Blue Moon Rendering Tools

User Manual — release 2.5

Larry Gritz
lg@bmrt.org

Blue Moon Systems
200 Kimblewick Dr
Silver Spring, MD 20904

November 1, 1999

Contents

Introduction

1.1 What is RenderMan? oL
1.2 The Blue Moon Rendering Tools
1.3 Copyrights & Trademarks
1.4 Licensing Arrangement
1.5 Acknowledgments

A Detailed Description of the RenderMan Standard

Previewing RIB files with rgl

3.1 Command Line Options
3.1.1 Window Size and Position
3.1.2 Drawing Styles oo
3.1.3 File Output Options
3.1.4 Animation.

3.2 Implementation-dependent Options and Attributes
321 Search Paths
3.2.2 Drawing Options

3.3 Limitationsof rgl Lo

34 Oddsand Ends

Photo-realistic rendering with rendrib

4.1 Command Line Options
4.1.1 Image Display Options
4.1.2 Status Output
4.1.3 Radiosity
4.1.4 Miscellaneous Options

4.2 Implementation-dependent Options and Attributes
4.2.1 Rendering Options,
4.2.2 Search Paths
4.2.3 Visibility of Primitives
4.2.4 Displacement and Subdivision Attributes
4.2.5 Object Appearance
4.2.6 Light Source Attributes
4.2.7 Radiosity Controls L L.

CU O i i W W

\]

© © © ®

10
10
11
11
12
12
13

4.2.8 Other Options,
4.3 Nonstandard Shading Language Features
4.4 Global Hlumination
4.5 Optimizing Rendering Time
4.6 Compatibility Issues
4.6.1 RenderMan Interface 3.1 Compliance
4.6.2 Supported Modern Extensions
4.6.3 Issues with PRMan
47 Oddsand Ends

Shaders and Textures

5.1 Compiling interpreted shaders with slec
5.2 Compiling .sl filesto DSO’s 0oL
5.3 Using sictell to list shader arguments
5.4 Making tiled TIFF files with mkmip

Miscellaneous Tools

6.1 Writing RIB with libribout

6.2 Parsing Shader Arguments. L.

6.3 Simple Image Compositing with composite

6.4 Setting default options and attributes

6.5 farm: Poor Man’s Render Farm
6.5.1 How touse farm
6.5.2 What farm does L
6.5.3 Important farm restrictions

Using BMRT as a “Ray Server” for PRMan

7.1 Introduction
7.2 Background: DSO Shadeops in PRMan
7.3 How Much Can We Get Away With?
7.4 New Functionality 0.
75 Howtouseit
7.6 Prosand Cons
7.7 FEfficiency Tips

Bibliography

35
35
37
38
39

41
41
42
42
43
43
43
44
44

45
45
46
47
48
50
o1
51

53

Chapter 1

Introduction

This document explains how to use the Blue Moon Rendering Tools (BMRT), which
are a set of rendering programs and libraries which adhere to the RenderMan(TM)
standard as set forth by Pixar. This document is intended for the reader who is
familiar with the concepts of computer graphics and already is fluent in both the
RenderMan procedural interface and the RIB archival format. It is not designed
to teach the RenderMan interface, but to give the reader documentation on how to
use this implementation of the standard. For more detailed information about the
RenderMan standard, you should see The RenderMan Companion, by Steve Upstill,
or the official RenderMan Interface Specification, available from Pixar. Both of these
texts are fully detailed and clearly written, and no attempt will be made here to
duplicate the information in these references.

1.1 What is RenderMan?

RenderMan is a standard created by Pixar through which modeling programs can
talk to rendering programs or devices. It may be thought of as a 3-D scene de-
scription format in the same way that PostScript is a 2-D page description format.
This standard is hardware and operating system independent. RenderMan allows a
modeling program to specify what to render, but not how to render it. A renderer
which implements the RenderMan standard may choose to use scanline methods,
ray tracing, radiosity, or any other method. These implementation details have
almost no bearing on the use of the interface.

The first version of the RenderMan standard described a procedural interface, i.e.
the function calls for a library which could be linked to a modeling program. When
the procedures are invoked, information is passed to the renderer. Later versions of
the RenderMan interface also defined the RenderMan Interface Bytestream, or RIB
protocol. RIB provides an ASCII interface to a renderer which supports the RIB
protocol.

1.2 The Blue Moon Rendering Tools

The Blue Moon Rendering Tools described in this document adhere to the Render-
Man standard. The parts you’ll most likely use are outlined below:

rgl A previewer for RIB files which runs on top of OpenGL. Primitives display as
lines or Gouraud-shaded polygons.

rendrib A high quality renderer which uses some of the latest techniques of radios-
ity and ray tracing to produce near photorealistic images.

sle A compiler for the RenderMan Shading Language, which allows you to write
your own surface, light, displacement, imager, and volume shaders.

mkmip A program to pre-process texture, shadow, and environment map files for
more efficient access during rendering.

libribout A library of ‘C’ language bindings for the RenderMan procedural interface
which results in the output of RIB (both ”static” and ”dynamic” libraries are
provided for most platforms).

sletell A utility that prints out the arguments and their defaults for a particular
compiled shader.

libsle A library allowing you to query the argument names and defaults of a com-
piled shader.

1.3 Copyrights & Trademarks

The Blue Moon Rendering Tools (BMRT), all of the programs contained therein,
and their documentation are:

(©Copyright 1990-1999 Larry Gritz. All Rights Reserved.

Larry Gritz retains all copyright and other legal rights to it. I have full documenta-
tion that I developed it myself, not for anybody else, and not for any employer.

This software conforms to the RenderMan Interface Standard, developed by
Pixar. They require me to state the following:

The RenderMan (R) Interface Procedures and RIB Protocol are:
Copyright 1988, 1989, Pixar. All rights reserved.
RenderMan (R) is a registered trademark of Pixar.

In addition to the RI procedure and RIB protocol, certain components distributed
with BMRT are Copyright Pixar. These include the standard shaders (such as
“plastic.sl”) and elements of the standard header files such as “ri.h.”

According to the RenderMan Interface Specification document, anybody may
create a program which generates the RenderMan procedure calls or RIB requests,

as long as they include Pixar’s copyright and trademark notice as above. Also,
anybody may write a renderer which executes the RenderMan procedure calls or
RIB requests, as long as they get a no-charge license from Pixar authorizing them
to do so, which I have done.

This software is what’s known as “shareware.” This means you can get a copy
and “evaluate it” for free. If you decide that you want to keep using it for commercial
gain, you are requested to send me a “donation.”

1.4 Licensing Arrangement

This software is not in the public domain, but it is “shareware.” This means you can
get a copy and evaluate it for free, and keep using it for free if you are a student or
noncommercial user. If you decide that you want to use it for commercial purposes,
you need to register. Please consult the “License” file that comes with the software
for more information. I reserve the right to change the licensing of future versions
of BMRT at any time and without notice.

Unregistered users may use the software for evaluation purposes for as long as
they want. Unregistered users MAY NOT use this software for commercial gain of
any kind, including profiting from any images or animations created by this software.
Registered users may distribute any images or animations created by this software
in any means desired (including for commercial gain). If possible, each copy should
credit me as follows:

Rendering Software... Blue Moon Rendering Tools

I understand that this is often not practical (for example, for feature films). I
trust you’ll do your best to give proper credit where possible.

Nobody, not even registered users, may distribute this software in any way with-
out written authorization from me. This is mostly so that I can ensure quality
control and keep track of who is using the software.

Don’t even think about suing me. Legally, I am warning you right now that this
software may not do what you want it to do, and it may do plenty that you don’t
want. I won’t even guarantee that it will not cause damage to your computer, ruin
your business, or even result in permanent injury or death. All of these things are
pretty unlikely — I've been using this software for years, and it even makes very
nice pictures for me. But as far as I'm concerned, legally this software is being
distributed AS-IS, with no guarantees. Also, I reserve the right to change any of
the terms of this software license for future releases.

1.5 Acknowledgments

Many thanks to the early users of my software, especially Daria Bergen, Rudy
Darken, Tania Fraga, Dave Florek, Won Lee, several classes of CS-206 at GWU, the
many others at the graphics lab at the George Washington University who served as
my guinea pigs, and to James Hahn, my advisor. Also a special thanks to Michael

B. Johnson of the MIT Media Lab, who not only helped to shake loose some of the
last bugs, but who gave me the kick in the butt that I needed to convince me to
distribute my software. Finally, thanks to Tony Apodaca of Pixar, for hand-holding
me through the licensing process, as well as illuminating some of the more obscure
parts of the standard that nobody cares about but us.

Chapter 2

A Detailed Description of the
RenderMan Standard

This user manual assumes that you already have a good working knowledge of the
RenderMan Interface Standard or the popular professional implementation, Pixar’s
PhotoRealistic RenderMan (“PRMan” for short), or preferably, both. If you are
not already familiar with these, then for Pete’s sake run out and find the following
invaluable references:

o Advanced RenderMan: Creating CGI for Motion Pictures by Anthony Apo-
daca and Larry Gritz, published by Morgan-Kaufmann, 1999.

e The RenderMan Companion by Steve Upstill, published by Addison-Wesley,
1989.

o The RenderMan Interface Specification, available online from:

http://www.pixar.com/products/renderman/toolkit/RISpec/

e The PhotoRealistic RenderMan User Manual, available online from:

http://www.pixar.com/products/renderman/toolkit/Toolkit/

The remainder of this user manual will assume that you have these resources
handy and have already digested the bulk of the material contained therein. There-
fore, this manual will refrain from describing the RenderMan standard or any fea-
tures that BMRT has in common with PRMan, and instead list only differences,
extensions, and incompatibilities between BMRT and those other published materi-
als.

Chapter 3

Previewing RIB files with rgl

Once a RIB file is created, one may use the rgl program to display a preview of the
scene. Geometric primitives are displayed either as Gouraud-shaded polygons with
simple shading and hidden surface removal performed, or as a wireframe image.

The following command will display a preview of the animation in an OpenGL
window:

rgl myfile.rib

There are several command line options which can be given (listed in any order,
but prior to the filename). The following sections describe these options. The
different options may be used together when they are not inherently contradictory.

If no filename is specified to rgl, it will attempt to read RIB from standard input
(stdin). This allows you to pipe output of a RIB process directly to rgl. For example,
suppose that myprog dumps RIB to its standard output. Then you could display
RIB frames from myprog as they are being generated with the following command:

myprog | rgl

The RIB file which you specify may contain either a single frame or multiple
frames (if it is an animation sequence). The rgl program is designed primarily for
previewing animation sequences of many RIB frames. The default is to display all
of the frames specified in the RIB file as quickly as possible.

When the last frame is displayed, it will remain in the window. If you hit the
ESC key (with the mouse in the drawing window), rgl will terminate. If you click
on the window with the left mouse button, the entire RIB sequence will be played
again.

Though the output of r¢l is in color, it is important to note that it is not designed
to be a particularly accurate preview of a rendered image. It really cannot be, since
there is no way for rgl to know very much about the types of shaders which you are
using. It does a fairly good job of matching ambient, point, distant, and spot lights.
But it can’t figure out area lights or any nonstandard light source types. Also,
every surface is displayed as if it were “matte,” regardless of the actual surface
specification.

Note that gl can also display primitives as lines. This is done by invoking:

rgl -lines myfile.rib

This completely replaces the old rendribv program.

