
GAP 4 Package IO

Bindings for low level C library I/O routines

Version 3.0

April 2009

Max Neunhöffer

Max Neunhöffer — Email: neunhoef@mcs.st-and.ac.uk
— Homepage: http://www-groups.mcs.st-and.ac.uk/˜neunhoef
— Address: School of Mathematics and Statistics Mathematical Insti-

tute University of St Andrews North Haugh St Andrews,
Fife KY16 9SS Scotland, UK

mailto://neunhoef@mcs.st-and.ac.uk
http://www-groups.mcs.st-and.ac.uk/~neunhoef

GAP 4 Package IO 2

Copyright
c© 2005-2009 by Max Neunhöffer

This package may be distributed under the terms and conditions of the GNU Public License Version 2 or
later.

Contents

1 Preface 7

2 Installation of the IO-package 8
2.1 Static linking . 9
2.2 Recompiling the documentation . 9

3 Functions directly available from the C library 10
3.1 Differences in arguments - an overview . 10
3.2 The low-level functions in detail . 11

3.2.1 IO accept . 11
3.2.2 IO bind . 11
3.2.3 IO chdir . 12
3.2.4 IO chmod . 12
3.2.5 IO chown . 12
3.2.6 IO close . 12
3.2.7 IO closedir . 12
3.2.8 IO connect . 12
3.2.9 IO creat . 12
3.2.10 IO dup . 13
3.2.11 IO dup2 . 13
3.2.12 IO execv . 13
3.2.13 IO execve . 13
3.2.14 IO execvp . 13
3.2.15 IO exit . 13
3.2.16 IO fchmod . 13
3.2.17 IO fchown . 14
3.2.18 IO fcntl . 14
3.2.19 IO fork . 14
3.2.20 IO fstat . 14
3.2.21 IO gethostbyname . 14
3.2.22 IO getpid . 14
3.2.23 IO getppid . 14
3.2.24 IO getsockopt . 15
3.2.25 IO gettimeofday . 15
3.2.26 IO gmtime . 15
3.2.27 IO kill . 15

3

GAP 4 Package IO 4

3.2.28 IO lchown . 15
3.2.29 IO link . 15
3.2.30 IO listen . 15
3.2.31 IO localtime . 16
3.2.32 IO lseek . 16
3.2.33 IO lstat . 16
3.2.34 IO mkdir . 16
3.2.35 IO mkfifo . 16
3.2.36 IO mknod . 16
3.2.37 IO open . 16
3.2.38 IO opendir . 17
3.2.39 IO pipe . 17
3.2.40 IO read . 17
3.2.41 IO readdir . 17
3.2.42 IO readlink . 17
3.2.43 IO recv . 17
3.2.44 IO recvfrom . 18
3.2.45 IO rename . 18
3.2.46 IO rewinddir . 18
3.2.47 IO rmdir . 18
3.2.48 IO seekdir . 18
3.2.49 IO select . 18
3.2.50 IO send . 18
3.2.51 IO sendto . 19
3.2.52 IO setsockopt . 19
3.2.53 IO socket . 19
3.2.54 IO stat . 19
3.2.55 IO symlink . 19
3.2.56 IO telldir . 19
3.2.57 IO unlink . 20
3.2.58 IO WaitPid . 20
3.2.59 IO write . 20

3.3 Further C level functions . 20
3.3.1 IO make sockaddr in . 20
3.3.2 IO environ . 20
3.3.3 IO InstallSIGCHLDHandler . 20
3.3.4 IO RestoreSIGCHLDHandler . 21

4 High level functions for buffered I/O 22
4.1 Types and the creation of File objects . 22

4.1.1 IsFile . 22
4.1.2 IO WrapFD . 22
4.1.3 IO File (mode) . 23

4.2 Reading and writing . 23
4.2.1 IO ReadUntilEOF . 23
4.2.2 IO ReadBlock . 23
4.2.3 IO ReadLine . 24

GAP 4 Package IO 5

4.2.4 IO ReadLines . 24
4.2.5 IO HasData . 24
4.2.6 IO Read . 24
4.2.7 IO Write . 25
4.2.8 IO WriteLine . 25
4.2.9 IO WriteLines . 25
4.2.10 IO Flush . 25
4.2.11 IO WriteFlush . 26
4.2.12 IO ReadyForWrite . 26
4.2.13 IO WriteNonBlocking . 26
4.2.14 IO ReadyForFlush . 26
4.2.15 IO FlushNonBlocking . 27
4.2.16 IO Close . 27

4.3 Other functions . 27
4.3.1 IO GetFD . 27
4.3.2 IO GetWBuf . 27
4.3.3 IO Select . 27
4.3.4 IO ListDir . 28
4.3.5 IO MakeIPAddressPort . 28
4.3.6 IO Environment . 28
4.3.7 IO MakeEnvList . 28

4.4 Inter process communication . 29
4.4.1 IO FindExecutable . 29
4.4.2 IO CloseAllFDs . 29
4.4.3 IO Popen . 29
4.4.4 IO Popen2 . 29
4.4.5 IO Popen3 . 30
4.4.6 IO StartPipeline . 30
4.4.7 IO StringFilterFile . 31
4.4.8 IO FileFilterString (append) . 31
4.4.9 IO FilteredFile . 31
4.4.10 IO SendStringBackground . 31
4.4.11 IO PipeThrough . 32
4.4.12 IO PipeThroughWithError . 32

5 Object serialisation (Pickling) 34
5.1 Result objects . 34

5.1.1 IO Error . 34
5.1.2 IO Nothing . 34
5.1.3 IO OK . 34

5.2 Pickling and unpickling . 35
5.2.1 IO Pickle . 35
5.2.2 IO Unpickle . 35
5.2.3 IO ClearPickleCache . 35

5.3 Extending the pickling framework . 35

GAP 4 Package IO 6

6 Really random sources 37
6.1 The functions . 37

6.1.1 RandomSource . 37

7 A client side implementation of the HTTP protocol 38
7.1 Functions for client side HTTP . 38

7.1.1 OpenHTTPConnection . 38
7.1.2 HTTPRequest . 38
7.1.3 HTTPTimeoutForSelect . 39
7.1.4 CloseHTTPConnection . 39
7.1.5 SingleHTTPRequest . 40
7.1.6 CheckForUpdates . 40

8 Examples of usage 41
8.1 Writing and reading a file . 41
8.2 Using filtering programs to read and write files . 42
8.3 Using filters when reading or writing files sequentially 42
8.4 Accessing a web page . 43
8.5 (Un-)Pickling . 43

9 License 45

Chapter 1

Preface

The purpose of this package is to allow efficient and flexible input/output operations from GAP. This
is achieved by providing bindings to the low-level I/O functions in the C-library. On top of this an im-
plementation of buffered I/O in the GAP language is provided. Further, a framework for serialisation
of arbitrary GAP objects is implemented. Finally, an implementation of the client side of the HTTP
protocol is included in the package.

This package allows to use file based I/O, access to links and file systems, pipes, sockets, and the
UDP and TCP/IP protocols.

By default the IO package is not automatically loaded by GAP when it is installed. You must load
the package with LoadPackage("IO"); before its functions become available.

Please, send me an e-mail (neunhoef@mcs.st-and.ac.uk) if you have any questions, remarks,
suggestions, etc. concerning this package. Also, I would like to hear about applications of this
package.

Max Neunhöffer

7

mailto://neunhoef@mcs.st-and.ac.uk

Chapter 2

Installation of the IO-package

To get the newest version of this GAP 4 package download one of the archive files

• io-x.x.tar.gz

• io-x.x.zoo

• io-x.x.tar.bz2

• io-x.x.zip

and unpack it using

gunzip io-x.x.tar.gz; tar xvf io-x.x.tar

respectively

unzoo -x io-x.x.zoo

and so on.
Do this in a directory called “pkg”, preferably (but not necessarily) in the “pkg” subdirectory of

your GAP 4 installation. It creates a subdirectory called “io”.
To install this package do

cd io
./configure [path]

where “path” is a path to the main GAP root directory (if not given the default “../..” is assumed).
Afterwards call “make” to compile a binary file.
If you installed GAP on several architectures, you must execute this configure/make step on each

of the architectures immediately after configuring GAP itself on this architecture.
The package will not work without this step.
If you installed the package in another “pkg” directory than the standard “pkg” directory in your

GAP 4 installation, then you have to add the path to the directory containing your “pkg” directory
to GAP’s list of directories. This can be done by starting GAP with the “-l” command line option
followed by the name of the directory and a semicolon. Then your directory is prepended to the list of
directories searched. Otherwise the package is not found by GAP. Of course, you can add this option
to your GAP startup script.

8

GAP 4 Package IO 9

2.1 Static linking

This might be interesting for M$ Windows users, as dynamic loading of binary modules does not
always work there. You can also create a new statically linked “gap” binary as follows:

Go into the main GAP directory and then into bin/BINDIR. Here BINDIR means the directory
containing the “gap” executable after compiling “gap”. This directory also contains the GAP compiler
script “gac”. Assuming IO in the standard location you can then say

./gac -o gap-static -p "-DIOSTATIC -I../../pkg/io/bin/BINDIR" \
-P "-static" ../../pkg/io/src/io.c

Then copy your “gap” start script to, say, “gaps” and change the references to the GAP binary to
“gap-static”.

