FranTk — A Declarative GUI System for Haskell

Meurig Sage

CHAPTER 1-THE BASIC CONCEPTS......o o 4

1.0, INTRODUCTION ..utteutteutesueesueesueasseesstaaseaseesseassasseasseassesssssasssasssasesseasstassanssssssassessesssesnsesasesnsesseesaes 4
1.2, FIRST EXAMPLE ...ttt ettt st st she e ettt e as e eae e eb e e b e et e e nbe e b e sanesaeesais 4
1.3. INTERACTIVE EXAMPLE | — A SIMPLE COUNTER.....cectttttreereesieesteesteeeeesesseesseesseessesssessesnessaeesees 5
1.3.1. Representing Sate With BVAIS.........cooieiiriiie e e s e 6
1.3.2. USING the VAIUE Of 8 BVAYcc.oiiiiiieciieeee ettt sttt et b 6
1.3.3. Setting the vValue Of @ BVAF ...t e e 7
1.3.4. COMPOSING COMPONENTS.......cueirtitereirtereetereereeseeseeste st ereseeseeseessessesaesaesseesseseeseessesaessesneensanes 7
1.4. A BRIEFASIDE - THE HAS EVENT CLASS.....cutiiiiiiiieeitie e sitessie e steesite e st et steesaae s steesnaessnreasnnee s 8
1.5. INTERACTIVE EXAMPLE || — A DISTANCE CONVERTER......cetttieesteenteeeeeeesseesseasseessesssessssnessaesses 8
151 USING TEXE ENEFIES.....eiieieeieeeeee ettt et bt e e e bbb 8
1.5.2. SAMPIING DENAVIOIS.......cueieieieee e et se et s s 9
1.5.3. USING RAIO DULTONS. ..o et e s 10
1.5.4. ThE COMPIELE COUE.c.ueiueeueeieiente ettt sttt re et e b e et e be et e e e beseesbesaesbeeneenean 10
1.6. A DYNAMIC EXAMPLEciiutiittiittett ettt ettt st e st sae e sae e st eae e eaeasbeesbe e besabesaeesaeesaeeseeereanneans 11
1.6.1. Defining an individual NOGE...........c.oiiiieiieee e e 11
1.6.2. DEfiNING @ USEI S VIBW ...ttt sttt e bt b e e e e b bbb eneenean 12
1.6.3. Creating the Whole APPIICALION ..ot e 14
1.7. CONCEPTS SUMMARYuueiuteiutattastaseasseaaseaaseasesssessessaeesaeassssastassssssassesssesssesasessssussssesssesnsesnsesns 17
1.7.1. THE GUI IMONA ...ttt ettt e b et b et e e e b b et e aeebeeneenean 17
1.7.2. Of Behaviors, EVENtS @nd LISLENEIScoeiiiriiierienie et s sre e 17
1.7.3. SAMPliNG BENAVIOIS ..ot et 17
1.7.4. REPIrESENTING SLALE......ccteiueeueeeeieeie ettt st sttt s he e et e be e e b e s et ebe e e e e e beseesbesaesaeeneenean 17
ST @ R 1= SRS 18
1.7.6. TRHEHAS EVENL ClASS.....ccuiiiice ettt sttt ettt et e te s sae e saeesreeresnne e 18
1.7.7. Of Behavioral COlECHIONS........c.coiiuiiiereeeeeerie ettt et e e e b sbe e ean 18
1.7.8. Of ComponentS and WIAGELS.oiiriereeereeriere ettt e s 18
1.7.9. Configuration INFOrMALIONcoiiiiire et e et sb e eas 19
1.7.10. ComMPOSING COMPONENLES.......certiterrirterueruerieersaseeseesiesseeseeeessassessessesaessessssssesssssessessesseseenees 19
1.7.11. Rendering COMPONENLScouirterueatereeuerieereesieseestesseeseseessaseessesbesaesseaseeseseseessessessesneenean 19
CHAPTER 2 -DEALING WITH STATE IN FRANTK ..ottt 21
2.1. WHAT CAN WE REALLY DO WITH LISTENERS......cectitirieuiriinteesiesieessesienessesieessessenessestenesseseesesseses 21
P N I 1 g LC A 1T = 1= 1o o 21
2.1.2. Primitive LiStener OPErations........cccciveereeeerereseseesteseseesaessessessessessessesssesssssesssssessesseenes 23
2.2. WHAT CAN WE REALLY DOWITH EVENTS ...ttt st e e 24
2.2.1. Connecting liSteENErs aNd BVENES........ccvciveeeeerere st sre e enes 24
A 1 0T Y N[1= o] - U 24
2.2.3. The 1O based COMDINGALOIScieiierieieie sttt sttt se et e et seeneere s 25
2.3. WHAT CAN WE REALLY DO WITH BEHAVIORScutiuiieiiiiiieieriesie ettt 27
2.3. 1. Lifte BENAVIOISccuiieeiiiteieeeete sttt sttt st st st sttt et e et 27
2.3.2. REACHIVE BENAVIONS....c.eeecie ettt st st st s nbe e 28
2.3.3. THE REACHIVE ClASSES. ... eiteieeiirte ettt sttt st sttt st et 29
2.3.4. Turning behaviorS int0 EVENLS........cccvivviriceeeser et sre e enes 29
2.3.5. Sampling behaviorsSWith @VENLS..........cccviieeeercre e e 30
2.3.6. Sampling behaviorsin the O monad...........c.ccceviririicineceecerer e 30
2.4, BVARSAND WIRES....ccutitiietertiietesieeet sttt et se e bbbt b bt b e bbb e ebe st e s es 30
CHAPTER 3 -DEALING WITH COLLECTIONS ..ottt sttt st sseesnesaenensens 32
3.1, BEHAVIORAL COLLECTIONS. ..ccuttetttettattauetaueasseassessessessssssessseesseessssasssssssssssesssesssesssessesssssessaes 32
1O I I 1 4 T= 11V = oL o =T TSRS 32

IO B 1 o 1= o o USRS 32
R RS < A O] = 1o TSRS 33
3.2. COLLECTION BV ARS ... ittt ettt st sttt et as e ae e s b e et e et e et e sanesaeesaeesaas 34
3.2.1. The ListBVar INTErTaCE.cciiiieie ettt et b 34
3.2.2. The SABVar iNtEITACEooi e et e 35

CHAPTER 4 -INTRODUCING WIDGETS.......oooiiiiiierienere st s 36

4.1. COMPONENTS AND WIDGETS ... uttiiieiieieieieeeeiitteeeeetteeeeeseeaestseesaassesesessesasasseasanssesesasseeesansesesannns 36
4. 2. WINDOWSueiiiitiiee ettt e e ettt e e ettt e e e eate e e e eaeee e s baeeeaaateeesaaseeaesatseaeaassesesasseeasanbeeasansseeesassaeessntenanannns 36
4.3. COMPONENTS AND LAY OUT ..citiiieeiiei ettt ctee e ettt e ettt e e st e e e eate e e seaseeeesnbseaeenseeesanneeesanteeesannns 37
4.4, LABELSAND MESSAGES.......ceiiiitiieeeiieieeeitteeeioteeesaasteeesaseeaesteeesaassesesasseeasasseesasssesesasseeessnsesesannes 38
R TR = o = £ TSRO UPSROR 38
4.2, IMIESSAGES.....ceteeteeteeie st st esteeste e et e et e st e eae e et e e b e et e e ee s aeesae e eRe e eRe e Rt eREeeRe e eheeebe e b e e beeneenanenanenas 39
.5, BUTTONS ...t ictie e ettt e eeee e e sttt e e e et et e e etee e e sbaeeeeaateeesaaseeaeaateeeeaassesesasseeeeanseeasasseeesasseeassnteeasannns 39
4.5.1. ComMMAN DULLONS.......ccocvieiirieitieciee ettt et et e et e s ebe e e ete e s beeeereesbesebeesnbeseseesnbeseseesans 39
4.5.2. CRECK DULLONS.......ooeiiiiiiie ettt e st e e ete e s be e ereesbeeebeesabeeenseesnbeseseesans 40
4.5.3. RAIO DULLONSveeeiieiiiecee ettt et e et et e e te e s be s e beesabeeebeesnbeeenneesnbeseseesats 40
4.5.4. Making a popup MENU DULLON.ciueriiieie sttt et sbe e nes 40
4.6. THE RADIO OBJIECTcutiieiiteeeeiitteeee sttt e seseeaestaeeaaasseeasasseeaeatseaeaassesasassesasantssasansseeesasseeessnsesasannes 41
A7, SCALE WIDGETS. . uteeeeiuteteieiuteeeiitteeeeateeesaseeaesbaeeaaasteeasasseeasastseaeaassesasassseasanteeasansseeesasseeesantenasannns 41
8. LISTBOXES ... utiiiicteiieeiteteeeitte e e sttt e e e eteeesaseeeesbeeaeaaateeesaaseeaesabseasaassesesasseeasanbeeesasseeesasseeassntenasannns 41
4.9. SCROLLBARS AND SCROLLING WIDGETS.....ceecittieeeiuteeeiareeeeiiteeesassseeesasseeasssseesasssesesassesssnsesesannes 42
.00, IMEENUS. ..ottt ettt e ettt e e ettt e s e ate e e e s beeeeeeateeesaaseeaesatseeeassesesasseeaeanteeasasseeesassneesanteeanannns 43
4.70.1. MeNU ITEM = BULTON........uiii ettt e e et s e e e e e be e e e e are e e s eaneee e snbeeeeenreeesnnnenas 43
4.10.2. Menu 1tem — CheCKBULIONcoeiiiiieciee ettt ettt e e ree e 43
4.10.3. Menultem - RAdiODULLONcocciiiiieciee ettt e et e b e st eeneesabeeeneeeaes 43
4.10.4. MeNU HEM = CASCAUEccuveeirieeiee et stee ettt et e s be e e ere e s beeeebeesbesebeesnbessseesnbeseseesans 43
4.10.5. MENU [N — SEPAIALOTcoveitieeeete et e ettt e e et see e sbe e e e e e sbeasbe e beebesnsesaeesanesnes 44

4. 11 ENTERING TEXT cutiieeitiieieieeeeiitteeeeeateeeseseeaesbeeasassseeesasseeasastaeesaassesesasseeasanbseasasseeesassneessnsenasannns 44
I T = 11 = L PO PP PP 44
A.10.2. EQIE AFEBS.....uviiiieeeiee ettt e e s vt e et e st eeete e st e e ebeesabeesseesabesenbessabesanseesnbesaseesnbesanseesans 45
.02, CANVAS ...ttt e e e ettt e e e ete e e e eaeee e s baeaeaasteeesaaseeaeaateeeeaastesesasseeaeaabaeaeasseeesasseeeaanteeanannns 52
4.12.1. The Canvas DEfiNItION........c.cciiiiii ettt e e ebe e st eeaeesnbeeeneesaes 52
4.12.2. ThE CCOMPONENE TY[IB....eeuvereerterueeteeeeeesie st ste et sbesae et s eessesbeseesbesaesaesse e s eeeseesbesaesbesneeneanes 52
4.12.3. CanVas EM - OVAIS.......ccceiiirieciee ettt e e ere e s be e e re e s beeebeesabesebeesnbeseseesans 53
4.12.4. CanVas TEMS = LINES......ccciiiiiecie ettt ettt s b e e te e s be e e ete e s beeebeesnbeesnseesabeseneesans 53
4.12.5. CANVAS ITEIMIS — AT oottt e e ettt e e et e e e s e e e e e st e e e s e areeesaneeessataeeeenseeesnnenas 53
4.12.6. Canvas tems — RECIANGIEooi i e b 53
4.12.7. Canvas [emS — POIYONSoiiiiieeeee sttt et b enes 53
4.12.8. CanNVAS ITEIMS — TEXLueiieiiiee ettt ettt e et s re e e e st e e e e e eate e e seaseeeesnbeeeeenreeesnnenas 53
4.12.9. Canvas HemMS — BitIMAPS.oeiereiireeeeie ettt s e e b et s sb e ne s 53
4.12.10. Canvas Items — Displaying Standard COMPONENES..........cceiererererieereene e 54
4.12.11. A CanVas EXAMPIE ..ottt ettt ee e bbb 54
4.13. LISTENING TO USER INPUT ..ceeiitieeeeiuieeeeeteeeesteeeeessteeesasseeassstseesaassesesasseessassssesanssesesassesessnsesesannns 55
4.14. GENERAL CONFURATION OPTIONS.ciiiutteeiteieeeiteeeeaseeeesteeesaasseeesassesasssesesasssesesassseessnsesesannes 57
S = 11 o I {0 L= oo o USRS 57
4.14.2. Sze based coONfiguration OPLIONS.........cc.ciiiireririereeee et et sb e enes 58
4.14.3. MiSCEIl@NiOUS OPLIONS.......ouiieirieiie ittt e b et e b e e e enes 59
CHAPTER 5-USING CONCURRENC Yooiti ettt st e st e e st e e st ssnnee e 62
CHAPTER 6 -FRAN APPENDIXooiiitiiiiieeitie ettt esteeeeteeesteeeebee e steessbessssessbesensessnbessseesnbesanseesnns 64
B.1. NUMERIC TYPES ..o tiiieietiee e sttt e e ettt e ettt e e e ettt e e e eate e e staeeeeaabeeesesseeeesbseeaestesasanseeassnbeeesasreeesnnenas 64
6.1.1. BASIC NUMENIC TYPES. ... eeiterueeuieiereente ittt ereesee e ettt sae e aese e beseesbesaeeseeneeseebesaesbesneeneenes 64
6.1.2. POINES AN VECIOIS ...ttt ettt ettt stte et ete e et e tee e be e e eaeeeebeeesbeeebesesaeeebesesnneenress 64
B.0.3. VECIOI SDACES......cueiiueiauietieteeteetesiee st esaeeste ettt e eaeeebeesbe e beeabesaeesaeesaeesae e bt easeeaeesneenbeanbennrenn 65
B.1.4. TranSIOrMALIONS.......ceeitiiiieeeetee e cte ettt see ettt e see e sbe e e steeesbeeesaeeeebeeesseeebeseaseeebesesseeebesesseennress 65
B.1.5. RECIANGIES ...ttt bt s b et ae e e se et e e b e eaeeneenes 66
6.2. FRAN OVERLOADED FUNCTIONS.......utiieiitieeeeitteeeeisteeesatseeseasbeeesessseessasseasssssesesasssssssnsesesasssesesassees 67

Chapter 1 - The Basic Concepts

1.1. Introduction

Developing a GUI in Haskell should be easy. Y et despite a whole dlew of systems, it’s still difficult to
knock up a quick interface, let alone develop a complex, dynamic one. A range of different paradigms
have been suggested, based on callbacks or full concurrency. They’ve all got their problems. Building a
complex system can result in a mess of callbacks and mutable references that can seriously confuse the
structure of your program. Concurrent programming can help with some of this structure, but
encourages a whole range of alternative problems associated with mutual exclusion and multiple
processes.

The other major problem that we face is producing convincing looking, platform independent code.
Without the proper support this too can be a bit of a nightmare.

With FranTk (pronounced “frantic”), life should (hopefully) be a bit simpler. It's designed to allow you
to build your application in a declarative manner. It uses behaviours and events, concepts from Conal
Elliot’s Functional Reactive Animation. These allow you to model a system over time. Events are used
to describe values that occur discretely, such as button clicks. Behaviors are continuous quantities that
vary over time. They are used to represent the state of an application. Events and behaviors can interact.
For instance, we can have a behavior that changes on every event. Y ou can then render this application
on to an interface.

FranTk currently lives on top of Tcl-Tk. This provides a platform independent and robust language for
building GUIs. FranTk code will run unchanged on Windows and Unix, giving native look and feel on
each system. However, it has been designed to be as Tcl-Tk independent as possible. This means it can
be ported to other GUI systems. We are currently also investigating a version using Java's swing
libraries. But enough marketing, let’s get on with afew examples.

1.2. First Example

Hella warld

Let's start with a quick example to get across some basic concepts. The “Hello World” program is
defined as follows:

main :: 10 ()
main = start $ render withRootWn $ nkLabel [text “Hello World"]

(Here $ is used for function application, f $ b = f b. This cuts down on the number of brackets
necessary)

Let’s break that down. We create a label widget, with the text “Hello world”. The type signatures are as
follows:

nkLabel :: [Conf Label] -> Conponent
text :: Has_text w => String -> Conf w

Weuse nkLabel tomakealabel. It takesalist of configuration information, in this case, some text to
display. As with TkGofer we use type classes to guarantee that only the correct configuration
information can be applied to any widget. The text function takes a String and returns a
configuration option that can be applied to any object that is a member of the Has_t ext class. This
classincludes labels, as they are capable of displaying text.

ThenkLabel functionreturnsaConponent .
type Component = GU W dget

A Component is an action that produces aW dget . This uses the GUI monad, which is an extension of
the standard 1O monad. Values of type GUI a represent actions that may have some side effect on the
user interface, such as creating alabel, and return a value of type a.

A W dget isan abstract data type representing primitive Tcl widgets. A Widget may in fact be made
up of several primitive tcl widgets, and may be dynamic, changing its appearance over time.

We now have to run the component within a window. In this example we run the component in the root
window, usingw t hRoot W ndow.

wi t hRoot W ndow :: [Conf W ndow] -> Conponent -> WConponent

Thistakes alist of configuration options for awindow, and produces a\WConponent . Thisisan action
that produces a W ndowW dget , which is an abstract representation of a window (that will contain
widgets).

type WConponent = GU W ndowW dget

We have now distinguished two different types of widgets

e Standard widgets, such as buttons and labels, that can be composed with operators such as above
and beside;

e Window widgets that represent actual windows

We will come across other types of widget later.

Now we need to render this window component onto the screen. We do thisusing r ender .
render :: WConponent -> GU ()

Finaly, to run the GUI actions that we have produced we use start. This runs the action and then starts
up the tcl-tk event loop. This event loop will run until the graphical user interface quits, at which point
it will return.

start :: GQJ () ->10()
Asstart andrender are often used together there is a composite function display.

di splay :: Wonponent -> 10 ()
di splay = start . render

1.3. Interactive Examplel — A Simple Counter

Now let’'s try a simple interactive example that shows how you handle state in FranTk. Consider the

simple interface below.
tk =]

27

inc | dec |

27

| L

It shows a simple counter with a label, an increment and decrement button, and a dider (known as a
scale widget). This widget has a current value shown by the slider and the label. Pressing the increment
or decrement button, or moving the dider will change this value. We therefore have multiple views of
some data.

1.3.1. Representing Statewith BVars

To represent the state in the example we use aBVar . A value of type BVar a represents some abstract
mutable state of type a.

data Bvar a

We can create a new BVar within the GUI or the | Omonad. Most commonly we will be using them
within the GUI monad.

newBvVar :: a -> 10 (Bvar a)
nkBvar :: a -> QU (Bvar a)

WEe'll come across other forms of BVar later that can be created within the | O or GUI monad. In
general we use the naming policy that the IO version is prefixed with new and the GUI version with
nk.

