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1 Introduction

The GAP 4 package HAP provides a library of functions for computations related to the cohomology of groups.
Both finite and infinite groups are handled, with main emphasis on integer coefficients. The main manual
for the library is available only in html format and can be accessed from the file pkg/Hap/www/index.html.
A summary of the manual is provided below.

HAP can be used to make basic calculations in the cohomology of finite and infinite groups. For example, to
calculate the integral homology Hn(D201,Z) = Z402 of the dihedral group of order 402 in dimension n = 99
we could perform the following commands.

gap> F:=FreeGroup(2);; x:=F.1;; y:=F.2;;

gap> G:=F/[x^2,y^201,(x*y)^2];; G:=Image(IsomorphismPermGroup(G));;

gap> GroupHomology(G,99);

[ 2, 3, 67 ]

The HAP command GroupHomology(G,n) returns the abelian group invariants of the n-dimensional homology
of the group G with coefficients in the integers Z with trivial G-action.

The above example has two features that dramatically help the computations. Firstly, D201 is a relatively
small group. Secondly, D201 has periodic homology with period 4 (meaning that Hn(D201,Z) = Hn+4(D201,Z)
for n > 0) and so the homology groups themselves are small.

Typically, the homology of larger non-periodic groups can only be computed in low dimensions. The following
commands show that:

the alternating group A7 (of order 2520) has H10(A7,Z) = Z6 ⊕ (Z3)
2 .

the special linear group SL3(Z3) (of order 5616) has H8(SL3(Z3),Z) = Z6 .

the group SL3(Z5) (of order 372000) has H3(SL3(Z5),Z) = Z24 .

the abelian group G = C2×C4×C6×C8×C10×C12 (of order 46080) has H6(G,Z) = (Z2)280⊕(Z4)
12⊕(Z12)

3

.

gap> GroupHomology(AlternatingGroup(7),10);

[ 2, 3, 3, 3 ]

gap> S:=Image(IsomorphismPermGroup(SL(3,3)));;

gap> GroupHomology(S,8);

[ 2, 3 ]

gap> S:=Image(IsomorphismPermGroup(SL(3,5)));;

gap> GroupHomology(S,3);

[ 8, 3 ]
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gap>G:=AbelianGroup([2,4,6,8,10,12]);;

gap> GroupHomology(G,6);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,

2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 12, 12, 12 ]

The command GroupHomology() returns the mod p homology when an optional third argument is set equal
to a prime p. The following shows that the Sylow 2-subgroup P of the Mathieu simple group M24 has
6-dimensional mod 2 homology H6(P ,Z2) = (Z2)

143 . (The group P has order 1024 and the computation
takes over two hours to complete.))

gap> GroupHomology(SylowSubgroup(MathieuGroup(24),2),6,2);

143

The homology of certain infinite groups can also be calculated. The following shows that the classical braid
group B on eight strings (represented by a linear Coxeter diagram D with seven vertices) has 5-dimensional
integral homology H5(B ,Z) = Z3 .

gap> D:=[ [1,[2,3]], [2,[3,3]], [3,[4,3]], [4,[5,3]], [5,[6,3]], [6,[7,3]] ];;

gap> GroupHomology(D,5);

[ 3 ]

The command GroupHomology(G,n) is a composite of several more basic HAP functions and attempts, in a
fairly crude way, to make reasonable choices for a number of parameters in the calculation of group homology.
For a particular group G you would almost certainly be better off using the more basic functions directly
and making the choices yourself! Similar comments apply to functions for cohomology (ring) calculations.
A summery of the basic HAP functions is given in the next chapter. For full details consult the html HAP
manual.



2 List of HAP functions

The following is a list of the functions available in the HAP package. The html manual (avaiable in the
directory pkg/Hap/www) gives full details.

1 I AddWords(v,w)

Inputs two words v,w in a free ZG-module and returns their sum v+w. If the characteristic of Z is greater
than 0 then the next function should be more efficient.

2 I AddWordsModP(v,w,p)

Inputs two words v,w in a free ZG-module and the characteristic p of Z. It returns the sum v+w. If p=0
the previous function might be fractionally quicker.