Note that you have to replace BINDIR by the name containing the “gap” executable after compiling
GAP as above. If you have installed the package in a different place than the standard, you have to
replace “../..” in the above command by the path to the directory containing the “pkg” directory
into which you installed IO. If you want to install more than one package with a C-part like this
package, you can still create a statically linked GAP executable by combining all the compile and link
options and all the .c files as in the ./gac command above. For the IO package, you have to add

-DIOSTATIC -I../../pkg/io/bin/BINDIR

to the string of the -p option and the file

../../pkg/io/src/io.c

somewhere on the command line. As above, “../..” and “BINDIR” have to be replaced if you
installed in a non-standard location.

2.2 Recompiling the documentation

Recompiling the documentation is possible by the command “gap makedoc.g” in the io directory.
But this should not be necessary.

Chapter 3

Functions directly available from the C
library

The following functions from the C library are made available as GAP functions:
accept, bind, chdir, chmod, chown, close, closedir, connect, creat, dup, dup2, execv,

execve, execvp, exit, fchmod, fchown, fcntl, fork, fstat, gethostbyname, getpid, getppid,
getsockopt, gettimeofday, gmtime, kill, lchown, link, listen, localtime, lseek, lstat,
mkdir, mkfifo, mknod, open, opendir, pipe, read, readdir, readlink, recv, recvfrom, rename,
rewinddir, rmdir, seekdir, select, send, sendto, setsockopt, socket, stat, symlink,
telldir, unlink, write.

Use the man command in your shell to get information about these functions.
For each of these functions there is a corresponding GAP global function with the prefix IO

before its name. Apart from minor differences (see below) they take exactly the same arguments
as their C counterparts. Strings must be specified as GAP strings and integers as GAP immediate
integers. Return values are in general the same as for the C counterparts. However, an error condition
is indicated by the value fail instead of -1, and if the result can only be success or failure, true
indicates success.

All errors are reported via the LastSystemError (Reference: LastSystemError) function.
In the C library a lot of integers are defined as macros in header files. All the necessary values for

the above functions are bound to their name in the global IO record.
Warning: Existence of many of these functions and constants is platform dependent. The compi-

lation process checks existence and this leads to the situation that on the GAP levels the functions and
constants are there or not. If you want to develop platform independent GAP code using this package,
then you have to check for existence of the functions and constants you need.

3.1 Differences in arguments - an overview

The open function has to be called with three arguments. The version with two arguments is not
available on the GAP level.

The read function takes four arguments: fd is an integer file descriptor, st is a GAP string,
offset is an offset within this string (zero based), and count is the maximal number of bytes to
read. The data is read and stored into the string st, starting at position offset+1. The string st is
made long enough, such that count bytes would fit into it, beginning at position offset+ 1. The
number of bytes read is returned or fail in case of an error.

10

GAP 4 Package IO 11

The write function is similar, it also takes four arguments: fd is an integer file descriptor, st is
a GAP string, offset is an offset within this string (zero based), and count is the number of bytes
to write, starting from position offset+1 in the string st. The number of bytes written is returned,
or a fail in case of an error.

The opendir function only returns true or fail.
The readdir function takes no argument. It reads the directory that was specified in the last call

to opendir. It just returns a string, which is the name of a file or subdirectory in the corresponding
directory. It returns false after the last file name in the directory or fail in case of an error.

The closedir function takes no argument. It should be called after readdir returned false or
fail to avoid excessive use of file descriptors.

The functions stat, fstat, and lstat only take one argument and return a GAP record that has
the same entries as a struct stat.

The function socket can optionally take a string as third argument. In that case it automatically
calls getprotobyname to look up the protocol name.

The functions bind and connect take only one string argument as address field, because the string
already encodes the length.

There are two convenience functions IO make sockaddr in (3.3.1) and IO MakeIPAddressPort
(4.3.5) to create such addresses. The first takes two arguments addr and port, where addr is a
string of length 4, containing the 4 bytes of the IP address and port is a port number as GAP integer.
The function IO MakeIPAddressPort (4.3.5) takes the same arguments, but the first can be a string
containing an IP address in dot notation like “137.226.152.77”.

The setsockopt function has no argument optlen. The length of the string optval is taken.
The select function works as the function UNIXSelect in the GAP library.
As of now, the file locking mechanisms of fcntl using struct flock are not yet implemented

on the GAP level.

3.2 The low-level functions in detail

Nearly all of this functions return an integer result in the C library. On the GAP level this is either
returned as a non-negative integer in case of success or as fail in case of an error (where on the C
level −1 would be returned). If the integer can only be 0 for “no error” this is changed to true on the
GAP level.

3.2.1 IO accept

♦ IO accept(fd, addr) (function)

Returns: an integer or fail
Accepts an incoming network connection. For details see “man 2 accept”. The argument addr

can be made with IO make sockaddr in (3.3.1) and contains its length such that no third argument
is necessary.

3.2.2 IO bind

♦ IO bind(fd, my addr) (function)

Returns: an integer or fail

GAP 4 Package IO 12

Binds a local address to a socket. For details see “man 2 bind”. The argument my addr can
be made with IO make sockaddr in (3.3.1) and contains its length such that no third argument is
necessary.

3.2.3 IO chdir

♦ IO chdir(path) (function)

Returns: true or fail
Changes the current working directory. For details see “man 2 chdir”.

3.2.4 IO chmod

♦ IO chmod(pathname, mode) (function)

Returns: true or fail
Changes the mode of a file. For details see “man 2 chmod”.

3.2.5 IO chown

♦ IO chown(path, owner, group) (function)

Returns: true or fail
Sets owner and/or group of file. For details see “man 2 chown”.

3.2.6 IO close

♦ IO close(fd) (function)

Returns: true or fail
Closes a file descriptor. For details see “man 2 close”.

3.2.7 IO closedir

♦ IO closedir() (function)

Returns: true or fail
Closes a directory. For details see “man 3 closedir”. Has no arguments, because we only have

one DIR struct in the C part.

3.2.8 IO connect

♦ IO connect(fd, serv addr) (function)

Returns: true or fail
Connects to a remote socket. For details see “man 2 connect”. The argument serv addr can

be made with IO make sockaddr in (3.3.1) and contains its length such that no third argument is
necessary.

3.2.9 IO creat

♦ IO creat(pathname, mode) (function)

Returns: an integer or fail
Creates a new file. For details see “man 2 creat”.

GAP 4 Package IO 13

3.2.10 IO dup

♦ IO dup(oldfd) (function)

Returns: an integer or fail
Duplicates a file descriptor. For details see “man 2 dup”.

3.2.11 IO dup2

♦ IO dup2(oldfd, newfd) (function)

Returns: true or fail
Duplicates a file descriptor to a new one. For details see “man 2 dup2”.

3.2.12 IO execv

♦ IO execv(path, argv) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execv”. The argument argv

is a list of strings. The called program does not have to be the first argument in this list.

3.2.13 IO execve

♦ IO execve(path, argv, envp) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execve”. The arguments

argv and envp are both lists of strings. The called program does not have to be the first argument
in argv . The list envp can be made with IO MakeEnvList (4.3.7) from a record acquired from
IO Environment (4.3.6) and modified later.

3.2.14 IO execvp

♦ IO execvp(path, argv) (function)

Returns: fail or does not return
Replaces the process with another process. For details see “man 3 execvp”. The argument argv

is a list of strings. The called program does not have to be the first argument in this list.

3.2.15 IO exit

♦ IO exit(status) (function)

Stops process immediately with return code status. For details see “man 2 exit”. The argu-
ment status must be an integer. Does not return.

3.2.16 IO fchmod

♦ IO fchmod(fd, mode) (function)

Returns: true or fail
Changes mode of an opened file. For details see “man 2 fchmod”.

GAP 4 Package IO 14

3.2.17 IO fchown

♦ IO fchown(fd, owner, group) (function)

Returns: true or fail
Changes owner and/or group of an opened file. For details see “man 2 fchown”.

3.2.18 IO fcntl

♦ IO fcntl(fd, cmd, arg) (function)

Returns: an integer or fail
Does various things to control the behaviour of a file descriptor. For details see “man 2 fcntl”.

3.2.19 IO fork

♦ IO fork() (function)

Returns: an integer or fail
Forks off a child process, which is an identical copy. For details see “man 2 fork”. Note

that if you want to use the IO WaitPid (3.2.58) function to wait or check for the termination of
child processes, you have to activate the SIGCHLD handler for this package beforehand by using
the function IO InstallSIGCHLDHandler (3.3.3). Note further that after that you cannot use the
function InputOutputLocalProcess (Reference: InputOutputLocalProcess) any more, since its
SIGCHLD handler does not work any more. To switch back to that functionality use the function
IO RestoreSIGCHLDHandler (3.3.4).

3.2.20 IO fstat

♦ IO fstat(fd) (function)

Returns: a record or fail
Returns the file meta data for an opened file. For details see “man 2 fstat”. A GAP record is

returned with the same entries than a struct stat.

