
ALNUTH
—

ALgebraic NUmber THeory

and an interface to the

KANT System

—

Gap code is written by:

Björn Assmann, Andreas Distler, Bettina Eick

Institut Computational Mathematics

Fachbereich Mathematik und Informatik

Technische Universität Braunschweig

Pockelsstr. 14, D-38106 Braunschweig

b.assmann@tu-bs.de, a.distler@tu-bs.de, b.eick@tu-bs.de

—

Kant part
This package incorporates an interface to some functions of the computer algebra system Kant. Kant is
developed by Michael Pohst and his group at the Technische Universität Berlin. The Kant system itself is
not part of this interface. It can be obtained at

www.math.tu-berlin.de/∼kant/kash.html

Contents

1 Introduction 3

2 Methods for number fields 4

2.1 Creation of number fields . 4

2.2 Methods for number fields . 4

2.3 Presentations of multiplicative subgroups 5

2.4 Methods to compute with subgroups of the unit group 6

2.5 Factorisation of polynomials over a number field 6

2.6 Examples . 6

3 An example application 7

3.1 Number fields defined by matrices . 7

3.2 Number fields defined by a polynomial 8

4 Installation 10

4.1 Getting and installing KASH . 10

4.2 Installing this package . 10

4.3 Adjust the path of the executable for KASH 11

4.4 How to write a shell script which executes KASH 12

4.5 Loading and testing the package . 12

Bibliography 13

Index 14

1 Introduction

A number field is a finite extension of the field of rational numbers. This package provides various methods
to compute with number fields which are given by a defining polynomial or by generators. For background
on number fields we refer to [ST79].

Some of the methods provided in this package are written in Gap code. The other part of the methods is
imported from the Computer Algebra System KANT [DCK+97]. Hence this package contains some Gap
functions and an interface to some functions in the computer algebra system KANT. Therefore one has to
have installed KANT to use the full functionality of this package. Furthermore the interface only runs with
the Linux version of Gap.

We note that not all available functions of KANT are linked to Gap and the KANT system provides much
more methods for computations in number fields.

The main methods included in this package are: creating a number field, computing its maximal order
(using KANT), computing its unit group (using KANT) and a presentation of this unit group, computing
the elements of a given norm of the number field (using KANT) and determining a presentation for a finitely
generated multiplicative subgroup (using KANT). For background on algorithms for number fields we refer
to [Poh93], [PZ89] and [Coh93].

The functions provided by this package are introduced in the following chapter. Then an example application
is outlined. In the final chapter of this manual the installation of the package is described. We note that the
computer algebra system KANT itself is not included in the package.

2
Methods for

number fields

An algebraic number field is a finite-dimensional extension of the rational numbers Q. Such a number field
has a primitive element and it can be defined by the minimal polynomial of this primitive element. Another
important way to define an algebraic number field is by a set of rational matrices which generate a number
field.

2.1 Creation of number fields

We provide functions to create number fields defined by rational matrices or by rational polynomials.

1 I FieldByMatricesNC(matrices)
I FieldByMatrices(matrices)

Creates a field generated by the rational matrices matrices. In the faster NC version, the function assumes
that the input generates a field and there are no checks on this performed.

2 I FieldByMatrixBasisNC(matrices)
I FieldByMatrixBasis(matrices)

Creates a field with basis matrices. The list matrices must consist of rational matrices which form a basis
for a number field. In the faster NC version, the function assumes that the input is a matrix basis for a field
and no checks are performed.

3 I FieldByPolynomialNC(polynomial)
I FieldByPolynomial(polynomial)

Creates a field defined by polynomial . The polynomial polynomial must be an irreducible rational polynomial.
In the faster NC version, no checks on the input are performed.

2.2 Methods for number fields

We outline a number of functions for number fields.

1 I PrimitiveElement(F)
I DefiningPolynomial(F)

Computes a primitive element and a defining polynomial for the given number field. The defining polynomial
is the minimal polynomial of the primitive element. Since F contains various primitive elements, Primi-
tiveElement tries to find a primitive element which has a minimal polynomial with small coefficients. Via
the global variable PRIM TEST the user can decide how many primitive elements will be compared. The
default value is 20.

