
IPython

An enhanced Interactive Python

User Manual, v. 0.5.0

Fernando Pérez

25th August 2003

Contents

1 Overview 4

1.1 Main features . 4

1.2 Portability and Python requirements . 5

1.3 Location . 6

2 Installation 6

2.1 Instant instructions . 6

2.2 Under Unix-type operating systems (Linux, Mac OS X, etc.) 6

2.2.1 RedHat 7.x notes . 7

2.2.2 Mac OSX notes . 7

2.3 Under Windows . 8

2.4 Upgrading from a previous version . 9

3 Initial configuration of your environment 9

3.1 Access to the Python help system . 9

3.2 Editor . 10

3.3 Color . 10

3.3.1 Input/Output prompts and exception tracebacks 11

3.3.2 Object details (types, docstrings, source code, etc.) 11

3.4 (X)Emacs configuration . 12

4 Quick tips 12

1

CONTENTS CONTENTS

5 Command-line use 14

5.1 Options . 14

6 Interactive use 18

6.1 Magic command system . 18

6.1.1 Magic commands . 20

6.2 Access to the standard Python help . 29

6.3 Dynamic object information . 29

6.4 Readline-based features . 29

6.4.1 Command line completion . 30

6.4.2 Search command history . 30

6.4.3 Persistent command history across sessions 30

6.4.4 Autoindent . 30

6.4.5 Customizing readline behavior . 30

6.5 Session logging and restoring . 31

6.6 System shell access . 32

6.7 System command aliases . 32

6.8 Recursive reload . 32

6.9 Verbose and colored exception traceback printouts 33

6.10 Input caching system . 33

6.11 Output caching system . 33

6.12 Directory history . 34

6.13 Automatic parentheses and quotes . 34

6.13.1 Automatic parentheses . 34

6.13.2 Automatic quoting . 35

6.13.3 Notes on usage of these two features . 35

7 Customization 35

7.1 Sample ipythonrc file . 36

7.2 IPython profiles . 47

8 Using IPython as your default Python environment. 47

9 Embedding IPython in other programs 48

2

CONTENTS CONTENTS

10 Using the Python debugger (pdb) 52

11 Extensions for syntax processing 53

11.1 Pasting of code fragments starting with ’> > > ’ or ’... ’ 53

11.2 Input of physical quantities with units . 54

12 Access to Gnuplot 55

12.1 Proper Gnuplot configuration . 55

12.2 The IPython.GnuplotRuntime module . 56

12.3 The numeric profile: a scientific computing environment 57

13 Reporting bugs 57

14 Brief history 58

14.1 Origins . 58

14.2 Current status . 58

14.3 Future . 58

15 License 58

16 Credits 59

3

1 OVERVIEW

1 Overview

One of Python’s most useful features is its interactive interpreter. This system allows very fast testing
of ideas without the overhead of creating test files as is typical in most programming languages.
However, the interpreter supplied with the standard Python distribution is somewhat limited for
extended interactive use.

IPython is a free software project (released under the GNU LGPL1) which tries to:

1. Provide an interactive shell superior to Python’s default. IPython has many features for object
introspection, system shell access, and its own special command system for adding functionality
when working interactively. It tries to be a very efficient environment both for Python code
development and for exploration of problems using Python objects (in situations like data
analysis).

2. Serve as an embeddable, ready to use interpreter for your own programs. IPython can be
started with a single call from inside another program, providing access to the current names-
pace. This can be very useful both for debugging purposes and for situations where a blend of
batch-processing and interactive exploration are needed.

3. Offer a flexible framework which can be used as the base environment for other systems with
Python as the underlying language. Specifically scientific environments like Mathematica, IDL
and Mathcad inspired its design, but similar ideas can be useful in many fields.

1.1 Main features

• Dynamic object introspection. One can access docstrings, function definition prototypes,
source code, source files and other details of any object accessible to the interpreter with
a single keystroke (’?’).

• Numbered input/output prompts with command history (persistent across sessions), full search-
ing in this history and caching of all input and output.

• Macro system for quickly re-executing multiple lines of previous input with a single name.

• Session logging (you can then later use these logs as code in your programs).

• Session restoring: logs can be replayed to restore a previous session to the state where you left
it.

• User-extensible ’magic’ commands. A set of commands prefixed with @ is available for control-
ling IPython itself and provides directory control, namespace information and many aliases to
common system shell commands.

• Alias facility for defining your own system aliases.

• Complete system shell access. Lines starting with ! are passed directly to the system shell.
1IPython is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details. Its full text is included in the file GNU-LGPL or can be obtained directly
from the Free Software Foundation at: http://www.gnu.org/copyleft/lesser.html.

4

http://www.gnu.org/copyleft/lesser.html

1 OVERVIEW 1.2 Portability and Python requirements

• Completion in the local namespace, by typing TAB at the prompt. This works for keywords,
methods, variables and files in the current directory. This is supported via the readline library,
and full access to configuring readline’s behavior is provided.

• Automatic indentation (optional) of code as you type (trhough the readline library).

• Verbose and colored exception traceback printouts. Easier to parse visually, and in verbose
mode they produce a lot of useful debugging information (basically a terminal version of the
cgitb module).

• Auto-parentheses: callable objects can be executed without parentheses: ’sin 3’ is automat-
ically converted to ’sin(3)’.

• Auto-quoting: using ’,’ as the first character forces auto-quoting of the rest of the line:
’,my_function a b’ becomes automatically ’my_function("a","b")’.

• Extensible input syntax. You can define filters that pre-process user input to simplify input
in special situations. This allows for example pasting multi-line code fragments which start
with ’> > >’ or ’...’ such as those from other python sessions or the standard Python
documentation.

• Flexible configuration system. It uses a configuration file which allows permanent setting of all
command-line options, module loading, code and file execution. The system allows recursive file
inclusion, so you can have a base file with defaults and layers which load other customizations
for particular projects.

• Embeddable. You can call IPython as a python shell inside your own python programs. This
can be used both for debugging code or for providing interactive abilities to your programs with
knowledge about the local namespaces (very useful in data analysis situations, for example).

• Easy debugger access. You can set IPython to call up the Python debugger (pdb) every time
there is an uncaught exception. This drops you inside the code which triggered the exception
with all the data live and its possible to navigate the stack to rapidly isolate the source of a
bug.

• Profiler support. You can run single statements (similar to profile.run()) or complete
programs under the profiler’s control.

1.2 Portability and Python requirements

Developed under Linux, should work under most unices (tested OK under Solaris).

Mac OS X: it works, apparently without any problems (thanks to Jim Boyle at Lawrence Livermore
for the information).

CygWin: I would guess this environment is Unix enough for IPython to work unchanged (any
comments welcome).

Windows: It works reasonably well under Windows XP, and I suspect NT and Win2000 should
work similarly. Windows 9x support has been added but has seen very little testing, as I don’t have
access to a machine with that operating system.

5

2 INSTALLATION 1.3 Location

Please note, however, that I have very little access to and experience with Windows development.
For this reason, Windows-specific bugs tend to linger far longer than I would like, and often I just
can’t find a satisfactory solution. If any Windows user wants to join in with development help, all
hands are always welcome.

MacOS Classic: it may work (I have no idea), and if not it should be reasonably easy to port it.
But someone else will have to do that, since I have no access to a Macintosh.

IPython requires Python version 2.1 or newer. It has been tested with Python 2.2 and showed no
problems.

1.3 Location

IPython is generously hosted at http://ipython.scipy.org by the SciPy project. This site offers
downloads, CVS access, mailing lists and a bug tracking system. I am very grateful to the SciPy
team for their contribution.

2 Installation

2.1 Instant instructions

If you are of the impatient kind, simply untar/unzip the download, install with ’python setup.py
install’ under Linux/Unix or by double-clicking the setup.py file under Windows, and take a
look at Sections 3 for configuring things optimally and 4 for quick tips on efficient use of IPython.
You can later refer to the rest of the manual for all the gory details.

See the notes in sec. 2.4 for upgrading IPython versions.

2.2 Under Unix-type operating systems (Linux, Mac OS X, etc.)

For RPM based systems, simply install the supplied package in the usual manner. If you download
the tar archive, the process is:

1. Unzip/untar the IPython-XXX.tar.gz file wherever you want (XXX is the version number).
It will make a directory called IPython-XXX. Change into that directory where you will find
the files README and setup.py. Once you’ve completed the installation, you can safely remove
this directory.

2. If you are installing over a previous installation of version 0.2.0 or earlier, first remove your
$HOME/.ipython directory, since the configuration file format has changed somewhat (the ’=’
were removed from all option specifications). Or you can call ipython with the -upgrade option
and it will do this automatically for you.

3. IPython uses distutils, so you can install it simply by typing at the system prompt (don’t type
the $)
$ python setup.py install
Note that this assumes you have root access to your machine. If you don’t have root access

6

http://ipython.scipy.org

2 INSTALLATION 2.2 Under Unix-type operating systems (Linux, Mac OS X, etc.)

or don’t want IPython to go in the default python directories, you’ll need to use the --home
option. For example:
$ python setup.py install --home $HOME/local
will install2 IPython into $HOME/local and its subdirectories (creating them if necessary).
You can type
$ python setup.py --help
for more details.

2.2.1 RedHat 7.x notes

The problems discussed in this section do not apply to RedHat 8.0 and newer versions, only to the
7.x series.

RedHat made the ’wise’ choice of using Python 1.5.2 as the default standard even for users (not just
for internal system stuff). Since they couldn’t be bothered to make things right, now you need to
manually play around to get things to work with Python 2.x (which IPython requires).

First, your system administrator may have fixed things so that as a user you automagically see
python 2.x. Test this by typing ’python’ at the prompt. If you get a Python 2.x prompt, you’re
safe. Otherwise you’ll need to explicitly call Python2.

Start by making sure you did install Python 2.x. The rpm for it is named python2....rpm. You
can check by typing ’python2’ at the command prompt and seeing if you get a python prompt with
2.x as the version. If you don’t have it, install the Python 2.x rpm now.

Once you have confirmed you have Python 2.x installed, call the IPython setup routine as
$ python2 setup.py install

Hopefully, things will work. If they don’t, go yell at RedHat, not me. One possible manual fix
you may try is to edit /usr/bin/ipython and rename the #!/usr/bin/python line at the top to
#!/usr/bin/python2.

2.2.2 Mac OSX notes

Apparently the problems which Mac OSX users may encounter with in the terminal window are due
to poor VT100 emulation on Apple’s part.

I don’t have access to a Mac, so I rely on the helpful users from the OSX community for feedback on
this issue. The information below was graciously provided by Andrea Riciputti from the Fink project,
and I reproduce it unaltered hoping that it will be useful to others. If you find a mistake/update to
this information, please let me know so that I can include it in future releases.

Note: I don’t know if this information applies to 10.2 (Jaguar). It is possible that 10.2 fixes these
problems, but this information has not been confirmed. Please let me know of any details concerning
Jaguar which should be added to this documentation.

Many thanks to Andrea for taking the time to do this. His Mini-HOWTO follows.

Mac OSX Terminal Mini-HOWTO
2If you are reading these instructions in HTML format, please note that the option is –home, with two dashes. The

automatic HTML conversion program seems to eat up one of the dashes, unfortunately (it’s ok in the PDF version).

7

2 INSTALLATION 2.3 Under Windows

From: Andrea Riciputi <andrea.riciputi@libero.it>

Date: Thu, 28 Nov 2002 19:07:20 +0100

1) In order to get IPython works smoothly on MacOSX you have to reset the TERM env variable
as follow:

% setenv TERM xterm

2) Done. Open a new terminal window and start ipython setting color and color_info to 1.
Everything will go well!!

3) If someone wants to know more about this topics please look at these links:

http://www.nyangau.fsnet.co.uk/terminfo/terminfo.htm (not so easy)

http://www.cs.utk.edu/~shuford/terminal/vt100_colorized_termcap.tx (not easy at all)

2.3 Under Windows

Please note that for the automatic installer to work you need Mark Hammond’s PythonWin exten-
sions (and they’re great for anything Windows-related anyway, so you might as well get them). If
you don’t have them, get them at:

http://starship.python.net/crew/mhammond/

From the download directory grab the IPython-XXX.zip file (but the popular WinZip handles
.tar.gz files perfectly, so use that if you have WinZip and want a smaller download).

Unzip it and double-click on the setup.py file. A text console should open and proceed to install
IPython in your system. If all goes well, that’s all you need to do. You should now have an IPython
entry in your Start Menu with links to IPython and the manuals.

If you don’t have PythonWin, you can:

• Copy the doc\ directory wherever you want it (it contains the manuals in HTML and PDF).

• Create a shortcut to the main IPython script, located in the Scripts subdirectory of your
Python installation directory.

These steps are basically what the auto-installer does for you.

IPython tries to install the configuration information in a directory named .ipython located in
your ’home’ directory, which it determines by joining the environment variables HOMEDRIVE and
HOMEPATH. This typically gives something like C:\Documents and Settings\YourUserName, but
your local details may vary. In this directory you will find all the files that configure IPython’s
defaults, and you can put there your profiles and extensions. This directory is automatically added
by IPython to sys.path, so anything you place there can be found by import statements.

8

http://www.nyangau.fsnet.co.uk/terminfo/terminfo.htm
http://www.cs.utk.edu/~shuford/terminal/vt100_colorized_termcap.tx
http://starship.python.net/crew/mhammond/

3 INITIAL CONFIGURATION OF YOUR ENVIRONMENT2.4 Upgrading from a previous version

2.4 Upgrading from a previous version

If you are upgrading from a previous version of IPython, after doing the routine installation described
above, you should call IPython with the -upgrade option the first time you run your new copy. This
will automatically update your configuration directory while preserving copies of your old files. You
can then later merge back any personal customizations you may have made into the new files. It is
a good idea to do this as there may be new options available in the new configuration files which
you will not have.

Under Windows, if you don’t know how to call python scripts with arguments from a command
line, simply delete the old config directory and IPython will make a new one. Win2k and WinXP
users will find it in C:\Documents and Settings\YourUserName\.ipython, and Win 9x users under
C:\Program Files\IPython\.ipython.

3 Initial configuration of your environment

This section will help you set various things in your environment for your IPython sessions to be
as efficient as possible. All of IPython’s configuration information, along with several example files,
is stored in a directory named by default $HOME/.ipython. You can change this by defining the
environment variable IPYTHONDIR, or at runtime with the command line option -ipythondir.

