avr-libc Reference Manual
1.0.5

Generated by Doxygen 1.3.6

Sat Jan 22 10:07:02 2005

CONTENTS [

Contents
1 AVRLibc 1
1.1 SupportedDevices. 2
2 avr-libc Module Index 4
2.1 avrlibcModules 4
3 avr-libc Data Structure Index 5
3.1 avrlibcDataStructures. 5
4 avr-libc Page Index 5
4.1 avrlibcRelatedPages. 5
5 avr-libc Module Documentation 6
5.1 Bootloader Support Utilities. 6
5.1.1 Detailed Description. oL 6
5.1.2 Define Documentation 7
5.2 CRCComputations 9
5.2.1 Detailed Description., 9
5.2.2 Function Documentation. 10
53 EEPROMhandling. 11
5.3.1 Detailed Description. L 11
5.3.2 Define Documentation 12
5.3.3 Function Documentation. 13
5.4 AVR device-specific IO definitions 14
5.5 Program Space String Utilities 15
5.5.1 Detailed Description. L 15
5.5.2 Define Documentation 16
5.5.3 Function Documentation. 18
5.6 Additional notes fromcavr/sfr_defs.b- 21
5.7 Power Managementand SleepModes 23
5.7.1 Detailed Description. oL 23

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

CONTENTS ii
5.7.2 Define Documentation 23
5.7.3 Function Documentation. 24

5.8 Watchdogtimerhandling 24
5.8.1 Detailed Description. L 24
5.8.2 Define Documentation 25

5.9 CharacterOperations. i 26
5.9.1 Detailed Description oL 26
5.9.2 Function Documentation. 27

5.10 System Errors(errnQ).o 29
5.10.1 Detailed Description L. 29
5.10.2 Define Documentation 29

5.11 Integer Type CONVErSIONS v o v v i e e e e 30

5.12 Mathematics 30
5.12.1 Detailed Description L 30
5.12.2 Define Documentation 31
5.12.3 Function Documentation. 31

5.13 SetimpandLongimp. 34
5.13.1 Detailed Description L 34
5.13.2 Function Documentation. 35

5.14 Standard IntegerTypes. 36
5.14.1 Detailed Description 36
5.14.2 Typedef Documentation 37

5.15 Standard IO facilities 38
5.15.1 Detailed Description 38
5.15.2 Define Documentation 42
5.15.3 Function Documentation. 43

5.16 Generalutilities. 53
5.16.1 Detailed Description L 53
5.16.2 Define Documentation 55
5.16.3 Typedef Documentation 55
5.16.4 Function Documentation. 55

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

CONTENTS iii

5.16.5 Variable Documentation 63
517 Stings. . . .« o o 64
5.17.1 Detailed Description L. 64
5.17.2 Function Documentation. 65
5.18 Interruptsand Signals.o 72
5.18.1 Detailed Description 72
5.18.2 Define Documentation 75
5.18.3 Function Documentation. 76
5.19 Special functionregisters. oo 77
5.19.1 Detailed Description L. 77
5.19.2 Define Documentation 79

6 avr-libc Data Structure Documentation 82
6.1 div_tStructReference. L. 82
6.1.1 Detailed Description. 82

6.2 Idiv_tStructReference 82
6.2.1 Detailed Description. 0L 82

7 avr-libc Page Documentation 83
7.1 Acknowledgments. 83
7.2 avr-libcand assemblerprograms. 84
7.2.1 Introduction 84
7.2.2 Invokingthe compiler. 84
7.2.3 Exampleprogram. 0o 85
7.2.4 Pseudo-opsandoperators. 88

7.3 Frequently Asked Questions, 89
731 FAQINdex 89
7.3.2 My program doesn’t recognize a variable updated within an
interruptroutine 91

7.3.3 | get"undefined reference to..." for functions like "sin()". . 91
7.3.4 How to permanently bind a variable to a register?. 91
7.3.5 How to modify MCUCR or WDTCR early?. 92

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

CONTENTS iv
7.3.6 Whatisallthis_BV() stuffabout?. 92
7.3.7 CanluseC++tonthe AVR? 93
7.3.8 Shouldn't l initialize all my variables? 94
7.3.9 Why do some 16-bit timer registers sometimes get trashed?94
7.3.10 How do | use a #define'd constant in an asm statement?. 95
7.3.11 Why does the PC randomly jump around when single-stepping

through my programinavr-gdb?. 96
7.3.12 How do | trace an assembler file in avr-gdh?. 96
7.3.13 How do | pass an |0 port as a parameter to a function? . 98
7.3.14 What registers are used by the C compiler? 100
7.3.15 How do | put an array of strings completely in ROM?. . . 101
7.3.16 Howtouseexternal RAM?. 103
7.3.17 Which-Oflagtouse?. 104
7.3.18 How do I relocate code to a fixed address?. 105
7.3.19 My UART is generating nonsense! My ATmegal28 keeps
crashing! Port F is completely broken!. 105
7.3.20 Why do all my "foo...bar" strings eat up the SRAM?. . . . 106
7.3.21 Why does the compiler compile an 8-bit operation that uses
bitwise operators into a 16-bit operation in assembly?. . . 107
7.3.22 How to detect RAM memory and variable overlap problems®07
7.3.23 Isitreally impossible to program the ATtinyXXinC? . . . 108
7.3.24 What is this "clock skew detected” messsage? 108
7.3.25 Why are (many) interrupt flags cleared by writing a logical 1109
7.3.26 Why have "programmed" fuses the bit value.0?. 109
7.3.27 Which AVR-specific assembler operators are available?. 110
7.4 Inline ASM 110
741 GCCasmStatement. 111
7.4.2 AssemblerCode. 112
7.4.3 Inputand OutputOperands 113
744 Clobbers. 117
7.45 AssemblerMacros L. 119
746 CStubFunctions, 120

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

CONTENTS v

7.5

7.6

7.7

7.8

7.477 CNamesUsedinAssemblerCade. 121
748 Links 122
Usingmalloc() o o 122
7.5.1 Introduction 122
7.5.2 Internalvs. externalRAM. 123
7.5.3 Tunablesformalloc(). 124
7.5.4 Implementationdetails. 125
Release Numbering and Methodology. 126
7.6.1 Release Version Numbering Scheme. 126
7.6.2 ReleasingAVR Libc. oL 127
Memory Sections. 129
7.7.1 The.textSection, 130
7.7.2 The.dataSection. 130
7.7.3 The.bssSection 130
7.7.4 The.eepromSection. 130
7.7.5 The.noinitSection 131
7.7.6 The.initNSections 131
7.7.7 The finiNSections 132
7.7.8 Using Sections in AssemblerCode 133
7.7.9 Using SectionsinCCode 134
Installing the GNU Tool Chain 134
7.8.1 RequiredTools 135
7.82 OptionalTools. 135
7.8.3 GNU Binutils forthe AVRtarget 136
7.8.4 GCCforthe AVRtarget. 137
785 AVRLibc. 138
786 UISP 139
787 Avrdude 139
7.8.8 GDBforthe AVRtarget. 139
7.8.9 Simulavr 140
7.8.10 AVARICE 140

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

1 AVR Libc 1

7.9 Usingtheavrdudeprogram. 141
7.10 Usingthe GNUtools. L 142
7.10.1 Options for the C compileravr-gcc 143
7.10.2 Options for the assembleravr-as 147
7.10.3 Controlling the linkeravr-ld. 149
7.11 Asimpleproject 151
7.11.1 TheProject 151
7.11.2 TheSourceCode. v v v i i 153
7.11.3 CompilingandLinking 155
7.11.4 Examining the ObjectFile 156
7.11.5 LinkerMapFiles. o oL 159
7.11.6 IntelHexFiles. 161
7.11.7 Make Buildthe Project. 161
7.12 Example using the two-wire interface (TWI). 163
7.12.1 Introductioninto TWI. 163
7.12.2 The TWlexample project. 164
7.123 TheSourceCode. v 164
7.13 TodoList 177
7.14 Deprecated List 177
1 AVR Libc

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-bit
RISC microcontrollers. In addition, the library provides the basic startup code needed
by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/

1.1 Supported Devices 2

list, so you will usually be able to get your problem resolved. You can subscribe to
the list athttp://www.avrl.org/mailman/listinfo/avr-gcc-list/.

Before posting to the list, you might want to try reading #requently Asked Ques-
tionschapter of this document.

Note:
This document is a work in progress. As such, it may contain in-
correct information. If you find a mistake, please send an email to
avr-libc-dev@nongnu.org describing the mistake. Also, send us an email

if you find that a specific topic is missing from the document.

1.1 Supported Devices

The following is a list of AVR devices currently supported by the library.

AT90S Type Devices:

« at90s12001]
« at90s2313
« at90s2323
« at90s2333
« at90s2343
« at90s4414
« at90s4433
* at90s4434
« at90s8515
« at90c8534
« at90s8535

ATmega Type Devices:

e atmega8
¢ atmegalO3

¢ atmegal28

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://www.avr1.org/mailman/listinfo/avr-gcc-list/.
mailto:avr-libc-dev@nongnu.org

1.1 Supported Devices 3

e atmegal6

e atmegal6bl

¢ atmegal62

e atmegal63

e atmegal69

e atmega32

e atmega323

* atmega64 [untested]

« atmega8515 [untested]

« atmega8535 [untested]

ATtiny Type Devices:

e attiny11[1]
e attiny12[1]
e attiny15[1]
* attiny22
* attiny26
* attiny28[1]

Misc Devices:

. at94K[2]

e at76c7113]
e at43ush320
* at43usb355
+ at86rf401

Note:
[1] Assembly only. There is no direct support for these devices to be programmed
in C since they do not have a RAM based stack. Still, it could be possible to
program them in C, see th&\Q for an option.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

2 avr-libc Module Index 4

Note:
[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:
[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

Bootloader Support Utilities 6
CRC Computations 9
EEPROM handling 11
AVR device-specific 10 definitions 14
Program Space String Utilities 15
Power Management and Sleep Modes 23
Watchdog timer handling 24
Character Operations 26
System Errors (errno) 29
Integer Type conversions 30
Mathematics 30
Setjmp and Longjmp 34
Standard Integer Types 36
Standard |10 facilities 38
General utilities 53
Strings 64

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

3 avr-libc Data Structure Index 5
Interrupts and Signals 72
Special function registers 77

Additional notes from <avr/sfr_defs.h> 21

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:

div_t 82
Idiv_t 82

4 avr-libc Page Index

4.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Acknowledgments 83
avr-libc and assembler programs 84
Frequently Asked Questions 89
Inline Asm 110
Using malloc() 122
Release Numbering and Methodology 126
Memory Sections 129
Installing the GNU Tool Chain 134
Using the avrdude program 141
Using the GNU tools 142
A simple project 151

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5 avr-libc Module Documentation 6

Example using the two-wire interface (TWI) 163
Todo List 177
Deprecated List 177

5 avr-libc Module Documentation

5.1 Bootloader Support Utilities

5.1.1 Detailed Description

#include <avr/io.h>
#include <avr/boot.h>

The macros in this module provide a C language interface to the bootloader support
functionality of certain AVR processors. These macros are designed to work with all
sizes of flash memory.

Note:
Not all AVR processors provide bootloader support. See your processor datasheet
to see if it provides bootloader support.

Todo
From email with Marek: On smaller devices (all except ATmega64/128), _ SPM_-
REG is in the 1/O space, accessible with the shorter "in" and "out" instructions -
since the boot loader has a limited size, this could be an important optimization.

API Usage Example
The following code shows typical usage of the boot API.

#include <avr/interrupt.h>
#include <avr/pgmspace.h>

#define ADDRESS 0x1C000UL

void boot_test(void)

{

unsigned char buffer[8];

cli);

/I Erase page.
boot_page_erase((unsigned long)ADDRESS);
while(boot_rww_busy())

{

boot_rww_enable();

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.1 Bootloader Support Utilities 7

}

/I Write data to buffer a word at a time. Note incrementing address
/Il by 2. SPM_PAGESIZE is defined in the microprocessor 10 header file.
for(unsigned long i = ADDRESS; i < ADDRESS + SPM_PAGESIZE; i += 2)

{

}
Il Write page.

boot_page_write((unsigned long)ADDRESS);
while(boot_rww_busy())

{
}

sei();

boot_page_fill(i, (-rADDRESS) + ((iFADDRESS+1) << 8));

boot_rww_enable();

/I Read back the values and display.

/I (The show() function is undefined and is used here as an example
/I only.)

for(unsigned long i = ADDRESS; i < ADDRESS + 256; i++)

show(utoa(pgm_read_byte(i), buffer, 16));
}

return;

Defines

« #defineEBOOTLOADER_SECTION _ attribute__ ((section (".bootloader")))

« #defineboot_spm_interrupt_enalf)_ SPM_REG= (uint8_{_BV(SPMIE))

e #define boot_spm_interrupt_disalfle (__SPM_REG &= (int8 d~ -
BV(SPMIE))

« #defineboot_is_spm_interrufit(_ SPM_REG & (int8_{ BV(SPMIE))

 #defineboot_rww_busf) (_ SPM_REG & (int8_§ BV(__COMMON_ASB))

« #defineboot_spm_bugy (___SPM_REG & (int8_) BV(SPMEN))

 #defineboot_spm_busy wdjtdo{}while(boot_spm_busy())

 #defineboot_page_fifladdress, data) __boot page_fill_normal(address, data)

 #defineboot_page_ erataddress) boot page erase normal(address)

« #defineboot_page_writ@ddress) ___boot_page_write_normal(address)

« #defineboot_rww_enabl@ _ boot_rww_enable()

« #defineboot_lock_bits_séliock bits) _ boot_lock _bits_set(lock_bits)

5.1.2 Define Documentation

5.1.2.1 #define boot_is_spm_interrupt() (__SPM_REG & uint8 t) -
BV(SPMIE))

Check if the SPM interrupt is enabled.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.1 Bootloader Support Utilities 8

5.1.2.2 #define boot_lock bits_set(lock_bits) boot_lock_bits_set(lock bits)
Set the bootloader lock bits.

Parameters:
lock_bits A mask of which Boot Loader Lock Bits to set.

Note:
In this context, a 'set bit’ will be written to a zero value.

For example, to disallow the SPM instruction from writing to the Boot Loader memory
section of flash, you would do this macro as such:

boot_lock_bits_set (_BV (BLB12));

And to remove any SPM restrictions, you would do this:

boot_lock_bits_set (0);

5.1.2.3 #define boot_page_ erase(address) __ boot_page_erase normal(address)

Erase the flash page that contains address.

Note:
address is a byte address in flash, not a word address.

5.1.2.4 #define boot_page_fill(address, data) _ boot_page_fill_normal(address,
data)

Fill the bootloader temporary page buffer for flash address with data word.

Note:
The address is a byte address. The data is a word. The AVR writes data to the
buffer a word at a time, but addresses the buffer per byte! So, increment your
address by 2 between calls, and send 2 data bytes in a word format! The LSB of
the data is written to the lower address; the MSB of the data is written to the higher
address.

5.1.2.5 #define boot_page_ write(address) __boot_page_write_normal(address)

Write the bootloader temporary page buffer to flash page that contains address.

Note:
address is a byte address in flash, not a word address.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.2 CRC Computations 9

5.1.2.6 #define boot rww busy() (_SPM REG & unt8 t) BV(-
COMMON_ASB))

Check if the RWW section is busy.

5.1.2.7 #define boot_rww_enable() _ _boot_rww_enable()

Enable the Read-While-Write memory section.

5.1.2.8 #define boot_spm_busy() (__SPM_REG &int8_t) BV(SPMEN))
Check if the SPM instruction is busy.

5.1.2.9 #define boot_spm_busy_wait() do{}while(boot_spm_busy())
Wait while the SPM instruction is busy.

5.1.2.10 #define boot_spm_interrupt_disable() (__SPM_REG &=uint8_t)~_-
BV(SPMIE))

Disable the SPM interrupt.

5.1.2.11 #define boot_spm_interrupt_enable() (_ SPM_REG= (uint8_t)_-
BV(SPMIE))

Enable the SPM interrupt.

5.1.2.12 #define BOOTLOADER_SECTION __ attribute_ ((section (".boot-
loader")))

Used to declare a function or variable to be placed into a new section called .boot-
loader. This section and its contents can then be relocated to any address (such as the
bootloader NRWW area) at link-time.

5.2 CRC Computations
5.2.1 Detailed Description

#include <avr/crcl6.h>

This header file provides a optimized inline functions for calculating 16 bit cyclic re-
dundancy checks (CRC) using common polynomials.

References:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.2 CRC Computations 10

See the Dallas Semiconductor app note 27 for 8051 assembler example and general
CRC optimization suggestions. The table on the last page of the app note is the
key to understanding these implementations.

Jack Crenshaw’s "Impementing CRCs" article in the January 1992 idtiembéd-
ded Systems Programminghis may be difficult to find, but it explains CRC's in
very clear and concise terms. Well worth the effort to obtain a copy.

Functions

e _inline__uintl6_t crcl6_updatéuintl6 t crc,uint8 t_data)
e _inline__uintl6_t crc_xmodem_updai@intl6_t crc,uint8_t_data)
e _inline__uintl6_t crc_ccitt_updatéuintl6_t crc,uint8_t__ data)

5.2.2 Function Documentation

5.2.2.1 _ inline__uintl6_t _crcl6_update (intl6_t _ crc uint8_t _ datg
[static]

Optimized CRC-16 calcutation.

Polynomial: X'16 + x*15 + x*2 + 1 (0xa001)

Initial value: Oxffff

This CRC is normally used in disk-drive controllers.

5.2.2.2 __inline__uintl6_t _crc_ccitt_update Qintl6_t crc uint8_t datg
[static]

Optimized CRC-CCITT calculation.

Polynomial: X'16 + x*12 + x5 + 1 (0x8408)

Initial value: Oxffff

This is the CRC used by PPP and IrDA.

See RFC1171 (PPP protocol) and IrDA IrLAP 1.1

Note:
Although the CCITT polynomial is the same as that used by the Xmodem protocol,
they are quite different. The difference is in how the bits are shifted through the
alorgithm. Xmodem shifts the MSB of the CRC and the input first, while CCITT
shifts the LSB of the CRC and the input first.

