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Chapter 1

Introduction

1.1 Introduction to the HAPprime package

HAPprime is a package for the GAP computer algebra system (http://www.gap-system.org/),
and which extends the HAP ‘Homological Algebra Progamming’ package written by Graham Ellis
(http://hamilton.nuigalway.ie/Hap/www/). It provides algorithms and data structures for cal-
culating cohomology ring presentations and resolutions of small prime-power groups. As well as new
functions, HAPprime also provides some equivalents for some existing HAP functions that are much
more memory-efficient and occasionally faster.

In particular, the main reasons you may want to use HAPprime are

o the calculation of resolutions of prime-power groups in HAPprime uses significantly less mem-
ory than the equivalent function in HAP, allowing resolutions (and cohomology ring presenta-
tions) of larger groups to be calculated (see Section 2.3);

e HAPprime can compute polynomial ring presentations for cohomology rings calculated using
either HAP or HAPprime (see Section 2.2.1);

e we provide a method which ensures that complete and correct cohomology rings are computed.
This is a an implementation of Len Evens’ original proof of the finite presentation of the coho-
mology rings (see Section 2.2.2).

1.2 Required software

The HAPprime package requires GAP version 4.4 or greater and HAP version 1.8.9 or greater.
For calculating provably-correct cohomology rings, the Singular commutative algebra system
(http://www.singular.uni-kl.de/) and the singular GAP package are also required.

1.3 Installing HAPprime

To install the HAPprime Package, unpack the archive file into your GAP packages directory (ei-
ther usually the pkg directory of your GAP 4 installation if you have access to it, or some local
pkg directory that GAP can find). The HAPprime files will all be installed in a subdirectory called
happrime-0.3.2.


http://www.gap-system.org/
http://hamilton.nuigalway.ie/Hap/www/
http://www.singular.uni-kl.de/
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1.4 Loading and testing HAPprime

The HAPprime package is not loaded by default when GAP is started. To load the package, type the
following at the GAP prompt:

Example

gap> LoadPackage ( "HAPprime");

If HAPprime isn’t already in memory, it is loaded and the author information is displayed. If you are
a frequent user of HAPprime, you might consider putting this line in your . gaprc file.

The correct installation of HAPprime can be tested by using the test routine tst/testall.qg:
Example

gap> ReadPackage ("HAPprime", "tst/testall.g");

+ HAPprime version 0.3.2 general tests

+ GAP4stones: 371057

+ HAPprime version 0.3.2 userguide examples

+ GAP4stones: 387662

+ HAPprime version 0.3.2 datatypes reference manual examples
+ GAP4stones: 382653

true

The number of GAP4stones will vary depending on your machine, but any additional lines of mes-
sages indicate problems with your installation.

The test routine calls a set of test files (Reference: Test Files) which can be found in the tst
directory of the HAPprime installation. All of the routines listed in this user guide are tested, as are
many of those in the datatype reference manual.

1.5 Documentation

The documentation for HAPprime is in two parts. This document is the user guide, which covers
the main functions provided by HAPprime and examples of their use. There is also a more technical
HAPprime datatypes reference manual which gives details of the new GAP datatypes defined and used
internally by HAPprime, as well as outlining the algorithms used by the package.

1.5.1 MakeHAPprimeDoc

{ MakeHAPprimeDoc ( [manual—-name]) (function)

Returns: nothing

The two manuals supplied with HAPprime - this user guide and the datatypes reference manual -
are written using the GAPDoc package and are available in PDF, HTML and text format. It should
not be necessary to rebuild these files, but should you wish to do so then this can be done using the
function MakeHAPprimeDoc.

The optional argument manual—-name is a string specifying which manuals to build. It may be
one of the following

e "all" builds both manuals. This is the default
e "userguide" builds just the user guide

e "datatypes" builds just the datatypes reference manual
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e "internal" builds both manuals, including the otherwise undocumented internal functions

e "testexamples" builds neither manual, but tests all of the examples using
TestManualExamples (GAPDoc: TestManualExamples)

As well as building the manuals, this function at the same time builds GAP test files (Reference:
Test Files) which means that all of the testable examples in the manuals are added to the HAPprime
test routines described in Section 1.4.