3.1 Command Line Options

The following subsection details command line options alter the way in which rgl
creates and/or displays images.

3.1.1 Window Size and Position

—res xres yres

Sets the resolution of the output window. Note that if the RIB file contains
a Format statement which explicitly specifies the image resolution, then the
-res option will be ignored and the window will be opened with the resolution
specified in the Format statement.

3.1.2 Drawing Styles

—-1buffer

Rather than render the polygon preview to the “back buffer” and displaying
frames as they finish (as you would want especially if you are previewing
an animation), this option draws to the front buffer, thus allowing you to
see the scene as rendering progresses. The -1buffer option may be used in
combination with any of the other drawing style options.

-unlit

Lights all geometry with a single light at the camera position. This is useful
for using rgl to preview a RIB file that does not contain light sources. The
-unlit option may be used in combination with any of the other drawing style
options.

-lines

Rather than the default drawing mode of filled-in Gouraud-shaded polygons,
this option causes the images to be rendered as lines. Note that this cannot
be used in combination with —sketch.

-sketch

It’s not clear what the real use of this is, but it makes an image that looks a
little like a human-drawn sketch of the objects. Note that this cannot be used
in combination with -1ines.

-rd multiplier

You can speed up rgl by changing the refinement detail that it uses to convert
curved surfaces to polygons by using the -rd command line option, which
takes a single numerical argument, generally between 0 and 1. The lower the
value, the fewer polygons will be used to approximate curved surfaces. Using
a value of 1 will result in identical results as if you did not use the -rd option
at all. Good values to try are 0.75 and 0.5. If you go below 0.25, the curved
surface primitives may become unrecognizable, though they will certainly be
drawn quickly. If you use values larger than 1, even more polygons than usual
will be used to approximate the curved surfaces.

IMPORTANT NOTE: the -rd option can only speed up the rendering of
curved surface primitives (e.g. spheres, cylinders, bicubic patches, NURBS).
It WILL NOT speed up the drawing of polygons. If your model contains too
many polygons to be drawn quickly, the -rd option will not help you.

3.1.3 File Output Options

—dumprgba
—dumprgbaz

The default operation of rgl simply previews the scene to a window on your
display. But using the ~dumprgba option instead causes the resulting preview
image to be saved to a TIFF file. The filename of the TIFF file is taken
from the Display RIB command in the file itself, or ri.tif if no Display
command is present in the RIB file. The -dumprgbaz option does the same
thing as ~dumprgba, but also saves the z buffer values to a file. The z values are
saved in the same zfile format used by Pixar’s PhotoRealistic RenderMan, and
the name of the file is also taken from the Display RIB command, substituting
“zfile” for “tif” in the filename.

-offscreen

When used in conjunction with either ~dumprgba or -dumprgbaz, causes the
image file(s) to be created without ever opening a window to the screen. This
is handy for using rgl as a low quality batch renderer. Note that this option
only works on some OpenGL implentations — in particular it will not work
on SGI’s, though it will work on the Linux and Sun ports of BMRT (which
use Mesa for their OpenGL implementations).

3.1.4 Animation

-frames first last

Sometimes you may only want to preview a subset of frames from a multi-
frame RIB file. You can do this by using the -frames command line option.
This option takes two integer arguments: the first and last frame numbers

10

to display. If you are going to use this option, it is recommended that your
frames be numbered sequentially starting with 0 or 1.

-sync framespersecond

When previewing a series of frames for an animation, it is often necessary to
synchronize the display of frames to the clock in order to check the timing
of the animation when it is played back at a particular number of frames per
second. The default action of r¢l is to display the frames as fast as possible.
You can override this, causing rgl to try to display a particular number of
frames per second, by using the -sync command line option.

-nowait

By default, the last frame will stay in the drawing window until you hit the
ESC key. The -nowait causes rgl to terminate immediately after displaying
the last frame in the sequence (for example, if it is part of an automated
demo).

3.2 Implementation-dependent Options and Attributes

The RenderMan Interface Specification allows various implementation-specific be-
haviors of a renderer to be set using two RIB directives: Option and Attribute.
Options apply to the entire scene and should be specified prior to WorldBegin.
Attributes apply to specific geometry, are generally set after the WorldBegin state-
ment, and bind to subsequent geometry.

3.2.1 Search Paths

Various external files may be needed as the renderer is running, and unless they
are specified as fully-qualified file paths, the renderer will need to search through
directories to find those files. There exists an option to set the lists of directories in
which to search for these files.

Option "searchpath" "archive" [pathlist]
Option "searchpath" "procedural" [pathlist]

Sets the search path that the renderer will use for files that are needed at
runtime. The "archive" path specifies where to find RIB files that are inclued
using the ReadArchive directive. The "procedural" path specifies where to
find programs and DSQO’s that are required by RiProcedural.

Search path types in BMRT are specified as colon-separated lists of directory
names (much like an execution path for shell commands). There are two special
strings that have special meaning in BMRT’s search paths:

e & is replaced with the previous search path (i.e., what was the search path
before this statement).

11

e $ARCH is replaced with the name of the machine architecture (such as linux,
sgim3, etc.). This allows you to keep compiled software (like DSO’s) for
different platforms in different directories, without having to hard-code the
platform name into your RIB file.

For example, you may set your procedural path as follows:

Option "searchpath" "procedural"
["/usr/local/bmrt:/usr/local/bmrt/$ARCH: &"]

The above statement will cause the renderer to find procedural DSO’s by first looking
in /usr/local/bmrt, then in a directory that is dependent on the architecture, then
wherever the default (or previously set) path indicated.

3.2.2 Drawing Options

Option "limits" "curvethinning" [frequency]
Option "limits" "curvethinthreshold" [thresh]

When rgl draws many RiCurves primitives, it can turn into a big unshaded
mess. It may be that you decide that drawing fewer curves actually makes
a more understandable preview. The "curvethinning" frequency value tells
how often a curve should be drawn: a value of 2 indicates to draw every
other hair, a value of 100 means that only every 100th hair should be drawn.
Furthermore, this thinning is only performed for RiCurves statements that
have more individual hairs than is specified with the "curvethinthreshold"
parameter. Both take integer arguments. If the "curvethinning" frequency
is set to zero, no curve thinning will take place at all.

Attribute "division" "udivisions" [nu]
Attribute "division" "vdivisions" [nv]

rgl will dice curved primitives into flat polygons for OpenGL to draw. It basi-
cally guesses at how many polygons to subdivide into, and it usually chooses
well enough for previews, but sometimes you may want to override the dicing
criteria. This option allows you to explicitly specify how many subdivisions
to make in subsequently curved surfaces. The arguments nu and nv are both
integers.

3.3 Limitations of rgl

Since rgl is an OpenGL-based polygon previewer, it cannot possibly support all the
features of the RenderMan Interface which would be supported by other types of
renders. This section outlines the features which are not fully supported by rgl.

12

The following RIB directives are ignored because they have no real meaning in
an OpenGL previewer: ColorSamples, DepthOfField, Shutter, PixelVariance,
PixelSamples, PixelFilter, Exposure, Imager, Quantize, Hider, Atmosphere,

Bound, Opacity, TextureCoordinates, ShadingRate, ShadingInterpolation,
Matte.

e The LightSource directive works as expected for "ambientlight", "distantlight"

and "pointlight". It isn’t smart enough to know exactly what to do for cus-
tom light source shaders, but it will try to make its best guess by examining the
parameters to the shader, looking for clues like "from", "to", "lightcolor",
and so on. The AreaLightSource directive has no effect.

e Shaders do nothing. All surfaces are displayed as if they were using the stan-
dard matte.sl shader.

e When motion blocks are given, only the first time key is used.
e Multiple levels of detail are not supported.

e Solids are all displayed as unions, i.e., all of the components of a CSG primitive
are displayed.

e Object instancing is not currently working. Instanced objects are ignored.
e Texture map generation functions (e.g., MakeTexture) do nothing in rgl.

e New primitives: rgl will correctly draw the new Curves and Points primitives
(as dots and line segments, respectively). SubdivisionMesh primtives will be
drawn as their control hull (with smoothed vertex normals). Blobby primitives
are currently ignored by rgl.

3.4 0Odds and Ends

There are a bunch of other things you should know about rgl but I coundn’t figure
out where it went in the manual. In no particular order:

e Before rendering any RIB specified on the command line or piped to it, rgl
will first read the contents of the file $BMRTHOME/ .rendribrc. If there is no
environment variable named $BMRTHOME, then the file $HOME/.rendribrc is
read instead. In either case, by putting RIB in one of these places, you can
set various options for rgl before any other RIB is read.

13

Chapter 4

Photo-realistic rendering with
rendrib

The rendrib program is a high-quality renderer incorporating the techniques of ray
tracing and radiosity to make (potentially) very realistic images. This renderer sup-
ports not only the required features of the RenderMan Interface, but also many
of the more advanced Optional Capabilities, such as: ray tracing, radiosity, solid
modeling, depth of field, motion blur, area light sources, texture mapping, envi-
ronment mapping, displacements, volume and imager shading, and support of the
RenderMan Shading Language.
The format for invoking rendrib is as follows:

rendrib [options] myfile.rib

Usually, this will result in one or more TIFF image files to be written to disk. If
the RIB file specified framebuffer display (as opposed to file), or you override with
the -d flag, the resulting image will be displayed as a window on your screen. When
the rendering is complete, rendrib will pause. Hitting the ESC key will terminate.
Alternately, if you hit the ‘w’ key, the image in the window will be written to a file
(using the filename specified in the RIB file’s Display command).

If no filename is specified to rendrib, it will attempt to read RIB from standard
input (stdin). This allows you to pipe output of a RIB process directly to rendrib.
For example, suppose that myprog dumps RIB to its standard output. Then you
could display RIB frames from myprog as they are being generated with the following
command:

myprog | rendrib

The RIB file which you specify may contain either a single frame or multiple
frames (if it is an animation sequence).

4.1 Command Line Options

The following subsection details command line options alter the way in which rendrib
creates and/or displays images.

14

4.1.1

Image Display Options

-d [interleavel

-res

-pos

By default, any fully rendered frames are sent to a TIFF image file (unless, of
course, the RIB file specifies framebuffer output with the Display directive).
The -d command line option overrides file output and forces output to be sent
to a screen window. If the optional integer interleave is specified, scanlines
will be computed in an interleaved fashion, giving you a kind of progressive
refinement display. For example,

rendrib -d 8 myfile.rib

will display every 8th scanline first (making a very quick, but blocky image),
then compute every 4th scanline, then every 2nd, and so on, until you get the
final image. This is extremely useful if you want to quickly see a rough version
of the scene.

Tres yYyres

Sets the resolution of the output image. Note that if the RIB file contains
a Format statement which explicitly specifies the image resolution, then the
-res option will be ignored and the window will be opened with the resolution
specified in the Format statement.

Tpos ypos

Specifies the position of the window on your display (obviously, this only works
if used in combination with the -d option or if your Display line in your RIB
file specifies framebuffer output).

—-Crop Tmin TMaT Yyminm Yymazx

Specify that only a portion of the whole image should be rendered. The mean-
ing of this command line switch is precisely the same as if the CropWindow
directive was in your RIB file (and like the other options of this section, a
CropWindow option in your RIB takes precedence over any command line ar-
guments).