The following is the equivalent functionality written in C.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.3 EEPROM handling 11

uintl6_t
crc_ccitt_update (uintl6é_t crc, uint8_t data)

{
data "= lo8 (crc);
data ~= data << 4;

return ((((uintl6_t)data << 8) | hi8 (crc)) * (uint8_t)(data >> 4)
A ((uintl6_t)data << 3));

5.2.2.3 __inline__uintl6_t crc_xmodem_update {intl6 t crc uint8 t -
data) [static]

Optimized CRC-XMODEM calculation.

Polynomial: X'16 + x*12 + x*5 + 1 (0x1021)

Initial value: Ox0

This is the CRC used by the Xmodem-CRC protocol.

The following is the equivalent functionality written in C.

uintl6_t
crc_xmodem_update (uintl6é_t crc, uint8_t data)

{

int i;

crc = crc M ((uintlé_t)data << 8);
for (i=0; i<8; i++)

{
if (crc & 0x8000)
crc = (crc << 1) ~ 0x1021;
else
crec <<= 1,
}
return crc;

5.3 EEPROM handling

5.3.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.3 EEPROM handling 12

Note:
All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-
critical applications should first poll the EEPROM e. g. usaggprom_is_ready()
before attempting any actual I/O.
This library will notwork with the ATmegal69 since this device has the EEPROM
IO ports at different locations!

avr-libc declarations

* #defineeeprom_is_readybit_is_clear(EECR, EEWE)
 #defineeeprom_busy wgitdo {} while (leeprom_is_ready ())
e uint8_teeprom_read_bytEonstuint8_txaddr)

e uintl6_teeprom_read_wor@tonstuintl6_t«addr)

 void eeprom_read_blookoid «buf, const voidkaddr, size_t n)
« void eeprom_write_bytéuint8_txaddr,uint8_tval)

» void eeprom_write_worduint16_txaddr,uint16_tval)

« void eeprom_write_blockconst voidxbuf, void xaddr, size_t n)

Backwards compatibility defines

 #defineeeprom_rkaddr) eeprom_read_bytau(§t8 t«)(addr))

 #defineeeprom_rwaddr) eeprom_read_wordu{(it16_t«)(addr))

« #defineeeprom_wladdr, val) eeprom_write byteuiat8 t «)(addr), (int8_-
t)(val))

IAR C compatibility defines
« #define_ EEPUTaddr, val) eeprom_wb(addr, val)
« #define_EEGETvar, addr) (var) = eeprom_rb(addr)

5.3.2 Define Documentation

5.3.2.1 #define EEGET(var, addr) (var) = eeprom_rb(addr)
Read a byte from EEPROM.

5.3.2.2 #define _EEPUT(addr, val) eeprom_wb(addr, val)
Write a byte to EEPROM.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.3 EEPROM handling 13

5.3.2.3 #define eeprom_busy_wait() do {} while (leeprom_is_ready ())

Loops until the eeprom is no longer busy.

Returns:
Nothing.

5.3.2.4 #define eeprom_is_ready() bit_is_clear(EECR, EEWE)

Returns:
1if EEPROM is ready for a new read/write operation, O if not.

5.3.2.5 #define eeprom_rb(addr) eeprom_read_byteyifit8 t «)(addr))

Deprecated
Useeeprom_read_bytei) new programs.

5.3.2.6 #define eeprom_rw(addr) eeprom_read_word{nt16_t *)(addr))

Deprecated
Useeeprom_read_word{{) new programs.

5.3.2.7 #define eeprom_wb(addr, val) eeprom_write_byte Wint8 t x)(addr),
(uint8_t)(val))

Deprecated
Useeeprom_write_byte(h new programs.

5.3.3 Function Documentation
5.3.3.1 void eeprom_read_block (void buf, const void* addr, size_tn)

Read a block of bytes from EEPROM addressldr to buf .

5.3.3.2 uint8_t eeprom_read_byte (constint8_t x addr)
Read one byte from EEPROM addreskir .

5.3.3.3 uintl6_t eeprom_read_word (consuint16_t x addr)
Read one 16-bit word (little endian) from EEPROM addraddr .

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.4 AVR device-specific 10 definitions 14

5.3.3.4 void eeprom_write_block (const void buf, void x addr, size_tn)
Write a block ofn bytes to EEPROM addressldr from buf .

5.3.3.5 void eeprom_write_byteint8_t « addr, uint8_t val)
Write a byteval to EEPROM addresaddr .

5.3.3.6 void eeprom_write_word (int16_t x addr, uint16_t val)
Write a wordval to EEPROM addresaddr .

5.4 AVR device-specific 10 definitions

#include <avr/io.h>

This header file includes the apropriate 10O definitions for the device that has been spec-
ified by the-mmcu= compiler command-line switch. This is done by diverting to the
appropriate file<avrfio XXXXh > which should never be included directly. Some
register names common to all AVR devices are defined directly witlar/io.h >,

but most of the details come from the respective include file.

Note that this file always includes

#include <avr/sfr_defs.h>

SeeSpecial function registerfer the details.

Included are definitions of the 10 register set and their respective bit values as specified
in the Atmel documentation. Note that Atmel is not very consistent in its naming
conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere

Finally, the following macros are defined:

* RAMEND
A constant describing the last on-chip RAM location.

« XRAMEND

A constant describing the last possible location in RAM. This is equal to RA-
MEND for devices that do not allow for external RAM.

* E2END
A constant describing the address of the last EEPROM cell.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 15

* FLASHEND
A constant describing the last byte address in flash ROM.

* SPM_PAGESIZE

For devices with bootloader support, the flash pagesize (in bytes) to be used for
the SPMinstruction.

5.5 Program Space String Utilities

5.5.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either th&Mor ELPMinstructions.

Note:
These functions are an attempt to provide some compatibility with header files
that come with IAR C, to make porting applications between different compilers
easier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).
If you are working with strings which are completely based in ram, use the stan-
dard string functions described 8trings
If possible, put your constant tables in the lower 64K andpg®_read_byte -
near()or pgm_read_word_neariystead ofpgm_read_byte far@r pgm_read_-
word_far()since it is more efficient that way, and you can still use the upper 64K
for executable code.

Backwards compatibility macros

« #definePRG_RDRaddr) pgm_read_byte(addr)

Defines

o #definePSTRs) ({static char __c[] PROGMEM = (s); & c[0];})
« #definepgm_read_byte ne@ddress_short) L PM({nt16_d(address_short))

* #define pgm_read_word_negddress_short) __LPM_word({(t16_-
t)(address_short))
e #define pgm_read_dword_ne@ddress_short) _ LPM_dword{(t16_-

t)(address_short))
« #definepgm_read_byte féaddress long) ELPM{{nt32_j(address_long))

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 16

 #define pgm_read word_féaddress_long) __ELPM_wordiat32_-
t)(address_long))
e #define pgm_read_dword_féaddress_long) __ELPM_dword{(t32_-

t)(address_long))
« #definepgm_read_bytf@ddress_short) pgm_read_byte near(address_short)
« #definepgm_read_wor@ddress_short) pgm_read_word_near(address_short)
» #definepgm_read_dwor@ddress_short) pgm_read_dword_near(address_short)
» #definePGM_Pconst prog_cha¢
 #definePGM_VOID_Pconst prog_void

Functions

« void x memcpy_Rvoid x, PGM_VOID_P, size t)

« int strcasecmp_Rconst chax, PGM_P) _ ATTR_PURE___

e charx strcat_Rcharx, PGM_P)

« intstrcmp_HRconst chak, PGM_P) ATTR_PURE___
 charsx strcpy_P(charx, PGM_P)

« size_tstrlcat P(charx, PGM_P, size t)

* size_tstrlcpy_P(charx, PGM_P, size_t)

« size_tstrlen PPGM_P) _ATTR_CONST

« int strncasecmp_Reonst chax, PGM_P, size t) ATTR_PURE__
 charx strncat_Rcharx, PGM_P, size_t)

« int strncmp_Hconst chax, PGM_P, size t) ATTR_PURE__
e charx strncpy_Rcharx, PGM_P, size_t)

5.5.2 Define Documentation

5.5.2.1 #define PGM_P const prog_char

Used to declare a variable that is a pointer to a string in program space.

5.5.2.2 #define pgm_read_byte(address_short) pgm_read_byte near(address_-
short)

Read a byte from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 17

5.5.2.3 #define pgm_read byte far(address_long) __ELPMI{Ot32_-
t)(address_long))

Read a byte from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.4 #define pgm_read_byte near(address_short) __ LPM{t16_-
t)(address_short))

Read a byte from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.5 #define pgm_read_dword(address_short) pgm_read_dword_-
near(address_short)

Read a double word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.6 #define pgm_read_dword_far(address_long) _ ELPM_dword(fit32_-
t)(address_long))

Read a double word from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.7 #define pgm_read_dword_near(address_short) __LPM_-
dword((uint16_t)(address_short))

Read a double word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 18

5.5.2.8 #define pgm_read_word(address_short) pgm_read _word_-
near(address_short)

Read a word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.9 #define pgm_read_word_far(address_long) __ ELPM_word(fit32_-
t)(address_long))

Read a word from the program space with a 32-bit (far) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.10 #define pgm_read_word_near(address_short) _ LPM_word{(t16_-
t)(address_short))

Read a word from the program space with a 16-bit (near) address.

Note:
The address is a byte address. The address is in the program space.

5.5.2.11 #define PGM_VOID_P const prog_void

Used to declare a generic pointer to an object in program space.

5.5.2.12 #define PRG_RDB(addr) pgm_read_byte(addr)

Deprecated
Usepgm_read_byte@n new programs.

5.5.2.13 #define PSTR(s) ({static char __¢[] PROGMEM = (s); & _c[0];})

Used to declare a static pointer to a string in program space.

5.5.3 Function Documentation

5.5.3.1 voidx memcpy_P (void« dest PGM_VOID_P src, size_tn)

Thememcpy_P(function is similar tomemcpy() except the src string resides in pro-
gram space.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 19

Returns:
Thememcpy_P(function returns a pointer to dest.

5.5.3.2 intstrcasecmp_P (const chars1, PGM_Ps2)

Compare two strings ignoring case.

The strcasecmp_Pfunction compares the two strings s1 and s2, ignoring the case of
the characters.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns:
Thestrcasecmp_Punction returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.5.3.3 charx strcat_P (char « dest PGM_P src)
The strcat_P(function is similar tostrcat()except that therc string must be located
in program space (flash).

Returns:
Thestrcat()function returns a pointer to the resulting strishgst

5.5.3.4 intstrcmp_P (const chak s1, PGM_P s2
The strcmp_P()function is similar tostrcmp()except that s2 is pointer to a string in
program space.

Returns:
Thestrcmp_P(¥unction returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.5.3.5 char« strcpy_P (char* dest PGM_P src)
The strcpy_P()function is similar tostrcpy()except that src is a pointer to a string in
program space.

Returns:
Thestrcpy_P(function returns a pointer to the destination string dest.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.5 Program Space String Utilities 20

5.5.3.6 size_tstricat P (chak dst PGM_P, size_tsi2)
Concatenate two strings.

Thestricat_P(function is similar tostricat() except that therc string must be located
in program space (flash).

Appends src to string dst of size siz (unlgncat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Returns:
Thestrlcat_P()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval
>= siz, truncation occurred.

5.5.3.7 size_tstricpy_P (chak dst PGM_P, size_tsi?)
Copy a string from progmem to RAM.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:
Thestrlcpy_P()function returns strlen(src). If retval= siz, truncation occurred.

5.5.3.8 size tstrlen_P (PGM_Rrc)

The strlen_P() function is similar to strlen(), except that src is a pointer to a string in
program space.

Returns:
The strlen() function returns the number of characters in src.

5.5.3.9 intstrncasecmp_P (const char s1, PGM_P s2, size_tn)
Compare two strings ignoring case.

Thestrncasecmp_Pflinction is similar tasstrcasecmp_ P(gxcept it only compares the
first n characters of s1.

Parameters:
sl A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.
n The maximum number of bytes to compare.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.6 Additional notes from <avr/sfr_defs.h> 21

Returns:
Thestrcasecmp_Pfunction returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.5.3.10 char« strncat_P (char* dest PGM_P src, size_tlen)
Concatenate two strings.

Thestrncat_P(Junction is similar tostrncat() except that therc string must be located
in program space (flash).

Returns:
Thestrncat_P(function returns a pointer to the resulting string dest.

5.5.3.11 intstrncmp_P (const chak s1, PGM_P s2, size_tn)

Thestrncmp_P(function is similar tostrcmp_P()except it only compares the first (at
most) n characters of s1 and s2.

Returns:
Thestrnecmp_P(Junction returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.5.3.12 charx strncpy_P (charx dest PGM_P src, size_tn)

Thestrncpy_P(function is similar tostrcpy_P()except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:
Thestrncpy_P(function returns a pointer to the destination string dest.

5.6 Additional notes from <avr/sfr_defs.h>

The <avr/sfr_defs .h> file is included by all of the<avr/ioXXXX .h> files,
which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on t8ER_ASM_COMPAdefine.
Some examples fromavr/iom128 .h> to show how to define such macros:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.6 Additional notes from <avr/sfr_defs.h> 22

#define PORTA _SFR_I08(0x1b)
#define TCNT1 _SFR_1016(0x2c)
#define PORTF _SFR_MEMS8(0x61)
#define TCNT3 _SFR_MEM16(0x88)

If _SFR_ASM_COMPA3Snot defined, C programs can use namesH&dRTAdirectly

in C expressions (also on the left side of assignment operators) and GCC will do the
right thing (use short I/O instructions if possible). TheSFR_OFFSETdefinition is

not used in any way in this case.

Define_SFR_ASM_COMPASS 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (x.S) source files, so it is done automatically fASSEMBLER__is defined. By
default, all addresses are defined as if they were memory addresses (laksést$n
instructions). To use these addresseimiaut instructions, you must subtract 0x20

from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __ SFR_OFFSET 0

This automatically subtracts 0x20 from 1/O space addresses, but it's a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, the SFR_OFFSETdefinition is no longer necessary

and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRut different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEMB8(0x68)

#f _SFR_IO_REG_P(SPMCR)

out _SFR_IO_ADDR(SPMCR), r24
#else
sts _SFR_MEM_ADDR(SPMCR), r24
#endif
You can use tha/out/cbi/sbi/sbic/sbis instructions, without the SFR_ -

I0_REG_Ptest, if you know that the register is in the 1/0O space (as \BREG for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define_ SFR_OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresseSRE@is 0x5f), and (if code size and
speed are not important, and you don't like the ugly #if above) you can always use
Ids/sts to access them. But, this will not work if SFR_OFFSET!= 0x20, so use a
different macro (defined only if SFR_OFFSET== 0x20) for safety:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.7 Power Management and Sleep Modes 23

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations o6FR_ASM_COMPAANnd__ SFR_OFFSETare
supported - the SFR_ADDR(SPMCR)macro can be used to get the address of the
SPMCRegister (0x57 or 0x68 depending on device).

The oldinp()/outp() macros are still supported, but not recommended to use in new
code. The order abutp()arguments is confusing.

5.7 Power Management and Sleep Modes

5.7.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEP instruction can allow your application to reduce it's power com-
sumption considerably. AVR devices can be put into different sleep modes by chang-
ing theSMnbits of theMCUControl Register MCUCR. Refer to the datasheet for the
details relating to the device you are using.

Sleep Modes

Note:
Some of these modes are not available on all devices. See the datasheet for target
device for the available sleep modes.

« #defineSLEEP_MODE_IDLED

#defineSLEEP_MODE_ADC BV(SMO)
#defineSLEEP_MODE_PWR_DOWNBV/(SM1)
#defineSLEEP_MODE_PWR_SAVE BV(SM0)| _BV(SM1))
#defineSLEEP_MODE_STANDBY(_BV(SM1)| _BV(SM2))

#define SLEEP_MODE_EXT_STANDBY (_BV(SMO0) | _BV(SM1) | _-
BV(SM2))

Sleep Functions
 void set_sleep_mod@int8_tmode)

« void sleep_modévoid)

5.7.2 Define Documentation

5.7.2.1 #define SLEEP_MODE_ADC _BV(SMO0)
ADC Noise Reduction Mode.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.8 Watchdog timer handling 24

5.7.2.2 #define SLEEP_MODE_EXT_STANDBY (_BV(SMO0) _BV(SM1) | _-
BV(SM2))

Extended Standby Mode.

5.7.2.3 #define SLEEP_MODE_IDLE O

Idle mode.

5.7.2.4 #define SLEEP_MODE_PWR_DOWN _BV(SM1)

Power Down Mode.

5.7.25 #define SLEEP_MODE_PWR_SAVE (_BV(SMO)_BV(SM1))

Power Save Mode.

5.7.2.6 #define SLEEP_MODE_STANDBY (_BV(SM1) _BV(SM2))
Standby Mode.

5.7.3 Function Documentation

5.7.3.1 void set_sleep_modeift8_t mode
Set the bits in th&CUCRDb select a sleep mode.

5.7.3.2 void sleep_mode (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with thet_sleep_modeflinction. See the data sheet for
your device for more details.

5.8 Watchdog timer handling

5.8.1 Detailed Description

#include <avr/wdt.h>

This header file declares the interface to some inline macros handling the watchdog
timer present in many AVR devices. In order to prevent the watchdog timer configura-
tion from being accidentally altered by a crashing application, a special timed sequence
is required in order to change it. The macros within this header file handle the required
sequence automatically before changing any value. Interrupts will be disabled during
the manipulation.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.8 Watchdog timer handling 25

Note:
Depending on the fuse configuration of the particular device, further restrictions
might apply, in particular it might be disallowed to turn off the watchdog timer.

Defines

e #definewdt resef) asm___ volatile ("wdr")
« #definewdt_enabl@imeout) _wdt_write((timeout) _BV(WDE))
o #definewdt_disabl€¢) _wdt_ write(0)
 #defineWDTO_15MS0
 #defineWDTO_30MS1
 #defineWDTO_60MS2
 #defineWDTO_120MS3
 #defineWDTO_250M34
 #defineWDTO_500MS5

e #defineWDTO_1S6

e #defineWDTO_2S7

5.8.2 Define Documentation

5.8.2.1 #define wdt_disable() _wdt_write(0)

Disable the watchdog timer, if possible. This attempts to turn off\ii2bbit in the
WDTCRegister.

