
ZSI: The Zolera Soap Infrastructure
Release 1.1.2

Rich Salz

September 4, 2001

Zolera Systems,http://www.zolera.com

E-mail: rsalz@zolera.com

ABSTRACT

ZSI , the Zolera SOAP Infrastructure, is a Python package that provides an implementation of SOAP messaging, as
described inThe SOAP 1.1 Specification. In particular,ZSI parses and generates SOAP messages, and converts be-
tween native Python datatypes and SOAP syntax. It can also be used to build applications usingSOAP Messages
with Attachments. ZSI is “transport neutral”, and provides only a simple I/O and dispatch framework; a more com-
plete solution is the responsibility of the application usingZSI . As usage patterns emerge, and common application
frameworks are more understood, this may change.

ZSI requires Python 2.0 or later and PyXML version 0.6.6 or later.

TheZSI homepage is athttp://www.zolera.com/resources/opensrc/zsi.

COPYRIGHT

Copyright c© 2001, Zolera Systems, Inc.
All Rights Reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Redistributions of any form whatsoever must retain the following acknowledgment: ”This product includes
software developed by Zolera Systems (http://www.zolera.com).”

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ZOLERA SYSTEMS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Acknowledgments

We are grateful to the members of thesoapbuilders mailing list (seehttp://groups.yahoo.com/soapbuilders), Fred-
erick Lundh for hissoaplib package (seehttp://www.secretlabs.com/downloads/index.htm#soap), and Cayce Ull-
man and Brian Matthews for theirSOAP.py package (seehttp://sourceforge.net/projects/pywebsvcs).

ii

CONTENTS

1 Introduction 1
1.1 How to Read this Document. 2

2 Examples 3
2.1 Simple example . 3
2.2 More complex example. 4

3 Exceptions 7

4 Utilities 9
4.1 Low-Level Utilities. 9

5 TheParsedSoap module — basic message handling 11

6 TheTypeCode classes — data conversions 13
6.1 TC.Any — the basis of dynamic typing. 14
6.2 Void . 15
6.3 Strings . 16
6.4 Integers. 17
6.5 Floating-point Numbers. 17
6.6 Dates and Times. 18
6.7 Boolean. 18
6.8 XML . 18
6.9 Struct . 19
6.10 Choice . 20
6.11 Arrays . 20
6.12 Apache.Map. 20

7 TheSoapWriter module — serializing data 21

8 TheFault module — reporting errors 23

9 The resolvers module — fetching remote data 25

10 Dispatching and Invoking 27
10.1 Dispatching. 27
10.2 Theclient module — sending SOAP messages. 28

11 ZSI Schema 31

iii

iv

CHAPTER

ONE

Introduction

ZSI , the Zolera SOAP Infrastructure, is a Python package that provides an implementation of the SOAP specification,
as described inThe SOAP 1.1 Specification. In particular,ZSI parses and generates SOAP messages, and converts
between native Python datatypes and SOAP syntax.

ZSI requires Python 2.0 or later and PyXML version 0.6.6 or later.

TheZSI homepage is athttp://www.zolera.com/resources/opensrc/zsi. ZSI is discussed on the Python web services
mailing list, visithttp://lists.sourceforge.net/lists/listinfo/pywebsvcs-talk to subscribe.

SOAP-based processing typically involves several steps. The following list details the steps of a common processing
model naturally supported byZSI (other models are certainly possible):

1. ZSI takes data from an input stream andparsesit, generating a DOM-based parse tree as part of creating a
ParsedSoap object. At this point the major syntactic elements of a SOAP message — theHeader , the
Body , etc. — are available.

2. The application doesheader processing. More specifically, it does local dispatch and processing based on the
elements in the SOAPHeader . The SOAPactor andmustUnderstand attributes are also handled (or at
least recognized) here.

3. ZSI nextparsestheBody , creating local Python objects from the data in the SOAP message. The parsing is
often under the control of a list of data descriptions, known astypecodes, defined by the application because it
knows what type of data it is expecting. In cases where the SOAP data is known to be completely self-describing,
the parsing can bedynamicthrough the use of theTC.Any class.

4. The application nowdispatchesto the appropriate handler in order to do its “real work.” As part of its processing
it may createoutput objects

5. The application creates aSoapWriter instance and outputs an initial set of namespace entries and header
elements.

6. Any local data to be sent back to the client isserialized. As with Body parsing, the datatypes can be described
through typecodes or determined dynamically (here, through introspection).

7. In the event of any processing exceptions, aFault object can be raised, created, and/or serialized.

Note thatZSI is “transport neutral”, and provides only a simple I/O and dispatch framework; a more complete solution
is the responsibility of the application usingZSI . As usage patterns emerge, and common application frameworks are
more understood, this may change.

Within this document,tns is used as the prefix for the application’s target namespace, and the termelementrefers to
a DOM element node.)

1

1.1 How to Read this Document

Readers only interested in developing the simplest SOAP applications, or spending the least amount of time on building
a web services infrastructure, should read chapters 2, 3, and 10. Readers who are developing complex services, and
who are familiar with XML Schema and/or WSDL, should read this manual in order. This will provide them with
enough information to implement the processing model described above. They can skip probably skip chapters 2 and
10.

Currently, the most cumbersome part of usingZSI is defining the typecode objects. A future release ofZSI may
be able to process WSDL definitions (described inThe Web Services Description Language) and generate typecodes
automatically.

2 Chapter 1. Introduction

CHAPTER

TWO

Examples

This section contains two examples. The first shows how to useZSI to expose conventional CGI scripts through SOAP.
The input parameters and return value are Python lists and the SOAP messages must contain all type information.
This is appropriate for building simple schema-less applications. The second example shows how to to create a more
comprehensive application that usesZSI to validate its input and output against a schema.

2.1 Simple example

Using theZSI.cgi module, it is simple to expose Python functions as web services. Each function is invoked with
all the input parameters specified in the client’s SOAP request. Any value returned by the function will be serialized
back to the client; multiple values can be returned by returning a tuple.

The following code shows some simple services:

def hello():
return "Hello, world"

def echo(*args):
return args

def average(*args):
sum = 0
for i in args: sum += i
return sum / len(args)

from ZSI import dispatch
dispatch.AsCGI()

Each function defines a SOAP request, so if this script is installed as a CGI script, a SOAP message can be posted
to that script’s URL with any ofhello , echo , or average as the request element, and the value returned by the
function will be sent back.

