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Abstract

RCWA is a package forGAP 4. It provides implementations of algorithms and methods for computing in certain
infinite permutation groups. In principle, this package can deal at least with the following types of groups and
their subgroups:

• Finite groups, and certain divisible torsion groups which they embed into.

• Free groups of finite rank.

• Free products of finitely many finite groups, thus in particular the modular group PSL(2,Z).

• Direct products of the above groups.

• Wreath products of the above groups with finite groups and with(Z,+).

With substancial help of this package, the author has found a countable simple group which has an uncountable
series of simple subgroups. This simple group is generated by involutions which interchange disjoint residue
classes of the integers. All the above groups embed into it.

Copyright

c© 2003 - 2007 by Stefan Kohl. This package is distributed under the GNU General Public License.
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Chapter 1

About the RCWA Package

1.1 Motivation

The development of this package has originally been inspired by the famous 3n+1-Conjecture, which
asserts that iterated application of theCollatz mapping

T : Z−→ Z, n 7−→

{
n
2 if n is even,
3n+1

2 if n is odd

to any given positive integer eventually yields 1 (cf. [Lag06]).
So far, no attempts have been made to investigate the structure of groups whose elements are

permutations which are “similar to the Collatz mapping”, i.e.residue-class-wise affine.
After having investigated these groups for a couple of years, the author feels that this is a gap

which is worth to be filled.

1.2 Purpose of this package

The present scope of computational group theory essentially comprises finite permutation groups,
matrix groups, finitely presented groups, polycyclically presented groups and automata groups. For
details, we refer to [HEO05].

The purpose of this package is twofold:

• On the one hand, it introduces a new class of groups which are accessible to computational
methods, and it therefore extends the current scope of computational group theory as outlined
above.

• On the other, residue-class-wise affine groups are interesting mathematical objects in their own
right, and this package is intended to serve as a tool for obtaining a better understanding of their
rich and often complicated group theoretical and combinatorial structure.
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1.3 Groups which this package can deal with

In principle this package permits to construct and investigate all groups which have faithful repre-
sentations as residue-class-wise affine groups. Among many others, the following groups and their
subgroups belong to this class:

• Finite groups, and certain divisible torsion groups which they embed into.

• Free groups of finite rank.

• Free products of finitely many finite groups, thus in particular the modular group PSL(2,Z).

• Direct products of the above groups.

• Wreath products of the above groups with finite groups and with(Z,+).

This list permits already to conclude that there are finitely generated residue-class-wise affine groups
which do not have finite presentations, and such with algorithmically unsolvable membership prob-
lem. However the list is certainly by far not exhaustive, and using this package it is easy to construct
groups of types which are not mentioned there.

The group CT(Z) which is generated by allclass transpositionsof Z – these are involutions which
interchange two disjoint residue classes, seeClassTransposition (2.2.3) – is a simple group which
has subgroups of all types listed above. It is countable, but it has an uncountable series of simple
subgroups which is parametrized by the sets of odd primes.

Proofs of most of the results mentioned here have not yet appeared in print. However they can be
found in the preprint [Koh06a], which is available on the author’s homepage. Descriptions of many
of the algorithms and methods which are implemented in this package can be found in [Koh07b].

1.4 Scope of this package

This package can be applied in various ways to various different problems, and it is just not pos-
sible to say what can be found out with its help about which groups. The best way to get an idea
about this is likely to experiment with the examples discussed in this manual and included in the file
pkg/rcwa/examples/examples.g.

Of course this package often does not provide an out-of-the-box solution for a given problem.
Quite often it is possible to find an answer for a given question by using an interactive trial-and-error
approach.

With substancial help of this package, the author has found the results mentioned in Section1.3.
Interactive sessions with this package have also lead to the development of most of the algorithms
which are now implemented in it. Just to mention one example, developing the factorization method
for residue-class-wise affine permutations (seeFactorizationIntoCSCRCT (2.5.1)) solely by means
of theory would likely have been very hard.



Chapter 2

Residue-Class-Wise Affine Mappings

In this chapter we give the basic definitions, and describe how to enter residue-class-wise affine map-
pings and how to compute with them.

How to compute with residue-class-wise affine groups is described in detail in the next chapter.
The reader is encouraged to look there already after having read the first few pages of this chapter,
and to look up definitions as he needs to.

2.1 Basic definitions

Residue-class-wise affine groups, orrcwa groups for short, are permutation groups whose elements
are bijective residue-class-wise affine mappings.

A mapping f : Z→ Z is calledresidue-class-wise affine, or for short anrcwa mapping, if there is
a positive integerm such that the restrictions off to the residue classesr(m) ∈ Z/mZ are all affine,
i.e. given by

f |r(m) : r(m)→ Z, n 7→
ar(m) ·n+br(m)

cr(m)

for certain coefficientsar(m),br(m),cr(m) ∈ Z depending onr(m). The smallest possiblem is called
themodulusof f . It is understood that all fractions are reduced, i.e. that gcd(ar(m),br(m),cr(m)) = 1,
and thatcr(m) > 0. The lcm of the coefficientsar(m) is called themultiplier of f , and the lcm of the
coefficientscr(m) is called thedivisor of f .

It is easy to see that the residue-class-wise affine mappings ofZ form a monoid under composition,
and that the residue-class-wise affine permutations ofZ form a countable subgroup of Sym(Z). We
denote the former by Rcwa(Z), and the latter by RCWA(Z).

An rcwa mapping is calledtameif the set of moduli of its powers is bounded, or equivalently if it
permutes a partition ofZ into finitely many residue classes on all of which it is affine. An rcwa group
is calledtameif there is a common such partition for all of its elements, or equivalently if the set of
moduli of its elements is bounded. Rcwa mappings and -groups which are not tame are calledwild.
Tame rcwa mappings and -groups are something which one could call the “trivial cases” or “basic
building blocks”, while wild rcwa groups are the objects of primary interest.

The definitions of residue-class-wise affine mappings and -groups can be generalized in an obvious
way to suitable rings other thanZ. In fact, this package provides also some support for residue-class-
wise affine groups over semilocalizations ofZ and over univariate polynomial rings over finite fields.
The former of these rings have been chosen as examples of rings with only finitely prime elements,
and the latter have been chosen as examples of rings with nonzero characteristic.

8
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2.2 Entering residue-class-wise affine mappings

Entering an rcwa mapping ofZ requires giving the modulusmand the coefficientsar(m), br(m) andcr(m)
for r(m) running over the residue classes (modm).

This can be done easiest byRcwaMapping( coeffs ), wherecoeffs is a list ofm coefficient
triplescoeffs[r +1] = [ar(m), br(m), cr(m)], with r running from 0 tom−1.

If some coefficientcr(m) is zero or if images of some integers under the mapping to be defined
would not be integers, an error message is printed and a break loop is entered. For example, the
coefficient triple[1,4,3] is not allowed at the first position. The reason for this is that not all integers
congruent to 1·0+4 = 4 modm are divisible by 3.

For the general constructor for rcwa mappings, seeRcwaMapping (2.2.5).
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]); # The Collatz mapping.
<rcwa mapping of Z with modulus 2>
gap> [ IsSurjective(T), IsInjective(T) ];
[ true, false ]
gap> SetName(T,"T"); Display(T);

Surjective rcwa mapping of Z with modulus 2

n mod 2 | nˆT
------------------------------------+------------------------------------
0 | n/2
1 | (3n + 1)/2

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); SetName(a,"a");
<rcwa mapping of Z with modulus 3>
gap> IsBijective(a);
true
gap> Display(a); # This is Collatz’ permutation:

Bijective rcwa mapping of Z with modulus 3

n mod 3 | nˆa
------------------------------------+------------------------------------
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> Support(a);
Z \ [ -1, 0, 1 ]
gap> Cycle(a,44);
[ 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66 ]
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There is computational evidence for the conjecture that any residue-class-wise affine permutation
of Z can be factored into members of the following three series of permutations of particularly simple
structure (cf.FactorizationIntoCSCRCT (2.5.1)):

2.2.1 ClassShift (r, m)

♦ ClassShift(r, m ) (function)

♦ ClassShift(cl ) (function)

Returns: The class shiftνr(m).
The class shiftνr(m) is the rcwa mapping ofZ which mapsn ∈ r(m) to n+ m and which fixes

Z\ r(m) pointwise.
In the one-argument form, the argumentcl stands for the residue classr(m). Enclosing the

argument list in list brackets is permitted.
Example

gap> Display(ClassShift(5,12));

Tame bijective rcwa mapping of Z with modulus 12, of order infinity

n mod 12 | nˆClassShift(5,12)
------------------------------------+------------------------------------

0 1 2 3 4 6 7 8 9 10 11 | n
5 | n + 12

2.2.2 ClassReflection (r, m)

♦ ClassReflection(r, m ) (function)

♦ ClassReflection(cl ) (function)

Returns: The class reflectionςr(m).
Theclass reflectionςr(m) is the rcwa mapping ofZ which mapsn∈ r(m) to −n+ 2r and which

fixesZ\ r(m) pointwise, where it is understood that 0≤ r < m.
In the one-argument form, the argumentcl stands for the residue classr(m). Enclosing the

argument list in list brackets is permitted.
Example

gap> Display(ClassReflection(5,9));

Bijective rcwa mapping of Z with modulus 9, of order 2

n mod 9 | nˆClassReflection(5,9)
------------------------------------+------------------------------------
0 1 2 3 4 6 7 8 | n
5 | -n + 10
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2.2.3 ClassTransposition (r1, m1, r2, m2)

♦ ClassTransposition(r1, m1, r2, m2 ) (function)

♦ ClassTransposition(cl1, cl2 ) (function)

Returns: The class transpositionτr1(m1),r2(m2).
Given two disjoint residue classesr1(m1) and r2(m2) of the integers, theclass transposition

τr1(m1),r2(m2) ∈RCWA(Z) is defined as the involution which interchangesr1+km1 andr2+km2 for any
integerk and which fixes all other points. It is understood thatm1 andm2 are positive, that 0≤ r1 < m1

and that 0≤ r2 < m2. For ageneralized class transposition, the latter assumptions are not made.
The class transpositionτr1(m1),r2(m2) interchanges the residue classesr1(m1) andr2(m2) and fixes

the complement of their union pointwise.
In the four-argument form, the argumentsr1 , m1, r2 andm2stand forr1, m1, r2 andm2, respec-

tively. In the two-argument form, the argumentscl1 andcl2 stand for the residue classesr1(m1)
andr2(m2), respectively. Enclosing the argument list in list brackets is permitted. The residue classes
r1(m1) andr2(m2) are stored as an attributeTransposedClasses.

A class transposition can be written as a product of any given numberk of class transpositions.
Such a decomposition can be obtained bySplittedClassTransposition(ct ,k).

Example

gap> Display(ClassTransposition(1,2,8,10));

Bijective rcwa mapping of Z with modulus 10, of order 2

n mod 10 | nˆClassTransposition(1,2,8,10)
------------------------------------+------------------------------------

0 2 4 6 | n
1 3 5 7 9 | 5n + 3
8 | (n - 3)/5

The set of all class transpositions of the ring of integers generates the simple group CT(Z) mentioned
in Chapter1. This group has a representation as aGAP object – seeCT (3.1.2). The set of all general-
ized class transpositions ofZ generates a simple group as well, cf. [Koh06a].

Class shifts, class reflections and class transpositions of ringsR other thanZ are defined in an
entirely analogous way – all one needs to do is to replaceZ by R and to read< and≤ in the sense of
the ordering used byGAP. They can also be entered basically as described above – just prepend the
desired ringR to the argument list. Often also a sensible “default ring” (→ DefaultRing in theGAP
Reference Manual) is chosen if that optional first argument is omitted.
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On rings which have more than two units, there is another basic series of rcwa permutations which
generalizes class reflections:

2.2.4 ClassRotation (r, m, u)

♦ ClassRotation(r, m, u ) (function)

♦ ClassRotation(cl, u ) (function)

Returns: The class rotationρr(m),u.
Given a residue classr(m) and a unitu of a suitable ringR, theclass rotationρr(m),u is the rcwa

mapping which mapsn∈ r(m) to un+(1−u)r and which fixesR\ r(m) pointwise. Class rotations
generalize class reflections, as we haveρr(m),−1 = ςr(m).

In the two-argument form, the argumentcl stands for the residue classr(m). Enclosing the
argument list in list brackets is permitted. The argumentu is stored as an attributeRotationFactor.

Example

gap> Display(ClassRotation(ResidueClass(Z_pi(2),2,1),1/3));

Tame bijective rcwa mapping of Z_( 2 ) with modulus 2, of order infinity

n mod 2 | nˆClassRotation(1,2,1/3)
------------------------------------+------------------------------------
0 | n
1 | 1/3 n + 2/3

gap> x := Indeterminate(GF(8),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(8),1);;
gap> Display(ClassRotation(1,x,Z(8)*One(R)));

Bijective rcwa mapping of GF(2ˆ3)[x] with modulus x, of order 7

P mod x | Pˆ(ClassRotation(Z(2)ˆ0,x,Z(2ˆ3)))
------------------------+------------------------------------------------
0*Z(2) Z(2ˆ3) |
Z(2ˆ3)ˆ2 Z(2ˆ3)ˆ3 |
Z(2ˆ3)ˆ4 Z(2ˆ3)ˆ5 |
Z(2ˆ3)ˆ6 | P
Z(2)ˆ0 | Z(2ˆ3)*P + Z(2ˆ3)ˆ3

There are properties IsClassShift, IsClassReflection, IsClassRotation,
IsClassTransposition and IsGeneralizedClassTransposition, which indicate whether
a given rcwa mapping belongs to the corresponding series. By default, class shifts, class reflections,
class transpositions and class rotations are given descriptive names of the formClass...(...).
They can be given user-defined names upon creation via the optionName. Setting theName attribute
can be avoided by passing the empty string.
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In the sequel, a description of the general-purpose constructor for rcwa mappings is given. This
might look a bit technical on a first glance, but knowing all possible ways of entering an rcwa mapping
is by no means necessary for understanding this manual or for using this package.

2.2.5 RcwaMapping (the general constructor)

♦ RcwaMapping(R, m, coeffs ) (method)

♦ RcwaMapping(R, coeffs ) (method)

♦ RcwaMapping(coeffs ) (method)

♦ RcwaMapping(perm, range ) (method)

♦ RcwaMapping(m, values ) (method)

♦ RcwaMapping(pi, coeffs ) (method)

♦ RcwaMapping(q, m, coeffs ) (method)

♦ RcwaMapping(P1, P2 ) (method)

♦ RcwaMapping(cycles ) (method)

Returns: An rcwa mapping.
In all cases the argumentR is the underlying ring,mis the modulus andcoeffs is the coefficient

list. A coefficient list for an rcwa mapping with modulusm consists of|R/mR| coefficient triples
[ar(m), br(m), cr(m)]. Their ordering is determined by the ordering of the representatives of the residue
classes (modm) in the sorted list returned byAllResidues(R, m). In caseR= Z this means that
the coefficient triple for the residue class 0(m) comes first and is followed by the one for 1(m), the
one for 2(m) and so on.

In case one or several of the argumentsR, mandcoeffs are omitted or replaced by other argu-
ments, the former are either derived from the latter or default values are taken. The meaning of the
other arguments is defined in the detailed description of the particular methods given in the sequel:
The above methods return the rcwa mapping

(a) of Rwith modulusmand coefficientscoeffs ,

(b) of R= Z or R= Z(π) with modulusLength(coeffs ) and coefficientscoeffs ,

(c) of R= Z with modulusLength(coeffs ) and coefficientscoeffs ,

(d) of R= Z, permuting any setrange +k*Length(range ) like perm permutesrange ,

(e) of R= Z with modulusmand values given by a listval of 2 pairs[preimage, image] per residue
class (modm),

(f) of R= Z(π) with modulusLength(coeffs ) and coefficientscoeffs (the set of primesπ which
denotes the underlying ring is passed as argumentpi ),

(g) of R= GF(q )[x ] with modulusmand coefficientscoeffs ,

(h) a bijective rcwa mapping which induces a bijection between the partitionsP1 andP2 of R into
residue classes and which is affine on the elements ofP1, or

(i) a bijective rcwa mapping with “residue class cycles” given by a listcycles of lists of pairwise
disjoint residue classes which are to be permuted cyclically, each, respectively.

The methods for the operationRcwaMapping perform a number of argument checks, which can be
skipped by usingRcwaMappingNC instead.



RCWA 14

Example

gap> R := PolynomialRing(GF(2),1);; x := X(GF(2),1);; SetName(x,"x");
gap> RcwaMapping(R,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (a)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)ˆ0>
gap> RcwaMapping(Z_pi(2),[[1/3,0,1]]); # (b)
Rcwa mapping of Z_( 2 ): n -> 1/3 n
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]); # (c)
<rcwa mapping of Z with modulus 3>
gap> RcwaMapping((1,2,3),[1..4]); # (d)
<bijective rcwa mapping of Z with modulus 4, of order 3>
gap> T = RcwaMapping(2,[[1,2],[2,1],[3,5],[4,2]]); # (e)
true
gap> RcwaMapping([2],[[1/3,0,1]]); # (f)
Rcwa mapping of Z_( 2 ): n -> 1/3 n
gap> RcwaMapping(2,x+1,[[1,0,x+One(R)],[x+One(R),0,1]]*One(R)); # (g)
<rcwa mapping of GF(2)[x] with modulus x+Z(2)ˆ0>
gap> a = RcwaMapping(List([[0,3],[1,3],[2,3]],ResidueClass),
> List([[0,2],[1,4],[3,4]],ResidueClass)); # (h)
true
gap> RcwaMapping([List([[0,2],[1,4],[3,8],[7,16]],ResidueClass)]); # (i)
<bijective rcwa mapping of Z with modulus 16, of order 4>
gap> Cycle(last,ResidueClass(0,2));
[ 0(2), 1(4), 3(8), 7(16) ]

Rcwa mappings ofZ can be “translated” to rcwa mappings of some semilocalizationZ(π) of Z:

2.2.6 LocalizedRcwaMapping (for an rcwa mapping of Z and a prime)

♦ LocalizedRcwaMapping(f, p ) (function)

♦ SemilocalizedRcwaMapping(f, pi ) (function)

Returns: The rcwa mapping ofZ(p) respectivelyZ(π) with the same coefficients as the rcwa
mappingf of Z.

The argumentp or pi must be a prime or a set of primes, respectively. The argumentf must be
an rcwa mapping ofZ whose modulus is a power ofp, or whose modulus has only prime divisors
which lie inpi , respectively.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Cycle(LocalizedRcwaMapping(T,2),131/13);
[ 131/13, 203/13, 311/13, 473/13, 716/13, 358/13, 179/13, 275/13,
419/13, 635/13, 959/13, 1445/13, 2174/13, 1087/13, 1637/13, 2462/13,
1231/13, 1853/13, 2786/13, 1393/13, 2096/13, 1048/13, 524/13, 262/13 ]

Rcwa mappings can beViewed,Displayed,Printed and written to aString. The output of theView
method is kept reasonably short. In most cases it does not describe an rcwa mapping completely. In
these cases the output is enclosed in brackets. The output of the methods forDisplay andPrint
describe an rcwa mapping in full. ThePrinted representation of an rcwa mapping isGAP - readable
if and only if thePrinted representation of the elements of the underlying ring is so.
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There is also a method forLaTeX, respectivelyLaTeXObj. The output of this method makes use
of the LATEX macro packageamsmath. If the optionFactorization is set and the argument is
bijective, a factorization into class shifts, class reflections, class transpositions and prime switches is
printed (cf.FactorizationIntoCSCRCT (2.5.1)). For rcwa mappings with modulus greater than 1, an
indentation byIndentation characters can be obtained by setting this option value accor\-dingly.

Example

gap> Print(LaTeXObj(T));
n \ \longmapsto \
\begin{cases}
n/2 & \text{if} \ n \in 0(2), \\
(3n + 1)/2 & \text{if} \ n \in 1(2).

\end{cases}

There is an operationLaTeXAndXDVI which displays an rcwa mapping in anxdvi window. This works
as follows: The string returned by theLaTeXObj - method described above is inserted into a LATEX
template file. This file is LATEX’ed, and the result is shown withxdvi. Calling Display with option
xdvi has the same effect. The operationLaTeXAndXDVI is only available on UNIX systems, and
requires suitable installations of LATEX andxdvi.

2.3 Basic arithmetic for residue-class-wise affine mappings

Testing rcwa mappings for equality requires only comparing their coefficient lists, hence is cheap.
Rcwa mappings can be multiplied, thus there is a method for*. Bijective rcwa mappings can also
be inverted, thus there is a method forInverse. The latter method is usually accessed by raising a
mapping to a power with negative exponent. Multiplying, inverting and computing powers of tame
rcwa mappings is cheap. Computing powers of wild mappings is usually expensive – runtime and
memory requirements normally grow approximately exponentially with the exponent. How expensive
multiplying a couple of wild mappings is, varies very much. In any case, the amount of memory
required for storing an rcwa mapping is proportional to its modulus. Whether a given mapping is
tame or wild can be determined by the operationIsTame. There is a method forOrder, which can not
only compute a finite order, but which can also detect infinite order.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation.
gap> List([-4..4],k->Modulus(aˆk));
[ 256, 64, 16, 4, 1, 3, 9, 27, 81 ]
gap> IsTame(T) or IsTame(a);
false
gap> IsTame(ClassShift(0,1)) and IsTame(ClassTransposition(0,2,1,2));
true
gap> Tˆ2*a*T*aˆ-3;
<rcwa mapping of Z with modulus 768>
gap> (ClassShift(1,3)*ClassReflection(2,7))ˆ1000000;
<bijective rcwa mapping of Z with modulus 21>

There are methods installed forIsInjective, IsSurjective, IsBijective andImage.
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Example

gap> [ IsInjective(T), IsSurjective(T), IsBijective(a) ];
[ false, true, true ]
gap> Image(RcwaMapping([[2,0,1]]));
0(2)

Images of elements, of finite sets of elements and of unions of finitely many residue classes of the
source of an rcwa mapping can be computed withˆ, the same symbol as used for exponentiation and
conjugation. The same works for partitions of the source into a finite number of residue classes.

Example

gap> 15ˆT;
23
gap> ResidueClass(1,2)ˆT;
2(3)
gap> List([[0,3],[1,3],[2,3]],ResidueClass)ˆa;
[ 0(2), 1(4), 3(4) ]

For computing preimages of elements under rcwa mappings, there are methods forPreImageElm and
PreImagesElm. The preimage of a finite set of ring elements or of a union of finitely many residue
classes under an rcwa mapping can be computed byPreImage.

Example

gap> PreImagesElm(T,8);
[ 5, 16 ]
gap> PreImage(T,ResidueClass(Integers,3,2));
Z \ 0(6) U 2(6)
gap> M := [1];; l := [1];;
gap> while Length(M) < 5000 do M := PreImage(T,M); Add(l,Length(M)); od; l;
[ 1, 1, 2, 2, 4, 5, 8, 10, 14, 18, 26, 36, 50, 67, 89, 117, 157, 208,
277, 367, 488, 649, 869, 1154, 1534, 2039, 2721, 3629, 4843, 6458 ]

There is a method for the operationSupport for computing the support of an rcwa mapping. A
synonym forSupport is MovedPoints. There is also a method forRestrictedPerm for computing
the restriction of a bijective rcwa mapping to a union of residue classes which it fixes setwise.

Example

gap> List([a,aˆ2],Support);
[ Z \ [ -1, 0, 1 ], Z \ [ -3, -2, -1, 0, 1, 2, 3 ] ]
gap> RestrictedPerm(ClassShift(0,2)*ClassReflection(1,2),
> ResidueClass(0,2));
<rcwa mapping of Z with modulus 2>
gap> last = ClassShift(0,2);
true

Rcwa mappings can be added and subtracted pointwise. However, please note that the set of rcwa
mappings of a ring does not form a ring under+ and*.
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Example

gap> b := ClassShift(0,3) * a;;
gap> [ Image((a + b)), Image((a - b)) ];
[ 2(4), [ -2, 0 ] ]

There are operationsModulus (abbreviatedMod) andCoefficients for retrieving the modulus and
the coefficient list of an rcwa mapping. The meaning of the return values is as described in Section2.2.

General documentation for most operations mentioned in this section can be found in theGAP
reference manual. For rcwa mappings of rings other thanZ, not for all operations applicable methods
are available.

As in general a subring relationR1 < R2 doesnot give rise to a natural embedding of RCWA(R1)
into RCWA(R2), there is no coercion between rcwa mappings or rcwa groups over different rings.

2.4 Attributes and properties of residue-class-wise affine mappings

A number of basic attributes and properties of an rcwa mapping are derived immediately from the
coefficients of its affine partial mappings. This holds for example for the multiplier and the divisor.
These two values are stored as attributesMultiplier andDivisor, or for shortMult andDiv. The
prime setof an rcwa mapping is the set of prime divisors of the product of its modulus and its multi-
plier. It is stored as an attributePrimeSet. An rcwa mapping is calledintegral if its divisor equals 1.
An rcwa mapping is calledbalancedif its multiplier and its divisor have the same prime divisors. An
integral mapping has the propertyIsIntegral and a balanced mapping has the propertyIsBalanced.
An rcwa mapping of the ring of integers or of one of its semilocalizations is calledclass-wise order-
preservingif and only if all coefficientsar(m) (cf. Section2.1) in the numerators of the affine partial
mappings are positive. The corresponding property isIsClassWiseOrderPreserving. An rcwa
mapping ofZ is calledsign-preservingif it does not map nonnegative integers to negative integers
or vice versa. The corresponding property isIsSignPreserving. All elements of the simple group
CT(Z) generated by the set of all class transpositions are sign-preserving.

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> IsBijective(u);; Display(u);

Bijective rcwa mapping of Z with modulus 5

n mod 5 | nˆf
------------------------------------+------------------------------------
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> Multiplier(u);
9
gap> Divisor(u);
5
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gap> PrimeSet(u);
[ 3, 5 ]
gap> IsIntegral(u) or IsBalanced(u);
false
gap> IsClassWiseOrderPreserving(u) and IsSignPreserving(u);
true

There are a couple of further attributes and operations related to the affine partial mappings of an rcwa
mapping:

2.4.1 LargestSourcesOfAffineMappings (for an rcwa mapping)

♦ LargestSourcesOfAffineMappings(f ) (attribute)

Returns: The coarsest partition ofSource(f ) on whose elements the rcwa mappingf is affine.

Example

gap> LargestSourcesOfAffineMappings(ClassShift(3,7));
[ Z \ 3(7), 3(7) ]
gap> LargestSourcesOfAffineMappings(ClassReflection(0,1));
[ Integers ]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> List( [ u, uˆ-1 ], LargestSourcesOfAffineMappings );
[ [ 0(5), 1(5), 2(5), 3(5), 4(5) ], [ 0(3), 1(3), 2(9), 5(9), 8(9) ] ]
gap> kappa := ClassTransposition(2,4,3,4) * ClassTransposition(4,6,8,12)
> * ClassTransposition(3,4,4,6);
<bijective rcwa mapping of Z with modulus 12>
gap> LargestSourcesOfAffineMappings(kappa);
[ 2(4), 1(4) U 0(12), 3(12) U 7(12), 4(12), 8(12), 11(12) ]

2.4.2 FixedPointsOfAffinePartialMappings (for an rcwa mapping)

♦ FixedPointsOfAffinePartialMappings(f ) (attribute)

Returns: A list of the sets of fixed points of the affine partial mappings of the rcwa mappingf
in the quotient field of its source.

The returned list contains entries for the restrictions off to all residue classes moduloMod(f ).
A list entry can either be an empty set, the source off or a set of cardinality 1. The ordering of the
entries corresponds to the ordering of the residues inAllResidues(Source(f ),m).