It ispossible to get a behavior from a Bvar.

bvar Behavi or :: BVar a -> Behavior a

A value of type Behavi or a isatime varying value of type a. The behavior therefore represents the
value of the counter at any give point in time.

It is possible to get an event from a BVar

bvar Event :: BVar a -> Event a

An event is a stream of occurrences, each of which has a specific time and value. The type Event a
denotes an event that generates a value of type a when it happens. The event from a BVar therefore
generates an occurrence every time the value of the BVar changes.

In our example we would therefore represent the state of the counter as a value of type Bvar | nt .
1.3.2. Using the value of a BVar

What can we do with a behavior? We can tell the label and dider to display the behavior values that we
get from the Bvar .

I bl :: Bvar Int -> Conponent
I bl m= nmkLabel [textB (liftl show (bvarBehavior m)]

textB :: Has_text w => Behavior String -> Conf w

liftl :: (a ->b) -> Behavior a -> Behavior b

We can tell alabel to display aStri ng Behavi or using thet ext B configuration option. We can
turnthel nt eger Behavi or (of theBVar)intoaStri ng Behavi or usingl i ft 1, which maps
afunction across across the Behavi or . Further combinators exist to compose several behaviors, such
asl i ft2 shown below.

lift2 :: (a->b ->c) -> Behavior a -> Behavior b -> Behavior c¢

We can tell the dider to use the value of the BVar with scal eVal B. This sets the value of the dider
to that of an integer behavior. (We will fill in the rest of the definition (the .. part) later.)

scale :: Bvar Int -> Conponent
scale m = nkHScal e [scal eval B (bvarBehavior m] (..)

scalevVal B :: Behavior Int -> Conf w

1.3.3. Setting the value of a BVar
We can set the value of aBVar usingitsLi st ener.

bvarlnput :: BVar a -> Listener a
bvarUpdl nput :: BVar a -> Listener (a -> a)

A listener is an abstract type, but it can be thought of asLi stener a = a -> 10 (). A valueof
typelLi st ener a, isafunction, that given avalue of type a, performs a side-effecting | O action with
it. Listeners are therefore consumers of values.

The listener accessed by bvar | nput updates the BVar to its given value. This will alter the value of
the BVar ' s behavior and generate an event occurrence. The listener accessed by bvar Updl nput
updates the BVar by applying the given function to its current value.

We can therefore define the increment button as follows.

incb :: BVar Int -> Conponent
incbh m= nkButton [text “inc”] (tellL (bvarUpdlnput m (+1))

nkButton :: [Conf Button] -> Listener () -> Conponent

The function mkBut t on takes a list of configuration information for a button. This defines its
appearance. Note that Button is also an instance of the Has_t ext class. It aso takes a listener which
is passed the value () every time the button is pressed.

We therefore need to make the button talk to the listener provided by the BVar . We do this using
tellL.

tellL :: Listener a -> a -> Listener b

The function t el | L takes a listener and a value, and returns a listener that ignores its argument and
always performs its action with thisvalue. (t el | L isone of a number of listener functions described in
chapter 2).

Listener 1

tellL
Listener

In the definition of incb we therefore produce a listener that that ignores its argument and always
updates the BVar using the function (+1).

The dider simply updates the BVar with its changed value. The dider’s listener is fired with its current
value every time the dider is moved. We use nkHScal e to make a horizontal dider.

scale m= nkHScale [..] (bvarlnput m
nkHScal e :: [Conf Scale] -> Listener Int -> Conponent

1.3.4. Composing Components
Finally we compose the components

counterB :: BVar Int -> Conponent
counterB m = above (Ibl m (beside (incb m (decb m)

conposite :: BVvar Int -> Conponent
conposite m = above (counterB n) (scale m

Note that above and beside are used here to compose components.

above :: Conmponent -> Conmponent -> Conponent
besi de :: Conponent -> Conponent -> Conponent

The complete code for the example is therefore:

main :: 10 ()
main = display $ withRootWndow [] $ scal eAndButton

scal eAndButton :: Conponent
scal eAndButton = do {m <- newBVar 0; conposite ni

conposite, scal e, counterB, | bl,incb,decb :: BVar Int -> Conponent
conposite m = above (counterB n) (scale m

scale m = nkHScal e [scal eVal B (bvarBehavior m] (bvarlnput n
counterB m = above (Ibl m (beside (incb m (decb m)

I bl m = nmkLabel [textB (liftl show (bvarBehavior nj]

incbh m= nkButton [text “inc”] (tellL (bvarUpdlnput m (+1))

decb m = nkButton [text “dec”] (tellL (bvarUpdlnput m
(subtract 1))

1.4. A brief aside- TheHas Event class

In fact, BVar , along with W r e, which we will come across later, is a member of a more general class
called Has_Event . This provides accessto its listener and event.

class Has_Event c¢ where
input :: c a -> Listener a
event :: c a -> Event a

i nstance Has_Event BVar where
i nput = bvarl nput
event = bvar Event

1.5. Interactive Example |l — A Distance Converter

To illustrate some other important concepts we'll look at a second interactive example. Consider a
distance converter. It can operate in inches, feet, yards and miles. Distances are typed into an entry area;
pressing the return key sets the current value. Changing the mode causes the distance to be converted to
the alternate units.

Converter M=l

™ |nches % Feet & Yards 7 Miles
|528229

We'll now implement this converter. To make a converter we pass in a BVar representing conversion
mode, which consists of a pair of functions to trandlate to and from standard units; a BVar representing
the current value of the converter in standard units; and alist of convertion modes with their names.

type Convert = (Doubl e -> Doubl e, Doubl e -> Doubl e)

converter :: BVar Convert -> BVar Double -> [(String, Convert)]
-> Conponent

1.5.1. Using Text Entries

The converter consists of an entry and a set of radio buttons. We'll deal with the entry first. We create
the entry itself using the function nkEnt r yRt r n.

nkEntryRtrn :: [Conf Entry] -> Listener String -> Conponent

This expects alist of entry configuration information and alistener. It tells the listener the current value
of the entry every time that the return key is pressed.

The entry displays the current value of the converter in terms of the current units. We can create this
value with the function cur r ent Val ue.

currentVal ue :: BVar Convert -> BVar Doubl e -> Behavior String
current Val ue state value =
lift2 getVal (bvarBehavior state) (bvarBehavior val ue)
where getVal :: Convert -> RealVal -> String
getVal (toUnit,fromnit) unit = show $ fronmnit unit

lift2 :: (a->b ->c) -> Behavior a -> Behavior b -> Behavior c¢

Note that we use | i ft 2 here to compose two behaviors with a mapping function to make a third
behavior.

1.5.2. Sampling behaviors

When the return key is pressed the converter needs to take the new value from the text entry, convert
from current units into standard units, then set the value BVar with this value. We need to sample the
current mode to do this. The nkEnt r yRt r n function expects a listener that will be told about string
values. The set Val ue listener istherefore implemented as follows.

setValue :: BVar Convert -> BVar Double -> Listener String
set Val ue state value =
wi t hSnapL setVal (bvarBehavi or state) (input val ue)
wher e
setVal :: String -> Convert -> Real Val
setVal val (toUnit,fronmUnit) = toUnit $ read val

withSnapL :: (a -> b ->c) ->Behavior b ->Listener ¢ -> Listener a

We use wi t hSnapL to make a listener that snapshot a behavior and consumes its current value. Its
first argument is a function that composes the value passed to the listener and the value of the behavior
to create anew value.

Note the funny looking type. This is because listeners are consumers of values not producers. If we
think of Li st ener as being of typea -> 10 (), then, given some | O function sample, that
samples a behavior, we can think of the definition of wi t hSnapL asfollows:

sanple :: Behavior a -> 10 a
withSnapL f bl =\x -> do {v <- sanple b;l (f x b)}

The set Val ue listener, formed from wi t hSnapL, consumes Strings, samples the current mode
behavior, applies set Val to the String and mode to get a new distance, and tells the value BVar
about this distance.

Listener 1

input value :?I_

SetVal val| state
snapshotL val

behavio
state

Finally, we can define the entry as follows:
entry :: BVar Convert -> BVar Doubl e -> Conponent

entry state value = nkEntryRtrn [textB (currentVal ue state val ue)]
(setVal ue state val ue)

1.5.3. Using Radio buttons
The next stage isto define the set of radio buttons that set the current mode. We can do this as follows.

radi obuttons :: BVar Convert -> [(String, Convert)] -> Conponent
radi obuttons state types = do
r <- nkRadio (Just $ fst $ head types)
let radio (s,info) =
nmkRadi obutton [text s,useRadio r s]
(tellL (input state) info)
nbesi de (map radi o types)

We can break this down as follows. The set of radio buttons is generated from a list of name and
conversion function pairs. When a radio button is pressed it sets the current mode by setting the state
Bvar .

We create a radio object, using mkRadi o, which all the radiobuttons share. This sets them as a group
and guarantees that only one of the buttons may be set at atime. It takes a value to say which radio item
should be set initialy. (In this case the first element is “Inches’).

nkRadio :: Eq a => Maybe a -> QU (Radio a)

We create a radio button using nmkRadi obutt on, which as usual takes a list of configuration
information and a listener that it tells about button clicks.

nmkRadi obutton :: [Conf Radiobutton] -> Listener () -> Conponent

Each radio button displays its own String name, such as Inches (thet ext s configuration option). Its
listener sets the state BVar with its own conversion functions when pressed. Finally it uses the radio
produced earlier, set with useRadi o.

useRadio :: (Has_useRadio w, Eq a) => Radio a -> a -> Conf w

Note that useRadi o aso takes avalue of type a, which is used as the element’ s reference. This results
inthe “Inches’ element becoming the current element.

1.5.4. The complete code
The complete code for the example can therefore be seen below.
main :: 10 ()
main = display $ nkWndow [title “Converter”] $ do
state <- nkBVar (snd $ head units)
val ue <- nkBvar 0
converter state value units

type Convert = (Double -> Doubl e, Doubl e -> Doubl e)

units :: [(String, Convert)]
units = [("lInches", (id,id)),

("Feet",(\x ->x * 12,\x -> x [/ 12)),

("Yards",(\x ->x * 36, \x ->x [/ 36)),

("Mles", (\x ->x * 63400,\x -> x /63400))]
converter :: BVar Convert -> BVar Double -> [(String, Convert)]

-> Conponent
converter state value types =
radi obuttons state types “above entry state val ue

entry :: BVar Convert -> BVar Doubl e -> Conponent
entry state value =

10

nkEntryRtrn [textB (currentVal ue state val ue)]
(setVal ue state val ue)

currentValue :: BVar Convert -> BVar Doubl e
-> Behavior String
current Val ue state value =
lift2 getVal (bvarBehavior state) (bvarBehavior val ue)
wher e

getVal :: Convert -> RealVal -> String
getVal (toUnit,fromnit) unit = show $ fronmnit unit

setValue :: BVar Convert -> BVar Double -> Listener String
set Val ue state value =
wi t hSnapL set Val (bvarBehavi or state) (input val ue)
wher e
setVal :: String -> Convert -> Real Val
setVal val (toUnit,fronbnit) = toUnit $ read val

radi obuttons :: BVar Convert -> [(String, Convert)] -> Conponent
radi obuttons state types = do
r <- nkRadio (Just $ fst $ head types)
let radio (s,info) =
nmkRadi obutton [text s,useRadio r s]
(tellL (input state) info)
nbesi de (map radi o types)

1.6. A Dynamic Example

WEe'll now consider a more dynamic example. Consider the interface below. It alows a group of users
to log on to a system and monitor who else is also logged on. Users can log on with the register
window. They each have an individual window that displays their name in the title bar. They can
change their own details using the entry area. Pressing the “set” button updates their details with the
current value of the entry area. Each user can each see the name of the other users and if they wish their
details. The “details’ field is only shown when the “view” checkbutton is selected.

Register uzer [H[=] E3

I add

User david =] User tom =]
Run User meurig [E[=] Fun

Igru:uup - Staff zef Fun Igrn:nup - Students zet

Ign:uup - PHD students zeh

meurig M view meurg ¥ wiew

group - PhD students david W view group - PhD students
torn W wicw group - Staff david W wiew
group - Students tom [wiew group - Staff

1.6.1. Defining an individual node

We'll now implement this example. First of all let’s start by defining one of the individual nodes that
display a user's name and details. The data for each user will be shared, so we'll define a data type
Publ i cUser which has a static name and a string behavior representing the dynamic details
information for that user.

data PublicUser = PublicUser {
publicName :: String,

11

publicDetails :: Behavior String
}

We can then define how to create a component that displays this information.

nmkPubl i cNode :: PublicUser -> Conponent
nmkPubl i cNode (PublicUser nmdetails) = do
visdetails <- nkBvar True
I et name = nkLabel [text nnj
vi scheck = nkCheckbutton [text "view', checkVal True]
(i nput visdetails)
detail sLbl = nkLabel [textB $ detail s]
above (nbeside [name, vischeck])
(i fB (bvarBehavi or visdetails) detail sLbl enptyConponent)

A public node consists of a label for the name, a check button and a label for the details. We create a
Boolean BVar that models the visibility of the details label. The checkbutton then talks to this BVar .
To make a checkbutton we use mk Checkbut t on.

nmkCheckbutton :: [Conf Checkbutton] -> Listener Bool -> Conponent
We set it so that it isin set position initially using checkVal .

checkVval :: Has_checkVal w => Bool -> Conf w
i nstance Has_checkVal Checkbutton

We can conditionally display a component usingi f B.

cl ass GBehavi or w where _
_ ifB :: GBehav! or w => Behavior Bool ->w->w->w
i nstance GBehavi or Conponent

When applied to components i fB b wl w2 displays component wl when b is True and w2
otherwise. (Other members of the GBehavi or class include Behavi ors and Event s.) In this
example we display the details label when visdetailsis True and an empty component otherwise.

enpt yConmponent :: Conponent
1.6.2. Defining a User’s View

Now we define a window for a user. These consist of a button and entry widget to update details, a
collection of public nodes and the window itself with a menu that allows a user to exit.

1.6.2.1. The Button and Entry Widget — Introducing Wires

We'll start by defining the button and entry widget. The entry and button together update a String
BVar , as shown below.

nkEntryWthButton :: String -> Listener String -> Conponent

nkEnt ryW t hBut t on bname i nputL = do

wire <- nkWre

let button = nmkButton [text bname] (tellL (input wire) ())

entry = nkEntry [] (event wire) inputlL

besi de entry button
This uses a new concept called aW re. A Wr e isalimited version of a BVar . It has only an input
listener and an event. It istherefore amember of the Has_Event class.

nkWre :: QU (Wre a)

newNre :: 10 (Wre a)
wirelnput :: Wre a -> Listener a
wireEvent :: Wre a -> Event a

12

i nstance Has_Event Wre
We therefore have the following structure —

* Thebutton talks to the wire when it is clicked
* When the entry hears something on the wire it sends its current value to the BVar

1.6.2.2. Defining the Collection — Introducing Behavioral Collections

button

Now we'll define the collection of nodes that make up one user’s view of those logged on. We do this
using a behavioral collection, inthiscase alist.

usersArea :: ListB PublicUser -> Conponent
usersArea users = nabove $ fmap nkPublicNode users

Given a behavioral list of Publ i cUser s we can map the mkPubl i cNode aong the list and then
place the objects above each other. Note that nabove places a collection of components above each
other.

type ListB a
i nstance Functor ListB

cl ass PackColl ection ¢ w where
nabove :: c w-> W

i nstance PackCol | ection ListB Conponent

When rendered the Li st B will incrementally update the screen only making necessary changes, rather
than redisplaying everything.

1.6.2.3. Making list collections

To make alist collection we use a special type of BVar , aLi st Bvar .

type ListBVar a

nmkLi stBvar :: Eq a => [a] -> QU (
newLi stBvar :: Eq a =>[a] -> 10 (

i st Bvar a)
i stVar a)

-

When creating aLi st BVar we giveit aninitia list of values. Elements in a behavioral list must have
equality defined upon them.

For the purposes of this example we will need to append elements to this list and delete them. We can
dothisusing appendLi st Band del et eLi st B.

appendListB :: Eq a => ListBVar a -> Listener a
deletelListB :: Eq a => ListBVar a -> Listener a

We can extract the Li st B fromtheLi st BVar using collection.
collection :: ListBvVar a -> ListB a
Wecan also create aLi st B that aways contains just a constant single list using const ant Li st B.

constantListB :: [a] -> ListB a

13

These behavioral collections are powerful. We can for, instance, apply filter and sort to Li st Bs. For
the full range of operations on behavioral collections see Chapter 3.

1.6.2.4. Defining the Window and Menu

We now define an individual user window. Firstly, we define the data for a private user. These have a
name, some details information that is held in a BVar , they know about a list of other users, and they
have an exit listener that is used to log them off.

data PrivateUser = PrivateUser ({
nane :: String,
details :: BvVar String,
otherUsers :: ListB PublicUser,
exit :: Listener ()

}

We define the user window as follows.

nmkUser W ndow :: PrivateUser -> Wonponent
nmkUser Wndow (PrivateUser nmdetails others exit) = do
I et winnenu = nkMenu [] [ntascade [text "Run"]
(mkMenu [] [nbutton [text "Exit"] exit])]

nkW ndow [title $ "User " ++ nmuseMenu w nnenu] $

let editarea = nkEdi tWthButton "set" (input details)

usersarea = usersArea others
i n above editarea usersarea

This definition can be broken down into severa parts. We create a hew window component using
mkWindow.

nkW ndow :: [Conf W ndow] -> Conponent -> WConponent
We giveit aspecifictitieusingtit| e.

title :: String -> Conf W ndow
We give it a specific menu using useMenu.

useMenu :: GJ Menu -> Conf W ndow
We create amenu using nkMenu.

nkMenu :: [Conf Menu] -> [Menulten] -> GU Menu

This takes a list of menu items as well as its configuration information and displays that list. (Thereis
also aversion of mkMenu that displays adynamic Li st B of menu elements. See section 4.10.)

In our case we create one cascading menu over the menu bar of the window and place a single menu
button item within this cascading menu. We then just tell the exit menu button to talk to the exit
listener.

ncascade :: [Conf Cascade] —> GUI Menu -> Menultem
nmbutton :: [Conf Cascade] -> Listener () -> Menultem

1.6.3. Creating the Whole Application

As our final stage we need to create the whole application by making the register window, the pile of
windows and the application code.

The register window component simply consists of a button and entry within a window.

regi sterWndow :: Listener String -> Wonponent
regi ster Wndow add = nkWndow [title “Register user”] $

14

nkEnt ryWt hButton “add” add
The pile of windows simply consists of one window for each user and the registerWindow.
wi ndows :: Listener String -> ListB PrivateUser -> Wonponent

wi ndows add users = pile [registerWndow add,
pile $ fmap nkUser W ndow user s]

Here pileis aclass function that displays a collection of components.

class Pile ¢ w where
pile :: cw->w

i nstance Pile ListB Wonponent
instance Pile [] WConponent

Finally we have to create the application code, that isthe list of users, and render the list of windows.
main :: 10 ()
main = start $ do

privatel st <- nkListBvVar []
wi ndows (addUser privatelst) (collection privatelst)

We need to create a user from a String. We can do this using mapl OL. This is another member of the
family of listener operations and allows us to apply an IO operation to a value before passing it to a
listener.

maplOL :: (a ->10b) -> Listener b -> Listener a

Again note the funny looking type. If we think of Listener as being of typea -> 10 (), thenwe
can think of the definition of maplOL as follows:

maplOL f | =\x ->do {y < f x; | vy}

Note that we apply the function f to any values we receive and then passthe valueontol.

