QuaGroup

Version 1.3

Willem A. de Graaf

Willem A. de Graaf — Email: degraaf@science.unitn.it
— Homepagehttp://www.science.unitn.it/ "degraaf

mailto:// degraaf@science.unitn.it
http://www.science.unitn.it/~degraaf

QuaGroup

Copyright

(© 2002 Willem A. de Graaf

Contents

1 Introduction 6
2 Background 8
2.1 GaussianBinomials 8
2.2 Quantized envelopingalgebras. Lo 8
2.3 Representations @fq(g) 9
24 PBW-typebases 10
2.5 TheZ-formofUqg(g)« o o 11
2.6 Thecanonicalbasis 11
2.7 Thepathmodel. 12
2.8 NoOtes e 13
3 QuaGroup 14
3.1 Globalconstants 14
3.1.1 QuantumField 14
0 7 o 14

3.2 Gaussianintegers e e e 14
3.21 GaussNumber 14
3.2.2 GaussianFactorial. 15
3.2.3 GaussianBinomial. 15

3.3 Rootsandrootsystems. 15
3.3.1 RootSystem e e e 15
3.3.2 BilinearFormMatNF 16
3.3.3 PositiveRoOtSNF. 16
3.3.4 SimpleSystemNFE 17
3.3.5 PositiveRootsInConvexOrder. 17
3.3.6 SimpleRootsAsWeights. 17
3.4 Weylgroups andtheirelements. 17
3.4.1 ApplyWeylElement. 18
3.4.2 LengthOfWeylWord 18
3.4.3 LongestWeylWord e 18
3.4.4 ReducedWordlterator 19
3.45 ExchangeElement. o 19
3.4.6 GetBraidRelations. 19
3.4.7 LongWords. e e 20

3.5 Quantized envelopingalgebras. Lo 20

3.6

3.7

3.8

3.9

QuaGroup 4

3.5.1 QuantizedUEA. 20
3.5.2 ODbJBYEXtReEp. 21
3.5.3 ExtRepOfObj. 22
3.5.4 QuantumParameter. e 23
3.5.5 CanonicalMapping. 23
3.5.6 WriteQEATOFile 23
3.5.7 ReadQEAFromFileo 23
Homomorphisms and automorphisms. 24
3.6.1 QEAHomomorphism e 24
3.6.2 QEAAutomorphism 25
3.6.3 QEAAntiAutomorphism. oo 26
3.6.4 AutomorphismOmega. 26
3.6.5 AntiAutomorphismTau. e 26
3.6.6 BarAutomorphism. 26
3.6.7 AutomorphismTalpha, 27
3.6.8 DiagramAutomorphism L 27
3.6.9 A\ e 27
Hopfalgebra structure. e 28
3.7.1 TensorPower. e 28
3.7.2 UseTwistedHopfStructure., 28
3.7.3 ComultiplicationMap. 29
3.7.4 AntipodeMap. e 29
375 CounitMap 29
Modules. e 30
3.8.1 HighestWeightModule (for a quantizedenv. alg.). 30
3.8.2 IrreducibleQuotient 30
3.8.3 HWModuleByTensorProduct. 31
3.8.4 DIYModule. e 31
3.8.5 TensorProductOfAlgebraModules 32
3.8.6 HWModuleByGenerator. 32
3.8.7 InducedQEAModule. e 32
3.8.8 GenericModule. 33
3.8.9 CanonicalMapping. e e e 33
3.8.10 U2Module 33
3.8.11 MinusculeModule 33
3.8.12 DualAlgebraModule 34
3.8.13 TrivialAlgebraModule 35
3.8.14 WeightsAndVectors 35
3.8.15 HighestWeightsAndVectors., 35
3.8 16 RMatriX e 36
3.8.17 IsomorphismOfTensorModules. 36
3.8.18 WriteModuleToFile. 36
3.8.19 ReadModuleFromFile. 36
Thepathmodel. e 37
3.9.1 DominantLSPath. 37
3.9.2 Falpha(foranlLS-path). 37

3.9.3 Ealpha(foranLS-path). 38

QuaGroup 5

3.9.4 LSSequence 38
3.95 WeylWord e 38
3.9.6 EndWeight 38
3.9.7 CrystalGraph (for root systemand weight) 39
3.10 Canonicalbases 39
3.10.1 Falpha (foraPBW-monomial) 39
3.10.2 Ealpha (foraPBW-monomial) 40
3.10.3 CanonicalBasis. 40
3.10.4 PBWEIlements 40
3.10.5 MonomialElements 41
3.10.6 StriNgS e e 41
3.10.7 PrincipalMonomial. 42
3.10.8 StringMonomial e 42
3.10.9 Falpha (foramodule element) 42
3.10.10Ealpha (foramoduleelement)., 43
3.10.11CrystalBasis e 43
3.10.12CrystalVectors 43
3.10.13Falpha (foracrystal vector)., 44
3.10.14Ealpha (foracrystalvector). 44
3.10.1CrystalGraph (foramodule)00 45
3.11 Universal enveloping algebras Lo 45
3111 UEA o 45
3.11.2 UnderlyingLieAlgebra. 45
3.11.3 HighestWeightModule (forauniversalenv.alg) 46

3.11.4 QUEATOUEAMaApP 46

Chapter 1

Introduction

This is the manual for the AP package&uaGroup, for doing computations with quantized enveloping
algebras of semisimple Lie algebras.

Apart from the chapter you are currently reading, this document consists of two chapters. In
Chapter2 we give a short summary of parts of the theory of quantized enveloping algebras. This fixes
the notations and definitions that we use. Then in Chaptez describe the functions that constitute
the package.

The package can be obtained fromtp: //www.math.uu.nl/people/graaf/quagroup.html
The directoryquagroup/doc contains the manual of the packagedi, ps, pdf and html for-
mat. The manual was built with th@AP share packag&APDoc, [LNO1]. This means that, in
order to be able to use the on-line help@iaGroup, you have to installGAPDoc before calling
LoadPackage ("quagroup") ;.

The main algorithm of the package (on which virtually the whole functionality relies) is a method
for computing with so-called PBW-type bases, analogous to Pd@rBakhoff-Witt bases in universal
enveloping algebras. In both cases commutation relations between the generators are used. However,
in the latter case all commutation relations are of the fgr®a: xXy+ z, wherex,y are generators, and
zis a linear combination of generators. In the case of quantized enveloping algebras the situation is
generally much more complicated. For example, in the quantized enveloping algebra Bf typee

have the following relation:

Example

F62*F26 = (q) *F26*F62+ (1-q"2) *F28*F61+ (-q+q"3) *F30*F60+ (q"2-q"4) *F31*F59+
(9°2-q"4) *F33*F58+ (-q"3+q"5) *F34*F57+(q"4-q"6) *F35*F56+
(@°-1-g-q"5+q"7) *F36*F55+ (g~ 6) *F54

Due to the complexity of these commutation relations, some computations (even with rather small
input) may take quite some time.

Remark: The package can deal with quantized enveloping algebras corresponding to root systems
of rank at least up to eight, excelps. In that case the computation of the necessary commutation re-
lations took more than 2 GB. | wish to thank Steve Linton for trying this computation on the machines
in St Andrews.

The following example illustrates some of the features of the package.

Example
We define a root system by giving its type:
gap> R:= RootSystem("B", 2);

<root system of type B2>

Corresponding to the root system we define a quantized enveloping algebra:

http://www.math.uu.nl/people/graaf/quagroup.html

QuaGroup

gap> U:= QuantizedUEA(R);

QuantumUEA (<root system of type B2>, Qpar = q)

It is generated by the generators of a so-called PBW-type basis:

gap> GeneratorsOfAlgebra(U);

[F1, F2, F3, F4, K1, Kl+(g"-2-g"2)*[K1 ; 1 1, K2, R2+(q"-1-g)*[K2 ; 1],
El, E2, E3, E4]

We can construct highest-weight modules:

gap> V:= HighestWeightModule(U, [1,1]);

<l6-dimensional left-module over QuantumUEA(<root system of type B

2>, Qpar = q)>

For modules of small dimension we can compute the corresponding

R-matrix:

gap> U:= QuantizedUEA(RootSystem("A",2));;

gap> V:= HighestWeightModule(U, [1,0]);;

gap> RMatrix(V);

(g2 0,0 060, 0,060,601, [0, g3, 0 g°2-9g°4, 0, 0, 0, 0, 0 7,
(o 0 g3, 0, 0, 0, gv2-9°4, 0, O 1, [O, O, O, ¢°3, O, O, O, O, O T,
(o o000 g2 0600071, [0 00 0 0, g3, 0, go2-9g74, 0 1,
(o o0 o0o0,¢0%0g9g3°®0¢071, 0 0 0 0,0, 0, 0, g°3, 01,

(o 0,0 0, 0,0, 0,0, g2 11

We can compute elements of the canonical basis of the "negative" part

of a quantized enveloping algebra:

gap> U:= QuantizedUEA(RootSystem("F",4));;

gap> B:= CanonicalBasis(U);

<canonical basis of QuantumUEA(<root system of type F4>, Qpar = q) >

gap> p:= PBWElements(B, [0,1,2,1]);

[F3*FO" (2) *F24, F3*F9*F23+(q"2) *F3*F9" (2) *F24,

(q+tq”3) *F3*F9" (2) *F24+4FT7*F9*F24, (q"2)*F3*F9*F23+(q"2+g~4) *F3*F9" (2) *F
24+ (q) *FT*F9*F24+FT7*F23, (q"4)*F3*F9" (2) *F24+ (q) *FT*FI9*F24+F8*F24,
(q"4) *F3*F9*F23+(q"6) *F3*F9" (2) *F24+(q"3) *F7*F9*F24+ (q"2) *F7*F23+ (q"2) *F

8*F24+F9*F21, (qtq 3)*F3*FO*F23+ (q"3+q"5) *F3*F9" (2) *F24+ (q"2) *FT*F9*F
24+ (q) *FT*F23+ (q) *F9*F214F16]

We can construct (anti-) automorphisms of quantized enveloping

algebras:

gap> t:= AntiAutomorphismTau(U);

<anti-automorphism of QuantumUEA(<root system of type F4>, Qpar = q)>

gap> Image(t, p[l]);

(q™4)*F3*F9*F23+ (q"6) *F3*F9" (2) *F24+ (q"3) *FT*F9*F24+ (q"2) *F7*F23+ (q"2) *F8*F

24+F9*F21

(This is the sixth element of p.)

Chapter 2

Background

In this chapter we summarize some of the theoretical concepts with \hiairoup operates. Due
to the rather mathematical nature of this chapter everything has been written in LaTeX. Therefore, it
will be almost unreadable in the html version.

2.1 Gaussian Binomials
Letv be an indeterminate ové}. For a positive integem we set
[n] _ anl_i_vnfS_i_ . +V7n+3+vfn+l_

We say thatn| is the Gaussian integercorresponding t. The Gaussian factorial[n]! is defined

by
O!=1, [n!=[n[n—-1]---[1], forn> 0.

Finally, the Gaussian binomialis

2.2 Quantized enveloping algebras

Let g be a semisimple Lie algebra with root systémBy A = {ay,...,0, } we denote a fixed simple
system of®. LetC = (Cjj) be the Cartan matrix op (with respect taj, i.e.,Cjj = <0(i,ajv>). Let
dy,...,d be the unique sequence of positive integers with greatest common divisor 1, sut@hat
d;Cij, and seta;,a;) = d;Cj. (We note that this implies théti;, a;) is divisible by 2.) ByP we denote
the weight lattice, and we extend the fofm) to P by bilinearity.

By W(®) we denote the Weyl group @b. It is generated by the simple reflectiogs= sy, for
1<i < (wheres, is defined bysy (B) = B— (B,a")a).

We work over the field)(q). Fora € @ we set

n

and for a non-negative integey[n|q = [Njy—q,; [N]a! and [k

] are defined analogously.
a

QuaGroup 9

The quantized enveloping algelig(g) is the associative algebra (with one) o@q) generated
by Fq, Kq, Kgl, Ey for a € A, subject to the following relations

KaKg = KgKa = 1, KaKg = KgKq
EgKa = q P KyEp
KaFp = g “PRsKq

Ko — Kyt

EQF :FEQ+6 —
PP “P o —

together with, forx £ 3 € A,
17<Bvav> _ \% v
Z (_1)k |:1 <B7a >:| Eé—‘(ﬁva >_kE[3EIé -0
a

17qv> _ \%
z (_1)k |:1 <Bva >:| Fal—<B-av>—kFBF&(=0
k=0 a

The quantized enveloping algebra has an automorphigtefined byw(Fy) = Eq, W(Eq) = Fx and
w(Ky) =Kyt Also there is an anti-automorphisndefined byt (Fy) = Fy, T(Eq) = Eq andt(Kq) =
Kyt We havew?’ = 1 andt? = 1.

