers, and one for each private data directory. These tables of contents
are created by ReloadAtlasTableOfContents (1.6.1).

It is assumed that the local data directories contain only files that are also available on servers.
Private extensions to the database (cf. Section 1.8 and Chapter 3) cannot be handled by putting the
data files into the local directories.

Each table of contents is represented by a record whose components are the ATLAS-file names of
the groups (see Section 2.2) and lastupdated, a string describing the date of the last update of this
table of contents. The value for each group name is a record whose components are the names of
those data types (see Section 5.5) for which data are available.

Note that the name mapping between the ATLAS-file and GAP names of the groups is provided by
the groupnames component of AtlasOfGroupRepresentationsInfo (5.1.5), and information about
the base rings of matrix representations is provided by the ringinfo component. Group names are
notified with AGRGNAN (5.7.1), and base ring information can be notified with AGRRNG (5.7.2); these
two administrational functions may be useful for private extensions of the package (see Chapter 3).

5.7.1 AGRGNAN

♦ AGRGNAN(gapname, atlasname[, size[, maxessize[, "all"[,
compatinfo]]]]) (function)

Let gapname be a string denoting a GAP group name, and atlasname be a string denoting
the corresponding ATLAS-file name used in filenames of the ATLAS of Group Representations. The
following optional arguments are supported.

size the order of the corresponding group,

maxessizes a (not necessarily dense) list of orders of the maximal subgroups of this group

complete the string "all" if the maxessizes list is complete,

compatinfo a list of entries of the form [ std, factname, factstd, flag ] meaning that
mapping standard generators of standardization std to the factor group with GAP group name
factname, via the natural epimorphism, yields standard generators of standardization factstd
if flag is true.

AGRGNAN adds the list of its arguments to the list stored in the GAPnames component of
AtlasOfGroupRepresentationsInfo (5.1.5), making the ATLAS data involving atlasname ac-
cessible for the group with name gapname.

An example of a valid call is AGRGNAN("A6.2 2","PGL29",360), see also Section 3.3.

5.7.2 AGRRNG

♦ AGRRNG(filename, descr) (function)

Let filename be a string denoting the name of a file containing the generators of a matrix repre-
sentation over a ring that is not determined by the filename, and let descr be a string describing this



AtlasRep — A GAP 4 Package 76

ring R, say. AGRRNG adds the triple [ filename, descr, R ] to the list stored in the ringinfo
component of AtlasOfGroupRepresentationsInfo (5.1.5).

An example of a valid call is AGRRNG("A5G1-Ar3aB0","Field([Sqrt(5)])").

5.8 Sanity Checks for the ATLAS of Group Representations

The fact that the ATLAS of Group Representations is designed as an open database (see Section 1.7.1)
makes it especially desirable to have consistency checks available which can be run automatically
whenever new data are added by the developers of the ATLAS. The tests described in the following
can also be used for private extensions of the package (see Chapter 3).

The file tst/testall.g of the package contains ReadTest (Reference: ReadTest) statements
for executing a collection of such sanity checks; one can run them by starting GAP in the tst directory,
and then calling Read( "testall.g" ). If no problem occurs then GAP prints only lines starting
with one of the following.

Example
+ $Id:
+ GAP4stones:

The required space and time for running these tests depends on the amount of locally available
data.

The examples in this manual form a part of these tests, they are collected in the file
tst/docxpl.tst of the package.

The file tst/atlasrep.tst contains calls to the functions
AtlasOfGroupRepresentationsTestGroupOrders (5.8.1), which checks the consistency of
the stored group orders and the actual data, AtlasOfGroupRepresentationsTestFileHeaders
(5.8.5), which checks the consistency of the names of MeatAxe text files and the first lines of the
files, and AtlasOfGroupRepresentationsTestWords (5.8.6), which checks whether the available
programs do what they promise.

The calls to AtlasOfGroupRepresentationsTestFiles (5.8.7),
AtlasOfGroupRepresentationsTestClassScripts (5.8.8), and AGR TestMinimalDegrees
(4.3.5) are not part of the tests that are run by reading tst/testall.g.

All these tests apply only to the local table of contents (see Section 5.7), that is, only those data
files are checked that are actually available in the local GAP installation. No files are fetched from
servers during these tests.

Further tests, such as the consistency of different versions of server data, exist but are not part of
the distributed package.

5.8.1 AtlasOfGroupRepresentationsTestGroupOrders

♦ AtlasOfGroupRepresentationsTestGroupOrders() (function)

Returns: false if a contradiction was found, true otherwise.
This function checks whether the group orders stored in the GAPnames component of

AtlasOfGroupRepresentationsInfo (5.1.5) coincide with the orders computed from an ATLAS
permutation representation of degree up to 104, from the character table or the table of marks with the
given name, or from the inner structure of the name (supported is a splitting of the name at the first
dot (.), where the two parts of the name are examined with the same criteria in order to derive the
group order).