The ZSI CGI dispatcher catches exceptions and sends back a SOAP fault. For example, a fault will be sent if the
hello function is given any arguments, or if theaverage function is given a non-integer.

If the above script is installed on the webserver running on the local host, and if the URL is/cgi-bin/simple-
test , then the following code shows simple binding and access to the server:

3

from ZSI.client import Binding
b = Binding(url=’/cgi-bin/simple-test’)
a = apply(b.average, range(1,11))
assert a == 5
print b.hello()

2.2 More complex example

We will now show a more complete example of a robust web service. It takes as input a player name and array of
integers, and returns the average. It is presented in sections, following the steps detailed above.

The first section reads in a request, and parses the SOAP header.

from ZSI import *
import sys
IN, OUT = sys.stdin, sys.stdout

try:
ps = ParsedSoap(IN)

except ParseException, e:
FaultFromZSIException(e).AsSOAP(OUT)
sys.exit(1)

except Exception, e:
Faulted while processing; we assume it’s in the header.
FaultFromException(e, 1).AsSOAP(OUT)
sys.exit(1)

We are not prepared to handle any actors or mustUnderstand elements,
so we’ll arbitrarily fault back with the first one we found.
a = ps.WhatActorsArePresent()
if len(a):

FaultFromActor(a[0]).AsSOAP(OUT)
sys.exit(1)

mu = ps.WhatMustIUnderstand()
if len(mu):

uri, localname = mu[0]
FaultFromNotUnderstood(uri, localname).AsSOAP(OUT)
sys.exit(1)

This section defines the mappings between Python objects and the SOAP data being transmitted. Recall that according
to the SOAP specification, RPC input and output are modeled as a structure.

4 Chapter 2. Examples

class Player:
def __init__(self, name):

pass
Player.typecode = TC.Struct(Player, [

TC.String(’Name’),
TC.Array(’Scores’, TC.Integer()),
], ’GetAverage’)

class Average:
def __init__(self, average):

self.average = average
Average.typecode = TC.Struct(Average, [

TC.Integer(’average’),
], ’GetAverageResponse’)

This section parses the input, performs the application-level activity, and serializes the response.

try:
player = ps.Parse(Player.typecode)

except EvaluateError, e:
FaultFromZSIException(e).AsSOAP(OUT)
sys.exit(1)

try:
total = 0
for value in player.Scores: total = total + value
result = Average(total / len(player.Scores))
sw = SoapWriter(OUT)
sw.serialize(result, Average.typecode)
sw.close()

except Exception, e:
FaultFromException(e, 0, sys.exc_info()[2]).AsSOAP(OUT)
sys.exit(1)

In the serialize() call above, the second parameter is optional, sinceresult is an instance of theAverage
class, and theAverage.typecode attribute is the typecode for class instances. In addition, since theSoapWriter
destructor will callclose() if necessary, sending a SOAP response can often be written like this one-liner:

SoapWriter(OUT).serialize(result)

2.2. More complex example 5

6

CHAPTER

THREE

Exceptions

ZSI defines two exception classes.

exceptionParseException
ZSI can raise this exception while creating aParsedSoap object. It is a subtype of Python’sException
class. The string form of aParseException object consists of a line of human-readable text. If the backtrace
is available, it will be concatenated as a second line.

The following attributes are read-only:

inheader
A boolean that indicates if the error was detected in the SOAPHeader element.

str
A text string describing the error.

trace
A text string containing a backtrace to the error. This may beNone if it was not possible, such as when there
was a general DOM exception, or when thestr text is believed to be sufficient.

exceptionEvaluateException
This exception is similar toParseException , except thatZSI may raise it while converting between SOAP
and local Python objects.

The following attributes are read-only:

str
A text string describing the error.

trace
A text backtrace, as described above forParseException .

7

8

CHAPTER

FOUR

Utilities

ZSI defines some utility methods that general applications may want to use.

Version ()
Returns a three-element tuple containing the numbers representing the major, minor, and release identifying the
ZSI version. New in version 1.1.

4.1 Low-Level Utilities

ZSI also defines some low-level utilities for its own use that start with a leading underscore and must be imported
explicitly. They are documented here because they can be useful for developing new typecode classes.

valid encoding (elt)
Return true if the elementelt has a SOAP encoding that can be handled byZSI (currently Section 5 of the
SOAP 1.1 specification or an empty encoding for XML).

backtrace (elt, dom)
This function returns a text string that traces a “path” fromdom, a DOM root, toelt , an element within that
document, in XPath syntax.

Somelambda ’s are defined so that some DOM accessors will return an empty list rather thanNone. This means that
rather than writing:

if elt.childNodes:
for N in elt.childNodes:

...

One can write:

for N in _children(elt):
...

children (element)
Returns a list of all children of the specifiedelement .

attrs (element)
Returns a list of all attributes of the specifiedelement .

child elements (element)
Returns a list of all children elements of the specifiedelement .

Otherlambda ’s return SOAP-related attributes from an element, orNone if not present.

find arraytype (element)

9

The value of the SOAParrayType attribute.

find encstyle (element)
The value of the SOAPencodingStyle attribute.

find href (element)
The value of the unqualifiedhref attribute.

find type (element)
The value of the XML Schematype attribute.

10 Chapter 4. Utilities

CHAPTER

FIVE

The ParsedSoap module — basic
message handling

This class represents an input stream that has been parsed as a SOAP message.

classParsedSoap (input[, **keywords])
Creates aParsedSoap object from the provided input source. Ifinput is not a string, then it must be an
object with aread() method that supports the standard Python “file read” semantics.

The following keyword arguments may be used:

Keyword Default Description
resolver None Value for theresolver attribute; see below.
trailers 0 Allow trailing data elements to appear after theBody .

The following attributes are read-only:

body
The root of the SOAPBody element. Using theGetElementNSdict() method on this attribute can be
useful to get a dictionary to be used with theSoapWriter class.

body root
The element that contains the SOAP serialization root; that is, the element in the SOAPBody that “starts off”
the data.

data elements
A (possibly empty) list of all child elements of theBody other than the root.

header
The root of the SOAPHeader element. Using theGetElementNSdict() method on this attribute can be
useful to get a dictionary to be used with theSoapWriter class.

header elements
A (possibly empty) list of all elements in the SOAPHeader .

trailer elements
Returns a (possibly empty) list of all elements following theBody . If the trailers keyword was not used
when the object was constructed, this attribute will not be instantiated and retrieving it will raise an exception.