1.6 Displaying progress and calculation information

By default, the functions in HAPprime display no output (except for returning the result). The
InfoHAPprime info class can be used to enable the printing of progress and calculation informa-
tion during processing. Since some computations with HAPprime can take several hours, setting this
to a higher level can be particularly useful for monitoring the progress of computations.

1.6.1 InfoHAPprime

{Q InfoHAPprime (info class)

The InfoHAPprime info class is used throughout the HAPprime package. Use
SetInfolLevel (InfoHAPprime, level) to change the amount of information displayed about the
progress of the computation (see SetInfolevel (Reference: SetInfoLevel) in the GAP reference
manual). The different distinct levels are:

e ( print nothing (this is the default)

e 1 print some information, mainly progress information during computations that may take some
time

e 2 print more detailed information, incluing details of internal calculations



Chapter 2

Examples

2.1 Computing the mod p group cohomology

Let G be a group and FF be a field, and let FG be the group ring of G over . A free FG-resolution of
the ground ring is an exact sequence of module homomorphisms

o> My — M, - M, | —»...—-M —-FG—>TF

Where each M, is a free FG-module and the image of d,+ : M,+1 — M, equals the kernel of d,, :
M, — M, _; for all n > 0. The maps d, are called boundary homomorphisms. In HAPprime we
consider the case where G is a p-group and I is the prime field GF (p), and this is assumed from now
on.

If we now define the Abelian group D,, to be Hom(M,,,[F), the set of all homomorphisms M,, — F,
we can obtain the dual of this sequence, which will be a cochain complex of Abelian group homo-
morphisms

Dy «<—D,—Dy,_1—...— D «—F«F

Each group D,, will be isomorphic to FIMil where |M,| is the rank of the module M,. Unlike the
resolution, this sequence will generally not be exact, but one can define the mod-p cohomology group
of G at degree n to be

ker(Dn - Dn+1)

im(Dy—1 — Dy)

for all n > 0. As with the D,,, the mod-p cohomology groups will also be isomorphic to vector spaces
over IF. In the case where the resolution R is minimal (where each module M,, has the minimal number
of generators), the dimensions of the (co)homology groups H" (G, F) are identical to the dimensions of
the resolution modules M,,. The group cohomology (and the similar group homology) is an invariant
of G, and does not depend on a particular free FG-resolution.

In the general case, there are thus two stages to computing the group cohomology of G up to the
nth cohomology group:

H"(G,F) =

1. Compute R, a free FG-resolution for FG, with at least n+ 1 terms.
2. Construct the cochain complex C from R and compute the n homology groups of C

For example, to calculate the 9th mod-p cohomology group of the 134th order 64 in the GAP small
groups library (which is the Sylow 2-subgroup of the Mathieu group M1,), we can use the HAPprime
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function ResolutionPrimePowerGroupRadical (3.1.1) to compute 10 terms of a free FG-resolution
for G and then use HAP functions to find the rank by of the cohomology group, which will be iso-
morphic to . Alternatively, since ResolutionPrimePowerGroupRadical (3.1.1) always returns a
minimal resolution, the cohomology group dimensions can be read directly from the resolution.

Example

gap> G := SmallGroup(64, 134);;

gap> # First construct a FG-resolution for the group G

gap> R := ResolutionPrimePowerGroupRadical (G, 10);

Resolution of length 10 in characteristic 2 for <pc group of size 64 with
6 generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> # Convert this into a cochain complex (over the prime field with p=2)
gap> C := HomToIntegersModP (R, 2);
Cochain complex of length 10 in characteristic 2 .

gap> # And get the rank of the 9th cohomology group

gap> b9 := Cohomology(C, 9);

55

gap>

gap> # Since R is a free resolution, the ranks of the cohomology groups
gap> # are the same as the module ranks in R

gap> ResolutionModuleRanks (R);

[ 3, 6, 10, 15, 21, 28, 36, 45, 55, 66 ]

2.2 Computing mod-p cohomology rings and their Poincaré series

The mod-p group cohomology of a p-group G, given a field F = GF (p), has a multiplicative structure,
and so the group

H*(G,F) =P H(G,F)
i=0

is aring. Since H*(G,F) is isomorphic to a vector space over T, it is also an algebra, in fact a graded
algebra: for elements e € H"(G,F) and f € H"(G,F), the product ef is an element of H"™"(G,F).