3.2.21 IO gethostbyname

♦ IO gethostbyname(name) (function)

Returns: a record or fail
Return host information by name. For details see “man 3 gethostbyname”. A GAP record is

returned with all the relevant information about the host.

3.2.22 IO getpid

♦ IO getpid() (function)

Returns: an integer
Returns the process ID of the current process as an integer. For details see “man 2 getpid”.

3.2.23 IO getppid

♦ IO getppid() (function)

Returns: an integer

GAP 4 Package IO 15

Returns the process ID of the parent of the current process as an integer. For details see “man 2
getppid”.

3.2.24 IO getsockopt

♦ IO getsockopt(fd, level, optname, optval) (function)

Returns: true or false
Get a socket option. For details see “man 2 getsockopt”. Note that the argument optval

carries its length around, such that no 5th argument is necessary.

3.2.25 IO gettimeofday

♦ IO gettimeofday() (function)

Returns: A record with components tv sec and tv usec
This returns the time elapsed since 1.1.1970, 0:00 GMT. The component tv sec contains the

number of full seconds and the number tv usec the additional microseconds.

3.2.26 IO gmtime

♦ IO gmtime(seconds) (function)

Returns: A record
The argument is the number of seconds that have elapsed since 1.1.1970, 0:00 GMT. The result

is a record with the current Greenwich mean time broken down into date and time as in the C-library
function gmtime.

3.2.27 IO kill

♦ IO kill(pid, sig) (function)

Returns: true or fail
Sends the signal sig to the process with process ID pid. For details see “man 2 kill”. The

signal numbers available can be found in the global IO record with names like SIGTERM.

3.2.28 IO lchown

♦ IO lchown(path, owner, group) (function)

Returns: true or false
Changes owner and/or group of a file not following links. For details see “man 2 lchown”.

3.2.29 IO link

♦ IO link(oldpath, newpath) (function)

Returns: true or false
Create a hard link. For details see “man 2 link”.

3.2.30 IO listen

♦ IO listen(fd, backlog) (function)

Returns: true or false
Switch a socket to listening. For details see “man 2 listen”.

GAP 4 Package IO 16

3.2.31 IO localtime

♦ IO localtime(seconds) (function)

Returns: A record
The argument is the number of seconds that have elapsed since 1.1.1970, 0:00 GMT. The result

is a record with the current local time broken down into date and time as in the C-library function
localtime.

3.2.32 IO lseek

♦ IO lseek(fd, offset, whence) (function)

Returns: an integer or fail
Seeks within an open file. For details see “man 2 lseek”.

3.2.33 IO lstat

♦ IO lstat(name) (function)

Returns: a record or fail
Returns the file meta data for a file not following links. For details see “man 2 lstat”. A GAP

record is returned with the same entries than a struct stat.

3.2.34 IO mkdir

♦ IO mkdir(pathname, mode) (function)

Returns: true or false
Creates a directory. For details see “man 2 mkdir”.

3.2.35 IO mkfifo

♦ IO mkfifo(pathname, mode) (function)

Returns: true or false
Creates a FIFO special file (a named pipe). For details see “man 3 mkfifo”.

3.2.36 IO mknod

♦ IO mknod(pathname, mode, dev) (function)

Returns: true or false
Create a special or ordinary file. For details see “man 2 mknod”.

3.2.37 IO open

♦ IO open(pathname, flags, mode) (function)

Returns: an integer or fail
Open and possibly create a file or device. For details see “man 2 open”. Only the variant with 3

arguments can be used.

GAP 4 Package IO 17

3.2.38 IO opendir

♦ IO opendir(name) (function)

Returns: true or false
Opens a directory. For details see “man 3 opendir”. Note that only true is returned if everything

is OK, since only one DIR struct is stored on the C level and thus only one directory can be open at
any time.

3.2.39 IO pipe

♦ IO pipe() (function)

Returns: a record or fail
Create a pair of file descriptors with a pipe between them. For details see “man 2 pipe”. Note that

no arguments are needed. The result is either fail in case of an error or a record with two components
toread and towrite bound to the two filedescriptors for reading and writing respectively.

3.2.40 IO read

♦ IO read(fd, st, offset, count) (function)

Returns: an integer or fail
Reads from file descriptor. For details see “man 2 read”. Note that there is one more argument

offset to specify at which position in the string st the read data should be stored. Note that
offset zero means at the beginning of the string, which is position 1 in GAP. The number of bytes
read or fail in case of an error is returned.

3.2.41 IO readdir

♦ IO readdir() (function)

Returns: a string or fail or false
Reads from a directory. For details see “man 2 readdir”. Note that no argument is required as

we have only one DIR struct on the C level. If the directory is read completely false is returned, and
otherwise a string. An error is indicated by fail.

3.2.42 IO readlink

♦ IO readlink(path, buf, bufsize) (function)

Returns: an integer or fail
Reads the value of a symbolic link. For details see “man 2 readlink”. buf is modified. The

new length of buf is returned or fail in case of an error.

3.2.43 IO recv

♦ IO recv(fd, st, offset, len, flags) (function)

Returns: an integer or fail
Receives data from a socket. For details see “man 2 recv”. Note the additional argument

offset which plays the same role as for the IO read (3.2.40) function.

GAP 4 Package IO 18

3.2.44 IO recvfrom

♦ IO recvfrom(fd, st, offset, len, flags, addr) (function)

Returns: an integer or fail
Receives data from a socket with given address. For details see “man 2 recvfrom”. Note the

additional argument offset which plays the same role as for the IO read (3.2.40) function. The
argument addr can be made with IO make sockaddr in (3.3.1) and contains its length such that no
7th argument is necessary.

3.2.45 IO rename

♦ IO rename(oldpath, newpath) (function)

Returns: true or false
Renames a file or moves it. For details see “man 2 rename”.

3.2.46 IO rewinddir

♦ IO rewinddir() (function)

Returns: true or fail
Rewinds a directory. For details see “man 2 rewinddir”. Note that no argument is required

as we have only one DIR struct on the C level. Returns fail only, if no prior IO opendir (3.2.38)
command has been called.

3.2.47 IO rmdir

♦ IO rmdir(name) (function)

Returns: true or fail
Removes an empty directory. For details see “man 2 rmdir”.

3.2.48 IO seekdir

♦ IO seekdir(offset) (function)

Returns: true or fail
Sets the position of the next readdir call. For details see “man 3 seekdir”. Note that no second

argument is required as we have only one DIR struct on the C level.

3.2.49 IO select

♦ IO select(inlist, outlist, exclist, timeoutsec, timeoutusec) (function)

Returns: an integer or fail
Used for I/O multiplexing. For details see “man 2 select”. inlist, outlist and exclist

are lists of filedescriptors, which are modified. If the corresponding file descriptor is not yet ready, it
is replaced by fail.

3.2.50 IO send

♦ IO send(fd, st, offset, len, flags) (function)

Returns: an integer or fail

GAP 4 Package IO 19

Sends data to a socket. For details see “man 2 send”. Note that the additional argument offset
specifies the position of the data to send within the string st. It is zero based, meaning that zero
indicates the start of the string, which is position 1 in GAP.

3.2.51 IO sendto

♦ IO sendto(fd, st, offset, len, flags, addr) (function)

Returns: an integer or fail
Sends data to a socket. For details see “man 2 sendto”. Note that the additional argument

offset specifies the position of the data to send within the string st. It is zero based, meaning that
zero indicates the start of the string, which is position 1 in GAP. The argument addr can be made
with IO make sockaddr in (3.3.1) and contains its length such that no 7th argument is necessary.

3.2.52 IO setsockopt

♦ IO setsockopt(fd, level, optname, optval) (function)

Returns: true or fail
Sets a socket option. For details see “man 2 setsockopt”. Note that the argument optval

carries its length around, such that no 5th argument is necessary.

3.2.53 IO socket

♦ IO socket(domain, type, protocol) (function)

Returns: an integer or fail
Creates a socket, an endpoint for communication. For details see “man 2 socket”. There is

one little special: On systems that have getprotobyname you can pass a string as third argument
protocol which is automatically looked up by getprotobyname.

3.2.54 IO stat

♦ IO stat(pathname) (function)

Returns: a record or fail
Returns the file metadata for the file pathname. For details see “man 2 stat”. A GAP record

is returned with the same entries than a struct stat.

3.2.55 IO symlink

♦ IO symlink(oldpath, newpath) (function)

Returns: true or fail
Creates a symbolic link. For details see “man 2 symlink”.

3.2.56 IO telldir

♦ IO telldir() (function)

Returns: an integer or fail
Return current location in directory. For details see “man 3 telldir”. Note that no second

argument is required as we have only one DIR struct on the C level.

GAP 4 Package IO 20

3.2.57 IO unlink

♦ IO unlink(pathname) (function)

Returns: true or fail
Delete a name and possibly the file it refers to. For details see “man 2 unlink”.

3.2.58 IO WaitPid

♦ IO WaitPid(pid, wait) (function)

Returns: a record or fail
Waits for the termination of a child process. For details see “man 2 waitpid”. Returns a GAP

record describing PID and exit status. The second argument wait must be either true or false. In
the first case, the call blocks until new information about a terminated child process is available. In
the second case no such waiting is performed, the call returns immediately. See IO fork (3.2.19).

