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1 Introduction

1.1 Organization of the Manual

This manual is organized as follows.

1.

10.

11.

Introduction

Organization of the Manual, notation and how to get Risa/Asir
Risa/Asir

Summary of Asir, Installation

Types

Types in Asir

Asir user language

Description of Asir user language

Debugger

Description of the debugger of Asir user language

Built-in function

Detailed description of various built-in functions

Distributed computation

Description of functions for distributed computation

Groebner bases

Description of functions and operations for Groebner basis computation
Algebraic numbers

Description of functions and operations for algebraic numbers
Finite fields

Description of functions and operations on finite fields
Appendix

Syntax in detail, description of sample files, interfaces for input from keyboard, changes,
references

1.2 Notation

In this manual, we shall use several notations, which is described here

e The name of a function is written in a typewriter type

gcd (), gr()

e For the description of a function, its argument is written in a slanted type.

int, poly

e A file name is written in a ‘typewriter type with single quotes’

‘dbxinit’, ‘asir_plot’

e An example is indented and written in a typewriter type.

(0] 1;
1
[1] quit;
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e References are made by a typewriter type bracketed by [].
[Boehm,Weiser]

e Arguments (actual parameters) of a function are optional when they are bracketed
by [1’s. The repeatable items (including non-existence of the item) are bracketed by
[1*’s.
setprec([n]), diff (rat[, varn]*)

e The prompt from the shell (csh) is denoted, as it is, by %. The prompt, however, is
denoted by #, when you are assumed to be working as the root, for example, at the
installation.

% cat afo

afo

bfo

% su

Password : XXXX

# cp asir /usr/local/bin
# exit

b

e The rational integer ring is denoted by Z, the rational number field by Q, the real
number field by R, and the complex number field by C.

1.3 How to get Risa/Asir

The source code of Risa/Asir (‘asir2000.tgz’), PARI (‘pari.tgz’) and Windows binary
(‘asirwin-ja.tgz’, ‘asirwin-en.tgz’) are available via ftp from

ftp://ftp.math.kobe-u.ac. jp/pub/asir
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2 Risa/Asir

2.1 Risa and Asir

Risa is the name of whole libraries of a computer algebra system which is under development
at FUJITSU LABORATORIES LIMITED. The structure of Risa is as follows.

The basic algebraic engine

This is the part which performs basic algebraic operations, such as arithmetic opera-
tions, to algebraic objects, e.g., numbers and polynomials, which are already converted
into internal forms. It exists, like ‘1ibc.a’ of UNIX, as a library of ordinary UNIX
system. The algebraic engine is written mainly in C language and partly in assembler.
It serves as the basic operation part of Asir, a standard language interface of Risa.

Memory Manager

Risa employs, as its memory management component (the memory manager), a free
software distributed by Boehm (gc-6.1alphab). It is proposed by [Boehm,Weiser],
and developed by Boehm and his colleagues. The memory manager has a memory
allocator which automatically reclaims garbages, i.e., allocated but unused memories,
and refreshes them for further use. The algebraic engine gets all its necessary memories
through the memory manager.

Asir

Asir is a standard language interface of Risa’s algebraic engine. It is one of the possible
language interfaces, because one can develop one’s own language interface easily on Risa
system. Asir is an example of such language interfaces. Asir has very similar syntax
and semantics as C language. Furthermore, it has a debugger that provide a subset of
commands of dbx, a widely used debugger of C language.

2.2 Features of Asir

As mentioned in the previous section, Asir is a standard language interface forRisa’s al-
gebraic engine. Usually, it is provided as an executable file named asir. Main features
supported for the current version of Asir is as follows.

A C-like programming language

Arithmetic operations (addition, subtraction, multiplication and division) on numbers,
polynomials and rational expressions

Operations on vectors and matrices

List processing operations at the minimum

Several Built-in functions (factorization, GCD computation, Groebner basis computa-
tion etc.)

Useful user defined functions(e.g., factorization over algebraic number fields)
A dbx-like debugger
Plotting of implicit functions

Numerical evaluation of mathematical expressions including elementary transcendental
functions at arbitrary precision. This feature is in force only if PARI system (see
Section 6.1.13 [pari|, page 38).
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e Distributed computation over UNIX

2.3 Installation

Any questions and any comments on this manual are welcome by e-mails to the following
address.

noro@math.kobe-u.ac. jp

2.3.1 UNIX binary version

A file ‘asir.tgz’ suitable for the target machine/architecture is required. After getting
it, you have to unpack it by gzip. First of all, determine a derectory where binaries and
library files are installed. We call the directory the library directory. The following installs
the files in ‘/usr/local/lib/asir’.
# gzip -dc asir.tgz | ( cd /usr/local/lib; tar xf - )
In this case you don’t have to set any environment variable.
You can install them elsewhere.
% gzip -dc asir.tgz | ( cd $HOME; tar xf - )
In this case you have to set the name of the library directory to the environment variable
ASTR_LIBDIR.
% setenv ASIR_LIBDIR $HOME/asir
Asir itself is in the library directory. It will be convenient to create a symbolic link to it
from ‘/usr/local/bin’ or the user’s search path.
# 1n -s /usr/local/lib/asir/asir /usr/local/bin/asir
Then you can start ‘asir’.

% /usr/local/bin/asir

This is Risa/Asir, Version 20000821.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.

(0]

2.3.2 UNIX source code version

First of all you have to determine the install directory. In the install directory, the
following subdirectories are put:

e bin
executables of PARI and Asir
e lib
library files of PARI and Asir
e include
header files of PARI
These subdirectories are created automatically if they does not exist. If you can be a

root, it is recommended to set the install directory to ‘/usr/local’. In the following the

directory is denoted by TARGETDIR.
Then, install PARI library. After getting ‘pari.tgz’, unpack and install it as follows:
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% gzip -dc pari.tgz | tar xvf -
% cd pari

% ./Configure --prefix=TARGETDIR
% make all

% su

# make install

# make install-lib-sta

While executing 'make install’, the procedure may stop due to some error. Then try the
following:
% cd 0xxx
% make lib-sta
% su
# make install-lib-sta
# make install-include
# exit
b
In the above example, xxx denotes the name of the target operating system. Although
GP is not built, the library necessary for building asir2000 will be generated.
After getting ‘asir2000.tgz’, unpack it and install necessary files as follows.
% gzip -dc asir.tgz | tar xf -
% cd asir2000
% ./configure --prefix=TARGETDIR --with-pari --enable-plot
make
su
make install
make install-1lib
make install-doc
exit

H OH H H R

2.3.3 Windows version

The necessary file is ‘asirwin-en.tgz’. To unpack it ‘gzip.exe’ and ‘tar.exe’ are neces-
sary. They are in the same directory as ‘asirwin-en.tgz’ on the ftp server. Putting them
in the same directory, execute the following:

C:\...> tar xzf asirwin.tgz

Then a directory ‘Asir’ (Asir root directory) is created, which has subdirectories named
‘bin’ and ‘1ib’. Asir can be invoked by double-clicking ‘asirgui.exe’.

2.4 Command line options

Command-line options for the command ‘asir’ are as follows.

~heap number
In Risa/Asir, 4KB is used as an unit, called block, for memory allocation. By
default, 16 blocks (64KB) are allocated initially. This value can be changed
by giving an option ~heap a number parameter in unit block. Size of the heap
area is obtained by a Built-in function heap(), the result of which is a number
in Bytes.
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-adj number
Heap area will be stretched by the memory manager, if the size of reclaimed
memories is less than 1/number of currently allocated heap area. The default
value for number is 3. If you do not prefer to stretch heap area by some reason,
perhaps by restriction of available memories, but if prefer to resort to reclaiming
garbages as far as possible, then a large value should be chosen for number, e.g.,

8.
-norc When this option is specified, Asir does not read the initial file ‘$HOME/ .asirrc’.
-f file Instead of the standard input, file is used as the input. Upon an error, the

execution immediately terminates.

-paristack number
This option specifies the private memory size for PARI (see Section 6.1.13 [pari],
page 38). The unit is Bytes. By default, it is set to 1 MB.

-maxheap number
This option sets an upper limit of the heap size. The unit is Bytes. Note that
the size is already limited by the value of datasize displayed by the command
limit on UNIX.

2.5 Environment variable

There exist several environment variables concerning with an execution of Asir. On UNIX,
an environment variable is set from shells, or in rc files of shells. On Windows NT, it
can be set from [Control Panel] ->[Environment]. On Windows 95/98, it can be set in
‘c:\autoexec.bat’. Note that the setting takes effect after rebooting the machine on
Windows 95/98.

e ASIR_KEY

Asir shall not work unless a key for the machine on which Asir is invoked is given. The
key consists of a string which denotes 3 word hexadecimal number, each of which has
8 hexadecimal digits. In order to run Asir for several machines, several key’s can be
written together on a same file as follows.

% cat asir_key

cf6£236¢c 61a35091 dddc4529 geisha

82281685 d1929945 a8bd24ca yorktown

34b75d30 63£8df93 3e881113 nyanchu

The text after each key is neglected to the end-of-line. This is convenient to comment
on the respective key. Files containing key’s are searched by the following order.

1. File set to environment ASTR_KEY

2. File ‘asir_key’ on the current directory.

3. Files on the directory specified by environment ASTR_LIBDIR. (File ‘asir_key’ on

‘/usr/local/lib/asir/’, if environment ASIR_LIBDIR is not set.)
e ASTR_LIBDIR

The library directory of Asir, i.e., the directory where , for example, files containing
programs written in Asir. If not specified, on UNIX, ‘/usr/local/lib/asir’ is used by
default. On Windows, ‘1ib’ in Asir root directory is used by default. This environment
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will be useful in a case where Asir binaries are installed on a private directory of the
user.

e ASTRLOADPATH
This environment specifies directories which contains files to be loaded by Asir com-
mand load(). Directories are separated by a “: on UNIX, a ’;” on Windows respec-
tively. The search order is from the left to the right. After searching out all directories
in ASTRLOADPATH, or in case of no specification at all, the library directory will be

searched.

e HOME
If Asir is invoked without -norc, ‘6HOME/.asirrc’, if exists, is executed. If HOME is
not set, nothing is done on UNIX. On Windows, ‘.asirrc’ in Asir root directory is
executed if it exists.

2.6 Starting and Terminating an Asir session

Run Asir, then the copyright notice and the first prompt will appear on your screen, and a
new Asir session will be started.

(o]

When initialization file ‘$HOME/ .asirrc’ exists, Asir interpreter executes it at first taking
it as a program file written in Asir.

The prompt indicates the sequential number of your input commands to Asir. The session
will terminate when you input end; or quit; to Asir. Input commands are evaluated
statement by statement. A statement normally ends with its terminator ‘;’ or ‘¢’. (There
are some exceptions. See, syntax of Asir.) The result will be displayed when the command,
i.e. statement, is terminated by a ‘;’, and will not when terminated by a ‘$’.

% asir

[0] A;

0

[1] A=(x+y)~5;

X"5+5*y*x"4+10%y " 2%x"3+10%y " 3*x"2+5xy "4*x+y~5

[2] A;

XT5+5xy*x"4+10%y " 2%x " 3+10*y " 3*kx " 2+5*xy " 4*kx+y”5

[3] a=(x+y)~5;

evalpv : invalid assignment

return to toplevel

(3] a;

a

[4] fctr(A);

[[1,1], [x+y,5]1]

[5] quit;

b
In the above example, names A, a, x and y are used to identify mathematical and program-
ming objects. There, the name A denotes a program variable (some times called simply as a
program variable.) while the other names, a, x and y, denote mathematical objects, that is,
indeterminates. In general, program variables have names which begin with capital letters,
while names of indeterminates begin with small letters. As you can see in the example,
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program variables are used to hold and keep objects, such as numbers and expressions,
as their values, just like variables in C programming language. Whereas, indeterminates
cannot have values so that assignment to indeterminates are illegal. If one wants to get a
result by substituting a value for an indeterminate in an expression, it is achieved by the
function subst as the value of the function.

2.7 Interruption

To interrupt the Asir execution, input an interrupt character from the keyboard. A C-c is
usually used for it. (Notice: C-x on Windows and DOS.)

@ (x+y)~1000;
C-cinterrupt ?(q/t/c/d/u/w/?)

Here, the meaning of options are as follows.

q Terminates Asir session. (Confirmation requested.)

t Returns to toplevel. (Confirmation requested.)

C Resumes to continue the execution.

d Enters debugging mode at the next statement of the Asir program, if Asir

has been executing a program loaded from a file. Note that it will sometimes
take a long time before entering debugging mode when Asir is executing basic
functions in the algebraic engine, (e.g., arithmetic operation, factorization etc.)
Detailed description about the debugger will be given in Chapter 5 [Debugger]|,
page 28.

u After executing a function registered by register_handler () (see Section 7.5.6
[ox_reset ox_intr register_handler], page 98), returns to toplevel. A confirmation
is prompted.

W Displays the calling sequence up to the interruption.

? Show a brief description of options.

2.8 Error handling

When arguments with illegal types are given to a built-in function, an error will be detected
and the execution will be quit. In many cases, when an error is detected in a built-in
function, Asir automatically enters debugging mode before coming back to toplevel. At
that time, one can examine the state of the program, for example, inspect argument values
just before the error occurred. Messages reported there are various depending on cases.
They are reported after the internal function name. The internal function name sometimes
differs from the built-in function name that is specified by the user program.

In the execution of internal functions, errors may happen by various reasons. The UNIX

version of Asir will report those errors as one of the following internal error’s, and enters
debugging mode just like normal errors.

SEGV
BUS ERROR
Some of the built-in functions transmit their arguments to internal operation
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routines without strict type-checking. In such cases, one of these two errors will
be reported when an access violation caused by an illegal pointer or a NULL
pointer is detected.

BROKEN PIPE

In the process communication, this error will be reported if a process attempts
to read from or to write onto the partner process when the stream to the partner
process does not already exist, (e.g., terminated process.)

For UNIX version, even in such a case, the process itself does not terminate because such
an error can be caught by signal() and recovered. To remove this weak point, complete
type checking of all arguments are indispensable at the entry of a built-in function, which
requires an enormous amount of re-making efforts.

2.9 Referencing results and special numbers

An @ used for an escape character; rules currently in force are as follows.

@n The evaluated result of n-th input command

Q@ The evaluated result of the last command

Qi The unit of imaginary number, square root of -1.

@pi The number pi, the ratio of a circumference of the circle and its diameter.

Qe Napier’s number, the base of natural logarithm.

Q A generator of GF(2"m), a finite field of characteristic 2, over GF(2). It is

a root of an irreducible univariate polynomial over GF(2) which is set as the
defining polynomial of GF(2"m).

@>, @<, @>=, 0<=, 0==, Q&&, Q||
Fist order logical operators. They are used in quantifier elimination.
[0] fctr(x~10-1);
[[1,1], [x-1,1], [x+1,1], [x"4+x"3+x"2+x+1,1], [x"4-x"3+x"2-x+1,1]]
[1] ee[3];
[x"4+x"3+x"2+x+1,1]
[2] eval(sin(@pi/2));
1.000000000000000000000000000000000000000000000000000000000
[3] eval(log(@e),20);
0.99999999999999999999999999998
[4] @0[4][0];
X"4-x"3+x72-x+1
[56] (1+@i)°5;
(-4-4%01i)
[6] eval(exp(@pix@i));
-1.0000000000000000000000000000
[7] (@+1)"9;
(@~9+@"~8+0+1)

As you can see in the above example, results of toplevel computation can be referred to by
@ convention. This is convenient for users, while it sometimes imposes a heavy burden to
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the garbage collector. It may happen that GC time will rapidly increase after computing a
very large expression at the toplevel. In such cases delete_history() (see Section 6.12.13
[delete_history]|, page 88) takes effect.
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3 Data types

3.1 Types in Asir

In Asir, various objects described according to the syntax of Asir are translated to in-
termediate forms and by Asir interpreter further translated into internal forms with the
help of basic algebraic engine. Such an object in an internal form has one of the following
types listed below. In the list, the number coincides with the value returned by the built-in
function type (). Each example shows possible forms of inputs for Asir’s prompt.

00
As a matter of fact, no object exists that has 0 as its identification number. The
number 0 is implemented as a null (0) pointer of C language. For convenience’s
sake, a 0 is returned for the input type (0).

1 number

1 2/3 14.5 3+2x@i
Numbers have sub-types. See Section 3.2 [Types of numbers]|, page 14.

2 polynomial (but not a number)
x afo (2.3*x+y)~10
Every polynomial is maintained internally in its full expanded form, represented
as a nested univariate polynomial, according to the current variable ordering,
arranged by the descending order of exponents. (See Section 8.1 [Distributed
polynomial], page 108.) In the representation, the indeterminate (or variable),
appearing in the polynomial, with maximum ordering is called the main vari-
able. Moreover, we call the coefficient of the maximum degree term of the
polynomial with respect to the main variable the leading coefficient.

3 rational expression (not a polynomial)
(x+1)/(y~2-y-x) x/x
Note that in Risa/Asir a rational expression is not simplified by reducing the
common divisors unless red () is called explicitly, even if it is possible. This is
because the GCD computation of polynomials is a considerably heavy opera-
tion. You have to be careful enough in operating rational expressions.

4 list

0 [1,2,03,41, [x,y]l]
Lists are all read-only object. A null list is specified by []. There are operations
for lists: car(), cdr(), cons() etc. And further more, element referencing by
indexing is available. Indexing is done by putting [index]’s after a program
variable as many as are required. For example,

(o] L = [[1,2,3],[4,[5,6]],7]8%

(1] L[11[1];

[5,6]
Notice that for lists, matrices and vectors, the index begins with number 0.
Also notice that referencing list elements is done by following pointers from
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5 vector

6 matrix

the first element. Therefore, it sometimes takes much more time to perform
referencing operations on a large list than on a vectors or a matrices with the
same size.

newvect(3) newvect(2,[a,1])

Vector objects are created only by explicit execution of newvect() command.
The first example above creates a null vector object with 3 elements. The other
example creates a vector object with 2 elements which is initialized such that
its 0-th element is a and 1st element is 1. The second argument for newvect is
used to initialize elements of the newly created vector. A list with size smaller
or equal to the first argument will be accepted. Elements of the initializing list
is used from the left to the right. If the list is too short to specify all the vector
elements, the unspecified elements are filled with as many 0’s as are required.
Any vector element is designated by indexing, e.g., [index]. Asir allows any
type, including vector, matrix and list, for each respective element of a vector.
As a matter of course, arrays with arbitrary dimensions can be represented
by vectors, because each element of a vector can be a vector or matrix itself.
An element designator of a vector can be a left value of assignment statement.
This implies that an element designator is treated just like a simple program
variable. Note that an assignment to the element designator of a vector has
effect on the whole value of that vector.

[0] A3 = newvect(3);

L0OO0O]

[1] for (I=0;I<3;I++)A3[I] = newvect(3);

[2] for (I=0;I<3;I++)for(J=0;J<3;J++)A3[I][J]=newvect(3);

[3] A3;
[[L[o00O0]J[O0OO0OO0O]TL[O0OO0OO0OT]]
[[o00]J[000][00O01]]1]
[[Lo00O0O]J[O000]J[O00O0O1T1]1
[4] A3[0];
[Loo0]J[000]1[00O0T1]1]
[56] A3[0][0];

[L0O0O]

newmat (2,2) newmat(2,3,[[x,y],[z]])

Like vector objects, matrix objects are also created only by explicit execution of
newmat () command. Initialization of the matrix elements are done in a similar
manner with that of the vector elements except that the elements are specified
by a list of lists. Each element, again a list, is used to initialize each row; if the
list is too short to specify all the row elements, unspecified elements are filled
with as many 0’s as are required. Like vectors, any matrix element is designated
by indexing, e.g., [index] [index]. Asir also allows any type, including vector,
matrix and list, for each respective element of a matrix. An element designator
of a matrix can also be a left value of assignment statement. This implies that
an element designator is treated just like a simple program variable. Note that
an assignment to the element designator of a matrix has effect on the whole
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value of that matrix. Note also that every row, (not column,) of a matrix can
be extracted and referred to as a vector.

[0] M=newmat(2,3);

[L00O0]

[L000O0]

(1] M[1];

[L00O0]

[2] type(@Q);

5

7 string
nn n afo n

Strings are used mainly for naming files. It is also used for giving comments
of the results. Operator symbol + denote the concatenation operation of two
strings.
[O] ||afoll+"takell ;
afotake
8 structure
newstruct (afo)

The type structure is a simplified version of that in C language. It is defined
as a fixed length array and each entry of the array is accessed by its name. A
name is associated with each structure.

9 distributed polynomial
2x<<0,1,2,3>>-3%<<1,2,3,4>>

This is the short for ‘Distributed representation of polynomials.” This type
is specially devised for computation of Groebner bases. Though for ordinary
users this type may never be needed, it is provided as a distinguished type that
user can operate by Asir. This is because the Groebner basis package provided
with Risa/Asir is written in the Asir user language. For details See Chapter 8
[Groebner basis computation], page 108.

10 32bit unsigned integer

11 error object

These are special objects used for OpenXM.
12 matrix over GF(2)

This is used for basis conversion in finite fields of characteristic 2.

13 MATHCAP object

This object is used to express available funcionalities for Open XM.

14 first order formula

This expresses a first order formula used in quantifier elimination.
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15 matrix over GF(p)

A matrix over a small finite field.

16 byte array

An array of unsigned bytes.

-1 VOID object

The object with the object identifier -1 indicates that a return value of a function
is void.

3.2 Types of numbers

0

rational number
Rational numbers are implemented by arbitrary precision integers (bignum). A
rational number is always expressed by a fraction of lowest terms.

double precision floating point number (double float)
The numbers of this type are numbers provided by the computer hardware. By
default, when Asir is started, floating point numbers in a ordinary form are
transformed into numbers of this type. However, they will be transformed into
bigfloat numbers when the switch bigfloat is turned on (enabled) by ctrl()
command.

[0] 1.2;

1.2

[1] 1.2e-1000;

0

[2] ctrl("bigfloat",1);

1

[3] 1.2e-1000;

1.20000000000000000513 E-1000

A rational number shall be converted automatically into a double float number
before the operation with another double float number and the result shall be
computed as a double float number.

algebraic number
See Chapter 9 [Algebraic numbers], page 140.

bigfloat
The bigfloat numbers of Asir is realized by PARI library. A bigfloat number
of PARI has an arbitrary precision mantissa part. However, its exponent part
admits only an integer with a single word precision. Floating point operations
will be performed all in bigfloat after activating the bigfloat switch by ctrl ()
command. The default precision is about 9 digits, which can be specified by
setprec() command.

[0] ctrl("bigfloat",1);

1
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[1] eval(27(1/2));

1.414213562373095048763788073031

[2] setprec(100);

9

[3] eval(27(1/2));
1.41421356237309504880168872420969807856967187537694807317. . .

Function eval () evaluates numerically its argument as far as possible. Notice
that the integer given for the argument of setprec() does not guarantee the
accuracy of the result, but it indicates the representation size of numbers with
which internal operations of PARI are performed. (See Section 6.1.12 [eval
deval], page 37, Section 6.1.13 [pari], page 38.)

4 complex number
A complex number of Risa/Asir is a number with the form a+b*@i, where @i is
the unit of imaginary number, and a and b are either a rational number, double
float number or bigfloat number, respectively. The real part and the imaginary
part of a complex number can be taken out by real() and imag() respectively.

5 element of a small finite prime field

Here a small finite fieid means that its characteristic is less than 2°27. At
present small finite fields are used mainly for groebner basis computation, and
elements in such finite fields can be extracted by taking coefficients of dis-
tributed polynomials whose coefficients are in finite fields. Such an element
itself does not have any information about the field to which the element be-
longs, and field operations are executed by using a prime p which is set by
setmod ().

6 element of large finite prime field
This type expresses an element of a finite prime field whose characteristic is an
arbitrary prime. An object of this type is obtained by applying simp_£ff to an
integer.

7 element of a finite field of characteristic 2
This type expresses an element of a finite field of characteristic 2. Let F be a
finite field of characteristic 2. If [F:GF(2)] is equal to n, then F is expressed as
F=GF(2)[t]/(f(t)), where f(t) is an irreducible polynomial over GF(2) of degree
n. As an element g of GF(2)[t] can be expressed by a bit string, An element g
mod f in F can be expressed by two bit strings representing g and f respectively.
Several methods to input an element of F' are provided.
e Q
@ represents t mod f in F=GF(2)[t](f(t)). By using @ one can input an
element of F. For example @~10+@+1 represents an element of F.
e ptogfln
ptogf2n converts a univariate polynomial into an element of F.
e ntogf2n
As a bit string, a non-negative integer can be regarded as an element of
F. Note that one can input a non-negative integer in decimal, hexadecimal
(0x prefix) and binary (Ob prefix) formats.
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e micellaneous
simp_ff is available if one wants to convert the whole coefficients of a
polynomial.

element of a finite field of characteristic p~n

A finite field of order p~n, where p is an arbitrary prime and n is a positive
integer, is set by setmod_£ff by specifying its characteristic p and an irreducible
polynomial of degree n over GF(p). An element of this field is represented by
a polynomial over GF(p) modulo m(x).

element of a finite field of characteristic p~n (small order)

A finite field of order p~n, where p~n must be less than 2729 and n must be
equal to 1 if p is greater or equal to 27 14is set by setmod_£ff by specifying its
characteristic p the extension degree n. If p is less than 2~14, each non-zero
element of this field is a power of a fixed element, which is a generator of the
multiplicative group of the field, and it is represented by its exponent. Other-
wise, each element is represented by the redue modulo p. This specification is
useful for treating both cases in a single program.

Finite fields other than small finite prime fields are set by setmod_ff. Elements of finite

fields do not have informations about the modulus. Upon an arithmetic operation, i f one
of the operands is a rational number, it is automatically converted into an element of the
finite field currently set and the operation is done in the finite field.

3.3 Types of indeterminates

An algebraic object is recognized as an indeterminate when it can be a (so-called) variable
in polynomials. An ordinary indeterminate is usually denoted by a string that start with a
small alphabetical letter followed by an arbitrary number of alphabetical letters, digits or
‘_’. In addition to such ordinary indeterminates, there are other kinds of indeterminates in
a wider sense in Asir. Such indeterminates in the wider sense have type polynomial, and
further are classified into sub-types of the type indeterminate.

0

ordinary indeterminate
An object of this sub-type is denoted by a string that start with a small al-
phabetical letter followed by an arbitrary number of alphabetical letters, digits

or ‘_’. This kind of indeterminates are most commonly used for variables of
polynomials.

[0] [vtype(a),vtype(aA_12)];

[0,0]

undetermined coefficient

The function uc() creates an indeterminate which is denoted by a string that
begins with ‘_’. Such an indeterminate cannot be directly input by its name.
Other properties are the same as those of ordinary indeterminate. Therefore,
it has a property that it cannot cause collision with the name of ordinary
indeterminates input by the user. And this property is conveniently used to
create undetermined coefficients dynamically by programs.
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[1] U=uc();
_0

[2] vtype(U);
1

2 function form

A function call to a built-in function or to an user defined function is usually
evaluated by Asir and retained in a proper internal form. Some expressions,
however, will remain in the same form after evaluation. For example, sin(x)
and cos(x+1) will remain as if they were not evaluated. These (unevaluated)
forms are called ‘function forms’ and are treated as if they are indeterminates
in a wider sense. Also, special forms such as @pi the ratio of circumference and
diameter, and @e Napier’s number, will be treated as ‘function forms.’

[3] V=sin(x);

sin(x)

[4] vtype(V);

2

[5] vars(V-2+V+1);

[sin(x)]

3 functor
A function call (or a function form) has a form fname(args). Here, fname alone
is called a functor. There are several kinds of functors: built-in functor, user
defined functor and functor for the elementary functions. A functor alone is
treated as an indeterminate in a wider sense.
[6] vtype(sin);
3
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4 User language Asir

Asir provides many built-in functions, which perform algebraic computations, e.g., factor-
ization and GCD computation, file I/O, extract a part of an algebraic expression, etc. In
practice, you will often encounter a specific problem for which Asir does not provide a direct
solution. For such cases, you have to write a program in a certain user language. The user
language for Asir is also called Asir. In the following, we describe the Syntax and then
show how to write a user program by several examples.

4.1 Syntax — Difference from C language

The syntax of Asir is based on C language. Main differences are as follows. In this section,
a variable does not mean an indeterminate, but a program variable which is written by a
string which begins with a capital alphabetical letter in Asir.

e No types for variables.
As is already mentioned, any object in Asir has their respective types. A program
variable, however, is type-less, that is, any typed object can be assigned to it.

[0] A =1;

1

[1] type(A);

1

(2] A =[1,2,3];
[1,2,3]

[3] type(A);

4

e Variables, together with formal parameters, in a function (procedure) are all local to
the function by default.
Variables can be global at the top level, if they are declared with the key word extern.
Thus, the scope rule of Asir is very simple. There are only two types of variables:
global variables and local variables. A name that is input to the Asir’s prompt at the
top level is denotes a global variable commonly accessed at the top level. In a function
(procedure) the following rules are applied.

1. If a variable is declared as global by an extern statement in a function, the variable
used in that function denotes a global variable at the top level. Furthermore, if a
variable in a function is preceded by an extern declaration outside the function
but in a file where the function is defined, all the appearance of that variable in
the same file denote commonly a global variable at the top level.

2. A variable in a function is local to that function, if it is not declared as global by
an extern declaration.

% cat afo

def afo() { return A;}
extern A$

def bfo() { return A;}
end$

% asir

[0] load("afo")$
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[5] A = 1;
1
[6] afo();
0
[7] bfo();
1

e Program variables and algebraic indeterminates are distinguished in Asir.
The names of program variables must begin with a capital letter; while the names of
indeterminates and functions must begin with a small letter.
This is an unique point that differs from almost all other existing computer algebra
systems. The distinction between program variables and indeterminates is adopted to
avoid the possible and usual confusion that may arise in a situation where a name is
used as an indeterminate but, as it was, the name has been already assigned some
value. To use different type of letters, capital and small, was a matter of syntactical
convention like Prolog, but it is convenient to distinguish variables and indeterminates
in a program.

e No switch statements, and goto statements.
Lack of goto statement makes it rather bothering to exit from within multiple loops.

e Comma expressions are allowed only in A, B and C of the constructs for (A;B;C) or
while(A).
This limitation came from adopting lists as legal data objects for Asir.

The above are limitations; extensions are listed as follows.

e Arithmetic for rational expressions can be done in the same manner as is done for
numbers in C language.

e Lists are available for data objects.

Lists are conveniently used to represent a certain collection of objects. Use of lists
enables to write programs more easily, shorter and more comprehensible than use of
structure like C programs.

e Options can be specified in calling user defined functions.

See Section 4.2.12 [option], page 27.

4.2 Writing user defined functions

4.2.1 User defined functions

To define functions by an user himself, ‘def’ statement must be used. Syntactical errors are
detected in the parsing phase of Asir, and notified with an indication of where Asir found
the error. If a function with the same name is already defined (regardless to its arity,) the
new definition will override the old one, and the user will be told by a message,
afo() redefined.

on the screen when a flag verbose is set to a non-zero value by ctrl (). Recursive definition,
and of course, recursive use of functions are available. A call for an yet undefined function
in a function definition is not detected as an error. An error will be detected at execution
of the call of that yet undefined function.
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/* X! x/
def £(X) {
if ( 'X)
return 1;
else

return X * f(X-1);

/* C; (0 <di <N, 0 < j < i)=*

def c(N)
{
A = newvect(N+1); A[0] = B = newvect(1l); B[0] = 1;
for (K =1; K <=N; K++ ) {
A[K] = B = newvect(K+1); B[0] = B[K] = 1;
for ( P = A[K-1], J =1; J < K; J++ )
B[J] = P[J-1]1+P[J];
}

return A;

¥

In the second example, c(N) returns a vector, say A, of length N+1. A[I] is a vector of
length I+1, and each element is again a vector which contains ;C'; as its elements.

