
ScientificPython User’s Guide

Konrad Hinsen
Centre de Biophysique Moléculaire

CNRS
Rue Charles Sadron

45071 Orléans Cedex 2
France

E-Mail: hinsen@cnrs-orleans.fr

2001-3-29

2

Chapter 1

Introduction

ScientificPython is a collection of Python modules that are useful for
scientific computing. Most modules are rather general, others belong to
specific domains and will be of interest to only a small number of users (e.g.
the module Scientific.IO.PDB). Almost all modules make extensive use of
Numerical Python (NumPy), which must be installed prior to Scientific
Python. Python 1.5 or later is also required. For more information about
Numerical Python and about other packages for scientific computing, see
the Topic Guide ”Scientific Computing” on the Python home page.

This manual describes version 2.2 of ScientificPython. The 2.x versions are
completely revised and notcompatible with earlier releases. The major
difference is the introduction of a package structure; all modules are now
submodules of the top-level module Scientific. The package structure
should prevent name clashes with other modules, which have occurred in
the past (e.g. the module PDB was indistinguishable from the module pdb
in the Python standard library on operating systems without case
distinction in filenames).

For most code written for versions 1.x of ScientificPython, a change of the
import statements should be all that is required to make it compatible with
this release. The only module with significantly changed functionality is
Scientific.Statistics.Histogram; the changes were necessary to implement an
algorithm that is much more efficient for large data sets. There are of
course also additional modules and enhancements to existing ones, but they
don’t affect compatibility. The most significant addition is the module
Scientific.IO.NetCDF, which was previously distributed separately.

It should be noted that ScientificPython 2.x can coexist with an 1.x

3

Introduction

version, as all module names are different. However, the availability of both
versions in parallel makes it difficult to verify that code has been fully
ported to use the new one.

4

Chapter 2

Installation on Unix systems

The first step in installation is compilation of the C modules. There is
currently only one C module, the netCDF interface module. If you do not
need the netCDF module, you can skip the compilation step. If you do
want to compile it, you must first install the netCDF library, version 3 or
higher. Then copy the file Src/Setup.in to Src/Setup and edit the copy to
reflect the installation of the netCDF library on your system. If the library
archive is in /usr/local/lib and the header files in /usr/local/include,
nothing has to be changed. Once the file Src/Setup is ready, type
”./compile” in the top directory of the distribution.
The second step is the installation of ScientificPython in a publicly
accessible place. This is done by typing ”./install” in the top directory of
the distribution. This copies the directory Scientific to the directory
site-packages in the standard Python library. Depending on the location of
this directory, installation of ScientificPython may require root privileges.
However, ScientificPython can also be installed manually by copying the
directory Scientific with all its contents into a directory on the Python
search path.

5

Installation on Unix systems

6

Chapter 3

Reference for Module Scientific

Module Scientific.DictWithDefault

Class DictWithDefault: Dictionary with default values

Constructor: DictWithDefault(default)
Instances of this class act like standard Python dictionaries, except that
they return a copy of default for a key that has no associated value.

7

Reference for Module Scientific

Module Scientific.Functions

Module Scientific.Functions.Derivatives

This module provides automatic differentiation for functions with any
number of variables up to any order. An instance of the class DerivVar
represents the value of a function and the values of its partial derivatives
with respect to a list of variables. All common mathematical operations
and functions are available for these numbers. There is no restriction on the
type of the numbers fed into the code; it works for real and complex
numbers as well as for any Python type that implements the necessary
operations.
If only first-order derivatives are required, the module FirstDerivatives
should be used. It is compatible to this one, but significantly faster.
Example:
print sin(DerivVar(2))

produces the output
(0.909297426826, [-0.416146836547])

The first number is the value of sin(2); the number in the following list is
the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with an
integer second argument that specifies the number of the variable.
Example:

x = DerivVar(7., 0)

y = DerivVar(42., 1)

z = DerivVar(pi, 2)

print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))

produces the output

(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])

The numbers in the list are the partial derivatives with respect to x, y, and
z, respectively.
Higher-order derivatives are requested with an optional third argument to
DerivVar.
Example:

8

Reference for Module Scientific

x = DerivVar(3., 0, 3)

y = DerivVar(5., 1, 3)

print sqrt(x*y)

produces the output

(3.87298334621,

[0.645497224368, 0.387298334621],

[[-0.107582870728, 0.0645497224368],

[0.0645497224368, -0.0387298334621]],

[[[0.053791435364, -0.0107582870728],

[-0.0107582870728, -0.00645497224368]],

[[-0.0107582870728, -0.00645497224368],

[-0.00645497224368, 0.0116189500386]]])

The individual orders can be extracted by indexing:

print sqrt(x*y)[0]

3.87298334621

print sqrt(x*y)[1]

[0.645497224368, 0.387298334621]

An n-th order derivative is represented by a nested list of depth n.
When variables with different differentiation orders are mixed, the result
has the lower one of the two orders. An exception are zeroth-order
variables, which are treated as constants.
Caution: Higher-order derivatives are implemented by recursively using
DerivVars to represent derivatives. This makes the code very slow for high
orders.
Note: It doesn’t make sense to use multiple DerivVar objects with different
values for the same variable index in one calculation, but there is no check
for this. I.e.

print DerivVar(3, 0)+DerivVar(5, 0)

produces

(8, [2])

but this result is meaningless.

9

Reference for Module Scientific

Class DerivVar: Variable with derivatives

Constructor: DerivVar(value, index = 0, order = 1)

value the numerical value of the variable

index the variable index (an integer), which serves to distinguish between
variables and as an index for the derivative lists. Each explicitly
created instance of DerivVar must have a unique index.

order the derivative order

Indexing with an integer yields the derivatives of the corresponding order.

Methods:

• toOrder(order)
Returns a DerivVar object with a lower derivative order.

Functions

• isDerivVar(x)
Returns 1 if x is a DerivVar object.

• DerivVector(x, y, z, index=0, order=1)
Returns a vector whose components are DerivVar objects.

x, y, z vector components (numbers)

index the DerivVar index for the x component. The y and z
components receive consecutive indices.

order the derivative order

Module Scientific.Functions.FindRoot

Functions

• newtonRaphson(function, lox, hix, xacc)
Finds the root of function which is bracketed by values lox and hix to
an accuracy of +/- xacc. The algorithm used is a safe version of
Newton-Raphson (see page 366 of NR in C, 2ed). function must be a

10

Reference for Module Scientific

function of one variable, and may only use operations defined for the
DerivVar objects in the module FirstDerivatives.

Example:

from Scientific.Functions.FindRoot import newtonRaphson

from math import pi

def func(x):

return (2*x*cos(x) - sin(x))*cos(x) - x + pi/4.0

newtonRaphson(func, 0.0, 1.0, 1.0e-12)

yields 0.952847864655.

Module Scientific.Functions.FirstDerivatives

This module provides automatic differentiation for functions with any
number of variables. Instances of the class DerivVar represent the values of
a function and its partial derivatives with respect to a list of variables. All
common mathematical operations and functions are available for these
numbers. There is no restriction on the type of the numbers fed into the
code; it works for real and complex numbers as well as for any Python type
that implements the necessary operations.
This module is as far as possible compatible with the n-th order derivatives
module Derivatives. If only first-order derivatives are required, this module
is faster than the general one.
Example:

print sin(DerivVar(2))

produces the output

(0.909297426826, [-0.416146836547])

The first number is the value of sin(2); the number in the following list is
the value of the derivative of sin(x) at x=2, i.e. cos(2).
When there is more than one variable, DerivVar must be called with an
integer second argument that specifies the number of the variable.
Example:

11

Reference for Module Scientific

x = DerivVar(7., 0)

y = DerivVar(42., 1)

z = DerivVar(pi, 2)

print (sqrt(pow(x,2)+pow(y,2)+pow(z,2)))

produces the output

(42.6950770511, [0.163953328662, 0.98371997197, 0.0735820818365])

The numbers in the list are the partial derivatives with respect to x, y, and
z, respectively.

Note: It doesn’t make sense to use DerivVar with different values for the
same variable index in one calculation, but there is no check for this. I.e.

print DerivVar(3, 0)+DerivVar(5, 0)

produces

(8, [2])

but this result is meaningless.

Class DerivVar: Variable with derivatives

Constructor: DerivVar(value, index = 0)

value the numerical value of the variable

index the variable index (an integer), which serves to distinguish between
variables and as an index for the derivative lists. Each explicitly
created instance of DerivVar must have a unique index.

Indexing with an integer yields the derivatives of the corresponding order.

12

Reference for Module Scientific

Functions

• isDerivVar(x)
Returns 1 if x is a DerivVar object.

• DerivVector(x, y, z, index=0)
Returns a vector whose components are DerivVar objects.

x, y, z vector components (numbers)

index the DerivVar index for the x component. The y and z
components receive consecutive indices.

