
Group Constructions

—

A GAP 4 Package

by

Hans Ulrich Besche,

Institut für Geometrie, TU Braunschweig,

and

Bettina Eick,

Institut für Geometrie, TU Braunschweig,

38106 Braunschweig, Germany

Contents

1 Preface 3

2 Introduction to GrpConst 4

3 Construction of All Groups 5

4 The Frattini Extension Method 6

4.1 The Main Frattini Extension Function 6

4.2 The Construction of Frattini Free Groups 7

4.3 The Determination of Frattini Extensions 8

4.4 Verifying non-isomorphism . 9

5 The Cyclic Split Extension Method 10

5.1 The Main Function . 10

5.2 The Underlying Functions . 11

6 The Upwards Extension Method 12

7 Examples with Runtimes 14

Bibliography 16

1 Preface

The determination of all groups of a given order up to isomorphism is a central problem in finite group
theory. It has been initiated in 1854 by A. Cayley who constructed the groups of order 4 and 6.

A large number of publications followed Cayley’s work. For example, Hall and Senior determined the groups
of order 2n for n ≤ 6, Neubüser listed the groups of order at most 100 except 64 and 96 and Laue added
the groups of order 96, see [HS64], [Neu67] and [Lau82]. These determinations partially relied on the help
of computers, but a general algorithm to construct groups had not been used. The resulting catalogue of
groups of order at most 100 has been available in GAP 3.

Then Newman and O’Brien introduced an algorithm to determine groups of prime-power order, see [O’B90].
An implementation of this method is available in the ANUPQ share package of GAP. This method has been
used to compute the groups of order 2n for n ≤ 8 and the groups of order 3n for n ≤ 6, see [O’B88], and
the resulting groups are available in GAP. Moreover, the large number of groups of order 28 shows that
algorithmic methods are the only sensible way for group determinations in this range.

In this share package we introduce practical methods to determine up to isomorphism all groups of a given
order. The algorithms are described in [BE99a]. These methods have been used to construct the non-nilpotent
groups of order at most 1000, see [BE99b]. The resulting catalogue of groups is available within the small
groups library of GAP 4.

Our methods are not limited to groups of order at most 1000 and thus may be used to determine all or
certain groups of higher order as well. However, it is not easy to say for which orders our methods are still
practical and for which not. As a rule of thump one can say that the number of primes and the size of the
prime-powers contained in the factorisation of the given order determine the practicability of the algorithm;
that is, the more primes are contained in the factorisation the more difficult the determination gets.

As an example, the construction of all non-nilpotent groups of order 192 = 26 · 3 takes 17 minutes on
an PC 400 Mhz. This is a medium sized application of our methods. However, the construction of the
groups of order 768 = 28 · 3 takes already rather long (a few days) and can be considered as a limit of our
methods. On the other hand, the groups of order 5425 = 52 · 7 · 31 can be determined in 5 sec. Moreover,
if the determination of groups is restricted to groups with certain properties, then this might increase the
efficiency of the construction process considerably. We include some example applications of our methods
to illustrate this at the end of the manual.

Finally, we mention that the correctness of our algorithms is very hard to check for a user; in particular,
since there are no other algorithms for the same purpose available, it might be difficult to verify that our
methods compute all desired groups. Thus we note here that methods implemented in this share package
have been used to compute large parts of the Small Groups library and this, in turn, has been checked by
the authors as described in [BE99a] and [BE99b].

Comments and suggestions on this share package are very welcome. Please send them to
eick@mathematik.uni-kassel.de or Hans-Ulrich.Besche@math.rwth-aachen.de.

Bug reports should also be e-mailed to either of these addresses.

2
Introduction
to GrpConst

This package contains three methods to construct the groups of a certain type up to isomorphism.

The Frattini Extension Method:

This method can be used to determine all soluble groups of a given order. The practicability of the method
depends clearly on the chosen order. Furthermore, the efficiency of the method might be increased by re-
stricting the construction to groups with certain properties. This is easily possible for a number of properties;
for example, it is useful and straightforward to compute non-nilpotent groups only. (See Chapter 4.)