If the Dynkin diagram of® admits a diagram automorphismthenrtinduces an automorphism
of Ug(g) in the obvious way1fis a permutation of the simple roots; we permute FaeEq, KF!
accordingly).

Now we viewUq(g) as an algebra ove®, and we let : Ug(g) — Uq(g) be the automorphism
defined byFy = Fy, Ke =K1, Ex = Eq, 0=q L.

2.3 Representations olUq(g)

LetA € P be a dominant weight. Then there is a unique irreducible highest-weight module gggr
with highest weighfA. We denote it by/(A). It has the same character as the irreducible highest-
weight module ovey with highest weigh. Furthermore, every finite-dimensionad(g)-module is
a direct sum of irreducible highest-weight modules.

It is well-known thatUq(g) is a Hopf algebra. The comultiplicatiai: Ug(g) — Uq(g) ® Uqg(g) is
defined by

A(EG) == EG ®1+ Kq ®Ea
A(Fy) =Fa@Kg 1 +1®Fqy
A(Ka) - Kq ®Kq

(Note that we use the same symbol to denote a simple systab of course this does not cause
confusion.) The counit : Uq(g) — Q(q) is @ homomorphism defined IsyEy) = €(Fy) =0, &(Kq) =
1. Finally, the antipodeS: Uq(g) — Uq(g) is an anti-automorphism given B§(Eq) = —Kg 1Eq,
S(Fo) = —FaKa, S(Kq) = Kz L.

UsingA we can make the tensor proddt W of two Ug(g)-modulesV, W into aUq(g)-module.
The counite yields a trivial 1-dimensiondlq(g)-module. And withSwe can define &l4(g)-module
structure on the duad* of aUqy(g)-moduleV, by (u- f)(v) = f(S(u) - v).

QuaGroup 10

The Hopf algebra structure given above is not the only one possible. For example, we can twist
A, g, Sby an automorphism, or an anti-automorphisniThe twisted comultiplication is given by

Af=fofohof™t
The twisted antipode by

S — foSof~1 if fisanautomorphism
| foStof 1 if fisan anti-automorphism.

And the twisted counit by = eo f~1 (see Pan94, 3.8).

2.4 PBW-type bases

The first problem one has to deal with when working viiifig) is finding a basis of it, along with an
algorithm for expressing the product of two basis elements as a linear combination of basis elements.
First of all we have thally(g) 2 U~ ®U°®U™ (as vector spaces), whete is the subalgebra
generated by th&,, U° is the subalgebra generated by the andU " is generated by thEy. So
a basis olUq(g) is formed by all elements KE, whereF, K, E run through bases d&f ~, uo,ut
respectively.

Finding a basis ob)° is easy: it is spanned by &l - -- K, wherer; € Z. ForU~, U+ we use
the so-called®BW-typebases. They are defined as follows. Eop € A we setrg , = —(B,a"). Then
for a € A we have the automorphisiy : Ug(g) — Uq(g) defined by

Tq(Eor) — —FaKa
Ba .

Ta(Ep) = 3 (1B EgES (for o #)
i=

Ta(Kp) = KpKe™

Ta(Fa) = Ky 1Eq

rB,G

Ta(Fp) = ,Z)(l)‘thé”FgFé”’““) (for a B),

(whereES) = EX/[K]¢!, and likewise forr(¥).

Letwp =s, ---S, be a reduced expression for the longest element in the Weyl §ktjdp. For
1<k<tsetho=Ty - Ta, ,(Fa) andBc=To -+ T, (Eq,). ThenRce U™, andEc e U™.
Furthermore, the elemenig™---R™, Ef*---E* (where them, n; are non-negative integers) form
bases of) ~ andU " respectively.

The element§, andEy are said to have weighta anda respectively, where is a simple root.
Furthermore, the weight of a produab is the sum of the weights ad andb. Now elements of
U—, U™ that are linear combinations of elements of the same weight are said to be homogeneous. It
can be shown that the elemelis andEx are homogeneous of weighf3 and3 respectively, where
B= Sl"'sik—l(aik)'

In the sequel we use the notatiB{i” = F"/[m]g, !, and E" = ER/ N, !

QuaGroup 11

2.5 The Z-form of Uqy(g)

Fora € A set

[Ka} o e
n il:l oy — o' .

Then according tolJus9q, Theorem 6.7 the elements

g] g e

)

(wherek;,my,n; > 0, & = 0,1) form a basis ob4(g), such that the product of any two basis elements
is a linear combination of basis elements with coefficient&fig,g~1]. The quantized enveloping
algebra ovef[q,q 1] with this basis is called th&-form of Uy(g), and denoted byy. SinceUy is
defined ovefZ|g, 1] we can specializg to any nonzero elemeniof a fieldF, and obtain an algebra
U overF.

We callq € Q(q), ande € F the quantum parameter 0f,(g) andUg respectively.

Let A be a dominant weight, and(A) the irreducible highest weight module of highest weight
A overUq(g). Letvy € V(A) be a fixed highest weight vector. Thel -v, is aUz-module. So by
specializingg to an elemeng of a fieldF, we get dJ.-module. We call it the Weyl module of highest
weightA overUg. We note that it is not necessarily irreducible.

2.6 The canonical basis

As in Section2.4 we letU~ be the subalgebra &fy(g) generated by th&, for a € A. In [Lus0g
Lusztig introduced a basis bf~ with very nice properties, called tlvanonical basis(Later this basis
was also constructed by Kashiwara, using a different method. For a brief overview on the history of
canonical bases we refer togm0q.)
Letwp=s;, ---S,, and the element be as in Sectio.4. Then, in order to stress the dependency
of the monomial
Fl(nl) . Ft(nt) (2.1)

on the choice of reduced expression for the longest elemé&kt@) we say that it is ap-monomial.

Now we let™ be the automorphism &f ~ defined in SectioR.2 Elements that are invariant under
~ are said to be bar-invariant.

By results of Lusztig ([us93 Theorem 42.1.10,[us9q, Proposition 8.2), there is a unique basis
B of U~ with the following properties. Firstly, all elements Bfare bar-invariant. Secondly, for any
choice of reduced expression for the longest element in the Weyl group, and any elen¥eatB
we have thaX = x+ ¥ {jX;, wherex, x; arewp-monomialsx # x; for all i, and{; € gZ[qg]. The basis
B is called the canonical basis. If we work with a fixed reduced expression for the longest element in
W(®), and writeX € B as above, then we say thais theprincipal monomiabf X.

Let £ be theZ|g]-lattice inU ~ spanned by. ThenZ is also spanned by allp-monomials (where
W is a fixed reduced expression for the longest elemeW (®)). Now letWy be a second reduced
expression for the longest elementW®). Let x be awg-monomial, and leX be the element of
B with principal monomialx. Write X as a linear combination afip-monomials, and leX be the
principal monomial of that expression. Then we wxte R";‘}g(x). Note thatx = X modqL.

Now let B be the set of allvp-monomials modi£. Then3B is a basis of th&Z-module L/qL.
Moreover,B is independent of the choice of. Leta € A, and letWy be a reduced expression for

QuaGroup 12

the longest element iW/(®), starting withsy. The Kashiwara operatof : B — B andEy : B —
BU{0} are defined as follows. Ldét e B and letx be thewp-monomial such thalh = x modgL.
SetX = R}ﬁg(x). Then¥X is theWg-monomial constructed from by increasing its first exponent by
1 (the first exponent is they in (2.1)). ThenFy(b) = R}°(X) modqgL. ForEq we letX be thew-
monomial constructed from by decreasing its first exponent by 1, if this exponentid. Then
Eq(b) = R (X') modqL. FurthermoreEq(b) = 0 if the first exponent oK is 0. It can be shown
that this definition does not depend on the choicevgfW,. Furthermore we have,Eq(b) = b, if
Eq(b) # 0, andEqF, (b) = bfor all b € B.

Letwp =5, ---S, be a fixed reduced expression for the longest elemeWt(id). Forb € B we
define a sequence of elemebise B for 0 < k <t, and a sequence of integargsfor 1 <k <t as
follows. We sebg = b, and ifby_; is defined we leby be maximal such thﬁgt‘k (bk—1) # 0. Also we

sethy = Eg:(k(bk—l)- Then the sequend@y, ..., n) is called thestring of b € B (relative towg). We

note thato = ﬁ&‘}l e Ifoﬂtt (1). The set of all strings parametrizes the element8,aind hence oB.

Now letV(A) be a highest-weight module oveg(g), with highest weighi. Let v, be a fixed
highest weight vector. TheB), = {X -V | X € B} \ {0} is a basis oV (A), called thecanonical
basis or crystal basisof V(A). Let L(A) be theZ[g]-lattice inV (A) spanned byB,. We letB(A) be
the set of allx- vy modqL(A), wherex runs through alivg-monomials, such that - vy # 0, where
X € B is the element with principal monomial Then the Kashiwara operators are also viewed as
mapsB(A) — B(A) U{0}, in the following way. Letb = x-vy modgL(A) be an element oB(A),
and letb’ = xmodqL be the corresponding element 8f Let y be thewp-monomial such that
Fa(b') =y modqgL. ThenFy(b) =y-v, modgL(A). The description ok, is analogous. (InJan94,
Chapter 9 a different definition is given; however, Byafi9¢, Proposition 10.9, Lemma 10.13, the
two definitions agree).

The setB(A) has dinV (A) elements. We left be the coloured directed graph defined as follows.
The points of” are the elements @ (A), and there is an arrow with coloare A connectind, b’ € B,
if Ifq(b) =b'. The grapH is called thecrystal graphof V (A).

2.7 The path model

In this section we recall some basic facts on Littelmann’s path model.

From Sectior2.2 we recall that® denotes the weight lattice. LEk be the vector space ov&
spanned byP. Let N be the set of all piecewise linear paths|0,1] — Pg, such thag(0) = 0. For
a € A Littelmann defined operatorfg, ey : M — MU {0}. LetA be a dominant weight and 1& be
the path joining\ and the origin by a straight line. L&ty be the set of all nonzery,, - fq,, (€) for
m>0. Theng(1) € Pforall & € M,. Letpc P be aweight, and |1&f(A) be the highest-weight module
overUq(g) of highest weighi. A theorem of Littelmann states that the number of p&thd, such
that&(1) = pis equal to the dimension of the weight space of wejgitt V(A) ([Lit95], Theorem
9.1).

All paths appearing i1, are so-called Lakshmibai-Seshadri paths (LS-paths for short). They are
defined as follows. Let denote the Bruhat order & (®). Forp,v € W(®) - A (the orbit ofA under
the action oW(®)), write p < v if T < g, wheret,o € W(®) are the unique elements of minimal
length such that(A) =y, o(A) =v. Now a rational path of shapeis a pairrt= (v,a), wherev =
(V1,...,Vs) is a sequence of elementsw{ @) - A, such thav; > v; 1 anda= (ap=0,a1, -, as=1)
is a sequence of rationals such thak a; 1. The pathrt corresponding to these sequences is given

QuaGroup 13

by
r-1
) = (aj—aj-1)vj+Vr(t—a-1)
=1
fora,_; <t <a.. Now an LS-path of shapeis a rational path satisfying a certain integrality condition
(see Lit94], [Lit95]). We note that the path, = ((A),(0,1)) joining the origin and\ by a straight

line is an LS-path.
Now from [Lit94], [Lit95] we transcribe the following:

e Letttbe an LS-path. Thefy1tis an LS-path or 0; and the same holdsédgrt

The action offy,e4 can easily be described combinatorially (se&d4]).

The endpoint of an LS-path is an integral weight.

Lett= (v,a) be an LS-path. Then by(m) we denote the unique elemendf W(®) of shortest
length such thati(A) = v;.

LetA be a dominant weight. Then we define a labeled directed dragsfollows. The points df are

the paths if1,. There is an edge with labal € A from 1y to T, if fqTy = ™. Now by [Kas9q this
graphl is isomorphic to the crystal graph of the highest-weight module with highest wkeidt the

path model provides an efficient way of computing the crystal graph of a highest-weight module, with-
out constructing the module first. Also we see that- - fo, &) = 0 is equivalent t@% e IfuirvA =0,

wherev, € V()) is a highest weight vector (or rather the image of izif\) /qL())), and theF,, are
the Kashiwara operators @b(A) (see Sectior2.6).

2.8 Notes

| refer to [Hum9(Q for more information on Weyl groups, and t6tg07] for an overview of algorithms
for computing with weights, Weyl groups and their elements.

For general introductions into the theory of quantized enveloping algebras | reféatéd,
[Jan9§ (from where most of the material of this chapter is taken)ysP4, [Lus93, [Ros9]. |
refer to the papers by Littelmann_({94], [Lit95], [Lit98]) for more information on the path model.
The paper by KashiwaraKps9€) contains a proof of the connection between path operators and
Kashiwara operators.

Finally, I refer to [Gra0] (on computing with PBW-type basesi;fa03 (computation of elements
of the canonical basis) for an account of some of the algorithms us@aki@roup.

Chapter 3

QuaGroup

In this chapter we describe the functionality provideddmaGroup.