Module Scientific.Functions.Interpolation

Class InterpolatingFunction: Function defined by values on a grid
using interpolation

An interpolating function of n variables with m-dimensional values is
defined by an (n+m)-dimensional array of values and n one-dimensional
arrays that define the variables values corresponding to the grid points.
The grid does not have to be equidistant.
Constructor: InterpolatingFunction(axes, values, default=None)

axes a sequence of one-dimensional arrays, one for each variable, specifying
the values of the variables at the grid points

values an array containing the function values on the grid

default the value of the function outside the grid. A value of None means
that the function is undefined outside the grid and that any attempt
to evaluate it there yields an exception.

Evaluation: function(x1, x2, ...) yields the function value obtained by
linear interpolation.
Indexing: all array indexing operations except for the NexAxis operator are
supported.

Methods:

13

Reference for Module Scientific

• selectInterval(first, last, variable=0)
Returns a new InterpolatingFunction whose grid is restricted to the
interval from first to last along the variable whose number is variable.

• derivative(variable=0)
Returns a new InterpolatingFunction describing the derivative with
respect to variable (an integer).

• integral(variable=0)
Returns a new InterpolatingFunction describing the integral with
respect to variable (an integer). The integration constant is defined in
such a way that the value of the integral at the first grid point along
variable is zero.

• definiteIntegral(variable=0)
Returns a new InterpolatingFunction describing the definite integral
with respect to variable (an integer). The integration constant is
defined in such a way that the value of the integral at the first grid
point along variable is zero. In the case of a function of one variable,
the definite integral is a number.

• fitPolynomial(order)
Returns a polynomial of order with parameters obtained from a
least-squares fit to the grid values.

Class NetCDFInterpolatingFunction: Function defined by values
on a grid in a netCDF file

A subclass of InterpolatingFunction.

Constructor: NetCDFInterpolatingFunction(filename, axesnames,
variablename, default=None)

filename the name of the netCDF file

axesnames the names of the netCDF variables that contain the axes
information

variablename the name of the netCDF variable that contains the data values

14

Reference for Module Scientific

default the value of the function outside the grid. A value of None means
that the function is undefined outside the grid and that any attempt
to evaluate it there yields an exception.

Evaluation: function(x1, x2, ...) yields the function value obtained by
linear interpolation.

Module Scientific.Functions.LeastSquares

Functions

• leastSquaresFit(model, parameters, data)
General non-linear least-squares fit using the Levenberg-Marquardt
algorithm and automatic derivatives.

The parameter model specifies the function to be fitted. It will be
called with two parameters: the first is a tuple containing all fit
parameters, and the second is the first element of a data point (see
below). The return value must be a number. Since automatic
differentiation is used to obtain the derivatives with respect to the
parameters, the function may only use the mathematical functions
known to the module FirstDerivatives.

The parameter parameter is a tuple of initial values for the fit
parameters.

The parameter data is a list of data points to which the model is to be
fitted. Each data point is a tuple of length two or three. Its first
element specifies the independent variables of the model. It is passed
to the model function as its first parameter, but not used in any other
way. The second element of each data point tuple is the number that
the return value of the model function is supposed to match as well as
possible. The third element (which defaults to 1.) is the statistical
variance of the data point, i.e. the inverse of its statistical weight in
the fitting procedure.

The function returns a list containing the optimal parameter values
and the chi-squared value describing the quality of the fit.

• polynomialLeastSquaresFit(parameters, data)
Least-squares fit to a polynomial whose order is defined by the
number of parameter values.

15

Reference for Module Scientific

Module Scientific.Functions.Polynomial

Class Polynomial: Multivariate polynomial

Instances of this class represent polynomials of any order and in any
number of variables. They can be evaluated like functions.
Constructor: Polynomial(coefficients), where coefficients is an array whose
dimension defines the number of variables and whose length along each axis
defines the order in the corresponding variable.

Methods:

• derivative(variable=0)
Returns the derivative with respect to variable.

• integral(variable=0)
Returns the indefinite integral with respect to variable.

Module Scientific.Functions.Romberg

Functions

• trapezoid(function, interval, numtraps)
Returns the integral of function (a function of one variable) over
interval (a sequence of length two containing the lower and upper
limit of the integration interval), calculated using the trapezoidal rule
using numtraps trapezoids.

Example:

from Scientific.Functions.Romberg import romberg

from Numeric import pi

romberg(tan, (0.0, pi/3.0))

yields 0.693147180562

• romberg(function, interval, accuracy=1e-07, show=0)
Returns the integral of function (a function of one variable) over
interval (a sequence of length two containing the lower and upper

16

Reference for Module Scientific

limit of the integration interval), calculated using Romberg
integration up to the specified accuracy. If show is 1, the triangular
array of the intermediate results will be printed.

17

Reference for Module Scientific

Module Scientific.Geometry

This subpackage contains classes that deal with geometrical quantities and
objects. The geometrical quantities are vectors and tensors,
transformations, and quaternions as descriptions of rotations. There are
also tensor fields, which were included here (rather than in the subpackage
Scientific.Functions) because they are most often used in a geometric
context. Finally, there are classes for elementary geometrical objects such
as spheres and planes.

Class Tensor: Tensor in 3D space

Constructor: Tensor([[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]])
Tensors support the usual arithmetic operations (t1, t2: tensors, v: vector,
s: scalar):

• t1+t2 (addition)

• t1-t2 (subtraction)

• t1*t2 (tensorial (outer) product)

• t1*v (contraction with a vector, same as t1.dot(v.asTensor()))

• s*t1, t1*s (multiplication with a scalar)

• t1/s (division by a scalar)

The coordinates can be extracted by indexing; a tensor of rank N can be
indexed like an array of dimension N.
Tensors are immutable, i.e. their elements cannot be changed.
Tensor elements can be any objects on which the standard arithmetic
operations are defined. However, eigenvalue calculation is supported only
for float elements.

Methods:

• asVector()
Returns an equivalent vector object (only for rank 1).

18

Reference for Module Scientific

• dot(other)
Returns the contraction with other.

• trace(axis1=0, axis2=1)
Returns the trace of a rank-2 tensor.

• transpose()
Returns the transposed (index reversed) tensor.

• symmetricalPart()
Returns the symmetrical part of a rank-2 tensor.

• asymmetricalPart()
Returns the asymmetrical part of a rank-2 tensor.

• eigenvalues()
Returns the eigenvalues of a rank-2 tensor in an array.

• diagonalization()
Returns the eigenvalues of a rank-2 tensor and a tensor representing
the rotation matrix to the diagonalized form.

• inverse()
Returns the inverse of a rank-2 tensor.

Class Vector: Vector in 3D space

Constructor:

• Vector(x, y, z) (from three coordinates)

• Vector(coordinates) (from any sequence containing three coordinates)

Vectors support the usual arithmetic operations (v1, v2: vectors, s: scalar):

• v1+v2 (addition)

• v1-v2 (subtraction)

• v1*v2 (scalar product)

• s*v1, v1*s (multiplication with a scalar)

19

Reference for Module Scientific

• v1/s (division by a scalar)

The three coordinates can be extracted by indexing.
Vectors are immutable, i.e. their elements cannot be changed.
Vector elements can be any objects on which the standard arithmetic
operations plus the functions sqrt and arccos are defined.

Methods:

• x()
Returns the x coordinate.

• y()
Returns the y coordinate.

• z()
Returns the z coordinate.

• length()
Returns the length (norm).

• normal()
Returns a normalized copy.

• cross(other)
Returns the cross product with vector other.

• asTensor()
Returns an equivalent tensor object of rank 1.

• dyadicProduct(other)
Returns the dyadic product with vector or tensor other.

• angle(other)
Returns the angle to vector other.

Module Scientific.Geometry.Objects3D

Class GeometricalObject3D: Geometrical object in 3D space

This is an abstract base class; to create instances, use one of the subclasses.

Methods:

20

Reference for Module Scientific

• intersectWith(other)
Returns the geometrical object that results from the intersection with
other. If there is no intersection, the result is None.

Note that intersection is not implemented for all possible pairs of
objects. A ValueError is raised for combinations that haven’t been
implemented yet.

• hasPoint(point)
Returns 1 if point is in the object.

• distanceFrom(point)
Returns the distance of point from the closest point of the object.

• volume()
Returns the volume. The result is None for unbounded objects and
zero for lower-dimensional objects.

Class Sphere: Sphere

A subclass of GeometricalObject3D.
Constructor: Sphere(center, radius), where center is a vector and radius a
float.

Class Plane: Plane

A subclass of GeometricalObject3D.
Constructor:

• Plane(point, normal), where point (a vector) is an arbitrary point in
the plane and normal (a vector) indicated the direction normal to the
plane.

• Plane(p1, p2, p3), where each argument is a vector and describes a
point in the plane. The three points may not be colinear.

Methods:

• projectionOf(point)
Returns the projection of point onto the plane.

• rotate(axis, angle)
Returns a copy of the plane rotated around the coordinate origin.

21

Reference for Module Scientific

Class Cone: Cone

A subclass of GeometricalObject3D.
Constructor: Cone(tip, axis, angle), where tip is a vector indicating the
location of the tip, axis is a vector that describes the direction of the line of
symmetry, and angle is the angle between the line of symmetry and the
cone surface.

