
FGA
Free Group Algorithms

A GAP4 Package

by

Christian Sievers

Fachbereich Mathematik und Informatik
Institut Computational Mathematics

TU Braunschweig

Pockelsstr. 14
D-38106 Braunschweig

May 2005

Contents

1 Introduction 3

1.1 Overview . 3

1.2 Implementation and background . 3

1.3 Integration of the package . 4

1.4 License . 4

2 Functionality of the FGA package 5

2.1 New operations for free groups . 5

2.2 Method installations . 6

2.3 Constructive membership test . 7

2.4 Automorphism groups of free groups . 8

3 Installing and loading the FGA package 10

3.1 Installing the FGA package . 10

3.2 Loading the FGA package . 10

Bibliography 11

Index 12

1 Introduction

1.1 Overview

This manual describes the FGA (Free Group Algorithms) package, a GAP package for computations with
finitely generated subgroups of free groups.

This package allows you to (constructively) test membership and conjugacy, and to compute free genera-
tors, the rank, the index, normalizers, centralizers, and intersections where the groups involved are finitely
generated subgroups of free groups. In addition, it provides generators and a finite presentation for the
automorphism group of a finitely generated free group and allows to write any such automorphism as word
in these generators.

See Chapter 2 for details.

Chapter 3 explains how to install and load the FGA package.

1.2 Implementation and background

The methods which are used work mainly with inverse finite automata, a variation of an idea known from
theoretical computer science. An inverse finite automaton is a finite state automaton over a symmetric
alphabet, i.e. one in which every letter has an inverse, such that each transition between two states for a
letter corresponds to a transition in the opposite direction for the inverse letter.

Most of these techniques are described in Chapter 4 of [Sim94], where the same concept is called coset
automaton. The method to obtain this automaton is called basic coset enumeration, and in fact it is coset
enumeration where only important cosets are defined. Here a coset Gg is called important when there are
words w and v such that wv is reduced and denotes an element of G and w denotes an element of Gg .

In [BMMW00], the connection between finitely generated subgroups of free groups and inverse finite au-
tomata is used to transfer results about the space complexity of problems concerning inverse finite automata
to analogous results about finitely generated subgroups of free groups.

Chapter 6 of [Sim94] describes the Reidemeister-Schreier procedure and a variant called extended coset
enumeration which yields a presentation in the given generators. The FGA package uses a variation thereof
for its constructive membership test: it leaves out the part of the algorithm that fills in relations and
interprets the resulting extended coset table differently. This algorithm might be called extended basic coset
enumeration.

Some word oriented algorithms in the FGA package use basic facts about free groups. These can, for example,
be found in [LS77].

The presentation of the automorphism groups follows [Neu33]. The algorithm for writing an automorphism
in the generators works first at the level of Nielsen generators and uses relations from [Nie24].

The theoretical background for most of this implementation is explained in [Sie03].

4 Chapter 1. Introduction

1.3 Integration of the package

The FGA package mainly installs new methods for operations that are already known to GAP. They overlap
with methods in the GAP library in the case of groups of finite index. In this case, GAPs methods are usually
faster, and the FGA package tries to recognize such cases and to refer to GAP.

The methods of the FGA package will only be selected when the groups involved know they are finitely
generated. This may not always be the case for groups that were not created by methods of the FGA
package. In such a case you will get a no method found error, or GAP may try a coset enumeration that
stops with the message the coset enumeration has defined more than 256000 cosets. You may then
call GeneratorsOfGroup, and try again.

Please inform the package author if you observe any remaining problems.

1.4 License

Like the GAP system itself, the FGA package is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This package is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You can find the GNU General Public License in the file COPYING of the FGA package, and also in the file
GPL in the etc directory of the main GAP distribution, or see

http://www.gnu.org/licenses/gpl.html .

2
Functionality of

the FGA package

This chapter describes methods available from the FGA package.

In the following, let f be a free group created by FreeGroup(n), and let u, u1 and u2 be finitely generated
subgroups of f created by Group or Subgroup, or computed from some other subgroup of f . Let elm be an
element of f .