Some functions for investigating the ring structure of H*(G,F) using GAP are already provided by
HAP, and also by Marcus Bishop’s Crime package http://www.math.uic.edu/ marcus/Crime/.
There have also been implementations using other systems, in particular, Jon Carl-
son has computed the cohomology rings for all 2-groups of order 64 and fewer us-
ing MAGMA (see http://www.math.uga.edu/ lvalero/cohointro.html  for re-
sults) and David Green has calculated the same, and some of order 128, using C (see
http://www.math.uni-wuppertal.de/ green/Coho_v2/index.html for results).

2.2.1 A ring presentation for the mod p cohomology (up to degree n)

The cohomology ring H*(G,F) is an infinite vector space, but if all elements of degree higher than
some degree n are ignored, a related finite algebra can be considered. Multiplication in this finite
algebra can be represented by a multiplication table giving the product of each basis element in the


http://www.math.uic.edu/~marcus/Crime/
http://www.math.uga.edu/~lvalero/cohointro.html
http://www.math.uni-wuppertal.de/~green/Coho_v2/index.html
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vector space (up to products of degree n). The HAP function ModPCohomologyRing (HAP: ModP-
CohomologyRing) computes such a finite algebra representation for the mod-p cohomology ring of
a p-group G for a given value of n.

The full infinite-dimensional cohomology ring has a finite presentation as a quotient ring

Flxr,x2,. .. %]

H*(G,F) =
(G,F) (L, Ly L)

where the polynomial ring indeterminates x; each have an associated degree d; and the I; are rela-
tions which together generate an ideal in the ring. Given a finite algebra A, the HAPprime function
ModPCohomologyRingPresentation (3.3.1) calculates a presentation for the ring, modulo any gen-
erating elements of degree higher than n. If H*(G,F) has no generators or relations in degrees higher
than n, then a ring presentation for an algebra computed via ModPCohomologyRing (HAP: ModPCo-
homologyRing) followed by ModPCohomologyRingPresentation (3.3.1) will be the same as a ring
presentation for H*(G,F).
We shall calculate a ring presentation for the group G := SmallGroup (16, 3):

Example

gap> G := SmallGroup(l6, 3);;

gap> A := ModPCohomologyRing (G, 5);

<algebra of dimension 34 over GF(2)>

gap> ModPCohomologyRingPresentation (A);

Graded algebra GF(2)[ x_1, x 2, x_3, x_4, x 51 /

[ x 1*x_ 2, x 172, x_1*x_5, x_2"2*x_3+x_5"2 ] with indeterminate degrees
(1, 1, 2, 2, 21

The object returned by ModPCohomologyRingPresentation (3.3.1) tells us that

Flx1,x2,x3,X4,X5]

*
H <G,F) <x%, X1X2, X1X5, X%X3 +x§>
where the indeterminates x; and x, are in degree one and the rest are in degree two. This assumes,
however, that there are no generating elements in any degree higher than five. See Section 2.2.2 below
for a method that also computes the maximum degree necessary to present the cohomology ring, and
so avoids this limitation.

As well as taking the algebra as an argument, the function ModPCohomologyRingPresentation
(3.3.1) can also take a group or a free FG-resolution, and a value for n, in which case it performs the
calculation of the algebra as well.