Class Circle: Circle

A subclass of GeometricalObject3D.
Constructor: Circle(center, normal, radius), where centeris a vector
indicating the center of the circle, normal is a vector describing the direction
normal to the plane of the circle, and radius is a float.

Class Line: Line

A subclass of GeometricalObject3D.
Constructor: Line(point, direction), where point is a vector indicating any
point on the line and direction is a vector describing the direction of the line.

Methods:

• projectionOf(point)
Returns the projection of point onto the line.

Class RhombicLattice: Lattice with rhombic elementary cell

A lattice object contains values defined on a finite periodic structure that is
created by replicating a given elementary cell along the three lattice
vectors. The elementary cell can contain any number of points.
Constructor: RhombicLattice(elementary cell, lattice vectors, cells,
function=None, base=None)

elementary cell a list of the points (vectors) in the elementary cell

lattice vectors a tuple of three vectors describing the edges of the
elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

22

Reference for Module Scientific

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

Class BravaisLattice: General Bravais lattice

This is a subclass of RhombicLattice, describing the special case of an
elementary cell containing one point.
Constructor: BravaisLattice(lattice vectors, cells, function=None,
base=None)

lattice vectors a tuple of three vectors describing the edges of the
elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

Class SCLattice: Simple cubic lattice

This is a subclass of BravaisLattice, describing the special case of a cubic
elementary cell.
Constructor: SCLattice(cellsize, cells, function=None, base=None)

cellsize the edge length of the cubic elementary cell

cells a tuple of three integers, indicating how often the elementary cell
should be replicated along each lattice vector

function the function to be applied to each point in the lattice in order to
obtain the value stored in the lattice. If no function is specified, the
point itself becomes the value stored in the lattice.

base an offset added to all lattice points

23

Reference for Module Scientific

Module Scientific.Geometry.Quaternion

Class Quaternion: Quaternion (hypercomplex number)

This implementation of quaternions is not complete; only the features
needed for representing rotation matrices by quaternions are implemented.
Constructor:

• Quaternion(q0, q1, q2, q3) (from four real components)

• Quaternion(q) (from a sequence containing the four components)

Quaternions support addition, subtraction, and multiplication, as well as
multiplication and division by scalars. Division by quaternions is not
provided, because quaternion multiplication is not associative. Use
multiplication by the inverse instead.
The four components can be extracted by indexing.

Methods:

• norm()
Returns the norm.

• normalized()
Returns the quaternion scaled to norm 1.

• inverse()
Returns the inverse.

• asMatrix()
Returns a 4x4 matrix representation.

• asRotation()
Returns the corresponding rotation matrix (the quaternion must be
normalized).

Functions

• isQuaternion(x)
Returns 1 if x is a quaternion.

24

Reference for Module Scientific

Module Scientific.Geometry.TensorAnalysis

Class TensorField: Tensor field of arbitrary rank

A tensor field is described by a tensor at each point of a three-dimensional
rectangular grid. The grid spacing may be non-uniform. Tensor fields are
implemented as a subclass of InterpolatingFunction from the module
Scientific.Functions.Interpolation and thus share all methods defined in
that class.
Constructor: TensorField(rank, axes, values, default=None)

rank a non-negative integer indicating the tensor rank

axes a sequence of three one-dimensional arrays, each of which specifies one
coordinate (x, y, z) of the grid points

values an array of rank+3 dimensions. Its first three dimensions correspond
to the x, y, z directions and must have lengths compatible with the
axis arrays. The remaining dimensions must have length 3.

default the value of the field for points outside the grid. A value of None
means that an exception will be raised for an attempt to evaluate the
field outside the grid. Any other value must a tensor of the correct
rank.

Evaluation:

• tensorfield(x, y, z) (three coordinates)

• tensorfield(coordinates) (any sequence containing three
coordinates)

Methods:

• zero()
Returns a tensor of the correct rank with zero elements.

• derivative(variable)
Returns the derivative with respect to variable, which must be one of
0, 1, or 2.

25

Reference for Module Scientific

• allDerivatives()
Returns all three derivatives (x, y, z).

Class ScalarField: Scalar field (tensor field of rank 0)

Constructor: ScalarField(axes, values, default=None)
A subclass of TensorField.

Methods:

• gradient()
Returns the gradient (a vector field).

• laplacian()
Returns the laplacian (a scalar field).

Class VectorField: Vector field (tensor field of rank 1)

Constructor: VectorField(axes, values, default=None)
A subclass of TensorField.

Methods:

• divergence()
Returns the divergence (a scalar field).

• curl()
Returns the curl (a vector field).

• strain()
Returns the strain (a tensor field of rank 2).

• divergenceCurlAndStrain()
Returns all derivative fields: divergence, curl, and strain.

• laplacian()
Returns the laplacian (a vector field).

• length()
Returns a scalar field corresponding to the length (norm) of the
vector field.

26

Reference for Module Scientific

Module Scientific.Geometry.Transformation

Class Transformation: Linear coordinate transformation.

Transformation objects represent linear coordinate transformations in a 3D
space. They can be applied to vectors, returning another vector. If t is a
transformation and v is a vector, t(v) returns the transformed vector.
Transformations support composition: if t1 and t2 are transformation
objects, t1*t2 is another transformation object which corresponds to
applying t1 after t2.
This class is an abstract base class. Instances can only be created of
concrete subclasses, i.e. translations or rotations.

Methods:

• rotation()
Returns the rotational component.

• translation()
Returns the translational component. In the case of a mixed
rotation/translation, this translation is executed after the rotation.

• inverse()
Returns the inverse transformation.

• screwMotion()
Returns the four parameters (reference, direction, angle,

distance) of a screw-like motion that is equivalent to the
transformation. The screw motion consists of a displacement of
distance (a float) along direction (a normalized vector) plus a
rotation of angle radians around an axis pointing along direction

and passing through the point reference (a vector).

Class Translation: Translational transformation.

This is a subclass of Transformation.
Constructor: Translation(vector), where vector is the displacement vector.

Methods:

27

Reference for Module Scientific

• displacement()
Returns the displacement vector.

Class Rotation: Rotational transformation.

This is a subclass of Transformation.
Constructor:

• Rotation(tensor), where tensor is a tensor object containing the
rotation matrix.

• Rotation(axis, angle), where axis is a vector and angle a number (the
angle in radians).

Methods:

• axisAndAngle()
Returns the axis (a normalized vector) and angle (a float, in radians).

Class RotationTranslation: Combined translational and rotational
transformation.

This is a subclass of Transformation.
Objects of this class are not created directly, but can be the result of a
composition of rotations and translations.

28

Reference for Module Scientific

Module Scientific.IO

Module Scientific.IO.ArrayIO

This module contains elementary support for I/O of one- and
two-dimensional numerical arrays to and from plain text files. The text file
format is very simple and used by many other programs as well:

• each line corresponds to one row of the array

• the numbers within a line are separated by white space

• lines starting with # are ignored (comment lines)

An array containing only one line or one column is returned as a
one-dimensional array on reading. One-dimensional arrays are written as
one item per line.
Numbers in files to be read must conform to Python/C syntax. For reading
files containing Fortran-style double-precision numbers (exponent prefixed
by D), use the module Scientific.IO.FortranFormat.

Functions

• readArray(filename)
Return an array containing the data from file filename.

• writeArray(array, filename)
Write array a to file filename.

• writeDataSets(datasets, filename, separator=’’)
Write each of the items in the sequence datasetsto the file filename,
separating the datasets by a line containing separator. The items in
the data sets can be one- or two-dimensional arrays or equivalent
nested sequences. The output file format is understood by many plot
programs.

Module Scientific.IO.FortranFormat

Fortran-compatible input/output

29

Reference for Module Scientific

This module provides two classes that aid in reading and writing
Fortran-formatted text files.
Examples:
Input:

s = ’ 59999’

format = FortranFormat(’2I4’)

line = FortranLine(s, format)

print line[0]

print line[1]

prints

5

9999

Output:

format = FortranFormat(’2D15.5’)

line = FortranLine([3.1415926, 2.71828], format)

print str(line)

prints
3.14159D+00 2.71828D+00

Class FortranLine: Fortran-style record in formatted files

FortranLine objects represent the content of one record of a Fortran-style
formatted file. Indexing yields the contents as Python objects, whereas
transformation to a string (using the built-in function str) yields the text
representation.
Constructor: FortranLine(data, format, length=80)

data either a sequence of Python objects, or a string formatted according
to Fortran rules

format either a Fortran-style format string, or a FortranFormat object. A
FortranFormat should be used when the same format string is used
repeatedly, because then the rather slow parsing of the string is
performed only once.

30

Reference for Module Scientific

length the length of the Fortran record. This is relevant only when data is a
string; this string is then extended by spaces to have the indicated
length. The default value of 80 is almost always correct.

Restrictions:
1) Only A, D, E, F, G, I, and X formats are supported (plus string
constants for output).
2) No direct support for complex numbers; they must be split into real and
imaginary parts before output.
3) No overflow check. If an output field gets too large, it will take more
space, instead of being replaced by stars according to Fortran conventions.

Class FortranFormat: Parsed fortran-style format string

Constructor: FortranFormat(format), where format is a format specification
according to Fortran rules.