The Cyclic Split Extension Method:

The cyclic split extension method can be used to list all groups of order pn · q for different primes p and
q which have a normal Sylow subgroup. These groups are also soluble, and hence might also be obtained
by the Frattini extension method. However, the cyclic split extension method is more effective on this case.
Note that this method relies on a list of groups of order pn . Moreover, the efficiency of this method depends
on an effective method to compute automorphism groups of p-groups. (See Chapter 5.)

The Upwards Extension Method:

The upwards extension method is the most general of the three methods. It can be used to construct all
groups of a given order. However, it is the least efficient of the three methods and hence should only be used
to construct non-soluble groups. Note that this method needs a list of perfect groups of order dividing the
given one. (See Chapter 6.)

Furthermore, the package contains a wrap up function which combines the three methods to a general
algorithm to construct the groups of a given order. (See Chapter 3.) Finally, there is an info class InfoGrpCon
available for the functions of this share package with possible levels 1 up to 4.

3
Construction

of All Groups

The following function can be used to determine up to isomorphism all groups of a given order. This method
implements a combination of the more specific functions described below.

Note that the chosen combination might not be the best possible for every application. Thus, if this function
takes too long to construct the desired groups, then it might still be possible to determine these groups using
the functions outlined in the following chapters. Moreover, the functions described in the following chapters
provide more facilities and this might help to determine groups with certain properties more efficiently.

1 I ConstructAllGroups(order) F

Usually the output of this function is a list of groups. The soluble groups in the list are given as pc groups
and the others as permutation groups. However, in some cases the output might contain lists of groups as
well. The groups is such a list could not be proved to be pairwise non-isomorphic by the algorithm, although
this is likely to be the case, see Section 4.4 for further details.

gap> ConstructAllGroups(60);
[<pc group of size 60 with 4 generators>,

<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
<pc group of size 60 with 4 generators>,
A5]

gap> List(last2, IdGroup);
[[60, 4], [60, 13], [60, 6], [60, 2], [60, 1], [60, 7],
[60, 3], [60, 8], [60, 9], [60, 12], [60, 11], [60, 10],
[60, 5]]

4
The Frattini

Extension Method

This is a method to construct up to isomorphism the soluble groups of a given order. The main function
FrattiniExtensionMethod to construct groups is described in Section 4.1.

The construction process consists of two parts which can be addressed separately. In the first step a list
of possible candidates for the Frattini factors of the desired groups is determined up to isomorphism. See
Section 4.2 for the corresponding functions. In the second step the determined candidates are considered
one after the other and for each candidate a list of extensions is computed. See Section 4.3 for the available
functions.

4.1 The Main Frattini Extension Function

1 I FrattiniExtensionMethod(order) F
I FrattiniExtensionMethod(order, uncoded) F
I FrattiniExtensionMethod(order, flags) F
I FrattiniExtensionMethod(order, flags, uncoded) F

First we describe the input of the function. The order is the size of the desired groups. The optional input
uncoded is a boolean which determines the output format. If it is true, then pc groups are returned. Other-
wise, if it is false or not given, then code records describing pc groups are returned (see PcGroupCodeRec).

The optional input flags is a record which is used to restrict the construction process to groups with certain
properties only. This record consists of any of the following entries:

nilpotent
must be true. Only nilpotent groups are constructed.

nonnilpot
must be true. Only non-nilpotent groups are constructed.

supersol
must be true. Only supersoluble groups are constructed.

nonsupsol
must be true. Only non-supersoluble groups are constructed.

pnormal
must be a list of primes. Only groups with normal Sylow p-subgroup for all p in the given list are
constructed.

nonpnorm
must be a list of primes. Only groups without normal Sylow p-subgroup for all p in the given list
are constructed.

If a particular entry is not set, then no restriction on the groups is assumed. The default is an empty record
of flags. Any combination of flags is possible. However, not all combinations make sense; For example, if
nilpotent and nonnilpotent are both true, then the algorithm will return the empty list. If nonnilpot is

Section 2. The Construction of Frattini Free Groups 7

true and pnormal is the list [3], then the non-nilpotent groups whose Sylow 3-subgroup is normal will be
computed.

The output of the function is usually a list of pc groups or code records depending on uncoded . However, it
may happen that the output list contains not only pc groups or codes, but also lists of pc groups or codes.
This means that the groups in such a sublist are probably non-isomorphic, but the algorithm did not do a
final verification, since this would be time-consuming. If desired, then the user might do a verification using
the function DistinguishGroups described below.