2.2.2 Calculating a provably-correct mod-p cohomology

Using the HAP function ModPCohomologyRing (HAP: ModPCohomologyRing), HAPprime can cal-
culate a presentation for the cohomology ring H*(G,F) as described in Section 2.2.1) It is known
(Evens 1961) that mod-p cohomology rings are finitely-generated, and hence given a sufficiently-
large n the presentation calculated in the above manner will be the complete ring. HAPprime can
compute a sufficient value for n (in fact, it will be near, and usually at, the minimum). HAPprime uses
the original Evens proof constructively. For a group G, a Lyndon-Hochschild-Serre spectral sequence
can be computed. This will converge, and the limiting sheet of the sequence will be a ring which is
an associated graded ring of the mod-p cohomology ring H*(G,F). This means that, while it will
not necessarily be isomorphic to H*(G,F), it will have the same additive structure, and the generators
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and relations will lie in the same degrees. Thus the maximum degree in the presentation for the last
sheet of the spectral sequence is a sufficient value for n. The spectral sequence computation requires
minimal resolutions and correct cohomology rings for two smaller groups (a central subgroup N and
the quotient group G/N), but these rings can be in turn computed by the same process (and the coho-
mology rings for some small groups can simply be stated). The cohomology ring for G will thus be
proved correct by induction.

When called with just a group (i.e. no value for n), ModPCohomologyRingPresentation (3.3.1)
performs this spectral sequence calculation to find »n and then calculates the cohomology ring using
this value for n. In the example below we use this function, and by setting the value of InfoHAPprime

(1.6.1) to 1, we can see the details of the spectral sequence calculation.
Example

gap> SetInfolevel (InfoHAPprime, 1);
gap> G := SmallGroup (16, 3);;
gap> A := ModPCohomologyRingPresentation (G);

#I E_2 =GF(2)[ x_1, x2 ] x GF(2)[ x_3, x_4 ]

#I with generator degrees [ 1, 1 ] and [ 1, 1 ] respectively

#I d_2(x_1) = zero

#1I d_2(x_2) = zero

#I d 2(x_3) = x_1*x_2

#1I d_2(x_4) = x 172

#I E_3 =GF(2)[ x5, x6, x 7, x.8, .9 1/[ x.6*x_9, x_672, x_5*x_6, x_5"2*x\
_T+x_972 ]

#I E 3 =GF(2)[ x 2, x_1, x 472, % 372, x_ 1*x 3+x 2*x_ 4 1/ x_172*x_3+x_1*x_\
2*x_ 4, x 172, x_1*x_2, x_1"2*x_3"2 ]

#I d_3(x_2) = zero
#I d_3(x_1) = zero
#I d_3(x_472) = zero
#1I d_3(x_372) = x_ 172*x 2+x_1*x_ 272 = 0*Z(2) mod I
#I d_3(x_1*x_3+x_2*x_4) = zero
#I E_4 = GF(2)[ x_10, x_11, x 12, x_ 13, x 14 1/[ x_11*x_14, x_11"2, x_10*x_1\
1, x 1072*x_12+x_ 1472 ]
#I E_4 =GF(2)[ %2, x_1, x 472, %372, x_1*x 3+x 2*x_4 1/[ x_1"2*x_3+x_1*x_\
2*x 4, x 172, x_1*x_2, x_17"2*x_3"2 ]
#1I d_4(x_2) = zero
#I d_4(x_1) = zero
#1 d_4(x_472) = zero
#I d_4(x_3"2) = zero
#1I d 4 (x_1*x_3+x_2*x_4) = zero
(

#I E_inf = GF(2)[ x_10, x_11, x 12, x_13, x_14 1/[ x_11*x_14, x_11"2, x_10*x\
_11, x 1072*x_12+x_14"2 ]

#I E_inf = GF(2)[ x 2, x 1, x 472, x 372, x_1*x 3+x 2*x_4 1/[ x_1"2*x_3+x_1*\
X_2*x_4, x 172, x_1*x_2, x 172*x 372 ]

#I Renaming indeterminates and sorting into increasing degree

Graded algebra GF(2)[ x_1, x_2, x_3, x_4, x .51/

[ x 1*x_ 2, x_ 172, x_1*x_5, x_2"2*x_3+x_5"2 ] with indeterminate degrees

(1, 1, 2, 2, 2]

gap> # Now extract data about the presentation

gap> BaseRing (A);

GF(2) [x_1,%x_2,x 3,%x_4,x_5]

gap> GeneratorsOfPresentationIdeal (A);

[ x 1*x 2, x 172, x_ 1*x 5, x 272*x_3+x_572 ]

gap> IndeterminateDegrees (A);
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(1,1, 2,2, 21
gap> MaximumDegreeForPresentation (A);
4

This (the correct cohomology ring) is in fact the same as the presentation computed in Section 2.2.1
using n = 5 since there are no generators or relations of degree greater than four.