Module Scientific.IO.NetCDF

Class NetCDFFile: netCDF file

Constructor: NetCDFFile(filename, mode="r")

filename name of the netCDF file. By convention, netCDF files have the
extension ”.nc”, but this is not enforced. The filename may contain a
home directory indication starting with ” ”.

mode access mode. ”r” means read-only; no data can be modified. ”w”
means write; a new file is created, an existing file with the same name
is deleted. ”a” means append (in analogy with serial files); an existing
file is opened for reading and writing, and if the file does not exist it
is created. ”r+” is similar to ”a”, but the file must already exist. An
”s” can be appended to any of the modes listed above; it indicates
that the file will be opened or created in ”share” mode, which reduces
buffering in order to permit simultaneous read access by other
processes to a file that is being written.

31

Reference for Module Scientific

A NetCDFFile object has two standard attributes: dimensions and
variables. The values of both are dictionaries, mapping dimension names
to their associated lengths and variable names to variables, respectively.
Application programs should never modify these dictionaries.
All other attributes correspond to global attributes defined in the netCDF
file. Global file attributes are created by assigning to an attribute of the
NetCDFFile object.

Methods:

• close()
Closes the file. Any read or write access to the file or one of its
variables after closing raises an exception.

• createDimension(name, length)
Creates a new dimension with the given name and length. length must
be a positive integer or None, which stands for the unlimited
dimension. Note that there can be only one unlimited dimension in a
file.

• createVariable(name, type, dimensions)
Creates a new variable with the given name, type, and dimensions. The
type is a one-letter string with the same meaning as the typecodes for
arrays in module Numeric; in practice the predefined type constants
from Numeric should be used. dimensions must be a tuple containing
dimension names (strings) that have been defined previously.

The return value is the NetCDFVariable object describing the new
variable.

• sync()
Writes all buffered data to the disk file.

Class NetCDFVariable: Variable in a netCDF file

NetCDFVariable objects are constructed by calling the method
createVariable on the NetCDFFile object.
NetCDFVariable objects behave much like array objects defined in module
Numeric, except that their data resides in a file. Data is read by indexing
and written by assigning to an indexed subset; the entire array can be
accessed by the index [:] or using the methods getValue and

32

Reference for Module Scientific

assignValue. NetCDFVariable objects also have attribute ”shape” with
the same meaning as for arrays, but the shape cannot be modified. There is
another read-only attribute ”dimensions”, whose value is the tuple of
dimension names.
All other attributes correspond to variable attributes defined in the
netCDF file. Variable attributes are created by assigning to an attribute of
the NetCDFVariable object.
Note: If a file open for reading is simultaneously written by another
program, the size of the unlimited dimension may change. Every time the
shape of a variable is requested, the current size will be obtained from the
file. For reading and writing, the size obtained during the last shape
request is used. This ensures consistency: foo[-1] means the same thing no
matter how often it is evaluated, as long as the shape is not re-evaluated in
between.

Methods:

• assignValue(value)
Assigns value to the variable. This method allows assignment to
scalar variables, which cannot be indexed.

• getValue()
Returns the value of the variable. This method allows access to scalar
variables, which cannot be indexed.

• typecode()
Return the variable’s type code (a string).

Module Scientific.IO.PDB

This module provides classes that represent PDB (Protein Data Bank) files
and configurations contained in PDB files. It provides access to PDB files
on two levels: low-level (line by line) and high-level (chains, residues, and
atoms).
Caution: The PDB file format has been heavily abused, and it is probably
impossible to write code that can deal with all variants correctly. This
modules tries to read the widest possible range of PDB files, but gives
priority to a correct interpretation of the PDB format as defined by the
Brookhaven National Laboratory.

33

Reference for Module Scientific

A special problem are atom names. The PDB file format specifies that the
first two letters contain the right-justified chemical element name. A later
modification allowed the initial space in hydrogen names to be replaced by
a digit. Many programs ignore all this and treat the name as an arbitrary
left-justified four-character name. This makes it difficult to extract the
chemical element accurately; most programs write the "CA" for C alpha in
such a way that it actually stands for a calcium atom! For this reason a
special element field has been added later, but only few files use it.
The low-level routines in this module do not try to deal with the atom
name problem; they return and expect four-character atom names including
spaces in the correct positions. The high-level routines use atom names
without leading or trailing spaces, but provide and use the element field
whenever possible. For output, they use the element field to place the atom
name correctly, and for input, they construct the element field content from
the atom name if no explicit element field is found in the file.
Except where indicated, numerical values use the same units and
conventions as specified in the PDB format description.
Example:

conf = Structure(’example.pdb’)

print conf

for residue in conf.residues:

for atom in residue:

print atom

Class HetAtom: HetAtom in a PDB structure

A subclass of Atom, which differs only in the return value of the method
type().
Constructor: HetAtom(name, position, **properties).

Class Group: Atom group (residue or molecule) in a PDB file

This is an abstract base class. Instances can be created using one of the
subclasses (Molecule, AminoAcidResidue, NucleotideResidue).
Group objects permit iteration over atoms with for-loops, as well as
extraction of atoms by indexing with the atom name.

34

Reference for Module Scientific

Methods:

• addAtom(atom)
Adds atom (an Atom object) to the group.

• deleteAtom(atom)
Removes atom (an Atom object) from the group. An exception will
be raised if atom is not part of the group.

• deleteHydrogens()
Removes all hydrogen atoms.

• changeName(name)
Sets the PDB residue name to name.

• writeToFile(file)
Writes the group to file (a PDBFile object or a string containing a file
name).

Class Chain: Chain of PDB residues

This is an abstract base class. Instances can be created using one of the
subclasses (PeptideChain, NucleotideChain).
Chain objects respond to len() and return their residues by indexing with
integers.

Methods:

• sequence()
Returns the list of residue names.

• addResidue(residue)
Add residue at the end of the chain.

• removeResidues(first, last)
Remove residues starting from first up to (but not including) last. If
last is None, remove everything starting from first.

• deleteHydrogens()
Removes all hydrogen atoms.

35

Reference for Module Scientific

• writeToFile(file)
Writes the chain to file (a PDBFile object or a string containing a file
name).

Class Molecule: Molecule in a PDB file

A subclass of Group.
Constructor: Molecule(name, atoms=None, number=None), where name is
the PDB residue name. An optional list of atoms can be specified,
otherwise the molecule is initially empty. The optional number is the PDB
residue number.
Note: In PDB files, non-chain molecules are treated as residues, there is no
separate molecule definition. This modules defines every residue as a
molecule that is not an amino acid residue or a nucleotide residue.

Class PDBFile: PDB file with access at the record level

Constructor: PDBFile(filename, mode="r"), where filenameis the file name
and mode is "r" for reading and "w" for writing, The low-level file access is
handled by the module Scientific.IO.TextFile, therefore compressed files
and URLs (for reading) can be used as well.

Methods:

• readLine()
Returns the contents of the next non-blank line (= record). The
return value is a tuple whose first element (a string) contains the
record type. For supported record types (HEADER, ATOM,
HETATM, ANISOU, TERM, MODEL, CONECT), the items from
the remaining fields are put into a dictionary which is returned as the
second tuple element. Most dictionary elements are strings or
numbers; atom positions are returned as a vector, and anisotropic
temperature factors are returned as a rank-2 tensor, already
multiplied by 1.e-4. White space is stripped from all strings except for
atom names, whose correct interpretation can depend on an initial
space. For unsupported record types, the second tuple element is a
string containing the remaining part of the record.

• writeLine(type, data)

36

Reference for Module Scientific

Writes a line using record type and data dictionary in the same
format as returned by readLine(). Default values are provided for
non-essential information, so the data dictionary need not contain all
entries.

• writeComment(text)
Writes text into one or several comment lines. Each line of the text is
prefixed with REMARK and written to the file.

• writeAtom(name, position, occupancy=0.0, temperature factor=0.0,
element=’’)
Writes an ATOM or HETATM record using the name, occupancy,
temperature and element information supplied. The residue and chain
information is taken from the last calls to the methods nextResidue()
and nextChain().

• nextResidue(name, number=None, terminus=None)
Signals the beginning of a new residue, starting with the next call to
writeAtom(). The residue name is name, and a number can be
supplied optionally; by default residues in a chain will be numbered
sequentially starting from 1. The value of terminus can be None, "C",
or "N"; it is passed to export filters that can use this information in
order to use different atom or residue names in terminal residues.

• nextChain(chain id=None, segment id=’’)
Signals the beginning of a new chain. A chain identifier (string of
length one) can be supplied as chain id, by default consecutive letters
from the alphabet are used. The equally optional segment id defaults
to an empty string.

• terminateChain()
Signals the end of a chain.

• close()
Closes the file. This method must be called for write mode because
otherwise the file will be incomplete.

Class Atom: Atom in a PDB structure

Constructor: Atom(name, position, **properties), where name is the PDB
atom name (a string), position is a atom position (a vector), and properties

37

Reference for Module Scientific

can include any of the other items that can be stored in an atom record.
The properties can be obtained or modified using indexing, as for Python
dictionaries.