3.2.59 IO write

♦ IO write(fd, st, offset, count) (function)

Returns: an integer or fail
Writes to a file descriptor. For details see “man 2 write”. Note that the additional argument

offset specifies the position of the data to send within the string st. It is zero based, meaning that
zero indicates the start of the string, which is position 1 in GAP.

3.3 Further C level functions

The following functions do not correspond to functions in the C library, but are there to provide
convenience to use other functions:

3.3.1 IO make sockaddr in

♦ IO make sockaddr in(ip, port) (function)

Returns: a string or fail
Makes a struct sockaddr in from IP address and port. The IP address must be given as a string

of length four, containing the four bytes of an IPv4 address in natural order. The port must be a port
number. Returns a string containing the struct, which can be given to all functions above having an
address argument.

3.3.2 IO environ

♦ IO environ() (function)

Returns: a list of strings
For details see “man environ”. Returns the current environment as a list of strings of the form

“key=value”.

3.3.3 IO InstallSIGCHLDHandler

♦ IO InstallSIGCHLDHandler() (function)

Returns: true or false

GAP 4 Package IO 21

Installs our SIGCHLD handler. This functions works as an idempotent. That is, calling it twice
does exactly the same as calling it once. It returns true when it is called for the first time since then
a pointer to the old signal handler is stored in a global variable. See IO fork (3.2.19).

3.3.4 IO RestoreSIGCHLDHandler

♦ IO RestoreSIGCHLDHandler() (function)

Restores the original SIGCHLD handler. This function works as an idempotent. That is, calling it
twice does exactly the same as calling it once. It returns true when it is called for the first time after
calling IO InstallSIGCHLDHandler (3.3.3). See IO fork (3.2.19).

Chapter 4

High level functions for buffered I/O

The functions in the previous sections are intended to be a possibility for direct access to the low level
I/O functions in the C library. Thus, the calling conventions are strictly as in the original.

The functionality described in this section is implemented completely in the GAP language and is
intended to provide a good interface for programming in GAP. The fundamental object for I/O on the
C library level is the file descriptor, which is just a non-negative integer representing an open file of
the process. The basic idea is to wrap up file descriptors in GAP objects that do the buffering.

Note that considerable care has been taken to ensure that one can do I/O multiplexing with buffered
I/O. That is, one always has the possibility to make sure before a read or write operation, that this read
or write operation will not block. This is crucial when one wants to serve more than one I/O channel
from the same (single-threaded) GAP process. This design principle sometimes made it necessary to
have more than one function for a certain operation. Those functions usually differ in a subtle way
with respect to their blocking behaviour.

One remark applies again to nearly all functions presented here: If an error is indicated by the
returned value fail one can use the library function LastSystemError (Reference: LastSyste-
mError) to find out more about the cause of the error. This fact is not mentioned with every single
function.

4.1 Types and the creation of File objects

The wrapped file objects are in the following category:

4.1.1 IsFile

♦ IsFile(o) (Category)

Returns: true or false
The category of File objects.
To create objects in this category, one uses the following function:

4.1.2 IO WrapFD

♦ IO WrapFD(fd, rbufsize, wbufsize) (function)

Returns: a File object
The argument fd must be a file descriptor (i.e. an integer) or -1 (see below).

22

GAP 4 Package IO 23

rbufsize can either be false for unbuffered reading or an integer buffer size or a string. If it
is an integer, a read buffer of that size is used. If it is a string, then fd must be -1 and a File object
that reads from that string is created.

wbufsize can either be false for unbuffered writing or an integer buffer size or a string. If it
is an integer, a write buffer of that size is used. If it is a string, then fd must be -1 and a File object
that appends to that string is created.

The result of this function is a new File object.
A convenient way to do this for reading or writing of files on disk is the following function:

4.1.3 IO File (mode)

♦ IO File(filename[, mode]) (function)

♦ IO File(filename[, bufsize]) (function)

♦ IO File(filename, mode, bufsize) (function)

Returns: a File object or fail
The argument filename must be a string specifying the path name of the file to work on.

mode must also be a string with possible values “r”, “w”, or “a”, meaning read access, write access
(with creating and truncating), and append access respectively. If mode is omitted, it defaults to “r”.
bufsize, if given, must be a positive integer or false, otherwise it defaults to IO.DefaultBufSize.
Internally, the IO open (3.2.37) function is used and the result file descriptor is wrapped using
IO WrapFD (4.1.2) with bufsize as the buffer size.

The result is either fail in case of an error or a File object in case of success.
Note that there is a similar function IO FilteredFile (4.4.9) which also creates a File object

but with additional functionality with respect to a pipeline for filtering. It is described in its section in
Section 4.4. There is some more low-level functionality to acquire open file descriptors. These can be
wrapped into File objects using IO WrapFD (4.1.2).

4.2 Reading and writing

Once a File object is created, one can use the following functions on it:

4.2.1 IO ReadUntilEOF

♦ IO ReadUntilEOF(f) (function)

Returns: a string or fail
This function reads all data from the file f until the end of file. The data is returned as a GAP

string. If the file is already at end of file, an empty string is returned. If an error occurs, then fail is
returned. Note that you still have to call IO Close (4.2.16) on the File object to properly close the
file later.

4.2.2 IO ReadBlock

♦ IO ReadBlock(f, len) (function)

Returns: a string or fail
This function gets two arguments, the first argument f must be a File object and the second

argument len must be a positive integer. The function tries to read len bytes and returns a string of
that length. If and only if the end of file is reached earlier, fewer bytes are returned. If an error occurs,

GAP 4 Package IO 24

fail is returned. Note that this function blocks until either len bytes are read, or the end of file is
reached, or an error occurs. For the case of pipes or internet connections it is possible that currently
no more data is available, however, by definition the end of file is only reached after the connection
has been closed by the other side!

4.2.3 IO ReadLine

♦ IO ReadLine(f) (function)

Returns: a string or fail
This function gets exactly one argument, which must be a File object f. It reads one line of data,

where the definition of line is operating system dependent. The line end character(s) are included in
the result. The function returns a string with the line in case of success and fail in case of an error.
In the latter case, one can query the error with LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f, such that this function will be quite fast also for
large amounts of data.

If the end of file is hit without a line end, the rest of the file is returned. If the file is already at
end of file before the call, then a string of length 0 is returned. Note that this is not an error but the
standard end of file convention!

4.2.4 IO ReadLines

♦ IO ReadLines(f[, max]) (function)

Returns: a list of strings or fail
This function gets one or two arguments, the first of which must always be a File object f. It

reads lines of data (where the definition of line is operating system dependent) either until end of file
(without a second argument) or up to max lines (with a second argument max. A list of strings with
the result is returned, if everything went well and fail oterwise. In the latter case, one can query the
error with LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f, such that this function will be quite fast also for
large amounts of data.

If the file is already at the end of file, the function returns a list of length 0. Note that this is not an
error but the standard end of file convention!

4.2.5 IO HasData

♦ IO HasData(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether there is data to read available in the file f. A return value of true guarantees
that the next call to IO Read (4.2.6) on that file will succeed without blocking and return at least one
byte or an empty string to indicate the end of file.

4.2.6 IO Read

♦ IO Read(f, len) (function)

Returns: a string or fail
The function gets two arguments, the first of which must be a File object f. The second argument

must be a positive integer. The function reads data up to len bytes. A string with the result is

GAP 4 Package IO 25

returned, if everything went well and fail otherwise. In the latter case, one can query the error with
LastSystemError (Reference: LastSystemError).

Note that the reading is done via the buffer of f, such that this function will be quite fast also for
large amounts of data.

If the file is already at the end of the file, the function returns a string of length 0. Note that this is
not an error!

If a previous call to IO HasData (4.2.5) or to IO Select (4.3.3) indicated that there is data avail-
able to read, then it is guaranteed that the function IO Read (4.2.6) does not block and returns at least
one byte if the file is not yet at end of file and an empty string otherwise.

4.2.7 IO Write

♦ IO Write(f[, things, ...]) (function)

Returns: an integer or fail
This function can get an arbitrary number of arguments, the first of which must be a File object

f. All the other arguments are just written to f if they are strings. Otherwise, the String function is
called on them and the result is written out to f.

Note that the writing is done buffered. That is, the data is first written to the buffer and only really
written out after the buffer is full or after the user explicitly calls IO Flush (4.2.10) on f.

The result is either the number of bytes written in case of success or fail in case of an error. In
the latter case the error can be queried with LastSystemError (Reference: LastSystemError).

Note that this function blocks until all data is at least written into the buffer and might block until
data can be sent again if the buffer is full.

4.2.8 IO WriteLine

♦ IO WriteLine(f, line) (function)

Returns: an integer or fail
Behaves like IO Write (4.2.7) but works on a single string line and sends an (operating sys-

tem dependent) end of line string afterwards. Also IO Flush (4.2.10) is called automatically after
the operation, such that one can be sure, that the data is actually written out after the function has
completed.

4.2.9 IO WriteLines

♦ IO WriteLines(f, list) (function)

Returns: an integer or fail
Behaves like IO Write (4.2.7) but works on a list of strings list and sends an (operating system

dependent) end of line string after each string in the list. Also IO Flush (4.2.10) is called automat-
ically after the operation, such that one can be sure, that the data is actually written out after the
function has completed.