-samples zsamp ysamp

-var

Sets the number of samples per pixel to zsamp (horizontal) by ysamp (vertical).
Note that if the RIB file contains a PixelSamples statement which explicitly
specifies the sampling rate, then the —~samples option will be ignored and the
sampling rate will be as specified by the PixelSamples statement.

variance minsamples mazrsamples

15

An alternative to setting a fixed number of samples per pixel is to use variance-
based sampling. This method samples highly only in regions with high vari-
ance. To invoke this option, you can either put a PixelVariance directive
in your RIB file and set the minimum and maximum samples per pixel using
the Option "render" "minsamples" and Option "render" "maxsamples",
or use the -var command line option. This option takes one floating-point and
two integer arguments: the desired maximum variance, the minimum number
of samples per pixel, and the maximum number of samples per pixel. Here is
an example:

rendrib -res 320 240 -var 0.01 4 32 myfile.rib

Note that this example set the maximum variance in a pixel to 0.01, which to-
tally overrides the PixelSamples directive or —samples option. In this exam-
ple, all pixels will have at least 4, and at most 32 samples. For most effective
variance-based sampling, you need to properly set the minimum and maxi-
mum numbers of samples per pixel. This is explained in the “implementation-
specific Options” section of this chapter.

NOTE: in my experience, PixelSamples (or -samples) is the way to go. The
PixelVariance may seem like a good idea, but in practice is not as good as
using a fixed number of samples per pixel.

4.1.2 Status Output

-stats

-V

Upon completion of rendering, output various statistics about memory and
time usage, number of primitives, and all sorts of other debugging informa-
tion. Using this option on the command line is equivalent to putting Option
"statistics" "endofframe" [1] in your RIB file.

Verbose output — this prints more status messages as rendering progresses,
such as the names of shaders and textures as they are loaded.

You can combine the -v and -stats options if you want.

4.1.3 Radiosity

-radio steps

By default, rendrib calculates images using the rendering technique of ray
tracing. Ray tracing alone does no energy balancing of the scene. In other
words, it does not account for interreflected light. However, rendrib supports
radiosity, which is a method for performing these calculations. You can in-
struct rendrib to perform a radiosity pass prior to the ray tracing by using the
-radio command line switch. This command is followed by a single integer

16

argument, which is the number of radiosity steps to perform. For example,
the following command causes rendrib to perform 50 radiosity steps prior to
forming its image:

rendrib -radio 50 myfile.rib

If the energy is balanced in fewer steps than you specify, rendrib will skip the
remaining steps (saving time). Depending on your scene, the radiosity calcu-
lations can take a long time, but they are independent of the final resolution
of your image.

Specifying the number of radiosity steps on the command line is exactly e-
quivalent to including a Option "radiosity" "nsteps" line in your RIB file.

-rsamples samps

By default, rendrib calculates the visibility between geometric elements by
casting a minimum of one ray between the two elements. You can increase
this number to get better accuracy (but at a big decrease in speed) by using
the -rsamples option. This option takes a single integer argument. The
minimum number of rays used to determine visibility will be the square of this
argument. For example, the following command will perform a radiosity pass
of 100 steps, using a minimum of 4 sample rays per visibility calculation:

rendrib -radio 100 -rsamples 2 myfile.rib

4.1.4 Miscellaneous Options

—frames first last

Sometimes you may only want to render a subset of frames from a multi-
frame RIB file. You can do this by using the -frames command line option.
This option takes two integer arguments: the first and last frame numbers to
display. For example,

rendrib -frames 10 10 myfile.rib

This example will render only frame number 10 from this RIB file. If you are
going to use this option, it is recommended that your frames be numbered
sequentially starting with 0 or 1.

-safe

When you submit a RIB file for rendering, the image files will have filenames
as specified in the RIB file with the Display directive. If a file already exists
with the same name, the original file will be overwritten with the new image.
Sometimes you may want to avoid this. Using the -safe command line option
will abort rendering of any frame which would overwrite an existing disk file.
This is mostly useful if you are rendering many frames in a sequence, and do
not want to overwrite any frames already rendered. Here is an example:

rendrib -safe -frames 100 200 myfile.rib

17

This example will render a block of 100 frames from the RIB file, but will skip
over any frames which happen to already have been rendered.

—ascii

Will produce an ASCII (yes, exactly what you think) representation of your
scene to the terminal window!

-beep

Rings the terminal bell upon completion of rendering.

—arch

Just print out the architecture name (e.g., sgi_m3, linux, etc.).

4.2 Implementation-dependent Options and Attributes

The RenderMan Interface Specification allows various implementation-specific be-
haviors of a renderer to be set using two RIB directives: Option and Attribute.
Options apply to the entire scene and should be specified prior to WorldBegin.
Attributes apply to specific geometry, are generally set after the WorldBegin state-
ment, and bind to subsequent geometry.

Several of the features of this renderer can be controlled as nonstandard options.
The mechanism for this is to use the Option RIB directive. The syntax for this is:

Option mame params

Where name is the option name, and params is a list of token/value pairs which
correspond to this option. Remember that options apply to an entire rendered
frame, while attributes apply to specific pieces of geometry.

Similarly, other renderer features can be controlled as nonstandard attributes,
with the following syntax:

Attribute name params

Attributes apply to specific pieces of geometry, and are saved and restored by
the AttributeBegin and AttributeEnd commands.

Remember that both of BMRT’s renderers (rendrib and rgl) read from a file
called .rendribrc both in the local directory where it is run, and also in your home
directory. This file can be plain RIB, which means that if you want to set any
defaults of the options discussed below, you can just put the Option or Attribute
lines in this file in your home directory.

The remainder of this chapter explain the various nonstandard options and at-
tributes supported by rendrib. In most cases, the new “inline declaration” syntax
is used to clarify the expected data types, and the default values are provided as
examples.

18

4.2.1 Rendering Options

Option "render" "integer minsamples" [8]
Option "render" "integer maxsamples" [64]

Sets the minimum and maximum number of samples per pixel, for scenes when
the pixel variance metric is used. This only works if the RIB file contains a
PixelVariance statement, but not a PixelSamples statement.

Option "render" "integer max raylevel" [4]

Sets the maximum number of recursive rays that will be cast between reflectors
and refractors. This has no effect if there are no truly reflective or refractive
objects in the scene (in other words, shaders which use the trace function).

Option "render" "float minshadowbias" [0.01]

Sets the minimum distance that one object has to be in order to shadow
another object. This keeps objects from self-shadowing themselves. If there
are serious problems with self-shadowing, this number can be increased. You
may need to decrease this number if the scale of your objects is such that
0.01 is on the order of the size of your objects. In general, however, you
will probably never need to use this option if you don’t notice self-shadowing
artifacts in your images.

Option "render" "integer prmanspecular" [1]

Pixar’s PRMan does not use the SL specular() function as listed in the RI
standard. BMRT uses the standard function, which results in specular high-
lights looking very different in the two renderers. This option, which takes an
integer, causes BMRT’s specular function to behave much more like PRMan’s
with a value of 1, and uses the specular function from the standard when giv-
en a value of 0. The default used to be zero (standard), but starting
with BMRT 2.3.4, the default is 1 (PRMan). Use this option with
a value of 0 in order to revert to the old (RI standard) behavior.

Option "render" "integer useprmandspy" [1]

If this option is passed a nonzero integer value (the default) and the Display
request a driver type that rendrib doesn’t know about, rendrib will search for
installed PRMan display drivers and use the appropriately named one. This
allows you to use any of PRMan’s display drivers, including any custom ones
that you have written as DSO’s.

Option "statistics" "integer endofframe" [0]

When nonzero, this option will cause rendrib to print out various statistics
about the rendering process. Greater values print more detailed data: 1 just
prints time and memory information, 2 gives more detail, 3 is all the data that
the renderer ever wants to print. (Usually 2 is just fine for lots of data.)

Option "statistics" "string filename" [""]

19

When non-null, this option will cause rendrib’s statistics to be echoed to the
given filename, rather than printed to stdout.

4.2.2 Search Paths

Various external files may be needed as the renderer is running, and unless they
are specified as fully-qualified file paths, the renderer will need to search through
directories to find those files. There exists an option to set the lists of directories in
which to search for these files.

Option
Option
Option
Option
Option

"searchpath"
"searchpath"
"searchpath"
"searchpath"
"searchpath"

"archive" [pathlist]
"texture" [pathlist]
"shader" [pathlist]
"procedural" [pathlist]
"display" [pathlist]

Sets the search path that the renderer will use for files that are needed at
runtime.

The different search paths recognized by rendrib are:

archive RIB filess included by ReadArchive.

texture texture image files.

shader compiled shaders.

procedural DSO’s and executables for Procedural calls.

display DSO’s for custom PRMan display services.

Search path types in BMRT are specified as colon-separated lists of directory
names (much like an execution path for shell commands). There are two special
strings that have special meaning in BMRT’s search paths:

e & is replaced with the previous search path (i.e., what was the search path
before this statement).

e $ARCH is replaced with the name of the machine architecture (such as linux,
sgim3, etc.). This allows you to keep compiled software (like DSO’s) for
different platforms in different directories, without having to hard-code the
platform name into your RIB file.

For example, you may set your procedural path as follows:

Option "searchpath" "procedural"
["/usr/local/bmrt:/usr/local/bmrt/$ARCH: &"]

The above statement will cause the renderer to find procedural DSO’s by first looking
in /usr/local/bmrt, then in a directory that is dependent on the architecture, then
wherever the default (or previously set) path indicated.

20

4.2.3 Visibility of Primitives

Attribute "render" "integer visibility" [7]
Controls which rays may see an object. The integer parameter is the sum of:
1 The object is visibile from primary (camera) rays.
2 The object is visibile from reflection rays.

4 The object is visibile from shadow rays.

This attribute is useful for certain special effects, such as having an object
which appears only in the reflections of other objects, but is not visible when
the camera looks at it. Or an object which only casts shadows, but is not in
reflections or is not seen from the camera.

Attribute "render" "string casts_shadows" ["0s"]

Controls how surfaces shadow other surfaces. Possible values for shadowval
are shown below, in order of increasing computational cost:

"none" The surface will not cast shadows on any other surface, therefore
it may be ignored completely for shadow computations.

"opaque" The surface will completely shadow any object which it oc-
cludes. In other words, this tells the renderer to treat this object as
completely opaque.

"0s" The surface may partially shadow, depending on the value set by
the Opacity directive. In other words, it has a constant opacity across
the surface. (This is the default.)

"shade" The surface may have a complex opacity pattern, therefore its
surface shader should be called on a point-by-point basis to determine its
opacity for shadow computations.

The default value is "0s". You can optimize rendering time by making sur-
faces known to be opaque "opaque", and surfaces known not to shadow other
surfaces "none". It is important, however, to use "shade" for any surfaces
whose shaders modify the opacity of the surface in any patterned way.

4.2.4 Displacement and Subdivision Attributes

Attribute "render" "integer truedisplacement" [0]

If the argument is nonzero, subsequent primitives will truly be diced and dis-
placed using their displacement shader (if any). If the value of 0 is used,
bump mapping will be used rather than true displacement. Only a displace-
ment shader can move the diced geometry — altering P in a surface shader will
not move the surface, only the normals. Using a displacement shader without
this attribute also only results in the normals being modified, but not the

21

surface. Be sure to set displacement bounds if you displace! Please see the
section on “limitations of rendrib” for details on the limitations placed on true
displacements.