In the following, the manner of writing Asir programs is exhibited for those who have no
experience in writing C programs.

4.2.2 variables and indeterminates

variables (program variables)
A program variable is a string that begins with a capital alphabetical letter
followed by any numbers of alphabetical letters, digits and ‘_’.

A program variable is thought of a box (a carrier) which can contain Asir
objects of various types. The content is called the ‘value’ of that variable.
When an expression in a program is to be evaluated, the variable appearing in
the expression is first replaced by its value and then the expression is evaluated
to some value and stored in the memory. Thus, no program variable appears
in objects in the internal form. All the program variables are initialized to the
value 0.

[0] X~2+X+1;
1

[1] X=2;

2

[2] X~2+X+1;
7
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indeterminates
An indeterminate is a string that begins with a small alphabetical letter followed
by any numbers of alphabetical letters, digits and ‘_’.

An indeterminate is a transcendental element, so-called variable, which is used
to construct polynomial rings. An indeterminate cannot have any value. No
assignment is allowed to it.

[3] X=x;

X

[4] X~2+X+1;

X" 2+x+1

4.2.3 parameters and arguments

def sum(N) {
for (I =1, S=0; I <=N; I++)
S +=1;
return S;

}

This is an example definition of a function that sums up integers from 1 to N. The N in
sum(N) is called the (formal) parameter of sum(N). The example shows a function of the
single argument. In general, any number of parameters can be specified by separating by
commas (‘,’). A (formal) parameter accepts a value given as an argument (or an actual
parameter) at a function call of the function. Since the value of the argument is given to the
formal parameter, any modification to the parameter does not usually affect the argument
(or actual parameter). However, there are a few exceptions: vector arguments and matrix
arguments.

Let A be a program variable and assigned to a vector value [ a, b ]. If A is given as
an actual parameter to a formal parameter, say V, of a function, then an assignment in the
function to the vector element designator V[1], say V[1]=c;, causes modification of the
actual parameter A resulting A to have an altered value [ a ¢ ]. Thus, if a vector is given
to a formal parameter of a function, then its element (and subsequently the vector itself)
in the calling side is modified through modification of the formal parameter by a vector
element designator in the called function. The same applies to a matrix argument. Note
that, even in such case where a vector (or a matrix) is given to a formal parameter, the
assignment to the whole parameter itself has only a local effect within the function.

def clear_vector(M) {
/* M is expected to be a vector */
L = size(M) [0];
for (I =0; I<L; I++)
M[I] = 0;
}

This function will clear off the vector given as its argument to the formal parameter M and
return a 0 vector.

Passing a vector as an argument to a function enables returning multiple results by
packing each result in a vector element. Another alternative to return multiple results is to
use a list. Which to use depends on cases.
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4.2.4 comments

The text enclosed by ‘/*’ and ‘*/’ (containing ‘/*’ and ‘*/’) is treated as a comment and
has no effect to the program execution as in C programs.
/*
* This is a comment.

*/

def afo(X) {

A comment can span to several lines, but it cannot be nested. Only the first ‘/*’ is effective
no matter how many ‘/*”’s in the subsequent text exist, and the comment terminates at
the first ‘x/’.
In order to comment out a program part that may contain comments in it, use the pair,

#if 0 and #endif. (See Section 4.2.11 [preprocessor], page 26.)

#if O

def bfo(X) {

/* empty */

}

#endif

4.2.5 statements

An user function of Asir is defined in the following form.

def name(parameter, parameter,...,parameter) {
statement
statement
statement

}

As you can see, the statement is a fundamental element of the function. Therefore, in order
to write a program, you have to learn what the statement is. The simplest statement is the
simple statement. One example is an expression with a terminator (‘;” or ‘$’.)

S = sum(N);

A ‘return statement’ and ‘break statement’ are also primitives to construct ‘statements.’
As you can see the syntactic definition of ‘if statement’ and ‘for statement’; each of their
bodies consists of a single ‘statement.” Usually, you need several statements in such a
body. To solve this contradictory requirement, you may use the ‘compound statement.” A
‘compound statement’ is a sequence of ‘statement’s enclosed by a left brace ‘{’ and a right
brace ‘}’. Thus, you can use multiple statement as if it were a single statement.

if (I ==0){

J=1;
K = 2;
L = 3;

}

No terminator symbol is necessary after ‘}’, because ‘{’ statement sequence ‘}’ already
forms a statement, and it satisfies the syntactical requirement of the ‘if statement.’
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4.2.6 return statement

There are two forms of return statement.

return expression;

return;

Both forms are used for exiting from a function. The former returns the value of the
expression as a function value. The function value of the latter is not defined.

4.2.7 if statement

There are two forms of if statement.

if ( expression ) if ( expression )
statement and statement
else
statement

The interpretation of these forms are obvious. However, be careful when another if state-
ment comes at the place for ‘statement’. Let us examine the following example.

if ( expressionl )

if ( expression2 ) statementl
else

statement2

One might guess statement2 after else corresponds with the first if ( expressionl )
by its appearance of indentation. But, as a matter of fact, the Asir parser decides that
it correspond with the second if ( expression2 ). Ambiguity due to such two kinds of
forms of if statement is thus solved by introducing a rule that a statement preceded by an
else matches to the nearest preceding if.

Therefore, rearrangement of the above example for improving readability according to
the actual interpretation gives the following.

if ( expressioni ) {
if ( expression2 ) statementl else statement2

}
On the other hand, in order to reflect the indentation, it must be written as the following.

if ( expressionl ) {

if ( expression2 ) statementl
} else

statement?2

4.2.8 loop, break, return, continue

There are three kinds of statements for loops (repetitions): the while statement, the for
statement, and the do statement.

e while statement
It has the following form.
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while ( expression ) statement

This statement specifies that statement is repeatedly evaluated as far as the
expression evaluates to a non-zero value. If the expression 1 is given to the
expression, it forms an infinite loop.

e for statement
It has the following form.
for ( expr list-1; expr; expr list-2 ) statement
This is equivalent to the program
expr list-1 (transformed into a sequence of simple statement)
while ( expr ) {
statement
expr list-2 (transformed into a sequence of simple statement)

}

e do statement

do {
statement
} while ( expression )
This statement differs from while statement by the location of the termination condi-
tion: This statement first execute the statement and then check the condition, whereas
while statement does it in the reverse order.

As means for exiting from loops, there are break statement and return statement. The
continue statement allows to move the control to a certain point of the loop.

e break
The break statement is used to exit the inner most loop.

e return
The return statement is usually used to exit from a function call and it is also effective
in a loop.

e continue
The continue statement is used to move the control to the end point of the loop body.
For example, the last expression list will be evaluated in a for statement, and the
termination condition will be evaluated in a while statement.

4.2.9 structure definition

A structure data type is a fixed length array and each component of the array is accessed
by its name. Each type of structure is distinguished by its name. A structure data type
is declared by struct statement. A structure object is generated by a builtin function
newstruct. Each member of a structure is accessed by an operatator —>. If a member of a
structure is again a structure, then the specification by -> can be nested.

[1] struct rat {num,denom};

0
[2] A = newstruct(rat);
{0,0}

[3] A->num = 1;



Chapter 4: User language Asir 25

1

[4] A->den = 2;
2

[5] A;

{1,2}

4.2.10 various expressions

Major elements to construct expressions are the following:

addition, subtraction, multiplication, division, exponentiation

The exponentiation is denoted by ‘~’. (This differs from C language.) Division denoted
by ¢/’ is used to operate in a field, for example, 2/3 results in a rational number 2/3. For
integer division and polynomial division, both including remainder operation, built-in
functions are provided.

x+1 A~2xBxafo X/3

programming variables with indices

An element of a vector, a matrix or a list can be referred to by indexing. Note that the
indices begin with number 0. When the referred element is again a vector, a matrix or
a list, repeated indexing is also effective.

V[0l M[1][2]

comparison operation

There are comparison operations ‘==’ for equivalence, ‘!=’ for non-equivalence, ‘>,
‘<’ >=""and ‘<=’ for larger or smaller. The results of these operations are either value
1 for the truth, or 0 for the false.

[4

logical expression

There are two binary logical operations ‘&&’ for logical ‘conjunction’(and), ‘| |’ for log-
ical ‘disjunction’(or), and one unary logical operation ‘!’ for logical ‘negation’(not).
The results of these operations are either value 1 for the truth, and 0 for the false.

assignment
Value assignment of a program variable is usually done by ‘=’. There are special
assignments combined with arithmetic operations. (‘+=) ‘==’ ‘x=", ¢/=" "~=7)

A =2 A %= 3 (the same as A = A*3; The others are alike.)

function call
A function call is also an expression.

C_'__'_77 (__

These operators are attached to or before a program variable, and denote special op-
erations and values.

A++ the expression value is the previous value of A, and A = A+1
A-- the expression value is the previous value of A, and A = A-1
++A A = A+1, and the value is the one after increment of A
--A A = A-1, and the value is the one after decrement of A
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4.2.11 preprocessor

he Asir user language imitates C language. A typical features of C language include macro
expansion and file inclusion by the preprocessor cpp. Also, Asir read in user program files
through cpp. This enables Asir user to use #include, #define, #if etc. in his programs.

e #include
Include files are searched within the same directory as the file containing #include so
that no arguments are passed to cpp.

e #define
This can be used just as in C language.

o #if
This is conveniently used to comment out a large part of a user program that may
contain comments by /* and */, because such comments cannot be nested.

the following are the macro definitions in ‘defs.h’.

#define ZERO O
#define NUM 1

#define POLY 2
#define RAT 3

#define LIST 4
#define VECT 5
#define MAT
#define STR
#define
#define
#define
#define
#define
#define
#define 1
#define V_PF 2
#define V_SR 3

#define isnum(a) (type(a)==NUM)

#define ispoly(a) (type(a)==POLY)

#define israt(a) (type(a)==RAT)

#define islist(a) (type(a)==LIST)

#define isvect(a) (type(a)==VECT)

#define ismat(a) (type(a)==MAT)

#define isstr(a) (type(a)==STR)

#define FIRST(L) (car(L))

#define SECOND(L) (car(cdr(L)))

#define THIRD(L) (car(cdr(cdr(L))))

#define FOURTH(L) (car(cdr(cdr(cdr(L)))))

#define DEG(a) deg(a,var(a))

#define LCOEF(a) coef(a,deg(a,var(a)))

#define LTERM(a) coef(a,deg(a,var(a)))*var(a) "deg(a,var(a))
#define TT(a) car(car(a))

#define TS(a) car(cdr(car(a)))

#define MAX(a,b) ((a)>(b)?(a): (b))
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4.2.12 option

If a user defined function is declared with N arguments, then the function is callable
with N arguments only.

[0] def factor(A) { return fctr(A); }
[1] factor(x~5-1,3);

evalf : argument mismatch in factor()
return to toplevel

A function with indefinite number of arguments can be realized by using a list or an
array as its argument. Another method is available as follows:

% cat factor
def factor(F)

{
Mod = getopt(mod);
ModType = type(Mod) ;
if ( ModType == 1 ) /* ’mod’ is not specified. */
return fctr(F);
else if ( ModType == 0 ) /* ’mod’ is a number */
return modfctr(F,Mod);
}

[0] load("factor")$

[1] factor(x~5-1);

[[1,1],[x-1,1], [x"4+x"3+x"2+x+1,1]]

[2] factor(x~5-1|mod=11);

[[1,1],[x+6,1], [x+2,1], [x+10,1], [x+7,1], [x+8,1]]

In the second call of factor(), |mod=11 is placed after the argument x~5-1, which
appears in the declaration of factor (). This means that the value 11 is assigned to the
keyword mod when the function is executed. The value can be retrieved by getopt (mod).
We call such machinery option. If the option for mod is not specified, getopt (mod) returns
an object whose type is -1. By this feature, one can describe the behaviour of the function
when the option is not specified by if statements. After ‘|’ one can append any number of
options seperated by °,’.

[100] xxx(1,2,x72-1,[1,2,3] |proc=1,index=5);
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5 Debugger

5.1 What is Debugger

A debugger dbx is available for C programs on Sun, VAX etc. In dbx, one can use commands
such as setting break-point on a source line, stepwise execution, inspecting a variable’s value
etc. Asir provides such a dbx-like debugger. In addition to such commands, we adopted
several useful commands from gdb. In order to enter the debug-mode, type debug; at the
top level of Asir.

[10] debug;

(debug)

Asir also enters the debug-mode by the following means or in the following situations.
e When it reaches a break point while executing a program.
e When the ‘d’ option is selected at an interruption.
e When it detects errors while executing a program.

In this case, to continue the execution of the program is impossible. But because it
reports the statement in the user defined function that caused the error, then enters
the debug-mode, user can inspect the values of variables at the error state. This helps
to analyze the error and debug the program.

e When built-in function error () is called.

5.2 Debugger commands

Only indispensable commands of dbx are supported in the current version. Generally, the
effect of a command is the same as that of dbx. There are, however, slight differences:
Commands step and next execute the next statement, but not the next line; therefore, if
there are multiple statements in one line, one should issue such commands several times to
proceed the next line. The debugger reads in ‘.dbxinit’, which allows the same aliases as
is used in dbx.

step Executes the next statement; if the next statement contains a function call,
then enters the function.

next Executes the next statement.

finish Enter the debug-mode again after finishing the execuction of the current func-
tion. This is useful when an unnecessary step has been executed.

cont
quit Exits from the debug-mode and continues execution.
up [n] Move up the call stack one level. Move up the call stack n levels if n is specified.

down [n] Move down the call stack one level. Move down the call stack n levels if n is
specified.

frame [n] Print the current stack frame with no argument. n specifies the stack frame
number to be selected. Here the stack frame number is a number at the top of
lines displayed by executing where.
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list [startlinel

list function
Displays ten lines in a source file from startline, the current line if the startline
is not specified, or from the top line of current target function.

print expr
Displays expr.

func function
Set the target function to function.

stop at sourceline [if cond]

stop in function
Set a break-point at the sourceline-th line of the source file, or at the top of the
target function. Break-points are removed whenever the relevant function is
redefined. When if statements are repeatedly encountered, Asir enters debug-
mode only when the corresponding cond parts are evaluated to a non-zero value.

trace expr at sourceline [if cond]

trace expr in function
These are similar to stop. trace simply displays the value of expr and without
entering the debug-mode.

delete n Remove the break point specified by a number n, which can be known by the
status command.

status Displays a list of the break-points.

where Displays the calling sequence of functions from the top level through the current
level.

alias alias command
Create an alias alias for command

The debugger command print can take almost all expressions as its argument. The ordinary
usage is to print the values of (programming) variables. However, the following usage is
worth to remember.

e overwriting the variable

One might sometimes wish to continue the execution with several values of variables
modified. For such an purpose, take the following procedure.
(debug) print A
A =2
(debug) print A=1
A=1 =1
(debug) print A
A=1
e function call

A function call is also an expression, therefore, it can appear at the argument place of
print.

(debug) print length(List)

length(List) = 14
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In this example, the length of the list assigned to the variable List is examined by a
function length().

(debug) print ctrl("cputime",1)

ctrl("cputime",1) = 1
This example shows such a usage where measuring CPU time is activated from within
the debug-mode, even if one might have forgotten to specify the activation of CPU
time measurement.

It is also useful to save intermediate results to files from within the debug-mode by the
built-in function bsave () when one is forced to quit the computation by any reason.

(debug) print bsave(A,"savefile")
bsave(A,"savefile") = 1

Note that continuation of the parent function will be impossible if an error will occur
in the function call from within the debug-mode.

5.3 Execution example of debugger

Here, the usage of the Debugger is explained by showing an example for debugging a
program which computes the integer factorial by a recursive definition.

% asir

[0] load("fac")$

[3] debug$

(debug) list factorial
1 def factorial(X) {

2 if ( 1X)

3 return 1;

4 else

5 return X * factorial(X - 1);

6 }

7 end$

(debug) stop at b5 <-- setting a break point
(0) stop at "./fac":5

(debug) quit <-- leaving the debug-mode
[4] factorial(6); <-- call for factorial(6)
stopped in factorial at line 5 in file "./fac"

5 return X * factorial(X - 1);

(debug) where <-- display the calling sequence
factorial(), line 5 in "./fac" up to this break point
(debug) print X <-- Display the value of X
X =6

(debug) step <-- step execution

(enters function)
stopped in factorial at line 2 in file "./fac"
2 if (!X )
(debug) where
factorial(), line 2 in "./fac"
factorial(), line 5 in "./fac"
(debug) print X
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X=5

(debug) delete 0 <-- delete the break point 0
(debug) cont <-- continue execution

720 <-- result = 6!

[5] quit;

5.4 Sample file of initialization file for Debugger

As is previously mentioned, Asir reads in the file ‘$HOME/ .dbxinit’ at its invocation. This
file is originally used to define various initializing commands for dbx debugger, but Asir
recognizes only alias lines. For example, by the setting

% cat ~/.dbxinit

alias n next
alias ¢ cont
alias p print
alias s step
alias d delete
alias r run
alias 1 list

alias q quit

one can use short aliases, e.g., p, ¢ etc., for frequently used commands such as print, cont
etc. One can create new aliases in the debug-mode during an execution.

lex_hensel(La,[a,b,c],0,[a,b,c],0);

stopped in gennf at line 226 in file "/home/usr3/noro/asir/gr"

226 N = length(V); Len = length(G); dp_ord(0); PS = newvect(Len);
(debug) p V

V = [a,b,c]

(debug) c
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6 Built-in Function

6.1 Numbers

6.1.1 idiv, irem

idiv(i1,i2)
it Integer quotient of i1 divided by i2.

irem(il,i2)
:: Integer remainder of il divided by i2.

return integer

il i2 integer
e Integer quotient and remainder of il divided by i2.
e i2 must not be 0.

e If the dividend is negative, the results are obtained by changing the sign of the results
for absolute values of the dividend.

e One can use il % i2 for replacement of irem() which only differs in the point that the
result is always normalized to non-negative values.

e Use sdiv(), srem() for polynomial quotient.

[0] idiv(100,7);
14

[0] idiv(-100,7);
-14

[1] irem(100,7);
2

[1] irem(-100,7);
-2

References
Section 6.3.8 [sdiv sdivm srem sremm sqr sqrm|, page 46, Section 6.3.10 [%],
page 48.

6.1.2 fac

fac(i) :: The factorial of i.
return integer
i integer

e The factorial of i.

e Returns 0 if the argument i is negative.

[0] fac(50);
30414093201713378043612608166064768844377641568960512000000000000
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6.1.3 igcd,igcdcentl

iged(il,i2)
i The integer greatest common divisor of il and i2.

igedentl ([i])
:: Selects an algorithm for integer GCD.

return integer
il1i21i integer
e Function iged() returns the integer greatest common divisor of the given two integers.

e An error will result if the argument is not an integer; the result is not valid even if one
is returned.

e Use gcd(), gcdz() for polynomial GCD.

e Various method of integer GCD computation are implemented and they can be selected
by igcdentl.

0 Euclid algorithm (default)
1 binary GCD

2 bmod GCD

3 accelerated integer GCD

2, 3 are due to [Weber].

In most cases 3 is the fastest, but there are exceptions.

[0] A=lrandom(107°4)$
[1] B=lrandom(10°4)$
[2] C=lrandom(10°4)$
[3] D=AxC$

[4] E=AxB$

[5] cputime(1)$

[6] igcd(D,E)$
0.6sec + gc : 1.93sec(2.531sec)
[7] igcdentl(1)$

[8] igcd(D,E)$
0.27sec(0.2635sec)
[9] igcdentl(2)$
[10] igcd(D,E)$
0.19sec(0.1928sec)
[11] igcdentl(3)$
[12] igcd(D,E)$
0.08sec(0.08023sec)

References
Section 6.3.19 [gcd gedz], page 53.
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6.1.4 ilcm
ilem(il,i2)

i The integer least common multiple of i1 and i2.
return integer

il i2 integer
e This function computes the integer least common multiple of i1, i2.

e If one of argument is equal to 0, the return 0.

References
Section 6.1.3 [igcd igcdentl]|, page 33, Section 6.1.9 [mt_save mt_load],
page 36.

6.1.5 inv

inv(i,m) :: the inverse (reciprocal) of i modulo m.

return integer

im integer

e This function computes an integer such that ia = 1 mod (m).
e The integer i and m must be mutually prime. However, inv() does not check it.
[71] igcd(1234,4321);
1
[72] inv(1234,4321);
3239
[73] irem(3239%1234,4321);
1

References
Section 6.1.3 [igcd igedentl], page 33.

6.1.6 prime, lprime

prime (index)

1prime (index)
:: Returns a prime number.

return integer

index integer

e The two functions, prime() and lprime(), returns an element stored in the system
table of prime numbers. Here, index is a non-negative integer and be used as an index
for the prime tables. The function prime () can return one of 1900 primes up to 16381
indexed so that the smaller one has smaller index. The function lprime() can return
one of 999 primes which are 8 digit sized and indexed so that the larger one has the
smaller index. The two function always returns 0 for other indices.
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e For more general function for prime generation, there is a PARI function
pari(nextprime, number).

[95] prime(0);

2

[96] prime(1228);
9973

[97] 1lprime(0);
99999989

[98] lprime(999);
0

References
Section 6.1.13 [pari|, page 38.

6.1.7 random

random ( [seed])

seed
return non-negative integer

e Generates a random number which is a non-negative integer less than 2°32.

e If a non zero argument is specified, then after setting it as a random seed, a random
number is generated.

e As the default seed is fixed, the sequence of the random numbers is always the same if
a seed is not set.

e The algorithm is Mersenne Twister (http://www.math.keio.ac.jp/matsumoto/mt.html)
by M. Matsumoto and T. Nishimura. The implementation is done also by themselves.

e The period of the random number sequence is 2719937-1.

e One can save the state of the random number generator with mt_save. By loading the
state file with mt_load, one can trace a single random number sequence arcoss multiple
sessions.

References
Section 6.1.8 [1random|, page 35, Section 6.1.9 [mt_save mt_load], page 36.

6.1.8 lrandom

lrandom(bit)

:: Generates a long random number.
bit
return integer

e Generates a non-negative integer of at most bit bits.

e The result is a concatination of outputs of random.

References
Section 6.1.7 [random], page 35, Section 6.1.9 [mt_save mt_load], page 36.
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6.1.9 mt_save, mt_load

mt_save (fname)
i Saves the state of the random number generator.

mt_load (fname)
:: Loads a saved state of the random number generator.

return Oor1l

fname string

e One can save the state of the random number generator with mt_save. By loading the
state file with mt_load, one can trace a single random number sequence arcoss multiple
Asir sessions.

[340] random();

3510405877

[341] mt_save("/tmp/mt_state");

1

[342] random();

4290933890

[343] quit;

% asir

This is Asir, Version 991108.
Copyright (C) FUJITSU LABORATORIES LIMITED.
3 March 1994. All rights reserved.
[340] mt_load("/tmp/mt_state");

1

[341] random();

4290933890

References
Section 6.1.7 [random|, page 35, Section 6.1.8 [Lrandom|, page 35.

6.1.10 nm, dn

nm(rat) :: Numerator of rat.

dn(rat) :: Denominator of rat.

return integer or polynomial

rat rational number or rational expression

e Numerator and denominator of a given rational expression.

e For a rational number, they return its numerator and denominator, respectively. For a
rational expression whose numerator and denominator may contain rational numbers,
they do not separate those rational coefficients to numerators and denominators.

e For a rational number, the denominator is always kept positive, and the sign is con-
tained in the numerator.

e Risa/Asir does not cancel the common divisors unless otherwise explicitly specified by
the user. Therefore, nm() and dn() return the numerator and the denominator as it
is, respectively.



Chapter 6: Built-in Function 37

[2] [nm(-43/8),dn(-43/8)];
[-43,8]
[3] dn((x*z)/(x*y));
y*x
[3] dn(red((x*z)/(x*y)));
y
References
Section 6.3.20 [red], page 54.

6.1.11 conj, real, imag

real (comp)
:: Real part of comp.

imag (comp)
:: Imaginary part of comp.

conj(comp)
:: Complex conjugate of comp.

return comp
complex number
e Basic operations for complex numbers.
e These functions works also for polynomials with complex coefficients.

[111] A=(2+@1i)"3;

(2+11%01i)

[112] [real(A),imag(A),conj(A)];
[2,11,(2-11%@1i)]

6.1.12 eval, deval

eval (obj[, prec])
deval(obj)

:: Evaluate obj numerically.
return number or expression

obj general expression

prec integer
e Evaluates the value of the functions contained in obj as far as possible.
e deval returns double float. Rational numbers remain unchanged in results from eval.

e In eval the computation is done by PARI. (See Section 6.1.13 [pari|, page 38.) In
deval the computation is done by the C math library.

e deval cannot handle complex numbers.

e When prec is specified, computation will be performed with a precision of about prec-
digits. If prec is not specified, computation is performed with the precision set currently.
(See Section 6.1.14 [setprec], page 39.)
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e Currently available numerical functions are listed below. Note they are only a small
part of whole PARI functions.
sin, cos, tan,
asin, acos, atan,
sinh, cosh, tanh, asinh, acosh, atanh,
exp, log, pow(a,b) (a"b)

e Symbols for special values are as the followings. Note that @i cannot be handled by

deval.

Qi unit of imaginary number

@pi the number pi, the ratio of circumference to diameter
Qe Napier’s number (exp(1))

[118] eval(exp(@pi*@i));
-1.0000000000000000000000000000
[119] eval(2-(1/2));
1.414213562373095048763788073031
[120] eval(sin(@pi/3));
0.86602540378443864674620506632
[121] eval(sin(@pi/3)-3"(1/2)/2,50);
-2.78791084448179148471 E-58
[122] eval(1/2);

1/2

[123] deval(sin(1)"2+cos(1)72);

1

References
Section 6.12.1 [ctrl], page 81, Section 6.1.14 [setprec], page 39, Section 6.1.13
[pari], page 38.

6.1.13 pari

pari (func, arg, prec)
:: Call PARI function func.

return Depends on func.

func Function name of PARI.
arg Arguments of func.

prec integer

e This command connects Asir to PARI system so that several functions of PARI can
be conveniently used from Risa/Asir.

e PARI [Batut et al.] is developed at Bordeaux University, and distributed as a free
software. Though it has a certain facility to computer algebra, its major target is the
operation of numbers (bignum, bigfloat) related to the number theory. It facilitates
various function evaluations as well as arithmetic operations at a remarkable speed.
It can also be used from other external programs as a library. It provides a language
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interface named ‘gp’ to its library, which enables a user to use PARI as a calculator
which runs on UNIX. The current version is 2.0.17beta. It can be obtained by several
ftp sites. (For example, ftp://megrez.ceremab.u-bordeaux.fr/pub/pari.)

e The last argument (optional) int specifies the precision in digits for bigfloat operation.
If the precision is not explicitly specified, operation will be performed with the precision
set by setprec().

e Currently available functions of PARI system are as follows. Note these are only a
part of functions in PARI system. For details of individual functions, refer to the
PARI manual. (Some of them can be seen in the following example.)

abs, adj, arg, bigomega, binary, ceil, centerlift, cf, classno, classno2,
conj, content, denom, det, det2, detr, dilog, disc, discf, divisors,
eigen, eintgl, erfc, eta, floor, frac, galois, galoisconj, gamh, gamma,
hclassno, hermite, hess, imag, image, image2, indexrank, indsort, initalg,
isfund, isprime, ispsp, isqrt, issqfree, issquare, jacobi, jell, Kker,
keri, kerint, kerintgl, kerint2, kerr, length, lexsort, 1ift, lindep, 111,
111gl, 1llgen, 1lllgram, lllgramgl, lllgramgen, lllgramint, lllgramkerim,
lllgramkerimgen, 111int, 11lkerim, 111kerimgen, 11lrat, Ingamma, logagm, mat,
matrixqz2, matrixqz3, matsize, modreverse, mu, nextprime, norm, norml2, numdiv,
numer, omega, order, ordred, phi, pngn, polred, polred2, primroot, psi, quadgen,
quadpoly, real, recip, redcomp, redreal, regula, reorder, reverse, rhoreal,
roots, rootslong, round, sigma, signat, simplify, smalldiscf, smallfact,
smallpolred, smallpolred2, smith, smith2, sort, sqr, sqred, sqrt, supplement,
trace, trans, trunc, type, unit, vec, wf, wf2, zeta

e Asir currently uses only a very small subset of PARI. We will improve Asir so that it
can provide more functions of PARI.

/* Eigen vectors of a numerical matrix */

[0] pari(eigen,newmat(2,2,[[1,1],[1,2]1]1));

[ -1.61803398874989484819771921990 0.61803398874989484826 ]
[11]

/* Roots of a polynomial */

[1] pari(roots,t~2-2);

[ -1.41421356237309504876 1.41421356237309504876 ]

References
Section 6.1.14 [setprec]|, page 39.

6.1.14 setprec
setprec([n])
:: Sets the precision for bigfloat operations to n digits.

return integer

n integer

e When an argument is given, it sets the precision for bigfloat operations to n digits. The
return value is always the previous precision in digits regardless of the existence of an
argument.
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e Bigfloat operations are done by PARI. (See Section 6.1.13 [pari], page 38.)

e This is effective for computations in bigfloat. Refer to ctrl() for turning on the
‘bigfloat flag.’
e There is no upper limit for precision digits. It sets the precision to some digits around
the specified precision. Therefore, it is safe to specify a larger value.
[1] setprec();
9
[2] setprec(100);
9
[3] setprec(100);
96

Section 6.12.1 [ctrl], page 81, Section 6.1.12 [eval deval], page 37,
Section 6.1.13 [pari], page 38.

6.1.15 setmod

setmod ([p])

:: Sets the ground field to GF(p).
return integer
n prime less than 2727

e Sets the ground field to GF(p) and returns the value p.

e A member of a finite field does not have any information about the field and the
arithmetic operations over GF(p) are applied with p set at the time.

e As for large finite fields, see Chapter 10 [Finite fields], page 152.

[0] A=dp_mod(dp_ptod(2*x, [x]),3,[1);

(2) x<<1>>

[1] A+A;

addmi : invalid modulus

return to toplevel

[1] setmod(3);

3

[2] A+A;

(1) *<<1>>

References
Section 8.9.12 [dp_mod dp_rat], page 125, Section 3.2 [Types of numbers],
page 14.

6.1.16 ntoint32, int32ton

ntoint32(n)

int32ton(int32)
:: Type-conversion between a non-negative integer and an unsigned 32bit inte-
ger.

return unsigned 32bit integer or non-negative integer
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n non-negative interger less than 2°32

int32 unsigned 32bit integer

e These functions do conversions between non-negative integers (the type id 1) and un-
signed 32bit integers (the type id 10).

e An unsigned 32bit integer is a fundamental construct of OpenXM and one often has
to send an integer to a server as an unsigned 32bit integer. These functions are used
in such a case.

References
Chapter 7 [Distributed computation], page 90, Section 3.2 [Types of
numbers], page 14.

6.2 Bit operations

6.2.1 iand, ior, ixor

iand(il,i2)
;2 bitwise and
ior(il,i2)
:: bitwise or
ixor(il,i2)
.2 bitwise xor
return integer
il i2 integer
e The absolute value of the argument is regarded as a bit string.

e The sign of the argument is ignored and a non-negative integer is returned.