3 I AlgebraicReduction(w)
I AlgebraicReduction(w,p)

Inputs a word w in a free ZG-module and returns a reduced version of the word in which all pairs of
mutually inverse letters have been cancelled. The reduction is performed in a free abelian group unless the
characteristic p of Z is entered.

4 I CocycleCondition(R,n)

Inputs a resolution R and an integer n¿0. It returns an integer matrix M with the following property. Suppose
d=R.dimension(n). An integer vector f = [f1, . . . , fd ] then represents a ZG-homomorphism Rn → Zq which
sends the i-th generator of Rn to the integer fi in the trivial ZG-module Zq (where possibly q=0). The
homomorphism f is a cocycle if and only if M t f = 0 mod q.

5 I Cohomology(X)

Inputs either a cochain complex X = C or a cochain map X = (C → D) over the integers Z. At present
only characteristic 0 is implemented.

If X = C then the torsion coefficients of Hn(C ) are retuned.

If X = (C → D) then the induced homomorphism Hn(C ) → Hn(D) is returned as a homomorphism of
finitely presented groups.

6 I CoxeterDiagramComponents(D)

Inputs a Coxeter diagram D and returns a list [D1, . . . ,Dd ] of the maximal connected subgraphs Di .

7 I CoxeterDiagramDegree(D,v)

Inputs a Coxeter diagram D and vertex v. It returns the degree of v (i.e. the number of edges incident with
v).

8 I CoxeterDiagramFpArtinGroup(D)

Inputs a Coxeter diagram D and returns the corresponding finitely presented Artin group.
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9 I CoxeterDiagramFpCoxeterGroup(D)

Inputs a Coxeter diagram D and returns the corresponding finitely presented Coxeter group.

10 I CoxeterDiagramIsSpherical(D)

Inputs a Coxeter diagram D and returns “true” if the associated Coxeter groups is finite, and returns “false”
otherwise.

11 I CoxeterDiagramMatrix(D)

Inputs a Coxeter diagram D and returns a matrix representation of it. The matrix is given as a function
DiagramMatrix(D)(i,j) where i,j can range over the vertices.

12 I CoxeterSubDiagram(D,V)

Inputs a Coxeter diagram D and a subset V of its vertices. It returns the full sub-diagram of D with vertex
set V.

13 I CoxeterDiagramVertices(D)

Inputs a Coxeter diagram D and returns its set of vertices.

14 I Epicentre(G,N)
I Epicentre(G)

Inputs a finite group G and normal subgroup N and returns a subgroup Z ∗(G,N ) of the centre of N . The
group Z ∗(G,N ) is trivial if and only if there is a crossed module d : E → G with N = Image(d) and with
Ker(d) equal to the subgroup of E consisting of those elements on which G acts trivially.

If no value for N is entered then it is assumed that N = G. In this case the group Z ∗(G,G) is trivial if and
only if G is isomorphic to a quotient G = E/Z (E ) of some group E by the centre of E . (There are probably
quicker ways to compute Z ∗(G,G) . )

15 I EvaluateProperty(X,‘‘name’)’

Inputs a record X (such as a ZG-resolution or chain map) and a string “name” (such as “characteristic” or
“type”). It searches X.property for the pair [“name”,value] and returns value. If X.property does not exist,
or if [“name”,value] does not exist, it returns fail.

16 I EvenSubgroup(G)

Inputs a group G and returns a subgroup G+. The subgroup is that generated by all products xy where x
and y range over the generating set for G stored by GAP. The subgroup is probably only meaningful when
G is an Artin or Coxeter group.

17 I EquivariantChainMap(R,S,f)

Inputs a ZG-resolution R, a ZG ′-resolution S with G ′ finite, and a group homomorphism f : G → G ′. It
outputs a record M with the following components:

M.source is the resolution R.

M.target is the resolution S .

M.mapping(w,n) is a function which gives the image in Sn , under a chain map induced by f , of a word w in
Rn . (Here Rn and Sn are the n-th modules in the resolutions R and S .)

F.properties is a list of pairs such as [“type”, “equivariantChainMap”].

The resolution S must have a contracting homotopy.
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18 I GroupHomology(X,n)
I GroupHomology(X,n,p)

Inputs a positive integer n and either a finite group X=G or a Coxeter diagram X=D representing an infinite
Artin group G. It returns the torsion coefficients of the integral homology Hn(G,Z ).