Moreover, it might be worth noting that the groups in such sublists of the output list are always reduced by
the random isomorphism test (see the Section on Random Isomorphism Testing in the reference manual).
Hence the probability that there are still isomorphisms between groups in this list is less than 2−100.

gap> flags := rec(nonnilpot := true, pnormal := [3]);
rec(nonnilpot := true, pnormal := [3])
gap> grps := FrattiniExtensionMethod(24, flags, true);
[<pc group with 4 generators>, <pc group with 4 generators>,
<pc group with 4 generators>, <pc group with 4 generators>,
<pc group with 4 generators>, <pc group with 4 generators>,
<pc group with 4 generators>]

gap> List(last, IdGroup);
[[24, 1], [24, 5], [24, 8], [24, 6], [24, 7], [24, 4],
[24, 14]]

gap> FrattiniExtensionMethod(8);
[rec(code := 323, order := 8, isFrattiniFree := false, first := [1, 1, 2],

socledim := [1], extdim := [2, 2], isUnique := true),
rec(code := 34, order := 8, isFrattiniFree := false, first := [1, 1, 3],

socledim := [1, 1], extdim := [2], isUnique := true),
rec(code := 36, order := 8, isFrattiniFree := false, first := [1, 1, 3],

socledim := [1, 1], extdim := [2], isUnique := true),
rec(code := 2343, order := 8, isFrattiniFree := false,

first := [1, 1, 3], socledim := [1, 1], extdim := [2],
isUnique := true),

rec(code := 0, order := 8, isFrattiniFree := true, first := [1, 1, 4],
socledim := [1, 1, 1], extdim := [], isUnique := true)]

4.2 The Construction of Frattini Free Groups

A finite group is called Frattini free if it has a trivial Frattini subgroup. As candidates for the Frattini
factors of the groups of size order , we compute Frattini free groups of suitable size dividing order .

1 I FrattiniFactorCandidates(order, flags) F
I FrattiniFactorCandidates(order, flags, uncoded) F

The input is similar to the input for the function FrattiniExtensionMethod.

The output is a list of candidates for the Frattini factors of the desired groups, i.e. the groups of size order
possibly restricted by flags. By default the groups are returned as codes which may be changed using the
boolean uncoded .

Note that the computed list is always reduced to isomorphism type representatives. Moreover, it might
happen that some of the Frattini free groups are not realised as Frattini factors of a group of size order .
However, in practice this is a very rare case.

8 Chapter 4. The Frattini Extension Method

Furthermore, note that for this part of the Frattini extension method the restriction to the positive properties
nilpotent, supersol and pnormal in the flags record will reduce the amount of computation considerably,
while the negative properties do not have such a major influence on the efficiency of this method.

gap> flags := rec(nonsupsol := true);
rec(nonsupsol := true)
gap> FrattiniFactorCandidates(24, flags, true);
[<pc group with 4 generators>, <pc group with 3 generators>,
<pc group with 4 generators>]

gap> List(last, IdGroup);
[[24, 12], [12, 3], [24, 13]]

4.3 The Determination of Frattini Extensions

A group H is a Frattini extension of a group G if there exists a normal subgroup N of H such that
H /N ∼= G and N ≤ φ(H) holds. Clearly, each finite group can be obtained as a Frattini extension of a
Frattini free group.

1 I FrattiniExtensions(code/group, order) F
I FrattiniExtensions(code/group, order, uncoded) F

Here the default input is a Frattini free group described by a code and the size order of the groups which
shall be constructed. Alternatively, one can input a Frattini free group as pc group. Moreover, it is possible
to give a list of codes or pc groups at once. The flag uncoded changes the output format to pc groups instead
of codes as above.