If all goes well, the first time you run IPython it should automatically create a user copy of the
config directory for you, based on its builtin defaults. You can look at the files it creates to learn
more about configuring the system. The main file you will modify to configure IPython’s behavior
is called ipythonrc, included for reference in Sec. 7.1. This file is very commented and has many
variables you can change to suit your taste, you can find more details in Sec. 7. Here we discuss the
basic things you will want to make sure things are working properly from the beginning.

3.1 Access to the Python help system

This is true for Python 2.1 in general (not just for IPython): you should have an environment variable
called PYTHONDOCS pointing to the directory where your HTML Python documentation lives. In my
system it’s /usr/share/doc/python-docs-2.1.1/html, check your local details or ask your systems
administrator.

This is the directory which holds the HTML version of the Python manuals. Unfortunately it seems
that different Linux distributions package these files differently, so you may have to look around a
bit. Below I show the contents of this directory on my system for reference:

[html]> ls
about.dat acks.html dist/ ext/ index.html lib/ modindex.html stdabout.dat tut/ about.html
api/ doc/ icons/ inst/ mac/ ref/ style.css

You should really make sure this variable is correctly set so that Python’s pydoc-based help system
works. It is a powerful and convenient system with full access to the Python manuals and all modules
accessible to you.

Under Windows it seems that pydoc finds the documentation automatically, so no extra setup
appears necessary.

9

3 INITIAL CONFIGURATION OF YOUR ENVIRONMENT 3.2 Editor

3.2 Editor

The @edit command (and its alias @ed) will invoke the editor set in your environment as EDITOR.
If this variable is not set, it will default to vi under Linux/Unix and to notepad under Windows.
You may want to set this variable properly and to a lightweight editor which doesn’t take too long
to start (that is, something other than a new instance of Emacs). This way you can edit multi-line
code quickly and with the power of a real editor right inside IPython.

If you are a dedicated Emacs user, you should set up the Emacs server so that new requests are
handled by the original process. This means that almost no time is spent in handling the request
(assuming an Emacs process is already running). For this wo work, you need to set your EDITOR
environment variable to ’emacsclient’. The code below, supplied by François Pinard, can then be
used in your .emacs file to enable the server:

(defvar server-buffer-clients)

(when (and (fboundp ’server-start) (string-equal (getenv "TERM") ’xterm))

(server-start)

(defun fp-kill-server-with-buffer-routine ()

(and server-buffer-clients (server-done)))

(add-hook ’kill-buffer-hook ’fp-kill-server-with-buffer-routine))

You can also set the value of this editor via the commmand-line option ’-editor’ or in your
ipythonrc file. This is useful if you wish to use specifically for IPython an editor different from
your typical default (and for Windows users which typically don’t set environment variables).

3.3 Color

The default IPython configuration has most bells and whistles turned on (they’re pretty safe). But
there’s one that may cause problems on some systems: the use of color on screen for displaying
information. This is very useful, since IPython can show prompts and exception tracebacks with
various colors, display syntax-highlighted source code, and in general make it easier to visually parse
information. But not all terminals out there have reliable support for on-screen color, so these
options are not enabled by default to avoid confusing new users with on-screen garbage.

The following terminals seem to handle the color sequences fine:

• Linux main text console, KDE Konsole, Gnome Terminal, E-term, rxvt, xterm.

• CDE terminal (tested under Solaris). This one boldfaces light colors.

• (X)Emacs buffers. See sec.3.4 for more details on using IPython with (X)Emacs.

These have shown problems:

• Windows command prompt in Win2k/XP logged into a Linux machine via telnet or ssh.

10

3 INITIAL CONFIGURATION OF YOUR ENVIRONMENT 3.3 Color

• Windows native command prompt in Win2k/XP for local execution. Colors do not work at
all. The installer is set up to disable colors by default. If you have a terminal replacement
which can handle colors, you can turn them back on. Test it by typing ’colors Linux’ at the
prompt: if you get garbage on screen, go back with ’colors NoColor’.
Note that under Windows, if you use the CygWin environment, coloring (and readline-related
features) all work correctly.

Currently the following color schemes are available:

• NoColor: uses no color escapes at all (all escapes are empty “ “ strings). This ’scheme’ is thus
fully safe to use in any terminal.

• Linux: works well in Linux console type environments: dark background with light fonts. It
uses bright colors for information, so it is difficult to read if you have a light colored background.

• LightBG: the basic colors are similar to those in the Linux scheme but darker. It is easy to
read in terminals with light backgrounds.

IPython uses colors for two main groups of things: prompts and tracebacks which are directly printed
to the terminal, and the object introspection system which passes large sets of data through a pager.

3.3.1 Input/Output prompts and exception tracebacks

You can test whether the colored prompts and tracebacks work on your system interactively by typing
’@colors Linux’ at the prompt (use ’@colors LightBG’ if your terminal has a light background).
If the input prompt shows garbage like:
[0;32mIn [[1;32m1[0;32m]: [0;00m
instead of (in color) something like:
In [1]:
this means that your terminal doesn’t properly handle color escape sequences. You can go to a ’no
color’ mode by typing ’@colors NoColor’.

You can try using a different terminal emulator program. To permanently set your color preferences,
edit the file $HOME/.ipython/ipythonrc and set the colors option to the desired value.

3.3.2 Object details (types, docstrings, source code, etc.)

IPython has a set of special functions for studying the objects you are working with, discussed in
detail in Sec. 6.3. But this system relies on passing information which is longer than your screen
through a data pager, such as the common Unix less and more programs. In order to be able to see
this information in color, your pager needs to be properly configured. I strongly recommend using
less instead of more, as it seems that more simply can not understand colored text correctly.

In order to configure less as your default pager, do the following:

1. Set the environment PAGER variable to less.

11

4 QUICK TIPS 3.4 (X)Emacs configuration

2. Set the environment LESS variable to -r (plus any other options you always want to pass to
less by default). This tells less to properly interpret control sequences, which is how color
information is given to your terminal.

For the csh or tcsh shells, add to your ~/.cshrc file the lines:

setenv PAGER less
setenv LESS -r

There is similar syntax for other Unix shells, look at your system documentation for details.

If you are on a system which lacks proper data pagers (such as Windows), IPython will use a very
limited builtin pager.

3.4 (X)Emacs configuration

Thanks to the work of Alexander Schmolck, currently (X)Emacs and IPython get along very well.
You will need to use a recent version of python-mode.el, along with the file ipython.el. At the
IPython website’s download section, you will find a tarball containing both of these files. Once you
put them in your Emacs path, all you need in your .emacs file is:

(require ’ipython)

This should give you full support for executing code snippets via IPython, opening IPython as your
Python shell via C-c !, etc.

Notes

• There is one caveat you should be aware of: you must start the IPython shell before attempting
to execute any code regions via C-c |. Simply type C-c ! to start IPython before passing
any code regions to the interpreter, and you shouldn’t experience any problems.
This is due to a bug in Python itself, which has been fixed for Python 2.3, but exists as of
Python 2.2.2 (reported as SF bug [737947]).

• The (X)Emacs support is maintained by Alexander Schmolck, so all comments/requests should
be directed to him through the IPython mailing lists.

• This code is still somewhat experimental so it’s a bit rough around the edges (although in
practice, it works quite well).

4 Quick tips

IPython can be used as an improved replacement for the Python prompt, and for that you don’t
really need to read any more of this manual. But in this section we’ll try to summarize a few tips
on how to make the most effective use of it for everyday Python development, highlighting things
you might miss in the rest of the manual (which is getting long). We’ll give references to parts in
the manual which provide more detail when appropriate.

12

4 QUICK TIPS

• The TAB key. TAB-completion, especially for attributes, is a convenient way to explore the
structure of any object you’re dealing with. Simply type object_name.<TAB> and a list of
the object’s attributes will be printed (see sec. 6.4 for more). Tab completion also works on
file and directory names, which combined with IPython’s alias system allows you to do from
within IPython many of the things you normally would need the system shell for. Note that
this feature does not work on platforms lacking readline support, such as Windows.

• Explore your objects. Typing object_name? will print all sorts of details about any object,
including docstrings, function definition lines (for call arguments) and constructor details for
classes. The magic commands @pdoc, @pdef, @psource and @pfile will respectively print
the docstring, function definition line, full source code and the complete file for any object
(when they can be found). If automagic is on (it is by default), you don’t need to type the ’@’
explicitly. See sec. 6.3 for more.

• The @run magic command allows you to run any python script and load all of its data directly
into the interactive namespace. Since the file is re-read from disk each time, changes you make
to it are reflected immediately (in contrast to the behavior of import). I rarely use import
for code I am testing, relying on @run instead. See sec. 6.1 for more on this and other magic
commands, or type the name of any magic command and ? to get details on it. See also sec.
6.8 for a recursive reload command.

• Use the Python debugger, pdb3. The @pdb command allows you to toggle on and off the
automatic invocation of the pdb debugger at any uncaught exception. The advantage of this is
that pdb starts inside the function where the exception occurred, with all data still available.
You can print variables, see code, execute statements and even walk up and down the call
stack to track down the true source of the problem (which often is many layers in the stack
above where the exception gets triggered).
Running programs with @run and pdb active can be an efficient to develop and debug code,
in many cases eliminating the need for print statements or external debugging tools. I often
simply put a 1/0 in a place where I want to take a look so that pdb gets called, quickly view
whatever variables I need to or test various pieces of code and then remove the 1/0.

• Use the output cache. All output results are automatically stored in a global dictionary named
Out and variables named _1, _2, etc. alias them. For example, the result of input line 4 is
available either as Out[4] or as _4. Additionally, three variables named _, __ and ___ are
always kept updated with the for the last three results. This allows you to recall any previous
result and further use it for new calculations. See sec. 6.11 for more.

• Put a ’;’ at the end of a line to supress the printing of output. This is useful when doing
calculations which generate long output you are not interested in seeing. The _* variables ant
the Out[] list do get updated with the contents of the output, even if it is not printed. You
can thus still access the generated results this way for further processing.

• A similar system exists for caching input. All input is stored in a global list called In , so you
can re-execute lines 22 through 28 plus line 34 by typing ’exec In[22:29]+In[34]’ (using
Python slicing notation). If you need to execute the same set of lines often, you can assign
them to a macro with the @macro function. See sec. 6.10 for more.

• Use your input history. The @hist command can show you all previous input, without line
numbers if desired (option -n) so you can directly copy and paste code either back in IPython

3Thanks to Christian Hart for the suggestions leading to this feature and the profiler support.

13

5 COMMAND-LINE USE

or in a text editor. You can also save all your history by turning on logging via @logstart;
these logs can later be either reloaded as IPython sessions or used as code for your programs.

• Define your own macros with @macro. This can be useful for automating sequences of expres-
sions when working interactively.

• Define your own system aliases. Even though IPython gives you access to your system shell
via the ! prefix, it is convenient to have aliases to the system commands you use most often.
This allows you to work seamlessly from inside IPython with the same commands you are used
to in your system shell.
IPython comes with some pre-defined aliases and a complete system for changing directories,
both via a stack (see @pushd, @popd and @ds) and via direct @cd. The latter keeps a history
of visited directories and allows you to go to any previously visited one.

• Use profiles to maintain different configurations (modules to load, function definitions, option
settings) for particular tasks. You can then have customized versions of IPython for specific
purposes. See sec. 7.2 for more.

• Embed IPython in your programs. A few lines of code are enough to load a complete IPython
inside your own programs, giving you the ability to work with your data interactively after
automatic processing has been completed. See sec. 9 for more.

• Use the Python profiler. When dealing with performance issues, the @run command with a
-p option allows you to run complete programs under the control of the Python profiler. The
@prun command does a similar job for single Python expressions (like function calls).

If you have your own favorite tip on using IPython efficiently for a certain task (especially things
which can’t be done in the normal Python interpreter), don’t hesitate to send it!

5 Command-line use

You start IPython with the command:

$ ipython [options] files

If invoked with no options, it executes all the files listed in sequence and drops you into the interpreter
while still acknowledging any options you may have set in your ipythonrc file. This behavior is
different from standard Python, which when called as python -i will only execute one file and
ignore your configuration setup.

Please note that some of the configuration options are not available at the command line, simply
because they are not practical here. Look into your ipythonrc configuration file for details on those.
This file typically installed in the $HOME/.ipython directory. For Windows users, $HOME resolves to
C:\\Documents and Settings\\YourUserName in most instances. In the rest of this text, we will
refer to this directory as IPYTHONDIR.

5.1 Options

All options can be abbreviated to their shortest non-ambiguous form and are case-sensitive. One or
two dashes can be used. Some options have an alternate short form, indicated after a |.

14

5 COMMAND-LINE USE 5.1 Options

Most options can also be set from your ipythonrc configuration file. See the provided example for
more details on what the options do. Options given at the command line override the values set in
the ipythonrc file.

All options with a no| prepended can be specified in ’no’ form (-nooption instead of -option) to
turn the feature off.

-help: print a help message and exit.

-no|automagic: make magic commands automatic (without needing their first character to be @).
Type @magic at the IPython prompt for more information.

-no|banner: Print the initial information banner (default on).

-c <command>: execute the given command string, and set sys.argv to [’c’]. This is similar to the
-c option in the normal Python interpreter.

-cache_size|cs <n>: size of the output cache (maximum number of entries to hold in memory).
The default is 1000, you can change it permanently in your config file. Setting it to 0
completely disables the caching system, and the minimum value accepted is 20 (if you
provide a value less than 20, it is reset to 0 and a warning is issued) This limit is defined
because otherwise you’ll spend more time re-flushing a too small cache than working.

-classic|cl: Gives IPython a similar feel to the classic Python prompt.

-colors <scheme>: Color scheme for prompts and exception reporting. Currently implemented:
NoColor, Linux and LightBG.

-no|color_info: IPython can display information about objects via a set of functions, and option-
ally can use colors for this, syntax highlighting source code and various other elements.
However, because this information is passed through a pager (like ’less’) and many pagers
get confused with color codes, this option is off by default. You can test it and turn it
on permanently in your ipythonrc file if it works for you. As a reference, the ’less’ pager
supplied with Mandrake 8.2 works ok, but that in RedHat 7.2 doesn’t.