Methods:

• type()
Returns the six-letter record type, ATOM or HETATM.

• writeToFile(file)
Writes an atom record to file (a PDBFile object or a string containing
a file name).

Class AminoAcidResidue: Amino acid residue in a PDB file

A subclass of Group.
Constructor: AminoAcidResidue(name, atoms=None, number=None),
where name is the PDB residue name. An optional list of atoms can be
specified, otherwise the residue is initially empty. The optional number is
the PDB residue number.

Methods:

• isCTerminus()
Returns 1 if the residue is in C-terminal configuration, i.e. if it has a
second oxygen bound to the carbon atom of the peptide group.

• isNTerminus()
Returns 1 if the residue is in N-terminal configuration, i.e. if it
contains more than one hydrogen bound to be nitrogen atom of the
peptide group.

Class NucleotideResidue: Nucleotide residue in a PDB file

A subclass of Group.
Constructor: NucleotideResidue(name, atoms=None, number=None), where
name is the PDB residue name. An optional list of atoms can be specified,
otherwise the residue is initially empty. The optional number is the PDB
residue number.

Methods:

38

Reference for Module Scientific

• hasRibose()
Returns 1 if the residue has an atom named O2*.

• hasDesoxyribose()
Returns 1 if the residue has no atom named O2*.

• hasPhosphate()
Returns 1 if the residue has a phosphate group.

• hasTerminalH()
Returns 1 if the residue has a 3-terminal H atom.

Class PeptideChain: Peptide chain in a PDB file

A subclass of Chain.
Constructor: PeptideChain(residues=None, chain id=None,
segment id=None), where chain idis a one-letter chain identifier and
segment id is a multi-character chain identifier, both are optional. A list of
AminoAcidResidue objects can be passed as residues; by default a peptide
chain is initially empty.

Methods:

• isTerminated()
Returns 1 if the last residue is in C-terminal configuration.

Class NucleotideChain: Nucleotide chain in a PDB file

A subclass of Chain.
Constructor: NucleotideChain(residues=None, chain id=None,
segment id=None), where chain idis a one-letter chain identifier and
segment id is a multi-character chain identifier, both are optional. A list of
NucleotideResidue objects can be passed as residues; by default a nucleotide
chain is initially empty.

Class ResidueNumber: PDB residue number

Most PDB residue numbers are simple integers, but when insertion codes
are used a number can consist of an integer plus a letter. Such compound
residue numbers are represented by this class.
Constructor: ResidueNumber(number, insertion code)

39

Reference for Module Scientific

Class Structure: A high-level representation of the contents of a
PDB file

Constructor: Structure(filename, model=0, alternate code="A"), where
filename is the name of the PDB file. Compressed files and URLs are
accepted, as for class PDBFile. The two optional arguments specify which
data should be read in case of a multiple-model file or in case of a file that
contains alternative positions for some atoms.
The components of a system can be accessed in several ways (s is an
instance of this class):

• s.residues is a list of all PDB residues, in the order in which they
occurred in the file.

• s.peptide chains is a list of PeptideChain objects, containing all
peptide chains in the file in their original order.

• s.nucleotide chains is a list of NucleotideChain objects, containing
all nucleotide chains in the file in their original order.

• s.molecules is a list of all PDB residues that are neither amino acid
residues nor nucleotide residues, in their original order.

• s.objects is a list of all high-level objects (peptide chains, nucleotide
chains, and molecules) in their original order.

An iteration over a Structure instance by a for-loop is equivalent to an
iteration over the residue list.

Methods:

• deleteHydrogens()
Removes all hydrogen atoms.

• splitPeptideChain(number, position)
Splits the peptide chain indicated by number (0 being the first peptide
chain in the PDB file) after the residue indicated by position (0 being
the first residue of the chain). The two chain fragments remain
adjacent in the peptide chain list, i.e. the numbers of all following
nucleotide chains increase by one.

40

Reference for Module Scientific

• splitNucleotideChain(number, position)
Splits the nucleotide chain indicated by number (0 being the first
nucleotide chain in the PDB file) after the residue indicated by
position (0 being the first residue of the chain). The two chain
fragments remain adjacent in the nucleotide chain list, i.e. the
numbers of all following nucleotide chains increase by one.

• joinPeptideChains(first, second)
Join the two peptide chains indicated by first and secondinto one
peptide chain. The new chain occupies the position first; the chain at
second is removed from the peptide chain list.

• joinNucleotideChains(first, second)
Join the two nucleotide chains indicated by first and secondinto one
nucleotide chain. The new chain occupies the position first; the chain
at second is removed from the nucleotide chain list.

• renumberAtoms()
Renumber all atoms sequentially starting with 1.

• writeToFile(file)
Writes all objects to file (a PDBFile object or a string containing a
file name).

Module Scientific.IO.TextFile

Class TextFile: Text files with line iteration and transparent
compression

TextFile instances can be used like normal file objects (i.e. by calling
readline(), readlines(), and write()), but can also be used as sequences of
lines in for-loops.
TextFile objects also handle compression transparently. i.e. it is possible to
read lines from a compressed text file as if it were not compressed.
Compression is deduced from the file name suffixes
.Z(compress/uncompress), .gz (gzip/gunzip), and .bz2 (bzip2).
Finally, TextFile objects accept file names that start with or user to
indicate a home directory, as well as URLs (for reading only).

41

Reference for Module Scientific

Constructor: TextFile(filename, mode="r"), where filename is the name of
the file (or a URL) and mode is one of "r" (read), "w" (write) or "a"
(append, not supported for .Z files).

42

Reference for Module Scientific

Module Scientific.MPI

This module contains a Python interface to the Message Passing Interface
(MPI), and standardized library for message-passing parallel computing.
Please read an introduction to MPI before using this module; some terms
in the documentation do not make much sense unless you understand the
principles of MPI.
This module contains an object, world, which represents the default
communicator in MPI. This communicator can be used directly for sending
and receiving data, or other communicators can be derived from it.
A number of global constants are also defined (max, min, prod, sum, land,
lor, lxor, band, bor, bxor, maxloc and minloc). They are used to specify
the desired operator in calls to the reduce and allreduce methods of the
communicator objects.

Class MPICommunicator: MPI Communicator

There is no constructor for MPI Communicator objects. The default
communicator is given by Scientific.MPI.world, and other communicators
can only be created by methods on an existing communicator object.
A communicator object has two read-only attributes: rank is an integer
which indicates the rank of the current process in the communicator, and
size is an integer equal to the number of processes that participate in the
communicator.

Methods:

• duplicate()
Returns a new communicator object with the same properties as the
original one.

• send(data, destination, tag)
Sends the contents of data (a string or any contiguous NumPy array
except for general object arrays) to the processor whose rank is
destination, using tag as an identifier.

• nonblockingSend(data, destination, tag)
Sends the contents of data (a string or any contiguous NumPy array
except for general object arrays) to the processor whose rank is

43

Reference for Module Scientific

destination, using tag as an identifier. The send is nonblocking, i.e.
the call returns immediately, even if the destination process is not
ready to receive.

The return value is an MPIRequest object. It is used to wait till the
communication has actually happened.

• receive(data, source=None, tag=None)
Receives an array from the process with rank sourcewith identifier
tag. The default source=None means that messages from any process
are accepted. The value of data can either be an array object, in
which case it must be contiguous and large enough to store the
incoming data; it must also have the correct shape. Alternatively,
data can be a string specifying the data type (in practice, one would
use Numeric.Int, Numeric.Float, etc.). In the latter case, a new array
object is created to receive the data.

The return value is a tuple containing four elements: the array
containing the data, the source process rank (an integer), the message
tag (an integer), and the number of elements that were received (an
integer).

• receiveString(source=None, tag=None)
Receives a string from the process with rank sourcewith identifier tag.
The default source=None means that messages from any process are
accepted.

The return value is a tuple containing three elements: the string
containing the data, the source process rank (an integer), and the
message tag (an integer).

• nonblockingReceive(data, source=None, tag=None)
Receives an array from the process with rank sourcewith identifier
tag. The default source=None means that messages from any process
are accepted. The value of data must be a contiguous array object,
large enough to store the incoming data; it must also have the correct
shape. Unlike the blocking receive, the size of the array must be
known when the call is made, as nonblocking receives of unknown
quantities of data is not implemented. For the same reason there is no
nonblocking receiveString.

44

Reference for Module Scientific

The return value is an MPIRequest object. It is used to wait until the
data has arrived, and will give information about the size, the source
and the tag of the incoming message.

• nonblockingProbe(source=None, tag=None)
Checks if a message from the process with rank sourceand with
identifier tag is available for immediate reception. The return value is
None if no message is available, otherwise a (source, tag) tuple is
returned.

• broadcast(array, root)
Sends data from the process with rank root to all processes (including
root). The parameter array can be any contiguous NumPy array
except for general object arrays. On the process root, it holds the
data to be sent. After the call, the data in array is the same for all
processors. The shape and data type of array must be the same in all
processes.