3.1 Global constants

3.1.1 QuantumField

¢ QuantumField (global variable)

This is the fieldQ(q) of rational functions irg, overQ.
Example

gap> QuantumField;
QuantumField

3.1.2 q

O -q (global variable)

This is an indeterminateguantumField is the field of rational functions in this indeterminate.
The identifier_q is fixed once the packagguaGroup is loaded. The symbak is chosen (instead of
q) in order to avoid potential name clashes. We note thé printed as;.

Example
gap> _gq;
q
gap> _q in QuantumField;
true
3.2 Gaussian integers
3.2.1 GaussNumber
{ GaussNumber (n, par) (operation)

This function computes for the integethe Gaussian integém|y—par (cf. Section2.1).

14

QuaGroup 15

Example

gap> GaussNumber(4, _q);
q°-3+g"-1+g+q”3

3.2.2 GaussianFactorial

{ GaussianFactorial(n, par) (operation)

This function computes for the integethe Gaussian factorigh|!y—par-.

Example
gap> GaussianFactorial(3, _q);
q"-3+2*q"-1+2*q+q”3
gap> GaussianFactorial(3, _gq°2);
q -6+2*q"-2+2*q"2+q"6
3.2.3 GaussianBinomial
{Q GaussianBinomial(n, k, par) (operation)

This function computes for two integersandk the Gaussian binomial choosek, where the
parametev is replaced byar.
Example

gap> GaussianBinomial(5, 2, _g°2);
q"-12+q"-8+2*q"-4+2+2*q"4+q~8+q"12

3.3 Roots and root systems

In this section we describe some functions for dealing with root systems. These functions supplement
the ones already present in tBaP library.

3.3.1 RootSystem

O RootSystem(type, rank) (operation)
Q RootSystem(list) (operation)

Heretype is a capital letter betweerm" and"G", andrank is a positive integer¥ 1 if type="a",
> 2 if type="B", "C", > 4 if type="D", 6,7,8 if type="E", 4 if type="F", and 2 iftype="G"). This
function returns the root system of typgpe and rankrank. In the second formist is a list of types
and ranks, e.g "B", 2, "F", 4, "D", 7].

The root system constructed by this function comes with he attribBtestiveRoots,
NegativeRoots, SimpleSystem, CartanMatrix, BilinearFormMat. Here the attribute
SimpleSystem contains a set of simple roots, written as unit vectersitiveRoots is a list of the
positive roots, written as linear combinations of the simple roots, and likewisefgrt i veRoots.
CartanMatrix(R) is the Cartan matrix of the root systekn where the entry on positiof, j)
is given by<0(i,0(jv> whereaq; is thei-th simple root.BilinearFormMat (R) is the matrix of the
bilinear form, where the entry on positi¢h j) is given by(a;,a;j) (see Sectio2.2).

QuaGroup 16

WeylGroup (R) returns the Weyl group of the root systean We refer to theGAP reference
manual for an overview of the functions for Weyl groups in@#P library. We mention the functions
ConjugateDominantWeight (W, wt) (returns the dominant weight in theorbit of the weight
wt), andWeylOrbitIterator(W, wt) (returns an iterator for theg-orbit containing the weight
wt). We write weights as integral linear combinations of fundamental weights,Garnwveights are
represented by lists of integers (of length equal to the rank of the root system).

Also we mention the functiorositiveRootsAsWeights (R) that returns the positive roots of

R written as weights, i.e., as linear combinations of the fundamental weights.
Example
gap> R:=RootSystem(["B", 2, "F", 4, "E", 6]);
<root system of type B2 F4 E6>

gap> R:= RootSystem("A", 2);

<root system of type A2>
gap> PositiveRoots(R);
(1, 01, 00, 121, I
gap> BilinearFormMat (R
ttrz, -11,0-1,21]]
gap> W:= WeylGroup(R);
Group([[[-1, 1 1, [0, 111, [I
gap> ConjugateDominantWeight (W, [-3,
[2, 1]

gap> o:= WeylOrbitIterator(W, [-3,2]);
<iterator>

Using the iterator we can loop over the orbit:
gap> NextIterator(o);

[2, 1]

gap> NextIterator(o);

[-1, -2]

gap> PositiveRootsAsWeights(R);
(rz2 -11, 1-1, 21, (1, 1 1]

1,111
)

’

1,
2]);

3.3.2 BilinearFormMatNF

{ BilinearFormMatNF (R) (attribute)

This is the matrix of the “normalized” bilinear form. This means that all diagonal entries are
even, and 2 is the minimum value occurring on the diagonak iff a root system constructed by
RootSystem (3.3.1), then this is equal teilinearFormMat (R).

3.3.3 PositiveRootsNF

Q) PositiveRootsNF (R) (attribute)

This is the list of positive roots of the root syst&nwritten as linear combinations of the sim-
ple roots. This means that the simple roots are unit vectors. idfa root system constructed by
RootSystem (3.3.1), then this is equal teositiveRoots (R).

One of the reasons for writing the positive roots like this is the following. d,eto be two
elements oPositiveRootsNF (R), and letB be the matrix of the bilinear form. Then (B*b)
is the result of applying the bilinear form tg b.

QuaGroup 17

Example
gap> R:= RootSystem(SimpleLieAlgebra("B", 2, Rationals));;

gap> PositiveRootsNF(R);

rri, 01,00, 121, 01, 11, [1 211

We note that in this case PositiveRoots(R) will give the positive roots in
a different format.

3.3.4 SimpleSystemNF

¢ SimpleSystemNF (R) (attribute)

This is the list of simple roots af, written as unit vectors (this means that they are elements of
PositiveRootsNF (R)). If Ris aroot system constructed RyotSystem (3.3.1), then this is equal
to SimpleSystem(R).

3.3.5 PositiveRootsInConvexOrder

Q) PositiveRootsInConvexOrder(R) (attribute)

This function returns the positive roots of the root systein the “convex” order. Letvg =51 - &
be a reduced expression of the longest element in the Weyl group. Thesttiredement of the list
returned by this function is; - - - sc_1(ak). (Where the reduced expression used is the one returned by
LongestWeylWord(R).) If a, B anda + B are positive roots, thea + 3 occurs between and3
(whence the name convex order).

In the output all roots are written in “normal form”, i.e., as element8wafi t iveRoot sNF (R).

Example
gap> R:= RootSystem("G", 2);;
gap> PositiveRootsInConvexOrder(R);
(rrw, o1, 03 11,02 11,03 21,01 1], 10,111
3.3.6 SimpleRootsAsWeights
¢ SimpleRootsAsWeights(R) (attribute)

Returns the simple roots of the root systenwritten as linear combinations of the fundamental
weights.
Example

gap> R:= RootSystem("A", 2);;
gap> SimpleRootsAsWeights(R);
(02, -11, -1, 211

3.4 Weyl groups and their elements

Now we describe a few functions that deal with reduced words in the Weyl group of the root system
R. These words are represented as lists of positive intdgetsnoting thei-th simple reflection
(which corresponds to theth element offimpleSystem(R)). For examplel 3, 2, 1, 3, 1]
represents the expressis$,s;S3S; .

QuaGroup 18

3.4.1 ApplyWeylElement

O ApplyWeylElement (W, wt, wd) (operation)

Herewd is a (not necessarily reduced) word in the Weyl grayandwt is a weight (written as
integral linear combination of the simple weights). This function returns the result of applying

to wt. For example, ifit=l, andwd = [1, 2] then this function returns;s;(u4) (wheres is the
simple reflection corresponding to théh simple root).
Example
gap> W:= WeylGroup(RootSystem("G", 2)) ;;
gap> ApplyWeylElement(W, [-3, 71, [1, 1, 2, 1, 21);
[15, -11]

3.4.2 LengthOfWeylWord

O LengthOfWeylWord(W, wd) (operation)

Herewd is a word in the Weyl grou@. This function returns the length of that word.
Example
gap> W:= WeylGroup(RootSystem("F", 4)) ;
<matrix group with 4 generators>

gap> LengthOfWeylWord(W, [1, 3, 2, 4, 2 1);
3

3.4.3 LongestWeylWord

{ LongestWeylWord(R) (attribute)

Herer is a root systemLongestieylWord(R) returns the longest word in the Weyl group of
R.

If this function is called for a root system, a reduced expression for the longest element in
the Weyl group is calculated (the one which is the smallest in the lexicographical ordering). How-
ever, if you would like to work with a different reduced expression, then it is possible to set it by
SetLongestWeylWord(R, wd), wherewd is a reduced expression of the longest element in the
Weyl group. Note that you will have to do this before callinghgestWeylWord, or any function that
may callLongestWeylWord (once the attribute is set, it will not be possible to change it). Note also
that you must be sure that the word you give is in fact a reduced expression for the longest element in
the Weyl group, as this is not checked (you can check this witlyt hofweylwWord (3.4.2).

We note that virtually all algorithms for quantized enveloping algebras depend on the choice of
reduced expression for the longest element in the Weyl group (as the PBW-type basis depends on
this).

Example

gap> R:= RootSystem("G", 2);;
gap> LongestWeylWord(R);
(1, 2,1, 2,1, 2]

QuaGroup 19

3.4.4 ReducedWordlterator

{ ReducedWordIterator(W, wd) (operation)

Herew is a Weyl group, andd a reduced word. This function returns an iterator for the set of
reduced words that represent the same element.a¥he elements are output in ascending lexico-
graphical order.

Example

gap> R:= RootSystem("F", 4);;

gap> it:= ReducedWordIterator(WeylGroup(R), LongestWeylWord(R));
<iterator>

gap> NextIterator(it);

(1, 2,1, 3, 2,1, 3, 2, 3, 4, 3, 2,1, 3, 2, 3, 4 3, 2,1, 3, 2, 3, 4]
gap> k:= 1;;

gap> while not IsDonelterator(it) do

> k:= k+1; w:= NextIterator(it);

> od;

gap> kj

2144892

So there are 2144892 reduced expressions for the longest element in the Weyl grougFef type

3.4.5 ExchangeElement

Q ExchangeElement (W, wd, ind) (operation)

Herew is a Weyl group, andd is areducedword inw, andind is an index between 1 and the rank
of the root system. Let denote the word obtained frona by addingind at the end. This function
assumeshat the length ofr is one less than the length e, and returns a reduced expression-for
that is obtained fromvd by deleting one entry. Nothing is guaranteed of the output if the length of
is bigger than the length efd.

Example

gap> R:= RootSystem("G", 2);;

gap> wd:= LongestWeylWord(R);;

gap> ExchangeElement (WeylGroup(R), wd, 1);
(2,1, 2,1, 21

3.4.6 GetBraidRelations

Q) GetBraidRelations(W, wdl, wd2) (operation)

Herew is a Weyl group, andidl, wd2 are two reduced words representing the same element in
W. This function returns a list of braid relations that can be applieddtoto obtainwd2. Here a
braid relation is represented as a list, with at the odd positions integers that represent positions in a
word, and at the even positions the indices that are on those positions after applying the relation. For
example, letvd be the word[1, 2, 1, 3, 2, 1 Jandletr = [3, 3, 4, 1] be a relation.
Then the result of applyingtowdis [1, 2, 3, 1, 2, 1] (i.e., on the third position we put a 3,
and on the fourth position a 1).

QuaGroup 20

We note that the function does not check first wheth&r andwd2 represent the same element
in w. If this is not the case, then an error will occur during the execution of the function, or it will
produce wrong output.

Example

gap> R:= RootSystem("A", 3);;

gap> wdl:= LongestWeylWord(R);

(1, 2,1, 3, 2, 11

gap> wd2:= [1, 3, 2, 1, 3, 2 1;;

gap> GetBraidRelations(WeylGroup(R), wdl, wd2);

[3, 3,4, 11, 1[4 2,5, 1,6, 21, 12,3, 3, 2,4, 31,

[4, 1, 5, 311

3.4.7 LongWords
Q LongWords (R) (attribute)

For a root system this returns a list of triples (of length equal to the rankkpfLet t be thek-th
triple occurring in this list. The first element ofis an expression for the longest element of the Weyl
group, starting withk. The second element is a list of braid relations, moving this expression to the
value ofLongestWeylWord(R). The third elementis a list of braid relations performing the reverse
transformation.

Example
gap> R:= RootSystem("A", 3);;
gap> LongWords(R) [3];
[13,1, 2,1, 3, 21,
[03, 3,4 111, 1[4 2,5 1,6, 21, 12,3, 3, 2,4, 31,
[4, 1, 5, 31, 1, 3, 2, 111,
[[4, 3,5 11, (011, 1, 2, 31, 12, 2, 3, 3, 4, 21,
[4, 1, 5 2, 6, 11, [3, 1,4, 3111

3.5 Quantized enveloping algebras

In QuaGroup we deal with two types of quantized enveloping algebra. First there are the quantized
enveloping algebras defined over the fielthntunrield (3.1.1). We say that these algebras are
“generic” quantized enveloping algebrasQunaGroup they have the categomsGenericQUEA. Sec-
ondly, we deal with the quantized enveloping algebras that are defined over a different field.