Test it and turn it on permanently if it works with your system. The magic function
@color_info allows you to toggle this interactively for testing.

-no|debug: Show information about the loading process. Very useful to pin down problems with
your configuration files or to get details about session restores.

-no|deep_reload: IPython can use the deep_reload module which reloads changes in modules
recursively (it replaces the reload() function, so you don’t need to change anything to
use it). deep_reload() forces a full reload of modules whose code may have changed,
which the default reload() function does not.

When deep reload is off, IPython will use the normal reload(), but deep reload will
still be available as dreload(). This feature is off by default [which means that you have
both normal reload() and dreload()].

-editor <name>: Which editor to use with the @edit command. By default, IPython will honor
your EDITOR environment variable (if not set, vi is the Unix default and notepad the
Windows one). Since this editor is invoked on the fly by IPython and is meant for
editing small code snippets, you may want to use a small, lightweight editor here (in case
your default EDITOR is something like Emacs).

15

5 COMMAND-LINE USE 5.1 Options

-ipythondir <name>: name of your IPython configuration directory IPYTHONDIR. This can also be
specified through the environment variable IPYTHONDIR.

-log|l: generate a log file of all input. Defaults to $IPYTHONDIR/log. You can use this to later
restore a session by loading your logfile as a file to be executed with option -logplay
(see below).

-logfile|lf <name>: specify the name of your logfile.

-logplay|lp <name>: you can replay a previous log. For restoring a session as close as possible
to the state you left it in, use this option (don’t just run the logfile). With -logplay,
IPython will try to reconstruct the previous working environment in full, not just execute
the commands in the logfile.

When a session is restored, logging is automatically turned on again with the name of
the logfile it was invoked with (it is read from the log header). So once you’ve turned
logging on for a session, you can quit IPython and reload it as many times as you want
and it will continue to log its history and restore from the beginning every time.

Caveats: there are limitations in this option. The history variables _i*,_* and _dh don’t
get restored properly. In the future we will try to implement full session saving by writing
and retrieving a ’snapshot’ of the memory state of IPython. But our first attempts failed
because of inherent limitations of Python’s Pickle module, so this may have to wait.

-no|messages: Print messages which IPython collects about its startup process (default on).

-no|pdb: Automatically call the pdb debugger after every uncaught exception. If you are used to
debugging using pdb, this puts you automatically inside of it after any call (either in
IPython or in code called by it) which triggers an exception which goes uncaught.

-no|pprint: ipython can optionally use the pprint (pretty printer) module for displaying results.
pprint tends to give a nicer display of nested data structures. If you like it, you can turn
it on permanently in your config file (default off).

-profile|p <name>: assume that your config file is ipythonrc-<name> (looks in current dir first,
then in IPYTHONDIR). This is a quick way to keep and load multiple config files for
different tasks, especially if you use the include option of config files. You can keep a
basic IPYTHONDIR/ipythonrc file and then have other ’profiles’ which include this one
and load extra things for particular tasks. For example:

1. $HOME/.ipython/ipythonrc : load basic things you always want.

2. $HOME/.ipython/ipythonrc-math : load (1) and basic math-related modules.

3. $HOME/.ipython/ipythonrc-numeric : load (1) and Numeric and plotting modules.

Since it is possible to create an endless loop by having circular file inclusions, IPython
will stop if it reaches 15 recursive inclusions.

-prompt_in1|pi1 <string>: Specify the string used for input prompts. Note that if you are using
numbered prompts, the number is represented with a ’%n’ in the string. Don’t forget to
quote strings with spaces embedded in them. Default: ’In [%n]:’

16

5 COMMAND-LINE USE 5.1 Options

-prompt_in2|pi2 <string>: Similar to the previous option, but used for the continuation prompts.
In this case, the number (%n) is replaced by as many dots as there are digits in the number
(so you can have your continuation prompt aligned with your input prompt). Default:
’ .%n.:’ (note three spaces at the start for alignment with ’In [%n]’)

-prompt_out|po <string>: String used for output prompts, also uses numbers like prompt_in1.
Default: ’Out[%n]:’

-quick: start in bare bones mode (no config file loaded).

-rcfile <name>: name of your IPython resource configuration file. Normally IPython loads ipythonrc
(from current directory) or IPYTHONDIR/ipythonrc.

If the loading of your config file fails, IPython starts with a bare bones configuration (no
modules loaded at all).

-no|readline: use the readline library, which is needed to support name completion and command
history, among other things. It is enabled by default, but may cause problems for users
of X/Emacs in Python comint or shell buffers.

Note that X/Emacs ’eterm’ buffers (opened with M-x term) support IPython’s readline
and syntax coloring fine, only ’emacs’ (M-x shell and C-c !) buffers do not.

-screen_length|sl <n>: number of lines of your screen. This is used to control printing of very
long strings. Strings longer than this number of lines will be sent through a pager instead
of directly printed.

The default value for this is 0, which means IPython will auto-detect your screen size
every time it needs to print certain potentially long strings (this doesn’t change the
behavior of the ’print’ keyword, it’s only triggered internally). If for some reason this
isn’t working well (it needs curses support), specify it yourself. Otherwise don’t change
the default.

-separate_in|si <string>: separator before input prompts. Default: ’\n’

-separate_out|so <string>: separator before output prompts. Default: nothing.

-separate_out2|so2 <string>: separator after output prompts. Default: nothing.

For these three options, use the value 0 to specify no separator.

-nosep: shorthand for ’-SeparateIn 0 -SeparateOut 0 -SeparateOut2 0’. Simply removes
all input/output separators.

-upgrade: allows you to upgrade your IPYTHONDIR configuration when you install a new version of
IPython. Since new versions may include new command line options or example files,
this copies updated ipythonrc-type files. However, it backs up (with a .old extension)
all files which it overwrites so that you can merge back any customizations you might
have in your personal files.

-Version: print version information and exit.

-xmode <modename>: Mode for exception reporting.

Valid modes: Plain, Context and Verbose.

17

6 INTERACTIVE USE

Plain: similar to python’s normal traceback printing.

Context: prints 5 lines of context source code around each line in the traceback.

Verbose: similar to Context, but additionally prints the variables currently visible where
the exception happened (shortening their strings if too long). This can potentially be
very slow, if you happen to have a huge data structure whose string representation is
complex to compute. Your computer may appear to freeze for a while with cpu usage at
100%. If this occurs, you can cancel the traceback with Ctrl-C (maybe hitting it more
than once).

6 Interactive use

Warning: IPython relies on the existence of a global variable called __IP which controls the shell
itself. If you redefine __IP to anything, bizarre behavior will quickly occur.

Other than the above warning, IPython is meant to work as a drop-in replacement for the standard
interactive interpreter. As such, any code which is valid python should execute normally under
IPython (cases where this is not true should be reported as bugs). It does, however, offer many
features which are not available at a standard python prompt. What follows is a list of these.

6.1 Magic command system

IPython will treat any line whose first character is a @ as a special call to a ’magic’ function. These
allow you to control the behavior of IPython itself, plus a lot of system-type features. They are all
prefixed with a @ character, but parameters are given without parentheses or quotes.

Example: typing ’@cd mydir’ (without the quotes) changes you working directory to ’mydir’, if
it exists.

If you have ’automagic’ enabled (in your ipythonrc file, via the command line option -automagic
or with the @automagic function), you don’t need to type in the @ explicitly. IPython will scan its
internal list of magic functions and call one if it exists. With automagic on you can then just type
’cd mydir’ to go to directory ’mydir’. The automagic system has the lowest possible precedence
in name searches, so defining an identifier with the same name as an existing magic function will
shadow it for automagic use. You can still access the shadowed magic function by explicitly using
the @ character at the beginning of the line.

An example (with automagic on) should clarify all this:

In [1]: cd ipython # @cd is called by automagic
/usr/local/home/fperez/ipython
In [2]: cd=1 # now cd is just a variable
In [3]: cd .. # and doesn’t work as a function anymore
--
File "<console>", line 1
cd ..
^
SyntaxError: invalid syntax

18

6 INTERACTIVE USE 6.1 Magic command system

In [4]: @cd .. # but @cd always works
/usr/local/home/fperez
In [5]: del cd # if you remove the cd variable
In [6]: cd ipython # automagic can work again
/usr/local/home/fperez/ipython

You can define your own magic functions to extend the system. The following is a snippet of code
which shows how to do it. It is provided as file example-magic.py in the examples directory:

"""Example of how to define a magic function for extending IPython.

The name of the function *must* begin with magic_. IPython mangles it so
that magic_foo() becomes available as @foo.

The argument list must be *exactly* (self,parameter_s=’’).

The single string parameter_s will have the user’s input. It is the magic
function’s responsability to parse this string.

That is, if the user types
>>>@foo a b c

The followinng internal call is generated:
self.magic_foo(parameter_s=’a b c’).

To have any functions defined here available as magic functions in your
IPython environment, import this file in your configuration file with an
execfile = this_file.py statement. See the details at the end of the sample
ipythonrc file. """

fisrt define a function with the proper form:
def magic_foo(self,parameter_s=’’):

"""My very own magic!. (Use docstrings, IPython reads them)."""
print ’Magic function. Passed parameter is between < >: <’+parameter_s+’>’
print ’The self object is:’,self

Add the new magic function to the class dict:
from IPython.iplib import InteractiveShell
InteractiveShell.magic_foo = magic_foo

And remove the global name to keep global namespace clean. Don’t worry, the
copy bound to IPython stays, we’re just removing the global name.
del magic_foo

#********************** End of file <example-magic.py> ***********************

You can also define your own aliased names for magic functions. In your ipythonrc file, placing a
line like:

19

6 INTERACTIVE USE 6.1 Magic command system

execute __IP.magic_cl = __IP.magic_clear

will define @cl as a new name for @clear.

Type @magic for more information, including a list of all available magic functions at any time and
their docstrings. You can also type @magic_function_name? (see sec. 6.3 for information on the
’?’ system) to get information about any particular magic function you are interested in.

6.1.1 Magic commands

The rest of this section is automatically generated for each release from the docstrings in the IPython
code. Therefore the formatting is somewhat minimal, but this method has the advantage of having
information always in sync with the code.

A list of all the magic commands available in IPython’s default installation follows. This is similar
to what you’ll see by simply typing @magic at the prompt, but that will also give you information
about magic commands you may have added as part of your personal customizations.

@Exit: Exit IPython without confirmation.

@Pprint: Toggle pretty printing on/off.

@Quit: Exit IPython without confirmation (like @Exit).

@alias: Define an alias for a system command.

’@alias alias name cmd’ defines ’alias name’ as an alias for ’cmd’

Then, typing ’@alias_name params’ will execute the system command ’cmd params’ (from your
underlying operating system).

You can also define aliases with parameters using %s specifiers (one per parameter):

In [1]: alias parts echo first %s second %s
In [2]: @parts A B
first A second B
In [3]: @parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

If called with no parameters, @alias prints the current alias table.

@autocall: Make functions callable without having to type parentheses.

This toggles the autocall command line option on and off.

@autoindent: Toggle autoindent on/off (if available).

@automagic: Make magic functions callable without having to type the initial @.

Toggles on/off (when off, you must call it as @automagic, of course). Note that magic functions
have lowest priority, so if there’s a variable whose name collides with that of a magic fn, automagic
won’t work for that function (you get the variable instead). However, if you delete the variable (del
var), the previously shadowed magic function becomes visible to automagic again.

@cat: Alias to the system command ’cat’

20

6 INTERACTIVE USE 6.1 Magic command system

@cd: Change the current working directory.

This command automatically maintains an internal list of directories you visit during your IPython
session, in the variable dh. The command @dhist shows this history nicely formatted.

cd -<n> changes to the n-th directory in the directory history.

cd - changes to the last visited directory.

Note that !cd doesn’t work for this purpose because the shell where !command runs is immediately
discarded after executing ’command’.

@clear: Alias to the system command ’clear’

@color_info: Toggle color info.

The color info configuration parameter controls whether colors are used for displaying object details
(by things like @psource, @pfile or the ’?’ system). This function toggles this value with each call.

Note that unless you have a fairly recent pager (less works better than more) in your system, using
colored object information displays will not work properly. Test it and see.

@colors: Switch color scheme for the prompts and exception handlers.

Currently implemented schemes: NoColor, Linux, LightBG.

Color scheme names are not case-sensitive.

@config: Show IPython’s internal configuration.

@dhist: Print your history of visited directories.

@dhist -> print full history
@dhist n -> print last n entries only
@dhist n1 n2 -> print entries between n1 and n2 (n1 not included)

This history is automatically maintained by the @cd command, and always available as the global
list variable dh. You can use @cd -<n> to go to directory number <n>.

@dirs: Return the current directory stack.

@ed: Alias to @edit.

@edit: Bring up an editor and execute the resulting code.

Usage: @edit [options] [args]

@edit will use the editor you have configured in your environment as the EDITOR variable. If this
isn’t found, it will default to vi under Linux/Unix and to notepad under Windows.

You can also set the value of this editor via the commmand-line option ’-editor’ or in your ipythonrc
file. This is useful if you wish to use specifically for IPython an editor different from your typical
default (and for Windows users who typically don’t set environment variables).

This command allows you to conveniently edit multi-line code right in your IPython session.

If called without arguments, @edit opens up an empty editor with a temporary file and will execute
the contents of this file when you close it (don’t forget to save it!).

Options:

21

6 INTERACTIVE USE 6.1 Magic command system

-p: this will call the editor with the same data as the previous time it was used, regardless of how
long ago (in your current session) it was.

-x: do not execute the edited code immediately upon exit. This is mainly useful if you are editing
programs which need to be called with command line arguments, which you can then do using @run.

Arguments:

If arguments are given, the following possibilites exist:

- The arguments are numbers or pairs of colon-separated numbers (like 1 4:8 9). These are interpreted
as lines of previous input to be loaded into the editor. The syntax is the same of the @macro command.

- If the argument doesn’t start with a number, it is evaluated as a variable and its contents loaded
into the editor. You can thus edit any string which contains python code (including the result of
previous edits).

- If the argument is the name of an object (other than a string), IPython will try to locate the
file where it was defined and open the editor at the point where it is defined. You can use ‘@edit
function‘ to load an editor exactly at the point where ’function’ is defined, edit it and have the file
be executed automatically.