Example

gap> FixedPointsOfAffinePartialMappings(ClassShift(0,2));
[ [ ], Rationals ]
gap> List([1..3],k->FixedPointsOfAffinePartialMappings(Tˆk));
[ [ [ 0 ], [ -1 ] ], [ [ 0 ], [ 1 ], [ 2 ], [ -1 ] ],
[ [ 0 ], [ -7 ], [ 2/5 ], [ -5 ], [ 4/5 ], [ 1/5 ], [ -10 ], [ -1 ] ] ]
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2.4.3 Multpk (for an rcwa mapping, a prime and an exponent)

♦ Multpk(f, p, k ) (operation)

Returns: The union of the residue classesr(m) such thatpk||ar(m) if k≥ 0, and the union of the
residue classesr(m) such thatpk||cr(m) if k≤ 0. In this context,mdenotes the modulus off , andar(m)
andcr(m) denote the coefficients off as introduced in Section2.1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> [ Multpk(T,2,-1), Multpk(T,3,1) ];
[ Integers, 1(2) ]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> [ Multpk(u,3,0), Multpk(u,3,1), Multpk(u,3,2), Multpk(u,5,-1) ];
[ [ ], 0(5) U 2(5), Z \ 0(5) U 2(5), Integers ]

There are attributes ClassWiseOrderPreservingOn, ClassWiseConstantOn and
ClassWiseOrderReversingOn which store the union of the residue classes (modMod(f )) on
which an rcwa mappingf of Z or of a semilocalization thereof is class-wise order-preserving,
class-wise constant or class-wise order-reversing, respectively.

Example

gap> List([ClassTransposition(1,2,0,4),ClassShift(2,3),
> ClassReflection(2,5)],ClassWiseOrderPreservingOn);
[ Integers, Integers, Z \ 2(5) ]

Finally, there are epimorphisms from the subgroup of RCWA(Z) formed by all class-wise order-
preserving elements to (Z,+) and from RCWA(Z) itself to the cyclic group of order 2, respectively:

2.4.4 Determinant (of an rcwa mapping of Z)

♦ Determinant(f ) (method)

Returns: The determinant of the rcwa mappingf of Z.
The determinantof an affine mappingn 7→ (an+ b)/c whose source is a residue classr(m) is

defined byb/|a|m. This definition is extended additively to determinants of rcwa mappings.
Let f be an rcwa mapping of the integers, and letm denote its modulus. Using the notation

f |r(m) : n 7→ (ar(m) · n+ br(m))/cr(m) for the affine partial mappings, thedeterminantdet(f ) of f is
given by

∑
r(m)∈Z/mZ

br(m)/(|ar(m)| ·m).

The determinant mapping is an epimorphism from the group of all class-wise order-preserving bijec-
tive rcwa mappings ofZ to (Z,+), see [Koh05], Theorem 2.11.9.

Example

gap> List([ClassTransposition(0,4,5,12),ClassShift(3,7)],Determinant);
[ 0, 1 ]
gap> Determinant(ClassTransposition(0,4,5,12)*ClassShift(3,7)ˆ100);
100
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2.4.5 Sign (of an rcwa permutation of Z)

♦ Sign(g) (attribute)

Returns: The sign of the bijective rcwa mappingg of Z.
Let σ be an rcwa permutation of the integers, and letm denote its modulus. Using the notation

σ|r(m) : n 7→ (ar(m) ·n+br(m))/cr(m) for the affine partial mappings, thesignof σ is defined by

(−1)

det(σ)+ ∑
r(m): ar(m)<0

m−2r
m

.

The sign mapping is an epimorphism from RCWA(Z) to the groupZ× of units of Z, see [Koh05],
Theorem 2.12.8. Therefore the kernel of the sign mapping is a normal subgroup of RCWA(Z) of
index 2. The simple group CT(Z) is a subgroup of this kernel.

Example

gap> List([ClassTransposition(3,4,2,6),
> ClassShift(0,3),ClassReflection(2,5)],Sign);
[ 1, -1, -1 ]

2.5 Factoring residue-class-wise affine permutations

Factoring group elements into the members of some “nice” set of generators is often helpful.
In this section we describe an operation which attempts to solve this problem for the group
RCWA(Z). Elements of finitely generated rcwa groups can be factored into generators “as usual”,
seePreImagesRepresentative (3.2.3).

2.5.1 FactorizationIntoCSCRCT (for an rcwa permutation of Z)

♦ FactorizationIntoCSCRCT(g) (attribute)

♦ Factorization(g) (method)

Returns: A factorization of the bijective rcwa mappingg of Z into class shifts, class reflections
and class transpositions, provided that such a factorization exists and the method finds it.

The method may returnfail, stop with an error message or run into an infinite loop. If it returns
a result, this result is always correct.

The problem of obtaining a factorization as described is algorithmically difficult, and this factor-
ization routine is currently perhaps the most sophisticated part of theRCWA package. Information
about the progress of the factorization process can be obtained by setting the info level of the Info
classInfoRCWA (7.3.1) to 2.

By default, prime switches (→ PrimeSwitch (2.5.2)) are taken as one factor. If the option
ExpandPrimeSwitches is set, they are each decomposed into the 6 class transpositions given
in the definition.

By default, the factoring process begins with splitting off factors from the right. This can be
changed by setting the optionDirection to "from the left".

By default, a reasonably coarse respected partition of the integral mapping occuring in
the final stage of the algorithm is computed. This can be suppressed by setting the option
ShortenPartition equal tofalse.
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By default, at the end it is checked whether the product of the determined factors indeed equalsg .
This check can be suppressed by setting the optionNC.

Example

gap> Factorization(Comm(ClassShift(0,3)*ClassReflection(1,2),
> ClassShift(0,2)));
[ ClassReflection(2,3), ClassShift(2,6)ˆ-1, ClassTransposition(0,6,2,6),
ClassTransposition(0,6,5,6) ]

For purposes of demonstrating the capabilities of the factorization routine, in Section5.1Collatz’
permutation is factored. Lothar Collatz has investigated this permutation in 1932. Its cycle structure
is unknown so far.

The permutations of the following kind play an important role in factoring rcwa permutations ofZ
into class shifts, class reflections and class transpositions:

2.5.2 PrimeSwitch (p)

♦ PrimeSwitch(p) (function)

♦ PrimeSwitch(p, k ) (function)

Returns: In the one-argument form theprime switchσp := τ0(8),1(2p) · τ4(8),−1(2p) · τ0(4),1(2p) ·
τ2(4),−1(2p) · τ2(2p),1(4p) · τ4(2p),2p+1(4p), and in the two-argument form the restriction ofσp by n 7→ kn.

For an odd primep, the prime switchσp is a bijective rcwa mapping ofZ with modulus 4p,
multiplier p and divisor 2. The key mathematical property of a prime switch is that it is a product of
class transpositions, but that its multiplier and its divisor are coprime anyway. Prime switches can be
distinguished from other rcwa mappings by theirGAP propertyIsPrimeSwitch.

Example

gap> Display(PrimeSwitch(3));

Wild bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆPrimeSwitch(3)
------------------------------------+------------------------------------

0 | n/2
1 7 | n + 1
2 6 10 | (3n + 4)/2
3 9 | n
4 | n - 3
5 8 11 | n - 1

gap> Factorization(PrimeSwitch(3));
[ ClassTransposition(1,6,0,8), ClassTransposition(5,6,4,8),
ClassTransposition(0,4,1,6), ClassTransposition(2,4,5,6),
ClassTransposition(2,6,1,12), ClassTransposition(4,6,7,12) ]

Obtaining a factorization of a bijective rcwa mapping into class shifts, class reflections and class
transpositions is particularly difficult if multiplier and divisor are coprime. A prototype of permuta-
tions which have this property has been introduced in a different context in [Kel99]:
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2.5.3 mKnot (for an odd integer)

♦ mKnot(m) (function)

Returns: The permutationgm as introduced in [Kel99].
The argumentmmust be an odd integer greater than 1.

Example

gap> Display(mKnot(5));

Wild bijective rcwa mapping of Z with modulus 5

n mod 5 | nˆmKnot(5)
------------------------------------+------------------------------------
0 | 6n/5
1 | (4n + 1)/5
2 | (6n - 2)/5
3 | (4n + 3)/5
4 | (6n - 4)/5

In his article, Timothy P. Keller shows that a permutation of this type cannot have infinitely many
cycles of any given finite length.

2.6 Extracting roots of residue-class-wise affine mappings

2.6.1 Root (k-th root of an rcwa mapping)

♦ Root(f, k ) (method)

Returns: An rcwa mappingg such thatgˆk=f , provided that such a mapping exists and that
there is a method available which can determine it.

Currently, extracting roots is implemented for rcwa permutations of finite order.
Example

gap> Root(ClassTransposition(0,2,1,2),100);
<bijective rcwa mapping of Z with modulus 8>
gap> Display(last);

Bijective rcwa mapping of Z with modulus 8

n mod 8 | nˆf
------------------------------------+------------------------------------
0 1 2 3 4 5 | n + 2
6 | n - 5
7 | n - 7

gap> lastˆ100 = ClassTransposition(0,2,1,2);
true
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2.7 Special functions for non-bijective mappings

2.7.1 RightInverse (of an injective rcwa mapping)

♦ RightInverse(f ) (attribute)

Returns: A right inverse of the injective rcwa mappingf , i.e. a mappingg such thatf g = 1.

Example

gap> twice := 2*IdentityRcwaMappingOfZ;
Rcwa mapping of Z: n -> 2n
gap> twice * RightInverse(twice);
IdentityMapping( Integers )

2.7.2 CommonRightInverse (of two injective rcwa mappings)

♦ CommonRightInverse(l, r ) (operation)

Returns: A mappingd such thatl d = r d = 1.
The mappingsl andr must be injective, and their images must form a partition of their source.

Example

gap> twice := 2*IdentityRcwaMappingOfZ; twiceplus1 := twice+1;
Rcwa mapping of Z: n -> 2n
Rcwa mapping of Z: n -> 2n + 1
gap> Display(CommonRightInverse(twice,twiceplus1));

Rcwa mapping of Z with modulus 2

n mod 2 | nˆf
------------------------------------+------------------------------------
0 | n/2
1 | (n - 1)/2

2.7.3 ImageDensity (of an rcwa mapping)

♦ ImageDensity(f ) (attribute)

Returns: The image densityof the rcwa mappingf .
In the notation introduced in the definition of an rcwa mapping, theimage densityof an rcwa

mappingf is defined by1
m ∑r(m)∈R/mR|R/cr(m)R|/|R/ar(m)R|. The image density of an injective rcwa

mapping is≤ 1, and the image density of a surjective rcwa mapping is≥ 1 (this can be seen easily).
Thus in particular the image density of a bijective rcwa mapping is 1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> List( [ T, ClassShift(0,1), RcwaMapping([[2,0,1]]) ], ImageDensity );
[ 4/3, 1, 1/2 ]



RCWA 24

Given an rcwa mappingf, the functionInjectiveAsMappingFrom returns a setS such that the
restriction off to S is injective, and such that the image ofS underf is the entire image off.

Example

gap> InjectiveAsMappingFrom(T);
0(2)

2.8 On trajectories and cycles of residue-class-wise affine mappings

RCWA provides various methods to compute trajectories of rcwa mappings:

2.8.1 Trajectory (methods for rcwa mappings)

♦ Trajectory(f, n, length ) (method)

♦ Trajectory(f, n, length, m ) (method)

♦ Trajectory(f, n, terminal ) (method)

♦ Trajectory(f, n, terminal, m ) (method)

Returns: The first length iterates in the trajectory of the rcwa mappingf starting atn, re-
spectively the initial part of the trajectory of the rcwa mappingf starting atn which ends at the first
occurence of an iterate in the setterminal . If the argumentm is given, the iterates are reduced
(modm).

To save memory when computing long trajectories containing huge iterates, the reduction (modm)
is done each time before storing an iterate. In place of the ring elementn, the methods also accept a
finite set of ring elements or a union of residue classes.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Trajectory(T,27,15); Trajectory(T,27,20,5);
[ 27, 41, 62, 31, 47, 71, 107, 161, 242, 121, 182, 91, 137, 206, 103 ]
[ 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 0, 3, 0, 0, 3 ]
gap> Trajectory(T,15,[1]); Trajectory(T,15,[1],2);
[ 15, 23, 35, 53, 80, 40, 20, 10, 5, 8, 4, 2, 1 ]
[ 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1 ]
gap> Trajectory(T,ResidueClass(Integers,3,0),Integers);
[ 0(3), 0(3) U 5(9), 0(3) U 5(9) U 7(9) U 8(27),
<union of 20 residue classes (mod 27)>,
<union of 73 residue classes (mod 81)>, Z \ 10(81) U 37(81), Integers ]

2.8.2 Trajectory (methods for rcwa mappings – “accumulated coefficients”)

♦ Trajectory(f, n, length, whichcoeffs ) (method)

♦ Trajectory(f, n, terminal, whichcoeffs ) (method)

Returns: Either the listc of triples of coprime coefficients such that for anyk it holds that
nˆ(f ˆ(k-1)) = (c[k][1]*n + c[k][2])/c[k][3] or the last entry of that list, depending on
whetherwhichcoeffs is "AllCoeffs" or "LastCoeffs".
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The meanings of the argumentslength and terminal are the same as in the methods for
the operationTrajectory described above. In general, computing only the last coefficient triple
(whichcoeffs = "LastCoeffs") needs considerably less memory than computing the entire list.

Example

gap> Trajectory(T,27,[1],"LastCoeffs");
[ 36472996377170786403, 195820718533800070543, 1180591620717411303424 ]
gap> (last[1]*27+last[2])/last[3];
1

When dealing with problems like the 3n+1-Conjecture or when determining the degree of tran-
sitivity of the natural action of an rcwa group on its underlying ring, an important task is to determine
the residue classes whose elements get larger or smaller when applying a given rcwa mapping:

2.8.3 IncreasingOn & DecreasingOn (for an rcwa mapping)

♦ IncreasingOn(f ) (attribute)

♦ DecreasingOn(f ) (attribute)

Returns: The union of all residue classesr(m) such that|R/ar(m)R|> |R/cr(m)R| or |R/ar(m)R|<
|R/cr(m)R|, respectively, whereRdenotes the source,mdenotes the modulus andar(m), br(m) andcr(m)
denote the coefficients off as introduced in Section2.1.

Example

gap> List([1..3],k->IncreasingOn(Tˆk));
[ 1(2), 3(4), 3(4) U 1(8) U 6(8) ]
gap> List([1..3],k->DecreasingOn(Tˆk));
[ 0(2), Z \ 3(4), 0(4) U 2(8) U 5(8) ]
gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; # Collatz’ permutation
gap> List([-2..2],k->IncreasingOn(aˆk));
[ Z \ 1(8) U 7(8), 0(2), [ ], Z \ 0(3), 1(9) U 4(9) U 5(9) U 8(9) ]

We assign certain directed graphs to rcwa mappings, which encode the order in which trajectories
may traverse the residue classes modulo some modulus:

2.8.4 TransitionGraph (for an rcwa mapping and a modulus)

♦ TransitionGraph(f, m ) (operation)

Returns: The transition graph of the rcwa mappingf for modulusm.
Thetransition graphΓ f ,m of f for modulusm is defined as follows:

1. The vertices are the residue classes (modm).

2. There is an edge fromr1(m) to r2(m) if and only if there is somen∈ r1(m) such thatnf ∈ r2(m).

The assignment of the residue classes (modm) to the vertices of the graph corresponds to the ordering
of the residues inAllResidues(Source(f ),m). The result is returned in the format used by the
packageGRAPE [Soi02].

There are a couple of operations and attributes which are based on these graphs:
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2.8.5 OrbitsModulo (for an rcwa mapping and a modulus)

♦ OrbitsModulo(f, m ) (operation)

Returns: The partition ofAllResidues(Source(f ),m) corresponding to the weakly connected
components of the transition graph of the rcwa mappingf for modulusm.

Example

gap> OrbitsModulo(ClassTransposition(0,2,1,4),8);
[ [ 0, 1, 4 ], [ 2, 5, 6 ], [ 3 ], [ 7 ] ]

2.8.6 FactorizationOnConnectedComponents (for an rcwa mapping and a modulus)

♦ FactorizationOnConnectedComponents(f, m ) (operation)

Returns: The set of restrictions of the rcwa mappingf to the weakly connected components of
its transition graphΓ f ,m.

The product of the returned mappings isf . They have pairwise disjoint supports, hence any two
of them commute.

Example

gap> sigma := ClassTransposition(1,4,2,4) * ClassTransposition(1,4,3,4)
> * ClassTransposition(3,9,6,18) * ClassTransposition(1,6,3,9);;
gap> List(FactorizationOnConnectedComponents(sigma,36),Support);
[ 33(36) U 34(36) U 35(36), 9(36) U 10(36) U 11(36),
<union of 23 residue classes (mod 36)> \ [ -6, 3 ] ]

2.8.7 TransitionMatrix (for an rcwa mapping and a modulus)

♦ TransitionMatrix(f, m ) (operation)

Returns: The transition matrix of the rcwa mappingf for modulusm.
Let M be this matrix. Then for any two residue classesr1(m), r2(m)∈R/mR, the entryMr1(m),r2(m)

is defined by

Mr1(m),r2(m) :=
|R/mR|
|R/m̂R|

·
∣∣{r(m̂) ∈ R/m̂R| r ∈ r1(m)∧ r f ∈ r2(m)

}∣∣ ,
wherem̂ is the product ofm and the square of the modulus off . The assignment of the residue
classes (modm) to the rows and columns of the matrix corresponds to the ordering of the residues in
AllResidues(Source(f ),m).

The transition matrix is a weighted adjacency matrix of the corresponding transition graph
TransitionGraph(f ,m). The sums of the rows of a transition matrix are always equal to 1.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> Display(TransitionMatrix(Tˆ3,3));
[ [ 1/8, 1/4, 5/8 ],
[ 0, 1/4, 3/4 ],
[ 0, 3/8, 5/8 ] ]
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2.8.8 Sources & Sinks (of an rcwa mapping)

♦ Sources(f ) (attribute)

♦ Sinks(f ) (attribute)

Returns: A list of unions of residue classes modulo the modulusm of the rcwa mappingf , as
described below.

The returned list contains an entry for any strongly connected component of the transition graph
of f for modulusMod(f ) which has only outgoing edges (“source”) or which has only ingoing edges
(“sink”), respectively. The list entry corresponding to such a component is the union of the vertices
belonging to it.

Example

gap> g := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;
gap> Sources(g); Sinks(g);
[ 0(4) ]
[ 1(4) ]

2.8.9 Loops (of an rcwa mapping)

♦ Loops(f ) (attribute)

Returns: If f is bijective, the list of non-isolated vertices of the transition graph off for modulus
Mod(f ) which carry a loop. In general, the list of vertices of that transition graph which carry a loop,
but whichf does not fix setwise.

Example

gap> Loops(ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4));
[ 0(4), 1(4) ]

There is a nice invariant of trajectories of the Collatz mapping:

2.8.10 GluckTaylorInvariant (of a trajectory)

♦ GluckTaylorInvariant(a) (function)

Returns: The invariant introduced in [GT02]. This is (∑l
i=1ai · ai modl+1)/(∑l

i=1a2
i ), wherel

denotes the length ofa.
The argumenta must be a list of integers. In [GT02] it is shown that ifa is a trajectory of the

‘original’ Collatz mappingn 7→ (n/2 if n even, 3n+ 1 if n odd) starting at an odd integer≥ 3 and
ending at 1, then the invariant lies in the interval]9/13,5/7[.

Example

gap> C := RcwaMapping([[1,0,2],[3,1,1]]);;
gap> List([3,5..49],n->Float(GluckTaylorInvariant(Trajectory(C,n,[1]))));
[ 0.701053, 0.696721, 0.708528, 0.707684, 0.706635, 0.695636, 0.711769,
0.699714, 0.707409, 0.693833, 0.710432, 0.706294, 0.714242, 0.699935,
0.714242, 0.705383, 0.706591, 0.698198, 0.712222, 0.714242, 0.709048,
0.69612, 0.714241, 0.701076 ]
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Quite often one can make certain “educated guesses” on the overall behaviour of the tra-
jectories of a given rcwa mapping. For example it is reasonably straightforward to make
the conjecture that all trajectories of the Collatz mapping eventually enter the finite set
{−136,−91,−82,−68,−61,−55,−41,−37,−34,−25,−17,−10,−7,−5,−1,0,1,2}, or that “on
average” the next number in a trajectory of the Collatz mapping is smaller than the preceding one
by a factor of

√
3/2. However it is clear that such guesses can be wrong, and that they therefore

cannot be used to prove anything. Nevertheless they can sometimes be useful:

2.8.11 LikelyContractionCentre (of an rcwa mapping)

♦ LikelyContractionCentre(f, maxn, bound ) (operation)

Returns: A list of ring elements (see below).
This operation tries to compute thecontraction centreof the rcwa mappingf . Assuming its

existence this is the unique finite subsetS0 of the source off on whichf induces a permutation and
which intersects nontrivially with any trajectory off . The mappingf is assumed to becontracting,
i.e. to have such a contraction centre. As in general contraction centres are likely not computable, the
methods for this operation are probabilistic and may return wrong results. The argumentmaxn is a
bound on the starting value andbound is a bound on the elements of the trajectories to be searched.
If the limit bound is exceeded, an Info message on Info level 3 ofInfoRCWA is given.

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);; # The Collatz mapping.
gap> S0 := LikelyContractionCentre(T,100,1000);
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for more information.
[ -136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5,
-1, 0, 1, 2 ]

2.8.12 GuessedDivergence (of an rcwa mapping)

♦ GuessedDivergence(f ) (operation)

Returns: A floating point value which is intended to be a rough guess on how fast the trajectories
of the rcwa mappingf diverge (return value greater than 1) or converge (return value smaller than 1).

Nothing particular is guaranteed.
Example

gap> GuessedDivergence(T);
#I Warning: GuessedDivergence: no particular return value is guaranteed.
0.866025
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2.9 The categories and families of rcwa mappings

2.9.1 IsRcwaMapping

♦ IsRcwaMapping(f ) (filter)

♦ IsRcwaMappingOfZ(f ) (filter)

♦ IsRcwaMappingOfZ pi(f ) (filter)

♦ IsRcwaMappingOfGFqx(f ) (filter)

Returns: true if f is an rcwa mapping, an rcwa mapping of the ring of integers, an rcwa mapping
of a semilocalization of the ring of integers or an rcwa mapping of a polynomial ring in one variable
over a finite field, respectively, andfalse otherwise.

Often the same methods can be used for rcwa mappings of the ring of integers and of its
semilocalizations. For this reason there is a categoryIsRcwaMappingOfZOrZ pi which is the
union ofIsRcwaMappingOfZ andIsRcwaMappingOfZ pi. The internal representation of rcwa map-
pings is calledIsRcwaMappingStandardRep. There are methods available forExtRepOfObj and
ObjByExtRep.

2.9.2 RcwaMappingsFamily (of a ring)

♦ RcwaMappingsFamily(R) (function)

Returns: The family of rcwa mappings of the ringR.



Chapter 3

Residue-Class-Wise Affine Groups

In this chapter, we describe how to construct residue-class-wise affine groups and how to compute
with them.

3.1 Constructing residue-class-wise affine groups

As any other groups inGAP, residue-class-wise affine groups can be constructed byGroup,
GroupByGenerators or GroupWithGenerators.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));
<rcwa group over Z with 2 generators>
gap> IsTame(G); Size(G); IsSolvable(G); IsPerfect(G);
true
infinity
false
false

There are methods for the operationsView, Display, Print andString which are applicable to rcwa
groups. All rcwa groups over a ringR are subgroups of RCWA(R). The group RCWA(R) itself is not
finitely generated, thus cannot be constructed as described above. It is handled as a special case:

3.1.1 RCWA (the group of all rcwa permutations of a ring)

♦ RCWA(R) (function)

Returns: The group RCWA(R) of all residue-class-wise affine permutations of the ringR.

Example

gap> RCWA_Z := RCWA(Integers);
RCWA(Z)
gap> IsSubgroup(RCWA_Z,G);
true

Examples of rcwa permutations can be obtained viaRandom(RCWA(R)), see Section3.5.

30
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We denote the group which is generated by all class transpositions of the ringR by CT(R). This
group is handled as a special case as well:

3.1.2 CT (the group generated by all class transpositions of a ring)

♦ CT(R) (function)

Returns: The group CT(R) which is generated by all class transpositions of the ringR.
Example

gap> CT_Z := CT(Integers);
CT(Z)
gap> IsSimple(CT_Z); # One of a longer list of stored attributes/properties.
true
gap> IsSubgroup(CT_Z,G);
false

Another way of constructing an rcwa group is taking the image of an rcwa representation:

3.1.3 IsomorphismRcwaGroup (for a group, over a given ring)

♦ IsomorphismRcwaGroup(G, R) (attribute)

♦ IsomorphismRcwaGroup(G) (attribute)

Returns: A monomorphism from the groupG to RCWA(R) or to RCWA(Z), respectively.
The best-supported case isR = Z. Currently there are methods available for finite groups, for

free products of finite groups and for free groups. The method for free products of finite groups uses
the Table-Tennis Lemma (cf. e.g. Section II.B. in [dlH00]), and the method for free groups uses an
adaptation of the construction given on page 27 in [dlH00] from PSL(2,C) to RCWA(Z).

Example

gap> F := FreeProduct(Group((1,2)(3,4),(1,3)(2,4)),Group((1,2,3)),
> SymmetricGroup(3));
<fp group on the generators [ f1, f2, f3, f4, f5 ]>
gap> IsomorphismRcwaGroup(F);
[ f1, f2, f3, f4, f5 ] ->
[ <bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 24>,
<bijective rcwa mapping of Z with modulus 12>,
<bijective rcwa mapping of Z with modulus 72>,
<bijective rcwa mapping of Z with modulus 36> ]

gap> IsomorphismRcwaGroup(FreeGroup(2));
[ f1, f2 ] -> [ <wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8> ]

gap> F2 := Image(last);
<wild rcwa group over Z with 2 generators>

The class of groups which can faithfully be represented as rcwa groups over the integers is closed
under taking direct products, under taking wreath products with finite groups and under taking wreath
products with the infinite cyclic group(Z,+). Therefore these operations can be used to build rcwa
groups as well:
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3.1.4 DirectProduct (for rcwa groups over Z)

♦ DirectProduct(G1, G2, ... ) (method)

Returns: An rcwa group isomorphic to the direct product of the rcwa groups overZ given as
arguments.

There is certainly no unique or canonical way to embed a direct product of rcwa groups into
RCWA(Z). This method chooses to embed the groupsG1, G2, G3 ... via restrictions byn 7→ mn,
n 7→mn+1, n 7→mn+2 ... (→ Restriction (3.1.6)), wherem denotes the number of groups given
as arguments.

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2xF2 := DirectProduct(F2,F2);
<wild rcwa group over Z with 4 generators>
gap> Image(Projection(F2xF2,1)) = F2;
true

3.1.5 WreathProduct (for an rcwa group over Z, with a permutation group or ( Z,+))

♦ WreathProduct(G, P) (method)

♦ WreathProduct(G, Z) (method)

Returns: An rcwa group isomorphic to the wreath product of the rcwa groupGoverZ with the
finite permutation groupP or with the infinite cyclic groupZ, respectively.

The first-mentioned method embeds theDegreeAction(P)th direct power ofGusing the method
for DirectProduct, and lets the permutation groupP act naturally on the set of residue classes
modulo DegreeAction(P). The second-mentioned method restricts (→ Restriction (3.1.6))
the groupG to the residue class 3(4), and maps the generator of the infinite cyclic groupZ to
ClassTransposition(0,2,1,2) * ClassTransposition(0,2,1,4).

