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Abstract
The XMod package provides functions for computation with

• finite crossed modules and cat1-groups, and morphisms of these structures;

• finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

• derivations of crossed modules and sections of cat1-groups;

• the actor crossed square of a crossed module; and

• crossed squares and their morphisms (experimental version).

XMod was originally implemented in 1997 using the GAP3 language. when the first author was studying
for a Ph.D. [Alp97] in Bangor.

In April 2002 the first and third parts were converted to GAP4, the pre-structures were added, and version
2.001 was released. The final two parts, covering derivations, sections and actors, were included in the January
2004 release 2.002 for {\GAP}˜4.4.

The current version is 2.12, released on 24th November 2008.
Bug reports, suggestions and comments are, of course, welcome. Please contact the second author at

c.d.wensley@bangor.ac.uk.
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Chapter 1

Introduction

The XMod package provides functions for computation with

• finite crossed modules and cat1-groups, and morphisms of these structures;

• finite pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

• derivations of crossed modules and sections of cat1-groups;

• the actor crossed square of a crossed module; and

• crossed squares and their morphisms (experimental version).

It is loaded with the command
Example

gap> LoadPackage( "xmod" );

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. Loday,
in [Lod82], reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87]
and Gilbert [Gil90] have studied derivations, automorphisms of crossed modules and the actor of
a crossed module, while Ellis [Ell84] has investigated higher dimensional analogues. Properties of
induced crossed modules have been determined by Brown, Higgins and Wensley in [BH78], [BW95]
and [BW96]. For further references see [AW00], where we discuss some of the data structures and
algorithms used in this package, and also tabulate isomorphism classes of cat1-groups up to size 30.

XMod was originally implemented in 1997 using the GAP 3 language. In April 2002 the first and
third parts were converted to GAP 4, the pre-structures were added, and version 2.001 was released.
The final two parts, covering derivations, sections and actors, were included in the January 2004
release 2.002 for GAP 4.4. The current version is 2.12, released on 24th November 2008.

Many of the function names have been changed during the conversion, for example
ConjugationXMod has become XModByNormalSubgroup. For a list of name changes see the file
names.pdf in the doc directory.

Crossed modules and cat1-groups are special types of 2-dimensional groups [Bro82] and are im-
plemented as 2dObjects having a Source and a Range. See the file notes.pdf in the doc directory
for an introductory account of these algebraic gadgets.

The package divides into four parts, all converted from GAP 3 to the GAP 4.4 release.
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The first part is concerned with the standard constructions for pre-crossed modules and crossed
modules; together with direct products; normal sub-crossed modules; and quotients. Operations for
constructing pre-cat1-groups and cat1-groups, and for converting between cat1-groups and crossed
modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups,
together with standard operations for morphisms, such as composition, image and kernel.

The third part deals with the equivalent notions of derivation for a crossed module and section for
a cat1-group, and the monoids which they form under the Whitehead multiplication.

The fourth part deals with actor crossed modules and actor cat1-groups. For the actor crossed
module Act(X ) of a crossed module X we require representations for the Whitehead group of regular
derivations of X and for the group of automorphisms of X . The construction also provides an inner
morphism from X to Act(X ) whose kernel is the centre of X .

From version 2.007 there are experimental functions for crossed squares and their morphisms,
structures which arise as 3-dimensional groups. Examples of these are inclusions of normal sub-
crossed modules, and the inner morphism from a crossed module to its actor.

The package may be obtained as a compressed tar file xmod.2.11.tar.gz by ftp from one
of the sites with a GAP 4 archive, or from the Bangor Mathematics web site whose URL is:
http://www.informatics.bangor.ac.uk/public/mathematics/chda/

The following constructions were not in the GAP 3 version of the package: sub-2d-object func-
tions, functions for pre-crossed modules and the Peiffer subgroup of a pre-crossed module, and the
associated crossed modules. The source and range groups in these constructions are no longer required
to be permutation groups.

Future plans include the implementation of group-graphs which will provide examples of pre-
crossed modules (their implementation will require interaction with graph-theoretic functions in GAP
4). Cat2-groups, and conversion betwen these and crossed squares, are also planned.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to
GpGpd, the subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been
implemented in Emma Moore’s package Gpd [Moo01] for groupoids and crossed resolutions.

In order that the user has some control of the verbosity of the XMod package’s functions, an
InfoClass InfoXMod is provided (see Chapter ref:Info Functions in the GAP Reference Manual
for a description of the Info mechanism). By default, the InfoLevel of InfoXMod is 0; progressively
more information is supplied by raising the InfoLevel to 1, 2 and 3.

Example

gap> SetInfoLevel( InfoXMod, 1); #sets the InfoXMod level to 1

Once the package is loaded, it is possible to check the correct installation by running the test suite of
the package with the following command. (The test file itself is tst/xmod manual.tst.)

Example

gap> ReadPackage( "xmod", "tst/testall.g" );
+ Testing all example commands in the XMod manual
+ GAP4stones: 0
true

Additional information can be found on the Computational Higher-dimensional Discrete Algebra web
site at http://www.informatics.bangor.ac.uk/public/mathematics/chda/

http://www.informatics.bangor.ac.uk/public/mathematics/chda/
http://www.informatics.bangor.ac.uk/public/mathematics/chda/


Chapter 2

2d-objects

2.1 Constructions for crossed modules

A crossed module X = (∂ : S→ R) consists of a group homomorphism ∂, called the boundary of
X , with source S and range R. The Group R acts on itself by conjugation, and on S by an action
α : R→ Aut(S) such that, for all s,s1,s2 ∈ S and r ∈ R,

XMod 1 : ∂(sr) = r−1(∂s)r = (∂s)r, XMod 2 : s∂s2
1 = s−1

2 s1s2 = s1
s2 .

The kernel of ∂ is abelian.
There are a variety of constructors for crossed modules:

2.1.1 XMod

♦ XMod(args) (function)

♦ XModByBoundaryAndAction(bdy, act) (operation)

♦ XModByTrivialAction(bdy) (operation)

♦ XModByNormalSubgroup(G, N) (operation)

♦ XModByCentralExtension(bdy) (operation)

♦ XModByAutomorphismGroup(grp) (operation)

♦ XModByInnerAutomorphismGroup(grp) (operation)

♦ XModByGroupOfAutomorphisms(G, A) (operation)

♦ XModByAbelianModule(abgrp) (operation)

♦ DirectProduct(X1, X2) (operation)

Here are the standard constructions which these implement:

• A conjugation crossed module is an inclusion of a normal subgroup SER, where R acts on S
by conjugation.

• A central extension crossed module has as boundary a surjection ∂ : S→ R with central kernel,
where r ∈ R acts on S by conjugation with ∂−1r.

• An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S)
of S which contains the inner automorphism group of S. The boundary maps s ∈ S to the inner
automorphism of S by s.

7
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• A trivial action crossed module ∂ : S→ R has sr = s for all s ∈ S, r ∈ R, the source is abelian
and the image lies in the centre of the range.

• A crossed abelian module has an abelian module as source and the zero map as boundary.

• The direct product X1 ×X2 of two crossed modules has source S1 × S2, range R1 × R2 and
boundary ∂1×∂2, with R1, R2 acting trivially on S2, S1 respectively.

2.1.2 Source

♦ Source(X0) (attribute)

♦ Range(X0) (attribute)

♦ Boundary(X0) (attribute)

♦ AutoGroup(X0) (attribute)

♦ XModAction(X0) (attribute)

In this implementation the attributes used in the construction of a crossed module X0 are as follows.

• Source(X0) and Range(X0) are the source S and range R of ∂, the boundary Boundary(X0);

• AutoGroup(X0) is a group of automorphisms of S;

• XModAction(X0) is a homomorphism from R to AutoGroup(X0).

2.1.3 Size

♦ Size(X0) (attribute)

♦ Name(X0) (attribute)

More familiar attributes are Size and Name, the latter formed by concatenating the names of the
source and range (if these exist). An Enumerator function has not been implemented. The Display
function is used to print details of 2d-objects.

Here is a simple example of an automorphism crossed module, using a cyclic group of size five.
Example

gap> c5 := Group( (5,6,7,8,9) );;
gap> SetName( c5, "c5" );
gap> X1 := XModByAutomorphismGroup( c5 );
[c5 -> PAut(c5)]
gap> Display( X1 );
Crossed module [c5 -> PAut(c5)] :-
: Source group c5 has generators:
[ (5,6,7,8,9) ]

: Range group PAut(c5) has generators:
[ (1,2,4,3) ]

: Boundary homomorphism maps source generators to:
[ () ]

: Action homomorphism maps range generators to automorphisms:
(1,2,4,3) --> { source gens --> [ (5,7,9,6,8) ] }
This automorphism generates the group of automorphisms.

gap> Size( X1 );
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[ 5, 4 ]
gap> Print( RepresentationsOfObject(X1), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "IsPreXModObj" ]
gap> Print( KnownPropertiesOfObject(X1), "\n" );
[ "Is2dObject", "IsPerm2dObject", "IsPreXMod", "IsXMod",
"IsTrivialAction2dObject", "IsAutomorphismGroup2dObject" ]

gap> Print( KnownAttributesOfObject(X1), "\n" );
[ "Name", "Size", "Range", "Source", "Boundary", "AutoGroup", "XModAction" ]

2.1.4 SubXMod

♦ SubXMod(X0, src, rng) (operation)

♦ IdentitySubXMod(X0) (attribute)

♦ NormalSubXMods(X0) (attribute)

With the standard crossed module constructors listed above as building blocks, sub-crossed mod-
ules, normal sub-crossed modules N CX , and also quotients X /N may be constructed. A sub-crossed
module S = (δ : N→M) is normal in X = (∂ : S→ R) if

• N,M are normal subgroups of S,R respectively,

• δ is the restriction of ∂,

• nr ∈ N for all n ∈ N, r ∈ R,

• s−1sm ∈ N for all m ∈M, s ∈ S.