2.2.3 Computing Poincaré series

The Poincaré series for the mod-p cohomology ring H*(G,F) is the infinite series
agp +a1x—|—a2x2 —|—a3x3 + ...

where ay, is the dimension of the vector space H*(G,F). The Poincaré function is a rational function
P(x)/Q(x) which is equal to the Poincaré series.

The ranks of the modules in a minimal resolution for a group G are identical to the dimensions
ay, so a minimal resolution can be used to calculate the Poincaré series without first calculating the
cohomology ring. This is the method used by the HAP function PoincareSeries (HAP: Poincare-
Series), but will only give the correct answer for a sufficiently-long resolution. HAP has a method for
calculating a resolution that is likely to be long enough, but cannot prove that this is sufficient.

HAPprime can instead calculate a provably-correct Poincaré series for a mod-p cohomology ring,
and without first calculating the ring itself. The final sheet of a Lyndon-Hochschild-Serre spectral
sequence for a group G will be a ring with the same additive structure as the cohomology ring for G.
This will thus have the same Poincaré series, and can be used to provide the Poincaré series for the
cohomology ring without having to also compute the cohomology ring. This is implemented in the
HAPprime function PoincareSeriesLHS (3.2.1).

As well as being provably correct, PoincareSeriesLHS (3.2.1) is also often faster than the related
HAP function, as demonstrated in this example:
Example

gap> G := SmallGroup (64, 210);;

gap> # Compute the Poincare series using HAP

gap> Pl := PoincareSeries(G);time;

(x_174+x_172+x_1+1) / (-=x_1"7+3*x_176-5*x_1"5+7*x_1"4-T*x_1"3+5*x_1"2-3*x_1+1)
46434

gap> # Compute the Poincare series using HAPprime

gap> P2 := PoincareSeriesLHS (G);time;

(x_174+x_172+x_1+1) / (-=x_1"7+3*x_176-5*x_1"5+7*x_1"4-T*x_1"3+5*x_1"2-3*x_1+1)
1889

gap> Pl = P2;

true

In this case, HAP needs to compute 14 terms of a resolution for this group of order 64 before it
is confident that it has a stable Poincaré series. By contrast HAPprime, in calculating the spectral
sequence, needs to compute 5 terms of two resolutions of groups of order 8 and then construct a (non-
minimal) resolution for G (also of length 5) from these two. Both methods give the same answer, but
only HAPprime’s is guaranteed to be correct.
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2.3 Comparing the memory usage and speed of HAPprime and HAP’s
ResolutionPrimePowerGroup functions

For small p-groups, the group ring FG can be considered as a vector space of rank |G| with the el-
ements of G as its basis elements. Each module M, in a FG-resolution is also a vector space (of
dimension |M,||G|) and the boundary maps d, can be represented as vector space homomorphisms.
As a result, standard linear algebra techniques can be used to compute a minimal resolution by con-
structing a sequence of module homomorphisms where the kernel of one map is the image of the
next, and where the modules have minimal generating sets. See Chapter (HAPprime Datatypes:
Resolutions) in the datatypes manual for further details.

As the groups get larger, this approach becomes less feasible due to the amount of time
and memory needed to store and compute the null space of large matrices. The HAP function
ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup) and the HAPprime functions
ResolutionPrimePowerGroupRadical (3.1.1) and ResolutionPrimePowerGroupGF (3.1.1) all use
this linear algebra approach, but the HAPprime functions are optimised to save memory, allowing the
computation of resolutions which are longer, or are of larger groups, than are possible using HAP
alone.

