
The xmlformat XML Document
Formatter

Paul DuBois <paul@kitebird.com>

Table of Contents
1. Introduction .. 1
2. How to Use xmlformat .. 2
3. The Document Processing Model .. 4

3.1. Document Components .. 4
3.2. Line Breaks and Indentation .. 5
3.3. Text Handling .. 8

4. Using Configuration Files .. 11
4.1. Configuration File Syntax ... 11
4.2. Formatting Options .. 14

5. How xmlformat Works ... 16
6. Prerequisites ... 19
7. References .. 19

1. Introduction
xmlformat is a formatter (or "pretty-printer") for XML documents. It is useful when you want XML
documents to have a standard format. This includes situations such as the following:

• XML documents that are maintained in a version control system, where people who use different
XML editors work on the documents. XML editors typically impose their own style conventions on
files. The application of different style conventions to successive document revisions can result in
large version diffs where most of the bulk is related only to changes in format rather than content.
This can be a problem if, for example, the version control system automatically sends the diffs to a
committer's mailing list that people read. If documents are rewritten to a common format before they
are committed, these diffs become smaller. They better reflect content changes and are easier for
people to scan and understand.

• Similarly, if you send an XML document to someone who edits it and sends it back, it's easier to see
what was changed by putting the before and after versions in a common format. This is a simple al-
ternative to using a more sophisticated semantic XML diff utility.

Of course, these benefits can be obtained by using any XML pretty printer. So why does xmlformat ex-
ist? Because most XML formatters reformat documents using a set of built-in rules that determine the
output style. Some allow you to select from one of several predefined output styles. That's fine if the
style you want is the style produced by one of these tools. If not, you're stuck. That's where xmlformat
comes in, because it's configurable. You can specify formatting options in a file and xmlformat will ap-
ply them to your documents. If you have different applications for which you want different styles, you
can select the style by using the appropriate configuration file.

xmlformat has a default overall output style, but you can redefine the default style, and you can over-
ride the default on a per-element basis. For example, you can indicate whether the element should be

1

treated as a block element, an inline element, or a verbatim element. For any block element, you can
control several formatting properties:

• Spacing (line breaks) between nested sub-elements. You can also control spacing between the ele-
ment's opening and closing tags and its content. (The general assumption is that if a block element
has non-inline sub-elements, you'll want to space those sub-elements evenly within the enclosing
block, though possibly with different spacing between the opening tag and the first child, or between
the last child and the closing tag.)

• Indentation of nested sub-elements.

• Whitespace normalization and line-wrapping of text within the element.

xmlformat is free software. You can redistribute it or modify it under the terms specified in the LI-
CENSE file.

For installation instructions, see the INSTALL file.

2. How to Use xmlformat
To format the file mydoc.xml using the default formatting options, use the following command. (%
represents your shell prompt here; do not type it as part of the command.)

% xmlformat mydoc.xml

(xmlformat might be installed as xmlformat.pl or xmlformat.rb, depending on implementation lan-
guage. In that case, you should invoke it under the appropriate name.)

The built-in formatting options cause each element to begin a new line, with sub-element indentation of
one space, and no text normalization. Suppose mydoc.xml looks like this:

<table> <row> <cell> A </cell> <cell> B </cell> </row>
<row> <cell> C </cell> <cell> D </cell> </row> </table>

xmlformat will produce this result by default:

<table>
<row>
<cell> A </cell>
<cell> B </cell>
</row>
<row>
<cell> C </cell>
<cell> D </cell>
</row>
</table>

The default style is perhaps suitable for data-oriented XML documents that contain no mixed-content
elements. For more control over output, specify a configuration file.

If the formatting options are stored in a file named xf-opts.conf, you can apply them to the docu-
ment by specifying a --config-file option:

The xmlformat XML Document Formatter

2

% xmlformat --config-file=xf-opts.conf mydoc.xml

If you do not specify a configuration file using a --config-file (or --f) option, xmlformat uses
the following rules to determine what formatting options to use:

• If the environment variable XMLFORMAT_CONF is defined, xmlformat uses its value as the name of
the configuration file.