The output of this function is similar to the output of the function FrattiniExtensionMethod.

gap> G := SmallGroup(24, 12);
<pc group of size 24 with 4 generators>
gap> FrattiniSubgroup(G);
Group([])
gap> FrattiniExtensions(G, 48, true);
[<pc group with 5 generators>, <pc group with 5 generators>,
<pc group with 5 generators>]

gap> List(last, IdGroup);
[[48, 29], [48, 30], [48, 28]]

gap> cand := FrattiniFactorCandidates(6, rec());
[rec(code := 25, order := 6, isFrattiniFree := true, first := [1, 2, 3],

socledim := [1], extdim := [], isUnique := true),
rec(code := 1, order := 6, isFrattiniFree := true, first := [1, 1, 3],

socledim := [1, 1], extdim := [], isUnique := true)]
gap> FrattiniExtensions(cand, 12);
[rec(code := 6442, order := 12, isFrattiniFree := false,

first := [1, 2, 3], socledim := [1], extdim := [2],
isUnique := true),

rec(code := 266, order := 12, isFrattiniFree := false,
first := [1, 1, 3], socledim := [1, 1], extdim := [2],
isUnique := true)]

Section 4. Verifying non-isomorphism 9

4.4 Verifying non-isomorphism

The output of the functions FrattiniExtensionMethod or FrattiniExtensions might contain sublists of
groups. That means, that the groups contained in sublists could not be distinguished up to isomorphism by
the Frattini extension method. However, the groups have gone through the random isomorphism test and
hence it is likely that they are not isomorphic.

Here we provide a tool that can be used to try to prove that these groups are non-isomorphic. This is not
done automatically within the Frattini extension method, since it might be time consuming and many users
might not be interested in a complete verification of non-isomorphism.

To distinguish groups we compute invariants of the given groups. Clearly, if the invariants differ, then we
obtain that the corresponding groups are not isomorphic. However, the converse is not true and hence we
might not succeed to distinguish all non-isomorphic groups in a given list. See [BE99a] for a description of
the used invariants.

1 I DistinguishGroups(list, bool) F

The function DistinguishGroups takes as input list a list as described for the output of FrattiniExten-
sions. It returns a similar list, where the sublists contained in list are split up.

There are two levels to operate the function DistinguishGroups which are controlled by the second input
parameter bool of the function. If bool is false, then only few invariants are computed, if it is true, then
we try also the more complicated invariants. Clearly, if bool is false, then the result is obtained faster, but
if bool is true, then we might distinguish more groups.

If DistinguishGroups fails to split up the input list completely, then a user might use the general purpose
function IsomorphismGroups to prove the non-isomorphism between the remaining groups. However, this
might be a time consuming computation.

5
The Cyclic Split

Extension Method

This is a method to construct up to isomorphism the groups of order pn ·q for different primes p and q which
have a normal Sylow subgroup. We first describe the main function for this method and then functions for
a slightly more low level access to the algorithms.

Note that all functions described in this chapter rely on an efficient method for AutomorphismGroup for
p-groups. Such a method is provided in the forthcoming share package AutPGrp. Thus it is useful to install
and load this share package before using the functions described in this chapter.

5.1 The Main Function

1 I CyclicSplitExtensionMethod(p, n, q) F
I CyclicSplitExtensionMethod(p, n, q, uncoded) F

Clearly, each of the computed groups is a split extension of a group of order pn and the cyclic group of order
q . The output is a record with three entries up, down and both. Each of these contains a list of groups, both
the nilpotent groups, up the remaining groups with a normal Sylow p-subgroup and down the remaining
groups with normal Sylow q-subgroup.

As in Chapter 4 all groups are described as codes. Setting uncoded to true, the function will return pc groups
instead.

If one wants to construct the groups of order pn · q for fixed p and several primes q , it is more efficient to
do this in one go. Thus it is possible to hand a list of primes for the input q .

gap> CyclicSplitExtensionMethod(2,2,7, true);
rec(up := [],
down := [<pc group of size 28 with 3 generators>,

<pc group of size 28 with 3 generators>],
both := [<pc group of size 28 with 3 generators>,

<pc group of size 28 with 3 generators>])

gap> CyclicSplitExtensionMethod(2,2,[3,5], true);
rec(up := [<pc group of size 12 with 3 generators>],
down := [<pc group of size 12 with 3 generators>,

<pc group of size 20 with 3 generators>,
<pc group of size 20 with 3 generators>,
<pc group of size 12 with 3 generators>,
<pc group of size 20 with 3 generators>],

both := [<pc group of size 12 with 3 generators>,
<pc group of size 20 with 3 generators>,
<pc group of size 12 with 3 generators>,
<pc group of size 20 with 3 generators>])

Note that the function CyclicSplitExtensionMethod requires that the groups of order pn are given within
the SmallGroups Library.