Attribute "displacementbound" "string coordinatesystem" ["current"]
"float sphere" [0]

For truly displaced surfaces, specifies the amount that its bounding box should
grow to account for the displacement. The box is grown in all directions by the
radius argument, expressed in the given coordinate system (a string). This
works just like the nonstandard option of the same name in PRMan.

Attribute "render" "float patchmultiplier" [1.0]

Takes an float argument giving a multiplier for the dicing rate that BMRT
computes for displaced surfaces and for certain curved surfaces which are sub-
divided. Smaller values will make the scene render faster and using less mem-
ory, but may produce a more faceted appearance to certain curved surfaces.
Larger values will make more accurate surfaces, but will take longer and more
memory to render. The default is probably just right for 99occasionally you
may need to tweak this.

Attribute "render" "float patch.maxlevel" [256]
Attribute "render" "float patchminlevel" [1]

Takes an integer argument giving the maximum (or minimum) subdivision
level for bicubic and NURBS patches. These patches are subdivided based on
the screen size of the patch and their curvature. This attribute will split the
patches into at least (minlevel x minlevel) and at most (maxlevel x maxlevel)
subpatches. The default is min=1, max=256. In general, you shouldn’t ever
need to change this, but occasionally you may need to set a specific subdivision
rate for some reason.

4.2.5 Object Appearance

Attribute "trimcurve" "string sense" ["inside"]

By default, trim curves on NURBS will make the portions of the surface that
are inside the closed curve. You can reverse this property (by keeping the
inside of the curve and throwing out the part of the surface outside the curve)
by setting the trimcurve sense to "outside".

Attribute "render" "integer use_shadingrate" [1]

When non-zero (the default), rendrib will attempt to share shaded colors a-
mong nearby screen rays that strike the same object (specifically, it shares a-
mong rays that are within the screen space area defined by the ShadingRate).
Occasionally, you may see a blocky or noisy appearance resulting from this

22

shared computation. In such a case, setting this attribute to 0 will cause sub-
sequent primitives to compute their shading for every screen ray, resulting in
much more accurate color (though at a higher cost).

4.2.6 Light Source Attributes

Attribute "light" "string shadows" ["off"]

Turns the automatic ray cast shadow calculations on or off on a light-by-light
basis. This attribute can be used for any LightSource or ArealightSource
which is declared. For example, the following RIB fragment declares a point
light source which casts shadows:

Attribute "light" "shadows" ["on"]
LightSource "pointlight" 1 "from" [0 10 0]

Attribute "light" "integer nsamples" [1]

Sets the number of times to sample a particular light source for each shading
calculation. This is only useful for an area light which is being undersampled
— i.e., its soft shadows are too noisy. By increasing the number of samples, you
can reduce the noise by increasing sampling of this one light, independently
of overall PixelSamples.

Attribute "light" "integer samplingstrategy" [0]

Selects among different area light sampling strategies. Currently only 0 (the
old default) and 1 (a new, slightly different pattern) are available. It’s unclear
if 1 is really any better than 0 — try it and find out.

4.2.7 Radiosity Controls

Two options are used to enable radiosity computations and control how much work
is to be done in computing the indirect illumination:

Option "radiosity" "integer steps" [0]

In addition to using the -radio command line option to rendrib, you can
specify the number of radiosity steps with this option. Setting steps to 0
indicates that radiosity should not be used. Nonzero indicates that radiosity
should be used (with the given number of steps) even if the -radio command
line switch is not given to rendrib.

Option "radiosity" "integer minpatchsamples" [1]

Just like the -rsamples command line option to rendrib, this option lets you
set the minimum number of samples per patch to determine radiosity form
factors. Actually, the minimum total number of samples per patch is this

23

number squared (since it is this number in each direction). In some cases, the
render will decide to use more samples, but this is the minimum.

A number of attributes control specific features of the radiosity computations
on a per-primitive basis. These attributes have absolutely no effect if you are not
performing radiosity calculations.

Attribute "radiosity" "color averagecolor" [color]

By default, the radiosity renderer assumes that the diffuse reflectivity of a
surface is the default color value (set by Color) times the Kd value sent to
the shader for that surface. For the lighting calculations to be accurate, the
reflective color should be the average color of the patch. For surfaces with a
solid color, this is fine. However, some surface shaders create surfaces whose
average colors have nothing to do with the color set by the Color directive. In
this case, you should explicitly set the average color using the attribute above.
You may have to guess what the average color is for a particular surface.

Attribute "radiosity" "color emissioncolor" [color]

All surfaces which are not light sources (Lightsource or AreaLightsource) are
assumed to be reflectors only (i.e. they do not glow). If you want a piece
of geometry to actually emit radiative energy into the environment, you can
either declare it as an ArealLightSource, or you could declare it as regular
geometry but give it an emission color (see above). The tradeoffs are discussed
further in the radiosity section of this chapter.

Attribute "radiosity" "float patchsize" [4]
Attribute "radiosity" "float elemsize" [2]
Attribute "radiosity" "float minsize" [1]

This attribute tells rendrib how finely to mesh the environment for radiosity
calculations. The statement above instructs to chop all geometry into patches
no larger than 4 units on a side. Each patch is then diced into elements no
larger than 2 units on a side. As a result of analyzing the radiosity gradients,
elements may be diced even finer, but a particular element will not be diced
if its longest edge is shorter than 1 unit. The smaller these numbers, the
longer the radiosity calculation will take (but it will be more accurate). This
attribute can be used to set these numbers on a surface-by-surface basis (i.e.,
different surfaces in the scene may have different dicing rates). The values are
measured in the current (i.e., local) coordinate system in effect at the time of
this Attribute statement. NOTE: The default values are probably bad
— if you are using radiosity, you should set these to appropriate
sizes for your particular scene.

Attribute "radiosity" "string zonal" ["fully_zonal"]

This attribute controls which radiosity calculations are performed on surfaces.
This can be set on a surface-by-surface basis. Possible values are shown below,
in order of increasing computational cost:

24

"none" The surface will neither shoot or receive energy, i.e. it will be
ignored by the radiosity calculation.

"zonal receives" The surface receives radiant energy, but does not
shoot it back into the environment.

"zonal_shoots" The surface reflects (or emits) energy, but does not re-
ceive energy from other patches.

"fully zonal" The surfaces both receives and shoots energy. This is the
default zonal property of materials.

4.2.8 Other Options

Option "limits" "integer texturememory" [1000]

Sets the texture cache size, measured in Kbytes. The renderer will try to keep
no more than this amount of memory tied up with textures. Setting it low
keeps memory consumption down if you use many textures. But setting it too
low may cause thrashing if it just can’t keep enough in cache. The default
is 1000 (i.e., 1 Mbyte). The texture cache is only used for tiled textures, i.e.
those made with the mkmip program. For regular scanline TIFF files, texture
memory can grow very large.

Option "limits" "integer geommemory" [unlimited]

Analogous to the texturememory option, this sets a limit to the amount of
memory used to hold the diced pieces of NURBS, bicubics, and displaced
geometry. It is an integer, giving a measurement in Kbytes. The default
is unlimited, but setting this to something smaller (like 100000, or 100 M-
bytes) can keep your memory consumption down for large scenes, but setting
it too low may cause you to continually be throwing out and regenerating your
NURBS or displaced surfaces.

Option "limits" "integer derivmemory" [2]

A certain amount of memory is needed to allow rendrib’s Shading Language
interpreter to correctly compute derivatives. Very occasionally, you may need
to increase this number (generally only if you have absolutely humongous
shaders with many texture or other derivative calls). The default is 2 (i.e.,
2 Kbytes), which is almost always adequate. If your frames are not crashing
mysteriously in the shaders, don’t screw with this number!

Option "runtime" "string verbosity" ["normal"]

This option controls the same output as the -v and -stats command line
options. The verb parameter is a string which controls the level of verbosity.
Possible values, in order of increasing output detail, are: "silent", "normal",
"stats", "debug".

25

4.3 Nonstandard Shading Language Features

In order to more fully support the ray tracing features of BMRT, a few nonstan-
dard functions have been added to BMRT’s Shading Language. The next chapter
describes how to use the Shading Language Compiler.

Note that these functions are not supported by PRMan’s SL compiler. However,
using the “ray server,” PRMan’s functionality can be extended to support these
functions by using BMRT to compute them.

color trace (point from, vector dir)

Traces a ray from position from in the direction of vector dir. The return
value is the incoming light from that direction.

color visibility (point pl, p2)
Forces a visibility (shadow) check between two arbitrary points, retuning the
spectral visibility between them. If there is no geometry between the two
points, the return value will be (1,1,1). If fully opaque geometry is between
the two points, the return value will be (0,0,0). Partially opaque occluders
will result in the return of a partial transmission value.

An example use of this function would be to make an explicit shadow check
in a light source shader, rather than to mark lights as casting shadows in the
RIB stream (as described in the previous section on nonstandard attributes).
For example:

light

shadowpointlight (float intensity = 1;

color lightcolor = 1;
point from = point "shader" (0,0,0);
float raytraceshadow = 1;)

{
illuminate (from) {
Cl = intensity * lightcolor / (L . L);
if (raytraceshadow != 0)
Cl *= visibility (Ps, from);
}
}

float rayhittest (point from, vector dir,
output point Ph, output vector Nh)

Probes geometry from point from looking in direction dir. If no geometry is
hit by the ray probe, the return value will be very large (1e38). If geometry is
encountered, the position and normal of the geometry hit will be stored in Ph
and Nh, respectively, and the return value will be the distance to the geometry.

float fulltrace (point pos, vector dir,
output color hitcolor, output float hitdist,

26

output point Phit, output vector Nhit,
output point Pmiss, output point Rmiss)

Traces a ray from pos in the direction dir.

If any object is hit by the ray, then hitdist will be set to the distance of the
nearest object hit by the ray, Phit and Nhit will be set to the position and
surface normal of that nearest object at the intersection point, and hitcolor
will be set to the light color arriving from the ray (just like the return value
of trace).

If no object is hit by the ray, then hitdist will be set to 1.0e30, hitcolor will
bet set to (0,0,0).

In either case, in the course of tracing, if any ray (including subsequent rays
traced through glass, for example) ever misses all objects entirely, then Pmiss
and Rmiss will be set to the position and direction of the deepest ray that
failed to hit any objects, and the return value of this function will be the
depth of the ray which missed. If no ray misses (i.e. some ray eventually hits
a nonreflective, nonrefractive object), then the return value of this function
will be zero. An example use of this functionality would be to combine ray
tracing of near objects with an environment map of far objects.

The code fragment below traces a ray (for example, through glass). If the
ray emerging from the far side of the glass misses all objects, it adds in a
contribution from an environment map, scaled such that the more layers of
glass it went through, the dimmer it will be.

missdepth = fulltrace (P, R, C, 4, Ph, Nh, Pm, Rm);
if (missdepth > 0)
C += environment ("foo.env", Rm) / missdepth;

float isshadowray ()

Returns 1 if this shader is being executed in order to evaluate the transparency
of a surface for the purpose of a shadow ray. If the shader is instead being
evaluated for visible appearance, this function will return 0. This function can
be used to alter the behavior of a shader so that it does one thing in the case
of visibility rays, something else in the case of shadow rays.

float raylevel ()

Returns the level of the ray which caused this shader to be executed. A
return value of 0 indicates that this shader is being executed on a camera
(eye) ray, 1 that it is the result of a single reflection or refraction, etc. This
allows one to customize the behavior of a shader based on how “deep” in the
reflection /refraction tree.