3.5.1 QuantizedUEA

) QuantizedUEA(R) (attribute)
{ QuantizedUEA(R, F, v) (operation)
{ QuantizedUEA(L) (attribute)
{ QuantizedUEA(L, F, v) (operation)

In the first two formsR is a root system. With only as input, the corresponding generic quantized
enveloping algebra is constructed. It is stored as an attributésa that constructing it twice for the
same root system yields the same object). Also the root system is stored in the quantized enveloping
algebra as the attributeotSysten.

QuaGroup 21

The attributeGeneratorsOfAlgebra contains the generators of a PBW-type basis (see Section
2.4), that are constructed relative to the reduced expression for the longest element in the Weyl group
that is contained imongestieylWord(R). We refer to0b jByExtRep (3.5.2) for a description of
the construction of elements of a quantized enveloping algebra.

The call QuantizedUEA(R, F, v) returns the quantized universal enveloping algebra
with quantum parameter, which must lie in the fieldr. In this case the elements of
GeneratorsOfAlgebra are the images of the generators of the corresponding generic quantized en-
veloping algebra. This means thatifs a root of unity, then the generators will not generate the whole
algebra, but rather a finite dimensional subalgebra (as for instﬁ'heeo for k large enough). It is
possible to construct elements that do not lie in this finite dimensional subalgebrau$iygxtRep

(3.5.2.

In the last two cases must be a semisimple Lie algebra. The two calls are short for
QuantizedUEA (RootSystem(L)) and QuantizedUEA(RootSystem(L), F, v) respec-
tively.

Example

We construct the generic quantized enveloping algebra corresponding

to the root system of type A2+G2:

gap> R:= RootSystem(["A", 2, "G", 21);;

gap> U:= QuantizedUEA(R);

QuantumUEA (<root system of type A2 G2>, Qpar = q)

gap> RootSystem(U);

<root system of type A2 G2>

gap> g:= GeneratorsOfAlgebra(U);

[F1, F2, F3, F4, F5, F6, F7, F8, F9, K1, Kl+(gq"-1-gq)*[K1 ; 1], K2,

K2+ (g"-1-q)*[K2 ; 1 1, K3, K3+(g"-1-g)*[K3 ; 1 1, K4,
K4+(q"-3-g"3)*[kK4 ; 1 1, El, E2, E3, E4, E5, E6, E7, E8, E9]

These elements generate a PBW-type basis of U; the nine elements Fi,

and the nine elements Ei correspond to the roots listed in convex order:

gap> PositiveRootsInConvexOrder(R);

(r,o0,¢0,o01, 101, 1,90,¢071, 060,1,0 071, [0, 0,21, 01,
(o, o311, 1¢0¢0, 2,11, 100,03, 21, 10,01,1
[0, 0, 0, 211

So, for example, F5 is an element of weight -[0, 0, 3, 1].

We can also multiply elements; the result is written on the PBW-basis:

gap> g[17]1*g[4];

(q°-6-1)*F4*[K4 ; 1]1+(q"-3)*F4*K4

Now we construct a non-generic quantized enveloping algebra:

gap> R:= RootSystem("A", 2);;

gap> U:= QuantizedUEA(R, CF(3), E(3));;

gap> g:= GeneratorsOfAlgebra(U);

[F1, F2, F3, K1, K1+ (-E(3)+E(3)"2)*[K1 ; 1], K2,

K2+ (-E(3)+E(3) "2)*[K2 ; 1], El, E2, E3]

As can be seen in the example, every elemed @ written as a linear combination of monomials
in the PBW-generators; the generatordJof come first, then the generatorsdf, and finally the
generators of) *.

3.5.2 ObjByExtRep

{ ObjByExtRep(fam, list) (operation)

QuaGroup 22

Here fam is the elements family of a quantized enveloping algebré&econdly,list is a list
describing an element af. We explain how this description works. First we describe an indexing
system for the generatorsofLetR be the root system af. Lett be the number of positive roots, and
rank the rank of the root system. Then the generatorsaserk, ki (and its inversegk, fork=1.. .t,
i=1..rank. (See Sectio.4; for the construction of thek, Ek, the value of.ongestWeyliord(R)
is used.) Now the index dfk is k, and the index ofk is t+rank+k. Furthermore, elements of
the algebra generated by the, and its inverse, are written as linear combinations of products of
“binomials”, as in Sectior2.5. The element

<[]
S

(whered = 0,1), isindexed ag t+i, d] (what happens to theis described later). So an index is
either an integer, or a list of two integers.

A monomial is a list of indices, each followed by an exponent. First come the indices bk the
(1..t), then come the lists of the form t+i, d], and finally the indices of thek. Each index
is followed by an exponent. An index of the formt+i, d] is followed by thes in the above
formula.

The second argument of jByExtRep is a list of monomials followed by coefficients. This func-
tion returns the element afdescribed by this list.

Finally we remark that the element

<[]
S

isprintedaxi[Ki ; s]ifd=1,andas[ki ; s] if d=0.
Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> fam:= ElementsFamily(FamilyObj(U));;
gap> list:= [[2, 3, [4, 011, 8, 6, 111, _g°2, # monomial and coefficient

>[1, 7,3, 5 [5 11, 3,8 91, _g°-1 + _g"2]; # monomial and coefficient
(02 3 [4°01,8, 6,111, g2, [1,7, 3,5 [5 11, 3,8, 91,
q'-1+gq"2]

gap> ObjByExtRep(fam, list);
(q"2)*F2°(3)*[K1 ; 8]*E1"(11)+(gq"-1+g~2)*F1" (7)*F3"(5)*K2[K2 ; 3]*E3"(9)

3.5.3 ExtRepOfObj

Q ExtRepOfObj(elm) (operation)

For the element1m of a quantized enveloping algebra, this function returns the list that defines
elm (See0bjByExtRep (3.5.9).
Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> g:= GeneratorsOfAlgebra (U);
[F1, F2, F3, K1, Kl+(q"-1-q)*[K1 ; 1], K2, K2+(q"-1-q)*[K2 ; 1], EI,

E2, E3]

gap> ExtRepOfObij(gl5]);
(rr4 11,01, 1, 00401, 11, a-1-q]

QuaGroup

3.5.4 QuantumParameter

{ QuantumParameter(U)

Returns the quantum parameter used in the definitian of

23

(attribute)

Example

gap> R:= RootSystem("A",2);;

gap> U0:= QuantizedUEA(R, CF(3), E(3));;
gap> QuantumParameter(U0);

E(3)

3.5.5 CanonicalMapping

¢ CanonicalMapping(U)

(attribute)

Hereu is a quantized enveloping algebra. létdenote the corresponding “generic” quantized
enveloping algebra. This function returns the mapping--> U obtained by mapping (which is

the quantum parameter vf) to the quantum parameter of
Example

gap> R:= RootSystem("A", 3);;

gap> U:= QuantizedUEA(R, CF(5), E(5));;

gap> f:= CanonicalMapping(U);

MappingByFunction (QuantumUEA(<root system of type A
3>, Qpar = g), QuantumUEA(<root system of type A3>, Qpar =
E(5)), function(u) ... end)

gap> UO0:= Source(f);

QuantumUEA (<root system of type A3>, Qpar = q)

gap> g:= GeneratorsOfAlgebra(U0);;

gap> u:= g[18]*g[9]*g[6];

(q72) *F6*K2*E6+ (q) *K2*[K3 ; 1]

gap> Image(£, u);

(E(5) "2) *F6*K2*E6+ (E(5)) *K2*[K3 ; 1]

3.5.6 WriteQEATOFile

O WriteQEAToFile(U, file)

Hereu is a quantized enveloping algebra, and file is a string containing the name of a file. This

function writes some data toi 1e, that allowskReadQEAFromFile (3.5.7) to recover it.

(operation)

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> WriteQEAToFile(U, "/home/wdg/A3");

3.5.7 ReadQEAFromFile

{) ReadQEAFromFile(file)

Herefile is a string containing the name of a file, to which a quantized enveloping algebra has

(operation)

been written bywriteQEAToF11e (3.5.9. This function recovers the quantized enveloping algebra.

QuaGroup 24

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> WriteQEAToFile(U, "/home/wdg/A3");

gap> UO0:= ReadQEAFromFile("/home/wdg/A3");
QuantumUEA (<root system of type A3>, Qpar =

q)

3.6 Homomorphisms and automorphisms

Here we describe functions for creating homomorphisms and (anti)-automorphisms of a quantized
enveloping algebra.

3.6.1 QEAHomomorphism

Q QEAHomomorphism(U, A, list) (operation)

HereU is a generic quantized enveloping algebra (i.e., with quantum paramgteiis an algebra
with one overQuantumfField, andlist is a list of 4*rank elements ofs (whererank is the rank
of the root system off). On the first rank positions there are the images ofFhdwhere thea
are simple roots, listed in the order in which they occuginpleSystem(R)). On the positions
rank+1...2*rank are the images of th€,. On the position®*rank+1...3*rank are the images
of theK; 1, and finally on the positions*rank+1. . .4*rank occur the images of thg,.

This function returns the homomorphism-> 2, defined by this data. In the example below we
construct a homomorphism from one quantized enveloping algebra into another. Both are constructed
relative to the same root system, but with different reduced expressions for the longest element of the
Weyl group.

Example

gap> R:= RootSystem("G", 2);;

gap> SetLongestWeylWord(R, [1,2,1,2,1,2]);

gap> UR:= QuantizedUEA(R);;

gap> S:= RootSystem("G", 2);;

gap> SetLongestWeylWord(S, [2,1,2,1,2,1]);

gap> US:= QuantizedUEA(S);;

gap> gS:= GeneratorsOfAlgebra(US);

[F1, F2, F3, F4, F5, F6, K1, Kl+(q"-1-g)*[K1 ; 1 1, K2,
K2+(q"-3-9g"3)*[K2 ; 1 1, El, E2, E3, E4, E5, E6]

gap> SimpleSystem(R);

(11, 01, 00, 1711

gap> PositiveRootsInConvexOrder(S);

rcro, 11, 014,11, 03 21,02 11,13 11,11, 011

We see that the simple roots of R occur on positions 6 and 1

in the list PositiveRootsInConvexOrder(S); This means that we

get the following list of images of the homomorphism:

gap> imgs:= [gS[6], gS[1l], # the images of the F_{\alpha}
> gS[7], 9S[9], # the images of the K_{\alpha}
> gS[8], gS[10], # the images of the K_{\alpha}"{-1}
> gS[l6], gS[1l] 1; # the images of the E_{\alpha}

[F6, F1, K1, K2, Kl+(g"-1-gq)*[K1 ; 1], K2+(q"-3-9"3)*[K2 ; 1], E6, El
]

gap> h:= QEAHomomorphism(UR, US, imgs);

<homomorphism: QuantumUEA(<root system of type G

QuaGroup 25

2>, Qpar = g) -> QuantumUEA(<root system of type G2>, Qpar = q)>
gap> Image(h, GeneratorsOfAlgebra(UR)I[3]);
(1-q™4-q"6+g~10) *F1*F6" (2) +(-q"2+q~6) *F2*F6+ (q"4) *F4

3.6.2 QEAAutomorphism

O QEARutomorphism(U, list) (operation)
{ QEAAutomorphism(U, £) (operation)

In the first formu is a generic quantized enveloping algebra (i.e., with quantum paramgtand
list is alist of4*rank elements ofl (whererank is the rank of the corresponding root system). On
the firstrank positions there are the images of the(where thex are simple roots, listed in the order
in which they occur irsimpleSystem(R)). On the positiongank+1...2*rank are the images of
theKq. On the positions*rank+1. . .3*rank are the images of thé; 1, and finally on the positions
3*rank+1...4*rank occur the images of thg,.

In the second fornu is a non-generic quantized enveloping algebra, amlan automorphism
of the corresponding generic quantized enveloping algebra. The corresponding automorphism of
constructed. In this cagemust not be the bar-automorphism of the corresponding generic quantized
enveloping algebra (cfBarAutomorphism (3.6.6), as this automorphism doesn’t work in the non-
generic case.

The image of an element under an automorphisra is computed byimage (£, x). Note
that there is no function for calculating pre-images (in general this seems to be a very hard
task). If you want the inverse of an automorphism, you have to construct it explicitly (e.g., by
QEAAutomorphism(U, list), wherelist is a list of pre-images).

Below we construct the automorphism(cf. Section2.2) of the quantized enveloping of typ@e,

when the quantum parameter.is and when the quantum parameter is a fifth root of unity.