Example

gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> F2wrA5 := WreathProduct(F2,AlternatingGroup(5));;
gap> Embedding(F2wrA5,1);
[ <wild bijective rcwa mapping of Z with modulus 8>,
<wild bijective rcwa mapping of Z with modulus 8> ] ->

[ <wild bijective rcwa mapping of Z with modulus 40>,
<wild bijective rcwa mapping of Z with modulus 40> ]

gap> Embedding(F2wrA5,2);
[ (1,2,3,4,5), (3,4,5) ] ->
[ <bijective rcwa mapping of Z with modulus 5, of order 5>,
<bijective rcwa mapping of Z with modulus 5, of order 3> ]

gap> ZwrZ := WreathProduct(Group(ClassShift(0,1)),Group(ClassShift(0,1)));
<wild rcwa group over Z with 2 generators>
gap> Embedding(ZwrZ,1);
[ ClassShift(0,1) ] ->
[ <tame bijective rcwa mapping of Z with modulus 4, of order infinity> ]
gap> Embedding(ZwrZ,2);
[ ClassShift(0,1) ] ->
[ <wild bijective rcwa mapping of Z with modulus 4> ]
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Many of the above group constructions are based on certain monomorphisms from the group
RCWA(R) into itself. The support of the image of such a monomorphism is the image of a given
injective rcwa mapping. For this reason, these monomorphisms are calledrestriction monomorphisms.
The following operation computes images of rcwa mappings and -groups under them:

3.1.6 Restriction (of an rcwa mapping or -group, by an injective rcwa mapping)

♦ Restriction(g, f ) (operation)

♦ Restriction(G, f ) (operation)

Returns: The restriction of the rcwa mappingg (respectively the rcwa groupG) by the injective
rcwa mappingf .

By definition, therestriction gf of an rcwa mappingg by an injective rcwa mappingf is the
unique rcwa mapping which satisfies the equationf ·gf = g· f and which fixes the complement of the
image off pointwise. Iff is bijective, the restriction ofg by f is just the conjugate ofg underf .

Therestrictionof an rcwa groupGby an injective rcwa mappingf is defined as the group whose
elements are the restrictions of the elements ofG by f . The restriction ofG by f acts on the image
of f and fixes its complement pointwise.

Example

gap> F2tilde := Restriction(F2,RcwaMapping([[5,3,1]]));
<wild rcwa group over Z with 2 generators>
gap> Support(F2tilde);
3(5)

3.1.7 Induction (of an rcwa mapping or -group, by an injective rcwa mapping)

♦ Induction(g, f ) (operation)

♦ Induction(G, f ) (operation)

Returns: The induction of the rcwa mappingg (respectively the rcwa groupG) by the injective
rcwa mappingf .

Induction is the right inverse of restriction, i.e. it isInduction(Restriction(g,f ),f ) = g
andInduction(Restriction(G,f ),f ) = G. The mappingg respectively the groupG must not
move points outside the image off .

Example

gap> Induction(F2tilde,RcwaMapping([[5,3,1]])) = F2;
true

Basic attributes of an rcwa group which are derived from the coefficients of its elements are
Modulus, Multiplier, Divisor and PrimeSet. The modulusof an rcwa group is the lcm of
the moduli of its elements if such an lcm exists, i.e. if the group is tame, and 0 otherwise. The
multiplier respectivelydivisor of an rcwa group is the lcm of the multipliers respectively divisors
of its elements in case such an lcm exists and∞ otherwise. Theprime setof an rcwa group is
the union of the prime sets of its elements. There are shorthandsMod, Mult andDiv defined for
Modulus, Multiplier and Divisor, respectively. An rcwa group is calledintegral respectively
class-wise order-preservingif all of its elements are so. There are corresponding methods avail-
able forIsIntegral andIsClassWiseOrderPreserving. There is a propertyIsSignPreserving,
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which indicates whether a given rcwa group overZ acts on the set of nonnegative integers. The latter
holds for any subgroup of CT(Z).

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,6),
> ClassReflection(2,4));
<rcwa group over Z with 3 generators>
gap> List([Modulus,Multiplier,Divisor,PrimeSet,IsIntegral,
> IsClassWiseOrderPreserving,IsSignPreserving],f->f(G));
[ 24, 2, 2, [ 2, 3 ], false, false, false ]

3.2 Basic routines for investigating residue-class-wise affine groups

In the previous section we have seen how to construct rcwa groups. The purpose of this section
is to describe how to obtain information on the structure of an rcwa group and on its action on the
underlying ring. The easiest way to get some information on the group structure is a dedicated method
for the operationStructureDescription:

3.2.1 StructureDescription (for an rcwa group)

♦ StructureDescription(G) (method)

Returns: A string which describes the structure of the rcwa groupG to some extent.
The attributeStructureDescription for finite groups is documented in theGAP Reference

Manual. Therefore we describe here only issues which are specific to infinite groups, and in particular
to rcwa groups.

Wreath products are denoted bywr, and free products are denoted by*. The infinite cyclic group
(Z,+) is denoted byZ, the infinite dihedral group is denoted byD0 and free groups of rank 2,3,4, . . .
are denoted byF2, F3, F4, . . . . While for finite groups the symbol. is used to denote a non-split
extension, for rcwa groups in general it stands for an extension which may be split or not. For wild
groups in most cases it happens that there is a large section on which no structural information can
be obtained. Such sections of the group with unknown structure are denoted by<unknown>. In
general, the structure of a section denoted by<unknown> can be very complicated and very difficult
to exhibit. While for isomorphic finite groups always the same structure description is computed, this
cannot be guaranteed for isomorphic rcwa groups.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(0,5));;
gap> StructureDescription(G);
"(Z x Z x Z x Z x Z x Z x Z) . (C2 x S7)"
gap> G := Group(ClassTransposition(0,2,1,4),
> ClassShift(2,4),ClassReflection(1,2));;
gap> StructureDescription(G:short);
"Zˆ2.((S3xS3):2)"
gap> F2 := Image(IsomorphismRcwaGroup(FreeGroup(2)));;
gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
> CyclicGroup(2))));;
gap> G := DirectProduct(PSL2Z,F2);
<wild rcwa group over Z with 4 generators>



RCWA 35

gap> StructureDescription(G);
"(C3 * C2) x F2"
gap> G := WreathProduct(G,CyclicGroup(IsRcwaGroupOverZ,infinity));
<wild rcwa group over Z with 5 generators>
gap> StructureDescription(G);
"((C3 * C2) x F2) wr Z"
gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;
gap> G := Group(Collatz,ClassShift(0,1));;
gap> StructureDescription(G:short);
"<unknown>.Z"

However the extent to which the structure of an rcwa group can be exhibited automatically is
certainly limited. In general, one can find out much more about the structure of a given rcwa group in
an interactive session using the functionality described in the rest of this section and elsewhere in this
manual.

The order of an rcwa group can be computed by the operationSize. An rcwa group is finite if and
only if it is tame and its action on a suitably chosen respected partition (seeRespectedPartition
(3.4.1)) is faithful. Hence the problem of computing the order of an rcwa group reduces to the problem
of deciding whether it is tame, the problem of deciding whether it acts faithfully on a respected
partition and the problem of computing the order of the finite permutation group induced on the
respected partition.

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(1,3,2,3),
> ClassReflection(0,5));
<rcwa group over Z with 3 generators>
gap> Size(G);
46080

For a finite rcwa group, an isomorphism to a permutation group can be computed by
IsomorphismPermGroup:

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,3,1,3));;
gap> IsomorphismPermGroup(G);
[ ClassTransposition(0,2,1,2), ClassTransposition(0,3,1,3) ] ->
[ (1,2)(3,4)(5,6), (1,2)(4,5) ]

Next we say a few words about the membership test for rcwa groups. For tame rcwa groups, member-
ship or non-membership can always be decided. For wild groups, membership or non-membership
can very often be decided quite quick as well, but not always. On Info level 2 ofInfoRCWA the mem-
bership test provides information on reasons why the given rcwa permutation is an element of the
given rcwa group or not.

The direct product of two free groups of rank 2 can faithfully be represented as an rcwa group.
According to [Mih58] this implies that in general the membership problem for rcwa groups is algo-
rithmically undecidable.
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Example

gap> G := Group(ClassShift(0,3),ClassTransposition(0,3,2,6));;
gap> ClassShift(2,6)ˆ7 * ClassTransposition(0,3,2,6)
> * ClassShift(0,3)ˆ-3 in G;
true
gap> ClassShift(0,1) in G;
false

The conjugacy problem for rcwa groups is difficult, andRCWA provides only methods to solve it in
some reasonably easy cases.

Example

gap> IsConjugate(RCWA(Integers),
> ClassTransposition(0,2,1,4),ClassShift(0,1));
false
gap> IsConjugate(CT(Integers),ClassTransposition(0,2,1,6),
> ClassTransposition(1,4,0,8));
true
gap> g := RepresentativeAction(CT(Integers),ClassTransposition(0,2,1,6),
> ClassTransposition(1,4,0,8));
<bijective rcwa mapping of Z with modulus 48>
gap> ClassTransposition(0,2,1,6)ˆg = ClassTransposition(1,4,0,8);
true

The number of conjugacy classes of RCWA(Z) of elements of given order is
known, cf. Corollary 2.7.1 (b) in [Koh05]. It can be determined by the function
NrConjugacyClassesOfRCWAZOfOrder:

Example

gap> List([2,105],NrConjugacyClassesOfRCWAZOfOrder);
[ infinity, 218 ]

There is a propertyIsTame which indicates whether an rcwa group is tame or not:
Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,3));;
gap> H := Group(ClassTransposition(0,2,1,6),ClassShift(1,3));;
gap> IsTame(G);
true
gap> IsTame(H);
false

For tame rcwa groups, there are methods forIsSolvable and IsPerfect available, and usually
derived subgroups and subgroup indices can be computed as well. Linear representations of tame
groups over the rationals can be determined by the operationIsomorphismMatrixGroup. Testing a



RCWA 37

wild group for solvability or perfectness is currently not always feasible, and wild groups have in gen-
eral no faithful finite-dimensional linear representations. There is a method forExponent available,
which works basically for any rcwa group.

Example

gap> G := Group(ClassTransposition(0,2,1,4),ClassShift(1,2));;
gap> IsPerfect(G);
false
gap> IsSolvable(G);
true
gap> D1 := DerivedSubgroup(G);; D2 := DerivedSubgroup(D1);;
gap> IsAbelian(D2);
true
gap> Index(G,D1); Index(D1,D2);
infinity
9
gap> StructureDescription(G); StructureDescription(D1);
"(Z x Z x Z) . S3"
"(Z x Z) . C3"
gap> Q := D1/D2;
Group([ (), (1,2,4)(3,5,7)(6,8,9), (1,3,6)(2,5,8)(4,7,9) ])
gap> StructureDescription(Q);
"C3 x C3"
gap> Exponent(G);
infinity
gap> phi := IsomorphismMatrixGroup(G);;
gap> Display(Image(phi,ClassTransposition(0,2,1,4)));
[ [ 0, 0, 1/2, -1/2, 0, 0 ],
[ 0, 0, 0, 1, 0, 0 ],
[ 2, 1, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 1 ] ]

When investigating a group, a basic task is to find relations among the generators:

3.2.2 EpimorphismFromFpGroup (for an rcwa group and a search radius)

♦ EpimorphismFromFpGroup(G, r ) (method)

Returns: An epimorphism from a finitely presented group to the rcwa groupG.
The argumentr is the “search radius”, i.e. the radius of the ball around 1 which is scanned for

relations. In general, the largerr is chosen the smaller the kernel of the returned epimorphism is. If
the groupG has finite presentations, the kernel will in principle get trivial provided thatr is chosen
large enough.

Both the performance and the returned epimorphism depend on whether the packageFR [Bar07]
is present or not.
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Example

gap> a := ClassTransposition(2,4,3,4 :Name:="a");;
gap> b := ClassTransposition(4,6,8,12:Name:="b");;
gap> c := ClassTransposition(3,4,4,6 :Name:="c");;
gap> G := Group(a,b,c);
<rcwa group over Z with 3 generators>
gap> phi := EpimorphismFromFpGroup(G,6);
[ a, b, c ] -> [ a, b, c ]
gap> RelatorsOfFpGroup(Source(phi));
[ aˆ2, bˆ2, cˆ2, c*b*c*b*c*b, c*b*c*a*c*b*c*a*c*b*c*a,
b*a*b*a*b*a*b*a*b*a*b*a ]

A related very common task is to factor group elements into generators:

3.2.3 PreImagesRepresentative (for an epi. from a free group to an rcwa group)

♦ PreImagesRepresentative(phi, g ) (method)

Returns: A representative of the set of preimages ofg under the epimorphismphi from a free
group to an rcwa group.

The epimorphismphi must map the generators of the free group to the generators of the rcwa
group one-by-one.

This method can be used for factoring elements of rcwa groups into generators. The implementa-
tion is based onRepresentativeActionPreImage, seeRepresentativeAction (3.3.5).

Quite frequently, computing several preimages is not harder than computing just one, i.e. often
several preimages are found simultaneously. The operationPreImagesRepresentatives takes care
of this. It takes the same arguments asPreImagesRepresentative and returns a list of preimages.
If multiple preimages are found, their quotients give rise to nontrivial relations among the generators
of the image ofphi .

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");
gap> b := ClassShift(0,1:Name:="b");;
gap> G := Group(a,b);; # G = <<Collatz permutation>, n -> n + 1>
gap> phi := EpimorphismFromFreeGroup(G);;
gap> g := Comm(aˆ2*bˆ4,a*bˆ3); # a sample element to be factored
<bijective rcwa mapping of Z with modulus 8>
gap> PreImagesRepresentative(phi,g); # -> a factorization of g
bˆ-4*aˆ-1*bˆ-1*aˆ-1*bˆ3*a*bˆ-1*a*bˆ3
gap> g = bˆ-4*aˆ-1*bˆ-1*aˆ-1*bˆ3*a*bˆ-1*a*bˆ3; # check
true
gap> g := Comm(a*b,Comm(a,bˆ3));
<bijective rcwa mapping of Z with modulus 8>
gap> pre := PreImagesRepresentatives(phi,g);
[ bˆ-1*aˆ-1*bˆ-1*aˆ-1*bˆ3*a*b*a*bˆ-2, bˆ-1*aˆ-1*b*aˆ-1*bˆ3*a*bˆ-1*a*bˆ-2 ]
gap> rel := CyclicallyReducedWord(pre[1]/pre[2]); # -> a nontriv. relation
bˆ-1*aˆ-1*bˆ3*a*bˆ2*aˆ-1*bˆ-3*a*bˆ-1
gap> relˆphi;
IdentityMapping( Integers )
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3.3 The natural action of an rcwa group on the underlying ring

Knowing a natural permutation representation of a group usually helps significantly in computing in
it and in obtaining results on its structure. This holds particularly for the natural action of an rcwa
group on its underlying ring. In this section we describeRCWA’s functionality related to this action.

The support, i.e. the set of moved points, of an rcwa group can be determined bySupport or
MovedPoints (these are synonyms). Testing for transitivity on the underlying ring is often feasible:

Example

gap> G := Group(ClassTransposition(1,2,0,4),ClassShift(0,2));;
gap> IsTransitive(G,Integers);
true

There are methods to compute orbits under the action of an rcwa group:

3.3.1 Orbit (for an rcwa group and either a point or a set)

♦ Orbit(G, point ) (method)

♦ Orbit(G, set ) (method)

Returns: The orbit of the pointpoint respectively the setset under the natural action of the
rcwa groupGon its underlying ring.

The second argument can either be an element or a subset of the underlying ring of the rcwa
groupG. Since orbits under the action of rcwa groups can be finite or infinite, and since infinite orbits
are not necessarily residue class unions, the orbit may either be returned in the form of a list, in the
form of a residue class union or in the form of an orbit object. It is possible to loop over orbits returned
as orbit objects, they can be compared and there is a membership test for them. However note that
equality and membership for such orbits cannot always be decided.

Example

gap> G := Group(ClassShift(0,2),ClassTransposition(0,3,1,3));
<rcwa group over Z with 2 generators>
gap> Orbit(G,0);
Z \ 5(6)
gap> Orbit(G,5);
[ 5 ]
gap> Orbit(G,ResidueClass(0,2));
[ 0(2), 1(6) U 2(6) U 3(6), 1(3) U 3(6), 0(3) U 1(6), 0(3) U 4(6),
1(3) U 0(6), 0(3) U 2(6), 0(6) U 1(6) U 2(6), 2(6) U 3(6) U 4(6),
1(3) U 2(6) ]

gap> G := Group(ClassTransposition(0,2,1,2),ClassTransposition(0,2,1,4),
> ClassReflection(0,3));
<rcwa group over Z with 3 generators>
gap> orb := Orbit(G,2);
<orbit of 2 under <wild rcwa group over Z with 3 generators>>
gap> 1015808 in orb;
true
gap> First(orb,n->ForAll([n,n+2,n+6,n+8,n+30,n+32,n+36,n+38],IsPrime));
-19
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RCWA permits drawing pictures of orbits of rcwa groups onZ2. The pictures are written to files
in bitmap- (bmp-) format. The author has successfully tested this feature both under Linux and under
Windows, and the produced pictures can be processed further with many common graphics programs:

3.3.2 DrawOrbitPicture (G, p0, r, h, w, colored, palette, filename)

♦ DrawOrbitPicture(G, p0, r, h, w, colored, palette, filename ) (function)

Returns: Nothing.
Draws a picture of the orbit(s) of the point(s)p0 under the action of the groupG on Z2. The

argumentp0 is either one point or a list of points. The argumentr denotes the radius of the ball
aroundp0 to be computed. The size of the created picture ish x w pixels. The argumentcolored
is a boolean which indicates whether a 24-bit True-Color picture or a monochrome picture should
be drawn. In the former case,palette must be a list of triples of integers in the range 0, . . . ,255,
denoting the RGB values of colors to be used. In the latter case,palette is not used, and any value
can be passed. The picture is written in bitmap- (bmp-) format to a file namedfilename . This is
done using the utility functionSaveAsBitmapPicture (7.6.1).

Example

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),
> CyclicGroup(3))));;
gap> DrawOrbitPicture(PSL2Z,[0,1],20,512,512,false,fail,"example1.bmp");
gap> DrawOrbitPicture(PSL2Z,Combinations([1..4],2),20,512,512,true,
> [[255,0,0],[0,255,0],[0,0,255]],"example2.bmp");

The pictures drawn in the examples are shown onRCWA’s webpage.
Finite orbits give rise to finite quotients of a group, and finite cycles can help to check for conju-

gacy. Therefore it is important to be able to determine them:

3.3.3 ShortOrbits (for rcwa groups) & ShortCycles (for rcwa permutations)

♦ ShortOrbits(G, S, maxlng ) (operation)

♦ ShortCycles(g, S, maxlng ) (operation)

♦ ShortCycles(g, maxlng ) (operation)

Returns: In the first form a list of all finite orbits of the rcwa groupGof length at mostmaxlng
which intersect nontrivially with the setS.

In the second form a list of all cycles of the rcwa permutationg of length at mostmaxlng which
intersect nontrivially with the setS.

In the third form a list of all cycles of the rcwa permutationg of length at mostmaxlng which
do not correspond to cycles consisting of residue classes.

Example

gap> G := Group(ClassTransposition(1,4,2,4)*ClassTransposition(1,4,3,4),
> ClassTransposition(3,9,6,18)*ClassTransposition(1,6,3,9));;
gap> List(ShortOrbits(G,[-15..15],100),
> orb->StructureDescription(Action(G,orb)));
[ "A15", "A4", "1", "1", "C3", "1", "((C2 x C2 x C2) : C7) : C3", "1",
"1", "C3", "A19" ]

gap> ShortCycles(mKnot(7),[1..100],20);
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[ [ 1 ], [ 2 ], [ 3 ], [ 4 ], [ 5 ], [ 6 ], [ 7, 8 ], [ 9, 10 ],
[ 11, 12 ], [ 13, 14, 16, 18, 20, 22, 19, 17, 15 ], [ 21, 24 ],
[ 23, 26 ], [ 25, 28, 32, 36, 31, 27, 30, 34, 38, 33, 29 ],
[ 35, 40 ], [ 37, 42, 48, 54, 47, 41, 46, 52, 45, 39, 44, 50, 43 ],
[ 77, 88, 100, 114, 130, 148, 127, 109, 124, 107, 122, 105, 120, 103,

89 ] ]

Frequently one needs to compute balls of certain radius around points or group elements, be it to
estimate the growth of a group, be it to see how an orbit looks like, be it to search for a group element
with certain properties or be it for other purposes:

3.3.4 Ball (for group, element and radius or group, point, radius and action)

♦ Ball(G, g, r ) (method)

♦ Ball(G, p, r, action ) (method)

Returns: The ball of radiusr around the elementg in the groupG, respectively the ball of
radiusr around the pointp under the actionaction of the groupG.

All balls are understood with respect toGeneratorsOfGroup(G). As membership tests can be
expensive, the former method does not check whetherg is indeed an element ofG. The methods
require that element- / point comparisons are cheap. They are not only applicable to rcwa groups. If
the optionSpheres is set, the ball is splitted up and returned as a list of spheres.

Example

gap> PSL2Z := Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(2),
> CyclicGroup(3))));;
gap> List([1..10],k->Length(Ball(PSL2Z,[0,1],k,OnTuples)));
[ 4, 8, 14, 22, 34, 50, 74, 106, 154, 218 ]
gap> Ball(Group((1,2),(2,3),(3,4)),(),2:Spheres);
[ [ () ], [ (3,4), (2,3), (1,2) ],
[ (2,3,4), (2,4,3), (1,2)(3,4), (1,2,3), (1,3,2) ] ]

It is possible to determine group elements which map a given tuple of elements of the underlying
ring to a given other tuple, if such elements exist:

3.3.5 RepresentativeAction (G, source, destination, action)

♦ RepresentativeAction(G, source, destination, action ) (method)

Returns: An element ofG which mapssource to destination under the action given
by action .

If an element satisfying this condition does not exist, this method either returnsfail or runs into
an infinite loop. The problem whethersource anddestination lie in the same orbit under the
actionaction of G is hard, and in its general form most likely computationally undecidable.

In cases where rather a word in the generators ofG than the actual group element is needed, one
should use the operationRepresentativeActionPreImage instead. This operation takes five argu-
ments. The first four are the same as those ofRepresentativeAction, and the fifth is a free group
whose generators are to be used as letters of the returned word. Note thatRepresentativeAction
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callsRepresentativeActionPreImage and evaluates the returned word. The evaluation of the word
can very well take most of the time ifG is wild and coefficient explosion occurs.

The algorithm is based on computing balls of increasing radius aroundsource and
destination until they intersect nontrivially.

Example

gap> a := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);; SetName(a,"a");
gap> b := ClassShift(1,4:Name:="b");; G := Group(a,b);;
gap> elm := RepresentativeAction(G,[7,4,9],[4,5,13],OnTuples);;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
------------------------------------+------------------------------------

0 2 3 6 8 11 | n
1 7 10 | n - 3
4 | n + 1
5 9 | n + 4

gap> List([7,4,9],n->nˆelm);
[ 4, 5, 13 ]
gap> elm := RepresentativeAction(G,[6,-3,8],[-9,4,11],OnPoints);;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
------------------------------------+------------------------------------

0 3 6 | 2n/3
1 | (2n - 8)/3
2 8 11 | (4n + 1)/3
4 7 10 | (4n - 1)/3
5 | (4n - 17)/3
9 | (4n - 15)/3

gap> [6,-3,8]ˆelm; List([6,-3,8],n->nˆelm); # ‘OnPoints’ allows reordering
[ -9, 4, 11 ]
[ 4, -9, 11 ]
gap> F := FreeGroup("a","b");; phi := EpimorphismByGenerators(F,G);;
gap> w := RepresentativeActionPreImage(G,[10,-4,9,5],[4,5,13,-8],
> OnTuples,F);
a*bˆ-1*aˆ-1*bˆ-1*a*bˆ-1*a*b*a*bˆ-2*a*b*aˆ-1*b
gap> elm := wˆphi;
<bijective rcwa mapping of Z with modulus 324>
gap> List([10,-4,9,5],n->nˆelm);
[ 4, 5, 13, -8 ]

Sometimes an rcwa group fixes a certain partition of the underlying ring into unions of residue
classes. If this happens, then any orbit is clearly a subset of exactly one of these parts. Further, such a
partition often gives rise to proper quotients of the group:
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3.3.6 Projections (for an rcwa group and a modulus)

♦ Projections(G, m) (operation)

Returns: The projections of the rcwa groupG to the unions of residue classes (modm) which it
fixes setwise.

The corresponding partition of a set of representatives for the residue classes (modm) can be
obtained by the operationOrbitsModulo(G,m).

Example

gap> G := Group(ClassTransposition(0,2,1,2),ClassShift(3,4));;
gap> Projections(G,4);
[ [ ClassTransposition(0,2,1,2), ClassShift(3,4) ] ->

[ <bijective rcwa mapping of Z with modulus 4>,
IdentityMapping( Integers ) ],

[ ClassTransposition(0,2,1,2), ClassShift(3,4) ] ->
[ <bijective rcwa mapping of Z with modulus 4>,

<bijective rcwa mapping of Z with modulus 4> ] ]
gap> List(last,phi->Support(Image(phi)));
[ 0(4) U 1(4), 2(4) U 3(4) ]

Given two partitions of the underlying ring into the same number of unions of residue classes,
there is always an rcwa permutation which maps the one to the other:

3.3.7 RepresentativeAction (for RCWA(R) and 2 partitions of R into residue classes)

♦ RepresentativeAction(RCWA(R), P1, P2 ) (method)

Returns: An element of RCWA(R) which maps the partitionP1 to P2.
The argumentsP1 andP2 must be partitions of the underlying ringR into the same number of

unions of residue classes. The method forR= Z recognizes the optionIsTame, which can be used to
demand a tame result. If this option is set and there is no tame rcwa permutation which mapsP1 to P2,
the method runs into an infinite loop. This happens if the condition in Theorem 2.8.9 in [Koh05] is not
satisfied. If the optionIsTame is not set and the partitionsP1 andP2 both consist entirely of single
residue classes, then the returned mapping is affine on any residue class inP1.

Example

gap> P1 := AllResidueClassesModulo(3);
[ 0(3), 1(3), 2(3) ]
gap> P2 := List([[0,2],[1,4],[3,4]],ResidueClass);
[ 0(2), 1(4), 3(4) ]
gap> elm := RepresentativeAction(RCWA(Integers),P1,P2);
<bijective rcwa mapping of Z with modulus 3>
gap> P1ˆelm = P2;
true
gap> IsTame(elm);
false
gap> elm := RepresentativeAction(RCWA(Integers),P1,P2:IsTame);
<tame bijective rcwa mapping of Z with modulus 24>
gap> P1ˆelm = P2;
true
gap> elm := RepresentativeAction(RCWA(Integers),
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> [ResidueClass(1,3),
> ResidueClassUnion(Integers,3,[0,2])],
> [ResidueClassUnion(Integers,5,[2,4]),
> ResidueClassUnion(Integers,5,[0,1,3])]);
<bijective rcwa mapping of Z with modulus 6>
gap> [ResidueClass(1,3),ResidueClassUnion(Integers,3,[0,2])]ˆelm;
[ 2(5) U 4(5), Z \ 2(5) U 4(5) ]

3.4 Special attributes of tame residue-class-wise affine groups

There are a couple of attributes which a priori make only sense for tame rcwa groups. With their help,
various structural information about a given such group can be obtained. We have already seen above
that there are for example methods forIsSolvable, IsPerfect andDerivedSubgroup available
for tame rcwa groups, while testing wild groups for solvability or perfectness is currently not always
feasible. The purpose of this section is to describe the specific attributes of tame groups which are
needed for these computations.