• Otherwise, if a file named xmlformat.conf exists in the current directory, xmlformat uses it as
the configuration file.

• Otherwise, xmlformat uses a set of built-in formatting options.

Configuration options and configuration file syntax are described in Section 4, “ Using Configuration
Files ”.

To see the command-line options that xmlformat supports, invoke it with the --help or --h option:

% xmlformat --help
Usage: xmlformat [options] xml-file

Options:
--help, -h

Print this message
--backup suffix -b suffix

Back up the input document, adding suffix to the input
filename to create the backup filename.

--canonized-output
Proceed only as far as the document canonization stage,
printing the result.

--check-parser
Parse the document into tokens and verify that their
concatenation is identical to the original input document.
This option suppresses further document processing.

--config-file file_name, -f file_name
Specify the configuration filename. If no file is named,
xmlformat uses the file named by the environment variable
XMLFORMAT_CONF, if it exists, or ./xmlformat.conf, if it
exists. Otherwise, xmlformat uses built-in formatting
options.

--in-place, -i
Format the document in place, replacing the contents of
the input file with the reformatted document. (It's a
good idea to use --backup along with this option.)

--show-config
Show configuration options after reading configuration
file. This option suppresses document processing.

--show-unconfigured-elements
Show elements that are used in the document but for
which no options were specified in the configuration
file. This option suppresses document output.

--verbose, -v
Be verbose about processing stages.

--version, -V
Show version information and exit.

The xmlformat XML Document Formatter

3

Warning

Do not use the --in-place or -i reformatting option until you are certain your configura-
tion options are set up the way you want. Unpleasant consequences may occur otherwise. For
example, if you have verbatim elements that you have forgotten to declare as verbatim, they
will be reformatted and you will have to restore them to their original state later. Use of the -
-backup or -b option can help you recover from this kind of problem.

xmlformat writes the result to the standard output by default. To perform an "in-place" conversion that
writes the reformatted document back to the original file, use the --in-place or -i option. This is
useful when you want to format multiple documents with a single command; streaming multiple output
documents to the standard output concatenates them, which is likely not what you want.

Because in-place formatting replaces the original document, it's prudent to make a backup of the original
using the --backup (or -b) option. This option takes a suffix value to be added to each input filename
to produce the backup filename.

To inspect the default (built-in) configuration options, use this command:

% xmlformat --config-file=/dev/null --show-config

3. The Document Processing Model
XML documents consist primarily of elements arranged in nested fashion. Elements may also contain
text. xmlformat acts to rearrange elements by removing or adding line breaks and indentation, and to re-
format text.

3.1. Document Components
XML elements within input documents may be of three types:

• block elements

This is the default element type. The DocBook <chapter>, <sect1>, and <para> elements are
examples of block elements.

Typically a block element will begin a new line. (That is the default formatting behavior, although
xmlformat allows you to override it.)

Spacing between sub-elements can be controlled, and sub-elements can be indented. Whitespace in
block element text may be normalized. If normalization is in effect, line-wrapping may be applied as
well. Normalization and line-wrapping may be appropriate for a block element with mixed content
(such as <para>).

• inline elements

These are elements that are contained within a block or within other inlines. The DocBook
<emphasis> and <literal> elements are examples of inline elements.

Normalization and line-wrapping of inline element tags and content is handled the same way as for
the enclosing block element. In essence, an inline element is treated as part of parent's "text" content.

• verbatim elements

The xmlformat XML Document Formatter

4

No formatting is done for verbatim elements. The DocBook <programlisting> and
<screen> elements are examples of verbatim elements.