Example

First we construct the quantized enveloping algebra:

gap> R:= RootSystem("A", 3);;

gap> UO0:= QuantizedUEA(R);

QuantumUEA (<root system of type A3>, Qpar = q)

gap> g:= GeneratorsOfAlgebra(U0);

[F1, F2, F3, F4, F5, F6, K1, Kl+(q"-1-q)*[K1 ;
K2+ (g -1-q)*[K2 ; 1 1, K3, K3+(q"-1-q)*[K3 ;

]I Kz/

], E1, E2, E3, E4, E5, E6]
Now, for instance, we map F_{\alpha} to E_{\alpha}, where \alpha

1s a simple root. In order to find where those F_{\alpha}, E_{\alpha}

are in the list of generators, we look at the list of positive roots
#
g
[

1
1

in convex order:
ap> PositiveRootsInConvexOrder(R);
(,o0,o0131,9012,11,0131, 10, 2,011, [1,121, 00,121,117,
[0, 0, 111
So the simple roots occur on positions 1, 3, 6. This means that we
have the following list of images:
gap> imgs:= [g[13], g[15], g[18], g[8], g[10], g[12], g[7], g[9], glll],
> glll, gl3], gle]l I;
[E1, E3, E6, Kl+(gq"-1-g)*[K1 ; 1], R2+(gq"-1-gq)*[K2 ; 1 1,
K3+(q"-1-q)*[K3 ; 1], K1, K2, K3, Fl, F3, F6]
gap> f:= QEAAutomorphism(U0, imgs);
<automorphism of QuantumUEA(<root system of type A3>, Qpar = q)>
gap> Image(£, gl[2]);

QuaGroup 26

(-q) *E2

f induces an automorphism of any non-generic quantized enveloping

algebra with the same root system R:

gap> Ul:= QuantizedUEA(R, CF(5), E(5));

QuantumUEA (<root system of type A3>, Qpar = E(5))

gap> h:= QEAAutomorphism(Ul, f);

<automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>
gap> Image(h, GeneratorsOfAlgebra(Ul)[7]);

(-E(5)+E(5) "4)*[K1 ; 1]+K1

3.6.3 QEAAntiAutomorphism

Q QEAAntiAutomorphism(U, list) (operation)
{Q QEAAntiAutomorphism(U, f) (operation)

These are functions for constructing anti-automorphisms of quantized enveloping algebras. The
same comments apply as ftBAAut omorphism (3.6.9.

3.6.4 AutomorphismOmega

Q AutomorphismOmega (U) (attribute)

This is the automorphism (cf. Section2.2).
Example

gap> R:= RootSystem("A", 3);;

gap> U:= QuantizedUEA(R, CF(5), E(5));

QuantumUEA (<root system of type A3>, Qpar = E(5))

gap> f:= AutomorphismOmega(U);

<automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>

3.6.5 AntiAutomorphismTau

Q AntiAutomorphismTau () (attribute)

This is the anti-automorphism(cf. Section2.2).
Example

gap> R:= RootSystem("A", 3);;

gap> U:= QuantizedUEA(R, CF(5), E(5));

QuantumUEA (<root system of type A3>, Qpar = E(5))

gap> t:= AntiAutomorphismTau(U);

<anti-automorphism of QuantumUEA(<root system of type A3>, Qpar = E(5))>

3.6.6 BarAutomorphism

{ BarAutomorphism(U) (attribute)

This is the automorphism defined in SecttohHereu must be a generic quantized enveloping
algebra.

QuaGroup 27

Example
gap> U:= QuantizedUEA(RootSystem(["A",2,"B",2]));;

gap> bar:= BarAutomorphism(U);

<automorphism of QuantumUEA(<root system of type A2 B2>, Qpar = q)>
gap> Image(bar, GeneratorsOfAlgebra(U)[5]);

(-q"-2+q"2) *FA*FT7+F5

3.6.7 AutomorphismTalpha

¢ AutomorphismTalpha(U, ind) (operation)

This is the automorphisiy, (cf. Section2.4), W{]erea is theind-th simple root.
Example

gap> U:= QuantizedUEA(RootSystem("B", 3));;

gap> f:=AutomorphismTalpha(U, 1);

<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
gap> a:= GeneratorsOfAlgebra(U)[3];

F3

gap> Image(£, a);

F2

3.6.8 DiagramAutomorphism

Q DiagramAutomorphism(U, perm) (operation)

This is the automorphism aofinduced by a diagram automorphism of the underlying root system.
The diagram automorphism is represented by the permutatian which is the permutation of the
simple roots performed by the diagram automorphism.

In the example below we construct the diagram automorphism of the root system a§fypleich

is represented by the permutation, 3) .
Example

gap> R:= RootSystem("A", 3);;

gap> U:= QuantizedUEA(R);;

gap> f:= DiagramAutomorphism(U, (1,3));

<automorphism of QuantumUEA(<root system of type A3>, Qpar = q)>
gap> g:= GeneratorsOfAlgebra(U);

[F1, F2, F3, F4, F5, F6, K1, Kl+(q"-1-q)*[K1 ; 1 1, K2,
K2+ (q -1-q)*[K2 ; 1], K3, K3+(q"-1-q)*[K3 ; 1 1, E1, E2, E3, E4, E5, E6
]
gap> Image(£, g[1]);
F6
3.6.9 *
OA*(£, h) (operation)

We can compose automorphisms and anti-automorphisms using the agferator. The result of
composing two automorphisms is an automorphism. The result of composing an automorphism and
an anti-automorphism is an anti-automorphism. The result of composing two anti-automorphisms is
an automorphism.

QuaGroup

Example

28

gap> U:= QuantizedUEA(RootSystem("B", 3));;
gap> f:=AutomorphismTalpha(U, 1);

gap> h:= AutomorphismOmega(U);
gap> f*h;

gap> t:= AntiAutomorphismTau(U);;
gap> T:= AutomorphismTalpha(U, 2);;
gap> Tinv:= t*T*t;

(The last call may take a little while.)
gap> x:= Image(T, GeneratorsOfAlgebra(U)[1]
(1-q™4) *F1*F3+4 (-q"2) *F2

gap> Image(Tinv, x);

Fl

<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>
<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>

<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>

<automorphism of QuantumUEA(<root system of type B3>, Qpar = q)>

);

According to Pan9§, 8.14(10),T1o T o T is the inverse ofly,.

3.7 Hopf algebra structure

Here we describe functions for dealing with the Hopf algebra structure of a quantized enveloping
algebra. This structure enables us to construct tensor products, and dual modules of modules over
a quantized enveloping algebra. We refer to the next section (Sex@pfior some functions for

creating modules.

3.7.1 TensorPower

{ TensorPower (U, d)

(operation)

HereU is a quantized universal enveloping algebra, aradnon-negative integer. This function
returns the associative algebra with underlying vector space-tblel tensor product of with itself.

The product is defined component wise.

Example
gap> U:= QuantizedUEA(RootSystem(["B", 2])
gap> T:= TensorPower(U, 3);

<algebra over QuantumField, with 36 generators>
gap> g:= GeneratorsOfAlgebra(T);;

gap> x:= g[1];

1* (1<x>1<x>F1)

gap> y:= g[30]
1% (E2<x>1<x>1)
gap> x*y;

1* (E2<x>1<x>F1)

’

)i

3.7.2 UseTwistedHopfStructure

{Q UseTwistedHopfStructure(U, f, finv)

(operation)

QuaGroup 29

Hereu is a quantized enveloping algebra, andinv two (anti-) automorphisms af, wherefinv
is the inverse of. After calling this function the Hopf structure anis used that is obtained from the
“normal” Hopf structure (see Sectich3) by twisting it with f.

A call to this function sets the attributepfStructureTwist, whichisthe listf £, finv].
Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> t:= AntiAutomorphismTau(U);;

gap> UseTwistedHopfStructure(U, t, t);

3.7.3 ComultiplicationMap
Q ComultiplicationMap(U, d) (operation)
This is a homomorphism from the quantized enveloping algeloahed-fold tensor power off

with itself. It is obtained by a repeated application of the comultiplication. &o ford=2 we get the
comultiplication ofu.

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;

gap> D:= ComultiplicationMap(U, 3);

<Comultiplication of QuantumUEA(<root system of type A2>, Qpar =
E(5)), degree 3>

gap> Image(D, GeneratorsOfAlgebra(U) [4]);

1* (K1<x>K1<x>K1)

3.7.4 AntipodeMap

Q AntipodeMap(U) (attribute)

This is the antipode map of the quantized enveloping algebwehich is constructed as an anti-

automorphism of.

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CEF(5), E(5));;

gap> a:= AntipodeMap(U);

<anti-automorphism of QuantumUEA(<root system of type A2>, Qpar = E(5))>

3.7.5 CounitMap

O CounitMap(U) (attribute)

This is the counit map of the quantized enveloping algebrahich is constructed as a function

from U to the ground field.

Example
gap> U:= QuantizedUEA(RootSystem("A",2), CF(5), E(5));;
gap> co:= CounitMap(U);

function(u) ... end
gap> x:= GeneratorsOfAlgebra(U) [4];
K1

gap> co(x);
1

QuaGroup 30

3.8 Modules

Here we describe some functions for constructing left modules over quantized enveloping algebras.
We refer to theGAP reference manual for an overview of basic functions for algebra modules, which
are also applicable to the modules constructed by the functions described in this section. We mention
MatrixOfAction, DirectSumOfAlgebraModules. The action of an element of the algebra on an
element of the module is calculated by the infix operator

3.8.1 HighestWeightModule (for a quantized env. alg.)

Q HighestWeightModule (U, wt) (operation)

HereU is a quantized universal enveloping algebra, @nd dominant weight (i.e., a list of length
equal to the rank of the root system, consisting of non-negative integers). This function returns a
finite-dimensional highest-weight module of highest weighbveruv. If U is generic then this is the
unique irreducible highest-weight module overOtherwise it is the Weyl module, cf. Secti@rb. In
this last case the module is not necessarily irreducible.

Let v denote the module returned by this function. The first basis element of the attribute
Basis(V) is a highest-weight vector; it is written asv0. Other basis elements are written as, for
example F2*F9+*v0, which means that this vector is the result of letting the PBW-mononzigt 9
act on the highest-weight vector.

Example
gap> U:= QuantizedUEA(RootSystem(["A", 2, "G", 2 1));;

gap> V:= HighestWeightModule(U, [0, 1, 0, 2]);

<231-dimensional left-module over QuantumUEA(<root system of type A2 G
2>, Qpar = q)>

gap> Basis(V)[1];

1*v0

gap> Basis (V) [23]+(_g"2+_g"-2)*Basis (V) [137];
F3*F5*v0+ (g -2+g"2) *F8” (6) *v0

We compute the action of an element on a vector:

gap> gg:= GeneratorsOfAlgebra(U);;

gap> x:= gg[21]*g9g[5];

F5*E4+ (-q"-1) *F6*K3

gap> x"Basis (V) [1];

(-gq"-1) *F6*v0

3.8.2 IrreducibleQuotient

{ IrreducibleQuotient (V) (attribute)

Herev is a highest-weight module over a non-generic quantized enveloping algebra. This function
returns the quotient of by the maximal submodule not containing the highest weight vector. This is
not necessarily equal toif the quantum parameter is a root of 1.

Example

gap> R:= RootSystem("A", 2);;

gap> U:= QuantizedUEA(R, CF(3), E(3));;

gap> V:= HighestWeightModule(U, [1,1]);

<8-dimensional left-module over QuantumUEA(<root system of type A2>, Qpar =

QuaGroup 31

E(3))>

gap> IrreducibleQuotient(V);

<7-dimensional left-module over QuantumUEA(<root system of type A2>, Qpar =
E(3))>

3.8.3 HWModuleByTensorProduct

¢ HWModuleByTensorProduct (U, wt) (operation)

HereU must be agenericquantized enveloping algebra, and a dominant weight. This func-
tion returns the irreducible highest-weight module with highest weight The algorithm uses
tensor products (whence the name). On some inputs this algorithm is faster than the one use for
HighestWeightModule:for a quantized env. alg. (3.8.1), on some inputs it is slower. | do
not know any good heuristics.

The basis supplied with the module returned is the canonical basis.
Example
gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> V:= HWModuleByTensorProduct(U, [2,1]);
<189-dimensional left-module over QuantumUEA(<root system of type G
2>, Qpar q)>
(This is a case where this algorithm is a lot faster.)

3.8.4 DIYModule

¢ DIYModule(U, V, acts) (operation)

Here U is a generic quantized enveloping algebra, anis a vector space over the field
QuantumField. U acts onv and the action is described by the data in thedists. acts is a list
of lists, of lengtha+1, wherel is the rank of the root systemcts describes the actions of the gener-
ators[Fy,...,R,Kg,....,K,K 1,... K1, Es,...,E]. (HereF is the generatoF,,, whereay is thek-th
simple root, and likewise fdEyx.) The action of each generator is described by a list of leagthv,
giving the images of the basis elements/off an image is zero then it may be omitted: in that case
there is a “hole” in the list. This function returns thenodule defined by the input.