3.4.1 RespectedPartition (of a tame rcwa group or -permutation)

♦ RespectedPartition(G) (attribute)

♦ RespectedPartition(g) (attribute)

Returns: A respected partition of the rcwa groupG / of the rcwa permutationg .
A tame elementg ∈ RCWA(R) permutes a partition ofR into finitely many residue classes on all

of which it is affine. Given a tame groupG < RCWA(R), there is a common such partition for all
elements ofG. We call the mentioned partitionsrespected partitionsof g or G, respectively.

An rcwa group or an rcwa permutation has a respected partition if and only if it is tame. This holds
either by definition or by Theorem 2.5.8 in [Koh05], depending on how one introduces the notion of
tameness.

Related attributes areRespectedPartitionShort andRespectedPartitionLong. The first of
these denotes a respected partition consisting of residue classesr(m) wherem divides the modulus
of G or g , respectively. The second denotes a respected partition consisting of residue classesr(m)
where the modulus ofG (respectivelyg ) dividesm.

There is an operationRespectsPartition(G,P) / RespectsPartition(g,P), which tests
whetherG or g respects a given partitionP. The permutation induced byg on P can be computed
efficiently byPermutationOpNC(g,P,OnPoints).

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));
<rcwa group over Z with 2 generators>
gap> IsTame(G);
true
gap> Size(G);
infinity
gap> P := RespectedPartition(G);
[ 3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12) ]
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3.4.2 ActionOnRespectedPartition & KernelOfActionOnRespectedPartition

♦ ActionOnRespectedPartition(G) (attribute)

♦ KernelOfActionOnRespectedPartition(G) (attribute)

Returns: The action of the tame rcwa groupG on RespectedPartition(G) or the kernel of
this action, respectively.

The method forKernelOfActionOnRespectedPartition uses the packagePolycyclic [EN06].
The rank of the largest free abelian subgroup of the kernel of the action ofG on its stored respected
partition can be computed byRankOfKernelOfActionOnRespectedPartition(G).

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;
gap> H := ActionOnRespectedPartition(G);
Group([ (3,7)(5,8), (3,4,5,6) ])
gap> H = Action(G,P);
true
gap> Size(H);
48
gap> K := KernelOfActionOnRespectedPartition(G);
<rcwa group over Z with 3 generators>
gap> RankOfKernelOfActionOnRespectedPartition(G);
3
gap> Index(G,K);
48
gap> List(GeneratorsOfGroup(K),Factorization);
[ [ ClassShift(0,4)ˆ2 ], [ ClassShift(2,4)ˆ2 ], [ ClassShift(1,6)ˆ2 ] ]
gap> Image(IsomorphismPcpGroup(K));
Pcp-group with orders [ 0, 0, 0 ]

Let G be a tame rcwa group overZ, let P be a respected partition ofG and putm := |P |. Then
there is an rcwa permutationg which mapsP to the partition ofZ into the residue classes (modm),
and the conjugateGg of G under such a permutation is integral (cf. [Koh05], Theorem 2.5.14).

The conjugateGg can be determined by the operationIntegralConjugate, and the conjugating
permutationg can be determined by the operationIntegralizingConjugator. Both operations are
applicable to rcwa permutations as well. Note that a tame rcwa group does not determine its integral
conjugate uniquely.

Example

gap> G := Group(ClassTransposition(0,4,1,6),ClassShift(0,2));;
gap> GˆIntegralizingConjugator(G) = IntegralConjugate(G);
true
gap> RespectedPartition(G);
[ 3(6), 5(6), 0(8), 2(8), 4(8), 6(8), 1(12), 7(12) ]
gap> RespectedPartition(G)ˆIntegralizingConjugator(G);
[ 0(8), 1(8), 2(8), 3(8), 4(8), 5(8), 6(8), 7(8) ]
gap> last = RespectedPartition(IntegralConjugate(G));
true
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3.5 Generating pseudo-random elements of RCWA(R) and CT(R)

There are methods for the operationRandom for RCWA(R) and CT(R). These methods are designed
to be suitable for generating interesting examples. No particular distribution is guaranteed.

Example

gap> elm := Random(RCWA(Integers));;
gap> Display(elm);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
------------------------------------+------------------------------------

0 2 4 6 8 10 | 3n + 2
1 5 9 | -n + 2
3 7 | (n - 7)/2
11 | (-n + 20)/3

The elements which are returned by this method are obtained by multiplying class shifts (see
ClassShift (2.2.1)), class reflections (seeClassReflection (2.2.2)) and class transpositions (see
ClassTransposition (2.2.3)). These factors can be retrieved by factoring:

Example

gap> Factorization(elm);
[ ClassTransposition(0,2,3,4), ClassTransposition(3,4,4,6),
ClassShift(0,2)ˆ-1, ClassReflection(3,4), ClassReflection(1,4) ]

There is an auxiliary functionClassPairs([R,] m), which is used in this context. In its one-
argument form, this function returns a list of 4-tuples(r1,m1, r2,m2) of integers corresponding to the
unordered pairs of disjoint residue classesr1(m1) andr2(m2) with m1,m2 ≤ m. In its two-argument
form, it does “the equivalent” for the ringR.

Example

gap> List(ClassPairs(4),ClassTransposition);
[ ClassTransposition(0,2,1,2), ClassTransposition(0,2,1,4),
ClassTransposition(0,2,3,4), ClassTransposition(0,3,1,3),
ClassTransposition(0,3,2,3), ClassTransposition(0,4,1,4),
ClassTransposition(0,4,2,4), ClassTransposition(0,4,3,4),
ClassTransposition(1,2,0,4), ClassTransposition(1,2,2,4),
ClassTransposition(1,3,2,3), ClassTransposition(1,4,2,4),
ClassTransposition(1,4,3,4), ClassTransposition(2,4,3,4) ]

gap> List(last,TransposedClasses);
[ [ 0(2), 1(2) ], [ 0(2), 1(4) ], [ 0(2), 3(4) ], [ 0(3), 1(3) ],
[ 0(3), 2(3) ], [ 0(4), 1(4) ], [ 0(4), 2(4) ], [ 0(4), 3(4) ],
[ 1(2), 0(4) ], [ 1(2), 2(4) ], [ 1(3), 2(3) ], [ 1(4), 2(4) ],
[ 1(4), 3(4) ], [ 2(4), 3(4) ] ]



RCWA 47

3.6 The categories of residue-class-wise affine groups

3.6.1 IsRcwaGroup

♦ IsRcwaGroup(G) (filter)

♦ IsRcwaGroupOverZ(G) (filter)

♦ IsRcwaGroupOverZ pi(G) (filter)

♦ IsRcwaGroupOverGFqx(G) (filter)

Returns: true if G is an rcwa group, an rcwa group over the ring of integers, an rcwa group over
a semilocalization of the ring of integers or an rcwa group over a polynomial ring in one variable over
a finite field, respectively, andfalse otherwise.

Often the same methods can be used for rcwa groups over the ring of integers and over its semilo-
calizations. For this reason there is a categoryIsRcwaGroupOverZOrZ pi which is the union of
IsRcwaGroupOverZ andIsRcwaGroupOverZ pi.

To allow distinguishing the groups RCWA(R) and CT(R) from others, they have the characteristic
propertyIsNaturalRCWA or IsNaturalCT, respectively.



Chapter 4

Residue-Class-Wise Affine Monoids

In this short chapter, we describe how to compute with residue-class-wise affine monoids.Residue-
class-wise affinemonoids, orrcwa monoids for short, are monoids whose elements are residue-class-
wise affine mappings.

4.1 Constructing residue-class-wise affine monoids

As any other monoids inGAP, residue-class-wise affine monoids can be constructed byMonoid or
MonoidByGenerators.

Example

gap> M := Monoid(RcwaMapping([[ 0,1,1],[1,1,1]]),
> RcwaMapping([[-1,3,1],[0,2,1]]));
<rcwa monoid over Z with 2 generators>
gap> Size(M);
11
gap> Display(MultiplicationTable(M));
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ],
[ 2, 8, 5, 11, 8, 3, 10, 5, 2, 8, 5 ],
[ 3, 10, 11, 5, 5, 5, 8, 8, 8, 2, 3 ],
[ 4, 9, 6, 8, 8, 8, 5, 5, 5, 7, 4 ],
[ 5, 8, 5, 8, 8, 8, 5, 5, 5, 8, 5 ],
[ 6, 7, 4, 8, 8, 8, 5, 5, 5, 9, 6 ],
[ 7, 5, 8, 6, 5, 4, 9, 8, 7, 5, 8 ],
[ 8, 5, 8, 5, 5, 5, 8, 8, 8, 5, 8 ],
[ 9, 5, 8, 4, 5, 6, 7, 8, 9, 5, 8 ],
[ 10, 8, 5, 3, 8, 11, 2, 5, 10, 8, 5 ],
[ 11, 2, 3, 5, 5, 5, 8, 8, 8, 10, 11 ] ]

There are methods for the operationsView, Display, Print andString which are applicable to rcwa
monoids. All rcwa monoids over a ringR are submonoids of Rcwa(R). The monoid Rcwa(R) itself is
not finitely generated, thus cannot be constructed as described above. It is handled as a special case:
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4.1.1 Rcwa (the monoid of all rcwa mappings of a ring)

♦ Rcwa(R) (function)

Returns: The monoid Rcwa(R) of all residue-class-wise affine mappings of the ringR.

Example

gap> RcwaZ := Rcwa(Integers);
Rcwa(Z)
gap> IsSubset(RcwaZ,M);
true

In our methods to construct rcwa groups, two kinds of mappings played a crucial role,
namely the restriction monomorphisms (cf.Restriction (3.1.6)) and the induction epimorphisms
(cf. Induction (3.1.7)). The restriction monomorphisms extend in a natural way to the monoids
Rcwa(R), and the induction epimorphisms have corresponding generalizations, also. Therefore the
operationsRestriction andInduction can be applied to rcwa monoids as well:

Example

gap> M2 := Restriction(M,2*One(Rcwa(Integers)));
<rcwa monoid over Z with 2 generators, of size 11>
gap> Support(M2);
0(2)
gap> Action(M2,ResidueClass(1,2));
Trivial rcwa group over Z
gap> Induction(M2,2*One(Rcwa(Integers))) = M;
true

4.2 Computing with residue-class-wise affine monoids

There is a method forSize which computes the order of an rcwa monoid. Further there is a method
for in which checks whether a given rcwa mapping lies in a given rcwa monoid (membership test),
and there is a method forIsSubset which checks for a submonoid relation.

There are also methods forSupport, Modulus, IsTame, PrimeSet, IsIntegral,
IsClassWiseOrderPreserving andIsSignPreserving available for rcwa monoids.

Thesupportof an rcwa monoid is the union of the supports of its elements. Themodulusof an
rcwa monoid is the lcm of the moduli of its elements in case such an lcm exists and 0 otherwise. An
rcwa monoid is calledtameif its modulus is nonzero, andwild otherwise. Theprime setof an rcwa
monoid is the union of the prime sets of its elements. An rcwa monoid is calledintegral, class-wise
order-preservingor sign-preservingif all of its elements are so.

Example

gap> f1 := RcwaMapping([[-1, 1, 1],[ 0,-1, 1]]);;
gap> f2 := RcwaMapping([[ 1,-1, 1],[-1,-2, 1],[-1, 2, 1]]);;
gap> f3 := RcwaMapping([[ 1, 0, 1],[-1, 0, 1]]);;
gap> N := Monoid(f1,f2,f3);;
gap> Size(N);
366
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gap> List([Monoid(f1,f2),Monoid(f1,f3),Monoid(f2,f3)],Size);
[ 96, 6, 66 ]
gap> f1*f2*f3 in N;
true
gap> IsSubset(N,M);
false
gap> IsSubset(N,Monoid(f1*f2,f3*f2));
true
gap> Support(N);
Integers
gap> Modulus(N);
6
gap> IsTame(N) and IsIntegral(N);
true
gap> IsClassWiseOrderPreserving(N) or IsSignPreserving(N);
false
gap> Collected(List(AsList(N),Image)); # The images of the elements of N.
[ [ Integers, 2 ], [ 1(2), 2 ], [ Z \ 1(3), 32 ], [ 0(6), 44 ],
[ 0(6) U 1(6), 4 ], [ Z \ 4(6) U 5(6), 32 ], [ 0(6) U 2(6), 4 ],
[ 0(6) U 5(6), 4 ], [ 1(6), 44 ], [ 1(6) U [ -1 ], 2 ],
[ 1(6) U 3(6), 4 ], [ 1(6) U 5(6), 40 ], [ 2(6), 44 ],
[ 2(6) U 3(6), 4 ], [ 3(6), 44 ], [ 3(6) U 5(6), 4 ], [ 5(6), 44 ],
[ 5(6) U [ 1 ], 2 ], [ [ -5 ], 1 ], [ [ -4 ], 1 ], [ [ -3 ], 1 ],
[ [ -1 ], 1 ], [ [ 0 ], 1 ], [ [ 1 ], 1 ], [ [ 2 ], 1 ], [ [ 3 ], 1 ],
[ [ 5 ], 1 ], [ [ 6 ], 1 ] ]

Finite forward orbits under the action of an rcwa monoid can be found by the operationShortOrbits:

4.2.1 ShortOrbits (for rcwa monoid, set of points and bound on length)

♦ ShortOrbits(M, S, maxlng ) (method)

Returns: A list of finite forward orbits of the rcwa monoidM of length at mostmaxlng which
start at points in the setS.

Example

gap> ShortOrbits(M,[-5..5],20);
[ [ -5, -4, 1, 2, 7, 8 ], [ -3, -2, 1, 2, 5, 6 ], [ -1, 0, 1, 2, 3, 4 ] ]
gap> Display(Action(M,last[1]));
Monoid( [ Transformation( [ 2, 3, 4, 3, 6, 3 ] ),
Transformation( [ 4, 5, 4, 3, 4, 1 ] ) ], ... )

gap> orbs := ShortOrbits(N,[0..10],100);
[ [ -5, -4, -3, -1, 0, 1, 2, 3, 5, 6 ],
[ -11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

11, 12 ],
[ -17, -16, -15, -13, -12, -11, -10, -9, -7, -6, -5, -4, -3, -1, 0, 1,

2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18 ] ]
gap> quots := List(orbs,orb->Action(N,orb));;
gap> List(quots,Size);
[ 268, 332, 366 ]
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Balls of given radius around an element of an rcwa monoid can be computed by the operation
Ball. This operation can also be used for computing forward orbits or subsets of such under the
action of an rcwa monoid:

4.2.2 Ball (for monoid, element and radius or monoid, point, radius and action)

♦ Ball(M, f, r ) (method)

♦ Ball(M, p, r, action ) (method)

Returns: The ball of radiusr around the elementf in the monoidM, respectively the ball of
radiusr around the pointp under the actionaction of the monoidM.

All balls are understood with respect toGeneratorsOfMonoid(M). As membership tests can
be expensive, the first-mentioned method does not check whetherf is indeed an element ofM. The
methods require that point- / element comparisons are cheap. They are not only applicable to rcwa
monoids. If the optionSpheres is set, the ball is splitted up and returned as a list of spheres.

Example

gap> List([0..12],k->Length(Ball(N,One(N),k)));
[ 1, 4, 11, 26, 53, 99, 163, 228, 285, 329, 354, 364, 366 ]
gap> Ball(N,[0..3],2,OnTuples);
[ [ -3, 3, 3, 3 ], [ -1, -3, 0, 2 ], [ -1, -1, -1, -1 ],
[ -1, -1, 1, -1 ], [ -1, 1, 1, 1 ], [ -1, 3, 0, -4 ], [ 0, -1, 2, -3 ],
[ 0, 1, 2, 3 ], [ 1, -1, -1, -1 ], [ 1, 3, 0, 2 ], [ 3, -4, -1, 0 ] ]

gap> l := 2*IdentityRcwaMappingOfZ; r := l+1;
Rcwa mapping of Z: n -> 2n
Rcwa mapping of Z: n -> 2n + 1
gap> Ball(Monoid(l,r),1,4,OnPoints:Spheres);
[ [ 1 ], [ 2, 3 ], [ 4, 5, 6, 7 ], [ 8, 9, 10, 11, 12, 13, 14, 15 ],
[ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 ] ]
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Examples

This chapter discusses a number of “nice” examples of rcwa mappings and -groups in detail. All of
them show different aspects of the package, and the order in which they appear is entirely arbitrary.
In particular they are not ordered by degree of interestingness or difficulty.

Please note that now since quite a while no further examples have been added to this chapter, and
that the capabilities of this package have been extended considerably in the meantime.

The rcwa mappings defined in this chapter (and in fact many more) can be found in the file
pkg/rcwa/examples/examples.g, so there is no need to extract them from the manual files. This
file can be read into the currentGAP session by issueingRCWAReadExamples( );.

The examples are typically far from discussing the respective aspects exhaustively. It is quite
likely that in many instances by just a few little modifications or additional easy commands you can
find out interesting things yourself – have fun!

5.1 Factoring Collatz’ permutation of the integers

In 1932, Lothar Collatz mentioned in his notebook the following permutation of the integers:
Example

gap> Collatz := RcwaMapping([[2,0,3],[4,-1,3],[4,1,3]]);;
gap> SetName(Collatz,"Collatz"); Display(Collatz);

Rcwa mapping of Z with modulus 3

n mod 3 | nˆCollatz
------------------------------------+------------------------------------
0 | 2n/3
1 | (4n - 1)/3
2 | (4n + 1)/3

gap> ShortCycles(Collatz,[-50..50],50); # There are some finite cycles:
[ [ -111, -74, -99, -66, -44, -59, -79, -105, -70, -93, -62, -83 ],
[ -9, -6, -4, -5, -7 ], [ -3, -2 ], [ -1 ], [ 0 ], [ 1 ], [ 2, 3 ],
[ 4, 5, 7, 9, 6 ], [ 44, 59, 79, 105, 70, 93, 62, 83, 111, 74, 99, 66 ] ]

The cycle structure of Collatz’ permutation has not been completely determined yet. In particular it is
not known whether the cycle containing 8 is finite or infinite. Nevertheless, the factorization routine
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included in this package can determine a factorization of this permutation into class transpositions,
i.e. involutions interchanging two disjoint residue classes:

Example

gap> Collatz in CT(Integers); # ‘Collatz’ lies in the simple group CT(Z).
true
gap> Length(Factorization(Collatz));
212

Setting the Info level ofInfoRCWA equal to 2 (simply issueRCWAInfo(2);) causes the factorization
routine to display detailed information on the progress of the factoring process. For reasons of saving
space, this is not done in this manual.

We would like to get a factorization into fewer factors. Firstly, we try to factor the inverse – just
like the various options interpreted by the factorization routine, this has influence on decisions taken
during the factoring process:

Example

gap> Length(Factorization(Collatzˆ-1));
129

This is already a shorter product, but can still be improved. We remember themKnot’s, of which the
permutationmKnot(3) looks very similar to Collatz’ permutation. Therefore it is straightforward to
try to factor bothmKnot(3) andCollatz/mKnot(3), and to look whether the sum of the numbers of
factors is less than 129:

Example

gap> KnotFacts := Factorization(mKnot(3));;
gap> QuotFacts := Factorization(Collatz/mKnot(3));;
gap> List([KnotFacts,QuotFacts],Length);
[ 59, 9 ]
gap> CollatzFacts := Concatenation(QuotFacts,KnotFacts);
[ ClassTransposition(0,6,4,6), ClassTransposition(0,6,5,6),
ClassTransposition(0,6,3,6), ClassTransposition(0,6,1,6),
ClassTransposition(0,6,2,6), ClassTransposition(2,3,4,6),
ClassTransposition(0,3,4,6), ClassTransposition(2,3,1,6),
ClassTransposition(0,3,1,6), ClassTransposition(0,36,35,36),
ClassTransposition(0,36,22,36), ClassTransposition(0,36,18,36),
ClassTransposition(0,36,17,36), ClassTransposition(0,36,14,36),
ClassTransposition(0,36,20,36), ClassTransposition(0,36,4,36),
ClassTransposition(2,36,8,36), ClassTransposition(2,36,16,36),
ClassTransposition(2,36,13,36), ClassTransposition(2,36,9,36),
ClassTransposition(2,36,7,36), ClassTransposition(2,36,6,36),
ClassTransposition(2,36,3,36), ClassTransposition(2,36,10,36),
ClassTransposition(2,36,15,36), ClassTransposition(2,36,12,36),
ClassTransposition(2,36,5,36), ClassTransposition(21,36,28,36),
ClassTransposition(21,36,33,36), ClassTransposition(21,36,30,36),
ClassTransposition(21,36,23,36), ClassTransposition(21,36,34,36),
ClassTransposition(21,36,31,36), ClassTransposition(21,36,27,36),
ClassTransposition(21,36,25,36), ClassTransposition(21,36,24,36),
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ClassTransposition(26,36,32,36), ClassTransposition(26,36,29,36),
ClassTransposition(10,18,35,36), ClassTransposition(5,18,35,36),
ClassTransposition(10,18,17,36), ClassTransposition(5,18,17,36),
ClassTransposition(8,12,14,24), ClassTransposition(6,9,17,18),
ClassTransposition(3,9,17,18), ClassTransposition(0,9,17,18),
ClassTransposition(6,9,16,18), ClassTransposition(3,9,16,18),
ClassTransposition(0,9,16,18), ClassTransposition(6,9,11,18),
ClassTransposition(3,9,11,18), ClassTransposition(0,9,11,18),
ClassTransposition(6,9,4,18), ClassTransposition(3,9,4,18),
ClassTransposition(0,9,4,18), ClassTransposition(0,6,14,24),
ClassTransposition(0,6,2,24), ClassTransposition(8,12,17,18),
ClassTransposition(7,12,17,18), ClassTransposition(8,12,11,18),
ClassTransposition(7,12,11,18), PrimeSwitch(3)ˆ-1,
ClassTransposition(7,12,17,18), ClassTransposition(2,6,17,18),
ClassTransposition(0,3,17,18), PrimeSwitch(3)ˆ-1, PrimeSwitch(3)ˆ-1,
PrimeSwitch(3)ˆ-1 ]

gap> Product(CollatzFacts) = Collatz; # Check.
true

The factorsPrimeSwitch(3) are products of 6 class transpositions (cf.PrimeSwitch (2.5.2)). At
the end of Section5.6, a much smaller factorization task is performed “manually” for purposes of
illustration.

5.2 An rcwa mapping which seems to be contracting, but very slow

The iterates of an integer under the Collatz mappingT seem to approach its contraction centre – this
is the finite set where all trajectories end up after a finite number of steps – rather quickly and do not
get very large before doing so (of course this is a purely heuristic statement as the 3n+1 Conjecture
has not been proved so far!):

Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;
gap> S0 := LikelyContractionCentre(T,100,1000);
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for more information.
[ -136, -91, -82, -68, -61, -55, -41, -37, -34, -25, -17, -10, -7, -5,
-1, 0, 1, 2 ]

gap> S0ˆT = S0; # This holds by definition of the contraction centre.
true
gap> List([1..30],n->Length(Trajectory(T,n,S0)));
[ 1, 1, 5, 2, 4, 6, 11, 3, 13, 5, 10, 7, 7, 12, 12, 4, 9, 14, 14, 6, 6,
11, 11, 8, 16, 8, 70, 13, 13, 13 ]

gap> Maximum(List([1..1000],n->Length(Trajectory(T,n,S0))));
113
gap> Maximum(List([1..1000],n->Maximum(Trajectory(T,n,S0))));
125252
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The following mapping seems to be contracting as well, but its trajectories are much longer:
Example

gap> f6 := RcwaMapping([[ 1,0,6],[ 5, 1,6],[ 7,-2,6],
> [11,3,6],[11,-2,6],[11,-1,6]]);;
gap> SetName(f6,"f6");
gap> Display(f6);

Rcwa mapping of Z with modulus 6

n mod 6 | nˆf6
------------------------------------+------------------------------------
0 | n/6
1 | (5n + 1)/6
2 | (7n - 2)/6
3 | (11n + 3)/6
4 | (11n - 2)/6
5 | (11n - 1)/6

gap> S0 := LikelyContractionCentre(f6,1000,100000);;
#I Warning: ‘LikelyContractionCentre’ is highly probabilistic.
The returned result can only be regarded as a rough guess.
See ?LikelyContractionCentre for more information.
gap> Trajectory(f6,25,S0);
[ 25, 21, 39, 72, 12, 2 ]
gap> List([1..100],n->Length(Trajectory(f6,n,S0)));
[ 1, 1, 3, 4, 1, 2, 3, 2, 1, 5, 7, 2, 8, 17, 3, 16, 1, 4, 17, 6, 5, 2,
5, 5, 6, 1, 4, 2, 15, 1, 1, 3, 2, 5, 13, 3, 2, 3, 4, 1, 8, 4, 4, 2, 7,
19, 23517, 3, 9, 3, 1, 18, 14, 2, 20, 23512, 14, 2, 6, 6, 1, 4, 19,
12, 23511, 8, 23513, 10, 1, 13, 13, 3, 1, 23517, 7, 20, 7, 9, 9, 6,
12, 8, 6, 18, 14, 23516, 31, 12, 23545, 4, 21, 19, 5, 1, 17, 17, 13,
19, 6, 23515 ]

gap> Maximum(Trajectory(f6,47,S0));
7363391777762473304431877054771075818733690108051469808715809256737742295\
45698886054

Computing the trajectory of 3224 takes quite a while – this trajectory ascends to about 3· 102197,
before it approaches the fixed point 2 after 19949562 steps.

When constructing the mappingf6, the denominators of the partial mappings have been chosen
to be equal and the numerators have been chosen to be numbers coprime to the common denominator,
whose product is just a little bit smaller than theModulus(f6)th power of the denominator. In the
example we have 5·7·113 = 46585 and 66 = 46656.