These conditions ensure that M n N is normal in the semidirect product R n S.

2.2 Pre-crossed modules

2.2.1 PreXModByBoundaryAndAction

♦ PreXModByBoundaryAndAction(bdy, act) (operation)

♦ SubPreXMod(X0, src, rng) (operation)

When axiom {\bf XMod\ 2} is not satisfied, the corresponding structure is known as a pre-
crossed module.

Example

gap> c := (11,12,13,14,15,16,17,18);; d := (12,18)(13,17)(14,16);;
gap> d16 := Group( c, d );;
gap> sk4 := Subgroup( d16, [ cˆ4, d ] );;
gap> SetName( d16, "d16" ); SetName( sk4, "sk4" );
gap> bdy16 := GroupHomomorphismByImages( d16, sk4, [c,d], [cˆ4,d] );;
gap> h1 := GroupHomomorphismByImages( d16, d16, [c,d], [cˆ5,d] );;
gap> h2 := GroupHomomorphismByImages( d16, d16, [c,d], [c,cˆ4*d] );;
gap> aut16 := Group( [ h1, h2 ] );;
gap> act16 := GroupHomomorphismByImages( sk4, aut16, [cˆ4,d], [h1,h2] );;
gap> P16 := PreXModByBoundaryAndAction( bdy16 );
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[d16->sk4]

2.2.2 PeifferSubgroup

♦ PeifferSubgroup(X0) (attribute)

♦ XModByPeifferQuotient(prexmod) (attribute)

The Peiffer subgroup of a pre-crossed module P of S is the subgroup of ker(∂) generated by Peiffer
commutators

〈s1,s2〉 = (s−1
1 )∂s2 s−1

2 s1 s2 .

Then P = (0 : P→ {1R}) is a normal sub-pre-crossed module of X and X /P = (∂ : S/P→ R) is a
crossed module.

In the following example the Peiffer subgroup is cyclic of size 4.
Example

gap> P := PeifferSubgroup( P16 );
Group( [ (11,15)(12,16)(13,17)(14,18), (11,17,15,13)(12,18,16,14) ] )
gap> X16 := XModByPeifferQuotient( P16 );
[d16/P->sk4]
gap> Display( X16 );
Crossed module [d16/P->sk4] :-
: Source group has generators:
[ f1, f2 ]

: Range group has generators:
[ (11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16) ]

: Boundary homomorphism maps source generators to:
[ (12,18)(13,17)(14,16), (11,15)(12,16)(13,17)(14,18) ]
The automorphism group is trivial

gap> iso16 := IsomorphismPermGroup( Source( X16 ) );;
gap> S16 := Image( iso16 );
Group([ (1,3)(2,4), (1,2)(3,4) ])

2.2.3 IsPermXMod

♦ IsPermXMod(X0) (property)

♦ IsPcPreXMod(X0) (property)

When both source and range groups are of the same type, corresponding properties are assigned
to the crossed module.

2.3 Cat1-groups and pre-cat1-groups

2.3.1 Source

♦ Source(C) (attribute)

♦ Range(C) (attribute)
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♦ TailMap(C) (attribute)

♦ HeadMap(C) (attribute)

♦ RangeEmbedding(C) (attribute)

♦ KernelEmbedding(C) (attribute)

♦ Boundary(C) (attribute)

♦ Name(C) (attribute)

♦ Size(C) (attribute)

These are the attributes of a cat1-group C in this implementation.
In [Lod82], Loday reformulated the notion of a crossed module as a cat1-group, namely a group

G with a pair of homomorphisms t,h : G → G having a common image R and satisfying certain
axioms. We find it convenient to define a cat1-group C = (e; t,h : G→ R) as having source group G,
range group R, and three homomorphisms: two surjections t,h : G→ R and an embedding e : R→ G
satisfying:

Cat 1 : te = he = idR, Cat 2 : [ker t,kerh] = {1G}.

It follows that teh = h, het = t, tet = t, heh = h.
The maps t,h are often referred to as the source and target, but we choose to call them the tail and

head of C , because source is the GAP term for the domain of a function. The RangeEmbedding is the
embedding of R in G, the KernelEmbedding is the inclusion of the kernel of t in G, and the Boundary
is the restriction of h to the kernel of t.

2.3.2 Cat1

♦ Cat1(args) (attribute)

♦ PreCat1ByTailHeadEmbedding(t, h, e) (attribute)

♦ PreCat1ByEndomorphisms(t, h) (attribute)

♦ PreCat1ByNormalSubgroup(G, N) (attribute)

♦ Cat1ByPeifferQuotient(P) (attribute)

♦ Reverse(C0) (attribute)

These are some of the constructors for pre-cat1-groups and cat1-groups.
The following listing shows an example of a cat1-group of pc-groups:

Example

gap> s3 := SymmetricGroup(IsPcGroup,3);;
gap> gens3 := GeneratorsOfGroup(s3);
[ f1, f2 ]
gap> pc4 := CyclicGroup(4);;
gap> SetName(s3,"s3"); SetName( pc4, "pc4" );
gap> s3c4 := DirectProduct( s3, pc4 );;
gap> SetName( s3c4, "s3c4" );
gap> gens3c4 := GeneratorsOfGroup( s3c4 );
[ f1, f2, f3, f4 ]
gap> a := gens3[1];; b := gens3[2];; one := One(s3);;
gap> t2 := GroupHomomorphismByImages( s3c4, s3, gens3c4, [a,b,one,one] );
[ f1, f2, f3, f4 ] -> [ f1, f2, &lt;identity&gt; of ..., &lt;identity&gt; of ... ]
gap> e2 := Embedding( s3c4, 1 );
[ f1, f2 ] -> [ f1, f2 ]
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gap> C2 := Cat1( t2, t2, e2 );
[s3c4=>s3]
gap> Display( C2 );
Cat1-group [s3c4=>s3] :-
: source group has generators:
[ f1, f2, f3, f4 ]

: range group has generators:
[ f1, f2 ]

: tail homomorphism maps source generators to:
[ f1, f2, &lt;identity&gt; of ..., &lt;identity&gt; of ... ]

: head homomorphism maps source generators to:
[ f1, f2, &lt;identity&gt; of ..., &lt;identity&gt; of ... ]

: range embedding maps range generators to:
[ f1, f2 ]

: kernel has generators:
[ f3, f4 ]

: boundary homomorphism maps generators of kernel to:
[ &lt;identity&gt; of ..., &lt;identity&gt; of ... ]

: kernel embedding maps generators of kernel to:
[ f3, f4 ]

gap> IsPcCat1( C2 );
true
gap> Size( C2 );
[ 24, 6 ]

2.3.3 Cat1OfXMod

♦ Cat1OfXMod(X0) (attribute)

♦ XModOfCat1(C0) (attribute)

♦ PreCat1OfPreXMod(P0) (attribute)

♦ PreXModOfPreCat1(P0) (attribute)

The category of crossed modules is equivalent to the category of cat1-groups, and the functors
between these two categories may be described as follows. Starting with the crossed module X = (∂ :
S→ R) the group G is defined as the semidirect product G = R n S using the action from X , with
multiplication rule

(r1,s1)(r2,s2) = (r1r2,s1
r2s2).

The structural morphisms are given by

t(r,s) = r, h(r,s) = r(∂s), er = (r,1).

On the other hand, starting with a cat1-group C = (e; t,h : G→ R), we define S = ker t, the range R
remains unchanged, and ∂ = h |S. The action of R on S is conjugation in G via the embedding of R in
G.

Example

gap> SetName( Kernel(t2), "ker(t2)" );;
gap> X2 := XModOfCat1( C2 );
[Group( [ f3, f4 ] )->s3]
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gap> Display( X2 );
Crossed module [ker(t2)->s3] :-
: Source group has generators:
[ f3, f4 ]

: Range group s3 has generators:
[ f1, f2 ]

: Boundary homomorphism maps source generators to:
[ &lt;identity&gt; of ..., &lt;identity&gt; of ... ]
The automorphism group is trivial

: associated cat1-group is [s3c4=>s3]

2.4 Selection of a small cat1-group

The Cat1 function may also be used to select a cat1-group from a data file. All cat1-structures on
groups of size up to 47 are stored in a list in file cat1data.g. Global variables CAT1 LIST MAX SIZE
:= 47 and CAT1 LIST CLASS SIZES are also stored. The XMod˜2 version of the database orders the
groups of size up to 47 according to the GAP˜4 numbering of small groups. The data is read into the
list CAT1 LIST only when this function is called.