The following attribute may be modified:

resolver
If not None, this attribute can be invoked to handle absolutehref ’s in the SOAP data. It will be invoked as
follows:

resolver (uri, tc, ps, **keywords)
Theuri parameter is the URI to resolve. Thetc parameter is the typecode that needs to resolvehref ;
this may be needed to properly interpret the content of a MIME bodypart, for example. Theps parameter

11

is theParsedSoap object that is invoking the resolution (this allows a single resolver instance to handle
multiple SOAP parsers).

Failure to resolve the URI should result in an exception being raised. If there is no content, returnNone;
this is not the same as an empty string. If there is content, the data returned should be in a form under-
standable by the typecode.

The following methods are available:

Backtrace (elt)
Returns a human-readable “trace” from the document root to the specified element.

FindLocalHREF (href, elt)
Returns the element that has anid attribute whose value is specified by thehref fragment identifier. Thehref
mustbe a fragment reference — that is, it must start with a pound sign. This method raises anEvaluateEx-
ception exception if the element isn’t found. It is mainly for use by the parsing methods in theTypeCode
module.

GetElementNSdict (elt)
Return a dictionary for all the namespace entries active at the current element. Each dictionary key will be the
prefix and the value will be the namespace URI.

GetMyHeaderElements ([actorlist=None])
Returns a list of all elements in theHeader that are intended forthis SOAP processor. This includes all
elements that either have no SOAPactor attribute, or whose value is either the special “next actor” value or
in theactorlist list of URI’s.

IsAFault ()
Returns true if the message is a SOAP fault.

Parse (how)
Parses the SOAPBody according to thehow parameter, and returns a Python object. Ifhow is not a
TC.TypeCode object, then it should be a Python class object that has atypecode attribute.

ResolveHREF (uri, tc[, **keywords])
This method is invoked to resolve an absolute URI. If the typecodetc has aresolver attribute, it will use
it to resolve the URI specified in theuri parameter, otherwise it will use its ownresolver , or raise an
EvaluateException exception.

Any keyword parameters will be passed to the chosen resolver. If no content is available, it will returnNone.
If unable to resolve the URI it will raise anEvaluateException exception. Otherwise, the resolver should
return data in a form acceptable to the specified typecode,tc . (This will almost always be a file-like object
holding opaque data; for XML, it may be a DOM tree.)

WhatActorsArePresent ()
Returns a list of the values of all the SOAPactor attributes found in child elements of the SOAPHeader .

WhatMustIUnderstand ()
Returns a list of ‘(uri, localname) ’ tuples for all elements in the SOAPHeader that have the SOAP
mustUnderstand attribute set to a non-zero value.

12 Chapter 5. The ParsedSoap module — basic message handling

CHAPTER

SIX

The TypeCode classes — data
conversions

TheTypeCode module defines classes used for converting data between SOAP data and local Python objects. The
TC.TypeCode class is the parent class of all datatypes understood byZSI .

All typecodes classes have the prefixTC. , to avoid name clashes.

classTypeCode (name, **keywords)
The name parameter is the name of the object; this is only required when a typecode appears within a
TC.Struct as it defines the attribute name used to hold the data, or within aTC.Choice as it determines the
data type. (Since SOAP RPC models transfer as structures, this essentially means that a thename parameter
can never beNone.) The name may be either a text string, or a ‘(uri, localname) ’ tuple. If the name
(or localname tuple element) has a colon, the namespace prefix before the colon will be ignore when parsing
input, but written when serializing for output.

The following keyword arguments may be used:

Keyword Default Description
default n/a Value if the element is not specified.
optional 0 The element is optional; see below.
typed 1 Output type information (in thexsi:type attribute) when serializing. By

special dispensation, items within aTC.Struct object will inherit this
from the container.

Optional elements are those which do not have to be an incoming message, or which have the XML Schema
nil attribute set. When parsing the message as part of aStruct , then the Python instance attribute will not
be set, or the element will not appear as a dictionary key. When being parsed as a simple type, the valueNone
is returned. When serializing an optional element, a non-existent attribute, or a value ofNone is taken to mean
not present, and the element is skipped.

typechecks
This is a class attribute. If true (the default) then all typecode constructors do more rigorous type-checking on
their parameters.

The following methods are useful for defining new typecode classes; see the section on dynamic typing for more
details. In all of the following, theps parameter is aParsedSoap object.

checkname (elt, ps)
Checks if the name and type of the elementelt are correct and raises aEvaluateException if not. Returns
the element’s type as a ‘(uri, localname) ’ tuple if so.

checktype (elt, ps)
Like checkname() except that the element name is ignored. This method is actually invoked bycheck-
name() to do the second half of its processing, but is useful to invoke directly, such as when resolving multi-
reference data.

13

nilled (elt, ps)
If the elementelt has data, this returns0. If it has no data, and the typecode is not optional, anEvaluate-
Exception is raised; if it is optional, a1 is returned.

simple value (elt, ps)
Returns the text content of the elementelt . If no value is present, or the element has non-text children, an
EvaluateException is raised.

6.1 TC.Any — the basis of dynamic typing

SOAP provides a flexible set of serialization rules, ranging from completely self-describing to completely opaque,
requiring an external schema. For example, the following are all possible ways of encoding an integer elementi with
a value of12 :

<tns:i xsi:type="SOAP-ENC:integer">12</tns:i>
<tns:i xsi:type="xsi:nonNegativeInteger">12</tns:i>
<SOAP-ENC:integer>12</SOAP-ENC:integer>
<tns:i>12</tns:i>

The first three lines are examples oftypedelements. IfZSI is asked to parse any of the above examples, and aTC.Any
typecode is given, it will properly create a Python integer for the first three, and raise aParseException for the
fourth.

Compound data, such as astruct , may also be self-describing:

<tns:foo xsi:type="tns:mytype">
<tns:i xsi:type="SOAP-ENC:integer">12</tns:i>
<tns:name xsi:type="SOAP-ENC:string">Hello world</tns:name>

</tns:foo>

If this is parsed with aTC.Any typecode, either a Python dictionary or a sequence will be created:

{ ’name’: u’Hello world’, ’i’: 12 }

[12, u’Hello world’]

Note that one preserves order, while the other preserves the element names.

classAny(name[, **keywords])
Used for parsing incoming SOAP data (that is typed), and serializing outgoing Python data.