Verbatim element content is written out exactly as it appears in the input document. This also applies
to child elements. Any formatting that would otherwise be performed on them is suppressed when
they occur within a verbatim element.

xmlformat never reformats element tags. In particular, it does not change whitespace betweeen attrib-
utes or which attribute values. This is true even for inline tags within line-wrapped block elements.

xmlformat handles empty elements as follows:

• If an element appears as <abc/> in the input document, it is written as <abc/>.

• If an element appears as <abc></abc>, it is written as <abc></abc>. No line break is placed
between the two tags.

XML documents may contain other constructs besides elements and text:

• Processing instructions

• Comments

• DOCTYPE declaration

• CDATA sections

xmlformat handles these constructs much the same way as verbatim elements. It does not reformat
them.

3.2. Line Breaks and Indentation
Line breaks within block elements are controlled by the entry-break, element-break, and
exit-break formatting options. A break value of n means n newlines. (This produces n-1 blank
lines.)

Example. Suppose input text looks like this:

<elt>
<subelt/> <subelt/> <subelt/>
</elt>

Here, an <elt> element contains three nested <subelt> elements, which for simplicity are empty.

This input can be formatted several ways, depending on the configuration options. The following ex-
amples show how to do this.

1. To produce output with all sub-elements are on the same line as the <elt> element, add a section
to the configuration file that defines <elt> as a block element and sets all its break values to 0:

The xmlformat XML Document Formatter

5

elt
format block
entry-break 0
exit-break 0
element-break 0

Result:

<elt><subelt/><subelt/><subelt/></elt>

2. To leave the sub-elements together on the same line, but on a separate line between the <elt>
tags, leave the element-break value set to 0, but set the entry-break and exit-break
values to 1. To suppress sub-element indentation, set subindent to 0.

elt
format block
entry-break 1
exit-break 1
element-break 0
subindent 0

Result:

<elt>
<subelt/><subelt/><subelt/>
</elt>

3. To indent the sub-elements, make the subindent value greater than zero.

elt
format block
entry-break 1
exit-break 1
element-break 0
subindent 2

Result:

<elt>
<subelt/><subelt/><subelt/>

</elt>

4. To cause the each sub-element begin a new line, change the element-break to 1.

elt
format block
entry-break 1
exit-break 1
element-break 1
subindent 2

The xmlformat XML Document Formatter

6

Result:

<elt>
<subelt/>
<subelt/>
<subelt/>

</elt>

5. To add a blank line between sub-elements, increase the element-break from 1 to 2.

elt
format block
entry-break 1
exit-break 1
element-break 2
subindent 2

Result:

<elt>
<subelt/>

<subelt/>

<subelt/>
</elt>

6. To also produce a blank line after the <elt> opening tag and before the closing tag, increase the
entry-break and exit-break values from 1 to 2.

elt
format block
entry-break 2
exit-break 2
element-break 2
subindent 2

Result:

<elt>

<subelt/>

<subelt/>

<subelt/>

</elt>

7. To have blank lines only after the opening tag and before the closing tag, but not have blank lines

The xmlformat XML Document Formatter

7

between the sub-elements, decrease the element-break from 2 to 1.

elt
format block
entry-break 2
exit-break 2
element-break 1
subindent 2

Result:

<elt>

<subelt/>
<subelt/>
<subelt/>

</elt>

Breaks within block elements are suppressed in certain cases:

• Breaks apply to nested block or verbatim elements, but not to inline elements, which are, after all,
inline. (If you really want an inline to begin a new line, define it as a block element.)

• Breaks are not applied to text within non-normalized blocks. Non-normalized text should not be
changed, and adding line breaks changes the text.

For example if <x> elements are normalized, you might elect to format this:

<x>This is a sentence.</x>

Like this:

<x>
This is a sentence.
</x>

Here, breaks are added before and after the text to place it on a separate line. But if <x> is not nor-
malized, the text content will be written as it appears in the input, to avoid changing it.

3.3. Text Handling
The XML standard considers whitespace nodes insignificant in elements that contain only other ele-
ments. In other words, for elements that have element content, sub-elements may optionally be separated
by whitespace, but that whitespace is insignificant and may be ignored.