Although the trajectories ofT are much shorter than those off6, it seems likely that this does
not make the problem of deciding whether the mappingT is contracting essentially easier – even for
mappings with much shorter trajectories thanT the problem seems to be equally hard. A solution can
usually only be found in trivial cases, i.e. for example when there is somek such that applying thekth
power of the respective mapping to any integer decreases its absolute value.
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5.3 Checking a result by P. Andaloro

In [And00], P. Andaloro has shown that proving that trajectories of integersn ∈ 1(16) under the
Collatz mapping always contain 1 would be sufficient to prove the 3n+1 Conjecture. In the sequel,
this result is verified byRCWA. Checking that the union of the images of the residue class 1(16) under
powers of the Collatz mappingT containsZ\0(3) is obviously enough. Thus we putS:= 1(16), and
successively unite the setSwith its image underT:

Example

gap> S := ResidueClass(Integers,16,1);
1(16)
gap> S := Union(S,SˆT);
1(16) U 2(24)
gap> S := Union(S,SˆT);
1(12) U 2(24) U 17(48) U 33(48)
gap> S := Union(S,SˆT);
<union of 30 residue classes (mod 144)>
gap> S := Union(S,SˆT);
<union of 42 residue classes (mod 144)>
gap> S := Union(S,SˆT);
<union of 172 residue classes (mod 432)>
gap> S := Union(S,SˆT);
<union of 676 residue classes (mod 1296)>
gap> S := Union(S,SˆT);
<union of 810 residue classes (mod 1296)>
gap> S := Union(S,SˆT);
<union of 2638 residue classes (mod 3888)>
gap> S := Union(S,SˆT);
<union of 33 residue classes (mod 48)>
gap> S := Union(S,SˆT);
<union of 33 residue classes (mod 48)>
gap> Union(S,ResidueClass(Integers,3,0)); # Et voila ...
Integers

Further similar computations are shown in Section5.13.
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5.4 Two examples by Matthews and Leigh

In [ML87], K. R. Matthews and G. M. Leigh have shown that two trajectories of the following (sur-
jective, but not injective) mappings are acyclic (modx) and divergent:

Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(2),1);
GF(2)[x]
gap> ML1 := RcwaMapping(R,x,[[1,0,x],[(x+1)ˆ3,1,x]]*One(R));;
gap> ML2 := RcwaMapping(R,x,[[1,0,x],[(x+1)ˆ2,1,x]]*One(R));;
gap> SetName(ML1,"ML1"); SetName(ML2,"ML2");
gap> Display(ML1);

Rcwa mapping of GF(2)[x] with modulus x

P mod x | PˆML1
------------------------+------------------------------------------------
0*Z(2) | P/x
Z(2)ˆ0 | ((xˆ3+xˆ2+x+Z(2)ˆ0)*P + Z(2)ˆ0)/x

gap> Display(ML2);

Rcwa mapping of GF(2)[x] with modulus x

P mod x | PˆML2
------------------------+------------------------------------------------
0*Z(2) | P/x
Z(2)ˆ0 | ((xˆ2+Z(2)ˆ0)*P + Z(2)ˆ0)/x

gap> List([ML1,ML2],IsSurjective);
[ true, true ]
gap> List([ML1,ML2],IsInjective);
[ false, false ]
gap> traj1 := Trajectory(ML1,One(R),16);
[ Z(2)ˆ0, xˆ2+x+Z(2)ˆ0, xˆ4+xˆ2+x, xˆ3+x+Z(2)ˆ0, xˆ5+xˆ4+xˆ2, xˆ4+xˆ3+x,
xˆ3+xˆ2+Z(2)ˆ0, xˆ5+xˆ2+Z(2)ˆ0, xˆ7+xˆ6+xˆ5+xˆ3+Z(2)ˆ0,
xˆ9+xˆ7+xˆ6+xˆ5+xˆ3+x+Z(2)ˆ0, xˆ11+xˆ10+xˆ8+xˆ7+xˆ6+xˆ5+xˆ2,
xˆ10+xˆ9+xˆ7+xˆ6+xˆ5+xˆ4+x, xˆ9+xˆ8+xˆ6+xˆ5+xˆ4+xˆ3+Z(2)ˆ0,
xˆ11+xˆ8+xˆ7+xˆ6+xˆ4+x+Z(2)ˆ0, xˆ13+xˆ12+xˆ11+xˆ8+xˆ7+xˆ6+xˆ4,
xˆ12+xˆ11+xˆ10+xˆ7+xˆ6+xˆ5+xˆ3 ]

gap> traj2 := Trajectory(ML2,(xˆ3+x+1)*One(R),16);
[ xˆ3+x+Z(2)ˆ0, xˆ4+x+Z(2)ˆ0, xˆ5+xˆ3+xˆ2+x+Z(2)ˆ0, xˆ6+xˆ3+Z(2)ˆ0,
xˆ7+xˆ5+xˆ4+xˆ2+x, xˆ6+xˆ4+xˆ3+x+Z(2)ˆ0, xˆ7+xˆ4+xˆ3+x+Z(2)ˆ0,
xˆ8+xˆ6+xˆ5+xˆ4+xˆ3+x+Z(2)ˆ0, xˆ9+xˆ6+xˆ3+x+Z(2)ˆ0,
xˆ10+xˆ8+xˆ7+xˆ5+xˆ4+x+Z(2)ˆ0, xˆ11+xˆ8+xˆ7+xˆ5+xˆ4+xˆ3+xˆ2+x+Z(2)ˆ0,
xˆ12+xˆ10+xˆ9+xˆ8+xˆ7+xˆ5+Z(2)ˆ0, xˆ13+xˆ10+xˆ7+xˆ4+x,
xˆ12+xˆ9+xˆ6+xˆ3+Z(2)ˆ0, xˆ13+xˆ11+xˆ10+xˆ8+xˆ7+xˆ5+xˆ4+xˆ2+x,
xˆ12+xˆ10+xˆ9+xˆ7+xˆ6+xˆ4+xˆ3+x+Z(2)ˆ0 ]



RCWA 58

The pattern which Matthews and Leigh used to show the divergence of the above trajectories can be
recognized easily by looking at the corresponding Markov chains with the two states 0 modx and
1 modx:

Example

gap> traj1modx := Trajectory(ML1,One(R),400,x);;
gap> traj2modx := Trajectory(ML2,(xˆ3+x+1)*One(R),600,x);;
gap> List(traj1modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);
[ 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

gap> List(traj2modx{[1..150]},val->Position([Zero(R),One(R)],val)-1);
[ 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,
1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 ]

What is important here are the lengths of the intervals between two changes from one state to the
other:

Example

gap> ChangePoints := l->Filtered([1..Length(l)-1],pos->l[pos]<>l[pos+1]);;
gap> Diffs := l->List([1..Length(l)-1],pos->l[pos+1]-l[pos]);;
gap> Diffs(ChangePoints(traj1modx)); # The pattern in the first ...
[ 1, 1, 2, 4, 2, 2, 4, 8, 4, 4, 8, 16, 8, 8, 16, 32, 16, 16, 32, 64, 32,
32, 64 ]

gap> Diffs(ChangePoints(traj2modx)); # ... and in the second example.
[ 1, 7, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 97, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 193, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ]

gap> Diffs(ChangePoints(last)); # Make this a bit more obvious.
[ 1, 3, 1, 7, 1, 15, 1, 31, 1, 63, 1 ]

This looks clearly acyclic, thus the trajectories diverge. Needless to say however that this computa-
tional evidence does not replace the proof along these lines given in the article cited above, but just
sheds a light on the idea behind it.
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5.5 Exploring the structure of a wild rcwa group

In this example, a simple attempt to should be made to investigate the structure of a given wild group
by finding orders of torsion elements. In general, determining the structure of a given wild group
seems to be a very hard task. First of all, the group in question has to be defined:

Example

gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> SetName(u,"u");
gap> Display(u);

Rcwa mapping of Z with modulus 5

n mod 5 | nˆu
------------------------------------+------------------------------------
0 | 3n/5
1 | (9n + 1)/5
2 | (3n - 1)/5
3 | (9n - 2)/5
4 | (9n + 4)/5

gap> nu := ClassShift(0,1);;
gap> G := Group(u,nu);
<rcwa group over Z with 2 generators>
gap> IsTame(G);
false

Now we would like to know which orders torsion elements ofG can have – taking a look at the above
generators it seems to make sense to try commutators:

Example

gap> l := Filtered([0..100],k->IsTame(Comm(u,nuˆk)));
[ 0, 2, 3, 5, 6, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 27, 28, 30,
32, 33, 35, 36, 39, 40, 42, 43, 45, 47, 48, 50, 51, 54, 55, 57, 58,
60, 62, 63, 65, 66, 69, 70, 72, 73, 75, 77, 78, 80, 81, 84, 85, 87,
88, 90, 92, 93, 95, 96, 99, 100 ]

gap> List(l,k->Order(Comm(u,nuˆk)));
[ 1, 6, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3, infinity,
infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5, infinity,
infinity, infinity, 5, 3, 5, 5, 3, infinity, 7, infinity, 7, 5, 3,
infinity, infinity, 3, 5, 7, infinity, 7, infinity, 3, 5, 5, 3, 5,
infinity, infinity, infinity, 5, 3, 5, 5, 3 ]
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Example

gap> Display(Comm(u,nuˆ13));

Bijective rcwa mapping of Z with modulus 9

n mod 9 | nˆf
------------------------------------+------------------------------------
0 3 6 | n + 5
1 4 7 | 3n - 9
2 8 | n - 11
5 | (n + 16)/3

gap> Order(Comm(u,nuˆ13));
7
gap> u2 := uˆ2;
<wild bijective rcwa mapping of Z with modulus 25>
gap> Filtered([1..16],k->IsTame(Comm(u2,nuˆk))); # k < 15 -> commutator wild!
[ 15 ]
gap> Order(Comm(u2,nuˆ15));
infinity
gap> u2nu17 := Comm(u2,nuˆ17);
<bijective rcwa mapping of Z with modulus 81>
gap> cycs := ShortCycles(u2nu17,[-100..100],100);;
gap> List(cycs,Length);
[ 72, 72, 73, 72, 73, 72, 72, 73, 72, 72, 72, 73, 72, 72, 73, 72, 72,
73, 72, 72, 73, 72, 72 ]

gap> Lcm(last);
5256
gap> u2nu17ˆ5256; # This element has indeed order 2ˆ3*3ˆ2*73 = 5256.
IdentityMapping( Integers )
gap> u2nu18 := Comm(u2,nuˆ18);
<bijective rcwa mapping of Z with modulus 81>
gap> cycs := ShortCycles(u2nu18,[-100..100],100);;
gap> List(cycs,Length);
[ 22, 22, 22, 21, 22, 22, 22, 21, 21, 22, 22, 21, 22, 21, 22, 22, 21,
22, 22, 21, 22, 22, 21 ]

gap> Lcm(last);
462
gap> u2nu18ˆ462; # This is an element of order 2*3*7*11 = 462.
IdentityMapping( Integers )
gap> Order(Comm(u2,nuˆ20));
29
gap> Order(Comm(u2,nuˆ25));
9
gap> Order(Comm(u2,nuˆ30));
15

Thus even this rather simple-minded approach reveals various different orders of torsion elements,
and the involved primes are also not all very “small”.
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5.6 A wild rcwa mapping which has only finite cycles

Some wild rcwa mappings ofZ have only finite cycles. In this section, a permutation is examined
which can be shown to be such a mapping and which is likely to be something like a “minimal”
example.

OverR = GF(q)[x], the degree function gives rise to a partition ofR into finite sets which is left
invariant by suitable wild rcwa mappings. OverR= Z the situation looks different – there is no such
“natural” partition into finite sets which can be fixed by a wild rcwa mapping.

Example

gap> kappa := RcwaMapping([[1,0,1],[1,0,1],[3,2,2],[1,-1,1],
> [2,0,1],[1,0,1],[3,2,2],[1,-1,1],
> [1,1,3],[1,0,1],[3,2,2],[2,-2,1]]);;
gap> SetName(kappa,"kappa");
gap> List([-5..5],k->Modulus(kappaˆk));
[ 7776, 1296, 432, 72, 24, 1, 12, 72, 144, 864, 1728 ]
gap> Display(kappa);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆkappa
------------------------------------+------------------------------------

0 1 5 9 | n
2 6 10 | (3n + 2)/2
3 7 | n - 1
4 | 2n
8 | (n + 1)/3
11 | 2n - 2

gap> List([-32..32],n->Length(Cycle(kappa,n)));
[ 4, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 7, 1, 10, 10, 4, 1, 7, 7, 1, 1,
7, 7, 4, 1, 4, 4, 2, 1, 1, 2, 1, 1, 4, 4, 4, 1, 7, 7, 4, 1, 7, 7, 1,
1, 10, 10, 7, 1, 4, 4, 7, 1, 10, 10, 1, 1, 4, 4, 4, 1, 13, 13, 7 ]

gap> List([2..14],k->Maximum(List([1..2ˆk],n->Length(Cycle(kappa,n)))));
[ 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40 ]
gap> List([2..14],k->Length(Cycle(kappa,2ˆk-2)));
[ 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40 ]
gap> Cycle(kappa,2ˆ12-2);
[ 4094, 6142, 9214, 13822, 20734, 31102, 46654, 69982, 104974, 157462,
236194, 354292, 708584, 236195, 472388, 157463, 314924, 104975,
209948, 69983, 139964, 46655, 93308, 31103, 62204, 20735, 41468,
13823, 27644, 9215, 18428, 6143, 12284, 4095 ]

gap> last mod 12;
[ 2, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 4, 8, 11, 8, 11, 8, 11, 8,
11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 11, 8, 3 ]

gap> lengthstats := Collected(List(ShortCycles(kappa,[1..12ˆ4],100),
> Length));
[ [ 1, 6912 ], [ 4, 1728 ], [ 7, 864 ], [ 10, 432 ], [ 13, 216 ],
[ 16, 108 ], [ 19, 54 ], [ 22, 27 ], [ 25, 13 ], [ 28, 7 ], [ 31, 3 ],
[ 34, 2 ], [ 37, 1 ], [ 40, 1 ] ]
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We would like to determine a partition ofZ into unions of cycles of equal length:
Example

gap> C := [Difference(Integers,MovedPoints(kappa))];; pow := [kappaˆ0];;
gap> rc := function(r,m) return ResidueClass(r,m); end;;
gap> for i in [1..3] do
> Add(pow,kappaˆi);
> C[i+1] := Difference(rc(2,4),
> Union(Union(C{[1..i]}),
> Union(List([0..i],j->Intersection(
> rc(2,4)ˆpow[j+1],
> rc(2,4)ˆ(pow[i-j+1]ˆ-1))))));
> od;
gap> C;
[ 1(4) U 0(12) U [ -2 ], 2(24) U 18(24), 6(48) U 38(48) U 10(72) U 58(72)

, <union of 38 residue classes (mod 864)> ]
gap> List(C,S->Length(Cycle(kappa,S)));
[ 1, 4, 7, 10 ]
gap> Cycle(kappa,C[1]);
[ 1(4) U 0(12) U [ -2 ] ]
gap> Cycle(kappa,C[2]);
[ 2(24) U 18(24), 4(36) U 28(36), 8(72) U 56(72), 3(24) U 19(24) ]
gap> cycle7 := Cycle(kappa,C[3]);;
gap> for S in cycle7 do View(S); Print("\n"); od;
6(48) U 38(48) U 10(72) U 58(72)
10(72) U 58(72) U 16(108) U 88(108)
16(108) U 88(108) U 32(216) U 176(216)
11(72) U 59(72) U 32(216) U 176(216)
11(72) U 59(72) U 20(144) U 116(144)
7(48) U 39(48) U 20(144) U 116(144)
6(48) U 7(48) U 38(48) U 39(48)
gap> cycle10 := Cycle(kappa,C[4]);;
gap> for S in cycle10 do View(S); Print("\n"); od;
<union of 38 residue classes (mod 864)>
<union of 38 residue classes (mod 1296)>
<union of 12 residue classes (mod 648)>
<union of 12 residue classes (mod 648)>
<union of 22 residue classes (mod 1296)>
<union of 12 residue classes (mod 432)>
<union of 22 residue classes (mod 864)>
<union of 12 residue classes (mod 288)>
<union of 14 residue classes (mod 288)>
<union of 16 residue classes (mod 288)>
gap> List(cycle10,Density);
[ 19/432, 19/648, 1/54, 1/54, 11/648, 1/36, 11/432, 1/24, 7/144, 1/18 ]
gap> List(last,Float);
[ 0.0439815, 0.029321, 0.0185185, 0.0185185, 0.0169753, 0.0277778,
0.025463, 0.0416667, 0.0486111, 0.0555556 ]

gap> Sum(last2);
47/144
gap> Density(Union(cycle10));
47/432
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Example

gap> P := List(C,S->Union(Cycle(kappa,S)));;
gap> for S in P do View(S); Print("\n"); od;
1(4) U 0(12) U [ -2 ]
<union of 18 residue classes (mod 72)>
<union of 78 residue classes (mod 432)>
<union of 282 residue classes (mod 2592)>
gap> P2 := AsUnionOfFewClasses(P[2]);
[ 2(24), 3(24), 18(24), 19(24), 4(36), 28(36), 8(72), 56(72) ]
gap> Permutation(kappa,P2);
(1,5,7,2)(3,6,8,4)
gap> P3 := AsUnionOfFewClasses(P[3]);
[ 6(48), 7(48), 38(48), 39(48), 10(72), 11(72), 58(72), 59(72), 16(108),
88(108), 20(144), 116(144), 32(216), 176(216) ]

gap> Permutation(kappa,P3);
(1,5,9,13,6,11,2)(3,7,10,14,8,12,4)
gap> P4 := AsUnionOfFewClasses(P[4]);
[ 14(96), 15(96), 78(96), 79(96), 22(144), 23(144), 118(144), 119(144),
34(216), 35(216), 178(216), 179(216), 44(288), 236(288), 52(324),
268(324), 68(432), 356(432), 104(648), 536(648) ]

gap> Permutation(kappa,P4);
(1,5,9,15,19,10,17,6,13,2)(3,7,11,16,20,12,18,8,14,4)
gap> List(P,S->Set(List(Intersection([1..12ˆ4],S),n->Length(Cycle(kappa,n)))));
[ [ 1 ], [ 4 ], [ 7 ], [ 10 ] ]
gap> Set(List(Intersection([1..12ˆ4],Difference(Integers,Union(P))),
> n->Length(Cycle(kappa,n))));
[ 13, 16, 19, 22, 25, 28, 31, 34, 37, 40 ]

Finally, the permutationkappa should be factored into involutions (this time “by hand”, for purposes
of illustration):

Example

gap> elm1 := kappa;
kappa
gap> Multpk(elm1,2,1)ˆelm1;
8(12)
gap> Multpk(elm1,2,-1)ˆelm1;
4(6)
gap> fact1 := ClassTransposition(4,6,8,12);;
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Example

gap> elm2 := elm1/fact1;
<bijective rcwa mapping of Z with modulus 12>
gap> Display(elm2);

Bijective rcwa mapping of Z with modulus 12

n mod 12 | nˆf
------------------------------------+------------------------------------

0 1 4 5 9 | n
2 6 10 | 3n + 2
3 7 11 | n - 1
8 | (n + 1)/3

gap> Multpk(elm2,3,1)ˆelm2;
8(12)
gap> Multpk(elm2,3,-1)ˆelm2;
3(4)
gap> fact2 := ClassTransposition(3,4,8,12);;
gap> elm3 := elm2/fact2;
<bijective rcwa mapping of Z with modulus 4>
gap> Display(elm3);

Bijective rcwa mapping of Z with modulus 4

n mod 4 | nˆf
------------------------------------+------------------------------------
0 1 | n
2 | n + 1
3 | n - 1

gap> fact3 := ClassTransposition(2,4,3,4);;
gap> elm4 := elm3/fact3;
IdentityMapping( Integers )
gap> kappafacts := [ fact3, fact2, fact1 ];
[ ClassTransposition(2,4,3,4), ClassTransposition(3,4,8,12),
ClassTransposition(4,6,8,12) ]

gap> kappa = Product(kappafacts);
true
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5.7 An abelian rcwa group over a polynomial ring

In this section, a wild rcwa group over GF(4)[x] should be invstigated, which happens to be abelian.
Of course in general, rcwa groups also over this ring are usually far from being abelian (see below).
We start by defining this group:

Example

gap> x := Indeterminate(GF(4),1);; SetName(x,"x");
gap> R := PolynomialRing(GF(4),1);
GF(2ˆ2)[x]
gap> e := One(GF(4));;
gap> p := xˆ2 + x + e;; q := xˆ2 + e;;
gap> r := xˆ2 + x + Z(4);; s := xˆ2 + x + Z(4)ˆ2;;
gap> cg := List( AllResidues(R,xˆ2), pol -> [ p, p * pol mod q, q ] );;
gap> ch := List( AllResidues(R,xˆ2), pol -> [ r, r * pol mod s, s ] );;
gap> g := RcwaMapping( R, q, cg );
<rcwa mapping of GF(2ˆ2)[x] with modulus xˆ2+Z(2)ˆ0>
gap> h := RcwaMapping( R, s, ch );
<rcwa mapping of GF(2ˆ2)[x] with modulus xˆ2+x+Z(2ˆ2)ˆ2>
gap> List([g,h],Order);
[ infinity, infinity ]
gap> List([g,h],IsTame);
[ false, false ]
gap> G := Group(g,h);
<rcwa group over GF(2ˆ2)[x] with 2 generators>
gap> IsAbelian(G);
true

Now we compute the action of the groupG on one of its orbits, and make some statistics of the orbits
of G containing polynomials of degree less than 4:

Example

gap> orb := Orbit(G,xˆ5);
[ xˆ5, xˆ5+xˆ4+xˆ2+Z(2)ˆ0, xˆ5+xˆ3+xˆ2+Z(2ˆ2)*x+Z(2)ˆ0, xˆ5+xˆ3,
xˆ5+xˆ4+xˆ3+xˆ2+Z(2ˆ2)ˆ2*x+Z(2ˆ2)ˆ2, xˆ5+x, xˆ5+xˆ4+xˆ3,
xˆ5+xˆ2+Z(2ˆ2)ˆ2*x, xˆ5+xˆ4+xˆ2+x, xˆ5+xˆ3+xˆ2+Z(2ˆ2)ˆ2*x+Z(2)ˆ0,
xˆ5+xˆ4+Z(2ˆ2)*x+Z(2ˆ2), xˆ5+xˆ3+x, xˆ5+xˆ4+xˆ3+xˆ2+Z(2ˆ2)*x+Z(2ˆ2),
xˆ5+xˆ4+xˆ3+x+Z(2)ˆ0, xˆ5+xˆ2+Z(2ˆ2)*x, xˆ5+xˆ4+Z(2ˆ2)ˆ2*x+Z(2ˆ2)ˆ2 ]

gap> H := Action(G,orb);
Group([ (1,2,4,7,6,9,12,14)(3,5,8,11,10,13,15,16),
(1,3,6,10)(2,5,9,13)(4,8,12,15)(7,11,14,16) ])

gap> IsAbelian(H); # check ...
true
gap> Exponent(H);
8
gap> Collected(List(ShortOrbits(G,AllResidues(R,xˆ4),100),Length));
[ [ 1, 4 ], [ 2, 6 ], [ 4, 12 ], [ 8, 24 ] ]



RCWA 66

Changing the generators a little causes the group structure to change a lot:
Example

gap> cg[1][2] := cg[1][2] + (xˆ2 + e) * p * q;;
gap> ch[7][2] := ch[7][2] + x * r * s;;
gap> g := RcwaMapping( R, q, cg );; h := RcwaMapping( R, s, ch );;
gap> G := Group(g,h);
<rcwa group over GF(2ˆ2)[x] with 2 generators>
gap> orb := Orbit(G,Zero(R));;
gap> Length(orb);
87
gap> Collected(List(orb,DegreeOfLaurentPolynomial));
[ [ 1, 2 ], [ 2, 4 ], [ 3, 16 ], [ 4, 64 ], [ infinity, 1 ] ]
gap> H := Action(G,orb);
<permutation group with 2 generators>
gap> IsNaturalAlternatingGroup(H);
true
gap> orb := Orbit(G,xˆ6);;
gap> Length(orb);
512
gap> H := Action(G,orb);
<permutation group with 2 generators>
gap> IsNaturalSymmetricGroup(H) or IsNaturalAlternatingGroup(H);
false
gap> blk := Blocks(H,[1..512]);;
gap> List(blk,Length);
[ 128, 128, 128, 128 ]
gap> Action(H,blk,OnSets);
Group([ (1,2)(3,4), (1,3)(2,4) ])

Thus the modified group has a quotient isomorphic to the alternating group of degree 87, and a quotient
isomorphic to some wreath product or a subgroup thereof acting transitively, but not primitively on
512 points.

5.8 A tame group generated by commutators of wild permutations

In this section, we have a look at 3 wild rcwa mappings whose commutators generate tame groups:
Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);;
gap> b := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);;
gap> c := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,11,4]]);;
gap> SetName(a,"a"); SetName(b,"b"); SetName(c,"c");
gap> List([a,b,c],IsTame);
[ false, false, false ]
gap> ab := Comm(a,b);; ac := Comm(a,c);; bc := Comm(b,c);;
gap> SetName(ab,"[a,b]"); SetName(ac,"[a,c]"); SetName(bc,"[b,c]");
gap> List([ab,ac,bc],Order);
[ 6, 6, 12 ]
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Now we would like to have a look at [a,b] ...
Example

gap> Display(ab);

Bijective rcwa mapping of Z with modulus 18, of order 6

n mod 18 | nˆ[a,b]
------------------------------------+------------------------------------

0 2 3 8 9 11 12 17 | n
1 10 | 2n - 5
4 7 13 16 | n + 3
5 14 | 2n - 4
6 | (n + 2)/2
15 | (n - 5)/2

... form the group generated by [a,b] and [a,c ] and compute its action on one of its orbits:
Example

gap> G := Group(ab,ac);
<rcwa group over Z with 2 generators>
gap> orb := Orbit(G,1);
[ -15, -12, -7, -6, -5, -4, -3, -2, -1, 1 ]
gap> H := Action(G,orb);
Group([ (2,5,8,10,7,6), (1,3,6,9,4,5) ])
gap> Size(H);
3628800
gap> Size(G); # G acts faithfully on orb.
3628800

Hence the groupG is isomorphic to the symmetric group on 10 points and acts faithfully on the orbit
containing 1. Another question is which groups arise if we take as generators eitherab , ac or bc and
the involution which maps any integer to its additive inverse:

Example

gap> t := ClassReflection(0,1);;
gap> Display(t);
Bijective rcwa mapping of Z: n -> -n
gap> G := Group(ab,t);
<rcwa group over Z with 2 generators>
gap> Size(G);
7257600
gap> phi := IsomorphismPermGroup(G);
[ [a,b], ClassReflection(0,1) ] ->
[ (1,36,12,27,9,15)(2,34,10,25,7,13)(3,35,11,26,8,14),
(1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(20,21)(22,

36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30) ]
gap> StructureDescription(Image(phi));
"C2 x S10"



RCWA 68

Thus the group generated byab andt is isomorphic to C2×S10 . The next group is an extension of
a perfect group of order 960:

Example

gap> G := Group(ac,t);;
gap> Size(G);
3840
gap> H := Image(IsomorphismPermGroup(G));;
gap> P := DerivedSubgroup(H);;
gap> Size(P);
960
gap> IsPerfect(P);
true
gap> PerfectGroup(PerfectIdentification(P));
A5 2ˆ4’

The last group is infinite:
Example

gap> G := Group(bc,t);;
gap> Size(G);
infinity
gap> Order(bc*t);
infinity
gap> Modulus(G);
18
gap> RespectedPartition(G);
[ 1(9), 2(9), 4(9), 5(9), 7(9), 8(9), 0(18), 3(18), 6(18), 9(18),
12(18), 15(18) ]

gap> ActionOnRespectedPartition(G);
Group([ (1,5,8,2,4,12)(3,9,6,11), (1,6)(2,5)(3,4)(8,12)(9,11) ])
gap> StructureDescription(last);
"S10"
gap> RankOfKernelOfActionOnRespectedPartition(G);
9
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5.9 Checking for solvability

Is the group generated by the permutationsa andb from the last paragraph solvable?
This group is wild. Presently there is no general method available for testing wild rcwa groups

for solvability. But nevertheless, for the given group we can obtain a negative answer to this question.
The idea is to find a subgroupU which acts on a finite setS of integers, and which induces onS a
non-solvable finite permutation group:

Example

gap> a := RcwaMapping([[3,0,2],[3, 1,4],[3,0,2],[3,-1,4]]);; SetName(a,"a");
gap> b := RcwaMapping([[3,0,2],[3,13,4],[3,0,2],[3,-1,4]]);; SetName(b,"b");
gap> G := Group(a,b);;
gap> ShortOrbits(Group(Comm(a,b)),[-10..10],100);
[ [ -10 ], [ -9 ], [ -30, -21, -14, -13, -11, -8 ], [ -7 ], [ -6 ],
[ -12, -5, -4, -3, -2, 1 ], [ -1 ], [ 0 ], [ 2 ], [ 3 ],
[ 4, 5, 6, 7, 10, 15 ], [ 8 ], [ 9 ] ]

gap> S := [ 4, 5, 6, 7, 10, 15 ];;
gap> Cycle(Comm(a,b),4);
[ 4, 7, 10, 15, 5, 6 ]
gap> elm := RepresentativeAction(G,S,Permuted(S,(1,4)),OnTuples);
<bijective rcwa mapping of Z with modulus 81>
gap> List(S,n->nˆelm);
[ 7, 5, 6, 4, 10, 15 ]
gap> U := Group(Comm(a,b),elm);
<rcwa group over Z with 2 generators>
gap> Action(U,S);
Group([ (1,4,5,6,2,3), (1,4) ])
gap> IsNaturalSymmetricGroup(last);
true