Note: opening at an exact line is only supported under Unix, and some editors (like kedit and
gedit) do not understand the ’+NUMBER’ parameter necessary for this feature. Good editors like
(X)Emacs, vi, jed, pico and joe all do.

- If the argument is not found as a variable, IPython will look for a file with that name (adding .py
if necessary) and load it into the editor. It will execute its contents with execfile() when you exit,
loading any code in the file into your interactive namespace.

After executing your code, @edit will return as output the code you typed in the editor (except
when it was an existing file). This way you can reload the code in further invocations of @edit as
a variable, via <NUMBER> or Out[<NUMBER>], where <NUMBER> is the prompt number of
the output.

Note that @edit is also available through the alias @ed.

This is an example of creating a simple function inside the editor and then modifying it. First, start
up the editor:

In [1]: ed
Editing... done. Executing edited code...
Out[1]: ’def foo(): print ”foo() was defined in an editing session” ’

We can then call the function foo(): In [2]: foo() foo() was defined in an editing session

Now we edit foo. IPython automatically loads the editor with the (temporary) file where foo() was
previously defined. In [3]: ed foo Editing... done. Executing edited code...

And if we call foo() again we get the modified version: In [4]: foo() foo() has now been changed!

Here is an example of how to edit a code snippet successive times. First we call the editor:

In [8]: ed
Editing... done. Executing edited code...
hello

22

6 INTERACTIVE USE 6.1 Magic command system

Out[8]: ”print ’hello’”

Now we call it again with the previous output (stored in):

In [9]: ed
Editing... done. Executing edited code...
hello world
Out[9]: ”print ’hello world’”

Now we call it with the output 8 (stored in 8, also as Out[8]):

In [10]: ed 8
Editing... done. Executing edited code...
hello again
Out[10]: ”print ’hello again’”

@env: List environment variables.

@hist: Print input history (i<n> variables), with most recent last.

@hist [-n] -> print at most 40 inputs (some may be multi-line)
@hist [-n] n -> print at most n inputs
@hist [-n] n1 n2 -> print inputs between n1 and n2 (n2 not included)

Each input’s number <n> is shown, and is accessible as the automatically generated variable i<n>.
Multi-line statements are printed starting at a new line for easy copy/paste.

If option -n is used, input numbers are not printed. This is useful if you want to get a printout of
many lines which can be directly pasted into a text editor.

This feature is only available if numbered prompts are in use.

@lc: Alias to the system command ’ls -F -o –color’

@ld: List (in color) things which are directories or links to directories.

@less: Alias to the system command ’less’

@lf: List (in color) things which are normal files.

@ll: List (in color) things which are symbolic links.

@logoff: Temporarily stop logging.

You must have previously started logging.

@logon: Restart logging.

This function is for restarting logging which you’ve temporarily stopped with @logoff. For starting
logging for the first time, you must use the @logstart function, which allows you to specify an
optional log filename.

@logstart: Start logging anywhere in a session.

@logstart [log name [log mode]]

If no name is given, it defaults to a file named ’ipython.log’ in your current directory, in ’rotate’
mode (see below).

23

6 INTERACTIVE USE 6.1 Magic command system

’@logstart name’ saves to file ’name’ in ’backup’ mode. It saves your history up to that point and
then continues logging.

@logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):
over: overwrite existing log.
backup: rename (if exists) to name and start name.
append: well, that says it.
rotate: create rotating logs name.1 , name.2 , etc.

@logstate: Print the status of the logging system.

@ls: Alias to the system command ’ls -F’

@lsmagic: List currently available magic functions.

@lx: List (in color) things which are executable.

@macro: Define a set of input lines as a macro for future re-execution.

Usage:
@macro name n1:n2 n3:n4 ... n5 .. n6 ...

This will define a global variable called ‘name‘ which is a string made of joining the slices and lines
you specify (n1,n2,... numbers above) from your input history into a single string. This variable acts
like an automatic function which re-executes those lines as if you had typed them. You just type
’name’ at the prompt and the code executes.

Note that the slices use the standard Python slicing notation (5:8 means include lines numbered
5,6,7).

For example, if your history contains (@hist prints it):

44: x=1
45: y=3
46: z=x+y
47: print x
48: a=5
49: print ’x’,x,’y’,y

you can create a macro with lines 44 through 47 (included) and line 49 called my macro with:

In [51]: @macro my macro 44:48 49

Now, typing ‘my macro‘ (without quotes) will re-execute all this code in one pass.

You don’t need to give the line-numbers in order, and any given line number can appear multiple
times. You can assemble macros with any lines from your input history in any order.

The macro is a simple object which holds its value in an attribute, but IPython’s display system
checks for macros and executes them as code instead of printing them when you type their name.

You can view a macro’s contents by explicitly printing it with:

’print macro name’.

For one-off cases which DON’T contain magic function calls in them you can obtain similar results
by explicitly executing slices from your input history with:

24

6 INTERACTIVE USE 6.1 Magic command system

In [60]: exec In[44:48]+In[49]

@magic: Print information about the magic function system.

@mkdir: Alias to the system command ’mkdir’

@mv: Alias to the system command ’mv’

@p: Just a short alias for Python’s ’print’.

@page: Pretty print the object and display it through a pager.

If no parameter is given, use (last output).

@pdb: Control the calling of the pdb interactive debugger.

Call as ’@pdb on’, ’@pdb 1’, ’@pdb off’ or ’@pdb 0’. If called without argument it works as a toggle.

When an exception is triggered, IPython can optionally call the interactive pdb debugger after the
traceback printout. @pdb toggles this feature on and off.

@pdef: Print the definition header for any callable object.

If the object is a class, print the constructor information.

@pdoc: Print the docstring for an object.

If the given object is a class, it will print both the class and the constructor docstrings.

@pfile: Print (or run through pager) the file where an object is defined.

The file opens at the line where the object definition begins. IPython will honor the environment
variable PAGER if set, and otherwise will do its best to print the file in a convenient form.

If the given argument is not an object currently defined, IPython will try to interpret it as a filename
(automatically adding a .py extension if needed). You can thus use @pfile as a syntax highlighting
code viewer.

@pinfo: Provide detailed information about an object.

’@pinfo object’ is just a synonym for object? or ?object.

@popd: Change to directory popped off the top of the stack.

@profile: Print your currently active IPyhton profile.

@prun: Run a statement through the python code profiler.

Usage:
@prun [options] statement

The given statement (which doesn’t require quote marks) is run via the python profiler in a manner
similar to the profile.run() function. Namespaces are internally managed to work correctly; pro-
file.run cannot be used in IPython because it makes certain assumptions about namespaces which
do not hold under IPython.

Options:

-l <limit>: you can place restrictions on what or how much of the profile gets printed. The limit
value can be:

* A string: only information for function names containing this string is printed.

25

6 INTERACTIVE USE 6.1 Magic command system

* An integer: only these many lines are printed.

* A float (between 0 and 1): this fraction of the report is printed (for example, use a limit of 0.4 to
see the topmost 40% only).

You can combine several limits with repeated use of the option. For example, ’-l init -l 5’ will
print only the topmost 5 lines of information about class constructors.

-r: return the pstats.Stats object generated by the profiling. This object has all the information
about the profile in it, and you can later use it for further analysis or in other functions.

Since magic functions have a particular form of calling which prevents you from writing something
like:
In [1]: p = @prun -r print 4 invalid!
you must instead use IPython’s automatic variables to assign this:
In [1]: @prun -r print 4
Out[1]: <pstats.Stats instance at 0x8222cec>
In [2]: stats =

If you really need to assign this value via an explicit function call, you can always tap directly into
the true name of the magic function with:
In [3]: stats = IP.magic prun(’-r print 4’)

-s <key>: sort profile by given key. You can provide more than one key by using the option several
times: ’-s key1 -s key2 -s key3...’. The default sorting key is ’stdname’.

The following is copied verbatim from the profile documentation referenced below:

When more than one key is provided, additional keys are used as secondary criteria when the there
is equality in all keys selected before them.

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The
following are the keys currently defined:

Valid Arg Meaning
”calls” call count
”cumulative” cumulative time
”file” file name
”module” file name
”pcalls” primitive call count
”line” line number
”name” function name
”nfl” name/file/line
”stdname” standard name
”time” internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first),
where as name, file, and line number searches are in ascending order (i.e., alphabetical). The subtle
distinction between ”nfl” and ”stdname” is that the standard name is a sort of the name as printed,
which means that the embedded line numbers get compared in an odd way. For example, lines 3,
20, and 40 would (if the file names were the same) appear in the string order ”20” ”3” and ”40”. In
contrast, ”nfl” does a numeric compare of the line numbers. In fact, sort stats(”nfl”) is the same as
sort stats(”name”, ”file”, ”line”).

-t <filename>: save profile results as shown on screen to a text file. The profile is still shown on
screen.

26

6 INTERACTIVE USE 6.1 Magic command system

-d <filename>: save (via dump stats) profile statistics to given filename. This data is in a format
understod by the pstats module, and is generated by a call to the dump stats() method of profile
objects. The profile is still shown on screen.

If you want to run complete programs under the profiler’s control, use ’@run -p [opts] filename.py
[args to program]’ and then any profile specific options as described here.

You can read the complete documentation for the profile module with: In [1]: import profile; pro-
file.help()

@psource: Print (or run through pager) the source code for an object.

@pushd: Place the current dir on stack and change directory.

Usage:
@pushd [’dirname’]

@pushd with no arguments does a @pushd to your home directory.

@pwd: Return the current working directory path.

@r: Repeat previous input.

If given an argument, repeats the previous command which starts with the same string, otherwise
it just repeats the previous input.

Shell escaped commands (with ! as first character) are not recognized by this system, only pure
python code and magic commands.

@reset: Resets the namespace by removing all names defined by the user.

Input/Output history are left around in case you need them.

@rm: Alias to the system command ’rm -i’

@rmdir: Alias to the system command ’rmdir’

@rmf: Alias to the system command ’rm -f’

@run: Run the named file inside IPython as a program.

Usage:
@run [-n -i -p [profile options]] file [args]

Parameters after the filename are passed as command-line arguments to the program (put in
sys.argv). Then, control returns to IPython’s prompt.

This is similar to running at a system prompt:
$ python file args
but has the advantage of giving you IPython’s tracebacks, and of loading all variables into your
interactive namespace for further use (unless -p is used, see below).

The file is executed in a namespace initially consisting only of name ==’ main ’ and sys.argv
constructed as indicated. It thus sees its environment as if it were being run as a stand-alone
program. But after execution, the IPython interactive namespace gets updated with all variables
defined in the program (except for name and sys.argv). This allows for very convenient loading
of code for interactive work, while giving each program a ’clean sheet’ to run in.

Options:

27

6 INTERACTIVE USE 6.1 Magic command system

-n: name is NOT set to ’ main ’, but to the running file’s name without extension (as python
does under import). This allows running scripts and reloading the definitions in them without calling
code protected by an ’ if name == ” main ” ’ clause.

-i: run the file in IPython’s namespace instead of an empty one. This is useful if you are experi-
menting with code written in a text editor which depends on variables defined interactively.

-p: run program under the control of the Python profiler module (which prints a detailed report of
execution times, function calls, etc).

You can pass other options after -p which affect the behavior of the profiler itself. See the docs for
@prun for details.

In this mode, the program’s variables do NOT propagate back to the IPython interactive namespace
(because they remain in the namespace where the profiler executes them).

Internally this triggers a call to @prun, see its documentation for details on the options available
specifically for profiling.

@runlog: Run files as logs.

Usage:
@runlog file1 file2 ...

Run the named files (treating them as log files) in sequence inside the interpreter, and return to the
prompt. This is much slower than @run because each line is executed in a try/except block, but it
allows running files with syntax errors in them.

Normally IPython will guess when a file is one of its own logfiles, so you can typically use @run even
for logs. This shorthand allows you to force any file to be treated as a log file.

@save: Save a set of lines to a given filename.

Usage:
@save filename n1:n2 n3:n4 ... n5 .. n6 ...

This function uses the same syntax as @macro for line extraction, but instead of creating a macro it
saves the resulting string to the filename you specify.

It adds a ’.py’ extension to the file if you don’t do so yourself, and it asks for confirmation before
overwriting existing files.

@who: Print all interactive variables, with some minimal formatting.

This excludes executed names loaded through your configuration file and things which are internal
to IPython.

This is deliberate, as typically you may load many modules and the purpose of @who is to show you
only what you’ve manually defined.

@who_ls: Return a list of all interactive variables.

@whos: Like @who, but gives some extra information about each variable.

For all variables, the type is printed. Additionally it prints:
- For ,[],(): their length.
- Everything else: a string representation, snipping their middle if too long.

@xmode: Switch modes for the exception handlers.

Valid modes: Plain, Context and Verbose.

If called without arguments, acts as a toggle.

28

6 INTERACTIVE USE 6.2 Access to the standard Python help

6.2 Access to the standard Python help

As of Python 2.1, a help system is available with access to object docstrings and the Python manuals.
Simply type ’help’ (no quotes) to access it. You can also type help(object) to obtain information
about a given object, and help(’keyword’) for information on a keyword. As noted in sec. 3.1, you
need to properly configure your environment variable PYTHONDOCS for this feature to work correctly.

6.3 Dynamic object information

Typing ?word or word? prints detailed information about an object. If certain strings in the object
are too long (docstrings, code, etc.) they get snipped in the center for brevity. This system gives
access variable types and values, full source code for any object (if available), function prototypes
and other useful information.

Typing ??word or word?? gives access to the full information without snipping long strings. Long
strings are sent to the screen through the less pager if longer than the screen and printed otherwise.
On systems lacking the less command, IPython uses a very basic internal pager.

The following magic functions are particularly useful for gathering information about your work-
ing environment. You can get more details by typing @magic or querying them individually (use
@function_name? with or without the @), this is just a summary:

@pdoc <object>: Print (or run through a pager if too long) the docstring for an object. If the given
object is a class, it will print both the class and the constructor docstrings.

@pdef <object>: Print the definition header for any callable object. If the object is a class, print
the constructor information.

@psource <object>: Print (or run through a pager if too long) the source code for an object.

@pfile <object>: Show the entire source file where an object was defined via a pager, opening it
at the line where the object definition begins.