The following keyword arguments may be used:

Keyword Default Description
aslist 0 If true, then the data is (recursively) treated as a list of values. The de-

fault is a Python dictionary, which preserves parameter names but loses the
ordering. New in version 1.1.

Referring back to the compound XML data above, it is possible to create a new typecode capable of parsing elements
of typemytype . This class would know that thei element is an integer, so that the explicit typing becomes optional,
rather than required.

The rest of this section describes how to add new types to theZSI typecode engine.

classNEWTYPECODE(TypeCode) (...)

14 Chapter 6. The TypeCode classes — data conversions

The new typecode should be derived from theTC.TypeCode class, andTypeCode. init () must be
invoked in the new class’s constructor.

parselist
This is a class attribute, used when parsing incoming SOAP data. It should be a sequence of ‘(uri, local-
name) ’ tuples to identify the datatype. Ifuri is None, it is taken to mean either the XML Schema namespace
or the SOAP encoding namespace; this should only be used if adding support for additional primitive types. If
this list is empty, then the type of the incoming SOAP data is assumed to be correct; an empty list also means
that incoming typed data cannot by dynamically parsed.

errorlist
This is a class attribute, used when reporting a parsing error. It is a text string naming the datatype that was
expected. If not defined,ZSI will create this attribute from theparselist attribute when it is needed.

seriallist
This is a class attribute, used when serializing Python objects dynamically. It specifies what types of object
instances (or Python types) this typecode can serialize. It should be a sequence, where each element is either
the name of a Python class, or a type object from Python’stypes module (if the new typecode is serializing a
built-in Python type).

parse (elt, ps)
ZSI invokes this method to parse theelt element and return its Python value. Theps parameter is the
ParsedSoap object, and can be used for dereferencinghref ’s, callingBacktrace() to report errors, etc.

serialize (sw, pyobj[, **keywords])
ZSI invokes this method to output a Python object to a SOAP stream. Thesw parameter will be aSoapWriter
object, and thepyobj parameter is the Python object to serialize.

The following keyword arguments may be used:

Keyword Default Description
attrtext None Text (with leading space) to output as an attribute; this is normally used by

theTC.Array class to pass down indexing information.
name None Name to use for serialization; defaults to the name specified in the typecode,

or a generated name.
typed per-typecode Whether or not to output type information; the default is to use the value in

the typecode.

Once the new typecode class has been defined, it should be registered withZSI ’s dynamic type system by invoking
the following function:

RegisterType (class[, clobber=0[, **keywords]])
By default, it is an error to replace an existing type registration, and an exception will be raised. Theclobber
parameter may be given to allow replacement. A single instance of theclass object will be created, and the
keyword parameters are passed to the constructor.

If the class is not registered, then instances of the class cannot be processed as dynamic types. This may be acceptable
in some environments.

6.2 Void

A SOAP void is a PythonNone.

classVoid (name[, **keywords])
A Void is an item without a value. It is of marginal utility, mainly useful for interoperability tests, and as an
optional item within aStruct .

6.2. Void 15

6.3 Strings

SOAP Strings are Python strings. If the value to be serialized is a Python sequence, then anhref is generated,
with the first element of the sequence used as the URI. This can be used, for example, when generating SOAP with
attachments.

classString (name[, **keywords])
The parent type of all SOAP strings.

The following keyword arguments may be used:

Keyword Default Description
resolver None A function that can resolve an absolute URI and return its content as a

string, as described in theParsedSoap description.
strip 1 If true, leading and trailing whitespace are stripped from the content.
textprotect 1 If true, less-than and ampersand characters are replaced with< and

& , respectively. New in version 1.1.
unique 0 If true, the string is unique and will never be “aliased” with another string.

classEnumeration (value list, name[, **keywords])
Like TC.String , but the value must be a member of thevalue list sequence of text strings

In addition toTC.String , the basic string, several subtypes are provided that transparently handle common encod-
ings.

classBase64String (name[, **keywords])
The value is encoded in Base-64.

classHexBinaryString (name[, **keywords])
Each byte is encoded as its printable version.

classURI(name[, **keywords])
The value is URL quoted (e.g.,%20for the space character).

It is often the case that a parameter will be typed as a string for transport purposes, but will in fact have special syntax
and processing requirements. For example, a string could be used for an XPath expression, and we want the Python
value to actually be the compiled expression. Here is how to do that:

import xml.xpath.pyxpath
import xml.xpath.pyxpath.Compile as _xpath_compile
class XPathString(TC.String):

We don’t set parselist, since this data is typed as a string
for interoperability with other SOAP implementations.
#parselist = [(’tns’, ’xpath’)]

def __init__(self, name, **kw):
TC.String.__init__(self, name, **kw)

def parse(self, elt, ps):
val = TC.String.parse(self, elt, ps)
try:

val = _xpath_compile(val)
except:

raise EvaluateException("Invalid XPath expression",
ps.Backtrace(elt))

return val

16 Chapter 6. The TypeCode classes — data conversions

6.4 Integers

SOAP integers are Python integers.

classInteger (name[, **keywords])
The parent type of all integers. This class handles any of the several types (and ranges) of SOAP integers.

classIEnumeration (value list, name[, **keywords])
Like TC.Integer , but the value must be a member of thevalue list sequence.

A number of sub-classes are defined to handle smaller-ranged numbers.

classIbyte (name[, **keywords])
A signed eight-bit value.

classIunsignedByte (name[, **keywords])
An unsigned eight-bit value.

classIshort (name[, **keywords])
A signed 16-bit value.

classIunsignedShort (name[, **keywords])
An unsigned 16-bit value.

classIint (name[, **keywords])
A signed 32-bit value.

classIunsignedInt (name[, **keywords])
An unsigned 32-bit value.

classIlong (name[, **keywords])
An signed 64-bit value.

classIunsignedLong (name[, **keywords])
An unsigned 64-bit value.

classIpositiveInteger (name[, **keywords])
A value greater than zero.

classInegativeInteger (name[, **keywords])
A value less than zero.

classInonPositiveInteger (name[, **keywords])
A value less than or equal to zero.

classInonNegativeInteger (name[, **keywords])
A value greater than or equal to zero.

6.5 Floating-point Numbers

SOAP floating point numbers are Python floats.

classDecimal (name[, **keywords])
The parent type of all floating point numbers. This class handles any of the several types (and ranges) of SOAP
floating point numbers.

classFPEnumeration (value list, name[, **keywords])
Like TC.Decimal , but the value must be a member of thevalue list sequence. Be careful of round-off
errors if using this class.

