
XCORAL Text Editor

For Unix Users

Release 3.45

May 30, 2006

Lionel Fournigault, Bruno Pagès and Dominique Lévêque

XCORAL

2 User’s manual. Release 3.45.

XCORAL

2 User’s manual. Release 3.45.

XCORAL CONTENTS

Contents

I Xcoral 7

1 Introduction 9
1.1 Overview . 9
1.2 Copyright . 9

2 Editing 11
2.1 Enter text . 11
2.2 Control-panel . 11
2.3 Multiple windows . 13
2.4 Mouse . 13
2.5 Commands . 14
2.6 Mini-buffer . 17
2.7 Erasing text . 18
2.8 Searching . 18
2.9 Mark and region . 19
2.10 Macros . 19
2.11 Undo redo . 20
2.12 Scrolling . 20

3 Browser 23
3.1 Browser database . 23
3.2 Browser control . 24

4 Using Smac 29
4.1 Eval expression . 29
4.2 Compiling and searching within Xcoral 31
4.3 Using mode . 31

4.3.1 Default mode . 31
4.3.2 C-C++ mode . 32

Release 3.45. User’s manual. 3

CONTENTS XCORAL

4.3.3 Java mode . 33
4.3.4 Latex mode . 33
4.3.5 Shell-Script mode . 34
4.3.6 Sub-Shell mode . 34
4.3.7 Edit directory mode (Edir) . 34
4.3.8 Html mode . 35
4.3.9 Other modes . 35

4.4 C-C++ headers . 36
4.5 Regular expressions . 36
4.6 Color syntax highlighting . 38
4.7 Browser . 39
4.8 Writing new functions . 40
4.9 Built-in editor functions . 43

5 Environment 49
5.1 File configuration . 49
5.2 Environment variables . 58
5.3 Resources . 58
5.4 Options . 59
5.5 Data and binaries . 60
5.6 Colors . 60
5.7 Memory resource . 60
5.8 Xcoral man box . 60

II SmacLib 63
5.9 SmacLib Overview . 65
5.10 cmd.sc . 65
5.11 color.sc . 67
5.12 comments.sc . 67
5.13 compare-win.sc . 68
5.14 complete-word.sc . 68
5.15 describe.sc . 68
5.16 edir.sc . 69
5.17 edt.sc . 69
5.18 example.sc . 69
5.19 french.sc . 69
5.20 hack-filename.sc . 70
5.21 hanoi.sc . 70
5.22 head.sc . 71

4 User’s manual. Release 3.45.

XCORAL CONTENTS

5.23 html.sc . 73
5.24 java.sc . 73
5.25 keydef-ext.sc . 73
5.26 latex.sc . 74
5.27 latex-macros.sc . 74
5.28 misc-commands.sc . 74
5.29 mode.sc . 74

5.29.1 C-C++ mode . 74
5.29.2 default mode . 78

5.30 mode-ext.sc . 78
5.31 mouse.sc . 79
5.32 rcs.sc . 79
5.33 save.sc . 80
5.34 shell-script.sc . 81
5.35 sun-keydef.sc . 81
5.36 title.sc . 81
5.37 top-ten.sc . 86
5.38 utilities.sc . 86
5.39 version.sc . 88
5.40 window-utilities.sc . 89

III Smac 91

6 Smac definition 93
6.1 Function definition . 94
6.2 Global variable definition . 95
6.3 Preprocessor . 95
6.4 Types . 95
6.5 Keywords . 95
6.6 Predefined functions . 96

6.6.1 Formatted output conversion . 96
6.6.2 Memory . 96
6.6.3 Strings . 97
6.6.4 Redefinition . 99
6.6.5 Function . 100
6.6.6 Execution profile . 101
6.6.7 Others . 104

Release 3.45. User’s manual. 5

CONTENTS XCORAL

7 Xcoral interface 105
7.1 Smac access . 105
7.2 Conventions . 106
7.3 Functions . 106

7.3.1 About position . 106
7.3.2 Change position . 108
7.3.3 Get buffer contents . 110
7.3.4 Change buffer contents . 111
7.3.5 Search and substitution . 112
7.3.6 Regular expressions . 114
7.3.7 Mark . 115
7.3.8 Buffers and files . 115
7.3.9 Windows . 118
7.3.10 Colors . 120
7.3.11 Modes . 121
7.3.12 Browser interface . 123
7.3.13 Others . 136

8 Error messages 141
8.1 Errors statically detected . 141

8.1.1 Control structures . 141
8.1.2 Function definitions and calls . 142
8.1.3 Assignment . 144
8.1.4 Operators . 145
8.1.5 Initialization . 146
8.1.6 Array . 146
8.1.7 Redefinition . 147
8.1.8 Others . 148

8.2 Errors detected at run time . 148
8.2.1 Illegal memory access and sets 148
8.2.2 About functions . 150

8.3 Others . 151

9 Compiling Smac 153

10 Miscellaneous 155
10.1 Bugs . 155
10.2 Xcoral home site . 155
10.3 Authors . 155
10.4 Thanks . 155

6 User’s manual. Release 3.45.

XCORAL

Part I

Xcoral

Release 3.45. User’s manual. 7

XCORAL CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Overview

XCORAL is a multiwindow mouse-based text editor for the X Window System1. A
built-in browser enables you to navigate through C functions, C++ classes, methods
and files. A SMall Ansi C Interpreter (SMAC) is also built-in to dynamically extend the
editor’s possibilities (user functions, key bindings, modes etc). Syntax highlighting (a
la volee) and auto-indent are available. XCORAL provides variable width fonts, search,
regions, kill-buffers, macros and unlimited undo. An on-line manual box, with a table
of contents and an index helps you to use and customize the editor. Commands are
accessible from menus or key bindings. XCORAL is a direct Xlib client.

1.2 Copyright

XCORAL is a free software distributed on the Internet.
Copyright 1989-1997 by Lionel Fournigault, Bruno Pagès and Dominique
Lévêque.

This program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation;
either version 2, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but without any
warranty; without even the implied warranty of merchantability or fitness for
a particular purpose. See the GNU General Public License for more details.

1X Window System is a registered trademark of The Massachusetts Institute of Technology

Release 3.45. User’s manual. 9

CHAPTER 1. INTRODUCTION XCORAL

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

The complete text of the GNU General Public License can be found in this document
appendix.

10 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

Chapter 2

Editing

If you want to create, read/write files, just type ’xcoral’ or ’xcoral filename [filename1,
filename2, etc]’. The main editor commands, available from menus, allow you to easily
carry out standard files operations and many other facilities.

2.1 Enter text

At start-up, the application provides an edition area with text window, menubar at the
top, scrollbar at the right side and control-panel at the bottom (see figure §2.1 page 12).
If the pointer is inside the text window (in X terminology this window has the focus),
the characters typed are inserted at the current position, which is the cursor position.
You can change the cursor position within the text with keyboard commands or with
a mouse left button click after moving the pointer to the desired point.

2.2 Control-panel

The control-panel is divided into four parts. From left to right, a status window, a
message window (this is also the mini-buffer location), a mode-name window (which
indicates the current mode) and buttons (see figure §2.1 page 12).

In the status window, an ’S’ is displayed if the buffer has been modified and not
saved.

The six buttons are used to move through the buffer (top, bottom, smooth scroll
up and down, previous and next page).

Release 3.45. User’s manual. 11

CHAPTER 2. EDITING XCORAL

Figure 2.1: Xcoral session.

12 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

2.3 Multiple windows

Within a session, several edition areas can be used (Max: 32). A new edition area is
opened with New text window in the Window menu. Each of them inherits its current
directory from its parent. The first window has the current working directory. The
directory of a text window is that of the loaded file.

2.4 Mouse

Each of the three mouse buttons can be used to manage XCORAL menus, buttons
scrollbars and selection.

• LeftButton click

Changes cursor position within a page. This means that the new position will be
the pointer position, with two exceptions: a click beyond the end of a line (resp.
of the buffer) moves the cursor to the end of that line (resp. of the buffer).

If you grab the pointer when the left button is pressed, the standard X selection
mechanism runs until the button is released.

A new click releases the selection.

• RightButton click

Selects region. The cursor moves at the selected point.

A region is selected and highlighted from the previous location. If a selection
already exists, it is extended to the current position.

• MiddleButton click

In standard text window, restores the last selection at the current position. The
selected text is inserted before the current position.

In the browser visit window, colors the current buffer.

• Control key + MiddleButton click

If a portion of text has been selected, this action erases it. The pointer position
is unimportant for this sequence.

When a text region has been erased it can be restored at any position by a
MiddleButton click.

Release 3.45. User’s manual. 13

CHAPTER 2. EDITING XCORAL

2.5 Commands

Most commands available from menus have their corresponding predefined key bindings
which can be one of the following key sequences:

• Control with key

For instance Ctrl-s which stands for ’forward search’, means that the ’s’ key must
be pressed while the control key is active (pressed).

• Control with key then key

For instance Ctrl-x i which stands for ’insert file’, means that the ’i’ key must be
pressed alone after the sequence Ctrl-x. Another example could be Ctrl-x Ctrl-f
which stands for ’read file’, it means that the ’x’ key then the ’r’ key must be
pressed while the control key stays active.

• Escape then key

For example Esc q which stands for ’query replace’ means that the escape key
must be pressed and released and then that the ’q’ key must be pressed.

Important: In all cases the sequence Ctrl-g aborts the current sequence (i.e. the
internal automaton comes back to its default state).

Using key bindings to drive the editor is more efficient and quicker. For users who
are not familiarized with this mechanism, this means that the control and escape keys
become the main keys. The advantage is that you can enter text and commands without
having to move your hands to track the mouse, then open menus, then move pointer
again, then release button, and finally come back to the keyboard.

Here is the complete default command list for all modes (see also the specific modes
command list §4.3 page 31):

14 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

• Move commands

Ctrl-a Move to beginning of line.
Ctrl-b Move to backward char.
Ctrl-e Move to end of line.
Ctrl-f Move to forward char.
Ctrl-n Move to next line.
Ctrl-p Move to previous line.
Ctrl-v Move to next page.
Ctrl-x l Move to line number.
Ctrl-x m Move to mark.
Ctrl-x Ctrl-x Exchange cursor/mark.
Esc v Move to previous page.
Esc < Move to first page.
Esc > Move to last page.
Down arrow Move to next line.
Left arrow Move to backward char.
Right arrow Move to forward char.
Up arrow Move to previous line.
R7 Move to first page.
R8 Move to previous line.
R9 Move to previous page.
R10 Move to backward char.
R12 Move to forward char.
R13 Move to last page.
R14 Move to next line.
R15 Move to next page.

• Modify commands

Crtl-d Delete current character.
Crtl-h Delete previous character.
Ctrl-i Insert Tab.
Ctrl-j Insert Return.
Crtl-k Delete end of line.
Ctrl-m Insert Return.
Ctrl-o Open space.

Release 3.45. User’s manual. 15

CHAPTER 2. EDITING XCORAL

• Mark and region commands

Ctrl-space Set mark.
Ctrl-x Ctrl-x Exchange cursor/mark.
Ctrl-y Paste previous kill.
Ctrl-w Cut region.
Esc w Copy region.
Esc e Eval region.

• Search commands

Esc q Query replace.
Esc r Global replace.
Ctrl-s Forward search.
Ctrl-r Backward search.

• Files commands

Ctrl-x b Display open files.
Ctrl-x i Insert File.
Ctrl-x Ctrl-s Save file.
Ctrl-x Ctrl-f Read File.
Ctrl-x Ctrl-w Write file as.
Ctrl-x d Dump browser database.
Ctrl-x r Restore browser database.

• Windows commands

Ctrl-l Refresh current page.
Ctrl-x n Open new edition area.
Ctrl-x Ctrl-c Delete window.
Ctrl-x e Open edir window.
Ctrl-x k Clear current buffer.

16 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

• Misc commands

Ctrl-c Play macro.
Crtl-g Abort current command.
Ctrl-q Quote char.
Ctrl-t Redo.
Ctrl-u Undo.
Ctrl-x (Learn macro.
Ctrl-x) End macro.
Ctrl-x Ctrl-e Eval expression.
Esc = Display current line number.
Esc digits Get repeat number.

2.6 Mini-buffer

A few commands are interactive commands, for which the user must reply to a question.
From menus, these commands display a dialog box with an input field string, an Ok
button and a Cancel button. The input field string is called a mini-buffer.

Some commands are available in the mini-buffer to edit a line of text:

Ctrl-a Go to beginning of line.
Ctrl-b Backward char.
Crtl-d Delete current character.
Ctrl-e Go to end of line.
Ctrl-f Forward char.
Crtl-g Abort.
Crtl-h Delete previous character.
Crtl-k Delete end of line.
Crtl-p Restore previous user answer.
Tab Expand file, tilde or Smac identifier.

Two of them, Ctrl-p and Tab in the mini-buffer context, do not have the same
function as in default mode.

Tab provides an expansion mechanism for file names. The beginning of a filename
being entered in the mini-buffer, Tab key will complete it. However, if several filenames
match the current pattern, the Message box is displayed with the possible choices.
Note: the tilde character is expanded to the homedir path of the user.

In the same way, Tab provides an expansion mechanism for SMAC names during
an eval expression command. SMAC names can be functions or variables names.If the
expansion is not possible, a bell rings.

Release 3.45. User’s manual. 17

CHAPTER 2. EDITING XCORAL

Ctrl-p restores the last string entered in the mini-buffer. This is useful when you
make a mistake.

Cut and paste facilities (see §2.4 page 13) can be used in the mini-buffer (one line
only). The mini-buffer is shared by all buffers of a session and is used in dialog-boxes,
file-selectors and control-panels.

2.7 Erasing text

Erasing text can be handled in five ways.

• With the mouse and the standard selection mecanism. (see §2.4 page 13).

• With a mark and the ’cut region’ command (Ctrl-w). The text between the mark
and cursor is removed (see §2.9 page 19).

• With the ’kill command’ (Ctrl-k) which deletes the end of the current line. The
Esc digits command (you type Esc then enter a number), allows you to set a
number which must be used with Ctrl-k. In this case, ’num’ lines from the cursor
are removed.

Note that, the ’Esc digits’ command is used in two cases only: to delete several
lines and to play a macro several times (see §2.10 page 19).

• With the delete or backspace keys which erase the character before the cursor.

• With the Ctrl-d command which erases the character under the cursor.

When deleted, text is stored in an unlimited linked kill-buffer list (each deleted
text can be restored). This kill-buffer can be mapped with Display Kill Buffer in the
Window menu. It is viewed as a scrolling list with the beginning of each entry. The
first entry corresponds to the last remove operation. When selected, an entry is restored
at the current position. The kill-buffer is shared by all buffers of a session.

2.8 Searching

Searching operations use the famous Boyer-Moore algorithm, with global buffers to
store strings to search for or replace. These commands prompt a mini-buffer or a
dialog box to enter strings whether you use key bindings or menus.

Ctrl-g resets the searching commands and new strings can be entered.

18 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

• Forward and backward search

The Ctrl-s or Ctrl-r commands can be repeated in the current text window as
well as in any other one.

• Query replace

The Esc q command prompts the mini-buffer, first to set the old and new strings,
then to replace (y), skip (n) or quit (q). Query replace starts from the current
position.

• Global replace

The Esc r command also prompts the mini-buffer to set strings, but replaces all
silently from the current position to the end of the buffer.

2.9 Mark and region

A mark allows you to save a cursor position and to come back to it later. You can set
only one mark per text window.

A region is a portion of text between the mark and the cursor. A region can be
copied, deleted, restored, indented (mode C, C++, Latex, etc) or evaluated (the region
must be a valid SMAC expression of definition).

• Ctrl-space sets the mark at the current position. When the text is modified,
the mark is updated when allowed.

• Ctrl-x m moves to the mark.

• Ctrl-x Ctrl-x exchanges current position with mark when it is set.

• Esc w copies the region between mark and cursor in the kill-buffer. It can be
pasted at any current position with the command Ctrl-y or with the kill buffer
box.

• Ctrl-w deletes the region between mark and cursor. The corresponding portion
of text is saved in the kill-buffer and can be restored at any current position with
the command Ctrl-y or with the kill-buffer box.

2.10 Macros

A macro memorizes a sequence of commands.

Release 3.45. User’s manual. 19

CHAPTER 2. EDITING XCORAL

• Ctrl-x (starts a macro definition in the current window. The following com-
mands are saved during their execution. Simultaneously the message Learn macro
is displayed.

4! During macro definition you can switch to another window but in this case
the macro definition is suspended until you move the pointer back to the window
where you started the macro.

• Ctrl-x) ends the macro definition. It is available from any text window.

• Ctrl-c plays the macro. All commands previously recorded are executed in order.
With the commands Esc digits then Ctrl-c, the macro is played num times (see
§2.7 page 18).

Example:

In a buffer of 100 lines, you want to add the string ’debut:’ at the beginning of each
line and the string ’:fin’ at the end of each line. The following macro does this work: at
the beginning of the first line type the following sequence: Ctrl-x (debut: Ctrl-e :fin
Ctrl-f Ctrl-x). Then Esc 99 and Ctrl-c.4! A macro can include only one search command. If you want to use several
search commands or more generally, if you want to implement a complex macro, it is
better to write a SMAC function (see §4.9 page 43).

2.11 Undo redo

In each text window, every modification of the buffer is saved in an unlimited linked
lifo list. The modifications can be undone in order with the undo command Ctrl-u,
up to the first modification. When the buffer is saved as a file, the undo list is reseted.
It is possible to cancel one or several undo commands with Ctrl-t (i.e. redo).

The undo mechanism implemented in XCORAL is simple. It does not take into
account context or semantics, but only modifications. This means that several Ctrl-u
commands show you exactly what you have done in the buffer (i.e. inserted/deleted
characters, copied/deleted regions, cut and paste with mouse, etc).

2.12 Scrolling

In all text windows, a scrollbar is controllable by any mouse button to move the text
vertically in the current window. A click inside the bottom or top part of the scroll

20 User’s manual. Release 3.45.

XCORAL CHAPTER 2. EDITING

area moves the text to the next or previous page.
In every text window, an horizontal scroll may be handled with the left mouse

button click on the last visible character at right or first visible character at left.

Release 3.45. User’s manual. 21

CHAPTER 2. EDITING XCORAL

22 User’s manual. Release 3.45.

XCORAL CHAPTER 3. BROWSER

Chapter 3

Browser

A browser is available, in C and C++ mode, to navigate through C functions and C++
types (included typedef, class and struct) hierarchies, methods, attributes, functions
and globals. The names of files, functions, types, parents, children, attributes, methods
and globals are listed in subwindows of the control browser window. An object selected
by one mouse click in one of these subwindows is viewed in a ’Visit Window’. A
double click opens an edition area and loads the current selected object (see figure §3.1
page 26).

The browser can also be used to navigate through Java classes hierarchies when the
Java mode is selected. In fact a simple filter is applied to the Java sources and the
C++ browser parser is used (see java.sc).