5.8.2.2 #define wdt_enable(timeout) _wdt_write((timeout) _BV(WDE))

Enable the watchdog timer, configuring it for expiry affeneout (which is a com-
bination of theWDPQGhroughWDP2o0 write into theWDTCRegister).

See also the symbolic constakt¥OTO_15M$t al.

5.8.2.3 #define wdt_reset() __asm__ __ volatile__ ("wdr")

Reset the watchdog timer. When the watchdog timer is enabled, a call to this instruction
is required before the timer expires, otherwise a watchdog-initiated device reset will
occur.

5.8.2.4 #define WDTO_120MS 3
SeeWDTO_15MS

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.9 Character Operations 26

5.8.2.5 #define WDTO_15MS 0

Symbolic constants for the watchdog timeout. Since the watchdog timer is based on
a free-running RC oscillator, the times are approximate only and apply to a supply
voltage of 5 V. At lower supply voltages, the times will increase. For older devices,
the times will be as large as three times when operating at Vcc = 3 V, while the newer
devices (e. g. ATmegal28, ATmega8) only experience a negligible change.

Possible timeout values are: 15 ms, 30 ms, 60 ms, 120 ms, 250 ms, 500 ms, 1's, 2 s.
Symbolic constants are formed by the prafTO, followed by the time.

Example that would select a watchdog timer expiry of approximately 500 ms:

wdt_enable(WDTO_500MS);

5.8.2.6 #define WDTO_1S 6
SeeWDTO_15MS

5.8.2.7 #define WDTO_250MS 4
SeeWDTO_15MS

5.8.2.8 #define WDTO_2S7
SeeWDTO0_15MS

5.8.2.9 #define WDTO_30MS 1
SeeWDTO_15MS

5.8.2.10 #define WDTO_500MS 5
SeeWDTO_15MS

5.8.2.11 #define WDTO_60MS 2
WDTO_15MS

5.9 Character Operations

5.9.1 Detailed Description

These functions perform various operations on characters.

#include <ctype.h>

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.9 Character Operations 27

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e. isdigit() returns true if its argument is any value '0’ though '9’, inclusive.)

e intisalnum(int__c) _ ATTR_CONST__
e intisalpha(int__c) _ ATTR_CONST__
e intisascii(int__c) _ ATTR_CONST__
e intisblank(int__c) _ ATTR_CONST__
e intiscntrl(int__c) _ ATTR_CONST__
e intisdigit(int__c) _ ATTR_CONST__
e intisgraph(int_c) __ ATTR_CONST__
e intislower(int_c) __ ATTR_CONST__
e intisprint(int_c) __ ATTR_CONST__
e intispunct(int__c) __ ATTR_CONST__
e intisspacgint __c) _ ATTR_CONST__
e intisupper(int__c) __ ATTR_CONST__
* intisxdigit(int__c) _ ATTR_CONST__

Character convertion routines
If ¢ is not an unsigned char value,BOF, the behaviour of these functions is undefined.

e inttoascii(int__c) __ATTR_CONST__
e inttolower(int__c) __ ATTR_CONST__
 inttoupper(int__c) _ ATTR_CONST__

5.9.2 Function Documentation

5.9.2.1 intisalnum (int__ ¢

Checks for an alphanumeric character. It is equivalent(isalpha(c) [l
isdigit(c))

5.9.2.2 intisalpha (int__¢

Checks for an alphabetic character. It is equivalent (igupper(c) [l
islower(c))

5.9.2.3 intisascii (int_ 0

Checks whethet is a 7-bit unsigned char value that fits into the ASCII character set.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.9 Character Operations 28

5.9.2.4 intisblank (int__ ¢

Checks for a blank character, that is, a space or a tab.

5.9.2.5 intiscntrl (int_ 0

Checks for a control character.

5.9.2.6 intisdigit(int_ o
Checks for a digit (0 through 9).

5.9.2.7 intisgraph (int__ ¢

Checks for any printable character except space.

5.9.2.8 intislower (int__ ¢

Checks for a lower-case character.

5.9.2.9 intisprint (int __ ¢

Checks for any printable character including space.

5.9.2.10 intispunct (int__ ¢

Checks for any printable character which is not a space or an alphanumeric character.

5.9.2.11 intisspace (int_¢

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (\f"), newline ("\n’), carriage return {r’), horizontal tab (\t'), and vertical tab

(\V).

5.9.2.12 intisupper (int__ o

Checks for an uppercase letter.

5.9.2.13 intisxdigit (int__ ¢
Checks for a hexadecimal digits, i.e. oneof0123456789abcdefABCDEF.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.10 System Errors (errno) 29

5.9.2.14 inttoascii (int_ ¢

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:
Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

5.9.2.15 inttolower (int__¢

Converts the lettec to lower case, if possible.

5.9.2.16 inttoupper (int_ 0

Converts the letter to upper case, if possible.

5.10 System Errors (errno)

5.10.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variabteno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.

Warning:
Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call whickisets
and when the task examinesno . If another task change=rno during this
time, the result will be incorrect for the interrupted task.

Defines
* #defineEDOM 33
* #defineEERANGE 34

5.10.2 Define Documentation

5.10.2.1 #define EDOM 33

Domain error.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.11 Integer Type conversions

30

5.10.2.2 #define ERANGE 34

Range error.

5.11 Integer Type conversions

#include <inttypes.h>

This header file includes the exact-width integer definitions frostdint.h
extends them with additional facilities provided by the implementation.

5.12 Mathematics
5.12.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Note:

>, and

In order to access the functions delcared herein, it is usually also required to addi-

tionally link against the libraryibm.a . See also the relatdeAQ entry.

Defines

 #defineM_PI 3.141592653589793238462643
* #defineM_SQRT21.4142135623730950488016887

Functions

e doublecos(double _ x) _ ATTR_CONST__

e doublefabs(double _ x) ATTR_CONST__

e doublefmod (double __x, double __y) ATTR_CONST__
¢ doublemodf(double __value, double _iptr)

e doublesin(double _ x) _ ATTR_CONST__

e doublesgrt(double __ x) _ ATTR_CONST__

e doubletan(double _ x) _ ATTR_CONST__
 doublefloor (double __ x) _ ATTR_CONST__

« doubleceil (double __x) _ ATTR_CONST__

« doublefrexp (double __value, int__exp)

» doubleldexp(double __x,int__exp) _ATTR_CONST__
» doubleexp(double _x) ATTR_CONST__

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.12 Mathematics 31

e doublecosh(double _ x) ATTR_CONST__

e doublesinh(double _ x) ATTR_CONST__

e doubletanh(double _ x) ATTR_CONST

e doubleacos(double __x) _ ATTR_CONST__

¢ doubleasin(double _ x) ATTR_CONST

¢ doubleatan(double _ x) ATTR_CONST__

e doubleatan2(double __y, double _ x) _ ATTR_CONST__
e doublelog (double _ x) ATTR_CONST__

e doublelog1l0(double _ x) ATTR_CONST_ _

e doublepow (double __ x, double __y) ATTR_CONST__
e intisnan(double _ x) ATTR_CONST__

e intisinf (double _ x) _ ATTR_CONST__

¢ doublesquargdouble _ x) ATTR_CONST___

¢ doubleinverse(double) ATTR_CONST__

5.12.2 Define Documentation

5.12.2.1 #define M_PI 3.141592653589793238462643

The constanpi .

5.12.2.2 #define M_SQRT2 1.4142135623730950488016887

The square root of 2.

5.12.3 Function Documentation

5.12.3.1 double acos (double x)

Theacos()function computes the principal value of the arc cosing.oThe returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.12.3.2 double asin (double x)

The asin() function computes the principal value of the arc sinexofThe returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.12.3.3 double atan (double_x)

The atan() function computes the principal value of the arc tangent ©he returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.12 Mathematics 32

5.12.3.4 double atan2 (double vy, double X

Theatan2()function computes the principal value of the arc tangent df x , using

the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians. If bothandy are zero, the global variable
errno is set toEDOM

5.12.3.5 double ceil (double X)

The ceil() function returns the smallest integral value greater than or equa| éx-
pressed as a floating-point number.

5.12.3.6 double cos (double_X)

The cos() function returns the cosinexagfmeasured in radians.

5.12.3.7 double cosh (double X)

The cosh()function returns the hyperbolic cosinef

5.12.3.8 double exp (doublex)

The exp() function returns the exponential value of

5.12.3.9 double fabs (double X)

The fabs() function computes the absolute value of a floating-point number

5.12.3.10 double floor (double_x)

Thefloor() function returns the largest integral value less than or equal ¢apressed
as a floating-point number.

5.12.3.11 double fmod (double x, double__y)

The function fmod() returns the floating-point remaindexof y .

5.12.3.12 double frexp (double valueint x __exp

The frexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in e object pointed to bexp .

The frexp() function returns the value such thak is a double with magnitude in the
interval [1/2, 1) or zero, anglalue equalsx times 2 raised to the poweexp. If
value is zero, both parts of the result are zero.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.12 Mathematics 33

5.12.3.13 double inverse (double)
The functioninverse(returnsl / x .

Note:
This function does not belong to the C standard definition.

5.12.3.14 intisinf (double__x)

The functionisinf() returns 1 if the argument is either positive or negative infinity,
otherwise 0.

5.12.3.15 intisnan (double x)

The functionisnan()returns 1 if the argument represents a "not-a-number" (NaN)
object, otherwise 0.

5.12.3.16 double Idexp (double x, int __exp
Theldexp() function multiplies a floating-point number by an integral power of 2.
Theldexp()function returns the value of times 2 raised to the powexp .

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE, and the value NaN is returned.

5.12.3.17 double log (double X)
Thelog() function returns the natural logarithm of argumgnt

If the argument is less than or equal 0, a domain error will occur.

5.12.3.18 double log10 (double X)
Thelog() function returns the logarithm of argumento base 10.

If the argument is less than or equal 0, a domain error will occur.

5.12.3.19 double modf (double value doublex __iptr)

The modf() function breaks the argumemglue into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to biptr

Themodf() function returns the signed fractional partvafiue .

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.13 Setjmp and Longjmp 34

5.12.3.20 double pow (double x, double__y)

The functionpow() returns the value of to the exponeny.

5.12.3.21 double sin (double_x)

The sin() function returns the sine »f measured in radians.

5.12.3.22 double sinh (double_X)

Thesinh() function returns the hyperbolic sine f

5.12.3.23 double sqrt (double_x)

The sqrt() function returns the non-negative square rosgt of

5.12.3.24 double square (double_x)

The functionsquare(returnsx * X.

Note:
This function does not belong to the C standard definition.

5.12.3.25 double tan (double X)

The tan() function returns the tangenbgfmeasured in radians.

5.12.3.26 double tanh (double_X)

Thetanh()function returns the hyperbolic tangentaf

5.13 Setjmp and Longjmp
5.13.1 Detailed Description

While the C language has the dreadgdo statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thgetjmp()andlongjmp() functions. setjmp()and
longjmp() are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:
setimp()andlongjmp() make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.13 Setjmp and Longjmp 35

For a very detailed discussion sétimp(Jlongjmp(), see Chapter 7 édfdvanced Pro-
gramming in the UNIX Environmenty W. Richard Stevens.

Example:

#include <setjmp.h>
jmp_buf env;
int main (void)

if (setimp (env))

.. handle error ...

}
while (1)

.. main processing loop which calls foo() some where ...
}

void foo (void)
.. blah, blah, blah ...
if (err)

longjmp (env, 1);

Functions

e int setimp(jmp_buf __jmpb)

e void longjmp(jmp_buf __jmpb, int__ret) ATTR_NORETURN___
5.13.2 Function Documentation

5.13.2.1 void longjmp (jmp_buf__jmph int __red

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last caegfmp()with the corre-
sponding__jmpbargument. Aftetongjmp()is completed, program execution contin-
ues as if the corresponding call etjimp()had just returned the value ret

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.14 Standard Integer Types 36

Note:
longjmp() cannot cause O to be returned.ldhgjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Parameters:
__jmpb Information saved by a previous call setjmp()

__ret Value to return to the caller afetimp()

Returns:
This function never returns.

5.13.2.2 intsetjmp (jmp_buf__jmpb

Save stack context for non-local goto.

#include <setjmp.h>

setjmp()saves the stack context/environment inmpbfor later use byongjmp() The
stack context will be invalidated if the function which calleetimp()returns.

Parameters:
__jmpb Variable of typejmp_buf which holds the stack information such that
the environment can be restored.

Returns:
setjimp() returns O if returning directly, and non-zero when returning from
longjmp()using the saved context.

5.14 Standard Integer Types

5.14.1 Detailed Description

#include <stdint.h>

Use [u]intN_t if you need exactly N bits.

Since these typedefs are mandated by the C99 standard, they are preferred over rolling
your own typedefs.

Note:
If avr-gcc’s-mint8 option is used, no 32-bit types will be available for all ver-
sions of GCC below 3.5.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.14 Standard Integer Types

37

8-bit types.

* typedef signed chant8_t

* typedef unsigned chaiint8_t
16-bit types.

* typedefintintl6_t

« typedef unsigned intint16_t
32-bit types.

* typedef longnt32_t

« typedef unsigned longint32_t
64-bit types.

« typedef long longnt64_t
« typedef unsigned long longint64 t

Pointer types.

These allow you to declare variables of the same size as a pointer.

¢ typedefintl6_tintptr_t
¢ typedefuintl6_tuintptr_t
5.14.2 Typedef Documentation

5.14.2.1 typedefinintl6_t
16-bit signed type.

5.14.2.2 typedeflongnt32_t
32-bit signed type.

5.14.2.3 typedeflong longnt64 t
64-bit signed type.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 38

5.14.2.4 typedef signed chaint8 t
8-bit signed type.

5.14.2.5 typedeintl6_tintptr_t
Signed pointer compatible type.

5.14.2.6 typedef unsigned intiint16_t
16-bit unsigned type.

5.14.2.7 typedef unsigned longint32_t
32-bit unsigned type.

5.14.2.8 typedef unsigned long longint64_t
64-bit unsigned type.

5.14.2.9 typedef unsigned chamint8_t
8-bit unsigned type.

5.14.2.10 typedefiintl6_t uintptr_t

Unsigned pointer compatible type.

5.15 Standard IO facilities

5.15.1 Detailed Description

#include <stdio.h>

Warning:

This implementation of the standard IO facilities is new to avr-libc. It is not yet
expected to remain stable, so some aspects of the APl might change in a future

release.

This file declares the standard IO facilities that are implementedtidibc . Due

to the nature of the underlying hardware, only a limited subset of standard 10 is im-
plemented. There is no actual file implementation available, so only device 10 can be
performed. Since there’s no operating system, the application needs to provide enough
details about their devices in order to make them usable by the standard IO facilities.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 39

Due to space constraints, some functionality has not been implemented at all (like some
of theprintf conversions that have been left out). Nevertheless, potential users of
this implementation should be warned: gventf ~ andscanf families of functions,
although usually associated with presumably simple things like the famous "Hello,
world!" program, are actually fairly complex which causes their inclusion to eat up

a fair amount of code space. Also, they are not fast due to the nature of interpreting
the format string at run-time. Whenever possible, resorting to the (sometimes non-
standard) predetermined conversion facilities that are offered by avr-libc will usually
cost much less in terms of speed and code size.

In order to allow programmers a code size vs. functionality tradeoff, the function
vfprintf() which is the heart of the printf family can be selected in different flavours
using linker options. See the documentationvigrintf() for a detailed description.
The same applies tefscanf()and thescanf family of functions.

The standard streamsgdin , stdout , andstderr are provided, but contrary to the

C standard, since avr-libc has no knowledge about applicable devices, these streams
are not already pre-initialized at application startup. Also, since there is no notion
of "file" whatsoever to avr-libc, there is no functidopen() that could be used to
associate a stream to some device. (8#e 1) Instead, the functiofdevopen() is
provided to associate a stream to a device, where the device needs to provide a function
to send a character, to receive a character, or both. There is no differentiation between
"text" and "binary" streams inside avr-libc. Charactaris sent literally down to the
device’sput() function. If the device requires a carriage return)(character to be

sent before the linefeed, imut() routine must implement this (seete 2.

It should be noted that the automatic conversion of a newline character into a carriage
return - newline sequence breaks binary transfers. If binary transfers are desired, no
automatic conversion should be performed, but instead any string that aims to issue a
CR-LF sequence must us&r \n" explicitly.

For convenience, the first call tievopen() that opens a stream for reading

will cause the resulting stream to be aliasedstdin . Likewise, the first call to
fdevopen() that opens a stream for writing will cause the resulting stream to be
aliased to bothstdout , andstderr . Thus, if the open was done with both, read
and write intent, all three standard streams will be identical. Note that these aliases are
indistinguishable from each other, thus callfictpse() on such a stream will also
effectively close all of its aliasesi¢te 3.

Allthe printf andscanf family functions come in two flavours: the standard name,
where the format string is expected to be in SRAM, as well as a version with the suffix
" _P"where the format string is expected to reside in the flash ROM. The riR&T&
(explained inProgram Space String Utilitigbecomes very handy for declaring these
format strings.

Note 1:
It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 40

the information needed either out of this string, or out of an additional table that
would need to be provided by the application, this approach was not taken.

Note 2:
This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this
functionality. Thus, a simple function suitable mst() for fdevopen() that
talks to a UART interface might look like this:

int
uart_putchar(char c)

if (c =="n")

uart_putchar(’\r’);
loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return O;

Note 3:
This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that wriprigtf() instead of
fprintf(mystream, ...) saves typing work, but since avr-gcc needs to re-
sort to pass all arguments of variadic functions on the stack (as opposed to passing
them in registers for functions that take a fixed number of parameters), the ability
to pass one parameter less by implystdin ~ will also save some execution time.