@who/@whos: These functions give information about identifiers you have defined interactively (not
things you loaded or defined in your configuration files). @who just prints a list of iden-
tifiers and @whos prints a table with some basic details about each identifier.

Note that the dynamic object information functions (?/??, @pdoc, @pfile, @pdef, @psource)
give you access to documentation even on things which are not really defined as separate identifiers.
Try for example typing {}.get? or after doing import os, type os.path.abspath??.

6.4 Readline-based features

These features require the GNU readline library, so they won’t work if your Python lacks readline
support (as is the case under Windows). We will first describe the default behavior IPython uses,
and then how to change it to suit your preferences.

29

6 INTERACTIVE USE 6.4 Readline-based features

6.4.1 Command line completion

At any time, hitting TAB will complete any available python commands or variable names, and show
you a list of the possible completions if there’s no unambiguous one. It will also complete filenames
in the current directory if no python names match what you’ve typed so far.

6.4.2 Search command history

IPython provides two ways for searching through previous input and thus reduce the need for repet-
itive typing:

1. Start typing, and then use Ctrl-p (previous,up) and Ctrl-n (next,down) to search through
only the history items that match what you’ve typed so far. If you use Ctrl-p/Ctrl-n at a
blank prompt, they just behave like normal arrow keys.

2. Hit Ctrl-r: opens a search prompt. Begin typing and the system searches your history for
lines that contain what you’ve typed so far, completing as much as it can.

6.4.3 Persistent command history across sessions

IPython will save your input history when it leaves and reload it next time you restart it.

6.4.4 Autoindent

IPython can recognize lines ending in ’:’ and indent the next line, while also un-indenting automat-
ically after ’raise’ or ’return’.

This feature uses the readline library, so it will honor your ~/.inputrc configuration (or whatever
file your INPUTRC variable points to). Adding the following lines to your .inputrc file can make
indenting/unindenting more convenient (M-i indents, M-u unindents):

$if Python
"\M-i": " "
"\M-u": "\d\d\d\d"
$endif

Note that there are 4 spaces between the quote marks after "M-i" above.

The feature is off by default because it can cause problems with pasting of indented code (the pasted
code gets re-indented on each line). But a magic function @autoindent allows you to toggle it on/off
at runtime. You can also set it permanently on in your ipythonrc file (set autoindent 1), and
disable it only when needed via the magic function.

6.4.5 Customizing readline behavior

All these features are based on the GNU readline library, which has an extremely customizable
interface. Normally, readline is configured via a file which defines the behavior of the library; the
details of the syntax for this can be found in the readline documentation available with your system

30

6 INTERACTIVE USE 6.5 Session logging and restoring

or on the Internet. IPython doesn’t read this file (if it exists) directly, but it does support passing
to readline valid options via a simple interface. In brief, you can customize readline by setting the
following options in your ipythonrc configuration file (note that these options can not be specified
at the command line):

readline_parse_and_bind: this option can appear as many times as you want, each time defining a
string to be executed via a readline.parse_and_bind() command. The syntax for valid
commands of this kind can be found by reading the documentation for the GNU readline
library, as these commands are of the kind which readline accepts in its configuration
file.

readline_remove_delims: a string of characters to be removed from the default word-delimiters
list used by readline, so that completions may be performed on strings which contain
them. Do not change the default value unless you know what you’re doing.

readline_omit__names: when tab-completion is enabled, hitting <tab> after a ’.’ in a name will
complete all attributes of an object, including all the special methods whose names
include double underscores (like __getitem__ or __class__). If you’d rather not see
these names by default, you can set this option to 1. Note that even when this option
is set, you can still see those names by explicitly typing a _ after the period and hitting
<tab>: ’name._<tab>’ will always complete attribute names starting with ’_’.

This option is off by default so that new users see all attributes of any objects they are
dealing with.

You will find the default values along with a corresponding detailed explanation in your ipythonrc
file.

6.5 Session logging and restoring

You can log all input from a session either by starting IPython with the command line switches
-log or -logfile (see sec. 5.1)or by activating the logging at any moment with the magic function
@logstart.

Log files can later be reloaded with the -logplay option and IPython will attempt to ’replay’ the
log by executing all the lines in it, thus restoring the state of a previous session. This feature is not
quite perfect, but can still be useful in many cases.

The log files can also be used as a way to have a permanent record of any code you wrote while
experimenting. Log files are regular text files which you can later open in your favorite text editor
to extract code or to ’clean them up’ before using them to replay a session.

The @logstart function for activating logging in mid-session is used as follows:

@logstart [log_name [log_mode]]

If no name is given, it defaults to a file named ’log’ in your IPYTHONDIR directory, in ’rotate’
mode (see below).

’@logstart name’ saves to file ’name’ in ’backup’ mode. It saves your history up to that point
and then continues logging.

@logstart takes a second optional parameter: logging mode. This can be one of (note that the
modes are given unquoted):

31

6 INTERACTIVE USE 6.6 System shell access

over: overwrite existing log_name.

backup: rename (if exists) to log_name~ and start log_name.

append: well, that says it.

rotate: create rotating logs log_name.1~, log_name.2~, etc.

The @logoff and @logon functions allow you to temporarily stop and resume logging to a file which
had previously been started with @logstart. They will fail (with an explanation) if you try to use
them before logging has been started.

6.6 System shell access

Any input line beginning with a ! character is passed verbatim (minus the !, of course) to the
underlying operating system. For example, typing !ls will run ’ls’ in the current directory.

6.7 System command aliases

The @alias magic function and the alias option in the ipythonrc configuration file allow you to
define magic functions which are in fact system shell commands. These aliases can have parameters.

’@alias alias_name cmd’ defines ’alias_name’ as an alias for ’cmd’

Then, typing ’@alias_name params’ will execute the system command ’cmd params’ (from your
underlying operating system).

You can also define aliases with parameters using %s specifiers (one per parameter). The following
example defines the @parts function as an alias to the command ’echo first %s second %s’ where
each %s will be replaced by a positional parameter to the call to @parts:

In [1]: alias parts echo first %s second %s
In [2]: @parts A B
first A second B
In [3]: @parts A
Incorrect number of arguments: 2 expected.
parts is an alias to: ’echo first %s second %s’

If called with no parameters, @alias prints the table of currently defined aliases.

6.8 Recursive reload

The @dreload command does a recursive reload of a module: changes made to the module since you
imported will actually be available without having to exit.

32

6 INTERACTIVE USE 6.9 Verbose and colored exception traceback printouts

6.9 Verbose and colored exception traceback printouts

IPython provides the option to see very detailed exception tracebacks, which can be especially useful
when debugging large programs. You can run any Python file with the @run function to benefit from
these detailed tracebacks. Furthermore, both normal and verbose tracebacks can be colored (if your
terminal supports it) which makes them much easier to parse visually.

See the magic xmode and colors functions for details (just type @magic).

These features are basically a terminal version of Ka-Ping Yee’s cgitb module, now part of the
standard Python library.

6.10 Input caching system

IPython offers numbered prompts (In/Out) with input and output caching. All input is saved and
can be retrieved as variables (besides the usual arrow key recall).

The following GLOBAL variables always exist (so don’t overwrite them!): _i: stores previous input.
_ii: next previous. _iii: next-next previous. _ih : a list of all input _ih[n] is the input from line
n and this list is aliased to the global variable In. If you overwrite In with a variable of your own,
you can remake the assignment to the internal list with a simple ’In=_ih’.

Additionally, global variables named _i<n> are dynamically created (<n> being the prompt counter),
such that
_i<n> == _ih[<n>] == In[<n>].

For example, what you typed at prompt 14 is available as _i14, _ih[14] and In[14].

This allows you to easily cut and paste multi line interactive prompts by printing them out: they
print like a clean string, without prompt characters. You can also manipulate them like regular
variables (they are strings), modify or exec them (typing ’exec _i9’ will re-execute the contents of
input prompt 9, ’exec In[9:14]+In[18]’ will re-execute lines 9 through 13 and line 18).

You can also re-execute multiple lines of input easily by using the magic @macro function (which
automates the process and allows re-execution without having to type ’exec’ every time). The macro
system also allows you to re-execute previous lines which include magic function calls (which require
special processing). Type @macro? or see sec. 6.1 for more details on the macro system.

A history function @hist allows you to see any part of your input history by printing a range of the
_i variables.

6.11 Output caching system

For output that is returned from actions, a system similar to the input cache exists but using _
instead of _i. Only actions that produce a result (NOT assignments, for example) are cached.
If you are familiar with Mathematica, IPython’s _ variables behave exactly like Mathematica’s %
variables.

The following GLOBAL variables always exist (so don’t overwrite them!):

_ (a single underscore) : stores previous output, like Python’s default interpreter.

33

6 INTERACTIVE USE 6.12 Directory history

__ (two underscores): next previous.

___ (three underscores): next-next previous.

Additionally, global variables named _<n> are dynamically created (<n> being the prompt counter),
such that the result of output <n> is always available as _<n> (don’t use the angle brackets, just the
number, e.g. _21).

These global variables are all stored in a global dictionary (not a list, since it only has entries for
lines which returned a result) available under the names _oh and Out (similar to _ih and In). So
the output from line 12 can be obtained as _12, Out[12] or _oh[12]. If you accidentally overwrite
the Out variable you can recover it by typing ’Out=_oh’ at the prompt.

This system obviously can potentially put heavy memory demands on your system, since it prevents
Python’s garbage collector from removing any previously computed results. You can control how
many results are kept in memory with the option (at the command line or in your ipythonrc file)
cache_size. If you set it to 0, the whole system is completely disabled and the prompts revert to
the classic ’> > >’ of normal Python.

6.12 Directory history

Your history of visited directories is kept in the global list _dh, and the magic @cd command can be
used to go to any entry in that list. The @dhist command allows you to view this history.

6.13 Automatic parentheses and quotes

These features were adapted from Nathan Gray’s LazyPython. They are meant to allow less typing
for common situations.

6.13.1 Automatic parentheses

Callable objects (i.e. functions, methods, etc) can be invoked like this (notice the commas between
the arguments):

> > > callable_ob arg1, arg2, arg3

and the input will be translated to this:

--> callable_ob(arg1, arg2, arg3)

You can force automatic parentheses by using ’/’ as the first character of a line. For example:

> > > /globals # becomes ’globals()’

Note that the ’/’ MUST be the first character on the line! This won’t work:

> > > print /globals # syntax error

In most cases the automatic algorithm should work, so you should rarely need to explicitly invoke
/. One notable exception is if you are trying to call a function with a list of tuples as arguments
(the parenthesis will confuse IPython):

34

7 CUSTOMIZATION

In [1]: zip (1,2,3),(4,5,6) # won’t work

but this will work:

In [2]: /zip (1,2,3),(4,5,6)
------> zip ((1,2,3),(4,5,6))
Out[2]= [(1, 4), (2, 5), (3, 6)]

6.13.2 Automatic quoting

You can force automatic quoting of a function’s arguments by using ’,’ as the first character of a
line. For example:

> > > ,my_function /home/me # becomes my_function("/home/me")

Note that the ’,’ MUST be the first character on the line! This won’t work:

> > > x = ,my_function /home/me # syntax error

6.13.3 Notes on usage of these two features

1. IPython tells you that it has altered your command line by displaying the new command line
preceded by -->. e.g.:

In [18]: callable list
-------> callable (list)

2. Whitespace is more important than usual (even for Python!) Arguments to auto-quote functions
cannot have embedded whitespace.

In [21]: ,string.split a b
-------> string.split ("a", "b")
Out[21]= [’a’] # probably not what you wanted
In [22]: string.split ’a b’
-------> string.split (’a b’)
Out[22]= [’a’, ’b’] # quote explicitly and it works.

7 Customization

As we’ve already mentioned, IPython reads a configuration file which can be specified at the com-
mand line (-rcfile) or which by default is assumed to be called ipythonrc. Such a file is looked
for in the current directory where IPython is started and then in your IPYTHONDIR, which allows
you to have local configuration files for specific projects. In this section we will call these types of
configuration files simply rcfiles (short for resource configuration file).

The syntax of an rcfile is one of key-value pairs separated by whitespace, one per line. Lines beginning
with a # are ignored as comments, but comments can not be put on lines with data (the parser is
fairly primitive). Note that these are not python files, and this is deliberate, because it allows us to
do some things which would be quite tricky to implement if they were normal python files.

35

7 CUSTOMIZATION 7.1 Sample ipythonrc file

First, an rcfile can contain permanent default values for almost all command line options (except
things like -help or -Version). However, values you explicitly specify at the command line override
the values defined in the rcfile.

Besides command line option values, the rcfile can specify values for certain extra special options
which are not available at the command line. These options are briefly described below.

Each of these options may appear as many times as you need it in the file.

include <file1> <file2> ...: you can name other rcfiles you want to recursively load up to 15
levels (don’t use the <> brackets in your names!). This feature allows you to define a
’base’ rcfile with general options and special-purpose files which can be loaded only when
needed with particular configuration options. To make this more convenient, IPython
accepts the -profile <name> option (abbreviates to -p <name>) which tells it to look
for an rcfile named ipythonrc-<name>.

import_mod <mod1> <mod2> ...: import modules with ’import <mod1>,<mod2>,...’

import_some <mod> <f1> <f2> ...: import functions with ’from <mod> import <f1>,<f2>,...’

import_all <mod1> <mod2> ...: for each module listed import functions with ’from <mod> import
*’

execute <python code>: give any single-line python code to be executed.

execfile <filename>: execute the python file given with an ’execfile(filename)’ command.
Username expansion is performed on the given names. So if you need any amount of
extra fancy customization that won’t fit in any of the above ’canned’ options, you can
just put it in a separate python file and execute it.

alias <alias_def>: this is equivalent to calling ’@alias <alias_def>’ at the IPython command
line. This way, from within IPython you can do common system tasks without having
to exit it or use the ! escape. IPython isn’t meant to be a shell replacement, but it is
often very useful to be able to do things with files while testing code. This gives you
the flexibility to have within IPython any aliases you may be used to under your normal
system shell.