Section 2. The Underlying Functions 11

5.2 The Underlying Functions

It is possible to construct the cyclic extensions of a single group of order pn only. The output is as above.

1 I CyclicSplitExtensions(G, q) F
I CyclicSplitExtensions(G, q, uncoded) F

Moreover, the computation of the record entry up and the record entry down can be separated by using the
following functions.

2 I CyclicSplitExtensionsUp(G, q) F
I CyclicSplitExtensionsUp(G, q, uncoded) F

3 I CyclicSplitExtensionsDown(G, q) F
I CyclicSplitExtensionsDown(G, q, uncoded) F

The input for these functions is the same as above. The first function returns a list of groups with one
normal subgroup of order pn and the second a list of groups with one normal subgroup of order q .

gap> G := SmallGroup(16, 10);;
gap> CyclicSplitExtensionsUp(G, 3, true);
[<pc group with 5 generators>]

gap> G := SylowSubgroup(SymmetricGroup(4), 2);
Group([(1,2), (3,4), (1,3)(2,4)])
gap> CyclicSplitExtensionsDown(G, 3);
[rec(code := 6562689, order := 24),
rec(code := 2837724033, order := 24)]

6
The Upwards

Extension Method

This is a method to construct up to isomorphism the finite groups of a given order. For this purpose it will
loop over all possible perfect groups and construct upwards extensions by soluble groups. This, in turn, is
done by iterated cyclic extensions.

Since this method is less efficient than the above two methods, it will usually only be used for the determi-
nation of non-soluble groups.

1 I UpwardsExtensions(G, s) F

Let G be a permutation group and s a positive integer. This function returns a list corresponding to
DivisorsInt(s). Let t be the i -th divisor of s. Then the i -th entry in the output is a list of all extensions
of G by a soluble group of order t up to isomorphism. The returned groups are permutation groups again.

Typically, this function is applied to perfect groups G , which may be obtained from the perfect groups
catalogue in GAP (see the Section on Finite perfect groups in the reference manual).

The most time-consuming part of the computation in UpwardsExtensions is the isomorphism test. The
following function does no reduction to isomorphism type representatives and hence is much more efficient.

2 I CyclicExtensions(G, p) F

Here G should be a permutation group and p a prime. This function computes a list of permutation groups
containing the upwards extensions of G by the cyclic group of order p, but not reduced to isomorphism type
representatives.

There is an info class InfoUpExt available with values from 1 to 3.

gap> G := PerfectGroup(IsPermGroup, 120, 1);
A5 2^1
gap> c := CyclicExtensions(G, 2);;
gap> List(c, IdGroup);
[[240, 94], [240, 93], [240, 90], [240, 89]]
gap> H := c[1];
<permutation group of size 240 with 2 generators>
gap> CyclicExtensions(H, 2);;
gap> List(last, IdGroup);
[[480, 960], [480, 955], [480, 222], [480, 222], [480, 953],
[480, 953], [480, 957], [480, 957], [480, 949], [480, 950],
[480, 219], [480, 219]]

gap> u := UpwardsExtensions(G, 4);;
gap> List(u, Length);
[1, 4, 14]
gap> List(u[3], IdGroup);
[[480, 960], [480, 959], [480, 950], [480, 222], [480, 221],
[480, 947], [480, 949], [480, 219], [480, 948], [480, 218],
[480, 955], [480, 957], [480, 953], [480, 946]]

13

In case that we want to extend a perfect group with trivial centre, then there is a better algorithm available.
This is implemented as well and can be used with the following functions.

3 I UpwardsExtensionsNoCentre(G, s) F

Let G be a perfect permutation group with trivial centre and s a positive integer. This function returns a list
of all extensions of G by a soluble group of order s up to isomorphism. The returned groups are permutation
groups again. Note that, in difference to UpwardsExtensions this function does not return the extensions
by groups of order dividing s. Moreover, the implementation of the function requires that all soluble groups
of order s are available as SmallGroups. The implementation then uses the following function to determine
groups.