Listener |

Listener
formed by
maplOL f |

addUser :: ListBVar PrivateUser -> Listener String
addUser |st = mapl OL nkUser (appendListB Ist)
wher e
mkUser :: String -> 10O PrivateUser
nkUser nm = do
details <- newBvar ""
let exit = tellL (deleteListB Ist) pu
pu = PrivateUser nmdetails others exit
others = fmap toPublic $
filterLB (\x -> name x /=nm $
col l ection | st
return pu

toPublic :: PrivateUser -> PublicUser

toPublic (PrivateUser {name = nmdetails = ds}) =
Publ i cUser nm (bvar Behavi or ds)

To make each user’s public list we filter it so that it does not include an item for themselves and map
private user info to public user info. We perform the filtering using filterL B.

filterLB :: (a -> Bool) -> ListBa -> ListB a

15

That's it. The complete code for the example is shown again below. A multi-user program in only 70
lines of code.

main :: 10 ()

main = display $ do

privatel st <- nkListBVar []

wi ndows (addUser privatelst) (collection privatelst)

data PublicUser = PublicUser {
publicName :: String,
publicDetails :: Behavior String

nmkPubl i cNode :: PublicUser -> Conponent
nmkPubl i cNode (PublicUser nmdetails) = do
visdetails <- nkBvar True
I et name = nkLabel [text nnj
vi scheck = nkCheckbutton [text "view', checkVal True]
(i nput visdetails)
detail sLbl = nkLabel [textB $ detail s]
above (nbeside [name, vischeck])
(i fB (bvarBehavi or visdetails) detail sLbl enptyConponent)

data PrivateUser = PrivateUser ({
nane :: String,
details :: BvVar String,
otherUsers :: ListB PublicUser,

exit :: Listener ()

}
i nstance Eq PrivateUser where
p == pl = nane p == nane pl

nkEntryWthButton :: String -> Listener String -> Conponent

nkEnt ryW t hBut t on bname i nputL = do

wire <- nkWre

let button = nmkButton [text bname] (tellL (input wire) ())
entry = nkEntry [] (event wire) inputlL

besi de entry button

usersArea :: ListB PublicUser -> Conponent
usersArea users = nabove $ fmap nkPublicNode users

nkUser Wndow :: PrivateUser -> WConponent
nmkUser W ndow (PrivateUser nmdetails others exit) = do
I et winnenu = nkMenu [] [ntascade [text "Run"]
(mkMenu [] [nbutton [text "Exit"] exit])]

nkWndow [title $ "User " ++ nmuseMenu wi nnenu] $

let editarea = nkEntryWthButton "set" (input details)

usersarea = usersArea others
i n above editarea usersarea

regi sterWndow :: Listener String -> Wonponent
regi ster Wndow add = nkWndow [title "Register user"] $
nkEnt ryWt hButton "add" add

wi ndows :: Listener String -> ListB PrivateUser -> Wonponent
wi ndows add users = pile [register Wndow add,
pile $ fmap nkUser Wndow user s]

addUser :: ListBVar PrivateUser -> Listener String
addUser |st = mapl OL nkUser (appendListB Ist)
wher e

nmkUser :: String -> 10 PrivateUser
nmkUser nm = do
details <- newBVar
let exit =tellL (deleteListB Ist) pu
pu = PrivateUser nmdetails others exit
others = frmap toPublic $
filterLB (\x -> nane x /= nm $

16

col l ection | st
return pu

toPublic :: PrivateUser -> PublicUser
toPublic (PrivateUser {name = nmdetails = ds}) =
Publ i cUser nm (bvar Behavi or ds)

1.7. Concepts Summary

We've come across a number of important concepts in this chapter through our set of examples. Here's
asummary of the important ones.

1.7.1. The GUI Monad

All widget based GUI actions take place in the GUI monad, which is an extension of the standard 10
monad.

1.7.2. Of Behaviors, Eventsand Listeners

The three basic concepts used in FranTk to manipulate state are Behavi ors, Events and
Li steners.

A Behavi or is a continuous value that changes over time. A value of type Behavi or a isatime
varying value of type a. Though it is abstract, it can be thought of asBehavior a = Tine -> a.

An Event isastream of occurrences, each of which has a specific time and value. The type Event a
denotes an event that generates a value of type a when it happens. Though abstract, it can be thought of
asEvent a = [(Tinme,a)].

A Li st ener is an abstract type, but it can be thought of asLi stener a = a -> 10 (). A
value of type Li st ener a, is afunction, that given a value of type a, performs a side-effecting | O
action with it. Listeners are therefore consumers of values.

There is an algebra of operations for behaviors, for events and for listeners described in Chapter 2.

1.7.3. Sampling Behaviors

It is often useful to be able to sample the current state on some user input. For instance, to sample
interpret some input in terms of the current mode. We can do with usingwi t hSnapL.

withSnapL :: (a -> b ->c) ->Behavior b ->Listener ¢ -> Listener a

Note the somewhat back to front type signature that results from listeners being consumers of values.
The new listener receives a value, composes it with the current value of the behavior, using the given
function, and passesiit to the original listener.

1.7.4. Representing State

To represent state in FranTk we use aBVar. A value of type BVar a represents some abstract mutable
state of type a.

data Bvar a

We can create a new BVar within the GUI or the | Omonad. Most commonly we will be using them
within the GUI monad.

nkBvar :: a -> QU (Bvar a)
newBvVar :: a -> 10 (Bvar a)

Itispossibleto get aBehavi or fromaBVar .

17

bvar Behavior :: BVar a -> Behavior a
It ispossible to get an Event from aBVar

bvarEvent :: BVar a -> Event a
We can set the value of aBVar usingitsLi st ener.

bvarlnput :: BVar a -> Listener a
bvar Updl nput :: BVar a -> Listener (a -> a)

The listener accessed by bvar | nput updates the BVar to its given value. This will ater the value of
the BVar's behavior and generate an event occurrence. The listener accessed by bvar Updl nput
updates the BVar by applying the given function to its current value.

1.7.5. Of Wires

When we only need events and listeners we can use a simpler abstraction calledaWre. AWre isa
limited version of aBVar . It hasonly aninput Li st ener and an Event .

nkWre :: GU (Wre a)

newNre :: 10 (Wre a)
wirelnput :: Wre a -> Listener a
wireEvent :: Wre a -> Event a

1.7.6. The Has Event class

To simplify names alittle, Bvar and W r e are both instances of the Has_Event class.
class Has_Event c¢ where
input :: ¢ a -> Listener a
event :: c a -> Event a

1.7.7. Of Behavioral Collections

There are collection versions of BVar that represent behavioral collections but are more efficient to
display asthey can be rendered incrementally.

For instance, we can have aLi st BVar whichisabehavioral list collection variable.
type ListBVar a

nkListBvar :: Eq a => [a] -> @J (ListBvar a)
newLi stBvar :: Eq a => [a] -> | O (ListVar a)

There are operations to update these collections specific to their type. For instance a ListBVar contains
an operation to append itemsto the list.

appendListB :: Eq a => ListBVar a -> Listener a

We can extract the behavioral collection such as ListB from the ListBVar using the function collection.
collection :: ListBvar a -> ListB a

1.7.8. Of Components and Widgets

All functions that create objects such as buttons and |abel's produce components.

type Conponent = GU W dget

18

A Conponent isan action that produces a W dget . A W dget is an abstract data type representing
primitive Tcl widgets. A W dget may in fact be made up of severa primitive tcl widgets, and may be
dynamic changing its appearance over time.

As well as basic components there are several other types including window components. We display
basic components by running them inside window components.

type WConponent = GU W ndowW dget
wi t hRoot W ndow :: [Conf W ndow] -> Conponent -> WConponent
nkW ndow :: [Conf Wndow] -> Conponent -> WConponent

1.7.9. Configuration Information

To set the appearance of a component we pass in configuration information. This configuration
information is typed so that it can only be applied to the correct sort of widget. We use type classes to
overload the configuration options to keep names simple. For instance, both a button and a label can
take textual configuration information and so are members of the Has_t ext class.

class Has_text w

text :: Has_text w => String -> Conf w
i nstance Has_text Label
nmkLabel :: [Conf Label] -> Conponent

To make a component that changes dynamically we use behavioral configuration information. For
instance, we can set some changing text using a String behavior.

textB :: Has_text w => Behavior String -> Conf w
1.7.10. Composing Components
We compose components using operators such asabove and besi de.

cl ass Packable w where
above, beside :: w->w->w

i nstance Packabl e Conponent
We can also compose collections of components.

cl ass PackColl ection ¢ w where
nabove, nbeside :: ¢c w->w

i nstance PackCol | ection ListB Conmponent
i nstance PackCol | ection [] Conponent

We compose window components using pile.

class Pile ¢ w where
pile :: ¢cw->w

i nstance Pile ListB Wonponent
instance Pile [] WConponent

When rendering a static number of windows, we could just render each individually. The use of pilesis,
however, vital for rendering a dynamic list of components.

1.7.11. Rendering Components
We render awindow component using render.

render :: WConponent -> GU ()

19

Finaly, to run the GUI actions that we have produced we use start. This runs the action and then starts
up the tcl-tk event loop. This event loop will run until the graphical user interface quits, at which point
it will return.

start :: GQJ () ->10()

20

Chapter 2 - Dealing with State in FranTk

The previous chapter discussed the basic concepts in FranTk. The most significant feature about
FranTk is that all state is modelled in terms of listeners, events and behaviors. In this chapter we'll
present the algebra of operators available on each. Y ou probably won't need most of these in day to day
life but sometimes they can be very handy.

2.1. What can wereally dowith Listeners

To summarise again, aLi st ener isan abstract type, but it can be thought of asLi stener a = a
-> 1O (). A vaueof type Li st ener a, isafunction, that given a value of type a, performs a
side-effecting 10 action with it.

Listeners are therefore consumers of values. This has important concepts for how the listener algebrais
structured. The types seem to be reversed as we apply a function to values that a listener is about to
receive before passing them to alistener to be consumed.

2.1.1. Thelistener algebra

The first simple listener we have is never L. This is a listener that does nothing with any value it
receives.

neverL :: Listener a

Next we have mer gelL which merges two listeners to produce a new listener. The combined listener
consumes values and passesthemto both | 1 and | 2.

mergeL :: Listener a -> Listener a -> Listener a
Listener 1
<
Listener 1

Thereisaso aversion of mergel that takes alist of listeners and merges them all.

anyL :: [Listener a] -> Listener a
anyL = foldr mergelL neverlL

Now we come to mapping functions across listeners. There are two versions of map one for pure
functions and one for mapping 10 actions across listeners

mapL :: (a -> b) -> Listener b -> Listener a
maplOL :: (a ->10Db) -> Listener b -> Listener a

Note the strangely inverted type. This is because listeners are consumers of values not producers. If we
think of Li st ener asbeing of typea -> 1 O (), thenwe can think of the definitions of mapL and
mapl OL asfollows:

Listener |
Listener
formed by
mapL f |
mapL f | =\x ->1 (f x)
maplOL f | =\x ->do {y < f x; | vy}

21

Note that we apply the function f to any values we receive and then passthevalueontol.

There is a version of mapl OL for applying GUI actions to listeners, mapGUI L. As there is
environment being carried around in the GUI monad this function needs to be applied within the GUI
monad.

mapGUL :: (a->GJ b) -> Listener b -> GUJ (Listener a)

The next important, and very commonly used functionist el | L. This takes a listener and a value, and
returns a listener that ignores its argument and always performs its action with this value. It is just a
special version of mapL.

tellL :: Listener a -> a -> Listener b
tellL | a = mapL (const a) |

The next set of functions filter the values being received by a listener. There is a version of filter,
similar to mapMaybe, that takesan (a - > Maybe b) function, and usesit to filter only values that
return Just b. Note that mapMaybel takes a listener, |, and makes a new listener that filters the
value it receives, before passing themto I

mapMaybelL :: (a -> Maybe b) -> Listener b -> Listener a
Built on top of thisthere is a combinator that behaves similarly to the standard filter function.

erL :: (a -> Bool) -> Listener a -> Listener a
erL f | = mapMaybelL (\a -> if f a then Just a else Nothing) |

There is adso a version that makes a listener that hears maybe values but only consumes the Just
values.

isJustL :: Listener a -> Listener (Maybe a)
i sJustL = napMaybelL id

We can produce a listener accepting a list of values, and tell it to consume each in turn using
fromLi stL.

fronmListL :: Listener a -> Listener [a]
Thisis defined in terms of a more general mapping function mapLs which takes a listener, |, accepting
values of type b, and a function, f, producing a list of bs. Every time it hears a value, it applies f, and
then tells| to consume each b valuein turn.

mapLs :: (a -> [b]) -> Listener b -> Listener a
Wedefinef r onLi st L simply asfollows.

fronmListL = mapLs id
We can create a one shot listener that consumes one value and then behaves as neverL using onceL.

onceL :: Listener a -> Listener a

Here we see some of the power hidden within the listener abstraction. A listener has the ability to
remove itself when it has finished performing useful activity.

We can make a listener snapshot a behavior and consume its current value. For instance, we have
shapshot L.

snapshotL :: Behavior b -> Listener (a,b) -> Listener a

22

Listener 1

snapshotL @
*

ehavio
b

Another useful function is withSnapL that also accepts a function to apply to the values from the
behavior and the listener.

withSnapL :: (a ->b ->c¢) -> Behavior b -> Listener ¢
-> Listener a
wi thSnapL f bh | = snapshotL bh (mapL (uncurry f) I)

These functions are very useful. As all state in FranTk is held in behaviors, and updated through
listeners, the ability to snapshot the value of a behavior is the fundamental operation to read the current
value of mutable state. (See section 1.5.2 for an example of use.)

We can get access to the time that a listener consumes avalue usingwi t hTi meL.
withTimeL :: Listener (a,Tinme) -> Listener a

Here the type Time is a synonym for Double, and represents the number of seconds since the start of the
program.

We can make alistener that simply performs an 10 action using kL.
nkL :: (a ->10()) -> Listener a

We can also make a listener that performs a GUI action, though this requires a GUI action to produce,
to extract the necessary environment information from the monad.

nkGQUIL :: (a->@GJ ()) -> QU (Listener a)

If we need to fire a listener manually we can achieve this via fi r eLi st ener. This provides the
listener viaan 1O action.

fireListener :: Listener a -> 10 (a ->10/())

These can be useful if you want to make a listener that performs some explicit 10, such as printing
something out for debugging reasons. However, most of the time it is not necessary, as listeners are
produced by al of the behavior variables and wires, discussed in chapter 1. In particular, it isimportant
not to deconstruct and then reconstruct listeners using these primitives. This may have undesirable
effects. For instance, the listener formed by r enakelL | will not behave as efficiently as|.

remakelL :: Listener a -> 10O (Listener a)
remakeL | = do

act <- fireListener |

nkL act

2.1.2. Primitive Listener Operations

There are a few more primitive listener operations that can be used to define all of the algebra above.
Thesearel i ftL1l and!|iftL2. These compose listeners and allow us to apply functions over them.
The first | i ft L1 takes one listener and produces another by redefining what it does with its action
when it consumes a value.

liftLl :: ((a->10¢()) ->b ->10()) -> Listener a -> Listener b

23

This can best be seen by example. For instance, we can define mapL intermsof [i ft L1.

mapL :: (a -> b) -> Listener b -> Listener a
mapL f = liftLl $ Vact val -> act (f val)

Thefunction| i ft L2 allows usto merge two listeners and redefine their behavior.

liftL2 :: ((a->10()) ->(b->10()) ->Ccc ->10())
-> Listener a -> Listener b -> Listener c

We can definemer gelL using | i ft L2.

nergeL :: Listener a -> Listener a -> Listener a
nergeL = IiftL2 $ \actl act2 val -> do actl val;act2 val

2.2. What can wereally do with Events

Recall from chapter 1 that an Event is a stream of occurrences, each of which has a specific time and
value. Thetype Event a denotes an event that generates a value of type a when it happens.

The algebra of operations available on events resemble closely those available for listeners. The types
of the event algebra are mirror images of those in the listener algebra, being structured in the more
obvious manner. Thisis because events are producers of values.

2.2.1. Connecting listenersand events

Given an event we can add listeners to that event. These will perform actions on every event
occurrence. Listeners and events meet with addLi st ener.

addLi stener :: Event a -> Listener a -> | O Renover
type Remover = 10 ()

The function addLi st ener adds a listener to an event. The remove action that is returned will then
delete that listener when necessary at alater date. Events therefore serve client listeners.

2.2.2. The Event Algebra
We can make an event that never produces any occurrences using never E.
neverE :: Event a

We can merge two events using ner geE. There is also an infix version of this function . | . Here we
see the first of a number of infix operators that make up the event algebra.

mergeE, (.|.) :: Event a-> Event a -> Event a
Againthereisalist version of merge for events

anyE :: [Event a] -> Event a
anyE = foldr (.]|.) neverE

We can map functions over events using mapE.
mapE :: (a -> b) -> Event a -> Event b

There are also infix operator versions of mapE, aswell as aversion that ignores the value produced and
just uses the new value.

(-=>) :: Event a -> b -> Event b
(==>) :: Event a -> (a ->bhb) -> Event b

24

We can apply afilter function to eventsin asimilar way to listeners.
mapMaybeE :: Event a -> (a -> Maybe b) -> Event b

erE :: Event a -> (a -> Bool) -> Event a

filt
filterE e f = mapMaybeE (\v -> if f v then Just v el se Nothing)

E :: Event a -> (a -> Bool) -> Event ()

filter
filterE_ e f =filterEe f -=> ()

We can aso take an event of maybe occurrences, and drop all those that are Not hi ng, using
i sJustE.

i sJustE :: Event (Maybe a) -> Event a
i sJust E = napMaybeE id

As with listeners we can convert an event with occurrences that contain lists of values into occurrences
for each value.

mapEs :: Event a -> (a ->[b]) -> Event b

fronListE :: Event [a] -> Event a
fronmListE = mapEs id

We can define a one shot event using onceE. This generates only one occurrence from its argument
event and then behaves like never E.

onceE :: Event a -> Event a

We can sampl e the time when an event occursusingwi t hTi nmeE.

wi thTimeE :: Event a -> Event (a, Tine)
withTineE_ :: Event a -> Event Tine

We can sample behaviors on event occurrences using snapshot E. Thisis one of arange of functions
that composes events with behaviors. We'll come across the full range in section 2.3.4 when we go on
to discuss behaviors.

snapshotE :: Event a -> Behavior b -> Event (a,b)
snapshotE_ :: Event a -> Behavior b -> Event b

To aid in debugging thereist r aceE which prints a String on every event occurrence.
traceE :: Show a => Event a -> String -> Event a
2.2.3. ThelO based combinators

There are a number of event combinators that accumulate values over time. These live within the 10
monad. We'll see why with our first example accuntk.