[0] ctrl("hex",1);

Oox1

[1] iand(Oxeeeeececeeeeceeceecee,0x2984723234812312312);
0x4622224802202202

[2] ior(0xa0alal0alalalalal,0xb0cObObObObLOLOD) ;
Oxabacabababababab

[3] ixor(Oxfffffffffff,0x234234234234);
0x2cbdcbdcbdcb

References
Section 6.2.2 [ishift], page 42.

6.2.2 ishift

ishift (i, count)
:: bit shift

return integer
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i count integer
e The absolute value of i is regarded as a bit string.
e The sign of i is ignored and a non-negative integer is returned.

e If count is positive, then i is shifted to the right. If count is negative, then i is shifted
to the left.

[0] ctrl("hex",1);

0x1

[1] ishift(0x1000000,12);

0x1000

[2] ishift(0x1000,-12);

0x1000000

[3] ixor(0x1248,ishift(1,-16)-1);

References
Section 6.2.1 [iand ior ixor|, page 41.

6.3 operations with polynomials and rational expressions

6.3.1 var

var(rat) :: Main variable (indeterminate) of rat.
return indeterminate

rat rational expression

e See Section 3.1 [Types in Asir], page 11 for main variable.

e Indeterminates (variables) are ordered by default as follows.
X,y,2,4,V,W,p,q, T, s,t,a, b, c,d,e, £, g h, i, j, k 1,mn, o. The other variables
will be ordered after the above noted variables so that the first comer will be ordered
prior to the followers.

[0] var(x~2+y~2+a”2);

X

[1] var(axb*c*dx*e);

a

[2] var(3/abc+2*xxy/efg) ;
abc

References
Section 6.3.7 [ord], page 45, Section 6.3.2 [vars]|, page 43.
6.3.2 vars

vars(obj) :: A list of variables (indeterminates) in an expression obj.
return list

obj arbitrary

e Returns a list of variables (indeterminates) contained in a given expression.
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e Lists variables according to the variable ordering.
[0] vars(x"2+y~2+a"2);
[x,y,al
[1] vars(3/abc+2*xy/efg);
[abc,xy,efg]
[2] vars([x,y,z]);

[x,y,z]
References
Section 6.3.1 [var], page 42, Section 6.3.3 [uc], page 43, Section 6.3.7 [ord],
page 45.
6.3.3 uc
uc() :: Create a new indeterminate for an undermined coeficient.
return indeterminate with its vtype 1.

e At every evaluation of command uc(), a new indeterminate in the sequence of inde-
terminates _0, _1, _2, ... is created successively.

e Indeterminates created by uc() cannot be input on the keyboard. By this property,
you are free, no matter how many indeterminates you will create dynamically by a
program, from collision of created names with indeterminates input from the keyboard
or from program files.

e Functions, rtostr() and strtov(), are used to create ordinary indeterminates (inde-
terminates having 0 for their vtype).

e Kernel sub-type of indeterminates created by uc() is 1. (vtype(uc())=1)

[0] A=uc();

_0

[1] B=ucQ);

_1

[2] (ucO+uc())"2;

_272+42%_3%_2+_372

[3] (A+B)"2;

_07242%_1%_0+_1"2

References
Section 6.8.3 [vtype], page 71, Section 6.10.1 [rtostr], page 72, Section 6.10.2
[strtov], page 73.

6.3.4 coef

coef (poly,deg [, var])
:: The coefficient of a polynomial poly at degree deg with respect to the variable
var (main variable if unspecified).

return polynomial
poly polynomial

var indeterminate
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deg non-negative integer
e The coefficient of a polynomial poly at degree deg with respect to the variable var.
e The default value for var is the main variable, i.e., var (poly).

e For multi-variate polynomials, access to coeflicients depends on the specified indeter-
minates. For example, taking coef for the main variable is much faster than for other
variables.

[0] A = (x+y+z)~3;

X3+ (B*y+3%2) ¥X "2+ (3ky " 2+6% 2k y+3%Z " 2) xx+y " 3+3%z*y " 2+3%2 " 2%y+2"3
[1] coef(A,1,y);

3*X"2+6%z*xx+3%z"2

[2] coef(A,0);

YT 3+3kzky T 243%27 2%y+2" 3

References
Section 6.3.1 [var], page 42, Section 6.3.5 [deg mindeg], page 44.

6.3.5 deg, mindeg

deg(poly, var)
:: The degree of a polynomial poly with respect to variable.

mindeg(poly, var)
:: The least exponent of the terms with non-zero coefficients in a polynomial
poly with respect to the variable var. In this manual, this quantity is sometimes
referred to the minimum degree of a polynomial for short.

return non-negative integer
poly polynomial
var indeterminate

e The least exponent of the terms with non-zero coefficients in a polynomial poly with
respect to the variable var. In this manual, this quantity is sometimes referred to the
minimum degree of a polynomial for short.

e Variable var must be specified.

[0] deg((x+y+z)~10,x);

10

[1] deg((x+y+z)~10,w);

0

[75] mindeg(x~2+3*x*y,x) ;
1

6.3.6 nmono
nmono (rat)

:: Number of monomials in rational expression rat.
return non-negative integer

rat rational expression
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e Number of monomials with non-zero number coefficients in the full expanded form of
the given polynomial.

e For a rational expression, the sum of the numbers of monomials of the numerator and
denominator.

e A function form is regarded as a single indeterminate no matter how complex arguments

it has.

[0] nmono ((x+y)~10);

11

[1] nmono ((x+y)~10/(x+z)~10);

22

[2] nmono(sin((x+y)~10));

1
References

Section 6.8.3 [vtype], page 71.

6.3.7 ord

ord([varlist])
i It sets the ordering of indeterminates (variables).

return list of indeterminates

varlist list of indeterminates

e When an argument is given, this function rearranges the ordering of variables (inde-
terminates) so that the indeterminates in the argument varlist precede and the other
indeterminates follow in the system’s variable ordering. Regardless of the existence of
an argument, it always returns the final variable ordering.

e Note that no change will be made to the variable ordering of internal forms of objects
which already exists in the system, no matter what reordering you specify. Therefore,
the reordering should be limited to the time just after starting Asir, or to the time when
one has decided himself to start a totally new computation which has no relation with
the previous results. Note that unexpected results may be obtained from operations
between objects which are created under different variable ordering.

[0] ord();
[X,y,z,u,v,w,p,q,r,s,t,a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,_x,_y,_z,_u,_v,
_w,_p,-9q,.r,_s,_t,_a,_ b, c,_d,_e, f, g, h, i,_j,_k,_ 1, m,_n,_o,
exp(_x), (_x)"(_y),log(_x),(_x)"(_y-1),cos(_x),sin(_x),tan(_x),
(-_x"2+1)"(-1/2) ,cosh(_x) ,sinh(_x) ,tanh(_x),

(Lx"2+1)7°(-1/2) ,(_x"2-1)"(-1/2)]

[1] ord([dx,dy,dz,a,b,c]);
ldx,dy,dz,a,b,c,x,y,2,u,v,w,p,q,r,s,t,d,e,f,g,h,i,j,k,1,m,n,0,_x,_y,
_Z,_u,_v,_w,_p,.q,.r,_s,_t,_a,_b,_c,.d,_e,_f,_ g, h, i,_j,_k,_1,_m,_n,
_o0,exp(_x), (Lx)~(_y),log(_x), (_x) " (_y-1),cos(_x),sin(_x) ,tan(_x),
(-_x"2+1)"(-1/2) ,cosh(_x) ,sinh(_x) ,tanh(_x),
(x"2+1)"°(-1/2),(_x"2-1)"(-1/2)]
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6.3.8 sdiv, sdivm, srem, sremm, sqr, sqrm

sdiv(polyl, poly2[,v])

sdivm(polyl, poly2,mod[,v])
:» Quotient of polyl divided by poly2 provided that the division can be per-
formed within polynomial arithmetic over the rationals.

srem(polyl,poly2[,v])

sremm(polyl, poly2,mod[,v])
Remainder of polyl divided by poly2 provided that the division can be
performed within polynomial arithmetic over the rationals.

sqr (polyl,poly2[,v])

sqrm(polyl, poly2,mod[,v])
:: Quotient and remainder of polyl divided by poly2 provided that the division
can be performed within polynomial arithmetic over the rationals.

return sdiv(), sdivm(), srem(), sremm() : polynomial sqr(), sqrm() : a list
[quotient,remainder]

polyl poly2

polynomial
v indeterminate
mod prime

e Regarding polyl as an uni-variate polynomial in the main variable of poly2, i.e.
var (poly2) (v if specified), sdiv() and srem() compute the polynomial quotient and
remainder of polyl divided by poly2.

e sdivm(), sremm(), sqrm() execute the same operation over GF(mod).

e Division operation of polynomials is performed by the following steps: (1) obtain the
quotient of leading coefficients; let it be Q; (2) remove the leading term of polyl by
subtracting, from polyl, the product of Q with some powers of main variable and poly2;
obtain a new polyl; (3) repeat the above step until the degree of polyl become smaller
than that of poly2. For fulfillment, by operating in polynomials, of this procedure,
the divisions at step (1) in every repetition must be an exact division of polynomials.
This is the true meaning of what we say “division can be performed within polynomial
arithmetic over the rationals.”

e There are typical cases where the division is possible: leading coefficient of poly2 is a
rational number; poly2 is a factor of polyl.

e Use sqr() to get both the quotient and remainder at once.

e Use idiv(), irem() for integer quotient.

e For remainder operation on all integer coefficients, use %.

[0] sdiv((x+y+z)~3,x"2+y+a);
x+3%y+3*z

[1] srem((x+y+z)~2,x"2+y+a);
(2%y+2%x2z) *x+y~2+(2%z-1) *y+z~2-a
[2] X=(x+y+z)*(x-y-z)"2;
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X"3+(~y-2) *x "2+ (~y " 2-2%z*y-z"2) kx+y " 3+3%kz*xy " 2+3%z" 2xy+z"3
[3] Y=(x+y+z) 2% (x-y-2);

X"3+(y+2) *x7 2+ (-y " 2-2%z*ky-2z"2) *x—y " 3-3*z*y " 2-3%z"2%y-z"3
[4] G=gcd(X,Y);

X 2-yT2-2%z*xy-z"2

[5] sqr(X,®;

[x-y-z,0]

[6] sqr(Y,G);

[x+y+z,0]

[7] sdiv(y*x~3+x+1,y*x+1);

divsp: cannot happen

return to toplevel

References
Section 6.1.1 [idiv irem], page 32, Section 6.3.10 [%], page 48.

6.3.9 tdiv

tdiv(polyl, poly2)
. Tests whether poly2 divides polyl.

return Quotient if poly2 divides polyl, 0 otherwise.

poly1 poly2
polynomial

e Tests whether poly2 divides polyl in polynomial ring.

e One application of this function: Consider the case where a polynomial is certainly an
irreducible factor of the other polynomial, but the multiplicity of the factor is unknown.
Application of tdiv() to the polynomials repeatedly yields the multiplicity.

[11] Y=(x+y+z) "bx(x-y-z)"3;

K78+ (2%y+2%2) xx " T+ (-2xy " 2-4xzxy-2%2"2) *x"6

+(=6%y~3-18%z*y 2-18xz"2*y—-6%z"3) *x"5
+(6*y~5+30*zxy~4+60%2" 2%y " 3+60%2" 3xy " 2+30*z " 4*y+6%z"5) *x "3
+(2%y"6+12%z*y " 5+30%2" 2%y "4+40%z " 3%y~ 3+30%z"4xy " 2+12%z " Bxy+2%z"6) *x"2
+(=2%y " T7-14*z*y~6-42%z" 2%y~ 5-T0*z" 3%y 4-T0%z"4*y~3-42%z"5*y~2
—14%z"6%y—2%z"7) *x~y "~ 8-8%zxy " 7-28%2" 2%y~ 6-56%2" 3%y " 5-70%z"4*y "4
—56*z"5xy~3-28*z" 6%y " 2-8*z"7*xy-z"8

[12] for(I=0,F=x+y+z,T=Y; T=tdiv(T,F); I++);

[13] I;

5

References
Section 6.3.8 [sdiv sdivm srem sremm sqr sqrm|, page 46.

6.3.10 7%
poly % m :: integer remainder to all integer coefficients of the polynomial.
return integer or polynomial

poly integer or polynomial with integer coefficients
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m intger
e Returns a polynomial whose coefficients are remainders of the coefficients of the input
polynomial divided by m.

e The resulting coefficients are all normalized to non-negative integers.

e An integer is allowed for poly. This can be used for an alternative for irem() except
that the result is normalized to a non-negative integer.
e Coefficients of poly and m must all be integers, though the type checking is not done.
[0] (x+2)°5 % 3;
X"B+xT4+x"3+2%X T 2+2%x+2
[1] (x-2)"5 % 3;
X"B+2*x74+x " 3+x 7 2+2*%x+1
[2] (-5) % 4;
3
[3] irem(-5,4);
-1

References
Section 6.1.1 [idiv irem|, page 32.

6.3.11 subst, psubst

subst (rat[, varn,ratn] *)

psubst (rat [, var, rat] *)
:: Substitute ratn for varn in expression rat. (n=1,2,.... Substitution will be
done successively from left to right if arguments are repeated.)

return rational expression
rat ratn rational expression
varn indeterminate

e Substitutes rational expressions for specified kernels in a rational expression.
e subst(r,vl,rl,v2,r2,...) has the same effect as subst(subst(r,v1,rl),v2,r2,...).

e Note that repeated substitution is done from left to right successively. You may get
different result by changing the specification order.

e Ordinary subst () performs substitution at all levels of a scalar algebraic expression
creeping into arguments of function forms recursively. Function psubst() regards
such a function form as an independent indeterminate, and does not attempt to apply
substitution to its arguments. (The name comes after Partial SUBSTitution.)

e Since Asir does not reduce common divisors of a rational expression automatically,
substitution of a rational expression to an expression may cause unexpected increase
of computation time. Thus, it is often necessary to write a special function to meet
the individual problem so that the denominator and the numerator do not become too
large.

e The same applies to substitution by rational numbers.

[0] subst(x"3-3*y*x"2+3*y~2*x-y~3,y,2);
x"3-6*%x"2+12%x-8
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[1] subst(@@,x,-1);

=27

[2] subst(x"3-3*y*x~2+3*xy~2*xx-y~3,y,2,x,-1);
=27

[3] subst(x*y~3,x,y,y,X);

x4

[4] subst(x*y~3,y,%x,X,¥);

y~4

[5] subst(x*y~3,x,t,y,x,t,y);
y*x~3

[6] subst(x*sin(x),x,t);

sint (t)*t

[7] psubst(x*sin(x),x,t);
sin(x)*t

6.3.12 diff

diff (ratl, varn] *)

diff (rat, varlist)
:: Differentiate rat successively by var’s for the first form, or by variables in
varlist for the second form.

return expression

rat rational expression which contains elementary functions.
varn indeterminate

varlist list of indeterminates

e Differentiate rat successively by var’s for the first form, or by variables in varlist for
the second form.

e differentiation is performed by the specified indeterminates (variables) from left to
right. diff(rat,x,y) is the same as diff(diff(rat,x),y).
[0] diff ((x+2*y)~2,x);
2%x+4*y
[1] diff((x+2*y)~2,x,y);
4
[2] diff(x/sin(log(x)+1),x);
(sin(log(x)+1)-cos(log(x)+1))/(sin(log(x)+1)~2)
[3] diff(sin(x), [x,x,x,x]);
sin(x)

6.3.13 res

res(var, polyl, poly2 [, mod])
. Resultant of polyl and poly2 with respect to var.

return polynomial

var indeterminate
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poly1 poly2
polynomial

mod prime
e Resultant of two polynomials polyl and poly2 with respect to var.
e Sub-resultant algorithm is used to compute the resultant.
e The computation is done over GF(mod) if mod is specified.

[0] res(t, (£73+1)*x+1, (£73+1)*y+t);
-x"3-x"2-y"3

6.3.14 fctr, sqfr

fctr(poly)
:: Factorize polynomial poly over the rationals.

sqfr(poly)
:: Gets a square-free factorization of polynomial poly.

return list

poly polynomial with rational coefficients

e Factorizes polynomial poly over the rationals. fctr() for irreducible factorization;
sqfr () for square-free factorization.

e The result is represented by a list, whose elements are a pair represented as
[num, 1], [factor, multiplicity],...].
e Products of all factor “multiplicity and num is equal to poly.

e The number num is determined so that (poly /mum) is an integral polynomial and its
content (GCD of all coefficients) is 1. (See Section 6.3.17 [ptozp|, page 52.)

[0] fctr(x~10-1);

[[1,1],[x-1,1]1, [x+1,1], [x"4+x"3+x"2+x+1,1], [x"4-x"3+x"2-x+1,1]]
[1] fctr(x~3+y~3+(z/3) "3-x*y*z) ;

[[1/27,1], [9%x7 2+ (-9%y-3%2z) *x+9xy " 2-3*z*xy+z~2,1] , [3*x+3*y+z,1]]
[2] A=(a+b+c+d) "2;

a” 2+ (2xb+2*c+2*d) xa+b " 2+ (2*xc+2*d) *b+c”2+2*d*c+d "2

[3] fctr(A);

[[1,1], [a+b+c+d,2]]

[4] A=(x+1D)*x(x"2-y"2)"2;

XTB+xT4-2%y T 2%x " 3-2%y T 2%x " 2+y " 4*xx+y "4

[5] sqfr(A);

(01,11, [x+1,1], [-x"2+y~2,2]]

[6] fctr(d);

[01,1], [x+1,1], [-x-y,2], [x-y,2]]

References
Section 6.3.15 [ufctrhint], page 51.
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6.3.15 ufctrhint

ufctrhint (poly, hint)
:: Factorizes uni-variate polynomial poly over the rational number field when
the degrees of its factors are known to be some integer multiples of hint.

return list
poly uni-variate polynomial with rational coefficients
hint non-negative integer

e By any reason, if the degree of all the irreducible factors of poly is known to be some
multiples of hint, factors can be computed more efficiently by the knowledge than
fctr().

e When hint is 1, ufctrhint () is the same as fctr() for uni-variate polynomials. An
typical application where ufctrhint () is effective: Consider the case where poly is
a norm (Chapter 9 [Algebraic numbers|, page 140) of a certain polynomial over an
extension field with its extension degree d, and it is square free; Then, every irreducible
factor has a degree that is a multiple of d.

[10] A=t"9-15%t~6-87*t~3-125;

t79-15%xt~"6-87*xt~3-125

Omsec

[11] N=res(t,subst(A,t,x-2%t),A);
-x"81+1215%x"78-567405*xx"75+139519665*xx~72-19360343142*xx~69
+1720634125410*xx~66-88249977024390%x~63-4856095669551930*x~60
+1999385245240571421*xx~57-15579689952590251515%x~ 54
+15956967531741971462865*x"51

+140395588720353973535526123612661444550659875*x"6
+10122324287343155430042768923500799484375%x"3
+139262743444407310133459021182733314453125

980msec + gc : 250msec

[12] sqfr(W);

[[-1,1], [x"81-1215%x"78+567405*x~75-139519665%x"72+19360343142%x 69
-1720634125410%x~66+88249977024390*x~63+4856095669551930*x~60
-1999385245240571421*x"~57+15579689952590251515%x 54

-10122324287343155430042768923500799484375%x" 3
-139262743444407310133459021182733314453125,1]]

20msec

[13] fctr(N);

[[-1,1], [x"9-405*x"6-63423*x~3-2460375,1],
[x~18-486%x~15+98739%x~12-9316620%x~9+945468531*x~6-12368049246%x"3
+296607516309,1] , [x~18-8667*x"12+19842651*x~6+19683,1],
[x718-324*x"15+44469%x~12-1180980*x~9+427455711*%x~6+2793253896%*x "3
+31524548679,11,

[x718+10773*x~12+2784051*x~6+307546875,1]]

167.050sec + gc : 1.890sec

[14] ufctrhint(N,9);

[[-1,1], [x"9-405*x~6-63423*x~3-2460375,1],
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[x"18-486*x~15+98739%x~12-9316620%x~9+945468531%x"~6-12368049246%*x"3
+296607516309,1], [x~18-8667*x"12+19842651*x"6+19683,1],
[x~18-324*x"15+44469*x~12-1180980%x~9+427455711*x~6+2793253896*x "3
+31524548679,11],

[x"18+10773%x"12+2784051*x"6+307546875,1] ]

119.340sec + gc : 1.300sec

References
Section 6.3.14 [fctr sqfr], page 50.

6.3.16 modfctr

modfctr (poly, mod)

:: Factorizer over small finite fields
return list
poly Polynomial with integer coefficients
mod non-negative integer

e This function factorizes a polynomial poly over the finite prime field of characteristic
mod, where mod must be smaller than 2729.

e The result is represented by a list, whose elements are a pair represented as
[[num,1],[factor,multiplicity]....].

e Products of all factor “multiplicity and num is equal to poly.

e To factorize polynomials over large finite fields, use fctr_ff (see Chapter 10 [Finite
fields], page 152,Section 10.5.16 [fctr_ff], page 162).

[0] modfctr(x~10+x"2+1,2147483647) ;

[[1,1], [x+1513477736,1], [x+2055628767,1] , [x+91854880,1],
[x+634005911,1], [x+1513477735,1], [x+634005912,1],
[x~4+1759639395%x~2+2045307031,1]]

[1] modfctr(2*x~6+(y~2+z*y) *x"4+2xzxy " 3xx "2+ (2%z 2%y~ 2+z"3*y) *x+2"4,3) ;
[[2,1], [2*x"3+z*y*x+z"2,1] , [2%x"3+y " 2*x+2%z"2,1]]

References
Section 6.3.14 [fctr sqfr], page 50.

6.3.17 ptozp

ptozp (poly)
:: Converts a polynomial poly with rational coefficients into an integral poly-
nomial such that GCD of all its coefficients is 1.

return polynomial

poly polynomial
e Converts the given polynomial by multiplying some rational number into an integral
polynomial such that GCD of all its coefficients is 1.
e In general, operations on polynomials can be performed faster for integer coefficients
than for rational number coefficients. Therefore, this function is conveniently used to
improve efficiency.
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e Function red does not convert rational coeflicients of the numerator. You cannot
obtain an integral polynomial by direct use of the function nm(). The function nm()
returns the numerator of its argument, and a polynomial with rational coeflicients is
the numerator of itself and will be returned as it is.

[0] ptozp(2#x+5/3);
6xx+5

[1] nm(2%x+5/3);
2*x+5/3

References
Section 6.1.10 [nm dn], page 36.

6.3.18 prim, cont

prim(poly [,v])
:: Primitive part of poly.

cont (poly [,v])
:: Content of poly.

return poly
polynomial over the rationals

v indeterminate
e The primitive part and the content of a polynomial poly with respect to its main
variable (v if specified).
[0] E=(y-2z)*(x+y)*(x-2)*(2*x-y) ;
(2%y-2%2) *x "3+ (y~2-3*%z*y+2%272) *x "2+ (-y " 3+27 2%y ) xx+2z*y " 3-2" 2%y 2
[1] prim(E);
2%x "3+ (y-2%2z) *x "2+ (-y " 2-z*y) *x+z2%y "2
[2] cont(E);
y_Z
[3] prim(E,z);
(y-2z) *x-z*y+z"2

References
Section 6.3.1 [var]|, page 42, Section 6.3.7 [ord], page 45.
6.3.19 gcd, gcdz

gcd(polyl, poly2 [, mod])

gcdz (polyl, poly2)
:: The polynomial greatest common divisor of polyl and poly2.

return polynomial

poly1 poly2
polynomial

mod prime
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Functions gcd() and gcdz () return the greatest common divisor (GCD) of the given
two polynomials.

Function gcd() returns an integral polynomial GCD over the rational number field.
The coefficients are normalized such that their GCD is 1. It returns 1 in case that the
given polynomials are mutually prime.

Function gcdz () works for arguments of integral polynomials, and returns a polynomial
GCD over the integer ring, that is, it returns gcd () multiplied by the contents of all
coefficients of the two input polynomials.

gcd () computes the GCD over GF(mod) if mod is specified.

Polynomial GCD is computed by an improved algorithm based on Extended Zassenhaus
algorithm.

GCD over a finite field is computed by PRS algorithm and it may not be efficient for
large inputs and co-prime inputs.

[0] gecd (12 (x~2+2*%x+1) "2,18%(x"2+(y+1) *x+y) "3) ;

X" 3+3%x72+3*x+1

[1] gecdz(12%(x"2+2%x+1) "2,18* (x~2+(y+1) *x+y) "3) ;

6*xx"3+18*x"2+18%x+6

[2] ged((x+y)*(x-y) "2, (x+y) "2*(x-y));

xX"2-y"2

[3] gecd((x+y)*(x-y) "2, (x+y) "2x(x-y),2);

X" 3+y*x"2+y " 2%x+y "3

References

Section 6.1.3 [igcd igedentl], page 33.

6.3.20 red
red(rat) : Reduced form of rat by canceling common divisors.
return rational expression

rat

rational expression

Asir automatically performs cancellation of common divisors of rational numb ers.
But, without an explicit command, it does not cancel common polynomial divisors of
rational expressions. (Reduction of rational expressions to a common denominator will
be always done.) Use command red() to perform this cancellation.

Cancel the common divisors of the numerator and the denominator of a rational ex-
pression rat by computing their GCD.

The denominator polynomial of the result is an integral polynomial which has no com-
mon divisors in its coefficients, while the numerator may have rational coefficients.

Since GCD computation is a very hard operation, it is desirable to detect and remove
by any means common divisors as far as possible. Furthermore, a call to this function
after swelling of the denominator and the numerator shall usually take a very long
time. Therefore, often, to some extent, reduction of common divisors is inevitable for
operations of rational expressions.

[0] (x"3-1)/(x-1);

(x"3-1)/(x-1)
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[1] red((x"3-1)/(x-1));

x"2+x+1

[2] red((x"3+y~3+z"3-3*x*y*z)/(x+y+z));
X2+ (~y-2) *x+y " 2-z*y+z"2

[3] red((3*xxy)/(12%x"2+21%y ~3%x)) ;

(7) / (4xx+T4y"3)

[4] red((3/4%x"2+5/6%x)/(2*y*x+4/3%x)) ;
(9/8%x+5/4) / (3*xy+2)

References

Section 6.1.10 [nm dn], page 36, Section 6.3.19 [gcd gedz], page 53,
Section 6.3.17 [ptozp], page 52.

6.4 Univariate polynomials

6.4.1 umul, umul_ff, usquare, usquare_£ff, utmul, utmul_£ff

umul (p1, p2)
umul _ff(pl,p2)

:: Fast multiplication of univariate polynomials

usquare(pl)
usquare_ff (pl)

. Fast squaring of a univariate polynomial

utmul (pl,p2,d)
utmul _ff(pl,p2,d)

:: Fast multiplication of univariate polynomials with truncation

return univariate polynomial
pl p2 univariate polynomial
d non-negative integer

These functions compute products of univariate polynomials by selecting an appropriate
algorithm depending on the degrees of inputs.

umul (), usquare (), utmul () compute products over the integers. Coefficients in GF(p)
are regarded as non-negative integers less than p.

umul_ff (), usquare_£f (), utmul_£f () compute products over a finite field. However,
if some of the coefficients of the inputs are integral, the result may be an integral
polynomial. So if one wants to assure that the result is a polynomial over the finite
field, apply simp_££f () to the inputs.

umul_£f (), usquare_£f (), utmul_£f () cannot take polynomials over GF(2°n) as their
inputs.

umul (), umul_ff() produce pl*p2. usquare(), usquare_ff() produce pl~2.
utmul (), utmul_££f() produce pl*p2 mod v~ (d+1), where v is the variable of pl1, p2.

If the degrees of the inputs are less than or equal to the value returned by set_upkara()
(set_uptkara() for utmul, utmul_ff), usual pencil and paper method is used. If the
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degrees of the inputs are less than or equall to the value returned by set_upfft(),
Karatsuba algorithm is used. If the degrees of the inputs exceed it, a combination of
FFT and Chinese remainder theorem is used. First of all sufficiently many primes mi
within 1 machine word are prepared. Then pl*p2 mod mi is computed by FFT for
each mi. Finally they are combined by Chinese remainder theorem. The functions over
finite fields use an improvement by V. Shoup [Shoup].

[176] load("fff")$

[177] cputime(1)$

Osec(1.407e-05sec)

[178] setmod_£ff(27160-47);
1461501637330902918203684832716283019655932542929
0sec(0.00028sec)

[179] A=randpoly_ff(100,x)$
0sec(0.001422sec)

[180] B=randpoly_£ff(100,x)$
0sec(0.00107sec)

[181] for(I=0;I<100;I++)Ax*B;

7.77sec + gc : 8.38sec(16.15sec)

[182] for(I=0;I<100;I++)umul(A,B);
2.24sec + gc : 1.52sec(3.767sec)

[183] for(I=0;I<100;I++)umul_ff(A,B);
1.42sec + gc : 0.24sec(1.653sec)

[184] for(I=0;I<100;I++)usquare_£ff(A);
1.08sec + gc : 0.21sec(1.297sec)

[185] for(I=0;I<100;I++)utmul_£f(A,B,100);
1.2sec + gc : 0.17sec(1.366sec)

[186] deg(utmul_£ff(A,B,100),x);

100

References
Section 6.4.3 [set_upkara set_uptkara set_upfft], page 57, Section 6.4.2
[kmul ksquare ktmul], page 56.

6.4.2 kmul, ksquare, ktmul

kmul (p1,p2)
:: Fast multiplication of univariate polynomials

ksquare(pl)
:: Fast squaring of a univariate polynomial
ktmul (pl,p2,d)
:: Fast multiplication of univariate polynomials with truncation
return univariate polynomial
pl p2 univariate polynomial
d non-negative integer

These functions compute products of univariate polynomials by Karatsuba algorithm.

e These functions do not apply FFT for large degree inputs.
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e These functions can compute products over GF(27n).

[0] load("code/fff");

1

[34] setmod_ff (defpoly_mod2(160));
x7160+x75+x"3+x"2+1

[35] A=randpoly_ff(100,x)$

[36] B=randpoly_ff(100,x)$

[37] umul(A,B)$

umul : invalid argument

return to toplevel

[37] kmul(A,B)$

6.4.3 set_upkara, set_uptkara, set_upfft

set_upkara( [threshold])

set_uptkara( [threshold])

set_upfft ([threshold])
:: Set thresholds in the selection of an algorithm from N~2, Karatsuba, FFT
algorithms for univariate polynomial multiplication.

return value currently set

threshold non-negative integer

e These functions set thresholds in the selection of an algorithm from N~2, Karatsuba,
FFT algorithms for univariate polynomial multiplication.

e Products of univariate polynomials are computed by N~2, Karatsuba, FFT algorithms.
The algorithm selection is done according to the degrees of input polynomials and the
thresholds.

e See the description of each function for details.

References
Section 6.4.2 [kmul ksquare ktmul|, page 56, Section 6.4.1 [umul umul_ff
usquare usquare_ff utmul utmul_f£f|, page 55.

6.4.4 utrunc, udecomp, ureverse

utrunc(p,d)
udecomp (p,d)
ureverse(p)
:: Operations on polynomials

return univariate polynomial or list of univariate polynomials
D univariate polynomial
d non-negative integer

e Let x be the variable of p. Then p can be decomposed as p = pl+x~(d+1)p2, where
the degree of p1 is less than or equal to d. Under the decomposition, utrunc () returns
pl and udecomp() returns [pl,p2].
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e Let e be the degree of p and pli] the coefficient of p at degree i. Then ureverse()
returns ple]+p[e-1]x+....