4 I ExtensionsByGroupNoCentre(G, H) F

Let G be a perfect permutation group with trivial centre and H a soluble group. This functions returns all
extensions of G by H up to isomorphism.

7
Examples with

Runtimes

In this chapter we outline some examples of applications of the methods described above. The examples
are meant to give an idea of the possible applications of the package. Thus we included runtimes for all
examples, but omitted the output in some cases, since it would be too long to be printed. The runtimes have
been obtained on a 400 Mhz PC running under Linux.

gap> ConstructAllGroups(60);; time;
4080

In the following examples we observe that the restriction to certain groups is often helpful. Note that nilpotent
groups can often be obtained as direct product of p-groups which, in turn, might better be constructed by
p-group generation methods.

gap> FrattiniExtensionMethod(5^3 * 7 * 31, true);;
gap> time;
13670

gap> flags := rec(nonnilpot := true);;
gap> FrattiniExtensionMethod(5^3 * 7 * 31, flags, true);;
gap> time;
8400

gap> flags := rec(nonsupsol := true);;
gap> FrattiniExtensionMethod(5^3 * 7 * 31, flags, true);;
gap> time;
3640

gap> flags := rec(nonpnorm := [31]);;
gap> FrattiniExtensionMethod(5^3 * 7 * 31, flags, true);;
gap> time;
1740

Next we consider groups of an order whose factorision contains a large prime. Note that the Small Groups
library contains a generic method to construct the groups whose order is the product of at most 3 primes.
This method is used in ConstructAllGroups which is therefore much more efficient in the next example.

gap> FrattiniExtensionMethod(10007 * 2, true);
[<pc group of size 20014 with 2 generators>,
<pc group of size 20014 with 2 generators>]

gap> time;
87950

15

gap> flags := rec(nonnilpot := true);;
gap> FrattiniExtensionMethod(10007 * 2, flags, true);
[<pc group of size 20014 with 2 generators>]
gap> time;
48950

gap> ConstructAllGroups(10007 * 2);
[<pc group of size 20014 with 2 generators>,
<pc group of size 20014 with 2 generators>]

gap> time;
30

Finally we consider an order which factorises in seven primes and contains a moderately large prime power.
Note that there are 943 non-nilpotent groups of order 288 = 25 · 32 while there are only 90 such groups
without normal Sylow subgroup.

gap> flags := rec(nonnilpot := true);;
gap> FrattiniExtensionMethod(2^5 * 3^2, flags, true);;
gap> time;
656630

gap> flags := rec(nonpnorm := [2,3]);;
gap> FrattiniExtensionMethod(2^5 * 3^2, flags, true);;
gap> time;
58180

Bibliography

[BE99a] Hans Ulrich Besche and Bettina Eick. Construction of finite groups. J. Symb. Comput., 27:387 –
404, 1999.

[BE99b] Hans Ulrich Besche and Bettina Eick. The groups of order at most 1000 except 512 and 768. J.
Symb. Comput., 27:405 – 413, 1999.

[HS64] Marshall Hall, Jr. and James K. Senior. The Groups of Order 2n (n ≤ 6). Macmillan Company,
1964.

[Lau82] Reinhard Laue. Zur Konstruktion und Klassifikation endlicher auflösbarer Gruppen, volume 9 of
Bayreuther Mathematische Schriften. 1982.

[Neu67] Joachim Neubüser. Die Untergruppenverbände der Gruppen der Ordnungen ≤ 100 mit Ausnahme
der Ordnungen 64 und 96. Habilitationsschrift, Universität Kiel, 1967.

[O’B88] Eamonn A. O’Brien. The groups of order dividing 256. PhD thesis, Australian National University,
1988.

[O’B90] Eamonn A. O’Brien. The p-group generation algorithm. J. Symb. Comput., 9:677 – 698, 1990.

	Contents
	Preface
	Introduction to GrpConst
	Construction of All Groups
	The Frattini Extension Method
	The Main Frattini Extension Function
	The Construction of Frattini Free Groups
	The Determination of Frattini Extensions
	Verifying non-isomorphism

	The Cyclic Split Extension Method
	The Main Function
	The Underlying Functions

	The Upwards Extension Method
	Examples with Runtimes
	Bibliography