3.1 Browser database

The XCORAL browser builds its database by parsing one or more source files or full
directories. It collects useful information about functions, globals, types, methods,
attributes and inheritance in C/C++ environments only. The browser parses files with
the following default suffixes: .c,.h,.cc,.cxx,.hxx and.C. Of course it is possible to add
other suffixes (See Using SMAC §4.3 page 31).

During XCORAL start-up, the browser does not parse any directory to reduce the
start-up time. However an environment variable xcoral parse path can be set to
parse directories, like the classic path, with the standard separator ’:’.

4! In this case the directories are parsed recursively.

The browser database is automatically updated after all write/save file operations.

Release 3.45. User’s manual. 23

CHAPTER 3. BROWSER XCORAL

To reduce information displayed on the browser window, you can hide some of them,
see Hide browser button and SMAC functions (§4.7 page 39, §7.3.12 page 133).

To take into account macros and conditional compilations, it is possible to ask for
a pre-processing before file parsing, see Prepr/No pp browser toggle button and SMAC
functions (§4.7 page 39, §7.3.12 page 123).

Because pre-processing and parsing many files may take a long time, you can dump
and restore the browser data base, see Dump and Rest browser buttons and SMAC

functions (§4.7 page 39, §7.3.12 page 124). 4! Dumping is not made automatically
after write/save file operations.

3.2 Browser control

The browser is useful only for C, C++ and Java programmers. When used in C mode it
is displayed with 5 subwindows (functions, classes/types, attributes, files, and globals).
In C++ mode (default), all subwindows appear (classes/types, parents, children, files,
methods, attributes, functions and globals).

In Java mode, functions and globals windows are not displayed.

Loading files with C, C++ or java suffixes does not change the browser control
mode. To change it, you must select the desired mode using the Modes menu.

In addition, a toolbar is available.

• The ’Dir/Rec’ button is a toggle button to set a ’recursive’ flag used during parsing
directories. At start-up, if the environment variable xcoral parse path is used,
the recursive flag is true. In that case (Rec), the selected directories and all their
subdirectories are parsed, otherwise only the files of the current directory are
parsed (default).

• The ’Add’ button is used to parse a selected file or directory via the file selector
window, and load information in the browser database.

• The ’Rem’ button is used to remove browser data for the selected file. One file
or all files can be selected.

• The ’Decl-Impl’ button is a toggle button to see Declaration or Implementation
of selected methods.

• The ’Edit’ button opens an edition area and loads the current selected object
(same as a double click on that objet).

24 User’s manual. Release 3.45.

XCORAL CHAPTER 3. BROWSER

• The ’Close’ button unmaps the browser control window and the visit window.

• The ’No pp-Prepr’ button is a toggle button to indicate if the files are pre-
processed before parsing. When the toggle button becomes ’Prepr’ the pre-
processor options are asked. See browser set pp() §7.3.12 page 123 SMAC function
which indicates where the pre-processor is (default /lib/cpp).

• The ’Hide’ button is used to hide/show some browser information.

• The ’Dump’ button is used to save browser database in a file. The dump contains
all showed or hiden information, including hide/show control.

• The ’Rest’ button is used to restore browser database from a file.

• The ’Smac’ button is used to parse the SMAC directorie and load information in
the browser database.

Some additional information appear in types, methods, attributes and globals win-
dows.

• [c/d] Constructor or destructor (method).

• [v] Virtual definition from parents (method).

• [V] First virtual definition (method).

• [L] Locally defined in current class (method, attribute).

• [d] Declared (type, method).

• [i] Implemented not inline (type, method).

• [I] Inline (method, function).

• [?] Not implemented (type, method).

• [s] Static (attribute, function, global).

• [n] Inheritance level (methods, because only one character is used, 9 is the greater
displayed value of n).

• [T] Template (type, function)

In each subwindow of the browser control panel, you can type one character to move
quickly to the first item starting with this character (case-sensitive).

Release 3.45. User’s manual. 25

CHAPTER 3. BROWSER XCORAL

Figure 3.1: Xcoral browser, C++ mode.

26 User’s manual. Release 3.45.

XCORAL CHAPTER 3. BROWSER

Figure 3.2: Xcoral browser, Java mode.

Release 3.45. User’s manual. 27

CHAPTER 3. BROWSER XCORAL

28 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

Chapter 4

Using Smac

This chapter describes, with simple examples, how to use SMAC within XCORAL. For
more details about SMAC refer to the third part of this document.

Note 1: In SMAC, characters and lines are numbered from 0.

Note 2: Current position is the cursor position in the current buffer.

4.1 Eval expression

First type the Ctrl-x Ctrl-e ’eval expression’ command. In the mini-buffer you can
enter expressions which are C expressions. Typically the following forms are valid:

func1();
func1(arg1,...);func2(func3(),arg2,...);

In this context, the Tab key can be used to expand the SMAC functions, user
functions and variables names. If the mini-buffer is empty, a complete list of these is
displayed in the message box.

4! Don’t forget the semicolon ’;’ at the end of the C expression you want to
evaluate, otherwise you will get a parser error line 0: syntax error message.

• insert char (190);

Inserts the argument at the current position. The function insert char is one of
the built-in functions available in SMAC to drive the editor. This example shows
how to insert a special character (via its ASCII code).

Release 3.45. User’s manual. 29

CHAPTER 4. USING SMAC XCORAL

• set mode font (”Latex”, ”9x15bold”);

This example shows how to change font in Latex mode.

• cmd shell (”date | awk ’{print $4}’ ”);

cmd shell is a built-in editor function. The argument is executed in a sub-shell
and the result is inserted at the current position.

• select window(new window());read file(file select());

Opens a new text window, selects it, selects a file from a file-selector and loads
it. Obviously it is easier to use the Window menu, but this example shows the
SMAC facilities to interpret built-in editor functions through an eval expression
command.

• key def (”C-mode”, ”^xe”, ”goto end of file”);

In C-mode, binds goto end of file function to Ctrl-x e. The second argument
syntax (key binding), can be:

"c" --> key.
"^[c" --> Esc key.
"^[^c" --> Esc Ctrl key.
"^c" --> Ctrl-key.
"^xc" --> Ctrl-x key.
"^x^c" --> Ctrl-x Ctrl-key.

where ‘c’ is any character except ‘^’. Furthermore ‘^^’ appoints the character
‘^’ (so ^x^^ is Ctrl-x ^), ‘^ ’ and ‘^@’ appoint the character null (code 0).

It is also possible to bind keysym keys such as Home:

"k" --> key.
"^[k" --> Esc key.
"^xk" --> Ctrl-x key.

where ‘k’ is a keysym name (see §7.3.11 page 122).

30 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

4.2 Compiling and searching within Xcoral

Evaluating make(); runs make -k in a sub-shell and displays its results in a new Shell
mode window. When make is finished the contents of this window can be:

bm_search.c:128:syntax error
get_file.c:97: syntax error
scroll.c:234:syntax error

You can then use the Ctrl-x g command (see go next §5.10 page 65) which reads
the lines in order (from top to bottom), opens a new text window if needed, loads the
erroneous file and goes to the error location. After each Ctrl-x g, the cursor moves to
the next line in the error list. The first Ctrl-x g you type goes to the first line of the
current result.

In the same way evaluating grep (”GetBuffer *.c”); searches the string GetBuffer
through all files with .c suffix. With the Ctrl-x g command in the result window, you
can easily navigate through the corresponding files. It is useful when you want to
modify a string which appears in many files. For instance, it may help you to add an
argument to a function or to change its name.

4.3 Using mode

A mode system is implemented in the editor with the possibility to change key bindings
and fonts. The files suffixes can be used to automatically select a specific mode when a
file is loaded. Some modes are built-in (default, C-mode, C++mode, Latex, shell, etc).

For more details, see mode.sc (§5.29 page 74).

4.3.1 Default mode

This mode provides the standard built-in key-bindings and some escape sequences
bound to SMAC functions defined in the mode.sc file:

• Esc f goes to the end of the current or next word.

• Esc b goes to the beginning of the current or previous word.

• Esc d deletes the end of the current word or the next word.

• Esc delete/backspace deletes the beginning of the current word or the previous
word.

Release 3.45. User’s manual. 31

CHAPTER 4. USING SMAC XCORAL

• Esc u changes the end of the current word or the following word to upper case,
and moves after it.

• Esc l changes the end of the current word or the following word to lower case,
and moves after it.

• Esc c capitalizes the end of the current word or the following word, and moves
after it.

4.3.2 C-C++ mode

The main advantage of this mode is the automatic indentation when you hit return.
A blinking mechanism for parenthesis, brakets and braces is also implemented. Some
key bindings have been defined for functions, forms and regions. For more details see
mode.sc in the second part of the document (§5.29 page 74);

Auto-indentation

Indentation is done by the return key which inserts a newline character and indents
the new line. The Tab key is used to reindent the current line if needed.

Moreover, some SMAC global variables are available to customize indentation in
comment, string, parenthesis, bracket, brace, statement and function arguments.

Blinking

Blinking is used to visualize matching parenthesis, brackets or braces. This means
that, for instance, if you insert a ’)’ character, the cursor moves to the corresponding
’(’ character and comes back to the current position. Blinking is confined to the current
page else a message is displayed (i.e. match at line X pos Y).

Definition, form and region

The following key bindings are also available:

• Esc ? on a word acts as select (one click) in the browser window.

• Esc Esc on a word is like editing (double click) an object from the browser
window.

• Esc a goes to the beginning of the current or previous definition.

• Esc f goes to the end of the current or next expression.

• Esc b goes back to the beginning of the current expression or previous expression.

32 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• Esc d deletes the end of the current expression or the next expression.

• Esc delete/backspace deletes the beginning of the current expression or previ-
ous expression.

• Esc i indents region between mark (see §2.9 page 19) and current position.

4.3.3 Java mode

Java mode is an extension of C++ mode. Auto-indentation, blinking and colors are
available (see .xcoralrc and java.sc).

4.3.4 Latex mode

This mode (named ‘Latex’) is a simple mode that wraps lines, colors and indents them
following LATEX keywords.

A fixed font should be used to have the same width for all characters. Therefore, the
number of characters in a line depends only on the window width and on the font used.
However you can fix the number of characters in a line by replacing window width(’a’)
with the desired value (see latex.sc file). Thus, when the current line becomes too long,
its last space is changed to \n and the rest of the line is indented to the next line.
Consequently, it is not possible to insert a space or a tab at the beginning of a line. To
insert spaces or tabs it is necessary to press Ctrl-q before entering them.

To define your own indentation, you can set latex indent step (default 3) and la-
tex indent chapter (default 0) to the desired values (see the file latex.sc). Bindings
available in Latex mode are default mode bindings plus the followings:

• Esc a moves to the beginning of the first line containing the previous latex begin,
part, chapter, [sub][sub]section or [sub][sub]paragraph keyword.

• Tab indents the current line.

• Return inserts a newline and indents.

• Esc i indents the current region.

To automatically set the Latex mode when a file is loaded, use the suffixes .tex or
.latex.

Si vous voulez en plus quelques accents, il suffit d’ajouter dans votre fichier .xco-
ralrc les lignes suivantes:

Release 3.45. User’s manual. 33

CHAPTER 4. USING SMAC XCORAL

{
key_def("Latex", "’", "french_accent");
key_def("Latex", "‘", "french_accent");
key_def("Latex", "^^", "french_accent");
key_def("Latex", "~", "french_accent");
}

4.3.5 Shell-Script mode

This mode allows you to edit shell script with auto-indentation and colors highlighting.

4.3.6 Sub-Shell mode

Connects the current text window to a sub-shell. XCORAL SHELL environment vari-
able is used if defined, else SHELL environment variable is used if defined. If none
of these variables is set, /bin/csh is used. A prompt is displayed and you can enter
Unix commands. The result of the commands is inserted in the buffer at the current
position.

In this mode, all the default key bindings can be used but two of them have been
redefined:

• Ctrl-d quits the sub-shell mode.

• Ctrl-c interrupts a sub-shell command.

4! , if your shell mode does not work correctly (i.e. the prompt is not displayed),
use the environment variable XCORAL SHELL to set a basic shell (sh or csh).

4.3.7 Edit directory mode (Edir)

This mode helps you to navigate through directories and to do some operations on
files (i.e. load, copy, change mode, compress etc). The Edir() SMAC function which
is bound to Ctrl-x e, prompts a dialog box and waits for a target directory. A text
window is then opened which contains the result of a ls -alg. In this window, the Edir
commands will act on the file or the directory indicated by the cursor (the cursor only
need to be on the line of the file or directory chosen).

If you hit the ’?’ key, the list of the available commands is viewed in the message
box.

• ? shows this list.

• f lists the contents of a directory or edits a file in the current window.

34 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• n opens a new window and lists the contents of a directory or edits a file.

• < lists the contents of the parent directory in the current window.

• > lists the contents of the parent directory in another window.

• q quits the current Edir window.

• r rereads the current directory.

• s issues a shell command.

• C copies the pointed file.

• G changes the group of the pointed directory or file.

• H creates a hard link to a target directory or file.

• M changes the mode of the pointed directory or file.

• P prints the pointed file.

• R renames the pointed directory or file.

• S creates a symbolic link to a target directory or file.

• Z compresses or uncompresses the pointed file.

• = calls a diff command.

4.3.8 Html mode

This mode helps you to write Html pages (see the file html.sc). Through a menu, it
provides most common Html 3.0 tags (links, forms, lists, styles, etc). Html tags are
automatically colored.

4.3.9 Other modes

Some other modes are predefined for standard languages (Perl, Ada, Fortran and shell-
script). These modes, available from the Modes menu, only offer color facilities

There is no auto-indentation as with C, C++, Java, Shell or Latex modes. To
define your own indentation for theses modes, look at the file mode.sc as example.

Release 3.45. User’s manual. 35

CHAPTER 4. USING SMAC XCORAL

4.4 C-C++ headers

For C-C++ and Java programmers, the head.sc file provides the following functions:

cplus class header(), java class header(), method header(), function header()
and include header().

Of course, these functions can be modified as you want. For instance, the first of
them, function header() prompts a dialog box to enter a C function name (fname) and
inserts at the current position the following header:

/*
* Function name: fname
*
* Description:
* Input:
* Output:
*/

fname()
{

}

4.5 Regular expressions

A regular expression (regexp) is a text string that describes some set of strings.
Functions that handle regular expressions, based on gnu regexp-0.12, have been

implemented (for more details, see the gnu documentation about regexp rules).
The functions available from Search menu provide search forward or backward and

replace. Each of them prompts a dialog box to get the target regexp.
Regular expressions are composed of characters and operators that match one or

more characters. Here is an abstract of commons operators:

• . matches any single character.

• * repeats the smallest possible preceding regular expression as many times as
necessary (including zero).

• + is similar to the previous operator except that it repeats the preceding regular
expression at least once.

36 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• ? is similar to the * operator except that it repeats the preceding regular expres-
sion once or not at all.

• | matches one of a choice of regular expressions.

• [...] matches one item of a list.

• [^...] matches a single character not represented by one of the list items.

• - recognizes characters that fall between two elements.

• (...) treats any number of other operators (i.e. subexpressions) as a unit.

• \digit matches a specified preceding group.

• ^ matches the beginning of line.

• $ matches the end of line.

SMAC provides the following functions:

• int re forward search(char *regexp);

returns the position of the next regular expression regexp, or -1 if regexp has not
been found, or -2 if regexp is not valid.

• int re backward search(char *regexp);

returns the position of the previous regular expression regexp, or -1 if regexp has
not been found, or -2 if regexp is not valid.

• int re match beginning(int n);

returns the beginning position of the substring n of the regexp found by the
previous search call to a regexp.

• int re match end(int n);

returns the end position of the substring n of the regexp found by the previous
search call to a regexp.

Release 3.45. User’s manual. 37

CHAPTER 4. USING SMAC XCORAL

• int re replace(char *newstring [,char *regexp]);

replaces the regular expression regexp with the string newstring. If the argument
regexp is omited, the previous search call to a regexp is used. It returns 1 on
success else 0.

Example:

/* look for C++ line comment */
re_forward_search ("//.*$");
/* move to the beginning of the searched expression */
goto_char (re_match_beginning(0));

4.6 Color syntax highlighting

In every mode (i.e. built-in modes and user modes), keywords or expressions can be
set off by colors with the following SMAC function:

• void color area(int start, int end, char *colorname);

colors text region from positions start to end with the color colorname (see the
standard X11 file rgb.txt).

This function can be used with the SMAC regexp interface to color strings of your
own modes (see color.sc §5.11 page 67).

Example:

/* look for a regular expression */
re_forward_search (regexp);
/* color text region */
color_area (re_match_beginning(0),re_match_end(0), colorname);

The colornames and the regular expressions are predefined in the file color.sc for
the following modes: C, C++, Java, Latex, Html, Perl, shell-script and Edir.
The standards Makefile, makefile, and Imakefile can also be colored. You can modify
them or add colors for your own mode.

Default key bindings are:

• Ctrl-x a colors buffer.

38 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

4.7 Browser

SMAC allows to customize the browser and to access its database. Here are some
functions:

• void browser set pp(char * mode, char * exec)

• void browser set pp options(char * mode, char *options)

Your .xcoralrc file is a good place to indicate where the pre-processors are (see
§7.3.12 page 123), and their options. browser set pp options function (see §7.3.12
page 124) forces browser toggle button to Prepr if its second argument is not 0, even
if the pre-processor option list is empty (i.e. the second argument is the empty string
””).

browser_set_pp("C-mode", "/lib/cpp"); /* default */
browser_set_pp("C++mode", "/lib/cpp"); /* default */

browser_set_pp_options("C-mode", "-DDEBUG");
browser_set_pp_options("C++mode", 0); /* no pre-processing in c++ */

• void browser add(char * file or dir [, int rec])

parses the given file or directory, forces the browser toggle button to Rec if the
second argument is given and not equal to 0.

• int browser dump(char * file)

returns 1 if the dump can be realized, else 0 (file is write protected or other error).

• int browser restore(char * file)

returns 1 on success, else 0 (file doesn’t not exist or other error).

• void browser show all()

to see all browser information.

• char ** browser functions(char * prefix)

returns the functions list which name begins with prefix

Release 3.45. User’s manual. 39

CHAPTER 4. USING SMAC XCORAL

void write_functions_description(char * prefix)
{

char ** p, ** all = browser_functions(prefix);

if (! all) return;

for (p = all; *p; p += 3)
printf("%s is defined in %s line %u\n",

p[0]+7, p[1], *((int *)&p[2]));

free(all);
}

{ write_functions_description("a");}
{ write_functions_description("" /* !! */);}

4.8 Writing new functions

The following simple examples can be written and tested on-line. First you must open
a new window to write these functions (see example.sc). Before evaluating one or all
functions with Esc e, you must select it or them in a region (see §2.9 page 19). To
execute a function use Ctrl-x Ctrl-e then enter function name(); and hit return.