[132] utrunc((x+1)~10,5);
252*%xx"5+210%x"4+120%x"3+45%xx"2+10*x+1
[133] udecomp((x+1)~10,5);
[252%x~5+210%x"4+120*x " 3+45*x " 2+10%x+1 ,x"4+10*x "~ 3+45%x " 2+120*x+210]
[134] ureverse(3*x~3+x"2+2%x) ;
2%x " 2+x+3

References
Section 6.4.6 [udiv urem urembymul urembymul_precomp ugcd|, page 59.

6.4.5 uinv_as_power_series, ureverse_inv_as_power_series

uinv_as_power_series(p,d)
ureverse_inv_as_power_series(p,d)
:: Computes the truncated inverse as a power series.

return univariate polynomial
p univariate polynomial
d non-negative integer

e For a polynomial p with a non zero constant term, uinv_as_power_series(p,d) com-
putes a polynomial r whose degree is at most d such that p*r = 1 mod x~(d+1), where
x is the variable of p.

e Let e be the degree of p. ureverse_inv_as_power_series(p,d) computes uinv_as_
power_series(pl,d) for pl=ureverse(p,e).

e The output of ureverse_inv_as_power_series() can be used as the input of

rembymul_precomp ().
[123] A=(x+1)"5;
Xx"5+5%x74+10%x"3+10%x " 2+5*%xx+1
[124] uinv_as_power_series(A,5);
-126%x"5+70%x"4-35*%x"3+15%x"2-5%x+1
[126] AxR;
-126%x"10-560%x"9-945*x"8-720*x"7-210*xx"6+1
[127] A=x"10+x"9;
x~710+x79
[128] R=ureverse_inv_as_power_series(A,5);
-x"5+x74-x"3+x"2-x+1
[129] ureverse(A)*R;
-x"6+1

References
Section 6.4.4 [utrunc udecomp ureverse|, page 57, Section 6.4.6 [udiv urem
urembymul urembymul_precomp ugcd|, page 59.

6.4.6 udiv, urem, urembymul, urembymul_precomp, ugcd

udiv(pl,p2)
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urem(pl, p2)
urembymul (p1,p2)
urembymul_precomp (pl,p2,inv)

ugcd(pl,p2)
:: Division and GCD for univariate polynomials.

return univariate polynomial

pl p2 inv  univariate polynomial

e For univariate polynomials pl and p2, there exist polynomials q and r such that
pl=q*p2+r and the degree of r is less than that of p2. Then udiv returns g, urem
and urembymul return r. ugcd returns the polynomial GCD of pl and p2. These
functions are specially tuned up for dense univariate polynomials. In urembymul the
division by p2 is replaced with the inverse computation of p2 as a power series and two
polynomial multiplications. It speeds up the computation when the degrees of inputs
are large.

e urembymul_precomp is efficient when one repeats divisions by a fixed polynomial. One
has to compute the third argument by ureverse_inv_as_power_series().
[177] setmod_ff(2°160-47);
1461501637330902918203684832716283019655932542929
[178] A=randpoly_£ff(200,x)$
[179] B=randpoly_ff(101,x)$
[180] cputime(1)$
Osec(1.597e-05sec)
[181] srem(A,B)$
0.16sec + gc : 0.15sec(0.3035sec)
[182] urem(A,B)$
0.11sec + gc : 0.12sec(0.2347sec)
[183] urembymul (A,B)$
0.08sec + gc : 0.09sec(0.1651sec)
[184] R=ureverse_inv_as_power_series(B,101)$
0.04sec + gc : 0.03sec(0.063sec)
[185] urembymul_precomp(A,B,R)$
0.03sec(0.02501sec)

References
Section  6.4.5 [uinv_as_power_series ureverse_inv_as_power_series|,
page 58.

6.5 Lists

6.5.1 car, cdr, cons, append, reverse, length

car (list)  :: The first element of the given non-null list list.
cdr(list) :: A list obtained by removing the first element of the given non-null list list.

cons (obj, list)
:: A list obtained by adding an element obj to the top of the given list list.
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append (list1, list2)

it A list obtained by adding all elements in the list list2 according to the order
as it is to the last element in the list list1.

reverse (list)

:: reversed list of list.

length (list)

;2 Number of elements in a list Iist.

return car() : arbitrary, cdr(), cons(), append(), reverse() : list, length() :

non-negative integer

list list1 list2

obj

list
arbitrary

A list is written in Asir as [objl,0bj2,...]. Here, objl1 is the first element.

Function car() outputs the first element of a non-null list. For a null list, the result
should be undefined. In the current implementation, however, it outputs a null list.
This treatment for a null list may subject to change in future, and users are suggested
not to use the tentative treatment for a null list for serious programming.

Function cdr() outputs a list obtained by removing the first element from the input
non-null list. For a null list, the result should be undefined. In the current implemen-
tation, however, it outputs a null list. This treatment for a null list may subject to
change in future, and users are suggested not to use the tentative treatment for a null
list for serious programming.

Function cons() composes a new list from the input list list and an arbitrary object
obj by adding obj to the top of list.

Function append() composes a new list, which has all elements of list1 in the same
ordering followed by all elements of list2 in the same ordering.

Function reverse() returns a reversed list of Iist.

Function length() returns a non-negative integer which is the number of elements in
the input list list. Note that function size should be used for counting elements of
vector and matrix.

Lists are read-only objects in Asir. There elements cannot be modified.

The n-th element in a list can be referred to by applying the function cdr() n times
repeatedly and cdr () at last. A more convenient way to access to the n-th element is
the use of bracket notation, that is, to attach an index [n] like vectors and matrices.
The system, however, follow the n pointers to access the desired element. Subsequently,
much time is spent for an element located far from the top of the list.

Function cdr () does not create a new cell (a memory quantity). Function append (), as
a matter of fact, repeats cons() for as many as the length of list1 the first argument.
Subsequently, append() consumes much memory space if its first argument is long.
Similar argument applies to function reverse().

(0l L= [[1,2,31,4,[5,61];

(f1,2,3],4,[5,6]]
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[1] car(L);

[1,2,3]

[2] cdr(L);

[4,[5,6]]

[3] cons(x*y,L);
[y*x,[1,2,3],4,[5,6]]
[4] append([a,b,c],[d]);
[a,b,c,d]

[5] reverse(l[a,b,c,d]);
[d,c,b,al

[6] length(L);

3

(7] L[2][0];

5

6.6 Arrays

6.6.1 newvect

newvect (lenl[, list])

:: Creates a new vector object with its length len.

return vector
len non-negative integer
list list
e Creates a new vector object with its length len and its elements all cleared to value 0.

If the second argument, a list, is given, the vector is initialized by the list elements.
FElements are used from the first through the last. If the list is short for initializing the
full vector, 0’s are filled in the remaining vector elements.

Elements are indexed from 0 through len-1. Note that the first element has not index
1.

List and vector are different types in Asir. Lists are conveniently used for representing
many data objects whose size varies dynamically as computation proceeds. By its
flexible expressive power, it is also conveniently used to describe initial values for other
structured objects as you see for vectors. Access for an element of a list is performed
by following pointers to next elements. By this, access costs for list elements differ
for each element. In contrast to lists, vector elements can be accessed in a same time,
because they are accessed by computing displacements from the top memory location
of the vector object.

Note also, in Asir, modification of an element of a vector causes modification of the
whole vector itself, while modification of a list element does not cause the modification
of the whole list object.

By this, in Asir language, a vector element designator can be a left value of assign-
ment statement, but a list element designator can NOT be a left value of assignment
statement.
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e No distinction of column vectors and row vectors in Asir. If a matrix is applied to a
vector from left, the vector shall be taken as a column vector, and if from right it shall
be taken as a row vector.

e The length (or size or dimension) of a vector is given by function size().

e When a vector is passed to a function as its argument (actual parameter), the vector
element can be modified in that function.

e A vector is displayed in a similar format as for a list. Note, however, there is a distinc-
tion: Elements of a vector are separated simply by a ‘blank space’, while those of a list
by a ‘comma.’

[0] A=newvect(5);
[0O00O0O0]

[1] A=newvect(5,[1,2,3,4,[5,6]1]1);
(1234 [5,6] ]

(2] A[0];

1

[3] A[4];

[5,6]

[4] size(A);

[5]

[6] def afo(V) { V[0] = x; }
[6] afo(A)$

(71 A;

[x234 [5,6] ]

References
Section 6.6.4 [newmat], page 63, Section 6.6.5 [size], page 64, Section 6.6.2
[vtol], page 62.

6.6.2 vtol

vtol (vect)
:: Converts a vector into a list.

return list
vect vector
e Converts a vector vect of length n into a list [vect[0],...,vect[n-1]1].

e A conversion from a list to a vector is done by newvect ().
[3] A=newvect(3,[1,2,3]);
[123]
[4] vtol(A);
[1,2,3]

References
Section 6.6.1 [newvect]|, page 61.

6.6.3 newbytearray
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newbytearray (len, [listorstring])

:: Creates a new byte array.

return byte array

len

non-negative integer

listorstring

list or string
This function generates a byte array. The specification is similar to that of newvect.
The initial value can be specified by a character string.
One can access elements of a byte array just as an array.

[182] A=newbytearray(3);

|00 00 00|

[183] A=newbytearray(3,[1,2,3]);
01 02 03]

[184] A=newbytearray(3,"abc");
|61 62 63|

[185] A[O0];

97

[186] A[1]=123;

123

[187] A;

[61 7b 63|

References

Section 6.6.1 [newvect]|, page 61.

6.6.4 newmat

newmat (row,col [,[[a,b,...]1,[c,d,...]1,...11)

;1 Creates a new matrix with row rows and col columns.

return matrix

row col non-negative integer

abcd arbitrary

If the third argument, a list, is given, the newly created matrix is initialized so that each
element of the list (again a list) initializes each of the rows of the matrix. Elements are
used from the first through the last. If the list is short, 0’s are filled in the remaining
matrix elements. If no third argument is given all the elements are cleared to 0.

The size of a matrix is given by function size().

Let M be a program variable assigned to a matrix. Then, M[I] denotes a (row) vector
which corresponds with the I-th row of the matrix. Note that the vector shares its
element with the original matrix. Subsequently, if an element of the vector is modified,
then the corresponding matrix element is also modified.

When a matrix is passed to a function as its argument (actual parameter), the matrix
element can be modified within that function.
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0 newmat (3,3, [[1,1,1], [x,y], [x"2]11);
]

]

0]

[1] det(A);

-y*x72

[2] size(A);

[3,3]

[3] Al1];

[xyo0]

(4] A[1103];

getarray : Out of range
return to toplevel

L B M M
NS = =
O O |

]
1
X
<~

References

Section 6.6.1 [newvect], page 61, Section 6.6.5 [size], page 64, Section 6.6.6
[det invmat]|, page 65.

6.6.5 size

size (vect| mat)
:: A list containing the number of elements of the given vector, [size of vect],
or a list containing row size and column size of the given matrix, [row size of
mat, column size of mat].

return list
vect vector
mat matrix

e Return a list consisting of the dimension of the vector vect, or a list consisting of the
row size and column size of the matrix matrix.

e Use length() for the size of Iist, and nmono() for the number of monomials with
non-zero coefficients in a rational expression.

[0] A = newvect(4);
[00O0O0]

[1] size(A);

[4]

[2] B=n
[123]
[ 456]
[3] size(B);
[2,3]

ewmat(2,3,[[1,2,3],[4,5,611);

References
Section 6.5.1 [car cdr cons append reverse length|, page 59, Section 6.3.6
[nmono], page 45.

6.6.6 det,invmat
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det (mat[,mod])
:: Determinant of mat.

invmat (mat)
:: Inverse matrix of mat.

return det: expression, invmat: list
mat matrix
mod prime

e det computes the determinant of matrix mat. invmat computes the inverse matrix
of matrix mat. invmat returns a list [num,den], where num is a matrix and num/den
represents the inverse matrix.

e The computation is done over GF(mod) if mod is specitied.

e The fraction free Gaussian algorithm is employed. For matrices with multi-variate
polynomial entries, minor expansion algorithm sometimes is more efficient than the
fraction free Gaussian algorithm.

[91] A=newmat(5,5)$

[92] v=I[x,y,z,u,v];

[x,y,z,u,v]

[93] for(I=0;I<5;I++)for(J=0,B=A[I],W=V[I];J<5;J++)B[J]=W"J;

[94] A;

[ 1 xx"2x"3x74 ]
[1yy2y3y4]
[1z2z"22z3z"4]
[1uu?2u3ud]
[1vv2v3v4d]
[95] fctr(det(A));

(f1,11, [u-v,11, [-z+v,1], [-z+u,1], [-y+u,1], [y-v,1], [-y+z,1], [-x+u,1],
[-x+z,1], [-x+v,1], [-x+y,1]]

[96] A = newmat(3,3)$

[97] for(I=0;I<3;I++)for(J=0,B=A[I],W=V[I];J<3;J++)B[J]=W"J;
[98] A;

[1xx"2]

[1yy2]

[1=zz"2]

[99] invmat(A);

[[ —zxy " 2+z" 2%y z*x"2-z"2*%x -y*x"2+y ~2%x ]

[ y72-272 -x"2+z"2 x"2-y~2 ]

[ -y+z x-z -x+y ], (~y+2)*x"2+(y~2-2"2) xx-z*y " 2+2" 2%y]

[100] AxB[0];

[ (-y+2)*x72+(y"2-272) *x-z*y " 2+z" 2%y 0 O ]

[ 0 (—y+z)*x"2+(y"2-2"2) *xx-z*y 2+z" 2%y 0 ]

(—y+2) *x72+(y"2-272) *x-2%y " 2+2" 2%y ]

map (red,A*B[0]/B[1]);

101

[O0O
[101]
[10
[01
[0O

= O O
—_ e
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References
Section 6.6.4 [newmat], page 63.

6.6.7 gsort

gsort (array [, funcl)
:: Sorts an array array.

return array (The same as the input; Only the elements are exchanged.)
array array
func function for comparison

e This function sorts an array by quick sort.

e If func is not specified, the built-in comparison function is used and the array is sorted
in increasing order.

e If a function of two arguments func which returns 0, 1, or -1 is provided, then an
ordering is detemined so that A<B if func(A,B)=1 holds, and the array is sorted in
increasing order with respect to the ordering.

e The returned array is the same as the input. Only the elements are exchanged.

[0] gsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]1));
[-1012346679]1]

[1] def rev(A,B) { return A>B?-1:(A<B?71:0); }

[2] gsort(newvect(10,[1,4,6,7,3,2,9,6,0,-1]),rev);
[976643210-11]

References
Section 6.3.7 [ord], page 45, Section 6.3.2 [vars], page 43.

6.7 Structures

6.7.1 newstruct

newstruct (name)
:: Creates a new structure object whose name is name.

return structure

name string
e This function creates an new structure object whose name is name.
e A structure named name should be defined in advance.

e Each member of a structure is specified by its name using the operator ->. If the
specified member is also an structure, the specification by -> can be nested.

[0] struct list {h,t};

0
[1] A=newstruct(list);
{0,0}

[2] A->t = newstruct(list);
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{0,0%}
[3] A;

{0,{0,0}}

[4] A->h
1

[5] A->t->h

2

[6] A->t->t

3
[7] A;

{1,{2,3}}

References

67

Section 6.7.2 [arfreg], page 67, Section 4.2.9 [structure definition], page 24

6.7.2 arfreg

arfreg(name,add,sub,mul,div, pwr, chsgn, comp)
:: Registers a set of fundamental operations for a type of structure.

return 1

name string

add sub mul div pwr chsgn comp
user defined functions

e This function registers a set of fundamental operations for a type of structure whose
name is name.

e The specification of each function is as follows.

add(4,B)
sub(A,B)
mul (A,B)
div(4,B)
pwr(A,B)
chsgn(A)
comp(A,B)

A+B
A-B
A*B
A/B
A°B
-A

1,0,-1 according to the result of a comparison between A and B.

% cat test
struct a {id,body}$

def add(A,B)

{

C = newstruct(a);

C->id = A->id; C->body = A->body+B->body;

return

¥

C;
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def sub(A,B)

{
C = newstruct(a);
C->id = A->id; C->body = A->body-B->body;
return C;
}
def mul(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body*B->body;
return C;
}
def div(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body/B->body;
return C;
}
def pwr(A,B)
{
C = newstruct(a);
C->id = A->id; C->body = A->body~B;
return C;
}
def chsgn(A)
{
C = newstruct(a);
C->id = A->id; C->body = -A->body;
return C;
}
def comp(A,B)
{
if ( A->body > B->body )
return 1;
else if ( A->body < B->body )
return -1;
else
return O;
}

arfreg("a",add,sub,mul,div,pwr,chsgn,comp)$
end$
% asir

68
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This is Risa/Asir, Version 20000908.
Copyright (C) FUJITSU LABORATORIES LIMITED.
1994-2000. All rights reserved.

[0] load("./test")$

[11] A=newstruct(a);

{0,0}

[12] B=newstruct(a);

{0,0}

[13] A->body
3

[14] B->body
4

[15] AxB;
{0,12}

3;

4;

References
Section 6.7.1 [newstruct], page 66, Section 4.2.9 [structure definition],
page 24

6.8 Types

6.8.1 type

type(obj) :: Returns an integer which identifies the type of the object obj in question.
return integer

obj arbitrary

e Current assignment of integers for object types is listed below.

0 0

[y

number

polynomial (not number)

rational expression (not polynomial)
list

vector

matrix

string

structure

© 0 N O OO B W N

distributed polynomial

10 32bit unsigned integer
11 error object
12 matrix over GF(2)
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13 MATHCAP object
14 first order formula
-1 VOID object

e For further classification of number, use ntype (). For further classification of variable,
use vtype().

References
Section 6.8.2 [ntype], page 70, Section 6.8.3 [vtype|, page 71.

6.8.2 ntype

ntype (num)

it Classifier of type num. Returns a sub-type number, an integer, for obj.
return integer
obj number

e Sub-types for type number are listed below.

0 rational number
floating double (double precision floating point number)
algebraic number over rational number field
arbitrary precision floating point number (bigfloat)
complex number
element of a finite field

element of a large finite prime field

~N O O W e

element of a finite field of characteristic 2

e When arithmetic operations for numbers are performed, type coercion will be taken if
their number sub-types are different so that the object having smaller sub-type number
will be transformed to match the other object, except for algebraic numbers.

e A number object created by newalg(x~2+1) and the unit of imaginary number @i have
different number sub-types, and it is treated independently.

e See Chapter 9 [Algebraic numbers], page 140 for algebraic numbers.

[0] [10/37,ntype(10/37)1;

[10/37,0]

(1] [10.0/37.0,ntype(10.0/37.0)];

[0.27027,1]

[2] [newalg(x~2+1)+1,ntype(newalg(x"2+1)+1)];
[(#0+1),2]

[3] [eval(sin(@pi/6)) ,ntype(eval(sin(@pi/6)))];
[0.49999999999999999991, 3]

[4] [@i+1,ntype(@i+1)];

[(1+1*x0@1),4]

References
Section 6.8.1 [type], page 69.
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6.8.3 vtype

vtype (var)

i Type of indetarminates var.
return integer
var indeterminate

e (lassify indeterminates into sub-types by giving an integer value as follows. For details
See Section 3.3 [Types of indeterminates|, page 16.

0 ordinary indeterminate, which can be directly typed in on a keyboard
(a,b,x,afo,bfo,...,etc.)

1 Special indeterminate, created by uc() (_0, _1, _2, ... etc.)

2 function form (sin(x), log(a+1), acosh(1), @pi, @e, ... etc.)

3 functor (built-in functor name, user defined functor, functor for the ele-

mentary functions) : sin, log, ... etc)

e Note: An input ‘a();’ will cause an error, but it changes the system database for
identifiers. After this error, you will find ‘vtype(a)’ will result 3. (Identifier a is
registered as a user defined functor).

e Usually @pi and @e are treated as indeterminates, whereas they are treated as numbers
within functions eval () and pari().

References
Section 6.8.1 [type], page 69, Section 6.8.2 [ntype], page 70, Section 6.3.3 [uc],
page 43.

6.9 Operations on functions

6.9.1 functor, args, funargs

functor (func)
:: Functor of function form func.

args (func)
:: List of arguments of function form func.

funargs (func)
it cons (functor (func) ,args (func) ).

return functor() : indeterminate, args (), funargs() : list

func function form
e See Section 6.8.3 [vtype|, page 71 for function form.
e Extract the functor and the arguments of function form func.

e Assign a program variable, say F, to the functor obtained by functor(). Then, you
can type (*¥F)(x) (, or (*F)(x,y,...) depending on the arity,) to input a function form
with argument x.
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[0] functor(sin(x));

sin

[0] args(sin(x));

[x]

[0] funargs(sin(3*cos(y)));
[sin,3*cos(y)]

[1] for (L=[sin,cos,tan];L!=[];L=cdr(L)) {A=car(L);
print (eval ((xA) (@pi/3)));}
0.86602540349122136831
0.5000000002

1.7320508058

References
Section 6.8.3 [vtype|, page 71.

6.10 Strings

6.10.1 rtostr

rtostr(obj)

:: Convert obj into a string.
return string
obj arbitrary

e Convert an arbitrary object obj into a string.

e This function is convenient to create variables with numbered (or indexed) names by
converting integers into strings and appending them to some name strings.

e Use strtov() for inverse conversion from string to indeterminate.

[0] A=afo;

afo

[1] type(d);

2

[2] B=rtostr(A);

afo

[3] type(B);

7

[4] B+Il1ll ;

afol
References

Section 6.10.2 [strtov], page 73, Section 6.8.1 [type], page 69.
6.10.2 strtov

strtov (str)
:: Convert a string str into an indeterminate.

return intederminate
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str string which is valid to constitute an indeterminate.

e Convert a string that is valid for an indeterminate into an indeterminate which have
str as its print name.
e The valid string for an indeterminate is such a string that begins with a small alpha-
betical letter possibly followed by any string composed of alphabetical letters, digits or
a symbol ‘_’.
e Use the command to create indeterminates dynamically in programs.
[0] A="afo";
afo
[1] for (I=0;I<3;I++) {B=strtov(A+rtostr(I)); print([B,type(B)]1);?}
[afo00,2]
[afol,2]
[afo02,2]

References
Section 6.10.1 [rtostr], page 72, Section 6.8.1 [type], page 69, Section 6.3.3
[uc], page 43.

6.10.3 eval_str

eval_str(str)
:: Evaluates a string str.

return object

str string which can be accepted by Asir parser

e This function evaluates a string which can be accepted by Asir parser and returns the
result.

e The input string should represent an expression.
e This functions is the inversion function of rtostr().

[0] eval_str("1+2");

3

[1] fctr(eval_str(rtostr((x+y)~10)));
[([1,1], [x+y,10]]

References
Section 6.10.1 [rtostr|, page 72

6.10.4 strtoascii, asciitostr
strtoascii(str)

:: Converts a string into a sequence of ASCII codes.

asciitostr (list)
:: Converts a sequence of ASCII codes into a string.

return strtoascii():list; asciitostr () :string

str string
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list list containing positive integers less than 256.

e strtoascii() converts a string into a list of integers which is a representation of the
string by the ASCII code.
e asciitostr() is the inverse of asciitostr().
[0] strtoascii("abcxyz");
[97,98,99,120,121,122]
[1] asciitostr(@);
abcxyz
[2] asciitostr([256]);
asciitostr : argument out of range
return to toplevel

6.10.5 str_len, str_chr, sub_str

str_len(str)
i Returns the length of a string.

str_chr(str,start,c)
:: Returns the position of the first occurrence of a character in a string.

sub_str(str,start, end)
:: Returns a substring of a string.

return str_len(), str_chr():integer; sub_str ():string
str c string

start end non-negative integer
e str_len() returns the length of a string.

e str_chr() scans a string str from the start-th character and returns the position of
the first occurrence of the first character of a string ¢. Note that the top of a string is
the 0-th charater. It returns -1 if the character does not appear.

e sub_str() generates a substring of str containing characters from the start-th one to
the end-th one.

[185] Line="123 456 (x+y)~3";

123 456 (x+y)~3

[186] Spl = str_chr(Line,0," ");

3

[187] DO = eval_str(sub_str(Line,0,Spl-1));

123

[188] Sp2 = str_chr(Line,Spl+1," ");

7

[189] D1 = eval_str(sub_str(Line,Spl+1,Sp2-1));
456

[190] C = eval_str(sub_str(Line,Sp2+1,str_len(Line)-1));
X" 3+3*ky*kx"2+3%y " 2¥x+y "3

6.11 Inputs and Outputs
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6.11.1 end, quit

end, quit
:: Close the currently reading file. At the top level, terminate the Asir session.

e These two functions take no arguments. These functions can be called without a ‘()’.
Fither function close the current input file. This means the termination of the Asir
session at the top level.

e An input file will be automatically closed if it is read to its end. However, if no end$
is written at the last of the input file, the control will be returned to the top level
and Asir will be waiting for an input without any prompting. Thus, in order to avoid
confusion, putting a end$ at the last line of the input file is strongly recommended.

[6] quit;
b

References
Section 6.11.2 [load|, page 75.

6.11.2 load

load ("filename")
:: Reads a program file filename.

return (110)

filename  file (path) name

e See Chapter 4 [User language Asir|, page 18 for practical programming. Since text files
are read through cpp, the user can use, as in C programs, #include and #define in
Asir program source codes.

e It returns 1 if the designated file exists, 0 otherwise.

e If the filename begins with ‘/’, it is understood as an absolute path name; with .,
relative path name from current directory; otherwise, the file is searched first from
directories assigned to an environmental variable ASTRLOADPATH, then if the search ends
up in failure, the standard library directory (or directories assigned to ASIR_LIBDIR)
shall be searched. On Windows, get_rootdir () /1ib is searched if ASTR_LIBDIR is not
set.

e We recommend to write an end command at the last line of your program. If not, Asir
will not give you a prompt after it will have executed load command. (Escape with
an interrupt character (Section 2.7 [Interruption], page 8), if you have lost yourself.)
Even in such a situation, Asir itself is still ready to read keyboard inputs as usual. It
is, however, embarrassing and may cause other errors. Therefore, to put an end$ at
the last line is desirable. (Command end; will work as well, but it also returns and
displays verbose.)

e On Windows one has to use ‘/’ as the separator of directory names.
References

Section 6.11.1 [end quit|, page 75, Section 6.11.3 [which], page 76,
Section 6.12.14 [get_rootdir|, page 88.
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6.11.3 which

which (" filename")
:: This returns the path name for the filename which load () will read.

return path name

filename  filename (path name) or 0
e This function searches directory trees according to the same procedure as load () will
do. Then, returns a string, the path name to the file if the named file exists; 0 unless
otherwise.
e For details of searching procedure, refer to the description about load().
e On Windows one has to use ‘/’ as the separator of directory names.
[0] which("gr");
./gb/gr
[1] which("/usr/local/lib/gr");
0
[2] which("/usr/local/lib/asir/gr");
/usr/local/lib/asir/gr

References
Section 6.11.2 [Load|, page 75.

6.11.4 output

output (["filename"])
:: Writes the return values and prompt onto file filename.

return 1

filename  filename

e Standard output stream of Asir is redirected to the specified file. While Asir is writ-
ing its outputs onto a file, no outputs, except for keyboard inputs and some of error
messages, are written onto the standard output. (You cannot see the result on the
display.)

e To direct the Asir outputs to the standard output, issue the command without argu-
ment, i.e., output ().

e If the specified file already exists, new outputs will be added to the tail of the file. If
not, a file is newly created and the outputs will be written onto the file.

e When file name is specified without double quotes (""), or when protected file is spec-
ified, an error occurs and the system returns to the top level.

e If you want to write inputs from the key board onto the file as well as Asir outputs,

put command ctrl("echo",1), and then redirect the standard output to your desired
file.

e Contents which are written onto the standard error output, CPU time etc., are not
written onto the file.

e Reading and writing algebraic expressions which contain neither functional forms nor
unknown coefficients (vtype () References) are performed more efficiently, with respect
to both time and space, by bload() and bsave().
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e On Windows one has to use ‘/’ as the separator of directory names.
[83] output("afo");
fectr(x"2-y~2);
print("afo");

output () ;
1
[87] quit;
% cat afo
1
(84] [[1,1], [x+y,1], [x-y,1]1]
[85] afo
0
[86]
References

Section 6.12.1 [ctrl], page 81, Section 6.11.5 [bsave bload], page 77.

6.11.5 bsave, bload

bsave (obj, "filename")
:: This function writes obj onto filename in binary form.

bload("filename")
:» This function reads an expression from filename in binary form.

return bsave() : 1, bload() : the expression read
obj arbitrary expression which does not contain neither function forms nor unknown
coefficients.

filename  filename

e Function bsave () writes an object onto a file in its internal form (not exact internal
form but very similar). Function bload () read the expression from files which is written
by bsave(). Current implementation support arbitrary expressions, including lists,
arrays (i.e., vectors and matrices), except for function forms and unknown coefficients
(vtype () References.)

e The parser is activated to retrieve expressions written by output () , whereas internal
forms are directly reconstructed by bload() from the bsave()’ed object in the file.
The latter is much more efficient with respect to both time and space.

e It may happen that the variable ordering at reading is changed from that at writing. In
such a case, the variable ordering in the internal expression is automatically rearranged
according to the current variable ordering.

e On Windows one has to use ‘/’ as the separator of directory names.

[0] A=(x+y+z+u+v+w) ~20$
[1] bsave(A,"afo");

1
[2] B = bload("afo")$
[3] A == B;

1
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[4] X=(x+y)"2;

X" 2+2%y*x+y”2

[5] bsave(X,"afo")$
[6] quit;

% asir

[0] ord([y,x1)$

[1] bload("afo");
Y72+ 2%x*ky+x72

References
Section 6.11.4 [output], page 76.

6.11.6 bload27

bload27 ("filename")
:: Reads bsaved file created by older version of Asir.

return expression read

filename  filename

e In older versions an arbitrary precision integer is represented as an array of 27bit
integers. In the current version it is represented as an array of 32bit integers. By this
incompatibility the bsaved file created by older versions cannot be read in the current
version by bload. bload27 is used to read such files.

e On Windows one has to use ‘/’ as the separator of directory names.

References
Section 6.11.5 [bsave bload], page 77.

6.11.7 print

print(obj [,nll)
:: Displays (or outputs) obj.

return 0
obj arbitrary
nl flag (arbitrary)

e Displays (or outputs) obj.
e It normally adds linefeed code to cause the cursor moving to the next line. If 0 or 2 is
given as the second argument, it does not add a linefeed. If the second argument is 0,

the output is simply written in the buffer. If the second argument is 2, the output is
flushed.

e The return value of this function is 0. If command print(rat); is performed at the
top level, first the value of rat will be printed, followed by a linefeed, followed by a 0
which is the value of the function and followed by a linefeed and the next prompt. (If
the command is terminated by a ‘$’, e.g., print (rat)$, The last 0 will not be printed.

)
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e Formatted outputs are not currently supported. If one wishes to output multiple objects
by a single print () command, use list like [obj1, .. .], which is not so beautiful, but
convenient to minimize programming efforts.