2.3.1 HAPprime takes less memory to store resolutions

Consider computing a resolution of a group of an arbitrary group of order 128, G =
SmallGroup (128, 844) using HAP. Computation is performed on a dual-core Intel Core2Duo run-

ning at 2.66MHz, and the memory available to GAP is the standard initial allocation of 256Mb.
Example

gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroup (G, 9);

Resolution of length 9 in characteristic 2 for <pc group of size 128 with
T generators> .

gap> time;

27685

gap> # Can we construct a resolution of length ten?

gap> R := ResolutionPrimePowerGroup (G, 10);

exceeded the permitted memory (‘'-o’ command line option) at
res := SemiEchelonMatDestructive( List ( mat, ShallowCopy ) );
called from

SemiEchelonMat ( NullspaceMat ( BndMat ) ) called from

ZGbasisOfKernel( i - 1 ) called from

<function>( <arguments> ) called from read-eval-loop
Entering break read-eval-print loop ...

you can 'quit;’ to quit to outer loop, or

you can 'return;’ to continue

The HAPprime function ResolutionPrimePowerGroupRadical (3.1.1) uses an almost identical al-

gorithm, but stores its boundary maps more efficiently. As a result, with the same memory allowance:
Example

gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroupRadical (G, 9);

Resolution of length 9 in characteristic 2 for <pc group of size 128 with
7T generators> .
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No contracting homotopy available.
A partial contracting homotopy is available.

gap> time;

25321

gap> # Can we construct a resolution of length ten?

gap> R := ExtendResolutionPrimePowerGroupRadical (R);;

gap> # Yes! How about eleven?

gap> R := ExtendResolutionPrimePowerGroupRadical (R);

Resolution of length 11 in characteristic 2 for <pc group of size 128 with
7T generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> ResolutionModuleRanks (R);
[ 3, 6, 11, 19, 30, 44, 62, 85, 113, 146, 185 ]

gap>
gap> # But it will run out of memory if we try to go to twelve terms
gap> R := ExtendResolutionPrimePowerGroupRadical (R);

exceeded the permitted memory (‘'-o’ command line option) at

The HAPprime version can compute two further terms of the resolution, which given the sizes of
the additional modules represents a considerable improvement. Just representing the homomor-
phism djo : (FG)'® — (FG)''® as vectors requires nearly as much memory again as represent-
ing the first nine homomorphisms. To compute and store the same resolution of length 11 us-
ing ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup) would need a little over
three times the memory used here by HAPprime. The time taken by both versions is very similar.

In the example above, note also the wuse of the HAPprime function
ExtendResolutionPrimePowerGroupRadical (3.1.2), which makes it much easier to add
terms to an existing resolution. In standard HAP, if one decides that a resolution is too short and that
more terms are required, then the entire resolution must be computed again from scratch.

2.3.2 HAPprime takes less memory to compute resolutions

The function ResolutionPrimePowerGroupGE (3.1.1) uses a new algorithm to compute the ker-
nel of FG-module homomorphisms when FG-modules are represented using a set of G-generating
vectors (see (HAPprime Datatypes: FG-module homomorphisms) in the datatypes reference man-
ual). This provides a further memory saving over ResolutionPrimePowerGroupRadical (3.1.1),

although at the cost of a much slower computation time:
Example

gap> G := SmallGroup (128, 844);;

gap> R := ResolutionPrimePowerGroupGF (G, 9);

Resolution of length 9 in characteristic 2 for <pc group of size 128 with
7T generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> time;
422742
gap> R := ExtendResolutionPrimePowerGroupGF (R);;
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gap> R := ExtendResolutionPrimePowerGroupGF (R);;
gap> R := ExtendResolutionPrimePowerGroupGF (R);;
gap> R := ExtendResolutionPrimePowerGroupGF (R);;
gap> R := ExtendResolutionPrimePowerGroquF(R),,
gap> R := ExtendResolutionPrimePowerGroupGF (R);

Resolution of length 15 in characteristic 2 for <pc group of size 128 with
7T generators> .