Two sub-classes are defined to handle smaller-ranged numbers.

6.4. Integers 17

classFPfloat (name[, **keywords])
An IEEE single-precision 32-bit floating point value.

classFPdouble (name[, **keywords])
An IEEE double-precision 64-bit floating point value.

6.6 Dates and Times

SOAP dates and times are Python time tuples in UTC (GMT), as documented in the Pythontime module. When
serializing, an integral or floating point number is taken as the number of seconds since the epoch, in UTC.

classDuration (name[, **keywords])
A relative time period. Negative durations have all values less than zero; this makes it easy to add a duration to
a Python time tuple.

classGregorian (name[, **keywords])
An absolute time period. This class should not be instantiated directly; use one of thegXXXclasses instead.

classgDateTime (name[, **keywords])
A date and time.

classgDate (name[, **keywords])
A date.

classgYearMonth (name[, **keywords])
A year and month.

classgYear (name[, **keywords])
A year.

classgMonthDay (name[, **keywords])
A month and day.

classgDay(name[, **keywords])
A day.

classgTime (name[, **keywords])
A time.

6.7 Boolean

SOAP Booleans are Python integers.

classBoolean (name[, **keywords])
When marshaling zero or the word “false” is returned as0 and any non-zero value or the word “true” is returned
as1. When serializing, the number0 or 1 will be generated.

6.8 XML

XML is a Python DOM element node. If the value to be serialized is a Python string, then anhref is generated, with
the value used as the URI. This can be used, for example, when generating SOAP with attachments. Otherwise, the
XML is put inside a wrapper element that sets the proper SOAP encoding style.

classXML(name[, **keywords])
This typecode represents a portion of an XML document embedded in a SOAP message. The value is the
element node.

18 Chapter 6. The TypeCode classes — data conversions

The following keyword arguments may be used:

Keyword Default Description
resolver None A function that can resolve an absolute URI and return its content as an

element node, as described in theParsedSoap description.

6.9 Struct

SOAP structs are either Python dictionaries or instances of application-specified classes.

classStruct (pyclass, typecodeseq, name[, **keywords])
This class defines a compound data structure. Ifpyclass is None, then the data will be marshaled into
a Python dictionary, and each item in thetypecode seq sequence specifies a (possible) dictionary entry.
Otherwise,pyclass must be a Python class object whose constructor takes a single parameter, which will be
the value of thename parameter given in theTC.Struct constructor. (This allows a singlepyclass to be
used for different typecodes.) The data is then marshaled into the object, and each item in thetypecode seq
sequence specifies an attribute of the instance to set.

Note that each typecode intypecode seq must have a name.

The following keyword arguments may be used:

Keyword Default Description
hasextras 0 Ignore any extra elements that appear in the in the structure. Ifinorder

is true, extras can only appear at the end.
inorder 0 Items within the structure must appear in the order specified in theTCseq

sequence.
inline 0 The structure is single-reference, so ZSI does not have to usehref/id

encodings.
type None A ‘ (uri, localname) ’ tuple that defines the type of the structure.

If present, and if the input data has axsi:type attribute, then the
namespace-qualified value of that attribute must match the value specified
by this parameter. By default, type-checking is not done for structures;
matching child element names is usually sufficient and senders rarely pro-
vide type information.

If the typed keyword is used, then its value is assigned to all typecodes in thetypecode seq parameter.

For example, the following C structure:

struct foo {
int i;
char* text;

};

could be declared as follows:

class foo:
def __init__(self, name):

self.name = name
def __str__(self):

return str((self.name, self.i, self.text))

foo.typecodes = TC.Struct(foo,
(TC.Integer(’i’), TC.String(’text’)),
’foo’)

6.9. Struct 19

6.10 Choice

A choice is a Python two-element ‘(name, value) ’ tuple. The first item is a string, and the second is the actual
Python object. The string is the discriminant, used to identify the type of the data.

classChoice (typecodeseq, name[, **keywords])
When parsing,ZSI will look at the element name in the SOAP message, and determine which of the choices to
create. When serializing,ZSI will look at the name in the tuple and determine which typecode to serialize the
object.

6.11 Arrays

SOAP arrays are Python lists; multi-dimensional arrays are lists of lists and are indistinguishable from a SOAP array
of arrays. Arrays may besparse, in which case each element in the array is a tuple of ‘(subscript, data) ’ pairs.
If an array is not sparse, a specifiedfill element will be used for the missing values.

Currently only singly-dimensioned arrays are supported.

classArray (atype, ofwhat, name[, **keywords])
Theatype parameter is a text string representing the SOAP array type. theofwhat parameter is a typecode
describing the array elements.

The following keyword arguments may be used:

Keyword Default Description
childnames None Default name to use for the child elements.
dimensions 1 The number of dimensions in the array.
fill None The value to use when an array element is omitted.
nooffset 0 Do not use the SOAPoffset attribute so skip leading elements with the

same value asfill .
sparse 0 The array is sparse.
size None An integer or list of integers that specifies the maximum array dimensions.

6.12 Apache.Map

The Apache SOAP project, urlhttp://xml.apache.org/soap/index.html, has defined aMap class that transmits a list of
arbitrary key:value pairs.

An Apache Map is either a Python dictionary or a list of two-element tuples.

classApache.Map (name[, **keywords])
An Apache map. Note that the class name is dotted.

The following keyword arguments may be used:

Keyword Default Description
aslist 0 Use a list of tuples rather than a dictionary.

20 Chapter 6. The TypeCode classes — data conversions

CHAPTER

SEVEN

The SoapWriter module — serializing
data

The SoapWriter class is used to output SOAP messages. Note that its output is encoded as UTF-8; when transporting
SOAP over HTTP it is therefore important to set thecharset attribute of theContent-Type header.

TheSoapWriter class reserves some namespace prefixes:

Prefix URI
SOAP-ENV http://schemas.xmlsoap.org/soap/envelope/
SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/
ZSI http://www.zolera.com/schemas/ZSI/
xsd http://www.w3.org/2001/XMLSchema
xsi http://www.w3.org/2001/XMLSchema-instance

classSoapWriter (out[, **keywords])
Theout parameter is an object that has awrite() method for generating the output.