LetR be aroot system of typ&,, andu the corresponding quantized enveloping algebra (generated
by F,K,K~1 E). In the example below we construct the 2-dimensidhathodule with basis vectors
V1, Vo, andu-action given byFvy = Vo, Fvo = 0, Kvy = qvi, Kvo = g 1vo, Evy = 0, EVo = V1.
Example
gap> U:= QuantizedUEA(RootSystem("A",1));
QuantumUEA (<root system of type Al>, Qpar = q)
gap> V:= QuantumField"2;
(QuantumField™2)
gap> v:= BasisVectors(Basis (V));
(11, 01, [0, 1711
gap> acts:= [[vI[2], 0*v[1] 1, [_g*vI[l], _g -1*v[2] 1,
> [_g"-1*v[1], _g*v[2] 1, [O*v[1l], v[1] 1 1;;
gap> M:= DIYModule(U, V, acts);
<2-dimensional left-module over QuantumUEA(<root system of type A
1>, Qpar = g)>

QuaGroup 32

3.8.5 TensorProductOfAlgebraModules

Q TensorProductOfAlgebraModules(V, W) (operation)
Q TensorProductOfAlgebraModules(V, W) (operation)

Herev andw are two modules over the same quantized enveloping algebrghis function
constructs the tensor product vfandw (as au-module). For this the comultiplication map ofis
used (se€omultiplicationMap (3.7.3).

In the second form list is a list @-modules. In that case the iterated tensor product is constructed.
Example
gap> U:= QuantizedUEA(RootSystem(["A", 2 1));;
gap> V1:= HighestWeightModule(U, [1, 0]);;
gap> V2:= HighestWeightModule(U, [0, 1]);;
gap> TensorProductOfAlgebraModules(V1, V2);
<9-dimensional left-module over QuantumUEA(<root system of type A2>, Qpar = gq)>

3.8.6 HWModuleByGenerator

{ HWModuleByGenerator (V, v, hw) (operation)

Herev is a module over a generic quantized enveloping algebris a highest-weight vector (i.e.,
all Eqv=0), of weighthw, which must be dominant. This function returns a highest-weight module
overu isomorphic to the submodule sfgenerated by.
Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> Wl:= HighestWeightModule(U, [1,0]);;
gap> W2:= HighestWeightModule(U, [0,1]);;
gap> T:= TensorProductOfAlgebraModules(W1, W2);
<20-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>
gap> HWModuleByGenerator(T, Basis(T)[1], [1,1]);
<l6-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>

3.8.7 InducedQEAModule

¢ InducedQEAModule(U, V) (operation)

HereU is a non-generic quantized enveloping algebra, a@dmodule over the corresponding
generic quantized enveloping algebra. This function returns-tedule obtained frorm by setting
_g equal to the quantum parameteruof
Example

gap> R:= RootSystem("B",2);;

gap> U:= QuantizedUEA(R);;

gap> UO0:= QuantizedUEA(R, CF(3), E(3));;

gap> V:= HighestWeightModule(U, [1,1]);;

gap> W:= InducedQEAModule(U0, V);

<l6-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = E(3))>

QuaGroup 33

This module is isomorphic to the one obtained by
HighestWeightModule(U0, [1,1]);

3.8.8 GenericModule

{ GenericModule (W) (attribute)

For an induced module (s@aducedQEAModule (3.8.7) this function returns the corresponding
module over the generic quantized enveloping algebra.

3.8.9 CanonicalMapping

¢ CanonicalMapping(W) (attribute)

Herew is an induced module. Let be the corresponding generic modulerericModule
(3.8.8). This function returns the map --> W, that sets.q equal to the quantum parameter of
the acting algebra af.

Example

gap> R:= RootSystem("B",2);;

gap> U:= QuantizedUEA(R);;

gap> UO:= QuantizedUEA(R, CF(3), E(3));;

gap> V:= HighestWeightModule(U, [1,1]);;

gap> W:= InducedQEAModule(U0, V);;

gap> f:= CanonicalMapping(W);

MappingByFunction(<

16-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>, <

16-dimensional left-module over QuantumUEA(<root system of type B

2>, Qpar = E(3))>, function(v) ... end)
gap> Image(f, _g"2*Basis(V)[3]);
(E(3)"2)*e.3

3.8.10 U2Module

¢ U2Module(U, hw) (operation)

Here U must be a quantized enveloping algebra of type This function returns the highest-
weight module ovep of highest-weightw (which must be dominant). This function is generally a
lot faster thariighestWeightModule: for a quantized env. alg. (3.8.].

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> A2Module(U, [4,7]);

<260-dimensional left-module over QuantumUEA(<root system of type A
2>, Qpar = q)>

3.8.11 MinusculeModule

O MinusculeModule(U, hw) (operation)

QuaGroup 34

Hereu must be a generic quantized enveloping algebraharadminuscule dominant weight. This
function returns the highest-weight module ovenf highest-weightw. This function is generally
somewhat faster thani ghestWeightModule: for a quantized env. alg. (3.8.].

Example
gap> U:= QuantizedUEA(RootSystem("A",5));;
gap> MinusculeModule(U, [0,0,1,0,0]);
<20-dimensional left-module over QuantumUEA(<root system of type A
5>, Qpar = q)>

3.8.12 DualAlgebraModule

{ DualAlgebraModule (V) (attribute)

Herev is a finite-dimensional left module over a quantized enveloping algebra@his func-
tion returns the dual space ufas an algebra module. For this the antipode map iafused (see
AntipodeMap (3.7.9).

LetM denote the module returned by this function. Thdras as basis the dual basis with respect
to Basis(V). An element of this basis is printed agv, wherev is an element oBasis(v).

This is the function which takes the valu®n v and0 on all other basis elements. A general element
of Mis a linear combination of these basis elements.

The elements oft can be viewed as functions which take arguments. However, internally the
elements of1 are represented as wrapped up functions. The function corresponding to an element
of M is obtained byExtRep0OfObj (m) (the result of which is printed in the same waymabut is not
equal to it).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> M:= DualAlgebraModule(V);
<8-dimensional left-module over QuantumUEA(<root system of type A
2>, Qpar = q)>
gap> u:= GeneratorsOfAlgebra(U)[2];
F2
gap> vv:= BasisVectors(Basis(M));
[(1)*F@L*v0, (1)*F@F1*v0, (1)*F@F3*v0, (1)*FRFL*F3*v0, (1)*FRF2*v0,
(1) *FRF1*F2*v0, (1)*FRF2*F3*v0, (1)*FQRF2"(2)*v0]
gap> u"vv[3];
<zero function>
(The zero of the dual space is printed as <zero function>).
gap> u'vv[4];
(q"3-g"5) *F@1*v0
We get the function corresponding to a vector in M by using ExtRepOfObij:
gap> f:= ExtRepOfObj(vv[1l]);

(1) *F@1*v0
We can calculate images of this function:
gap> List(Basis(V), v -> Image(£, v));

(1, 0, 0, 0, 0, 0, 0, O]

QuaGroup 35

3.8.13 TrivialAlgebraModule

Q TrivialAlgebraModule(U) (attribute)

Returns the trivial module over the quantized enveloping algebFeor this the counit map af
is used.
Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V:= TrivialAlgebraModule(U);
<left-module over QuantumUEA(<root system of type A2>, Qpar = q)>

3.8.14 WeightsAndVectors

Q WeightsAndVectors(V) (operation)

Herev is a left module over a quantized enveloping algelied.ght sAndvectors(V) is a list
of two lists; the first of these is a list of the weightswfthe second a list of corresponding weight
vectors. These are again grouped in lists: if the multiplicity of a weight teen there are weight
vectors, forming a basis of the corresponding weight space.

Modules constructed byighestWeightModule:for a quantized env. alg. (3.8.1) come
with this attribute set. There is a method installed for computiagght sAndvectors (V), for
modulesv over a generic quantized enveloping algebra, such that all basis vectors (i.e., all elements
of Basis (V)) are weight vectors.

Example

gap> U:= QuantizedUEA(RootSystem("A", 2));;

gap> V:= HighestWeightModule(U, [1, 1]);;

gap> WeightsAndVectors(V);

cceti, vy, 04,23, 0z2 -11], 00,07, [-2,11, 1 -217,
[_1/ -1] }I

[[1*v0], [F1*vO], [F3*v0], [F1*F3*v0, F2*v0], [F1*F2*v0],

[F2*F3*v0], [F27(2)*v0] 1]

3.8.15 HighestWeightsAndVectors

{Q HighestWeightsAndVectors(V) (attribute)

Is analogous t@ieight sAndvectors (3.8.19; now only the highest weights are listed along with
the corresponding highest-weight vectors.

There is a method installed for this usimgightsAndvectors (3.8.19; which means that it
works if and only ifieight sAndVectors (V) works.
Example
gap> U:= QuantizedUEA(RootSystem(["A", 2 1));;
gap> V:= HighestWeightModule(U, [1, 1]);;
gap> HighestWeightsAndVectors(V);
(0L, 111, [010111

QuaGroup 36

3.8.16 RMatrix

O RMatrix(V) (attribute)

Herev is a module over the a quantized enveloping algebrahis function returns the matrix
of alinear ma:V®V — V ®V that is a solution to the quantum Yang-Baxter equation. We have
that®o P is an isomorphism of-modules, wherd® :V @V — V ®V is the linear map such that
P(vew) =w® V. For more details we refer ta§n9¢, Chapter 7.

This function works for modules for whicheight sAndvectors (3.8.14 works.
Example
gap> U:= QuantizedUEA(RootSystem("A",1));;
gap> V:= HighestWeightModule(U, [1]);;
gap> RMatrix(V);

rr, o 0,01, 100, ¢ 1~=g°2, 01, [0, 0, g, O 1, [0, O, O, 111

3.8.17 IsomorphismOfTensorModules

{ IsomorphismOfTensorModules(V, W) (operation)

Herev, w are two modules over the same quantized enveloping algebrais function returns a
linear mapd : V@ W — W ®V that is an isomorphism of U-modules.

This function is only guaranteed to work correctly if the Hopf algebra structure is non-twisted (see
UseTwistedHopfStructure (3.7.2).

This function works for modules for whicheight sAndvectors (3.8.149 works.
Example

gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,0]);;
gap> W:= HighestWeightModule(U, [0,1]);;
gap> h:= IsomorphismOfTensorModules(V,

7

W)i
gap> VW:= Source(h);

<20-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>

gap> Image(h, Basis (VW) [13]);

g* (1*v0<x>F3*v0) +1-q " 2* (F4*v0<x>F2*v0) +q " -1-q " 3* (F3*v0<x>1*v0)

3.8.18 WriteModuleToFile

Q WriteModuleToFile(V, file) (operation)

Herev is a module over a quantized enveloping algebra,fand is a string containing the name
of afile. This function writes some datatole, that allowsReadModuleFromFile (3.8.19 to recover
it.

We remark that this function currently is only implemented for generic quantized enveloping
algebras.

3.8.19 ReadModuleFromFile

{ ReadModuleFromFile(file) (operation)

QuaGroup 37

Herefile is a string containing the name of a file, to which a module over a quantized enveloping
algebra has been written iy iteModuleToFile (3.8.18. This function recovers the module. More
precisely: a new module is constructed that is isomorphic to the old one. In the process the algebra
acting on the module is constructed anew (from data written to the file). This algebra can be accessed
by LeftActingAlgebra(V).

We remark that this function currently is only implemented for generic quantized enveloping
algebras.

Example
gap> U:= QuantizedUEA(RootSystem("A",3));;
gap> V:= HighestWeightModule(U, [1,1,1]);;
gap> WriteModuleToFile(V, "/home/wdg/A3mod");

gap> W:= ReadModuleFromFile("/home/wdg/A3mod");

<64-dimensional left-module over QuantumUEA(<root system of type A
3>, Qpar = q)>

3.9 The path model

In this section we describe functions for dealing with the path model. We work only with LS-paths,
which are represented by two lists, one of weights, and one of rationals (see 2e¢tion

3.9.1 DominantLSPath
¢ DominantLSPath(R, wt) (operation)
HereR is a root system, angk a dominant weight in the weight lattice »f This function returns

the LS-path that is the line from the originia.
Example

gap> R:= RootSystem("G", 2);;
gap> DominantLSPath(R, [1,3]);
<LS path of shape [1, 3] ending in [1, 3] >

3.9.2 Falpha (for an LS-path)

{Q Falpha(path, ind) (operation)

Is the result of applying the path operaﬂiarind to the LS-pathpath (wherea 4 is theind-th
simple root).

The resultisfail if f“in (path)=0.

d

Example
gap> R:= RootSystem("G", 2);;

gap> p:=DominantLSPath(R, [1,3]);;

gap> pl:=Falpha(p, 1);

<LS path of shape [1, 3] ending in [-1, 4] >
gap> Falpha(pl, 1);

fail

QuaGroup 38

3.9.3 Ealpha (for an LS-path)

Q Ealpha(path, ind) (operation)

Is the result of applying the path operaggr ., to the LS-pathpath (wherea , 4 is theind-th
simple root).
The resultistfail if e“ind (path)=0.