Defines

« #definegetchaf) fgetc(stdin)

#defineFILE struct __file

#definestdin(__iob[0])

#definestdout(__iob[1])

#definestderr(__iob[2])

#defineEOF(-1)

#defineputq__c, _ stream) fputc(__c, __ stream)
#defineputchat__c) fputc(__c, stdout)
#definegetd__ stream) fgetc(__stream)

L]

L]

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 41

Functions

* FILE « fdevopen(int(x__ put)(char), int¢__get)(void), int __opts)

« int fclose(FILE *__stream)

« int vfprintf (FILE x__stream, const char _fmt, va_list __ap)

« int vfprintf_P (FILE x__stream, const char_fmt, va_list __ap)

e intfputc(int __c, FILEx__stream)

e int putc (int __c, FILEx__stream)

e int putchar (int _c)

« int printf (const chas__fmt,...)

e int printf_P(const chak__fmt,...)

e int sprintf(charx__s, constchaf__fmt,...)

* int sprintf_P(charx__s, const chaf__fmt,...)

e int snprintf(charx__s, size_t__n, const char_fmt,...)

e int snprintf_P(charx__s, size_t__n, const char_fmt,...)

e int vsprintf(char«__s, const chat__fmt, va_list ap)

 intvsprintf_P(charx__s, const chat__fmt, va_list ap)

e intvsnprintf(charx__s, size_t __n, const char_fmt, va_list ap)

e intvsnprintf_P(charx__s, size_t __n, const char_fmt, va_list ap)

« int fprintf (FILE *__stream, const char__fmt,...)

« int fprintf_P (FILE x__stream, const char__fmt,...)

« int fputs(const chak__str, FILEx__stream)

« int fputs_P(const chak__str, FILEx__stream)

* int puts(const chax__str)

« int puts_P(const chak__str)

 size_tfwrite (const voidx__ ptr, size t _ size, size t __nmemb, FIKE -
stream)

« int fgetc(FILE x__stream)

« int getc(FILE x__stream)

e intungetc(int __c, FILEx__stream)

e charx fgets(charx__str, int __size, FILE__stream)

e charx gets(charx__str)

 size_tfread(void x__ptr, size_t __ size, size t __nmemb, FILE stream)

« void clearerr(FILE *__stream)

« int feof (FILE x__stream)

« int ferror (FILE x__stream)

« int vfscanf(FILE x__stream, const char _fmt, va_list _ap)

« intvfscanf_P(FILE x__stream, const char _fmt, va_list __ap)

« int fscanf(FILE «__stream, const char__fmt,...)

« intfscanf_P(FILE x__stream, const char fmt,...)

« int scanf(const chax__fmt,...)

« int scanf_Rconst chax__fmt,...)

« int sscanf(const chak__buf, const chax__fmt,...)

 int sscanf_Rconst chax__buf, const chax__fmt,...)

* FILE x fdevopen (int(xput)(char), int¢get)(void), int opts __ attribute -
((unused)))

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 42

Variables

« _filex __job[]

5.15.2 Define Documentation

5.15.2.1 #define EOF (-1)

EOFdeclares the value that is returned by various standard 10 functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as "end of file" is somewhat meaningless here.

5.15.2.2 #define FILE struct __file

FILE is the opaque structure that is passed around between the various standard 10
functions.

5.15.2.3 #define getc(__stream) fgetc(__stream)

The macragetc used to be a "fast" macro implementation with a functionality iden-
tical to fgetc() For space constraints, awvr-libc | it is just an alias fofgetc

5.15.2.4 int getchar(void) fgetc(stdin)

The macrayetchar reads a character frogtdin . Return values and error handling
is identical tofgetc().

5.15.2.5 #define putc(__c, __ stream) fputc(__c, _ stream)

The macrgoutc used to be a "fast" macro implementation with a functionality iden-
tical to fputc(). For space constraints, awr-libc it is just an alias fofputc

5.15.2.6 #define putchar(__c) fputc(__c, stdout)

The macrgoutchar sends character to stdout

5.15.2.7 #define stderr (__iob[2])
Stream destined for error output. Unless specifically assigned, identistaldot

If stderr should point to another stream, the result of anoftievopen() must
be explicitly assigned to it without closing the previatderr (since this would also
closestdout).

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 43

5.15.2.8 #define stdin (__iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usfdgvopen() will be assigned to
stdin

5.15.2.9 #define stdout (__iob[1])

Stream that will be used as an output stream by the simplified functions that don'’t take
astream argument.

The first stream opened with write intent usfidgvopen() will be assigned to both,
stdin , andstderr

5.15.3 Function Documentation

5.15.3.1 void clearerr (FILE + __stream

Clear the error and end-of-file flags stfeam .

5.15.3.2 intfclose (FILEx __stream
This function closestream , and disallows and further 10 to and from it.

It currently always returns O (for success).

5.15.3.3 FILE« fdevopen (int(x put)(char), int(x gef)(void), int opts __ attribute_-
_((unused)))

This function is a replacement féwpen()

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened
stream is returned. Reasons for a possible failure currently include that neither the
put northeget argument have been provided, thus attempting to open a stream with
no |10 intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed agut shall take one character to write to the device as argument ,
and shall return 0 if the output was successful, and a nonzero value if the character
could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The
function passed aget shall take no arguments, and return one character from the
device, passed as amt type. If an error occurs when trying to read from the device,
it shall return-1 .

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 44

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assignestidin , and the first one opened
with write intent is assigned to bothtdout andstderr

The third parameteopts is currently unused, but reserved for future extensions.

5.15.3.4 intfeof (FILEx __stream

Test the end-of-file flag aftream . This flag can only be cleared by a calldearerr()

Note:
Since there is currently no notion for end-of-file on a device, this function will
always return a false value.

5.15.3.5 intferror (FILE x __stream

Test the error flag aftream . This flag can only be cleared by a calldiearerr()

5.15.3.6 intfgetc (FILE* __ stream

The functionfgetc reads a character frostream . It returns the character, ®&OF
in case end-of-file was encountered or an error occurred. The roteimigsor ferror()
must be used to distinguish between both situations.

5.15.3.7 chak fgets (charx __str,int __size FILE x __stream)

Read at mossize - 1 bytes fromstream , until a newline character was encoun-
tered, and store the characters in the buffer pointed tsetby. Unless an error was
encountered while reading, the string will then be terminated wiltua character.

If an error was encountered, the function returns NULL and sets the error flag of
stream , which can be tested usirfgrror(). Otherwise, a pointer to the string will
be returned.

5.15.3.8 intfprintf (FILE x __streamconst charx __ fmt, ...)

The functionfprintf performs formatted output tstream . Seevfprintf()
for details.

5.15.3.9 intfprintf_P (FILE % __streamconst charx __fmt, ...)

Variant offprintf() that uses &éimt string that resides in program memory.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 45

5.15.3.10 intfputc (int__ ¢ FILE x __ stream

The functionfputc sends the character(though given as typit) to stream . It
returns the character, ®OFin case an error occurred.

5.15.3.11 int fputs (const chak __str, FILE x__ strean)
Write the string pointed to bgtr to streanstream .

Returns 0 on success and EOF on error.

5.15.3.12 int fputs_P (const chak __str, FILE « __ strean)

Variant offputs()wherestr resides in program memory.

5.15.3.13 size_t fread (voidk __ ptr, size t size size t nmemb FILE * -
strean)

Readnmembobjects,size bytes each, fronstream , to the buffer pointed to by
ptr .

Returns the number of objects successfully read, inmembunless an input error
occured or end-of-file was encounteréebf() andferror() must be used to distinguish
between these two conditions.

5.15.3.14 intfscanf (FILE« __ streamconst charx __ fmt, ...)
The functionfscanf performs formatted input, reading the input data fretneam .

Seevfscanf()for details.

5.15.3.15 intfscanf P (FILEx __ streamconst charx __ fmt, ...)

Variant offscanf()using afmt string in program memory.

5.15.3.16 size_t fwrite (const voig __ ptr, size_t__sizesize_t_ nmemBFILE x
__Strean)

Write nmembobjects,size bytes each, tetream . The first byte of the first object
is referenced byptr .

Returns the number of objects successfully written, nreembunless an output error
occured.

5.15.3.17 chax gets (charx __stp

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 46

Similar tofgets()except that it will operate on streastdin , and the trailing newline
(if any) will not be stored in the string. Itis the caller’'s responsibility to provide enough
storage to hold the characters read.

5.15.3.18 int printf (const charx __fmt, ...)

The function printf performs formatted output to streamtderr . See
viprintf() for details.

5.15.3.19 int printf_P (const char« __fmt, ...)

Variant of printf() that uses &mt string that resides in program memory.

5.15.3.20 int puts (const chax __ sti

Write the string pointed to bgtr , and a trailing newline character, stdout

5.15.3.21 int puts_P (constchax __ stp

Variant of puts()wherestr resides in program memory.

5.15.3.22 int scanf (const chax __fmt, ...)
The functionscanf performs formatted input from streastdin

Seevfscanf()for details.

5.15.3.23 int scanf_P (const chaf __fmt, ...)

Variant ofscanf()wherefmt resides in program memory.

5.15.3.24 intsnprintf (charx g size_t n,constcharx __ fmt, ...)

Like sprintf() , but instead of assumingl to be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitdhere were
enough space.

5.15.3.25 intsnprintf_P (charx s size t n,constcharx__ fmt ...)

Variant ofsnprintf() that uses &t string that resides in program memory.

5.15.3.26 int sprintf (charx __s constcharx __ fmt, ...)

Variant of printf() that sends the formatted characters to stsing

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 47

5.15.3.27 intsprintf_P (charx s constcharx __ fmt, ...)

Variant of sprintf() that uses &mt string that resides in program memory.

5.15.3.28 int sscanf (const chat __buf, const charx __fmt, ...)

The functionsscanf performs formatted input, reading the input data from the buffer
pointed to bybuf .

Seevfscanf()for details.

5.15.3.29 intsscanf_P (const char__buf, const charx __ fmt, ...)

Variant of sscanf(using afmt string in program memory.

5.15.3.30 intungetc (int_¢ FILE % __ strean)

Theungetc()function pushes the characte(converted to an unsigned char) back onto
the input stream pointed to tstream . The pushed-back character will be returned
by a subsequent read on the stream.

Currently, only a single character can be pushed back onto the stream.

Theungetc()function returns the character pushed back after the conversi&@ eif
the operation fails. If the value of the argumentharacter equalEOF, the operation
will fail and the stream will remain unchanged.

5.15.3.31 int vfprintf (FILE *x __ streamconst char« __ fmt va_list__ap

viprintf is the central facility of theprintf family of functions. It outputs values
to stream under control of a format string passedfint . The actual values to print
are passed as a variable argumentdjst

vfprintf returns the number of characters writtenstoeam , or EOFin case of
an error. Currently, this will only happenstream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character. The arguments must properly correspond
(after type promotion) with the conversion specifier. After the , the following appear in
sequence:

» Zero or more of the following flags:

— # The value should be converted to an "alternate form". Forc, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 48

the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a hon-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

— 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

— - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a O if both are
given.

— '’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

— + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

« An optional decimal digit string specifying a minimum field width. If the con-
verted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjust173 ment flag has been given) to fill
out the field width.

« An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, o, u, x, and X conversions, or the
maximum number of characters to be printed from a string foonversions.

« An optionall length modifier, that specifies that the argument for the d, i, o, u,
X, or X conversion is dlong int" rather tharint .

A character that specifies the type of conversion to be applied.
The conversion specifiers and their meanings are:

e diouxX The int (or appropriate variant) argument is converted to signed decimal
(d and i), unsigned octal (0), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters "abcdef" are used for x conversions; the letters
"ABCDEF" are used for X conversions. The precision, if any, gives the minimum
number of digits that must appear; if the converted value requires fewer digits, it
is padded on the left with zeros.

e p Thevoid xargumentistaken as an unsigned integer, and converted similarly
as a#tx command would do.

» ¢ Theint argumentis converted to dansigned char" , and the resulting
character is written.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 49

e s The"char «" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

» A is written. No argument is converted. The complete conversion specification
is "%%".

e eE The double argument is rounded and converted in the format
"[-]d.dddel177dd" where there is one digit before the decimal-point char-
acter and the number of digits after it is equal to the precision; if the precision
is missing, it is taken as 6; if the precision is zero, no decimal-point character
appears. ArkE conversion uses the letté’ (rather thane’) to introduce
the exponent. The exponent always contains two digits; if the value is zero, the
exponent is 00.

« fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , Where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

» gG The double argument is converted in styler e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stige
used if the exponent from its conversion is less than -4 or greater than or equal to
the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defatit
printf() implements all the mentioned functionality except floating point conversions.

A minimized version of/fprintf() is available that only implements the very basic in-
teger and string conversion facilities, but none of the additional options that can be
specified using conversion flags (these flags are parsed correctly from the format spec-
ification, but then simply ignored). This version can be requested using the following
compiler options

-WI,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 50

-WI,-u,vfprintf -lprintf_flt -Im

Limitations:
» The specified width and precision can be at most 127.

« For floating-point conversions, trailing digits will be lost if a number close to
DBL_MAX is converted with a precisior O.

5.15.3.32 intvfprintf_P (FILE = _ streamconstcharx _ fmt, va_list__ap

Variant ofvfprintf() that uses &t string that resides in program memory.

5.15.3.33 intvfscanf (FILEx __streamconst charx _ fmt va_list_ap
Formatted input. This function is the heart of $wanf family of functions.

Characters are read frostream and processed in a way describedfiny . Conver-
sion results will be assigned to the parameters passeapvia

The format stringmt is scanned for conversion specifications. Anything that doesn’t
comprise a conversion specification is taken as text that is matched literally against
the input. White space in the format string will match any white space in the data
(including none), all other characters match only itself. Processing is aborted as soon as
the data and format string no longer match, or there is an error or end-of-file condition
onstream .

Most conversions skip leading white space before starting the actual conversion.

Conversions are introduced with the character . Possible options can follow the :

¢ ax indicating that the conversion should be performed but the conversion result
is to be discarded; no parameters will be processed &pm

« the characteh indicating that the argument is a pointerdioort int (rather
thanint),

« the charactel indicating that the argument is a pointerltmg int (rather
thanint , for integer type conversions), or a pointerdouble (for floating
point conversions).

In addition, a maximal field width may be specified as a nonzero positive decimal
integer, which will restrict the conversion to at most this many characters from the
input stream. This field width is limited to at most 127 characters which is also the
default value (except for the conversion that defaults to 1).

The following conversion flags are supported:

* Matches a literal character. This is not a conversion.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15

Standard 10 facilities 51

L]

d Matches an optionally signed decimal integer; the next pointer must be a
pointer toint .

i Matches an optionally signed integer; the next pointer must be a pointer to
int . The integer is read in base 16 if it begins witk or 0X, in base 8 if it
begins withO, and in base 10 otherwise. Only characters that correspond to the
base are used.

0 Matches an octal integer; the next pointer must be a pointensigned
int .

u Matches an optionally signed decimal integer; the next pointer must be a
pointer tounsigned int

x Matches an optionally signed hexadecimal integer; the next pointer must be a
pointer tounsigned int

f Matches an optionally signed floating-point number; the next pointer must be
a pointer tdfloat

e, g, E, G Equivalenttdf .

s Matches a sequence of non-white-space characters; the next pointer must be a
pointer tochar , and the array must be large enough to accept all the sequence
and the terminatinlULcharacter. The input string stops at white space or at the
maximum field width, whichever occurs first.

¢ Matches a sequence of width count characters (default 1); the next pointer must
be a pointer tachar , and there must be enough room for all the characters (no
terminatingNULis added). The usual skip of leading white space is suppressed.
To skip white space first, use an explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointehiar , and there must be enough
room for all the characters in the string, plus a terminatitd)_character. The

usual skip of leading white space is suppressed. The string is to be made up
of characters in (or not in) a particular set; the set is defined by the characters
between the open bracket [character and a close bracket] character. The set
excludes those characters if the first character after the open bracket is a circum-
flex *. To include a close bracket in the set, make it the first character after the
open bracket or the circumflex; any other position will end the set. The hyphen
character is also special; when placed between two other characters, it adds all
intervening characters to the set. To include a hyphen, make it the last character
before the final close bracket. For instancé]0-9-] means the set @very-

thing except close bracket, zero through nine, and hypfiée string ends with

the appearance of a character not in the (or, with a circumflex, in) set or when
the field width runs out.

p Matches a pointer value (as printed jpyn printf()); the next pointer must be
a pointer tovoid .

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.15 Standard IO facilities 52

« n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointet to This
is not a conversion, although it can be suppressed with ftzay.

These functions return the number of input items assigned, which can be fewer than
provided for, or even zero, in the event of a matching failure. Zero indicates that, while
there was input available, no conversions were assigned; typically this is due to an
invalid input character, such as an alphabetic character floc@nversion. The value
EOFis returned if an input failure occurs before any conversion such as an end-of-file
occurs. If an error or end-of-file occurs after conversion has begun, the number of
conversions which were successfully completed is returned.

By default, all the conversions described above are available except the floating-point
conversions, and tHe conversion. These conversions will be available in the extended
version provided by the libratybscanf_flt.a . Note that either of these conver-
sions requires the availability of a buffer that needs to be obtained at run-time using
malloc(). If this buffer cannot be obtained, the operation is aborted, returning the value
EOE To link a program against the extended version, use the following compiler flags
in the link stage:

-WI,-u,vfscanf -Iscanf_flt -Im

A third version is available for environments that are tight on space. This version is
provided in the librarfibscanf_min.a , and can be requested using the following
options in the link stage:

-WI,-u,vfscanf -Iscanf_min -Im

In addition to the restrictions of the standard version, this version implements no field
width specification, no conversion assignment suppressionfJaggn specification,

and no general format character matching at all. All charactefsiin that do not
comprise a conversion specification will simply be ignored, including white space (that
is normally used to consunamyamount of white space in the input stream). However,
the usual skip of initial white space in the formats that support it is implemented.

5.15.3.34 intvfscanf P (FILEx __ streamconst charx __ fmt va_list__ap

Variant ofvfscanf()using afmt string in program memory.

5.15.3.35 intvsnprintf (charx __§size t n,constcharx __ fmt va_listap)

Like vsprintf() , but instead of assuming to be of infinite size, no more tham
characters (including the trailing NUL character) will be convertesl.to

Returns the number of characters that would have been writtenitdhere were
enough space.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 53

5.15.3.36 intvsnprintf_P (charx __§ size t n, const charx __ fmt, va_listap)

Variant ofvsnprintf() that uses &mt string that resides in program memory.