2 I IsPrimitiveElement(F, a)

Checks if the given element generates the field.

3 I DegreeOverPrimeField(F)

Returns the degree of F over the rationals.

Section 3. Presentations of multiplicative subgroups 5

4 I EquationOrderBasis(F)
I MaximalOrderBasis(F)
I IsIntegerOfNumberField(F, k)

These functions return bases for the equation order or the maximal order of the number field F . Also, they
allow to check if a given element is an integer in the given number field.

5 I UnitGroup(F)
I IsomorphismPcpGroup(U)
I IsUnitOfNumberField(F, k)

These functions determine the unit group of F and an isomorphism to a pcp group. (Recall that the unit
group of F is a finitely generated abelian group.) The isomorphism can be used for various computations
with the unit group. Also, the last function allows to check whether a given element is a unit in F .

6 I ExponentsOfUnits(F, elms)

This function determines the exponent vectors of the elements in elms with respect to the generators of the
unit group of F . If the unit group of F is not known, then the function computes this unit group also.

7 I IsCyclotomicField(F)

Check whether F is cyclotomic.

8 I NormCosetsOfNumberField(F, norm)

Returns a description for the set of all elements of norm norm in F . These elements can be written as a
finite union of cosets of the unit group of F . The function returns coset representatives for these cosets.

2.3 Presentations of multiplicative subgroups

Suppose that a finite number of invertible elements of a number field are given. Then these elements generate
a finitely generated abelian group. However, it is a non-trivial task to provide a presentation for this abelian
group. The most useful representation for such groups is as pcp group.

1 I PcpPresentationOfMultiplicativeSubgroup(F, elms)
I IsomorphismPcpGroup(F, elms)

Determine a pcp presentation for the multiplicative group of F\{0} generated by elms and an isomorphism
on this presentation. Note, that the method IsomorphismPcpGroup is defined in the Polycyclic package
[EN00]. We refer to the manual of this package for further background.

2 I Kernel(map)
I ImagesSet(map, fieldelms)
I ImageElm(map, fieldelm)
I PreImagesRepresentative(map, pcpelm)

These functions can be used to compute with an isomorphism to a pcp presented image. If fieldelm is not
contained in the source of map, then the function ImageElm returns fail.

In the determination of the Pcp-presentation of a multiplicative subgroup generated by elms the relations
between the elements in elms play an important role. Let elms = {e1, . . . , el} be a finite subset of a field F .
The relation lattice for elms is

rl(elms) :=
{

(h1, . . . , hl) ∈ Zl |eh1
1 · · · ehl

l = 1
}
·

3 I RelationLattice(F, elms)

Determines a generating set for the relation lattice of the field elements elms.

6 Chapter 2. Methods for number fields

2.4 Methods to compute with subgroups of the unit group

1 I RelationLatticeOfUnits(F, elms)

Determines a basis for the relation lattice of the units elms in triangularized form. Note that this method
is more efficient than the method RelationLattice.

2 I IntersectionOfUnitSubgroups(F, gen1, gen2)

The lists gen1 and gen2 are supposed to generate two subgroups U1 and U2 of the unit group of F . This
function determines the intersection of U1 with U2. The result is returned as a list of vectors generating the
lattice {e ∈ Zn | ge1

1 · · · gen
n ∈ U2} for gen1 = [g1, . . . , gn].

This function does not check the input for efficiency reasons and it may return wrong results if the input
generators do not fulfil the requirements.