An element that has mixed content may have text (#PCDATA) content, optionally interspersed with sub-
elements. In this case, whitespace-only nodes may be significant.

xmlformat treats only literal whitespace as whitespace. This includes the space, tab, newline (linefeed),

The xmlformat XML Document Formatter

8

and carriage return characters. xmlformat does not resolve entity references, so entities such as
or that represent whitespace characters are seen as non-whitespace text, not as whitespace.

xmlformat doesn't know whether a block element has element content or mixed content. It handles text
content as follows:

• If an element has element content, it will have only sub-elements and possibly all-whitespace text
nodes. In this case, it is assumed that you'll want to control line-break behavior between sub-
elements, so that the (all-whitespace) text nodes can be discarded and replaced with the proper num-
ber of newlines, and possibly indentation.

• If an element has mixed content, you may want to leave text nodes alone, or you may want to nor-
malize (and possibly line-wrap) them. In xmlformat, normalization converts runs of whitespace
characters to single spaces, and discards leading and trailing whitespace.

To achieve this kind of formatting, xmlformat recognizes normalize and wrap-length configura-
tion options for block elements. They affect text formatting as follows:

• You can enable or disable text normalization by setting the normalize option to yes or no.

• Within a normalized block, runs of whitespace are converted to single spaces. Leading and trailing
whitespace is discarded. Line-wrapping and indenting may be applied.

• In a non-normalized block, text nodes are not changed as long as they contain any non-whitespace
characters. No line-wrapping or indenting is applied. However, if a text node contains only
whitespace (for example, a space or newline between sub-elements), it is assumed to be insignficant
and is discarded. It may be replaced by line breaks and indentation when output formatting occurs.

Consider the following input:

<row> <cell> A </cell> <cell> B </cell> </row>

Suppose that the <row> and <cell> elements both are to be treated as non-normalized. The contents
of the <cell> elements are text nodes that contain non-whitespace characters, so they would not be re-
formatted. On the other hand, the spaces between tags are all-whitespace text nodes and are not signific-
ant. This means that you could reformat the input like this:

<row><cell> A </cell><cell> B </cell></row>

Or like this:

<row>
<cell> A </cell><cell> B </cell>
</row>

Or like this:

<row>
<cell> A </cell>
<cell> B </cell>

</row>

The xmlformat XML Document Formatter

9

In each of those cases, the whitespace between tags was subject to reformatting, but the text content of
the <cell> elements was not.

The input would not be formatted like this:

<row><cell>A</cell><cell>B</cell></row>

Or like this:

<row>
<cell>
A

</cell>
<cell>
B
</cell>

</row>

In both of those cases, the text content of the <cell> elements has been modified, which is not allowed
within non-normalized blocks. You would have to declare <cell> to have a normalize value of
yes to achieve either of those output styles.

Now consider the following input:

<para> This is a sentence. </para>

Suppose that <para> is to be treated as a normalized element. It could be reformatted like this:

<para>This is a sentence.</para>

Or like this:

<para>
This is a sentence.
</para>

Or like this:

<para>
This is a sentence.

</para>

Or even (with line-wrapping) like this:

<para>
This is a
sentence.

The xmlformat XML Document Formatter

10

</para>

The preceding description of normalization is a bit oversimplified. Normalization is complicated by the
possibility that non-normalized elements may occur as sub-elements of a normalized block. In the fol-
lowing example, a verbatim block occurs in the middle of a normalized block:

<para>This is a paragraph that contains
<programlisting>
a code listing
</programlisting>
in the middle.
</para>

In general, when this occurs, any whitespace in text nodes adjacent to non-reformatted nodes is dis-
carded.

There is no "preserve all whitespace as is" mode for block elements. Even if normalization is disabled
for a block, any all-whitespace text nodes are considered dispensible. If you really want all text within
an element to be preserved intact, you should declare it as a verbatim element. (Within verbatim ele-
ments, nothing is ever reformatted, so whitespace is significant as a result.)