[8] def cat(L) { while ( L !'= [1 ) { print(car(L),0); L = cdr(L);?}
print(""); }

[9] cat([xyz,123,"gahaha"])$

xyz123gahaha

6.11.8 open_file, close_file, get_line, get_byte, put_byte, purge_
stdin

open_file("filename" [,"mode"])
:: Opens filename for reading.

close_file(num)
:: Closes the file indicated by a descriptor num.

get_line([num])
:: Reads a line from the file indicated by a descriptor num.

get_byte (num)
:: Reads a byte from the file indicated by a descriptor num.

put_byte (num,c)
:: Writes a byte c¢ to the file indicated by a descriptor num.

purge_stdin()

purge_stdin()
it Clears the buffer for the standard input.

return open_file() : integer (fild id); close_file() : 1; get_line() : string; get_
byte(), put_byte() : integer

filename file (path) name
mode string

num non-negative integer (file descriptor)

e open_file() opens a file. If mode is not specified, a file is opened for reading. If
mode is specified, it is used as the mode specification for C standard I/O function
fopen(). For example "w" requests that the file is truncated to zero length or created
for writing. "a" requests that the file is opened for writing or created if it does not
exist. The stream pointer is set at the end of the file. If successful, it returns a non-
negative integer as the file descriptor. Otherwise the system error function is called.
Unnecessary files should be closed by close_file().

get_line() reads a line from an opened file and returns the line as a string. If no
argument is supplied, it reads a line from the standard input.

get_byte () reads a byte from an opened file and returns the it as an integer.

put_byte () writes a byte from an opened file and returns the the byte as an integer.

A get_line() call after reading the end of file returns an integer 0.
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e Strings can be converted into internal forms with string manipulation functions such
as sub_str(), eval_str().

e purge_stdin() clears the buffer for the standard input. When a function receives a
character string from get_line (), this functions should be called in advance in order
to avoid an incorrect behavior which is caused by the characters already exists in the
buffer.

[185] Id = open_file("test");
0

[186] get_line(Id);

12345

[187] get_line(Id);
67890

[188] get_line(Id);
%189] type (QQ) ;

?190] close_file(Id);
t191] open_file("test");
%192] get_line(1);

12345

[193] get_byte(1);

54 /* the ASCII code of ’6’ */
[194] get_line(1);
7890 /* the rest of the last line */

[195] def test() { return get_line(); }

[196] def testl() { purge_stdin(); return get_line(); }

[197] test();
/* a remaining newline character has been read */
/* returns immediately */

[198] test1();

123; /* input from a keyboard */
123; /* returned value */
[199]
References
Section 6.10.3 [eval_str], page 73, Section 6.10.5 [str_len str_chr sub_str],
page 74.

6.12 Miscellaneouses

6.12.1 ctrl
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ctrl("switch" [, o0bj]l)
:: Sets the value of switch.

return value of switch
switch switch name
obj parameter

e This function is used to set or to get the values of switches. The switches are used to
control an execution of Asir.

e If obj is not specified, the value of switch is returned.

e If obj is specified, the value of switch is set to obj.

e Switches are specified by strings, namely, enclosed by two double quotes.

e Here are of switches of Asir.

cputime

nez

echo

bigfloat

adj

verbose

hex

If ‘on’, CPU time and GC time is displayed at every top level evaluation
of Asir command; if ‘off’, not displayed. See Section 6.12.6 [cputime tstart
tstop|, page 84. (The switch is also set by command cputime (1), and reset
by cputime(0).)

Selection for EZGCD algorithm. It is set to 1 by default. Ordinary users
need not change this setting.

If ‘on’, inputs from the standard input will be echoed onto the standard
output. When executing to load a file, the contents of the file will be
written onto the standard output. If ‘off’, the inputs will not be echoed.
This command will be useful when used with command output.

If ‘on’, floating operations will be done by PARI system with arbitrary
precision floating point operations. Default precision is set to 9 digits. To
change the precision, use command setprec. If ‘off’, floating operations
will be done by Asir’s own floating operation routines with a fixed precision
operations of standard floating double.

Sets the frequency of garbage collection. A rational number greater than or
equal to 1 can be specified. The default value is 3. If a value closer to 1 is
specified, larger heap is allocated and as a result, the frequency of garbage
collection decreases. See Section 2.4 [Command line options], page 5.

If ‘on’ a warning messages is displayed when a function is redefined.

If 1 is set, integers are displayed as hexadecimal numbers with prefix Ox.
if -1 is set, hexadecimal numbers are desplayed with ‘|’ inserted at every
8 hexadecimal digits.

fortran_output

ox_batch

If ‘on’ polynomials are displayed in FORTRAN style. That is, a power is
represented by ‘**’ instead of ‘~’. The default value is ’off.

If ’on’, the OpenXM send buffer is flushed only when the buffer is full. If
‘off’, the buffer is always flushed at each sending of data or command. The
default value is ’off’. See Chapter 7 [Distributed computation], page 90.
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ox_check If’on’ the check by mathcap is done before sending data. The default value
is 'on’. See Chapter 7 [Distributed computation], page 90.

ox_exchange_mathcap
If "on’ Asir forces the exchange of mathcaps at the communication startup.
The default value is 'on’. See Chapter 7 [Distributed computation], page 90.

References
Section 6.12.6 [cputime tstart tstop|, page 84, Section 6.11.4 [output],
page 76, Section 6.1.13 [pari], page 38, Section 6.1.14 [setprec]|, page 39,
Section 6.1.12 [eval deval], page 37.

6.12.2 debug

debug :: Forces to enter into debugging mode.

Function debug is a function with no argument. It can be called without ‘()’.

e In the debug-mode, you are prompted by (debug) and the debugger is ready for com-
mands. Typing in quit (Note! without a semicolon.) brings you to exit the debug-
mode.

e See Chapter 5 [Debugger], page 28 for details.

[1] debug;
(debug) quit
0

[2]

6.12.3 error

error (message)
:: Forces Asir to cause an error and enter debugging mode.

message string

e When Asir encounters a serious error such that it finds difficult to continue execution,
it, in general, tries to enter debugging mode before it returns to top level. The command
error () forces a similar behavior in a user program.

e The argument is a string which will be displayed when error () will be executed.

e You can enter the debug-mode when your program encounters an illegal value for a
program variable, if you have written the program so as to call error () upon finding
such an error in your program text.

% cat mod3
def mod3(A) {
if ( type(d) >= 2 )
error("invalid argument");
else
return A % 3;

end$
% asir
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[0] load("mod3");

1

[3] mod3(5);

2

[4] mod3(x);

invalid argument

stopped in mod3 at line 3 in file "./mod3"

3 error("invalid argument");
(debug) print A
A =x

(debug) quit
return to toplevel

(4]

References
Section 6.12.2 [debug], page 82.

6.12.4 help

help(["function"])
:: Displays the description of function function.

return 0

function  function name
e If invoked without argument, it displays rough usage of Asir.

e If a function name is given and if there exists a file with the same name in the directory
‘help’ under standard library directory, the file is displayed by a command set to the
environmental variable PAGER or else command ‘more’.

e If the LANG environment variable is set and its value begins with "japan" or "ja_JP",
then the file in ‘help-jp’ is displayed. If its value does not begin with "japan" or
"ja_JP", then the file in ‘help-eg’ is displayed.

e On Windows HTML-style help is available from the menu.

6.12.5 time

time () :: Returns a four element list consisting of total CPU time, GC time, the elapsed
time and also total memory quantities requested from the start of current Asir
session.

return list

e These are commands regarding CPU time and GC time.

e The GC time is the time regarded to spent by the garbage collector, and the CPU
time is the time defined by subtracting the GC time from the total time consumed by
command Asir. Their unit is ‘second.’

e Command time() returns total CPU time and GC time measured from the start of
current Asir session. It also returns the elapsed time. Time unit is ‘second.” Moreover,
it returns total memory quantities in words (usually 4 bytes) which are requested to
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the memory manager from the beginning of the current session. The return value is a
list and the format is [CPU time, GC time, Memory, Elapsed time].

e You can find the CPU time and GC time for some computation by taking the difference
of the figure reported by time() at the beginning and the ending of the computation.

e Since arbitrary precision integers are NOT used for counting the total amount of mem-
ory request, the number will eventually happen to become meaningless due to integer
overflow.

e When cputime switch is active by ctrl() or by cputime (), the execution time will be
displayed after every evaluation of top level statement. In a program, however, in order
to know the execution time for a sequence of computations, you have to use time ()
command, for an example.

e On UNIX, if getrusage() is available, time () reports reliable figures. On Windows
NT it also gives reliable CPU time. However, on Windows 95/98, the reported time
is nothing but the elapsed time of the real world. Therefore, the time elapsed in the
debug-mode and the time of waiting for a reply to interruption prompting are added
to the elapsed time.

[72] TO=time();
[2.390885,0.484358,46560,9.157768]

[73] G=hgr(katsura(4), [u4,u3,u2,ul,u0],2)$
[74] Ti=time();
[8.968048,7.705907,1514833,63.359717]

[r5] ["cpu",T1[0]-TO[O],"GC",T1[1]-TO[1]1];
[CPU,6.577163,GC,7.221549]

References
Section 6.12.6 [cputime tstart tstop|, page 84.

6.12.6 cputime, tstart, tstop

cputime (onoff)
Stop displaying cputime if its argument is 0, otherwise start displaying
cputime after every top level evaluation of Asir command.

tstart() :: Resets and starts timer for CPU time and GC time.

tstop() :: Stops timer and then displays CPU time GC time elapsed from the last time
when timer was started.

return 0

onoff flag (arbitrary)

e Command cputime() with NON-ZERO argument enables Asir to display CPU time
and GC time after every evaluation of top level Asir command. The command with
argument 0 disables displaying them.

e Command tstart () starts measuring CPU time and GC time without arguments. The
parentheses ‘()’ may be omitted.

e Command tstop() stops measuring CPU time and GC time and displays them without
arguments. The parentheses ‘()’ may be omitted.
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Command cputime (onoff) has same meaning as ctrl("cputime",onoff).

Nested use of tstart() and tstop() is not expected. If such an effect is desired, use
time().
On and off states by cputime () have effects only to displaying mode. Time for eval-
uation of every top level statement is always measured. Therefore, even after a com-
putation has already started, you can let Asir display the timings, whenever you enter
the debug-mode and execute cputime(1).

[49] tstart$

[50] fctr(x~10-y~10);

[[1,1], [x+y,1], [x"4-y*x"3+y~2*x"2-y " 3*x+y~4,1], [x-y,1],

[x"4+y*x"3+y~2xx"2+y " 3*x+y~4,1]]

[61] tstop$

80msec + gc : 40msec

References

Section 6.12.5 [time|, page 83, Section 6.12.1 [ctrl], page 81.

6.12.7 timer

timer (interval, expr, val)

:: Compute an expression under the interval timer.

return result

interval interval (second)

expr expression to be computed

val a value to be returned when the timer is expired

timer () computes an expression under the interval timer. If the computation finishes
within the specified interval, it returns the result of the computation. Otherwise it
returns the third argument.

The third argument should be distinguishable from the result on success.

[0] load("cyclic");

1

[10] timer(10,dp_gr_main(cyclic(7),[c0,cl,c2,c3,c4,c5,c6],1,1,0),0);
interval timer expired (VTALRM)

0

[11]

6.12.8 heap

heap() :: Heap area size currently in use.

return non-negative integer

e Command heap () returns an integer which is the byte size of current Asir heap area.

Heap is a memory area where various data for expressions and user programs of Asir
and is managed by the garbage collector. While Asir is running, size of the heap is
monotonously non-decreasing against the time elapsed. If it happens to exceed the real
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memory size, most (real world) time is consumed for swapping between real memory
and disk memory.

e For a platform with little real memory, it is recommended to set up Asir configuration
tuned for GC functions by -adj option at the activation of Asir. (See Section 2.4
[Command line options], page 5.)

% asir -adj 16

[0] load("fctrdata")$
0

[97] cputime(1)$
Omsec

[98] heap();

524288

Omsec

[99] fctr(Wang[8])$
3.190sec + gc : 3.420sec
[100] heap();

1118208

Omsec

[101] quit;

% asir

[0] load("fctrdata")$
0

[97] cputime(1)$
Omsec

[98] heap();

827392

Omsec

[99] fctr(Wang[8])$
3.000sec + gc : 1.180sec
[100] heap();

1626112

Omsec

[101] quit;

References
Section 2.4 [Command line options], page 5.

6.12.9 version

version()
:: Version identification number of Asir.

return integer

Command version() returns the version identification number , an integer of Asir in
use.

[0] version();
991214
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6.12.10 shell
shell (command)
:: Execute shell commands described by a string command.
return integer
command string

Execute shell commands described by a string command by a C function system().
This returns the exit status of shell as its return value.

[0] shell("1s");

alg da katsura ralg suit

algt defs.h kimura ratint test

alpi edet kimura3 robot texput.log
asir.o fee mfee sasa wang
asir_symtab gr mksym shira wang_data
base gr.h mp snfl wt

bgk help msubst solve

chou hom P sp

const ifplot proot strum

cyclic is r sugar

0

(1]

6.12.11 map

map (function, arg0,argl, . ..)
:: Applies a function to each member of a list or an array.

return an object of the same type as arg0.
function  the name of a function
arg0 list, vector or matrix

argl ... arbitrary (the rest of arguments)

e Returns an object of the same type as arg0. Each member of the returned object is
the return value of a function call where the first argument is the member of arg0
corresponding to the member in the returned object and the rest of the argument are
argl, .. ..

e function is a function name itself without ‘"’
e A program variable cannot be used as function.

o If arg0 is neither list nor array this function simply returns the value of
function(arg0,argl,. . .).
[82] def afo(X) { return X°3; }
[83] map(afo,[1,2,3]1);
[1,8,27]
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6.12.12 flist

flist()  :: Returns the list of function names currently defined.

return list of character strings

e Returns the list of names of built-in functions and user defined functions currently
defined. The return value is a list of character strings.

e The names of built-in functions are followed by those of user defined functions.

[77] £listQ;
[defpoly,newalg,mainalg,algtorat,rattoalg,getalg,alg,algv,...]

6.12.13 delete_history

delete_history([index])
:: Deletes the history.

return 0

index Index of history to be deleted.
e Deletes all the histories without an argument.
e Deletes the history with index index if specified.

e A history is an expression which has been obtained by evaluating an input given for a
prompt with an index. It can be taken out by @index, which means that the expression
survives garbage collections.

e A large history may do harm in the subsequent memory management and deleting the
history by delete_history(), after saving it in a file by bsave (), is often effective.

[0] (x+y+z)~100%
[1] @O;

[2] delete_history(0);
[3] @0;
0

6.12.14 get_rootdir

get_rootdir()
:: Gets the name of Asir root directory.
return string

e On UNIX it returns the value of an environment variable ASIR_LIBDIR or
‘/usr/local/lib/asir’ if ASIR_LIBDIR is not set.

e On Windows the name of Asir root directory is returned.

e By using relative path names from the value of this function, one can write programs
which contain file operations independent of the install directory.
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6.12.15 getopt

getopt ([key])
:: Returns the value of an option.

return object

e When a user defined function is called, the number of arguments must be equal to that
in the declaration of the function. A function with indefinite number of arguments
can be realized by using options (see Section 4.2.12 [option], page 27). The value of a
specified option is retrieved by getopt.

o If getopt() is called with no argument, then it returns a list [[keyl,valuel],
[key2,value2],...]. In the list, each key is an option which was specified when the
function executing getopt was invoked, and value is the value of the option.

e If an option key is specified upon a function call, getopt return the value of the option.
If such an option is not specified, the it returns an object of VOID type whose object
identifier is -1. By examining the type of the returned value with type (), one knows
whether the option is set or not.

e Options are specified as follows:

xxx(A,B,C,D|x=X,y=Y,z=2)

That is, the options are specified by a sequence of key=value seperated by °,
3 | 7.

)

, after

References
Section 4.2.12 [option], page 27, Section 6.8.1 [type], page 69.

6.12.16 getenv

getenv(name)
:: Returns the value of an environment variable.

return
name string

e Returns the value of an environment variable name.

[0] getenv("HOME");
/home/pcrf/noro
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7 Distributed computation

7.1 OpenXM

On Asir distributed computations are done under OpenXM (Open message eXchange
protocol for Mathematics), which is a protocol for exchanging mainly mathematical objects
between processes. See http://www.math.sci.kobe-u.ac.jp/0OpenXM/ for the details of
OpenXM. In OpenXM a distributed computation is done as follows:

1. A client requests something to a server.
2. The server does works according to the request.
3. The client requests to send data to the server.

4. The server sends the data to the client and the client gets the data.

The server is a stack machine. That is data objects sent by the client are pushed to the
stack of the server. If the server gets a command, then the data are popped form the stack
and they are used as arguments of a function call.

In OpenXM, the result of a computation done in the server is simply pushed to the stack
and the data is not written to the communication stream without requests from the client.

OpenXM protocol consists of two components: CMO (Common Mathematical Object
format) which determines a common format of data representations and SM (StackMachine
command) which specifies actions on servers. These are wrapped as OX expressions to
indicate the sort of data when they are sent.

To execute a distributed computation by OpenXM, one has to invoke OpenXM servers
and to establish communications between the client and the servers. ox_launch(), ox_
launch_nox(), ox_launch_generic() are preprared for such purposes. Furthermore the
following functions are available.

ox_push_cmo ()
It requests a server to push an object to the stack of a server.

ox_pop._cmo ()
It request a server to pop an object from the stack of a server.

ox_cmo_rpc()
It requests to execute a function on a server. The result is pushed to the stack
of the server.

ox_execute_string()
It requests a server to parse and execute a string by the parser and the evaluater
of the server. The result is pushed to the stack of the server.

ox_push_cmd ()
It requests a server to execute a command.

ox_get ()

It gets an object from a data stream.
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7.2 Mathcap

A server or a client does not necessarily implement full specifications of OpenXM. If a
program sends data unknown to its peer, an unrecoverable error may occur. To avoid such
a case OpenXM provides a scheme not to send data unknown to peers. It is realized by
exchanging the list of supported CMO and SM. The list is called mathcap. Mathcap is also
defined as a CMO and the elements are 32bit integers or strings. The format of mathcap
is as follows.

[version number, server name],SMtaglist, [[0Xtag,CMOtaglist],[0Xtag,CMOtaglist],...]]

[0OXtag,CMOtaglist] indicates that available object tags for a category of data specified
by OXtag. For example ‘ox_asir’ accepts the local object format used by Asir and the
mathcap from ‘ox_asir’ reflects the fact.

If "ox_check" switch of ctrl is set to 1, the check by a mathcap is done before data is
sent. If "ox_check" switch of ctrl is set to 0, the check is not done. By default it is set to
1.

7.3 Stackmachine commands

The stackmachine commands are provided to request a server to execute various opera-
tions. They are automatically sent by built-in functions of Asir, but one often has to send
them manually. They are represented by 32bit integers. One can send them by calling
ox_push_cmd (). Typical stackmachine commands are as follows. SM_xxx=yyy means that
SM _xxx is a mnemonic and that yyy is its value.

SM _popSerializedLocalObject=258
An object not necessarily defined as CMO is popped from the stack and is sent
to the client. This is available only on ‘ox_asir’.

SM_popCMO=262
A CMO object is popped from the stack and is sent to the client.

SM _popString=263
An object is popped from the stack and is sent to the client as a readable string.

SM_mathcap=264
The server’s mathcap is pushed to the stack.

SM _pops=265
Objects are removed from the stack. The number of object to be removed is
specified by the object at the top of the stack.

SM _setName=266
A variable name is popped form the stack. Then an object is popped and it is
assigned to the variable. This assignment is done by the local language of the
server.

SM _evalName=267
A variable name is popped from the stack. Then the value of the variable is
pushed to the stack.
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SM _executeStringByLocalParser=268
A string popped from the stack is parsed and evaluated. The result is pushed
to the stack.

SM _executeFunction=269
A function name, the number of arguments and the arguments are popped from
the stack. Then the function is executed and the result is pushed to the stack.

SM _beginBlock=270
It indicates the beginning of a block.

SM _endBlock=271
It indicates the end of a block.

SM _shutdown=272
It shuts down communications and terminates servers.

SM _setMathcap=273
It requests a server to register the data at the top of the stack as the client’s
mathcap.

SM _getsp=275
The number of objects in the current stack is pushed to the stack.

SM _dupErrors=276
The list of all the error objects in the current stack is pushed to the stack.

SM _nop=300
Nothing is done.

7.4 Debugging

In general, it is difficult to debug distributed computations. ‘ox_asir’ provides several
functions for debugging.

7.4.1 Error object

When an error has occurred on an OpenXM server, an error object is pushed to the
stack instead of a result of the computation. The error object consists of the serial number
of the SM command which caused the error, and an error message.

[340] ox_launch();

0

[341] ox_rpc(0,"fctr",1.2*x);

0

[342] ox_pop_cmo(0);

error([8,fctrp : invalid argument])

7.4.2 Resetting a server

ox_reset () resets a process whose identifier is number. After its execution the process
is ready for receiving data. This function corresponds to the keyboard interrupt on an usual
Asir session. It often happens that a request of a client does not correspond correctly to the
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result from a server. It is caused by remaining data on data streams. ox_reset is effective
for such cases.

7.4.

3 Pop-up command window for debugging

As a server does not have any standard input device such as a keyboard, it is difficult to
debug user programs running on the server. ‘ox_asir’ pops up a small command window
to input debug commands when an error has occurred during user a program execution or
ox_rpc(id, "debug") has been executed. The responses to commands are shown in ‘xterm’
to display standard outputs from the server. To close the small window, input quit.

7.5

7.5.

Functions for distributed computation

1 ox_launch, ox_launch_nox, ox_shutdown

ox_launch([host[,dir] ,command] )
ox_launch_nox([host[,dir] ,command])

:: Initialize OpenXM servers.

ox_shutdown (id)

:: Terminates OpenXM servers.

return integer

host

string or 0

dir command

id

string

integer

Function ox_launch() invokes a process to execute command on a host host and
enables Asir to communicate with that process. If the number of arguments is 3,
‘ox_launch’ in dir is invoked on host. Then ‘ox_launch’ invokes command. If host is
equal to 0, all the commands are invoked on the same machine as the Asir is running.
If no arguments are specified, host, dir and command are regarded as 0, the value of
get_rootdir() and ‘ox_asir’ in the same directory respectively.

If host is equal to 0, then dir can be omitted. In such a case dir is regarded as the
value of get_rootdir().

If command begins with </’ it is regarded as an absolute pathname. Otherwise it is
regarded as a relative pathname from dir.

On UNIX, ox_launch() invokes ‘xterm’ to display standard outputs from command.
If X11 is not available or one wants to invoke servers without ‘xterm’, use ox_launch_
nox (), where the outputs of command are redirected to ‘/dev/null’. If the environ-
ment variable DISPLAY is not set, ox_launch() and ox_launch_nox() behave identi-
cally.

The returned value is used as the identifier for communication.
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e The peers communicating with Asir are not necessarily processes running on the same
machine. The communication will be successful even if the byte order is different from
those of the peer processes, because the byte order for the communication is determined
by a negotiation between a client and a server.

e The following preparations are necessary. Here, Let A be the host on which Asir is
running, and B the host on which the peer process will run.

1. Register the hostname of the host A to the ‘~/.rhosts’ of the host B. That is, you
should be allowed to access the host B from A without supplying a password.

2. For cases where connection to X is also used, let Xserver authorize the relevant
hosts. Adding the hosts can be done by command xhost.

3. If an environment variable ASIR_RSH is set, the content of this variable is used as
a promgram to invoke remote servers instead of rsh. For example,

% setenv ASIR_RSH "ssh -f -X -A "

implies that remote servers are invoked by ‘ssh’ and that X11 forwarding is en-
abled. See the manual of ‘ssh’ for the detail.

4. Some command’s consume much stack space. You are recommended to set the
stack size to about 16MB large in ‘. cshrc’ for safe. To specify the size, put 1imit
stacksize 16m for an example.

e When command opens a window on X, it uses the string specified for display; if the
specification is omitted, it uses the value set for the environment variable DISPLAY.

e ox_shutdown() terminates OpenXM servers whose identifier is id.

e When Asir is terminated successfully, all I/O streams are automatically closed, and all
the processes invoked are also terminated. However, some remote processes may not
terminated when Asir is terminated abnormally. If ever Asir is terminated abnormally,
you have to kill all the unterminated process invoked by Asir on every remote host.
Check by ps command on the remote hosts to see if such processed are alive.

e ‘xterm’ for displaying the outputs from command is invoked with ‘-name ox_term’ op-
tion. Thus, by specifying resources for the resource name ‘ox_term’, only the behaviour
of the ‘xterm’ can be customized.

/* iconify on start x/

oxX_xterm*iconic:on

/* activate the scroll bar */
ox_xtermxscrollBar:on

/* 1000 lines can be shown by the scrollbar */
ox_xterm*saveLines: 1000

[219] ox_launch();

0

[220] ox_rpc(0,"fctr",x~10-y"10);

0

[221] ox_pop_local(0);

[[1,1], [x~4+y*x"3+y~2%x"2+y " 3*x+y~4,1],
[x~4-y*x"~3+y~2%x"2-y " 3xx+y~4,1], [x-y, 1], [x+y,1]]
[222] ox_shutdown(0);

0
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References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 97, Section 7.5.8
[ox_pop_cmo ox_pop_local], page 100, Section 7.5.15 [ifplot conplot plot
polarplot plotover|, page 104

7.5.2 ox_launch_generic

ox_launch_generic (host,launch, server, use_unix, use_ssh, use_x, conn_to_serv)
:: Initialize OpenXM servers.

return integer
host string or 0

launcher server
string

use_unix use_ssh use_x conn_to_serv
integer
e ox_launch_generic() invokes a control process launch and a server process server on
host. The other arguments are switches for protocol family selection, on/off of the X
environment, method of process invocation and selection of connection type.

e If host is equal to 0, processes are invoked on the same machine as the Asir is running.
In this case UNIX internal protocol is always used.

e If use_unix is equal to 1, UNIX internal protocol is used. If use_unix is equal to 0,
Internet protocol is used.

o If use_ssh is equal to 1,'ssh’ (Secure Shell) is used to invoke processes. If one does
not use ‘ssh-agent’, a password (passphrase) is required. If ‘sshd’ is not running on
the target machine, ‘rsh’ is used instead. But it will immediately fail if a password is
required.

e If usex is equal to 1, it is assumed that X environment is available. In such a case
server is invoked under ‘xterm’ by using the current DISPLAY variable. If DISPLAY is
not set, it is invoked without X. Note that the processes will hang up if DISPLAY is
incorrectly set.

e If conn_to_serv is equal to 1, Asir (client) executes bind and listen, and the invoked
processes execute connect. If conn_to_serv is equal to 0, Asir (client) the invoked
processes execute bind and listen, and the client executes connect.

[342] LIB=get_rootdir();
/export/home/noro/ca/Kobe/build/OpenXM/1ib/asir

[343] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",0,0,0,0);
1

[344] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,0,0,0);
2

[345] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,0,0);
3

[346] ox_launch_generic(0,LIB+"/ox_launch" ,LIB+"/ox_asir",1,1,1,0);
4

[347] ox_launch_generic(0,LIB+"/ox_launch",LIB+"/ox_asir",1,1,1,1);
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5
[348] ox_launch_generic(0,LIB+"/ox_launch" ,LIB+"/ox_asir",1,1,0,1);
6

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown|, page 93, Section 7.5.2
[ox_launch_generic], page 95

7.5.3 generate_port, try_bind_listen, try_connect, try_accept,
register_server

generate_port ([use_unix])

:: Generates a port number.
try_bind_listen(port)

:» Binds and listens on a port.
try_connect (host, port)

:: Connects to a port.
try_accept (socket, port)

. Accepts a connection request.

register_server (control_socket, control_port,server_socket, server_port)
:: Registers the sockets for which connections are established.

return integer or string for generate_port (), integer for the others
use_unix  Oor 1
host string

port control_port server_port
integer or string

socket control_socket server_socket
integer
e These functions are primitives to establish communications between a client and servers.

e generate_port() generates a port name for communication. If the argument is not
specified or equal to 0, a port number for Internet domain socket is generated randomly.
Otherwise a file name for UNIX domain (host-internal protocol) is generated. Note that
it is not assured that the generated port is not in use.

e try_bind_listen() creates a socket according to the protocol family indicated by the
given port and executes bind and 1listen. It returns a socket identifier if it is successful.
-1 indicates an error.

e try_connect() tries to connect to a port port on a host host. It returns a socket
identifier if it is successful. -1 indicates an error.

e try_accept() accepts a connection request to a socket socket. It returns a new socket
identifier if it is successful. -1 indicates an error. In any case socket is automatically
closed. port is specified to distinguish the protocol family of socket.

e register_server() registers a pair of a control socket and a server socket. A process
identifier indicating the pair is returned. The process identifier is used as an argument
of ox functions such as ox_push_cmo().
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e Servers are invoked by using shell(), or manually.

[340] CPort=generate_port();

39896

[341] SPort=generate_port();

37222

[342] CSocket=try_bind_listen(CPort);
3

[343] SSocket=try_bind_listen(SPort);
5

/*

ox_launch is invoked here :

% ox_launch "127.1" 0 39716 37043 ox_asir "shio:0"
*/

[344] CSocket=try_accept(CSocket,CPort);

6

[345] SSocket=try_accept(SSocket,SPort);

3

[346] register_server(CSocket,CPort,SSocket,SPort);
0

References

97

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown|, page 93, Section 7.5.2
[ox_launch_generic|, page 95, Section 6.12.10 [shell], page 87, Section 7.5.7

[ox_push_cmo ox_push_local], page 99

7.5.4 ‘ox_asir’

‘ox_asir’ provides almost all the functionalities of Asir as an OpenXM server. ‘ox_asir’
is invoked by ox_launch or ox_launch_nox. If X environment is not available or is not

necessary, one can use ox_launch_nox.

[5] ox_launch();
0

[6] ox_launch_nox("127.0.0.1","/usr/local/lib/asir",
"/usr/local/lib/asir/ox_asir");
0

[7] RemotelLibDir = "/usr/local/lib/asir/"$

[8] Machines = ["sumire","rokkaku","genkotsu","shinpuku"];

[sumire,rokkaku,genkotsu,shinpuku]

[9] Servers = map(ox_launch,Machines,RemotelLibDir,
RemoteLibDir+"ox_asir");

[0,1,2,3]

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown|, page 93

7.5.5 ox_rpc, ox_cmo_rpc, ox_execute_string
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ox_rpc (number, "func", arg0, . . .)
ox_cmo_rpc (number, "func" ,arg0, . ..)
ox_execute_string(number,"command", .. .)

i Calls a function on an OpenXM server

return 0
number integer (process identifier)
func function name

command string

arg0 ... arbitrary (arguments)

e (Calls a function on an OpenXM server whose identifier is number.

e It returns 0 immediately. It does not wait the termination of the function call.

98

e ox_rpc() can be used when the server is ‘ox_asir’. Otherwise ox_cmo_rpc() should

be used.

e The result of the function call is put on the stack of the server. It can be received by

ox_pop_local() or ox_pop_cmo().

o If the server is not ‘ox_asir’, only data defined in OpenXM can be sent.

e ox_execute_string requests the server to parse and execute command by the parser

and the evaluater of the server. The result is pushed to the stack.
[234] ox_cmo_rpc(0,"dp_ht",dp_ptod((x+y)~10, [x,y]1));

0
[235] ox_pop_cmo(0);
(1) *<<10,0>>

[236] ox_execute_string(0,"12345 % 678;");

0
[237] ox_pop_cmo(0);
141

References

Section 7.5.8 [ox_pop_cmo ox_pop_local], page 100

7.5.6 ox_reset,ox_intr,register_handler
ox_reset (number)
:: Resets an OpenXM server

ox_intr (number)
:» Sends SIGINT to an OpenXM server

register_handler (func)

:: Registers a function callable on a keyboard interrupt.

return 1
number  integer(process identifier)

func functor or 0
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e ox_reset () resets a process whose identifier is number. After its execution the process
is ready for receiving data.

e After executing ox_reset (), sending/receiving buffers and stream buffers are assured
to be empty.

e Even if a process is running, the execution is safely stopped.

e ox_reset() may be used prior to a distirbuted computation. It can be also used to
interrupt a distributed computation.

e ox_intr() sends SIGINT to a process whose identifier is number. The action of a server
against SIGINT is not specified in OpenXM. ‘ox_asir’ immediately enters the debug
mode and pops up an window to input debug commands on X window system.

e register_handler() registers a function func(). If u is specified on a keybord inter-
rupt, func() is executed before returning the toplevel. If ox_reset () calls are included
in func(), one can automatically reset OpenXM servers on a keyboard interrupt.

e If func is equal to 0, the setting is reset.