2.5 Factorisation of polynomials over a number field

1 I FactorsPolynomialKant(F, pol)

embeds the rational polynomial pol into the polynomial ring over the number field F , which has to be con-
structed by FieldByPolynomial or AlgebraicExtension, and returns the factorization of the embedded
polynomial. By default a denotes the primitive element of the field one can obtain from PrimitiveEle-
ment(F), i. e. a root of the defining polynomial of F .

gap> x := Indeterminate(Rationals, "x");;
gap> pol := 2*x^7+2*x^5+8*x^4+8*x^2;
2*x^7+2*x^5+8*x^4+8*x^2
gap> L := FieldByPolynomial(x^3-4);
<algebraic extension over the Rationals of degree 3>
gap> y := Indeterminate(L, "y");;
gap> FactorsPolynomialKant(L, pol);
[!2*y, y, y+(a), y^2+!1, y^2+((-1*a))*y+(a^2)]

2.6 Examples

1 I ExampleMatField(l)

This function returns some examples of fields generated by matrices. There are 9 such example fields provided
and they can be obtained by assigning the input l to an integer between 1 and 9. Some of the properties of
the examples are summarized in the following table.

degree over Q number of generators dim. of generators
ExampleMatField(1) 4 4 4
ExampleMatField(2) 4 4 4
ExampleMatField(3) 4 4 4
ExampleMatField(4) 4 13 4
ExampleMatField(5) 4 13 4
ExampleMatField(6) 4 7 4
ExampleMatField(7) 4 18 4
ExampleMatField(8) 4 13 4
ExampleMatField(9) 4 7 4

3 An example application

In this section we outline two example computations with the functions of the previous chapter. The first
example uses number fields defined by matrices and the second example considers number fields defined by
a polynomial.

3.1 Number fields defined by matrices

gap> m1 := [[1, 0, 0, -7],
[7, 1, 0, -7],
[0, 7, 1, -7],
[0, 0, 7, -6]];;

gap> m2 := [[0, 0, -13, 14],
[-1, 0, -13, 1],
[13, -1, -13, 1],
[0, 13, -14, 1]];;

gap> F := FieldByMatricesNC([m1, m2]);
<field in characteristic 0>

gap> DegreeOverPrimeField(F);
4
gap> PrimitiveElement(F);
[[1, 0, 0, -7], [7, 1, 0, -7], [0, 7, 1, -7], [0, 0, 7, -6]]

gap> Basis(F);
Basis(<field in characteristic 0>,
[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[0, 1, 0, 0], [-1, 1, 1, 0], [-1, 0, 1, 1], [-1, 0, 0, 1]],
[[0, 0, 1, 0], [-1, 0, 1, 1], [-1, -1, 1, 1], [0, -1, 0, 1]],
[[0, 0, 0, 1], [-1, 0, 0, 1], [0, -1, 0, 1], [0, 0, -1, 1]]])

gap> MaximalOrderBasis(F);
Basis(<field in characteristic 0>,
[[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]],
[[1, 0, 0, -1], [1, 1, 0, -1], [0, 1, 1, -1], [0, 0, 1, 0]],
[[1, 0, -1, 0], [1, 1, -1, -1], [1, 1, 0, -1], [0, 1, 0, 0]],
[[1, -1, 0, 0], [1, 0, -1, 0], [1, 0, 0, -1], [1, 0, 0, 0]]])

gap> U := UnitGroup(F);
<matrix group with 2 generators>

gap> u := GeneratorsOfGroup(U);;

8 Chapter 3. An example application

gap> nat := IsomorphismPcpGroup(U);
[[[0, 1, -1, 0], [0, 1, 0, -1], [0, 1, 0, 0], [-1, 1, 0, 0]],
[[1, 0, -1, 1], [0, 1, -1, 0], [1, 0, 0, 0], [0, 1, -1, 1]]] ->

[g1, g2]

gap> H := Image(nat);
Pcp-group with orders [10, 0]
gap> ImageElm(nat, u[1]*u[2]);
g1*g2
gap> PreImagesRepresentative(nat, GeneratorsOfGroup(H)[1]);
[[0, 1, -1, 0], [0, 1, 0, -1], [0, 1, 0, 0], [-1, 1, 0, 0]]

3.2 Number fields defined by a polynomial

gap> x:=Indeterminate(Rationals);
x_1
gap> g:= x^4-4*x^3-28*x^2+64*x+16;
x_1^4-4*x_1^3-28*x_1^2+64*x_1+16

gap> F := FieldByPolynomialNC(g);
<field in characteristic 0>
gap> PrimitiveElement(F);
(a)
gap> MaximalOrderBasis(F);
Basis(<field in characteristic 0>,
[!1, (1/2*a), (1/4*a^2), (5/7+1/14*a+1/14*a^2+1/56*a^3)])

gap> U := UnitGroup(F);
[!-1, (-3/7+6/7*a+3/28*a^2-1/28*a^3),
(13/7+25/14*a+1/28*a^2-3/56*a^3), (36/7-9/7*a-2/7*a^2+3/56*a^3)]