• share(send, receive)
Distributes data from each process to all other processes in the
communicator. The array send (any contiguous NumPy array except
for general object arrays) contains the data to be sent by each
process, the shape and data type must be identical in all processes.
The array receive must have the same data type as send and one
additional dimension (the first one), whose length must be the
number of processes in the communicator. After the call, the value of
receive[i] is equal to the contents of the array sendin process i.

• barrier()
Waits until all processes in the communicator have called the same
method, then all processes continue.

• abort()
Aborts all processes associated with the communicator. For
emergency use only.

• reduce(sendbuffer, receivebuffer, operation, root)
Combine data from all processes using operation, and send the data to
the process identified by root.

45

Reference for Module Scientific

operation is one of the operation objects defined globally in the
module: max, min, prod, sum, land, lor, lxor, band, bor, bxor’,
maxloc and minloc.

• allreduce(sendbuffer, receivebuffer, operation, root)
Combine data from all processes using operation, and send the data to
all processes in the communicator.

operation is one of the operation objects defined globally in the
module: max, min, prod, sum, land, lor, lxor, band, bor, bxor’,
maxloc and minloc.

Class MPIError: MPI call failed

Class MPIRequest: MPI Request

There is no constructor for MPI Request objects. They are returned by
nonblocking send and receives, and are used to query the status of the
message.

Methods:

• wait()
Waits till the communication has completed. If the operation was a
nonblocking send, there is no return value. If the operation was a
nonblocking receive, the return value is a tuple containing four
elements: the array containing the data, the source process rank (an
integer), the message tag (an integer), and the number of elements
that were received (an integer).

Module Scientific.MPI.IO

Class LogFile: File for logging events from all processes

Constructor: LogFile(filename, communicator=None)

filename the name of the file

communicator the communicator in which the file is accesible. The default
value of None means to use the global world communicator, i.e. all
possible processes.

46

Reference for Module Scientific

The purpose of LogFile objects is to collect short text output from all
processors into a single file. All processes can write whatever they want at
any time; the date is simply stored locally. After the file has been closed by
all processes, the data is sent to process 0, which then writes everything to
one text file, neatly separated by process rank number.
Note that due to the intermediate storage of the data, LogFile objects
should not be used for large amounts of data. Also note that all data is lost
if a process crashes before closing the file.

Methods:

• write(string)
Write string to the file.

• flush()
Write buffered data to the text file.

• close()
Close the file, causing the real text file to be written.

47

Reference for Module Scientific

Module Scientific.NumberDict

Class NumberDict: Dictionary storing numerical
values

Constructor: NumberDict()
An instance of this class acts like an array of number with generalized
(non-integer) indices. A value of zero is assumed for undefined entries.
NumberDict instances support addition, and subtraction with other
NumberDict instances, and multiplication and division by scalars.

48

Reference for Module Scientific

Module Scientific.Physics

Module Scientific.Physics.PhysicalQuantities

Physical quantities with units.
This module provides a data type that represents a physical quantity
together with its unit. It is possible to add and subtract these quantities if
the units are compatible, and a quantity can be converted to another
compatible unit. Multiplication, subtraction, and raising to integer powers
is allowed without restriction, and the result will have the correct unit. A
quantity can be raised to a non-integer power only if the result can be
represented by integer powers of the base units.
The values of physical constants are taken from the 1986 recommended
values from CODATA. Other conversion factors (e.g. for British units)
come from various sources. I can’t guarantee for the correctness of all
entries in the unit table, so use this at your own risk!

Class PhysicalQuantity: Physical quantity with units

Constructor:

• PhysicalQuantity(value, unit), where value is a number of arbitrary
type and unit is a string containing the unit name.

• PhysicalQuantity(string), where string contains both the value and the
unit. This form is provided to make interactive use more convenient.

PhysicalQuantity instances allow addition, subtraction, multiplication, and
division with each other as well as multiplication, division, and
exponentiation with numbers. Addition and subtraction check that the
units of the two operands are compatible and return the result in the units
of the first operand. A limited set of mathematical functions (from module
Numeric) is applicable as well:

sqrt equivalent to exponentiation with 0.5.

sin, cos, tan applicable only to objects whose unit is compatible with rad.

Methods:

49

Reference for Module Scientific

• convertToUnit(unit)
Changes the unit to unit and adjusts the value such that the
combination is equivalent. The new unit is by a string containing its
name. The new unit must be compatible with the previous unit of the
object.

• inUnitsOf(*units)
Returns one or more PhysicalQuantity objects that express the same
physical quantity in different units. The units are specified by strings
containing their names. The units must be compatible with the unit
of the object. If one unit is specified, the return value is a single
PhysicalObject. If several units are specified, the return value is a
tuple of PhysicalObject instances with with one element per unit such
that the sum of all quantities in the tuple equals the the original
quantity and all the values except for the last one are integers. This is
used to convert to irregular unit systems like hour/minute/second.
The original object will not be changed.

Functions

• isPhysicalQuantity(x)
Returns 1 if x is an instance of PhysicalQuantity.

Module Scientific.Physics.Potential

This module offers two strategies for automagically calculating the
gradients (and optionally force constants) of a potential energy function (or
any other function of vectors, for that matter). The more convenient
strategy is to create an object of the class PotentialWithGradients. It takes
a regular Python function object defining the potential energy and is itself
a callable object returning the energy and its gradients with respect to all
arguments that are vectors.
Example:

def _harmonic(k,r1,r2):

dr = r2-r1

return k*dr*dr

harmonic = PotentialWithGradients(_harmonic)

energy, gradients = harmonic(1., Vector(0,3,1), Vector(1,2,0))

50

Reference for Module Scientific

print energy, gradients

prints

3.0

[Vector(-2.0,2.0,2.0), Vector(2.0,-2.0,-2.0)]

The disadvantage of this procedure is that if one of the arguments is a
vector parameter, rather than a position, an unnecessary gradient will be
calculated. A more flexible method is to insert calls to two function from
this module into the definition of the energy function. The first,
DerivVectors(), is called to indicate which vectors correspond to gradients,
and the second, EnergyGradients(), extracts energy and gradients from the
result of the calculation. The above example is therefore equivalent to

def harmonic(k, r1, r2):

r1, r2 = DerivVectors(r1, r2)

dr = r2-r1

e = k*dr*dr

return EnergyGradients(e,2)

To include the force constant matrix, the above example has to be modified
as follows:

def _harmonic(k,r1,r2):

dr = r2-r1

return k*dr*dr

harmonic = PotentialWithGradientsAndForceConstants(_harmonic)

energy, gradients, force_constants = harmonic(1.,Vector(0,3,1),Vector(1,2,0))

print energy

print gradients

print force_constants

The force constants are returned as a nested list representing a matrix.
This can easily be converted to an array for further processing if the
numerical extensions to Python are available.

51

Reference for Module Scientific

Module Scientific.Statistics

Functions

• mean(data)
Returns the mean (average value) of data (a sequence of numbers).

• variance(data)
Returns the variance of data (a sequence of numbers).

• standardDeviation(data)
Returns the standard deviation of data (a sequence of numbers).

• median(data)
Returns the median of data (a sequence of numbers).

• skewness(data)
Returns the skewness of data (a sequence of numbers).

• kurtosis(data)
Returns the kurtosis of data (a sequence of numbers).

• correlation(data1, data2)
Returns the correlation coefficient between data1 and data2, which
must have the same length.

Module Scientific.Statistics.Histogram

Class Histogram: Histogram in one variable

Constructor: Histogram(data, bins, range=None)

data a sequence of data points

bins the number of bins into which the data is to be sorted

range a tuple of two values, specifying the lower and the upper end of the
interval spanned by the bins. Any data point outside this interval will
be ignored. If no range is given, the smallest and largest data values
are used to define the interval.

52

Reference for Module Scientific

The bin index and the number of points in a bin can be obtained by
indexing the histogram with the bin number. Application of len() yields the
number of bins. A histogram thus behaves like a sequence of bin index - bin
count pairs.

Methods:

• addData(data)
Add the values in data (a sequence of numbers) to the originally
supplied data. Note that this does not affect the default range of the
histogram, which is fixed when the histogram is created.

• normalize(norm=1.0)
Scales all counts by the same factor such that their sum is norm.

• normalizeArea(norm=1.0)
Scales all counts by the same factor such that the area under the
histogram is norm.

53

Reference for Module Scientific

Module Scientific.Threading

Module Scientific.Threading.TaskManager

Class TaskManager: Parallel task manager for shared-memory
multiprocessor machines

This class provides a rather simple way to profit from shared-memory
multiprocessor machines by running several tasks in parallel. The calling
program decides how many execution threads should run at any given time,
and then feeds compute tasks to the task manager, who runs them as soon
as possible without exceeding the maximum number of threads.
The major limitation of this approach lies in Python’s Global Interpreter
Lock. This effectively means that no more than one Python thread can run
at the same time. Consequently, parallelization can only be achieved if the
tasks to be parallelized spend significant time in C extension modules that
release the Global Interpreter Lock.
Constructor: TaskManager(nthreads)

nthreads the maximum number of compute threads that should run in
parallel. Note: This does not include the main thread which
generated and feeds the task manager!