27

4.4 Global Illumination

The purpose of the RenderMan standard is to allow one to specify the description of
a scene without having to worry about how to render it. Thus, no mention is made
in the standard of any particular rendering method. A particular implementation
of the standard may support any one (or many) of the following: wireframe; flat
shaded, Gouraud shaded, or Phong shaded z-buffered polygons; A-buffer; REYES;
ray tracing; radiosity; or any other rendering method. Since this renderer stems
largely from my own research in the area of illumination, it incorporates many of
the latest advances in global illumination and rendering technology.

The default rendering method used by this renderer is ray tracing. Of course,
if you only use standard surfaces and light sources, the results will not be very
dramatic. But the shaders which use the trace() function can cast reflection and
refraction rays. Light sources which cast ray-traced shadows can be added auto-
matically, even from area light sources. However, ray tracing will still determine
illumination only via direct paths from light sources to surfaces being shaded. No
knowledge of interreflection between objects is available to the ray tracer.

That’s where radiosity come into the picture. Radiosity will help to capture
effects such as indirect illumination, soft shadows, and color bleeding. To render the
scene using radiosity, just type:

rendrib -radio n myfile.rib

The parameter n is a number giving the maximum number of radiosity steps
to perform. A typical number might be 50. Higher values of n will yield more
accurate illumination solutions, but will also take much longer to compute. If the
solution to the illumination equations converges in fewer steps, the program will
simply terminate early, and not perform the additional steps. After the radiosity
calculation ends, ray tracing will be used to form an image. This method of using
radiosity followed by ray tracing is known as ”two-pass” rendering. There are several
advantages to the two-pass method:

e The advantages of radiosity are available: accurate diffuse interreflection, color
bleeding, and correct illumination from area light sources.

e The advantages of ray tracing are retained: accurate curved surface rendering,
sharp shadows (when needed), mirror-like reflections and refractions (when the
proper shaders are used).

e With my particular method, the direct illumination is recalculated on the sec-
ond pass, which results in fewer meshing artifacts and shadows which appear
more realistic than most radiosity-only solutions.

e It is possible with my method to calculate indirect specular illumination. This
is also known as specular-to-diffuse illumination, and is a current research
topic.

28

If you want to use these features, you will need to make a few slight modifications
to your RIB files, outlined below:

e You should set the meshing rates for the patches and elements. See “patch-
size,” “elemsize,” and “minsize” in the “nonstandard attributes” section of
this document.

e For any nonobvious surfaces, you need to give the average diffuse reflectivity.
(Obvious means that the average diffuse reflectivity is the same as the color
set by the Color directive.) See the “nonstandard attributes” section of this
document for details on setting the average and emissive colors for surfaces.
The renderer is smart enough to query shaders for their “Kd” values, so there
is no need to premultiply the average color by Kd. However, that’s about as
smart as it gets, so don’t expect any tricks done by the surface shader to be
somehow divined by the radiosity engine. Any texture mapped objects must
also have their average color declared in order to specify the average color of
the texture map.

e Specular highlights will be included in the final image, but will not be taken
into consideration in the first pass. That’s okay, they provide very little global
illumination anyway, with the following exception...

e Mirrors may reflect light directly from a light source to another object in a
specular manner. Curved reflectors will tend to either spread the light out or
to focus the light to form caustics. These features are supported, provided
that you put the following additional light source declaration in your file:

LightSource "bouncer"

The “bouncer” light source is actually a program which calculates these addi-
tional light paths for specular-to-diffuse illumination. In addition, any objects
which you wish to act as specular reflectors, regardless of their shader type
need to have the following additional attribute declared before the geometry
is instanced:

Attribute "radiosity" "specularcolor" [color]

When rendering with radiosity, there are two ways to make area light sources.
One way is to use the ArealightSource directive, explicitly making area light sources.
The second way is to declare regular geometry, but setting an emission color:

Attribute "radiosity" "emissioncolor" [color],

The difference is subtle. Both ways will make these patches shoot light into their
environment. However, only the geometry declared with AreaLightSource will be
resampled again on the second pass. This results in more accurate shadows and
nicer illumination, but at the expense of much longer rendering time on the second
pass.

29

Attribute "radiosity" "has_caustics" [int],

This option must be turned on (passed a nonzero integer) on an object that
receives caustics. To save computations, BMRT will not compute caustics arriving
on surfaces that don’t have this attribute turned on (it is off by default).

4.5 Optimizing Rendering Time

Please note that rendering full color frames can take a really long time! High quality
rendering, especially ray tracing, is notoriously slow. Try a couple test frames first,
to make sure you have everything right before you compute many frames. Multiply
the time it takes for each frame by the total number of frames you need. If your
total rendering time is prohibitive (say, 5 months), you’d better change something!

Don’t bother praying or panicking: I have it on good authority that neither
does much to increase rendering throughput. Some optimization hints are listed
below. Obvious, effective, easy optimizations are listed first. Trickier or subtler
optimizations are listed last.

1. Resolution

Use low resolution when you can. You may want to do test frames at 320 x
240 resolution or lower. Remember that video resolution is only about 640 x
480 pixels. It’s pointless to render at higher resolution if you intend to record
onto videotape, since any higher resolution will be lost in the scan conversion.
Even film can be done at very high quality with about 2048 pixels wide, so
don’t go wasting time with 4k renders.

2. Pixel Sampling Rate and Antialiasing

Try to specify only 1 sample per pixel for test frames. You can sometimes
get away with one sample per pixel for final video frames, too. However, to
get really good looking frames you probably need to do higher sampling for
antialiasing. There are several sources of aliasing: geometric edges, motion
blur, area light shadows, depth of field effects, reflections/refractions, and
texture patterns.

Usually, 2x2 sampling is perfectly adequate to antialias geometric edges for
video images. Higher than 3x3 does not usually give noticeable improvements
for geometric edges, but you may require even more samples to reduce noise
from motion blur and depth of field. There’s not much you can do about that
if you must using these effects.

You should prefer using Attribute "light" "nsamples" to increase sam-
pling of area lights, rather than increasing PixelSamples. Similarly, if the
source of your aliasing is blurry reflections or refractions from shaders which
use the trace() function, you should consult the documentation for those
shaders — many give the option of firing many distributed ray samples, rather
than being forced to increase the screen space sampling rate.

30

Higher sampling rates should never be used to eliminate aliasing in shaders.
Well written shaders should be smart enough to analytically antialias them-
selves by frequency clamping or other trickery. It’s considered bad style to
write shaders which alias badly enough to require high sampling at the image
level.

. Geometric Representation

Keep your geometry simple, and use curved surface primitives instead of lots
of polygons whenever possible. Try writing surface or displacement shaders to
add detail to surfaces. It’s generally faster to fake the appearance of complexity
than it is to create objects with real geometric complexity. Try to make
your images interesting through the use of complex textures used on relatively
simple geometry.

. Lights and Shadows

Shadows are important visual cues, but you must use them wisely. Shadowed
light sources can really increase rendering time. Only cast shadows from light
sources that really need them. If you have several light sources in a scene,
you may be able to get away with having only the brightest one cast shadows.
Nobody may know the difference!

Similarly, most objects can be treated as completely opaque (this assump-
tion speeds rendering time). Some objects do not need to cast shadows at
all (for example, floors or walls in a room). See the “nonstandard options
and attributes” section of this chapter for information on giving the renderer
shadowing hints.

. Shading Models

Keep your shading models simple. Complex procedural textures (such as wood
or marble) take much more time to compute than plastic. On the other hand,
it is much cheaper to use custom surface or displacement shaders to make
surfaces look complex than it is to actually use complex geometry.

Distribution of rays results in noise. The fewer samples per pixel, the higher
the noise. So if you want to keep sampling rates low and reduce noise in
the image, you should: avoid using the “blur” parameter in the “shiny” and
“glass” surfaces unless you really need it; do not use depth of field if you
can get away with a post-processing blur; use nonphysical lights (“pointlight”,
“distantlight”, etc.) instead of physical and area lights.

. Tuning Ray Tracing Parameters

Several time/quality knobs exist in the ray tracing engine — see the earlier sec-
tion on nonstandard options and attributes for details. In addition to ensuring
that opaque and non-shadow-casting objects are tagged as such, also be sure
that your max ray recursion level (Option "render" "max raylevel") is set
as low as possible (the default is 4, but you may be able to get away with as
little as 1 or 2 if you don’t have much glass or mutual reflection.

31

4.6 Compatibility Issues

This section details how BMRT differs from the RenderMan Interface 3.1 Specifica-
tion, as well as any issues related to other renderers.

4.6.1 RenderMan Interface 3.1 Compliance

The rendrib renderer is a fairly faithful implementation of the RenderMan Interface
3.1 standard. However, there are a few unimplemented (but hopefully rarely used)
features, and a few limitations:

e True displacement of surface points is only partially supported. If you dis-
place in a surface shader, or even in a displacement shader without using the
“truedisplacement” attribute, only the surface normals will be purturbed, the
points will not move. This usually looks fine as long as the bumps are small.
However, if you use the “truedisplacement” attribute, a displacement shader
will actually do what you expect and move the surface points.

True displacements are somewhat limited: (1) it only works for displacement
shaders, not surface shaders; (2) it uses lots of memory, and also takes more
time to render; (3) you cannot use “message passing” between the displacement
and surface shaders; (4) you must remember to set displacement bounds; (5)
you may get odd self-shadowing of surfaces during radiosity calculations if you
use too small a shadow bias.

e Motion Blur is supported, but all motion must be linear (i.e., specified only
at the beginning and ending of the motion). Transformations motion blur
correctly in all cases, but only some types of geometric primitives will support
“vertex blur” (at this time, only NURBS and bicubic patches and meshes).
Shading commands simply use the first of the two specifications, and don’t
blur (i.e., you cannot blur shader parameters).

e The following optional capabilities are not supported: Special Camera Projec-
tions, Nonlinear Deformations, Spectral Colors.

e Visible surfaces are always resolved, even if the argument to Hider is “paint.”

4.6.2 Supported Modern Extensions

The RI 3.1 spec is quite old, and there is a set of “modern RenderMan” extensions
which were informally introduced with more recent versions of PRMan, or detailed in
SIGGRAPH course notes or the Advanced RenderMan book. The following modern
extensions are supported by BMRT:

e New RIB “storage classes” for geometric primitive variables constant and

vertex, and new variable types vector, normal, matrix, and hpoint. The
new “inline declaration” syntax is supported.

32

e “Locally scoped” functions in Shading Language, extern variable declarations
(to break to the outer scope), and void functions.

e New Shading Language (and RIB) data types vector, normal, matrix, as well
as the usual operators for them, plus fixed-length arrays of any of the basic
data types.

e New functions in Shading Language: vtransform(), ntransform(), ctransform(),

determinant (), translate(), rotate(), scale(). inversesqrt(), concat (),
format (), ptlined(), filterstep(), 4-D noise(), cellnoise(), pnoise(),
specularbrdf (), min() and max() with multiple arguments and compound
arguments, clamp() and mix() with compound arguments, spline() with
basis name and/or an array of knots.

e Shader output parameters and corresponding “message passing” routines that

allow shaders to peek at each other’s output variables: 1ightsource(), surface(),

displacement (), atmosphere (). Also, the standard light source output vari-
ables __nondiffuse and __nonspecular are respected by the built-in diffuse ()
and specular () functions.

e Shading Language routines to ask about renderer state: attribute(), option(),
texture(), rendererinfo().

e Support for “light category specifiers” in illuminance loops.
e New Ri routines: CoordSysTransform, ReadArchive, Procedural.

e Very limited support for new primitives: Points, Curves, SubdivisionMesh,
Blobby.