AtlasRep — A GAP 4 Package 77

A message is printed for each group name for which no order is stored (and perhaps now can be
stored), for which the stored group order cannot be verified, for which a contradiction was found.

5.8.2 AtlasOfGroupRepresentationsTestSubgroupOrders

♦ AtlasOfGroupRepresentationsTestSubgroupOrders() (function)

Returns: false if a contradiction was found, true otherwise.
This function checks whether the orders of maximal subgroups stored in the GAPnames component

of AtlasOfGroupRepresentationsInfo (5.1.5) coincide with the orders computed from an ATLAS
permutation representation of degree up to 104, from the character table or the table of marks with
the given name, or from the information about maximal subgroups of a factor group modulo a central
subgroup that is contained in the derived subgroup.

A message is printed for each group name for which no order is stored (and perhaps now can be
stored), for which the stored group order cannot be verified, for which a contradiction was found.

5.8.3 AtlasOfGroupRepresentationsTestStdCompatibility

♦ AtlasOfGroupRepresentationsTestStdCompatibility() (function)

Returns: false if a contradiction was found, true otherwise.
This function checks whether the compatibility info stored in the GAPnames component of

AtlasOfGroupRepresentationsInfo (5.1.5) coincide with computed values.
The following criterion is used for computing the value for a group G. Use the GAP Character Ta-

ble Library to determine factor groups F of G for which standard generators are defined and moreover
a presentation in terms of these standard generators is known. Evaluate the relators of the presentation
in the standard generators of G, and let N be the normal closure of these elements in G. Then map-
ping the standard generators of F to the Ncosets of the standard generators of G is an epimorphism.
If |G/N| = |F | holds then G/N and F are isomorphic, and the standard generators of G and F are
compatible in the sense that mapping the standard generators of G to their N-cosets yields standard
generators of F .

A message is printed for each group name for which no compatibility info was stored and now
can be stored, for which the stored info cannot be verified, for which a contradiction was found.

5.8.4 AtlasOfGroupRepresentationsTestCompatibleMaxes

♦ AtlasOfGroupRepresentationsTestCompatibleMaxes() (function)

Returns: false if a contradiction was found, true otherwise.
This function checks whether the information about maximal subgroups stored in the

maxext components of the records stored in the TableOfContents.remote component of
AtlasOfGroupRepresentationsInfo (5.1.5) coincide with computed values.

The following criterion is used for computing the value for a group G. If F is
a factor group of G such that the standard generators of G and F are compatible (see
AtlasOfGroupRepresentationsTestStdCompatibility (5.8.3)) and if there are a presentation for
F and a permutation representation of G then it is checked whether the "maxes" type scripts for F
can be used to compute also generators for the maximal subgroups of G; if not then words in terms of
the standard generators are computed such that the results of the script for F together with the images
of these words describe the corresponding maximal subgroup of G.



AtlasRep — A GAP 4 Package 78

A message is printed for each group name for which no compatibility info was stored and now
can be stored, for which the stored info cannot be verified, for which a contradiction was found.

5.8.5 AtlasOfGroupRepresentationsTestFileHeaders

♦ AtlasOfGroupRepresentationsTestFileHeaders([tocid[, groupname]]) (function)

Returns: false if an error occurs, otherwise true.
First suppose that this function is called with two arguments tocid, the identifier of a directory

(see Section sect:Adding a Private Data Directory (3.1)), and groupname, an ATLAS-file
name that occurs as a component name in the table of contents of the directory. The function checks
for those data files for groupname in the tocid directory that are in MeatAxe text format whether
the filename and the header line are consistent; it checks the data file in GAP format whether the file
name is consistent with the contents of the file.

If only one argument tocid is given then all representations available for groupname are
checked with the three argument version.

If only one argument tocid is given then all available groups in the directory with identi-
fier tocid are checked; the contents of the local dataword directory can be checked by entering
"local", which is also the default for tocid.

5.8.6 AtlasOfGroupRepresentationsTestWords

♦ AtlasOfGroupRepresentationsTestWords([tocid[, groupname]]) (function)

Returns: false if an error occurs, otherwise true.
Called with one argument tocid, a string, AtlasOfGroupRepresentationsTestWords pro-

cesses all programs that are stored in the directory with identifier tocid (see Section sect:Adding
a Private Data Directory (3.1)), using the function stored in the TestWords component of the
data type in question. The contents of the local dataword directory can be checked by entering
"local", which is also the default.