2.4.1 Cat1Select

♦ Cat1Select(size, gpnum, num) (attribute)

This function may be used in three ways. Cat1Select( size ) returns the names of the
groups with this size. Cat1Select( size, gpnum ) prints a list of cat1-structures for this cho-
sen group. Cat1Select( size, gpnum, num ) (or just Cat1( size, gpnum, num )) returns the
chosen cat1-group.

The example below is the first case in which t 6= h and the associated conjugation crossed module
is given by the normal subgroup c3 of s3.

Example

gap> L18 := Cat1Select( 18 );
#I Loading cat1-group data into CAT1_LIST
Usage: Cat1( size, gpnum, num )
[ "d18", "c18", "s3c3", "c3ˆ2|Xc2", "c6c3" ]
gap> Cat1Select( 18, 4 );
There are 4 cat1-structures for the group c3ˆ2|Xc2.
[ [range gens], source & range names, [tail genimages], [head genimages] ] :-
[ [ (1,2,3), (4,5,6), (2,3)(5,6) ], tail = head = identity mapping ]
[ [ (2,3)(5,6) ], "c3ˆ2", "c2", [ (), (), (2,3)(5,6) ],
[ (), (), (2,3)(5,6) ] ]

[ [ (4,5,6), (2,3)(5,6) ], "c3", "s3", [ (), (4,5,6), (2,3)(5,6) ],
[ (), (4,5,6), (2,3)(5,6) ] ]

[ [ (4,5,6), (2,3)(5,6) ], "c3", "s3", [ (4,5,6), (4,5,6), (2,3)(5,6) ],
[ (), (4,5,6), (2,3)(5,6) ] ]

Usage: Cat1( size, gpnum, num );
Group has generators [ (1,2,3), (4,5,6), (2,3)(5,6) ]
4
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gap> C4 := Cat1( 18, 4, 4 );
[c3ˆ2|Xc2=>s3]
gap> Display( C4 );
Cat1-group [c3ˆ2|Xc2=>s3] :-
: source group has generators:
[ (1,2,3), (4,5,6), (2,3)(5,6) ]

: range group has generators:
[ (4,5,6), (4,5,6), (2,3)(5,6) ]

: tail homomorphism maps source generators to:
[ (4,5,6), (4,5,6), (2,3)(5,6) ]

: head homomorphism maps source generators to:
[ (), (4,5,6), (2,3)(5,6) ]

: range embedding maps range generators to:
[ (4,5,6), (4,5,6), (2,3)(5,6) ]

: kernel has generators:
[ ( 1, 2, 3)( 4, 6, 5) ]

: boundary homomorphism maps generators of kernel to:
[ (4,6,5) ]

: kernel embedding maps generators of kernel to:
[ (1,2,3)(4,6,5) ]

gap> XC4 := XModOfCat1( C4 );
[Group( [ ( 1, 2, 3)( 4, 6, 5) ] )->s3]



Chapter 3

2d-mappings

3.1 Morphisms of 2d-objects

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

3.1.1 Source

♦ Source(map) (attribute)

♦ Range(map) (attribute)

♦ SourceHom(map) (attribute)

♦ RangeHom(map) (attribute)

Morphisms of 2dObjects are implemented as 2dMappings. These have a pair of 2d-objects as
source and range, together with two group homomorphisms mapping between corresponding source
and range groups. These functions return fail when invalid data is supplied.

3.2 Morphisms of pre-crossed modules

3.2.1 IsXModMorphism

♦ IsXModMorphism(map) (property)

♦ IsCat1Morphism(map) (property)

♦ IsPreXModMorphism(map) (property)

♦ IsPreCat1Morphism(map) (property)

A morphism between two pre-crossed modules $\mathcal{X} {1} = (\partial 1 : S 1 \to R 1)$
and $\mathcal{X} {2} = (\partial 2 : S 2 \to R 2)$ is a pair $(\sigma, \rho)$, where $\sigma : S 1
\to S 2$ and $\rho : R 1 \to R 2$ commute with the two boundary maps and are morphisms for the
two actions:

∂2σ = ρ∂1, σ(sr) = (σs)ρr.

Thus $\sigma$ is the SourceHom and $\rho$ is the RangeHom. When $\mathcal{X} {1} =
\mathcal{X} {2}$ and $ \sigma, \rho $ are automorphisms then $(\sigma, \rho)$ is an automor-
phism of $\mathcal{X} 1$. The group of automorphisms is denoted by ${\rm Aut}(\mathcal{X} 1
).$

15



XMod 16

3.2.2 IsInjective

♦ IsInjective(map) (property)

♦ IsSurjective(map) (property)

♦ IsSingleValued(map) (property)

♦ IsTotal(map) (property)

♦ IsBijective(map) (property)

♦ IsEndomorphism2dObject(map) (property)

♦ IsAutomorphism2dObject(map) (property)

The usual properties of mappings are easily checked. It is usually sufficient to verify that both the
SourceHom and the RangeHom have the required property.

3.2.3 XModMorphism

♦ XModMorphism(args) (function)

♦ XModMorphismByHoms(X1, X2, sigma, rho) (operation)

♦ PreXModMorphism(args) (function)

♦ PreXModMorphismByHoms(P1, P2, sigma, rho) (operation)

♦ InclusionMorphism2dObjects(X1, S1) (operation)

♦ InnerAutomorphismXMod(X1, r) (operation)

♦ IdentityMapping(X1) (attribute)

♦ IsomorphismPermObject(obj) (function)

These are the constructors for morphisms of pre-crossed and crossed modules.
In the following example we construct a simple automorphism of the crossed module X1 con-

structed in the previous chapter.
Example

gap> sigma1 := GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ]
[ (5,9,8,7,6) ] );;

gap> rho1 := IdentityMapping( Range( X1 ) );
IdentityMapping( PAut(c5) )
gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 );
[[c5->PAut(c5))] => [c5->PAut(c5))]]
gap> Display( mor1 );
Morphism of crossed modules :-
: Source = [c5->PAut(c5))] with generating sets:
[ (5,6,7,8,9) ]
[ (1,2,4,3) ]

: Range = Source
: Source Homomorphism maps source generators to:
[ (5,9,8,7,6) ]

: Range Homomorphism maps range generators to:
[ (1,2,4,3) ]

gap> IsAutomorphism2dObject( mor1 );
true
gap> Print( RepresentationsOfObject(mor1), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2dMappingRep" ]
gap> Print( KnownPropertiesOfObject(mor1), "\n" );
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[ "IsTotal", "IsSingleValued", "IsInjective", "IsSurjective", "Is2dMapping",
"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2dObject",
"IsAutomorphism2dObject" ]

gap> Print( KnownAttributesOfObject(mor1), "\n" );
[ "Name", "Range", "Source", "SourceHom", "RangeHom" ]

3.3 Morphisms of pre-cat1-groups

A morphism of pre-cat1-groups from C1 = (e1; t1,h1 : G1→ R1) to C2 = (e2; t2,h2 : G2→ R2) is a pair
(γ,ρ) where γ : G1→ G2 and ρ : R1→ R2 are homomorphisms satisfying

h2γ = ρh1, t2γ = ρt1, e2ρ = γe1.

3.3.1 Cat1Morphism

♦ Cat1Morphism(args) (function)

♦ Cat1MorphismByHoms(C1, C2, gamma, rho) (operation)

♦ PreCat1Morphism(args) (function)

♦ PreCat1MorphismByHoms(P1, P2, gamma, rho) (operation)

♦ InclusionMorphism2dObjects(C1, S1) (operation)

♦ InnerAutomorphismCat1(C1, r) (operation)

♦ IdentityMapping(C1) (attribute)

♦ IsmorphismPermObject(obj) (function)

♦ SmallerDegreePerm2dObject(obj) (function)

The global function IsomorphismPermObject calls IsomorphismPermPreCat1, which con-
structs a morphism whose SourceHom and RangeHom are calculated using IsomorphismPermGroup
on the source and range. Similarly SmallerDegreePermutationRepresentation is used on the two
groups to obtain SmallerDegreePerm2dObject. Names are assigned automatically.

Example

gap> iso2 := IsomorphismPermObject( C2 );
[[s3c4=>s3] => [Ps3c4=>Ps3]]
gap> Display( iso2 );
Morphism of cat1-groups :-
: Source = [s3c4=>s3] with generating sets:
[ f1, f2, f3, f4 ]
[ f1, f2 ]

: Range = [Ps3c4=>Ps3] with generating sets:
[ ( 5, 9)( 6,10)( 7,11)( 8,12), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12),
( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12), ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)

(11,12) ]
[ (2,3), (1,2,3) ]

: Source Homomorphism maps source generators to:
[ ( 5, 9)( 6,10)( 7,11)( 8,12), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12),
( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12), ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)

(11,12) ]
: Range Homomorphism maps range generators to:
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[ (2,3), (1,2,3) ]

3.4 Operations on morphisms

3.4.1 Order

♦ Order(auto) (attribute)

♦ CompositionMorphism(map2, map1) (operation)

Composition of morphisms, written (<map1> * <map2>) for maps acting of the right, calls
the CompositionMorphism function for maps acting on the left, applied to the appropriate type of
2d-mapping.