No contracting homotopy available.

A partial contracting homotopy is available.

gap> ResolutionModuleRanks (R);
[ 3, 6, 11, 19, 30, 44, 62, 85, 113, 146, 185, 231, 284, 344, 412 ]
gap> # But it will run out of (the inital 256Mb) of memory at sixteen terms

Using ResolutionPrimePowerGroupGF (3.1.1) we can get a further four terms of the res-
olution. =~ For this resolution, this represents a memory saving of a factor of five over
ResolutionPrimePowerGroupRadical (3.1.1) and fifteen over ResolutionPrimePowerGroup
(HAP: ResolutionPrimePowerGroup), although it does take fifteen times as long as either of those
just to compute the first nine terms, and scales less well with size.

2.3.3 Automatic selection of the best method

The two functions ResolutionPrimePowerGroupRadical (3.1.1) and
ResolutionPrimePowerGroupGF (3.1.1) offer a trade-off between time and memory. The
function ResolutionPrimePowerGroupAutoMem (3.1.1) automates the decision of which version to
use, switching from the Radical to the GF version when it estimates that it is about to run out of
available memory for the faster version. In this example, we have also increase the InfoHAPprime
(1.6.1) info level to display progress information. At level two, the rank of each module in the
resolution is displayed as it is calculated, giving an indication of progress. With this setting, the user
is also notified when the Aut oMem function switches, and the GF function displays a rolling estimate

of its completion time (which is not shown since that output is overwritten when completed)
Example

gap> G := SmallGroup (128, 844);;

gap> SetInfolevel (InfoHAPprime, 2);

gap> R := ResolutionPrimePowerGroupAutoMem (G, 15);
#I Dimension 2: rank 6

#I Dimension 3: rank 11
#I Dimension 4: rank 19
#I Dimension 5: rank 30
#I Dimension 6: rank 44
#I Dimension 7: rank 62
#I Dimension 8: rank 85

#I Dimension 9: rank 113
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 10: rank 146
#I Finding kernel of homomorphism by splitting:
#I - Finding kernel of U
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#I - Finding kernel of V
#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 11: rank 185
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 12: rank 231
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 13: rank 284
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 14: rank 344
#I Finding kernel of homomorphism by splitting:

#I - Finding kernel of U

#I - Finding kernel of V

#I - Finding intersection of U and V
#I - Finding intersection preimages

#I Dimension 15: rank 412

Resolution of length 15 in characteristic 2 for <pc group of size 128 with
T generators>

No contracting homotopy available.

A partial contracting homotopy is available.

gap> StringTime (time);
" 5:45:53.613"




Chapter 3

Functions for Homological Algebra

3.1 Resolutions

3.1.1 ResolutionPrimePowerGroup

Q ResolutionPrimePowerGroupRadical (G, n) (operation)
{Q ResolutionPrimePowerGroupGF (G, n) (operation)
Q ResolutionPrimePowerGroupAutoMem (G, n) (operation)
Q ResolutionPrimePowerGroupGF2 (G, n) (operation)
Q ResolutionPrimePowerGroupRadical (M, n) (operation)
Q ResolutionPrimePowerGroupGF (M, n) (operation)
Q ResolutionPrimePowerGroupAutoMem (M, n) (operation)
Q ResolutionPrimePowerGroupGF2 (M, n) (operation)

Returns: HAPResolution

Returns n terms of a minimal free FG-resolution for either the ground ring of a prime power
group G or of a module M. For the module version, M must be passed as an FpGModuleGF object - see
(HAPprime Datatypes: FG-modules) in the HAPprime datatypes reference manual.

Three versions of this function are provided:

ResolutionPrimePowerGroupRadical uses the same resolution-building method as the
HAP function ResolutionPrimePowerGroup (HAP: ResolutionPrimePowerGroup), but
stores the resolution in a different format that takes only about half the memory of the HAP
version.

ResolutionPrimePowerGroupGF calculates the resolution using HAPprime’s G-generator
form of modules, which reduces memory use by around a factor of two over
ResolutionPrimePowerGroupRadical, but is slower by an order of magnitude.