There is an optional third argument which, when set equal to a prime p, causes the function to return the
rank of the mod p homology Hn(G,Zp).

This function is a composite of more basic functions, and makes choices for a number of parameters. For
a particular group you would almost certainly be better using the more basic functions and making the
choices yourself!

19 I HAPcopyright()

This function provides details of HAP’S GNU public copyright licence.

20 I Homology(X,n)

Inputs either a chain complex X = C or a chain map X = (C → D).

If X = C then the torsion coefficients of Hn(C ) are retuned.

If X = (C → D) then the induced homomorphism Hn(C ) → Hn(D) is returned as a homomorphism of
finitely presented groups.

21 I HomToIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R → S ). It returns the
cochain complex or cochain map obtained by applying HomZG(

,
Z ) where Z is the trivial module of integers

(characteristic 0).

22 I HomToIntegralModule(R,f)

Inputs a ZG-resolution R and a group homomorphism f : G → GLn(Z ) to the group of n × n invertible
integer matrices. Here Z must have characteristic 0. It returns the cochain complex obtained by applying
HomZG(

,
A) where A is the ZG-module Zn with G action via f .

23 I IntegralRingGenerators(R,n)

Inputs at least n+1 terms of a ZG-resolution and integer n¿0. It returns a minimal list of cohomology classes
in H n(G,Z ) which, together with all cup products of lower degree classes, generate the group H n(G,Z ) .

(Let ai be the i-th canonical generator of the d-generator abelian group H n(G,Z ). The cohomology class
n1a1 + . . . + ndad is represented by the integer vector u = (n1, . . . ,nd ). )

24 I IntegralCupProduct(R,u,v,p,q)
I IntegralCupProduct(R,u,v,p,q,P,Q,N)

Inputs a ZG-resolution R, a vector u representing an element in H p(G,Z ), a vector v representing an
element in H q(G,Z ) and the two integers p, q > 0. It returns a vector w representing the cup product u · v
in H p+q(G,Z ). This product is associative and u · v = (−1)pqv ·u . It provides H ∗(G,Z ) with the structure
of an anti-commutative graded ring. The cup product is currently implemented for characteristic 0 only.

The resolution R needs a contracting homotopy.

To save the function from having to calculate the abelian groups H n(G,Z ) additional input variables can
be used in the form IntegralCupProduct(R,u,v,p,q,P,Q,N) , where

P is the output of the command CR CocyclesAndCoboundaries(R,p,true)

Q is the output of the command CR CocyclesAndCoboundaries(R,q,true)

N is the output of the command CR CocyclesAndCoboundaries(R,p+q,true) .
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25 I IsAspherical(F,R)

Inputs a free group F and a set R of words in F . It performs a test on the 2-dimensional CW-space K

associated to this presentation for the group G = F/RF .

The function returns “true” if K has trivial second homotopy group. In this case it prints: Presentation is
aspherical.

Otherwise it returns “fail” and prints: “Presentation is NOT piece-wise Euclidean non-positively curved”.
(In this case K may or may not have trivial second homotopy group. But it is NOT possible to impose a
metric on K which restricts to a Euclidean metric on each 2-cell.)

The function uses Polymake software.

26 I MultiplyWord(n,w)

Inputs a word w and integer n. It returns the scalar multiple n · w .

27 I Negate([i,j])

Inputs a pair [i,j] of integers and returns [-i,j].

28 I NegateWord(w)

Inputs a word w in a free ZG-module and returns the negated word −w .

29 I NonabelianExteriorProduct(G,N)

Inputs a finite group G and normal subgroup N . It returns a record E with the following components:

E.homomorphism is a group homomorphism µ:G ∧N → G rom the nonabelian exterior product G ∧N to
G. The kernel of µ is the relative Schur multiplier.

E.pairing(x,y) is a function which inputs an element x in G and an element y in N and returns x ∧ y in the
exterior product G ∧N .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.

30 I NonabelianTensorSquare(G)

Inputs a finite group G and returns a record T with the following components.