5.15.3.37 intvsprintf (charx __s const charx __fmt, va_listap)

Like sprintf() but takes a variable argument list for the arguments.

5.15.3.38 intvsprintf_P (charx __§ const charx __fmt, va_listap)

Variant ofvsprintf() that uses &t string that resides in program memory.

5.16 General utilities

5.16.1 Detailed Description

#include <stdlib.h>

This file declares some basic C macros and functions as defined by the 1ISO standard,
plus some AVR-specific extensions.

Data Structures

e structdiv_t
« structldiv_t

Non-standard (i.e. non-ISO C) functions.

 #defineRANDOM_MAX Ox7FFFFFFF

e charxitoa(int _ val, char__s, int __radix)

e charx ltoa(longint __val, chax__s, int __radix)

e charx utoa(unsigned int __val, char__s, int __radix)

e charx ultoa(unsigned long int __val, char s, int __radix)
¢ long random(void)

» void srandom(unsigned long __seed)

* longrandom_r(unsigned long:ctx)

Conversion functions for double arguments.

Note that these functions are not located in the default libdébg,a , but in the
mathematical librarnjbm.a . So when linking the application, thkn option needs
to be specified.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 54

#defineDTOSTR_ALWAYS_SIGNOx01 A put '+ or *’ for positives x/
#defineDTOSTR_PLUS_SIGNDX02 A& put '+’ rather than * "«/
#defineDTOSTR_UPPERCASEX04 Ak put 'E’ rather 'e’ x/

char x dtostre(double __val, chak__s, unsigned char __ prec, unsigned char
_ flags)

charx dtostrf(double __val, char __ width, char __prec, chars)

Defines

 #defineRAND_MAX Ox7FFF

Typedefs

« typedefint¢ compar_fn_j(const voidx, const voidx)

Functions

e _inline__ voidabort(void) __ ATTR_NORETURN___

e intabs(int__i) __ ATTR_CONST__

e longlabs(long __i) _ ATTR_CONST__

« void * bsearcHconst voidx__key, const void__base, size_ t __nmemb, size t
__size, int¢__compar)(const void, const voidk))

e div_t div (int __num, int __denom) __asm__ ("__divmodhi4") ATTR -

CONST__

e Idiv_t Idiv (long __num, long __denom) __asm__("__divmodsi4") _ ATTR_-
CONST__

¢ void gsort (void *__base, size_ t __nmemb, size t _ sizecompar_fn_t -
compar)

« longstrtol (const chak__nptr, charx__endptr, int __base)

¢ unsigned longstrtoul(const chak__ nptr, chakx__endptr, int __base)
e __inline__ longatol (const chax__nptr) _ ATTR_PURE___

e __inline__ intatoi(const chax__nptr) _ ATTR_PURE___

e void exit (int __status) __ ATTR_NORETURN___

« void * malloc(size_t __size) ATTR_MALLOC_ _

« void free(void «__ ptr)

« void % calloc(size_t __nele, size_t___size) _ATTR_MALLOC_ _
¢ doublestrtod(const chas__nptr, chakx__endptr)

« doubleatof (const chak__nptr)

« int rand(void)

 void srand(unsigned int __seed)

« int rand_r(unsigned long:ctx)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 55

Variables
e size_t malloc_margin

e charx __malloc_heap_start
e charx __malloc_heap_end

5.16.2 Define Documentation

5.16.2.1 #define DTOSTR_ALWAYS_SIGN 0x01+ put '+ or '’ for positives */

Bit value that can be passedflags to dtostre()

5.16.2.2 #define DTOSTR_PLUS_SIGN 0x02 put '+’ rather than’ " «/

Bit value that can be passedflags to dtostre()

5.16.2.3 #define DTOSTR_UPPERCASE 0x04 put 'E’ rather 'e’ */

Bit value that can be passedfiags to dtostre()

5.16.2.4 #define RAND_MAX Ox7FFF
Highest number that can be generateddnyd()

5.16.2.5 #define RANDOM_MAX Ox7FFFFFFF
Highest number that can be generateddaydom()

5.16.3 Typedef Documentation
5.16.3.1 typedefint¢ __compar_fn_{(const voidx*, const voidsx)
Comparision function type for gsort(), just for convenience.

5.16.4 Function Documentation

5.16.4.1 __inline__ void abort (void)

The abort() function causes abnormal program termination to occur. In the limited
AVR environment, execution is effectively halted by entering an infinite loop.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 56

5.16.4.2 intabs (int_ i)
Theabs()function computes the absolute value of the intéger

Note:
Theabs()andlabs()functions are builtins of gcc.

5.16.4.3 double atof (const chax __nptr)

The atof() function converts the initial portion of the string pointed to lygtr to
double representation.

Itis equivalent to calling

strtod(nptr, (char **)NULL);

5.16.4.4 int atoi (const char string)
Convert a string to an integer.

The atoi() function converts the initial portion of the string pointed to fygtr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

except thattoi() does not detect errors.

5.16.4.5 long int atol (const chak string)
Convert a string to a long integer.

Theatol() function converts the initial portion of the string pointed todisingp to
integer representation.

It is equivalent to:

strtol(nptr, (char **)NULL, 10);

except thatatol() does not detect errors.

5.16.4.6 voic bsearch (const void« __key const voidx __basesize t nmemb
size t sizeint(x __compaj(const void*, const voidx))

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 57

The bsearch() function searches an arraynwfembobjects, the initial member of
which is pointed to bybase, for a member that matches the object pointed to by
key . The size of each member of the array is specifiedibg .

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bgyompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

The bsearch() function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

5.16.4.7 void calloc (size_t nele size t _sizé

Allocate nele elements okize each. Identical to callingnalloc() usingnele
x Size as argument, except the allocated memory will be cleared to zero.

5.16.4.8 div_tdiv (int __ num int __denom

The div() function computes the valusum/denom and returns the quotient and re-
mainder in a structure namelily_t that contains two int members namgaot and
rem.

5.16.4.9 chax dtostre (double__val char x5 unsigned char__preg unsigned
char __flag9

The dtostre()function converts the double value passedah into an ASCII repre-
sentation that will be stored undgr The caller is responsible for providing sufficient
storage irs.

Conversion is done in the formgt]d.ddde177dd" where there is one digit be-
fore the decimal-point character and the number of digits after it is equal to the preci-
sionprec ; if the precision is zero, no decimal-point character appeaftagé has

the DTOSTRE_UPPERCASE bit set, the letter (rather tharie’) will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero,
the exponent i500" .

If flags hasthe DTOSTRE_ALWAYS_SIGN bit set, a space character will be placed
into the leading position for positive numbers.

If flags has the DTOSTRE_PLUS_SIGN bit set, a plus sign will be used instead of
a space character in this case.

Thedtostre()Jfunction returns the pointer to the converted string

5.16.4.10 chax dtostrf (double __val char __width char __preg charx __9

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 58

The dtostrf() function converts the double value passedah into an ASCII repre-
sentationthat will be stored undgr The caller is responsible for providing sufficient
storage irs.

Conversion is done in the formaf]d.ddd" . The minimum field width of the
output string (including thé " and the possible sign for negative values) is given in
width , andprec determines the number of digits after the decimal sign.

Thedtostrf()function returns the pointer to the converted string

5.16.4.11 void exit (int__statu$

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing.

In a C++ context, global destructors will be called before halting execution.

5.16.4.12 void free (voidk __ptr)

Thefree()function causes the allocated memory referenceptbyto be made avail-
able for future allocations. Ibtr is NULL, no action occurs.

5.16.4.13 chaxitoa (int __val charx__sint _ radix)
Convert an integer to a string.

The functionitoa() converts the integer value frowal into an ASCII representation
that will be stored undes. The caller is responsible for providing sufficient storage in
S.

Note:
The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (int) + 1 characters, i.e. one character for each bit plus one for the string
terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. f&dix is greater than 10, the next digit after
‘9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theitoa() function returns the pointer passedsas

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 59

5.16.4.14 long labs (long i)
Thelabs()function computes the absolute value of the long intéger

Note:
Theabs()andlabs()functions are builtins of gcc.

5.16.4.15 Idiv_t Idiv (long __num long__denon)

Theldiv() function computes the valusum/denom and returns the quotient and re-
mainder in a structure namédiv_t that contains two long integer members named
quot andrem.

5.16.4.16 chaxltoa (longint __val charx__sint __ radix)
Convert a long integer to a string.

The functionltoa() converts the long integer value fromal into an ASCII represen-
tation that will be stored undes. The caller is responsible for providing sufficient
storage irs.

Note:
The minimal size of the buffes depends on the choice of radix. For example,
if the radix is 2 (binary), you need to supply a buffer with a minimal length of 8
x sizeof (long int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. #&dix is greater than 10, the next digit after
‘9" will be the lettera’

If radix is 10 and val is negative, a minus sign will be prepended.

Theltoa() function returns the pointer passedsas

5.16.4.17 void malloc (size_t__size

The malloc() function allocatesize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc()doesnotinitialize the returned memory to zero bytes.

See the chapter abomtalloc() usagdor implementation details.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 60

5.16.4.18 void gsort (void« __basesize t nmembsize t size _compar_-
fn_t _compa)

The gsort() function is a modified partition-exchange sort, or quicksort.

The gsort() function sorts an array mmembobjects, the initial member of which is
pointed to bybase . The size of each object is specifieddige . The contents of the

array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

5.16.4.19 intrand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RAND_MAXas defined by the header fitestdlib.ht>).

Thesrand()function sets its argumested as the seed for a new sequence of pseudo-
random numbers to be returned and() These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operaiatonarguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seeandom() for an alternate set of functions that retains full 32-bit precision.

5.16.4.20 intrand_r (unsigned longx ctx)

Variant of rand() that stores the context in the user-supplied variable locatetkat
instead of a static library variable so the function becomes re-entrant.

5.16.4.21 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOM_MA(4s defined by the header fitestdlib.ht>).

The srandom()function sets its argumerseed as the seed for a new sequence of
pseudo-random numbers to be returneddnyd() These sequences are repeatable by
calling srandom(with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

5.16.4.22 long random_r (unsigned long ctx)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 61

Variant ofrandom()that stores the context in the user-supplied variable locatett at
instead of a static library variable so the function becomes re-entrant.

5.16.4.23 void srand (unsigned int_seejl

Pseudo-random number generator seedingrasad{()

5.16.4.24 void srandom (unsigned long_seedl

Pseudo-random number generator seedingrasgom()

5.16.4.25 double strtod (const chax __ nptr, char xx __endpt)

The strtod() function converts the initial portion of the string pointed torfgtr to
double representation.

The expected form of the string is an optional plus’() or minus sign (-)
followed by a sequence of digits optionally containing a decimal-point character, op-
tionally followed by an exponent. An exponent consists of&n or’e’ , followed

by an optional plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.
Thestrtod()function returns the converted value, if any.

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referencecehyptr .

If no conversion is performed, zero is returned and the valugof is stored in the
location referenced bgndptr .

If the correct value would cause overflow, plus or mitldGE_VAlLis returned (ac-
cording to the sign of the value), aBlRANGHs stored irerrno . If the correct value
would cause underflow, zero is returned &RIANGEs stored inerrno .

FIXME: HUGE_VAL needs to be defined somewhere. The bit pattern is Ox7fffffff, but
what number would this be?

5.16.4.26 long strtol (const chax __nptr, char «x __endptrint __bas¢

The strtol() function converts the string inptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional’” or’-" sign. Ifbase is zero or 16, the string

may then include &0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next charadder jsn which case it is
taken as 8 (octal).

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 62

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter’A’ in either upper or lower case represents’B0, represents 11, and so forth,
with’Z" representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
«endptr . If there were no digits at all, however, strtol() stores the original value of
nptr inendptr . (Thus, if«xnptr isnot’ \0' butxxendptr is’ \0’ on return, the
entire string was valid.)

The strtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurserrno is set toERANGE and the function return value is clamped

to LONG_MINor LONG_MAXespectively.

5.16.4.27 unsigned long strtoul (const chax __ nptr, char xx __endptr int __ -
basg

The strtoul() function converts the stringrptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined by iss-
pace()) followed by a single optional’” or’-" sign. Ifbase is zero or 16, the string

may then include &0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next charad®er jsn which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base.
(In bases above 10, the lettédf in either upper or lower case represents 'B),
represents 11, and so forth, wi#i representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in
xendptr . If there were no digits at all, however, strtoul() stores the original value of
nptr inendptr . (Thus, ifxnptr isnot’ \O' butxxendptr is’ \O' onreturn, the
entire string was valid.)

The strtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter case, strtoul() returns ULONG_MAX, and
errno is set toERANGE If no conversion could be performed, O is returned.

5.16.4.28 chax ultoa (unsigned long int__val charx __sint __ radix)
Convert an unsigned long integer to a string.

The functionultoa() converts the unsigned long integer value freah into an ASCII
representation that will be stored underThe caller is responsible for providing suf-

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.16 General utilities 63

ficient storage irs.

Note:
The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned long int) + 1 characters, i.e. one character for each bit plus one
for the string terminator. Using a larger radix will require a smaller minimal buffer
size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. fadix is greater than 10, the next digit after
‘9" will be the lettera’

Theultoa()function returns the pointer passedsas

5.16.4.29 chax utoa (unsigned int__val char* __sint _ radix)
Convert an unsigned integer to a string.

The functionutoa()converts the unsigned integer value fread into an ASCII repre-
sentation that will be stored undgr The caller is responsible for providing sufficient
storage irs.

Note:
The minimal size of the buffes depends on the choice of radix. For example, if
the radix is 2 (binary), you need to supply a buffer with a minimal length ef 8
sizeof (unsigned int) + 1 characters, i.e. one character for each bit plus one for the
string terminator. Using a larger radix will require a smaller minimal buffer size.

Warning:
If the buffer is too small, you risk a buffer overflow.

Conversion is done using thradix as base, which may be a number between 2
(binary conversion) and up to 36. f&dix is greater than 10, the next digit after
‘9" will be the lettera’

Theutoa()function returns the pointer passedsas
5.16.5 Variable Documentation

5.16.5.1 char __malloc_heap_end

malloc() tunable

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 64

5.16.5.2 chax __malloc_heap_start

malloc() tunable

5.16.5.3 size_t malloc_margin

malloc() tunable

5.17 Strings

5.17.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note:
If the strings you are working on resident in program space (flash), you will need
to use the string functions describeddrogram Space String Utilities

Functions

 void x memccpy(void , const voidx, int, size_t)

 void x memchr(const voidx, int, size_t) _ ATTR_PURE___

* int memcmp(const voidx, const voidx, size_t) _ ATTR_PURE___
« void x memcpy(void *, const voidx, size_t)

« void x memmovegvoid *, const voidx, size_t)

 void x memse{void *, int, size_t)

« int strcasecmifconst chak, const chax) _ ATTR_PURE___

« charx strcat(charx, const chak)

e charx strchr(const chak, int) _ ATTR_PURE___

« int strcmp(const chak, const chax) _ ATTR_PURE___

« charsx strcpy(charx, const chax)

« size_tstrlcat(charx, const chak, size t)

* size_tstrlcpy(charx, const chak, size_t)

« size_tstrlen(const chak) __ ATTR_PURE___

e charx strlwr (charx)

« int strncasecmjfconst chak, const chak, size_ t) _ ATTR_PURE___
e charx strncat(charx*, const chax, size_t)

« int strncmp(const chak, const chak, size_ t) ATTR_PURE___
« charsx strncpy(charx, const chak, size_t)

 size_tstrnlen(const chak, size t) ATTR_PURE___

e charsx strrchr(const chak, int) _ ATTR_PURE___

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 65

e charx strrev(charx)

« charsx strsep(charxx, const chak)

« charsx strstr(const chak, const chak) _ ATTR_PURE_
e charsx strtok_r(charx, const chak, charsx:x)

e charx strupr(charx)

5.17.2 Function Documentation

5.17.2.1 void« memccpy (void* dest const voidx src, int val, size_tlen)
Copy memory area.

Thememccpy(function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Returns:
Thememccpy(function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

5.17.2.2 void« memchr (const voidx src, int val, size_tlen)
Scan memory for a character.

The memchr()function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns:
The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

5.17.2.3 int memcmp (const void s, const voidx s2, size_tlen)
Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.
The comparision is performed using unsigned char operations.

Returns:
Thememcmp(function returns an integer less than, equal to, or greater than zero
if the first len bytes of sl is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:
Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 66

Warning:
This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

5.17.2.4 void« memcpy (voidx* dest const voidx src, size_tlen)

Copy a memory area.

The memcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Wsemmove()f the memory areas do overlap.

Returns:
Thememcpy()function returns a pointer to dest.

5.17.2.5 voidx memmove (void* dest const voidx src, size_tlen)

Copy memory area.

Thememmove(function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:
Thememmove(function returns a pointer to dest.

5.17.2.6 voidx memset (void« dest int val, size_tlen)

Fill memory with a constant byte.

The memset(Jfunction fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:
Thememset(¥unction returns a pointer to the memory area dest.

5.17.2.7 int strcasecmp (const chat s1, const charx s2)

Compare two strings ignoring case.

Thestrcasecmp(function compares the two strings s1 and s2, ignoring the case of the
characters.

Returns:
The strcasecmp(junction returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 67

5.17.2.8 char« strcat (char * dest const charx src)
Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting\t@echar-
acter at the end of dest, and then adds a terminati®igcharacter. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:
Thestrcat()function returns a pointer to the resulting string dest.

5.17.2.9 char« strchr (const char « src, int val)
Locate character in string.

Thestrchr()function returns a pointer to the first occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:
The strchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.17.2.10 int strcmp (const chak s1, const charx s2)
Compare two strings.

Thestremp()function compares the two strings s1 and s2.

Returns:
The stremp()function returns an integer less than, equal to, or greater than zero if
sl is found, respectively, to be less than, to match, or be greater than s2.

5.17.2.11 char strcpy (char * dest const charx src)
Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
"\ 0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:
Thestrcpy()function returns a pointer to the destination string dest.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 68

Note:
If the destination string of atrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

5.17.2.12 size_t strlcat (chax dst, const charx src, size_tsi2)
Concatenate two strings.

Appends src to string dst of size siz (unlgencat() siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unlesssiz
strlen(dst)).

Returns:
Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retvet
siz, truncation occurred.