We can accumulate a value via a function valued event using accumk.
accunt :: a -> Event (a -> a) -> 10 (Event a)
The behavior of this function can be seen in the following example.

test = do
wire <- nkWre
e <- accunkE O (event wire)
addLi stener e (nkL print)
op <- fireListener (input wre)
op (+ 1)
op (+ 1)

25

op (+ 1)

This makes a wire and attaches a listener to the that prints out every occurrence. We there prepare to
firethe listener, and fire it three times. Thiswill produce the output:

1
2
3

Note that it isimportant that accumE lives within the |O monad so that listeners added at different times
will all see the same occurrences. For instance, if we had added the listener after op was run for the
first time we would have seen the output 2 3 as the event accumulates values from the point when
accunkEisrun.

We can ask for only distinct occurrences of an event using di st i nct E.
distinctE :: Eq a => Event a -> 1O (Event a)
We can associate the values from an event stream with the values from alist usingwi t hEl enk.

withElenE :: Event a -> [b] -> 10 (Event (a,b))
withElenE_ :: Event a -> [b] -> 10 (Event b)
Wi t

hElenE_ e bs = withEl enE e bs ==> snd
We can generate an event level switcher using swi t cher E.
switcherE :: Event a -> Event (Event a) -> 10 (Event a)
Consider the definition.
ev <- switcher e ee

The event ev starts out behaving like e. Every time an event appears on ee, ev loses interest in the last
event and starts behaving like the new event.

If we don’'t want to lose interest in the first event we can do this using manyE.

manyE :: Event a -> Event (Event a) -> 10 (Event a)
This can be useful when defining composite events. For instance, we can define a double click using
mer geE. Firstly, we define bindMany. This is like monadic bind for events. Every time ev occurs,
bi ndManyE ev f will also gain interest in the event produced by f. (We start out like never E because

ev has not yet occurred.)

bi ndMany :: Event a -> (a -> Event b) -> 10 (Event b)
bi ndMany ev f = neverE ‘manyE (ev ==> f)

We also make use of al ar nE which given the current time and a wait time delays for that period.
alarnt :: Tinme -> Time -> Event ()
We therefore define double click as follows.

doubl eclick :: Event ()
doubl eclick = withTinmeE_click ‘bi ndMany"
\'t -> (onceE (alarnE t tinmeoutval) click)

On every click we sample the time. We then wait for one of either the timeout to occur or a second click
to occur.

We can define aversion of scan on events using accunke.

26

scanlE :: (a ->b ->a) ->a ->Event b -> 10 (Event a)
scanl E accum a0 e = a0 ‘accunE (e ==> flip accum

Finaly there is adso a cominator to add the previous occurrence to the current occurrence,
wi t hPrevE.

withPrevE :: Event a -> a -> 10 (Event (a,a))

e ‘withPrevE' a0 = scanlE (\(older,old) new -> (old, new))
(error "withPrevE: no prev", a0)
e

withPrevE_ :: Event a -> a -> 10 (Event a)
e ‘wthPrevE_ ' a0 = e ‘“withPrevE' a0 ==> snd

2.3. What can wereally do with Behaviors

Finally we come to dealing with behaviors. Recall that a Behavi or isa continuous value that changes
over time. A value of type Behavi or a is atime varying value of type a, that is a function from
Time -> a.

There are two simple built in behaviorsto start with.

time :: Behavior Tine
constantB :: a -> Behavior a

Thet i me behavior isjust asimple behavior representing the current time.
Theconst ant B behavior is a behavior that always has a single constant value.

To avoid clutter in type signatures involving Behavi or many types have pre-defined synonyms for
their behavioral counterparts. For instance, there is StringB for Behavior String. A full list is available
with the type signature summary in the Fran appendix.

2.3.1. Lifted Behaviors

We say a type or function, which has been raised from the domain of ordinary Haskell values to
behaviorsis"lifted". For example, afunction such as

(&%) :: Bool -> Bool -> Bool
can be promoted to a corresponding function over behaviors:
(&&*) :: Bool B -> Bool B -> Bool B

The type Bool B is a synonym for Behavi or Bool ; most commonly used types have a behavioral
synonym defined in FranTk. The name &&* arises from a simple naming convention in Fran: lifted
operators are appended with a* and lifted vars are appended with B.

The renaming required by && can sometimes be avoided using type classes. For example, an instance
declaration such as the following

i nstance Num a => Num (Behavi or a)
allows all of the methods in Numto be applied directly to behaviors without renaming. Constant types
in the class definition cannot be lifted by such a declaration. In the Numinstance above, the type of
from nt eger is

from nteger :: Numa => Integer -> (Behavior a)

27

The argument to f r o nt eger is not lifted - only the result. This allows integer constants to be
treated as constant behaviors. While f r ol nt eger works in the expected way, other class methods
cannot be used. In the declaration

instance Ord a => Ord (Behavior a)

isnot useful since it defines operations such as

(>) :: Behavior a -> Behavior a -> Bool

Unfortunately, FranTk needs a > function which returns Behavi or Bool instead of just Bool . The
Eq and Or d classes are not lifted using instance declarations. Rather, each method is individually
renamed and lifted. These are the lifting functions: they transform a non-behavioral function into its
behavioral counterpart:

($*) :: Behavior (a -> b) -> Behavior a -> Behavior b
liftO ;. a -> Behavior a
lifto = constantB
liftl :: (a ->Db) -> Behavior a -> Behavior b
liftl f bl =1ifto f $* bl
lift2 :: (a->b->c) -> Behavior a -> Behavior b
-> Behavior c
lift2 f bl b2 =1iftl f bl $* b2
lift7

Using these functions, the definition of (>*) is
(>*) =1lift2 (>

Many Prelude functions have been lifted in FranTk via overloading. For instance, behaviors are
instances of Num, Integral, Fractional, Floating.

2.3.2. Reactive Behaviors

Events are used to build reactive behaviors which change course in response to events. Reactive
behaviors are defined using the swi t cher B function:

switcherB :: Behavior a -> Event (Behavior a) -> 10 (Behavior a)

It assembles a behavior piecewise from an event and an initial one. For instance, swi tcher b e
starts off behaving like b, but changes every time a behavior appears on e.

We can define two very important behavior based functions on top of these.
A st epper isaswitcher for generating a behavior from constant pieces.

stepper :: a-> Event a-> 1O (Behavior @)
stepper x0 e = switcherB (constantB x0) (e ==> constantB)

We can use st epAccumto generate a switcher that starts out behaving as x0 and is updated by the
function occurrences of change.

stepAccum :: a-> Event (a-> @) -> 10 (Behavior a)
stepAccum x0 change = do { e <- accumE x0 change;stepper x0 €}

For instance, we can define a counting behavior with stepAccum that counts the number of event
occurrences since it was created.

28

countB :: Event () -> 10 (Behavior Int)
countB e = 0 ‘stepAccum e -=> (+1)

The implicit parentheses are around the - => expression, since * st epAccunm has a lower fixity than
-=>,

2.3.3. The Reactive classes

There are two important classes here that we use to define a range of operations. The first important
classisswi t cher M

class SwitcherM b m where
switcherM:: a -> Event a -> ma

On top of this we have untilB. This behaves as a until the next occurrence of e after which it behaves
as the occurrence value.

untilB :: SwitcherMa m=> a -> Event a -> ma
untilB a e = switcherM a (onceE e)

The function ac cunB accumulates a behavior using f .
accunB :: SwitchableMbv m=> (bv -> b -> bv) -> bv -> Event b
-> m bv
accunB f soFar e = switcherM soFar (scanl E f soFar e)

The instances of class Swi t cher Minclude the following.

i nstance SwitcherM (Behavior a) 10
i nstance SwitcherM (Behavior a) GU

i nstance SwitcherM (Event a) 10
i nstance SwitcherM (Event a) GU

There are instances of swi t cher Mfor behavioral collectionssuch asLi st B.

instance SwitcherM (ListB a) 10
instance SwitcherM (ListB a) GU

The other important classis GBehavi or .

cl ass Behavi or w where
ifB:: BoolB ->w->w->w

This provides a behavior conditional operation. Its instances include

i nstance GBehavi or (Event a)

i nstance GBehavi or (Behavior a)
i nstance GBehavi or Conponent

i nstance GBehavi or WConponent

2.3.4. Turning behaviorsinto events
We can turn abehavior into an event usingt oSt r eam
toStream :: Behavior a -> 1O (Event a)

This produces a stream of values every time the behavior changes. If applied to a continuous behavior
suchastime :: Behavi or Doubl e, itwill generate an occurrence at every clock cycle.

29

We can define a predicate function in terms of this that generates an event every time a behavior has the
value true.

predi cateB :: Behavior Bool -> 10 (Event ())
predicateB b = frmap (flip filterE_id) $ toStreamb

2.3.5. Sampling behaviorswith events
Finally there are arange of other functions that allow sampling of behaviors with events.
We can create and snapshot a behavior at an event occurrence

snapshotF :: Event a -> (a -> Behavior b) -> Event (a,b)
snapshotF_ :: Event a -> (a -> Behavior b) -> Event b

Thereisageneralised version of i f Band snapshot F.

whenSnap :: Event a -> Behavior b -> (a -> b -> Bool) -> Event a
whenSnap e b pred = e ‘snapshot® b ‘filterE wuncurry pred ==> fst

Choosing a behavior or an event from an array based on a behavior.

cl ass BehaviorArray b where
('*) :: Ixix => Array ix bv -> Behavior ix -> bv

i nstance Behavi orArray (Event a)
i nstance Behavi or Array (Behavi or a)

2.3.6. Sampling behaviorsin the O monad

Sometimes you may need to sample a behavior from the IO monad. At any time a behavior has a given
value. You can therefore get its value using at and get Ti ne. The latter samples a behavior at a given
time, the former returns the current time in seconds. These two are in fact the primitives used by the
variouswi t hTi me and snapshot functions.

getTime :: 10 Tine
at :: Behavior a ->Tine -> 10 a

It isimportant to note here that the time is constant in any step. A step begins whenever some user input
is handled. A behavior will therefore not change until immediately after the input event that updates it.
All updates based on the input will be handled, al behaviors will then change and the display will be
updated.

2.4.BVarsand Wires

In the first chapter we explained how to create BVars and Li st eners, that provide access to
behaviors and events. Recall a BVar is a mutable object with a behavior, listener and an event. A wire
isan object with only alistener and an event. The interface for producingaW r e is:

data Wre a
nkWre :: GU (Wre a)

newNre :: 10 (Wre a)
wirelnput :: Wre a -> Listener a
wireEvent :: Wre a -> Event a

Theinterface for producing Bvar s is:
data BVar a

newBVar :: a -> 10 (Bvar a)
nkBvar :: a -> QU (Bvar a)

30

bvar Behavi or :: BVar a -> Behavior a

bvarEvent :: BVar a -> Event a
bvarlnput :: BVar a -> Listener a
bvar Updl nput :: BVar a -> Listener (a -> a)

To simplify names allittle, BVar and Wire are both instances of the Has_Event class.

cl ass Has_Event c where
input :: ¢ a -> Listener a
event :: c a -> EBEvent a

We are now in fact in a position to understand a possible implementation of BVar. A BVar is made
from awire using ac cumk to accumulate an event value based on a function valued event. We then use
stepper to turn the event into a behavior.

data BVar a = BVar {

bvar Updl nput :: Listener (a -> a),
bvar Behavi or :: Behavior a,

bvar Event :: Event a

}

nkBvar :: a -> 10 (Bvar)

nkBvar a = do

w<- nkWre

e <- accunk a (event w)

b <- stepper a e

return $ Behavior (input w) b e

31

Chapter 3- Dealing with Collections

3.1. Behavioral Collections

In chapter 1 we introduced the concept of a behavioral collection. These alow us to model dynamic
collections of objects, and treat them as behaviors. They can, however, also be incrementally rendered
onto a set of widgets so that only changes are redrawn, not the whole collection.

Currently there are two sorts of behavioral collection available, list and set collections. There is no
particular reason why we should be restricted to only these types. Others may appear in the future. The
type of abehavioral collection is defined as follows.

data Coll ectionB evop c a

The collection is parameterised over its update event, collection type and value. The update event
would be of typeevop a, and the static collection of typec a.

3.1.1. The MapG class
Before we begin we should introduce one quick class that proves useful when deailing with collections.
The MapGclass. Thisis a more general version of mapM that will operate over a given collection and

class. There are two initial basic instances for lists and arrays.

class MapG ¢ a b mwhere

mapG :: (a ->mb) ->c a->m(c b
instance Monad m=> MapG [] a b m
i nstance Monad m => MapG (Array |) a b m

3.1.2. List Collections

List collections offer the following interface.
type ListB a = CollectionB ListOp List a

data ListOp a
data List a

We can create aconstant Li st B that will aways contain the same list.
constantListB :: [a] -> ListB a

We can get aBehavi or fromali st B.
listBehavior :: ListB a -> Behavior [a]

This allows us to treat Li st B s as normal behaviors when convenient. For instance, we could lift
standard list functions and apply them to the list behavior, such as defining a lifted elem function.

elenB :: Behavior a -> ListBa -> BoolB
elemB b ls =1ift2 elemb (listBehavior |s)

Li st Bisamember of the Funct or and MapG classes, making it easy to map functions along the list.
i nstance Functor ListB

instance MapG ListB a b 10O
i nstance MapG ListB a b GU

32

Currently we can filter and sort elements in the ListB. These sort the list for al time by applying the
sorting functions. There are two versions of each function, a ssmple one that uses a static function to
sort or filter, and a dynamic one.

filterLB :: (a -> Bool) -> ListBa ->ListBb
sortLB :: (a ->a -> Ordering) -> ListB -> ListB a

The dynamic functions deserve more discussion. Their type signatures are as shown below.

filterListB :: (a -> Behavior b) -> Behavior (b -> Bool)
-> ListB a
-> ListB b
sortListB :: (a -> Behavior b) -> Behavior (b -> b -> Odering)
-> ListB b
-> ListB b

They each take a function to extract a behavior from a list element, and a function valued behavior to
sort or filter and apply these. We can understand what’s going on here best through an example.

Consider our multiuser logon system from section 1.6. Recall each user had a view showing a widget,
displaying the name and details, of every other user. Imagine if we wanted to filter that list of objects
based on the user’s details.

usersArea :: ListB PublicUser -> Conponent
usersArea users = nabove $ fmap nkPublicNode users

data PublicUser = PublicUser {
publicName :: String,
publicDetails :: Behavior String
}

We would need a dynamic or behavior based function to perform the filter. We also need to filter based
on the publicDetails field which is a behavior. We therefore redefine usersArea so that it takes a
behavioral filter function and filters based on the publicDetails field.

usersArea :: Behavior (String -> Bool) -> ListB PublicUser

-> Conponent
usersArea isvalid users =
nabove $ fmap nkPublicNode $
$ filterListB publicDetails isvalid users

We can use the ListB type when piling windows or widgets. We also use this type to make menus,
listboxes and text areas displaying dynamic data. These uses will be presented in the next chapter.

3.1.3. Set Collections

The set collection implements asimilar interfaceto Li st B.

type SetB = CollectionB Set(Op Set a
data Set Op
data Set

We can create a constant set and get a behavior from a set. Note that at present sets are just simple lists.

constantSetB :: [a] -> SetB a
set Behavior :: SetB a -> Behavior [a]

i nstance Functor ListB
i nstance MapG ListB a b 10
i nstance MapG ListB a b GU

We can filter aset aswith lists.

filterSB :: (a -> Bool) -> SetB a -> SetB b

33

filterSetB :: (a -> Behavior b) -> Behavior (b -> Bool)
-> SetB a -> SetB b

(NB : Thisfunction is not yet implemented, coming soon)

There are afew set specific functions as well. We can form the union, the intersection and the set minus
of two behavioral sets.

unionSetB :: Eq a => SetB a -> SetB a -> SetB a
intersectSetB :: EqQ a => SetB a -> SetB a -> SetB a
mnusSetB :: Eq a => SetB a -> SetB a -> SetB a

3.2. Collection BVars

We need away to create behavior collections. As we saw in Chapter 1, for thiswe use Col | ecti on
BVars. Col | ecti on BVars areal of the following general type.

data Col |l ecti onBVar evop c a

As with behavioral collections they are parameterised over their update event, collection type and
value.

We can extract the behavioral collection fromaCol | ecti onBVar using the functioncol | ecti on.
collection :: CollectionBvar evop ¢ a -> CollectionB evop ¢ a

3.2.1. ThelListBVar Interface

Theinterface for aLi st BVar isasfollows.
type ListBVar a = CollectionBvar ListOp List a

We can make aLi st BVar using nkLi st BVar . Note that this requires equality to be defined on list
elements.

newLi stBvar :: Eq a => [a] -> IO

Li st Bvar a)
mkLi stBvar :: Eq a => [a] -> GUJ (Li

i st Bvar a)

—_~

We can extract the behavior fromaListBVar using | i st VBehavi or.

i stVBehavior :: ListBVar a -> Behavior [a]
i stVBehavior s = |listBehavior $ collection s

All of the updates to this collection occur through the BVar's listeners.

We can add insert elementsinto alist usingi nsert Li st B. This takes avalue and a position to place
the element and puts the value at that position in the list.

insertListB :: ListBvar a -> Listener (a, PlacePos a)

data Pl acePos a = PlaceTop | PlaceBottom | PlaceBefore a
| PlaceAfter a

We can delete elements using del et eLi st B.

del eteListB :: ListBVar a -> Listener a
We can also move elements around in alist using noveli st B.

nmovelListB :: ListBVar a -> Listener (a,PlacePos a)

34

We can reset the list to awhole new set of valuesusing r eset Li st B.
resetListB :: ListBVar a -> Listener [a]
There are also convenience functionsto append and cons an element onto alist.

appendLi stB :: ListBVar a -> Listener a

appendListB I = mapL (\v -> (v,PlaceBottonm)) $ insertListB I
consListB :: ListBvar a -> Listener a
consListB |l = mapL (\v -> (v, PlaceTop)) $ insertListB |

A ListBVar can be created more efficiently using mkLi st Bvar ' .

newLi stBvar’ :: (a -> ldent) ->[a] -> 10 (ListBVar a)
nmkListBvar’ :: (a -> ldent) ->[a] -> GUJ (ListBvar a)

This requires that we can map elements to a unique identfier of type | dent . This| dent value should
be a unique identifier for the object.

data |dent
deriving (Eq, Ord)

This can be donewith thel dent i fi abl e class.

class ldentifiable w where
identify :: w-> ldent

Initial membersof thel dent i fi abl e classinclude String and Int.

instance ldentifiable String
instance ldentifiable Int

3.2.2. The SetBVar interface
The Set BVar interfaceisagain similar to the Li st BVar interface.
type SetBVar a = Coll ectionBvVar SetOp Set a

We create a Set BVar using nkSet BVar . We can create one more efficiently when elements are
membersof thel dent i fi abl e class.

newSetBvar :: Eq a => [a] -> 10 (SetBvar a)
nkSetBVar :: Eq a => [a] -> QU (SetBvar a)

newSetBvar’' :: (a -> ldent) ->[a] -> 10 (SetBvar a)
nkSetBVar’ :: (a -> ldent) ->[a] -> GU (SetBvar a)

We can get abehavior from set Set BVar using set VBehavi or .

set VBehavior :: SetBVar a -> Behavior [a]
set VBehavi or s = setBehavior $ collection s

We can add elementsusing i nsert Set B, delete elements using del et eSet B, and reset to a new set
of elementsusing r eset Set B.

insertSetB :: SetBVar a -> Listener a
del eteSetB :: SetBvVar a -> Listener a
resetSetB :: SetBVar a -> Listener [a]

That's al you need to know about behavioral collections for now. If you want to write your own, look
in CollectionB.hs SetB.hs ListB.hs and CollectionBVar.hs for some hints.