4.6.3 Issues with PRMan

As T write this, the BMRT and Pixar’s PhotoRealistic RenderMan ((R) Pixar)
(sometimes called PRMan) are the only two widely available implementations of
RenderMan. While rendrib uses ray tracing and radiosity, PRMan uses a scanline
method called REYES. Though both renderers should take nearly the same input,
the difference in their underlying methods necessarily results in different subsets of
the RenderMan standard supported by the two programs. This section lists some of
the incompatibilities of the two programs. These differences should not be construed
as bugs in either program, but are mostly natural limitations of the two rendering
methods. This list is for the user who uses both programs, or wishes to use one
program to render output meant for the other.

e slc outputs compiled Shading Language as “.slc” files (either interpreted ASCII
or DSO’s), which are not compatible with Pixar’s “.slo” files. The Shading
Language source files (“.sl”) are compatible, and BMRT supports nearly all of
the language extensions that PRMan does (as detailed in the previous section).

33

e The texture mapping and environment mapping routines in rendrib take TIFF
files directly (either scanline or tiled), and do not read PRMan’s proprietary
texture format.

e PRMan doesn’t support true area light sources (but instead places a point
light at the current origin), but rendrib supports area light sources correctly.

e rendrib’s support of true displacement is somewhat more limited than PRMan’s,
as detailed in the previous subsection.

e PRMan’s trace() function always returns 0, and does not support the nonstan-
dard visibility, fulltrace, raylevel, and isshadowray functions which
rendrib implements.

e PRMan does not support Imager, Interior, or Exterior shaders. rendrib fully
supports these kinds of shaders.

e PRMan supports several nonstandard primitives which are not fully supported
by rendrib. Curves, Points, and Blobby primitives are currently ignored
by rendrib. SubdivisionMesh primitives are rendered as control hulls with
smoothed normals, but do not currently perform any actual subsivision steps.

4.7 0Odds and Ends

There are a bunch of other things you should know about rendrib but I coundn’t
figure out where it went in the manual. In no particular order:

e Before rendering any RIB specified on the command line or piped to it, rendrib
will first read the contents of the file $BMRTHOME/ .rendribrc. If there is no
environment variable named $BMRTHOME, then the file $HOME/.rendribrc is
read instead. In either case, by putting RIB in one of these places, you can
set various options for rendrib before any other RIB is read.

e When using the new Shading Language rendererinfo() function to query
the "renderer", the value returned is "BMRT”.

34

Chapter 5

Shaders and Textures

If you are using rendrib, you are probably already used to one aspect of working with
the RenderMan Interface: specifying scenes. In other words, using the procedural
interface (the C library calls) or using RIB (the ASCII archival format).

There is another aspect to using the RenderMan Interface: writing your own
shaders. You've already used some of the “standard” shaders such as "matte",
"metal", "plastic", and so on. Part of the real power of the RenderMan interface
is the ability to write your own shaders to control the appearance of your objects.

Shaders control the appearance of objects. There are several types of shaders:

Surface shaders describe the appearance of surfaces and how they react to the
lights that shine on them.

Displacement shaders describe how surfaces wrinkle or bump.

Light shaders describe the directions, amounts, and colors of illumination dis-
tributed by a light source in the scene.

Volume shaders describe how light is affected as it passes through a participating
medium such as smoke or haze.

Imager shaders describe color transformations made to final pixel values before
they are output.

The RenderMan interface specifies that there are several standard shaders avail-
able. Standard surface shaders include "constant", "matte", "metal", "plastic",
"shiny", and "paintedplastic". Standard light source shaders are "ambientlight",
"distantlight", "pointlight", and "spotlight". Standard volume shaders are
"depthcue" and "fog". The only standard displacement shader is "bumpy", and
there are no standard transformation or imager shaders.

5.1 Compiling interpreted shaders with slc

Once you have written a shader, save it in a file whose name ends with the extension
.sl. To compile it, do the following;:

35

slc myshader.sl

This will result either in a compiled shading language object file called myshad-
er.slc, or you will get error messages. Hopefully, the error message will direct you
to the line in your file on which the error occurred, and some clue as to the type of
error. slc only can compile one .sl file at a time.

The slc program takes the following command line arguments:

-Ipath

Just like a C compiler, the -I switch, followed immediately by a directory
name (without a space between -I and the path), will add that path to the
list of directories which will be searched for any files that are requested by
any #include directives inside your shader source. Multiple directories may
be specified by using multiple -I switches.

-Dsymbol
-Dsymbol=val

Just like a C compiler, the -D switch, followed immediately by a symbol name
(and possibly with an initial value), will define a proprocessor macro symbol.
This allows you to have conditional compilation based on defined symbols
using the #if and #ifdef statements in your shader source code files. The slc
program automatically defines the symbol BMRT.

-0 name

Specifies an alternate filename for the resulting .slc file. Without this switch,
the output file is derived from the name of your shader.

-q
Quiet mode, only reports errors without any chit-chat.
-v
Verbose mode, lots of extra chit-chat.
-X
Encrypts the resulting .slc file.
-arch
Just print out the architecture name (e.g., sgi_m3, linux, etc.).
-dso

36

On some platforms, this will compile your shader to a machine-code DSO file.
See the following section for details.

IMPORTANT NOTE: slc uses the C preprocessor (cpp). This executable is
usually kept in the /lib directory, so that’s where slc looks for it. Therefore, if you
keep it someplace else (or, like on Windoze, it doesn’t normally exist at all), you
need to have this directory in your execution PATH or slc will not be able to run
properly.

Since .sl files are passed through the C preprocessor, you can use the #include
directive, just as you would for C language source code. You can also give an explicit
path for include files using the -I command line option to slc (just like you would
for the C compiler). You can also use #ifdef and other C preprocessor directives in
a shader. A variable named BMRT is defined, so you can do something like #ifdef
BMRT.

The output of slc is an ASCII file for a sort of “assembly language” for a virtu-
al machine. When rendrib renders your frame and needs a particular shader, this
assembly code is read, converted to bytecodes, and interpreted to execute your shad-
er. Because the sic’s output is ASCII and is for a virtual machine, it is completely
machine-independent. In other words, you can compile your shader on one platfor-
m, and use that .slc file on any other platform. But, like any other interpreted
bytecode, even though BMRT’s interpreter is fairly efficient, it is not as efficient as
compiled machine code.

5.2 Compiling .sl files to DSO’s

On some platforms (specifically Linux, SGI, and Sun), sic is also capable of compiling
programs to native machine code (by first translating into C++ and then invoking
the system’s C++ compiler), and dynamically loading the code and executing it
directly when the shader is needed by rendrib. Some complex shaders can run
significantly faster (translating into overall rendering speedups of between 10-50%)
if you compile your shaders into DSO’s.

You can do this with the -dso flag:

slc -dso myshader.sl

This will create a file called myshader . ARCH.slc, where ARCH is the code name
of the platform (such as linux, sgi m3, etc.).

There are several very important limitations and caveats to remember when
using DSO’s:

e The resulting DSO file (the ARCH.s1c file) is specific to one platform. If you
have a multiplatform environment or wish to distribute the DSO shader to
users with different platforms, you will have to recompile the source on that
platform.

e Not all shaders will have speed benefits by being compiled into DSO’s. Gen-
erally, the biggest benefit will be from shaders that have lots of instructions.

37

Short, inexpensive shaders like plastic will render no faster as a DSO than
when interpreted. Shaders which are expensive specifically because they have
many noise or texture calls will not speed up much as DSQO’s, because the
time is already being spent within those expensive operations, which are al-
ready compiled in the renderer. But some shaders do speed up quite a bit —
for example, the smoke. sl shader that comes with BMRT runs about twice as
fast when compiled into a DSO as when interpreted. If your scene rendering
time is dominated by executing complex shaders, you can probably speed up
rendering by around 25% by selectively compiling your most expensive shaders
as DSO’s.

e This feature is relatively new and untested, having first been documented and
enabled with BMRT 2.5. Therefore, it’s likely that some people will try to
compile shaders that slc cannot figure out how to translate into C++. In
such a case, you will receive error messages that appear to eminate from the C
compiler. If this happens, it will be very helpful if you could send the original
shader source to 1g@bmrt.org so that I can fix the compiler.

e It’s also possible that the translation to C++ is buggy. If you experience
any quirky behavior, you should first delete the compiled .slc file and compile
using ordinary slc, without using the -dso flag. If the shader behavior differs
depending on whether or not you use the -dso flag, please report the problem
(with an example) to 1g@bmrt.org.

5.3 Using slctell to list shader arguments

The slctell program reports the type of a shader and its parameter names and
default values. Usage is simple: just give the shader name on the command line.
For example,

slctell plastic
reports:

surface "shaders/plastic.slc"
"Ka" "uniform float"
Default value: 1
"Kd" "uniform float"
Default value: 0.5
"Ks" "uniform float"
Default value: 0.5
"roughness" "uniform float"
Default value: 0.1
"specularcolor" "uniform color"
Default value: "rgb" [1 1 1]

38

The slctell program should correctly report shader information for both inter-
preted and compiled DSO shaders. Note, however, that in either case, slctell can
only report the default values for parameters that are given defaults by simple as-
signment. In other words, if a constant (or a named space point) is used as the
default value, slctell will report it correctly, but if the default is the result of a func-
tion, complex computation, or involves a graphics state variable, there is no way
that slctell will correctly report the default value.

5.4 Making tiled TIFF files with mkmap

BMRT has always used TIFF files for stored image textures (as opposed to PRMan,
which requires you to convert to a proprietary texture format). Though BMRT
accepts regular scanline (or strip) oriented TIFF files, it is able to perform certain
optimizations if the TIFF files you supply happen to be tile-oriented. In particular,
BMRT is able to significantly reduce the memory needed for texture mapping with
tiled TIFF files.

The mkmip program converts scanline TIFF files into multiresolution, tiled TIFF
files. The mkmip program will also convert zfiles into shadow maps (tiled float
TIFFs) and will combine six views into a cube face environment map. Command
line usage is:

e For textures:
mkmip [options] tifffile texturefile
e For shadows:
mkmip -shadow [options] zfile shadowfile
e For cube-face environment maps:
mkmip -envcube [options] px nx py ny pz nz envfile
e For latitude-longitude environment maps:
mkmip -envlatl [options] tifffile envfile

where options include:

-smode wrapmode
-tmode wrapmode
-mode wrapmode

where wrapmode is one of: periodic, black, or clamp. This specifies the
behavior of the texture when outside the [0,1] lookup range. Note that ~smode
and -tmode specify wrapping behavior separately for the s and t directions,
while -mode specifies both at the same time. The default behavior is black.

-resize option

39

Controls the resizing of non-square and non-power-of-two textures when being
converted to MIP-maps. The option may be any of: up, down, round, up-,
down-, round-. The up, down, and round indicates that the texture should
be resized to the next highest power of two, the next lowest power of two,
of the “nearest” power of two, respectively. For each option, the trailing
dash indicates that the texture coordinates should always range from 0 to 1,
regardless of the aspect ratio of the original texture. Absence of the dash
indicates that the texture should encode its original aspect ratio and adjust
the texture coordinates appropriately at texture lookup time. I think that the
option that gives the most intuitive use is up—~. The default is up.