Thus the subgroupU induces onS a natural symmetric group of degree 6. Therefore the groupG is not
solvable, as claimed. We conclude this example by factoring the group elementelm into generators:

Example

gap> F := FreeGroup("a","b");
<free group on the generators [ a, b ]>
gap> RepresentativeActionPreImage(G,S,Permuted(S,(1,4)),OnTuples,F);
aˆ-2*bˆ-2*a*b*aˆ-1*b*a*bˆ-2*a
gap> aˆ-2*bˆ-2*a*b*aˆ-1*b*a*bˆ-2*a = elm;
true
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5.10 Some examples over (semi)localizations of the integers

We start with something one can observe when trying to “transfer” an rcwa mapping from the ring of
integers to one of its localizations:

Example

gap> a2 := LocalizedRcwaMapping(a,2);
<rcwa mapping of Z_( 2 ) with modulus 4>
gap> IsSurjective(a2); # As expected
true
gap> IsInjective(a2); # Why not??
false
gap> 0ˆa2;
0
gap> (1/3)ˆa2; # That’s the reason!
0

The above can also be explained easily by pointing out that the modulus of the inverse ofa is 3, and
that 3 is a unit ofZ(2). Moving toZ(2,3) solves this problem:

Example

gap> a23 := SemilocalizedRcwaMapping(a,[2,3]);
<rcwa mapping of Z_( 2, 3 ) with modulus 4>
gap> IsBijective(a23);
true

We get additional finite cycles, e.g.:
Example

gap> List(ShortOrbits(Group(a23),[0..50]/5,50),orb->Cycle(a23,orb[1]));
[ [ 0 ], [ 1/5, 2/5, 3/5 ],
[ 4/5, 6/5, 9/5, 8/5, 12/5, 18/5, 27/5, 19/5, 13/5, 11/5, 7/5 ],
[ 1 ], [ 2, 3 ], [ 14/5, 21/5, 17/5 ],
[ 16/5, 24/5, 36/5, 54/5, 81/5, 62/5, 93/5, 71/5, 52/5, 78/5, 117/5,

89/5, 68/5, 102/5, 153/5, 116/5, 174/5, 261/5, 197/5, 149/5,
113/5, 86/5, 129/5, 98/5, 147/5, 109/5, 83/5, 61/5, 47/5, 34/5,
51/5, 37/5, 29/5, 23/5 ], [ 4, 6, 9, 7, 5 ] ]

gap> List(last,Length);
[ 1, 3, 11, 1, 2, 3, 34, 5 ]
gap> List(ShortOrbits(Group(a23),[0..50]/7,50),orb->Cycle(a23,orb[1]));
[ [ 0 ], [ -1/7, 1/7 ], [ 2/7, 3/7, 4/7, 6/7, 9/7, 5/7 ], [ 1 ],
[ 2, 3 ], [ 4, 6, 9, 7, 5 ] ]

gap> List(last,Length);
[ 1, 2, 6, 1, 2, 5 ]
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But the group structure remains invariant under the “transfer” of a group with prime set{2,3} from Z
to Z(2,3):

Example

gap> b23 := SemilocalizedRcwaMapping(b,[2,3]);;
gap> c23 := SemilocalizedRcwaMapping(c,[2,3]);;
gap> ab23 := Comm(a23,b23);
<rcwa mapping of Z_( 2, 3 ) with modulus 18>
gap> ac23 := Comm(a23,c23);
<rcwa mapping of Z_( 2, 3 ) with modulus 18>
gap> G := Group(ab23,ac23);
<rcwa group over Z_( 2, 3 ) with 2 generators>
gap> S := Intersection(Enumerator(Rationals){[1..128]},Z_pi([2,3]));
[ -10, -9, -8, -7, -6, -5, -4, -3, -2, -9/5, -8/5, -10/7, -7/5, -9/7,
-6/5, -8/7, -1, -6/7, -4/5, -5/7, -3/5, -4/7, -3/7, -2/5, -2/7, -1/5,
-1/7, 0, 1/11, 1/7, 1/5, 2/7, 2/5, 3/7, 4/7, 3/5, 5/7, 4/5, 6/7, 1,
8/7, 6/5, 9/7, 7/5, 10/7, 8/5, 9/5, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]

gap> orbs := ShortOrbits(G,S,50);;
gap> List(orbs,Length);
[ 10, 1, 10, 1, 10, 10, 10, 1, 10, 10, 10, 10, 10, 10, 10, 1, 10, 10,
10, 1, 1, 10, 1 ]

gap> ForAll(orbs,orb->IsNaturalSymmetricGroup(Action(G,orb)));
true

“Transferring” a non-invertible rcwa mapping from the ring of integers to some of its
(semi)localizations can also turn it into an invertible one:

Example

gap> v := RcwaMapping([[6,0,1],[1,-7,2],[6,0,1],[1,-1,1],
> [6,0,1],[1, 1,2],[6,0,1],[1,-1,1]]);;
gap> SetName(v,"v");
gap> Display(v);

Rcwa mapping of Z with modulus 8

n mod 8 | nˆv
------------------------------------+------------------------------------
0 2 4 6 | 6n
1 | (n - 7)/2
3 7 | n - 1
5 | (n + 1)/2
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Example

gap> IsInjective(v);
true
gap> IsSurjective(v);
false
gap> Image(v);
Z \ 4(12) U 8(12)
gap> Difference(Integers,last);
4(12) U 8(12)
gap> v2 := LocalizedRcwaMapping(v,2);
<rcwa mapping of Z_( 2 ) with modulus 8>
gap> IsBijective(v2);
true
gap> Display(v2ˆ-1);

Bijective rcwa mapping of Z_( 2 ) with modulus 4

n mod 4 | nˆf
------------------------------------+------------------------------------
0 | 1/3 n / 2
1 | 2 n + 7
2 | n + 1
3 | 2 n - 1

gap> S := ResidueClass(Z_pi(2),2,0);; l := [S];;
gap> for i in [1..10] do Add(l,l[Length(l)]ˆv2); od;
gap> l; # Visibly v2 is wild ...
[ 0(2), 0(4), 0(8), 0(16), 0(32), 0(64), 0(128), 0(256), 0(512),
0(1024), 0(2048) ]

gap> w2 := RcwaMapping(Z_pi(2),[[1,0,2],[2,-1,1],[1,1,1],[2,-1,1]]);;
gap> v2w2 := Comm(v2,w2);; SetName(v2w2,"[v2,w2]"); v2w2ˆ-1;;
gap> Display(v2w2);

Bijective rcwa mapping of Z_( 2 ) with modulus 8

n mod 8 | nˆ[v2,w2]
------------------------------------+------------------------------------
0 3 4 7 | n
1 | n + 4
2 6 | 3 n
5 | n - 4

Again, viewed as an rcwa mapping of the integers the commutator given at the end of the example
would not be surjective.
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5.11 Twisting 257-cycles into an rcwa mapping with modulus 32

We define an rcwa mappingx of order 257 with modulus 32. The easiest way to construct such a
mapping is to prescribe a transition graph and then to assign suitable affine mappings to its vertices.

Example

gap> x := RcwaMapping(
> [[ 16, 2, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],
> [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],
> [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],
> [ 1, 16, 1], [ 16, 18, 1], [ 1, 16, 1], [ 16, 18, 1],
> [ 1, 0, 16], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],
> [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],
> [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 16, 18, 1],
> [ 1,-14, 1], [ 16, 18, 1], [ 1,-14, 1], [ 1,-31, 1]]);;
gap> SetName(x,"x"); Order(x);; Display(x);

Bijective rcwa mapping of Z with modulus 32, of order 257

n mod 32 | nˆx
------------------------------------+------------------------------------

0 | 16n + 2
1 3 5 7 9 11 13 15 17 19 21 |
23 25 27 29 | 16n + 18
2 4 6 8 10 12 14 | n + 16
16 | n/16
18 20 22 24 26 28 30 | n - 14
31 | n - 31

gap> Cycle(x,[1],0);
[ 0, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30, 16, 1, 34, 50,
36, 52, 38, 54, 40, 56, 42, 58, 44, 60, 46, 62, 48, 3, 66, 82, 68, 84,
70, 86, 72, 88, 74, 90, 76, 92, 78, 94, 80, 5, 98, 114, 100, 116, 102,
118, 104, 120, 106, 122, 108, 124, 110, 126, 112, 7, 130, 146, 132,
148, 134, 150, 136, 152, 138, 154, 140, 156, 142, 158, 144, 9, 162,
178, 164, 180, 166, 182, 168, 184, 170, 186, 172, 188, 174, 190, 176,
11, 194, 210, 196, 212, 198, 214, 200, 216, 202, 218, 204, 220, 206,
222, 208, 13, 226, 242, 228, 244, 230, 246, 232, 248, 234, 250, 236,
252, 238, 254, 240, 15, 258, 274, 260, 276, 262, 278, 264, 280, 266,
282, 268, 284, 270, 286, 272, 17, 290, 306, 292, 308, 294, 310, 296,
312, 298, 314, 300, 316, 302, 318, 304, 19, 322, 338, 324, 340, 326,
342, 328, 344, 330, 346, 332, 348, 334, 350, 336, 21, 354, 370, 356,
372, 358, 374, 360, 376, 362, 378, 364, 380, 366, 382, 368, 23, 386,
402, 388, 404, 390, 406, 392, 408, 394, 410, 396, 412, 398, 414, 400,
25, 418, 434, 420, 436, 422, 438, 424, 440, 426, 442, 428, 444, 430,
446, 432, 27, 450, 466, 452, 468, 454, 470, 456, 472, 458, 474, 460,
476, 462, 478, 464, 29, 482, 498, 484, 500, 486, 502, 488, 504, 490,
506, 492, 508, 494, 510, 496, 31 ]

gap> Length(last);
257
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5.12 The behaviour of the moduli of powers

In this section some examples are given, which illustrate how different the series of the moduli of
powers of a given rcwa mapping of the integers can look like.

Example

gap> List([0..4],i->Modulus(aˆi));
[ 1, 4, 16, 64, 256 ]
gap> List([0..6],i->Modulus(abˆi));
[ 1, 18, 18, 18, 18, 18, 1 ]
gap> g:=RcwaMapping([[2,2,1],[1, 4,1],[1,0,2],[2,2,1],[1,-4,1],[1,-2,1]]);;
gap> h:=RcwaMapping([[2,2,1],[1,-2,1],[1,0,2],[2,2,1],[1,-1,1],[1, 1,1]]);;
gap> List([0..7],i->Modulus(gˆi));
[ 1, 6, 12, 12, 12, 12, 6, 1 ]
gap> List([1..18],i->Modulus((gˆ3*h)ˆi));
[ 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6, 12, 6, 12, 12, 12, 6 ]
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> List([0..3],i->Modulus(uˆi));
[ 1, 5, 25, 125 ]
gap> v6 := RcwaMapping([[-1,2,1],[1,-1,1],[1,-1,1]]);;
gap> List([0..6],i->Modulus(v6ˆi));
[ 1, 3, 3, 3, 3, 3, 1 ]
gap> w8 := RcwaMapping([[-1,3,1],[1,-1,1],[1,-1,1],[1,-1,1]]);;
gap> List([0..8],i->Modulus(w8ˆi));
[ 1, 4, 4, 4, 4, 4, 4, 4, 1 ]
gap> z := RcwaMapping([[2, 1, 1],[1, 1,1],[2, -1,1],[2, -2,1],
> [1, 6, 2],[1, 1,1],[1, -6,2],[2, 5,1],
> [1, 6, 2],[1, 1,1],[1, 1,1],[2, -5,1],
> [1, 0, 1],[1, -4,1],[1, 0,1],[2,-10,1]]);;
gap> SetName(z,"z");
gap> IsBijective(z);
true
gap> Display(z);

Bijective rcwa mapping of Z with modulus 16

n mod 16 | nˆz
------------------------------------+------------------------------------

0 | 2n + 1
1 5 9 10 | n + 1
2 | 2n - 1
3 | 2n - 2
4 8 | (n + 6)/2
6 | (n - 6)/2
7 | 2n + 5
11 | 2n - 5
12 14 | n
13 | n - 4
15 | 2n - 10
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Example

gap> List([0..25],i->Modulus(zˆi));
[ 1, 16, 32, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256,
256, 256, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024 ]

gap> e1 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[2,0,1]]);;
gap> e2 := RcwaMapping([[1,4,1],[2,0,1],[1,0,2],[1,0,1],
> [1,4,1],[2,0,1],[1,0,1],[1,0,1]]);;
gap> List([e1,e2],Order);
[ infinity, infinity ]
gap> List([1..20],i->Modulus(e1ˆi));
[ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 ]
gap> List([1..20],i->Modulus(e2ˆi));
[ 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4 ]
gap> SetName(e1,"e1"); SetName(e2,"e2"); Display(e2);

Bijective rcwa mapping of Z with modulus 8, of order infinity

n mod 8 | nˆe2
------------------------------------+------------------------------------
0 4 | n + 4
1 5 | 2n
2 | n/2
3 6 7 | n

gap> e2ˆ2 = Restriction(RcwaMapping([[1,2,1]]),RcwaMapping([[4,0,1]]));
true

5.13 Images and preimages under the Collatz mapping

We have a look at the images of the residue class 1(2) under powers of the Collatz mapping.
Example

gap> T := RcwaMapping([[1,0,2],[3,1,2]]);;
gap> S0 := ResidueClass(Integers,2,1);;
gap> S1 := S0ˆT;
2(3)
gap> S2 := S1ˆT;
1(3) U 8(9)
gap> S3 := S2ˆT;
2(3) U 4(9)
gap> S4 := S3ˆT;
Z \ 0(3) U 5(9)
gap> S5 := S4ˆT;
Z \ 0(3) U 7(9)
gap> S6 := S5ˆT;
Z \ 0(3)
gap> S7 := S6ˆT;
Z \ 0(3)
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Thus the image gets stable after applying the mappingT for the 6th time. HenceT6 maps the residue
class 1(2) surjectively onto the union of the residue classes 1(3) and 2(3), whichT stabilizes setwise.
Now we would like to determine the preimages of 1(3) and 2(3) in 1(2) underT6. The residue class
1(2) has to be the disjoint union of these sets.

Example

gap> U := Intersection(PreImage(Tˆ6,ResidueClass(Integers,3,1)),S0);
<union of 11 residue classes (mod 64)>
gap> V := Intersection(PreImage(Tˆ6,ResidueClass(Integers,3,2)),S0);
<union of 21 residue classes (mod 64)>
gap> AsUnionOfFewClasses(U);
[ 1(64), 5(64), 7(64), 9(64), 21(64), 23(64), 29(64), 31(64), 49(64),
51(64), 59(64) ]

gap> AsUnionOfFewClasses(V);
[ 3(32), 11(32), 13(32), 15(32), 25(32), 17(64), 19(64), 27(64), 33(64),
37(64), 39(64), 41(64), 53(64), 55(64), 61(64), 63(64) ]

gap> Union(U,V) = S0 and Intersection(U,V) = []; # consistency check
true

The images of the residue class 0(3) under powers ofT look as follows:
Example

gap> S0 := ResidueClass(Integers,3,0);
0(3)
gap> S1 := S0ˆT;
0(3) U 5(9)
gap> S2 := S1ˆT;
0(3) U 5(9) U 7(9) U 8(27)
gap> S3 := S2ˆT;
<union of 20 residue classes (mod 27)>
gap> S4 := S3ˆT;
<union of 73 residue classes (mod 81)>
gap> S5 := S4ˆT;
Z \ 10(81) U 37(81)
gap> S6 := S5ˆT;
Integers
gap> S7 := S6ˆT;
Integers

Thus every integer is the image of a multiple of 3 underT6. This means that it would be sufficient to
prove the 3n+1 Conjecture for multiples of 3. We can obtain the corresponding result for multiples
of 5 as follows:

Example

gap> S := [ResidueClass(Integers,5,0)];
[ 0(5) ]
gap> for i in [1..12] do Add(S,S[i]ˆT); od;
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Example

gap> for s in S do View(s); Print("\n"); od;
0(5)
0(5) U 8(15)
0(5) U 4(15) U 8(15)
0(5) U 2(15) U 4(15) U 8(15) U 29(45)
<union of 73 residue classes (mod 135)>
<union of 244 residue classes (mod 405)>
<union of 784 residue classes (mod 1215)>
<union of 824 residue classes (mod 1215)>
<union of 2593 residue classes (mod 3645)>
<union of 2647 residue classes (mod 3645)>
<union of 2665 residue classes (mod 3645)>
<union of 2671 residue classes (mod 3645)>
1(3) U 2(3) U 0(15)
gap> Union(S[13],ResidueClass(Integers,3,0));
Integers
gap> List(S,Si->Float(Density(Si)));
[ 0.2, 0.266667, 0.333333, 0.422222, 0.540741, 0.602469, 0.645267,
0.678189, 0.711385, 0.7262, 0.731139, 0.732785, 0.733333 ]

5.14 A group which acts 4-transitively on the positive integers

In this section, we would like to show that the groupG generated by the two wild mappings
Example

gap> a := RcwaMapping([[3,0,2],[3,1,4],[3,0,2],[3,-1,4]]);;
gap> u := RcwaMapping([[3,0,5],[9,1,5],[3,-1,5],[9,-2,5],[9,4,5]]);;
gap> SetName(a,"a"); SetName(u,"u"); G := Group(a,u);;

which we have already investigated in earlier examples acts 4-transitively on the set of positive inte-
gers. Obviously, it acts on the set of positive integers. First we show that this action is transitive. We
start by checking in which residue classes sufficiently large positive integers are mapped to smaller
ones by a suitable group element:

Example

gap> List([a,aˆ-1,u,uˆ-1],DecreasingOn);
[ 1(2), 0(3), 0(5) U 2(5), 2(3) ]
gap> Union(last);
Z \ 4(30) U 16(30) U 28(30)

We see that we cannot always choose such a group element from the set of generators and their
inverses – otherwise the union would beIntegers.
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Example

gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2],DecreasingOn);
[ 1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9) ]

gap> Union(last); # Still not enough ...
Z \ 4(90) U 58(90) U 76(90)
gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2,a*u,u*a,(a*u)ˆ-1,(u*a)ˆ-1],
> DecreasingOn);
[ 1(2), 0(3), 0(5) U 2(5), 2(3), 1(8) U 7(8), 0(3) U 2(9) U 7(9),
0(25) U 12(25) U 17(25) U 20(25), 2(3) U 1(9) U 3(9),
3(5) U 0(10) U 7(20) U 9(20), 0(5) U 2(5), 2(3), 3(9) U 4(9) U 8(9) ]

gap> Union(last); # ... but that’s it!
Integers

Finally, we have to deal with “small” integers. We use the notation for the coefficients of rcwa
mappings introduced at the beginning of this manual. Letcr(m) > ar(m). Then we easily see that
(ar(m)n+ br(m))/cr(m) > n impliesn < br(m)/(cr(m)−ar(m)). Thus we can restrict our considerations
to integersn < bmax, wherebmax is the largest second entry of a coefficient triple of one of the group
elements in our list:

Example

gap> List([a,aˆ-1,u,uˆ-1,aˆ2,aˆ-2,uˆ2,uˆ-2,a*u,u*a,(a*u)ˆ-1,(u*a)ˆ-1],
> f->Maximum(List(Coefficients(f),c->c[2])));
[ 1, 1, 4, 2, 7, 7, 56, 28, 25, 17, 17, 11 ]
gap> Maximum(last);
56

Thus this upper bound is 56. The rest is easy – all we have to do is to check that the orbit containing 1
contains also all other positive integers less than or equal to 56:

Example

gap> S := [1];;
gap> while not IsSubset(S,[1..56]) do
> S := Union(S,Sˆa,Sˆu,Sˆ(aˆ-1),Sˆ(uˆ-1));
> od;
gap> IsSubset(S,[1..56]);
true

Checking 2-transitivity is computationally harder, and in the sequel we will omit some steps which
are in practice needed to find out “what to do”. The approach taken here is to show that the stabilizer
of 1 in G acts transitively on the set of positive integers greater than 1. We do this by similar means
as used above for showing the transitivity of the action ofG on the positive integers. We start by
determining all products of at most 5 generators and their inverses, which stabilize 1 (taking at most
4-generator products would not suffice!):
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Example

gap> gens := [a,u,aˆ-1,uˆ-1];;
gap> tups := Concatenation(List([1..5],k->Tuples([1..4],k)));;
gap> Length(tups);
1364
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
484
gap> stab := [];;
gap> for tup in tups do
> n := 1;
> for i in tup do n := nˆgens[i]; od;
> if n = 1 then Add(stab,tup); fi;
> od;
gap> Length(stab);
118
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;
gap> ForAll(stabelm,elm->1ˆelm=1); # Check.
true

The resulting products have various different not quite small moduli:
Example

gap> List(stabelm,Modulus);
[ 4, 3, 16, 25, 9, 81, 64, 100, 108, 100, 25, 75, 27, 243, 324, 243,
256, 400, 144, 400, 100, 432, 324, 400, 80, 400, 625, 25, 75, 135,
150, 75, 225, 81, 729, 486, 729, 144, 144, 81, 729, 1296, 729, 6561,
1024, 1600, 192, 1600, 400, 576, 432, 1600, 320, 1600, 2500, 100, 100,
180, 192, 192, 108, 972, 1728, 972, 8748, 1600, 400, 320, 80, 1600,
2500, 300, 2500, 625, 625, 75, 675, 75, 75, 135, 405, 600, 120, 600,
1875, 75, 225, 405, 225, 225, 675, 243, 2187, 729, 2187, 216, 216,
243, 2187, 1944, 2187, 19683, 576, 144, 576, 432, 81, 81, 729, 2187,
5184, 324, 8748, 243, 2187, 19683, 26244, 19683 ]

gap> Lcm(last);
12597120000
gap> Collected(Factors(last));
[ [ 2, 10 ], [ 3, 9 ], [ 5, 4 ] ]

Similar as before, we determine for any of the above mappings the residue classes whose elements
larger than the largestbr(m) - coefficient of the respective mapping are mapped to smaller integers:
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Example

gap> decs := List(stabelm,DecreasingOn);;
gap> List(decs,Modulus);
[ 2, 3, 8, 25, 9, 9, 16, 100, 12, 50, 25, 75, 27, 81, 54, 81, 64, 400,
48, 200, 100, 72, 108, 400, 80, 200, 625, 25, 75, 45, 75, 75, 225, 81,
243, 81, 243, 144, 144, 81, 243, 216, 243, 243, 128, 1600, 64, 400,
400, 48, 144, 1600, 320, 400, 2500, 100, 100, 60, 96, 192, 108, 324,
144, 324, 972, 400, 400, 80, 80, 400, 2500, 100, 1250, 625, 625, 25,
75, 75, 75, 45, 135, 600, 120, 150, 1875, 75, 225, 135, 225, 225, 675,
243, 729, 243, 729, 108, 216, 243, 729, 162, 729, 2187, 144, 144, 144,
144, 81, 81, 243, 729, 1296, 324, 972, 243, 729, 2187, 1458, 2187 ]

gap> Lcm(last);
174960000

Since the least common multiple of the moduli of these unions of residue classes is as large as
174960000, directly forming their union and checking whether it is equal to the set of integers would
take relatively much time and memory. However, starting with the set of integers and subtracting the
above sets one-by-one in a suitably chosen order is cheap:

Example

gap> SortParallel(decs,stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial(k) mod Modulus(S1)=0)
> < First([1..100],k->Factorial(k) mod Modulus(S2)=0);
> end);
gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
0(2)
2(6) U 4(6)
<union of 8 residue classes (mod 30)>
<union of 19 residue classes (mod 90)>
<union of 114 residue classes (mod 720)>
<union of 99 residue classes (mod 720)>
<union of 57 residue classes (mod 720)>
<union of 54 residue classes (mod 720)>
<union of 41 residue classes (mod 720)>
<union of 35 residue classes (mod 720)>
<union of 8 residue classes (mod 720)>
4(720) U 94(720) U 148(720) U 238(720)
<union of 24 residue classes (mod 5760)>
<union of 72 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>
<union of 192 residue classes (mod 259200)>
<union of 168 residue classes (mod 259200)>
<union of 120 residue classes (mod 259200)>
<union of 96 residue classes (mod 259200)>
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<union of 72 residue classes (mod 259200)>
<union of 60 residue classes (mod 259200)>
<union of 48 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 12 residue classes (mod 259200)>
<union of 24 residue classes (mod 777600)>
<union of 12 residue classes (mod 777600)>
111604(194400) U 14404(777600) U 208804(777600)
[ ]

Similar as above, it remains to check that the “small” integers all lie in the orbit containing 2. Ob-
viously, it is sufficient to check that any integer greater than 2 is mapped to a smaller one by some
suitably chosen element of the stabilizer under consideration:

Example

gap> Maximum(List(stabelm{[1..maxind]},
> f->Maximum(List(Coefficients(f),c->c[2]))));
6581
gap> Filtered([3..6581],n->Minimum(List(stabelm,elm->nˆelm))>=n);
[ 4 ]

We have to treat 4 separately:
Example

gap> 1ˆ(u*a*uˆ2*aˆ-1*u);
1
gap> 4ˆ(u*a*uˆ2*aˆ-1*u);
3

Now we know that any positive integer greater than 1 lies in the same orbit under the action of the
stabilizer of 1 inG as 2, thus that this stabilizer acts transitively onN \ {1}. But this means that we
have established the 2-transitivity of the action ofG onN.