35

Chapter 4 - Introducing Widgets

4.1. Components and Widgets

Aswe saw in Chapter 1, in FranTk, all widget creation commands create Components. A Component is
an action that produces a Widget. A Widget is an abstract representation of a primitive widget. A
Widget may be dynamic. There are several types of Component and Widget, representing top level
windows; widgets, such as buttons, that live inside top level windows; and canvas items, that live in
canvases. We'll see more on canvasesin section 4.12.

There is a generic widget type that represents any widget.

data WdgetB a
There are afew functions that will work on any abstract component or widget.
We can create an empty component or widget.

enpt yWdget :: WdgetB a
enpt yConponent :: GU (WdgetB a)

All components and widgets are instances of the GBehavior type discussed in section 2.3.3.

i nstance GBehavi or (WdgetB a)
i nstance GBehavior (GUJ (WdgetB a))

All components and widgets can listen to user input. See section 4.13 for more on listening to input.

i nstance Has_Input (GU (WdgetB a))
i nstance Has_I nput (WdgetB a)

We'll now go on to present the different widgets available.

4.2. Windows

A user interface may contain many windows. A window acts as a container for other widgets. A
Window Widget represents a window. A WComponent is an action that producesaW ndow W dget .

data WV
type W ndowW dget = W dgetB WV
type WConponent = GU W ndowW dget

The application has a root window, which we can access through wi t hRoot W ndow. We can also
create new windows using mkW ndow. Windows may use configuration information and contain a
component.

wi t hRoot W ndow :: [Conf W ndow] -> Conponent -> WConponent
nkW ndow :: [Conf W ndow] -> Conponent -> WConponent

data W ndow
We can render a collection of WConponent s using pi | e.

class Pile ¢ w where

pile :: cw->w
i nstance Pile ListB Wonponent
i nstance Pile ListB W ndowW dget
instance Pile [] Wonponent
instance Pile [] W ndowWw dget

36

We can configure a window to display some title text, or some behavior text. We can set it with asize
represented as a 2-D vector. We can also set its position.

title :: String -> Conf W ndow
titleB :: StringB -> Conf W ndow

W nsize :: Vector2 -> Conf W ndow
w nsi zeB :: Vector2B -> Conf W ndow

W nposition :: Point2 -> Conf W ndow
Wi npositionB :: Point2B -> Conf W ndow

We can give awindow a particular menu. See section 4.10 for more on menus.
useMenu :: GUJ Menu -> Conf W ndow

General configuration options available to a Window are background, borderwidth, cursor, height,
width, relief, takefocus, highlightbackground, highlightforeground and highlightthicness.

4.3. Components and L ayout

Window widgets contain components. A Conponent isan action that producesa W dget .
data PW
type Wdget = WdgetB PW
type Component = GU W dget

We can compose components with a number of basic layout combinators.

We can pack components above and beside each other using the Packabl e class. This provides for

cl ass Packabl e w where

above, beside :: w->w->w
expandB :: Behavior Bool -> w->w
fillB :: Behavior Fill ->w->w
expand :: Bool ->w->w

fill o Fill ->w->w

pad :: Pad -> w->w

padB :: Behavior Pad -> w -> w
padl :: Pad -> w-> w

padl B :: Behavior Pad -> w -> w
anchor :: Anchor -> w-> w
anchorB :: Behavior Anchor -> w -> w
data Fill = Fll | FillY | FillXY

deriving (Eq, Show)

data Pad = PadX Int | PadY Int
deriving (Eq, Show)

data Anchor = N| S| E| W| NE| NW| SE| SW| C
deriving (Eq, Show)

As can be seen, as well as providing simple above and beside combinators, the packable class also
provides a range of other functions. Widgets can be made to fill extra space in the X, Y or in both X
and Y, usingfill andfill B. Widgets can be made to expand to take up available space in their
parent, using expand and expandB. Widgets can be anchored to a particular corner using anchor
and anchor B. Finaly, widgets can be given internal or external padding with padl / padl B and
pad/ padB respectively.

To understand the difference between expand and fi | | note the following. Consider the example

function, besi de a b. We will refer to the resulting widget as the parent of a and b. With every
widget we can associate an inherited area a widget gets from its parent. The occupied area is actually

37

used for displaying information, and is always a centered subarea of the inherited one. Initialy, the
occupied and inherited area, equal the minima dimensions needed by the widget to display its
information. After combination with some other widget, the occupied area of the parent is minimal
again. If widget a is bigger than widget b, the inherited area of a will equal its occupied area, and the
inherited area of b will equal the rest of the occupied area of the parent. The fi | | functions make a
widget occupy its inherited area either horizontally or vertically. The expand function makes a widget
claim fromits parent all occupied areathat is not inherited by one of the other children.

There are a number of infix combinators that build on these basic functions. These combinators apply
the same layout function on both arguments. For example ~- ~ places two widgets above each other and
alignsthemin length, <| > places them next to each other, aligned in height; + isjust a compbination of
| and-. Finaly, * appliesan expand operation on the right and left operand.

(<>),(<->),(<|>),(<+>) :: Packable w=>w->w->w
(~~),(~~),(~]~),(~+~) :: Packable w=>w->w->w
a<>b=a ‘beside' b

a<->b = fillXa ‘beside’ fillY Db

a<|/>b=fillY a ‘beside* fillY b

a<+>b =fillXY a ‘beside’ fillXY b

a ~~b = a ‘above' b

a~—-~b=fillX a ‘above’ fillX b

a~~b=fillY a ‘above' fillY Db

a~+~-b =fill XY a ‘above’ fillXY b

fillX fillY,fillXY,flexible Packable w=> w -> w
fillxX="fill FillX

filly = fill FillY

fillxXy =fill FillXY

flexible = expand True . fillXY

To pack a collection of widgets beside or above each other use the PackCol | ect i on class.

cl ass PackCol l ection ¢ w where
nabove :: ¢c w-> w
nbeside :: ¢ w->w

A basic widget and a component are both instances of the Packabl e class.

i nstance Packabl e W dget
i nstance Packabl e Conponent

Lists and dynamic lists (ListB) of widgets and Components can be packed above and beside each other.
i nstance PackCol |l ection [] Wdget
i nstance PackCol | ection ListB W dget

i nstance PackCol | ection [] Conponent
i nstance PackCol | ection ListB Conmponent

We can aso lay out componentsin agrid. (NB the grid functions are not yet implemented)

grid :: [[Gidlten]] -> Conponent
gridlitem:: Behavior [GidBagConstraint] -> Conponent -> Gidltem

4.4, Labelsand Messages
44.1. Labels
To display information we can use a label. We came across these in section 1.2. A label can display a

string or a bitmap. Other valid configuration information includes setting its background color or
dimensions.

38

nkLabel :: [Conf Label] -> Conponent

General configuration options available to a Label are anchor, background, bitmap, borderwidth,
cursor, font, foreground, height, highlightbackground, highlightcolor, highlightthickness, justify, padx,
pady, relief, takefocus, text, underline, width, wraplength.

4.4.2. M essages
Message widgets are similar to labels except that they display structured multi-line strings. A message

breaks along string up into lines. We can use aspect to affect the aspect ratio and justify text left, right
or centred. An example message widget is shown below.

Mezsage widget Mi=]
the
MEsTA0e the message the meszage widget
widget widget displays dizplavs and farmats
dizplays and formats a 2 hest
and formats test
a text
the
IS t_he Messags — yo meszage widget
widget widget displays dizplayz and formats
dizplays and formats a a text
and farmats ket
a text
the
Messade _the MESTADE e mezsage widget
widget widget displaps dizplavs and formats
dizplays and formatz a o et
and forrnatz ket
a text

nmessageExanpl e :: WConponent
messagekExanpl e =
nkW ndow [title “What’s the nessage”’] $ matrix 3 $
[MkMessage [text msg, aspect (75 * i), justify pos]
| pos <- [LeftJd,Centerd,RightJd], i <- [1 .. 3]]
wher e
msg = “the nessage w dget displays and formats a text”
We create amessage using nk Message.
nmkMessage :: [Conf Message] -> Conponent

The other configuration options available to a Message are anchor, font, highlightthickness,
takefocus, background, foreground, padx, text, borderwidth, highlightbackground, pady, cursor,
highlightcolor, relief, width.

This example also demonstrates the mat r i x function. This layout function takes a number of columns
and alist of components and lays out its arguments in a 2-D matrix.

matrix :: Int -> [Conponent] -> Conponent
4.5. Buttons
In this section we briefly summaries the available range of button widgets.
4.5.1. Command buttons

We came across simple command buttons in section 1.3. When making a button we pass it some
configuration information to describe its appearance and alistener to tell about button clicks.

39

nkButton :: [Conf Button] -> Listener () -> Conponent

The configuration options available to a Button are activebackground, activeforeground, anchor,
background, bitmap, borderwidth, cursor, font, foreground, height, highlightbackground, highlightcolor,
highlightthickness, justify, active_state, padx, pady, relief, takefocus, text, underline, width, wraplength

4.5.2. Check buttons

Checkbuttons have a binary state, True or False. This listener argument is told the current value of the
check button when it is selected. Checkbut t ons were first introduced in section 1.6.1.

nkCheckbutton :: [Conf Checkbutton] -> Listener Bool -> Conponent

The state of the checkbutton can be set with checkVal , or with abehavioral checkVal B. (Using the
second currently causes the state of the checkbutton to be set every time the value of the behavior
changes.)

cl ass Has_checkVal w
checkVal :: Has_checkVal w => Bool -> Conf w
checkVval B :: Has_checkVal w => Behavi or Bool -> Conf w

i nstance Has_checkVal Checkbutton
(Menu checkbuttons are also instances of Has_checkVal . See section 4.10.2 for more details.)
The configuration options available to a Checkbut t on are activebackground, activeforeground,
anchor, background, bitmap, borderwidth, cursor, font, foreground, height, highlightbackground,
highlightcolor, highlightthickness, indicatoron justify, active state, padx, pady, relief, selectcolor,
takefocus, text, underline, width, wraplength.
4.5.3. Radio buttons

A radiobutton is a member of a group of buttons. Setting one button causes the other buttons to be
unset. Radi obut t ons werefirst introduced in section 1.5.3.

nkRadi obutton :: [Conf Radiobutton] -> Listener () -> Conponent

All radiobuttons in a group share a Radi o, and so Radi obutton is an instance of the
Has_useRadi o class. See section 4.6 for more on the Radi o type.

The other configuration options available to a Radiobutton are activebackground, activeforeground,

anchor, background, bitmap, borderwidth, cursor, font, foreground, height, highlightbackground,

highlightcolor, highlightthickness, indicatoron justify, active state, padx, pady, relief, selectcolor,

takefocus, text, underline, width, wraplength.

4.5.4. Making a popup menu button

To make a component button that causes a menu to popup when pressed use a Menubut t on.
nkMenubutton :: [Conf Menubutton] -> Conponent

We can set a menu button to use a given menu usingwi t hMenu and wi t hMenuLB.

wi thMenu :: [Conf Menu] -> [Menulten] -> Conf Menubutton
wi thMenuL :: [Conf Menu] -> ListB [Menulten] -> Conf Menubutton

See section 4.10 for more on menus.

40

The other configuration options available to a Radiobutton are activebackground, activeforeground,
anchor, background, bitmap, borderwidth, cursor, font, foreground, height, highlightbackground,
highlightcolor, highlightthickness, indicatoron justify, active state, padx, pady, relief, selectcolor,
takefocus, text, underline, width, wraplength.

4.6. The Radio object

We create a radio object, using mkRadi o, that al radiobuttons in a group share. This sets them as a
group and guarantees that only one of the buttons may be set at atime. It takes a maybe value which
names the element which should be set initially.

nkRadio :: Eq a => Maybe a -> QU (Radio a)
We dlter the initial value of theradio using set Radi o.
setRadio :: Eg a => Radio a -> a -> @ ()
We can also set the value of the radio through alistener.
radiolnput :: EqQ a => Radio a -> Listener a
The collection of radio objects all share the Radio with useRadi o.
useRadio :: (Has_useRadio w, Eq a) => Radio a -> a -> Conf w

Note that useRadi o also takes avalue of type a, which it uses as the elements reference.

4.7. Scale Widgets

A scale widget is a widget that allows a user to select a value from a range of values. Scale widgets
were first introduced in section 1.2. We create a horizontal or vertical scale using nkHScal e and
nmkVScal e respectively. The listener argument is told the current value of the dider every time it
changes.

nmkHScal e :: [Conf Slider] -> Listener Int -> Conponent
nkVScal e :: [Conf Slider] -> Listener Int -> Conponent

To set the value of the scale widget, use scal eVal . (Using scal eVal B currently causes the state of
the checkbutton to be set every time the value of the behavior changes.)

scalevVal :: Int -> Conf Slider
scalevValB :: IntB -> Conf Slider

The other configuration options available to a Radiobutton are activebackground, background,
borderwidth, cursor, font, foreground, highlightbackground, highlightcolor, highlightthickness,

hor_orient, active_state, relief, sca_from, sca_length, sca to, takefocus, tickinterval, troughcolor, width,
text.

4.8. Listboxes
A listbox isawidget that displays alist of strings, which may be selected.
We can create a listbox using mkListbox.

mkLi st box :: [Conf Listbox] -> Conponent

We can set the entries in a listbox to be a static string, a behavior list of strings, or a dynamic list
(ListB) of strings.

listltens :: [String] -> Conf Listbox

41

listltensB :: Behavior [String] -> Conf Listbox

listltensLB :: ListB String -> Conf Listbox
(NB: thisis not implemented yet)

(To do: accessing the selected elements of a listbox).

The configuration options available to a listbox are background, foreground, font, borderwidth, cursor,
relief, width, hightlightbackground, highlightcolor, highlightthickness, takefocus, height,
selectbackground, selectforeground, selectborderwidth, setgrid.

Listboxes are scrollablein X and Y. See section 4.9.

4.9. Scrollbars and scrolling widgets

We create avertical and horizontal scrollbar using mkVScr ol | bar , and nkHScr ol | bar .

nmkVScrol | bar :: [Conf Scrollbar] -> Conponent
nkHScrol | bar :: [Conf Scrollbar] -> Conponent

Other configuration options available to scrollbars are background, borderwidth, cursor, hor_orient,
hightlightbackground, highlightcolor, highlightthickness, relief, troughcolor, takefocus, width.

Scrollbars must be connected to scrollable widgets. We do thisusing the Scr ol | type.
data Scroll
We create vertical and horizontal scroll datausing mkVScr ol | and mkHScr ol | .

nkVScroll :: GUJ Scroll
nkHScroll :: GU Scroll

We then make the scrollbar and scrollable widget share the scroll datawith useScr ol | .

cl ass Has_useScrol |l w where
useScroll :: Scroll -> Conf w

i nstance Has_useScrol | Scroll bar
Currently scrollable widgetsinclude Li st box, Canvas, Entry and Edi t .
As an example, we can define a scrollable listbox as follows.

nkScrol | abl eLi stbox :: [Conf Listbox]
-> [Conf Scrollbar] -> [Conf Scrollbar]

-> Conponent
nmkScrol | abl eEdit c¢s hs vs = do
v <- nkVScroll
h <- nkHScroll
(mkLi stbox ([useScroll v,useScroll h] ++ cs)
‘ besi de'
(fillY $ nkVScroll bar $ [useScroll v] ++ vs))
‘above’

(fill X $ nmkHScrol I bar $ [useScroll h] ++ hs)

We first make vertical and horizontal scroll data. We then make a listbox that uses this scroll data. We
place this beside a vertical scrollbar, that uses the vertical scroll data, and above a horizontal scrollbar
that uses the horizontal scroll data. Note that we make the vertical scrollbar fill available vertical space,
and the horizontal scrollbar fill available horizontal space, so that they match the dimensions of the
listbox.

42

4.10. Menus

Menus were first introduced in section 1.6.2.4. We can create a menu that displays either a static list of
items, abehavior list of items or adynamic list (ListB) of menu items.

nkMenu :: [Conf Menu] -> [Menulten] -> GU Menu
nmkMenuB :: [Conf Menu] -> Behavior [Menultem -> GU Menu
nkMenuL :: [Conf Menu] -> ListB Menultem-> GU Menu

A menu can be made to popup and vanish on event occurrences using popup. A value of Just p, causes
the menu to popup at position p. A value of Nothing causes the menu to vanish.

popupE :: Event (Maybe Point2) -> Conf Menu
The configuration options available to a menu are background, borderwidth, cursor, relief, tearoff.
We will now go on to discuss the possible different menu items.
4.10.1. Menu Item - Button
A menu item button is a simple button that fires a listener when clicked.
nmbutton :: [Conf Mutton] -> Listener () -> Menultem

The possible configuration options for an MButton are activebackground, activeforeground,
background, bitmap, font, foreground, active_state, underline, text.

4.10.2. Menu ltem — Checkbutton

A menu item checkbutton is a button with a binary state. When clicked the buttons tells its listener
argument whether the check is selected.

ncheckbutton :: [Conf MCheckbutton] -> Listener Bool -> Menultem

The value of the checkbutton can be set with checkVal, using the Has_checkVal class. (See section
4.5.2 for more details on this class.)

i nstance Has_checkVal MCheckbutton

The other possible configuration options for an M Checkbutton are activebackground, activeforeground,
background, bitmap, font, foreground, indicatoron, selectcolor, active_state, underline, text.

4.10.3. Menultem - Radiobutton

A menu item radiobutton is a button that is a member of a radio group. Only one of the group can be
selected at atime.

nradi obutton :: [Conf MRadi obutton] -> Listener () -> Menultem
The button can be made a member of aradio group with useRadi 0. See section 4.6 for more details.

The other possible configuration options for an MRadiobutton are activebackground, activeforeground,
background, bitmap, font, foreground, indicatoron, selectcolor, active_state, underline, text.

4.10.4. Menu ltem - Cascade

We can make a cascading menu with mcascade. This creates a button that displays a given menu when
pressed.

ncascade :: [Conf MCascade] -> GU Menu -> Menultem

The possible configuration options available to an MCascade item are activebackground,
activeforeground, background, bitmap, font, foreground, underline, active_state, underline, text.