5.17.2.13 size_t stricpy (chak dst, const charx src, size_tsi2)
Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:
Thestrlcpy() function returns strlen(src). If retval= siz, truncation occurred.

5.17.2.14 size_t strlen (const char src)
Calculate the length of a string.

The strlen() function calculates the length of the string src, not including the terminat-
ing "\0’ character.

Returns:
The strlen() function returns the number of characters in src.

5.17.2.15 char strlwr (char * string)
Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:
The sstriwr() function returns a pointer to the converted string.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 69

5.17.2.16 int strncasecmp (const char s1, const charx* s2, size_tlen)
Compare two strings ignoring case.

Thestrncasecmp(unction is similar tostrcasecmp()except it only compares the first
n characters of s1.

Returns:
The strncasecmp(unction returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.17.2.17 char strncat (char * dest const charx src, size_tlen)

Concatenate two strings.

Thestrncat()function is similar tostrcat() except that only the first n characters of src
are appended to dest.

Returns:
Thestrncat()function returns a pointer to the resulting string dest.

5.17.2.18 int strncmp (const chas s1, const charx s2, size_tlen)
Compare two strings.

Thestrnecmp()function is similar tostrcmp() except it only compares the first (at most)
n characters of s1 and s2.

Returns:
The strncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.17.2.19 chax strncpy (char = dest const charx src, size_tlen)
Copy a string.

The strncpy()function is similar tostrcpy() except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:
Thestrncpy()function returns a pointer to the destination string dest.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 70

5.17.2.20 size_t strnlen (const chax src, size_tlen)
Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:
The strnlen function returns strlen(src), if that is less than len, or len if there is no
"\ 0’ character among the first len characters pointed to by src.

5.17.2.21 chae strrchr (const char « src, int val)
Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here "character" means "byte" - these functions do not work with wide or multi-byte
characters.

Returns:
The strrchr()function returns a pointer to the matched character or NULL if the
character is not found.

5.17.2.22 char strrev (char « string)
Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:
Thestrrev()function returns a pointer to the beginning of the reversed string.

5.17.2.23 char strsep (charxx string, const charx delim)
Parse a string into tokens.

The strsep()function locates, in the string referenced string, the first occurrence

of any character in the string delim (or the terminatifg’’character) and replaces it

with a "\0’. The location of the next character after the delimiter character (or NULL,

if the end of the string was reached) is storedétring. An “empty” field, i.e. one
caused by two adjacent delimiter characters, can be detected by comparing the location
referenced by the pointer returnedssiring to \0’.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.17 Strings 71

Returns:
Thestrtok_r()function returns a pointer to the original valuesstring. If xstringp
is initially NULL, strsep(yeturns NULL.

5.17.2.24 char strstr (const char x s1, const charx s2)
Locate a substring.

Thestrstr()function finds the first occurrence of the substra2gin the stringsl. The
terminating \0’ characters are not compared.

Returns:
Thestrstr()function returns a pointer to the beginning of the substring, or NULL
if the substring is not found. If s2 points to a string of zero length, the function
returns sl.

5.17.2.25 char strtok_r (char « string, const charx delim, char «x last)
Parses the string s into tokens.

strtok_r parses the string s into tokens. The first call to strtok_r should have string as
its first argument. Subsequent calls should have the first argument set to NULL. If a
token ends with a delimiter, this delimiting character is overwritten withGa and a
pointer to the next character is saved for the next call to strtok_r. The delimiter string
delim may be different for each call. last is a user allocatedscpainter. It must be

the same while parsing the same string. strtok_r is a reentrant version of strtok().

Returns:
Thestrtok_r()function returns a pointer to the next token or NULL when no more
tokens are found.

5.17.2.26 char strupr (char x string)
Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Returns:
The strupr() function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.18 Interrupts and Signals 72

5.18 Interrupts and Signals

5.18.1 Detailed Description

Note:
This discussion of interrupts and signals was taken from Rich Neswold’s docu-
ment. SeéAcknowledgments

It's nearly impossible to find compilers that agree on how to handle interrupt code.
Since the C language tries to stay away from machine dependent details, each compiler
writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it's normally executing compiler-generated code.
It's important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with
attribute__ ((interrupt))

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined with one of two macros,
INTERRUPT()andSIGNAL(). These macros register and mark the routine as an in-
terrupt handler for the specified peripheral. The following is an example definition of
a handler for the ADC interrupt.

#include <avr/signal.h>

INTERRUPT(SIG_ADC)

/I user code here

Refer to the chapter explainimgsembler programmirfgr an explanation about inter-
rupt routines written solely in assembler language.

If an unexpected interrupt occurs (interrupt is enabled and no handler is installed, which
usually indicates a bug), then the default action is to reset the device by jumping to
the reset vector. You can override this by supplying a function namedctor_-

default which should be defined with eith& GNAL() or INTERRUPT()as such.

#include <avr/signal.h>

SIGNAL(__vector_default)
{

}

/I user code here

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.18 Interrupts and Signals 73

The interrupt is chosen by supplying one of the symbols in following table. Note that
every AVR device has a different interrupt vector table so some signals might not be
available. Check the data sheet for the device you are using.

[FIXME: Fill in the blanks! Gotta read those durn data sheets ;-)]

Note:
The SIGNAL() andINTERRUPT()macros currently cannot spell-check the argu-
ment passed to them. Thus, by misspelling one of the names below in a call to
SIGNAL() or INTERRUPT() a function will be created that, while possibly being
usable as an interrupt function, is not actually wired into the interrupt vector table.
No warning will be given about this situation.

Signal Name Description
SIG_2WIRE_SERIAL 2-wire serial interface (aka. 1178C [tm])
SIG_ADC ADC Conversion complete

SIG_COMPARATOR

Analog Comparator Interrupt

SIG_EEPROM_READY

Eeprom ready

SIG_FPGA_INTERRUPTO

SIG_FPGA_INTERRUPT1

SIG_FPGA_INTERRUPT2

SIG_FPGA_INTERRUPT3

SIG_FPGA_INTERRUPT4

SIG_FPGA_INTERRUPT5

SIG_FPGA_INTERRUPT6

SIG_FPGA_INTERRUPT7

SIG_FPGA_INTERRUPT8

SIG_FPGA_INTERRUPT9

SIG_FPGA_INTERRUPT10

SIG_FPGA_INTERRUPT11

SIG_FPGA_INTERRUPT12

SIG_FPGA_INTERRUPT13

SIG_FPGA_INTERRUPT14

SIG_FPGA_INTERRUPT15

SIG_INPUT_CAPTUREL1

Input Capturel Interrupt

SIG_INPUT_CAPTURES

Input Capture3 Interrupt

SIG_INTERRUPTO

External InterruptO

SIG_INTERRUPT1

External Interruptl

SIG_INTERRUPT2

External Interrupt2

SIG_INTERRUPT3

External Interrupt3

SIG_INTERRUPT4

External Interrupt4

SIG_INTERRUPTS

External Interrupts

SIG_INTERRUPT6

External Interrupt6

SIG_INTERRUPT7

External Interrupt?

SIG_OUTPUT_COMPARED

Output CompareO Interrupt

SIG_OUTPUT_COMPARE1A

Output Comparel(A) Interrupt

SIG_OUTPUT_COMPARE1B

Output Comparel(B) Interrupt

SIG_OUTPUT_COMPARE1C

Output Comparel(C) Interrupt

SIG_OUTPUT_COMPARE2

Output Compare2 Interrupt

SIG_OUTPUT_COMPARE3A

Output Compare3(A) Interrupt

SIG_OUTPUT_COMPARE3B

Output Compare3(B) Interrupt

SIG_OUTPUT_COMPARESC

Output Compare3(C) Interrupt

SIG_OVERFLOWO

OverflowO Interrupt

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.18 Interrupts and Signals

74

Signal Name

Description

SIG_OVERFLOW1

Overflowl Interrupt

SIG_OVERFLOW?2

Overflow?2 Interrupt

SIG_OVERFLOW3

Overflow3 Interrupt

SIG_PIN

SIG_PIN_CHANGEO

SIG_PIN_CHANGEL

SIG_RDMAC

SIG_SPI

SPI Interrupt

SIG_SPM_READY

Store program memory ready

SIG_SUSPEND_RESUME

SIG_TDMAC

SIG_UARTO

SIG_UARTO_DATA

UART(0) Data Register Empty Interrupt

SIG_UARTO_RECV

UART(0) Receive Complete Interrupt

SIG_UARTO_TRANS

UART(0) Transmit Complete Interrupt

SIG_UART1

SIG_UARTL_DATA

UART(1) Data Register Empty Interrupt

SIG_UARTL_RECV

UART(1) Receive Complete Interrupt

SIG_UARTL_TRANS

UART(1) Transmit Complete Interrupt

SIG_UART_DATA

UART Data Register Empty Interrupt

SIG_UART_RECV

UART Receive Complete Interrupt

SIG_UART_TRANS

UART Transmit Complete Interrupt

SIG_USARTO_DATA

USART(0) Data Register Empty Interrup

SIG_USARTO_RECV

USART(0) Receive Complete Interrupt

SIG_USARTO_TRANS

USART(0) Transmit Complete Interrupt

SIG_USART1_DATA

USART(1) Data Register Empty Interrup

SIG_USARTL_RECV

USART(1) Receive Complete Interrupt

SIG_USARTL_TRANS

USART(1) Transmit Complete Interrupt

SIG_USB_AW

Global manipulation of the interrupt flag

—

—

The global interrupt flag is maintained in the | bit of the status register (SREG).

e #definese() __asm__
e #definecli() _asm___

__volatile__ ("sei":)
__volatile__ ("cli":x)

Macros for writing interrupt handler functions

« #defineSIGNAL(sighame)

« #defineINTERRUPT(signame)

e #defineEEMPTY_INTERRUPTsigname)

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to
be enabled separately if interrupts for this device are desired. While some devices

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.18 Interrupts and Signals 75

maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

/I Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIEL));

/I Do some work...

/I Disable all timer interrupts.
timer_enable_int(0);

Note:
Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

e _inline__ voidtimer_enable_infunsigned char ints)

5.18.2 Define Documentation

5.18.2.1 #definecli() _asm__ __ volatile__ ("cli"::)

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

5.18.2.2 #define EMPTY_INTERRUPT(signame)

Value:
void signame (void) __ attribute__ ((naked)); \
void signame (void) { __asm__ _ volatile__ ("reti" :); }

#include <avr/signal.h>

Defines an empty interrupt handler function. This will not generate any prolog or
epilog code and will only return from the ISR. Do not define a function body as this
will define it for you. Example:

EMPTY_INTERRUPT(SIG_ADC);

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.18 Interrupts and Signals 76

5.18.2.3 #define INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((interrupt)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

5.18.2.4 #define sei() __asm__ _ volatile__ ("sei"::)

#include <avr/interrupt.h>

Enables interrupts by clearing the global interrupt mask. This function actually com-
piles into a single line of assembly, so there is no function call overhead.

5.18.2.5 #define SIGNAL(signame)
Value:

void signame (void) __attribute__ ((signal)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

5.18.3 Function Documentation
5.18.3.1 __inline__ void timer_enable_int (unsigned chants) [static]

#include <avr/interrupt.h>

This function modifies théimsk register. The value you pass vids is device
specific.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.19 Special function registers 77

5.19 Special function registers
5.19.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate 10 address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific 10 instructions that are applicable to
some or all of the 10 address spadae (out , sbi etc.). The entire IO address space

is also made available asemory-mapped IQ. e. it can be accessed using all the
MCU instructions that are applicable to normal data memory. The 10 register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the IO register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access |0 registers either with a special functiondikié()

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the 10 port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use ofsin instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people

might also feel that this is more readable. For example, the following two statements

would be equivalent:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.19 Special function registers 78

outb(DDRD, inb(DDRD) & ~LCDBITS);
DDRD &= ~LCDBITS;

The generated code is identical for both. Whitout optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smillett MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer 10 reg-
isters where access from both the main program and within an interrupt context can
happen. Se@/hy do some 16-bit timer registers sometimes get trashed?

Modules

« groupAdditional notes from<avr/sfr_defs.b

Bit manipulation

. #define_BV(bit) (1 << (bit))

10 register bit manipulation

« #definebit_is_sesfr, bit) (_ SFR_BYTE(sfr) & _BV(bit))

« #definebit_is_clea(sfr, bit) ({(_SFR_BYTE(sfr) & _BV(bit)))

« #defineloop_until_bit_is_sesfr, bit) do { } while (bit_is_clear(sfr, bit))
« #defineloop_until_bit_is_clegsfr, bit) do { } while (bit_is_set(sfr, bit))

Deprecated Macros

« #definecbi(sfr, bit) (_ SFR_BYTE(sfr) &=_BV(bit))
« #definesbi(sfr, bit) (_SFR_BYTE(sfr)= _BV/(bit))

o #defineinb(sfr) _SFR_BYTE(sfr)

 #defineouth(sfr, val) (SFR_BYTE(sfr) = (val))

o #defineinw(sfr) _SFR_WORD(sfr)

« #defineoutw(sfr, val) (SFR_WORD(sfr) = (val))

« #defineoutp(val, sfr) outb(sfr, val)

« #defineinp(sfr) inb(sfr)

« #defineBV (bit) _BV(bit)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.19 Special function registers 79

5.19.2 Define Documentation

5.19.2.1 no no integer part ORI _BV(bit) (1<< (bit))
#include <avr/io.h>

Converts a bit number into a byte value.

Note:
The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when usB\g().

5.19.2.2 #define bit_is_clear(sfr, bit) ({(_SFR_BYTE(sfr) & _BV(bit)))

#include <avr/io.h>

Test whether bibit in 10 registersfr is clear. This will return non-zero if the bit is
clear, and a O if the bit is set.

5.19.2.3 #define bit_is_set(sfr, bit) (_ SFR_BYTE(sfr) & _BV(bit))

#include <avr/io.h>

Test whether bibit in 10 registersfr is set. This will return a O if the bit is clear,
and non-zero if the bit is set.

5.19.2.4 #define BV(bit) _BV(bit)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use_BV() in new programs.

5.19.2.5 #define cbi(sfr, bit) (_ SFR_BYTE(sfr) &=~_BV(bit))

Deprecated
#include <avr/io.h>
For backwards compatibility only. This macro will eventually be removed.

Clear bitbit in 10 registersfr .

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.19 Special function registers 80

5.19.2.6 #define inb(sfr) _SFR_BYTE(sfr)

Deprecated
#include <avr/io.h>
For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs

5.19.2.7 #define inp(sfr) inb(sfr)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs

5.19.2.8 #define inw(sfr) _SFR_WORD(sfr)

Deprecated
#include <avrfio.h>
For backwards compatibility only. This macro will eventually be removed.

Read a 16-bit word from 10 register paifr .

Use direct access in new programs

5.19.2.9 #define loop_until_bit_is_clear(sfr, bit) do { } while (bit_is_set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in 1O registersfr is clear.

5.19.2.10 #define loop_until_bit_is_set(sfr, bit) do { } while (bit_is_clear(sft, bit))

#include <avr/io.h>

Wait until bitbit in IO registersfr is set.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

5.19 Special function registers 81

5.19.2.11 #define outb(sfr, val) (SFR_BYTE(sfr) = (val))

Deprecated
#include <avr/io.h>

For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<=20020203).

5.19.2.12 #define outp(val, sfr) outb(sfr, val)

Deprecated
For backwards compatibility only. This macro will eventually be removed.

Use direct access in new programs

5.19.2.13 #define outw(sfr, val) (_ SFR_WORD(sfr) = (val))

Deprecated
#include <avr/io.h>
For backwards compatibility only. This macro will eventually be removed.

Write the 16-bit valueval to 10 register paisfr . Care will be taken to write the
lower register first. When used to update 16-bit registers where the timing is critical
and the operation can be interrupted, the programmer is the responsible for disabling
interrupts before accessing the register pair.

Use direct access in new programs

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<=20020203).

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

6 avr-libc Data Structure Documentation 82

5.19.2.14 #define sbi(sfr, bit) (_ SFR_BYTE(sfr)= _BV/(bit))

Deprecated
#include <avr/io.h>
For backwards compatibility only. This macro will eventually be removed.

Set bitbit in 1O registersfr .

6 avr-libc Data Structure Documentation

6.1 div_t Struct Reference
6.1.1 Detailed Description

Result type for functiomiv().

Data Fields

« int quot
e intrem

The documentation for this struct was generated from the following file:

* stdlib.h

6.2 Idiv_t Struct Reference
6.2.1 Detailed Description

Result type for functiomdiv().

Data Fields

* longquot
¢ longrem

The documentation for this struct was generated from the following file:

« stdlib.h

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7 avr-libc Page Documentation 83

7 avr-libc Page Documentation

7.1 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn't have a terrifitge set of tools to develop AVR
projects. We all owe thanks to:

¢ The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

* Denis Chertykov [denisc@overta.ru] for making the AVR-specific
changes to the GNU tools.

¢ Denis Chertykov and Marek Michalkiewicznjarekm@linux.org.pl] for
developing the standard libraries and startup cod@¥R-GCC.

« Uros Platise for developing the AVR programmer taogp.

e Joerg Wunsch Joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSDIjttp://www.freebsd.org] ports tree and for pro-
viding the basics for thdemo project

« Brian Dean [bsd@bsdhome.com] for developingavrdude (an alternative to
uisp) and for contributingdocumentatiorwhich describes how to use ifvr-
dude was previously calledvrprog.

« Eric Weddington [eric@ecentral.com] for maintaining theWinAVR
package and thus making the continued improvements to the Opensource AVR
toolchain available to many users.

¢ Rich Neswold for writing the original avr-tools document (which he graciously
allowed to be merged into this document) and his improvements tdehe
project

¢ All the people who have submitted suggestions, patches and bug reports. (See
the AUTHORS files of the various tools.)

« And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com
mailto:eric@ecentral.com

7.2 avr-libc and assembler programs 84

7.2 avr-libc and assembler programs
7.2.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

» Code for devices that do not have RAM and are thus not supported by the C
compiler.

« Code for very time-critical applications.

¢ Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily usingrtiee assemblefiacility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

» Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler's macro concept is
basically targeted to use a macro in place of an assembler instruction).

 Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAMnitializing the RAM variablesan also be utilized.