If the string groupname, an ATLAS-file name that occurs as a component name in the table of
contents of the directory, is given as the second argument then only the data files for this group are
tested.

5.8.7 AtlasOfGroupRepresentationsTestFiles

♦ AtlasOfGroupRepresentationsTestFiles([tocid[, groupname]]) (function)

Returns: false if an error occurs, otherwise true.
This function is an analogue of AtlasOfGroupRepresentationsTestFileHeaders (5.8.5). It

checks whether reading MeatAxe text files with ScanMeatAxeFile (5.3.1) returns non-fail results.
It does not check whether the first line of a MeatAxe text file is consistent with the filename, since this
is tested by AtlasOfGroupRepresentationsTestFileHeaders (5.8.5).

5.8.8 AtlasOfGroupRepresentationsTestClassScripts

♦ AtlasOfGroupRepresentationsTestClassScripts([groupname]) (function)

Returns: false if an error occurs, otherwise true.
First suppose that AtlasOfGroupRepresentationsTestClassScripts is

called with one argument groupname, the name of a component in



AtlasRep — A GAP 4 Package 79

AtlasOfGroupRepresentationsInfo.TableOfContents.( "local" ). If the GAP table li-
brary contains an ordinary character table with Identifier (Reference: Identifier!for character
tables) value the GAP name corresponding to groupname then it is checked whether all those
straight line programs for this group that return class representatives are consistent with the character
table in the sense that the class names used occur for the table, and that the element orders and
centralizer orders for the classes are correct.

If no argument is given then all available groups are checked with the one argument version.



References

[BL08] T. Breuer and F. Lübeck. Browse, ncurses interface and browsing applications, Version
1.2. http://www.gap-system.org/Packages/browse.html, Jun 2008. GAP pack-
age. 13, 14, 21, 57, 59

[BN95] T. Breuer and S. P. Norton. Improvements to the Atlas, page 297–327. Volume 11 of
London Mathematical Society Monographs. New Series [JLPW95], 1995. Appendix 2
by T. Breuer and S. Norton, Oxford Science Publications. 6

[Bre04] T. Breuer. The GAP Character Table Library, Version 1.1.3.
http://www.math.rwth-aachen.de/˜Thomas.Breuer/ctbllib, Mar 2004. GAP
package. 15, 17

[BSWW01] J. N. Bray, I. A. I. Suleiman, P. G. Walsh, and R. A. Wilson. Generating maximal
subgroups of sporadic simple groups. Comm. Algebra, 29(3):1325–1337, 2001. 6, 27

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 6, 13,
18, 19, 20, 26, 32, 54, 58, 59

[CP96] J. J. Cannon and C. Playoust. An introduction to algebraic programming in Magma.
http://www.math.usyd.edu.au:8000/u/magma, 1996. 6

[GAP07] GAP – Groups, Algorithms, and Programming, Version 4.4.10.
http://www.gap-system.org, Oct 2007. 7

[HL89] G. Hiss and K. Lux. Brauer trees of sporadic groups. Oxford Science Publications. The
Clarendon Press Oxford University Press, New York, 1989. 54, 56

[Hup67] B. Huppert. Endliche Gruppen. I. Die Grundlehren der Mathematischen Wissenschaften,
Band 134. Springer-Verlag, Berlin, 1967. 57

[Jan05] C. Jansen. The minimal degrees of faithful representations of the sporadic simple groups
and their covering groups. LMS J. Comput. Math., 8:122–144 (electronic), 2005. 54, 56,
58

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 13, 54, 58, 59, 80

80

http://www.gap-system.org/Packages/browse.html
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib
http://www.math.usyd.edu.au:8000/u/magma
http://www.gap-system.org


AtlasRep — A GAP 4 Package 81

[LN08] F. Lübeck and M. Neunhöffer. GAP, a Meta Package for GAP Documentation, Version
1.2. http://www.gap-system.org/Packages/gapdoc.html, Jun 2008. GAP pack-
age. 15, 16, 58, 59

[Neu07] M. Neunhöffer. IO, bindings for low level C library IO Version 2.2.
http://www.gap-system.org/Packages/io.html, Feb 2007. GAP package. 8, 10,
11, 14, 16, 61

[Nic06] S. J. Nickerson. An Atlas of Characteristic Zero Representations. Phd thesis, School of
Mathematics, University of Birmingham, 2006. 6, 49

[NW05] S. J. Nickerson and R. A. Wilson. Semi-presentations for the sporadic simple groups.
Experiment. Math., 14(3):359–371, 2005. 47

[Rin98] M. Ringe. The C MeatAxe, Release 2.3. Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 1998. 6, 7, 60, 64, 65, 66,
68