40 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• Using Xcoral built-in functions

HiddenMessage()
{

int c;
select_window(new_window());
insert_string("Ydpsbm ju hppe gps zpv");
while(current_position() != 0) {

goto_previous_char();
redisplay ();

}
while(current_position() != end_of_line()) {

c = current_char();
delete_char();
if (c != ’ ’)

c -= 1;
insert_char(c);
redisplay();

}
wprintf("\nYes\n");

}

Release 3.45. User’s manual. 41

CHAPTER 4. USING SMAC XCORAL

• Using Xcoral boxes

SomeBoxes()
{

char *str;
display_message("\nDialog box test: ");
/* Message box */
str = gets ("write something ");
/* Dialog box */
if (str != 0) {

display_message(str);
free(str);

}
display_message("\nFile selector test: ");
str = file_select(); /* File selector */
if (str != 0) {

display_message(str);
free(str);

}
display_message("\nList box test: ");
clear_list(); /* List select */
add_list_item ("Choice 1");
add_list_item ("Choice 2");
add_list_item ("Choice 3");
str = select_from_list("My list");
if (str != 0 && strlen(str) > 1)

display_message(str);
}

}

42 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

4.9 Built-in editor functions

These functions are the lowest level interface with the editor. With them you can build
your own SMAC functions during a session and save them in a file.

• Get information about position and current buffer

int at end of file ()
int beginning of line()
char current char ()
int current line()
int re match beginning(int subs)
int re match end(int subs)
char next char ()
char previous char ()
int end of file ()
int current position()
int end of line ()
char the char (int pos)
int line count ()
char last key ()

• Search

int backward search (char *str)
int forward search (char *str)
void replace char (int c)
void blink (int pos)
int msearch (char *chars, int end, int direction)
int global replace (char *old, char*new)
int re forward search (char *regexp)
int re backward search (char *regexp)
int re replace (char* newstring, [char *regexp])
int re match beginning (int n)
int re match end (int n)

Release 3.45. User’s manual. 43

CHAPTER 4. USING SMAC XCORAL

• Move

void current line to top ()
void goto beginning of line ()
void goto char (int pos)
void goto next char ()
void goto end of line ()
void goto end of file ()
void goto previous char ()
void goto mark()

• Modify current buffer

void delete char ()
void insert char(int c)
void read file (char *file name)
int insert file (char *file name)
void insert string (char *string)
void kill current buffer ()

• Window

int new window ()
int kill window (int num)
void lower window ()
void raise window ()
int current window ()
int window width (int c)
int window height ()
void select window (int win id)

• Mode

void set mode (char *name)
void create mode (char *mode name)
char * current mode()
void key def (char *m name, char*keys, char *f name)
void set mode font (char *mode name, char *font name)
void set mode suffixes (char *mode name, char *suf)

44 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• Mark

void set mark (int pos)
void goto mark()
void reset mark()
int mark position()
void copy region()
void paste region()
void cut region()

• browser-1

void browser set pp(char * mode, char * exec)
void browser set pp options(char * mode, char * options)
void browser add(char * path [, int rec])
void browser del([char * name])
char * browser class file(char * class name [, int * pline])
char ** browser class parents(char * class name)
char ** browser class children(char * class name)
char ** browser class methods(char * class name)
char ** browser class attributes(char * class name)
char * browser class flags(char * class name)
char ** browser functions(char * prefix)
char ** browser globals(char * prefix)
int browser select class(char * prefix)
int browser select method(char * prefix)
int browser select attribute(char * prefix)
int browser select function(char * prefix)
int browser select global(char * prefix)
void browser edit()
int browser dump(char * filename)
int browser restore(char * filename)

Release 3.45. User’s manual. 45

CHAPTER 4. USING SMAC XCORAL

• browser-2

int browser class entry(char * prefix)
int browser function entry(char * prefix)
int browser global entry(char * prefix)
int browser file entry(char * prefix)
char * browser class(int n)
char * browser function(int n)
char * browser global(int n)
char * browser file(int n)
void browser show all()
void browser hide private members()
void browser hide protected and private members()
void browser show protected and private members()
void browser hide inherited members()
void browser show inherited members()
void browser hide internal types()
void browser show internal types()
void browser hide static functions()
void browser show static functions()
void browser hide static globals()
void browser show static globals()
void browser hide children of(char * parent)
void browser show children of(char * parent)
void browser hide class(char * name)
void browser show class(char * name)
void browser hide global(char * name)
void browser show global(char * name)
void browser hide function(char * name)
void browser show function(char * name)

46 User’s manual. Release 3.45.

XCORAL CHAPTER 4. USING SMAC

• Miscellaneous

int cmd shell (char *str)
char * shell to string (char *str)
void redisplay ()
char * filename ()
char * file select ()
char * getchar (char *prompt)
char * gets (char *prompt)
void save file ()
void set font (char *fontname)
void color area (int start, int end, char *colorname)
void watch on ()
void watch off ()
int monochrome()
void usleep (int us)

Release 3.45. User’s manual. 47

CHAPTER 4. USING SMAC XCORAL

48 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

Chapter 5

Environment

5.1 File configuration

Here is the configuration file .xcoralrc provided in this distribution.

/* ---
Load standard libraries
--- */

{
/* --

Load standard libraries
-- */

{
/* general SMAC programmer and XCORAL user utilities */
load_file("utilities.sc");

/* C and C++ mode, auto indent, reindent, indent region etc */
load_file("mode.sc");

/* provide class method and function profile */
load_file("head.sc");

/* extract logical pathname from automount pathname */
load_file("hack-filename.sc");

/* command shell utilities, grep make user interface */
load_file("cmd.sc");

Release 3.45. User’s manual. 49

CHAPTER 5. ENVIRONMENT XCORAL

/* for us frenchies */
load_file("french.sc");

/* SMAC functions writer and/or user help */
load_file("describe.sc");

/* extensions of C and C++ modes */
load_file("mode-ext.sc");

/* mouse customization */
load_file("mouse.sc");

/* C C++ comments facilities */
load_file("comments.sc");

/* file title and custom organization title */
load_file("title.sc");

/* save file utilities */
load_file("save.sc");

/* global set key utilities */
load_file("keydef-ext.sc");

/* word completion */
load_file("complete-word.sc");

/* window-utilities */
load_file("window-utilities.sc");

/* compare two windows */
load_file("compare-win.sc");

/* latex indent */
load_file("latex.sc");

/* color region buffer */
load_file("color.sc");

50 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

/* edit directory */
load_file("edir.sc");

/* rcs interface */
load_file("rcs.sc");

/* Version control */
load_file("version.sc");

/* Latex utilities */
load_file("latex-macros.sc");

/* Misc utilities */
load_file("misc-commands.sc");

/* html utilities */
load_file("html.sc");

/* java mode */
load_file("java.sc");

/* hanoi demo */
load_file("hanoi.sc");

/* shell mode */
load_file("shell-script.sc");

}

/* --
define fonts
-- */

{
set_mode_font("default",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("C-mode",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("C++mode",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Java",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");

Release 3.45. User’s manual. 51

CHAPTER 5. ENVIRONMENT XCORAL

set_mode_font("Latex",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Html",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Ada",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Perl",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Fortran",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("shell",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Shell",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font("Edir",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");
set_mode_font ("french",
"-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1");

}

/* ---
define colors
Generics colors for all modes with background set to ivory.
--- */

{
gen_comment_color = "limegreen";
gen_include_color = "goldenrod";
gen_define_color = "forestgreen";
gen_keyword_color = "goldenrod";
gen_string_color = "steelblue";

gen_varfunc_color = "tomato";
gen_decl_color = "forestgreen";
gen_class_color = "tomato";
gen_del_new_color = "red";
gen_return_color = "lightsteelblue";
gen_link_color = "tan";
gen_makefile_color = "plum";

/* C,C++ colors */

52 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

cpp_comment_color = gen_comment_color;
cpp_keyword_color = gen_keyword_color;
cpp_define_color = gen_define_color;
cpp_string_color = gen_string_color;

/* Java colors */
java_comment_color = gen_comment_color;
java_category_color = gen_del_new_color;
java_result_color = gen_return_color;
java_class_color = gen_class_color;
java_modifier_color = gen_keyword_color;
java_keyword_color = gen_keyword_color;
java_import_color = gen_define_color;
java_string_color = gen_string_color;
java_package_color = gen_include_color;

/* latex colors */
latex_comment_color = gen_comment_color;
latex_keyword_color = gen_keyword_color;
latex_defun_color = gen_decl_color;
latex_define_color = gen_define_color;
latex_decl_color = gen_decl_color;
latex_label_color = gen_keyword_color;
latex_include_color = gen_include_color;
latex_italic_color = gen_decl_color;
latex_bold_color = gen_varfunc_color;
latex_ref_color = gen_comment_color;

/* html colors */
html_title_color = gen_comment_color;
html_ibtt_color = gen_keyword_color;
html_pre_color = gen_define_color;
html_img_color = gen_decl_color;
html_ref_color = gen_varfunc_color;
html_list_color = gen_define_color;
html_forms_color = gen_include_color;
html_hds_color = gen_keyword_color;
hltml_string_color = gen_string_color;

/* Edir colors */

Release 3.45. User’s manual. 53

CHAPTER 5. ENVIRONMENT XCORAL

edir_directory_color = gen_comment_color;
edir_link_color = gen_link_color;
edir_c_file_color = gen_decl_color;
edir_tex_file_color = gen_decl_color;
edir_sc_file_color = gen_decl_color;
edir_h_file_color = gen_keyword_color;
edir_makefile_color = gen_string_color;
edir_readme_color = gen_del_new_color;

/* Perl colors */
perl_comment_color = gen_comment_color;
perl_string_color = gen_string_color;
perl_label_color = gen_define_color;
perl_include_color = gen_include_color;
perl_decl_color = gen_decl_color;
perl_defun_color = gen_class_color;
perl_keyword_color = gen_keyword_color;

/* Fortran90 colors */
f90_comment_color = gen_comment_color;
f90_string_color = gen_string_color;
f90_unit_color = gen_class_color;
f90_include_color = gen_include_color;
f90_type_color = gen_decl_color;
f90_decl_color = gen_decl_color;
f90_keyword_color = gen_keyword_color;

/* Shell colors */
shell_comment_color = gen_comment_color;
shell_string_color = gen_string_color;
shell_include_color = gen_include_color;
shell_define_color = gen_define_color;
shell_var_color = gen_varfunc_color;
shell_keyword_color = gen_keyword_color;

}

/* ---
define indentation variables (mode C, C++ and Java)
--- */

{

54 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

c_indent_in_comment = 3;
c_indent_in_string = 0;
c_indent_in_parenthesis = 1;
c_indent_in_bracket = 1;
c_indent_in_brace = 2;
c_indent_in_statement = 2;
c_arg_decl_indent = 4;

}

/* ---
define suffixes
--- */

{
set_mode_suffixes("C++mode",".c .cc .cpp .h .hh .sc .xcoralrc");
set_mode_suffixes("Java",".java .sc .xcoralrc");
set_mode_suffixes("C-mode",".c .h .sc .xcoralrc");
set_mode_suffixes("Latex",".tex .latex .sty");
set_mode_suffixes("Html",".html");
set_mode_suffixes("Perl",".pl");
set_mode_suffixes("Fortran",".f .f90");
set_mode_suffixes("Ada",".a");

set_mode_suffixes("french",".txt .texte");
}

/* ---
define modes on which global_key_def operates
--- */

{
globalize_mode("default");
globalize_mode("C-mode");
globalize_mode("C++mode");
globalize_mode("Java");
globalize_mode("Latex");
globalize_mode("Html");
globalize_mode("Perl");
globalize_mode("Ada");
globalize_mode("Fortran");
globalize_mode("shell");
globalize_mode("french");

Release 3.45. User’s manual. 55

CHAPTER 5. ENVIRONMENT XCORAL

globalize_mode("Shell");
}

/* ---
Util Smac functions.
--- */

{
global_key_def("^xt", "transpose_chars");
global_key_def("^xy", "transpose_forms");
global_key_def("^[\\", "delete_line_blanks");
global_key_def("^[", "just_one_blank");
global_key_def("^[k", "delete_to_beginning_of_line");
global_key_def("^xc", "center_line");
global_key_def("^[m", "recenter");

global_key_def("^x#", "sharp_comment");
global_key_def("^x+", "plus_comment");
global_key_def("^x=", "equal_comment");
global_key_def("^x-", "minus_comment");
global_key_def("^x%", "percent_comment");
global_key_def("^xz", "update_title_and_save_file");
global_key_def("^xs", "update_title_backup_and_save_file");
global_key_def("^[/", "complete_word");
global_key_def("^xC", "CompareAgain");
global_key_def("^xg", "go_next");
global_key_def("^xa", "color_buffer");

global_key_def("^xe", "edir");
key_def("Edir", "^xe", "edir");

key_def("Shell", "^[b", "backward_c_form");
key_def("Shell", "^[f", "forward_c_form");
key_def("Shell", "^[d", "delete_next_c_form");
key_def("Shell", "^[\b", "delete_previous_c_form");
key_def("Shell", "^[\177", "delete_previous_c_form"); /* esc delete */
key_def("Shell", "^x^c", "quit_shell");

key_def("Latex","^[x", "latex_back_indent");
}

56 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

/* --
French accents in Latex mode.
-- */

{
key_def("Latex", "’", "french_accent");
key_def("Latex", "‘", "french_accent");
key_def("Latex", "^^", "french_accent");
key_def("Latex", "\"", "french_accent");

}

/* --
User commands: call by Users commands item in Misc Menu or toolbar
-- */

user_commands()
{
/****

char *str;
int win = current_window();

clear_list();
add_list_item("User smac function 1");
add_list_item("User smac function 2");
add_list_item("User smac function 3");

str = select_from_list("User commands");
redisplay();
select_window(win);

if(str==0 || strlen(str) < 2) {
return;

}

if (strcmp(str,"User smac function 1")==0) {
user_smac_function_1();
return;

}
...

****/
}

Release 3.45. User’s manual. 57

CHAPTER 5. ENVIRONMENT XCORAL

}

The function user commands() allows you to define your own functions that will
appear in the item User commands of the menu Misc.

5.2 Environment variables

Some environment variables can be used:

• xcoral smaclib is used to define the SmacLib PATH directory.

• xcoralrc is used to define a full pathname of the configuration file .xcoralrc.

• xcoral visit raise is used in browser to raise or not the visit window during a
select operation. Default is True.

• xcoral parse path is used by the browser to parse the specified directories at
start-up (the separator must be ’:’). These directories will be parsed recursively.

• xcoral modif color is a string colorname used to display the ’S’ letter when
the buffer has been modified. Default color is red.

• xcoral save color is a string colorname used to display the ’S’ letter when
the buffer has been saved. No default color.

• xcoral shell is used to define a shell pathname used in a shell window (see
shell mode).

• xcoral selection is a string colorname used as background color of a selection
(default gray).

5.3 Resources

The available resources are fonts (text, menu), foreground, background (text, menu,
bottom dialog), displaywarning and geometry. Here is a simple .Xdefaults portion for
XCORAL:

xcoral*geometry: =600x500+200+100
xcoral*tbackground: midnightblue /*text window background*/

58 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

xcoral*tforeground: darkseagreen1 /*text window foreground*/
xcoral*font: 9x15bold /* text window font */
xcoral*mbg: lightslategray /*menu background*/
xcoral*cbg: lightslategray /*control panel background*/
xcoral*displaywarning: True

5.4 Options

• =WxH+X+Y Specifies the geometry in pixels for a text window (Width, Height
and top-left position).

• -browsercontrol =WxH+X+Y Specifies the geometry for the browser control
window.

• -browservisit =WxH+X+Y Specifies the geometry for the browser visit win-
dow.

• -display host:0.0 Specifies an X Server connection.

• -fn fontname Specifies the text window font.

• -bg colorname Specifies text window background color.

• -fg colorname Specifies text window foreground color.

• -mfn fontname Specifies the menu font.

• -mbg colorname Specifies the menu background color.

• -mfg colorname Specifies the menu foreground color.

• -cbg colorname Specifies the control panel background color.

• -cfg colorname Specifies he control panel foreground color.

• -dw Displays browser warnings.

• -mono Forces XCORAL to be displayed using black and white colors.

• -help This causes XCORAL to print out a verbose message describing its options.

• filename [filename ...] Specifies the file(s) that have to be loaded during start-
up.

Release 3.45. User’s manual. 59

CHAPTER 5. ENVIRONMENT XCORAL

5.5 Data and binaries

It is possible to display binary files or data, but the characters that are not drawable
are viewed as a reverse question mark (191). This question mark is displayed only
when the Xlib function XTextWidth returns 0. Unfortunately this is implementation
dependent and in some cases, a simple blank character is viewed.

The Ctrl-q command (quoted char) allows you to insert a non drawable character.
For instance to insert a ^L (new page), just type Ctrl-q Ctrl-l.

5.6 Colors

On color displays, XCORAL uses some standard colornames from the rgb.txt colors
database, and also some colors used in the top and bottom shadow. This fails if the
current colormap is full. This means that one or several running clients have used all
the free color cells of the current colormap. XCORAL does not handle virtual colormap
and in this case the mono option may be useful.

In RESOURCE MANAGER property (see also .Xdefaults), the resource colors for
XCORAL must be defined as colorname (see also rgb.txt).

4! : in some desktops (i.e. CDE) a wildcard for the foreground and background
are sometimes predefined in hexa format. In this case, redefine these resources as a
colorname else you will get a message like Can’t alloc named color.

5.7 Memory resource

XCORAL uses intensively the classic malloc/free calls without using huge portions of
memory. However, if the size of free memory on your system draws near to zero, the
editor and your buffers may remain only as a pleasant dream.

5.8 Xcoral man box

The on-line manual and the ps document are produced from a unique LATEX source file
which is not provided in this distribution.

In each subwindow of the manual box (see figure §5.1 page 61), you can enter one
character to move quickly through the index window to the first item beginning with
this character.

60 User’s manual. Release 3.45.

XCORAL CHAPTER 5. ENVIRONMENT

Figure 5.1: Xcoral man box.

Release 3.45. User’s manual. 61

CHAPTER 5. ENVIRONMENT XCORAL

62 User’s manual. Release 3.45.

XCORAL

Part II

SmacLib

Release 3.45. User’s manual. 63

XCORAL

5.9 SmacLib Overview

Some SMAC files are provided in this distribution and are known as SmacLib. These
files contain many functions built on the top of the lower interface of the editor (see
Built-in editor function §4.9 page 43 and Xcoral interface §7 page 105). These functions
are C functions interpreted by SMAC. You can read them in the given files suffixed
by .sc, for instance cmd.sc and head.sc files. They are good examples of SMAC and
XCORAL use. I encourage you to read, use and perhaps adapt (correct ?) them.

cmd.sc latex.sc
color.sc latex-macros.sc
comments.sc misc-commands.sc
compare-win.sc mode.sc
complete-word.sc mode-ext.sc
describe.sc mouse.sc
edir.sc rcs.sc
edt.sc save.sc
example.sc shell-script.sc
french.sc sun-keydef.sc
hack-filename.sc title.sc
hanoi.sc top-ten.sc
head.sc utilities.sc
html.sc version.sc
java.sc window-utilities.sc
keydef-ext.sc

These files are generally loaded and evaluated during start-up. (see .xcoralrc file §5.1
page 49). See also the default xcoralrc.lf in the SmacLib directorie which can be used
as your HOME/.xcoralrc. xcoralrc and xcoral smaclib environment variables are
available at start-up to configure the editor. xcoralrc is used to specify the full
pathname of a .xcoralrc file (default is $HOME/.xcoralrc) and xcoral smaclib the
directory path where to find SMAC files (default is the directory specified at compile
time: see xc libdir in Imakefile, typically /usr/local/lib/xcoral).