For example:

gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> u := Group(f.1^2, f.2^2, f.1*f.2);
Group([f1^2, f2^2])
gap> u1 := Subgroup(u, [f.1^2, f.1^4*f.2^6]);
Group([f1^2, f1^4*f2^6])
gap> elm := f.1;
f1
gap> u2 := Normalizer(u, elm);
Group([f1^2])

2.1 New operations for free groups

These new operations are available for finitely generated subgroups of free groups:

1 I FreeGeneratorsOfGroup(u) A

returns a list of free generators of the finitely generated subgroup u of a free group.

The elements in this list form an N-reduced set. In addition to being a free (and thus minimal) generating
set for u, this means that whenever v1 , v2 and v3 are elements or inverses of elements of this list, then

– v1v2 6= 1 implies |v1v2 | ≥ max(|v1 |, |v2 |), and

– v1v2 6= 1 and v2v3 6= 1 implies |v1v2v3 | > |v1 | − |v2 | + |v3 |

hold, where | · | denotes the word length.

2 I RankOfFreeGroup(u) A
I Rank(u) O

returns the rank of the finitely generated subgroup u of a free group.

3 I CyclicallyReducedWord(elm) O

returns the cyclically reduced form of elm.

6 Chapter 2. Functionality of the FGA package

2.2 Method installations

This section lists operations that are already known to GAP. FGA installs new methods for them so that
they can also be used with free groups. In cases where FGA installs methods that are usually only used
internally, user functions are shown instead.

1 I Normalizer(u1, u2) O
I Normalizer(u, elm) O

The first variant returns the normalizer of the finitely generated subgroup u2 in u1 .

The second variant returns the normalizer of 〈elm〉 in the finitely generated subgroup u (see 37.10.1 in the
Reference Manual).

2 I RepresentativeAction(u, d, e) O
I IsConjugate(u, d, e) O

RepresentativeAction returns an element r ∈ u, where u is a finitely generated subgroup of a free group,
such that d r = e, or fail, if no such r exists. d and e may be elements or subgroups of u.

IsConjugate returns a boolean indicating whether such an element r exists.

3 I Centralizer(u, u2) O
I Centralizer(u, elm) O

returns the centralizer of u2 or elm in the finitely generated subgroup u of a free group.

4 I Index(u1, u2) O
I IndexNC(u1, u2) O

return the index of u2 in u1 , where u1 and u2 are finitely generated subgroups of a free group. The first
variant returns fail if u2 is not a subgroup of u1 , the second may return anything in this case.

5 I Intersection(u1, u2 . . .) F

returns the intersection of u1 and u2 , where u1 and u2 are finitely generated subgroups of a free group.

6 I elm in u O

tests whether elm is contained in the finitely generated subgroup u of a free group.

7 I IsSubgroup(u1, u2) F

tests whether u2 is a subgroup of u1 , where u1 and u2 are finitely generated subgroups of a free group.

8 I u1 = u2 O

test whether the two finitely generated subgroups u1 and u2 of a free group are equal.

9 I MinimalGeneratingSet(u) A
I SmallGeneratingSet(u) A
I GeneratorsOfGroup(u) A

return generating sets for the finitely generated subgroup u of a free group. MinimalGeneratingSet and
SmallGeneratingSet return the same free generators as FreeGeneratorsOfGroup, which are in fact a
minimal generating set. GeneratorsOfGroup also returns these generators, if no other generators were stored
at creation time.

Section 3. Constructive membership test 7

2.3 Constructive membership test

It is not only possible to test whether an element is in a finitely generated subgroup of free group, this can
also be done constructively. The idiomatic way to do so is by using a homomorphism.