[10] ox_launch();

0

[11] ox_rpc(0,"fctr",x~100-y~100);

0

[12] ox_reset(0); /* usrl : return to toplevel by SIGUSR1 */
1 /* is displayed on the xterm. */
[340] Procs=[ox_launch(),ox_launch()];

[0,1]

[341] def reset() { extern Procs; map(ox_reset,Procs);?}
[342] map(ox_rpc,Procs,"fctr",x~100-y~100) ;

[0,0]

[343] register_handler(reset);

1

[344] interrupt ?(q/t/c/d/u/w/7) u

Abort this computation? (y or n) y

Calling the registered exception handler...done.

return to toplevel

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 97

7.5.7 ox_push_cmo, ox_push_local

ox_push_cmo (number, obj)
ox_push_local (number, obj)
:: Sends obj to a process whose identifier is number.

return 0
number  integer(process identifier)
obj object

e Sends obj to a process whose identifier is number.

e ox_push_cmo is used to send data to an Open_XM other than ‘ox_asir’ and ‘ox_plot’.
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e ox_push_local is used to send data to ‘ox_asir’ and ‘ox_plot’.
e The call immediately returns unless the stream buffer is full.

References

Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 97, Section 7.5.8
[ox_pop_cmo ox_pop_local], page 100

7.5.8 ox_pop_cmo, ox_pop_local

ox_pop_local (number)
:: Receives data from a process whose identifier is number.

return received data

number  integer(process identifier)
e Receives data from a process whose identifier is number.

e ox_pop_cmo can be used to receive data form an OpenXM server other than ‘ox_asir’
and ‘ox_plot’.

e ox_pop_local can be used to receive data from ‘ox_asir’, ‘ox_plot’.

e If no data is available, these functions block. To avoid it, send SM_popCMO (262) or
SM_popSerializedLocalObject (258). Then check the process status by ox_select.
Finally call ox_get for a ready process.

[3] ox_rpc(0,"fctr",x~100-y~100);

0

[4] ox_push_cmd(0,258);

0

[5] ox_select([0]);

(0]

[6] ox_get(0);

[[1,1], [x"2+y~2,1], [x"4-y*x"3+y~2%x"2-y " 3*x+y~4,1],...]

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 97, Section 7.5.9
[ox_push_cmd ox_sync], page 100, Section 7.5.12 [ox_select|, page 102, Sec-
tion 7.5.10 [ox_get], page 101

7.5.9 ox_push_cmd, ox_sync
ox_push_cmd (number, command)

:: Sends a command command to a process whose identifier is number.

ox_sync (number)
:: Sends OX_SYNC_BALL to a process whose identifier is number.

return 0
number integer(process identifier)

command integer(command identifier)

e Sends a command or OX_SYNC_BALL to a process whose identifier is number.
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e Data in OpenXM are categorized into three types: OX_DATA, OX_COMMAND,
OX_SYNC_BALL. Usually OX_.COMMAND and OX_SYNC_BALL are sent implic-
itly with high level operations, but these functions are prepared to send these data
explicitly.

e OX_SYNC_BALL is used on the reseting operation by ox_reset. Usually
OX_SYNC_BALL will be ignored by the peer.

References
Section 7.5.5 [ox_rpc ox_cmo_rpc ox_execute_string], page 97, Section 7.5.6
[ox_reset ox_intr register_handler], page 98

7.5.10 ox_get

ox_get (number)
:: Receives data form a process whose identifer is number.

return

number  integer(process identifier)
e Receives data form a process whose identifer is number.
e One may use this function with ox_push_cmd.

e ox_pop_cmo and ox_pop_local is realized as combinations of ox_push_cmd and ox_
get.
[11] ox_push_cmo(0,123);
0
[12] ox_push_cmd(0,262); /* 262=0X_popCMO */
0
[13] ox_get(0);
123

References
Section 7.5.8 [ox_pop_cmo ox_pop_local], page 100, Section 7.5.9 [ox_push_
cmd ox_sync|, page 100

7.5.11 ox_pops

ox_pops (number [, nitem])
:: Removes data form the stack of a process whose identifier is number.

return 0
number  integer(process identifier)
nitem non-negative integer

e Removes data form the stack of a process whose identifier is number. If nitem is
specified, nitem items are removed. If nitem is not specified, 1 item is removed.
[69] for(I=1;I<=10;I++)ox_push_cmo(0,I);
[70] ox_pops(0,4);
0
[71] ox_pop_cmo(0);
6
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References
Section 7.5.8 [ox_pop_cmo ox_pop_local|, page 100

7.5.12 ox_select

ox_select (nlist [, timeout])
:: Returns the list of process identifiers on which data is available.

return list
nlist list of integers (process identifier)

timeout number
e Returns the list of process identifiers on which data is available.

e If all the processes in nlist are running, it blocks until one of the processes returns data.
If timeout is specified, it waits for only timeout seconds.

e By sending SM_popCMO or SM_popSerializedLocalObject with ox_push_cmd() in ad-
vance and by examining the process status with ox_select (), one can avoid a hanging
up caused by ox_pop_local () or ox_pop_cmo(). In such a case, data can be received
by ox_get ().

ox_launch();

0

[220] ox_launch();

1

[221] ox_launch();

2

[222] ox_rpc(2,"fctr",x"500-y"500);
0

[223] ox_rpc(l,"fctr",x~100-y~100);
0

[224] ox_rpc(0,"fctr",x"10-y"10);

0

[225] P=[0,1,2];

[0,1,2]

[226] map(ox_push_cmd,P,258);
[0,0,0]

[227] ox_select(P);

[0]

[228] ox_get(0);

[[1,1], [x"4+y*x"3+y~2*%x"2+y " 3*x+y~4,1],
[x"4-y*x"3+y~2*x"2-y 3*x+y~4,1], [x-y,1], [x+y,1]]

References
Section 7.5.8 [ox_pop_cmo ox_pop_local|, page 100, Section 7.5.9 [ox_push_
cmd ox_sync|, page 100, Section 7.5.10 [ox_get]|, page 101

7.5.13 ox_flush

ox_flush (id)
:: Flushes the sending buffer.
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return 1

id process identifier

e By default the batch mode is off and the sending buffer is flushed at every sending
operation of data and command.

e The batch mode is set by "ox_batch" switch of "ctrl".

e If one wants to send many pieces of small data, ctrl("ox_batch",1) may decrease
the overhead of flush operations. Of course, one has to call ox_flush(id) at the end
of the sending operations.

e Functions such as ox_pop_cmo and ox_pop_local enter a waiting mode immediately
after sending a command. These functions always flush the sending buffer.

[340] ox_launch_nox();

0

[341] cputime(1);

0

Te-05sec + gc : 4.8e-05sec(0.000119sec)
[342] for(I=0;I<10000;I++)ox_push_cmo(0,I);
0.232sec + gc : 0.006821sec(0.6878sec)
[343] ctrl("ox_batch",1);

1

4 .5e-05sec(3.302e-05sec)

[344] for(I=0;I<10000;I++)ox_push_cmo(0,I); ox_flush(0);
0.08063sec + gc : 0.06388sec(0.4408sec)
[345] 1

9.6e-05sec(0.01317sec)

References
Section 7.5.8 [ox_pop_cmo ox_pop_locall], page 100, Section 6.12.1 [ctrl],
page 81

7.5.14 ox_get_serverinfo

ox_get_serverinfo([id])
:: Gets server’s mathcap and proess id.

return list

id process identifier
e If id is specified, the mathcap of the process whose identifier is id is returned.

e If id is not specified, the list of [id,Mathcap] is returned, where id is the identifier of
a currently active process, and Mathcap is the mathcap of the process. identifier id is
returned.

[343] ox_get_serverinfo(0);
[[199909080,0x_system=ox_sml.plain,Version=2.991118 ,HOSTTYPE=FreeBSD],
[262,263,264,265,266,268,269,272,273,275,276],
[[514],[2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,
33,40,16,34]111]

[344] ox_get_serverinfo();
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[[0, [[199909080,0x_system=ox_sml.plain,Version=2.991118,
HOSTTYPE=FreeBSD],

[262,263,264,265,266,268,269,272,273,275,276],
[[514],[2130706434,1,2,4,5,17,19,20,22,23,24,25,26,30,31,60,61,27,33,
40,16,34]111,

[1,[[199901160,0%x_asir],
[276,275,258,262,263,266,267,268,274,269,272,265,264,273,300,270,271],
[[514,2144202544] ,
[1,2,3,4,5,2130706433,2130706434,17,19,20,21,22,24,25,26,31,27,33,60],
[0,11111]

References
Section 7.2 [Mathcap|, page 91.

7.5.15 ifplot, conplot, plot, polarplot, plotover

ifplot (func [,geometry] [,xrangel [,yrangel [,id] [,name])
:: Displays real zeros of a bi-variate function.

conplot (func [,geometry] [,xrangel [,yrangel [,zrangel [,id] [,name])
:: Displays real contour lines of a bi-variate function.

plot (func [,geometry] [,xrange] [,id] [,namel)
:: Displays the graph of a univariate function.

polarplot (func [,geometry] [,thetarange] [,id] [,name])
:: Displays the graph of a curve given in polar form.

plotover (func,id, number)
Plots on the existing window real zeros of a bivariate function.

return integer
func polynomial

geometry xrange yrange zrange
list

id number integer

name string

e Function ifplot() draws a graph of real zeros of a bi-variate function. Function
conplot () plots the contour lines for a same argument. Function plot() draws the
graph of a uninivariate function. Function polarplot() draws the graph of a curve
given in polar form r=f(theta).

e The plotting functions are realized by an OpenXM server. On UNIX it is ‘ox_plot’
in Asir root directory. On Windows ‘engine’ acts as ‘ox_plot’. Of course, it must be
activated by ox_launch() ox_launch_nox(). If the identifier of an active ‘ox_plot’
is specified as id, the server is used for drawing pictures. If id is not specified, an
available ‘ox_plot’ server is used if it exists. If no ‘ox_plot’ server is available, then
ox_launch_nox () is automatically executed to invoke ‘ox_plot’.

e Argument func is indispensable. Other arguments are optional. The format of optional
arguments and their default values (parenthesized) are listed below.
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geometry  Window size is specified by [x,y] in unit ‘dot.” [300,300] for UNIX version;

xrange yrange
Value ranges of the variables are specified by [v,vmin,vmax]|. ([v,-2,2] for
each variable.) If this specification is omitted, the indeterminate having
the higher order in func is taken for ‘x’ and the one with lower order is
taken for ‘y’. To change this selection, specify explicitly by xrange and/or
yrange. For an uni-variate function, the specification is mandatory.

zrange This specification applies only to conplot (). The format is [v,vmin,vmax
[,step 1]. If step is specified, the height difference of contours is set to
(vmax-vmin)/step. ([z,-2,2,16].)

id This specifies the number of the remote process by which you wish to draw
a graph. (The number for the newest active process.)

name The name of the window. (Plot.) The created window is titled name:n/m
which means the m-th window of the process with process number n. These
numbers are used for plotover().

e The maximum number of the windows that can be created on a process is 128.

e Function plotover () superposes reals zeros of its argument bi-variate function onto
the specified window.

e Enlarged plot can be obtained for rectangular area which is specified, on an already
existing window with a graph, by dragging cursor with the left button of mouse from
the upper-left corner to lower-right corner and then releasing it. Then, a new window
is created whose shape is similar to the specified area and whose size is determined so
that the largest side of the new window has the same size of the largest side of the
original window. If you wish to cancel the action, drag the cursor to any point above
or left of the starting point.

This facility is effective when precise button switch is inactive. If precise is selected
and active, the area specified by the cursor dragging will be rewritten on the same
window. This will be explained later.

e A click of the right button will display the current coordinates of the cursor at the
bottom area of the window.

e Place the cursor at any point in the right marker area on a window created by
conplot (), and drag the cursor with the middle mutton. Then you will find the
contour lines changing their colors depending on the movement of the cursor and the
corresponding height level displayed on the upper right corner of the window.

e Several operations are available on the window: by button operations for UNIX version,
and pull-down menus for Windows version.

quit Destroys (kills) the window. While computing, quit the current computa-
tion. If one wants to interrupt the computation, use ox_reset ().

wide (toggle)
Will display, on the same window, a new area enlarged by 10 times as
large as the current area for both width-direction and height-direction.
The current area will be indicated by a rectangle placed at the center.
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Area specification by dragging the cursor will create a new window with a
plot of the graph in the specified area.

precise (toggle)

When selected and active, ox_plot redraws the specified area more pre-
cisely by integer arithmetic. This mode uses bisection method based on
Sturm sequence computation to locate real zeros precisely. More precise
plotting can be expected by this technique than by the default plotting
technique, at the expense of significant increase of computing time. As
you see by above explanation, this function is only effective to polynomials
with rational coefficients. (Check how they differ for (x~2+y~2-1)"2.)

formula  Displays the expression for the graph.

noaxis (toggle)
Erase the coordinates.

e Program ‘ox_plot’ may consume much stack space depending on which machine it is
running. You are recommended to set the stack size to about 16MB as large in ‘. cshrc’
for safe. To specify the size, put 1imit stacksize 16m for an example.

e You can customize various resources of a window on X, e.g., coloring, shape of buttons
etc. The default setting of resources is shown below. For plot*form*shapeStyle you
can select among rectangle, oval, ellipse, and roundedRectangle.

plot*background:white
plotxform*shapeStyle:rectangle
plot*form*background:white
plotxform*xquit*background:white
plotxform*widexbackground:white
plotxform*precisexbackground:white
plotxform*formula*background:white
plot*form*noaxis*background:white
plot*xform*xcoord*background:white
plot*formxycoord*background:white
plotxform*level*background:white
plotx*form*xdone*background:white
plotxform*ydone*background:white

References
Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown|, page 93, Section 7.5.6
[ox_reset ox_intr register_handler], page 98

7.5.16 open_canvas, clear_canvas, draw_obj, draw_string
open_canvas (id [, geometry])

:: Opens a canvas, which is a window for drawing objects.

clear_canvas (id, index)
:: Clears a canvas.

draw_obj (id, index, pointorsegment [, color])
:» Draws a point or a line segment on a canvas.
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draw_string(id, index, [x,y],string [,color])

:: Draws a character string on a canvas.

return 0

id index color x y

integer
pointorsegment

list
string character string

These functions are supplied by the OpenXM server ‘ox_plot’ (‘engine’ on Windows).

open_canvas opens a canvas, which is a window for drawing objecgts. One can specifies
the size of a canvas in pixel by supplying geometry option [x,y]. The default size is
[300,300]. This function pushes an integer value onto the stack of the OpenXM server.
The value is used to distiguish the opened canvas and one has to pop and maintain the
value by ox_pop_cmo for subsequent calls of draw_obj.

clear_canvas clears a canvas specified by a server id id and a canvas id index.

draw_obj draws a point or a line segment on a canvas specified by a server id id and a
canvas id index. If pointorsegment is [x,y], it is regarded as a point. If pointorsegment
is [x,y,u,v], it is regarded as a line segment which connects [x,y] and [u,v]. If color is
specified, color/65536 mod 256, color/256 mod 256, color mod 256 are regarded as the
vaules of Red, Green, Blue (Max. 255) respectively.

draw_string draws a character string string on a canvas specified by a server id id
and a canvas id index. The position of the string is specified by [x,y].

[182] Id=ox_launch_nox(0,"ox_plot");

?183] open_canvas (Id) ;

%184] Ind=ox_pop_cmo (Id);

?185] draw_obj(Id,Ind, [100,100]);

0[186] draw_obj(Id,Ind, [200,200] ,0xffff);

0[187] draw_obj(Id,Ind, [10,10,50,50] ,0xf£f00ff) ;

%187] draw_string(Id,Ind, [100,50],"hello",0xff£ff00) ;
%189] clear_canvas(Id,Ind);

0

References

Section 7.5.1 [ox_launch ox_launch_nox ox_shutdown|, page 93, Section 7.5.6
[ox_reset ox_intr register_handler|, page 98, Section 7.5.8 [ox_pop_cmo
ox_pop_locall, page 100.
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8 (Groebner basis computation

8.1 Distributed polynomial

A distributed polynomial is a polynomial with a special internal representation different
from the ordinary one.

An ordinary polynomial (having type 2) is internally represented in a format, called
recursive representation. In fact, it is represented as an uni-variate polynomial with respect
to a fixed variable, called main variable of that polynomial, where the other variables
appear in the coefficients which may again polynomials in such variables other than the
previous main variable. A polynomial in the coefficients is again represented as an uni-
variate polynomial in a certain fixed variable, the main variable. Thus, by this recursive
structure of polynomial representation, it is called the ‘recursive representation.’

(+y+2?=1-2+2-y+(2-2) 2+ (2 2) y+ (1 2%)

On the other hand, we call a representation the distributed representation of a polynomial,
if a polynomial is represented, according to its original meaning, as a sum of monomials,
where a monomial is the product of power product of variables and a coefficient. We call a
polynomial, represented in such an internal format, a distributed polynomial. (This naming
may sounds something strange.)

(x+y+2P2=1-2"42-2y+2-22+1-y*+2-yz+1-2°
For computation of Groebner basis, efficient operation is expected if polynomials are rep-
resented in a distributed representation, because major operations for Groebner basis are
performed with respect to monomials. From this view point, we provide the object type
distributed polynomial with its object identification number 9, and objects having such a
type are available by Asir language.

Here, we provide several definitions for the later description.
term The power product of variables, i.e., a monomial with coefficient 1. In an Asir
session, it is displayed in the form like
<<0,1,2,3,4>>
and also can be input in such a form. This example shows a term in 5 vari-

ables. If we assume the 5 variables as a, b, ¢, d, and e, the term represents
b*c~2*d"3*e"4 in the ordinary expression.

term order
Terms are ordered according to a total order with the following properties.
1. Forallt t > 1.
2. For all t, s, ut > s implies tu > su.
Such a total order is called a term ordering. A term ordering is specified by a

variable ordering (a list of variables) and a type of term ordering (an integer, a
list or a matrix).

monomial The product of a term and a coefficient. In an Asir session, it is displayed in
the form like
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2%<<0,1,2,3,4>>

and also can be input in such a form.
head monomial

head term

head coefficient
Monomials in a distributed polynomial is sorted by a total order. In such
representation, we call the monomial that is maximum with respect to the
order the head monomial, and its term and coeflicient the head term and the
head coefficient respectively.

8.2 Reading files

Facilities for computing Groebner bases are dp_gr_main(), dp_gr_mod_main()and dp_gr_
f_main(). To call these functions, it is necessary to set several parameters correctly and it
is convenient to use a set of interface functions provided in the library file ‘gr’. The facilities
will be ready to use after you load the package by load(). The package ‘gr’ is placed in
the standard library directory of Asir.

[0] 1load("gr")$

8.3 Fundamental functions

There are many functions and options defined in the package ‘gr’. Usually not so many of
them are used. Top level functions for Groebner basis computation are the following three
functions.

In the following description, plist, vlist, order and p stand for a list of polynomials,
a list of variables (indeterminates), a type of term ordering and a prime less than 2727
respectively.

gr (plist, vlist, order)
Function that computes Groebner bases over the rationals. The algorithm is
Buchberger algorithm with useless pair elimination criteria by Gebauer-Moeller,
sugar strategy and trace-lifting by Traverso. For ordinary computation, this
function is used.

hgr (plist, vlist, order)
After homogenizing the input polynomials a candidate of the \gr basis is com-
puted by trace-lifting. Then the candidate is dehomogenized and checked
whether it is indeed a Groebner basis of the input. Sugar strategy often causes
intermediate coeflicient swells. It is empirically known that the combination of
homogenization and supresses the swells for such cases.

gr_mod (plist, vlist, order, p)
Function that computes Groebner bases over GF(p). The same algorithm as
gr() is used.
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8.4 Controlling Groebner basis computations

One can cotrol a Groebner basis computation by setting various parameters. These param-
eters can be set and examined by a built-in function dp_gr_flags (). Without argument it
returns the current settings.
[100] dp_gr_flags();
[Demand,0,NoSugar,0,NoCriB,0,NoGC,0,NoMC,0,NoRA,0,NoGCD,0,Top,0,
ShowMag,1,Print,1,Stat,O,Reverse,O,InterReduce,O,Multiple,O]
[101]
The return value is a list which contains the names of parameters and their values. The
meaning of the parameters are as follows. ‘on’ means that the parameter is not zero.

NoSugar  If ‘on’, Buchberger’s normal strategy is used instead of sugar strategy.
NoCriB If ‘on’, criterion B among the Gebauer-Moeller’s criteria is not applied.

NoGC If ‘on’, the check that a Groebner basis candidate is indeed a Groebner basis,
is not executed.

NoMC If ‘on’, the check that the resulting polynomials generates the same ideal as the
ideal generated by the input, is not executed.

NoRA If ‘on’, the interreduction, which makes the Groebner basis reduced, is not
executed.
NoGCD If ‘on’, content removals are not executed during a Groebner basis computation

over a rational function field.
Top If ‘on’, Only the head term of the polynomial being reduced is reduced.

Reverse If ‘on’, the selection strategy of reducer in a normal form computation is such
that a newer reducer is used first.

Print If ‘on’, various informations during a Groebner basis computation is displayed.

PrintShort
If ‘on’ and Print is ‘off’, short information during a Groebner basis computation
is displayed.

Stat If ‘on’, a summary of informations is shown after a Groebner basis computation.
Note that the summary is always shown if Print is ‘on’.

ShowMag  If ‘on’ and Print is ‘on’, the sum of bit length of coefficients of a generated basis
element, which we call magnitude, is shown after every normal computation.
After comleting the computation the maximal value among the sums is shown.

Content

Multiple If a non-zero rational number, in a normal form computation over the ratio-
nals, the integer content of the polynomial being reduced is removed when its
magnitude becomes Content times larger than a registered value, which is set
to the magnitude of the input polynomial. After each content removal the reg-
istered value is set to the magnitude of the resulting polynomial. Content is
equal to 1, the simiplification is done after every normal form computation. It
is empirically known that it is often efficient to set Content to 2 for the case
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where large integers appear during the computation. An integer value can be
set by the keyword Multiple for backward compatibility.

Demand

If the value (a character string) is a valid directory name, then generated basis
elements are put in the directory and are loaded on demand during normal
form computations. Each elements is saved in the binary form and its name
coincides with the index internally used in the computation. These binary files
are not removed automatically and one should remove them by hand.

If Print is ‘on’, the following informations are shown.

[93] gr(cyclic(4),[c0,c1,c2,c3],0)$

mod= 99999989, eval = []

(0) (0)<<0,2,0,0>>(2,3) ,nb=2,nab=5,rp=2, sugar=2,mag=4
(0) (0)<<0,1,2,0>>(1,2) ,nb=3,nab=6,rp=2, sugar=3,mag=4
(0) (0)<<0,1,1,2>>(0,1) ,nb=4,nab=7,rp=3, sugar=4,mag=6

(0) (0)<<0,0,3,2>>(5,6) ,nb=5,nab=8,rp=2, sugar=>5,mag=4

(0) (0)<<0,1,0,4>>(4,6) ,nb=6,nab=9,rp=3, sugar=5,mag=4

(0) (0)<<0,0,2,4>>(6,8) ,nb=7,nab=10,rp=4, sugar=6 ,mag=6

....gb done

reduceall

membercheck

(0,0) (0,0) (0,0) (0,0)

gbcheck total 8 pairs
UP=(0,0)SP=(0,0)SPM=(0,0)NF=(0,0)NFM=(0.010002,0) ZNFM=(0.010002,0)
PZ=(0,0)NP=(0,0)MP=(0,0)RA=(0,0)MC=(0,0)GC=(0,0)T=40,B=0 M=8 F=6
D=12 ZR=5 NZR=6 Max_mag=6

[94]

In this example mod and eval indicate moduli used in trace-lifting. mod is a prime and eval
is a list of integers used for evaluation when the ground field is a field of rational functions.

The following information is shown after every normal form computation.
(TNF) (TCONT)HT (INDEX) ,nb=NB,nab=NAB,rp=RP, sugar=S,mag=M

Meaning of each component is as follows.

TNF
CPU time for normal form computation (second)
TCONT
CPU time for content removal(second)
HT
Head term of the generated basis element
INDEX

Pair of indices which corresponds to the reduced S-polynomial
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NAB

RP
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Number of basis elements after removing redundancy

Number of all the basis elements

Number of remaining pairs

Sugar of the generated basis element

Magnitude of the genrated basis element (shown if ShowMag is ‘on’.)

The summary of the informations shown after a Groebner basis computation is as follows.
If a component shows timings and it contains two numbers, they are a pair of time for
computation and time for garbage colection.

UP

Sp

SPM

NF

NFM

ZNFM

PZ

NP

MP

RA

MC

Time to manipulate the list of critical pairs

Time to compute S-polynomials over the rationals

Time to compute S-polynomials over a finite field

Time to compute normal forms over the rationals

Time to compute normal forms over a finite field

Time for zero reductions in NFM

Time to remove integer contets

Time to compute remainders for coefficients of polynomials with coeffieints in
the rationals

Time to select pairs from which S-polynomials are computed

Time to interreduce the Groebner basis candidate

Time to check that each input polynomial is a member of the ideal generated
by the Groebner basis candidate.
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GC

B,M,F,D

ZR

NZR

Max_mag

Time to check that the Groebner basis candidate is a Groebner basis

Number of critical pairs generated

Number of critical pairs removed by using each criterion

Number of S-polynomials reduced to 0

Number of S-polynomials reduced to non-zero results

Maximal magnitude among all the generated polynomials

8.5 Setting term orderings

A term is internally represented as an integer vector whose components are exponents with
respect to variables. A variable list specifies the correspondences between variables and
components. A type of term ordering specifies a total order for integer vectors. A type of
term ordering is represented by an integer, a list of integer or matrices.

There are following three fundamental types.

0 (DegRevLex; total degree reverse lexicographic ordering)

1 (Deglex;

In general, computation by this ordering shows the fastest speed in most Groeb-
ner basis computations. However, for the purpose to solve polynomial equa-
tions, this type of ordering is, in general, not so suitable. The Groebner bases
obtained by this ordering is used for computing the number of solutions, solv-
ing ideal membership problem and seeds for conversion to other Groebner bases
under different ordering.

total degree lexicographic ordering)

By this type term ordering, Groebner bases are obtained fairly faster than
Lex (lexicographic) ordering, too. Alike the DegRevLex ordering, the result, in
general, cannot directly be used for solving polynomial equations. It is used,
however, in such a way that a Groebner basis is computed in this ordering after
homogenization to obtain the final lexicographic Groebner basis.

2 (Lex; lexicographic ordering)

Groebner bases computed by this ordering give the most convenient Groebner
bases for solving the polynomial equations. The only and serious shortcoming
is the enormously long computation time. It is often observed that the number
coefficients of the result becomes very very long integers, especially if the ideal
is O-dimensional. For such a case, it is empirically true for many cases that i.e.,
computation by gr() and/or hgr () may be quite effective.

By combining these fundamental orderingl into a list, one can make various term ordering
called elimination orderings.
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(fo1,r11,[02,L2],...]
In this example 0i indicates 0, 1 or 2 and Li indicates the number of variables subject to
the correspoinding orderings. This specification means the following.

The variable list is separated into sub lists from left to right where the i-th list contains
Li members and it corresponds to the ordering of type 0i. The result of a comparison is
equal to that for the leftmost different sub components. This type of ordering is called an
elimination ordering.

Furthermore one can specify a term ordering by a matix. Suppose that a real n, m matrix
M has the following properties.

1. For all integer verctors v of length m Mv=0 is equivalent to v=0.

2. For all non-negative integer vectors v the first non-zero component of Mv is non-negative.

Then we can define a term ordering such that, for two vectors t, s, t>s means that the first
non-zero component of M(t-s) is non-negative.

Types of term orderings are used as arguments of functions such as gr(). It is also set
internally by dp_ord () and is used during executions of various functions.

For concrete definitions of term ordering and more information about Groebner basis, refer
to, for example, the book [Becker,Weispfenning].

Note that the variable ordering have strong effects on the computation time as well as the
choice of types of term orderings.
[90] B=[x"10-t,x"8-z,x"31-x"6-x-y]$
[91] gr(B, [x,y,z,t]1,2);
[x72-2%y "7+ (-41%t72-13%t-1) xy "2+ (2%t~ 17-12%t " 14+42*%t " 12+30*%t " 11-168*t"9
—40*t"8+70*t " 7+252%t"6+30%t"5-140%t"4-168*t " 3+2+t"2-12%t+16) *z" 2%y
+(—12%t 7 16+72*%t"13-28%t"11-180%t"10+112%t " 8+240*t " 7+28*t " 6-127*t"5
-167*t~4-55%t"3+30*t"2+58*t—-15)*z"4,
(y+t72%272) *x+y "7+ (20%t "2+6%t+1) xy "2+ (-t "17+6%t ~14-21%t~12-16%t"11
+84*xt"9+20%t"8-35*%t " 7-126%t "6-15%t "5+70%t " 4+84*t"3-t " 2+5*%t-9) *xz"2xy
+(6%t716-36%t"13+14*%t~11+90*t~10-56%t"8-120*%t " 7-14*t~6+64*t " 5+84*t"4
+27%t"3-16%t"2-30%t+7) *z"4,
(£73-1) *x-y 6+ (-6%t"13+24%t"10-20%t " 8-36*t " 7+40%t " 5+24*t"4-6xt"3-20%t"2
—6*%t—1) *y+(t~17-6%t~14+9%t " 12+15%t"11-36%t"9-20%t"8-5*t " 7+54*t"6+15%t"5
+10*%t"4-36%t"3-11*%t"2-5*%t+9) ¥z~ 2,
—y"8-8*t*xy " 3+16%z" 2%y 2+ (-8*%t " 16+48%t"13-56*t"11-120%t " 10+224*t"8+160*t"7
—56%t76-336%t"5-112%t"4+112%t " 3+224*t " 2+24*t-56) *z " 4*xy+(t"24-8*t"21
+20%t719+28%t~18-120%t " 16-56%t " 15+14*t~14+300*%t~13+70*t~12-56*%t~11
—400*%t~10-84*t"9+84%t " 8+268%t " 7+84*t~6-56%t " 5-63*t "4-36%t " 3+46*t"2
—12%t+1) *z, 2%t *y " b+zky 2+ (2%t " 11+8%t " 8-20%t "6-12*%t " 5+40%t "~ 3+8*t "2
—10%t-20) *z " 3*y+8%t~14-32+t"11+48*t 8-t "7-32xt " 5-6*t "4+9*t"2-t,
—zky "3+ (77241 " 4+3%kt 7241 ) ky+ (-2% L T6+4* L T3 +2%E-2) %272,
2%t 2%y " 3+z 7 2%y "2+ (-2%t "5+4%t " 2-6) *z"4*y
+(4*t"8-t " T-8%t " 5+2xt "4-4*t " 3+5xt"2-t) *z,
Z7 3%y T 2+2xt " 3xy+ (—tTT+2%ET4+E72-t) %272,
—t*z*xy 2-2%Zz" 3ky+t"8-2*%t"5-t "3+t 72,
-t 3%y T2-2%t 7242 2%y + (£ "6-2%t "3-t+1) *z"4,2"5-t"4]
[93] gr(B,[t,z,y,x],2);
[x"10-t,x"8-z,x"31-x"6-x-y]
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As you see in the above example, the Groebner base under variable ordering [x,y,z,t] has
a lot of bases and each base itself is large. Under variable ordering [t,z,y,x], however, B
itself is already the Groebner basis. Roughly speaking, to obtain a Groebner base under
the lexicographic ordering is to express the variables on the left (having higher order) in
terms of variables on the right (having lower order). In the example, variables t, z, and
y are already expressed by variable x, and the above explanation justifies such a drastic
experimental results. In practice, however, optimum ordering for variables may not known
beforehand, and some heuristic trial may be inevitable.