5.10 cmd.sc

This file contains some useful Unix commands that you can call within the editor.

• void cmd(char * cmdline); executes (echo ””; cd current-dir; cmdline; echo
done) in a subshell and displays its result in a Shell window. As cmd invokes

Release 3.45. User’s manual. 65

XCORAL

a sub-process, you can come back to the editor during its execution. Only one
window is used for echoing your cmd calls. After that, if the cmd was make or
grep, you can directly go to each indicated line (compile error line for make or
matching line for grep) with the function go next described bellow.

• void go next(); just after a cmd call, goes to the first line of its result then loads
in a new window the corresponding file and places the cursor to the beginning
of the indicated line. If this file is already loaded in a window, works in that
window. Next call of this function will parse the next line in the Shell window.
This function is bound to Ctrl-x g with C/C++, Shell and default modes or is
global to all modes if you use the .xcoralrc provided in this distribution.

You can also use the mouse to select a line in the Shell window.

In the given file, four functions are defined to locate file pathnames and line
numbers:

– void find cmd trace1(); locates lines starting by a string within double
quotes, following by any characters, a number and again any characters. For
instance:

"myfile.c" syntax error line 13

– void find cmd trace2(); locates lines starting by a filename, following by
a colon, a number and any characters. For instance:

myfile.c:13 SearchMe

– void find cmd trace3(); locates lines starting by any characters following
by a colon, a string within double quotes, a coma, the word line, a number,
another coma and any characters. For instance:

cc : "myfile.c", line 3, syntax error

– void find cmd trace4(); locates the same line as find cmd trace3 except
that the filename is not between double quotes. For instance:

cc : myfile.c, line 3, syntax error

Add other functions to parse desired patterns.

• void make(); calls cmd(”make -k”);.

• void Make(char *args); calls cmd(”make args”); (see §4.2 page 31).

66 User’s manual. Release 3.45.

XCORAL

• void grep(char * args); calls cmd(”grep -n <args>”); (see §4.2 page 31).

• void latex(); runs latex on the filename of the current buffer.

• void xdvi (); if the current filename suffix is .tex or .latex then it runs xdvi on
the corresponding .dvi file.

5.11 color.sc

This file contains the colornames of the predefined modes and regular expressions.
The following functions are available from the Region menu.

• void color buffer(); colors the current buffer according to the current mode.

• void color region(int start, int end); colors a region (i.e. from start to end)
according to current mode.

4! color region is not robust.

5.12 comments.sc

This file contains some functions to automatically insert C comment patterns.

• void comment(char line char, int width); inserts a two line pattern display-
ing width times the character line char at the current position.

Example: comment(’x’,50); inserts the following pattern:

/* xx

xx */

• void equal comment(); calls comment(’=’, 80); (default binding ”^x=”).

• void minus comment(); calls comment(’−’, 80); (default binding ”^x−”).

• void percent comment(); calls comment(’%’, 80); (default binding ”^x%”).

• void plus comment(); calls comment(’+’, 80); (default binding ”^x+”).

• void sharp comment(); calls comment(’#’, 80); (default binding ”^x#”).

Release 3.45. User’s manual. 67

XCORAL

5.13 compare-win.sc

This file contains functions that compare the contents of two windows. Position the
cursor successively in the two windows to be compared, then execute ‘Compare’ from
one. Execution stops at the first different character, or at end of file. Alter the windows
or move cursor in either or both in order to execute ‘CompareAgain’

• void Compare(); starts comparing current window to another one.

• void CompareAgain(); resumes comparing current window to another one.

5.14 complete-word.sc

This file contains functions that handle the completion of a word in the current buffer.

• void complete word(); searches backward for another word starting like the
current incomplete word in the current window, memorizing last try and avoiding
immediate repeat of same candidates. This function is bound to ”^[/”. Hit Esc /
as many times as necessary to make adequate completion appear.

5.15 describe.sc

This file contains useful functions to get information about functions and SMAC objects.

• void describe(void* f); displays, in the message box, a SMAC function descrip-
tion.

Example: describe(set mode font); displays:

set_mode_font (builtin) : 2 params, void(*)(char*,char*)

• void describe all(); displays, in the message box, a description of all current
SMAC functions.

• void display char(char value); displays, in the message box, a global variable
value of type char.

• void display int(int value); displays, in the message box, a global variable
value of type int.

• void display string(char* value); displays, in the message box, a global vari-
able value of type char *.

68 User’s manual. Release 3.45.

XCORAL

5.16 edir.sc

This file contains functions that handle edir mode (see §4.3.7 page 34), which permits
directory browsing and file operation.

5.17 edt.sc

This file contains an EDT emulation written by Peter Chang. This is not a complete
emulation of DEC EDT keys. Emphasis has been made on the common keypad and
cursor cluster functions. (No attempt at control keys.) No help currently available.

At the moment the problem is that there is no keysym for the Remove key (so I
added a patch to handle key.c). However keysyms for the top and right edges of the
keypad are dependent on the keyboard design.

It defines:

edt forward word edt paste edt next page edt copy
edt previous page kp gold kp help kp find
kp page kp sect kp append kp dword
kp back kp cut kp dchar kp word
kp char kp bol kp select kp enter
cur insert cur remove cur select cur prior
edt cut kp dline kp forw kp eol
cur find cur find cur next

5.18 example.sc

This file contains two examples presented in the previous chapter.

• HiddenMessage()

• SomeBoxes()

5.19 french.sc

This file defines the french mode, which gives the possibility to accentuate characters.
Lowercase and uppercase characters can be accentuated, the key sequences are:

Release 3.45. User’s manual. 69

XCORAL

a‘ ⇒ à a^ ⇒ â
e’ ⇒ é e‘ ⇒ è e^ ⇒ ê e~ ⇒ ë
i^ ⇒ ı̂ i~ ⇒ ı̈
o^ ⇒ ô
u‘ ⇒ ù u^ ⇒ û u~ ⇒ ü
c~ ⇒ ç c‘ ⇒ ç c^ ⇒ ç

5.20 hack-filename.sc

This file contains functions that restore the logical path from the automount path,
either on text in a buffer or in a string argument.

• void hack file name(); looks for the automount directory prefix /tmp mnt in
the current line then deletes it.

• char *hack file string(char *path); returns a logical pathname.

Example: hack file string (”/tmp mnt/users/foo.c”); returns: /users/foo.c.
These two functions must be adapted to the site automount prefixes.

5.21 hanoi.sc

This file contains the SMAC source of the classic Hanoi tower demo.

70 User’s manual. Release 3.45.

XCORAL

5.22 head.sc

This file contains functions that automatically insert headers for classes, functions,
methods and include files (see C-C++ forms).

• void cplus class header(); prompts in a dialog box to get class name and
parent class name then inserts the following form:

//
// Class name: foo
//
// Description:
//
class foo: public bar {

public:
foo();
foo(const foo &);
~foo();

protected:
private:

};

• void java class header(); prompts in a dialog box to get a java class name and
its parent then inserts the following form:

//
// Class name: foo
//
// Description:
//
public class foo extends bar {

}

• void method header(); prompts in a dialog box to get a method name and its
parent class name, then inserts the following form:

Release 3.45. User’s manual. 71

XCORAL

//
// Method name: foo
//
// Description:
// Input:
// Output:
//
bar::foo()
{

}

• void function header(); prompts in a dialog box to get a function name then
inserts the following form:

/*
** Function name: foo
**
** Description:
** Input:
** Output:
*/
foo()
{

}

• void include header() checks the current filename and its suffix .h then inserts
the following form:

#ifndef _foo_h
#define _foo_h

#endif /* _foo_h */

72 User’s manual. Release 3.45.

XCORAL

5.23 html.sc

The html macros item in the Misc menu presents a scrolled list of html tags. Double
click on an item to insert the corresponding tag. Some of these items can be used after
having defined a region (Heading, Style, Form).

Example:
If you choose New HTML document, a dialog box will ask you to type your document

title, then, the following lines will be inserted and colored.

<!-- This file has been generated with Xcoral html mode -->
<HTML>
<HEAD>
<! Insert title here ->
<TITLE>My title</TITLE>

</HEAD>

<BODY>
<!-- Insert text here -->
<H4>My title</H4>

</BODY>
</HTML>

5.24 java.sc

This file contains key bindings for the Java mode and the filter definition used by the
browser.

5.25 keydef-ext.sc

This file contains functions that globalize key bindings, on a ”global” mode list.

• void globalize mode(char* mode name); makes mode mode name global.
This means that the mode is added to the global list.

• void global key def(char* key name, char* command name); binds the
key key name to the command command name in all modes that are in the global
list. Beware that this ”global” key definition is synchronous: globalize mode does
not bind any keys, and global key def only calls key def on the modes currently in
the list.

Release 3.45. User’s manual. 73

XCORAL

5.26 latex.sc

This file contains functions that handle the Latex mode indentation (see §4.3.4 page 33).

5.27 latex-macros.sc

Latex mode has been provided with a latex macros menu. This menu allows you to
automatically insert latex macros in your current file.

For example, to insert:

\begin{minipage}[t]{5cm}

\end{minipage}

double click on the items Other environments.. and Minipage in Latex style and macros
from the menu Misc.

Macros inserted are automatically indented and colored.
Some macros like Font style can be used with a predefined region.

5.28 misc-commands.sc

This file contains the function linked to the item Misc commands of the menu Misc. It
proposes four types of useful functions to insert titles, to update these titles, to insert
comments and miscellaneous commands.

5.29 mode.sc

This file defines functions and key bindings for C-mode, C++mode and also default
mode.

5.29.1 C-C++ mode

In C-mode and C++mode the key bindings defined by SMAC are:

• tab to reindent the current line. Made by the c indent line function.

• return to insert a newline and indents the new line according to previous lines.
Made by the c indent line function. It may be necessary to type tab after some
characters modifying the line context (for instance after case).

74 User’s manual. Release 3.45.

XCORAL

• ‘}’, ‘)’ and ‘]’ to insert the character, blink the corresponding ‘{’, ‘(’ and ‘[’, and
last reindent the current line. Made by the function named:

c insert blink matched char and indent.

• ‘{’ and ‘:’ to insert the character and reindent the current line. Made by the
function c indent line.

• Esc a to go to the beginning of the current or previous definition. The beginning
of a definition is supposed to be a line whose first character is not one of #, },
space, tab and newline, or whose first two characters are not // or /*, and whose
previous line last char (before newline) is not \. Obviously the beginning of
the buffer is also considered to be a definition beginning. Made by the function
goto beginning of c definition.

• Esc f goes to the end of the current or next expression (skipping comments).
Before a {,(,[or " it goes after the corresponding },),] or ", else it goes to
the end of the following word. A word contains alphabetic characters, digits and
underscore. Made by the forward c form function.

• Esc b goes to the beginning of the current or previous expression (skipping com-
ments). Made by the backward c form function.

• Esc d deletes the end of the current expression, or the next expression (skipping
comments). Made by the delete next c form function.

• Esc delete or Esc backspace deletes the beginning of the current expression or the
previous expression (including comments). Made by the function named:

delete previous c form.

• Esc i indents the current region. If you put a mark at the beginning of the buffer
and go to the end before you type Esc i, all the buffer will be reindented (which
is not immediate when the buffer is large). Made by the c indent region function.

Indentation is parameterized by the following global variables:

• int c indent in comment (default value 3)

• int c indent in string (default value 0)

• int c indent in parenthesis (default value 1)

• int c indent in bracket (default value 1)

Release 3.45. User’s manual. 75

XCORAL

• int c indent in brace (default value 2)

• int c indent in statement (default value 2)

• int c arg decl indent (default value 4)

The indentation rules for an empty line, for instance when you type a return at the
end of a line, are (take a deep breath):

• In a comment, indentation is set to the previous (not empty or only containing
spaces and tabs) line indentation, except for the second line of comments, whose
indentation is the ‘/*’ position plus the absolute value of c indent in comment.
A comment begins with ‘/*’ and ends with ‘*/’, and a C++ comment with ‘//’
and ends at the end of line.

• In a string, if c indent in string is less than 0 the indentation is the string be-
ginning position minus c indent in string (so plus its absolute value), otherwise
indentation equals c indent in string.

• In a parenthesis, indentation equals ‘(’ position plus absolute value of the variable
c indent in parenthesis.

• In a bracket, indentation equals ‘[’ position plus absolute value of the variable
c indent in bracket.

• In a block (between {}), all depends on the previous character (skipping space,
tab, newline and comments):

– If it is ‘{’ (so you are at the beginning of the block), indentation is set to
the ‘{’ position plus the absolute value of c indent in brace.

– If it is ‘}’, indentation is set to the indentation of the corresponding ‘{’ or
of the expression preceding it.

– If it is ‘.’ or ‘;’, indentation is set to the previous expression indentation.

– If it is ‘)’ or ‘]’, indentation is set to beginning expression indentation plus
the absolute value of c indent in statement.

– Otherwise the character line indentation plus the absolute value of the vari-
able c indent in statement.

• At top level, all depends on the previous character (skipping space, tab, newline
and comments):

– If it is ‘}’, indentation is set to 0.

76 User’s manual. Release 3.45.

XCORAL

– If it is ‘)’, indentation is set to c arg decl indent because it is probably the
parameters of a function written with the old syntax.

– If it is ‘;’, indentation is set to previous expression indentation.

– Otherwise, in an expression, indentation is set to the absolute value of
c indent in statement, elsewhere 0.

The indentation rules, when you indent a non empty line (for instance when you
reindent a line with a tab) depend on the first character(s) (jumping space, tab, newline
and comments) (cheer up !, we’re almost there):

• If it is ‘#’, indentation is set to 0.

• If it is ‘*’ and the next character is ‘/’, so you close a comment, indentation is
set to the indentation of the ‘/*’

• If it is a ‘{’ out of a block, indentation is set to 0.

• Otherwise in a block:

– If it is ‘}’, indentation is set to the indentation of the corresponding ‘{’ or
of the expression preceding it.

– If it is ’case’ or ’default’, indentation is set to the corresponding switch in-
dentation.

– If it is ‘:’, indentation is set to the indentation of the corresponding ‘?’.

As you can see, it is rather complicated, nevertheless some cases are not taken into
account and need braces. For instance it is the case for nested if like:

if (t1) while (t1)
if (t2) if (t2)

f1(); f2();
else else

f2(); f3();
else

f3();

are poorly indented:

Release 3.45. User’s manual. 77

XCORAL

if (t1) while (t1)
if (t2) if (t2)

f1(); f2();
else else

f2(); f3();
else

f3();

but the indentation is correct with braces:

if (t1) { while (t1) {
if (t2) if (t2)

f1(); f2();
else else

f2(); f3();
} }
else

f3();

Of course the quantity of code interpreted by SMAC when you type a simple return
is rather disturbing, but don’t be afraid, SMAC is a good boy.

5.29.2 default mode

In default mode the bindings defined by SMAC are the followings:

• Esc f goes to the end of the current or next word. A word can contain alphabetic
characters, digits and underscore. Made by the forward word function.

• Esc b goes to the beginning of the current or previous word. Made by the back-
ward word function.

• Esc d deletes the end of the current word or the next word. Made by the
delete next word function.

• Esc delete and Esc backspace deletes the beginning of the current word or the
previous word. Made by the delete previous word function.

5.30 mode-ext.sc

This file contains some functions to handle C/C++ forms (i.e. symbol, bracketed
expression) in the current buffer. These functions call mode.sc functions.

78 User’s manual. Release 3.45.

XCORAL

• char* current form(); returns current form as string.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• void transpose forms(); transposes previous form and current form.

• char* next form(); returns next form.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• char* next form and delete(); returns next form and deletes it.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

5.31 mouse.sc

This file contains some useful functions bound to mouse buttons with modifier keys.

• void left button control(int pos); defines Ctrl-Left to delete clicked-on char.

• void right button control(int pos); defines Ctrl-Right to delete from clicked-
on character to end of line.

• void left button shift(int pos); defines Shift-Left to transpose clicked-on form
and preceding form.

• void middle button shift(int pos); defines Shit-Middle to insert clicked-on
form at current position.

• void right button shift(int pos); defines Shift-Right to delete clicked-on form.

5.32 rcs.sc

This file contains interface functions for the gnu Revision Control System. RCS man-
ages multiple revisions of a file and automates the storing, retrieval, logging and identi-
fication of revisions. The following functions work on the current file and are reachable
by the Version menu (see §5.39 page 88. For more information, consult the RCS
manual.

Release 3.45. User’s manual. 79

XCORAL

• void rcs initialize(); creates and initializes a new RCS file then deposits the
1.1 revision and checks out unlocked (i.e. read only) this revision. If the current
buffer has no name, it prompts in a dialog box to get a filename. Then a message
indicates that the revision 1.1 has been initialized.

• int rcs check in(); checks existing, initializing and locking permissions then
prompts for a log message and deposits a new version (the current buffer is
cleared). Return 1 if success else 0.

• void rcs check in and out locked(); does the same as the previous function
then checks out locked (i.e. writable) the desired revision (the current buffer is
restored).

• void rcs check in and out unlocked(); does the same work as the function
rcs check in then checks out unlocked the desired revision (the current buffer is
restored but the file is read-only).

• void rcs check out locked(); verifies locking permissions and checks out locked
the needed revision (default last).

• void rcs check out unlocked(); verifies locking permissions and checks out
unlocked the needed revision (default last).

• void rcs diff(); displays the differences between the current revision and another
specified revision.

• void rcs lock revision(); prompts for a filename and a revision number then
locks it.

• void rcs unlock revision(); prompts for a filename and a nrevision number
then unlocks it.

• void rcs log(); prints information about revisions of the current RCS file.

• void rcs repository(); displays the contents of the local RCS directory.

5.33 save.sc

This file contains two functions that update the title of the current file (see §5.36
page 81) before saving it. Filename, path, modification,author and date are updated if
they are included in the title.

• void update title and save file(); updates the title and saves the current file
(default binding ”^xz”).

80 User’s manual. Release 3.45.

XCORAL

• void update title backup and save file(); does the same, but moves old ver-
sion to filename~ first (default binding ”^xs”).

5.34 shell-script.sc

This file contains functions that handle the Shell-Script mode indentation (see §4.3.5
page 34).