4.2.10 IO Flush

♦ IO Flush(f) (function)

Returns: true or fail
This function gets one argument f, which must be a File object. It writes out all the data that is

in the write buffer. This is not necessary before the call to the function IO Close (4.2.16), since that

GAP 4 Package IO 26

function calls IO Flush (4.2.10) automatically. However, it is necessary to call IO Flush (4.2.10)
after calls to IO Write (4.2.7) to be sure that the data is really sent out. The function returns true if
everything goes well and fail if an error occurs.

Remember that the functions IO WriteLine (4.2.8) and IO WriteLines (4.2.9) implicitly call
IO Flush (4.2.10) after they are done.

Note that this function might block until all data is actually written to the file descriptor.

4.2.11 IO WriteFlush

♦ IO WriteFlush(f[, things]) (function)

Returns: an integer or fail
This function behaves like IO Write (4.2.7) followed by a call to IO Flush (4.2.10). It returns

either the number of bytes written or fail if an error occurs.

4.2.12 IO ReadyForWrite

♦ IO ReadyForWrite(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether the file f is ready to write. A return value of true guarantees that the next call
to IO WriteNonBlocking (4.2.13) on that file will succeed without blocking and accept at least one
byte.

4.2.13 IO WriteNonBlocking

♦ IO WriteNonBlocking(f, st, pos, len) (function)

Returns: an integer or fail
This function takes four arguments. The first one f must be a File object, the second st a string,

and the arguments pos and len must be integers, such that positions pos+ 1 until pos+len are
bound in st. The function tries to write up to len bytes from st from position pos+1 to the file f.
If a previous call to IO ReadyForWrite (4.2.12) or to IO Select (4.3.3) indicates that f is writable,
then it is guaranteed that the following call to IO WriteNonBlocking (4.2.13) will not block and
accept at least one byte of data. Note that it is not guaranteed that all len bytes are written. The
function returns the number of bytes written or fail if an error occurs.

4.2.14 IO ReadyForFlush

♦ IO ReadyForFlush(f) (function)

Returns: true or false
This function takes one argument f which must be a File object. It returns true or false

according to whether the file f is ready to flush. A return value of true guarantees that the next call
to IO FlushNonBlocking (4.2.15) on that file will succeed without blocking and flush out at least
one byte. Note that this does not guarantee, that this call succeeds to flush out the whole content of
the buffer!

GAP 4 Package IO 27

4.2.15 IO FlushNonBlocking

♦ IO FlushNonBlocking(f) (function)

Returns: true, false, or fail
This function takes one argument f which must be a File object. It tries to write all data in

the writing buffer to the file descriptor. If this succeeds, the function returns true and false oth-
erwise. If an error occurs, fail is returned. If a previous call to IO ReadyForFlush (4.2.14)
or IO Select (4.3.3) indicated that f is flushable, then it is guaranteed that the following call to
IO FlushNonBlocking (4.2.15) does not block. However, it is not guaranteed that true is returned
from that call.

4.2.16 IO Close

♦ IO Close(f) (function)

Returns: true or fail
This function closes the File object f after writing all data in the write buffer out and closing

the file descriptor. All buffers are freed. In case of an error, the function returns fail and otherwise
true. Note that for pipes to other processes this function collects data about the terminated processes
using IO WaitPid (3.2.58).

4.3 Other functions

4.3.1 IO GetFD

♦ IO GetFD(f) (function)

Returns: an integer
This function returns the real file descriptor that is behind the File object f.

4.3.2 IO GetWBuf

♦ IO GetWBuf(f) (function)

Returns: a string or false
This function gets one argument f which must be a File object and returns the writing buffer of

that File object. This is necessary for File objects, that are not associated to a real file descriptor but
just collect everything that was written in their writing buffer. Remember to use this function before
closing the File object.

4.3.3 IO Select

♦ IO Select(r, w, f, e, t1, t2) (function)

Returns: an integer or fail
This function is the corresponding function to IO select (3.2.49) for buffered file access. It

behaves similarly to that function. The differences are the following: There are four lists of files r, w ,
f, and e. They all can contain either integers (standing for file descriptors) or File objects. The list
r is for checking, whether files or file descriptors are ready to read, the list w is for checking whether
they are ready to write, the list f is for checking whether they are ready to flush, and the list e is for
checking whether they have exceptions.

GAP 4 Package IO 28

For File objects it is always first checked, whether there is either data available in a reading buffer
or space in a writing buffer. If so, they are immediately reported to be ready (this feature makes the
list of File objects to test for flushability necessary). For the remaining files and for all specified file
descriptors, the function IO select (3.2.49) is called to get an overview about readiness. The timeout
values t1 and t2 are set to zero for immediate returning if one of the requested buffers were ready.

IO Select (4.3.3) returns the number of files or file descriptors that are ready to serve or fail if
an error occurs.

The following function is a convenience function for directory access:

4.3.4 IO ListDir

♦ IO ListDir(pathname) (function)

Returns: a list of strings or fail
This function gets a string containing a path name as single argument and returns a list of strings

that are the names of the files in that directory, or fail, if an error occurred.
The following function is used to create strings describing a pair of an IP address and a port

number in a binary way. These strings can be used in connection with the C library functions connect,
bind, recvfrom, and sendto for the arguments needing such address pairs.

4.3.5 IO MakeIPAddressPort

♦ IO MakeIPAddressPort(ipstring, portnr) (function)

Returns: a string
This function gets a string ipstring containing an IP address in dot notation, i.e. four numbers

in the range from 0 to 255 separated by dots “.”, and an integer portnr, which is a port number.
The result is a string of the correct length to be used for the low level C library functions, wherever IP
address port number pairs are needed.

4.3.6 IO Environment

♦ IO Environment() (function)

Returns: a record or fail
Takes no arguments, uses IO environ (3.3.2) to get the environment and returns a record in which

the component names are the names of the environment variables and the values are the values. This
can then be changed and the changed record can be given to IO MakeEnvList (4.3.7) to produce again
a list which can be used for IO execve (3.2.13) as third argument.

4.3.7 IO MakeEnvList

♦ IO MakeEnvList(r) (function)

Returns: a list of strings
Takes a record as returned by IO Environment (4.3.6) and turns it into a list of strings as needed

by IO execve (3.2.13) as third argument.

GAP 4 Package IO 29

4.4 Inter process communication

4.4.1 IO FindExecutable

♦ IO FindExecutable(path) (function)

Returns: fail or the path to an executable
If the path name path contains a slash, this function simply checks whether the string path

refers to an executable file. If so, path is returned as is. Otherwise, fail is returned. If the path
name path does not contain a slash, all directories in the environment variable PATH are searched for
an executable with name path. If so, the full path to that executable is returned, otherwise fail.

This function is used whenever one of the following functions gets an argument that should refer
to an executable.

4.4.2 IO CloseAllFDs

♦ IO CloseAllFDs(exceptions) (function)

Returns: nothing
Closes all file descriptors except those listed in exceptions, which must be a list of integers.

4.4.3 IO Popen

♦ IO Popen(path, argv, mode) (function)

Returns: a File object or fail
The argument path must refer to an executable file in the sense of IO FindExecutable (4.4.1).
Starts a child process using the executable in path with either stdout or stdin being a pipe. The

argument mode must be either the string “r” or the string “w”.
In the first case, the standard output of the child process will be the writing end of a pipe. A

File object for reading connected to the reading end of the pipe is returned. The standard input and
standard error of the child process will be the same than the calling GAP process.

In the second case, the standard input of the child process will be the reading end of a pipe. A
File object for writing connected to the writing end of the pipe is returned. The standard output and
standard error of the child process will be the same than the calling GAP process.

In case of an error, fail is returned.
The process will usually die, when the pipe is closed, but can also do so without that. The File

object remembers the process ID of the started process and the IO Close (4.2.16) function then calls
IO WaitPid (3.2.58) for it to acquire information about the terminated process.

Note that IO Popen (4.4.3) activates our SIGCHLD handler (see IO InstallSIGCHLDHandler
(3.3.3)).

In either case the File object will have the attribute “ProcessID” set to the process ID of the
child process.

4.4.4 IO Popen2

♦ IO Popen2(path, argv) (function)

Returns: a record or fail
The argument path must refer to an executable file in the sense of IO FindExecutable (4.4.1).
A new child process is started using the executable in path The standard input and standard

output of it are pipes. The writing end of the input pipe and the reading end of the output pipe

GAP 4 Package IO 30

are returned as File objects bound to two components “stdin” and “stdout” (resp.) of the returned
record. This means, you have to write to “stdin” and read from “stdout” in the calling GAP process.
The standard error of the child process will be the same as the one of the calling GAP process.

Returns fail if an error occurred.
The process will usually die, when one of the pipes is closed. The File objects remember the

process ID of the called process and the function call to IO Close (4.2.16) for the stdout object will
call IO WaitPid (3.2.58) for it to acquire information about the terminated process.

Note that IO Popen2 (4.4.4) activates our SIGCHLD handler (see IO InstallSIGCHLDHandler
(3.3.3)).

Both File objects will have the attribute “ProcessID” set to the process ID of the child process,
which will also be bound to the “pid” component of the returned record.