4.10.5. Menu ltem — Separ ator

To add a separator to provide space in a menu use mseparator. A separator accepts no configuration
information and has no behavior.

nmseparator :: Menultem

4.11. Entering Text

There are two types of text entry widgets, entry areas which allow simple single line text entry, and the
much more powerful edit areas, which have much of the functionality of afull scale text editor.

4.11.1. Entry Areas
Text entry areas were first introduced in sections 1.5.1 and 1.6.2.1.
We can make atext entry areausing nkEnt ry’ .

nkEntry' :: [Conf Entry] -> Conponent

We can sample the value of a text area using snapEntry. Given an event, a listener and a
composition function we can set up a sampling function. When a value is heard on the event, the state
of the entry is sampled. The value is composed with the String from the entry, using the composition
function, and is then told to the listener.

snapEntry :: (a -> String -> b) -> Event a -> Listener b
-> Conf Entry

There is a creation function which takes an event and listener, and sends out the state of the entry when
avalueisheard on the event.

nkEntry :: [Conf Entry] -> Event () -> Listener String
-> Conponent
nkEntry cs ev | = nkEntry' (snapEntry (_ s ->s) ev |l:cs)

There is also a creation function that makes an entry that tells its argument listener the value of the
entry, every time the return key is pressed.

nkEntryRtrn :: [Conf Entry] -> Listener String -> Conponent
nkEntryRtrn cs | = do

w <- nkWre

keyPress Return (input w) $ nkEntry cs (event w) |

keyPress :: Key -> Listener () -> Conponent -> Conponent
To do this we create awire, and bind any Ret ur n key press to tak to that wire. We then tell the entry
to sample the entry every time a value is heard on the wire. More information on listening to events is
available in section 4.13.
(To do: sampling and setting the selection of atext entry)
The other configuration options open to entries are background, borderwidth, cursor, font, foreground,
highlightbackground, highlightcolor, highlightthickness, justify, password, readOnly, relief, takefocus,
width, text.

Entry widgets are scrollable. (See section 4.9)

4.11.2. Edit Areas

Edit areas are much more powerful and allow full scale, multiline text editing. We create an edit widget
using mkEdit.
nmkEdit :: [Conf Edit] -> Conponent

We can sample the value of the edit widet using snapEdit. This operates similarly to snapEntry,
discussed in the previous section.

snapEdit :: (a -> String -> b) -> Event a -> Listener b
-> Conf Edit

The other general configuration options open to entries are background, borderwidth, cursor, font,
foreground, height, highlightbackground, highlightcolor, highlightthickness, padx, pady, readOnly,
relief, setgrid, takefocus, width, wrap, text.

Edit widgets are scrollable. (See section 4.9)

4.11.2.1. Sharing state between edit widgets

One of the powerful features provided by Edit widgets is support for writing a shared editor. For
instance, below we have two edit widgets side by side. Typing in either alters the text in both.

Text Edit =l

what iz this all what is thi all

about about

We can write this text widget with the following code.

test Shared :: WConponent
test Shared = nkWndow [title "Text Edit"] $ do
st <- nkEditVal B enptyEdit State
nkEdit [editVal B st,editValL $ editVallnput st]
‘above'
nkEdit [editValL $ editVallnput st,editValB st]

This can be broken down as follows. Firstly we create an Edi t Val B. This is an abstract type
representing the state of an edit widget. It can be incrementally updates, and is therefore a form of
behavioral collection.

data EditVal B
We can make an edit state object using mkEdi t Val B and newEdi t Val B.

nkEditVal B :: EditState -> GJ EditVal B
newkEditValB :: EditState -> | O EditVal B

The current state of an editor isrepresented using Edi t St at e. Thisis an abstract type with operations
to create an initial edit state containing a String or an empty edit state.

data EditState
initEditState :: String -> EditState

45

enptyEditState :: EditState
enptyEditState = initEditState “”

In our example we have therefore create an initial empty Edi t Val B object. We make two edit widgets
and tell each to talk to the Edi t Val B object.

editVal I nput :: EditValB -> Listener EditVal
editValL :: Listener EditVal -> Conf Edit

This causes every use action to be passed on to the Edi t Val B object.

(NB: There are a few currently a few bugs with this implementation, with obscure characters. Tcl-Tk
does not recognise certain character inputs correctly on some platforms. For instance, with UK
keyboards the pound sign may not be recognised properly under NT. There are also some special
control shortcuts not handled properly yet, and copy and paste is not handled yet.)

We tell each editor to listen to and display the text of an Edit Val B using edi t Val B. The
implementation keeps track of where updates originate from so that a given edit widget will not update
itself with changes caused by its own user input.

editValB :: EditValB -> Conf Edit
We can get a String behavior representing the state of the Edi t Val B object.
edi t Behavior :: EditVal B -> Behavior String

(NB: This has not yet been implemented. In particular, the state of the Edi t Val B is not fully updated
yet. Adding an editor to an Edi t Val B that has been passed changes will therefore also currently have
unpredictable results.)

From an EditValB object we can also get an event noting every update change.
edi tVal Event :: EditVal B -> Event Edit Val

We can make an edit widget update its view using an Edi t Val event using edi t Val E.
editValE :: Event EditVal -> Conf Edit

We can aso set an edit widget with an initia list of EditVal updates, or a behavior list of edit val
updates.

editvVals :: [EditVal] -> Conf Edit
editVal sB :: Behavior [EditVal] -> Conf Edit

4.11.2.2. What exactly is an Edit update
Updates to an edit state are defined using the Edi t Val datatype.
dat a Edit Val
There are number of functionsto construct values of type Edi t Val . We can insert text at a given point

(insert Edi t Val), delete text between two given points (del et eEdi t Val), reset the text
(reset Edi t Val), or clear it (cl ear Edi t Val).

insertEditVal :: String -> Tlndex -> EditVal
deleteEditVal :: TIndex -> Tlndex -> EditVal
resetEditval :: String -> EditVal
clearEditVval :: EditVal

clearEditVval = resetEditval “”

46

We caninsert an Edi t Mar k, or an Edi t Tag. An Edi t Mar k puts amark at particular point in some
text. An Edi t Tag is away of tagging, and therefore changing the attributes of some section of text.
These are discussed in sections 4.11.2.3 and 4.11.2.6 respectively.

insertMarkEditVal :: GU EditMark -> Edit Val
i nsert TagEditVal :: GUJ EditTag -> Edit Val

We can also insert some text at a given point, with an Edi t Tag associated with.

i nsert TaggedEditVal :: String -> Tlndex -> QU EditTag -> Edit Val

Note that a given Edi t Tag or Edi t Mar k can only be added to a single edit widget. This is why we
passinavaueof type GUl Edi t Tag (or Edi t Mar k), which is an action that produces an Edi t Tag
(or Edi t Mar k).

To define agiven point in an edit areawe use the Tl ndex type.

data TI ndex
deriving (Eq, Show)

This has constructor functions to define a point: at a given line number and column number (t i ndex),
starting at 1, 1; at the start (t i ndexStart) or end (t i ndexEnd) of the text; at a particular mark
(ti ndexMar k); at the start (t i ndexTagFi rst) or end (t i ndexTaglLast) of atag; or at agiven
offset fromanindex (t i ndexMbdMove).

tindex :: Int -> Int -> Tlndex
tindexEnd :: TIlndex

tindexStart :: TIndex

tindexMark :: ldent -> Tlndex

ti ndexTagFirst :: ldent -> Tlndex
ti ndexTagLast :: ldent -> TIndex

ndexModMove :: TIndex -> ModMove -> Tl ndex

t

The possible offsets are to the beginning (Li neStart) or end of the current line (Li neEnd);
beginning (Wor dSt art) or end (Wor dEnd) of the current word; moving by a given number of
characters (MbdChar s); or moving by a given number of lines (MbdLi nes).

data ModMove = LineStart | LineEnd | WrdStart | WrdEnd
| ModChars Int | ModLines Int
deriving (Eq, Show)

4.11.2.3. Edit Tags

As mentioned in the previous section an Edi t Tag can be used to alter the attributes or bind user input
to a particular section of text. We can make an edit tag using nkEdi t Tag. Some examples of the use
of edit tags are given in the following two sections.

nkEditTag :: [Conf EditTag] -> GU EditTag

A special form of edit tag is the selection edit tag. This represents the selected area of an edit widget.
An edit widget may only have one of these.

selectEditTag :: [Conf EditTag] -> GU EditTag
Edit tags are added to an edit widget using the EditVal updates, discussed in section 4.11.2.2.
We can give an Edi t Tag a particular unique identifier with Has_usel dent .

cl ass Has_usel dent w where
useldent :: ldent -> Conf w

i nstance Has_usel dent Edit Tag

47

It isthisunique identifier that isreferred to by Tl ndex value (see section 4.11.2.2).

An Edit tag can have input bound to it. It is therefore a member of the Has Input class. See section 4.13
for more on this.

i nstance Has_|nput (GU EditTag)

An EditTag may be set at a given index using the Has_wi t hl ndex class. It can be given an initial
index, or an event stream of indices, or a behavior index. A value of Just t means set the index to t; a
value of Nothing means remove the tag from the edit area.

class Has withlndex t w

wi thl ndex :: Has_withlndex w => Maybe t -> Conf w

wi t hl ndexE :: Has_wi thl ndex w => Event (Maybe t) -> Conf w
it

wi thlndexB :: Has_withlndex w => Behavior (Maybe t) -> Conf w

We can sample the indices of an edit tag, from a listener using snapTagL and from an event using
snapTagE.

snapTagL :: EditTag -> Listener (Maybe (Int,Int),a) -> Listener a

snapTagL_ :: EditTag -> Listener (Maybe (Int,Int)) -> Listener a
snapTagE :: Event a -> EditTag -> Event (a, Maybe (Int,Int))
snapTagE_ :: Event a -> EditTag -> Event (Maybe (Int,Int))

The other configuration options to an edit tag available are background, borderwidth, font, foreground,
justify, relief, underline, wrap.

We'll see how to use edit tags through two examples now.

4.11.2.4. Edit Tags| - A hypertext example

Consider a simple hypertext system as seen in the figure below.

Hypertext M=l

This document
What iz this all about, T find oub mare by this

Hypertext entries are either headings, in bold, 14 point font; hyperlinks to an address; or simple text.

type Hypertext = [HypertextTag]
data HypertextTag = Heading String | Text String

| Link String Address
type Address = String

We can display a hypertext page as follows. We define a hypertext page as displaying a hypertext
Behavi or, that may therefore change over time. When we find an address we pass the address to a
listener, which will presumably change the page.

hypert ext Page :: Behavior Hypertext -> Listener Address
-> Conponent
hypert ext Page hypertext readPage = do
nkEdit [editValsB $ 1iftl (map (tag readPage)) hypertext,
readOnly True]

48

editVal sB :: Behavior [EditVal] -> Conf Edit

We make an edit widget that displays the hypertext, using editValsB. Recall from section 4.11.2.1 that
editValsB displays a behavior list of EditVas. We make the hypertext page read only. We therefore
need to convert hypertext entriesinto EditVal entries.

tag :: Listener Address -> HypertextTag -> EditVal
Plain text isresultsin a String being added to the end of the edit area.

tag change (Text s) = insertEditVal s tindexEnd
A heading trandates into tagged text. We add the String at the end, tagging it with an edit tag, that sets
the font for that bit of text to 14 point, bold.

tag change (Heading s) =
i nsert TaggedEdi tVal (s ++ “\n”) tindexEnd
(mkEdi t Tag [font $ namedFont "Hel vetica" 14 [Bold]])

A hyperlink also trandlates into tagged text. In this case we make the tagged text blue, and bind mouse
presses with button 1 to tell the change listener about the address.

tag change (Link s addr) = insertTaggedEditVal s tindexEnd
(mousePress 1 (tellL change addr) $
nkEdi t Tag [foreground S. bl ue])

mousePress :: Has_Input w=>Int -> Listener () ->w->w

Finally we can make an instance of the hypertext editor. We make a BVar that holds the current page.
Pressing a hyperlink will therefore cause the page to be set with the relevant hypertext for the new
address.

test10 :: WConponent
test10 = nkWndow [title "Hypertext"] $ do
pagestate <- nkBVar init
hypert ext Page (bvarBehavi or pagest ate)
(mapL get $ input pagestate)

wher e
get :: Address -> Hypertext
get "web: 1" = init

get "web: 2" = back
back, init :: Hypertext

back = [Headi ng "Next docunment",
Text "Go back to ",
Li nk "previ ous docunment" "web: 1"]

init = [Heading "This docunment",
Text "What is this all about. To find out nore try ",
Li nk "this" "web:2"]
4.11.2.5. Edit Tags |1 — A more complex text editor

Now consider a more complex text editor. As well as an edit area, users can select an area of text and
giveit acolor, or changeitsfont size.

E ditor _ O]

Style

SAET i all about

49

textEditor :: EditVal B -> WConponent
textEditor evb = do
sel ect <- selectEditTag []
nkW ndow [title "Editor", useMenu (textMenu select evbh)] $
nkEdit [font (namedFont "Tines" 8 []),
edi t Val B evb,
editVals [insertTagEditVal (return select)],
editVal L (editVallnput evb)]

We make atext editor that uses a shared edit state (Edi t Val B). We make the editor display the shared
text (edi t Val B evb); and talk to it (editVal L (editVal | nput evb)). We also create a
selection tag, to give access to the current selection, and add it to the edit widget.

We make a menu that uses the selection edit tag. It consists of two radio groups, separated by a menu
separator. The first radio group sets the text color, and the second the font size. When afont or color is
set atag is added to the edit state. We make a listener for tag creation using nkTag, and make a radio
group withr adi 0Gr oup. (See section 4.10 for more on the menu operations.)

textMenu :: EditTag -> EditValB -> GJ Menu
text Menu sel ect evb = do
let tagL :: Listener [Conf EditTag]
tagL = nkTag sel ect evb
nmkMenu []
[ntascade [text "Style"] $ nkMenu [] $
[radi oGroup tagL "Text Col or" "black"
f or egr oundB
[("black", bl ack), ("red", red),
("green", green), ("blue", blue)],
nsepar at or,
let nkfont :: Int -> Conf EditTag
nkfont x = font (nanedFont "Tinmes" x [])
in radioGoup tagL "Font" "8" nkfont
(map (\x -> (show x, x)) [8,10,12,14])

]

A radi oG oup is a cascading menu item, with a group of radio buttons. There is a button for each
entry in the vals list; the first item is the name of the entry and the second forms the configuration
option for the edit tag. For instance, setting the color sets the foreground of the new tag to the given
color. (See section 4.6 for more on the Radi o type.)

radioGoup :: EditTag -> EditVal B
-> String -> String -> (a -> Conf EditTag)
-> [(String, a)]
-> Menul tem
radi oG oup select evb gpnane init config vals =
ncascade [text gpnane] $ do
rad <- nkRadio (Just init)
nkMenu [] $
let m (c,v) =
nt adi obutton [text c,useRadio rad c]
(mkTag [config v] select evb)
in map nr vals

To make a new tag, we snapshot the indices of the current selection tag (snapTagL sel ect). This
tells us what area of text the new configuration option will cover. If the selection is empty (Not hi ng),
we don’t create a tag. If the selection is non-empty, we insert an edit tag, with itsinitial index equal to
the area of the selection. We tell the edit state about new tags (edi t Val | nput evb). Recall that
mapMaybel filters values with a Maybe valued function before passing them to its argument listener.

mapMaybelL :: (a -> Maybe b) -> Listener b -> Listener a

nkTag :: EditTag -> EditVal B -> Listener [Conf EditTag]
nkTag sel ect evb =

50

snapTagL sel ect (napMaybelL insertEdit (editVallnput evb))
wher e
insertEdit :: ([Conf EditTag], Maybe ((Int,Int),(Int,Int)))
-> Maybe Edit Val
insertEdit (cs, Nothing) = Nothing
insertEdit (cs,Just ((x,y),(a,b))) = Just $
i nsert TagEdi t Val
(nkEdit Tag (withlndex (Just $ (tindex x y,tindex a b)):cs))

4.11.2.6. Edit Marks

An Edi t Mar k is amark that can be placed in an edit area. It moves around as the text moves, and so
is away of marking important points in the text such as the beginning of a section. We can create an
EditMark using mkEdi t Mar K.

nkEdit Mark :: [Conf EditMark] -> GU EditMark
Theinsertion cursor in an edit widget isjust a special type of edit mark.
insertEditMark :: CGU EditMrk

Aswith Edi t Tags, we can give an Edi t Mar k a particular identifier with the usel dent ; and set its
location using wi t hl ndex. Note that where and Edi t Tag has two indices noting its first and last
point, amark has only asingle index. (See section 4.11.2.3 for more on useldent and withlndex).

i nstance Has_usel dent Edit Mark
i nstance Has_wit hl ndex TIndex EditMark

We can sample the index of an edit tag, from a listener using snapMarkL and from an event using
snapMarkE.

snapMarkL :: EditMark ->Listener (Maybe (Int,) a) -> Listener a
Int))

snapMarkL_ :: EditMark -> Listener (Maybe (I n -> Listener a
snapMarkE :: Event a -> EditMark -> Event (a, Maybe (Int,Int))
snapMarkE_ :: Event a -> EditMark -> Event (Maybe (Int,Int))

4.11.2.7. Copy and Paste

An edit widget will accept copy, cut and paste commands. We can do this using the cl i pboar dE
configuration option. This accepts an event stream of clipboard actions and makes the edit widget react
to these commands.

data i pboardAction = Copy | Cut | Paste
clipboardE :: Event CipboardAction -> Conf Edit

For instance, we can make an edit widget with a menu accepting copy, cut and paste commands. We
first create a wire for the menu buttons to talk to, and then make an edit widget that listens to those
clipboard commands.

textEditor :: 10 ()
textEditor = display $ do
clipB <- nkWre
let nmenu =

ncascade [text "Edit"] $ nkMenu [] $
[mbutton [text "Copy] (tellL (input clipB) Copy),
nmbutton [text "Cut"] (tellL (input clipB) Cut),
nmbutton [text "Paste"] (teIIL (1 nput clipB) Paste)]

nkW ndow [useMenu nmenu] $ nkEdit [clipboardE (event clipB)]

51

4.11.2.8. Searching text

An edit widget will also accept search commands. Every time a String appears on an event stream, it
searches for agiven String, and tells alistener the location of that String. Thisis coming soon...

editFindE :: Event String ->Listener (Maybe ((Int,Int),(Int,Int)))
-> Conf Edit

4.12. Canvas

4.12.1. The Canvas Definition

A Canvas isadrawing areathat contains a collection of drawing items, such as ovals, or lines, as well
standard components such as buttons. To create a canvas we pass in alist of configuration options, and
a CConmponent , which represents the contents of canvas. A canvas example is presented in section
4.12.11.

nkCanvas :: [Conf Canvas] -> CConponent -> Conponent

The configuration options available to a canvas are background, borderwidth, cursor, height,
highlightbackground, highlightcolor, highlightthickness, relief, scrollregion, takefocus, width.