5.35 sun-keydef.sc

This file contains some SUN keyboards bindings.

• key Stop/L1 is bound to ”abort”.

• key Open/L7 is bound to ”new window”.

• key Find/L9 is bound to ”forward search”.

• key Undo/L4 is bound to ”undo”.

• key Copy/L6 is bound to ”copy region”.

• key Paste/L8 is bound to ”paste region”.

• key Cut/L10 is bound to ”kill region”.

5.36 title.sc

This file contains some functions to automatically insert titles (file headers). The
followings fields are included: File, Path, Description, Created, Author, Modified, Last
maintained by, RCS revision, state, Note and copyright.

The three variables CopyrightFile, custom organization, and custom copyright are
used to define the path of your complete copyright file, your organization and the ab-
breviation of your copyright (Example custom copyright = ”(c) Copyright 1994 Xcoral
Galactic Company”;). Their default values may be modified in the title.sc file, or set
in the .xcoralrc or another .sc file.

When CopyrightFile is set to zero (default), the introduction of the gnu General
Public License is inserted by title(), shell title() and smac title() functions.

The fields Created, Author, Modified, Last maintained by and copyright are auto-
matically filled in at the function call.

Release 3.45. User’s manual. 81

XCORAL

The fields File, Path, Modified and Last maintained by are updated by the function
update title or when the file is saved if save.sc is used (see §5.33 page 80).

The field RCS Revision State is updated with SMAC RCS functions .

82 User’s manual. Release 3.45.

XCORAL

• void title(char* name); with foo as argument, inserts the following title:

/* ##

foo

File:
Path:
Description:
Created: Sat Jan 14 22:06:51 MET 1995
Author: Luke Skywalker
Modified: Sat Jan 14 22:06:53 MET 1995
Last maintained by: Luke Skywalker

RCS $Revision$ $State$

##

Note:

##

Copyright (c): Luke Skywalker

This program is free software; you can redistribute
it and/or modify it under the terms of the
GNU General Public License as published by
the Free Software Foundation; either version 2,
or (at your option) any later version.

...

...

*/

• void shell title(char* name); inserts the same title as the previous function
but in shell comments (i.e. with a ’#’ at the beginning of each line).

Release 3.45. User’s manual. 83

XCORAL

• void custom title(char* str); with foo as argument, inserts the following title:

/* ##

foo

XCORAL GALACTIC COMPANY
99999 stars city

Orion nebula.

File:
Path:
Description:
Created: Sat Jan 14 22:50:46 MET 1995
Author: Luke Skywalker
Modified: Sat Jan 14 22:50:49 MET 1995
Last maintained by: Luke Skywalker

RCS $Revision$ $State$

(c) Copyright 1994
Xcoral Galactic Company

##

Note:

*/

• void custom shell title(char* str); inserts the same title as the previous func-
tion but in shell comments (i.e. with a ’#’ at the beginning of each line).

84 User’s manual. Release 3.45.

XCORAL

• void smac title(); inserts the following title:

/* ##

SMAC FILE USED BY XCORAL EDITOR

File:
Path:
Description:
Created: Sat Jan 14 23:27:53 MET 1995
Author: Luke Skywalker
Modified: Sat Jan 14 23:27:55 MET 1995
Last maintained by: Luke Skywalker

RCS $Revision$ $State$

##

Note:

Requires:

Defines:

Suggested bindings:

Procedure:

##

Copyright (c): Luke Skywalker

This program ...

*/

• void update title(); updates the fields File, Path, Modified and Last maintained
by.

Release 3.45. User’s manual. 85

XCORAL

5.37 top-ten.sc

This file contains a function that displays runtime statistics of SMAC functions (see
§6.6.6 page 101).

5.38 utilities.sc

This file contains some general functions frequently used in smaclib.

• char *basename(char *path); extracts a filename from a full pathname. This
function uses the Unix basename command.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• char *dirname(char *path); extracts a dirname from a full pathname. This
function uses the Unix dirname command.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• void insert chars(int n, char repeated char); inserts at the current position
n times repeated char.

• void delete chars(int ndel); deletes forward ndel characters from the current
position.

• void delete to beginning of line(); deletes characters from the current posi-
tion to the beginning of the line.

• void delete to end of line(); deletes characters from the current position to
the end of the line.

• void delete region(int start, int end); deletes characters from start position
to end position.

• int does file exist(char *filename); returns True if the file filename exist.

• int does unix command exist(char *unix cmd); returns True if the com-
mand unix cmd exists.

• void print ascii(); prints the characters from 0 to 255 with the current font.

86 User’s manual. Release 3.45.

XCORAL

• void change return to newline(); replaces \r with \n from the current posi-
tion to the end of file.

• char * concat(char *s1, char *s2); returns a string which is the concatenation
of s1 and s2.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• char *substring (char *s, int n, int m); returns m characters from position
n in s (i.e. substring (”chapeau”, 2, 3) = ”ape”).

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• char* file type(char* filename); returns the type of the f ile filename. This
function uses the unix file command.

Examples:

– file type(”smaclib.tex”) returns the string ascii text

– file type(”/bin/ls”) returns the string mc68020 pure dynamically linked ex-
ecutable (on a SUN 3/60).

• int is dir(char* filename); returns True if filename is a directory.

• int is file(char* filename); returns True if filename is a regular file (i.e. not a
directory nor a link, socket or special).

• void wait for file(char *filename); waits until the file filename be present.

• void wait for nofile(char *filename); waits until the file filename be removed.

• void purge(); closes all text windows which content are already saved.

• char* window substring(int start, int end); extracts a string in the current
window from start position to end position.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

• void center line(); centers the current line within a width of 80 characters.

• void center line within(int width); centers the current line within a width of
width characters.

Release 3.45. User’s manual. 87

XCORAL

• void delete line blanks(); deletes blanks and tabs just before current position
and behind if current character is a blank or a tab.

• void just one blank(); calls the previous function and inserts a blank.

• void delete previous char(); deletes the previous character preceding the cur-
rent position.

• int gets string cancelled(char* str); returns True if the string str is neither
null nor equal to ^g (ASCII code 7). Useful after a call to the gets functions.

• int is num(char *str); returns True if the string str is numeric (12.34 is valid).

• int read int from string(char* str); reads an int from the string str and
returns it.

• void recenter(); recenters current position vertically in window.

• void sleep(s); waits s seconds.

• void transpose chars(); transpose current and preceding character.

5.39 version.sc

This file contains the upper level interface to a Version Control System. The default is
RCS.

Example:

void cv_check_out_locked ()
{

rcs_check_out_locked();
}

You can redefine these functions to set up the interface of your choice (for SCCS:

void cv_check_out_locked () {sccs_check_out_locked()}).

The following functions, which are reachable from Version menu call the SMAC
RCS interface (see rcs.sc §5.32 page 79).

• void cv initialize ();

• void cv check in ();

88 User’s manual. Release 3.45.

XCORAL

• void cv check in and out locked ();

• void cv check in and out unlocked();

• void cv check out locked ();

• void cv check out unlocked ();

• void cv diff ();

• void cv lock revision();

• void cv log ();

• void cv repository ();

• void cv unlock revision();

5.40 window-utilities.sc

This file contains some window utilities, that are used by compare-win.sc (see §5.13
page 68) for example:

• int choose window(char* msg); enables the user to select a window from a
list of all windows.

• int current position in(int win); returns the current position in the window
win.

• int end of file in(int win) returns the end of file position in window win.

• void goto char in(int win, int pos); goes to the position pos in the window
win.

• char the char in(int win, int pos); returns the character at the position pos
in the window win.

Release 3.45. User’s manual. 89

XCORAL

90 User’s manual. Release 3.45.

XCORAL

Part III

Smac

Release 3.45. User’s manual. 91

XCORAL CHAPTER 6. SMAC DEFINITION

Chapter 6

Smac definition

SMAC is a small ansi c interpreter developed to extend XCORAL editor services, but it
is also possible to use SMAC outside XCORAL (see §9 page 153).

This chapter gives definitions of SMAC functions independently of XCORAL, valid
whether they are used within or without XCORAL. The next chapter will describe their
interface with XCORAL.

SMAC implements a subset of the ansi c standard, but to be fully functional it also
implements some extensions of it:

• In traditional c, a program has a single entry point named main(). In SMAC,
each function is an entry point, thus a main() definition is not required, besides
SMAC does not know the name main.

• You can evaluate a sequence of expressions outside any function definition. These
expressions are placed between braces as a function body, and are named free
expressions. The only restriction is that you cannot put any declaration in a free
expression, for instance to define a local variable.

For example, you can directly write:

{ printf("Hello world\n");
printf("I am SMAC, a SMall Ansi C interpreter\n"); }

• There is no programming time and run time (in the c usual sense) in SMAC. As
in lisp you define functions and global variables, or execute free expressions when
and where you want (providing that all necessary global definitions are made).

Release 3.45. User’s manual. 93

CHAPTER 6. SMAC DEFINITION XCORAL

• Files are not separately considered, as soon as you declare or define functions and
variables, you increase your global environment.

To manually interrupt a SMAC execution, hit Ctrl-c in the window where XCORAL
or just SMAC is running (kill -2 on XCORAL pid). To stop current execution by program
(as with exit() unix system function but without XCORAL or SMAC ending) see error()
§6.6.7 page 104.

According to the SMAC compiling flags (see §9 page 153) SMAC can check all your
memory access/modification to avoid core dump or other things. In this case, all allo-
cated objects are taken from a special memory area whose default size is 2^18 bytes
under XCORAL, and 2^15 bytes otherwise. You can update the smac memory size
environment variable to increase it, its value must be a power of two (default 2^18 or
2^15).

In all cases the SMAC stack size is 1024 words by default. To increase it update the
smac stack size environment variable; its value corresponds to the number of words
it can contain (a word permits to memorize a char, an int or a pointer).

6.1 Function definition

You must declare functions before use, but of course, when you define a function,
you declare it at the same time. You can both use an old style to declare a function
arguments list:

return_type function_name(arg1, ... argn)
type1 arg1;

. . .

. . .
typen argn;

{
. . .

}

or the ansi c syntax:

return_type function_name(type1 arg1, ... typen argn)
{

. . .
}

94 User’s manual. Release 3.45.

XCORAL CHAPTER 6. SMAC DEFINITION

You cannot define a function with a variable number of arguments (ellipsis), al-
though some predefined functions use this facility (e.g. printf()). Classically, by
default, the function return value type and its parameters type are int.

You cannot redefine predefined functions, and when you redefine a user function or
variable XCORAL displays a warning to avoid surprises. This default protection can be
changed with the debug mode() function (see §6.6.4 page 100).

6.2 Global variable definition

Global variable definitions are written in SMAC as in c, but their initialization is per-
formed just after their definition reading (thus before reading the following).

By default global variables and arrays are initialized with 0, but local variables and
arrays are not initialized.

I am sorry, but it is not (yet ?) possible to initialize an array within its declaration
with values in braces, furthermore you must give every dimension values (it is not
possible to use []).

6.3 Preprocessor

SMAC has no preprocessor, thus you cannot use associated directives. For instance, you
cannot use the #include directive, but SMAC knows all predefined functions profiles.

If you want to load a declaration file (probably a .h file), use load file() (see §6.6.7
page 104).

6.4 Types

SMAC knows the types void, char and int and the derivated types pointer (for in-
stance, a pointer to function) and array. You cannot define any struct or enum.

SMAC does not fix int, char and pointer characteristics such as size and alignment.
They are the same ones as those used by the compiler to compile XCORAL and SMAC.
For instance, if chars are signed for this compiler, they will also be signed in SMAC.

6.5 Keywords

The keywords taken into account are: break, case, char, continue, default, do,
else, for, if, int, return, sizeof, switch, void and while. The followings are
discarded: auto, const, double, enum, extern, float, goto, long, register, short,
signed, static, struct, typedef, union, unsigned and volatile.

Release 3.45. User’s manual. 95

CHAPTER 6. SMAC DEFINITION XCORAL

Obviously ”.” and ”->” operators are also discarded, but every others are taken
into account.

6.6 Predefined functions

Here we describe SMAC predefined functions not linked with XCORAL. Some of these
functions could have been defined in SMAC but they are predefined for performance
reasons.

6.6.1 Formatted output conversion

Two formatted output conversion functions are defined (see also wprintf() §7.3.4
page 112):

printf

int printf(char * format, ...)

printf places output on stdout and returns the number of output characters. The
conversion characters taken into account are %diopuxXcs with associated flags and
fields. Use your preferred man for more information.

sprintf

char * sprintf(char * str, char * format, ...)

sprintf sets output on str and returns str. The conversion characters taken into
account are the same as printf ones.

6.6.2 Memory

Three memory allocation and free functions are predefined in SMAC (see also strdup()
§6.6.3 page 98):

malloc

void * malloc(int size)

malloc returns a pointer on a block of at least size bytes correctly aligned, or 0 on
failure (see §6 page 94).

96 User’s manual. Release 3.45.

XCORAL CHAPTER 6. SMAC DEFINITION

calloc

void * calloc(int nelt, int eltsize)

calloc returns a pointer to a zero initialized block able to memorize nelt elements of
size eltsize, or 0 on failure.

free

void free(void * ptr)

free releases a block allocated by malloc or calloc.
For performance reasons, a copy function has also been predefined:

memcpy

char * memcpy(char * to, char * from, int n)

memcpy copies n bytes from from to to.

6.6.3 Strings

SMAC defines classical strings functions (read your local man for more information):

strcat

char * strcat(char * s1, char * s2)

strchr

char * strchr(char * s, int c)

strcmp

int strcmp(char * s1, char * s2)

strcpy

char * strcpy(char * s1, char * s2)

Release 3.45. User’s manual. 97

CHAPTER 6. SMAC DEFINITION XCORAL

strcspn

char * strcspn(char * s1, char * s2)

strdup

char * strdup(char * s)

strlen

int strlen(char * s)

strncat

char * strncat(char * s1, char * s2, int n)

strncmp

int strncmp(char * s1, char * s2, int n)

strncpy

char * strncpy(char * s1, char * s2, int n)

strpbrk

char * strpbrk(char * s1, char * s2)

strrchr

char * strrchr(char * s, int c)

strspn

int strspn(char * s1, char * s2)

98 User’s manual. Release 3.45.

XCORAL CHAPTER 6. SMAC DEFINITION

strstr

char * strstr(char s1, char * s2)

strtok

char * strtok(char s1, char * s2)

index

char * index(char * s, int c)

rindex

char * rindex(char * s, int c)

6.6.4 Redefinition

It is possible to redefine functions and global variables (in this case new definitions
step over old ones) under certain conditions, essentially for debug reasons, but it is
not possible to change function or global variable profiles. Thus, you cannot change a
function return value type, nor its parameters number and their types, nor the type
of a global variable (dimensions included). Neither is it possible to redefine an active
function, or to redefine predefined functions.

remove function definition

void remove_function_definition(void * pfunc)

The first way to redefine a function is to undefine it, and then to give it its new
definition. After a remove function definition call, the function whose name is given as
argument remains simply undeclared. However, it is not possible to undefine an active
function (during its execution), nor to undefine a predefined function.

Obviously, this way is cumbersome when you want to redefine several functions,
for instance when you want to reload a file. In this case you will probably prefer the
following function:

Release 3.45. User’s manual. 99

CHAPTER 6. SMAC DEFINITION XCORAL

debug mode

void debug_mode(int mode)

After a debug mode call with a non null argument, you can redefine your functions
and global variables. If the argument is greater than 1, redefinitions are signaled by a
warning. After debug mode call with zero as argument you cannot make redefinitions
anymore.

6.6.5 Function

Because SMAC is an interpreter, a function is a real object and it is possible to access
to information about it at run time:

function name

char * function_name(void * function)

Returns the function (built-in or not) whose name is function name if this one
exists, else returns 0. It is used for instance in the edir.sc SmacLib files to load color.sc,
if this is not already done.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

function arg count

int function_arg_count(function)

Returns the function number of arguments. If the function accepts a variable num-
ber of arguments, it returns its minimal number, for instance 1 for printf().

function is builtin

int function_is_builtin(function)

Returns 1 if the function is a built-in function, else 0.

function type

char * function_type(function)

100 User’s manual. Release 3.45.

XCORAL CHAPTER 6. SMAC DEFINITION

Returns a new allocated string containing the function type. For instance
function_type(function_type) returns the following string: "char*(*)(void*)".

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

function list init function list

void init_function_list() void * function_list()

These two functions are intended to access to all the defined functions (built-in or
not). init function list initializes the iteration, and function list returns each time a
different function or 0 when all the functions have been accessed. For instance, the
following function is defined in the describe.sc file):

void describe_functions()
{

void * f;

init_function_list();
while (f = function_list()) {

char * name = function_name(f);
char * decl = function_type(f);

printf("%s : %s%d params, %s\n",
name, (function_is_builtin(f)) ? "(builtin) " : "",
function_arg_count(f), decl);

free(name);
free(decl);

}
}

6.6.6 Execution profile

Profiling helps you to approximately know the run time ratio taken by your functions.
Built-in functions are not taken into account and their run time are included in their
caller’s one. To achieve this you must call start profile(), execute your program, and
last call stop profile(). After that function percent() may return run time percentages.

Release 3.45. User’s manual. 101

CHAPTER 6. SMAC DEFINITION XCORAL

When profile is running, a timer is used to watch periodically which function is the
current function, and to increase its counter. If SMAC is used from XCORAL, this timer
is disarmed when you are under the XCORAL toplevel, but it remains active when you
call an XCORAL interface function from SMAC.

To see the ten most greedy functions (the top ten function is defined in the top ten.sc
file), you can run:

102 User’s manual. Release 3.45.

XCORAL CHAPTER 6. SMAC DEFINITION

void top_ten()
{

void * f;
void * ttf[10];
int ttc[10];
int i;

for (i = 0; i != 10; i += 1) { ttf[i] = 0; ttc[i] = 0; }

init_function_list();
while (f = function_list())

for (i = 0; i != 10; i += 1)
if (function_percent(f) > ttc[i]) {
int j;

for (j = 9; j != i; j -= 1) {
ttf[j] = ttf[j - 1];
ttc[j] = ttc[j - 1];

}
ttc[i] = function_percent(f);
ttf[i] = f;
break;

}

for (i = 0; (i != 10) && ttf[i]; i += 1) {
char * name = function_name(ttf[i]);

printf("%s : %d%%\n", name, ttc[i]);
free(name);

}
}
{

start_profile();
/* any execution */
stop_profile();
top_ten();

}

Release 3.45. User’s manual. 103

CHAPTER 6. SMAC DEFINITION XCORAL

start profile

int start_profile()

Resets counters, starts the profiling and returns the number of not built-in functions.

stop profile

int stop_profile()

Stops profiling and returns the amount of time the timer has run.

function percent

int function_percent(void *)

Takes a function as argument and returns its execution profile associated counter,
and 0 if the timer has never run (run time was too small) or if the function is built-in.