4.4.5 IO Popen3

♦ IO Popen3(path, argv) (function)

Returns: a record or fail
The argument path must refer to an executable file in the sense of IO FindExecutable (4.4.1).
A new child process is started using the executable in path The standard input, standard output,

and standard error of it are pipes. The writing end of the input pipe, the reading end of the output pipe
and the reading end of the error pipe are returned as File objects bound to two components “stdin”,
“stdout”, and “stderr” (resp.) of the returned record. This means, you have to write to “stdin”
and read from “stdout” and “stderr” in the calling GAP process.

Returns fail if an error occurred.
The process will usually die, when one of the pipes is closed. All three File objects will remember

the process ID of the newly created process and the call to the IO Close (4.2.16) function for the
stdout object will call IO WaitPid (3.2.58) for it to acquire information about the terminated child
process.

Note that IO Popen3 (4.4.5) activates our SIGCHLD handler (see IO InstallSIGCHLDHandler
(3.3.3)).

All three File objects will have the attribute “ProcessID” set to the process ID of the child
process, which will also be bound to the “pid” component of the returned record.

4.4.6 IO StartPipeline

♦ IO StartPipeline(progs, infd, outfd, switcherror) (function)

Returns: a record or fail
The argument progs is a list of pairs, the first entry being a path to an executable (in the sense

of IO FindExecutable (4.4.1)), the second an argument list, the argument infd is an open file
descriptor for reading, outfd is an open file descriptor for writing, both can be replaced by the
string “open” in which case a new pipe will be opened. The argument switcherror is a boolean
indicating whether standard error channels are also switched to the corresponding output channels.

This function starts up all processes and connects them with pipes. The input of the first is
switched to infd and the output of the last to outfd.

Returns a record with the following components: pids is a list of process ids if everything worked.
For each process for which some error occurred the corresponding pid is replaced by fail. The stdin
component is equal to false, or to the file descriptor of the writing end of the newly created pipe
which is connected to the standard input of the first of the new processes if infd was “open”. The

GAP 4 Package IO 31

stdout component is equal to false or to the file descriptor of the reading end of the newly created
pipe which is connected to the standard output of the last of the new processes if outfd was “open”.

Note that the SIGCHLD handler of the IO package is installed by this function (see
IO InstallSIGCHLDHandler (3.3.3)) and that it lies in the responsibility of the caller to use
IO WaitPid (3.2.58) to ask for the status information of all child processes after their termination.

4.4.7 IO StringFilterFile

♦ IO StringFilterFile(progs, filename) (function)

Returns: a string or fail
Reads the file with the name filename, however, a pipeline is created by the processes described

by progs (see IO StartPipeline (4.4.6)) to filter the content of the file through the pipeline. The
result is put into a GAP string and returned. If something goes wrong, fail is returned.

4.4.8 IO FileFilterString (append)

♦ IO FileFilterString(filename, progs, st[, append]) (function)

Returns: a string or fail
Writes the content of the string st to the file with the name filename, however, a pipeline is

created by the processes described by progs (see IO StartPipeline (4.4.6)) to filter the content
of the string through the pipeline. The result is put into the file. If the boolean value append is
given and equal to true, then the data will be appended to the already existing file. If something goes
wrong, fail is returned.

4.4.9 IO FilteredFile

♦ IO FilteredFile(progs, filename[, mode][, bufsize]) (function)

Returns: a File object or fail
This function is similar to IO File (4.1.3) and behaves nearly identically. The only difference is

that a filtering pipeline is switched between the file and the File object such that all things read or
written respectively are filtered through this pipeline of processes.

The File object remembers the started processes and upon the final call to IO Close (4.2.16)
automatically uses the IO WaitPid (3.2.58) function to acquire information from the terminated pro-
cesses in the pipeline after their termination. This means that you do not have to call IO WaitPid
(3.2.58) any more after the call to IO Close (4.2.16).

Note that IO FilteredFile (4.4.9) activates our SIGCHLD handler (see
IO InstallSIGCHLDHandler (3.3.3)).

The File object will have the attribute “ProcessID” set to the list of process IDs of the child
processes.

4.4.10 IO SendStringBackground

♦ IO SendStringBackground(f, st) (function)

This functions uses IO Write (4.2.7) to write the whole string st to the File object f. However,
this is done by forking off a child process identical to the calling GAP process that does the sending.
The calling GAP process returns immediately, even before anything has been sent away with the result
true. The forked off sender process terminates itself immediately after it has sent all data away.

GAP 4 Package IO 32

The reason for having this function available is the following: If one uses IO Popen2 (4.4.4) or
IO Popen3 (4.4.5) to start up a child process with standard input and standard output being a pipe,
then one usually has the problem, that the child process starts reading some data, but then wants to
write data, before it received all data coming. If the calling GAP process would first try to write all
data and only start to read the output of the child process after sending away all data, a deadlock
situation would occur. This is avoided with the forking and backgrounding approach.

Remember to close the writing end of the standard input pipe in the calling GAP process directly
after IO SendStringBackground (4.4.10) has returned, because otherwise the child process might
not notice that all data has arrived, because the pipe persists! See the file popen2.g in the example
directory for an example.

Note that with most modern operating systems the forking off of an identical child process does in
fact not mean a duplication of the total main memory used by both processes, because the operating
system kernel will use “copy on write”. However, if a garbage collection happens to become necessary
during the sending of the data in the forked off sending process, this might trigger doubled memory
usage.

4.4.11 IO PipeThrough

♦ IO PipeThrough(cmd, args, input) (function)

Returns: a string or fail
Starts the process with the executable given by the file name cmd (in the sense of

IO FindExecutable (4.4.1)) with arguments in the argument list args (a list of strings). The stan-
dard input and output of the started process are connected via pipes to the calling process. The content
of the string input is written to the standard input of the called process and its standard output is
read and returned as a string.

All the necessary I/O multiplexing and non-blocking I/O to avoid deadlocks is done in this func-
tion.

This function properly does IO WaitPid (3.2.58) to wait for the termination of the child process
but does not restore the original GAP SIGCHLD signal handler (see IO InstallSIGCHLDHandler
(3.3.3)).

4.4.12 IO PipeThroughWithError

♦ IO PipeThroughWithError(cmd, args, input) (function)

Returns: a record or fail
Starts the process with the executable given by the file name cmd (in the sense of

IO FindExecutable (4.4.1)) with arguments in the argument list args (a list of strings). The stan-
dard input, output and error of the started process are connected via pipes to the calling process. The
content of the string input is written to the standard input of the called process and its standard
output and error are read and returned as a record with components out and err, which are strings.

All the necessary I/O multiplexing and non-blocking I/O to avoid deadlocks is done in this func-
tion.

This function properly does IO WaitPid (3.2.58) to wait for the termination of the child process
but does not restore the original GAP SIGCHLD signal handler (see IO InstallSIGCHLDHandler
(3.3.3)).

The functions returns either fail if an error occurred, or otherwise a record with components out
and err which are bound to strings containing the full standard output and standard error of the called

GAP 4 Package IO 33

process.

Chapter 5

Object serialisation (Pickling)

The idea of “object serialisation” is that one wants to store nearly arbitrary GAP objects to disk or
transfer them over the network. To this end, one wants to convert them to a byte stream that is
platform independent and can later be converted back to a copy of the same object in memory, be it
in the same GAP process or another one maybe even on another machine. The main problem here are
the vast amount of different types occurring in GAP and the possibly highly self-referential structure
of GAP objects.

The IO package contains a framework to implement object serialisation and implementations for
most of the basic data types in GAP. The framework is easily extendible to other types and takes
complete care of self-references and corresponding problems. It builds upon the buffered I/O functions
described in Section 4. We start by describing the user interface.

5.1 Result objects

The following static objects are used to report about success or failure of the (un-)pickling operations:

5.1.1 IO Error

♦ IO Error (global variable)

This object is returned if an error occurs.

5.1.2 IO Nothing

♦ IO Nothing (global variable)

This object is returned when there is nothing to return, for example if an unpickler (see
IO Unpickle (5.2.2)) encounters the end of a file.

5.1.3 IO OK

♦ IO OK (global variable)

This object is returned if everything went well and there is no other canonical value to return to
indicate this.

34

GAP 4 Package IO 35

The only thing you can do with these special values is to compare them to each other and to other
objects.

5.2 Pickling and unpickling

5.2.1 IO Pickle

♦ IO Pickle(f, ob) (operation)

Returns: IO OK or IO Error
The argument f must be an open, writable File object. The object ob can be an arbitrary GAP

object. The operation “pickles” or “serialises” the object ob and writes the result into the File object
f. If everything is OK, the unique value IO OK is returned and otherwise the unique value IO Error.
The resulting byte stream can be read again using the operation IO Unpickle (5.2.2) and is platform-
and architecture independent. Especially the question whether a system has 32 bit or 64 bit wide
words and the question of endianess does not matter.

Note that not all of GAP’s object types are supported but it is relatively easy to extend the system.
This package supports in particular boolean values, integers, permutations, rational numbers, finite
field elements, cyclotomics, strings, polynomials, rational functions, lists, records, compressed vectors
and matrices over finite fields (objects are uncompressed in the byte stream but recompressed during
unpickling), and straight line programs.