<group with 4 generators>

gap> natU := IsomorphismPcpGroup(U);
[!-1, (-3/7+6/7*a+3/28*a^2-1/28*a^3),
(13/7+25/14*a+1/28*a^2-3/56*a^3), (36/7-9/7*a-2/7*a^2+3/56*a^3)

] -> [g1, g2, g3, g4]

gap> elms := List([1..10], x-> Random(F));
[(4-1/2*a-1*a^2+3/2*a^3), (4/5-2/3*a+4/3*a^3), (1+a+2*a^2-1*a^3),
(3/4+3*a+3*a^2), (-1-1/5*a^3), (-1/4*a-5/3*a^2), (1-1*a+1/2*a^2),
(4-3/2*a+1/2*a^2), (-2/5+a-3/2*a^2), (-1*a+a^2+2*a^3)]

gap> PcpPresentationOfMultiplicativeSubgroup(F, elms);
Pcp-group with orders [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap>isom := IsomorphismPcpGroup(F, elms);
[(4-1/2*a-1*a^2+3/2*a^3), (4/5-2/3*a+4/3*a^3),
(1+a+2*a^2-1*a^3), (3/4+3*a+3*a^2), (-1-1/5*a^3),
(-1/4*a-5/3*a^2), (1-1*a+1/2*a^2), (4-3/2*a+1/2*a^2),
(-2/5+a-3/2*a^2), (-1*a+a^2+2*a^3)]

[(4-1/2*a-1*a^2+3/2*a^3), (4/5-2/3*a+4/3*a^3), (1+a+2*a^2-1*a^3),

Section 2. Number fields defined by a polynomial 9

(3/4+3*a+3*a^2), (-1-1/5*a^3), (-1/4*a-5/3*a^2), (1-1*a+1/2*a^2),
(4-3/2*a+1/2*a^2), (-2/5+a-3/2*a^2), (-1*a+a^2+2*a^3)] ->

[g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]

gap> y := RandomGroupElement(elms);
(-475709724976707031371325/71806328788189775767952976
-379584641261299592239825/13055696143307231957809632*a
-462249188570593771377595/287225315152759103071811904*a^2+
2639763613873579813685/2901265809623829323957696*a^3)

gap> ImageElm(isom, y);
g1^-1*g3^-2*g6^2*g8^-1*g9^-1
gap> z := last;
g1^-1*g3^-2*g6^2*g8^-1*g9^-1

gap> PreImagesRepresentative(isom, z);
(-475709724976707031371325/71806328788189775767952976
-379584641261299592239825/13055696143307231957809632*a
-462249188570593771377595/287225315152759103071811904*a^2+
2639763613873579813685/2901265809623829323957696*a^3)

gap> FactorsPolynomialKant(g, F);
[x_1+(-40/7+31/7*a+3/7*a^2-1/7*a^3), x_1+(-2+a), x_1+(-1*a),
x_1+(26/7-31/7*a-3/7*a^2+1/7*a^3)]

4 Installation

This package provides an interface between GAP 4 and KANT respectively KASH, the shell of the compu-
tational algebraic number theory system KANT. By now the interface can only be used on a Linux system.
KASH itself is not part of this package. It has to be obtained and installed independently of this package.
Alnuth works with KASH version 2.4 or 2.5.

4.1 Getting and installing KASH

KASH is available at

www.math.tu-berlin.de/~kant/download.html

Note that you have to download two files for a complete installation of KASH. For the installation of version
2.5 of KASH on a Linux system you would do the following steps:

1. Download the files kash 2.5.common.tar.gz and kash 2.5.3.linux.tar.gz into the same directory on your
system.

2. Unpack the files using tar. This will create a directory KASH 2.5 containing among other files the
KASH executable called kash.