Methods:

• runTask(function, args)
Add a task defined by function. This must be a callable object, which
will be called exactly once. The arguments of the call are the
elements of the tuple args plus one additional argument which is a
lock object. The task can use this lock object in order to get
temporary exclusive acces to data shared with other tasks, e.g. a list
in which to accumulate results.

• terminate()
Wait until all tasks have finished.

54

Reference for Module Scientific

Module Scientific.TkWidgets

Class FilenameEntry: Filename entry widget

Constructor: FilenameEntry(master, text, pattern, must exist flag=1)

master the master widget

text the label in front of the filename box

pattern the filename matching pattern that determines the file list in the
file selection dialog

must exists flag allow only names of existing files

A FilenameEntry widget consists of three parts: an identifying label, a text
entry field for the filename, and a button labelled browse which call a file
selection dialog box for picking a file name.

Methods:

• get()
Return the current filename. If must exist flag is true, verify that the
name refers to an existing file. Otherwise an error message is
displayed and a ValueError is raised.

Class FloatEntry: An entry field for float numbers

Constructor: FloatEntry(master, text, initial=None, lower=None,
upper=None)

master the master widget

text the label in front of the entry field

initial an optional initial value (default: blank field)

upper an optional upper limit for the value

lower an optional lower limit for the value

55

Reference for Module Scientific

A FloatEntry widget consists of a label followed by a text entry field.

Methods:

• set(value)
Set the value to value.

• get()
Return the current value, verifying that it is a number and between
the specified limits. Otherwise an error message is displayed and a
ValueError is raised.

Class IntEntry: An entry field for integer numbers

Constructor: IntEntry(master, text, initial=None, lower=None, upper=None)

master the master widget

text the label in front of the entry field

initial an optional initial value (default: blank field)

upper an optional upper limit for the value

lower an optional lower limit for the value

A IntEntry widget consists of a label followed by a text entry field.

Methods:

• get()
Return the current value, verifying that it is an integer and between
the specified limits. Otherwise an error message is displayed and a
ValueError is raised.

Class ButtonBar: A horizontal array of buttons

Constructor: ButtonBar(master, left button list, right button list)

master the master widget

left button list a list of (text, action) tuples specifying the buttons on the
left-hand side of the button bar

right button list a list of (text, action) tuples specifying the buttons on the
right-hand side of the button bar

56

Reference for Module Scientific

Class StatusBar: A status bar

Constructor: StatusBar(master)

master the master widget

A status bar can be used to inform the user about the status of an ongoing
calculation. A message can be displayed with set() and removed with
clear(). In both cases, the StatusBar object makes sure that the change
takes place immediately. While a message is being displayed, the cursor
form is changed to a watch.

Module Scientific.TkWidgets.TkPlotCanvas

Class PolyLine: Multiple connected lines

Constructor: PolyLine(points, **—attr—)

points any sequence of (x, y) number pairs

attr line attributes specified by keyword arguments:

• width: the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap defined in
Tk, or None for no bitmap (default: None)

Class VerticalLine: A vertical line

Constructor: VerticalLine(xpos, **—attr—)

xpos the x coordinate of the line

attr line attributes specified by keyword arguments:

• width: the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap defined in
Tk, or None for no bitmap (default: None)

57

Reference for Module Scientific

Class HorizontalLine: A horizontal line

Constructor: HorizontalLine(ypos, **—attr—)

ypos the y coordinate of the line

attr line attributes specified by keyword arguments:

• width: the line width (default: 1)

• color: a string whose value is one of the color names defined in
Tk (default: ”black”)

• stipple: a string whose value is the name of a bitmap defined in
Tk, or None for no bitmap (default: None)

Class PolyMarker: Series of markers

Constructor: PolyPoints(points, **—attr—)

points any sequence of (x, y) number pairs

attr marker attributes specified by keyword arguments:

• width: the line width for drawing the marker (default: 1)

• color: a string whose value is one of the color names defined in Tk,
defines the color of the line forming the marker (default: black)

• fillcolor: a string whose value is one of the color names defined in
Tk, defines the color of the interior of the marker (default: black)

• marker: one of circle (default), dot, square, triangle,
triangle down, cross, plus

Class PlotGraphics: Compound graphics object

Constructor: PlotGraphics(objects)

objects a list whose elements can be instances of the classes PolyLine,
PolyMarker, and PlotGraphics.

58

Reference for Module Scientific

Class PlotCanvas: Tk plot widget

Constructor: PlotCanvas(master, width, height, **—attributes—).
The arguments have the same meaning as for a standard Tk canvas. The
default background color is white and the default font is Helvetica at 10
points.
PlotCanvas objects support all operations of Tk widgets.
There are two attributes in addition to the standard Tk attributes:

zoom a logical variable that indicates whether interactive zooming (using
the left mouse button) is enabled; the default is 0 (no zoom)

select enables the user to select a range along the x axis by dragging the
mouse (with the left button pressed) in the area under the x axis. If
select is 0, no selection is possible. Otherwise the value of select must
be a callable object that is called whenever the selection changes,
with a single argument that can be None (no selection) or a tuple
containing two x values.

Methods:

• draw(graphics, xaxis=None, yaxis=None)
Draws the graphics object graphics, which can be a PolyLine,
PolyMarker, or PlotGraphics object. The arguments xaxis and yaxis
specify how axes are drawn: None means that no axis is drawn and
the graphics objects are scaled to fill the canvas optimally.
"automatic"means that the axis is drawn and a suitable value range
is determined automatically. A sequence of two numbers means that
the axis is drawn and the value range is the interval specified by the
two numbers.

• clear()
Clears the canvas.

• redraw()
Redraws the last canvas contents.

• select(range)
Shows the given range as highlighted. range can be None (no
selection) or a sequence of two values on the x-axis.

59

Reference for Module Scientific

Module Scientific.TkWidgets.TkVisualizationCanvas

Class PolyLine3D: Multiple connected lines

Constructor: PolyLine(points, **—attr—), where points is any sequence of
(x, y, z) number triples and attr stands for line attributes specified by
keyword arguments, which are width (an integer) and color (a string
whose value is one of the color names defined in Tk). The default is a black
line of width 1.

Class VisualizationGraphics: Compound graphics object

Constructor: VisualizationGraphics(objects), where objects is a list whose
elements can be instances of the classes PolyLine3D and
VisualizationGraphics.

Class VisualizationCanvas: Tk visualization widget

Constructor: VisualizationCanvas(master, width, height, **—attributes—).
The arguments have the same meaning as for a standard Tk canvas. The
default background color is white and the default font is Helvetica at 10
points.
VisualizationCanvas objects support all operations of Tk widgets.
Interactive manipulation of the display is possible with click-and-drag
operations. The left mouse button rotates the objects, the middle button
translates it, and the right button scales it up or down.

Methods:

• draw(graphics)
Draws the graphics object graphics, which can be a PolyLine3D or a
VisualizationGraphics object.

• clear(keepscale=0)
Clears the canvas.

60

Reference for Module Scientific

Module Scientific.Visualization

The modules in this subpackage provide visualization of 3D objects using
different backends (VRML, VMD, VPython), but with an almost identical
interface. It is thus possible to write generic 3D graphics code in which the
backend can be changed by modifying a single line of code.

The intended application of these modules is scientific visualization. Many
sophisticated 3D objects are therefore absent, as are complex surface
definitions such as textures.

Module Scientific.Visualization.Color

This module provides color definitions that are used in the modules VRML,
VRML2, and VMD.

Class Color: RGB Color specification

Constructor: Color(rgb), where rgb is a sequence of three numbers between
zero and one, specifying the red, green, and blue intensities.

Color objects can be added and multiplied with scalars.

Class ColorScale: Mapping of a number interval to a color range

Constructor: ColorScale(range), where range can be a tuple of two numbers
(the center of the interval and its width), or a single number specifying the
widths for a default center of zero.

Evaluation: colorscale(number) returns the Color object corresponding to
number. If number is outside the predefined interval, the closest extreme
value of the interval is used.

The color scale is blue - green - yellow - orange - red.

Class SymmetricColorScale: Mapping of a symmetric number
interval to a color range

Constructor: SymmetricColorScale(range), where range is a single number
defining the interval, which is -—range— to range.

61

Reference for Module Scientific

Evaluation: colorscale(number) returns the Color object corresponding to
number. If number is outside the predefined interval, the closest extreme
value of the interval is used.
The colors are red for negative numbers and green for positive numbers,
with a color intensity proportional to the absolute value of the argument.

Functions

• ColorByName(name)
Returns a Color object corresponding to name. The known names are
black, white, grey, red, green, blue, yellow, magenta, cyan, orange,
violet, olive, and brown. Any color can be prefixed by ”light ” or
”dark ” to yield a variant.

Module Scientific.Visualization.VMD

This module provides definitions of simple 3D graphics objects and scenes
containing them, in a form that can be fed to the molecular visualization
program VMD. Scenes can either be written as VMD script files, or
visualized directly by running VMD.
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module is almost compatible with the modules VRML and VRML2,
which provide visualization by VRML browsers. There is no Polygon
objects, and the only material attribute supported is diffuse color. Note
also that loading a scene with many cubes into VMD is very slow, because
each cube is represented by 12 individual triangles.
Example:

from VMD import *

scene = Scene([])

62

Reference for Module Scientific

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VMD scene

A VMD scene is a collection of graphics objects that can be written to a
VMD script file or fed directly to VMD.