Example

gap> Order( mor1 );
2
gap> GeneratorsOfGroup( d16 );
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]
gap> d8 := Subgroup( d16, [ cˆ2, d ] );;
gap> c4 := Subgroup( d8, [ cˆ2 ] );;
gap> SetName( d8, "d8" ); SetName( c4, "c4" );
gap> X16 := XModByNormalSubgroup( d16, d8 );
[d8->d16]
gap> X8 := XModByNormalSubgroup( d8, c4 );
[c4->d8]
gap> IsSubXMod( X16, X8 );
true
gap> incd8 := InclusionMorphism2dObjects( X16, X8 );
[[c4->d8] => [d8->d16]]
gap> rho := GroupHomomorphismByImages( d16, d16, [c,d], [c,dˆ(cˆ2)] );;
gap> sigma := GroupHomomorphismByImages( d8, d8, [cˆ2,d], [cˆ2,dˆ(cˆ2)] );;
gap> mor := XModMorphismByHoms( X16, X16, sigma, rho );
[[d8->d16] => [d8->d16]]
gap> comp := incd8 * mor;
[[c4->d8] => [d8->d16]]
gap> comp = CompositionMorphism( mor, incd8 );
true

3.4.2 Kernel

♦ Kernel(map) (operation)

♦ Kernel2dMapping(map) (attribute)

The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are
the kernels of the source and target homomorphisms. The inclusion of the kernel is a standard example
of a crossed square, but these have not yet been implemented.
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Example

gap> c2 := Group( (19,20) );;
gap> i2 := Subgroup( c2, [()] );;
gap> X9 := XModByNormalSubgroup( c2, i2 );;
gap> sigma9 := GroupHomomorphismByImages( c4, i2, [cˆ2], [()] );;
gap> rho9 := GroupHomomorphismByImages( d8, c2, [cˆ2,d], [(),(19,20)] );;
gap> mor9 := XModMorphism( X8, X9, sigma9, rho9 );
[[c4->d8] => [..]]
gap> K9 := Kernel( mor9 );
[Group( [ (11,13,15,17)(12,14,16,18) ] )->Group( [ (11,13,15,17)(12,14,16,18)
] )]



Chapter 4

Derivations and Sections

4.1 Whitehead Multiplication

4.1.1 IsDerivation

♦ IsDerivation(map) (property)

♦ IsSection(map) (property)

♦ IsUp2dMapping(map) (property)

The Whitehead monoid Der(X ) of X was defined in [Whi48] to be the monoid of all derivations
from R to S, that is the set of all maps χ : R→ S, with Whitehead multiplication ? (on the right)
satisfying:

Der 1 : χ(qr) = (χq)r (χr), Der 2 : (χ1 ?χ2)(r) = (χ2r)(χ1r)(χ2∂χ1r).

The zero map is the identity for this composition. Invertible elements in the monoid are called regular.
The Whitehead group of X is the group of regular derivations in Der(X ). In the next chapter the actor
of X is defined as a crossed module whose source and range are permutation representations of the
Whitehead group and the automorphism group of X .

The construction for cat1-groups equivalent to the derivation of a crossed module is the section.
The monoid of sections of C = (e; t,h : G→ R) is the set of group homomorphisms ξ : R→ G, with
Whitehead multiplication ?, (on the right) satisfying:

Sect 1 : tξ = idR, Sect 2 : (ξ1 ?ξ2)(r) = (ξ1r)(ehξ1r)−1(ξ2hξ1r) = (ξ2hξ1r)(ehξ1r)−1(ξ1r).

The embedding e is the identity for this composition, and h(ξ1 ?ξ2) = (hξ1)(hξ2). A section is regular
when hξ is an automorphism, and the group of regular sections is isomorphic to the Whitehead group.

If ε denotes the inclusion of S = kert in G then ∂ = hε : S→ R and

ξr = (er)(eχr) = (r,χr)

determines a section ξ of C in terms of the corresponding derivation χ of X , and conversely.

4.1.2 DerivationByImages

♦ DerivationByImages(X0, ims) (operation)

♦ Object2d(chi) (attribute)

20
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♦ GeneratorImages(chi) (attribute)

Derivations are stored like group homomorphisms by specifying the images of a generating set.
Images of the remaining elements may then be obtained using axiom {\bf Der\ 1}. The function
IsDerivation is automatically called to check that this procedure is well-defined.

In the following example a cat1-group C3 and the associated crossed module X3 are constructed,
where X3 is isomorphic to the inclusion of the normal cyclic group c3 in the symmetric group s3.

Example

gap> g18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;
gap> SetName( g18, "g18" );
gap> gen18 := GeneratorsOfGroup( g18 );;
gap> g1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;
gap> s3 := Subgroup( g18, gen18{[2..3]} );;
gap> SetName( s3, "s3" );;
gap> t := GroupHomomorphismByImages( g18, s3, gen18, [g2,g2,g3] );;
gap> h := GroupHomomorphismByImages( g18, s3, gen18, [(),g2,g3] );;
gap> e := GroupHomomorphismByImages( s3, g18, [g2,g3], [g2,g3] );;
gap> C3 := Cat1( t, h, e );
[g18=>s3]
gap> SetName( Kernel(t), "c3" );;
gap> X3 := XModOfCat1( C3 );;
gap> Display( X3 );
Crossed module [c3->s3] :-
: Source group has generators:
[ ( 1, 2, 3)( 4, 6, 5) ]

: Range group has generators:
[ (4,5,6), (2,3)(5,6) ]

: Boundary homomorphism maps source generators to:
[ (4,6,5) ]

: Action homomorphism maps range generators to automorphisms:
(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(2,3)(5,6) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

: associated cat1-group is [g18=>s3]

gap> imchi := [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ];;
gap> chi := DerivationByImages( X3, imchi );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ] )

4.1.3 SectionByImages

♦ SectionByImages(C, ims) (operation)

♦ SectionByDerivation(chi) (operation)

♦ DerivationBySection(xi) (operation)

Sections are group homomorphisms, so do not need a special representation. Operations
SectionByDerivation and DerivationBySection convert derivations to sections, and vice-versa,
calling Cat1OfXMod and XModOfCat1 automatically.
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Two strategies for calculating derivations and sections are implemented, see [AW00]. The default
method for AllDerivations is to search for all possible sets of images using a backtracking proce-
dure, and when all the derivations are found it is not known which are regular. In the GAP3 version of
this package, the default method for AllSections( <C> ) was to compute all endomorphisms on
the range group R of C as possibilities for the composite hξ. A backtrack method then found possible
images for such a section. In the current version the derivations of the associated crossed module are
calculated, and these are all converted to sections using SectionByDerivation.

Example

gap> xi := SectionByDerivation( chi );
[ (4,5,6), (2,3)(5,6) ] -> [ (1,2,3), (1,2)(4,6) ]

4.2 Whitehead Groups and Monoids

4.2.1 RegularDerivations

♦ RegularDerivations(X0) (attribute)

♦ AllDerivations(X0) (attribute)

♦ RegularSections(C0) (attribute)

♦ AllSections(C0) (attribute)

♦ ImagesList(obj) (attribute)

♦ ImagesTable(obj) (attribute)

There are two functions to determine the elements of the Whitehead group and the White-
head monoid of X 0, namely RegularDerivations and AllDerivations. (The functions
RegularSections and AllSections perform corresponding tasks for a cat1-group.)

Using our example X3 we find that there are just nine derivations, six of them regular, and the
associated group is isomorphic to s3.

Example

gap> all3 := AllDerivations( X3 );;
gap> imall3 := ImagesList( all3 );; Display( imall3 );
[ [ (), () ],
[ (), ( 1, 2, 3)( 4, 6, 5) ],
[ (), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 2, 3)( 4, 6, 5), () ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 3, 2)( 4, 5, 6), () ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 3, 2)( 4, 5, 6) ]
]

gap> KnownAttributesOfObject( all3 );
[ "Object2d", "ImagesList", "AllOrRegular", "ImagesTable" ]
gap> Display( ImagesTable( all3 ) );
[ [ 1, 1, 1, 1, 1, 1 ],
[ 1, 1, 1, 2, 2, 2 ],
[ 1, 1, 1, 3, 3, 3 ],
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[ 1, 2, 3, 1, 2, 3 ],
[ 1, 2, 3, 2, 3, 1 ],
[ 1, 2, 3, 3, 1, 2 ],
[ 1, 3, 2, 1, 3, 2 ],
[ 1, 3, 2, 2, 1, 3 ],
[ 1, 3, 2, 3, 2, 1 ] ]

4.2.2 CompositeDerivation

♦ CompositeDerivation(chi1, chi2) (operation)

♦ ImagePositions(chi) (attribute)

♦ CompositeSection(xi1, xi2) (operation)

The Whitehead product χ1 ?χ2 is implemented as CompositeDerivation( <chi1>, <chi2>
). The composite of two sections is just the composite of homomorphisms.