Self-referential objects built from records and lists are handled correctly and are restored com-
pletely with the same self-references during unpickling.

5.2.2 IO Unpickle

♦ IO Unpickle(f) (operation)

Returns: IO Error or a GAP object
The argument f must be an open, readable File object. The operation reads from f and “unpick-

les” the next object. If an error occurs, the unique value IO Error is returned. If the File object is at
end of file, the value IO Nothing is returned. Note that these two values are not picklable, because of
their special meaning as return values of this operation here.

5.2.3 IO ClearPickleCache

♦ IO ClearPickleCache() (function)

Returns: Nothing
This function clears the “pickle cache”. This cache stores all object pickled in the current recursive

call to IO Pickle (5.2.1) and is necessary to handle self-references. Usually it is not necessary to call
this function explicitly. Only in the rare case (that should not happen) that a pickling or unpickling
operation enters a break loop which is left by the user, the pickle cache has to be cleared explicitly
using this function for later calls to IO Pickle (5.2.1) and IO Unpickle (5.2.2) to work!

5.3 Extending the pickling framework

The framework can be extended for other GAP object types as follows:
For pickling, a method for the operation IO Pickle (5.2.1) has to be installed which does the

work. If the object to be pickled has subobjects, then the first action of the method is to call the

GAP 4 Package IO 36

function IO AddToPickled with the object as argument. This will put it into the pickle cache and take
care of self-references. Arbitrary subobjects can then be pickled using recursive calls to the operation
IO Pickle (5.2.1) handing down the same File object into the recursion. The method must either
return IO Error in case of an error or IO OK if everything goes well. Before returning, a method that
has called IO AddToPickled must call the function IO FinalizePickled without arguments under
all circumstances. If this call is missing, global data for the pickling procedure becomes corrupt!

Every pickling method must first write a 4 byte magic value such that later during unpickling of
the byte stream the right unpickling method can be called (see below). Then it can write arbitrary
data, however, this data should be platform- and architecture independent, and it must be possible to
unpickle it later without “lookahead”.

Pickling methods should usually not go into a break loop, because after leaving the user has to
call IO ClearPickleCache (5.2.3) explicitly!

Unpickling is implemented as follows: For every 4 byte magic value there must be a function
bound to that value in the record IO Unpicklers. If the unpickling operation IO Unpickle (5.2.2)
encounters that magic value, it calls the corresponding unpickling function. This function just gets
one File object as argument. Since the magic value is already read, it can immediately start with
reading and rebuilding the serialised object in memory. The method has to take care to restore the
object including its type completely.

If an object type has subobjects, the unpickling function has to first create a skeleton of the ob-
ject without its subobjects, then call IO AddToUnpickled on this skeleton, before unpickling subob-
jects. If things are not done in this order, the handling of self-references down in the recursion will
not work! An unpickling function that has called IO AddToUnpickled at the beginning has to call
IO FinalizeUnpickled without arguments before returning under all circumstances! If this call is
missing, global data for the unpickling procedure becomes corrupt!

Of course, unpickling functions can recursively call IO Unpickle (5.2.2) to unpickle subob-
jects. Apart from this, unpickling functions can use arbitrary reading functions on the File object.
However, they should only read sequentially and never move the current file position pointer oth-
erwise. An unpickling function should return the newly created object or the value IO Error if an
error occurred. They should never go into a break loop, because after leaving the user has to call
IO ClearPickleCache (5.2.3) explicitly!

Perhaps the best way to learn how to extend the framework is to study the code for the basic GAP
objects in the file pkg/io/gap/pickle.gi.

Chapter 6

Really random sources

This section describes so called “real random sources”. It is an extension to the library mechanism
of random source objects that uses the devices /dev/random and /dev/urandom available on Linux
systems (and maybe on other operating systems) providing random numbers that are impossible to
predict. The idea is that such sources of random numbers are useful to produce unpredictable secret
keys for cryptographic applications.

6.1 The functions

6.1.1 RandomSource

♦ RandomSource(r, dev) (method)

Returns: a real random source object or fail
The first argument r must be the GAP filter IsRealRandomSource and the second either the string

random or the string urandom. A real random source object is created that draws its random num-
bers from the kernel devices /dev/random and /dev/urandom respectively. Whereas /dev/random
always provides random numbers of not guaranteed “quality”, the device /dev/urandom measures
its entropy and produces guaranteed unpredictable numbers. However, it might block until enough
“random” events (like mouse movements) have been accumulated.

37

Chapter 7

A client side implementation of the HTTP
protocol

The IO package contains an implementation of the client side of the HTTP protocol. The basic purpose
of this is of course to be able to download data from web servers from the GAP language. However,
the HTTP protocol can perform a much bigger variety of tasks.

7.1 Functions for client side HTTP

7.1.1 OpenHTTPConnection

♦ OpenHTTPConnection(hostname, port) (function)

Returns: a record
The first argument hostname must be a string containing the hostname of the server to connect.

The second argument port must be an integer in the range from 1 to 65535 and describes the port to
connect to on the server.

The function opens a TCP/IP connection to the server and returns a record conn with the fol-
lowing components: conn.sock is fail if an error occurs and otherwise a File object linked to the
file descriptor of the socket. In case of an error, the component conn.errormsg contains an error
message, it is otherwise empty. If everything went well then the component conn.host is the result
from the host name lookup (see IO gethostbyname (3.2.21)) and the component conn.closed is set
to false.

No data is sent or received on the socket in this function.

7.1.2 HTTPRequest

♦ HTTPRequest(conn, method, uri, header, body, target) (function)

Returns: a record
This function performs a complete HTTP request. The first argument must be a connection record

as returned by a successful call to OpenHTTPConnection (7.1.1). The argument method must be
a valid HTTP request “method” in form of a string. The most common will be GET, POST, or HEAD.
The argument uri is a string containing the URI of the request, which is given in the first line of
the request. This will usually be a relative or absolute path name given to the server. The argument
header must be a GAP record. Each bound field of this record will we transformed into one header

38

GAP 4 Package IO 39

line with the name of the component being the key and the value the value. All bound values must
be strings. The argument body must either be a string or false. If it is a string, this string is sent
away as the body of the request. If no string or an empty string is given, no body will be sent. The
header field Content-Length is automatically created from the length of the string body . Finally,
the argument target can either be false or a string. In the latter case, the body of the request
answer is written to the file with the name given in target. The body component of the result will
be the file name in this case. If target is false, the full body of the answer is stored into the body
component of the result.

The function sends away the request and awaits the answer. If anything goes wrong during the
transfer (for example if the connection is broken prematurely), then the component statuscode of
the resulting record is 0 and the component status is a corresponding error message. In that case,
all other fields may or may not be bound to sensible values, according to when the error occurred. If
everything goes well, then statuscode and status are bound to the corresponding values coming
from the request answer. statuscode is transformed into a GAP integer. The header of the answer
is parsed, transformed into a GAP record, and stored into the component header of the result. The
body component of the result record is set as described above. Finally, the protoversion component
contains the HTTP protocol version number used by the server as a string and the boolean value
closed indicates, whether or not the function has detected, that the connection has been closed by the
server. Note that by default, the connection will stay open, at least for a certain time after the end of
the request.

See the description of the global variable HTTPTimeoutForSelect (7.1.3) for rules how timeouts
are done in this function.

Note that if the method is HEAD, then no body is expected (none will be sent anyway) and the
function returns immediately with empty body. Of course, the Content-Length value in the header
is as if it the request would be done with the GET method.

7.1.3 HTTPTimeoutForSelect

♦ HTTPTimeoutForSelect (global variable)

This global variable holds a list of length two. By default, both entries are fail indicating that
HTTPRequest (7.1.2) should never timeout and wait forever for an answer. Actually, the two values in
this variable are given to the IO Select (4.3.3) function call during I/O multiplexing. That is, the first
number is in seconds and the second in milliseconds. Together they lead to a timeout for the HTTP
request. If a timeout occurs, an error condition is triggered which returns a record with status code 0
and status being the timeout error message.

You can change the timeout by accessing the two entries of this write protected list variable di-
rectly.

7.1.4 CloseHTTPConnection

♦ CloseHTTPConnection(conn) (function)

Returns: nothing
Closes the connection described by the connection record conn. No error can possibly occur.

GAP 4 Package IO 40

7.1.5 SingleHTTPRequest

♦ SingleHTTPRequest(hostname, port, method, uri, header, body, target)
(function)

Returns: a record
The arguments are as the corresponding ones in the functions OpenHTTPConnection (7.1.1) and

HTTPRequest (7.1.2) respectively. This function opens an HTTP connection, tries a single HTTP
request and immediately closes the connection again. The result is as for the HTTPRequest (7.1.2)
function. If an error occurs during the opening of the connection, the statuscode value of the result
is 0 and the error message is stored in the status component of the result.

The previous function allows for a very simple implementation of a function that checks, whether
your current GAP installation is up to date:

7.1.6 CheckForUpdates

♦ CheckForUpdates() (function)

Returns: nothing
This function accesses a web page in St. Andrews and runs some GAP code from there. This

code knows all the currently released versions of GAP and its packages. It prints out a summary and
possibly suggests upgrades. If you do not want to executed code downloaded from the internet, then
do not call this function.