6.6.7 Others

Here are some other useful functions.

load file

void load_file(char * filename)

Loads the file specified by filename (the sc suffix used in the given files is not
required, SMAC does not use default suffixes), all included definitions and declarations
are added in the global environment, free expressions are executed.

error

void error(char * msg)

Aborts the current execution and prints msg. If SMAC was called from XCORAL,
control is given back to XCORAL and msg is printed in a special window (see also
display message §7.3.13 page 138) and the stack of last called functions is given.

showed stack size

void showed_stack_size(int height)

Sets the number of last called functions given when an error occurred, default value
is 10.

104 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

Chapter 7

Xcoral interface

The interface between SMAC and XCORAL is composed of a large list of built-in func-
tions. With them you can customize your XCORAL environment by adding your own
functions, for instance to define modes (like the C-mode, see §5.29 page 74), to auto-
matically indent your code files, or other features (see also the cmd.sc file description
§5.10 page 65).

7.1 Smac access

From XCORAL you have four ways to call SMAC to execute a program:

• The Eval expression menu entry or Ctrl-x Ctrl-e allows you to feed SMAC free
expressions (see §6 page 93) on one line and execute them. In this case, it is not
necessary to type the including braces, for instance to run Makefile and go to the
first erroneous line just enter:

make(); go next();

after eval expression menu selection or Ctrl-x Ctrl-e key sequence.

• The Eval region menu entry or Esc e makes SMAC evaluate the free expressions
or definitions of the current region, as if the region was placed in a file loaded by
the load file function (§6.6.7 page 104).

• The Load and eval file menu entry prompts for a file name and loads it as with
load file.

• At last, you can bind a function with a key or a sequence of keys; thus when
you hit this keys or sequence of keys the corresponding function is called.

Release 3.45. User’s manual. 105

CHAPTER 7. XCORAL INTERFACE XCORAL

Furthermore at XCORAL start-up, the .xcoralrc file is loaded by SMAC as with
load file. In this file, you may load mode definitions, select fonts,

7.2 Conventions

The general conventions between SMAC and XCORAL are the following:

• The windows are numbered from 0 to 31. Each window receives a constant
number. When you kill a window its number will be reused by a future window
creation. See current window() function (see §7.3.9 page 119).

• The current window, is the window pointed at by the mouse, therefore the current
edited window. All functions refer to the current window except those for selecting
(see select window() §7.3.9 page 118) or killing a window (see kill window()
§7.3.9 page 119).

• The first character in a window is numbered 0 (see current position() §7.3.1
page 106, goto char() §7.3.2 page 108 and the char() §7.3.3 page 110). This
number is incremented for each following character (including newline) up to the
end of the buffer.

• The first line in a window is numbered 0 (see goto line() §7.3.2 page 110 and
current line() §7.3.1 page 107).

• In most cases there is no window redisplay during SMAC execution. Necessary
redisplays are made when SMAC execution ends and XCORAL recovers control, or
when you call the redisplay function (see §7.3.8 page 117).

7.3 Functions

7.3.1 About position

current position

int current_position()

Returns the current position in the current window. When you are at the beginning
of the buffer current position returns 0.

106 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

end of file

int end_of_file();

Returns the end of file position, thus the number of characters in the buffer. For
an empty file end of file returns 0.

at end of file

int at_end_of_file();

Returns 1 if you are at the end of the current buffer, else returns 0. Its definition
is equivalent to:

int at_end_of_file()
{

return (current_position() == end_of_file());
}

current line

int current_line();

Returns the current line number. Lines are terminated by a newline character. Here
is an example of this function use:

{ goto_char(0);
printf("%d\n", current_line()); } /* writes 0 */

beginning of line

int beginning_of_line();

Returns the position of the beginning of the current line, therefore the current
position at the beginning of the buffer or when the previous character is a newline.

end of line

int end_of_line()

Returns the position of the end of the current line, therefore the current position if
the current character is newline, else the position of the next newline if it exists, else
the end of file position (See also mark position() §7.3.7 page 115).

Release 3.45. User’s manual. 107

CHAPTER 7. XCORAL INTERFACE XCORAL

7.3.2 Change position

goto char

void goto_char(int nth);

Changes the current position in the current window to nth if it is possible, else does
nothing.

{ goto_char(0); /* go to the beginning of buffer */
goto_char(-1); } /* do nothing */

goto next char

void goto_next_char();

Increments the current position if it is not the end of file position, else does nothing.

{ goto_end_of_file();
goto_next_char(); } /* do nothing */

goto previous char

void goto_previous_char();

Decrements the current position if it is not the beginning of file position, else does
nothing.

{ goto_char(0);
goto_previous_char(); } /* do nothing */

goto end of file

void goto_end_of_file();

Changes the current position to the end of file position. Its definition is equivalent
to:

void goto_end_of_file()
{

goto_char(end_of_file());
}

108 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

goto beginning of line

void goto_beginning_of_line();

Changes the current position to the beginning of the current line position.

goto end of line

void goto_end_of_line();

Changes the current position to the end of the current line position.

goto next line

void goto_next_line();

Changes the current position to the same column of the next line when possible. If
the current line is the last one, goes to the end of file. If the current position is the end
of file position, does nothing. If the length of the next line is shorter than the length
of the current line, goes to the end of the next line. The column is the nth character of
the line (Note that a tab counts 1, not 8). Its definition is equivalent to:

void goto_next_line()
{

int col = current_position();

goto_beginning_of_line();
col -= current_position();
goto_end_of_line();
goto_next_char();
while (col-- && (current_char() != ’\n’))

goto_next_char();
}

goto previous line

void goto_previous_line();

Changes the current position to go to the same column of the previous line when
possible. If the current line is the first, goes to the beginning of file. If the current
position is the beginning of file position, does nothing. If the length of the previous
line is shorter than the length of the current line, goes to the end of the previous line.

Release 3.45. User’s manual. 109

CHAPTER 7. XCORAL INTERFACE XCORAL

goto line

void goto_line(int nth);

Changes the current position to go to the beginning of the nth line when possible,
else (nth is too large or negative) does nothing.

See also forward search() (§7.3.5 page 112), backward search() (§7.3.5 page 113),
msearch() (§7.3.5 page 113) and read file() (§7.3.8 page 115).

7.3.3 Get buffer contents

current char

int current_char();

Returns the current character ascii code, that means the code of the character at
the current position. Returns 0 at end of file or when the buffer is empty.

the char

int the_char(int nth);

Returns the ascii code of the nth character of the buffer, 0 for illegal position or at
end of file. the char definition is equivalent to:

int the_char(int nth)
{

if ((nth >= 0) && (nth <= end_of_file())) {
int here = current_position();
int result;

goto_char(nth);
result = current_char();
goto_char(here);
return result;

}
return 0;

}

110 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

next char

int next_char();

Returns the next character ascii code, 0 if the current position or the next one is
the end of file, or if the buffer is empty. next char definition is equivalent to:

int next_char()
{

return(the_char(current_position() + 1));
}

previous char

int previous_char();

Returns the previous character ascii code, or 0 at the beginning of the file or if the
buffer is empty.

7.3.4 Change buffer contents

delete char

void delete_char();

Removes the current character, does nothing at the end of file or if the buffer is
empty. Obviously the buffer number of lines is updated if the current character was
newline.

replace char

void replace_char(int newchar);

Replaces the current character by newchar. At the end of file or if the file is empty
the new character is inserted at the current position and the buffer size is incremented.
Obviously the number of lines of the buffer is updated if one of the current or the new
character is newline. Its definition is equivalent to:

void replace_char(int newchar)
{

delete_char();
insert_char(newchar);
goto_previous_char();

}

Release 3.45. User’s manual. 111

CHAPTER 7. XCORAL INTERFACE XCORAL

insert char

void insert_char(int newchar);

Inserts newchar before the current character and goes to the next position, therefore
the current character remains the same. Obviously the number of lines of the buffer is
updated if the inserted character is newline.

insert string

void insert_string(char * str);

Inserts all the str chars, except the final 0, as each character being inserted by
insert char:

void insert_string(char * str)
{

while(*str)
insert_char(*str++);

}

wprintf

int wprintf(char * format, ...);

wprintf is equivalent to printf except that the output characters are inserted in
the current window starting at the current position. See also display message (§7.3.13
page 138).

See also the following functions: global replace(), (§7.3.5 page 114), insert file()
(§7.3.8 page 116), read file() (§7.3.8 page 115) and kill current buffer() (§7.3.8
page 116).

7.3.5 Search and substitution

forward search

int forward_search(char * str);

Searches for str through the next characters, returns 1 and goes to the beginning
of the string on success, else returns 0.

112 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

backward search

int backward_search(char * str);

Searches for str through the previous characters, returns 1 and goes to the beginning
of the string on success, else returns 0.

msearch

int msearch(char * string, int end, int direction);

Searches for a character among str (except the last 0) in the current buffer, forward
if direction is positive or null and backward if direction is negative. Search stops at the
end position. Returns 1 and goes to the corresponding position on success, otherwise
returns 0 and goes to end position. Here is its definition:

int msearch(char * str, int end, int direction)
{

if (direction >= 0) {
if (end > end_of_file())

end = end_of_file();
while (current_position() < end)

if (strchr(str, current_char()))
return 1;

else
goto_next_char();

}
else {

if (end < 0)
end = 0;

while (current_position() > end) {
goto_previous_char();
if (strchr(str, current_char()))

return 1;
}

}
return 0;

}

Release 3.45. User’s manual. 113

CHAPTER 7. XCORAL INTERFACE XCORAL

global replace

int global_replace(char * str1, char * str2)

Searches for and replaces str1 by str2 in the next characters and returns the number
of substitutions. The current position is not modified.

7.3.6 Regular expressions

re forward search

int re_forward_search(char * regexp)

Returns the position of the next regular expression regexp or -1 if regexp has not
been found or -2 if regexp is not valid.

re backward search

int re_backward_search(char * regexp)

Returns the position of the previous regular expression regexp or -1 if regexp has
not been found or -2 if regexp is not valid.

re match beginning

int re_match_beginning(int n)

Returns the beginning position of the substring n of the regexp found by the previous
search call to a regexp else -1 if regexp is not valid. The first substring of a regexp is
numbered 0. (see gnu regexp manual).

re match end

int re_match_end(int n)

Returns the end position of the substring n of the regexp found by the previous
search call to a regexp, else -1 if regexp is not valid (see gnu regexp manual).

re replace

int re_replace(char *newstring)
int re_replace(char *newstring, char * regexp)

114 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

Replaces the regular expression regexp with the string newstring. If the argument
regexp is omited, the previous search call to a regexp is used. It returns 1 on success,
else 0 (see gnu regexp manual).

7.3.7 Mark

mark position

int mark_position()

Returns the position of the mark, else -1 if has been set no mark.

set mark

void set_mark(int pos)

Sets the current buffer mark to pos.
[Note]: for a region defined by mark position() and the current position, the current

position may be the end or the beginning of the region. Anyway the mark must be
defined first.

reset mark

void reset_mark()

Removes the mark of the current buffer.

goto mark

void goto_mark()

Changes the current position to the mark position.

7.3.8 Buffers and files

Some editing operations called by menus can be executed from SMAC. But in this
case the information asked for by XCORAL menus have to be given as arguments of the
corresponding functions (questions are not performed).

read file

int read_file(char * filename)

Release 3.45. User’s manual. 115

CHAPTER 7. XCORAL INTERFACE XCORAL

Changes the current buffer to the file associated to filename like the Read File
menu entry, except that if the current buffer is not saved, its contents is lost (see
current buffer is modified() §7.3.8 page 116). Returns 0 if there is no file matching
filename and -1 if the file is already loaded in an other buffer of the current session,
leaving the buffer unchanged. Otherwise returns 1 and loads filename in the current
buffer. The current position becomes the beginning of buffer.

save file

void save_file()

Saves the buffer into the corresponding file in the same way as the Save File menu
entry does.

write file

void write_file(char * newfilename)

Saves the buffer into the file corresponding to newfilename like the Write File
menu entry does.

insert file

int insert_file(char * filename)

Inserts the contents of the file associated to filename at the current position. Current
position stays unchanged (it is the beginning of the inserted file). Returns 1 on success,
otherwise 0 (if SMAC cannot read filename).

kill current buffer

void kill_current_buffer()

Empties the current buffer. If it has not already been saved, its contents is lost.

current buffer is modified

int current_buffer_is_modified()

Returns 1 if the current buffer is modified, else 0. Here is an example of this function
use:

116 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

void save_buffers()
{

int win;

for (win = 0; win != 32; win += 1)
if ((select_window(win) != -1) &&

current_buffer_is_modified())
save_file();

}

line count

int line_count()

Returns the current buffer number of lines, a non terminated line is counted, there-
fore an empty buffer has 1 line. Its definition is equivalent to:

int line_count()
{

int result = 0;
int here = current_position();

goto_beginning_of_file();
do {

goto_end_of_line();
goto_next_char();
result += 1;

} until (at_end_of_file());
goto_char(here);
return result;

}

redisplay

void redisplay()

Updates the contents of windows needing redisplay. Of course this update is imme-
diate, and not delayed until current SMAC execution ends.

filename

char * filename()

Release 3.45. User’s manual. 117

CHAPTER 7. XCORAL INTERFACE XCORAL

Returns a new allocated string containing the absolute filename corresponding to
the current buffer, or 0 when the buffer is untitled.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

current line to top

void current_line_to_top()

Scrolls to position the current line as the window first line. Note that the window
will not be updated until the current SMAC execution ends.

4! Be careful, if you change the current position after this function call, the
window appearance could be changed and the line designated might not become the
first of the window.

set font

void set_font(char * fontname)

Changes the current buffer font to fontname.

See also current window() and select window() below.

7.3.9 Windows

select window

int select_window(int win)

Changes the current window to win and returns win if the corresponding window
exists. Else returns −1 and the current window is unchanged. Here is an example of
this function use:

118 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

void print_windows_name()
{
int my = current_window();
int win;

for (win = 0; win != 32; win += 1)
if (select_window(win) != -1) {

char * name = filename();

printf("window %d : %s\n", win, name);
free(name);

}
select_window(my);

}

current window

int current_window()

Returns the current window number.

new window

int new_window()

On success, creates a new untitled window and returns its number, else returns -1.

kill window

void kill_window(int win)

Kills the window win. If win is the last window, quits XCORAL. Else if win is the
current window another window becomes the current window. Following is an example
of this function use:

void the_end()
{

int win;

for (win = 0; ; win += 1)
kill_window(win);

}

Release 3.45. User’s manual. 119

CHAPTER 7. XCORAL INTERFACE XCORAL

lower window

void lower_window()

Puts the current window under all the others.

raise window

void raise_window()

Puts the current window above all the others.

window height

int window_height()

Returns the current window height (number of lines in current page).

window width

int window_width(int character)

If character width is not null for the current window font, returns the number of
times character can be written on the current window width; for a fixed font this value
is the number of columns. Else, if character is not visible (it is the case for the null
character in all fonts), returns the opposite of current window width in pixels.

See also redisplay() (§7.3.8 page 117), filename() (§7.3.8 page 117) and set font()
(§7.3.8 page 118).

7.3.10 Colors

color area

void color_area(int start, int end, char *colorname)

Colors text region from position start to position end with color colorname (see the
standard X11 file rgb.txt). This function can be used with the SMAC regexp interface
to color strings of your own modes (see color.sc §5.11 page 67).

120 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

remove colors

void remove_colors()

Removes all colors in the current buffer.

monochrome

int monochrome()

Returns 1 if your display is monochrome, else 0.

7.3.11 Modes

Modes permits to locally configure key bindings and default font. See also C-mode
§5.29 page 74 and french mode §5.19 page 69.

current mode

char * current_mode()

Returns the name of the current window mode in a new allocated string.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

create mode

void create_mode(char * name)
void create_mode(char * name, char * suffixes)
void create_mode(char * name, char * suffixes, char * fontname)

Creates a new mode named name if it does not already exist. This mode will be
created with default mode bindings. If suffixes is valuated, the next file having one of
these suffixes will be loaded in name mode. This also goes for fontname.

suffixes is one or a sequence of words beginning by a dot, and separated by a space.
For instance the C mode associated suffixes are defined with ".h .c .C .H .sc".

create_mode("secret-mode", ".dontreadme", "5x8");

Release 3.45. User’s manual. 121

CHAPTER 7. XCORAL INTERFACE XCORAL

set mode suffixes

void set_mode_suffixes(char * modename, char * suffixes)

Changes the suffixes associated to the mode modename.

set mode font

void set_mode_font(char * modename, char * fontname)

Changes the font associated to the mode modename.

set mode

void set_mode(char * modename)

Changes the current window mode to modename.

key def

void key_def(char * modename, char * keys, char * funcname)

Changes or creates the given mode key binding keys if funcname is not 0, else
removes key binding keys. The specified key binding can be (? is any character except
^):

• "?" for instance } blinks the current { in C mode,

• "^?" to bind a control key (except ^x), for instance "^i" re-indents the current
line in C mode(of course, in this case you can also give "\t"),

• "^[?" to bind an escape key sequence,

• "^x?" to bind an ctrl−x key sequence

• "^x^?" to bind an ctrl−x ctrl−key sequence.

• "^[^?" to bind an escape ctrl−key sequence.

Furthermore:

• ‘^^’ appoints the ‘^’ character

• ‘^’ and ‘^@’ appoint the null character (code 0).

It is also possible to bind keysym keys (‘k’ is the keysym name):

122 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

• "k" to bind a keysym

• "^[k" to bind an escape keysym

• "^xk" to bind an ctrl−x keysym

where ‘k’ is one of (case is not significant) Multi key, Home, Left, Up, Right,
Down, Prior, Next, End, Begin, Select, Print, Execute, Insert, Undo, Redo, Menu,
Find, Cancel, Help, Break, Mode switch, script switch, Num Lock, KP Space, KP Tab,
KP Enter, KP F1, KP F2, KP F3, KP F4, KP Equal, KP Multiply, KP Separator,
KP Add, KP Subtract, KP Decimal, KP Divide, KP 0, KP 1, KP 2, KP 3, KP 4,
KP 5, KP 6, KP 7, KP 8, KP 9, F1, F10, F11, F12, F13, F14, F15, F16, F17, F18,
F19, F2, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29, F3, F30, F31, F32, F33,
F34, F35, F4, F5, F6, F7, F8, F9, L1, L10, L2, L3, L4, L5, L6, L7, L8, L9, R1, R10,
R11, R12, R13, R14, R15, R2, R3, R4, R5, R6, R7, R8, R9. The KP names refer to
the keypad numbers and functions. Sometimes a key can have several names.

funcname is the name of the function you want to be called when you hit the
keys sequence in the mode modename. The name appoints a SMAC function (built-
in or not, taking no arguments) or must be one of the following: set mark, abort,
return, delete, tab, kill line, cursor down, cursor up, open space, undo, redo, next page,
kill region, paste region, eval region, first page, last page, previous page, copy region,
delete window, goto mark, backward search, forward search, global replace, write file,
kill current buffer, query replace, save file, read file, insert file, exchange cursor mark,
list open file, goto line, and eval expression.