If you want to see how xmlformat handles whitespace nodes and text normalization, invoke it with the
--canonized-output option. This option causes xmlformat to display the document after it has
been canonized by removing whitespace nodes and performing text normalization, but before it has been
reformatted in final form. By examining the canonized document, you can see what effect your config-
uration options have on treatment of the document before line-wrapping and indentation is performed
and line breaks are added.

4. Using Configuration Files
An xmlformat configuration file specifies formatting options to be associated with particular elements
in XML documents. For example, you can format <itemizedlist> elements differently than
<orderedlist> elements. (However, you cannot format <listitem> elements differentially de-
pending on the type of list in which they occur.) You can also specify options for a "pseudo-element"
named *DEFAULT. These options are applied to any element for which the options are not specified ex-
plicitly.

The following sections describe the general syntax of configuration files, then discuss the allowable
formatting options that can be assigned to elements.

4.1. Configuration File Syntax
A configuration file consists of sections. Each section begins with a line that names one or more ele-
ments. (Element names do not include the "<" and ">" angle brackets.) The element line is followed by
option lines that each name a formatting option and its value. Each option is applied to every element
named on its preceding element line.

Element lines and option lines are distinguished based on leading whitespace (space or tab characters):

• Element lines have no leading whitespace.

• Option lines begin with at least one whitespace character.

The xmlformat XML Document Formatter

11

On element lines that name multiple elements, the names should be separated by spaces or commas.
These are legal element lines:

para title
para,title
para, title

On option lines, the option name and value should be separated by whitespace and/or an equal sign.
These are legal option lines:

normalize yes
normalize=yes
normalize = yes

Blank lines are ignored.

Lines that begin "#" as the first non-white character are taken as comments and ignored. Comments be-
ginning with "#" may also follow the last element name on an element line or the option value on an op-
tion line.

Example configuration file:

para
format block
entry-break 1
exit-break 1
normalize yes
wrap-length 72

literal replaceable userinput command option emphasis
format inline

programlisting
format verbatim

It is not necessary to specify all of an element's options at the same time. Thus, this configuration file:

para, title
format block
normalize yes

title
wrap-length 50

para
wrap-length 72

Is equivalent to this configuration file:

para
format block
normalize yes
wrap-length 72

title
format block
normalize yes

The xmlformat XML Document Formatter

12

wrap-length 50

If an option is specified multiple times for an element, the last value is used. For the following configur-
ation file, para ends up with a wrap-length value of 68:

para
format block
wrap-length 60
wrap-length 72

para
wrap-length 68

To continue an element line onto the next line, end it with a backslash character. xmlformat will inter-
pret the next line as containing more element names for the current section:

chapter appendix article \
section simplesection \
sect1 sect2 sect3 \
sect4 sect5
format block
entry-break 1
element-break 2
exit-break 1
normalize no
subindent 0

Continuation can be useful when you want to apply a set of formatting options to a large number of ele-
ments. Continuation lines are allowed to begin with whitespace (though it's possible they may appear to
the casual observer to be option lines if they do).

Continuation is not allowed for option lines.

A configuration file may contain options for two special "pseudo-element" names: *DOCUMENT and
DEFAULT. (The names begin with a "" character so as not to conflict with valid element names.)

*DEFAULT options apply to any element that appears in the input document but that was not configured
explicitly in the configuration file.

*DOCUMENT options are used primarily to control line breaking between top-level nodes of the docu-
ment, such as the XML declaration, the DOCTYPE declaration, the root element, and any comments or
processing instructions that occur outside the root element.

It's common to supply *DEFAULT options in a configuration file to override the built-in values.
However, it's normally best to leave the *DOCUMENT options alone, except possibly to change the
element-break value.