7.1 Sample ipythonrc file

The default rcfile, called ipythonrc and supplied in your IPYTHONDIR directory contains lots of
comments on all of these options. We reproduce it here for reference:

-*- Mode: Shell-Script -*- Not really, but shows comments correctly
$Id: ipythonrc,v 1.4 2003/05/16 06:53:42 fperez Exp $

#***
#
Configuration file for IPython -- ipythonrc format
#
The format of this file is simply one of ’key value’ lines.

36

7 CUSTOMIZATION 7.1 Sample ipythonrc file

Lines containing only whitespace at the beginning and then a # are ignored
as comments. But comments can NOT be put on lines with data.

The meaning and use of each key are explained below.

#---
Section: included files

Put one or more *config* files (with the syntax of this file) you want to
include. For keys with a unique value the outermost file has precedence. For
keys with multiple values, they all get assembled into a list which then
gets loaded by IPython.

In this file, all lists of things should simply be space-separated.

This allows you to build hierarchies of files which recursively load
lower-level services. If this is your main ~/.ipython/ipythonrc file, you
should only keep here basic things you always want available. Then you can
include it in every other special-purpose config file you create.

include

#---
Section: startup setup

These are mostly things which parallel a command line option of the same
name.

Keys in this section should only appear once. If any key from this section
is encountered more than once, the last value remains, all earlier ones get
discarded.

Automatic calling of callable objects. If set to true, callable objects are
automatically called when invoked at the command line, even if you don’t
type parentheses. IPython adds the parentheses for you. For example:

#In [1]: str 45
#------> str(45)
#Out[1]: ’45’

IPython reprints your line with ’---->’ indicating that it added
parentheses. While this option is very convenient for interactive use, it
may occasionally cause problems with objects which have side-effects if
called unexpectedly. Set it to 0 if you want to disable it.

Note that even with autocall off, you can still use ’/’ at the start of a
line to treat the first argument on the command line as a function and add
parentheses to it:

37

7 CUSTOMIZATION 7.1 Sample ipythonrc file

#In [8]: /str 43
#------> str(43)
#Out[8]: ’43’

autocall 1

Auto-indent. IPython can recognize lines ending in ’:’ and indent the next
line, while also un-indenting automatically after ’raise’ or ’return’.

This feature uses the readline library, so it will honor your ~/.inputrc
configuration (or whatever file your INPUTRC variable points to). Adding
the following lines to your .inputrc file can make indent/unindenting more
convenient (M-i indents, M-u unindents):

$if Python
"\M-i": " "
"\M-u": "\d\d\d\d"
$endif

The feature is off by default because it can cause problems with pasting of
indented code (the pasted code gets re-indented on each line). But a magic
function @autoindent allows you to toggle it on/off at runtime.

autoindent 0

Auto-magic. This gives you access to all the magic functions without having
to prepend them with an @ sign. If you define a variable with the same name
as a magic function (say who=1), you will need to access the magic function
with @ (@who in this example). However, if later you delete your variable
(del who), you’ll recover the automagic calling form.

Considering that many magic functions provide a lot of shell-like
functionality, automagic gives you something close to a full Python+system
shell environment (and you can extend it further if you want).

automagic 1

Size of the output cache. After this many entries are stored, the cache will
get flushed. Depending on the size of your intermediate calculations, you
may have memory problems if you make it too big, since keeping things in the
cache prevents Python from reclaiming the memory for old results. Experiment
with a value that works well for you.

If you choose cache_size 0 IPython will revert to python’s regular >>>
unnumbered prompt. You will still have _, __ and ___ for your last three
results, but that will be it. No dynamic _1, _2, etc. will be created. If

38

7 CUSTOMIZATION 7.1 Sample ipythonrc file

you are running on a slow machine or with very limited memory, this may
help.

cache_size 1000

Classic mode: Setting ’classic 1’ you lose many of IPython niceties,
but that’s your choice! Classic 1 -> same as IPython -classic.
Note that this is _not_ the normal python interpreter, it’s simply
IPython emulating most of the classic interpreter’s behavior.
classic 0

colors - Coloring option for prompts and traceback printouts.

Currently available schemes: NoColor, Linux, LightBG.

This option allows coloring the prompts and traceback printouts. This
requires a terminal which can properly handle color escape sequences. If you
are having problems with this, use the NoColor scheme (uses no color escapes
at all).

The Linux option works well in linux console type environments: dark
background with light fonts.

LightBG is similar to Linux but swaps dark/light colors to be more readable
in light background terminals.

keep uncommented only the one you want:
colors Linux
#colors LightBG
#colors NoColor

########################
Note to Windows users

I haven’t been able to ever find a way to make color work reliably under
Windows. If you find a solution, please let me know so I can include it in
future releases.

########################

color_info: IPython can display information about objects via a set of
functions, and optionally can use colors for this, syntax highlighting
source code and various other elements. This information is passed through a
pager (it defaults to ’less’ if $PAGER is not set).

If your pager has problems, try to setting it to properly handle escapes

39

7 CUSTOMIZATION 7.1 Sample ipythonrc file

(see the less manpage for detail), or disable this option. The magic
function @color_info allows you to toggle this interactively for testing.

color_info 1

confirm_exit: set to 1 if you want IPython to confirm when you try to exit
with an EOF (Control-d in Unix, Control-Z/Enter in Windows). Note that using
the magic functions @Exit or @Quit you can force a direct exit, bypassing
any confirmation.

confirm_exit 1

Use deep_reload() as a substitute for reload() by default. deep_reload() is
still available as dreload() and appears as a builtin.

deep_reload 0

Which editor to use with the @edit command. If you leave this at 0, IPython
will honor your EDITOR environment variable. Since this editor is invoked on
the fly by ipython and is meant for editing small code snippets, you may
want to use a small, lightweight editor here.

For Emacs users, setting up your Emacs server properly as described in the
manual is a good idea. An alternative is to use jed, a very light editor
with much of the feel of Emacs (though not as powerful for heavy-duty work).

editor 0

log 1 -> same as ipython -log. This automatically logs to ./ipython.log
log 0

Same as ipython -Logfile YourLogfileName.
Don’t use with log 1 (use one or the other)
logfile ’’

banner 0 -> same as ipython -nobanner
banner 1

messages 0 -> same as ipython -nomessages
messages 1

Automatically call the pdb debugger after every uncaught exception. If you
are used to debugging using pdb, this puts you automatically inside of it
after any call (either in IPython or in code called by it) which triggers an
exception which goes uncaught.
pdb 0

Enable the pprint module for printing. pprint tends to give a more readable

40

7 CUSTOMIZATION 7.1 Sample ipythonrc file

display (than print) for complex nested data structures.
pprint 1

Prompt strings (see ipython --help for more details).
Use %n to represent the current prompt number, and quote them to protect
spaces.
prompt_in1 ’In [%n]:’

In prompt_in2, %n is replaced by as many dots as there are digits in the
current value of %n.
prompt_in2 ’ .%n.:’

prompt_out ’Out[%n]:’

quick 1 -> same as ipython -quick
quick 0

Use the readline library (1) or not (0). Most users will want this on, but
if you experience strange problems with line management (mainly when using
IPython inside Emacs buffers) you may try disabling it. Not having it on
prevents you from getting command history with the arrow keys, searching and
name completion using TAB.

readline 1

Screen Length: number of lines of your screen. This is used to control
printing of very long strings. Strings longer than this number of lines will
be paged with the less command instead of directly printed.

The default value for this is 0, which means IPython will auto-detect your
screen size every time it needs to print. If for some reason this isn’t
working well (it needs curses support), specify it yourself. Otherwise don’t
change the default.

screen_length 0

Prompt separators for input and output.
Use \n for newline explicitly, without quotes.
Use 0 (like at the cmd line) to turn off a given separator.

The structure of prompt printing is:
(SeparateIn)Input....
(SeparateOut)Output...
(SeparateOut2), # that is, no newline is printed after Out2
By choosing these you can organize your output any way you want.

41

7 CUSTOMIZATION 7.1 Sample ipythonrc file

separate_in \n

separate_out 0

separate_out2 0

’nosep 1’ is a shorthand for ’-SeparateIn 0 -SeparateOut 0 -SeparateOut2 0’.
Simply removes all input/output separators, overriding the choices above.
nosep 0

xmode - Exception reporting mode.

Valid modes: Plain, Context and Verbose.

Plain: similar to python’s normal traceback printing.

Context: prints 5 lines of context source code around each line in the
traceback.

Verbose: similar to Context, but additionally prints the variables currently
visible where the exception happened (shortening their strings if too
long). This can potentially be very slow, if you happen to have a huge data
structure whose string representation is complex to compute. Your computer
may appear to freeze for a while with cpu usage at 100%. If this occurs, you
can cancel the traceback with Ctrl-C (maybe hitting it more than once).

#xmode Plain
xmode Context
#xmode Verbose

#---
Section: Readline configuration (readline is not available for MS-Windows)

This is done via the following options:

(i) readline_parse_and_bind: this option can appear as many times as you
want, each time defining a string to be executed via a
readline.parse_and_bind() command. The syntax for valid commands of this
kind can be found by reading the documentation for the GNU readline library,
as these commands are of the kind which readline accepts in its
configuration file.

The TAB key can be used to complete names at the command line in one of two
ways: ’complete’ and ’menu-complete’. The difference is that ’complete’ only
completes as much as possible while ’menu-complete’ cycles through all
possible completions. Leave the one you prefer uncommented.

readline_parse_and_bind tab: complete

42

7 CUSTOMIZATION 7.1 Sample ipythonrc file

#readline_parse_and_bind tab: menu-complete

This binds Control-l to printing the list of all possible completions when
there is more than one (what ’complete’ does when hitting TAB twice, or at
the first TAB if show-all-if-ambiguous is on)
readline_parse_and_bind "\C-l": possible-completions

This forces readline to automatically print the above list when tab
completion is set to ’complete’. You can still get this list manually by
using the key bound to ’possible-completions’ (Control-l by default) or by
hitting TAB twice. Turning this on makes the printing happen at the first
TAB.
readline_parse_and_bind set show-all-if-ambiguous on

If you have TAB set to complete names, you can rebind any key (Control-o by
default) to insert a true TAB character.
readline_parse_and_bind "\C-o": tab-insert

These commands allow you to indent/unindent easily, with the 4-space
convention of the Python coding standards. Since IPython’s internal
auto-indent system also uses 4 spaces, you should not change the number of
spaces in the code below.
readline_parse_and_bind "\M-i": " "
readline_parse_and_bind "\M-o": "\d\d\d\d"
readline_parse_and_bind "\M-I": "\d\d\d\d"

Bindings for incremental searches in the history. These searches use the
string typed so far on the command line and search anything in the previous
input history containing them.
readline_parse_and_bind "\C-r": reverse-search-history
readline_parse_and_bind "\C-s": forward-search-history

Bindings for completing the current line in the history of previous
commands. This allows you to recall any previous command by typing its first
few letters and hitting Control-p, bypassing all intermediate commands which
may be in the history (much faster than hitting up-arrow 50 times!)
readline_parse_and_bind "\C-p": history-search-backward
readline_parse_and_bind "\C-n": history-search-forward

(ii) readline_remove_delims: a string of characters to be removed from the
default word-delimiters list used by readline, so that completions may be
performed on strings which contain them.

readline_remove_delims ’"[]{}-/~

#"’ -- just to fix emacs coloring which gets confused by unmatched quotes.

(iii) readline_omit__names: normally hitting <tab> after a ’.’ in a name

43

7 CUSTOMIZATION 7.1 Sample ipythonrc file

will complete all attributes of an object, including all the special methods
whose names inlclude double underscores (like __getitem__ or __class__). If
you’d rather not see these names by default, you can set this option to 1.

Note that even when this option is set, you can still see those names by
explicitly typing a _ after the period and hitting <tab>: ’name._<tab>’ will
always complete attribute names starting with ’_’.

This option is off by default so that new users see all attributes of any
objects they are dealing with.

readline_omit__names 0

#---
Section: modules to be loaded with ’import ...’

List, separated by spaces, the names of the modules you want to import

Example:
import_mod sys os
will produce internally the statements
import sys
import os

Each import is executed in its own try/except block, so if one module
fails to load the others will still be ok.

import_mod

#---
Section: modules to import some functions from: ’from ... import ...’

List, one per line, the modules for which you want only to import some
functions. Give the module name first and then the name of functions to be
imported from that module.

Example:
import_some struct pack unpack
will produce internally the statement
from struct import pack,unpack

If you have more than one modules_some line, each gets its own try/except
block (like modules, see above).

import_some

#---
Section: modules to import all from : ’from ... import *’

44

7 CUSTOMIZATION 7.1 Sample ipythonrc file

List (same syntax as import_mod above) those modules for which you want to
import all functions. Remember, this is a potentially dangerous thing to do,
since it is very easy to overwrite names of things you need. Use with
caution.

Example:
import_all sys os
will produce internally the statements
from sys import *
from os import *

As before, each will be called in a separate try/except block.

import_all

#---
Section: Python code to execute.

Put here code to be explicitly executed (keep it simple!)
Put one line of python code per line. All whitespace is removed (this is a
feature, not a bug), so don’t get fancy building loops here.
This is just for quick convenient creation of things you want available.

Example:
execute x = 1
execute print ’hello world’; y = z = ’a’
will produce internally
x = 1
print ’hello world’; y = z = ’a’
and each *line* (not each statement, we don’t do python syntax parsing) is
executed in its own try/except block.

execute

Note for the adventurous: you can use this to define your own names for the
magic functions, by playing some namespace tricks:

execute __IP.magic_cl = __IP.magic_clear

defines @cl as a new name for @clear.

#---
Section: Pyhton files to load and execute.

Put here the full names of files you want executed with execfile(file). If
you want complicated initialization, just write whatever you want in a
regular python file and load it from here.

45

7 CUSTOMIZATION 7.1 Sample ipythonrc file

Filenames defined here (which *must* include the extension) are searched for
through all of sys.path. Since IPython adds your .ipython directory to
sys.path, they can also be placed in your .ipython dir and will be
found. Otherwise (if you want to execute things not in .ipyton nor in
sys.path) give a full path (you can use ~, it gets expanded)

Example:
execfile file1.py ~/file2.py
will generate
execfile(’file1.py’)
execfile(’_path_to_your_home/file2.py’)

As before, each file gets its own try/except block.

execfile

If you are feeling adventurous, you can even add functionality to IPython
through here. IPython works through a global variable called __ip which
exists at the time when these files are read. If you know what you are doing
(read the source) you can add functions to __ip in files loaded here.