Canvases are scrollable. (See section 4.9)
4.12.2. The CComponent type

Canvases contain canvas widgets. A value of type CConponent is an action that produces a canvas
widget.

type CanvasW dget = WdgetB CW
type CConponent = GU CanvasW dget

We can place a canvas widget over another using over .

cl ass Over w where
over :: wW->Ww-> W

i nstance Over CanvasW dget
i nstance Over CConponent

We can stack a pile of canvas objects using pile. The object at the front of the list appears at the top; the
object at the end of thelist at the bottom. (Recall that we introduced the pile class with Window widgets
in section 4.2)

class Pile ¢ w where

pile :: ¢cw->w
i nstance Pile ListB CConponent
i nstance Pile [] CConponent
i nstance Pile ListB CanvasW dget
instance Pile [] CanvasW dget

We can transform canvas items using the Tr ansf or mabl e2B class.

cl ass Transfornmabl e2B w where
(*% :: TransformB -> w -> w

i nstance Transformabl e2B CConponent

This provides operations to move and scale canvasitems. (NB: With Tcl they can’t be rotated.)

52

nove :: Transfornabl e2B bv => Vector2B -> bv -> bv

noveXY :: Transformabl e2B bv => Real B -> Real B -> bv -> bv
noveTo :: Transfornabl e2B bv => Point2B -> bv -> bv
stretch, shrink :: Transformabl e2B bv => Real B -> bv -> bv

The full set of Fran transformation operations are presented in Fran appendix.

4.12.3. Canvasltem - Ovals

The function nkCOval , creates an oval with a size given by the argument vector.
nkCOval :: Vector2B -> [Conf COval] -> CConponent

The configuration options available to ovals are fillColor, outline, tags, width.

4.12.4. Canvasltems- Lines

The function nkCLi ne creates a line that passes through the list of points provided by the argument
list.

nkCLi ne :: [Point2B] —> [Conf CLine] -> CConponent
The configuration options available to lines are fillColor, tags, width.
4.12.5. Canvas Items—Arc
The function mk CAr ¢ creates an arc. It has a radius based on the vector argument. It starts at an angle
based on the first real (measured counter-clockwise from the 3 o’clock position); it extends for a

number of degrees based on the second argument.

nkCArc :: Vector2B -> IntB -> IntB -> [Conf CArc]
-> CConponent

The configuration options available to arcs are fillColor, outline, tags, width.

4.12.6. Canvas Items— Rectangle

The function mk CRect angl e creates arectangle, with a size bsed on the argument vector.
nmkCRectangle :: Vector2B -> [Conf CRectangle] -> CConponent

The configuration options available to rectangles are fillColor, outline, tags, width.

4.12.7. Canvas Items— Polygons

The function mk CPol ygon creates a polygon with corners at all the points in the argument point list.

nmkCPol ygon :: [Point2B] -> [Conf CPoly] -> CConponent

The configuration options available to rectangles are fillColor, outline, tags, width.
4.12.8. Canvas Items— Text
The function mkCText creates atext item.

nkCText :: [Conf CText] -> CConponent

The configuration options available to text items are anchor, fillColor, font, justify, tags, text, width.

4.12.9. Canvas Items— Bitmaps

53

The function mkCBitmap creates a canvas items displaying a bitmap.
nkCBitrmap :: [Conf CBitnap] -> CConponent

The configuration options available to bitmap items are anchor, selectbackground, selectforeground,
selectborderwidth, foreground, justify, bitmap, tags.

4.12.10. Canvas Items— Displaying Standard Components
The function mk CW ndow displays a standard Conponent on acanvas.
nkCW ndow :: [Conf CW ndow] -> Conponent -> CConponent
(NB : In Tcl-Tk canvas window items will always appear above (and therefore overlap) other more
lightweight canavas items (such as lines or ovals). The stacking order will therefore appear with all

canvas widgets stacked appropriately, then all other items stacked appropriately.)

(NB : At the moment reordering of the stacking order of canvas windows is totally broken. They will
not be raised or lowered.)

The configuration options available to a canvas window are anchor, justify, tags, width, height.
4.12.11. A Canvas Example
We'll now demonstrate a simple example that shows how to display a dynamic list of canvas items.

Items are created using the buttons, moved by dragging with mouse button one, and deleted by pressing
mouse button 3.

IS =] B3

button

All canvas items

polygon | text | bitmap

N

We make a canvas that displays a given dynamic list. Note that each element of the list contains two
parts. A unique identifier (1 dent) and a widget to display (CComponent). This is because list
elements must be uniquely identifiable for deletion. We display a pile of items, one for each entry in the
list. We listen to mouse movements on the canvas and pass them to each item on the canvas. Each item
also has access to the deletion listener, to delete itself from the canvas.

oval | line | arc | rectangle

canvas :: ListBVar (ldent, CConponent) -> Conponent
canvas | = do
mvW<- nkWre
let nkltem= item (deleteListBIl) (event mvW
mouseMove (input nvW $
nkCanvas [] $ pile $ fmap nklitem (collection 1))

We create each object using the functioni t em We create two BVar s, one to record the location of the
item, and one to record whether it is moving. When the item is moving we update the location BVar

with any mouse movements (mv E). We move the item to the recorded location, and stretch it by a factor
of 5. On button 1 mouse presses we start the item moving; on button 1 mouse releases we stop the item
moving; and on button 3 presses we delete the item.

item:: Listener (ldent, CConponent) -> Event S. Point2
-> (1 dent, CConponent) -> CConponent
itemdel ete nvE obj @id,c) = do
p <- nkBVar $ S.point2Xy 10 10

54

m <- nkBvar Fal se
[iftlO $ addLi stener (nmvE ‘whenE (bvarBehavior n))
(i nput p)
noveTo (bvarBehavior p) $ stretch 4 $
nousePress 1 (tellL (input m True) $
nouseRel ease 1 (tellL (input m False) $
nousePress 3 (tellL delete obj) $
c

We make the set of creation buttons, one for each type of widget.

buttonSet :: ListBVar (Ident, CConponent) -> Conponent
buttonSet = nbeside (map (genButton |) ops)

We produce a “create” button with genButton. When the button is pressed it must first generate a
unique name for the widget, and then append an entry to the list of items, with that unique name and the
relevant CConponent . We can generate a unique name using get Uni queNare.

get Uni queNane :: GUJ Int

genButton :: ListBVar (Ildent, CConponent) -> (String, CConponent)
-> Conponent
genButton | (nmw) = do
let nkact :: a -> GJ (Ident, CConponent)
nkact = const $ do
n <- get Uni queName
return (identify n,w
nmk <- mapGUI L nkact (appendListB |)
nkButton [text nnj nk

We have one button for each type of widget.

ops :: [(String, CConponent)]

ops = zip
["oval ", "line","arc", "rectangl e", "pol ygon", "text", "bitnmap",

"button"]

[MkCOval (vector2XY 10 10) [fill Col or S.green],
nkCLi ne [poi nt2XY 0 0, point2XY 10 10] [fill Col or S. bl ue],
nmkCArc (vector2XY 10 10) O 180 [fill Color S.yellow],
nmkCRect angl e (vector2XY 10 10) [fill Col or S. brown],
nmkCPol ygon [poi nt 2XY 10 0, point2XY 0 10, poi nt2XY 20 10] [],
nkCText [text "Text iteni,anchor NWfill Color S white],
nkCBi t map [bitmap (namedBitmap "hourgl ass"), anchor NW,
nkCW ndow [anchor NW $
nkButton [text "button"] (nkL_ $ print "ouch")

]
Finally we create a window to put the buttons and canvas in, and the dynamic collection it isto display.
runCanvas :: 10 ()
runCanvas = display $ nkWdget [title “Canvas”] $ do

| <- nkListBVar’ fst []
buttonSet "~ above® canvas

4.13. Listening to user input

We can bind input to any item that is a member of the Has_| nput class.
cl ass Has_l nput w

It is possible to bind input to any component or edit tag.

i nstance Has_I nput (WdgetB a)
i nstance Has_Input (GU (WdgetB a))
i nstance Has_I nput (GU EditTag)

55

There isarange of possible user input we can listen to.

We can listen to mouse button actions with a given button. The Bool refers to whether we are to listen
to mouse press or mouse releases. The modifiers restrict what form of input we listen to.

nmouseButton :: Has Input w=> Int -> Bool -> [Mdifier]
-> Listener () ->w->w

The Modi fi er type is defined as follows. We can restrict input to only repeated events, such as
double clicks (Doubl eM) or triple clicks (Tr i pl eM; to input only when the control (Cont r ol M, alt
(AFtM or shift (ShiftM key is pressed; to input to when only a button is pressed
(But t onPr essedM. We can aso use system specific modifiers through a String name. This alows
access to specific Tcl modifiersthat are not covered here.

data Modifier =
Doubl eM
| TripleM
| ControlM
| ShiftM
| AltM
| ButtonPressedM I nt
| Avbd String
deriving (Show, Eq)

We can define standard mouse press and release listenersin terms of nouseBut t on.

nmousePress :: Has Input w=>1Int -> Listener () ->w->w
mousePress n | = nmouseButton n True [] |

mouseRel ease :: Has_Input w=>Int -> Listener () ->w->w
nmouseRel ease n | = nouseButton n False [] |

We can listen to mouse movement. Again this may be restricted by alist of modifiers.

nmouseMove’ :: Has Input w=> [Mdifier] -> Listener Point2
-> W -> W

mouseMove :: Has_Input w => Listener Point2 -> w->w

nmouseMove | = nouseMove’ [] |

We can listen to mouse enter and leave events, marking entry and exit from a widget. Again these may
be restricted with alist of modifiers.

mouseEnter’ :: Has_lnput w=> [Mdifier] -> Listener () ->w->w
mouselLeave’ :: Has_lnput w=> [Mdifier] -> Listener () ->w->w
mouseEnter :: Has_Input w => Listener () -> w->w

nouseEnt er = nouseEnter’ []

nouselLeave :: Has Input w => Listener () ->w->w

nmouselLeave = mouseleave’ []

We can listen to keyboard input. This may be a press or release (Bool argument); we may restrict
ourselvesto agiven key (Maybe Key argument); and restrict with alist of modifiers.

key :: Has_|nput w => Bool -> Maybe Key -> [Mdifier]
-> Listener Key -> w->w

The possible key values are
data Key = Return | Escape | KeyChar Char | Key String | Tab

| Caps | Shift | Control | At | Space | App | BackSpace
| CursorLeft | CursorDown | CursorRight | CursorUp

56

Next | Prior | Delete | Insert | Hone | End | F Int
deriving (Eq, Show)

For convenience, there are a number of derived keyboard listener functions.

keyPress :: Has_Input w=> Key -> Listener () ->w->w
keyPress k | = key True (Just k) [] (tellL I ())

keyRel ease :: Has_Input w => Key -> Listener () ->w->w
keyRel ease k | = key False (Just k) [] (tellL | ())
keyPressAny :: Has | nput w => Listener Key -> w -> w
keyPressAny | = key True Nothing [] |

keyRel easeAny :: Has_lnput w => Listener Key -> w -> w
keyRel easeAny | = key True Nothing [] |

We can listen to resize events on a widget.
resizeL :: Has_Input w => Listener Vector2 -> w-> w
We can listen to destroy events on awidget. These happen when, for instance, awindow is closed.

destroyL :: Has_lnput w=> Listener () ->w->w
4.14. General Confuration Options

There are a range of configuration options that are can be applied to widgets. These are al defined in
terms of the Conf type.

data Conf w
We can define generic configuration options using conf GUI .
conf@J :: (w->GJ ()) -> Conf w

There are a range of predefined configuration options that can be applied to objects. As with TkGofer
we use type classes to guarantee that only the correct configuration options can be applied to any
widget. Along with each static configuration option, there is also a behavior version that has a B suffix
on the name. So for instance to set the background of a widget with a behavior color the relevant option
would be;

backgroundB :: Has_background w => Behavi or Col or -> Conf w
All of these configuration classes require the widget to be a member of the W dget | t emclass. This
class has methods to configure the widget, for instance, to set the color of the widget; to destroy the
widget; to get the unique identifier of the widget; to add a finaliser, which is an action that is run when
the widget is destroyed.

cl ass Wdgetltem w where

cset :: w->[Config] -> 10 () -- configure the w dget
destroy :: w->10 () -- destroy the wi dget
uniqueld :: w-> Ildent -- get the unique Identifier of the w dget

addFinaliserW:: w->10() ->10() --
Every configurable widget described in this chapter, such as But t on, isamember of this class.
4.14.1. Setting the color

Set the foreground and background colors of the widget. This uses the color type, defined in the Fran

appendix.
cl ass Wdgetltem w => Has_background w where
backgr ound ;. Color -> Conf w

57

class Wdgetltem w => Has_foreground w where
f or eground :: Color -> Conf w

Set the foreground and background color of the widget when active.
cl ass Has_activebackground w where

acti vebackground :: Color -> Conf w
cl ass Has_activeforeground w where
activeforeground :: Color -> Conf w

Set the background color of the widget when highlighted, and the highlight color.
cl ass Wdgetltem w => Has_hi ghl i ght background w where

hi ghl i ght backgr ound :: Color -> Conf w
class Wdgetltem w => Has_hi ghli ghtcol or w where
hi ghl i ght col or :: Color -> Conf w

Set the foreground color when disabled.
cl ass Wdgetltem w => Has_di sabl edf or eground w where
di sabl edf oreground :: Color -> Conf w

Set the background, foreground and selected color of the selected area of awidget.
cl ass Wdgetltem w => Has_sel ect background w where
sel ect background ;. Color -> Conf w
cl ass Wdgetltem w => Has_sel ect col or w where
sel ect col or :: Color -> Conf w
cl ass Wdgetltem w => Has_sel ectf oreground w where
sel ect f oreground ;. Color -> Conf w

Set the color to fill in awidget
class Wdgetltemw => Has fill Col or w where
fill Col or .. Color -> Conf w

Set the outline color of awidget.
class Wdgetltemw => Has_outline w where
outline .. Color -> Conf w

Some widgets such as scrollbars have trough areas. Set the fill color for this area.
class Wdgetltem w => Has_troughcol or w where
t roughcol or :: Color -> Conf w

For widgets that can perform word-wrapping, this option specifies the maximum line length.
class Wdgetltem w => Has_w apl ength w where
wr apl engt h :: Int -> Conf w

4.14.2. Size based configuration options

Specifies a non-negative integer value indicating desired aspect ratio for the text.
class Wdgetltemw => Has_aspect w where
aspect :: Int -> Conf w

Set the border width.
cl ass Wdgetltemw => Has_borderw dth w where
bor derwi dt h cooInt -> Conf w

Set the widget height and width.
cl ass Wdgetltem w => Has_hei ght w where
hei ght o Int -> Conf w
class Wdgetltemw => Has_w dth w where
wi dt h coInt -> Conf w

Specify a non-negative value indicating the width of the highlight rectangle to draw around the outside

of the widget when it has the input focus.
cl ass Wdgetltem w => Has_hi ghli ghtthi ckness w where
hi ghl i ghtt hi ckness o Int -> Conf w

58

Specify extra padding to give the widget.
class Wdgetltem w => Has_padx w where

padx : Int -> Conf w
class Wdgetltem w => Has_pady w where
pady : Int -> Conf w

For scale widgets specify the starting value, finishing value and length of the scale.
class Wdgetltem w => Has_sca_from w where
sca_from :: Int -> Conf w
class Wdgetltemw => Has_sca to w where
sca_to o Int -> Conf w
class Wdgetltemw => Has_sca | ength w where
sca_l ength :r Int -> Conf w

Specify the scroll region of the widget. The Rect data type is defined in the Fran appendix.

class Wdgetltemw => Has_scrol |l regi on w where
scrol I regi on .. Rect -> Conf w

Specify the width of the border to draw round the widget when selected.
class Wdgetltem w => Has_sel ect borderwi dth w where
sel ect borderwi dth o Int -> Conf w

4.14.3. Miscellanious options

Set the corner to anchor the widget’ s position from.
cl ass Wdgetltem w => Has_anchor w where
anchor :: Anchor -> Conf w
data Anchor = N| S| E| W| NE| NW| SE| SwW| C
deriving (Eq, Show)

Set the bitmap for the widget. Currently we can use bitmaps with a given name. This will be Tcl-Tk

dependent.
class Wdgetltemw => Has_bitmap w where
bi t map ;. Bitmap -> Conf w

data Bitmap
nanedBitmap :: String -> Bitnmap

Set the cursor when over the widget. Again currently we can use only Tcl-Tk dependent named cursors.
class Wdgetltemw => Has_cursor w where

cursor ;. Cursor -> Conf w
data Cursor
nanedCursor :: String -> Cursor

Do we export the selection from the widget to the clipboard.
class Wdgetltem w => Has_exportsel ecti on w where
exportsel ection :: Bool -> Conf w

Set another character to be displayed instead of the input one. Thisis useful with entry fields, where we

might want to make a password entry field that displayed only “*”.
class Wdgetltem w => Has_password w where
password .. Char -> Conf w

Set the select mode for the widget.
cl ass Wdgetltem w => Has_sel ect nnode w where
sel ect node .. Sel ectMde -> Conf w
data Sel ect Mode = Singl eMbde | BrowseMbde | Miltipl eMode
| ExtendedMbde
deriving (Show, Eq)

Set the font for the widget. We can currently create fonts with a given name, point size and style.
class Wdgetltemw => Has_font w where

f ont :: Font -> Conf w
data Font
nanedFont :: String -> Int -> [FontStyle] -> Font

59

data FontStyle = Bold | Italic | Underline | Overstrike | Ronman
deriving Eq

Specify whether the widget should be horizontally or vertically oriented.
class Wdgetltem w => Has_hor_orient w where
hor _ori ent .. Bool -> Conf w

Specify an image to display in the widget.
class Wdgetltem w => Has_i nage w where

i mage :: Inmage -> Conf w
data | nmage
nanedl mage :: String -> | mage

Should the selected indicator be displayed for radio and check buttons.
class Wdgetltem w => Has_indi catoron w where
i ndi cat oron .. Bool -> Conf w

Specify how to justify the widget.
class Wdgetltemw => Has_justify w where
justify :: Justify -> Conf w
data Justify = LeftJ | RightJ | CenterJ
deriving (Show, Eq)

Specify the active state of the widget; isit active, disabled or normal.
class Wdgetltemw => Has_active _state w where
active_state .. ActiveState -> Conf w
data ActiveState = Active | Disabled | Nornal
deriving (Show, Eq)

Specify whether the widget is to be read only (text entry widgets).
class Wdgetltem w => Has _readOnly w where
readOnly :: Bool -> Conf w

Specify the relief to use for the widget.
class Wdgetltemw => Has _relief w where
relief . Relief -> Conf w
data Relief = Raised | Sunken | Flat | Ridge | Solid | Groove
deriving (Show, Eq)

Specify whether the widget location should resize in valid grid units (such as the size of a character).
class Wdgetltemw => Has_setgrid w where
setgrid :: Bool -> Conf w

Specify whether the widget should try to take the input focus when possible.
class Wdgetltem w => Has_takefocus w where
t akef ocus .. Bool -> Conf w

Specify a set of tags, other names that should be associated with the widget.
class Wdgetltemw => Has_tags w where
t ags :: [String] -> Conf w

Specify the text to display in the widget.
class Wdgetltemw => Has_text w where
t ext i1 String -> Conf w

Specify the interval to place ticks on objects such as scale widgets.
class Wdgetltemw => Has_tickinterval w where
tickinterval o Int -> Conf w

Specify which character to underline to provide rapid bindings on objects such as cascading menus.