8.6 Groebner basis computation with rational function
coeflicients

Such variables that appear within the input polynomials but not appearing in the input vari-
able list are automatically treated as elements in the coefficient field by top level functions,
such as gr().

[64] gr([a*x+bxy-c,d*x+exy-£f], [x,y],2);

[(-e*a+d#*b) *x-f*b+exc, (—e*xa+d*b) *xy+f*a-d*c]

In this example, variables a, b, ¢, and d are treated as elements in the coefficient field. In
this case, a Groebner basis is computed on a bi-variate polynomial ring F[x,y]| over rational
function field F = Q(a,b,c,d). Notice that coefficients are considered as a member in a field.
As a consequence, polynomial factors common to the coefficients are removed so that the
result, in general, is different from the result that would be obtained when the problem is
considered as a computation of Groebner basis over a polynomial ring with rational function
coefficients. And note that coefficients of a distributed polynomial are limited to numbers
and polynomials because of efficiency.

8.7 Change of orderng

When we compute a lex order Groebner basis, it is often efficient to compute it via Groebner
basis with respect to another order such as degree reverse lex order, rather than to compute
it directory by gr() etc. If we know that an input is a Groebner basis with respect to
an order, we can apply special methods called change of ordering for a Groebner basis
computation with respect to another order, without using Buchberger algorithm. The
following two functions are ones for change of ordering such that they convert a Groebner
basis gbase with respect to the variable order vlist] and the order type order into a lex
Groebner basis with respect to the variable order vlist2.

tolex (gbase, vlist1, order, vlist2)

This function can be used only when gbase is an ideal over the rationals. The
input gbase must be a Groebner basis with respect to the variable order vlist1
and the order type order. Moreover the ideal generated by gbase must be
zero-dimensional. This computes the lex Groebner basis of gbase by using the
modular change of ordering algorithm. The algorithm first computes the lex
Groebner basis over a finite field. Then each element in the lex Groebner basis
over the rationals is computed with undetermined coefficient method and linear
equation solving by Hensel lifting.
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tolex_t1(gbase, vlist1,order, vlist2, homo)

This function computes the lex Groebner basis of gbase. The input ghase must
be a Groebner basis with respect to the variable order vlistl and the order
type order. Buchberger algorithm with trace lifting is used to compute the lex
Groebner basis, however the Groebner basis check and the ideal membership
check can be omitted by using several properties derived from the fact that
the input is a Groebner basis. So it is more efficient than simple repetition of
Buchberger algorithm. If the input is zero-dimensional, this function inserts
automatically a computation of Groebner basis with respect to an elimination
order, which makes the whole computation more efficient for many cases. If
homo is not equal to 0, homogenization is used in each step.

For zero-dimensional systems, there are several fuctions to compute the minimal polynomial
of a polynomial and or a more compact representation for zeros of the system. They are all
defined in ‘gr’. Refer to the sections for each functions.

8.8 Weyl algebra

So far we have explained Groebner basis computation in commutative polynomial rings.
However Groebner basis can be considered in more general non-commutative rings. Weyl
algebra is one of such rings and Risa/Asir implements fundamental operations in Weyl
algebra and Groebner basis computation in Weyl algebra.

The n dimensional Weyl algebra over a field K, D=K<x1,...,xn,D1,...,Dn> is a non-
commutative algebra which has the following fundamental relations:
Xi*xj-xj*xi=0, Di*Dj-Dj*Di=0, Di*xj-xj*Di=0 (i!=j), Di*xi-xi*Di=1
D is the ring of differential operators whose coefficients are polynomials in K[x1, ... ,xn]
and Di denotes the differentiation with respect to xi. According to the commutation
relation, elements of D can be represented as a K-linear combination of monomials
x17il*...*xn"in*D1"j1*...*Dn"jn. In Risa/Asir, this type of monomial is represented
by <<ii,...,in,j1,...,jn>> as in the case of commutative polynomial. That is,
elements of D are represented by distributed polynomials. Addition and subtraction can
be done by +, -, but multiplication is done by calling dp_weyl_mul() because of the
non-commutativity of D.
[0] A=<<1,2,2,1>>;
(1)*<<1,2,2,1>>
[1] B=<<2,1,1,2>>;
(1)*<<2,1,1,2>>
[2] AxB;
(1)%<<3,3,3,3>>
[3] dp_weyl_mul(A,B);
(1)%<<3,3,3,3>>+(1)%<<3,2,3,2>>+(4)%<<2,3,2,3>>+(4) %<<2,2,2,2>>
+(2)*%<<1,3,1,3>>+(2)*%<<1,2,1,2>>
The following functions are avilable for Groebner basis computation in Weyl algebra: dp_
weyl_gr_main(), dp_weyl_gr_mod_main(), dp_weyl_gr_f_main(), dp_weyl_f4_main(),
dp_weyl_f4_mod_main(). Computation of the global b function is implemented as an
application.
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8.9 Functions for Groebner basis computation

8.9.1 gr, hgr, gr_mod, dgr

gr (plist, vlist, order)

hgr (plist, vlist, order)
gr_mod (plist, vlist, order, p)
dgr (plist, vlist,, order, procs)

:: Groebner basis computation

return list

plist vlist procs

list
order number, list or matrix
P prime less than 2727

e These functions are defined in ‘gr’ in the standard library directory.

e They compute a Groebner basis of a polynomial list plist with respect to the variable
order vlist and the order type order. gr() and hgr() compute a Groebner basis over
the rationals and gr_mod computes over GF(p).

e Variables not included in vlist are regarded as included in the ground field.

e gr() uses trace-lifting (an improvement by modular computation) and sugar strategy.
hgr () uses trace-lifting and a cured sugar strategy by using homogenization.

e dgr() executes gr(), dgr () simultaneously on two process in a child process list procs
and returns the result obtained first. The results returned from both the process should
be equal, but it is not known in advance which method is faster. Therefore this function
is useful to reduce the actual elapsed time.

e The CPU time shown after an exection of dgr () indicates that of the master process,
and most of the time corresponds to the time for communication.

[0] load("gr")$
[64] load("cyclic")$
[74] G=gr(cyclic(5),[c0,c1,c2,c3,c4],2);
[c4715+122%c4710-122%c4"5-1,...]
[75] GM=gr_mod(cyclic(5),[c0,cl,c2,c3,c4],2,31991)$
24628%c4"15+29453*c4~10+2538*%c4"5+7363
[76] (G[0]%24628-GM[0])%31991;
0
References

Section 8.9.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main
dp_weyl_gr_mod_main dp_weyl_gr_f_main], page 122, Section 8.9.9 [dp_ord],
page 124.

8.9.2 lex_hensel, lex_tl, tolex, tolex_d, tolex_tl
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lex_hensel (plist, vlist1, order, vlist2, homo)
lex_t1(plist, vlist1,order, vlist2, homo)

: Groebner basis computation with respect to a lex order by change of ordering

tolex(plist, vlist1, order, vlist2)
tolex_d(plist, viistl, order, vlist2, procs)
tolex_t1(plist, vlistl, order, vlist2, homo)

return

:: Groebner basis computation with respect to a lex order by change of ordering,
starting from a Groebner basis

list

plist vlist1 vlist2 procs

order

homo

list
number, list or matrix

flag

These functions are defined in ‘gr’ in the standard library directory.

lex_hensel () and lex_t1() first compute a Groebner basis with respect to the vari-
able order vlistl and the order type order. Then the Groebner basis is converted into
a lex order Groebner basis with respect to the varable order vlist2.

tolex () and tolex_t1() convert a Groebner basis plist with respect to the variable
order vlistl and the order type order into a lex order Groebner basis with respect to
the varable order vlist2. tolex_d() does computations of basis elements in tolex()
in parallel on the processes in a child process list procs.

In lex_hensel() and tolex_hensel() a lex order Groebner basis is computed as
follows.(Refer to [Noro,Yokoyama].)

1.

Compute a Groebner basis GO with respect to vlistl and order. (Only in lex_
hensel(). )

Choose a prime which does not divide head coefficients of elements in GO with
respect to vlistl and order. Then compute a lex order Groebner basis Gp over
GF(p) with respect to vlist2.

Compute NF, the set of all the normal forms with respect to GO of terms appearing
in Gp.

For each element f in Gp, replace coefficients and terms in f with undetermined
coefficients and the corresponding polynomials in NF' respectively, and generate a
system of liear equation Lf by equating the coefficients of terms in the replaced
polynomial with 0.

5. Solve Lf by Hensel lifting, starting from the unique mod p solution.

6. If all the linear equations generated from the elements in Gp could be solved, then

the set of solutions corresponds to a lex order Groebner basis. Otherwise redo the
whole process with another p.

e Inlex_t1() and tolex_t1() a lex order Groebner basis is computed as follows.(Refer
to [Noro,Yokoyama].)

1.

Compute a Groebner basis GO with respect to vlistl and order. (Only in lex_

t10. )
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2. If GO is not zero-dimensional, choose a prime which does not divide head co-
efficients of elements in GO with respect to vlistl and order. Then compute a
candidate of a lex order Groebner basis via trace lifting with p. If it succeeds the
candidate is indeed a lex order Groebner basis without any check. Otherwise redo
the whole process with another p.

If GO is zero-dimensional, starting from GO, compute a Groebner basis G1 with
respect to an elimination order to eliminate variables other than the last varibale
in vlist2. Then compute a lex order Groebner basis stating from GI1. These
computations are done by trace lifting and the selection of a mudulus p is the
same as in non zero-dimensional cases.

e Computations with rational function coefficients can be done only by lex_t1() and
tolex_t1Q).

e If homo is not equal to 0, homogenization is used in Buchberger algorithm.

e The CPU time shown after an execution of tolex_d() indicates that of the master
process, and it does not include the time in child processes.
[78] K=katsura(5)$
30msec + gc : 20msec
[79] V=[u5,u4,u3,u2,ul,u0l$
Omsec
[80] GO=hgr(K,V,2)$
91.568sec + gc : 15.583sec
[81] Gl=lex_hensel(K,V,0,V,0)$
49.049sec + gc : 9.961sec
[82] G2=lex_t1l(K,V,0,V,1)$
31.186sec + gc : 3.500sec
[83] gb_comp(GO,G1);
1
10msec
[84] gb_comp(GO,G2);
1

References
Section 8.9.6 [dp_gr_main dp_gr_mod_main dp_gr_f_main dp_weyl_gr_main
dp_weyl_gr_mod_main dp_weyl_gr_f_main|, page 122, Section 8.9.9 [dp_ord],
page 124, Chapter 7 [Distributed computation], page 90

8.9.3 lex_hensel_gsl, tolex_gsl, tolex_gsl_d
lex_hensel_gsl1(plist, vlistl,order, vlist2, homo)

::Computation of an GSL form ideal basis

tolex_gsl(plist, vlist1, order, vlist2)
tolex_gsl_d(plist, vlistl,order, vlist2, procs)
:: Computation of an GSL form ideal basis stating from a Groebner basis

return list
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plist vlist1 vlist2 procs

list
order number, list or matrix
homo flag

e lex_hensel_gsl() and lex_hensel() are variants of tolex_gsl() and tolex() re-
spectively. The results are Groebner basis or a kind of ideal basis, called GSL form.
tolex_gsl_d() does basis computations in parallel on child processes specified in
procs.

e If the input is zero-dimensional and a lex order Groebner basis has the form [f0,x1-
f1,...,xn-fn] (£0,....,fn are univariate polynomials of x0; SL form), then this these
functions return a list such as [[x1,gl,d1],...,[xn,gn,dn], [x0,£f0,f0°]] (GSL
form). In this list gi is a univariate polynomial of x0 such that di*f0’*fi-gi divides
£0 and the roots of the input ideal is [x1=g1/(d1*£0°),...,xn=gn/(dn*f0’)] for x0
such that £0(x0)=0. If the lex order Groebner basis does not have the above form,
these functions return a lex order Groebner basis computed by tolex().

e Though an ideal basis represented as GSL form is not a Groebner basis we can expect
that the coefficients are much smaller than those in a Groebner basis and that the
computation is efficient. The CPU time shown after an execution of tolex_gsl_d()
indicates that of the master process, and it does not include the time in child processes.

[103] K=katsura(5)$

[104] V=[u5,u4,u3,u2,ul,udl$

[105] GO=gr(K,V,0)$

[106] GSL=tolex_gs1(GO,V,0,V)$

[107] GSL[0];
[ul,8635837421130477667200000000%u0~31~. . .]
[108] GSL[1];
[u2,10352277157007342793600000000%u0"~31~. . .]
[109] GSL[5];
[u0,11771021876193064124640000000%u0"32~-. . .,
376672700038178051988480000000*u0~31-. . .]

References
Section 8.9.2 [lex_hensel lex_tl tolex tolex_d tolex_t1], page 117, Chap-
ter 7 [Distributed computation|, page 90

8.9.4 gr_minipoly, minipoly
gr_minipoly(plist, vlist, order, poly, v, homo)

:: Computation of the minimal polynomial of a polynomial modulo an ideal

minipoly(plist, vlist, order, poly, v)
:: Computation of the minimal polynomial of a polynomial modulo an ideal

return polynomial
plist vlist list

order number, list or matrix
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poly polynomial
v indeterminate
homo flag

e gr_minipoly() begins by computing a Groebner basis. minipoly () regards an input
as a Groebner basis with respect to the variable order vlist and the order type order.

e Let K be a field. If an ideal I in K[X] is zero-dimensional, then, for a polynomial p
in K[X], the kernel of a homomorphism from K[v] to K[X]/I which maps f(v) to f(p)
mod I is generated by a polynomial. The generator is called the minimal polynomial
of p modulo L

e gr_minipoly() and minipoly() computes the minimal polynomial of a polynomial p
and returns it as a polynomial of v.

e The minimal polynomial can be computed as an element of a Groebner basis. But
if we are only interested in the minimal polynomial, minipoly() and gr_minipoly()
can compute it more efficiently than methods using Groebner basis computation.

e [t is recommended to use a degree reverse lex order as a term order for gr_minipoly ().

[117] G=tolex(GO,V,0,V)$
43.818sec + gc : 11.202sec
[118] GSL=tolex_gsl(GO,V,0,V)$
17.123sec + gc : 2.590sec

[119] MP=minipoly(GO,V,0,u0,z)$
4.370sec + gc : 780msec

References
Section 8.9.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 117.

8.9.5 tolexm, minipolym
tolexm(plist, vlist1, order, vlist2, mod)

:: Groebner basis computation modulo mod by change of ordering.

minipolym(plist, vlist1,order, poly, v, mod)
:: Minimal polynomial computation modulo mod the same method as

return tolexm() : list, minipolym() : polynomial

plist vlist1 vlist2

list
order number, list or matrix
mod prime

e An input plist must be a Groebner basis modulo mod with respect to the variable order
vlist1 and the order type order.

e minipolym() executes the same computation as in minipoly.

e tolexm() computes a lex order Groebner basis modulo mod with respect to the variable
order vlist2, by using FGLM algorithm.
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[197] tolexm(GO,V,0,V,31991);
[8271*%u0"31+10435%u0~30+816*u0"29+26809*%u0"28+...,...]
[198] minipolym(GO,V,0,u0,z,31991);
z"32+11405%z"31+20868*z"30+21602%z"29+. ..

References
Section 8.9.2 [lex_hensel lex_tl tolex tolex_d tolex_tl], page 117, Sec-
tion 8.9.4 [gr_minipoly minipoly], page 120.

8.9.6 dp_gr_main, dp_gr_mod_main, dp_gr_f_main, dp_weyl_gr_main,
dp_weyl_gr_mod_main, dp_weyl_gr_f_main

dp_gr_main(plist, vlist, homo, modular, order)
dp_gr_mod_main (plist, vlist, homo, modular, order)
dp_gr_f_main(plist, vlist, homo, order)
dp_weyl_gr_main(plist, vlist, homo, modular, order)
dp_weyl_gr_mod_main(plist, vlist, homo, modular, order)
dp_weyl_gr_f_main(plist, vlist, homo, order)

:: Groebner basis computation (built-in functions)

return list
plist vlist list
order number, list or matrix
homo flag

modular  flag or prime

e These functions are fundamental built-in functions for Groebner basis computation and
grO,hgr() and gr_mod () are all interfaces to these functions. Functions whose names
contain weyl are those for computation in Weyl algebra.

e dp_gr_f _main() and dp_weyl_gr_f_main() are functions for Groebner basis compu-
tation over various finite fields. Coeflicients of input polynomials must be converted to
elements of a finite field currently specified by setmod_£f ().

e If homo is not equal to 0, homogenization is applied before entering Buchberger algo-
rithm

e For dp_gr_mod_main(), modular means a computation over GF(modular). For dp_
gr_main(), modular has the following mean.

1. If modular is 1 , trace lifting is used. Primes for trace lifting are generated by
lprime (), starting from lprime(0), until the computation succeeds.

2. If modular is an integer greater than 1, the integer is regarded as a prime and trace
lifting is executed by using the prime. If the computation fails then 0 is returned.

3. If modular is negative, the above rule is applied for -modular but the Groebner
basis check and ideal-membership check are omitted in the last stage of trace
lifting.

e gr(P,V,0), hgr(P,V,0) and gr_mod(P,V,0,M) execute dp_gr_main(P,V,0,1,0), dp_
gr_main(P,V,1,1,0) and dp_gr_mod_main(P,V,0,M,0) respectively.
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e Actual computation is controlled by various parameters set by dp_gr_flags(), other
then by homo and modular.

References
Section 8.9.9 [dp_ord], page 124, Section 8.9.8 [dp_gr_flags dp_gr_print|,
page 123, Section 8.9.1 [gr hgr gr_mod|, page 117, Section 10.5.1 [setmod_ff],
page 154, Section 8.4 [Controlling Groebner basis computations], page 110

8.9.7 dp_f4_main, dp_f4_mod_main, dp_weyl_f4_main, dp_weyl_f4_mod_
main

dp_f4_main(plist, vlist, order)
dp_£f4_mod_main(plist, vlist, order)
dp_weyl_f4_main(plist, vlist, order)
dp_weyl_f4_mod_main(plist, vlist, order)
:: Groebner basis computation by F4 algorithm (built-in functions)

return list
plist vlist  list

order number, list or matrix
e These functions compute Groebner bases by F4 algorithm.

e F4 is a new generation algorithm for Groebner basis computation invented by J.C.
Faugere. The current implementation of dp_f4_main() uses Chinese Remainder theo-
rem and not highly optimized.

e Arguments and actions are the same as those of dp_gr_main(), dp_gr_mod_main(),
dp_weyl_gr_main(), dp_weyl_gr_mod_main(), except for lack of the argument for
controlling homogenization.

References
Section 8.9.9 [dp_ord], page 124, Section 8.9.8 [dp_gr_flags dp_gr_print],
page 123, Section 8.9.1 [gr hgr gr_mod], page 117, Section 8.4 [Controlling
Groebner basis computations], page 110

8.9.8 dp_gr_flags, dp_gr_print
dp_gr_flags([list])

dp_gr_print ([i])
and showing informations.

return value currently set
list list
i integer

e dp_gr_flags() sets and shows various parameters for Groebner basis computation.
e If no argument is specified the current settings are returned.

e Arguments must be specified as a list such as ["Print",1,"NoSugar",1,...]. Names
of parameters must be character strings.
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e dp_gr_print() is used to set and show the value of a parameter Print and PrintShort.

i=0 Print=0, PrintShort=0
i=1 Print=1, PrintShort=0
i=2 Print=0, PrintShort=1

This functions is prepared to get quickly the value when a user defined function calling
dp_gr_main() etc. uses the value as a flag for showing intermediate informations.

References
Section 8.4 [Controlling Groebner basis computations|, page 110

8.9.9 dp_ord

dp_ord([order])
:: Set and show the ordering type.

return ordering type (number, list or matrix)

order number, list or matrix

e If an argument is specified, the function sets the current ordering type to order. If no
argument is specified, the function returns the ordering type currently set.

e There are two types of functions concerning distributed polynomial, functions which
take a ordering type and those which don’t take it. The latter ones use the current
setting.

e Functions such as gr(), which need a ordering type as an argument, call dp_ord()
internally during the execution. The setting remains after the execution.

Fundamental arithmetics for distributed polynomial also use the current setting. There-
fore, when such arithmetics for distributed polynomials are done, the current setting
must coincide with the ordering type which was used upon the creation of the poly-
nomials. It is assumed that such polynomials were generated under the same ordering
type.
e Type of term ordering must be correctly set by this function when functions other than

top level functions are called directly.

[19] dp_ord(0)$

[20] <<1,2,3>>+<<3,1,1>>;

(1)*%<<1,2,3>>+(1)*<<3,1,1>>

[21] dp_ord(2)$

[22] <<1,2,3>>+<<3,1,1>>;

(1)*<<3,1,1>>+(1) *<<1,2,3>>

References
Section 8.5 [Setting term orderings]|, page 113

8.9.10 dp_ptod

dp_ptod(poly, vlist)
:: Converts an ordinary polynomial into a distributed polynomial.
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return distributed polynomial
poly polynomial
vlist list

e According to the variable ordering vlist and current type of term ordering, this function
converts an ordinary polynomial into a distributed polynomial.
e Indeterminates not included in vlist are regarded to belong to the coefficient field.
[50] dp_ord(0);
1

[61] dp_ptod((x+y+z)~2,[x,y,z]);

(1) *<<2,0,0>>+(2)*<<1,1,0>>+ (1) *<<0,2,0>>+(2) *<<1,0, 1>>+(2) *<<0,1, 1>>
+(1)*<<0,0,2>>

[62] dp_ptod((x+y+z)~2, [x,y]);

(1) %<<2,0>>+(2) *<<1,1>>+ (1) *<<0, 2>>+(2%z) *<<1,0>>+ (2%z) *<<0, 1>>

+(z72)*<<0,0>>

References
Section 8.9.11 [dp_dtop|, page 125, Section 8.9.9 [dp_ord], page 124.

8.9.11 dp_dtop

dp_dtop(dpoly, vlist)
:: Converts a distributed polynomial into an ordinary polynomial.

return polynomial
dpoly distributed polynomial
vlist list

e This function converts a distributed polynomial into an ordinary polynomial according
to a list of indeterminates vlist.
e vlist is such a list that its length coincides with the number of variables of dpoly.
[63] T=dp_ptod((x+y+z)~2,[x,y]);
(1) *<<2,0>>+(2) %<<1,1>>+ (1) %<0, 2>>+ (2%z) *<<1,0>>+ (2%z) *<<0, 1>>
+(z272) %<<0,0>>
[54] P=dp_dtop(T, [a,b]);
z"2+(2*a+2%b) xz+a~2+2*b*a+b"2

8.9.12 dp_mod, dp_rat

dp_mod (p, mod, subst)
:: Converts a disributed polynomial into one with coefficients in a finite field.

dp_rat(p)
:: Converts a distributed polynomial with coefficients in a finite field into one
with coefficients in the rationals.

return distributed polynomial

D distributed polynomial
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mod prime

subst list

e dp_nf_mod() and dp_true_nf_mod() require distributed polynomials with coefficients
in a finite field as arguments. dp_mod() is used to convert distributed polynomials
with rational number coefficients into appropriate ones. Polynomials with coefficients
in a finite field cannot be used as inputs of operations with polynomials with rational
number coefficients. dp_rat () is used for such cases.

e The ground finite field must be set in advance by using setmod ().

e subst is such a list as [[var,value],...]. This is valid when the ground field of the
input polynomial is a rational function field. var’s are variables in the ground field and
the list means that value is substituted for var before converting the coefficients into
elements of a finite field.

References
Section 8.9.15 [dp_nf dp_nf_mod dp_true_nf dp_true_nf_mod|, page 127, Sec-
tion 6.3.11 [subst psubst], page 48, Section 6.1.15 [setmod], page 40.

8.9.13 dp_homo, dp_dehomo

dp_homo (dpoly)
:: Homogenize a distributed polynomial

dp_dehomo (dpoly)
:: Dehomogenize a homogenious distributed polynomial

return distributed polynomial

dpoly distributed polynomial

e dp_homo() makes a copy of dpoly, extends the length of the exponent vector of each
term t in the copy by 1, and sets the value of the newly appended component to
d-deg(t), where d is the total degree of dpoly.

e dp_dehomo () make a copy of dpoly and removes the last component of each terms in
the copy.

e Appropriate term orderings must be set when the results are used as inputs of some
operations.

e These are used internally in hgr () etc.

[202] X=<<1,2,3>>+3%<<1,2,1>>;
(1)*%<<1,2,3>>+(3) *<<1,2,1>>
[203] dp_homo(X);
(1)%<<1,2,3,0>>+(3)*<<1,2,1,2>>
[204] dp_dehomo(@);
(1)*<<1,2,3>>+(3) *<<1,2,1>>

References
Section 8.9.1 [gr hgr gr_mod|, page 117.
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8.9.14 dp_ptozp, dp_prim

dp_ptozp (dpoly)
Converts a distributed polynomial poly with rational coefficients into an
integral distributed polynomial such that GCD of all its coefficients is 1.
dp_prim(dpoly)
:: Converts a distributed polynomial poly with rational function coefficients
into an integral distributed polynomial such that polynomial GCD of all its
coefficients is 1.

return distributed polynomial

dpoly distributed polynomial

e dp_ptozp() executes the same operation as ptozp() for a distributed polynomial. If
the coefficients include polynomials, polynomial contents included in the coefficients
are not removed.

e dp_prim() removes polynomial contents.

[208] X=dp_ptod(3*(x-y)*(y-z)*(z-x), [x]);

(~3%y+3%2) *<<2>>+ (3ky " 2-3%z"2) *<<1>>+ (~3kzky " 2+3%z " 2%y ) *<<0>>
[209] dp_ptozp(X);

(my+2) *<<2>>+ (y72-272) #<<I>>+ (~z*y " 2+2" 2%y ) ¥<<0>>

[210] dp_prim(X);

(1) *<<K2>>+ (—y=2) *<<1>>+ (z*y) *<<0>>

References
Section 6.3.17 [ptozp], page 52.

8.9.15 dp_nf, dp_nf_mod, dp_true_nf, dp_true_nf_mod

dp_nf (indexlist, dpoly, dpolyarray , fullreduce)

dp_nf_mod (indexlist, dpoly, dpolyarray , fullreduce , mod)
:: Computes the normal form of a distributed polynomial. (The result may be
multiplied by a constant in the ground field.)

dp_true_nf (indexlist, dpoly, dpolyarray, fullreduce)

dp_true_nf_mod (indexlist, dpoly, dpolyarray, fullreduce, mod)
:: Computes the normal form of a distributed polynomial. (The true result is
returned in such a list as [numerator, denominator])

return dp_nf () : distributed polynomial, dp_true_nf () : list
indexlist  list
dpoly distributed polynomial

dpolyarray
array of distributed polynomial

fullreduce flag

mod prime
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e Computes the normal form of a distributed polynomial.

e dp_nf_mod() and dp_true_nf_mod() require distributed polynomials with coefficients
in a finite field as arguments.

e The result of dp_nf () may be multiplied by a constant in the ground field in order to
make the result integral. The same is true for dp_nf_mod (), but it returns the true
normal form if the ground field is a finite field.

e dp_true_nf() and dp_true_nf_mod() return such a list as [nm,dn]. Here nm is
a distributed polynomial whose coefficients are integral in the ground field, dn is an
integral element in the ground field and nm/dn is the true normal form.

e dpolyarray is a vector whose components are distributed polynomials and indexlist is
a list of indices which is used for the normal form computation.

e When argument fullreduce has non-zero value, all terms are reduced. When it has
value 0, only the head term is reduced.

e As for the polynomials specified by indexlist, one specified by an index placed at the
preceding position has priority to be selected.

e In general, the result of the function may be different depending on indexlist. However,
the result is unique for Groebner bases.

e These functions are useful when a fixed non-distributed polynomial set is used as a set
of reducers to compute normal forms of many polynomials. For single computation
p_nf and p_true_nf are sufficient.

[0] load("gr")$

[64] load("katsura")$

[69] K=katsura(4)$

[70] dp_ord(2)$

[71] V=[uO,ul,u2,u3,udl$

[72] DPil=newvect (length(K) ,map(dp_ptod,K,V))$

[73] G=gr(K,v,2)$

[74] DP2=newvect(length(G) ,map(dp_ptod,G,V))$

[75] T=dp_ptod((u0-ul+u2-u3+ud)~2,V)$

[76] dp_dtop(dp_nf([0,1,2,3,4],T,DP1,1),V);

ud~ 2+ (6*u3d+2*xu2+6*ul-2) *ud+9*u3~ 2+ (6*xu2+18*ul-6) *u3d+u2”~2
+(6*ul-2)*u2+9*ul”~"2-6*ul+1

[77] dp_dtop(dp_nf([4,3,2,1,0],T,DP1,1),V);

=-5%xud "2+ (-4*u3d-4*u2-4*ul) *ud-u3"2-3*xu3-u2"2+(2*ul-1) ¥u2-2*ul~2-3*xul+1
[78] dp_dtop(dp_nf([0,1,2,3,4],T,DP2,1),V);
-11380879768451657780886122972730785203470970010204714556333530492210
456775930005716505560062087150928400876150217079820311439477560587583
488xud”~15+. ..

[79] dp_dtop(dp_nf([4,3,2,1,0],T,DP2,1),V);
-11380879768451657780886122972730785203470970010204714556333530492210
456775930005716505560062087150928400876150217079820311439477560587583
488*xud”"15+. ..

[80] @78==079;

1
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References
Section 8.9.11 [dp_dtop|, page 125, Section 8.9.9 [dp_ord], page 124, Sec-
tion 8.9.12 [dp_mod dp_rat], page 125, Section 8.9.26 [p_nf p_nf_mod p_true_
nf p_true_nf_mod], page 134.