The place where KASH is located in your system is independent of the place where the Alnuth-package is
installed.

4.2 Installing this package

This package is available at

www.icm.tu-bs.de/ag_algebra/software/assmann/Alnuth

in form of a gzipped tar-archive or as an uncompressed tar-archive.

There are two ways of installing the package. If you have permission to add files to the installation of GAP
4 on your system you may install the Alnuth-package into the pkg subdirectory of the GAP installation
tree. If you do not have the permission to do that you may install the Alnuth-package in your private area.
In the latter case you need to have a directory named pkg in your private area (for details see 75.1 in the
reference manual).

Now move the alnuth.tar.gz of alnuth.tar file into the directory pkg and unpack it:

bash> tar xfz alnuth.tar.gz # for the gzipped tar-archive
bash> tar xf alnuth.tar # for the uncompressed tar-archive

Section 3. Adjust the path of the executable for KASH 11

4.3 Adjust the path of the executable for KASH

This package needs to know where the executable for KASH is. In the default setting Alnuth will check if
there is an executable called kash in your search path (The search path is the set of directories through
which your shell looks for executable programs when no absolute path is given. Type echo $PATH in your
terminal to see which directories are contained in your search path.).

In Section 4.4 we explain how to write a very short shell script, which executes KASH, and indicate how
you can assure that Alnuth finds it in the default setting. We recommend to use this default setting. An
advantage of this method is, that in case of an installation of a new version of Alnuth you do not have to
adjust the path to the executable of KASH again.

If you do not want to use the default setting, then there are two other possibilities.

If you are able to edit the file pkg/alnuth/defs.g, then you can change the line

BindGlobal("KANTEXEC", Filename(DirectoriesSystemPrograms(), "kash"));

to something like

BindGlobal("KANTEXEC", "mykash/kash -l mykash/lib");

where mykash needs to be replaced with the directory where KASH was installed. For example mykash could
be replaced by /usr/local/KASH 2.5. Please note that in case of a new installation of Alnuth you will have
to edit the file pkg/alnuth/defs.g again. Alternatively you can also change your personal .gaprc file (see
3.4 The .gaprc file) for setting the variable KANTEXEC to a proper value. To do this add the command
line mentioned above to .gaprc.

The third possibility is to change the path to the executable within GAP using one of the following two
functions. To do this you first have to load the package (see Section 4.5).

1 I SetKantExecutable(path)

adjusts the global variable KANTEXEC for the current GAP session. Depending on your installation of KASH
the string path has to be either the command to start KASH in a terminal (for example kash) or the
complete path to the executable of KASH (for example /usr/local/KASH 2.5/kash). In the latter case the
library-path does not have to be specified, but is added automatically. Thereby the message

kash: hmm, I cannot find ’lib/init.g’, maybe use option ’-l <libname>’?

will appear on the screen, which can be ignored.

To use

2 I SetKantExecutablePermanently(path)

you need to be allowed to overwrite the file pkg/alnuth/defs.g. The function does the same as SetKan-
tExecutable and changes the file pkg/alnuth/defs.g respectively in addition. Thus the value of the global
variable KANTEXEC is changed permanently. In case of a new installation of Alnuth, you will have to run this
command again.

Both functions run a test whether path is a valid string for a filename of an executable for KASH version
2.4 or 2.5.

If you want to set the path to the executable of KASH using the function SetKantExecutable every time
you start GAP, you could add the command line SetKantExecutable(path) to your personal .gaprc file
(see Section 3.4 in the GAP Reference manual).

12 Chapter 4. Installation

4.4 How to write a shell script which executes KASH

In this section we explain how to write a shell script which executes KASH. Such a script is needed if you
want to use the default setting of Alnuth for the execution of KASH (see Section 4.3).

Switch to your home directory (cd ~) and check (using ls) if there is a directory called bin. If not then
create one with mkdir bin. Change to the bin directory (cd bin) and and open an empty file called kash
with an editor of your choice. Add the lines

#!/bin/sh
mykash/kash -l mykash/lib

where mykash needs to be replaced with the directory where KASH was installed. After this your file could
look for example like this:

#!/bin/sh
/usr/local/KASH_2.5/kash -l /usr/local/KASH_2.5/lib

Save the file and close the editor. Then type chmod u+x kash in your terminal to make the script executable.