(Pressing the character activates the menu).
class Wdgetltem w => Has_underline w where
underl i ne o Int -> Conf w

60

Specify how to wrap text in the widget. Do we wrap on to next line at word or character endings

automatically.
class Wdgetltemw => Has_wap w where
wr ap . Wap -> Conf w

data Wap = NoWap | CharWap | WrdWap
deriving (Show, Eq)

Specify whether to make a menu a tearoff menu.
class Wdgetltemw => Has_tearoff w where
tearoff :: Bool -> Conf w

61

Chapter 5- Using Concurrency

Most of the time the declarative concurrency you can achieve in FranTk simply using behaviors and
events is enough. There are, however, times when real pre-emptive concurrency can be helpful. FranTk
provides support for using Haskell threads along with the declarative behavior and event model. This
interface is new and experimental and so may change. This interface is only currently worth using with
GHC as Hugs provides only non-preemptive concurrency.

Consider the following example. We have an interface to a theorem proving tool. This includes a
window with a text entry area to develop the proof and a button to run the prover. When we press the
prove button we don’t want the whole interface to hang. Instead it would be helpful to have the proof
computation occur in a different thread allowing the user interface to continue reacting to input.

We can model this by having the main GUI thread fork off a worker thread to perform the computation.
The worker thread needs to be able to return its value and update the relevant BVar within the user
interface code by firing a listener. The GUI thread can’'t block waiting for a result from the worker
thread and the worker thread shouldn’t directly update the listener itself. If this were to happen we'd
have to be explicitly careful within the GUI thread about synchronisation issues.

Instead we provide primitives to allow worker threads to communicate through channel variables with
the GUI thread.

addCVarListener :: CVar a-> Listener a-> GUI (10 ())
addChanListener :: Chan a-> Listener a-> GUI (10 ()

(NB: these two are not in frantk yet, coming soon)

These allow the listener to wait for input to appear on the channel variables. The CVar version can be
used when the worker thread is only to return one value, as with our example above; the Chan version
can be used if the worker thread is to return a whole stream of values. Values appearing in a CVar or
Channel will be merged with the streams of values that occur from widgets such as buttons,
guaranteeing that the simple semantics of the remaining FranTk code are maintained. In particular, this
means that after BV ars are updated we can be sure that changes to any behaviors will be propogated to
the interface widgets before any further updates are made.

Recall that a CVar and a Chan in concurrent haskell have the following interfaces:
A channel variable (CVar) is a one-element channel:

data Cvar a

newCVar :: 10 (Cvar a)

putCvar :: CVar a ->a -> 10 ()
getCvar :: Cvar a -> 10 a

A Channel isan unbounded channel:
data Chan a

newChan ;. 10 (Chan a)

put Chan :: Chan a ->a ->10 ()
get Chan :: Chan a ->10a
dupChan :: Chan a -> 10 (Chan a)
unGet Chan :: Chan a ->a ->10 ()
get ChanContents :: Chan a -> |0 [a]

Note that it is only safe to have one thread, the GUI thread running FranTk GUI code. Other threads
should not directly attempt to alter the interface, or the BVars and wires making up the interface model.
Instead other threads talk to the GUI thread through this simple interface, updating the behavioral
model of the interface data. This restriction is similar to the treatment of the Swing GUI thread and

62

worker threads in Java. As with Java, actions performed within the GUI thread should be quick to
perform. Heavy weight computation should instead be delegated to worker threads.

Note that the GUI thread can communicate with its worker threads by non-blocking means, such as
sending requests down a channel.

In our example, we would therefore have code that looked something like the following. Imagine we
have a function runProof that takes some proof info and generates a result, but is a heavyweight
computation.

runProof :: ProofVal -> 10O Proof Result

The proveComponent is the button that runs the proof. It takes a Behavior modelling the current proof
and a listener that the proof result should be sent to, when the proof is complete. We make a listener
that produces a worker. Every time it hears a proof val it creates a new CVar and then forks a worker
thread to perform the calculation. This ends by telling its result to the CVar. We then add the proof
result listener to the CVar.

proveConponent :: Behavior ProofVal -> Listener ProofResult
-> Conponent
proveConponent proofB proofResult = do
w <- nkWorker
nkButton [text “Prove”] (listen w)
wher e
listen :: Listener ProofVal -> Listener ()
listen worker = snapshotL_ proofB worker

nkWorker :: GU (Listener ProofVal)
nmkWorker = nkGQUL $ \ pval -> do
cvar <- liftl O newCVar
[iftlO$ forklO $ do
res <- runProof pval
put CVar cvar res
addCvar Li st ener cvar proof Result
return ()

Recall that the function mkGUIL makes a listener that performs a GUI action.

nkGQUIL :: (a->@J ()) -> GU (Listener a)

63

Chapter 6 -

Fran Appendix

There are anumber of numeric types defined as part of Fran.

6.1. Numeric Types

The numeric types and functions are available both a static values and as behaviors. Since the same
name is generally used for both the static and behavioral version of a function, only the behavioral
names are exported by the Fr an module. If the non-behavioral functions are needed, the convention is
toaddinport qualified StaticTypes as S to the program and qualify static names with

S.,asinS. ori gi n2.

6.1.1. Basic Numeric Types
All scalar types are essentially the same in Fran. Synonyms alow type signatures to contain extra
descriptive information such as Fr act i on for values between 0 and 1 but no explicit type conversions
are required between the various scalar types.

type Real Val = Doubl e

type Length = Real Val -- non-negative

type Radians = RealVal -- 0 .. 2pi (when generated)
type Fraction = RealVal -- 0 to 1 (inclusive)

type Scal ar = Doubl e

type Tinme = Doubl e

type DTine = Tine -- Tinme deltas, i.e., durations
dat a Poi nt 2 -- 2D point

data Vector?2 -- 2D vector

data TransfornR2 -- 2D transformation

data Poi nt 3 -- 3D point

data Vector3 -- 3D vector

data TransfornB -- 3D transformation

type Real B = Behavi or Real Val

type FractionB = Behavi or Fraction

type Radi ansB = Behavi or Radi ans

type Lengt hB = Behavi or Length

type TineB = Behavi or Tine

type IntB = Behavi or Int

type Point 2B = Behavi or Poi nt 2

type Vector2B = Behavi or Vector?2

type TransfornmB = Behavi or Transforng

type Point 3B = Behavi or Poi nt3

type Vector3B = Behavi or Vector3

type TransfornBB = Behavi or TransfornS

6.1.2. Pointsand Vectors

ori gin2 Poi nt 2B

poi nt 2XY Real B -> Real B -> Poi nt 2B

poi nt 2Pol ar LengthB -> Radi ansB -> Poi nt 2B
poi nt 2XYCoor ds Poi nt 2B -> (Real B,

Real B)

poi nt 2Pol ar Coor ds Poi nt 2B -> (Real B,

Real B)

di stance?2 Point2B -> Point2B -> LengthB
di st ance2Squar ed Point2B -> Point2B -> LengthB
i nearl nterpol ate2 Point2B -> Point2B -> Real B -> Point 2B
(.+") Poi nt 2B -> Vector2B -> Poi nt 2B
(.- Poi nt 2B -> Vector2B -> Poi nt 2B
(.-.) Point2B -> Point2B -> Vector2B

64

origin3 :: Point3B

poi nt 3XYZ . RealB -> Real B -> Real B -> Poi nt 3B
poi nt 3XYZCoor ds :: Point3B -> (Real B,

Real B, Real B)

di stance3 . Point3B -> Point3B -> LengthB

di st ance3Squar ed . Point3B -> Point3B -> LengthB
linearlnterpolate3 :: Point3B -> Point3B -> Real B -> Point3B
(. +"#) :: Point3B -> Vector3B -> Point3B
(.-"#) :: Point3B -> Vector3B -> Point3B
(.-.#) . Point3B -> Point3B -> Vector3B
xVector?2, yVector2 :: Vector2B -- unit vectors

vect or 2XY .. Real B -> Real B -> Vector2B

vect or 2Pol ar .. Real B -> Real B -> Vector2B

vect or 2XYCoor ds :: Vector2B -> (Real B, Real B)

vect or 2Pol ar Coords :: Vector2B -> (Real B, Real B)

i nstance Num Vector?2 -- from nteger, * not allowed

xVect or 3 :: Vector3B -- unit vector

yVector3 :: Vector3B -- unit vector

zVector3 :: Vector3B -- unit vector

vect or 3XYZ . RealB -> Real B -> Real B -> Vector 3B
vect or 3XYZCoor ds :: Vector3B -> (Real B, Real B, Real B)
vect or 3Spheri cal . RealB -> Real B -> Real B -> Vector 3B
vect or 3Pol ar Coords :: Vector3B -> (Real B, Real B, Real B)

i nstance Num Vector3 -- from nteger, * not all owed/pre>

Note that vectors and points have distinct types. You cannot use + to add a point to a vector. Vectors
are amember of the Numclass while points are not; thus + works with vectors but not points. Although
itisin classNum the* operator cannot be used for vectors.

Read the ‘. " in the operators above as ‘point’ and ‘"’ as ‘vector’. Thus. +* means ‘point plus vector’.

6.1.3. Vector Spaces

zer oVect or .. VectorSpace v => Behavior v

(*™) .. VectorSpace v => ScalarB -> Behavior v ->
Behavi or v

(") .. VectorSpace v => Behavior v -> ScalarB ->
Behavi or v

(MN), (M- .. VectorSpace v => Behavior v -> Behavior v ->
Behavi or v

dot .. VectorSpace v => Behavior v -> Behavior v ->
Scal arB

magni t ude .. VectorSpace v => Behavior v -> Scal arB
magni t udeSquared :: VectorSpace v => Behavior v -> Scal arB

normal i ze .. VectorSpace v => Behavior v -> Behavior v

i nstance Vector Space Doubl e
i nstance Vector Space Fl oat

i nstance Vector Space Vector?2
i nstance Vector Space Vector3

6.1.4. Transformations

The types Tr ansf or mat i on2B and Tr ansf or mat i on3B represent geometric transformation on
images, points, or vectors. The basic transformations are trandation, rotation, and scaling. Complex
transformations are created by composing basic transformations. The class Tr ansf or mabl e2
contains 2D transformable objects.

cl ass Tranformabl e2B a where
(*9% :: Transforn?B -> a -> a -- Applies a transform

These are the operations on 2D transforms:

identity2 :: TransfornkB
transl ate2 :: Vector2B -> TransfornB
rot at e2 ;. Real B -> TransfornB

65

compose?2 :: Transforn2B -> Transforn2B -> Transforn2B

i nver se2 ;. Transfornm2B -> TransfornB
uscal e2 . Real B -> Transform2B -- only uniform scaling
nove :: Transfornabl e2B a => Vector2B -> a -> a

nmove dp thing = translate2 dp *%thing

noveXY :: Transformabl e2B a => RealB -> RealB -> a -> a
nmoveXY dx dy thing = nove (vector2XY dx dy) thing

noveTo :: Transformabl e2B bv => Point2B -> bv -> bv

moveTo p = nmove (p .-. origin2)

stretch :: Real B -> ImageB -> | nageB

stretch sc = (uscale2 sc *% -- 1.0 = 180 degrees

turnLeft, turnRight :: Transfornmable2B a => FractionB -> a -> a

turnLeft frac im= rotate2 (frac * pi) *%im
turnRight frac = turnLeft (-frac)

i nstance Transfor mabl e2B Poi nt 2B

i nstance Transfor mabl e2B Vect or 2B
i nstance Transformabl e2B Rect B

The treatment of 3D issimilar.

identity3 :: TransfornB8B

translate3 :: Vector3B -> TransfornBB

rotate3 .. Vector3B -> Real B -> TransfornB8B

scal e3 .. Vector3B -> TransfornBB

conpose3 ;. TransfornBB -> TransfornBB -> Transforn3B
uscal e3 .. Real B -> TransfornB8B

cl ass Tranfornmabl e3B a where
(**9%9 :: TransfornBB -> a -> a

move3 :: Vector3B -> GeonetryB -> GeonetryB
nove3d dp = (translate3 dp **%

nmoveXYZ :: RealB -> RealB -> Real B -> GeonetryB -> GeonetryB
nmoveXYZ dx dy dz = nove3 (vector3XYZ dx dy dz)

nmoveTo3 :: Point3B -> CGeonetryB -> CeonetryB
nmoveTo3 p = nove3 (p .-.# origin3)

stretch3 :: Real B -> CeonetryB -> CeonetryB
stretch3 sc = (uscal e3 sc **%

turn3 :: Transformmbl e3B a => Vector3B -> RealB -> a -> a
turn3 axis angle = (rotate3 axis angle **%

A transformation that doubles the size of an object and then rotates it 90 degrees would be
rotate2 (pi/2) ‘conpose2' uscal e2 2.

Note that the first transform applied is the one on the right, as with Haskell’s function composition
operator (.).

6.1.5. Rectangles

We can create and manipul ate rectangles.

dat a Rect
type RectB

-- make a rect froma bottomleft corner with a given size
nkRect :: Point2B -> Vector2B -> RectB

66

rect FronCor ners . Point2B -> Point2B -> RectB
rect FronCenterSi ze :: Point2B -> Vector2B -> RectB

i nt er sect Rect . RectB -> RectB -> RectB
uni onRect i Rect B -> RectB -> RectB
rect Cont ai ns Rect B -> Point2B -> Bool B
expandRect .. RealB -> RectB -> RectB
over |l apRect s . RectB -> RectB -> Bool B
enpt yRect . RectB

i sSEnpt yRect . RectB -> Bool B

rect Cent er ;. RectB -> Point2B

rectSize . RectB -> Vector2B

Increase the rectangles size by a given vector.
i ncr easeRect :. Vector2B -> RectB -> RectB

rectLL, rectUR, rectLR rectUL :: RectB -> Point2B
rect Wdth, rectHeight :: RectB -> Real B

6.2. Fran overloaded functions

Many Prelude functlons have been lifted in Fran via overloading:

(+) :: Num a => Behavior a -> Behavior a -> Behavior a
(*) . Num a => Behavior a -> Behavior a -> Behavior a
negat e 2 Num a => Behavior a -> Behavior a
abs :: Num a => Behavior a -> Behavior a
from nteger :: Numa => Integer -> Behavior a
from nt 7 Numa => Int -> Behavior a
guot :: Integral a => Behavior a -> Behavior a -> Behavior a
rem :: Integral a => Behavior a -> Behavior a -> Behavior a
div :: Integral a => Behavior a -> Behavior a -> Behavior a
nod :: Integral a => Behavior a -> Behavior a -> Behavior a
guot Rem :: Integral a => Behavior a -> Behavior a ->
(Behavi or a, Behavior a)
di vivbd :: Integral a => Behavior a -> Behavior a ->
(Behavi or a, Behavior a)
f ronDoubl e :: Fractional a => Double -> Behavior a
fromRational :: Fractional a => Rational -> Behavior a
(1) :: Fractional a => Behavior a -> Behavior a -> Behavior
sin :: Floating a => Behavior a -> Behavior a
cos :: Floating a => Behavior a -> Behavior a
tan :: Floating a => Behavior a -> Behavior a
asin :: Floating a => Behavior a -> Behavior a
acos :: Floating a => Behavior a -> Behavior a
at an :: Floating a => Behavior a -> Behavior a
si nh :: Floating a => Behavior a -> Behavior a
cosh :: Floating a => Behavior a -> Behavior a
t anh :: Floating a => Behavior a -> Behavior a
asi nh :: Floating a => Behavior a -> Behavior a
acosh :: Floating a => Behavior a -> Behavior a
at anh :: Floating a => Behavior a -> Behavior a
pi :: Floating a => Behavior a
exp :: Floating a => Behavior a -> Behavior a
| og :: Floating a => Behavior a -> Behavior a
sqrt :: Floating a => Behavior a -> Behavior a
(**) :: Floating a => Behavior a -> Behavior a -> Behavior a
| ogBase :: Floating a => Behavior a -> Behavior a -> Behavior a

These operations correspond to functions which cannot be overloaded for behaviors. The convention is
to use the B suffix for varsand a* suffix for ops.
from ntegerB ;. Numa => IntegerB -> Behavior a

67

toRati onal B .. Real a => Behavior a -> Behavior Rationa

t ol nt eger B :: Integral a => Behavior a -> IntegerB
evenB, oddB :: Integral a => Behavior a -> Bool B
tolntB :: Integral a => Behavior a -> IntB
proper Fracti onB . (RealFrac a, Integral b) => Behavior a
Behavi or (b, a)
truncat eB . (Real Frac a, Integral b) => Behavior a
Behavi or b
roundB .. (RealFrac a, Integral b) => Behavior a
Behavi or b
ceilingB . (RealFrac a, Integral b) => Behavior a
Behavi or b
floorB .. (RealFrac a, Integral b) => Behavior a
Behavi or b
(") 7 (Numa, Integral b) =>

Behavi or a -> Behavior b -> Behavior a
(") :: (Fractional a, Integral b) =>

Behavi or a -> Behavior b -> Behavior a
(==*) :: Eq a => Behavior a -> Behavior a -> Bool B
(/=* :: Eq a => Behavior a -> Behavior a -> Bool B
(<*) :: Od a => Behavior a -> Behavior a -> Bool B
(<=*) 2 Od a => Behavior a -> Behavior a -> Bool B
(>=* ;. Od a => Behavior a -> Behavior a -> Bool B
(>*) :: Od a => Behavior a -> Behavior a -> Bool B
cond :: Bool B -> Behavior a -> Behavior a -> Behavior a
not B :: Bool B -> Bool B
(&&*) :: Bool B -> Bool B -> Bool B
(11*) :: Bool B -> Bool B -> Bool B
pairB :: Behavior a -> Behavior b -> Behavior (a,b)
fstB :: Behavior (a,b) -> Behavior a
sndB :: Behavior (a,b) -> Behavior b
pai rBSpl it :: Behavior (a,b) -> (Behavior a, Behavior b)
showB :: (Show a) => Behavior a -> Behavior String
A few list-based funct|ons arellfted although most of the functionsin Pr el udeLi st are not lifted.
nilB .. Behavior [a]
consB .. Behavior a -> Behavior [b] -> Behavior [Db]
headB .. Behavior [a] -> Behavior a
tail B .. Behavior [a] -> Behavior [a]
nul | B :: Behavior [a] -> BoolB
(rr*) .. Behavior [a] -> IntB -> Behavior a

-- Turn a list of behaV|ors into a behavior over |ist
bLi st ToLi stB :: [Behavior a] -> Behavior [a]
bLi st ToLi stB = foldr consB nil B

-- Lift a function over lists into a function over behavior lists
liftL :: ([a] -> b) -> ([Behavior a] -> Behavior b)
liftL f bs =1iftl f (bListToListB bs)

68