Example

gap> reg3 := RegularDerivations( X3 );;
gap> imder3 := ImagesList( reg3 );;
gap> chi4 := DerivationByImages( X3, imder3[4] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ ( 1, 3, 2)( 4, 5, 6), () ] )
gap> chi5 := DerivationByImages( X3, imder3[5] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im4 := ImagePositions( chi4 );
[ 1, 3, 2, 1, 3, 2 ]
gap> im5 := ImagePositions( chi5 );
[ 1, 3, 2, 2, 1, 3 ]
gap> chi45 := chi4 * chi5;
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im45 := ImagePositions( chi45 );
[ 1, 1, 1, 2, 2, 2 ]
gap> pos := Position( imder3, GeneratorImages( chi45 ) );
2

4.2.3 WhiteheadGroupTable

♦ WhiteheadGroupTable(X0) (attribute)

♦ WhiteheadMonoidTable(X0) (attribute)

♦ WhiteheadPermGroup(X0) (attribute)

♦ WhiteheadTransMonoid(X0) (attribute)

Multiplication tables for the Whitehead group or monoid enable the construction of permutation
or transformation representations.
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Example

gap> wgt3 := WhiteheadGroupTable( X3 );; Display( wgt3 );
[ [ 1, 2, 3, 4, 5, 6 ],
[ 2, 3, 1, 5, 6, 4 ],
[ 3, 1, 2, 6, 4, 5 ],
[ 4, 6, 5, 1, 3, 2 ],
[ 5, 4, 6, 2, 1, 3 ],
[ 6, 5, 4, 3, 2, 1 ] ]

gap> wpg3 := WhiteheadPermGroup( X3 );
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])
gap> wmt3 := WhiteheadMonoidTable( X3 );; Display( wmt3 );
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],
[ 2, 3, 1, 5, 6, 4, 8, 9, 7 ],
[ 3, 1, 2, 6, 4, 5, 9, 7, 8 ],
[ 4, 4, 4, 4, 4, 4, 4, 4, 4 ],
[ 5, 5, 5, 5, 5, 5, 5, 5, 5 ],
[ 6, 6, 6, 6, 6, 6, 6, 6, 6 ],
[ 7, 9, 8, 4, 6, 5, 1, 3, 2 ],
[ 8, 7, 9, 5, 4, 6, 2, 1, 3 ],
[ 9, 8, 7, 6, 5, 4, 3, 2, 1 ] ]

gap> wtm3 := WhiteheadTransMonoid( X3 );
Monoid( [ Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ),
Transformation( [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ] ),
Transformation( [ 3, 1, 2, 6, 4, 5, 9, 7, 8 ] ),
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4 ] ),
Transformation( [ 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ),
Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6 ] ),
Transformation( [ 7, 9, 8, 4, 6, 5, 1, 3, 2 ] ),
Transformation( [ 8, 7, 9, 5, 4, 6, 2, 1, 3 ] ),
Transformation( [ 9, 8, 7, 6, 5, 4, 3, 2, 1 ] ) ], ... )
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Actors of 2d-objects

5.1 Actor of a crossed module

The actor of X is a crossed module (∆ : W (X )→ Aut(X )) which was shown by Lue and Norrie, in
\cite{N2} and \cite{N1} to give the automorphism object of a crossed module X . In this implemen-
tation, the source of the actor is a permutation representation W of the Whitehead group of regular
derivations, and the range is a permutation representation A of the automorphism group Aut(X ) of X .

5.1.1 WhiteheadXMod

♦ WhiteheadXMod(xmod) (attribute)

♦ LueXMod(xmod) (attribute)

♦ NorrieXMod(xmod) (attribute)

♦ ActorXMod(xmod) (attribute)

♦ AutomorphismPermGroup(xmod) (attribute)

An automorphism (σ,ρ) of X acts on the Whitehead monoid by χ(σ,ρ) = σ◦χ◦ρ−1, and this action
determines the action for the actor. In fact the four groups R,S,W,A, the homomorphisms between
them, and the various actions, give five crossed modules forming a crossed square:

• X = (∂ : S→ R),˜ the initial crossed module, on the left,

• W (X ) = (η : S→W ),˜ the Whitehead crossed module of X , at the top,

• L(X ) = (∆◦η = α◦∂ : S→A),˜ the Lue crossed module of X , along the top-left to bottom-right
diagonal,

• N (X ) = (α : R→ A),˜ the Norrie crossed module of X , at the bottom, and

• Act(X ) = (∆ : W → A),˜ the actor crossed module of X , on the right.

5.1.2 Centre

♦ Centre(xmod) (attribute)

♦ InnerActor(xmod) (attribute)

♦ InnerMorphism(xmod) (attribute)

25
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Pairs of boundaries or identity mappings provide six morphisms of crossed modules. In particular,
the boundaries of W (X ) and N (X ) form the inner morphism of X , mapping source elements to prin-
cipal derivations and range elements to inner automorphisms. The image of X under this morphism
is the inner actor of X , while the kernel is the centre of X . In the example which follows, using the
crossed module (X3 : c3 -> s3) from Chapter 4, the inner morphism is an inclusion of crossed
modules.

Example

gap> X3;
[c3->s3]]
gap> WGX3 := WhiteheadPermGroup( X3 );
Group( [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ] )
gap> APX3 := AutomorphismPermGroup( X3 );
Group( [ (3,4,5), (1,2)(4,5) ] )
gap> WX3 := WhiteheadXMod( X3 );; Display( WX3 );
Crossed module Whitehead[c3->s3] :-
: Source group has generators:
[ ( 1, 2, 3)( 4, 6, 5) ]

: Range group has generators:
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]

: Boundary homomorphism maps source generators to:
[ (1,3,2)(4,6,5) ]

: Action homomorphism maps range generators to automorphisms:
(1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> LX3 := LueXMod( X3 );
Lue[c3->s3]
gap> NX3 := NorrieXMod( X3 );
Norrie[c3->s3]
gap> AX3 := ActorXMod( X3 );; Display( AX3);
Crossed module Actor[c3->s3] :-
: Source group has generators:
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]

: Range group has generators:
[ (3,4,5), (1,2)(4,5) ]

: Boundary homomorphism maps source generators to:
[ (3,5,4), (1,2)(4,5) ]

: Action homomorphism maps range generators to automorphisms:
(3,4,5) --> { source gens --> [ (1,2,3)(4,5,6), (1,5)(2,4)(3,6) ] }
(1,2)(4,5) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }
These 2 automorphisms generate the group of automorphisms.

gap> IAX3 := InnerActorXMod( X3 );; Display( IAX3 );
Crossed module InnerActor[c3->s3] :-
: Source group has generators:
[ (1,3,2)(4,6,5) ]

: Range group has generators:
[ (3,5,4), (1,2)(4,5) ]

: Boundary homomorphism maps source generators to:
[ (3,4,5) ]

: Action homomorphism maps range generators to automorphisms:
(3,5,4) --> { source gens --> [ (1,3,2)(4,6,5) ] }
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(1,2)(4,5) --> { source gens --> [ (1,2,3)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> IMX3 := InnerMorphism( X3 );; Display( IMX3 );
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:
[ ( 1, 2, 3)( 4, 6, 5) ]
[ (4,5,6), (2,3)(5,6) ]

: Range = Actor[c3->s3] with generating sets:
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
[ (3,4,5), (1,2)(4,5) ]

: Source Homomorphism maps source generators to:
[ (1,3,2)(4,6,5) ]

: Range Homomorphism maps range generators to:
[ (3,5,4), (1,2)(4,5) ]

gap> Centre( X3 );
[Group( () )->Group( () )]
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Induced Constructions

6.1 Induced crossed modules

6.1.1 InducedXMod

♦ InducedXMod(args) (function)

♦ InducedCat1(args) (function)

♦ IsInducedXMod(xmod) (property)

♦ IsInducedCat1(cat1) (property)

♦ MorphismOfInducedXMod(xmod) (attribute)

A morphism of crossed modules (σ,ρ) : X1 → X2 factors uniquely through an induced crossed
module ρ∗X1 = (δ : ρ∗S1→ R2). Similarly, a morphism of cat1-groups factors through an induced
cat1-group. Calculation of induced crossed modules of X also provides an algebraic means of deter-
mining the homotopy 2-type of homotopy pushouts of the classifying space of X . For more back-
ground from algebraic topology see references in \cite{BH1}, \cite{BW1}, \cite{BW2}. Induced
crossed modules and induced cat1-groups also provide the building blocks for constructing pushouts
in the categories XMod and Cat1.

Data for the cases of algebraic interest is provided by a conjugation crossed module X = (∂ : S→
R) and a homomorphism ι from R to a third group Q. The output from the calculation is a crossed
module ι∗X = (δ : ι∗S→ Q) together with a morphism of crossed modules X → ι∗X . When ι is
a surjection with kernel K then ι∗S = [S,K] (see \cite{BH1}). When ι is an inclusion the induced
crossed module may be calculated using a copower construction \cite{BW1} or, in the case when R
is normal in Q, as a coproduct of crossed modules (\cite{BW2}, but not yet implemented). When ι

is neither a surjection nor an inclusion, ι is written as the composite of the surjection onto the image
and the inclusion of the image in Q, and then the composite induced crossed module is constructed.
These constructions use Tietze transformation routines in the library file tietze.gi.

As a first, surjective example, we take for X the normal inclusion crossed module of a4 in s4, and
for ι the surjection from s4 to s3 with kernel k4. The induced crossed module is isomorphic to X3.