T.homomorphism is a group homomorphism µ:G ⊗ G → G from the nonabelian tensor square of G to G.
The kernel of µ is isomorphic to the third homotopy group of the suspension SK (G, 1) of an Eilenberg-Mac
Lane space.

T.pairing(x,y) is a function which inputs two elements x , y in G and returns the tensor x ⊗ y in the tensor
square G ⊗ G .

This function should work for reasonably small nilpotent groups or extremely small non-nilpotent groups.

31 I PermToMatrixGroup(G,n)

Inputs a permutation group G and its degree n. Returns a bijective homomorphism f : G → M where M

is a group of permutation matrices.

32 I PolytopalComplex(G,v)
I PolytopalComplex(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both cases
there is a natural action of G on v. Let P(G,v) be the convex polytope arising as the convex hull of the
Euclidean points in the orbit of v under the action of G. The cellular chain complex C∗ = C∗(P(G, v)) is
an exact sequence of (not necessarily free) ZG-modules. The function returns a record R with components:

R.dimension(k) is a function which returns the number of G-orbits of the k-dimensional faces in P(G,v). If
each k-face has trivial stabilizer subgroup in G then Ck is a free ZG-module of rank R.dimension(k).
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R.stabilizer(k,n) is a function which returns the stabilizer subgroup for a face in the n-th orbit of k-faces.

If all faces of dimension less than k+1 have trivial stabilizer group then the first k terms of C∗ constitute
part of a free ZG-resolution. The boundary map is described by the function R.boundary(k,n) . (If some
faces have non-trivial stabilizer group then C∗ is not free and no attempt is made to determine signs for the
boundary map.)

R.elements, R.group, R.properties are as in a ZG-resolution.

If an optional third input variable n is used, then only the first n terms of the resolution C∗ will be computed.

The function uses Polymake software.

33 I PolytopalGenerators(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector v of length n. In both cases
there is a natural action of G on v, and the vector v must be chosen so that it has trivial stabilizer subgroup
in G. Let P(G,v) be the convex polytope arising as the convex hull of the Euclidean points in the orbit of v
under the action of G. The function returns a record P with components:

P.generators is a list of all those elements g in G such that gv has an edge in common with v. The list is a
generating set for G.

P.vector is the vector v.

P.hasseDiagram is the Hasse diagram of the cone at v.

The function uses Polymake software. The function is joint work with Seamus Kelly.

34 I PresentationOfResolution(R)

Inputs at least two terms of a reduced ZG-resolution R and returns a record P with components

P.freeGroup is a free group F

P.relators is a list S of words in F

where G is isomorphic to F modulo the normal closure of S. This presentation for G corresponds to the 2-
skeleton of the classifying CW-space from which R was constructed. The resolution R requires no contracting
homotopy.

35 I PrimePartDerivedFunctor(G,R,F,n)

Inputs a finite group G, a positive integer n, at least n+1 terms of a ZP -resolution for a Sylow subgroup
P ≤ G and a “mathematically suitable” covariant additive functor F such as TensorWithIntegers . It returns
the abelian invariants of the p-component of the homology Hn(F (R)) .

Warning: All calculations are assumed to be in characteristic 0. The function should not be used if the
coefficient module is over the field of p elements.

“Mathematically suitable” means that the Cartan-Eilenberg double coset formula must hold.

36 I PrintZGword(w,elts)

Inputs a word w in a free ZG-module and a (possibly partial but sufficient) listing elts of the elements of G.
The function prints the word w to the screen in the form

r1E1 + . . . + rnEn

where ri are elements in the group ring ZG, and Ei denotes the i-th free generator of the module.

37 I RelativeSchurMultiplierG,N)

Inputs a finite group G and normal subgroup N . It returns the homology group H2(G,N ,Z ) that fits into
the exact sequence
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H3(G,Z ) → H3(G/N ,Z ) → H2(G,N ,Z ) → H2(G,Z ) → H2(G/N ,Z )

This function should work for reasonably small nilpotent groups G or extremely small non-nilpotent groups.

38 I ResolutionAbelianGroup(L,n)
I ResolutionAbelianGroup(G,n)

Inputs a list L := [m1,m2, . . . ,md ] of nonnegative integers, and a positive integer n. It returns n terms of a
ZG-resolution for the abelian group G = ZL[1] ⊕ ZL[2] ⊕ · · · ⊕ ZL[d ] .