-fov fowvangle
for envcube only, specifies the field of view of the faces.

Note: rendrib specifically wants TIFF files as texture and environment maps.
The files can be 8, 16, or 32 bits per channel, but cannot be palette color files. Single
channel greyscale is okay, as are 3 channel RGB or 4 channel RGBA files. Ordinary
scanline TIFF is fine, but if you use the mkmip program to pre-process the textures
into multiresolution tiled TIFF, your rendering will be much more efficient.

40

Chapter 6

Miscellaneous Tools

6.1 Writing RIB with libribout

You may wish to write a C or C++ program which makes calls to the procedural
interface, resulting in the output of RIB. The resulting RIB may be piped directly
to another process (such as a previewer), or redirected to a file for later rendering.
The library 1ibribout.a does this. This library provides a ‘C’ language binding
for the RenderMan Procedural Interface.

The libribout.a library has all its public routines use the C language binding,
but its implementation contains C++ code, so it is important to either use a C+-+
compiler to link with it, or else to manually include the standard C++ libraries.

If your program is written in C4++, you can link libribout.a in the usual way.
The following example shows how to link with this library on a typical Unix machine:

CC myprog.c -o myprog —-lribout -1m

If your program is written in ordinary C, then you could compile with C, then link
with C++:

CC —C myprog.c
CC myprog.o -o myprog -lribout -I1m

On an SGI, it’s apparently important to include -1C on the linkage line, to ensure
that the C++ standard library is linked properly.

In any case, this will result in an executable, myprog, which outputs RIB requests
to standard output. This may be redirected to a specific RIB file as follows:

myprog > myfile.rib
Remember that the RiBegin statement usually only takes the argument RI_NULL:
RiBegin (RI_NULL);

The default of sending RIB to stdout can be overridden by providing a filename
to the RiBegin statement in your program. For example, suppose your program
contains the following statement instead:

41

RiBegin ("myfile.rib");

In this case, the RIB requests corresponding to the Ri procedure calls will be
sent to the file "myfile.rib" rather than to standard output. In addition, if the
filename you specify starts with the ‘|’ character, the library will open a pipe to
the program specified after the ‘|’ symbol. For example, RiBegin (" |rgl"); will
cause the RIB you produce to be piped directly to a running rgl process without
creating an intermediate RIB file.

Remember to tell the C compiler where the ri.h and libribout.a files are, or
it won’t be able to find them.

On most platforms, BMRT is also distributed with a dynamic library, libribout.
(or perhaps libribout.so.2.3.6). This library performs the same function as
libribout.so, but is a dynamic library, which means that it is shared by all pro-
grams that link against it, rather than being separately copied into every resulting
executable needs the library. Please consult the manual pages to your C compiler,
or your local system administrator, for the fine points of using dynamic libraries.

6.2 Parsing Shader Arguments

Pixar’s PhotoRealistic RenderMan implementation provides a linkable library which
allows a developer to read a compiled shader file (.slo) to determine what type of
shader it is and what parameter names and defaults belong to that shader. Since
Pixar’s .slo format is different from BMRT’s .slc format, similar functionality is
provided to parse the .slc files. The C language header file for these is slc.h. This
file should be fairly self-documenting, and certainly anybody with experience using
Pixar’s libsloargs.a library ought to have an easy time using it.

These routines are all contained in 1ibribout. a, so you should link your software
against 1ibribout.a if you are outputting RIB or parsing shader arguments or both.

However, if you want to parse BMRT shader arguments but use some other RIB
client library (such as PRMan’s 1ibrib.a), then there is an additional library you
can use, libslcargs.a, which contains only the routines for .slc file parsing, but
none of the symbols which are also expected to be in a RIB client library.

6.3 Simple Image Compositing with composite

Starting with release 2.3.6, BMRT includes a program to perform elementary image
compositing operations. If you render your images with alpha channels (i.e. "rgha”),
then coverage information will be stored with every pixel in the image. For the
purposes of composite, RGB images without alpha channels will be assumed to have
an alpha of 1.0 at every pixel.

composite may be run as follows:

composite filel over file2 -o output
composite filel in fileZ2 -o output
composite filel out file2 -o output

42

SO

composite filel atop file2 -o output
composite filel xor file2 -o output

Composite images filel and file2 using one of the standard image compositing
operators described in (Porter & Duff, ”Digital Image Compositing”, Pro-
ceedings of SIGGRAPH ’84, pp. 253-259), storing the composited image in
file output.

composite filel plus file2 -o output
composite filel minus file2 -o output

Add or subtract two files, storing the results in file output. Pixels are clamped
to [0,maxval], where maxval==255 for 8 bit images, maxval==65535 for 16
bit images.

composite filel scale float -o output
composite filel dissolve float -o output
composite filel opaque float -o output

These three unary operators take a floating point number, rather than a file-
name, as their second operand. They all scale the channels of the image, but
in slightly different ways. The scale operator multiples the RGB channels,
but leaves the alpha alone — i.e. it can brighten or darken an image without
changing its transparency. The dissolve operator scales the alpha along with
the RGB. Finally, the opaque operator will scale only the alpha channel.

Hint for beginners: you probably want over.

6.4 Setting default options and attributes

Remember that both of BMRT’s renderers (rendrib and rgl) read from a file called
.rendribrc both in the local directory where it is run, and also in your home
directory. This file can be plain RIB, which means that if you want to set any
defaults (default resolution, shader search path, texture cache size, etc.) you can
just put the Option or Attribute lines in this file in your home directory.

6.5 farm: Poor Man’s Render Farm

Many people ask how they can divide rendering of a single frame among several
processors or machines. Starting with BMRT 2.4, the Perl script farm accomplishes
this task, in a relatively rudimentary way.

6.5.1 How to use farm

1. Set the environment variable BMRT _FARM to be a blank-separated list of the
names of machines which can be used as render servers. Machines with mul-
tiple processors should be listed multiple times. For example, if you have a

43

machine named " fred” with two processors, and one named ”wilma” with one
processor, then run:

setenv BMRT_FARM "fred fred wilma"
if you use csh. If you use sh, try:

export BMRT_FARM="fred fred wilma"

2. Make sure that rendrib is in the default path of each remote machine, and
that mkmosaic is in the path on the local machine.

3. Run farm: farm myfile.rib

6.5.2 What farm does

First, farm will look at your RIB file to figure out the resolution and the name of the
TIFF file that it will render. It will choose an appropriate number of subwindows
to render.

One by one, it will send the frame to machines on your BMRT_FARM list, using
the —crop and -of flags to make rendrib render particular crop windows. Machines
whose load averages are too high will automatically refuse the frames.

When farm sees that all the subsections are finished (each will leave a little
file indicating that it’s done), it will assemble all the pieces using the mkmosaic
program, and clean up all the cruft files.

6.5.3 Important farm restrictions

1. Because farm relies on rsh, you can only use it on UNIX (or UNIX-like)
operating systems.

2. You can’t use farm to render to the display (the -d flag). It must be rendering
to a TIFF file.

3. Don’t try using any other rendrib command line flags. Request all image
options (like radiosity options) in the RIB file with Option and Attribute
statements.

4. Hitting Control-C to interrupt farm will kill only farm, but will leave the
individual crop windows rendering on the remote machines. Beware.

44

Chapter 7

Using BMRT as a “Ray Server”
for PRMan

This chapter explains how to render scenes using PRMan with ray traced shadows
and reflections, using BMRT as an ”oracle” to provide answers to computations that
PRMan cannot solve. We describe a method of actually stitching the two renderers
together using a Unix pipe, allowing each renderer to perform the tasks that it is
best at.

7.1 Introduction

PhotoRealistic RenderMan has a Shading Language function called trace(), but
since there is no ability in PRMan to compute global visibility, the trace() function
always returns 0.0 (black). This is no way to ask for any other global visibility
information in PRMan. Though PRMan often can fake reflections and shadows
with texture mapping, there are limitations:

e Environment mapped reflections are only “correct” from a single point. En-
vironment mapping a large reflective object has errors (which, to be fair, are
often very hard to spot). Mutually reflective objects are a big pain in PRMan.

e Environment and shadow maps require multiple rendering passes, and require
TD time to set up properly.

e Dealing with shadow maps - selecting resolution, bias, blur, etc. - can be
time consuming and still show artifacts in the shadows. Also, shadows cannot
motion blur in PRMan, and cannot correctly handle opacity (or color) changes
in the object casting a shadow.

e Refraction is nearly impossible to do correctly, since even when environment
mapping is acceptable, PRMan cannot tell the direction that a ray exits a
refractive object, since the “backside” is not available for ray tracing.

45

e The Blue Moon Rendering Tools (BMRT) contains a renderer, rendrib, which
is fully compliant with the RenderMan 3.1 specification and supports ray trac-
ing, radiosity, area lights, volumes, etc. It can compute ray traced reflections,
shadows, and so on, but is much slower than PRMan for geometry which
doesn’t require these special features.

Both renderers share much of their input - by being RenderMan compliant,
they both read the same geometry description (RIB) and shader source code files.
(Note: The compatibility is limited to areas dictated by the RMan spec. The two
renderers each have different formats for stored texture maps and compiled shaders,
and support different feature subsets of the spec.) It’s tempting to want to combine
the effects of the two renderers, using each for those effects that it achieves well.
Several strategies come to mind:

1. Choosing one renderer or the other based on the project, sequence, or shot.
Perhaps a strategy might be to use PRMan most of the time, BMRT if you
need radiosity or ray tracing.

2. Rendering different objects (or layered elements) with different renderers, then
compositing them together to form final frames.

3. Rendering different lighting layers with different renderers, then adding them
together. For example, one might render base color with PRMan, but do an
“area light pass” (or radiosity, or whatever) in BMRT.

All of these approaches have difficulties (though all have been done). Strategy
#1 may force you to choose a slow renderer for everything, just because you need
a little ray tracing. There may also be problems matching the exact look from shot
to shot, if you are liberally switching between the two renderers. Strategies #2
and #3 have potential problems with "registration,” or alignment, of the images
computed by the renderers. Also, #3 can be very costly, as it involves renders with
each renderer.

The attraction of using the two renderers together, exploiting the respective
strengths of both programs while avoiding undue expense, is alluring. I have devel-
oped a method of literally stitching the two programs together.

7.2 Background: DSO Shadeops in PRMan

RenderMan Shading Language has always had a rich library of built-in functions
(sometimes called “shadeops”), already known to the SL compiler and implemented
as part of the runtime shader interpreter in the renderer. This built-in function
library included math operations (sin, sqrt, etc.), vector and matrix operations,
coordinate transformations, etc. It has also been possible to write SL functions in
Shading Language itself (in the case of PRMan, this ability was greatly enhanced
with the new compiler included with release 3.7). However, defining functions in SL
itself has several limitations.