In the following, we essentially repeat the above steps to show that this action is indeed 3-
transitive:

Example

gap> tups := Concatenation(List([1..6],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> l := [1,2];
> for i in tup do l := List(l,n->nˆgens[i]); od;
> if l = [1,2] then Add(stab,tup); fi;
> od;
gap> Length(stab);
212
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Example

gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i])));;
gap> decs := List(stabelm,DecreasingOn);;
gap> SortParallel(decs,stabelm,function(S1,S2)
> return First([1..100],k->Factorial(k) mod Mod(S1)=0)
> < First([1..100],k->Factorial(k) mod Mod(S2)=0); end);
gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then break; fi;
> od;
Z \ 1(8) U 7(8)
<union of 151 residue classes (mod 240)>
<union of 208 residue classes (mod 720)>
<union of 51 residue classes (mod 720)>
<union of 45 residue classes (mod 720)>
<union of 39 residue classes (mod 720)>
<union of 33 residue classes (mod 720)>
<union of 23 residue classes (mod 720)>
<union of 19 residue classes (mod 720)>
<union of 17 residue classes (mod 720)>
<union of 16 residue classes (mod 720)>
<union of 14 residue classes (mod 720)>
<union of 8 residue classes (mod 720)>
<union of 7 residue classes (mod 720)>
238(360) U 4(720) U 148(720) U 454(720)
<union of 38 residue classes (mod 5760)>
<union of 37 residue classes (mod 5760)>
<union of 25 residue classes (mod 5760)>
<union of 21 residue classes (mod 5760)>
<union of 17 residue classes (mod 5760)>
<union of 16 residue classes (mod 5760)>
<union of 138 residue classes (mod 51840)>
<union of 48 residue classes (mod 51840)>
<union of 32 residue classes (mod 51840)>
<union of 20 residue classes (mod 51840)>
<union of 16 residue classes (mod 51840)>
<union of 68 residue classes (mod 259200)>
<union of 42 residue classes (mod 259200)>
<union of 32 residue classes (mod 259200)>
<union of 26 residue classes (mod 259200)>
<union of 25 residue classes (mod 259200)>
<union of 11 residue classes (mod 259200)>
<union of 10 residue classes (mod 259200)>
<union of 7 residue classes (mod 259200)>
13414(129600) U 2164(259200) U 66964(259200) U 228964(259200)
2164(259200) U 66964(259200) U 228964(259200)
[ ]
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Example

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->c[2]))));
515816
gap> smallnum := [4..515816];;
gap> for i in [1..Length(stabelm)] do
> smallnum := Filtered(smallnum,n->nˆstabelm[i]>=n);
> od;
gap> smallnum;
[ ]

The same for 4-transitivity:
Example

gap> tups := Concatenation(List([1..8],k->Tuples([1..4],k)));;
gap> tups := Filtered(tups,tup->ForAll([[1,3],[3,1],[2,4],[4,2]],
> l->PositionSublist(tup,l)=fail));;
gap> stab := [];;
gap> for tup in tups do
> l := [1,2,3];
> for i in tup do l := List(l,n->nˆgens[i]); od;
> if l = [1,2,3] then Add(stab,tup); fi;
> od;
gap> Length(stab);
528
gap> stabelm := [];;
gap> for i in [1..Length(stab)] do
> elm := One(G);
> for j in stab[i] do
> if Modulus(elm) > 10000 then elm := fail; break; fi;
> elm := elm * gens[j];
> od;
> if elm <> fail then Add(stabelm,elm); fi;
> od;
gap> Length(stabelm);
334
gap> decs := List(stabelm,DecreasingOn);;
gap> SortParallel(decs,stabelm,
> function(S1,S2)
> return First([1..100],k->Factorial(k) mod Modulus(S1) = 0)
> < First([1..100],k->Factorial(k) mod Modulus(S2) = 0);
> end);
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Example

gap> S := Integers;;
gap> for i in [1..Length(decs)] do
> S_old := S; S := Difference(S,decs[i]);
> if S <> S_old then ViewObj(S); Print("\n"); fi;
> if S = [] then maxind := i; break; fi;
> od;
Z \ 1(8) U 7(8)
<union of 46 residue classes (mod 72)>
<union of 20 residue classes (mod 72)>
4(18)
<union of 28 residue classes (mod 576)>
<union of 22 residue classes (mod 576)>
<union of 21 residue classes (mod 576)>
40(72) U 4(144) U 94(144) U 346(576) U 418(576)
<union of 16 residue classes (mod 576)>
<union of 15 residue classes (mod 576)>
4(144) U 94(144) U 346(576) U 418(576)
<union of 30 residue classes (mod 5184)>
<union of 26 residue classes (mod 5184)>
<union of 6 residue classes (mod 1296)>
<union of 504 residue classes (mod 129600)>
<union of 324 residue classes (mod 129600)>
<union of 282 residue classes (mod 129600)>
<union of 239 residue classes (mod 129600)>
<union of 218 residue classes (mod 129600)>
<union of 194 residue classes (mod 129600)>
<union of 154 residue classes (mod 129600)>
<union of 97 residue classes (mod 129600)>
<union of 85 residue classes (mod 129600)>
<union of 77 residue classes (mod 129600)>
<union of 67 residue classes (mod 129600)>
<union of 125 residue classes (mod 259200)>
<union of 108 residue classes (mod 259200)>
<union of 107 residue classes (mod 259200)>
<union of 101 residue classes (mod 259200)>
<union of 100 residue classes (mod 259200)>
<union of 84 residue classes (mod 259200)>
<union of 80 residue classes (mod 259200)>
<union of 76 residue classes (mod 259200)>
<union of 70 residue classes (mod 259200)>
<union of 66 residue classes (mod 259200)>
<union of 54 residue classes (mod 259200)>
<union of 53 residue classes (mod 259200)>
<union of 47 residue classes (mod 259200)>
<union of 43 residue classes (mod 259200)>
<union of 31 residue classes (mod 259200)>
<union of 24 residue classes (mod 259200)>
<union of 23 residue classes (mod 259200)>
<union of 13 residue classes (mod 259200)>
57406(129600) U 115006(129600) U 192676(259200) U 250276(259200)
57406(129600) U 192676(259200) U 250276(259200) U 374206(388800)
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57406(129600) U 192676(259200) U 250276(259200)
250276(259200) U 57406(388800) U 316606(388800) U 451876(777600)
316606(388800) U 451876(777600) U 509476(777600) U 768676(777600)
<union of 18 residue classes (mod 3110400)>
451876(777600) U 509476(777600) U 705406(777600) U 768676(777600) U
2649406(3110400)
451876(777600) U 705406(777600) U 768676(777600) U 2649406(3110400)
451876(777600) U 705406(777600) U 2649406(3110400)
705406(777600) U 2007076(3110400) U 2649406(3110400) U 2784676(3110400)
<union of 14 residue classes (mod 9331200)>
2260606(2332800) U 5759806(9331200) U 5895076(9331200) U 8227876(9331200)
4593406(6998400) U 15091006(27993600) U 17559076(27993600) U 24557476(
27993600)
<union of 14 residue classes (mod 83980800)>
18590206(20995200) U 24557476(83980800) U 45552676(83980800) U 71078206(
83980800)
[ ]
gap> Maximum(List(stabelm{[1..maxind]},
> f->Maximum(List(Coefficients(f),c->c[2]))));
58975
gap> smallnum := [5..58975];;
gap> for i in [1..maxind] do
> smallnum := Filtered(smallnum,n->nˆstabelm[i]>=n);
> od;
gap> smallnum;
[ ]

There is even some evidence that the degree of transitivity of the action ofG on the positive integers
is higher than 4:

Example

gap> phi := EpimorphismFromFreeGroup(G);
[ a, u ] -> [ a, u ]
gap> F := Source(phi);
<free group on the generators [ a, u ]>
gap> List([5..20],
> n->RepresentativeActionPreImage(G,[1,2,3,4,5],
> [1,2,3,4,n],OnTuples,F));
[ <identity ...>, aˆ-3*uˆ4*a*uˆ-2*aˆ2,
aˆ-2*u*aˆ-1*u*aˆ-1*u*aˆ-1*u*aˆ-1*uˆ-1*a, aˆ4*uˆ-2*aˆ-4, aˆ-1*uˆ-4*a,
uˆ2*aˆ-1*uˆ2*aˆ-1*uˆ-2, uˆ-2*aˆ-2*uˆ4, aˆ-1*uˆ2*a, aˆ-1*uˆ-6*a,
aˆ2*uˆ4*aˆ2*uˆ2, uˆ-4*a*uˆ-2*aˆ-3, aˆ-1*uˆ-2*aˆ-3*uˆ4*aˆ2,
aˆ3*uˆ2*a*uˆ2, a*uˆ-4*a*uˆ-4*aˆ-2, uˆ-2*a*uˆ2*a*uˆ-2, uˆ-4*aˆ2*uˆ2 ]
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5.15 A group which acts 3-transitively, but not 4-transitively on Z

In this section, we would like to show that the wild groupG generated by the two tame mappings
n 7→ n+1 andτ1(2),0(4) acts 3-transitively, but not 4-transitively on the set of integers.

Example

gap> G := Group(ClassShift(0,1),ClassTransposition(1,2,0,4));
<rcwa group over Z with 2 generators>
gap> IsTame(G);
false
gap> (G.1ˆ-2*G.2)ˆ3*(G.1ˆ2*G.2)ˆ3; # G <> the free product C_infty * C_2.
IdentityMapping( Integers )
gap> Display(G);

Wild rcwa group over Z, generated by

[
Tame bijective rcwa mapping of Z: n -> n + 1

Bijective rcwa mapping of Z with modulus 4, of order 2

n mod 4 | nˆClassTransposition(1,2,0,4)
------------------------------------+------------------------------------
0 | (n + 2)/2
1 3 | 2n - 2
2 | n

]

This group acts transitively onZ, since already the cyclic group generated by the first of the two
generators does so. Next we have to show that it acts 2-transitively. We essentially proceed as in the
example in the previous section, by checking that the stabilizer of 0 acts transitively onZ\{0}.

Example

gap> gens := [ClassShift(0,1)ˆ-1,ClassTransposition(1,2,0,4),ClassShift(0,1)];;
gap> tups := Concatenation(List([1..6],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
189
gap> stab := [];;
gap> for tup in tups do
> n := 0;
> for i in tup do n := nˆgens[i+2]; od;
> if n = 0 then Add(stab,tup); fi;
> od;
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;
gap> Collected(List(stabelm,Modulus));
[ [ 4, 6 ], [ 8, 4 ], [ 16, 3 ] ]
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Example

gap> decs := List(stabelm,DecreasingOn);
[ 0(4), 3(4), 0(4), 3(4), 2(4), 0(4), 4(8), 2(4), 2(4), 0(4), 1(4),
0(8), 3(8) ]

gap> Union(decs);
Integers

Similar as in the previous section, it remains to check that the integers with “small” absolute value all
lie in the orbit containing 1 under the action of the stabilizer of 0:

Example

gap> Maximum(List(stabelm,f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));
21
gap> S := [1];;
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-21..21],[0])); # Not yet ..
false
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-21..21],[0])); # ... but now!
true

Now we have to check for 3-transitivity. Since we cannot find for every residue class an element of
the pointwise stabilizer of{0,1} which properly divides its elements, we also have to take additions
and subtractions into consideration. Since the moduli of all of our stabilizer elements are quite small,
simply looking at sets of representatives is cheap:

Example

gap> tups := Concatenation(List([1..10],k->Tuples([-1,0,1],k)));;
gap> tups := Filtered(tups,tup->ForAll([[0,0],[-1,1],[1,-1]],
> l->PositionSublist(tup,l)=fail));;
gap> Length(tups);
3069
gap> stab := [];;
gap> for tup in tups do
> l := [0,1];
> for i in tup do l := List(l,n->nˆgens[i+2]); od;
> if l = [0,1] then Add(stab,tup); fi;
> od;
gap> Length(stab);
10
gap> stabelm := List(stab,tup->Product(List(tup,i->gens[i+2])));;
gap> Maximum(List(stabelm,Modulus));
8
gap> Maximum(List(stabelm,
> f->Maximum(List(Coefficients(f),c->AbsInt(c[2])))));
8
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Example

gap> decsp := List(stabelm,elm->Filtered([9..16],n->nˆelm<n));
[ [ 9, 13 ], [ 10, 12, 14, 16 ], [ 12, 16 ], [ 9, 13 ], [ 12, 16 ],
[ 9, 11, 13, 15 ], [ 9, 11, 13, 15 ], [ 12, 16 ], [ 12, 16 ],
[ 9, 11, 13, 15 ] ]

gap> Union(decsp);
[ 9, 10, 11, 12, 13, 14, 15, 16 ]
gap> decsm := List(stabelm,elm->Filtered([-16..-9],n->nˆelm>n));
[ [ -15, -13, -11, -9 ], [ -16, -12 ], [ -16, -12 ], [ -15, -11 ],
[ -16, -14, -12, -10 ], [ -15, -11 ], [ -15, -11 ],
[ -16, -14, -12, -10 ], [ -16, -14, -12, -10 ], [ -15, -11 ] ]

gap> Union(decsm);
[ -16, -15, -14, -13, -12, -11, -10, -9 ]
gap> S := [2];;
gap> for elm in stabelm do S := Union(S,Sˆelm,Sˆ(elmˆ-1)); od;
gap> IsSubset(S,Difference([-8..8],[0,1]));
true

At this point we have established 3-transitivity. It remains to check that the groupG does not act
4-transitively. We do this by checking that it is not transitive on 4-tuples (mod 4). Sincen mod 8
determines the image ofn under a generator ofG (mod 4), it suffices to compute (mod 8):

Example

gap> orb := [[0,1,2,3]];;
gap> extend := function ()
> local gen;
> for gen in gens do
> orb := Union(orb,List(orb,l->List(l,n->nˆgen) mod 8));
> od;
> end;;
gap> repeat
> old := ShallowCopy(orb);
> extend(); Print(Length(orb),"\n");
> until orb = old;
7
27
97
279
573
916
1185
1313
1341
1344
1344
gap> Length(Set(List(orb,l->l mod 4)));
120
gap> last < 4ˆ4;
true
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This shows thatG acts not 4-transitively onZ. The corresponding calculation for 3-tuples looks as
follows:

Example

gap> orb := [[0,1,2]];;
gap> repeat
> old := ShallowCopy(orb);
> extend(); Print(Length(orb),"\n");
> until orb = old;
7
27
84
207
363
459
503
512
512
gap> Length(Set(List(orb,l->l mod 4)));
64
gap> last = 4ˆ3;
true

Needless to say that the latter kind of argumentation is not suitable for proving, but only for disproving
k-transitivity.

5.16 Grigorchuk groups

In this section, we show how to construct finite quotients of the two infinite periodic groups in-
troduced by Rostislav Grigorchuk in [Gri80] with the help of RCWA. The first of these, nowa-
days known as “Grigorchuk group”, is investigated in an example given on theGAP website – see
http://www.gap-system.org/Doc/Examples/grigorchuk.html. TheRCWA package permits a
simpler and more elegant construction of the finite quotients of this group: The functionTopElement
given on the mentioned webpage gets unnecessary, and the functionSequenceElement can be sim-
plified as follows:

SequenceElement := function ( r, level )

return Permutation(Product(Filtered([1..level-1],k->k mod 3 <> r),
k->ClassTransposition( 2ˆ(k-1)-1,2ˆ(k+1),

2ˆk+2ˆ(k-1)-1,2ˆ(k+1))),
[0..2ˆlevel-1]);

end;

http://www.gap-system.org/Doc/Examples/grigorchuk.html
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The actual constructors for the generators are modified as follows:

a := level -> Permutation(ClassTransposition(0,2,1,2),[0..2ˆlevel-1]);
b := level -> SequenceElement(0,level);
c := level -> SequenceElement(2,level);
d := level -> SequenceElement(1,level);

All computations given on the webpage can now be done just as with the “original” construction of
the quotients of the Grigorchuk group. In the sequel, we construct finite quotients of the second group
introduced in [Gri80]:

Example

gap> FourCycle := RcwaMapping((4,5,6,7),[4..7]);
<bijective rcwa mapping of Z with modulus 4, of order 4>
gap> GrigorchukGroup2Generator := function ( level )
> if level = 1 then return FourCycle; else
> return Restriction(FourCycle, RcwaMapping([[4,1,1]]))
> * Restriction(FourCycle, RcwaMapping([[4,3,1]]))
> * Restriction(GrigorchukGroup2Generator(level-1),
> RcwaMapping([[4,0,1]]));
> fi;
> end;;
gap> GrigorchukGroup2 := level -> Group(FourCycle,
> GrigorchukGroup2Generator(level));;

We can do similar things as shown in the example on theGAP webpage for the “first” Grigorchuk
group:

Example

gap> G := List([1..4],lev->GrigorchukGroup2(lev)); # The first 4 quotients.
[ <rcwa group over Z with 2 generators>,
<rcwa group over Z with 2 generators>,
<rcwa group over Z with 2 generators>,
<rcwa group over Z with 2 generators> ]

gap> H := List([1..4],lev->Action(G[lev],[0..4ˆlev-1])); # Isom. perm.-gps.
[ Group([ (1,2,3,4), (1,2,3,4) ]),
Group([ (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16),

(1,5,9,13)(2,6,10,14)(4,8,12,16) ]),
<permutation group with 2 generators>,
<permutation group with 2 generators> ]

gap> List(H,Size);
[ 4, 1024, 4294967296, 1329227995784915872903807060280344576 ]
gap> List(last,n->Collected(Factors(n)));
[ [ [ 2, 2 ] ], [ [ 2, 10 ] ], [ [ 2, 32 ] ], [ [ 2, 120 ] ] ]
gap> List(H,NilpotencyClassOfGroup);
[ 1, 6, 14, 40 ]
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5.17 Forward orbits of a monoid with 2 generators

The 3n+1 Conjecture asserts that the forward orbit of any positive integer under the Collatz mapping
T contains 1. In contrast, it seems likely that “most” trajectories of the two mappings

T±
5 : Z−→ Z, n 7−→

{
n
2 if n even,
5n±1

2 if n odd

diverge. However we can show by means of computation that the forward orbit of any positive integer
under the action of the monoid generated by the two mappingsT−

5 andT+
5 indeed contains 1. First of

all, we enter the generators:
Example

gap> T5m := RcwaMapping([[1,0,2],[5,-1,2]]);;
gap> T5p := RcwaMapping([[1,0,2],[5, 1,2]]);;

We look for a numberk such that for any residue classr(2k) there is a productf of k mappingsT±
5

whose restriction tor(2k) is given byn 7→ (an+b)/c wherec > a:
Example

gap> k := 1;;
gap> repeat
> maps := List(Tuples([T5m,T5p],k),Product);
> decr := List(maps,DecreasingOn);
> decreasable := Union(decr);
> Print(k,": "); View(decreasable); Print("\n");
> k := k + 1;
> until decreasable = Integers;
1: 0(2)
2: 0(4)
3: Z \ 1(8) U 7(8)
4: 0(4) U 3(16) U 6(16) U 10(16) U 13(16)
5: Z \ 7(32) U 25(32)
6: <union of 48 residue classes (mod 64)>
7: Integers

Thusk = 7 serves our purposes. To be sure that for any positive integern our monoid contains a
mapping f such thatnf < n, we still need to check this condition for “small”n. Since in casec > a
we have(an+b)/c≥ n if only if n≤ b/(c−a), we only need to check thosen which are not larger
than the largest coefficientbr(m) occuring in any of the products under consideration:

Example

gap> maxb := Maximum(List(maps,f->Maximum(List(Coefficients(f),t->t[2]))));
25999
gap> small := Filtered([1..maxb],n->ForAll(maps,f->nˆf>=n));
[ 1, 7, 9, 11 ]
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This means that except of 1, only forn ∈ {7,9,11} there is no product of 7 mappingsT±
5 which

mapsn to a smaller integer. We check that also the forward orbits of these three integers contain 1 by
successively computing preimages of 1:

Example

gap> S := [1];; k := 0;;
gap> repeat
> S := Union(S,PreImage(T5m,S),PreImage(T5p,S));
> k := k+1;
> until IsSubset(S,small);
gap> k;
17

5.18 Representations of the free group of rank 2

The free group of rank 2 embeds into RCWA(Z) – in fact it embeds even in the subgroup which is
generated by all class transpositions. An explicit embedding can be constructed by transferring the
construction of the so-called “Schottky groups” (cf. [dlH00], page 27) from PSL(2,C) to RCWA(Z)
(we use the notation from the cited book):

Example

gap> D := AllResidueClassesModulo(4);
[ 0(4), 1(4), 2(4), 3(4) ]
gap> gamma1 := RepresentativeAction(RCWA(Integers),
> Difference(Integers,D[1]),D[2]);;
gap> gamma2 := RepresentativeAction(RCWA(Integers),
> Difference(Integers,D[3]),D[4]);;
gap> F2 := Group(gamma1,gamma2);
<rcwa group over Z with 2 generators>

We can do some checks:
Example

gap> X1 := Union(D{[1,2]});; X2 := Union(D{[3,4]});;
gap> IsSubset(X1,X2ˆgamma1) and IsSubset(X1,X2ˆ(gamma1ˆ-1))
> and IsSubset(X2,X1ˆgamma2) and IsSubset(X2,X1ˆ(gamma2ˆ-1));
true

The generators are products of 3 class transpositions, each:
Example

gap> Factorization(gamma1);
[ ClassTransposition(0,2,1,2), ClassTransposition(3,4,5,8),
ClassTransposition(0,2,1,8) ]

gap> Factorization(gamma2);
[ ClassTransposition(0,2,1,2), ClassTransposition(1,4,7,8),
ClassTransposition(0,2,3,8) ]
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The above construction is used byIsomorphismRcwaGroup (3.1.3) to embed free groups of any
rank≥ 2.

We give another only slightly different representation of the free group of rank 2. We verify that
it really is one by applying the so-calledTable-Tennis Lemma(see e.g. [dlH00], Section II.B.) to the
infinite cyclic groups generated by the two generators and to the same two setsX1 andX2 as above:

Example

gap> r1 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,1,4);;
gap> r2 := ClassTransposition(0,2,1,2)*ClassTransposition(0,2,3,4);;
gap> F2 := Group(r1ˆ2,r2ˆ2);; SetName(F2,"F_2");
gap> List(GeneratorsOfGroup(F2),IsTame);
[ false, false ]
gap> IsSubset(X1,X2ˆF2.1) and IsSubset(X1,X2ˆ(F2.1ˆ-1))
> and IsSubset(X2,X1ˆF2.2) and IsSubset(X2,X1ˆ(F2.2ˆ-1));
true
gap> [Sources(r1),Sinks(r1),Loops(r1)]; # compare with X1
[ [ 0(4) ], [ 1(4) ], [ 0(4), 1(4) ] ]
gap> [Sources(r2),Sinks(r2),Loops(r2)]; # compare with X2
[ [ 2(4) ], [ 3(4) ], [ 2(4), 3(4) ] ]
gap> IsSubset(X1,Union(Sinks(r1))) and IsSubset(X1,Union(Sinks(r1ˆ-1)))
> and IsSubset(X2,Union(Sinks(r2))) and IsSubset(X2,Union(Sinks(r2ˆ-1)));
true
gap> IsSubset(Union(Sinks(r1)),X2ˆF2.1) and
> IsSubset(Union(Sinks(r1ˆ-1)),X2ˆ(F2.1ˆ-1));
true
gap> IsSubset(Union(Sinks(r2)),X1ˆF2.2) and
> IsSubset(Union(Sinks(r2ˆ-1)),X1ˆ(F2.2ˆ-1));
true

Drawing the transition graphs ofr1 andr2 for modulus 4 may help understanding what is actually
done in this calculation. It is easy to see that the group generated byr1 andr2 is not free:

Example

gap> Order(r1/r2);
3

5.19 Representations of the modular group PSL(2,Z)

The modular group PSL(2,Z) embeds in the group generated by all class transpositions as well. We
give an embedding, and check that it really is one by applying the Table Tennis Lemma as in the
previous section:

Example

gap> PSL2Z :=
> Group(ClassTransposition(0,3,1,3) * ClassTransposition(0,3,2,3),
> ClassTransposition(1,3,0,6) * ClassTransposition(2,3,3,6));;
gap> List(GeneratorsOfGroup(PSL2Z),Order);
[ 3, 2 ]
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Example

gap> X1 := Difference(Integers,ResidueClass(0,3));
Z \ 0(3)
gap> X2 := ResidueClass(0,3);
0(3)
gap> IsSubset(X1,X2ˆPSL2Z.1) and IsSubset(X1,X2ˆ(PSL2Z.1ˆ2));
true
gap> IsSubset(X2,X1ˆPSL2Z.2);
true

A slightly different representation of PSL(2,Z) can be obtained by usingRCWA’s general method for
IsomorphismRcwaGroup for free products of finite groups:

Example

gap> Display(Image(IsomorphismRcwaGroup(FreeProduct(CyclicGroup(3),
> CyclicGroup(2)))));

Wild rcwa group over Z, generated by

[

Bijective rcwa mapping of Z with modulus 4

n mod 4 | nˆf
------------------------------------+------------------------------------
0 | n + 2
1 3 | 2n - 2
2 | n/2

Bijective rcwa mapping of Z with modulus 2

n mod 2 | nˆf
------------------------------------+------------------------------------
0 | n + 1
1 | n - 1

]



Chapter 6

The Algorithms Implemented in RCWA

This chapter lists brief descriptions of many of the algorithms and methods implemented in this pack-
age. These descriptions are kept very informal and short, and some of them provide only rudimentary
information. They are listed in alphabetical order. The word “trivial” as a description means that
essentially nothing is done except of storing or recalling one or several values, and “straightforward”
means that no sophisticated algorithm is used. Note that “trivial” and “straightforward” are to be
read asmathematicallytrivial respectively straightforward, and that the code of a function or method
attributed in this way can still be reasonably long and complicated. Longer and better descriptions of
many of the algorithms and methods can be found in [Koh07b].

ActionOnRespectedPartition( G) “Straightforward” after having computed a respected
partition byRespectedPartition. One only needs to know how to compute images of residue
classes under affine mappings.

Ball( G, g , r ) “Straightforward”.

Ball( G, p, r , act ) “Straightforward”.

ClassPairs Run over all 4-tuples, and filter by divisibility criteria, size comparisons, ordering of
the entries etc.

ClassReflection( r , m) “Trivial”.

ClassRotation( r , m, u) “Trivial”.

ClassShift( r , m) “Trivial”.

ClassTransposition( r1 , m1, r2 , m2) “Trivial”.

ClassWiseOrderPreservingOn( f ) , etc. Forms the union of the residue classes modulo the
modulus off in whose corresponding coefficient triple the first entry is positive, zero or nega-
tive, respectively.

Coefficients( f ) “Trivial”.

CommonRightInverse( l , r ) (SeeRightInverse.)

CT(R) Attributes and properties are set according to [Koh06a].

95



RCWA 96

DecreasingOn( f ) Forms the union of the residue classes which are determined by the coeffi-
cients as indicated.

DerivedSubgroup( G) No genuine method –GAP Library methods already work for tame
groups.

Determinant( g ) Evaluation of the given expression. For the mathematical meaning (epimor-
phism!), see Theorem 2.11.9 in [Koh05].

DirectProduct( G1, G2, ... ) Restricts the groupsG1, G2, ... to disjoint residue classes.
SeeRestriction and Corollary 2.3.3 in [Koh05].

Display( f ) “Trivial”.

Divisor( f ) Lcm of coefficients, as indicated.

DrawOrbitPicture Compute spheres of radius 1, . . . , r around the given point(s). Choose the
origin either in the lower left corner of the picture (if all points lie in the first quadrant) or in
the middle of the picture (if they don’t). Mark points of the ball with black pixels in case of a
monochrome picture. Choose colors from the given palette depending on the distance from the
starting points in case of a colored picture.

EpimorphismFromFpGroup( G, r ) If the packageFR [Bar07] is loaded, then use its function
FindGroupRelations to find relations. Otherwise proceed as follows: First compute the ball
of radiusr around 1 in the free group whose rank is the number of stored generators ofG. Then
compute the images of the elements of that ball under the natural projection onto the groupG.
Take pairs of elements of the ball whose images coincide, and add their quotients to the set of
known relations. For images which have finite order, add the corresponding power relations.
Finally, regardless of whetherFR is present or not, simplify the finitely presented group with
the determined relations by the operationIsomorphismSimplifiedFpGroup from the GAP
Library, and return the natural epimorphism from it toG.

Exponent( G) Check whetherG is finite. If it is, then use theGAP Library method, applied to
Image(IsomorphismPermGroup(G)). Check whetherG is tame. If yes, returninfinity. If
not, run a loop overG until finding an element of infinite order. Once one is found, return
infinity.

The final loop to find a non-torsion element can be left away under the assumption that any
finitely generated wild rcwa group has a wild element. It looks likely that this holds, but cur-
rently the author does not know a proof.

FactorizationIntoCSCRCT( g ) This uses a rather sophisticated method which will likely
some time be published elsewhere. At the moment termination is not guaranteed, but in case of
termination the result is certain. The strategy is roughly first to make the mapping class-wise
order-preserving and balanced, and then to remove all prime factors from multiplier and divisor
one after the other in decreasing order by dividing by appropriate class transpositions. The
remaining integral mapping can be factored almost similarly easily as a permutation of a finite
set can be factored into transpositions.

FactorizationOnConnectedComponents( f , m) CallsGRAPE to get the connected com-
ponents of the transition graph, and then computes a partition of the suitably “blown up” coef-
ficient list corresponding to the connected components.
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FixedPointsOfAffinePartialMappings( f ) “Straightforward”.

GluckTaylorInvariant( a( Evaluation of the given expression.

GuessedDivergence( f ) Numerical computation of the limit of some series, which seems to
converge “often”. Caution!!!

Image( f ) , Image( f , S) “Straightforward” if one can compute images of residue classes under
affine mappings and unite and intersect residue classes (Chinese Remainder Theorem). See
Lemma 1.2.1 in [Koh05].