Before reading the input document, xmlformat sets up formatting options as follows:

1. It initializes the built-in *DOCUMENT and *DEFAULT options,

2. It reads the contents of the configuration file, assigning formatting options to elements as listed in
the file.

Note that although *DOCUMENT and *DEFAULT have built-in default values, the defaults they
may be overridden in the configuration file.

The xmlformat XML Document Formatter

13

3. After reading the configuration file, any missing formatting options for each element are filled in
using the options from the *DEFAULT pseudo-element. For example, if para is defined as a block
element but no subindent value is defined, para "inherits" the subindent value from the
*DEFAULT settings.

Missing options are filled in from the *DEFAULT options only after reading the entire configuration
file. For the settings below, *DEFAULT has a subindent value of 2 (not 0) after the file has been
read. Thus, para also is assigned a subindent value of 2.

*DEFAULT
subindent 0

para
format block
normalize yes

*DEFAULT
subindent 2

4.2. Formatting Options
The allowable formatting options are as follows:

format {block | inline | verbatim}
entry-break n
element-break n
exit-break n
subindent n
normalize {no | yes}
wrap-length n

A value list shown as { value1 | value2 | ... } indicates that the option must take one of the
values in the list. A value shown as n indicates that the option must have a numeric value.

Details for each of the formatting options follow.

• format {block | inline | verbatim}

This option is the most important, because it determines the general way in which the element is
formatted, and it determines whether the other formatting options are used or ignored:

• For block elements, all other formatting options are significant.

• For inline elements, all other formatting options are ignored. Inline elements are normalized,
wrapped, and indented according to the formatting options of the enclosing block element.

• For verbatim elements, all other formatting options are ignored. The element content is written
out verbatim (literally), without change, even if it contains other sub-elements. This means no
normalization of the contents, no indenting, and no line-wrapping. Nor are any breaks added
within the element.

A configuration file may specify any option for elements of any type, but xmlformat will ignore in-
applicable options. One reason for this is to allow you to experiment with changing an element's
format type without having to disable other options.

The xmlformat XML Document Formatter

14

If you use the --show-config command-line option to see the configuration that xmlformat will
use for processing a document, it displays only the applicable options for each element.

• entry-break n

element-break n

exit-break n

These options indicate the number of newlines (line breaks) to write after the element opening tag,
between child sub-elements, and before the element closing tag. They apply only to block elements.

A value of 0 means "no break". A value of 1 means one newline, which causes the next thing to ap-
pear on the next line with no intervening blank line. A value n greater than 1 produces n-1 interven-
ing blank lines. Some examples:

• An entry-break value of 0 means the next token will appear on same line immediately after
the opening tag.

• An exit-break value of 0 means the closing tag will appear on same line immediately after
the preceding token.

• subindent n

This option indicates the number of spaces by which to indent child sub-elements, relative to the in-
dent of the enclosing parent. It applies only to block elements. The value may be 0 to suppress in-
denting, or a number n greater than 0 to produce indenting.

This option does not affect the indenting of the element itself. That is determined by the subind-
ent value of the element's own parent.

Note: subindent does not apply to text nodes in non-normalized blocks, which are written as is
without reformatting. subindent also does not apply to verbatim elements or to the following
non-element constructs, all of which are written with no indent:

• Processing instructions

• Comments

• DOCTYPE declarations

• CDATA sections

• normalize {no | yes}

This option indicates whether or not to perform whitespace normalization in text. This option is used
for block elements, but it also affects inline elements because their content is normalized the same
way as their enclosing block element.

If the value is no, whitespace-only text nodes are not considered significant and are discarded, pos-
sibly to be replaced with line breaks and indentation.

If the value is yes, normalization causes removal of leading and trailing whitespace within the ele-
ment, and conversion of runs of whitespace characters (including line-ending characters) to single
spaces.

The xmlformat XML Document Formatter

15

Text normalization is discussed in more detail in Section 3.3, “ Text Handling ”.

• wrap-length n

Line-wrapping length. This option is used only for block elements and line-wrapping occurs only if
normalization is enabled. The option affects inline elements because they are line-wrapped the same
way as their enclosing block element.