The first argument can also be the abelian group G itself.

39 I ResolutionArtinGroup(D,n)

Inputs a Coxeter diagram D and an integer n¿1. It returns n terms of a free ZG-resolution R where G is the
Artin monoid associated to D. It is conjectured that R is also a free resolution for the Artin group G. The
conjecture is known to hold in certain cases.

G=R.group is infinite and returned as a finitely presented group. The list R.elts is a partial listing of the
elements of G which grows as R is used. Initially R.elts is empty and then, any time the boundary of a
resolution generator is called, R.elts is updated to include elements of G involved in the boundary.

The contracting homotopy on R has not yet been implemented!

40 I ResolutionAsphericalPresentation(F,R,n)

Inputs a free group F, a set R of words in F which constitute an aspherical presentation for a group G, and
a positive integer n. (Asphericity can be a difficult property to verify. The function IsAspherical(F,R) could
be of help.)

The function returns n terms of a free ZG-resolution R which has generators in dimensions ≤ 2 only. No
contracting homotopy on R will be returned.

41 I ResolutionDirectProduct(R,S)

Inputs a ZG-resolution R and ZH -resolution S . It outputs a ZD -resolution for the direct product D = G×H .

42 I ResolutionFiniteExtension(gensE,gensG,R,n)
I ResolutionFiniteExtension(gensE,gensG,R,n,true)
I ResolutionFiniteExtension(gensE,gensG,R,n,false,S)

Inputs: a set gensE of generators for a finite group E; a set gensG equal to the image of gensE in a
quotient group G of E; a ZG-resolution R up to dimension at least n; a positive integer n. It uses the
TwistedTensorProduct( construction to return n terms of a ZE-resolution.

The function has an optional fourth argument which, when set equal to true, invokes tietze reductions in
the construction of a resolution for the kernel of E → G.

If a ZN-resolution S is available, where N is the kernel of the quotient E → G, then this can be incorporated
into the computations using an optional fifth argument.

The contracting homotopy on the ZE-resolution has not yet been implemented!

43 I ResolutionFiniteGroup(gens,n)
I ResolutionFiniteGroup(gens,n,true)
I ResolutionFiniteGroup(gens,n,false,p)

Inputs a set gens of generators for a finite group G and a positive integer n. It outputs n terms of a
ZG-resolution.

The function has an optional third argument which, when set equal to true, invokes tietze reductions in the
construction of the resolution.
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The function has an optional fourth argument which, when set equal to a prime p, records the fact that the
resolution will only be used for mod p calculations. This could speed up subsequent constructions.

44 I ResolutionFiniteSubgroup(R,K)
I ResolutionFiniteSubgroup(R,gensG,gensK)

Inputs a ZG-resolution for a finite group G and a subgroup K of index G:K. It returns a free ZK-resolution
whose ZK-rank is G:K times the ZG-rank in each dimension.

Generating sets gensG, gensK for G and K can also be input to the function (though the method does not
depend on a choice of generators).

This ZK-resolution has more than one generator in dimension 0. So PresentationOfResolution() should not
be applied to it!

45 I ResolutionNormalSeries(L,n)
I ResolutionNormalSeries(L,n,true)
I ResolutionNormalSeries(L,n,false,p)

Inputs a positive integer n and a list L = [L1, . . . ,Lk ] of normal subgroups Li of a finite group G satisfying
G = L1 ≥ L2 . . . ≥ Lk . Alternatively, L = [gensL1, . . . gensLk ] can be a list of generating sets for the Li

(and these particular generators will be used in the construction of resolutions). It returns a Z (G/Lk )-
resolution by repeatedly using the function ResolutionOfFiniteExtension( ). Typically Lk = 1 in which case a
ZG-resolution is returned.

The function has an optional third argument which, if set equal to “true”, invokes tietze reductions in the
construction of resolutions.

The function has an optional fourth argument which, if set equal to p¿0, produces a resolution which is only
valid for mod p calculations.

The contracting homotopy on the ZG-resolution has not yet been implemented!