Here is an example that computes how to write f.1^2 in the generators a=f1^2*f2^2 and b=f.1^2*f.2,
checks the result, and then tries to write f.1 in the same generators:

gap> f := FreeGroup(2);
<free group on the generators [f1, f2]>
gap> ua := f.1^2*f.2^2;; ub := f.1^2*f.2;;
gap> u := Group(ua, ub);;
gap> g := FreeGroup("a", "b");;
gap> hom := GroupHomomorphismByImages(g, u,

GeneratorsOfGroup(g),
GeneratorsOfGroup(u));

[a, b] -> [f1^2*f2^2, f1^2*f2]
gap> # how can f.1^2 be expressed?
gap> PreImagesRepresentative(hom, f.1^2);
b*a^-1*b
gap> last ^ hom; # check this
f1^2
gap> ub * ua^-1 * ub; # another check
f1^2
gap> PreImagesRepresentative(hom, f.1); # try f.1
fail
gap> f.1 in u;
false

There are also lower level operations to get the same results. In fact, they are faster when used repeatedly
with the same group.

1 I AsWordLetterRepInGenerators(elm, u) O
I AsWordLetterRepInFreeGenerators(elm, u) O

return a letter representation (see Section 35.6 in the GAP Reference Manual) of the given elm relative to
the generators the group was created with or the free generators as returned by FreeGeneratorsOfGroup.

Continuing the above example:

gap> AsWordLetterRepInGenerators(f.1^2, u);
[2, -1, 2]
gap> AsWordLetterRepInFreeGenerators(f.1^2, u);
[2]

This means: to get f.1^2, multiply the second of the given generators with the inverse of the first and again
with the second; or just take the second free generator.

8 Chapter 2. Functionality of the FGA package

2.4 Automorphism groups of free groups

The FGA package knows presentations of the automorphism groups of free groups. It also allows to express
an automorphism as word in the generators of these presentations. This sections repeats the GAP standard
methods to do so and shows functions to obtain the generating automorphisms.

1 I AutomorphismGroup(u) A

returns the automorphism group of the finitely generated subgroup u of a free group.

Only a few methods will work with this group. But there is a way to obtain an isomorphic finitely presented
group:

2 I IsomorphismFpGroup(group) A

returns an isomorphism of group to a finitely presented group. For automorphism groups of free groups,
the FGA package implements the presentations of [Neu33]. The finitely presented group itself can then be
obtained with the command Range.

Here is an example:

gap> f := FreeGroup(2);;
gap> a := AutomorphismGroup(f);;
gap> iso := IsomorphismFpGroup(a);;
gap> Range(iso);
<fp group on the generators [O, P, U]>

To express an automorphism as word in the generators of the presentation, just apply the isomorphism
obtained from IsomorphismFpGroup.

gap> aut := GroupHomomorphismByImages(f, f,
GeneratorsOfGroup(f), [f.1^f.2, f.1*f.2]);

[f1, f2] -> [f2^-1*f1*f2, f1*f2]
gap> ImageElm(iso, aut);
O^2*U*O*P^-1*U

It is also possible to use aut^iso. Please note that using Image does not work.

The FGA package provides a simpler way to create endomorphisms:

3 I FreeGroupEndomorphismByImages(g, imgs) F

returns the endomorphism that maps the free generators of the finitely generated subgroup g of a free group
to the elements listed in imgs. You may then apply IsBijective to check whether it is an automorphism.

The follwowing functions return automorphisms that correspond to the generators in the presentation:

4 I FreeGroupAutomorphismsGeneratorO(group) F
I FreeGroupAutomorphismsGeneratorP(group) F
I FreeGroupAutomorphismsGeneratorU(group) F
I FreeGroupAutomorphismsGeneratorS(group) F
I FreeGroupAutomorphismsGeneratorT(group) F
I FreeGroupAutomorphismsGeneratorQ(group) F
I FreeGroupAutomorphismsGeneratorR(group) F

return the automorphism which maps the free generators [x1, x2, . . . , xn] of group to

O: [x−1
1 , x2, . . . , xn] (n ≥ 1)

P: [x2, x1, x3, . . . , xn] (n ≥ 2)

U: [x1x2, x2, x3, . . . , xn] (n ≥ 2)

Section 4. Automorphism groups of free groups 9

S: [x−1
2 , x−1

3 , . . . , x−1
n , x−1

1] (n ≥ 1)

T: [x2, x−1
1 , x3, . . . , xn] (n ≥ 2)

Q: [x2, x3, . . . , xn , x1] (n ≥ 2)

R: [x−1
2 , x1, x3, x4, . . . , xn−2, xnx−1

n−1, x
−1
n−1] (n ≥ 4)

3
Installing and loading

the FGA package

3.1 Installing the FGA package

The installation of the FGA package follows standard GAP rules. So the standard method is to unpack the
archive into the pkg directory of your GAP distribution. This will create an fga subdirectory.