Setting the wrap-length option to 0 disables wrapping. Setting it to a value n greater than 0 en-
ables wrapping to lines at most n characters long. (Exception: If a word longer than n characters oc-
curs in text to be wrapped, it is placed on a line by itself. A word will never be broken into pieces.)
The line length is adjusted by the current indent when wrapping is performed to keep the right mar-
gin of wrapped text constant. For example if the wrap-length value is 60 and the current indent
is 10, lines are wrapped to a maximum of 50 characters.

Any prevailing indent is added to the beginning of each line, unless the text will be written immedi-
ately following a tag on the same line. This can occur if the text occurs after the opening tag of the
block and the entry-break is 0, or the text occurs after the closing tag of a sub-element and the
element-break is 0.

5. How xmlformat Works
Briefly, xmlformat processes an XML document using the following steps:

1. Read the document into memory as a single string.

2. Parse the document into a list of tokens.

3. Convert the list of tokens into nodes in a tree structure, tagging each node according to the token
type.

4. Discard extraneous whitespace nodes and normalize text nodes. (The meaning of "normalize" is de-
scribed in Section 3.3, “ Text Handling ”.)

5. Process the tree to produce a single string representing the reformatted document.

6. Print the string.

xmlformat is not an XSLT processor. In essence, all it does is add or delete whitespace to control line
breaking, indentation, and text normalization.

xmlformat uses the REX parser developed by Robert D. Cameron (see Section 7, “ References ”). REX
performs a parse based on a regular expression that operates on a string representing the XML docu-
ment. The parse produces a list of tokens. REX does a pure lexical scan that performs no alteration of
the text except to tokenize it. In particular:

• REX doesn't normalize any whitespace, including line endings. This is true for text elements, and for
whitespace within tags (including between attributes and within attribute values). Any normalization
or reformatting to be done is performed in later stages of xmlformat operation.

• REX leaves entity references untouched. It doesn't try to resolve them. This means it doesn't com-
plain about undefined entities, which to my mind is an advantage. (A pretty printer shouldn't have to
read a DTD or a schema.)

The xmlformat XML Document Formatter

16

• If the XML is malformed, errors can be detected easily: REX produces error tokens that begin with
"<" but do not end with ">".

xmlformat expects its input documents to be legal XML. It does not consider fixing broken documents
to be its job, so if xmlformat finds error tokens in the result produced by REX, it lists them and exits.

Assuming the document contains no error tokens, xmlformat uses the token list to construct a tree struc-
ture. It categorizes each token based on its initial characters:

Initial Characters Token Type

<!-- comment

<? processing instruction (this includes the <?xml?> instruction)

<!DOCTYPE DOCTYPE declaration

<![CDATA section

</ element closing tag

< element opening tag

Anything token not beginning with one of the sequences shown in the preceding table is a text token.

The token categorization determineas the node types of nodes in the document tree. Each node has a la-
bel that identifies the node type:

Label Node Type

comment comment node

pi processing instruction node

DOCTYPE DOCTYPE declaration node

CDATA CDATA section node

elt element node

text text node

If the document is not well-formed, tree construction will fail. In this case, xmlformat displays one or
more error messages and exits. For example, this document is invalid:

<p>This is a malformed document.</p>

Running that document through xmlformat produces the following result:

MISMATCH open (strong), close (p); malformed document?
Non-empty tag stack; malformed document?
Non-empty children stack; malformed document?
Cannot continue.

That is admittedly cryptic, but remember that it's not xmlformat's job to repair (or even diagnose) bad
XML. If a document is not well-formed, you may find Tidy a useful tool for fixing it up.

Tokens of each type except element tokens correspond to single distinct nodes in the document. Ele-
ments are more complex. They may consist of multiple tokens, and may contain children:

The xmlformat XML Document Formatter

17

• An element with a combined opening/closing tag (such as <abc/>) consists of a single token.