These functions are the functions called by the default key bindings, contrarily to
SMAC functions they take no argument but asks for them if necessary. For instance
the goto line() SMAC function take one argument, but a key binding with ”goto line”
prompts the line number in the mini-buffer. The kill current buffer() SMAC function
empties a buffer without confirmation if the buffer is modified, but a key binding with
”kill current buffer” asks if the buffer must be saved or not.

7.3.12 Browser interface

Here are the functions to customize browser and access browser database. The examples
can be placed in a SmacLib file.

Cpp functions:

browser set pp

void browser_set_pp(char * mode, char * exec)

Release 3.45. User’s manual. 123

CHAPTER 7. XCORAL INTERFACE XCORAL

To indicate where the C and C++ pre-processor are (default pre-processor is /lib/cpp
for each mode). mode must be "C-mode or "C++mode", and exec must be an absolute
filename.

browser set pp options

void browser_set_pp_options(char * mode, char *options)

mode must be "C-mode or "C++mode". If options is 0, removes pre-processing before
parsing, else indicates the pre-processor options and asks for a pre-processing before
parsing.

File management:

browser add

void browser_add(char * path [, int rec])

parses the given file or directory, momentary forces the browser toggle button to
Rec if the second argument is given not equal to 0.

browser del

void browser_del([char * name])

deletes the file name (or all files if the function is called without argument) from
the browser database.

browser dump

int browser_dump(char * filename)

Saves the current browser database in the specified file, Returns 1 if the dump can
be made, else 0 (file is write protected or other error).

browser restore

int browser_restore(char * filename)

Restores (quickly) the browser database information dumped in the specified file.
Returns 1 on success, else 0 (file doesn’t not exist or other error).4! An implicit Del is made before updating the browser database, for all the files
referenced in the dump.

124 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

Access functions:

browser class file

char * browser_class_file(char * type_name [, int * pline])
Returns the file pathname where type name is defined, if pline is given, it is modified

to the line number. Returns 0 if type name is not in the browser database or if SMAC
cannot allocate memory to memorize the result.4! Be careful, the string is allocated each time the function is called, use free()
to release it.

browser class parents

char ** browser_class_parents(char * class_name)
Returns a vector containing the class name parents names and the inheritance speci-

fier, or 0 if class name is not in the browser database or if SMAC cannot allocate memory
to memorize the result.4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

void print_class_parent(char * name)
{

char ** p, ** v = browser_class_parents(name);

if (! v) return;

printf("%s parents are :\n", name);
for (p = v; *p; p += 2) {
printf("\t%s : ", *p);
switch (*((int *)(p + 1))) {
case 1 : printf("private\n"); break;
case 2 : printf("protected\n"); break;
case 4 : printf("public\n"); break;
}

}
free(v);

}

Release 3.45. User’s manual. 125

CHAPTER 7. XCORAL INTERFACE XCORAL

browser class children

char ** browser_class_children(char * class_name)
Returns a vector containing the class name children names, or 0 if class name is

not in the browser database or if SMAC cannot allocate memory to memorize the result.4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

void print_class_children(char * name)
{

char ** p, ** v = browser_class_children(name);

if (! v) return;

printf("%s childrens are : ", name);
for (p = v; *p; p += 1)

printf("%s ", *p);
printf("\n");
free(v);

}

browser class methods

char ** browser_class_methods(char * class_name)
Returns a vector containing the class name methods declaration with its flags, their

declaration and definition files, their lines, and information bits. Returns 0 if class name
is not in the browser database or if SMAC cannot allocate memory to memorize the
result.4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

126 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

void print_class_methods(char * name)
{

char ** p, ** v = browser_class_methods(name);

if (! v) return;

printf("%s is declared in %s, its methods are :\n", name, *v);

for (p = v+1; *p; p += 5) {
int bits = *((int *) (p + 2));

printf("\t%s\n\t\tdeclared line %u",
p[0] + 8, /* remove flags */
*((int *) (p + 1)));

if (p[3])
printf(", defined in %s line %u", p[3],

*((int *) (p + 4)));
printf("\n\t\t");
if (bits & 1) printf("private ");
else if (bits & 2) printf("protected ");
else if (bits & 4) printf("public ");
if (bits & 8) printf("inline ");
if (bits & 16) printf("constructor ");
else if (bits & 32) printf("destructor ");
else if (bits & 64) printf("operator ");
if (bits & 128) printf("const ");
if (bits & 256) printf("virtual ");
else if (bits & 512) printf("pure virtual ");
if (bits & 1024) printf("friend");
printf("\n");
if (p[0][6] == ’H’)

printf("\t\thiden\n");
}
free(v);

}

browser class attributes

char ** browser_class_attributes(char * class_name)

Release 3.45. User’s manual. 127

CHAPTER 7. XCORAL INTERFACE XCORAL

Returns a vector containing the class name attributes declaration with its flags,
their declaration file, their line, and information bits. Returns 0 if class name is not in
the browser database or if SMAC cannot allocate memory to memorize the result.

4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

void print_class_attributes(char * name)
{

char ** p, ** v = browser_class_attributes(name);

if (! v) return;

printf("%s is declared in %s, its attributes are :\n",
name, *v);

for (p = v+1; *p; p += 3) {
int bits = *((int *) (p + 2));

printf("\t%s\n\t\tdeclared line %u",
p[0] + 6, /* remove flags */
*((int *) (p + 1)));

printf("\n\t\t");
if (bits & 1) printf("private ");
else if (bits & 2) printf("protected ");
else if (bits & 4) printf("public ");
if (bits & 8) printf("static ");
printf("\n");
if (p[0][4] == ’H’)

printf("\t\thiden\n");
}
free(v);

}

browser class flags

char * browser_class_flags(char * class_name)

Returns the class flags and name, or 0 if class name is not in the browser database
or if SMAC cannot allocate memory to memorize the result.

128 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

void print_class_info(char * name)
{

char ** v = browser_class_flags(name);

if (! v) return;

printf("class %s is know by browser %s\n", name,
(v[4] == ’H’) ? "but hidden" : "and visible");

free(v);
}

browser functions

char ** browser_functions(char * prefix)

Returns a vector containing the list of functions (with their flags, definition file and
line) which name and eventually parameter type list begins with the given prefix.

Returns 0 if SMAC cannot allocate memory to memorize the result.4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

void print_functions(char * pfix)
{

char ** p, ** v = browser_functions(pfix);

if (! v) /* not enough memory */ return;

printf("matched functions are :\n");

for (p = v; *p; p += 3)
printf("%s defined in %s line %d (%s)\n",

p[0] + 7, p[1],
*((int *) (p + 2)),
(p[0][5] == ’H’) ? "hidden" : "visible");

free(v);
}

Release 3.45. User’s manual. 129

CHAPTER 7. XCORAL INTERFACE XCORAL

browser globals

char ** browser_globals(char * prefix)

Returns a vector containing the list of globals (with their flags and definition file
and line) which name begins with the given prefix. Returns 0 if SMAC cannot allocate
memory to memorize the result.4! Be careful, the result is allocated each time the function is called, use free() to
release it. The vector and its included strings are placed in a unique allocated block.

void print_globals(char * pfix)
{

char ** p, ** v = browser_globals(pfix);

if (! v) /* not enough memory */ return;

printf("matched globals are :\n");

for (p = v; *p; p += 3)
printf("%s defined in %s line %d (%s)\n",

p[0] + 5, p[1],
*((int *) (p + 2)),
(p[0][3] == ’H’) ? "hidden" : "visible");

free(v);
}

browser select class

int browser_select_class(char * prefix)

Selects the first type in the browser subwindow Types which name matches prefix
as you can do it with the mouse. Returns 1 if a type name is found, else 0 (an hidden
class cannot be selected).

browser select method

int browser_select_method(char * prefix)

Selects the first method in the browser subwindow Methods which name (and op-
tionally parameter type list) matches prefix as you can do it with the mouse. Returns
1 if a method is found, else 0 (an hidden method cannot be selected).

130 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

browser select attribute

int browser_select_attribute(char * prefix)

Selects the first attribute in the browser subwindow Attribute which name matches
prefix as you can do it with the mouse. Returns 1 if an attribute is found, else 0 (an
hidden attribute cannot be selected).

browser select function

int browser_select_function(char * prefix)

Selects the first function in the browser subwindow Functions which name (and
optionally parameter type list) matches prefix as you can do it with the mouse. Returns
1 if a function is found, else 0 (an hidden function cannot be selected).

browser select global

int browser_select_global(char * prefix)

Selects the first global in the browser subwindow Globals which name matches prefix
as you can do it with the mouse. Returns 1 if a global is found, else 0 (an hidden global
cannot be selected).

browser edit

void browser_edit()

Edits the last selected item, as a double click on the browser window.

void edit_object(char * pfix)
{

if (browser_select_class(pfix) ||
browser_select_function(pfix) ||
browser_select_global(pfix))

browser_edit();
}

browser class entry

int browser_class_entry(char * prefix)

Release 3.45. User’s manual. 131

CHAPTER 7. XCORAL INTERFACE XCORAL

Returns the rank of the first visible or hidden type in the browser Types list (al-
phabetically sorted) which name matches prefix, or −1 if a type cannot be found. See
browser class() described below.

browser function entry

int browser_function_entry(char * prefix)

Returns the rank of the first visible or hidden function in the browser Functions
list (alphabetically sorted) which name (and optionally parameter type list) matches
prefix, or −1 if a function cannot be found. See browser function() described below.

browser global entry

int browser_global_entry(char * prefix)

Returns the rank of the first visible or hidden global in the browser Globals list
(alphabetically sorted) which name matches prefix, or −1 if a global cannot be found.
See browser global() described below.

browser file entry

int browser_file_entry(char * prefix)

Returns the rank of the first file in the browser Files list (alphabetically sorted)
with complete pathname matching prefix, or −1. See browser global() described below.

browser class

char * browser_class(int n)

Returns the name (without flags) of the nth type from the browser Types list (al-
phabetically sorted), or 0 for invalid index.

int count_types()
{

int i = 0;

while (browser_class(i))
i += 1;

return i;
}

132 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

browser function

char * browser_function(int n)

Returns the name (without flags) and parameter type list of the nth function from
the browser Function list (alphabetically sorted), or 0 for invalid index.

browser global

char * browser_global(int n)

Returns the name (without flags) of the nth global from the browser Global list
(alphabetically sorted), or 0 for invalid index.

browser file

char * browser_file(int n)

Returns the pathname of the nth file from the browser File list (alphabetically
sorted), or 0 for invalid index.

Visibility:

By default, all browser information are displayed on its window, but you can hide
some of them with the following functions (or browser window Hide buttons §3.2
page 24).

browser show all

void browser_show_all()

All browser information become visible.

browser hide private members

void browser_hide_private_members()

Hides all private class members (methods and attributes).

browser hide protected and private members

void browser_hide_protected_and_private_members()

Hides all protected and private class members (methods and attributes). Only
public members still visible.

Release 3.45. User’s manual. 133

CHAPTER 7. XCORAL INTERFACE XCORAL

browser show protected and private members

void browser_show_protected_and_private_members()

All class members (methods and attributes) become visible.

browser hide inherited members

void browser_hide_inherited_members()

Hides all inherited class members.

browser show inherited members

void browser_show_inherited_members()

All class inherited members become visible

browser hide internal types

void browser_hide_internal_types()

Hides types defined inside another type. For instance if the browser knows the
following definitions:

struct S {
struct SS {

int i;
} ss;

};

the types displayed on the browser window are S and S::SS, this last will be hidden
after calling browser hide internal types.

browser show internal types

void browser_show_internal_types()

Types defined inside one type become visible.

browser hide static functions

void browser_hide_static_functions()

Hides functions declared static.

134 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

browser show static functions

void browser_show_static_functions()

Shows all functions

browser hide static globals

void browser_hide_static_globals()

Hides globals declared static.

browser show static globals

void browser_show_static_globals()

Shows all globals.

browser hide children of

void browser_hide_children_of(char * parent)

Hides sub classes of the specified class. Re-browsing the specified class definition
cancels this hidding.

browser show children of

void browser_show_children_of(char * parent)

Show sub classes of the specified class (except if another hidding cause exists).

browser hide class

void browser_hide_class(char * name)

Hides the specified class, but the visibility of its sub classes is not affected. Re-
browsing the specified class definition cancels this hidding.

browser show class

void browser_show_class(char * name)

The specified class becomes visible (except if another hidding cause exists).

Release 3.45. User’s manual. 135

CHAPTER 7. XCORAL INTERFACE XCORAL

browser hide global

void browser_hide_global(char * name)

Hides the specified global. Re-browsing the specified global definition cancels this
hidding.

browser show global

void browser_show_global(char * name)

The specified global becomes visible (except if another hidding cause exists).

browser hide function

void browser_hide_function(char * name)

Hides the specified function (name may contain parameters type list). Re-browsing
the specified function definition cancels this hidding.

browser show function

void browser_show_function(char * name)

The specified function becomes visible (except if another hidding cause exists).

7.3.13 Others

last key

int last_key()

Returns the last character of the last keys sequence which called SMAC. For instance,
only one function is defined to blink {,(and [, it calls last key to know if you have
typed a }, a), or a].

blink

void blink(int nth)

If nth is negative writes No Match in the mini buffer, else highlights the nth character
if it is visible, else writes Match ’<the char>’ at line <the line> pos <nth>. This
function is used by the C−mode (§5.29 page 74) when you press },) and] keys to
indicate corresponding {,(and [position. Obviously its visibility effect is obtained
when blink is called, not when the current SMAC execution is finished.

136 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

cmd shell

void cmd_shell(char * cmd)

Executes sh -c cmd in a sub-shell and inserts the result in a Shell window. All the
characters produced by the command cmd in the stdout are inserted starting at the
current position. To get the characters produced in stdout and stderr:

cmd_shell("(the_command)2>&1");

cmd shell to string

char * cmd_shell_to_string(char * cmd)

Executes sh -c cmd in a sub-shell and returns a new allocated string containing all
the characters produced by the command cmd in the stdout or stderr.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

file select

char * file_select()

Returns a new allocated string containing the absolute filename selected by a file
selector, or 0 if you cancel the selection.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

select from list

char * select_from_list(char * title)

Displays the Xcoral List Box with given items (look at the next two functions) and
the given title. Returns the item chosen with a mouse click, or 0 if cancelled.

add list item

void add_list_item(char * item)

Adds item to the items list. There is no check to verify that items are different.

Release 3.45. User’s manual. 137

CHAPTER 7. XCORAL INTERFACE XCORAL

clear list

void clear_list()

Empties the items list.

display message

void display_message(char * msg)
void display_message(char * msg, char * title)
void display_message(char * msg, char * title, int flag)

Writes msg in the Xcoral Messages Box. If title is given, it is written at the top of
the window, otherwise previous title is cleared. If flag is not null, a separator is inserted
before msg (i.e. the string ’>>>’ and a return are inserted , thus the message will be
displayed on a new line); when flag is not given its value is 0.

getchar

char getchar()
char getchar(char * strprompt)

Displays the Xcoral Dialog Box to get a character. If strpromptis not given, it is
replaced by ”getchar ? ”, which is written before the prompt. Only one character may
be given, without line editing nor required return. If you choose the ok button, returns
0, if you choose cancel returns 7 (the bell).

gets

char * gets()
char * gets(char * strprompt)

Displays the Xcoral Dialog Box to get a string with the prompt strprompt (”gets ? ”
if strprompt is omitted). You have line editing, and the return or ok button is required
to validate the input string. If you choose the cancel button, returns a string with
one character (and the null terminator) of code 7. If you select the ok button without
inputting a string, returns 0.

4! Be careful, the string is allocated each time the function is called, use free()
to release it.

138 User’s manual. Release 3.45.

XCORAL CHAPTER 7. XCORAL INTERFACE

usleep

void usleep(int us)

Waits us micro-seconds.

watch off

void watch_off()

Displays the default cursor.

watch on

void watch_on()

Displays the cursor as a watch. It is sometimes useful to display a watch as cursor
when SMAC works, typically when a function runs several seconds.

Release 3.45. User’s manual. 139

CHAPTER 7. XCORAL INTERFACE XCORAL

140 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

Chapter 8

Error messages

XCORAL displays error messages in a special window, otherwise they are written on
stderr. Errors can occur in three cases:

• When SMAC reads your programs, in which case, the line number and filename
containing the error, is given.

• When SMAC interprets your programs and produces an internal form to memorize
it. In this case and the next one, SMAC gives the function name or informs that
it is a top level form. Unfortunately the line number is lost.

• During executions.

SMAC does not generate warnings, and when an error occurs, the execution or the
reading stops. If you are under XCORAL, this one recovers control.

The possible messages are:

8.1 Errors statically detected

These errors are detected by SMAC when it reads and interprets your programs.

8.1.1 Control structures

• for (..; void; ..) .. if the for end test form is not empty and returns no value.

• for without test and body, I think it too dangerous !

• if (void) .. when the if test form returns no value.

• (void) ? .. : .. if the test form returns no value.

Release 3.45. User’s manual. 141

CHAPTER 8. ERROR MESSAGES XCORAL

• while (void) .. when the while test form returns no value.

• do .. while(void) when the do while test form returns no value.

• more than one default: in switch

• duplicate case <case entry>

• case <case entry> out of switch

{ case 1: ; } /* case 1 out of switch */

• illegal break or illegal continue when you use a break or a continue out of a
loop or a switch.

{ continue; }

• return at top level signals a return out of a function.

{ return; }

8.1.2 Function definitions and calls

• Bad function definition for an illegal form which looks like a function defini-
tion.

f{}

• function initialized as a variable.

f(){} = 1;

• missing declared argument <var name> when an input parameter is not in
the parameter list.

f(a) int a,b;{} /* missing declared argument b */

• redeclaration of <var name>

f(a,a) int a; {} /* redeclaration of a*/
f(a) int a; int a {} /* redeclaration of a*/

142 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

• the function returns no value when a function as declared void attempts to
return a value.

void novalue() { return 1; }

• the function returns a value when a function declared returning a value at-
tempts to return no value.

int value() { return; }

• incompatible return type when the returned value type and declared returned
type are inconsistent.

int badvaluetype() { return badvaluetype; }

• illegal function call

{ 1(); }

• ? arguments for <function name>, ? required and ? arguments for
<function name>, at least ? required when you call a function with a
wrong number of arguments.