ImageDensity( f ) Evaluation of the given expression.

g in G (membership test for rcwa groups) Test whether the mappingg or its inverse is in the
list of generators ofG. If it is, returntrue. Test whether its prime set is a subset of the prime
set ofG. If not, returnfalse. Test whether the multiplier or the divisor ofg has a prime factor
which does not divide the multiplier ofG. If yes, returnfalse. Test if G is class-wise order-
preserving, andg is not. If so, returnfalse. Test if the sign ofg is -1 and all generators ofG
have sign 1. If yes, returnfalse. Test if G is class-wise order-preserving, all generators ofG
have determinant 0 andg has determinant6= 0. If yes, returnfalse. Test whether the support
of g is a subset of the support ofG. If not, returnfalse. Test whetherGfixes the nonnegative
integers setwise, butg does not. If yes, returnfalse.

If G is tame, proceed as follows: Test whether the modulus ofg divides the modulus ofG. If not,
returnfalse. Test whetherG is finite andg has infinite order. If so, returnfalse. Test whether
g is tame. If not, returnfalse. Compute a respected partitionP of Gand the finite permutation
groupH induced byG on it (seeRespectedPartition). Check whetherg permutesP. If not,
returnfalse. Let h be the permutation induced byg on P. Check whetherh lies in H. If not,
returnfalse. Compute an elementg1 of Gwhich acts onP like g . For this purpose, factorh into
generators ofH usingPreImagesRepresentative, and compute the corresponding product of
generators ofG. Letk := g/g1. The mappingk is always integral. Compute the kernelK of the
action ofG on P usingKernelOfActionOnRespectedPartition. Check whetherk lies in K.
This is done using the packagePolycyclic [EN06], and uses an isomorphism from a supergroup
of K which is isomorphic to the|P|-fold direct product of the infinite dihedral group and which
always containsk to a polycyclically presented group. Ifk lies in K, returntrue, otherwise
returnfalse.

If G is not tame, proceed as follows: Look for finite orbits ofG. If some are found, test whether
g acts on them, and whether the induced permutations lie in the permutation groups induced
by G. If for one of the examined orbits one of the latter two questions has a negative answer,
then returnfalse. Look for a positive integermsuch thatg does not leave a partition ofZ into
unions of residue classes (modm) invariant which is fixed byG. If successful, returnfalse.
If not, try to factorg into generators ofG usingPreImagesRepresentative. If successful,
returntrue. If g is in G, this terminates after a finite number of steps. Both runtime and
memory requirements are exponential in the word length. Ifg is not in G at this stage, the
method runs into an infinite loop.

f in M (membership test for rcwa monoids) Test whether the mappingf is in the list of gen-
erators ofG. If it is, returntrue. Test whether the multiplier off is zero, but all generators
of Mhave nonzero multiplier. If yes, returnfalse. Test if neitherf nor any generator ofMhas
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multiplier zero. If so, check whether the prime set off is a subset of the prime set ofM, and
whether the set of prime factors of the multiplier off is a subset of the union of the sets of prime
factors of the multipliers of the generators ofM. If one of these is not the case, returnfalse.
Check whether the set of prime factors of the divisor off is a subset of the union of the sets of
prime factors of the divisors of the generators ofM. If not, returnfalse. If the underlying ring
is Z or a semilocalization thereof, then check whetherf is not class-wise order-preserving, but
M is. If so, returnfalse.

If f is not injective, but all generators ofMare, then returnfalse. If f is not surjective, but all
generators ofM are, then returnfalse. If the support off is not a subset of the support ofM,
then returnfalse. If f is not sign-preserving, butM is, then returnfalse. Check whether
M is tame. If so, then returnfalse provided that one of the following three conditions hold:
1. The modulus off does not divide the modulus ofM. 2. f is not tame. 3.M is finite, andf
is bijective and has infinite order. If membership has still not been decided, useShortOrbits
to look for finite orbits ofM, and check whetherf fixes all of them setwise. If a finite orbit is
found whichf does not map to itself, then returnfalse.

Finally compute balls of increasing radius around 1 untilf is found to lie in one of them. If that
happens, returntrue. If f is an element ofM, this will eventually terminate, but if at this stage
f is not an element ofM, this will run into an infinite loop.

point in orbit (membership test for orbits) Uses the equality test for orbits: The orbit
equality test computes balls of increasing radius around the orbit representatives until they in-
tersect nontrivially. Once they do so, it returnstrue. If it finds that one or both of the orbits are
finite, it makes use of that information, and returnsfalse if appropriate. In between, i.e. after
having computed balls to a certain extent depending on the properties of the group, it chooses
a suitable modulusmand computes orbits (modulom). If the representatives of the orbits to be
compared belong to different orbits (modm), it returnsfalse. If this is not the case although
the orbits are different, the equality test runs into an infinite loop.

IncreasingOn( f ) Forms the union of the residue classes which are determined by the coeffi-
cients as indicated.

Index( G, H) In general, i.e. if the underlying ring is notZ, proceed as follows: If both groups
G andH are finite, return the quotient of their orders. IfG is infinite, butH is finite, return
infinity. Otherwise return the number of right cosets ofH in G, computed by theGAP
Library functionRightCosets.

If the underlying ring isZ, do additionally the following before attempting to compute the list of
right cosets: If the groupG is class-wise order-preserving, check whether one of its generators
has nonzero determinant, and whether all generators ofH have determinant zero. If so, then
returninfinity. Check whetherH is tame, butG is not. If so, then returninfinity. If G
is tame, then check whether the rank of the largest free abelian subgroup of the kernel of the
action ofGon a respected partition is higher than the corresponding rank forH. For this check,
useRankOfKernelOfActionOnRespectedPartition. If it is, then returninfinity.

Induction( g , f ) Computesf * g * RightInverse(f ).

Induction( G, f ) Gets a set of generators by applyingInduction(g,f ) to the generatorsg
of G.
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InjectiveAsMappingFrom( f ) The function starts with the entire source off as “preimage”
pre and the empty set as “image”im. It loops over the residue classes (modMod(f )). For any
such residue classcl the following is done: Firstly, the image ofcl underf is added toim.
Secondly, the intersection of the preimage of the intersection of the image ofcl underf andim
underf andcl is subtracted frompre.

IntegralConjugate( f ) , IntegralConjugate( G) Uses the algorithm described in the
proof of Theorem 2.5.14 in [Koh05].

IntegralizingConjugator( f ) , IntegralizingConjugator( G) Uses the algorithm
described in the proof of Theorem 2.5.14 in [Koh05].

Inverse( f ) Essentially inversion of affine mappings. See Lemma 1.3.1, Part (b) in [Koh05].

IsBalanced( f ) Checks whether the sets of prime factors of the multiplier and the divisor off
are the same.

IsClassReflection( g ) Computes the support ofg , and comparesg with the corresponding
class reflection.

IsClassRotation( g ) Computes the support ofg , extracts the possible rotation factor from the
coefficients and comparesg with the corresponding class rotation.

IsClassShift( g ) Computes the support ofg , and comparesg with the corresponding class
shift.

IsClassTransposition( g ) Computes the support ofg , writes it as a disjoint union of two
residue classes and comparesg with the class transposition which interchanges them.

IsClassWiseOrderPreserving( f ) Tests whether the first entry of all coefficient triples is
positive.

IsConjugate(RCWA(Integers), f , g ) Test whetherf and g have the same order, and
whether either both or none of them is tame. If not, returnfalse.

If the mappings are wild, useShortCycles to search for finite cycles not belonging to an
infinite series, until their numbers for a particular length differ. This may run into an infinite
loop. If it terminates, returnfalse.

If the mappings are tame, use the method described in the proof of Theorem 2.5.14 in [Koh05]
to construct integral conjugates off andg . Then essentially use the algorithm described in
the proof of Theorem 2.6.7 in [Koh05] to compute “standard representatives” of the conjugacy
classes which the integral conjugates off andg belong to. Finally compare these standard
representatives, and returntrue if they are equal andfalse if not.

IsInjective( f ) SeeImage.

IsIntegral( f ) “Trivial”.

IsomorphismMatrixGroup( G) Uses the algorithm described in the proof of Theorem 2.6.3
in [Koh05].
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IsomorphismPermGroup( G) If the group G is finite and class-wise order-preserving, use
ActionOnRespectedPartition. If G is finite, but not class-wise order-preserving, compute
the action on the respected partition which is obtained by splitting any residue classr(m) in
RespectedPartition(G into three residue classesr(3m), r +m(3m), r +2m(3m). If G is infi-
nite, there is no isomorphism to a finite permutation group, thus returnfail.

IsomorphismRcwaGroup( G) The method for finite groups usesRcwaMapping, Part (d).

The method for free products of finite groups uses the Table-Tennis Lemma (which is also
known asPing-Pong Lemma, cf. e.g. Section II.B. in [dlH00]). It uses regular permutation rep-
resentations of the factorsGr (r = 0, . . . ,m−1) of the free product on residue classes modulo
nr := |Gr |. The basic idea is that since point stabilizers in regular permutation groups are trivial,
all non-identity elements map any of the permuted residue classes into their complements. To
get into a situation where the Table-Tennis Lemma is applicable, the method computes conju-
gates of the images of the mentioned permutation representations under bijective rcwa mappings
σr which satisfy 0(nr)σr = Z\ r(m).

The method for free groups uses an adaptation of the construction given on page 27 in [dlH00]
from PSL(2,C) to RCWA(Z). As an equivalent for the closed discs used there, the method takes
the residue classes modulo two times the rank of the free group.

IsPerfect( G) If the groupG is trivial, then returntrue. Otherwise if it is abelian, then return
false.

If the underlying ring isZ, then do the following: If one of the generators ofG has sign -1,
then returnfalse. If G is class-wise order-preserving and one of the generators has nonzero
determinant, then returnfalse.

If G is wild, and perfectness has not been decided so far, then give up. IfG is finite, then
check the image ofIsomorphismPermGroup(G) for perfectness, and returntrue or false
accordingly.

If the group G is tame and if it acts transitively on its stored respected parti-
tion, then returntrue or false depending on whether the finite permutation group
ActionOnRespectedPartition(G) is perfect or not. IfGdoes not act transitively on its stored
respected partition, then give up.

IsPrimeSwitch( g ) Checks whether the multiplier ofg is an odd prime, and comparesg with
the corresponding prime switch.

IsSignPreserving( f ) If f is not class-wise order-preserving, then returnfalse. Otherwise
let c≥ 1 be greater than or equal to the maximum of the absolute values of the coefficientsbr(m)
of the affine partial mappings off , and check whether the minimum of the image of{0, . . . ,c}
underf is nonnegative and whether the maximum of the image of{−c, . . . ,−1} underf is
negative. If both is the case, then returntrue, otherwise returnfalse.

IsSolvable( G) If G is abelian, then returntrue. If G is tame, then returntrue or false
depending on whetherActionOnRespectedPartition(G) is solvable or not. IfG is wild,
then give up.

IsSubset( G, H) (checking for a subgroup relation) Check whether the set of stored genera-
tors ofH is a subset of the set of stored generators ofG. If so, returntrue. Check whether the
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prime set ofH is a subset of the prime set ofG. If not, returnfalse. Check whether the support
of H is a subset of the support ofG. If not, returnfalse. Check whetherG is tame, butH is
wild. If so, returnfalse.

If G and H are both tame, then proceed as follows: If the multiplier ofH does not divide
the multiplier of G, then returnfalse. If H does not respect the stored respected parti-
tion of G, then returnfalse. Check whether the finite permutation group induced byH on
RespectedPartition(G) is a subgroup ofActionOnRespectedPartition(G). If yes, re-
turntrue. Check whether the order ofH is greater than the order ofG. If so, returnfalse.

Finally use the membership test to check whether all generators ofH lie in G, and returntrue
or false accordingly.

IsSurjective( f ) SeeImage.

IsTame( G) Checks whether the modulus of the group is nonzero.

IsTame( f ) Application of the criteria given in Corollary 2.5.10 and 2.5.12 and Theorem A.8
and A.11 in [Koh05], as well as of the criteria given in [Koh07a]. The criterion “surjective, but
not injective means wild” (Theorem A.8 in [Koh05]) is the subject of [Koh06b]. The package
GRAPE is needed for the application of the criterion which says that an rcwa permutation is
wild if a transition graph has a weakly-connected component which is not strongly-connected
(cf. Theorem A.11 in [Koh05]).

IsTransitive( G,Integers) Look for finite orbits, usingShortOrbits on a couple of inter-
vals. If a finite orbit is found, returnfalse. Test ifG is finite. If yes, returnfalse.

Search for an elementg and a residue classr(m) such that the restriction ofg to r(m) is given
by n 7→ n+m. Then the cyclic group generated byg acts transitively onr(m). The elementg
is searched among the generators ofG, its powers, its commutators, powers of its commutators
and products of few different generators. The search for such an element may run into an infinite
loop, as there is no guarantee that the group has a suitable element.

If suitableg andr(m) are found, proceed as follows:

PutS:= r(m). PutS:= S∪Sg for all generatorsg of G, and repeat this untilSremains constant.
This may run into an infinite loop.

If it terminates: IfS= Z, returntrue, otherwise returnfalse.

KernelOfActionOnRespectedPartition( G) First determine the abelian invariants of the
kernelK. For this, compute sufficiently many quotients of orders of permutation groups induced
by G on refinements of the stored respected partitionP by the order of the permutation group
induced byG on P itself. Then use a random walk through the groupG. Compute powers of
elements encountered along the way which fixP. Translate these kernel elements into elements
of a polycyclically presented group isomorphic to the|P|-fold direct product of the infinite
dihedral group (K certainly embeds into this group). UsePolycyclic [EN06] to collect indepen-
dent “nice” generators ofK. Proceed until the permutation groups induced byK on the refined
respected partitions all equal the initially stored quotients.

LargestSourcesOfAffineMappings( f ) Forms unions of residue classes modulo the mod-
ulus of the mapping, whose corresponding coefficient triples are equal.
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LaTeXObj( f ) Collects residue classes those corresponding coefficient triples are equal.

LikelyContractionCentre( f , maxn, bound ) Computes trajectories with starting values
from a given interval, until a cycle is reached. Aborts if the trajectory exceeds the prescribed
bound. Form the union of the detected cycles.

LocalizedRcwaMapping( f , p) “Trivial”.

Loops( f ) Runs over the residue classes modulo the modulus off , and selects those of them which
f does not map to themselves, but which intersect nontrivially with their images underf .

mKnot( m) “Straightforward”, following the definition given in [Kel99].

Modulus( G) Searches for a wild element in the group. If unsuccessful, tries to construct a re-
spected partition (seeRespectedPartition).

Modulus( f ) “Trivial”.

MovedPoints( G) Needs only forming unions of residue classes and determining fixed points of
affine mappings.

Multiplier( f ) Lcm of coefficients, as indicated.

Multpk( f , p, k ) Forms the union of the residue classes modulo the modulus of the mapping,
which are determined by the given divisibility criteria for the coefficients of the corresponding
affine mapping.

NrConjugacyClassesOfRCWAZOfOrder( ord ) The class numbers are taken from Corol-
lary 2.7.1 in [Koh05].

Orbit( G, pnt , gens , acts , act ) Check if the orbit has length less than a certain bound. If
so, then return it as a list. Otherwise test whether the groupG is tame or wild.

If G is tame, then test whetherG is finite. If yes, then compute the orbit by theGAP Library
method. Otherwise proceed as follows: Compute a respected partitionP of G. UseP to find a
residue classr(m) which is a subset of the orbit to be computed. In general,r(m) will not be
one of the residue classes inP , but a subset of one of them. PutΩ := r(m). Unite the setΩ with
its images under all the generators ofGand their inverses. Repeat that untilΩ does not change
any more. ReturnΩ.

If G is wild, then return an orbit object which stores the groupG, the representativerep and
the actionact .

OrbitsModulo( f , m) UsesGRAPE to compute the connected components of the transition
graph.

OrbitsModulo( G, m) “Straightforward”.

Order( f ) Test forIsTame. If the mapping is not tame, then returninfinity. Otherwise use
Corollary 2.5.10 in [Koh05].

PreImage( f , S) SeeImage.
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PreImagesRepresentative( phi , g ) , PreImagesRepresentatives( phi , g ) As
indicated in the documentation of these methods. The underlying idea to successively compute
two balls around 1 andg until they intersect nontrivially is standard in computational group
theory. For rcwa groups it would mean wasting both memory and runtime to actually compute
group elements. Thus only images of tuples of points are computed and stored.

PrimeSet( f ) , PrimeSet( G) “Straightforward”.

PrimeSwitch( p) Multiplication of rcwa mappings as indicated.

Print( f ) “Trivial”.

f * g Essentially composition of affine mappings. See Lemma 1.3.1, Part (a) in [Koh05].

Projections( G, m) UseOrbitsModulo to determine the supports of the images of the epimor-
phisms to be determined, and useRestrictedPerm to compute the images of the generators
of Gunder these epimorphisms.

Random(RCWA(Integers)) Computes a product of “randomly” chosen class shifts, class re-
flections and class transpositions. This seems to be suitable for generating reasonably good
examples.

RankOfKernelOfActionOnRespectedPartition( G) This performs basically the first
part of the computations done byKernelOfActionOnRespectedPartition.

RCWA(R) Attributes and properties are set according to Theorem 2.1.1, Theorem 2.1.2, Corol-
lary 2.1.6 and Theorem 2.12.8 in [Koh05].

RcwaGroupByPermGroup( G) UsesRcwaMapping, Part (d).

RcwaMapping (a)-(c): “trivial”, (d): nˆperm - n for determining the coefficients, (e): “affine
mappings by values at two given points”, (f) and (g): “trivial”, (h) and (i): correspond to
Lemma 2.1.4 in [Koh05].

RepresentativeAction( G, src , dest , act ) , RepresentativeActionPreImage
As indicated in the documentation of these methods. The underlying idea to successively
compute two balls aroundsrc and dest until they intersect nontrivially is standard in
computational group theory. Words standing for products of generators ofGare stored for any
image ofsrc or dest .

RepresentativeAction(RCWA(Integers), P1, P2) Arbitrary mapping: see
Lemma 2.1.4 in [Koh05]. Tame mapping: see proof of Theorem 2.8.9 in [Koh05]. The
former is almost trivial, while the latter is a bit complicated and takes usually also much more
time.

RepresentativeAction(RCWA(Integers), f , g ) The algorithm used byIsConjugate
constructs actually also an elementx such thatf ˆx = g .

RespectedPartition( f ) , RespectedPartition( G) Uses the algorithm described in
the proof of Theorem 2.5.8 in [Koh05].

RespectsPartition( G, P) “Straightforward”.
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RestrictedPerm( g , S “Straightforward”.

Restriction( g , f ) Computes the action ofRightInverse(f ) * g * f on the image off .

Restriction( G, f ) Gets a set of generators by applyingRestriction(g,f ) to the generators
g of G.

RightInverse( f ) “Straightforward” if one knows how to compute images of residue classes
under affine mappings, and how to compute inverses of affine mappings.

Root( f , k ) If f is bijective, class-wise order-preserving and has finite order:

Find a conjugate off which is a product of class transpositions. Slice cycles∏l
i=2 τr1(m1),r i(mi)

of f a respected partitionP into cycles∏l
i=1 ∏k−1

j=0 τr1(km1),r i+ jmi(kmi) of thek -fold length on the
refined partition which one gets fromP by decomposing anyr i(mi) ∈ P into residue classes
(modkmi). Finally conjugate the resulting permutation back.

Other cases seem to be more difficult and are currently not covered.

RotationFactor( g ) “Trivial”.

SemilocalizedRcwaMapping( f , pi ) “Trivial”.

ShortCycles( f , maxlng ) Looks for fixed points of affine partial mappings of powers off .

ShortOrbits( G, S, maxlng ) “Straightforward”.

Sign( g ) Evaluation of the given expression. For the mathematical meaning (epimorphism!), see
Theorem 2.12.8 in [Koh05].

Sinks( f ) Computes the strongly connected components of the transition graph by the function
STRONGLY CONNECTED COMPONENTS DIGRAPH, and selects those which are proper subsets of
their preimages and proper supersets of their images underf .

Size( G) (order of an rcwa group) Test whether one of the generators of the groupGhas infinite
order. If so, returninfinity. Test whether the groupG is tame. If not, returninfinity.
Test whetherRankOfKernelOfActionOnRespectedPartition(G) is nonzero. If so, return
infinity. Otherwise ifG is class-wise order-preserving, return the size of the permutation
group induced on the stored respected partition. IfG is not class-wise order-preserving, return
the size of the permutation group induced on the refinement of the stored respected partition
which is obtained by splitting each residue class into three residue classes with equal moduli.

Size( M) (order of an rcwa monoid) Check whetherM is in fact an rcwa group. If so, use the
method for rcwa groups instead. Check whether one of the generators ofM is surjective, but
not injective. If so, returninfinity. Check whether for all generatorsf of M, the image of the
union of the loops off under f is finite. If not, returninfinity. Check whether one of the
generators ofM is bijective and has infinite order. If so, returninfinity. Check whether one
of the generators ofM is wild. If so, returninfinity. Apply the above criteria to the elements
of the ball of radius 2 around 1, and returninfinity if appropriate. Finally attempt to compute
the list of elements ofM. If this is successful, return the length of the resulting list.



RCWA 105

Sources( f ) Computes the strongly connected components of the transition graph by the function
STRONGLY CONNECTED COMPONENTS DIGRAPH, and selects those which are proper supersets of
their preimages and proper subsets of their images underf .

SplittedClassTransposition( ct , k ) “Straightforward”.

StructureDescription( G) This method uses a combination of techniques to obtain some
basic information on the structure of an rcwa group. The returned description reflects the way
the group has been built (DirectProduct, WreathProduct, etc.).

f +g Pointwise addition of affine mappings.

Support( G) “Straightforward”.

Trajectory( f , n,...) Iterated application of an rcwa mapping. In the methods computing
“accumulated coefficients”, additionally composition of affine mappings.

TransitionGraph( f , m) “Straightforward” – just check a sufficiently long interval.

TransitionMatrix( f , m) Evaluation of the given expression.

TransposedClasses( g ) “Trivial”.

View( f ) “Trivial”.

WreathProduct( G, P) UsesDirectProduct to embed theDegreeAction(P)th direct power
of G, andRcwaMapping, Part (d) to embed the finite permutation groupP.

WreathProduct( G, Z) RestrictsG to the residue class 3(4), and encodes the generator ofZ as
τ0(2),1(2) · τ0(2),1(4). It is used that the images of 3(4) under powers of this mapping are pairwise
disjoint residue classes.



Chapter 7

Installation and auxiliary functions

7.1 Requirements

The RCWA package needs at leastGAP 4.4.7, ResClasses 2.5.1, GRAPE 4.0 [Soi02], Poly-
cyclic 2.1 [EN06] and GAPDoc 1.0 [LN07]. With possible exception of the most recent version of
ResClasses, all needed packages are already present in an up-to-date standardGAP installation. The
RCWA package can be used under UNIX, under Windows and on the MacIntosh. It is completely
written in theGAP language and does neither contain nor require external binaries. In particular,
warnings concerning missing binaries issued byGRAPE or other packages can savely be ignored.

7.2 Installation

Like any otherGAP package,RCWA must be installed in thepkg subdirectory of theGAP distribution.
This is accomplished by extracting the distribution file in this directory. If you have done this, you
can load the package as usual viaLoadPackage( "rcwa" );.

7.3 The Info class of the package

7.3.1 InfoRCWA

♦ InfoRCWA (info class)

This is the Info class of theRCWA package. See sectionInfo Functionsin the GAP Reference
Manual for a description of the Info mechanism. For convenience:RCWAInfo(n) is a shorthand for
SetInfoLevel(InfoRCWA,n).

7.4 The testing routine

7.4.1 RCWATest

♦ RCWATest() (function)

Returns: Nothing.
Performs tests of theRCWA package. Errors, i.e. differences to the correct results of the test

computations, are reported. The processed test files are in the directorypkg/rcwa/tst.
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7.5 Building the manual

The following routine is a development tool. As all files it generates are included in the distribution
file anyway, users will not need it.

7.5.1 RCWABuildManual

♦ RCWABuildManual() (function)

Returns: Nothing.
This function builds the manual of theRCWA package in the file formats LATEX, PDF, HTML and

ASCII text. This is accomplished using theGAPDoc package by Frank L̈ubeck and Max Neunḧoffer.
Building the manual is possible only on UNIX systems and requires PDFLATEX.

7.6 Loading and saving bitmap pictures

RCWA provides functions to create bitmap picture files from suitable pixel matrices and vice versa.
The author has successfully tested this feature both under Linux and under Windows, and the produced
pictures can be processed further with many common graphics programs:

7.6.1 SaveAsBitmapPicture (picture, filename)

♦ SaveAsBitmapPicture(picture, filename ) (function)

Returns: Nothing.
Writes the pixel matrixpicture to a bitmap- (bmp-) picture file namedfilename . The file-

name should include the entire pathname. The argumentpicture can be a GF(2) matrix, in which
case a monochrome picture file is generated. In this case, zeros stand for black pixels and ones stand
for white pixels. The argumentpicture can also be an integer matrix, in which case a 24-bit True
Color picture file is generated. In this case, the entries of the matrix are supposed to be integers
n= 65536· red+256·green+bluein the range 0, . . . ,224−1 specifying the RGB values of the colors
of the pixels.

The picture can be read back intoGAP by the functionReadFromBitmapPicture(filename ).
Example

gap> color := n->32*(n mod 8)+256*32*(Int(n/8) mod 8)+65536*32*Int(n/64);;
gap> picture := List([1..512],y->List([1..512],x->color(Gcd(x,y)-1)));;
gap> SaveAsBitmapPicture(picture,"˜/images/gcd.bmp");

7.7 Running demonstrations

RCWA provides a routine to run demonstrations of its functionality or of other features ofGAP. It is
intended for being used in talks.

7.7.1 RunDemonstration (filename)

♦ RunDemonstration(filename ) (function)

Returns: Nothing.
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This function executes the code in the file namedfilename . It shows a command and the
corresponding output, waits for a keystroke, shows the next command and the corresponding output,
waits again for a keystroke, and so on until the end of the file. The demonstration can be stopped by
pressingq. The function is adapted from the functionDemonstration in the filelib/demo.g of the
mainGAP distribution.

7.8 Some general utility functions

RCWA introduces a couple of small utility functions which can be used in a more general con-
text: The functionGeneratorsAndInverses(G) returns a list of generators ofG and their in-
verses,EpimorphismByGenerators(G,H) is a shorthand forGroupHomomorphismByImages(G,H,
GeneratorsOfGroup(G),GeneratorsOfGroup(H)) (there is also anNC version of this), the func-
tion ListOfPowers(g,exp ) returns the list[g,gˆ2,...,gˆexp ] of powers of g , the func-
tion AllProducts(l ,k) returns the list of all products ofk entries of the listl , the function
DifferencesList(l ) returns the list of differences of consecutive entries of the listl , and the func-
tion FloatQuotients(l ) returns the list of floating point approximations of quotients of consecutive
entries of the listl .

There are also methodsEquivalenceClasses(l ,inv ) and EquivalenceClasses(l ,rel ),
which decompose a listl into equivalence classes under an equivalence relation. The equivalence
relation is given either as a functioninv computing a class invariant of a given list entry or as a
function rel which takes as arguments two list entries and returns eithertrue or false depending
on whether the arguments belong to the same equivalence class or not.
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G, source, destination, action,41
RepresentativeActionPreImage
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end points, coeff.-spec.,24
for rcwa mapping, starting point, set of

end points, modulus,24
TransitionGraph

for an rcwa mapping and a modulus,25
TransitionMatrix

for an rcwa mapping and a modulus,26
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TransposedClasses
of a class transposition,11

View
for an rcwa group,30
for an rcwa mapping,14
for an rcwa monoid,48

wild
rcwa group,8
rcwa mapping,8

WreathProduct
for an rcwa group over Z and a permuta-

tion group,32
for an rcwa group over Z and the infinite

cyclic group,32