Example

gap> s4gens := [ (1,2), (2,3), (3,4) ];;
gap> s4 := Group( s4gens );; SetName(s4,"s4");
gap> a4gens := [ (1,2,3), (2,3,4) ];;
gap> a4 := Subgroup( s4, a4gens );; SetName( a4, "a4" );
gap> s3 := Group( (5,6),(6,7) );; SetName( s3, "s3" );

28



XMod 29

gap> epi := GroupHomomorphismByImages( s4, s3, s4gens, [(5,6),(6,7),(5,6)] );;
gap> X4 := XModByNormalSubgroup( s4, a4 );;
gap> indX4 := SurjectiveInducedXMod( X4, epi );
[a4/ker->s3]
gap> morX4 := MorphismOfInducedXMod( indX4 );
[[a4->s4] => [a4/ker->s3]]

For a second, injective example we take for X the conjugation crossed module (∂ : c4→ d8) of
Chapter 3, and for ι the inclusion incd8 of d8 in d16. The induced crossed module has c4× c4 as
source.

Example

gap> incd8 := RangeHom( inc8 );;
gap> [ Source(incd8), Range(incd8), IsInjective(incd8) ];
[ d8, d16, true ]
gap> indX8 := InducedXMod( X8, incd8 );
#I Simplified presentation for induced group :-
<presentation with 2 gens and 3 rels of total length 12>
#I generators: [ f11, f14 ]
#I relators:
#I 1. 4 [ 1, 1, 1, 1 ]
#I 2. 4 [ 2, 2, 2, 2 ]
#I 3. 4 [ 2, -1, -2, 1 ]
#I induced group has Size: 16
#I factor 1 is abelian with invariants: [ 4, 4 ]
i*([c4->d8])
gap> Display( indX8 );
Crossed module i*([c4->d8]) :-
: Source group has generators:
[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]

: Range group d16 has generators:
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]

: Boundary homomorphism maps source generators to:
[ (11,13,15,17)(12,14,16,18), (11,17,15,13)(12,18,16,14) ]

: Action homomorphism maps range generators to automorphisms:
(11,12,13,14,15,16,17,18) --> { source gens -->

[ ( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12),
( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14) ] }
(12,18)(13,17)(14,16) --> { source gens -->

[ ( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14),
( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12) ] }
These 2 automorphisms generate the group of automorphisms.

gap> morX8 := MorphismOfInducedXMod( indX8 );
[[c4->d8] => i*([c4->d8])]
gap> Display( morX8 );
Morphism of crossed modules :-
: Source = [c4->d8] with generating sets:
[ (11,13,15,17)(12,14,16,18) ]
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]

: Range = i*([c4->d8]) with generating sets:
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[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]

: Source Homomorphism maps source generators to:
[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15) ]

: Range Homomorphism maps range generators to:
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]

For a third example we take the identity mapping on s3 as boundary, and the inclusion of s3 in s4 as
iota. The induced group is a general linear group GL(2,3).

Example

gap> s3b := Subgroup( s4, [ (2,3), (3,4) ] );; SetName( s3b, "s3b" );
gap> indX3 := InducedXMod( s4, s3b, s3b );
#I Simplified presentation for induced group :-
<presentation with 2 gens and 4 rels of total length 33>
#I generators: [ f11, f112 ]
#I relators:
#I 1. 2 [ 1, 1 ]
#I 2. 3 [ 2, 2, 2 ]
#I 3. 12 [ 1, -2, 1, 2, 1, 2, 1, -2, 1, 2, 1, 2 ]
#I 4. 16 [ -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1 ]
#I induced group has Size: 48
#I IdGroup = [ [ 48, 29 ] ]
i*([s3b->s3b])
gap> isoX3 := IsomorphismGroups( Source( indX3 ), GeneralLinearGroup(2,3) );
[ (1,2)(4,5)(6,8), (2,3,4)(5,6,7) ] ->
[ [ [ Z(3)ˆ0, 0*Z(3) ], [ Z(3), Z(3) ] ],
[ [ Z(3)ˆ0, Z(3)ˆ0 ], [ 0*Z(3), Z(3)ˆ0 ] ] ]

6.1.2 AllInducedXMods

♦ AllInducedXMods(Q) (operation)

This function calculates all the induced crossed modules InducedXMod( Q, P, M ), where P
runs over all conjugacy classes of subgroups of Q and M runs over all non-trivial subgroups of P.
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Crossed squares and their morphisms

Crossed squares were introduced by Guin-Wal\’ery and Loday (see, for example, [BL87]) as funda-
mental crossed squares of commutative squares of spaces, but are also of purely algebraic interest.
We denote by [n] the set {1,2, . . . ,n}. We use the n = 2 version of the definition of crossed n-cube as
given by Ellis and Steiner [ES87].

A crossed square R consists of the following:

• Groups RJ for each of the four subsets J ⊆ [2];

• a commutative diagram of group homomorphisms:

∂̈1 : R[2]→ R{2}, ∂̈2 : R[2]→ R{1}, ∂̇1 : R{1}→ R /0, ∂̇2 : R{2}→ R /0;

• actions of R /0 on R{1},R{2} and R[2] which determine actions of R{1} on R{2} and R[2] via ∂̇1 and
actions of R{2} on R{1} and R[2] via ∂̇2˜;

• a function ˜ � : R{1}×R{2}→ R[2]˜.

The following axioms must be satisfied for all l ∈ R[2], m,m1,m2 ∈ R{1}, n,n1,n2 ∈ R{2}, p ∈ R /0˜:

• the homomorphisms ∂̈1, ∂̈2 preserve the action of R /0˜;

• each of

R̈1 = (∂̈1 : R[2]→ R{2}), R̈2 = (∂̈2 : R[2]→ R{1}), Ṙ1 = (∂̇1 : R{1}→ R /0), Ṙ2 = (∂̇2 : R{2}→ R /0),

and the diagonal
R12 = (∂12 := ∂̇1∂̈2 = ∂̇2∂̈1 : R[2]→ R /0)

are crossed modules (with actions via R /0);

• � is a \emph{crossed pairing}:

– (m1m2�n) = (m1�n)m2 (m2�n)˜,

– (m�n1n2) = (m�n2) (m�n1)
n2˜,

– (m�n)p = (mp�np)˜;

• ∂̈1(m�n) = (n−1)m n \quad \mbox{and} \quad ∂̈2(m�n) = m−1 mn˜,

31



XMod 32

• (m� ∂̈1l) = (l−1)m l \quad \mbox{and} \quad (∂̈2l�n) = l−1 ln˜.

Note that the actions of R{1} on R{2} and R{2} on R{1} via R /0 are compatible since

m1
(nm) = m1

∂̇2(nm) = m1
m−1(∂̇2n)m = ((m1

m−1
)n)m .

7.1 Constructions for crossed squares

Analogously to the data structure used for crossed modules, crossed squares are implemented as
3d-objects. When times allows, cat2-groups will also be implemented, with conversion between
the two types of structure. Some standard constructions of crossed squares are listed below. At
present, a limited number of constructions are implemented. Morphisms of crossed squares have also
been implemented, though there is a lot still to do.

7.1.1 XSq

♦ XSq(args) (function)

♦ XSqByNormalSubgroups(P, N, M, L) (operation)

♦ ActorXSq(X0) (operation)

♦ Transpose3dObject(S0) (attribute)

♦ Name(S0) (attribute)

Here are some standard examples of crossed squares.

• If M,N are normal subgroups of a group P, and L = M ∩N, then the four inclusions, L→
N, L→M, M→ P, N→ P, together with the actions of P on M,N and L given by conjugation,
and the crossed pairing

� : M×N→M∩N, (m,n) 7→ [m,n] = m−1n−1mn = (n−1)mn = m−1mn

is a crossed square. This construction is implemented as XSqByNormalSubgroups(P,N,M,L);.

• The actor A(X0) of a crossed module X0 has been described in Chapter 5. The crossed pairing
is given by

� : R×W → S, (r,χ) 7→ χr .

This is implemented as ActorXSq( X0 );.

• The transpose of R is the crossed square R̃ obtained by interchanging R{1} with R{2}, ∂̈1 with
∂̈2, and ∂̇1 with ∂̇2. The crossed pairing is given by

�̃ : R{2}×R{1}→ R[2], (n,m) 7→ n�̃m := (m�n)−1 .

The following constructions will be implemented in the next release.

• If M,N are ordinary P-modules and A is an arbitrary abelian group on which P acts trivially,
then there is a crossed square with sides

0 : A→ N, 0 : A→M, 0 : M→ P, 0 : N→ P.
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• For a group L, the automorphism crossed module Act L = (ι : L→ Aut L) splits to form the
square with (ι1 : L→ Inn L) on two sides, and (ι2 : Inn L→Aut L) on the other two sides, where
ι1 maps l ∈ L to the inner automorphism βl : L→ L, l′ 7→ l−1l′l, and $\iota 2$ is the inclusion
of Inn L in Aut L. The actions are standard, and the crossed pairing is

� : Inn L× Inn L→ L, (βl,βl′) 7→ [l, l′] .