46 I ResolutionPrimePowerGroup(G,n)

Inputs a p-group G and integer n ≥ 1. It uses GAP’s standard linear algebra functions over the field Zp to
construct a ZG-resolution for mod p calculations only. The resolution is probably minimal - meaning that
the number of generators of Rn equals the rank of Hn(G,Zp). However, the implementation takes a “short
cut” and so I don’t think minimality can be guaranteed.

The contracting homotopy on the ZG-resolution has not yet been implemented!

47 I ResolutionSmallFpGroup(G,n)
I ResolutionSmallFpGroup(G,n,p)

Inputs a small finitely presented group G and an integer n¿0. It returns n terms of a ZG-resolution which,
in dimensions 1 and 2, corresponds to the given presentation for G. The method returns no contracting
homotopy for the resolution.

The function has an optional fourth argument which, when set equal to a prime p, records the fact that the
resolution will only be used for mod p calculations. This could speed up subsequent constructions.

This function was written by Irina Kholodna.

48 I ResolutionSubgroup(R,K)

Inputs a ZG-resolution for an (infinite) group G and a subgroup K of finite index G:K. It returns a free
ZK-resolution whose ZK-rank is G:K times the ZG-rank in each dimension.

If G is finite then the function ResolutionFiniteSubgroup(R,G,K) will probably work better. In particular,
resolutions from this function probably won’t work with the function EquivariantChainMap(.
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This ZK-resolution has more than one generator in dimension 0. So PresentationOfResolution() should not
be applied to it!

49 I StandardCocycle(R,f,n)
I StandardCocycle(R,f,n,q)

Inputs a ZG-resolution R (with contracting homotopy), a positive integer n and an integer vector f repre-
senting an n-cocycle Rn → Zq where G acts trivially on Zq . It is assumed q = 0 unless a value for q is entered.
The command returns a function F (g1, . . . , gn) which is the standard cocycle Gn → Zq corresponding to f .
At present the command is implemented only for n=2 or 3.

50 I Syzygy(R,g)

Inputs a ZG-resolution R (with contracting homotopy) and a list g = [g[1], . . . , g[n]] of elements in G. It
returns a word w in Rn . The word w is the image of the n-simplex in the standard bar resolution corre-
sponding to the n-tuple g. This function can be used to construct explicit standard n-cocycles. (Currently
implemented only for n ≤ 3.)

51 I TensorWithIntegers(X)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R → S ). It returns the chain
complex or chain map obtained by tensoring with the trivial module of integers (characteristic 0).

52 I TensorWithIntegersModP(X,p)

Inputs either a ZG-resolution X = R, or an equivariant chain map X = (F : R → S ), and a prime p. It
returns the chain complex or chain map obtained by tensoring with the trivial module of integers modulo p.

53 I ThirdHomotopyGroupOfSuspensionB(G)

Inputs a finite group G and returns the abelian invariants of the third homotopy group of the suspension
SB(G) of the Eilenberg-Mac Lane space K(G,1). This function should work for reasonably small nilpotent
groups or extremely small non-nilpotent groups.

54 I TietzeReduction(S,w)

Inputs a set S of words in a free ZG-module, and a word w in the module. The function returns a word w’
such that {S ,w ′} generates the same abelian group as {S ,w}. The word w ′ is possibly shorter (and certainly
no longer) than w . This function needs to be improved!

55 I TorsionGeneratorsAbelianGroup(G)

Inputs an abelian group G and returns a generating set [x1, . . . , xn ] where no pair of generators have coprime
orders.

56 I TwistedTensorProduct(R,S,EhomG,GmapE,NhomE,NEhomN,EltsE,Mult,InvE)

Inputs a ZG-resolution R, a ZN -resolution S , and other data relating to a short exact sequence 1 → N →
E → G → 1. It uses a perturbation technique of CTC Wall to construct a ZE -resolution F . Both G and N

could be infinite. The “length” of F is equal to the minimum of the “length”s of R and S . The resolution
R needs no contracting homotopy if no such homotopy is requied for F .

The contracting homotopy on F has not yet been implemented!

57 I VectorStabilizer(G,v)

Inputs a permutation group or matrix group G of degree n and a rational vector of degree n. In both cases
there is a natural action of G on v and the function returns the group of elements in G that fix v.
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