7.2.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler fronteadr{gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

¢ There is basically only one program to be called dire@ly;gcc |, regardless
of the actual source language used.

¢ The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

* The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXX.o0) and linker script.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 85

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter "s"). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the
assembler-with-cpp option.

7.2.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avr/io.h> ; Note [1]
work = 16 ; Note [2]
tmp = 17
inttmp = 19
intsav. = 0
SQUARE = PD6 ; Note [3]
; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNTO is set

.section .text

.global main ; Note [5]
main:
rcall ioinit
1
rmp 1b ; Note [6]
.global SIG_OVERFLOWO ; Note [7]
SIG_OVERFLOWO:
Idi inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNTO), inttmp ; Note [8]
in intsav, _SFR_IO_ADDR(SREG) ; Note [9]
shic _SFR_IO_ADDR(PORTD), SQUARE
rmp 1f
shi _SFR_IO_ADDR(PORTD), SQUARE
rmp 2f
1 chi _SFR_IO_ADDR(PORTD), SQUARE
2:
out _SFR_IO_ADDR(SREG), intsav

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 86

reti

ioinit:
shi _SFR_IO_ADDR(DDRD), SQUARE
Idi work, _BV(TOIEQ)
out _SFR_IO_ADDR(TIMSK), work
Idi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCRO0), work
Idi work, 256 - tmconst
out _SFR_IO_ADDR(TCNTO0), work
sei
ret
.global __vector_default ; Note [10]

__vector_default:
reti

.end

Note [1]

As in C programs, this includes the central processor-specific file containing the 10 port
definitions for the device. Note that not all include files can be included into assembler
sources.

Note [2]
Assignment of registers to symbolic names used locally. Another option would be to
use a C preprocessor macro instead:

#define work 16

Note [3]

Our bit number for the square wave output. Note that the right-hand side consists of a
CPP macro which will be substituted by its value (6 in this case) before actually being
passed to the assembler.

Note [4]

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 87

The assembler uses integer operations in the host-defined integer size (32 bits or longer)
when evaluating expressions. This is in contrast to the C compiler that uses the C type
int by default in order to calculate constant integer expressions.

In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times per
second. Since we use timer 0 without any prescaling options in order to get the de-
sired frequency and accuracy, we already run into serious timing considerations: while
accepting and processing the timer overflow interrupt, the timer already continues to
count. When pre-loading thECCNTOregister, we therefore have to account for the
number of clock cycles required for interrupt acknowledge and for the instructions to
reloadTCCNTO(4 clock cycles for interrupt acknowledge, 2 cycles for the jump from
the interrupt vector, 2 cycles for the 2 instructions that rel6&CNT(Q. This is what

the constantuzz is for.

Note [5]

External functions need to be declared to be .glolaain is the application entry
point that will be jumped to from the ininitalization routineénts1200.0

Note [6]

The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt servicesléep instruction
(using idle mode) could be used as well, but probably would not conserve much energy
anyway since the interrupt service is executed quite frequently.

Note [7]

Interrupt functions can get thesual nameghat are also available to C programs. The
linker will then put them into the appropriate interrupt vector slots. Note that they must
be declared .global in order to be acceptable for this purpose. This will only work if
<avrfio.h > has been included. Note that the assembler or linker have no chance
to check the correct spelling of an interrupt function, so it should be double-checked.
(When analyzing the resulting object file usiagr-objdump or avr-nm , a name

like _vector_ N should appear, withl being a small integer number.)

Note [8]

As explained in the section abogpecial function registershe actual 10 port address
should be obtained using the mact®FR_IO_ADDR (The AT90S1200 does not have
RAM thus the memory-mapped approach to access the 10 registers is not available. It
would be slower than using /out instructions anyway.)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 88

Since the operation to reloadCCNTOis time-critical, it is even performed before
savingSREG Obviously, this requires that the instructions involved would not change
any of the flag bits irSREG

Note [9]

Interrupt routines must not clobber the global CPU state. Thus, it is usually necessary
to save at least the state of the flag bitSREG (Note that this serves as an example
here only since actually, all the following instructions would not mo@®ECeither,

but that's not commonly the case.)

Also, it must be made sure that registers used inside the interrupt routine do not conflict
with those used outside. In the case of a RAM-less device like the AT90S1200, this can
only be done by agreeing on a set of registers to be used exclusively inside the interrupt
routine; there would not be any other chance to "save" a register anywhere.

If the interrupt routine is to be linked together with C modules, care must be taken
to follow theregister usage guidelinémposed by the C compiler. Also, any register
modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]

As explained ininterrupts and Signalsa global "catch-all" interrupt handler that
gets all unassigned interrupt vectors can be installed using the naweetor_-
default . This must be .global, and obviously, should end ieta instruction. (By
default, a jump to location 0 would be implied instead.)

7.2.4 Pseudo-ops and operators

The available pseudo-ops in the assembler are described in the GNU assembler (gas)
manual. The manual can be found online as part of the current binutils release under
http://sources.redhat.com/binutils/.

As gas comes from a Unix origin, its pseudo-op and overall assembler syntax is slightly
different than the one being used by other assemblers. Numeric constants follow the C
notation (prefix0x for hexadecimal constants), expressions use a C-like syntax.

Some common pseudo-ops include:
« .byte allocates single byte constants
« .ascii allocates a non-terminated string of characters

« .asciz allocates §0-terminated string of characters (C string)

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://sources.redhat.com/binutils/.

7.3 Frequently Asked Questions 89

 .data switches to the .data section (initialized RAM variables)

.text switches to the .text section (code and ROM constants)

« .set declares a symbol as a constant expression (identical to .equ)

L]

.global (or .globl) declares a public symbol that is visible to the linker (e. g.
function entry point, global variable)

« .extern declares a symbol to be externally defined; this is effectively a comment
only, as gas treats all undefined symbols it encounters as globally undefined any-
way

Note that .org is available in gas as well, but is a fairly pointless pseudo-op in an as-
sembler environment that uses relocatable object files, as it is the linker that determines
the final position of some object in ROM or RAM.

Along with the architecture-independent standard operators, there are some AVR-
specific operators available which are unfortunately not yet described in the official
documentation. The most notable operators are:

* 108 Takes the least significant 8 bits of a 16-bit integer
« hi8 Takes the most significant 8 bits of a 16-bit integer

* pmTakes a program-memory (ROM) address, and converts it into a RAM ad-
dress. This implies a division by 2 as the AVR handles ROM addresses as 16-bit
words (e.g. in anJMP or ICALL instruction), and can also handle relocatable
symbols on the right-hand side.

Example:

Idi r24, lo8(pm(somefunc))
Idi r25, hi8(pm(somefunc))
call something

This passes the address of functisomefunc as the first parameter to function
something

7.3 Frequently Asked Questions
7.3.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3

Frequently Asked Questions 90

© 00 N o 0o A~ W N

10.

11.
12.
13.
14.
15.
16.
17.
18.

19.
20.

21.
22.
23.
24.
25.
26.

. 1 get "undefined reference to..." for functions like "sin()

. How to permanently bind a variable to a register?

. How to modify MCUCR or WDTCR early?

. What is all this _BV() stuff about?

. Can | use C++ on the AVR?

. Shouldn’t | initialize all my variables?

. Why do some 16-bit timer registers sometimes get trashed?

. How do | use a #define'd constant in an asm statement?

Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

How do | trace an assembler file in avr-gdb?

How do | pass an IO port as a parameter to a function?
What registers are used by the C compiler?

How do | put an array of strings completely in ROM?
How to use external RAM?

Which -O flag to use?

How do | relocate code to a fixed address?

My UART is generating nonsense! My ATmegal28 keeps crashing! Port F is
completely broken!

Why do all my "foo...bar" strings eat up the SRAM?

Why does the compiler compile an 8-bit operation that uses bitwise operators
into a 16-bit operation in assembly?

How to detect RAM memory and variable overlap problems?
Is it really impossible to program the ATtinyXX in C?

What is this "clock skew detected" messsage?

Why are (many) interrupt flags cleared by writing a logical 1?
Why have "programmed" fuses the bit value 0?

Which AVR-specific assembler operators are available?

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 91

7.3.2 My program doesn’t recognize a variable updated within an interrupt rou-
tine

When using the optimizer, in a loop like the following one:

uint8_t flag;

while (flag == 0) {
}

the compiler will typically optimize the access fiag completely away, since its
code path analysis shows that nothing inside the loop could change the vélag of
anyway. To tell the compiler that this variable could be changed outside the scope of
its code path analysis (e. g. from within an interrupt routine), the variable needs to be
declared like:

volatile uint8_t flag;

Back toFAQ Index

7.3.3 | get"undefined reference to..." for functions like "sin()"
In order to access the mathematical functions that are declarednizth.h >, the
linker needs to be told to also link the mathematical libribyn.a

Typically, system libraries likéibm.a are given to the final C compiler command
line that performs the linking step by adding a fliig at the end. (That is, the initial
lib and the filename suffix from the library are written immediately aftdrflag. So
for a libfoo.a library, -Ifoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to tllem.a file at the same place

on the command line, i. eafter all the object files£.0). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index

7.3.4 How to permanently bind a variable to a register?
This can be done with
register unsigned char counter asm("r3");

SeeC Names Used in Assembler Cofibe more details.

Back toFAQ Index

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 92

7.3.5 How to modify MCUCR or WDTCR early?

The method of early initializationJCUCRWDTCRr anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S
#include <avr/io.h>
.section .init1,"ax",@progbits

Idi r16,_ BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;v end xram.S

Assemble it, link the resultingram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the nemit N sections (which one to use, etc.).

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup — no stack and zero_reg__ yet),
and no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very spe-
cial cases. It is best to leave stack at its default value (end of internal SRAM

— faster, and required on some devices like ATmegal6l because of errata), and add
-WI,-Tdata,0x801100 to start the data section above the stack.

For more information on using sections, including how to use them from C code, see
Memory Sections

Back toFAQ Index

7.3.6 Whatis all this _BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some 10 register. While the device documentation provides mnemonic names for
the various bits in the 10 registers, and #éR device-specific 10 definitiongeflect

these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
ansbi() call), so the definitions cannot usefully be made as byte values in the first
place.

So in order to access a particular bit number as a byte value, uséihg macro.
Of course, the implementation of this macro is just the usual bit shift (which is done

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 93

by the compiler anyway, thus doesn'’t impose any run-time penalty), so the following
applies:

_BV(@3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.
"BV" stands for "bit value", in case someone might ask you. :-)

Example: clock timer 2 with full 10 clock CS2x = 0b001), toggle OC2 output on
compare matchGOMR = 0b01), and clear timer on compare mat€fiiC2=1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index

7.3.7 Canluse C++ onthe AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc, .cpp or .C will automati-
cally cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the naragr-c++

However, there’s currently no support flibstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

» Obviously, none of the C++ related standard functions, classes, and template
classes are available.

* The operatorsiew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

« Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into

extern "C" { . . .}

(This could certainly be fixed, too.)

« Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off usHfigo-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference to_gxx_personality _sjO

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 94

Constructors and destructase supported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index

7.3.8 Shouldn't l initialize all my variables?

Global and static variables are guaranteed to be initialized to O by the C standard.
avr-gcc does this by placing the appropriate code into section .init4 TeeeinitN
Section$. With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits
being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the .bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’'t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target's SRAM.)

In contrast, global and static variables that have an initializer go intaditasection

of the file. This will cause them to consume space in the object file (in order to record
the initializing value)andin the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer "wants to make doubly sure" their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it's usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
zero.

Back toFAQ Index
7.3.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit 10 registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 95

two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value regis@N{n), the input capture
register (CRn), and write access to the output compare regis®@GRM). Refer to
the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it's usually best to use the
SIGNAL() macro when declaring the interrupt function, and to ensure that interrupts
are still disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei() macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

uintl6_t
read_timer1(void)

{
uint8_t sreg;
uintl6_t val;
sreg = SREG;
cli);
val = TCNT1;
SREG = sreg;

return val;

Back toFAQ Index

7.3.10 How do | use a #define'd constant in an asm statement?

So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation errotError: constant value required"

PORTBIs a precompiler definition included in the processor specific file included in
avrfio .h. As you may know, the precompiler will not touch strings &@RTB
instead 0f0x18 , gets passed to the assembler. One way to avoid this problem is:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 96

asm volatile("sbi %0, 0x07" : "I" (PORTB):);

Note:
avr/io .h already provides sbi() macro definition, which can be used in C pro-
grams.

Back toFAQ Index

7.3.11 Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?

When compiling a program with both optimizatiorQ() and debug information-g)

which is fortunately possible iavr-gcc , the code watched in the debugger is opti-
mized code. While it is not guaranteed, very often this code runs with the exact same
optimizations as it would run without thg switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative junmd)
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variableim-gdb , the displayed result

will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index

7.3.12 How do | trace an assembiler file in avr-gdb?

When using theg compiler optionavr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a sistdp command

in gdb. This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, sincegheompiler switch does not
apply to the assembler.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 97

Soin order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it's the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn't
know about this.) This is done using the (GNU) assembler optistabs

Example:

$ avr-as -mmcu=atmegal28 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend
(either implicitly by passing a source file ending in .S, or explicitly ushxg
assembler-with-cpp), the compiler frontend needs to be told to pass the
-gstabs option down to the assembler. This is done usip,-gstabs . Please

take care tanly pass this option when compiling an assembler input file. Otherwise,
the assembler code that results from the C compilation stage will also get line number
information, which confuses the debugger.

Note:
You can also useWa,-gstabs since the compiler will add the exttd for
you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmegal28 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -0 foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the lettdr for a backward reference, érfor a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push rl6

push ri7

push ri8

push YL

push YH

eor ri6, rlé ; start loop

Idi YL, lo8(sometable)

Idi YH, hi8(sometable)

rmp 2f ; jump to loop test at end

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 98

1 Id rl7, Y+ ; loop continues here
breq 1f ; return from myfunc prematurely
inc rl6
2: cmp rl6, ri8
brlo 1b ; jump back to top of loop
1: pop YH
pop YL
pop rl8
pop ri7
pop rl6

ret

Back toFAQ Index

7.3.13 How do | pass an IO port as a parameter to a function?
Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)

{

port |= mask;

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)

{
}

*port |= mask;

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)

{
set_bits_func_wrong (PORTB, Oxaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);
return (0);

}

The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this call,
it will actually pass the value of theORTBregister (using afN instruction), instead

of passing the address BORTHe.g. memory mapped io addr @38 , io portOx18

for the megal28). This is seen clearly when looking at the disassembly of the call:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 99

set_bits_func_wrong (PORTB, Oxaa);

10a: 6a ea Idi r22, OxAA ; 170
10c: 88 b3 in r24, 0x18 ;24
10e: Oe 94 65 00 call Oxca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for
the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see that the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

set_bits_func_correct (&PORTB, 0x55);

112: 65 e5 Idi r22, Ox55 ; 85
114: 88 e3 Idi r24, 0x38 ; 56
116: 90 e0 Idi r25, 0x00 ; 0
118: Oe 94 7c 00 call 0xf8

You can clearly see th&ix0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)

{

f8: fc 01 movw 130, r24
*port |= mask;
fa: 80 81 Id r24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24
}
100: 08 95 ret

Notice that we are accessing the io port vialtfleandST instructions.
Theport parameter must be volatile to avoid a compiler warning.
Note:
Because of the nature of thid andOUTassembly instructions, they can not be

used inside the function when passing the port in this way. Readers interested in
the details should consult thestruction Setlata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);

1llc: 88 b3 in r24, 0x18 ;24
1lle: 80 6f ori r24, OxFO ;240
120: 88 bb out 0x18, r24 ;24

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 100

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Care should be taken when such an indirect port access is going to one of the 16-bit
IO registers where the order of write access is critical (like some timer registers). All
versions of avr-gcc up to 3.3 will generate instructions that use the wrong access order
in this situation (since with normal memory operands where the order doesn’t matter,
this sometimes yields shorter code).

Seehttp://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html
for a possible workaround.

avr-gcc versions after 3.3 have been fixed in a way where this optimization will be
disabled if the respective pointer variable is declared todiatile , so the correct
behaviour for 16-bit 10 ports can be forced that way.

Back toFAQ Index

7.3.14 What registers are used by the C compiler?

* Data types:

char is 8 bits,int is 16 bitslong is 32 bits,long long is 64 bitsfloat and
double are 32 bits (this is the only supported floating point format), pointers
are 16 bits (function pointers are word addresses, to allow addressing the whole
128K program memory space on the ATmega devices witB4 KB of flash
ROM). There is amint8 option (seeOptions for the C compiler avr-ggt¢o
makeint 8 bits, but that is not supported by avr-libc and violates C standards
(int mustbe at least 16 bits). It may be removed in a future release.

e Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Yonayuse them freely in assembler
subroutines. Calling C subroutines can clobber any of them - the caller is re-
sponsible for saving and restoring.

 Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary.

« Fixed registers (r0, r1):
Never allocated by gcc for local data, but often used for fixed purposes:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://mail.nongnu.org/archive/html/avr-libc-dev/2003-01/msg00044.html

7.3 Frequently Asked Questions 101

rO - temporary register, can be clobbered by any C code (except interrupt handlers
which save it),maybe used to remember something for a while within one piece of
assembler code

rl - assumed to be always zero in any C cadaybe used to remember something for

a while within one piece of assembler code, buistthen be cleared after uselq

rl). This includes any use of tHgmul[s[u]] instructions, which return their
result in r1:r0. Interrupt handlers save and clear rl1 on entry, and restore rl on exit (in
case it was non-zero).

¢ Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, incluthiag , have one free
register above them). This allows making better use ohtbgwinstruction on

the enhanced core.

If too many, those that don't fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25, up to
64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by the caller
(unsigned char is more efficient tharsigned char - justclr r25). Argu-
ments to functions with variable argument lists (printf etc.) are all passed on stack, and
char is extended tant .