Example

gap> c := (11,12,13,14,15,16);;
gap> d := (12,16)(13,15);;
gap> cd := c*d;;
gap> d12 := Group( [ c, d ] );;
gap> s3a := Subgroup( d12, [ cˆ2, d ] );;
gap> s3b := Subgroup( d12, [ cˆ2, cd ] );;
gap> c3 := Subgroup( d12, [ cˆ2 ] );;
gap> SetName( d12, "d12"); SetName( s3a, "s3a" );
gap> SetName( s3b, "s3b" ); SetName( c3, "c3" );
gap> XSconj := XSqByNormalSubgroups( d12, s3b, s3a, c3 );
[ c3 -> s3b ]
[ | | ]
[ s3a -> d12 ]
gap> Name( XSconj );
"[c3->s3b,s3a->d12]"
gap> XStrans := Transpose3dObject( XSconj );
[ c3 -> s3a ]
[ | | ]
[ s3b -> d12 ]
gap> X12 := XModByNormalSubgroup( d12, s3a );
[s3a->d12]
gap> XSact := ActorXSq( X12 );
crossed square with:

up = Whitehead[s3a->d12]
left = [s3a->d12]

right = Actor[s3a->d12]
down = Norrie[s3a->d12]

7.1.2 IsXSq

♦ IsXSq(obj) (property)

♦ Is3dObject(obj) (property)

♦ IsPerm3dObject(obj) (property)

♦ IsPc3dObject(obj) (property)

♦ IsFp3dObject(obj) (property)

♦ IsPreXSq(obj) (property)

These are the basic properties for 3dobjects, and crossed squares in particular.
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7.1.3 Up2dObject

♦ Up2dObject(XS) (attribute)

♦ Left2dObject(XS) (attribute)

♦ Down2dObject(XS) (attribute)

♦ Right2dObject(XS) (attribute)

♦ DiagonalAction(XS) (attribute)

♦ XPair(XS) (attribute)

♦ ImageElmXPair(XS, pair) (operation)

In this implementation the attributes used in the construction of a crossed square XS are the four
crossed modules (2d-objects) on the sides of the square; the diagonal action of P on L, and the crossed
pairing.

The GAP development team have suggested that crossed pairings should be implemented as a
special case of BinaryMappings – a structure which does not yet exist in GAP. As a temporary
measure, crossed pairings have been implemented using Mapping2ArgumentsByFunction.

Example

gap> Up2dObject( XSconj );
[c3->s3b]
gap> Right2dObject( XSact );
Actor[s3a->d12]
gap> xpconj := XPair( XSconj );;
gap> ImageElmXPair( xpconj, [ (1,6)(2,5)(3,4), (2,6)(3,5) ] );
(1,3,5)(2,4,6)
gap> diag := DiagonalAction( XSact );
[ (2,3)(6,8)(7,9), (1,2)(4,6)(5,7) ] ->
[ [ (11,13,15)(12,14,16), (12,16)(13,15) ] ->

[ (11,15,13)(12,16,14), (12,16)(13,15) ],
[ (11,13,15)(12,14,16), (12,16)(13,15) ] ->

[ (11,15,13)(12,16,14), (11,13)(14,16) ] ]

7.2 Morphisms of crossed squares

This section describes an initial implementation of morphisms of (pre-)crossed squares.

7.2.1 Source

♦ Source(map) (attribute)

♦ Range(map) (attribute)

♦ Up2dMorphism(map) (attribute)

♦ Left2dMorphism(map) (attribute)

♦ Down2dMorphism(map) (attribute)

♦ Right2dMorphism(map) (attribute)

Morphisms of 3dObjects are implemented as 3dMappings. These have a pair of 3d-objects
as source and range, together with four 2d-morphisms mapping between the four pairs of crossed
modules on the four sides of the squares. These functions return fail when invalid data is supplied.
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7.2.2 IsXSqMorphism

♦ IsXSqMorphism(map) (property)

♦ IsPreXSqMorphism(map) (property)

♦ IsBijective(mor) (property)

♦ IsAutomorphism3dObject(mor) (property)

A morphism mor between two pre-crossed squares R1 and R2 consists of four crossed module mor-
phisms Up2dMorphism( mor ), mapping the Up2dObject of R1 to that of R2, Left2dMorphism(
mor ), Down2dMorphism( mor ) and Right2dMorphism( mor ). These four morphisms are re-
quired to commute with the four boundary maps and to preserve the rest of the structure. The current
version of IsXSqMorphism does not perform all the required checks.

Example

gap> ad12 := GroupHomomorphismByImages( d12, d12, [c,d], [c,dˆc] );;
gap> as3a := GroupHomomorphismByImages( s3a, s3a, [cˆ2,d], [cˆ2,dˆc] );;
gap> as3b := GroupHomomorphismByImages( s3b, s3b, [cˆ2,cd], [cˆ2,cdˆc] );;
gap> idc3 := IdentityMapping( c3 );;
gap> upconj := Up2dObject( XSconj );;
gap> leftconj := Left2dObject( XSconj );;
gap> downconj := Down2dObject( XSconj );;
gap> rightconj := Right2dObject( XSconj );;
gap> up := XModMorphismByHoms( upconj, upconj, idc3, as3b );
[[c3->s3b] => [c3->s3b]]
gap> left := XModMorphismByHoms( leftconj, leftconj, idc3, as3a );
[[c3->s3a] => [c3->s3a]]
gap> down := XModMorphismByHoms( downconj, downconj, as3a, ad12 );
[[s3a->d12] => [s3a->d12]]
gap> right := XModMorphismByHoms( rightconj, rightconj, as3b, ad12 );
[[s3b->d12] => [s3b->d12]]
gap> autoconj := XSqMorphism( XSconj, XSconj, up, left, down, right );;
gap> ord := Order( autoconj );;
gap> Display( autoconj );
Morphism of crossed squares :-
: Source = [c3->s3b,s3a->d12]
: Range = [c3->s3b,s3a->d12]
: order = 3
: up-left: [ [ (11,13,15)(12,14,16) ], [ (11,13,15)(12,14,16) ] ]
: up-right: [ [ (11,13,15)(12,14,16), (11,16)(12,15)(13,14) ],
[ (11,13,15)(12,14,16), (11,12)(13,16)(14,15) ] ]

: down-left: [ [ (11,13,15)(12,14,16), (12,16)(13,15) ],
[ (11,13,15)(12,14,16), (11,13)(14,16) ] ]

: down-right: [ [ (11,12,13,14,15,16), (12,16)(13,15) ],
[ (11,12,13,14,15,16), (11,13)(14,16) ] ]

gap> KnownPropertiesOfObject( autoconj );
[ "IsTotal", "IsSingleValued", "IsInjective", "IsSurjective", "Is3dMapping",
"IsPreXSqMorphism", "IsXSqMorphism", "IsEndomorphism3dObject" ]

gap> IsAutomorphism3dObject( autoconj );
true
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Utility functions

By a utility function we mean a {\GAP} function which is

• needed by other functions in this package,

• not (as far as we know) provided by the standard GAP library,

• more suitable for inclusion in the main library than in this package.

8.1 Inclusion and Restriction Mappings

These two functions have been moved to the gpd package, but are still documented here.

8.1.1 InclusionMappingGroups

♦ InclusionMappingGroups(G, H) (operation)

♦ RestrictionMappingGroups(hom, src, rng) (operation)

♦ MappingToOne(G, H) (operation)

The first set of utilities concerns inclusion and restriction mappings. Restriction may apply to both
the source and the range of the map. The map incd8 is the inclusion of d8 in d16 used in Section 3.4.

Example

gap> Print( incd8, "\n" );
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ] ->
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ]
gap> imd8 := Image( incd8 );;
gap> resd8 := RestrictionMappingGroups( incd8, c4, imd8 );;
gap> Source( res8 ); Range( res8 );
c4
Group([ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ])
gap> MappingToOne( c4, imd8 );
[ (11,13,15,17)(12,14,16,18) ] -> [ () ]
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8.2 Endomorphism Classes and Automorphisms

8.2.1 EndomorphismClasses

♦ EndomorphismClasses(grp, case) (function)

♦ EndoClassNaturalHom(class) (attribute)

♦ EndoClassIsomorphism(class) (attribute)

♦ EndoClassConjugators(class) (attribute)

♦ AutoGroup(class) (attribute)

The monoid of endomorphisms of a group is used when calculating the monoid of derivations of
a crossed module and when determining all the cat1-structures on a group.

An endomorphism ε of R with image H ′ is determined by

• a normal subgroup N of R and a permutation representation θ : R/N→Q of the quotient, giving
a projection θ◦ν : R→ Q, where ν : R→ R/N is the natural homomorphism;

• an automorphism α of Q;

• a subgroup H ′ in a conjugacy class [H] of subgroups of R isomorphic to Q having representative
H, an isomorphism φ : Q∼= H, and a conjugating element c ∈ R such that Hc = H ′.

Then ε takes values
εr = (φαθνr)c .

Endomorphisms are placed in the same class if they have the same choice of N and [H], and so the
number of endomorphisms is

|End(R)| = ∑
classes

|Aut(Q)|.|[H]| .