The file example-magic.py contains a simple but correct example. Try it:

execfile example-magic.py

Look at the examples in IPython/iplib.py for more details on how these magic
functions need to process their arguments.

#---
Section: aliases for system shell commands

Here you can define your own names for system commands. The syntax is
similar to that of the builtin @alias function:

alias alias_name command_string

The resulting aliases are auto-generated magic functions (hence usable as
@alias_name)

For example:

alias myls ls -la

will define ’@myls’ as an alias for executing the system command ’ls -la’.
If automagic is on, you can just type myls like you would at a system shell
prompt. This allows you to customize IPython’s environment to have the same
aliases you are accustomed to from your own shell.

46

8 USING IPYTHON AS YOUR DEFAULT PYTHON ENVIRONMENT. 7.2 IPython profiles

You can also define aliases with parameters using %s specifiers (one per
parameter):

alias parts echo first %s second %s

will give you in IPython:
>>> @parts A B
first A second B

Use one ’alias’ statement per alias you wish to define.

alias

#************************* end of file <ipythonrc> ************************

7.2 IPython profiles

As we already mentioned, IPython supports the -profile command-line option (see sec. 5.1). A
profile is nothing more than a particular configuration file like your basic ipythonrc one, but with
particular customizations for a specific purpose. When you start IPython with ’ipython -profile
<name>’, it assumes that in your IPYTHONDIR there is a file called ipythonrc-<name>, and loads it
instead of the normal ipythonrc.

This system allows you to maintain multiple configurations which load modules, set options, define
functions, etc. suitable for different tasks and activate them in a very simple manner. In order to
avoid having to repeat all of your basic options (common things that don’t change such as your color
preferences, for example), any profile can include another configuration file. The most common way
to use profiles is then to have each one include your basic ipythonrc file as a starting point, and
then add further customizations.

In sections 11 and 12 we discuss some particular profiles which come as part of the standard IPython
distribution. You may also look in your IPYTHONDIR directory, any file whose name begins with
ipythonrc- is a profile. You can use those as examples for further customizations to suit your own
needs.

8 Using IPython as your default Python environment.

Python honors the environment variable PYTHONSTARTUP and will execute at startup the file refer-
enced by this variable. If you put at the end of this file the following two lines of code:

import IPython
IPython.Shell.IPShell().mainloop(sys_exit=1)

then IPython will be your working environment anytime you start Python. The sys_exit=1 is
needed to have IPython issue a call to sys.exit() when it finishes, otherwise you’ll be back at the
normal Python ’> > >’ prompt4.

4Based on an idea by Holger Krekel.

47

9 EMBEDDING IPYTHON IN OTHER PROGRAMS

This is probably useful to developers who manage multiple Python versions and don’t want to have
correspondingly multiple IPython versions. Note that in this mode, there is no way to pass IPython
any command-line options, as those are trapped first by Python itself.

9 Embedding IPython in other programs

It is possible to start an IPython instance inside your own Python programs. This allows you to
evaluate dynamically the state of your code, operate with your variables, analyze them, etc. Note
however that any changes you make to values while in the shell do not propagate back to the running
code, so it is safe to modify your values because you won’t break your code in bizarre ways by doing
so.

This feature allows you to easily have a fully functional python environment for doing object intro-
spection anywhere in your code with a simple function call. In some cases a simple print statement
is enough, but if you need to do more detailed analysis of a code fragment this feature can be very
valuable.

It can also be useful in scientific computing situations where it is common to need to do some
automatic, computationally intensive part and then stop to look at data, plots, etc5. Opening an
IPython instance will give you full access to your data and functions, and you can resume program
execution once you are done with the interactive part (perhaps to stop again later, as many times
as needed).

The following code snippet is the bare minimum you need to include in your Python programs for
this to work (detailed examples follow later):

from IPython.Shell import IPythonShellEmbed
ipshell = IPythonShellEmbed()
ipshell() # this call anywhere in your program will start IPython

You can run embedded instances even in code which is itself being run at the IPython interactive
prompt with ’@run <filename>’. Since it’s easy to get lost as to where you are (in your top-level
IPython or in your embedded one), it’s a good idea in such cases to set the in/out prompts to
something different for the embedded instances. The code examples below illustrate this.

You can also have multiple IPython instances in your program and open them separately, for example
with different options for data presentation. If you close and open the same instance multiple times,
its prompt counters simply continue from each execution to the next.

Please look at the docstrings in the Shell.py module for more details on the use of this system.

The following sample file illustrating how to use the embedding functionality is provided in the
examples directory as example-embed.py. It should be fairly self-explanatory:

#!/usr/bin/env python

"""An example of how to embed an IPython shell into a running program.

5This functionality was inspired by IDL’s combination of the stop keyword and the .continue executive command,
which I have found very useful in the past, and by a posting on comp.lang.python by cmkl <cmkleffner@gmx.de> on
Dec. 06/01 concerning similar uses of pyrepl.

48

9 EMBEDDING IPYTHON IN OTHER PROGRAMS

Please see the documentation in the IPython.Shell module for more details.

The accompanying file example-embed-short.py has quick code fragments for
embedding which you can cut and paste in your code once you understand how
things work.

The code in this file is deliberately extra-verbose, meant for learning."""

The basics to get you going:

IPython sets the __IPYTHON__ variable so you can know if you have nested
copies running.

Try running this code both at the command line and from inside IPython (with
@run example-embed.py)
try:

__IPYTHON__
except NameError:

nested = 0
args = [’’]

else:
print "Running nested copies of IPython."
print "The prompts for the nested copy have been modified"
nested = 1
what the embedded instance will see as sys.argv:
args = [’-pi1’,’In <%n>:’,’-po’,’Out<%n>:’,’-nosep’]

First import the embeddable shell class
from IPython.Shell import IPShellEmbed

Now create an instance of the embeddable shell. The first argument is a
string with options exactly as you would type them if you were starting
IPython at the system command line. Any parameters you want to define for
configuration can thus be specified here.
ipshell = IPShellEmbed(args,

banner = ’Dropping into IPython’,
exit_msg = ’Leaving Interpreter, back to program.’)

Make a second instance, you can have as many as you want.
if nested:

args[1] = ’In2<%n>’
else:

args = [’-pi1’,’In2<%n>:’,’-po’,’Out<%n>:’,’-nosep’]
ipshell2 = IPShellEmbed(args,banner = ’Second IPython instance.’)

print ’\nHello. This is printed from the main controller program.\n’

You can then call ipshell() anywhere you need it (with an optional

49

9 EMBEDDING IPYTHON IN OTHER PROGRAMS

message):
ipshell(’***Called from top level. ’

’Hit Ctrl-D to exit interpreter and continue program.’)

print ’\nBack in caller program, moving along...\n’

#---
More details:

IPShellEmbed instances don’t print the standard system banner and
messages. The IPython banner (which actually may contain initialization
messages) is available as <instance>.IP.BANNER in case you want it.

IPShellEmbed instances print the following information everytime they
start:

- A global startup banner.

- A call-specific header string, which you can use to indicate where in the
execution flow the shell is starting.

They also print an exit message every time they exit.

Both the startup banner and the exit message default to None, and can be set
either at the instance constructor or at any other time with the
set_banner() and set_exit_msg() methods.

The shell instance can be also put in ’dummy’ mode globally or on a per-call
basis. This gives you fine control for debugging without having to change
code all over the place.

The code below illustrates all this.

This is how the global banner and exit_msg can be reset at any point
ipshell.set_banner(’Entering interpreter - New Banner’)
ipshell.set_exit_msg(’Leaving interpreter - New exit_msg’)

def foo(m):
s = ’spam’
ipshell(’***In foo(). Try @whos, or print s or m:’)
print ’foo says m = ’,m

def bar(n):
s = ’eggs’
ipshell(’***In bar(). Try @whos, or print s or n:’)
print ’bar says n = ’,n

50

9 EMBEDDING IPYTHON IN OTHER PROGRAMS

Some calls to the above functions which will trigger IPython:
print ’Main program calling foo("eggs")\n’
foo(’eggs’)

The shell can be put in ’dummy’ mode where calls to it silently return. This
allows you, for example, to globally turn off debugging for a program with a
single call.
ipshell.set_dummy_mode(1)
print ’\nTrying to call IPython which is now "dummy":’
ipshell()
print ’Nothing happened...’
The global ’dummy’ mode can still be overridden for a single call
print ’\nOverriding dummy mode manually:’
ipshell(dummy=0)

Reactivate the IPython shell
ipshell.set_dummy_mode(0)

print ’You can even have multiple embedded instances:’
ipshell2()

print ’\nMain program calling bar("spam")\n’
bar(’spam’)

print ’Main program finished. Bye!’

#********************** End of file <example-embed.py> ***********************

Once you understand how the system functions, you can use the following code fragments in your
programs which are ready for cut and paste:

"""Quick code snippets for embedding IPython into other programs.

See example-embed.py for full details, this file has the bare minimum code for
cut and paste use once you understand how to use the system."""

#---
This code loads IPython but modifies a few things if it detects it’s running
embedded in another IPython session (helps avoid confusion)

try:
__IPYTHON__

except NameError:
argv = [’’]
banner = exit_msg = ’’

else:
Command-line options for IPython (a list like sys.argv)
argv = [’-pi1’,’In <%n>:’,’-po’,’Out<%n>:’]

51

10 USING THE PYTHON DEBUGGER (PDB)

banner = ’*** Nested interpreter ***’
exit_msg = ’*** Back in main IPython ***’

First import the embeddable shell class
from IPython.Shell import IPShellEmbed
Now create the IPython shell instance. Put ipshell() anywhere in your code
where you want it to open.
ipshell = IPShellEmbed(argv,banner=banner,exit_msg=exit_msg)

#---
This code will load an embeddable IPython shell always with no changes for
nested embededings.

from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed()
Now ipshell() will open IPython anywhere in the code.

#---
This code loads an embeddable shell only if NOT running inside
IPython. Inside IPython, the embeddable shell variable ipshell is just a
dummy function.

try:
__IPYTHON__

except NameError:
from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed()
Now ipshell() will open IPython anywhere in the code

else:
Define a dummy ipshell() so the same code doesn’t crash inside an
interactive IPython
def ipshell(): pass

#******************* End of file <example-embed-short.py> ********************

10 Using the Python debugger (pdb)

IPython, if started with the -pdb option (or if the option is set in your rc file) can call the Python
pdb debugger every time your code triggers an uncaught exception6. This feature can also be turned
on and off at any time with the @pdb magic command. This can be extremely useful in order to
find the origin of subtle bugs, because pdb opens up at the point in your code which triggered the
exception, and while your program is at this point ’dead’, all the data is still available and you can
walk up and down the stack frame and understand the origin of the problem.

Furthermore, you can use these debugging facilities both with the embedded IPython mode and
without IPython at all. For an embedded shell (see sec. 9), simply call the constructor with ’-pdb’

6Many thanks to Christopher Hart for the request which prompted adding this feature to IPython.

52

11 EXTENSIONS FOR SYNTAX PROCESSING

in the argument string and automatically pdb will be called if an uncaught exception is triggered by
your code.

For stand-alone use of the feature in your programs which do not use IPython at all, put the following
lines toward the top of your ’main’ routine:

import sys,IPython.ultraTB
sys.excepthook = IPython.ultraTB.FormattedTB(mode=’Verbose’, color_scheme=’Linux’,
call_pdb=1)

The mode keyword can be either ’Verbose’ or ’Plain’, giving either very detailed or normal
tracebacks respectively. The color_scheme keyword can be one of ’NoColor’, ’Linux’ (default)
or ’LightBG’. These are the same options which can be set in IPython with -colors and -xmode.

This will give any of your programs detailed, colored tracebacks with automatic invocation of pdb.

If you want more information on the use of the pdb debugger, read the included pdb.doc file
(part of the standard Python distribution). On a stock Mandrake Linux system it is located at
/usr/lib/python2.2/pdb.doc, but the easiest way to read it is by using the help() function of the
pdb module as follows (in an IPython prompt):

In [1]: import pdb
In [2]: pdb.help()

This will load the pdb.doc document in a file viewer for you automatically.

11 Extensions for syntax processing

This isn’t for the faint of heart, because the potential for breaking things is quite high. But it can
be a very powerful and useful feature. In a nutshell, you can redefine the way IPython processes
the user input line to accept new, special extensions to the syntax without needing to change any
of IPython’s own code.

In the IPython/Extensions directory you will find two examples supplied, which we will briefly
describe now. These can be used ’as is’ (and both provide very useful functionality), or you can use
them as a starting point for writing your own extensions.

11.1 Pasting of code fragments starting with ’> > > ’ or ’... ’

In the python tutorial it is common to find code examples which have been taken from real python
sessions. The problem with those is that all the lines begin with either ’> > > ’ or ’... ’, which makes
it impossible to paste them all at once. One must instead do a line by line manual copying, carefully
removing the leading extraneous characters.

This extension identifies those starting characters and removes them from the input automatically,
so that one can paste multi-line examples directly into IPython, saving a lot of time. Please look at
the file InterpreterPasteInput.py in the IPython/Extensions directory for details on how this
is done.

53

11 EXTENSIONS FOR SYNTAX PROCESSING 11.2 Input of physical quantities with units

IPython comes with a special profile enabling this feature, called tutorial. Simply start IPython
via ’ipython -p tutorial’ and the feature will be available. In a normal IPython session you can
activate the feature by importing the corresponding module with:
In [1]: import IPython.Extensions.InterpreterPasteInput

The following is a ’screenshot’ of how things work when this extension is on, copying an example
from the standard tutorial:

IPython profile: tutorial

*** Pasting of code with "> > >" or "..." has been enabled.

In [1]: > > > def fib2(n): # return Fibonacci series up to n
...: ... """Return a list containing the Fibonacci series up to n."""
...: ... result = []
...: ... a, b = 0, 1
...: ... while b < n:
...: ... result.append(b) # see below
...: ... a, b = b, a+b
...: ... return result
...:

In [2]: fib2(10)
Out[2]: [1, 1, 2, 3, 5, 8]

Note that as currently written, this extension does not recognize IPython’s prompts for pasting.
Those are more complicated, since the user can change them very easily, they involve numbers and
can vary in length. One could however extract all the relevant information from the IPython instance
and build an appropriate regular expression. This is left as an exercise for the reader.

