anygut

Manual

Magnus Lie Hetland

Anygui 0.1a3 October 23, 2001

N

Magnus Lie Hetland Anygui : Generic GUI for Python

Contents

»

1 Introduction
11 DesignGoals.

W

2 Installation
21 Runningsetup.py
22 DoingitManually. 0oL
2.3 Making Sure You Havea GUIBackend

>~ = = W

3 Using Anygui

3.1 Importing the Backends Directly
32 CreatingaWindow
3.3 Baby Steps: Addingalabel,
3.4 Placing WidgetsinaFrame

341 Placing More ThanOne Widget.
35 AddingaButton. Lo 0oL
3.6 AboutModelsand Views
3.7 UsingCheckBoxes
3.8 RadioButtons and RadioGroups
39 ListBox
3.10 TextFieldand TextArea

—_
O O OVWWOVWOWOWWWNINNOSGU

—_

4 API Reference

[y
p—

Jury
-y

5 Known Problems
6 Plans for Future Releases 11
7 Frequently Asked Questions 11
8 Contributing 11

9 Anygui License 11

This manual describes the package Anygui, a generic GUI module for Python. The latest version of
this manual and the software distribution is available from http://anygui.sf.net. More infor-
mation about Python can be found at http://www.python.org.

Magnus Lie Hetland Anygui : Generic GUI for Python 3

1 Introduction

The Python standard library currently does not contain any platform-
independent GUI packages. It is the goal of the Anygui project to change this
situation. There are many such packages available, but none has been defined
as standard, so when writing GUI programs for Python, you cannot assume that
your user has the right package installed.

The problem is that declaring a GUI package as standard would be quite con-
troversial. There are some packages that are quite commonly available, such
as Tkinter; but it would not be practical to require all installations to include
it, nor would it be desirable to require all Python GUI programs to use it, since
there are many programmers who prefer other packages.

Anygui tries to solve this problem in a manner similar to the standard anydbm
package. There is no need to choose one package at the expense of all others.
Instead, Anygui gives generic access to several popular packages through a
simple API, which makes it possible to write GUI applications that work with
all these packages. Thus, one gets a platform-independent GUI module which
is written entirely in Python.

1.1 Design Goals

A. Anygui should be an easy to use GUI package which may be used to create
simple graphical programs, or which may serve as the basis for more complex
application frameworks.

B. Anygui should be a pure Python package which serves as a front-end for as
many as possible of the GUI packages available for Python, in a transparent
manner.

C. Anygui should include functionality needed to perform most GUI tasks, but
should remain as simple and basic as possible.

2 Installation

The Anygui package comes in the form of a gzip compressed tar archive. To
install it you will first have to uncompress the archive. On Windows this can
be done with WinZip. On the Mac, you can use Stufflt Expander. In Unix, first
move to a directory where you’d like to put Anygui, and then do something
like the following;:

foo:"/python$ tar xzvf anygui-0.la3.tar.gz

If your version of tar doesn’t support the z switch, you can do something like
this:

foo:”/python$ zcat anygui-0.la3.tar.gz | tar xvf

Magnus Lie Hetland Anygui : Generic GUI for Python 4

Another possibility is:
foo:”/python$ gunzip anygui-0.la3.tar.gz

No matter which version you choose, you should end up with a directory
named anygui-0.1a3.

2.1 Running setup.py

The simple way of installing Anygui is to use the installation script that’s in-
cluded in the distribution. This requires Distutils (http://www.python.org/
sigs/distutils-sig), which is included in Python distributions from version
2.0. To install the Anygui package in the default location, simply run the setup
script with the install command:

foo:”$ python setup.py install

This will install Anygui in your standard Python directory structure. If you
haven’t installed Python yourself, you'll either have to have root access, or in-
stall it somewhere else. You can give a prefix with the --prefix option:

foo:”$ python setup.py install --prefix=${HOME}/python

2.2 Doing it Manually

Since Anygui consists of only Python code, nothing needs to be compiled. And
the only thing needed to install Python code is to ensure that the packages and
modules are found by your Python interpreter. This may be as simple as in-
cluding the 1ib directory of the Anygui distribution in your PYTHONPATH en-
vironment variable. In bash (http://www.gnu.org/manual/bash/), you could
do something like this:

foo:"$ export PYTHONPATH=$PYTHONPATH:/path/to/anygui/lib

To make this permanent, you should put it in your .bash_profile file, or
something equivalent. If you don’t want to mess around with this, and al-
ready have a standard directory where you place your Python modules, you
can simply copy (or move) the 1ib/anygui there, or possibly place a symlink
in that directory to.

2.3 Making Sure You Have a GUI Backend

Once you have Anygui installed, you'll want to make sure you have a usable
GUI backend. This is easy to check: Simply start an interactive Python inter-
preter and try to execute the following;:

Magnus Lie Hetland Anygui : Generic GUI for Python 5

>>> from anygui import Application
>>> Application()

If this works, you should be all set for making GUI programs with Anygui. If
it raises an exception, however, you will have to install a GUI package. Anygui
currently supports the following packages:

PythonWin (mswgui) http://starship.python.net/crew/mhammond/win32

Tkinter (tkgui) http://www.python.org/topics/tkinter
wxPython (wxgui) http://www.wxpython.org

Java Swing (javagui) http://www.jython.org

PyGTK (gtkgui) http://www.daa.com.au/" james/pygtk
Bethon (beosgui) http://www.bebits.com/app/1564

Of these, Tkinter is compiled in by default in the MS Windows distribution of
Python (available from http://www.python.org), PythonWin (as well as Tk-
inter) is included in the ActiveState distribution, ActivePython (available from
http://www.activestate.com), and Java Swing is automatically available in
Jython, the Java implementation of Python.

In the future Anygui should hopefully work in almost any Python installation,
even those which do not have a specific GUI package installed, either by using
Dynamic HTML together with the standard webbrowser module, or by provid-
ing some simple text interface which is logically equivalent to the GUI version.

If you don’t want to bother with all these backends, you may not have to. Just
try to use anygui and see if it works. If you have a usable backend, Anygui will
automatically detect it and use it.

3 Using Anygui

Note: For some examples of working Anygui code, see the test directory of the
distribution.

Using Anygui is simple; it's simply a matter of importing the widgets (GUI
elements) you need from the anygui module, e.g.:

from anygui import *

After doing this you must first create an Application object; then you may
instantiate the widgets and combine them in various ways. When you're satis-
fied, you call the run method of your Application instance.

app = Application()
Make widgets here
app.run()

Magnus Lie Hetland Anygui : Generic GUI for Python 6

3.1 Importing the Backends Directly

If you wish to import a backend directly (and “hardwire it” into your program),
you may do so. For instance, if you wanted to use the wxPython backend,
wxgui, you'd replace

from anygui import *
with
from anygui.backends.wxgui import *

This way you may use Anygui in standalone executables built with tools
like py2exe (http://starship.python.net/crew/theller/py2exe/) or the
McMillan installer (http://www.mcmillan-inc.com/installl.html), or with
jythonc with the --deep option or equivalent.

3.2 Creating a Window

One of the most important classes in Anygui is Window. Without a Window you
have no GUI all the other widgets are added to Windows. Knowing this, we
may suspect that the following is a minimal Anygui program (and we would
be right):

from anygui import *
app = Application()
win = Window()
app.run()

The problem with this code is that the window would be invisible. At the
time of creation, windows are hidden, so that we may add widgets to them
etc. before showing them to the user. To show a window we simply call its
show method or set its visible property to true (e.g. 1). w.show() is actually
just a shortcut for w.visible = 1. (Similarly, w.visible = O can be written
w.hide().) So, our program becomes:

from anygui import *
app = Application()
win = Window()
win.show()

app.run()

If you don’t mind having your window popping up when it’s created (this
can be problematic if you create your window after starting your application,
because it may be visible before your finished adding other widgets to it), you
can simply specify that it should be visible to begin with:

Magnus Lie Hetland Anygui : Generic GUI for Python 7

from anygui import *
app = Application()
win = Window(visible=1)
app.run()

This example gives us a rather uninteresting default window. You may cus-
tomise it by setting some of its properties, like title and size (import and
show removed in the interest of brevity):

w = Window(visible=1)
w.title = ’Hello, world!’
w.size = (200, 100)

If we want to, we can supply all the widget properties as keyword arguments
to the constructor:

w = Window(title=’Hello, world!’, size=(200,100), visible=1)

3.3 Baby Steps: Adding a Label
Simple (multiline) labels are created with the Label class:
lab = Label(text=’Hello, again!’, position=(10,10))

Here we have specified a position just for fun; we don’t really have to. If we
add the label to our window, we’ll see that it's placed with its left topmost
corner at the point (10,10):

w.add(lab)

3.4 Placing Widgets in a Frame

We don’t have to specify the widget’s position like we did with our label. In-
stead, we can use the place method of Window. (Actually, it's a method of a
more generic class, Frame, which isn’t currently available to the user of Anygui,
but will be in future releases.)

The place method allows us to specify several constraints (in the form of key-
word arguments) that will affect where the widget is placed. Fore detailed
information about this, see the API reference. Here are some examples, using
only Labels:

win.place(lab, position=(10,10))
win.place(lab, left=10, top=10)
win.place(lab, top=10, right=10)
win.place(lab, position=(10,10), right=10, hstretch=1)

Magnus Lie Hetland Anygui : Generic GUI for Python 8

In the last example hstretch is a Boolean value indicating whether the widget
should be stretched horizontally (to maintain the other specifications) when
the containing Frame is resized. (The vertical version is vstretch.)

Note: add and place may be merged in a future release, making add unavail-
able.

3.4.1 Placing More Than One Widget

The place method can also position a list of widgets. The first widget will be
placed as before, while the subsequent ones will be placed either to the right or
to the left (according to the direction argument), at a given distance (space):

win.place([labl, lab2], position=(10,10),
direction=’right’, space=10)

Note: When using direction and space like this, you should explicitly set
the size of your widgets, otherwise they will most likely overlap. This will
hopefully be fixed (with a decent system of defaults) in future releases.

3.5 Adding a Button

Buttons are quite similar to Labels, except that they may perform an action
when clicked. (They also look different, of course.)

def callback(): print ’Hello, world!’
btn = Button(text=’Press me’, action=callback)

When this button is pressed, it will execute the function stored in its action
property (if there is one).

Note: This system of callbacks in the various widgets is all the event handling
which is available in the current version of Anygui (0.1a3). In future releases a
more thorough system will be implemented.

3.6 About Models and Views

Some widgets, such as TextField or CheckBox, reflect some state in the pro-
gram, be it a text value or a binary (Boolean) value. These widgets are called
views since they are ways of viewing the underlying state, which is called a
model. In the current version of Anygui (0.1a3) there are three types of model:

BooleanModel: This represents a Boolean value (true or false), and is the un-
derlying model for CheckBox and RadioButton.

ListModel: This represents a sequence, and supports all the normal list meth-
ods. It is the underlying model for ListBox.

Magnus Lie Hetland Anygui : Generic GUI for Python 9

TextModel: This represents a mutable string, and also supports standard list
methods. (It is, in fact, a subclass of ListModel.) It is the underlying model of
TextField and TextArea.

Each widget which functions as a view, has an attribute called model, which
contains its model. The widget will always reflect the current state of the
model, and changes in the widget (such as editin the text of a TextField) will
automatically be reflected in the model. (Thus, in the terminology of the Model-
View-Controller paradigm, these views are actually controllers as well.)

The models have an attribute called value which is a representation of the
model as a primitive value. By assigning to this attribute you will change the
model.