ResolutionPrimePowerGroupAutoMem automatically switches between the two previous
versions based on the available memory. It uses the Radical version until it gets close to
the limit of the available memory, and then switches to the GF version.

ResolutionPrimePowerGroupGF2 calculates the resolution by FG-matrix partitioning.
The amount of partitioning is governed by the (Reference: Options Stack) option
MaxFGExpansionSize. The default value means that until the boundary map takes about
128Mb, the method is equivalent to ResolutionPrimePowerGroupRadical, and then it tends
towards ResolutionPrimePowerGroupGF in terms of time, but saves less memory.

16
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See the HAPprime datatypes reference manual for details of the different algorithms, in particular the
chapters on the G-generator form of FG-modules (HAPprime Datatypes: FG-modules) and FG-
module homomorphisms (HAPprime Datatypes: FG-module homomorphisms) and on resolutions
(HAPprime Datatypes: Resolutions).

3.1.2 ExtendResolutionPrimePowerGroup

Q ExtendResolutionPrimePowerGroupRadical (R) (operation)
{ ExtendResolutionPrimePowerGroupGF (R) (operation)
Q ExtendResolutionPrimePowerGroupAutoMem (R) (operation)
{Q ExtendResolutionPrimePowerGroupGF2 (R) (operation)

Returns: HAPResolution

Returns the resolution R extended by one term. The three variants offer a choice between memory
and speed, and correspond to the different versions of ResolutionPrimePowerGroup in HAPprime.
See the documentation (3.1.1) for those functions for a description of the different variants.

3.2 Poincaré Series

3.2.1 PoincareSeriesLHS

{ PoincareSeriesLHS (G) (attribute)

Returns: Rational function

For a finite p-group G, this function calculates and returns a quotient of polynomials f(x) =
P(x)/Q(x) (i.e. the Poincaré series) whose coefficient of x* equals the rank of the vector space
Hi(G,F)) for all k in the range k = 1 to k = n.

This function computes a Lyndon-Hoschild-Serre spectral sequence for the p-group G. The last
sheet of this sequence will have the same additive structure as the mod-p group cohomology ring of
G, and thus the same Poincaré series, which is returned by this function.

See Section 2.2.3 for an example and more description.

3.3 Cohomology Ring structure

3.3.1 ModPCohomologyRingPresentation (for group)

{ ModPCohomologyRingPresentation (G) (attribute)
{ ModPCohomologyRingPresentation (G, n) (operation)
{ ModPCohomologyRingPresentation (R) (operation)
{ ModPCohomologyRingPresentation (4) (operation)

Returns: GradedAlgebraPresentation

Calculates and returns a cohomology ring presentation for the group G. See (HAPprime
Datatypes: Presentations of graded algebras) in the datatypes reference manual for details of the
GradedAlgebraPresentation type.

If the only argument is a p-group G then this function computes and returns the provably-correct
cohomology ring presentation. This version first computes the Lyndon-Hoschild-Serre Spectral Se-
quence until convergence to find the additive structure of the cohomology ring, and then computes the
cohomology ring up to and including the maximum necessary generator or relation, using the (G, n)
method described below. For certain groups, the cohomology ring is returned without computation:
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the known mod-p cohomology ring presentation for cyclic groups is returned without calculation, and
for groups which can be expressed as a direct product, the cohomology ring is computed as a tensor
product of its direct factors (thus the cohomology ring of all Abelian groups are also returned with
minimal computation.)

When given a p-group G and integer n, this function computes the presentation modulo all ele-
ments of degree greater n. Alternatively, a minimal resolution R (with n terms) can be input, or a
structure constant algebra A with embedded degrees (from ModPCohomologyRing (HAP: ModPCo-
homologyRing)).

See Section 2.2.1 and 2.2.2 for examples and more description. See also LHSSpectralSequence
(HAPprime Datatypes: LHSSpectralSequence) for details of options that can be used to guide the
spectral sequence computation.
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