Warning:
There was no such alignment before 2000-07-01, including the old patches for
gce-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index

7.3.15 How do | put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified.
In this case, you don’t want to waste ram storing the constant strings. The most obvious
(and incorrect) thing to do is this:

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
"Foo",
"Bar"

h
int main (void)
char buf[32];

strcpy_P (buf, array[1]);
return O;

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions

102

The result is not want you want though. What you end up with is the array stored in

ROM, while the individual strings end up in RAM (in the

.data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";
PGM_P array[2] PROGMEM = {
foo,
bar

h
int main (void)

char buf[32];
PGM_P p;
int i;

memcpy_P(&p, &arrayli], sizeof(PGM_P));
strepy_P(buf, p);
return 0O;

Looking at the disassembly of the resulting object file we see that array is in flash as

such:

00000026 <array>:
26: 2e 00
28: 2a 00

0x002e
0x002a

.word
.word

0000002a <bar>:
2a: 42 61 72 00

0000002e <foo>:
2e: 46 6f 6f 00
foo is at addr 0x002e.
bar is at addr 0x002a.
is at addr 0x0026.

Then in main we see this:

array

memcpy_P(&p, &arrayli], sizeof(PGM_P));

70: 66 Of add r22, r22
72: 77 1f adc r23, r23
74: 6a 5d subi r22, OxDA
76: 7f 4f sbci r23, OxFF
78: 42 e0 Idi r20, 0x02
7a: 50 e0 Idi r21, 0x00

; ?7?7?

, ?7?7?

Bar.

Foo.

; 218

; 255

0

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 103

7c: ce 01 movw r24, r28
7e: 81 96 adiw r24, 0x21 ;33
80: 08 do rcall +16 ; 0x92

This code reads the pointer to the desired string from the ROM taidy into a
register pair.

The value ofi (in r22:r23) is doubled to accomodate for the word offset required to
access array[], then the address of array (0x26) is added, by subtracting the negated
address (0xffda). The address of varigblis computed by adding its offset within the
stack frame (33) to the Y pointer register, andmcpy_Pis called.

strepy_P(buf, p);

82 69 al ldd 122, Y+33 ; 0x21
84: 7a al ldd r23, Y+34 ; 0x22
86: ce 01 movw r24, r28

88: 01 96 adiw r24, 0x01 ;1
8a: Oc do rcall +24 ; Oxad

This will finally copy the ROM string into the local bufféuf .

Variablep (located at Y+33) is read, and passed together with the address of buf (Y+1)
to strcpy_P. This will copy the string from ROM tduf .

Note that when using a compile-time constant index, omitting the first step (reading
the pointer from ROM vianemcpy_B usually remains unnoticed, since the compiler
would then optimize the code for accessargay at compile-time.

Back toFAQ Index

7.3.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theCUCRegister needs to be set in order

to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like
XMCRAand XMCRBand/or further bits ilMCUCRnight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program
(i. e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during ttlevice initializationso the initialization of

these variable will take place. Referttmw to modify MCUCR or WDTCR earlyfor

a description how to do this using few lines of assembler code, or to the chapter about
memory sections for aexample written in C

The explanation ofmalloc() contains adiscussiorabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations ofi¢iap

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 104

(area reserved fanalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. throudtea x* variable
initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginningrofin(), so no tweaking of the

.initl section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

Itis not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index

7.3.17 Which -O flag to use?

There’s a common misconception that larger numbers behin@tlogtion might auto-
matically cause "better" optimization. First, there’s no universal definition for "better",
with optimization often being a speed vs. code size tradeoff. Segetaded discus-
sionfor which option affects which part of the code generation.

A test case was run on an ATmegal28 to judge the effect of compiling the library itself
using different optimization levels. The following table lists the results. The test case
consisted of around 2 KB of strings to sort. Test #1 used qsort() using the standard
library strcmp() test #2 used a function that sorted the strings by their size (thus had
two calls to strlen() per invocation).

When comparing the resulting code size, it should be noted that a floating point version
of fvprintf() was linked into the binary (in order to print out the time elapsed) which

is entirely not affected by the different optimization levels, and added about 2.5 KB to
the code.

Optimization Size of .text Time for test#1 | Time for test #2
flags

-03 6898 903 s 19.7 ms

-02 6666 972us 20.1 ms

-Os 6618 955 s 20.1 ms

-Os 6474 972 us 20.1 ms
-mcall-prologues

(The difference between 95% and 972us was just a single timer-tick, so take this
with a grain of salt.)

So generally, it seem®s -mcall-prologues is the most universal "best" opti-
mization level. Only applications that need to get the last few percent of speed benefit
from using-O3.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 105

Back toFAQ Index

7.3.18 How do | relocate code to a fixed address?

First, the code should be put into a n@amed section This is done with a section
attribute:

__ attribute__ ((section (".bootloader")))

In this example, .bootloader is the name of the new section. This attribute needs to be
placed after the prototype of any function to force the function into the new section.

void boot(void) __ attribute__ ((section (".bootloader")));

To relocate the section to a fixed address the linker-#agtion-start is used.
This option can be passed to the linker using-ive compiler option

-WI,--section-start=.bootloader=0x1E000

The name after section-start is the name of the section to be relocated. The number
after the section name is the beginning address of the named section.

Back toFAQ Index

7.3.19 My UART is generating nonsense! My ATmegal28 keeps crashing! Port
F is completely broken!

Well, certain odd problems arise out of the situation that the AVR devices as shipped
by Atmel often come with a default fuse bit configuration that doesn’t match the user’s
expectations. Here is a list of things to care for:

« All devices that have an internal RC oscillator ship with the fuse enabled that
causes the device to run off this oscillator, instead of an external crystal. This
often remains unnoticed until the first attempt is made to use something critical
in timing, like UART communication.

* The ATmegal28 ships with the fuse enabled that turns this device into AT-
megal03 compatibility mode. This means that some ports are not fully usable,
and in particular that the internal SRAM is located at lower addresses. Since by
default, the stack is located at the top of internal SRAM, a program compiled for
an ATmegal28 running on such a device will immediately crash upon the first
function call (or rather, upon the first function return).

¢ Devices with a JTAG interface have ti@ AGENfuse programmed by default.
This will make the respective port pins that are used for the JTAG interface un-
available for regular IO.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 106

Back toFAQ Index

7.3.20 Why do all my "foo...bar" strings eat up the SRAM?

By default, all strings are handled as all other initialized variables: they occupy RAM
(even though the compiler might warn you when it detects write attempts to these RAM
locations), and occupy the same amount of flash ROM so they can be initialized to the
actual string by startup code. The compiler can optimize multiple identical strings into
a single one, but obviously only for one compilation unit (i. e., a single C source file).

That way, any string literal will be a valid argument to any C function that expects a
const char x argument.

Of course, this is going to waste a lot of SRAM.Pmogram Space String Utilities
method is described how such constant data can be moved out to flash ROM. How-
ever, a constant string located in flash ROM is no longer a valid argument to pass to a
function that expects eonst char x-type string, since the AVR processor needs
the special instructiohPMto access these strings. Thus, separate functions are needed
that take this into account. Many of the standard C library functions have equivalents
available where one of the string arguments can be located in flash ROM. Private func-
tions in the applications need to handle this, too. For example, the following can be
used to implement simple debugging messages that will be sent through a UART:

#include <inttypes.h>
#include <avr/io.h>
#include <avr/pgmspace.h>

void
uart_putchar(char c)

if (c == "\n’)
uart_putchar(\r’);
loop_until_bit_is_set(USR, UDRE);
UDR = ¢;
}

void
debug_P(const char *addr)
{

char c;

while ((c = pgm_read_byte(addr++)))
uart_putchar(c);
}

int
main(void)
debug_P(PSTR("foo was here\n"));

return 0O;

}

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 107

Note:
By convention, the suffix P to the function name is used as an indication that
this function is going to accept a "program-space string". Note also the use of the
PSTR()macro.

Back toFAQ Index

7.3.21 Why does the compiler compile an 8-bit operation that uses bitwise oper-
ators into a 16-bit operation in assembly?

Bitwise operations in Standard C will automatically promote their operands to an int,
which is (by default) 16 bits in avr-gcc.

To work around this use typecasts on the operands, including literals, to declare that
the values are to be 8 bit operands.

This may be especially important when clearing a bit:
var &= ~mask; /* wrong way! */

The bitwise "not" operator~) will also promote the value imask to an int. To keep
it an 8-bit value, typecast before the "not" operator:

var &= (unsigned char)~mask;

Back toFAQ Index

7.3.22 How to detect RAM memory and variable overlap problems?

You can simply ruravr-nm on your output (ELF) file. Run it with then option, and
it will sort the symbols numerically (by default, they are sorted alphabetically).

Look for the symbol end, that’s the first address in RAM that is not allocated by

a variable. (avr-gcc internally adds 0x800000 to all data/bss variable addresses, so
please ignore this offset.) Then, the run-time initialization code initializes the stack
pointer (by default) to point to the last avaialable address in (internal) SRAM. Thus,
the region betweenend and the end of SRAM is what is available for stack. (If your
application usesnalloc(), which e. g. also can happen insigentf(), the heap for
dynamic memory is also located there. S&kng malloc())

The amount of stack required for your application cannot be determined that easily.
For example, if you recursively call a function and forget to break that recursion, the
amount of stack required is infinite. :-) You can look at the generated assembler code
(avr-gcc ... -S), there’s a comment in each generated assembler file that tells
you the frame size for each generated function. That's the amount of stack required for

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.3 Frequently Asked Questions 108

this function, you have to add up that for all functions where you know that the calls
could be nested.

Back toFAQ Index

7.3.23 Is it really impossible to program the ATtinyXX in C?

While some small AVRs are not directly supported by the C compiler since they do not
have a RAM-based stack (and some do not even have RAM at all), it is possible anyway
to use the general-purpose registers as a RAM replacement since they are mapped into
the data memory region.

Bruce D. Lightner wrote an excellent description of how to do this, and offers this
together with a toolkit on his web page:

http://lightner.net/avr/ATtinyAvrGcec.html

Back toFAQ Index

7.3.24 What is this "clock skew detected" messsage?

It's a known problem of the MS-DOS FAT file system. Since the FAT file system has
only a granularity of 2 seconds for maintaining a file’s timestamp, and it seems that
some MS-DOS derivative (Win9x) perhaps rounds up the current time to the next sec-
ond when calculating the timestamp of an updated file in case the current time cannot
be represented in FAT’s terms, this causes a situation whake sees a "file coming

from the future”.

Since all make decisions are based on file timestamps, and their dependencies, make
warns about this situation.

Solution: don't use inferior file systems / operating systems. Neither Unix file systems
nor HPFS (aka NTFS) do experience that problem.

Workaround: after saving the file, wait a second before startiage. Or simply
ignore the warning. If you are paranoid, executmake clean all to make sure
everything gets rebuilt.

In networked environments where the files are accessed from a file server, this message
can also happen if the file server’s clock differs too much from the network client’s
clock. In this case, the solution is to use a proper time keeping protocol on both sys-
tems, like NTP. As a workaround, synchronize the client’'s clock frequently with the
server’s clock.

Back toFAQ Index

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://lightner.net/avr/ATtinyAvrGcc.html

7.3 Frequently Asked Questions 109

7.3.25 Why are (many) interrupt flags cleared by writing a logical 1?

Usually, each interrupt has its own interrupt flag bit in some control register, indicating
the specified interrupt condition has been met by representing a logical 1 in the respec-
tive bit position. When working with interrupt handlers, this interrupt flag bit usually
gets cleared automatically in the course of processing the interrupt, sometimes by just
calling the handler at all, sometimes (e. g. for the U[S]ART) by reading a particular
hardware register that will normally happen anyway when processing the interrupt.

From the hardware’s point of view, an interrupt is asserted as long as the respective bit
is set, while global interrupts are enabled. Thus, it is essential to have the bit cleared
before interrupts get re-enabled again (which usually happens when returning from an
interrupt handler).

Only few subsystems require an explicit action to clear the interrupt request when using
interrupt handlers. (The notable exception is the TWI interface, where clearing the
interrupt indicates to proceed with the TWI bus hardware handshake, so it's never done
automatically.)

However, if no normal interrupt handlers are to be used, or in order to make extra
sure any pending interrupt gets cleared before re-activating global interrupts (e. g.
an external edge-triggered one), it can be necessary to explicitly clear the respective
hardware interrupt bit by software. This is usually done by writing a logical 1 into this
bit position. This seems to be illogical at first, the bit position already carries a logical
1 when reading it, so why does writing a logical 1 taliar the interrupt bit?

The solution is simple: writing a logical 1 to it requires only a sin@QleTinstruction,

and it is clear that only this single interrupt request bit will be cleared. There is no need
to perform a read-modify-write cycle (like, @Bl instruction), since all bits in these
control registers are interrupt bits, and writing a logical 0 to the remaining bits (as it
is done by the simpl®©UTinstruction) will not alter them, so there is no risk of any
race condition that might accidentally clear another interrupt request bit. So instead of
writing

TIFR |= _BV(TOVO); /* wrong! */
simply use
TIFR = _BV(TOVO);

Back toFAQ Index

7.3.26 Why have "programmed" fuses the bit value 0?

Basically, fuses are just a bit in a special EEPROM area. For technical reasons, erased
E[E]JPROM cells have all bits set to the value 1, so unprogrammed fuses also have a
logical 1. Conversely, programmed fuse cells read out as bit value 0.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.4 Inline Asm 110

Back toFAQ Index

7.3.27 Which AVR-specific assembler operators are available?

SeePseudo-ops and operators

Back toFAQ Index

7.4 Inline Asm

AVR-GCC
Inline Assembler Cookbook
About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It's assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It's not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler prograrfes this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided

that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that

the entire resulting derived work is distributed under the terms of a permission notice

identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been
tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release chedktp://www.ethernut.de/.

Herne, 17th of May 2002 Harald Kipp harald.kipp-at-egnite.de

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://www.ethernut.de/.

7.4 Inline Asm 111

Note:
As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at

http://savannah.nongnu.org/projects/avr-libc/.

7.4.1 GCC asm Statement
Let’s start with a simple example of reading a value from port D:

asm('in %0, %1" : "=r" (value) : "I" (_SFR_IO_ADDR(PORTD)));
Eachasm statement is devided by colons into (up to) four parts:

1. The assembler instructions, defined as a single string constant:
"in %0, %1"

2. Alist of output operands, separated by commas. Our example uses just one:
"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (_SFR_IO_ADDR(PORTD))

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of e instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list [: clobber list]);

In the code section, operands are referenced by a percent sign followed by a single digit.
0 refers to the firsi to the second operand and so forth. From the above example:

0 refers to"=r" (value) and
1 refersto"l' (_SFR_IO_ADDR(PORTD))

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/.

7.4 Inline Asm 112

Ids r24,value
I* #APP */

in r24, 12
/* #NOAPP */

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected regigterfor storage of the value read
from PORTDThe compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’'s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to #sen statement:

asm volatile("in %0, %1" : "=r" (value) : "I' (_SFR_IO_ADDR(PORTD)));

The last part of theasminstruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won't use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.4.2 Assembler Code

You can use the same assembler instruction mnemonics as you'd use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:
The available assembler directives vary from one assembler to another.

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
2);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it's own assembler code.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.4 Inline Asm 113

You may also make use of some special registers.

Symbol Register

__SREG___ Status register at address Ox3F

__SP H Stack pointer high byte at address 0x3E
_SP L Stack pointer low byte at address 0x3D
__tmp_reg__ Register r0, used for temporary storage
__zero_reg___ Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at
the end of your code. It's a good idea to usémp_reg_ and__zero reg__

instead ofrO orrl, justin case a hew compiler version changes the register usage
definitions.

7.4.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in paranthesesVR-GCC3.3 knows the following constraint characters:

Note:
The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.
Thex register ig27 :r26, they register i929 :r28, and the register ig31:r30

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.4 Inline Asm 114

Constraint Used for Range

a Simple upper registers | r16 to r23

b Base pointer registers | vy, z
pairs

d Upper register rl6 tor31

e Pointer register pairs XY, Z

G Floating point constant | 0.0

I 6-bit positive integer Oto 63
constant

J 6-bit negative integer -63t00
constant

K Integer constant 2

L Integer constant 0

I Lower registers rOtorl5s

M 8-bit integer constant 0to 255

N Integer constant -1

o Integer constant 8, 16, 24

P Integer constant 1

q Stack pointer register SPH:SPL

r Any register rOtor3l

t Temporary register r0

w Special upper register r24,r26, r28, r30
pairs

X Pointer register pair X X (r27:r26)

y Pointer register pair Y y (r29:r28)

z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author’s as-
sumption is, that this part of the compiler has never been really finished in this version,
but that assumption may be wrong. The selection of the proper contraint depends on
the range of the constants or registers, which must be acceptable to the AVR instruction
they are used with. The C compiler doesn’t check any line of your assembler code. But
it is able to check the constraint against your C expression. However, if you specify
the wrong constraints, then the compiler may silently pass wrong code to the assem-
bler. And, of course, the assembler will fail with some cryptic output or internal errors.
For example, if you specify the constralint and you are using this register with an
"ori" instruction in your assembler code, then the compiler may select any register.
This will fail, if the compiler chooses2 to r15 . (It will never choose0 orrl,
because these are uses for special purposes.) That's why the correct constraint in that
case is'd" . On the other hand, if you use the constraMt , the compiler will make

sure that you don’t pass anything else but an 8-bit value. Later on we will see how to
pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren't strict enough. There is, for example, no constraint, which restricts integer

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.4 Inline Asm

115

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints

adc rr add rr

adiw w, | and r,r

andi d,M asr r

bclr I bld rl

brbc llabel brbs I,label

bset I bst rl

cbi Il cbr d,l

com r cp rr

cpc r,r cpi d,M

cpse rr dec r

elpm t,z eor rr

in rl inc r

Id re ldd r,b

Idi d,M Ids r,label

[pm t,z Isl r

Isr r mov rr

movw r,r mul r,r

neg r or r,r

ori d,M out lr

pop r push r

rol r ror r

sbc rr sbci d,M

sbi Il shic Il

sbiw w, | sbr d,M

sbrc rl sbrs rl

ser d st er

std b,r sts label,r

sub rr subi d,M

swap r
Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies

= Write-only operand, usually used for all

output operands.
+ Read-write operand (not supported by
inline assembler)
& Register should be used for output only

Output operands must be write-only and the C expression result must be an Ivalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Generated on Sat Jan 22 10:07:09 2005 for avr-libc by Doxygen

7.4 Inline Asm 116

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r* (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constaint

tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operat