Example

gap> R:= RootSystem("G", 2);;

gap> p:=DominantLSPath(R, [1,3]);;

gap> Ealpha(p, 2);

fail

gap> pl:=Falpha(p, 1);;

gap> Ealpha(pl, 1);

<LS path of shape [1, 3] ending in [1, 3] >

3.9.4 LSSequence

{ LSSequence (path) (attribute)

returns the two sequences (of weights and rational numbers) that define the LS-path path.
Example

gap> R:= RootSystem("G", 2);;

gap> p:=DominantLSPath(R, [1,3]);;

gap> pl:= Falpha(Falpha(p, 1), 2);;

gap> LSSequence(pl);

(oo, -41, 0-1, 411, 100, 1/4 171]

3.9.5 WeylWord

O WeylWord(path) (attribute)

Herepath is an LS-path in the orbit (under the root operators) of a dominant LS-path ending in
the dominant weighk. This means that the first direction of path is of the fomiA) for somew in
the Weyl group. This function returns a ligt, ..., im] such thaw=s, - -5
Example

m*

gap> R:= RootSystem("G", 2);;

gap> p:=DominantLSPath(R, [1,3]);;

gap> pl:= Falpha(Falpha(Falpha(p, 1), 2), 1);;
gap> WeylWord(pl);

[1, 2, 1]

3.9.6 EndWeight

Q EndWeight (path) (attribute)

Herepath is an LS-path; this function returns the weight that is the endpoint of path

39

QuaGroup

Example

gap> R:

= RootSystem("G", 2);;

gap> p:=DominantLSPath(R, [1,3]);;
gap> pl:= Falpha(Falpha(Falpha(p,
gap> EndWeight (pl);

[0, 3]

1),

3.9.7 CrystalGraph (for root system and weight)

{Q CrystalGraph(R, wt) (function)

This function returns a record describing the crystal graph of the highest-weight module with
highest weightit, over the quantized enveloping algebra correspondirg licis computed using the
path model. Therefore the points in the graph are LS-paths.

Denote the output by; thenr.points is the list of points of the graph. Furthermoregdges is
a list of edges of the graph; this is a list of elements of the form i, j], u 1. This means that
there is an arrow from poinit (i.e., the point on position in r.points) to point j, with labelu.

Example
gap> R:= RootSystem("A", 2);;
gap> CrystalGraph(R, [1,1]);
rec (
points := [<LS path of shape [1, 1] ending in [1, 1] >, <LS path of sha\
pe [1, 1] ending in [-1, 2] >, <LS path of shape [1, 1] ending in
[2, -1] >, <LS path of shape [1, 1] ending in [0, 0] >,
<LS path of shape [1, 1] ending in [0, 0] >,
<LS path of shape [1, 1] ending in [1, -2] >,
<LS path of shape [1, 1] ending in [-2, 1 1 >,
<LS path of shape [1, 1] ending in [-1, -1] > 1,
edges := [[[1, 2], 11, [[, 31,21, [[2 41,21,
(3 51,11, 00461, 21, 00571, 11, L6 81,11,
(r781,211)

3.10 Canonical bases

Here we describe functions for computing the canonical basis of the negative part of a quantized
enveloping algebra, and of a module.

3.10.1 Falpha (for a PBW-monomial)

{ Falpha(x, ind) (operation)

Herex is a PBW-monomial inlJ~ (i.e., a monomial in thé, wherea runs over the positive
roots). This function returns the result of applying thei-th Kashiwara operatquin d to x (cf.
Section2.6).

Example

gap> U:
gap> x:
1

QuantizedUEA (RootSystem("F", 4)
One(U);

)i

QuaGroup 40

gap> Falpha(Falpha(x, 3), 2);
F3*F9

3.10.2 Ealpha (for a PBW-monomial)

Q Ealpha(x, ind) (operation)

Herex is a PBW-monomial inJ ~ (i.e., a monomial in thdé~,, wherea runs over the positive

roots). This function returns the result of applying thei-th Kashiwara operatdﬁain d to x (cf.
Section2.6). The result istail if Eaind (x)=0.
Example

gap> U:= QuantizedUEA(RootSystem("F", 4));;

gap> Ealpha(One(U), 2);

fail

gap> g:= GeneratorsOfAlgebra(U);;

gap> x:= g[ll*g[4]*g[7]*g[17];

F1*F4*F7*F17

gap> Ealpha(x, 3);

F1*F2*F7*F17
3.10.3 CanonicalBasis
{) CanonicalBasis(U) (attribute)

Is the canonical basis of the quantized universal enveloping algeBAthen this is constructed
nothing is computed. By usingBWElements (3.10.9, MonomialElements (3.10.5, Strings

(3.10.9 information about elements of the canonical basis can be obtained.
Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;

gap> B:= CanonicalBasis(U);

<canonical basis of QuantumUEA(<root system of type F4>, Qpar = q) >

3.10.4 PBWElements

Q) PBWElements(B, rt) (operation)

Heres is the canonical basis of a quantized uea, and list of non-negative integers representing
an element of the root lattice (e.g., if the simple rootsea@andrt = [3, 2], thenrt represents
3a + 20).
It is possible to add the optiorowrank, as followsPBWElements (B, rt :lowrank). Inthat
case a somewhat different method will be used, that is significantly faster if the underlying root system
has rank 2,3. It is about equally fast for ranks 4,5; and slower for ranks greater than 5.
Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);;
gap> PBWElements(B, [1,2,1,0]);
[FI*F3" (2)*F9, F1*F3*F7+(q 4)*F1*F3"(2)*F9, (q"4)*F1*F3" (2) *F9+F2*F3*F9,

QuaGroup 41

(Q72) *F1*F3*F7+(q"2+q"6) *F1*F3" (2) *FO+ (q"2) *F2*F3*F9+F2*F7,
(@ 4) *F1*F3*F7+(q"8) *F1*F3" (2) *F9+ (q"4) *F2*F3*F 9+ (q"2) *F2*FT7+F3*F4]
gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> B:= CanonicalBasis(U);;
gap> PBWElements(B, [2,3] : lowrank);
[F1"(2)*F6"(3), F1*F5*F6" (2)+(q"8+q"10)*F1" (2)*F6" (3),
(q@"2)*F1*F5*F6" (2) + (g~ 6+q"12) *F1" (2) *F6" (3) +F3*F6" (2),
(g"8) *FL*F5*F6™ (2)+ (g 18) *F1" (2) *F6™ (3)+(q~6) *F3*F6" (2) +F5” (2) *F6]

3.10.5 MonomialElements

{ MonomialElements(B, rt) (operation)

This does the same asWElements (3.10.9, except that the elements are written as linear com-
binations of monomials in the generatéts wherea runs through the simple roots.

We remark that this information is also computed “behind the scenes” when calling
PBWElements (B, rt). However, itis not computed if the optidrowrank is present in the call to
PBWElements.

Example

gap> U:= QuantizedUEA(RootSystem("F", 4));;

gap> B:= CanonicalBasis(U);;

gap> MonomialElements(B, [1,2,1,0]);

[F1*F3"(2)*F9, F1*F3*F9*F3+(-1)*F1*F3" (2)*F9, F3" (2)*F1*F9, F3*F1*F9*F3,
F3*F9*F3*F1+(-1) *F3" (2) *F1*F9 |

3.10.6 Strings

Q Strings(B, rt) (operation)

Heres, rt are the same as iBWElements (3.10.9. This returns the list of strings corresponding
to the elements of of weight rt (cf. Section2.6). For example, if on thé&-th position of the list
returned by this function we have 1, 2, 2, 3 1, then the principal monomial of tHeth element
of PBWElements (B, rt) is FZF$(1) (whereF is thei-th Kashiwara operator).

We remark that this information is also computed “behind the scenes” when calling
PBWElements(B, rt). However, itis not computed if the optidrwrank is present in the call to
PBWElements.

Example
gap> U:= QuantizedUEA(RootSystem("F", 4));;
gap> B:= CanonicalBasis(U);;
gap> Strings(B, [1,2,1,0]);

(1, 14,2, 2,3 11,0+, 1,2, 1,31 2 11, (2 2 1,1, 3, 11,
tz, 1, 1,114,312 11}, 12 131 2 1,1, 1 1]
gap> Falpha(Falpha(Falpha(Falpha(One(U), 3), 1), 2), 2);

F2*F3*F9
gap> PBWElements(B, [1,2,1,0])I[3];
(q"4) *F1*F3" (2) *F9+F2*F3*F9

QuaGroup 42

3.10.7 PrincipalMonomial

Q PrincipalMonomial (u) (operation)

Hereu is an element of the output @BWElements (3.10.4. This function returns the unique
monomial ofu that has coefficient 1.
Example
gap> U:= QuantizedUEA(RootSystem("G",2));;
gap> B:= CanonicalBasis(U);;
gap> p:= PBWElements(B, [4,4] : lowrank)[4];
(@"9)*F1" (2) *F3*F6" (3)+F1" (2) *F5" (2) *F6” (2) + (9" 9+q " 11+q~13) *F1" (3) *F5*F6" (
3)+(q"204q"2242*%q"24+q"26+q"28) *F1" (4) *F6" (4)
gap> PrincipalMonomial (p);
F1"(2)*F5" (2)*F6" (2)

3.10.8 StringMonomial

¢ StringMonomial (u) (operation)

Hereu is a monomial in the negative part of a quantized enveloping algebra, e.g., as output by
PrincipalMonomial (3.10.7. This function computes the corresponding “string” (see Se@ién
The strings are output in the same way a8.ih0.6
Example

gap> U:= QuantizedUEA(RootSystem("G",2));;

gap> B:= CanonicalBasis(U);;

gap> p:= PBWElements(B, [1,2] : lowrank)I[2];;
gap> m:=PrincipalMonomial (p);

F5*F6

gap> StringMonomial(m);

[2, 2,1, 1]

gap> Falpha(Falpha(Falpha(One(U), 1), 2), 2);
F5*F6

3.10.9 Falpha (for a module element)

Q Falpha(V, v, ind) (operation)

Herev is a module over a quantized enveloping algebran element of it, andnd an index
between 1 and the rank of the root system. The function returns the result of applyihgadttie
Kashiwara operatdf¥; , 4 to v. Here the Kashiwara operators are different from the ones described in
Section2.6. We refer to Jan9§, 9.2 for the definition of the operators used here.

Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> Falpha(V, Basis(V)[1], 1);

F1*v0

QuaGroup 43

3.10.10 Ealpha (for a module element)

Q Ealpha(V, v, ind) (operation)

Herev is a module over a quantized enveloping algebran element of it, andnd an index
between 1 and the rank of the root system. The function returns the result of applyihgadttie
Kashiwara operatdg; ,, 4 to v. Here the Kashiwara operators are different from the ones described in
Section2.6. We refer to Jan9§, 9.2 for the definition of the operators used here.

Example
gap> U:= QuantizedUEA(RootSystem("B",2));;
gap> V:= HighestWeightModule(U, [1,1]);;
gap> v:= Falpha(V, Basis(V)[2], 2);

(q"2) *F1*F4*v0+F2*v0

gap> Ealpha(VvV, v, 2);

F1*v0

3.10.11 CrystalBasis

{Q CrystalBasis(V) (attribute)

Herev is a finite-dimensional left module over a quantized enveloping algebra. This function
returns the canonical, or crystal basis of V (see Se@ién
This function only works for modules for whialeight sAndvectors (3.8.14 works.
Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);
<l6-dimensional left-module over QuantumUEA(<root system of type B2>, Qpar
=q)>
gap> CrystalBasis(V);
Basis(<l6-dimensional left-module over QuantumUEA(<root system of type B
2>, Qpar = q)>, [1*v0, F1*v0, Fd*v0, F1*F4*v0, (g 2)*F1*F4*v0+F2*v0, F2*F4*v0,
(q) *F2*F4*v0+F3*v0, (-q"-4)*F1*F2*v0, (-q"-1)*F1*F3*v0+(-q~-3)*F2"(2)*vO0,
(=q"=2)*F2" (2) *v0, F3*F4*v0, (-gq —-4)*F2*F3*v0+(-q"-2)*F2" (2)*F4*v0,
(=q"=2)*F2*F3*v0, (q"-4)*F2"(3)*v0, (-g"-1)*F3"(2)*v0, (gq"=5)*F2"(2)*F3*v0])

3.10.12 CrystalVectors

{Q CrystalVectors(V) (attribute)

Herev is a finite-dimensional left module over a quantized enveloping algebra. hesthe crystal
basis ofv (i.e., output byCrystalBasis (3.10.13). This function returns a list of cosets of the basis
elements of modulogL, whereL is theZ|q]-lattice spanned bg.

The coset of a vector is printed asv>.

The crystal vectors are used to construct the point set of the crystal gragtrgfstalGraph: for
a module (3.10.15).