For other non-standard options please see Chapter 74.1 in the GAP Reference Manual.

3.2 Loading the FGA package

The FGA package is configured to autoload, so its functionality is usually available once GAP is started.

If GAP does not autoload, you can request the package with the LoadPackage command like this:

gap> LoadPackage("fga");

Loading FGA 1.1 (Free Group Algorithms)
by Christian Sievers (c.sievers@tu-bs.de).

true

You will not see the banner if FGA has already been loaded.

The LoadPackage command and ways to disable autoloading are described in Section 74.2 in the GAP
Reference Manual.

Bibliography

[BMMW00] J.-C. Birget, S. Margolis, J. Meakin, and P. Weil. PSPACE-complete problems for subgroups of
free groups and inverse finite automata. Theoretical Computer Science, 242:247–281, 2000.

[LS77] Roger C. Lyndon and Paul E. Schupp. Combinatorial Group Theory. Springer, 1977.

[Neu33] Bernd Neumann. Die Automorphismengruppe der freien Gruppen. Math. Annalen, 107:367–386,
1933.

[Nie24] J. Nielsen. Die Isomorphismengruppe der freien Gruppen. Math. Annalen, 91:169–209, 1924.

[Sie03] Christian Sievers. Algorithmen für freie Gruppen. Diplomarbeit, TU Braunschweig, 2003.

[Sim94] C. C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

Index

This index covers only this manual. A page number in italics refers to a whole section which is devoted
to the indexed subject. Keywords are sorted with case and spaces ignored, e.g., “PermutationCharacter”
comes before “permutation group”.

A
AsWordLetterRepInFreeGenerators, 7
AsWordLetterRepInGenerators, 7
AutomorphismGroup, 7
Automorphism groups of free groups, 7

C
Centralizer, 6
Constructive membership test, 6
CyclicallyReducedWord, 5

E
equality, 6

F
FGA, 3
FreeGeneratorsOfGroup, 5
FreeGroupAutomorphismsGeneratorO, 8
FreeGroupAutomorphismsGeneratorP, 8
FreeGroupAutomorphismsGeneratorQ, 8
FreeGroupAutomorphismsGeneratorR, 8
FreeGroupAutomorphismsGeneratorS, 8
FreeGroupAutomorphismsGeneratorT, 8
FreeGroupAutomorphismsGeneratorU, 8
FreeGroupEndomorphismByImages, 8
Functionality of the FGA package, 5

G
GeneratorsOfGroup, 6

I
Implementation and background, 3

in, 6
Index, 6
IndexNC, 6
Installing and loading the FGA package, 10
Installing the FGA package, 10
Integration of the package, 3
Intersection, 6
IsConjugate, 6
IsomorphismFpGroup, 7
IsSubgroup, 6

L
License, 4
loading the FGA package, 10

M
Method installations, 5
MinimalGeneratingSet, 6

N
New operations for free groups, 5
Normalizer, 5

O
Overview, 3

R
Rank, 5
RankOfFreeGroup, 5
RepresentativeAction, 6

S
SmallGeneratingSet, 6

	Contents
	Introduction
	Overview
	Implementation and background
	Integration of the package
	License

	Functionality of the FGA package
	New operations for free groups
	Method installations
	Constructive membership test
	Automorphism groups of free groups

	Installing and loading the FGA package
	Installing the FGA package
	Loading the FGA package

	Bibliography
	Index
	A
	C
	E
	F
	G
	I
	L
	M
	N
	O
	R
	S