The function EndomorphismClasses( <grp>, <case> ) may be called in three ways:

• case 1 includes automorphisms and the zero map,

• case 2 excludes automorphisms and the zero map,

• case 3 is when N intersects H trivially.
Example

gap> end8 := EndomorphismClasses( d8, 1 );;
gap> Length( end8 );
13
gap> e4 := end8[4];
<enumerator>
gap> EndoClassNaturalHom( e4 );
GroupHomomorphismByImages( d8, Group( [ f1 ] ),
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ], [ f1, f1 ] )
gap> EndoClassIsomorphism( e4 );
Pcgs([ f1 ]) -> [ (11,13)(14,18)(15,17) ]
gap> EndoClassConjugators( e4 );
[ (), (12,18)(13,17)(14,16) ]
gap> AutoGroup( e4 );
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Group( [ Pcgs([ f1 ]) -> [ f1 ] ] )
gap> L := List( end8, e -> Length(EndoClassConjugators(e)) * Size(AutoGroup(e)) );
[ 8, 1, 2, 2, 1, 2, 2, 1, 2, 2, 6, 6, 1 ]
gap> Sum( L );
36

8.2.2 InnerAutomorphismByNormalSubgroup

♦ InnerAutomorphismByNormalSubgroup(G, N) (operation)

♦ IsGroupOfAutomorphisms(A) (property)

Inner automorphisms of a group G by the elements of a normal subgroup N are calculated with the
first of these functions, usually with G = N.

Example

gap> autd8 := AutomorphismGroup( d8 );;
gap> innd8 := InnerAutomorphismsByNormalSubgroup( d8, d8 );;
gap> GeneratorsOfGroup( innd8 );
[ InnerAutomorphism( d8, (11,13,15,17)(12,14,16,18) ),
InnerAutomorphism( d8, (12,18)(13,17)(14,16) ) ]

gap> IsGroupOfAutomorphisms( innd8 );
true

8.3 Abelian Modules

8.3.1 AbelianModuleObject

♦ AbelianModuleObject(grp, act) (operation)

♦ IsAbelianModule(obj) (property)

♦ AbelianModuleGroup(obj) (attribute)

♦ AbelianModuleAction(obj) (attribute)

An abelian module is an abelian group together with a group action. These are used by the crossed
module constructor XModByAbelianModule.

The resulting Xabmod is isomorphic to the output from XModByAutomorphismGroup( k4 );.
Example

gap> x := (6,7)(8,9);; y := (6,8)(7,9);; z := (6,9)(7,8);;
gap> k4 := Group( x, y ); SetName( k4, "k4" );
gap> s3 := Group( (1,2), (2,3) );; SetName( s3, "s3" );
gap> alpha := GroupHomomorphismByImages( k4, k4, [x,y], [y,x] );
gap> beta := GroupHomomorphismByImages( k4, k4, [x,y], [x,z] );
gap> aut := Group( alpha, beta );
gap> act := GroupHomomorphismByImages( s3, aut, [(1,2),(2,3)], [alpha,beta] );
gap> abmod := AbelianModuleObject( k4, act );
&lt;enumerator&rt;
gap> Xabmod := XModByAbelianModule( abmod );
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[k4->s3]

8.4 Distinct and Common Representatives

8.4.1 DistinctRepresentatives

♦ DistinctRepresentatives(list) (operation)

♦ CommonRepresentatives(list) (operation)

♦ CommonTransversal(grp, subgrp) (operation)

♦ IsCommonTransversal(grp, subgrp, list) (operation)

The final set of utilities deal with lists of subsets of [1 . . .n] and construct systems of distinct and
common representatives using simple, non-recursive, combinatorial algorithms.

When L is a set of n subsets of [1 . . .n] and the Hall condition is satisfied (the union of any k
subsets has at least k elements), a set of distinct representatives exists.

When J,K are both lists of n sets, the function CommonRepresentatives returns two lists: the set
of representatives, and a permutation of the subsets of the second list. It may also be used to provide a
common transversal for sets of left and right cosets of a subgroup H of a group G, although a greedy
algorithm is usually quicker.

Example

gap> J := [ [1,2,3], [3,4], [3,4], [1,2,4] ];;
gap> DistinctRepresentatives( J );
[ 1, 3, 4, 2 ]
gap> K := [ [3,4], [1,2], [2,3], [2,3,4] ];;
gap> CommonRepresentatives( J, K );
[ [ 3, 3, 3, 1 ], [ 1, 3, 4, 2 ] ]
gap> CommonTransversal( d16, c4 );
[ (), (12,18)(13,17)(14,16), (11,12,13,14,15,16,17,18),
(11,12)(13,18)(14,17)(15,16) ]

gap> IsCommonTransversal( d16, c4, [ (), c, d, c*d ] );
true
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Development history

This chapter, which contains details of the major changes to the package as it develops, was first
created in April 2002. Details of the changes from XMod 1 to XMod 2.001 are far from complete.
Starting with version 2.009 the file CHANGES lists the minor changes as well as the more fundamental
ones.

The inspiration for this package was the need, in the mid-1990’s, to calculate induced crossed
modules (see [BW95], [BW96], [BW03]). GAP was chosen over other computational group theory
systems because the code was freely available, and it was possible to modify the Tietze transformation
code so as to record the images of the original generators of a presentation as words in the simplified
presentation. (These modifications are now a standard part of the Tietze transformation package in
GAP.)

9.1 Changes from version to version

9.1.1 Version 1 for GAP 3

The first version of XMod became an accepted package for GAP 3.4.3 in December 1996.

9.1.2 Version 2

Conversion of XMod 1 from GAP 3.4.3 to the new GAP syntax began soon after GAP 4 was released,
and had a lengthy gestation. The new GAP syntax encouraged a re-naming of many of the function
names. An early decision was to introduce generic names 2dObject for (pre-)crossed modules and
(pre-)cat1-groups, and 2dMapping for the various types of morphism. In 2.009 3dObject is used for
crossed squares and cat2-groups, and 3dMapping for their morphisms. A generic name for derivations
and sections is also required, and Up2dMapping is currently used.

9.1.3 Version 2.001 for GAP 4

This was the first version of XMod for GAP 4, completed in April 2002 in a rush to catch the release
of GAP 4.3. Functions for actors and induced crossed modules were not included, nor many of the
functions for derivations and sections, for example InnerDerivation.
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9.1.4 Induced crossed modules

During the period May 20th - May 27th 2002 converted induce.g to induce.gd and induce.gi
(later renamed induce2.gd, induce2.gi), at least as regards induced crossed modules. (Induced
cat1-groups may be convereted one day.) For details, see the file CHANGES.

9.1.5 Versions 2.002 – 2.006

Version 2.002 was prepared for the 4.4 release at the end of January 2004.
Version 2.003 of February 28th 2004 just fixed some file protections.
Version 2.004 of April 14th 2004 added the Cat1Select functionality of version 1 to the Cat1

function (see also version 2.007).
Version 2.005 of April 16th 2004 moved the example files from tst/test i.g to

examples/example i.g, and converted testmanual.g to a proper test file tst/xmod manual.tst.
A significant change was the conversion of the actor crossed module functions from the 3.4.4

version, including AutomorphismPermGroup for a crossed module, WhiteheadXMod, NorrieXMod,
LueXMod, ActorXMod, Centre of a crossed module, InnerMorphism and InnerActorXMod.

9.1.6 Versions 2.007 – 2.010

These versions contain changes made between September 2004 and October 2007.

• Added basic functions for crossed squares, considered as 3dObjects with crossed pairings,
and their morphisms. Groups with two normal subgroups, and the actor of a crossed module,
provide standard examples of crossed squares. (Cat2-groups are not yet implemented.)

• Converted the documentation to the format of the GAPDoc package.

• Improved AutomorphismPermGroup for crossed modules, and introduced a special method for
conjugation crossed modules.

• Substantial revisons made to XModByCentralExtension, NorrieXMod, LueXMod, ActorXMod,
and InclusionInducedXModByCopower.

• Reintroduced the Cat1Select operation.

• Version 2.010, of October 2007, was timed to coincide with the release of GAP 4.4.10,
and included a change of filenames; correct file protection codes; and an improvement to
AutomorphismPermGroup for crossed modules.

9.1.7 Version 2.12

This latest version was released in November 2008.

• The file CHANGES was introduced, so that minor corrections need no longer be listed in this
chapter.

• The file makedocrel.g was copied, with appropriate changes, from GAPDoc, and now provides
the correct way to update the documentation.

• The first functions for crossed modules of groupoids were introduced.
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• The package webpage has moved along with the whole of the Bangor Maths website:
http://www.maths.bangor.ac.uk/.

• A GNU General Public License declaration has been added.

9.2 What needs doing next?

• Speed up the calculation of Whitehead groups.

• Add more functions for 3dObjects and implement cat2-groups.

• Add interaction with package Gpd implementing group groupoid version of a crossed module
and crossed modules over groupoids.

• Add interaction with IdRel, XRes, and natp.

• Need InverseGeneralMapping for morphisms.

• Need more features for FpXMods, PcXMods, etc.

• Implement actions of a crossed module.

• Implement FreeXMods.

• Implement an operation Isomorphism2dObjects.

• Allow the construction of a group of morphisms of crossed modules.

• Complete the conversion from Version 1 of the calculation of sections using EndoClasses.

http://www.maths.bangor.ac.uk/
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