• An element with separate opening and closing tags (such as <abc>...</abc>) consists of at least
the two tags, plus any children that appear between the tags.

Element opening tag tokens include any attributes that are present, because xmlformat performs no tag
reformatting. Tags are preserved intact in the output, including any whitespace between attributes or
within attribute values.

In addition to the type value that labels a node as a given node type, each node has content:

• For all node types except elements, the content is the text of the token from which the node was cre-
ated.

• For element nodes, the content is the list of child nodes that appear within the element. An empty
element has an empty child node list. In addition to the content, element nodes contain other inform-
ation:

• The literal text of the opening and closing tags. If an element is written in single-tag form
(<abc/>), the closing tag is empty.

• The element name that is present in the opening tag. (This is maintained separately from the
opening tag so that a pattern match need not be done on the opening tag each time it's necessary
to determine the element name.)

After constructing the node tree, xmlformat performs two operations on it:

• The tree is "canonized" to normalize text nodes and to discard extraneous whitespace nodes. A
whitespace node is a text node consisting of nothing but whitespace characters (space, tab, carriage
return, linefeed (newline)). Decisions about which whitespace nodes are extraneous are based on the
configuration options supplied to xmlformat.

• The canonized tree is used to produce formatted output. xmlformat performs line-wrapping of ele-
ment content, and adds indentation and line breaks. Decisions about how to apply these operations
are based on the configuration options.

Here's an example input document, representing a single-row table:

<table>
<row>
<cell>1</cell><cell>2</cell>
<cell>3</cell>

</row></table>

After reading this in and constructing the tree, the canonized output looks like this:

<table><row><cell>1</cell><cell>2</cell><cell>3</cell></row></table>

The output after applying the default formatting options looks like this:

The xmlformat XML Document Formatter

18

<table>
<row>
<cell>1</cell>
<cell>2</cell>
<cell>3</cell>
</row>
</table>

6. Prerequisites
xmlformat has very few prerequisites. It requires no extra modules other than an option-processing
module. In particular:

• xmlformat requires no XML processing modules. XML parsing is done with a single (rather com-
plex) regular expression developed by Robert D. Cameron. A paper that discusses development of
this parsing expression is available; see Section 7, “ References ”.

• xmlformat requires no text-processing modules such as Text::Wrap. I tested Text::Wrap to see if it
was suitable for xmlformat. It was not, for the following reasons:

• If Text::Wrap encounters an individual word that is longer than the line length, older versions of
Text::Wrap invoke die(). In newer versions, you can have long words left intact.

• Text::Wrap converts runs of spaces in the leading indent to tabs. (Though this can be sup-
pressed.)

• Text::Wrap reformats inline tags (and may change attribute values). xmlformat preserves tags
intact.

In addition, the simple algorithm used by xmlformat appears to be about twice as fast as Text::Wrap
(at least on Mac OS X).

7. References

1. Original REX paper by Robert D. Cameron:

http://www.cs.sfu.ca/~cameron/REX.html
ftp://fas.sfu.ca/pub/cs/TR/1998/CMPT1998-17.html

This paper contains REX implementations in Perl, JavaScript, and LEX. The Perl implementation
was used as the basis of XML parsing in xmlformat.pl and xmlformat.rb.

2. A Python implementation of REX:

http://mail.python.org/pipermail/xml-sig/1999-November/001628.html

3. A PHP implementation of REX:

The xmlformat XML Document Formatter

19

http://traumwind.de/computer/php/REX/

The xmlformat XML Document Formatter

20

	The xmlformat XML Document Formatter
	Table of Contents
	1. Introduction
	2. How to Use xmlformat
	3. The Document Processing Model
	3.1. Document Components
	3.2. Line Breaks and Indentation
	3.3. Text Handling

	4. Using Configuration Files
	4.1. Configuration File Syntax
	4.2. Formatting Options

	5. How xmlformat Works
	6. Prerequisites
	7. References