[SWW00] I. A. I. Suleiman, P. G. Walsh, and R. A. Wilson. Conjugacy classes in sporadic simple
groups. Comm. Algebra, 28(7):3209–3222, 2000. 6, 27

[Wil] R. A. Wilson. ATLAS of Finite Group Representations.
http://brauer.maths.qmul.ac.uk/Atlas/. 6

[Wil96] R. A. Wilson. Standard generators for sporadic simple groups. J. Algebra,
184(2):505–515, 1996. 6, 18

http://www.gap-system.org/Packages/gapdoc.html
http://www.gap-system.org/Packages/io.html
http://brauer.maths.qmul.ac.uk/Atlas/


Index

AGRDeclareDataType, 69
AGRFileContents, 74
AGRGNAN, 75
AGRParseFilenameFormat, 74
AGRRNG, 75
AGR TestMinimalDegrees, 57
AllAtlasGeneratingSetInfos, 30
AsBBoxProgram, 52
AsStraightLineDecision, 47
AsStraightLineProgram, 53
AtlasClassNames, 20
AtlasGenerators, 25

for an identifier, 25
AtlasGroup, 31
AtlasOfGroupRepresentationsForget-

PrivateDirectory, 39
AtlasOfGroupRepresentationsInfo, 61
AtlasOfGroupRepresentationsNotify-

PrivateDirectory, 38
AtlasOfGroupRepresentationsShowUser-

Parameters, 12
AtlasOfGroupRepresentationsTestClass-

Scripts, 78
AtlasOfGroupRepresentationsTest-

CompatibleMaxes, 77
AtlasOfGroupRepresentationsTestFile-

Headers, 78
AtlasOfGroupRepresentationsTestFiles,

78
AtlasOfGroupRepresentationsTestGroup-

Orders, 76
AtlasOfGroupRepresentationsTestStd-

Compatibility, 77
AtlasOfGroupRepresentationsTest-

SubgroupOrders, 77
AtlasOfGroupRepresentationsTestTableOf-

ContentsRemoteUpdates, 10
AtlasOfGroupRepresentationsTestWords,

78

AtlasProgram, 26
for an identifier, 26

AtlasRep, 1
ATLASREP TOCFILE, 9
AtlasStringOfProgram, 68

for MeatAxe format output, 68
AtlasSubgroup, 31
automorphisms, 27, 72

black box program, 6
for finding standard generators, 27, 73

BrowseBibliographySporadicSimple, 59
BrowseMinimalDegrees, 57

C-MeatAxe, 7
class representatives, 27, 72
CMeatAxe.FastRead, 61
CMtxBinaryFFMatOrPerm, 65
compress, 11
cyclic subgroups, 27

DisplayAtlasInfo, 20
for a group name, and optionally further re-

strictions, 20
for a list of group names, 20

FFList, 65
FFLists, 65
FFMatOrPermCMtxBinary, 66
ftp, 15

gzip, 11, 16, 61

InfoAtlasRep, 60
InfoBBox, 61
InfoCMeatAxe, 61
IO package, 8, 10, 11, 61
IsBBoxProgram, 50
IsStraightLineDecision, 44

LinesOfStraightLineDecision, 44

82



AtlasRep — A GAP 4 Package 83

local access, 10

Magma, 6
matrix

MeatAxe format, 63
maximal subgroups, 27, 72
maximally cyclic subgroups, 27
MeatAxe, 6
MeatAxeString, 64

for a permutation, q, and dims, 64
for permutations and a degree, 64

MinimalRepresentationInfo, 54
MinimalRepresentationInfoData, 55

NrInputsOfStraightLineDecision, 44

OneAtlasGeneratingSetInfo, 28

perl, 15, 16
permutation

MeatAxe format, 63
presentation, 46, 73

ReloadAtlasTableOfContents, 9
remote access, 10
ReplaceAtlasTableOfContents, 10
ResultOfBBoxProgram, 52
ResultOfStraightLineDecision, 45
RunBBoxProgram, 51

ScanBBoxProgram, 50
ScanMeatAxeFile, 63
ScanStraightLineDecision, 44
ScanStraightLineProgram, 66
semi-presentation, 46, 73
servers, 10
SetMinimalRepresentationInfo, 55
StoreAtlasTableOfContents, 9
straight line decision

encoding a presentation, 27
for checking standard generators, 27

straight line program, 6, 21
for class representatives, 27
for maximal subgroups, 27
for outer automorphisms, 27
for representatives of cyclic subgroups, 27
for restandardizing, 27
free format, 27

StraightLineDecision, 45
StraightLineDecisionNC, 45
StraightLineProgramFromStraightLine-

Decision, 48

touch, 10

wget, 11, 14, 15, 61

zcv, 64