The following keyword arguments may be used:

Keyword Default Description
nsdict {} Dictionary of namespaces to write in the SOAPHeader .
header None A sequence of elements to output in the SOAPHeader . It may also be a

text string, in which case it is output as-is, and should therefore be XML
text.

serialize (pyobj[, typecode[, root=None]])
This method serializes thepyobj Python object as directed by thetypecode typecode object. Iftypecode
is omitted, thenpyobj should be a Python object instance of a class that has atypecode attribute. It returns
self , so that serializations can be chained together, or so that theclose() method can be invoked. Theroot
parameter may be used to explicitly indicate the root (main element) of a SOAP encoding, or indicate that the
item is not the root. If specified, it should have the numeric value of zero or one.

close ([trailer=None[, nsdict=None]])
Close off the SOAP message, finishing all the pending serializations. Iftrailer is a string or list of elements,
it is output after the close-tag for theBody . Theclose() method of the originally provided out object is NOT
called. (If it were, and the originalout object were aStringIO object, there would be no way to collect the
data.) This method will be invoked automatically if the object is deleted.

The following methods are primarily useful for those writing new typecodes.

AddCallback (func, arg)
Used by typecodes when serializing, allows them to add output after the SOAPBody is written but before
the SOAPEnvelope is closed. The functionfunc() will be called with theSoapWriter object and the
specifiedarg argument, which may be a tuple.

21

Known(obj)
If obj (which is typically the value of the Python functionid) has been seen before, return1. Otherwise,
rememberobj and return0.

ReservedNS (prefix, uri)
Returns true if the specified namespaceprefix anduri collide with those used by the implementation.

write (arg)
This is a convenience method that callsself.out.write() on arg , with the addition that ifarg is a
sequence, it iterates over the sequence, writing each item (that isn’tNone) in turn.

writeNSDict (nsdict)
Outputsnsdict as a namespace dictionary. It is assumed that an XML start-element is pending on the output
stream.

22 Chapter 7. The SoapWriter module — serializing data

CHAPTER

EIGHT

The Fault module — reporting errors

SOAP defines afault message as the way for a recipient to indicate it was unable to process a message. TheZSI
Fault class encapsulates this.

classFault (code, string[, **keywords])
Thecode parameter is a text string identifying the SOAP fault code, a namespace-qualified name. The class
attributeFault.Client can be used to indicate a problem with an incoming message,Fault.Server can
be used to indicate a problem occurred while processing the request, orFault.MU can be used to indicate a
problem with the SOAPmustUnderstand attribute. Thestring parameter is a human-readable text string
describing the fault.

The following keyword arguments may be used:

Keyword Default Description
actor None A string identifying theactor attribute that caused the problem (usually

because it is unknown).
detail None A sequence of elements to output in thedetail element; it may also be

a text string, in which case it is output as-is, and should therefore be XML
text.

headerdetail None Data, treated the same as thedetail keyword, to be output in the SOAP
header. See the following paragraph.

If the fault occurred in the SOAPHeader , the specification requires that the detail be sent back as an element
within the SOAPHeader element. Unfortunately, the SOAP specification does not describe how to encode
this;ZSI defines and uses aZSI:detail element, which is analogous to the SOAPdetail element.

The following attributes are read-only:

actor
A text string holding the value of the SOAPfaultactor element.

code
A text string holding the value of the SOAPfaultcode element.

detail
A text string or sequence of elements containing holding the value of the SOAPdetail element, when avail-
able.

headerdetail
A text string or sequence of elements containing holding the value of theZSI header detail element, when
available.

string
A text string holding the value of the SOAPfaultstring element.

AsSOAP([output=None])
This method serializes theFault object into a SOAP message. If theoutput parameter is not specified, the

23

message is returned as a string. OtherwiseAsSOAP() will call output.write() as needed to output the
message. New in version 1.1; the oldAsSoap method is still available.

If other data is going to be sent with the fault, the following two methods can be used. Because some data might need
to be output in the SOAPHeader , serializing a fault is a two-step process.

DataForSOAPHeader ()
This method returns a text string that can be included as theheader parameter for constructing aSoapWriter
object.

serialize (sw)
This method outputs the fault object onto thesw object, which must support awrite() method.

Some convenience functions are available to create aFault from common conditions.

FaultFromActor (uri[, actor=None])
This function could be used when an application receives a message that has a SOAPHeader element directed
to an actor that cannot be processed. Theuri parameter identifies the actor. Theactor parameter can be used
to specify a URI that identifies the application, if it is not the ultimate recipient of the SOAP message.

FaultFromException (ex, inheader[, tb=None[, actor=None]])
This function creates aFault from a general Python exception. A SOAP “server” fault is created. Theex
parameter should be the Python exception. Theinheader parameter should be true if the error was found on
a SOAPHeader element. The optionaltb parameter may be a Pythontraceback object, as returned by
‘sys.exc info()[2] ’. The actor parameter can be used to specify a URI that identifies the application,
if it is not the ultimate recipient of the SOAP message.

FaultFromFaultMessage (ps)
This function creates aFault from a ParsedSoap object. It should only be used if theIsAFault()
method returned true.

FaultFromNotUnderstood (uri, localname,[, actor=None])
This function could be used when an application receives a message with the SOAPmustUnderstand at-
tribute that it does not understand. Theuri andlocalname parameters should identify the unknown element.
The actor parameter can be used to specify a URI that identifies the application, if it is not the ultimate
recipient of the SOAP message.

FaultFromZSIException (ex[, actor=None])
This function creates aFault object from aZSI exception,ParseException or EvaluateException .
A SOAP “client” fault is created. Theactor parameter can be used to specify a URI that identifies the
application, if it is not the ultimate recipient of the SOAP message.

24 Chapter 8. The Fault module — reporting errors

CHAPTER

NINE

The resolvers module — fetching
remote data

The resolvers module provides some functions and classes that can be used as theresolver attribute for
TC.String or TC.XML typecodes. They process an absolute URL, as described above, and return the content.
Because theresolvers module can import a number of other large modules, it must be imported directly, as in
‘ from ZSI import resolvers ’.

These first two functions pass the URI directly to theurlopen function in theurllib module. Therefore, if used
directly as resolvers, a client could direct the SOAP application to fetch any file on the network or local disk. Needless
to say, this could pose a security risks.

Opaque(uri, tc, ps[, **keywords])
This function returns the data contained at the specifieduri as a Python string. Base-64 decoding will be done
if necessary. Thetc andps parameters are ignored; thekeywords are passed to theurlopen method.

XML(uri, tc, ps[, **keywords])
This function returns a list of the child element nodes of the XML document at the specifieduri . Thetc and
ps parameters are ignored; thekeywords are passed to theurlopen method.