Constructor: Scene(objects=None, **—options—)

objects a list of graphics objects or None for an empty scene

options options as keyword arguments. The only option available is ”scale”,
whose value must be a positive number which specifies a scale factor
applied to all coordinates of geometrical objects except for molecule
objects, which cannot be scaled.

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• writeToFile(filename, delete=0)
Writes the scene to a VRML file with name filename.

• view()
Start VMD for the scene.

Class Molecules: Molecules from a PDB file

Constructor: Molecules(pdb file)

63

Reference for Module Scientific

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

64

Reference for Module Scientific

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip
of the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.
Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip
of the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The accepted attributes are ”ambient color”, ”diffuse color”,
”specular color”, ”emissive color”, ”shininess”, and ”transparency”. Only
”diffuse color” is used, the others are permitted for compatibility with the
VRML modules.

65

Reference for Module Scientific

Functions

• DiffuseMaterial(color)
Returns a material with the diffuse color attribute set to color.

Module Scientific.Visualization.VPython

Class Scene: VPython scene

A VPython scene is a collection of graphics objects that can be shown in a
VPython window. When the ”view” method is called, a new window is
created and the graphics objects are displayed in it.
Constructor: Scene(objects=None, **—options—)

objects a list of graphics objects or None for an empty scene

options options as keyword arguments: ”title” (the window title, default:
”VPython scene”), ”width” (the window width, default: 300),
”height” (the window height, default: 300), ”background” (the
background color, default: black)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• view()
Open a VPython window for the scene.

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

66

Reference for Module Scientific

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

Class Arrow: Arrow

Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

Class Cone: Cone

Constructor: Cone(point1, point2, radius, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip
of the cone.

radius the radius (a positive number)

attributes any graphics object attribute

67

Reference for Module Scientific

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for
a polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial(color)
Returns a material with the diffuse color attribute set to color.

• EmissiveMaterial(color)
Returns a material with the emissive color attribute set to color.

68

Reference for Module Scientific

Module Scientific.Visualization.VRML

This module provides definitions of simple 3D graphics objects and VRML
scenes containing them. The objects are appropriate for data visualization,
not for virtual reality modelling. Scenes can be written to VRML files or
visualized immediately using a VRML browser, whose name is taken from
the environment variable VRMLVIEWER (under Unix).
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module used the original VRML definition, version 1.0. For the newer
VRML 2 or VRML97, use the module VRML2, which uses exactly the
same interface. There is another almost perfectly compatible module VMD,
which produces input files for the molecular visualization program VMD.
Example:

from Scientific.Visualization.VRML import *

scene = Scene([])

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VRML scene

A VRML scene is a collection of graphics objects that can be written to a
VRML file or fed directly to a VRML browser.
Constructor: Scene(objects=None, cameras=None, **—options—)

69

Reference for Module Scientific

objects a list of graphics objects or None for an empty scene

cameras a list of cameras (not yet implemented)

options options as keyword arguments (none defined at the moment; this
argument is provided for compatibility with other modules)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• addCamera(camera)
Adds camers to the list of cameras.

• writeToFile(filename)
Writes the scene to a VRML file with name filename.

• view()
Start a VRML browser for the scene.

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

70

Reference for Module Scientific

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip
of the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

71

Reference for Module Scientific

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for
a polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.

Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip
of the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.

Constructor: Material(**—attributes—)

The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial(color)
Returns a material with the diffuse color attribute set to color.

• EmissiveMaterial(color)
Returns a material with the emissive color attribute set to color.

72

Reference for Module Scientific

Module Scientific.Visualization.VRML2

This module provides definitions of simple 3D graphics objects and VRML
scenes containing them. The objects are appropriate for data visualization,
not for virtual reality modelling. Scenes can be written to VRML files or
visualized immediately using a VRML browser, whose name is taken from
the environment variable VRML2VIEWER (under Unix).
There are a few attributes that are common to all graphics objects:

material a Material object defining color and surface properties

comment a comment string that will be written to the VRML file

reuse a boolean flag (defaulting to false). If set to one, the object may
share its VRML definition with other objects. This reduces the size of
the VRML file, but can yield surprising side effects in some cases.

This module used the VRML 2.0 definition, also known as VRML97. For
the original VRML 1, use the module VRML, which uses exactly the same
interface. There is another almost perfectly compatible module VMD,
which produces input files for the molecular visualization program VMD.
Example:

from Scientific.Visualization.VRML2 import *

scene = Scene([])

scale = ColorScale(10.)

for x in range(11):

color = scale(x)

scene.addObject(Cube(Vector(x, 0., 0.), 0.2,

material=Material(diffuse_color = color)))

scene.view()

Class Scene: VRML scene

A VRML scene is a collection of graphics objects that can be written to a
VRML file or fed directly to a VRML browser.
Constructor: Scene(objects=None, cameras=None, **—options—)

73

Reference for Module Scientific

objects a list of graphics objects or None for an empty scene

cameras a list of cameras

options options as keyword arguments (none defined at the moment; this
argument is provided for compatibility with other modules)

Methods:

• addObject(object)
Adds object to the list of graphics objects.

• addCamera(camera)
Adds camera to the list of cameras.

• writeToFile(filename)
Writes the scene to a VRML file with name filename.

• view()
Start a VRML browser for the scene.

Class Camera: Camera/viewpoint for a scene

Constructor: Camera(position, orientation, description, field of view)

position the location of the camera (a vector)

orientation an (axis, angle) tuple in which the axis is a vector and angle a
number (in radians); axis and angle specify a rotation with respect to
the standard orientation along the negative z axis

description a label for the viewpoint (a string)

field of view the field of view (a positive number)

Class NavigationInfo: Navigation Information

Constructor: NavigationInfo(speed, type)

speed walking speed in length units per second

type one of WALK, EXAMINE, FLY, NONE, ANY

74

Reference for Module Scientific

Class Sphere: Sphere

Constructor: Sphere(center, radius, **—attributes—)

center the center of the sphere (a vector)

radius the sphere radius (a positive number)

attributes any graphics object attribute

Class Cube: Cube

Constructor: Cube(center, edge, **—attributes—)

center the center of the cube (a vector)

edge the length of an edge (a positive number)

attributes any graphics object attribute

The edges of a cube are always parallel to the coordinate axes.

Class Cylinder: Cylinder

Constructor: Cylinder(point1, point2, radius, faces=(1, 1, 1),
**—attributes—)

point1, point2 the end points of the cylinder axis (vectors)

radius the radius (a positive number)

attributes any graphics object attribute

faces a sequence of three boolean flags, corresponding to the cylinder hull
and the two circular end pieces, specifying for each of these parts
whether it is visible or not.

75

Reference for Module Scientific

Class Cone: Cone

Constructor: Cone(point1, point2, radius, face=1, **—attributes—)

point1, point2 the end points of the cylinder axis (vectors). point1 is the tip
of the cone.

radius the radius (a positive number)

attributes any graphics object attribute

face a boolean flag, specifying if the circular bottom is visible

Class Line: Line

Constructor: Line(point1, point2, **—attributes—)

point1, point2 the end points of the line (vectors)

attributes any graphics object attribute

Class PolyLines: Multiple connected lines

Constructor: PolyLines(points, **—attributes—)

points a sequence of points to be connected by lines

attributes any graphics object attribute

Class Polygons: Polygons

Constructor: Polygons(points, index lists, **—attributes—)

points a sequence of points

index lists a sequence of index lists, one for each polygon. The index list for
a polygon defines which points in points are vertices of the polygon.

attributes any graphics object attribute

76

Reference for Module Scientific

Class Arrow: Arrow

An arrow consists of a cylinder and a cone.
Constructor: Arrow(point1, point2, radius, **—attributes—)

point1, point2 the end points of the arrow (vectors). point2 defines the tip
of the arrow.

radius the radius of the arrow shaft (a positive number)

attributes any graphics object attribute

Class Material: Material for graphics objects

A material defines the color and surface properties of an object.
Constructor: Material(**—attributes—)
The attributes are ”ambient color”, ”diffuse color”, ”specular color”,
”emissive color”, ”shininess”, and ”transparency”.

Functions

• DiffuseMaterial(color)
Returns a material with the diffuse color attribute set to color.

• EmissiveMaterial(color)
Returns a material with the emissive color attribute set to color.

77

Reference for Module Scientific

Module Scientific.indexing

This module provides a convenient method for constructing array indices
algorithmically. It provides one importable object, index expression.
For any index combination, including slicing and axis insertion,
a[indices] is the same as a[index expression[indices]] for any array
a. However, index expression[indices] can be used anywhere in Python
code and returns a tuple of indexing objects that can be used in the
construction of complex index expressions.
Sole restriction: Slices must be specified in the double-colon form, i.e. a[::]
is allowed, whereas a[:] is not.

78