Note: The following example is not safe:
1b = ListBox()
some_list = [1, 2, 3]

1b.model.value = some_list
some_list[1] = ’foo’

Since some_list is a normal list, changing it (in the last line) will not afect the
ListBox in any way. A better version of the last line would be

1b.model[1] = ’foo’

The model property will contain a default (“empty”) model when the widget is
created, so code like this is possible:

1b = ListBox()
1b.model.append(’This is the first item’)

Note that one of the advantages of using models like this is that you can use the
models separately from the GUI, not worrying about updating the views etc.
In a complex program you probably wouldn’t use code like the above where
you explicitly refer to the model of a specific widget.

3.7 Using CheckBoxes

A CheckBox is a toggle button, a button which can be in one of two states, “on”
or “off”. Except for that, it works more or less like any other button in that you
can place it, set its text, and associate a callback with it.

Whether a CheckBox is currently on or off is indicated by its model’s value.

3.8 RadioButtons and RadioGroups

RadioButtons are toggle buttons, just like CheckBoxes. The main differences
are that they look slightly different, and that they may belong to a RadioGroup.

Magnus Lie Hetland Anygui : Generic GUI for Python 10

A RadioGroup is a set of RadioButtons where only oneRadioButton is permit-
ted to be “on” at one time. Thus, when one of the buttons in the group is
turned on, the others are automatically turned off. This can be useful for se-
lecting among different alternatives, for instance.

RadioButtons are added to a RadioGroup by setting their group property:
radiobutton.group = radiogroup
This may also be done when constructing the button:

grp = RadioGroup()
rbn = RadioButton(group=grp)

3.9 ListBox

A ListBox is a vertical list of items that can be selected, either by clicking on
them, or by moving the selection up and down with the arrow keys. (For the
arrow keys to work, you must make sure that the ListBox has keyboard focus.
In some backends this requires using the tab key.)

Note: When using Anygui with Tkinter, using the arrow keys won’t change the
selection, only which item is underlined. You'll have to use the arrow keys
until the item you want to select is underlined; then select it by pressing the
space bar.

A ListBox’s items are set by manipulating its model (a ListModel). The model
can contain any objects, and the text displayed in the widget will be the result
of applying the built-in Python function str to each object.

lbx = ListBox()
lbx.model.value = ’This is a test’.split()

The currently selected item can be queried or set through the selection prop-
erty (an integer index, counting from zero). Also, when an item is selected, the
ListBox’s action callback is activated (if present).

3.10 TextField and TextArea

Anygui’s two text widgets, TextField and TextArea are quite similar. The dif-
ference between them is that TextField permits neither newlines or tab charac-
ters to be typed, while TextArea does. Typing a tab in a TextField will simply
move the focus to another widget, while pressing the enter key will activate
the TextField’s action callback (if present).

The text in a text component is queried or set through its model’s value prop-
erty (a string or equivalent), and the current selection may be queried or set
through the selection property (a tuple of two integer indices).

Magnus Lie Hetland Anygui : Generic GUI for Python 11

4 API Reference

[Under construction]

5 Known Problems

For an overview of known bugs in the current release, see the file KNOWN_BUGS
found in the distribution.

6 Plans for Future Releases

For an overview of future plans, see the TODO file found in the distribution.

7 Frequently Asked Questions

Q: Which version of Python is required for Anygui?

A: Anygui requires Python version 2.0 or newer.

8 Contributing

If you want to contribute to the Anygui project, we could certainly
use your help. First of all, you should visit the Anygui web site
at http://anygui.sf.net, and subscribe to the developer’s mailing list
(anygui-devel@lists.sf.net) and try to familiarise yourself with how the
package works behind the scenes. Then, you may either help develop the cur-
rently supported GUI packages, or you may start writing a backend of your
own. Several backend targets may be found at http://starbase.neosoft.
com/~claird/comp.lang.python/python_GUI.html.

9 Anygui License

Copyright (© 2001 Magnus Lie Hetland, Thomas Heller, Alex Martelli, Greg
Ewing, Joseph A. Knapka, Matthew Schinckel, and Kalle Svensson.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

Magnus Lie Hetland Anygui : Generic GUI for Python 12

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