TheNetworkResolver class provides a simple-minded way to limit the URI’s that will be resolved.

classNetworkResolver ([prefixes=None])
Theprefixes parameter is a list of strings defining the allowed prefixes of any URI’s. If asked to fetch the
content for a URI that does start with one of the prefixes, it will raise an exception.

In addition toOpaque andXMLmethods, this class provides aResolve method that examines the typecode
to determine what type of data is desired.

If the SOAP application is given a multi-part MIME document, theMIMEResolver class can be used to process
SOAP with Attachments.

TheMIMEResolver class will read the entire multipart MIME document, noting anyContent-ID or Content-
Location headers that appear on the headers of any of the message parts, and use them to resolve anyhref
attributes that appear in the SOAP message.

classMIMEResolver (ct, f[, **keywords])
Thect parameter is a string that contains the value of the MIMEContent-Type header. Thef parameter is
the input stream, which should be positioned just after the message headers.

The following keyword arguments may be used:

25

Keyword Default Description
seekable 0 Whether or not the input stream is seekable; passed to the constructor for

the internalmultifile object. Changed in version 2.0: default had been
1.

next None A resolver object that will be asked to resolve the URI if it is not found in
the MIME document. New in version 1.1.

uribase None The base URI to be used when resolving relative URI’s; this will typically
be the value of theContent-Location header, if present. New in
version 1.1.

In addition to to theOpaque, Resolve , andXMLmethods as described above, the following method is available:

GetSOAPPart ()
This method returns a stream containing the SOAP message text.

The following attributes are read-only:

parts
An array of tuples, one for each MIME bodypart found. Each tuple has two elements, amime-
tools.Message object which contains the headers for the bodypart, and aStringIO object containing
the data.

id dict
A dictionary whose keys are the values of anyContent-ID headers, and whose value is the appropriate
parts tuple.

loc dict
A dictionary whose keys are the values of anyContent-Location headers, and whose value is the appro-
priateparts tuple.

26 Chapter 9. The resolvers module — fetching remote data

CHAPTER

TEN

Dispatching and Invoking

New in version 1.1.

ZSI is focused on parsing and generating SOAP messages, and provides limited facilities for dispatching to the appro-
priate message handler. This is becauseZSI works within many client and server environments, and the dispatching
styles for these different environments can be very different.

Nevertheless,ZSI includes some dispatch and invocation functions. To use them, they must be explicitly imported, as
shown in the example at the start of this document.

The implementation (and names) of the these classes reflects the orientation of using SOAP for remote procedure calls
(RPC).

Both client and server share a class that defines the mechanism a client uses to authenticate itself.

classAUTH()
This class defines constants used to identify how the client authenticated:none if no authentication was pro-
vided; httpbasic if HTTP basic authentication was used, orzsibasic if ZSI basic authentication (see
below)) was used.

TheZSI schema (see the last chapter of this manual) defines a SOAP header element,BasicAuth , that contains a
name and password. This is similar to the HTTP basic authentication header, except that it can be used independently
from an HTTP transport.

10.1 Dispatching

The ZSI.dispatch module allows you to expose Python functions as a web service. The module provides the
infrastructure to parse the request, dispatch to the appropriate handler, and then serialize any return value back to the
client. The value returned by the function will be serialized back to the client. To return multiple values, return a list.

If an exception occurs, a SOAP fault will be sent back to the client.

Two dispatch mechanisms are provided: one supports standard CGI scripts, and the other runs a dedicated server based
on theBaseHTTPServer module.

AsCGI([module list])
This method parses the CGI input and invokes a function that has the same name as the top-level SOAP request
element. The optionalmodule list parameter can specify a list of modules (already imported) to search for
functions. If no modules are specified, only themain module will be searched.

AsServer ([**keywords])
This creates aHTTPServer object with a request handler that only supports the “POST” method. Dispatch is
based solely on the name of the root element in the incoming SOAP request; the request URL is ignored.

The following keyword arguments may be used:

27

Keyword Default Description
modules (main ,) List of modules containing functions that can be invoked.
port 80 Port to listen on.

GetClientBinding ()
More sophisticated scripts may want to use access the client binding object, which encapsulates all information
about the client invoking the script. This function returnsNone or the binding information, an object of type
ClientBinding , described below.

classClientBinding (...)
This object contains information about the client. It is created internally byZSI .

GetAuth ()
This returns a tuple containing information about the client identity. The first element will be one of the constants
from theAUTHclass described above. For HTTP orZSI basic authentication, the next two elements will be the
name and password provided by the client.

GetNS()
Returns the namespace URI that the client is using, or an empty string. This can be useful for versioning.

GetRequest ()
Returns theParsedSoap object of the incoming request.

The following attribute is read-only:

environ
A dictionary of the environment variables. This is most useful whenAsCGI() is used.

10.2 The client module — sending SOAP messages

ZSI includes a module to connect to a SOAP server over HTTP, send requests, and parse the response. It is built
on the standard Pythonhttplib module. It must be explicitly imported, as in ‘from ZSI.client import
AUTH,Binding ’.

classBinding ([**keywords])
This class encapsulates a connection to a server, known as abinding. A single binding may be used for multiple
RPC calls. Between calls, modifiers may be used to change the URL being posted to, etc.

The following keyword arguments may be used:

Keyword Default Description
auth (AUTH.none,) A tuple with authentication information; the first value should be one of the

constants from theAUTHclass.
host ’localhost’ Host to connect to.
ns n/a Namespace in which the request is defined.
nsdict {} Namespace dictionary to send in the SOAPEnvelope
port 80 or 443 Port to connect on.
ssl 0 Use SSL if non-zero.
tracefile None An object with awrite method, where packet traces will be recorded.
url n/a URL to post to.
uselists 1 Return values as Python lists (instead of dictionaries).

If using SSL, thecert file andkey file keyword parameters may also be used. For details see the
documentation for thehttplib module.

Once aBinding object has been created, the following modifiers are available. All of them return the binding object,
so that multiple modifiers can be chained together.

AddHeader (header, value)

28 Chapter 10. Dispatching and Invoking

Output the specifiedheader andvalue with the HTTP headers.

SetAuth (style, name, password)
Thestyle should be one of the constants from theAUTHclass described above. The remaining parameters will
vary depending on thestyle . Currently only basic authentication data of name and password are supported.

SetNS (uri)
Set the namespace for the request to the specifieduri .