Now we have to assure that the directory bin is in your search path. Type echo $PATH to check if this is
the case. If not then you can add bin to the search path by typing

bash> export PATH=$PATH:/home/user/bin

where /home/user needs to be replaced by your home directory. If you want to extend your search path
permanently you can add this line to the .bashrc file in your home directory.

If you use a c-shell instead of bash, then you have to extend the search path with the command

set PATH = ($PATH /home/user/bin)

and edit the file .cshrc.

4.5 Loading and testing the package

To use this package you have to request it explicitly. This is done by calling

gap> LoadingPackage("alnuth");
Loading Alnuth 2.2.0 ...
true
gap>

Once the package is loaded, it is possible to check the correct installation by running the test suite of the
package with the command

gap> ReadPackage("alnuth", "tst/testall.g");

Bibliography

[Coh93] Henri Cohen. A course in computational algebraic number theory. Springer-Verlag, New York,
Heidelberg, Berlin, 1993.

[DCK+97] M. Daberkow, C.Fieker, J. Klüners, M. Pohst, K.Roegner, and K. Wildanger. Kant V4. J. Symb.
Comput., 24:267 – 283, 1997.

[EN00] Bettina Eick and Werner Nickel. Polycyclic, 2000. A GAP 4 package, see [GAP02].

[GAP02] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.3, 2002.

http://www.gap-system.org.

[Poh93] Michael E. Pohst. Computational Algebraic Number Theory, volume 21 of DMV Seminar.
Birkäuser, 1993.

[PZ89] M. Pohst and H. Zassenhaus. Algorithmic algebraic number theory. Cambridge University Press,
1989.

[ST79] I. N. Stuart and D. O. Tall. Algebraic number theory. Chapman and Hall, 1979.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
Adjust the path of the executable for KASH, 11

C
Creation of number fields, 4

D
DefiningPolynomial, 4
DegreeOverPrimeField, 4

E
EquationOrderBasis, 5
ExampleMatField, 6
Examples, 6
ExponentsOfUnits, 5

F
Factorisation of polynomials over a number field, 6
FactorsPolynomialKant, 6
FieldByMatrices, 4
FieldByMatricesNC, 4
FieldByMatrixBasis, 4
FieldByMatrixBasisNC, 4
FieldByPolynomial, 4
FieldByPolynomialNC, 4

G
Getting and installing KASH, 10

H
How to write a shell script which executes KASH,

12

I
ImageElm, 5
ImagesSet, 5
Installing this package, 10
IntersectionOfUnitSubgroups, 6

IsCyclotomicField, 5
IsIntegerOfNumberField, 5
IsomorphismPcpGroup, 5
IsPrimitiveElement, 4
IsUnitOfNumberField, 5

K
Kernel, 5

L
Loading and testing the package, 12

M
MaximalOrderBasis, 5
Methods for number fields, 4
Methods to compute with subgroups of the unit

group, 6

N
NormCosetsOfNumberField, 5
Number fields defined by a polynomial, 8
Number fields defined by matrices, 7

P
PcpPresentationOfMultiplicativeSubgroup, 5
PreImagesRepresentative, 5
Presentations of multiplicative subgroups, 5
PrimitiveElement, 4

R
RelationLattice, 5
RelationLatticeOfUnits, 6

S
SetKantExecutable, 11
SetKantExecutablePermanently, 11

U
UnitGroup, 5

	Contents
	Introduction
	Methods for number fields
	Creation of number fields
	Methods for number fields
	Presentations of multiplicative subgroups
	Methods to compute with subgroups of the unit group
	Factorisation of polynomials over a number field
	Examples

	An example application
	Number fields defined by matrices
	Number fields defined by a polynomial

	Installation
	Getting and installing KASH
	Installing this package
	Adjust the path of the executable for KASH
	How to write a shell script which executes KASH
	Loading and testing the package

	Bibliography
	Index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	P
	R
	S
	U