{ error(); } /* 0 arguments for error, 1 required */
{ printf(); } /* 0 arguments for error, at least 1 required */

• incompatible type for <function name> argument ?,
<type1> <> <type2>

{ printf(1); } (incompatible type for print argument 1, char * <> int)

• incompatible type argument ?, <type1> <> <type2>, as previously but
in this case the function is executed.

int (*pf)(char);

{ pf("qwe"); }

Release 3.45. User’s manual. 143

CHAPTER 8. ERROR MESSAGES XCORAL

• ? arguments at least ? required when the number of argument of a computed
function is insufficient. In this case SMAC does not test the equality of the number
of arguments and the declared number at reading time, because the function has
perhaps a variable number of arguments (as printf). Therefore check is performed
at run time.

int (*pf)(char);

{ pf(); }

8.1.3 Assignment

• incompatible types in assignment, <type1> <> <type2> when the as-
signed value is incorrect.

int i; { i = "123"; } (incompatible types in assignment for i int <> char*)

• incompatible types in array assignment, <type1> <> <type2>

• illegal assignment <var name> = .. when the variable (local or global) is an
array.

int tab[10];

{ tab = 1; } /* illegal assignment tab = .. */

• illegal assignment <var name>++ or illegal assignment <var name>-/-
when the variable (local or global) is an array.

• illegal assignment when you attempt to assign a constant:

{ "qwe" = 1; }
{ 1 = 1; }

• illegal assignment (*&array = ...) and
illegal assignment (*(&array)++/-/-)

int mat[2][3];

{ *mat = 1; }

144 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

8.1.4 Operators

• incompatible types in ?:, <type1> <> <type2> the two values returned
by an arithmetic if operator have different types.

{ (1) ? "1" : 2; } /*incompatible types in ?:, char* <> int */

• pointer negation and void negation

void f();

{ -"qwe"; }
{ -f(); }

• pointer complement and void complement

• ! void

• <operator> arguments have different types arguments are pointers but not
of the same type.

int t[10];
int f();

{ f - t; } /* - arguments have different types */

• bad argument in <type1> <operator> <type2>

{ 1 - "qwe"; }

• illegal array reference when you attempt to reference an array where there is
no array or int (or char) index:

int tab[10], mat[2][3];

{ &tab[2]; } /* legal */
{ &2[tab]; } /* legal */
{ &mat[1]; } /* legal */

{ &tab["2"]; } /* illegal */
{ &error[2]; } /* illegal */
{ &"2"[tab]; } /* illegal */
{ &2[error]; } /* illegal */

Release 3.45. User’s manual. 145

CHAPTER 8. ERROR MESSAGES XCORAL

• cast unacceptable operand of & you cannot reference a cast. SMAC accepts
cast at the left of an assignment, but it is probably too permissive.

• illegal reference

{ &1; }

• illegal indirection (not a pointer), in an access or an assignment.

{ *1; }

8.1.5 Initialization

• illegal array initializer for <var name>

int t1[10];
int t2[10] = t1; /* illegal array initializer for t2 */

• incompatible initial value type for <var name> <type1> <> <type2>
when the initialization value does not have a good type.

int i = "1";/*incompatible initial value type, i int <> char* */

• array initialization not yet implemented

int tab[2] = {1, 2};

• {..} illegal initializer when using brace list to initialize something else than an
array.

int i = {123};

8.1.6 Array

• ? illegal array dimension where ? is a negative integer

int tab[-1];

146 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

• illegal array or index when an array access or assignment is illegal because
there is no array (or pointer) or int (or char) index, or when you attempt to
affect an array:

int tab[10], mat[2][3];

{ tab[2]; } /* legal */
{ 2[tab]; } /* legal */

{ tab["2"]; } /* illegal */
{ error[2]; } /* illegal */
{ "2"[tab]; } /* illegal */
{ 2[error]; } /* illegal */
{ mat[1] = tab; } /* illegal */

• [] not yet implemented linked with array initialization.

int tab[] = {1, 2};

8.1.7 Redefinition

• <name> is already a function

int i();
int i; /* i is already a function */

• <var name> is already a global var when you attempt to redefine a global
variable, see debug mode (§6.6.4 page 100).

• <var name> is already a global var with different definition when you
attempt to redefine a global variable with a new type or new dimension(s).

• <var name> already defined (global var) when you reuse a global variable
name as a function name, definition or declaration.

int i;
int i(); /* i already defined (global var) */

• <function name> already defined when you attempt to redefine a function,
see debug mode (§6.6.4 page 100) and remove function definition (§6.6.4 page 99).

Release 3.45. User’s manual. 147

CHAPTER 8. ERROR MESSAGES XCORAL

• <function name> already defined with different return type when you
redefine a function and change the return value type.

• <function name> already declared with different profile when you rede-
fine a function and change the number or the type of its arguments.

• <function name> is built-in, you cannot redefine it

8.1.8 Others

• Declaration in eval form when you put a declaration in a free expression.

• <a name> unknown

f() { not_a_variable_or_a_function_name; }

• syntax error the eternal message when the parser does not recognize a form.

• I cannot understand the type description theoretically this message never
appears, else please send me the piece of program which generates it.

8.2 Errors detected at run time

8.2.1 Illegal memory access and sets

To get these messages, you must define runtimecheck cpp name when you compile
SMAC (see §9 page 153).

• char array access out of memory to point out an illegal access through a
character array (the array address plus the index is out of bounds). Here is an
example generating this error message:

char * cp;

{ printf("Wait a moment please, I’m searching !\n");
while (*cp++); }

4! Be careful, SMAC never checks if an index is out of bounds: For example
this code won’t produce any error message:

148 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

char surprise()
{

char str[4];

return str[11];
}

• int array access out of memory to point out an illegal access through an
integer array (the array address plus the index is out of bounds).

• illegal pointer alignment for int access to point out an illegal access through
an integer pointer with a bad alignment. Example:

int i;

{ *((int *) (((char *) &i) + 1)); } /* May be */

• pointer array access out of memory to point out an illegal access in an array
of pointers or a multi dimensional array.

• illegal pointer alignment for pointer access to point out an illegal access
through a pointer to a pointer with a bad alignment.

• char access through pointer out of your memory area to point out an
illegal access through a character pointer out of boundaries.

• int access through pointer out of your memory area to point out an illegal
access through an integer pointer out of bounds.

• pointer access through pointer out of your memory area to point out an
illegal access through a pointer to a pointer out of bounds.

• char assignment through pointer out of your memory area to point out
a character pointer out of memory in an assignment.

• int assignment through pointer out of your memory area to point out an
integer pointer out of memory in an assignment.

• illegal pointer alignment for int assignment to point out an illegal assign-
ment through an integer pointer with a bad alignment.

• pointer assignment through pointer out of your memory area to point
out a pointer out of memory in an assignment.

Release 3.45. User’s manual. 149

CHAPTER 8. ERROR MESSAGES XCORAL

• illegal pointer alignment for pointer assignment to point out an illegal
assignment through a pointer with a bad alignment.

• string access out of your memory area to point out an illegal string access
or assignment in a built-in function, of course the fault is yours.

{ strcmp((char *)error, "grrr..."); }

8.2.2 About functions

• remove function definition argument is not a user function pointer

remove_function_definition("123");
remove_function_definition(error);

• you cannot redefine or undefine an active function

void missed()
{

remove_function_definition(missed);
}

• function <function name> not yet defined when you call a function declared
but not defined.

void i_am_undefined();

{ i_am_undefined(); }

• computed function is not a function when you attempt to call through a func-
tion pointer an illegal function, checked only if you have defined a runtimecheck
cpp name. Here is an example generating this error message:

void (*pfunc)();

{ pfunc(); } /* pfunc is null */
{ pfunc = (void(*)()) "crazy case";

pfunc(); }

150 User’s manual. Release 3.45.

XCORAL CHAPTER 8. ERROR MESSAGES

• ? arguments for <function name>, ? required when you call a function
through a pointer with a bad number of arguments, checked only if you have
defined a runtimecheck cpp name. Example:

((void(*)()) error)(); /* 0 arguments for error, 1 required */

• not enough number of argument for <function name> (? given) when
you call a built-in function with a variable number of arguments with not enough
arguments.

{ printf("the missing argument is : %s"); }

8.3 Others

• zero divide, to get this message you must have defined a runtimecheck cpp
name when you compiled SMAC (see §9 page 153). Example generating this
message:

{ 1 % 0; }

• cannot open <filename> this error is generated by load file (see §6.6.7 page 104)
when SMAC cannot open or read the specified file.

{ load_file("/bin/abracadabra");
error("What ?! who is your system engineer ?") }

• function percent argument type is <a type>, not a function

• function name argument type is <a type>, not a function

• function arg count argument type is <a type>, not a function

• function is builtin argument type is <a type>, not a function

• function type argument type is <a type>, not a function

• Error: stack is full, perhaps the SMAC stack size is fixed too small, change
it (in a new session), see §6 page 94. Terminal, crossed, wrap or other types of
recursions are not recognized by SMAC to minimize stack size.

void catastrophe() { catastrophe(); }

Release 3.45. User’s manual. 151

CHAPTER 8. ERROR MESSAGES XCORAL

• Stop execution on ctrl-c (kill -2 on process id).

• illegal free (address = 0x????) only if SMAC is compiled with runtimecheck
defined.

{ free("illegal"); }

152 User’s manual. Release 3.45.

XCORAL CHAPTER 9. COMPILING SMAC

Chapter 9

Compiling Smac

When you compile SMAC definition code, you can define or not the following cpp names:

• stdc to have complete function profiles

• xcoral to compile SMAC for XCORAL, otherwise you must not compile and link
smacXcoral.c, but just add main.c.

• runtimecheck to protect execution against core dump and other sweets. If you
define it (recommended for XCORAL) all your memory accesses and modifications
are checked and an error occurs for each illegal addressing.

4! The word.h file must not be present when you compile SMAC. Then it can be
produced by the word.c program to obtain objects sizes and alignments.

To compile SMAC for using it under XCORAL use Imakefile and Makefile. They
define xcoral and runtimecheck.

To compile SMAC alone, type make −f MakeAlone

Release 3.45. User’s manual. 153

CHAPTER 9. COMPILING SMAC XCORAL

154 User’s manual. Release 3.45.

XCORAL CHAPTER 10. MISCELLANEOUS

Chapter 10

Miscellaneous

10.1 Bugs

Please send bug reports, fixes and suggestions to xcoral@free.fr

10.2 Xcoral home site

XCORAL home page is http://xcoral.free.fr.

10.3 Authors

Lionel Fournigault is the founder of the XCORAL editor. Bruno Pagès has written the
Ansi C Interpreter SMAC. Dominique Lévêque has worked for the C/C++ browser.

10.4 Thanks

First, we would like to thank all beta-testers that tried intermediate versions before
this 3.45.

Thanks to Thierry Emery who has written a part of SmacLib files.
Special thanks to Marie-Paule Kluth who has intensively tested the editor and who

has helped me to review this manual.

Thanks also to the following folks who have sent comments, bug-reports and clever
ideas.

Anthony Baxter

Release 3.45. User’s manual. 155

CHAPTER 10. MISCELLANEOUS XCORAL

Austin G. Hastings
Bert Bos
Bert Gijsbers
Bertrand Zidler
Carsten Jerichow
Chris Sherman
Christophe Le Bars
DaviD W. Sanderson
Eckehard Stolz
Eric Sink
Erik Jan Lingen
Emmanuel Snyers
Frank Barnes
Fred J.R. Appelman
Fred R. Beck
Geraldo Veiga
George M. Menegakis
Grant McDorman
Heimir Thor Sverrisson
Jacques Tremblay
Jan Skibinski
Joerg Heuer
Joerg Stiller
Justin Seiferth
Jeffry R. Abramson
Jody Goldberg
Klamer Schutte
Laurent Duperval
Michael Andres
Marc Baudoin
Marie-Paule Kluth
Michael Baentsch
Mitch Baltuch
Olivier Marce
Pascal Perichon
Paul Hudson
Paul Sander
Peter Chang
Philippe Juhel
Richard Czech

156 User’s manual. Release 3.45.

XCORAL CHAPTER 10. MISCELLANEOUS

Robert Nicholson
Roger Reynolds
Serge S.Maleyev
Thierry Emery
Todd Vernon
Todd C. Miller
Torsten Blum
Torsten Schlumm

Release 3.45. User’s manual. 157

Appendix A GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright c© 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have made it clear that any patent must be licensed
for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The “Program”, below, refers to any such program or work, and a “work based on the
Program” means either the Program or any derivative work under copyright law: that is to say,
a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

2. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms
of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

1. (b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no charge
to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work writ-
ten entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also do
one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution,
a complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to distribute correspond-
ing source code. (This alternative is allowed only for noncommercial distribution and
only if you received the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception, the
source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense or distribute the
Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are imposed on you (whether by court order,
agreement or otherwise) that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly
through you, then the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through
any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public
License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of preserving
the free status of all derivatives of our free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD-
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE

DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MOD-
IFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BE-
ING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PAR-
TIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of the author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive
mode:

Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than show w and
show c; they could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign
a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you may consider it more useful to permit linking
proprietary applications with the library. If this is what you want to do, use the GNU Library
General Public License instead of this License.

Index

->, 96
., 96
.xcoralrc, 49

About position, 106
Accents, 69
add list item, 137
Alignment, 95
array, 95
at end of file, 107
Authors, 155
auto, 95
Auto-indentation, 32

backward search, 113
beginning of line, 107
blink, 136
Blinking, 32
break, 95
Browser, 23
Browser control, 24
Browser database, 23
Browser interface, 123
browser add, 124
browser class, 132
browser class attributes, 127
browser class children, 126
browser class entry, 131
browser class file, 125
browser class flags, 128
browser class methods, 126
browser class parents, 125

browser del, 124
browser dump, 124
browser edit, 131
browser file, 133
browser file entry, 132
browser function, 133
browser function entry, 132
browser functions, 129
browser global, 133
browser global entry, 132
browser globals, 130
browser hide children of, 135
browser hide class, 135
browser hide function, 136
browser hide global, 136
browser hide inherited members, 134
browser hide internal types, 134
browser hide private members, 133
browser hide protected and private members,

133
browser hide static functions, 134
browser hide static globals, 135
browser restore, 124
browser select attribute, 131
browser select class, 130
browser select function, 131
browser select global, 131
browser select method, 130
browser set pp, 123
browser set pp options, 124
browser show all, 133
browser show children of, 135

browser show class, 135
browser show function, 136
browser show global, 136
browser show inherited members, 134
browser show internal types, 134
browser show protected and private members,

134
browser show static functions, 135
browser show static globals, 135
Buffers and files, 115
Bugs, 155
Built-in editor functions, 43

C-C++ headers, 36
C-C++ mode, 32, 74
calloc, 97
case, 95
cast, 146
Change buffer contents, 111
Change the position, 108
char, 95
clear list, 138
cmd.sc, 65
cmd shell, 137
cmd shell to string, 137
Color syntax highlighting, 38
color.sc, 67
color area, 120
Colors, 60, 120
comments.sc, 67
compare-win.sc, 68
Compiling and searching within Xcoral, 31
complete-word.sc, 68
const, 95
continue, 95
Control c, 94
Control-panel, 11
Conventions, 106
Copyright, 9
create mode, 121

current buffer is modified, 116
current char, 110
current line, 107
current line to top, 118
current mode, 121
current position, 106
current window, 119

debug mode, 100
default, 95
Default mode, 31, 78
Default parameter type, 95
Default return type, 95
delete char, 111
describe.sc, 68
display message, 138
do, 95
double, 95

edir.sc, 69
Edit directory mode (edir), 34
edt.sc, 69
Ellipsis, 95
else, 95
end of file, 107
end of line, 107
enum, 95
Environment, 94
Environment variables, 58
Erasing text, 18
error, 104
Eval expression, 29
example.sc, 69
Execution profile, 101
extern, 95

File configuration, 49
File operations, 115
file select, 137
filename, 117
First character numbering, 106

First line numbering, 106
float, 95
for, 95
Formatted output conversion, 96
forward search, 112
free, 97
French accents, 69
French mode, 69
french.sc, 69
Function, 100
function, 95
Function definition, 94
function arg count, 100
function is builtin, 100
function list, 101
function name, 100
function percent, 104
function type, 100

Get buffer contents, 110
getchar, 138
gets, 138
Global variable definition, 95
global replace, 114
go next, 66
goto, 95
goto beginning of line, 109
goto char, 108
goto end of file, 108
goto end of line, 109
goto line, 110
goto mark, 115
goto next char, 108
goto next line, 109
goto previous char, 108
goto previous line, 109
grep, 67

hack-filename.sc, 70
head.sc, 70, 71

if, 95
Indentation, 75
index, 99
init function list, 101
Initial current window, 106
Initialization, 95
insert char, 112
insert file, 116
insert string, 112
int, 95
Interrupt, 94

Java mode, 33
java.sc, 73

Key bindings in C/C++ mode, 74
Key bindings in default mode, 78
key def, 122
Keyboard commands, 14
keydef-ext.sc, 73
Keywords, 95
kill current buffer, 116
kill window, 119

last key, 136
latex, 67
Latex mode, 33
latex.sc, 74
line count, 117
load file, 95, 104
Local variable, 95
long, 95
lower window, 120

Macros, 19
Make, 66
make, 66
malloc, 96
Man box, 60
Mark, 115
Mark and region, 19

mark position, 115
memcpy, 97
Memory size, 94
Mini-buffer, 17
mode-ext.sc, 78
mode.sc, 74
monochrome, 121
Mouse, 13
mouse.sc, 79
msearch, 113

new window, 119
next char, 111

operator, 96
Options, 59

pointer, 95
Preprocessor, 95
previous char, 111
printf, 96

raise window, 120
rcs.sc, 79
re backward search, 114
re forward search, 114
re match beginning, 114
re match end, 114
re replace, 114
read file, 115
Redefinition, 95, 99
redisplay, 117
register, 95
Regular expressions, 36, 114
remove colors, 121
remove function definition, 99
replace char, 111
reset mark, 115
Resources, 58
return, 95
rindex, 99

save.sc, 80
save file, 116
Scrolling, 20
Search, 112
Searching, 18
select from list, 137
select window, 118
set font, 118
set mark, 115
set mode, 122
set mode font, 122
set mode suffixes, 122
Shell-Script mode, 34
shell-script.sc, 81
short, 95
showed stack size, 104
signed, 95
signed char, 95
sizeof, 95
smac memory size, 94
smac stack size, 94
SmacLib Overview, 65
sprintf, 96
Stack size, 94
start profile, 104
static, 95
stop profile, 104
strcat, 97
strchr, 97
strcmp, 97
strcpy, 97
strcspn, 98
strdup, 98
strlen, 98
strncat, 98
strncmp, 98
strncpy, 98
strpbrk, 98
strrchr, 98
strstr, 99

strtok, 99
struct, 95
Sub-Shell mode, 34
Substitution, 111, 114
sun-keydef.sc, 81
switch, 95

the char, 110
title.sc, 81
top-ten.sc, 86
Type, 95
typedef, 95

Undo redo, 20
union, 95
unsigned, 95
usleep, 139
utilities.sc, 86

version.sc, 88
void, 95
volatile, 95

watch off, 139
watch on, 139
while, 95
Window numbering, 106
window-utilities.sc, 89
window height, 120
window width, 120
wprintf, 112
write file, 116

Xcoralrc, 106
xdvi, 67