SetURL(url)
Set the URL where the post is made tourl .

ResetHeaders ()
Remove any headers that were added byAddHeader() .

The following attribute may also be modified:

trace
If this attribute is notNone, it should be an object with awrite method, where packet traces will be recorded.

Once the necessary parameters have been specified (at a minimum, the URL must have been given in the constructor
are throughSetURL), invocations can be made.

RPC(url, opname, pyobj, replyclass[, **keywords])
This is the highest-level invocation method. It callsSend() to sendpyobj to the specifiedurl to perform
theopname operation, and callsReceive() expecting to get a reply of the specifiedreplyclass .

This method will raise aTypeError if the response does not appear to be a SOAP message, or if is valid
SOAP but contains a fault.

Send(url, opname, pyboj[, **keywords])
This sends the specifiedpyobj to the specifiedurl , invoking theopname method. Theurl can beNone if
it was specified in theBinding constructor or ifSetURL has been called. See below for a shortcut version of
this method.

The following keyword arguments may be used:

Keyword Default Description
nsdict {} Namespace dictionary to send in the SOAPEnvelope
requestclass n/a Pythonclass object with atypecode attribute specifying how to seri-

alize the data.
requesttypecode n/a Typecode specifying how to serialize the data.
soapaction http://www.zolera.com Value for theSOAPAction HTTP header.

Once a message has been sent, the following read-only attributes are available. Their values will remain unchanged
until another message is sent.

reply code
The HTTP reply code, a number.

reply headers
The HTTP headers, as amimetools object.

reply msg
A text string containing the HTTP reply text.

Methods are available to determine the type of response that came back:

IsSOAP()
Returns true if the message appears to be a SOAP message. (Some servers return an HTML page under certain
error conditions.)

IsAFault ()
Returns true if the message is a SOAP fault.

10.2. The client module — sending SOAP messages 29

Having determined the type of the message (or, more likely, assuming it was good and catching an exception if not),
the following methods are available to actually parse the data. They will continue to return the same value until another
message is sent.

ReceiveRaw ()
Returns the unparsed message body.

ReceiveSoap ()
Returns aParsedSOAP object containing the parsed message. Raises aTypeError if the message wasn’t
SOAP.

ReceiveFault ()
Returns aFault object containing the SOAP fault message. Raises aTypeError if the message did not
contain a fault.

Receive (replytype)
Parses a SOAP message. Thereplytype specifies how to parse the data. If it sNone, dynamic parsing
will be used, usually resulting in a Python list. Ifreplytype is a Python class, then the class’stypecode
attribute will be used, otherwisereplytype is interpreted as the typecode to use for parsing the data.

Finally, if an attribute is fetched other than one of those described above, it is taken to be theopname of a remote
procedure, and a callable object is returned. This object dynamically parses its arguments, receives the reply, and
parses that.

opname(args...)
Using this shortcut requires that theSetURL() was invoked first. This method is then equivalent to:
‘RPC(None, opname, tuple(args), TC.Any()) ’

30 Chapter 10. Dispatching and Invoking

CHAPTER

ELEVEN

ZSI Schema

The ZSI schema defines two sets of elements. One is used to enhance the SOAP Faultdetail element, and to
report header errors. The other is used to define a header element containing a name and password, for a class of basic
authentication.

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:tns="http://www.zolera.com/schemas/ZSI/"
xmlns:SOAPFAULT="http://schemas.xmlsoap.org/soap/envelope/"
targetNamespace="http://www.zolera.com/schemas/ZSI/">

<import namespace="http://schemas.xmlsoap.org/soap/envelope/"
schemaLocation="http://schemas.xmlsoap.org/soap/envelope/"/>

<!-- Soap doesn’t define a fault element to use when we want
to fault because of header problems. -->

<element name="detail" type="SOAPFAULT:detail"/>

<!-- A URIFaultDetail element typically reports an unknown
mustUnderstand element. -->

<element name="URIFaultDetail" type="tns:URIFaultDetail"/>
<complexType name="URIFaultDetail">

<sequence>
<element name="URI" type="anyURI" minOccurs="1"/>
<element name="localname" type="NCName" minOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

<!-- An ActorFaultDetail element typically reports an actor
attribute was found that cannot be processed. -->

<element name="ActorFaultDetail" type="tns:ActorFaultDetail"/>
<complexType name="ActorFaultDetail">

<sequence>
<element name="URI" type="anyURI" minOccurs="1"/>
<any minOccurs="0" maxOccurs="unbounded"/>

</sequence>
</complexType>

<!-- A ParseFaultDetail or a FaultDetail element are typically
used when there was parsing or "business-logic" errors.

31

The TracedFault type is intended to provide a human-readable
string that describes the error (in more detail then the
SOAP faultstring element, which is becoming codified),
and a human-readable "trace" (optional) that shows where
within the application that the fault happened. -->

<element name="ParseFaultDetail" type="tns:TracedFault"/>
<element name="FaultDetail" type="tns:TracedFault"/>
<complexType name="TracedFault">

<sequence>
<element name="string" type="string" minOccurs="1"/>
<element name="trace" type="string" minOccurs="0"/>
<!-- <any minOccurs="0" maxOccurs="unbounded"/> -->

</sequence>
</complexType>

<!-- An element to hold a name and password, for doing basic-auth. -->
<complexType name="BasicAuth">

<sequence>
<element name="Name" type="string" minOccurs="1"/>
<element name="Password" type="string" minOccurs="1"/>

</sequence>
</complexType>

</schema>

32 Chapter 11. ZSI Schema

	1 Introduction
	1.1 How to Read this Document

	2 Examples
	2.1 Simple example
	2.2 More complex example

	3 Exceptions
	4 Utilities
	4.1 Low-Level Utilities

	5 The ParsedSoap module --- basic message handling
	6 The TypeCode classes --- data conversions
	6.1 TC.Any --- the basis of dynamic typing
	6.2 Void
	6.3 Strings
	6.4 Integers
	6.5 Floating-point Numbers
	6.6 Dates and Times
	6.7 Boolean
	6.8 XML
	6.9 Struct
	6.10 Choice
	6.11 Arrays
	6.12 Apache.Map

	7 The SoapWriter module --- serializing data
	8 The Fault module --- reporting errors
	9 The resolvers module --- fetching remote data
	10 Dispatching and Invoking
	10.1 Dispatching
	10.2 The client module --- sending SOAP messages

	11 ZSI Schema