More concretely, the page accessed is http://www.gap-system.org/Download/upgrade.html
and the code executed is a single call to the function SuggestUpgrades function in the GAP library.

http://www.gap-system.org/Download/upgrade.html

Chapter 8

Examples of usage

For larger examples see the example directory of the package. You find there a small server using the
TCP/IP protocol and a corresponding client and another small server using the UDP protocol and a
corresponding client.

Further, there is an example for the usage of File objects, that read from or write to strings.
Another example there shows starting up a child process and piping a few megabytes through it

using IO Popen2 (4.4.4).
In the following, we present a few explicit, interactive short examples for the usage of the functions

in this package. Note that you have to load the IO package with the command LoadPackage("IO");
before trying these examples.

8.1 Writing and reading a file

The following sequence of commands opens a file with name guck and writes some things to it:
Example

gap> f := IO_File("guck","w");
<file fd=3 wbufsize=65536 wdata=0>
gap> IO_Write(f,"Hello world\n");
12
gap> IO_WriteLine(f,"Hello world2!");
14
gap> IO_Write(f,12345);
5
gap> IO_Flush(f);
true
gap> IO_Close(f);
true

There is nothing special about this, the numbers are numbers of bytes written. Note that only after
the IO Flush (4.2.10) command the data is actually written to disk. Before that, it resides in the write
buffer of the file. Note further, that the IO Flush (4.2.10) call here would not have been necessary,
since the IO Close (4.2.16) call flushes the buffer anyway.

The file can again be read with the following sequence of commands:
Example

gap> f := IO_File("guck","r");
<file fd=3 rbufsize=65536 rpos=1 rdata=0>

41

GAP 4 Package IO 42

gap> IO_Read(f,10);
"Hello worl"
gap> IO_ReadLine(f);
"d\n"
gap> IO_ReadLine(f);
"Hello world2!\n"
gap> IO_ReadLine(f);
"12345"
gap> IO_ReadLine(f);
""
gap> IO_Close(f);
true

Note here that reading line-wise can only be done efficiently by using buffered I/O. You can mix
calls to IO Read (4.2.6) and to IO ReadLine (4.2.3). The end of file is indicated by an empty string
returned by one of the read functions.

8.2 Using filtering programs to read and write files

If you want to write a big amount of data to file you might want to compress it on the fly without using
much disk space. This can be achieved with the following command:

Example
gap> s := "";; for i in [1..10000] do Append(s,String(i)); od;;
gap> Length(s);
38894
gap> IO_FileFilterString("guck.gz",[["gzip",["-9c"]]],s);
true
gap> sgz := StringFile("guck.gz");;
gap> Length(sgz);
18541
gap> ss := IO_StringFilterFile([["gzip",["-dc"]]],"guck.gz");;
gap> s=ss;
true

This sequence of commands needs that the program gzip is installed on your system.

8.3 Using filters when reading or writing files sequentially

If you want to process bigger amounts of data you might not want to store all of it in a single GAP
string. In that case you might want to access a file on disk sequentially through a filter:

Example
gap> f := IO_FilteredFile([["gzip",["-9c"]]],"guck.gz","w");
<file fd=5 wbufsize=65536 wdata=0>
gap> IO_Write(f,"Hello world!\n");
13
gap> IO_Write(f,Elements(SymmetricGroup(5)),"\n");
1359
gap> IO_Close(f);
true
gap> f := IO_FilteredFile([["gzip",["-dc"]]],"guck.gz","r");

GAP 4 Package IO 43

<file fd=4 rbufsize=65536 rpos=1 rdata=0>
gap> IO_ReadLine(f);
"Hello world!\n"
gap> s := IO_ReadLine(f);; Length(s);
1359
gap> IO_Read(f,10);
""
gap> IO_Close(f);
true

8.4 Accessing a web page

The IO package has an HTTP client implementation. Using this you can access web pages and other
web downloads from within GAP. Here is an example:

Example
gap> r := SingleHTTPRequest("www.math.rwth-aachen.de",80,"GET",
> "/˜Max.Neunhoeffer/index.html",rec(),false,false);;
gap> RecFields(r);
["protoversion", "statuscode", "status", "header", "body", "closed"]
gap> r.status;
"OK"
gap> r.statuscode;
200
gap> r.header;
rec(date := "Thu, 07 Dec 2006 22:08:22 GMT",
server := "Apache/2.0.55 (Ubuntu)",
last-modified := "Thu, 16 Nov 2006 00:21:44 GMT",
etag := "\"2179cf-11a5-3c77f600\"", accept-ranges := "bytes",
content-length := "4517", content-type := "text/html; charset=ISO-8859-1")

gap> Length(r.body);
4517

Of course, the time stamps and exact sizes of the answer may differ when you do this.

8.5 (Un-)Pickling

Assume you have some GAP objects you want to archive to disk grouped together. Then you might
do the following:

Example
gap> r := rec(a := 1, b := "Max", c := [1,2,3]);
rec(a := 1, b := "Max", c := [1, 2, 3])
gap> r.c[4] := r;
rec(a := 1, b := "Max", c := [1, 2, 3, ˜])
gap> f := IO_File("guck","w");
<file fd=3 wbufsize=65536 wdata=0>
gap> IO_Pickle(f,r);
IO_OK
gap> IO_Pickle(f,[(1,2,3,4),(3,4)]);
IO_OK

GAP 4 Package IO 44

gap> IO_Close(f);
true

Then, to read it in again, just do:
Example

gap> f := IO_File("guck");
<file fd=3 rbufsize=65536 rpos=1 rdata=0>
gap> IO_Unpickle(f);
rec(a := 1, b := "Max", c := [1, 2, 3, ˜])
gap> IO_Unpickle(f);
[(1,2,3,4), (3,4)]
gap> IO_Unpickle(f);
IO_Nothing
gap> IO_Close(f);
true

Note that this works for a certain amount of builtin objects. If you want to archive your own objects
or more sophisticated objects you have to use extend the functionality as explained in Section 5.3.
However, it works for lists and records and they may be arbitrarily self-referential.

Chapter 9

License

This package is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; version 2 or greater of the
License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
USA

45

Index

IO, 7

CheckForUpdates, 40
CloseHTTPConnection, 39

HTTPRequest, 38
HTTPTimeoutForSelect, 39

IO accept, 11
IO bind, 11
IO chdir, 12
IO chmod, 12
IO chown, 12
IO ClearPickleCache, 35
IO Close, 27
IO close, 12
IO CloseAllFDs, 29
IO closedir, 12
IO connect, 12
IO creat, 12
IO dup, 13
IO dup2, 13
IO environ, 20
IO Environment, 28
IO Error, 34
IO execv, 13
IO execve, 13
IO execvp, 13
IO exit, 13
IO fchmod, 13
IO fchown, 14
IO fcntl, 14
IO File

bufsize, 23
mode, 23
mode and bufsize, 23

IO FileFilterString
append, 31

IO FilteredFile, 31
IO FindExecutable, 29

IO Flush, 25
IO FlushNonBlocking, 27
IO fork, 14
IO fstat, 14
IO GetFD, 27
IO gethostbyname, 14
IO getpid, 14
IO getppid, 14
IO getsockopt, 15
IO gettimeofday, 15
IO GetWBuf, 27
IO gmtime, 15
IO HasData, 24
IO InstallSIGCHLDHandler, 20
IO kill, 15
IO lchown, 15
IO link, 15
IO ListDir, 28
IO listen, 15
IO localtime, 16
IO lseek, 16
IO lstat, 16
IO MakeEnvList, 28
IO MakeIPAddressPort, 28
IO make sockaddr in, 20
IO mkdir, 16
IO mkfifo, 16
IO mknod, 16
IO Nothing, 34
IO OK, 34
IO open, 16
IO opendir, 17
IO Pickle, 35
IO pipe, 17
IO PipeThrough, 32
IO PipeThroughWithError, 32
IO Popen, 29
IO Popen2, 29
IO Popen3, 30

46

GAP 4 Package IO 47

IO Read, 24
IO read, 17
IO ReadBlock, 23
IO readdir, 17
IO ReadLine, 24
IO ReadLines, 24
IO readlink, 17
IO ReadUntilEOF, 23
IO ReadyForFlush, 26
IO ReadyForWrite, 26
IO recv, 17
IO recvfrom, 18
IO rename, 18
IO RestoreSIGCHLDHandler, 21
IO rewinddir, 18
IO rmdir, 18
IO seekdir, 18
IO Select, 27
IO select, 18
IO send, 18
IO SendStringBackground, 31
IO sendto, 19
IO setsockopt, 19
IO socket, 19
IO StartPipeline, 30
IO stat, 19
IO StringFilterFile, 31
IO symlink, 19
IO telldir, 19
IO unlink, 20
IO Unpickle, 35
IO WaitPid, 20
IO WrapFD, 22
IO Write, 25
IO write, 20
IO WriteFlush, 26
IO WriteLine, 25
IO WriteLines, 25
IO WriteNonBlocking, 26
IsFile, 22

OpenHTTPConnection, 38

RandomSource, 37

SingleHTTPRequest, 40