This function only works for modules for whigheight sandvectors (3.8.14 works.
Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;

gap> V:= HighestWeightModule(U, [1,1]);

<l6-dimensional left-module over QuantumUEA(<root system of type B

QuaGroup 44

2>, Qpar = q)>
gap> CrystalVectors(V);
[<1*v0>, <F1*v0>, <F4*v0>, <F2*v0>, <F1*F4*v0>, <F3*v0>,
<(=q"=4)*F1*F2*v0>, <F2*F4*v0>, <F1*F3*v0>, <F3*F4*v0>,
<(=q"-1) *F1*F3*v0+ (-q"—3) *F2" (2) *v0>, <(-q"-4)*F2*F3*v0+ (-q"—2) *F2" (2) *F
4*v0>, <F2" (2)*F4*v0>, <(q"-4)*F2"(3)*v0>, <(-q"-1)*F3"(2)*v0>,
<(q"=5)*F27 (2) *F3*v0>]

3.10.13 Falpha (for a crystal vector)

Q Falpha(v, ind) (operation)

Herev is a crystal vector, i.e., an element@fystalvectors(V), wherev is a left module
over a quantized enveloping algebra. This function returns the result of applyihgdtie Kashiwara

operatoFaind tov. Theresultigail if F“ind (v)=0.
Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;

gap> V:= HighestWeightModule(U, [1,1]);;
gap> c:=CrystalVectors(V);;
gap> Falpha(c[2], 2);

<F2*v0>

gap> Falpha(c[3], 2);

fail

gap> Falpha(Falpha(Falpha(c[1], 1), 2), 1);

fail

gap> p:= DominantLSPath(RootSystem("B", 2), [1,1]);
<LS path of shape [1, 1] ending in [1, 1] >

gap> Falpha(Falpha(Falpha(p, 1), 2), 1);

fail

The last part of this example is an illustration of the fact that the crystal graph of a highest-weight

module can be obtained by the path method (see Sezfipn

3.10.14 Ealpha (for a crystal vector)

Q Ealpha(v, ind) (operation)
Herev is a crystal vector, i.e., an element@fystalvectors(V), wherev is a left module

over a quantized enveloping algebra. This function returns the result of applyingctle Kashiwara
operatorEq.md tov. Theresultisgail if E“ind (v)=0.

Example
gap> U:= QuantizedUEA(RootSystem("B", 2));;
gap> V:= HighestWeightModule(U, [1,1]);;

gap> c:=CrystalVectors(V);;
gap> Ealpha(c[3], 1);

fail

gap> Ealpha(c[3], 2);
<1*v0>

QuaGroup 45

3.10.15 CrystalGraph (for a module)

O CrystalGraph(V) (function)

Returns the crystal graph of the modwle The points of this graph are the cosets output by
CrystalVectors (3.10.13. The edges work in the same way asdfystalGraph:for root
system and weight (3.9.7).

Example
gap> U:= QuantizedUEA(RootSystem("A",2));;
gap> V1:= HighestWeightModule(U, [1,0]);;
gap> V2:= HighestWeightModule(U, [0,1]);;
gap> W:= TensorProductOfAlgebraModules(V1, V2);;
gap> CrystalGraph(W);

rec (

points := [<1*(1*v0<x>1*v0)>, <1*(Fl*v0<x>1*v(0)>, <1*(1*v0<x>F3*v0Q)>,
<1* (1*v0<x>F2*v0) +q"-1* (F2*v0<x>1*v0)>,
<=q"=1*% (1*v0<x>F2*v0) +q " -1* (F1*v0<x>F3*v0) >, <1*(F2*v0<x>F3*v0)>,
<-q"-1* (F1*v0<x>F2*v0) >, <-q"-1* (F2*v0<x>F2*v0)>,
<=q"=3* (1*v0<x>F2*v0) +-q " -1* (F1*v0<x>F3*v0) +1* (F2*v0<x>1*v0)>],

edges := [[[1, 21, 11, [[, 31,21, (12 41,21,
(r3 51,11, 0104 61,21, 00571, 11, 16 81,11,
(07,81, 211)

r

3.11 Universal enveloping algebras

Here we describe functions for connecting a quantized enveloping algebra to the corresponding uni-
versal enveloping algebra.

3.11.1 UEA

QUEA(L) (attribute)

This function returns the universal enveloping algebodithe semisimple Lie algebra The gen-
erators ofu are the generators of a Kostant lattice in the universal enveloping algebra (these generators
are obtained from by LatticeGeneratorsInUEA(L), see theSAP reference manual).
Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);
<Lie algebra of dimension 10 over Rationals>
gap> u:= UEA(L);
<algebra over Rationals, with 10 generators>
gap> g:= GeneratorsOfAlgebra(u);
[yvl, v2, y3, v4, x1, %2, x3, x4, (h9/1), (hl0/1)]

3.11.2 UnderlyingLieAlgebra

Q UnderlyingLieAlgebra(u) (attribute)

For a universal enveloping algebgaconstructed byra (3.11.9), this returns the corresponding
semisimple Lie algebra

QuaGroup 46

Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> u:= UEA(L);;

gap> UnderlyingLieAlgebra(u);

<Lie algebra of dimension 10 over Rationals>

3.11.3 HighestWeightModule (for a universal env. alg)

{ HighestWeightModule (u, hw) (operation)

For a universal enveloping algebra&onstructed byea (3.11.7), this returns the irreducible high-
est weight module over with highest weightiw, which must be dominant. This module is the same
as the corresponding highest weight module over the semisimple Lie algebra, but in this case the
enveloping algebra acts.
Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> u:= UEA(L);;
gap> HighestWeightModule(u, [2,3]);
<140-dimensional left-module over <algebra over Rationals, with
10 generators>>

3.11.4 QUEAToUEAMap

Q) QUEATOUEAMap (L) (attribute)

Here1 is a semisimple Lie algebra. Set:= UEA(L), andU := QuantizedUEA(L) (SO
u, U are the universal enveloping algebra, and “generic” quantized enveloping algebrasyfec-
tively). ThenQUEAToUEAMap (1,) returns the algebra homomorphism frarno u obtained by map-
ping g to 1, a generatori, corresponding to a simple root to the generatofcorresponding to the
same simple root), and likewise fot andxi. This means thati is mappedtoone,andki : s]
tohi chooses.

The canonical basis afis mapped to the canonical basisuof
Example
gap> L:= SimpleLieAlgebra("B", 2, Rationals);;
gap> f:= QUEAToUEAMap(L);
<mapping: QuantumUEA(<root system of rank
2>, Qpar = q) -> Algebra(Rationals, [yl1, vy2, v3, v4, x1, x2, x3, x4,

(h9/1), (hi0/1) 1) >
gap> U:= Source(f);
QuantumUEA (<root system of rank 2>, Qpar = q)
gap> u:= Range(f);
<algebra over Rationals, with 10 generators>
gap> B:= CanonicalBasis(U);;
gap> p:= PBWElements(B, [1,2]);
[F1*F4°(2), (q+q3)*F1*F4" (2)+F2%F4, (q"4)*F1*F4" (2)+(q) *F2*F4+F3]
gap> pu:= List(p, x -> Image(f, x));
[yl*y2~(2), 2*yl*y2" (2)+y2*y3-2*y4, yl*y2" (2)+y2*y3-1*y4]
gap> V:= HighestWeightModule(u, [2,1]);
<40-dimensional left-module over <algebra over Rationals, with
10 generators>>

QuaGroup

gap> List(pu, x -> x"Basis(V)[1l]);
[0*v0, y2*y3*v0+-2*y4*v0, y2*y3*v0+-1*y4*v0]
Which gives us a piece of the canonical basis of V.

47

References

[Car98] R. W. Carter. Representations of simple Lie algebras: modern variations on a classical
theme. InAlgebraic groups and their representations (Cambridge, 19payes 151-173.
Kluwer Acad. Publ., Dordrecht, 199813

[ComO06] Editorial Committee. A note on the paper: “A survey of the work of George Lusztig” by R.
W. Carter [Nagoya Math. 182(2006), 1-45; 2235338Nagoya Math. J.183:i—ii, 2006.
11

[Gra0l] W. A. de Graaf. Computing with quantized enveloping algebras: PBW-type bases, highest-
weight modulesR-matrices.J. Symbolic Compuyt32(5):475-490, 200113

[Gra02] W. A. de Graaf. Constructing canonical bases of quantized enveloping algébsasri-
mental Mathematicsl1(2):161-170, 200213

[Hum90] J. E. Humphreys.Reflection groups and Coxeter group€ambridge University Press,
Cambridge, 1990.13

[Jan96] J. C. Jantzen_ectures on Quantum Groupglume 6 ofGraduate Studies in Mathematics
American Mathematical Society, 19960, 12, 13, 28, 36, 42, 43

[Kas96] M. Kashiwara. Similarity of crystal bases. lie algebras and their representations (Seoul,
1995) pages 177-186. Amer. Math. Soc., Providence, RI, 19986.

[Lit94] P. Littelmann. A Littlewood-Richardson rule for symmetrizable Kac-Moody algeliras.
vent. Math, 116(1-3):329-346, 199413

[Lit95] P. Littelmann. Paths and root operators in representation thegnn. of Math. (2)
142(3):499-525, 199512, 13

[Lit98] P. Littelmann. Cones, crystals, and patterfrmnsform. Groups3(2):145-179, 199813
[LNO1] F. Lubeck and M. Neuriffer. GAPDoc, a GAP documentation meta-packaf#01. 6
[Lus90] G. Lusztig. Quantum groups at roots ofGeom. Dedicata35(1-3):89-113, 199011

[Lus92] G. Lusztig. Introduction to quantized enveloping algebrasNéw developments in Lie
theory and their applications (@doba, 1989) pages 49-65. Birkkuser Boston, Boston,
MA, 1992. 13

[Lus93] G. Lusztig. Introduction to quantum groupsBirkhauser Boston Inc., Boston, MA, 1993.
11,13

48

[Lus96]

[LusOa]

[Ros91]

[Ste01]

QuaGroup 49

G. Lusztig. Braid group action and canonical basAsgyv. Math, 122(2):237-261, 1996.
11

G. Lusztig. Canonical bases arising from quantized enveloping algebra@sner. Math.
Soc, 3(2):447-498, 1990all

M. Rosso. Repsentations des groupes quantiquasiérisque (201-203):Exp. No. 744,
443-483 (1992), 1991.&minaire Bourbaki, Vol. 1990/9113

J. R. Stembridge. Computational aspects of root systems, Coxeter groups, and Weyl char-
acters. Irinteraction of combinatorics and representation theatglume 11 oMSJ Mem,
pages 1-38. Math. Soc. Japan, Tokyo, 20Q3.

Index

*, 27 GaussianBinomial, 15

GaussianFactorial, 15
AntiAutomorphismTau, 26 GaussNumber, 14
AntipodeMap, 29 GenericModule, 33
ApplylieylElement, 18 GetBraidRelations, 19
AutomorphismOmega, 26
AutomorphismTalpha, 27 HighestWeightModule

for a quantized env. alg30

BarAutomorphism, 26 for a universal env. alg}6
BilinearFormMatNF, 16 HighestWeightsAndVectors, 35

HWModuleByGenerator, 32

CanonicalBasis, 40
HWModuleByTensorProduct, 31

CanonicalMapping, 23, 33

ComultiplicationMap, 29 InducedQEAModule, 32
CounitMap, 29 IrreducibleQuotient, 30
CrystalBasis, 43 IsomorphismOfTensorModules, 36
CrystalGraph

for a module45 LengthOfWeylWord, 18

for root system and weigh89 LongestWeylWord, 18
CrystalVectors, 43 LongWords, 20

LSSequence, 38
DiagramAutomorphism, 27

DIYModule, 31 MinusculeModule, 33
DominantLSPath, 37 MonomialElements, 41

DualAlgebraModule, 34
ObjByExtRep, 21

Ealpha
for a crystal vector44 PBWElements, 40
for a module element3 PositiveRootsInConvexOrder, 17
for a PBW-monomial40 PositiveRootsNF, 16
for an LS-path38 PrincipalMonomial, 42

EndWeight, 38
ExchangeElement, 19
ExtRepO0fOb7j, 22

_q,14
QEAAntiAutomorphism, 26
QEAAutomorphism, 25

Falpha QEAHomomorphism, 24
for a crystal vector44 QuantizedUER, 20
for a module element2 QuantumField, 14
for a PBW-monomial39 QuantumParameter, 23
for an LS-path37 QUEATOUEAMap, 46

50

QuaGroup

ReadModuleFromFile, 36
ReadQEAFromFile, 23
ReducedWordIterator, 19
RMatrix, 36
RootSystem, 15

SimpleRootsAsWeights, 17
SimpleSystemNF, 17
StringMonomial, 42
Strings, 41

TensorPower, 28
TensorProductOfAlgebraModules, 32
TrivialAlgebraModule, 35

U2Module, 33

UER, 45
UnderlyingLieAlgebra, 45
UseTwistedHopfStructure, 28

WeightsAndVectors, 35
WeylWord, 38
WriteModuleToFile, 36
WriteQEAToFile, 23

51