46

The newest release of PRMan (3.8) allows you to write new built-in SL functions
in ’C’ or ’C++’. Writing new shadeops in C and linking them as DSO’s has many
advantages over writing functions in SL, including;:

e The resulting object code from a DSO shadeop is shared among all its uses in
a renderer. In contrast, compiled shader function code is inlined every time
the function is called, and thus is not shared among its uses, let along among
separate shaders that call the same function.

e DSO shadeops are compiled to optimized machine code, whereas shader func-
tions are interpreted at runtime. While PRMan has a very efficient interpreter,
it is definitely slower than native machine code.

e DSO shadeops can call library functions from the standard C library or from
other third party libraries.

e Whereas functions implemented in SL are restricted to operations and data
structures available in the Shading Language, DSO shadeops can do anything
you might normally do in a C program. Examples include creating complex
data structures or reading external files (other than textures and shadows). For
example, implementing an alternative noise() function, which needs a stored
table to be efficient, would be exceptionally difficult in SL, but very easy as a
DSO shadeop.

DSO shadeops also have several limitations that you should be aware of:

e DSO shadeops only have access to information passed to them as parameters.
They have no knowledge of “global” shader variables such as P, parameters to
the shader, or any other renderer state. If you need to access global variables
or shader parameters or locals, you must pass them as parameters.

e DSO shadeops act as strictly point processes. They possess no knowledge of
the topology of the surface, derivatives, or the nature of surface grids (in the
case of a REYES renderer like PRMan). If you want to take derivatives, for
example, you need to take them in the shader and pass them as parameters
to your DSO shadeop.

e DSO shadeops cannot call other builtin shadeops or any other internal entry
points to the renderer itself.

Further details about DSO shadeops, including exactly how to write them, are
well beyond the scope of these course notes. For more information, please see the
RenderMan Toolkit 3.8 User Manual.

7.3 How Much Can We Get Away With?

So PRMan 3.8 has a magic backdoor to the shading system. One thing it’s good for
is to make certain common operations much faster, by compiling them to machine

47

code. But it also has the ability to allow us to write functions which would not
be expressible in SL at all — for example, file I/O, process control or system calls,
constructing complex data structures, etc.

How far can we push this idea? Is there some implementation of trace() that
we can write as a DSO which will work? Yes! The central idea is to render using
PRMan, but implement trace as a call to BMRT. In this sense, we would be using
BMRT as an oracle, or a ray server, that could answer the questions that PRMan
needs help with, but let PRMan do the rest of the hard work.

BMRT (release 2.3.6 and later) has a ray server mode, triggered by the command
line option -rayserver. When in this mode, instead of rendering the frame and writing
an image file, BMRT reads the scene file but it just waits for “ray queries” to come
over stdin. When such queries (specified by a ray server protocol) are received,
BMRT computes the results of the query, and returns the value by sending data
over stdout.

The PRMan side is a DSO which, when called, runs rendrib and opens a pipe to
its process. Thereafter, calls to the new functions make ray queries over the pipe,
then wait for the results.

7.4 New Functionality

This hybrid scheme effectively adds six new functions that you can call from your
shaders:

color trace (point from, vector dir)

Traces a ray from position from in the direction of vector dir. The return
value is the incoming light from that direction.

color visibility (point pl, p2)

Forces a visibility (shadow) check between two arbitrary points, retuning the
spectral visibility between them. If there is no geometry between the two
points, the return value will be (1,1,1). If fully opaque geometry is between
the two points, the return value will be (0,0,0). Partially opaque occluders
will result in the return of a partial transmission value.

An example use of this function would be to make an explicit shadow check
in a light source shader, rather than to mark lights as casting shadows in the
RIB stream (as described in the previous section on nonstandard attributes).
For example:

light

shadowpointlight (float intensity = 1;

color lightcolor = 1;
point from = point "shader" (0,0,0);
float raytraceshadow = 1;)

illuminate (from) {

48

Cl = intensity * lightcolor / (L . L);
if (raytraceshadow != 0)
Cl *= visibility (Ps, from);

float rayhittest (point from, vector dir,
output point Ph, output vector Nh)

Probes geometry from point from looking in direction dir. If no geometry is
hit by the ray probe, the return value will be very large (1e38). If geometry is
encountered, the position and normal of the geometry hit will be stored in Ph
and Nh, respectively, and the return value will be the distance to the geometry.

float fulltrace (point pos, vector dir,
output color hitcolor, output float hitdist,
output point Phit, output vector Nhit,
output point Pmiss, output point Rmiss)

Traces a ray from pos in the direction dir.

If any object is hit by the ray, then hitdist will be set to the distance of the
nearest object hit by the ray, Phit and Nhit will be set to the position and
surface normal of that nearest object at the intersection point, and hitcolor
will be set to the light color arriving from the ray (just like the return value
of trace).

If no object is hit by the ray, then hitdist will be set to 1.0e30, hitcolor will
bet set to (0,0,0).

In either case, in the course of tracing, if any ray (including subsequent rays
traced through glass, for example) ever misses all objects entirely, then Pmiss
and Rmiss will be set to the position and direction of the deepest ray that
failed to hit any objects, and the return value of this function will be the
depth of the ray which missed. If no ray misses (i.e. some ray eventually hits
a nonreflective, nonrefractive object), then the return value of this function
will be zero. An example use of this functionality would be to combine ray
tracing of near objects with an environment map of far objects.

The code fragment below traces a ray (for example, through glass). If the
ray emerging from the far side of the glass misses all objects, it adds in a
contribution from an environment map, scaled such that the more layers of
glass it went through, the dimmer it will be.

missdepth = fulltrace (P, R, C, d, Ph, Nh, Pm, Rm);
if (missdepth > 0)
C += environment ("foo.env", Rm) / missdepth;

float isshadowray ()

49

Returns 1 if this shader is being executed in order to evaluate the transparency
of a surface for the purpose of a shadow ray. If the shader is instead being
evaluated for visible appearance, this function will return 0. This function can
be used to alter the behavior of a shader so that it does one thing in the case
of visibility rays, something else in the case of shadow rays.

float raylevel ()

Returns the level of the ray which caused this shader to be executed. A
return value of 0 indicates that this shader is being executed on a camera
(eye) ray, 1 that it is the result of a single reflection or refraction, etc. This
allows one to customize the behavior of a shader based on how “deep” in the
reflection/refraction tree.

7.5 How to use it

Using PRMan as a ray tracer is straightforward:

1. Use these functions in your shaders. In any shader that uses the functions,
you should:

#include "rayserver.h"

If you inspect rayserver.h (in the examples directory), you'll see that most
the functions described above are really macros. When compiling with BM-
RT’s compiler, the functions are unchanged (all three are actually implemented
in BMRT). But when compiling with PRMan’s compiler, the macros transform
their arguments to world space and call a function called rayserver().

2. Compile the shaders with both BMRT and PRMan’s shader compilers. When
compiling for PRMan, make sure that the DSO rayserver.so (in the BMRT
lib directory) is in your include path (-I).

3. Render the file using the frankenrender script that comes with BMRT. This
is a Perl script that sets up the environment that controls the ray server, and
passes the correct arguments to both PRMan and BMRT. Just look at the
script for more details on how it works and what arguments are valid.

If you are rendering the same geometry with both renderers, just use frankenrender
in the same way as you would use prman or rendrib:

frankenrender teapots.rib

If you want to give separate RIB files to each renderer, use the -prman and
-bmrt flags:

frankenrender common.rib -bmrt bmrt.rib -prman prman.rib

That’s it!

50

7.6 Pros and Cons

The big advantage here is that you can render most of your scene with PRMan,
using BMRT for tracing individual rays on selected objects or calculating shadows
for selected lights. This is much faster than rendering in BMRT, particularly if you
only tell the ray tracer about a subset of the scene that you want in the shadows or
reflections. The following effects are utterly trivial to produce with this scheme:

e Ray cast shadows, including shadows that correctly respond to color and opac-
ity of occluding objects. Moving objects can cast correct motion-blurred shad-
OwsS.

e Correct reflections, including motion blur.
e Real refraction for glass, water, etc.
e No setup time or multi-pass rendering for these effects.

The big disadvantage is that it requires two renderers to both have the scene
loaded at the same time. This can be alleviated somewhat by reducing the scene
that the ray tracer sees, or by telling the ray tracer to use a significantly reduced
tessellation rate, etc. But still, it’s a significant memory hit compared to running
PRMan alone.

All of the usual considerations about compatibility between the two renderers
apply. Be particularly aware of new PRMan primitives and SL features not currently
supported by BMRT, texture file format differences, results of noise() functions, etc.

All of the usual considerations about compatibility between the two renderers
apply. Be particularly aware of new PRMan primitives and SL features not currently
supported by BMRT, texture file format differences, results of noise() functions, etc.

Note that by default, all rays will be traced from the positions at the shutter open
time. Thus, reflections and shadows will not be blurred. Indeed, they will strobe in
exactly the same way (and for largely the same reasons) as ordinary shadows do with
PRMan. If you are ray tracing multipe reflection rays (or multiple shadow rays) per
sample, you could try jittering the rays in time. This can be accomplished simply
by setting the environment variable RAYSERVER_JITTER_TIMES to 1. Beware, though
— this doesn’t necessarily make the scene look better, and in some circumstances
could make additional artifacts. Try both ways and decide which is best. To turn
it off, either don’t set that environment variable at all, or set it to O.

7.7 Efficiency Tips

Here are several tips to help you speed up the ray server.

e Use the -prman and -bmrt flags to give separate RIB files to each renderer,
eliminating the objects which do not need to be visible in reflections or re-
fractions from the file for rendrib. Where this is not possible, at least use
Attribute "render" "visibility" to make objects invisible in reflections
if they are not needed to be seen in reflections (and similarly for shadows).

o1

e Be sure that your max ray recursion level (Option "render" "max raylevel")
is set as low as possible (the default is 4, but you may be able to get away
with as little as 1 or 2 if you don’t have much glass or mutual reflection.

e [t’s possible that objects which are only visible in reflections or refractions can
be tessellated even more coarsely than usual. Try:
Attribute "render" "patchmultiplier" [n]}

The -rayserver mode automatically sets n to 0.5, indicating that patches
should be diced only half as finely when serving rays as when rendering whole
frames. Try reducing n to 0.25 or even lower, to increase speed and decrease
memory use. Make n as low as you can get it without seeing visible artifacts.

02

Bibliography

Apodaca, A. A., editor (1990). ACM SIGGRAPH ’90 Course Notes #18: The
RenderMan Interface and Shading Language.

Apodaca, A. A., editor (1992). ACM SIGGRAPH 92 Course Notes #21: Writing
RenderMan Shaders.

Apodaca, A. A., editor (1995). ACM SIGGRAPH °95 Course Notes #4: Using
RenderMan in Animation Production.

Apodaca, A. A. and Gritz, L., editors (1999a). ACM SIGGRAPH ’98 Course Notes
#11: Advanced RenderMan: Beyond the Companion.

Apodaca, A. A. and Gritz, L. (1999b). Advanced RenderMan: Creating CGI for
Motion Pictures. Morgan-Kaufmann.

Gritz, L. (1993). Computing specular-to-diffuse illumination for two-pass rendering.
M.s. thesis, Department of Electrical Engineering and Computer Science, The
George Washington University.

Gritz, L. and Apodaca, A. A., editors (1999). ACM SIGGRAPH 99 Course Notes
#25: Advanced RenderMan: Beyond the Companion.

Gritz, L. and Hahn, J. K. (1996). BMRT: A global illumination implementation of
the renderman standard. Journal of Graphics Tools, 1(3). ISSN 1086-7651.

Pixar (1989). The RenderMan Interface, Version 3.1. Pixar.

Upstill, S. (1990). The RenderMan Companion: A Programmer’s Guide to Realistic
Computer Graphics. Addison-Wesley.

93