11.2 Input of physical quantities with units

The module PhysicalQInput allows a simplified form of input for physical quantities with units.
This file is meant to be used in conjunction with the PhysicalQInteractive module (in the
same directory) and Physics.PhysicalQuantities from Konrad Hinsen’s ScientificPython (http:
//starship.python.net/crew/hinsen/scientific.html).

The Physics.PhysicalQuantities module defines PhysicalQuantity objects, but these must be
declared as instances of a class. For example, to define v as a velocity of 3 m/s, normally you would
write:
In [1]: v = PhysicalQuantity(3,’m/s’)

Using the PhysicalQ_Input extension this can be input instead as:
In [1]: v = 3 m/s
which is much more convenient for interactive use (even though it is blatantly invalid Python syntax).

The physics profile supplied with IPython (enabled via ’ipython -p physics’) uses these exten-
sions, which you can also activate with:

from math import * # math MUST be imported BEFORE PhysicalQInteractive
from IPython.Extensions.PhysicalQInteractive import *
import IPython.Extensions.PhysicalQInput

54

http://starship.python.net/crew/hinsen/scientific.html
http://starship.python.net/crew/hinsen/scientific.html

12 ACCESS TO GNUPLOT

12 Access to Gnuplot

Through the magic extension system described in sec. 6.1, IPython incorporates a mechanism for
conveniently interfacing with the Gnuplot system (http://www.gnuplot.info). Gnuplot is a very
complete 2D and 3D plotting package available for many operating systems and commonly included
in modern Linux distributions.

Besides having Gnuplot installed, this functionality requires the Gnuplot.py module for interfacing
python with Gnuplot. It can be downloaded from: http://gnuplot-py.sourceforge.net.

12.1 Proper Gnuplot configuration

’Out of the box’, Gnuplot is configured with a rather poor set of size, color and linewidth choices
which make the graphs fairly hard to read on modern high-resolution displays (although they work
fine on old 640x480 ones). Below is a section of my .Xdefaults file which I use for having a more
convenient Gnuplot setup. Remember to load it by running ‘xrdb .Xdefaults‘:

!**
! gnuplot options
! modify this for a convenient window size
gnuplot*geometry: 780x580

! on-screen font (not for PostScript)
gnuplot*font: -misc-fixed-bold-r-normal--15-120-100-100-c-90-iso8859-1

! color options
gnuplot*background: black
gnuplot*textColor: white
gnuplot*borderColor: white
gnuplot*axisColor: white
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral

! multiplicative factor for point styles
gnuplot*pointsize: 2

! line width options (in pixels)
gnuplot*borderWidth: 2
gnuplot*axisWidth: 2
gnuplot*line1Width: 2
gnuplot*line2Width: 2
gnuplot*line3Width: 2
gnuplot*line4Width: 2
gnuplot*line5Width: 2
gnuplot*line6Width: 2

55

http://www.gnuplot.info
http://gnuplot-py.sourceforge.net

12 ACCESS TO GNUPLOT 12.2 The IPython.GnuplotRuntime module

gnuplot*line7Width: 2
gnuplot*line8Width: 2

12.2 The IPython.GnuplotRuntime module

IPython includes a module called Gnuplot2.py which extends and improves the default Gnuplot.py
(which it still relies upon). For example, the new plot function adds several improvements to the
original making it more convenient for interactive use, and hardcopy fixes a bug in the original
which under some systems makes the resulting PostScript files not be created.

For scripting use, GnuplotRuntime.py is provided, which wraps Gnuplot2.py and creates a series
of global aliases. These make it easy to control Gnuplot plotting jobs through the Python language.

Below is some example code which illustrates how to configure Gnuplot inside your own programs
but have it available for further interactive use through an embedded IPython instance. Simply run
this file at a system prompt. This file is provided as example-gnuplot.py in the examples directory:

#!/usr/bin/env python
"""
Example code showing how to use Gnuplot and an embedded IPython shell.
"""

from Numeric import *
from IPython.numutils import *
from IPython.Shell import IPShellEmbed

Arguments to start IPython shell with. Load numeric profile.
ipargs = [’-profile’,’numeric’]
ipshell = IPShellEmbed(ipargs)

Compute sin(x) over the 0..2pi range at 200 points
x = frange(0,2*pi,npts=200)
y = sin(x)

In the ’numeric’ profile, IPython has an internal gnuplot instance:
g = ipshell.IP.gnuplot

Change some defaults
g(’set style data lines’)

Or also call a multi-line set of gnuplot commands on it:
g("""
set xrange [0:pi] # Set the visible range to half the data only
set title ’Half sine’ # Global gnuplot labels
set xlabel ’theta’
set ylabel ’sin(theta)’
""")

Now start an embedded ipython.

56

13 REPORTING BUGS 12.3 The numeric profile: a scientific computing environment

ipshell(’Starting the embedded IPyhton.\n’
’Try calling plot(x,y), or @gpc for direct access to Gnuplot"\n’)

#********************** End of file <example-gnuplot.py> *********************

12.3 The numeric profile: a scientific computing environment

The numeric IPython profile, which you can activate with ’ipython -p numeric’ will automat-
ically load the IPython Gnuplot extensions (plus Numeric and other useful things for numerical
computing), contained in the IPython.GnuplotInteractive module. This will create the globals
Gnuplot (an alias to the improved Gnuplot2 module), gp (a Gnuplot active instance), the new magic
commands @gpc and @gp_set_instance and several other convenient globals. Type gphelp() for
further details.

This should turn IPython into a convenient environment for numerical computing, with all the
functions in the NumPy library and the Gnuplot facilities for plotting. Further improvements can
be obtained by loading the SciPy libraries for scientific computing, available at http://scipy.org.

If you are in the middle of a working session with numerical objects and need to plot them but you
didn’t start the numeric profile, you can load these extensions at any time by typing
from GnuplotInteractive import *
at the IPython prompt. This will allow you to keep your objects intact and start using Gnuplot to
view them.

13 Reporting bugs

Automatic crash reports

Ideally, IPython itself shouldn’t crash. It will catch exceptions produced by you, but bugs in its
internals will still crash it.

In such a situation, IPython will leave a file named ’IPython_crash_report.txt’ in your IPYTHONDIR
directory (that way if crashes happen several times it won’t litter many directories, the post-mortem
file is always located in the same place and new occurrences just overwrite the previous one). If you
can mail this file to the developers (see sec. 16 for names and addresses), it will help us a lot in
understanding the cause of the problem and fixing it sooner.

The bug tracker

IPython also has an online bug-tracker, located at http://www.scipy.net/roundup/ipython. In
addition to mailing the developers, it would be a good idea to file a bug report here. This will ensure
that the issue is properly followed to conclusion.

You can also use this bug tracker to file feature requests.

57

http://scipy.org
http://www.scipy.net/roundup/ipython

15 LICENSE

14 Brief history

14.1 Origins

The current IPython system grew out of the following three projects:

ipython by Fernando Pérez. I was working on adding Mathematica-type prompts and a flexible
configuration system (something better than $PYTHONSTARTUP) to the standard
Python interactive interpreter.

IPP by Janko Hauser. Very well organized, great usability. Had an old help system. IPP
was used as the ‘container’ code into which I added the functionality from the other two
systems.

LazyPython by Nathan Gray. Simple but very powerful. The quick syntax (auto parens, auto
quotes) and verbose/colored tracebacks were all taken from here.

When I found out (see sec. 16) about IPP and LazyPython I tried to join all three into a unified
system. I thought this could provide a very nice working environment, both for regular program-
ming and scientific computing: shell-like features, IDL/Matlab numerics, Mathematica-type prompt
history and great object introspection and help facilities. I think it worked reasonably well, though
it was a lot more work I had initially planned.

14.2 Current status

The above listed features work, and quite well for the most part. But until a major internal restruc-
turing is done (see below), only bug fixing will be done, no other features will be added (unless very
minor and well localized in the cleaner parts of the code).

IPython consists of almost 11000 lines of pure python code, of which roughly 50% are fairly clean.
The other 50% are fragile, messy code which needs a massive restructuring before any further major
work is done. Even the messy code is fairly well documented though, and most of the problems in
the (non-existent) class design are well pointed to by a PyChecker run. So the rewriting work isn’t
that bad, it will just be time-consuming.

14.3 Future

See the separate new_design document for details. Ultimately, I would like to see IPython be-
come part of the standard Python distribution as a ‘big brother with batteries’ to the standard
Python interactive interpreter. But that will never happen with the current state of the code, so all
contributions are welcome.

15 License

Unless indicated otherwise, files in this project are covered by the GNU Lesser General Public License
(LGPL). Its full text is included in the file GNU-LGPL or can be obtained directly from the Free
Software Foundation at: http://www.gnu.org/copyleft/lesser.html.

58

http://www.gnu.org/copyleft/lesser.html

16 CREDITS

IPython is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.

Individual authors are the holders of the copyright for their code and are listed in each file.

Some files (DPyGetOpt.py, for example) may be licensed under different conditions. Ultimately each
file indicates clearly the conditions under which its author/authors have decided to publish the code.

16 Credits

The main authors of the code are:

Fernando Pérez <fperez@colorado.edu> (currently main contact)

Janko Hauser <jhauser@comunit.de>

Nathan Gray <n8gray@caltech.edu>

And we are very grateful to:

Bill Bumgarner <bbum@friday.com>: for providing the DPyGetOpt module which gives very pow-
erful and convenient handling of command-line options (light years ahead of what Python 2.1.1’s
getopt module does).

Ka-Ping Yee <ping@lfw.org>: for providing the Itpl module for convenient and powerful string
interpolation with a much nicer syntax than formatting through the ’%’ operator.

Arnd Bäcker <arnd.baecker@physik.uni-ulm.de>: for his many very useful suggestions and com-
ments, and lots of help with testing and documentation checking. Many of IPython’s newer features
are a result of discussions with him (bugs are still my fault, not his).

Obviously Guido van Rossum and the whole Python development team, that goes without saying.

Fernando would also like to thank Stephen Figgins <fig@monitor.net>, an O’Reilly Python editor.
His Oct/11/01 article about IPP and LazyPython, was what got this project started. You can read
it at: http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html.

And last but not least, all the kind IPython users who have emailed bug reports, fixes, comments
and ideas. A brief list follows, please let me know if I have ommitted your name by accident:

Jack Moffit <jack@xiph.org> Bug fixes, including the infamous color problem. This bug alone
caused many lost hours and frustration, many thanks to him for the fix. I’ve always
been a fan of Ogg & friends, now I have one more reason to like these folks.
Jack is also contributing with Debian packaging and many other things.

Mike Heeter <korora@SDF.LONESTAR.ORG>

Christopher Hart <hart@caltech.edu> PDB integration.

Milan Zamazal <pdm@zamazal.org> Emacs info.

Philip Hisley <compsys@starpower.net>

Holger Krekel <pyth@devel.trillke.net> Tab completion, lots more.

59

http://www.onlamp.com/pub/a/python/2001/10/11/pythonnews.html

16 CREDITS

Alexander Schmolck <a.schmolck@gmx.net> Emacs work, bug reports, bug fixes, ideas, lots more.

Robin Siebler <robinsiebler@starband.net>

Ralf Ahlbrink <ralf_ahlbrink@web.de>

Andrea Riciputi <andrea.riciputi@libero.it> Mac OSX information.

Thorsten Kampe <thorsten@thorstenkampe.de>

Fredrik Kant <fredrik.kant@front.com> Windows setup.

Syver Enstad <syver-en@online.no> Windows setup.

Richard <rxe@renre-europe.com> Global embedding.

Hayden Callow <h.callow@elec.canterbury.ac.nz> Gnuplot.py 1.6 compatibility.

Leonardo Santagada <retype@terra.com.br> Fixes for Windows installation.

Christopher Armstrong <radix@twistedmatrix.com> Bugfixes.

François Pinard <pinard@iro.umontreal.ca> Code and documentation fixes.

Cory Dodt <cdodt@fcoe.k12.ca.us> Bug reports and Windows ideas.

Olivier Aubert <oaubert@bat710.univ-lyon1.fr> New magics.

Jeffrey Collins <Jeff.Collins@vexcel.com> Bug reports.

King C. Shu <kingshu@myrealbox.com> Autoindent patch.

Chris Drexler <chris@ac-drexler.de> Readline packages for Win32/CygWin.

Gustavo Córdova Avila <gcordova@sismex.com> EvalDict code for nice, lightweight string interpo-
lation.

Gary Bishop <gb@cs.unc.edu> Bug reports, and patches to work around the exception handling
idiosyncracies of WxPython.

Kasper Souren <Kasper.Souren@ircam.fr> Bug reports, ideas.

60

	Overview
	Main features
	Portability and Python requirements
	Location

	Installation
	Instant instructions
	Under Unix-type operating systems (Linux, Mac OS X, etc.)
	RedHat 7.x notes
	Mac OSX notes

	Under Windows
	Upgrading from a previous version

	Initial configuration of your environment
	Access to the Python help system
	Editor
	Color
	Input/Output prompts and exception tracebacks
	Object details (types, docstrings, source code, etc.)

	(X)Emacs configuration

	Quick tips
	Command-line use
	Options

	Interactive use
	Magic command system
	Magic commands

	Access to the standard Python help
	Dynamic object information
	Readline-based features
	Command line completion
	Search command history
	Persistent command history across sessions
	Autoindent
	Customizing readline behavior

	Session logging and restoring
	System shell access
	System command aliases
	Recursive reload
	Verbose and colored exception traceback printouts
	Input caching system
	Output caching system
	Directory history
	Automatic parentheses and quotes
	Automatic parentheses
	Automatic quoting
	Notes on usage of these two features

	Customization
	Sample ipythonrc file
	IPython profiles

	Using IPython as your default Python environment.
	Embedding IPython in other programs
	Using the Python debugger (pdb)
	Extensions for syntax processing
	Pasting of code fragments starting with '>>> ' or '... '
	Input of physical quantities with units

	Access to Gnuplot
	Proper Gnuplot configuration
	The IPython.GnuplotRuntime module
	The numeric profile: a scientific computing environment

	Reporting bugs
	Brief history
	Origins
	Current status
	Future

	License
	Credits