8.9.16 dp_hm, dp_ht, dp_hc, dp_rest
dp_hm(dpoly)
:: Gets the head monomial.

dp_ht (dpoly)
:: Gets the head term.

dp_hc (dpoly)
:: Gets the head coefficient.

dp_rest (dpoly)
i Gets the remainder of the polynomial where the head monomial is removed.

return dp_hm(), dp_ht (), dp_rest () : distributed polynomial dp_hc() : number or
polynomial
dpoly distributed polynomial

e These are used to get various parts of a distributed polynomial.

e The next equations hold for a distributed polynomial p.

p =dp_hm(p) + dp_rest(p)

dp_hm(p) = dp_hc(p) dp_ht(p)
[87] dp_ord(0)$
[88] X=ptozp((ad6~2+7/10%ad6+7/48)*u3"4-50/27+a46~2-35/27+a46-49/216)$
[89] T=dp_ptod (X, [u3,u4,a46])$
[90] dp_hm(T);
(2160) *<<4,0,2>>
[91] dp_ht(T);
(1)*<<4,0,2>>
[92] dp_hc(T);
2160
[93] dp_rest(T);
(1512)*<<4,0,1>>+(315) *<<4,0,0>>+(-4000) *<<0,0,2>>+(-2800) *<<0,0, 1>>
+(-490) *<<0,0,0>>

8.9.17 dp_td, dp_sugar
dp_td(dpoly)
i Gets the total degree of the head term.

dp_sugar (dpoly)
it Gets the sugar of a polynomial.

return non-negative integer

dpoly distributed polynomial
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onoff flag

e Function dp_td () returns the total degree of the head term, i.e., the sum of all exponent
of variables in that term.

e Upon creation of a distributed polynomial, an integer called sugar is associated. This
value is the total degree of the virtually homogenized one of the original polynomial.

e The quantity sugar is an important guide to determine the selection strategy of critical
pairs in Groebner basis computation.
[74] dp_ord(0)$
[75] X=<<1,2>>+<<0,1>>$
[76] Y=<<1,2>>+<<1,0>>$
[77] Z=X-Y;
(1) *<<1,0>>+(1) *<<0,1>>
[78] dp_sugar(T);
3

8.9.18 dp_lcm

dp_lcm(dpolyl,dpoly2)
:: Returns the least common multiple of the head terms of the given two poly-
nomials.

return distributed polynomial
dpolyl dpoly2
distributed polynomial

e Returns the least common multiple of the head terms of the given two polynomials,
where coefficient is always set to 1.
[100] dp_lcm(<<1,2,3,4,5>>,<<5,4,3,2,1>>);
(1)%<<5,4,3,4,5>>

References
Section 8.9.26 [p_nf p_nf_mod p_true_nf p_true_nf_mod], page 134.

8.9.19 dp_redble

dp_redble(dpolyl,dpoly2)
:: Checks whether one head term is divisible by the other head term.

return integer
dpolyl dpoly2
distributed polynomial
e Returns 1 if the head term of dpoly2 divides the head term of dpolyl; otherwise 0.

e Used for finding candidate terms at reduction of polynomials.

[148] C;
(1)%<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>+(1)*<<1,0,0,1,1>>
[149] T;
(3)%<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>+(6)*<<1,1,1,0,0>>
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[150] for ( ; T; T = dp_rest(T)) print(dp_redble(T,C));
0

0
0
1

References
Section 8.9.24 [dp_red dp_red_mod|, page 133.

8.9.20 dp_subd

dp_subd (dpolyl,dpoly2)
:: Returns the quotient monomial of the head terms.

return distributed polynomial
dpolyl dpoly2
distributed polynomial
e Gets dp_ht (dpolyl) /dp_ht (dpoly2). The coefficient of the result is always set to 1.
e Divisibility assumed.
[162] dp_subd(<<1,2,3,4,5>>,<<1,1,2,3,4>>);
(1)%<<0,1,1,1,1>>

References
Section 8.9.24 [dp_red dp_red_mod|, page 133.

8.9.21 dp_vtoe, dp_etov
dp_vtoe (vect)
:: Converts an exponent vector into a term.

dp_etov(dpoly)
:: Convert the head term of a distributed polynomial into an exponent vector.

return dp_vtoe : distributed polynomial, dp_etov : vector
vect vector
dpoly distributed polynomial

e dp_vtoe() generates a term whose exponent vector is vect.
e dp_etov() generates a vector which is the exponent vector of the head term of dpoly.

[211] X=<<1,2,3>>;
(1)*<<1,2,3>>

[212] V=dp_etov(X);
[123]

[213] V[2]++$

[214] Y=dp_vtoe(V);
(1) %<<1,2,4>>
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8.9.22 dp_mbase

dp_mbase (dplist)
:: Computes the monomial basis

return list of distributed polynomial

dplist list of distributed polynomial

e Assuming that dplist is a list of distributed polynomials which is a Groebner basis with
respect to the current ordering type and that the ideal I generated by dplist in K[X] is
zero-dimensional, this function computes the monomial basis of a finite dimenstional
K-vector space K[X]/I.

e The number of elements in the monomial basis is equal to the K-dimenstion of K[X]/I.

[215] K=katsura(5)$

[216] V=[u5,u4,u3,u2,ul,u0l]$

[217] GO=gr(K,V,0)$

[218] H=map(dp_ptod,GO,V)$

[219] map(dp_ptod,dp_mbase(H),V)$
[u0~5,u4*u0"3,u3*u0"3,u2*u0"3,ul*u0"3,u0"4,u3"2*ul, u2*u3d*ul,ul*u3d*ul,
ul*u2*ul,ul~2*%ul,ud*u0"2,u3*xu0"2,u2*xu0"2,ul*u0"2,u0"3,u3"2,u2*u3d,ul*u3,
ul*u2,ul"~2,ud*ul,ud*ul,u2*ul,ul*ud,u0"2,us,uld,u2,ul,ud, 1]

References
Section 8.9.1 [gr hgr gr_mod|, page 117.

8.9.23 dp_mag

dp_mag(p)

:: Computes the sum of bit lengths of coefficients of a distributed polynomial.
return integer
p distributed polynomial

e This function computes the sum of bit lengths of coefficients of a distributed polynomial
p. If a coefficient is non integral, the sum of bit lengths of the numerator and the
denominator is taken.

e This is a measure of the size of a polynomial. Especially for zero-dimensional system
coefficient swells are often serious and the returned value is useful to detect such swells.

e If ShowMag and Print for dp_gr_flags() are on, values of dp_mag() for intermediate
basis elements are shown.
[221] X=dp_ptod((x+2*y)~10, [x,y]1)$
[222] dp_mag(X);
115

References
Section 8.9.8 [dp_gr_flags dp_gr_print|, page 123.
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8.9.24 dp_red, dp_red_mod

dp_red(dpolyl,dpoly2,dpoly3)
dp_red_mod (dpolyl,dpoly2, dpoly3, mod)
:: Single reduction operation

return list

dpoly1 dpoly2 dpoly3
distributed polynomial

viist list

mod prime
e Reduces a distributed polynomial, dpolyl + dpoly2, by dpoly3 for single time.
e An input for dp_red_mod() must be converted into a distributed polynomial with
coefficients in a finite field.

e This implies that the divisibility of the head term of dpoly2 by the head term of dpoly3
is assumed.

e When integral coefficients, computation is so carefully performed that no rational op-
erations appear in the reduction procedure. It is computed for integers a and b, and a
term t as: a(dpolyl + dpoly2)-bt dpoly3.

e The result is a list [a dpolyl,a dpoly2 - bt dpoly3].

[157] D=(3)%<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>;
(3)%<<2,1,0,0,0>>+(3)*<<1,2,0,0,0>>+(1)*<<0,3,0,0,0>>

[158] R=(6)*<<1,1,1,0,0>>;

(6)*<<1,1,1,0,0>>

[159] C=12%<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>;
(12)*<<1,1,1,0,0>>+(1)*<<0,1,1,1,0>>+(1)*<<1,1,0,0,1>>

[160] dp_red(D,R,C);
[(6)%<<2,1,0,0,0>>+(6)*<<1,2,0,0,0>>+(2)*<<0,3,0,0,0>>,
(-1)*%<<0,1,1,1,0>>+(-1)%<<1,1,0,0,1>>]

References
Section 8.9.12 [dp_mod dp_rat]|, page 125.

8.9.25 dp_sp, dp_sp_mod

dp_sp(dpolyl,dpoly2)
dp_sp_mod (dpolyl, dpoly2, mod)
:: Computation of an S-polynomial

return distributed polynomial
dpolyl dpoly2
distributed polynomial
mod prime
e This function computes the S-polynomial of dpolyl and dpoly2.

e Inputs of dp_sp_mod () must be polynomials with coefficients in a finite field.
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e The result may be multiplied by a constant in the ground field in order to make the
result integral.

[227] X=dp_ptod(x~2*y+x*y, [x,y]);
(1)%<<2, 1>>+ (1) *<<1,1>>

[228] Y=dp_ptod(x*y~2+x*y, [x,y]);
(1) *<<1,2>>+(1) *<<1,1>>

[229] dp_sp(X,Y);

(1) *<<2, 1>>+(1) *<<1,2>>

References
Section 8.9.12 [dp_mod dp_rat]|, page 125.

8.9.26 p_nf, p_nf_mod, p_true_nf, p_true_nf_mod

p_nf (poly, plist, vlist, order)

p_nf_mod (poly, plist, vlist, order, mod)
:: Computes the normal form of the given polynomial. (The result may be
multiplied by a constant.)

p_true_nf (poly, plist, vlist , order)

p_true_nf_mod(poly, plist, vlist,, order, mod)
:: Computes the normal form of the given polynomial. (The result is returned
as a form of [numerator, denominator])

return p_nf : polynomial, p_true_nf : list
poly polynomial

plist vlist  list

order number, list or matrix

mod prime
e Defined in the package ‘gr’.
e Obtains the normal form of a polynomial by a polynomial list.
e These are interfaces to dp_nf (), dp_true_nf (), dp_nf_mod (), dp_true_nf_mod

e The polynomial poly and the polynomials in plist is converted, according to the vari-
able ordering vlist and type of term ordering otype, into their distributed polynomial
counterparts and passed to dp_nf ().

e dp_nf(), dp_true_nf(), dp_nf_mod() and dp_true_nf_mod() is called with value 1
for fullreduce.

e The result is converted back into an ordinary polynomial.
e Asfor p_true_nf (), p_true_nf_mod() refer to dp_true_nf () and dp_true_nf_mod().
[79] K = katsura(5)$

[80] V = [u5,u4,u3,u2,ul,u0l$
[81] G = hgr(K,V,2)$

[82] p_nf(K[1],G,V,2);

0

[83] L = p_true_nf(K[1]1+1,G,V,2);
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[-1503...,-1503...]
[(84] L[0]1/L[1];
1

References

Section 8.9.10 [dp_ptod], page 124, Section 8.9.11 [dp_dtop], page 125, Sec-
tion 8.9.9 [dp_ord], page 124, Section 8.9.15 [dp_nf dp_nf_mod dp_true_nf
dp_true_nf_mod], page 127.

8.9.27 p_terms

p_terms (poly, vlist, order)
:: Monomials appearing in the given polynomial is collected into a list.

return list

poly polynomial

vlist list

order number, list or matrix

e Defined in the package ‘gr’.
e This returns a list which contains all non-zero monomials in the given polynomial. The
monomials are ordered according to the current type of term ordering and vlist.

e Since polynomials in a Groebner base often have very large coefficients, examining a
polynomial as it is may sometimes be difficult to perform. For such a case, this function
enables to examine which term is really exists.

[233] G=gr(katsura(5), [u5,ud4,u3,u2,ul,ud],2)$

[234] p_terms(G[0], [u5,u4,u3,u2,ul,ul],2);
[u5,u0°31,u0"30,u0"29,u0"28,u0"27,u0"26,u0"25,u0"24,u0"23,u0"22,
u0~21,u0"20,u0"19,u0"18,u0"17,u0"16,u0"15,u0"14,u0"13,u0"12,u0"11,
u0~10,u0"°9,u0"8,u0"7,u0"6,u0"5,u0"4,u0"3,u0"2,u0,1]

8.9.28 gb_comp

gb_comp(plist1, plist2)
:: Checks whether two polynomial lists are equal or not as a set

return 0 or 1
plist1 plist2

e This function checks whether plistl and plist2 are equal or not as a set .

e For the same input and the same term ordering different functions for Groebner basis
computations may produce different outputs as lists. This function compares such lists
whether they are equal as a generating set of an ideal.

[243] C=cyclic(6)$

[244] V=[c0,c1,c2,c3,c4,c5]$
[245] GO=gr(C,V,0)$

[246] G=tolex(GO,V,0,V)$
[247] GG=lex_t1(C,V,0,V,0)$
[248] gb_comp(G,GG) ;

1
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8.9.29 katsura, hkatsura, cyclic, hcyclic

katsura(n)
hkatsura(n)
cyclic(n)

hcyclic(n)
:: Generates a polynomial list of standard benchmark.

return list

n integer
e Function katsura() is defined in ‘katsura’, and function cyclic() in ‘cyclic’.

e These functions generate a series of polynomial sets, respectively, which are often used
for testing and bench marking: katsura, cyclic and their homogenized versions.

e Polynomial set cyclic is sometimes called by other name: Arnborg, Lazard, and
Davenport.

[74] load("katsura")$

[79] load("cyclic™)$

[89] katsura(5b);

[u0+2*%ud+2*xu3+2*xu2+2*xul+2*xub-1, 2*xud*u0-ud+2*xul*ud+u2”"2+2*xus*xul,
2*xu3*u0+2*ul*ud-uld+(2xul+2*ub) *¥u2, 2¥u2*u0+2*xu2*ud+(2*xul+2%us) *u3
—u2+ul~2, 2*xul*ul+(2*xu3d+2*ub) ¥ud+2*u2*ud+2*xul*u2-ul,
u0"2-u0+2*ud " 2+2*%u3"2+2*xu2"2+2*xul "~ 2+2*xub"2]

[90] hkatsura(5);

[-t+u0+2%ud+2%ud+2*u2+2*xul+2*ub,
—ud*xt+2*xud*xu0+2*xul*uld+u2”2+2*ub*ul , —ud*t+2*xud*u0+2*xul*ud+ (2*xul+2*ub) *u2,
—u2*t+2*xu2*u0+2*xu2*xud+ (2*ul+2*ub) *u3d+ul~2,
—ulxt+2*xul*xul0+ (2*xu3+2*ub) *ud+2*xu2*ud+2*xul*u?2,
—u0*t+u0~2+2%ud " 2+2*xu3 " 2+2*u2" 2+2*ul " 2+2*xu5"2]

[91] cyclic(6);

[c5*cd*xc3*c2*xcl*xc0-1,

((((ch+cbh) *c3+cb*cd) xc2+chxcd*c3) xcl+chxcd*c3*c2) *cO+c5*xcd*xc3*c2*cl,
(((c3+cb) *c2+ch*cd) xcl+chxcd*c3) xcO+cd*c3*kc2xcl+chxcd*c3*c2,
((c2+ch) *c1+chb*cd) *cO0+c3*c2*xcl+cd*c3*c2+ch*cd*c3,

(c1+ch) *cO0+c2*xcl+c3*c2+cd*c3+cbxcd, cO+cl+c2+c3+cd+c5]

[92] hcyclic(6);

[-c~6+chb*cd*xc3*xc2*cl*cO,
((((c4+cb)*c3+cb*cd) *c2+chbxcd*c3) xcl+chkcd*c3*c2) *cO+chkxcd*c3*c2*cl,
(((c3+ch) *c2+cb*cd) xcl+chxcd*c3) xcO+chd*c3*c2xcl+chxcd*c3*c2,
((c2+ch)*cl+ch*cd) *cO+c3*c2kcl+cd*c3*c2+c5*cd*c3,

(c1+ch) *cO+c2*xcl+c3*c2+cd*c3+chbxcd, cO+cl+c2+c3+cd+c5]

References
Section 8.9.11 [dp_dtop|, page 125.

8.9.30 primadec, primedec

primadec (plist, vlist)
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primedec (plist, vlist)
:: Computes decompositions of ideals.

return
plist list of polynomials
vlist list of variables

e Function primadec() and primedec are defined in ‘primdec’.

e primadec(), primedec() are the function for primary ideal decomposition and prime
decomposition of the radical over the rationals respectively.

e The arguments are a list of polynomials and a list of variables. These functions accept
ideals with rational function coefficients only.

e primadec returns the list of pair lists consisting a primary component and its associated
prime.

e primedec returns the list of prime components.

e Each component is a Groebner basis and the corresponding term order is indicated by
the global variables PRIMAORD, PRIMEORD respectively.

e primadec implements the primary decompostion algorithm in [Shimoyama, Yokoyama].

e If one only wants to know the prime components of an ideal, then use primedec because
primadec may need additional costs if an input ideal is not radical.
[84] load("primdec")$
[102] primedec ([p*q*x—q 2%y 2+q 2%y, -p~2%x"2+p ~ 2*x+p*q*y,
(q~3%y~4-2%q~ 3%y~ 3+q~3%y~2) *x-q"3*xy~4+q " 3*y~3,
-qQ " 3*y~4+2xq~3xy " 3+(-q 3+p*xq~2)*y~2], [p,q,x,y]);
[Ly,x], [y,pl, [x,q9],[q,p], [x-1,q], [y-1,p], [(y-1)*x-y,q*y~2-2*q*y-p+q]]
[103] primadec([x,z*y,wxy~2,w 2xy-z"3,y"3], [x,y,2,w]);
[[[x,z*y,y"2,w 2xy-z"3], [z,y,x]], [[w,x,z*xy,z"3,y"3], [w,z,y,x]]]

References
Section 6.3.14 [fctr sqfr|, page 50, Section 8.5 [Setting term orderings],
page 113.

8.9.31 primedec_mod

primedec_mod (plist, vlist, ord, mod, strategy)
:: Computes decompositions of ideals over small finite fields.

return

plist list of polynomials
vlist list of variables

ord number, list or matrix
mod positive integer

strategy  integer

e Function primedec_mod() is defined in ‘primdec_mod’ and implements the prime de-
composition algorithm in [Yokoyama].
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e primedec_mod() is the function for prime ideal decomposition of the radical of a poly-
nomial ideal over small finite field, and they return a list of prime ideals, which are
associated primes of the input ideal.

e primedec_mod() gives the decomposition over GF(mod). The generators of each re-
sulting component consists of integral polynomials.

e Each resulting component is a Groebner basis with respect to a term order specified
by [vlist,ord].

e If strategy is non zero, then the early termination strategy is tried by computing the
intersection of obtained components incrementally. In general, this strategy is useful
when the krull dimension of the ideal is high, but it may add some overhead if the
dimension is small.

e If you want to see internal information during the computation, execute
dp_gr_print(2) in advance.

[0] load("primdec_mod")$
[246] PP444=[x"8+x"2+t,y " 8+y 2+t ,z"8+z"2+t]$
[247] primedec_mod(PP444, [x,y,z,t],0,2,1);
[[y+z,x+z,z"8+z"2+t], [x+y,y 2+y+z"2+z+1,z"8+z"2+t] ,
[y+z+1,x+z+1,2"°8+2"2+t], [x+z,y " 2+y+z"2+z+1,2"8+z"2+t] ,
[y+z,x"2+x+z"2+2z+1,z"8+z"~2+t] , [y+z+1,x"2+x+z"2+z+1,2"8+z"2+t] ,
[x+z+1,y " 2+y+2"2+2z+1,2"8+z"2+t] , [y+z+1,x+z,2"8+z"2+t],
[x+y+1,y"2+y+z2"2+2z+1,2"8+z"2+t], [y+z,x+z+1,z"8+z"2+t] ]
[248]

References
Section 6.3.16 [modfctr], page 52, Section 8.9.6 [dp_gr_main dp_gr_mod_main
dp_gr_f_main dp_weyl_gr_main dp_weyl_gr_mod_main dp_weyl_gr_£f_

main], page 122, Section 8.5 [Setting term orderings], page 113, Section 8.9.8
[dp_gr_flags dp_gr_print|, page 123.

8.9.32 bfunction, bfct, generic_bfct, ann, ann0

bfunction(f)
bfct (f)
generic_bfct (plist, vlist, dvlist, weight)
:: Computes the global b function of a polynomial or an ideal

ann(f)

ann0 (f) :: Computes the annihilator of a power of polynomial
return polynomial or list

f polynomial

plist list of polynomials

vilist dvlist
list of variables

e These functions are defined in ‘bfct’.
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e bfunction(f) and bfct (f) compute the global b-function b(s) of a polynomial f. b(s)
is a polynomial of the minimal degree such that there exists P(x,s) in D[s], which is a
polynomial ring over Weyl algebra D, and P(x,s)f" (s+1)=b(s)f s holds.

e generic_bfct(f, vlist,dvlist, weight) computes the global b-function of a left ideal I
in D generated by plist, with respect to weight. vlist is the list of x-variables, vlist is
the list of corresponding D-variables.

e bfunction(f) and bfct(f) implement different algorithms and the efficiency depends
on inputs.

e ann(f) returns the generator set of the annihilator ideal of f~s. ann(f) returns a list
[a,list], where a is the minimal integral root of the global b-function of f, and list is
a list of polynomials obtained by substituting s in ann(f) with a.

e See [Saito,Sturmfels, Takayama] for the details.

[0] load("bfct")$

[216] bfunction(x~3+y~3+z73+x"2%y 2%z~ 2+x*y*z) ;
-9%575-63%s574-173%5"3-233*5"2-154*s-40

[217] fctr(Q);

[[-1,1],[s+2,1], [3*s+4,1], [3*s+5,1], [s+1,2]]

[218] F = [4xx"3xdt+y*zxdt+dx,x*z*dt+4*y~3*dt+dy,
x*y*dt+b*z~4*dt+dz, -x"4-z*y*x-y " 4-z"5+t]$

[219] generic_bfct(F,[t,z,y,x], [dt,dz,dy,dx],[1,0,0,0]);
20000*s710-70000*s"9+101750*s"8-79375*s " 7+35768*s~6-9277*s"5
+1278%s"4-72%s"3

[220] P=x"3-y~2$

[221] ann(P);

[2%dy*x+3*dx*y~2, -3*xdx*x-2*dy*y+6*s]

[222] annO(P);

[-1, [2*dy*x+3*dx*y "2, -3*dx*x-2*dy*y-6] ]

References
Section 8.8 [Weyl algebra], page 116.
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9 Algebraic numbers

9.1 Representation of algebraic numbers

In Asir algebraic number fields are not defined as independent objects. Instead, individual
algebraic numbers are defined by some means. In Asir an algebraic number field is defined
virtually as a number field obtained by adjoining a finite number of algebraic numbers to
the rational number field.

A new algebraic number is introduced in Asir in such a way where it is defined as a root
of an uni-variate polynomial whose coefficients include already defined algebraic numbers
as well as rational numbers. We shall call such a newly defined algebraic number a root.
Also, we call such an uni-variate polynomial the defining polynomial of that root.

[0] AO=newalg(x~2+1);

(#0)

[1] Al=newalg(x~3+A0*x+A0);

(#1)

[2] [type(A0) ,ntype(A0)];

[1,2]
In this example, the algebraic number assigned to A0 is defined as a root of a polynomial
x"2+1; that of A1l is defined as a root of a polynomial x~3+A0*x+A0, which you see contains
the previously defined root (A0) in its coefficients.

The argument to newalg(), i.e., the defining polynomial, must satisfy the following condi-
tions.

1. A defining polynomial must be an uni-variate polynomial.

2. A defining polynomial is used to simplify expressions containing that algebraic number.
The procedure of such simplification is performed by an internal routine similar to
the built-in function srem(), where the defining polynomial is used for the second
argument, the divisor. By this reason, the leading coefficient of the defining polynomial
must be a rational number (must not be an algebraic number.)

3. Every coefficients of a defining polynomial must be a ‘(multi-variate) polynomial’ in al-
ready defined root’s. Here, ‘(multi-variate) polynomial’ means a mathematical concept,
not the object type ‘polynomial’ in Asir.

4. A defining polynomial must be irreducible over the field that is obtained by adjoining
all root’s contained in its coefficients to the rational number field.

Only the first two conditions (1 and 2) are checked by function newalg(). Among all,
it should be emphasized that no check is done for the irreducibility at all. The reason is
that the irreducibility test requires enormously much computation time. You are trusted
whether to check it at your own risk.

Once a root has been defined by newalg() function, it is given the type identifier for a
number, and furthermore, the sub-type identifier for an algebraic number. (See Section 6.8.1
[type], page 69, Section 6.8.2 [ntype|, page 70.) Also, any rational combination of rational
numbers and root’s is an algebraic number.

[87] N=(A0"2+A1)/(A172-A0-1);

((#1+#0°2) / (#172-#0-1))
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[88] [type(N),ntype()];

[1,2]
As you see it in the example, a root is displayed as #n. But, you cannot input that root in
its immediate output form. You have to refer to a root by a program variable assigned to
the root, or to get it by alg(n) function, or by several other indirect means. A strange use
of newalg(), with a same argument polynomial (except for the name of its main variable),
will yield the old root instead of a new root though it is apparently inefficient.

[90] alg(0);

(#0)

[91] newalg(t~2+1);

(#0)
The defining polynomial of a root can be obtained by defpoly () function.

[96] defpoly(AO);

t#072+1

[97] defpoly(Al);

t#173+t#0*xt#1+t#0

Here, you see a strange expression, t#0 and t#1. They are a specially indeterminates
generated and maintained by Asir internally. Indeterminate t#0 corresponds to root #0, and
t#0 to #1. These indeterminates also cannot be input directly by a user in their immediate
forms. You can get them by several ways: by var() function, or algv(n) function.

[98] var(@);

t#1

[99] algv(0);

t#0

[100]

9.2 Operations over algebraic numbers

In the previous section, we explained about the representation of algebraic numbers and
their defining method. Here, we describe operations on algebraic numbers. Only a few
functions are built-in, and almost all functions are provided as user defined functions. The
file containing their definitions is ‘sp’, and it is placed under the same directory as ‘gr’ is
placed, i.e., the standard library directory of Asir.

[0] 1load("gr")$

[1] load("sp™)$
Or if you always need them, it is more convenient to include the load commands in
‘$HOME/ . asirrc’.

Like the other numbers, algebraic numbers can get arithmetic operations applied. Simplifi-
cation, however, by defining polynomials are not automatically performed. It is left to users
to simplify their expressions. A fatal error shall result if the denominator expression will be
simplified to 0. Therefore, be careful enough when you will create and deal with algebraic
numbers which may denominators in their expressions.

Use simpalg() function for simplification of algebraic numbers by defining polynomials.

[49] T=A0"2+1;
(#0°2+1)
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[50] simpalg(T);
0

Function simpalg() simplifies algebraic numbers which have the same structures as rational
expressions in their appearances.

[39] AO=newalg(x~2+1);

(#0)

[40] T=(A0O"2+A0+1)/(A0+3);
((#072+#0+1) / (#0+3))

[41] simpalg(T);

(3/10%*#0+1/10)

[42] T=1/(A0"2+1);

((1)/(#072+1))

[43] simpalg(T);

div : division by O

stopped in invalgp at line 258 in file "/usr/local/lib/asir/sp"
258 return 1/A;
(debug)

This example shows an error caused by zero division in the course of program execution
of simpalg(), which attempted to simplify an algebraic number expression of which the
denominator is 0.

Function simpalg() also can take a polynomial as its argument and simplifies algebraic
numbers in its coefficients.

[43] simpalg(1/A0*x+1/(A0+1));
(-#0) *x+(-1/2%#0+1/2)

Thus, you can operate in polynomials which contain algebraic numbers as you do usually in
ordinary polynomials, except for proper simplification by simpalg(). You may sometimes
feel needs to convert root’s into indeterminates, especially when you are working for norm
computation in algorithms for algebraic factorization. Function algptorat() is used for
such cases.

[83] AO=newalg(x~2+1);

(#0)

[84] A1=newalg(x“3+AO*X+AO);

(#1)

[85] T=(2*A0+A1%xA0+A1°2)*x+(1+A1)/(2+A0);
(#172+#0x#1+2%#0) *x+ ((#1+1) / (#0+2) )

[86] S=algptorat(T);

(C(t#0+2) *t#1 72+ (THO "2+ 2+t #0) ¥t #1+2%t#0 " 2+4+t#0) *xx+t#1+1) / (t#0+2)
[87] algptorat(coef(T,1));

t#1 72+t #OXxt#1+2xt#0

As you see by the example, function algptorat () converts root’s, #n, in polynomials and
numbers into its associated indeterminates, t#n. As was already mentioned those indeter-
minates cannot be directly input in their immediate form. The restriction is adopted to
avoid the confusion that might happen if the user could input such internally generatable
indeterminates.

The associated indeterminate to a root is reversely converted into the root by rattoalgp()
function.
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[88] rattoalgp(S, [alg(0)]1);

(C(#0+2) / (#0+2) ) *t#1 "2+ ((#0"2+2%#0) / (#0+2) ) *t#1
+((2%#072+4%#0) / (#0+2) ) ) *x+ ((1) / (#0+2) ) xt#1+((1) / (#0+2) )
[89] rattoalgp(S, [alg(0),alg(1)]1);
(((#0"3+6x#0"2+12%#0+8) *#1 "2+ (#0~4+6*#0~3+12x#0 " 2+8*#0) *#1
+2%#074+12%#073+24%#0°2+16%#0) / (#0~3+6x#0"2+12*x#0+8) ) *x
+(((H#O+2) x#1+#0+2) / (#0"2+4*#0+4) )

[90] rattoalgp(S, [alg(1),alg(0)]);

CC(HO+2) *#1 72+ (#072+2%#0) *#1+2x#0 " 2+4+#0) / (#0+2) ) *x
+((#1+1) / (#0+2))

[91] simpalg(@89);
(#1°2+#0x#1+2%#0) *x+ ((-1/5*#0+2/5) *#1-1/5*#0+2/5)

[92] simpalg(@90);
(#172+#0x#1+2%#0) *x+ ((-1/5%#0+2/5) *#1-1/5*%#0+2/5)

Function rattoalgp () takes as the second argument a list consisting of root’s that you want
to convert, and converts them successively from the left. This example shows that apparent
difference of the results due to the order of such conversion will vanish by simplification
yielding the same result. Functions algptorat() and rattoalgp() can be conveniently
used for your own simplification.

9.3 Operations for uni-variate polynomials over an algebraic
number field

In the file ‘sp’ are provided functions for uni-variate polynomial factorization and uni-variate
polynomial GCD computation over algebraic numbers, and furthermore, as an application
of them, functions to compute splitting fields of univariate polynomials.

9.3.1 GCD

Greatest common divisors (GCD) over algebraic number fields are computed by cr_gcda ()
function. This function computes GCD by using modular computation and Chinese re-
mainder theorem and it works for the case where the ground field is a multiple extension.

[63] A=newalg(t‘9—15*t‘6—87*t‘3—125);

(#0)

[64] B=newalg(75xs"2+(10*A"7-175%A"4-4T70*A)*s+3*A~8-45%xA"5-261*%A"2) ;
(#1)

[65] P1=75%x"2+(150*B+10*A~7-175%A~4-395%A) *x
+(75%B~2+(10%A"~7-175%A~4-395%A) *B+13*A~8-220*%A~5-581%A"2)$

[66] P2=x"2+A*x+A~2$

[67] cr_gcda(P1,P2);

27*xx+((#0°6-19%#0"3-65) *#1-#0"7+19*#0~4+38*#0)

9.3.2 Square-free factorization and Factorization

For square-free factorization (of uni-variate polynomials over algebraic number fields), we
employ the most fundamental algorithm which begins first to compute GCD of a polynomial
and its derivative. The function to do this factorization is asqQ).



Chapter 9: Algebraic numbers 144

[116] A=newalg(x~2+x+1);

(#4)

[117] T=simpalg((x+A+1)*(x"2-2%A-3) 2% (x"3-x-4)"2);

X711+ (#4+1) xx 710+ (—4*#4-8) *x "9+ (- 10*#4-4) *x "8+ (16*#4+20) *x~7

+(24*#4-6) *x "6+ (—29%#4-31) *x "5+ (- 15*#4+28) *x "4+ (38*#4+29) *x "3

+(#4-23) *x "2+ (—21*#4-T7) xx+ (3*#4+8)

[118] asq(T);

[[x"5+(—2%#4~-4) *x "3+ (~#4) *x "2+ (2% #4+3) *x+ (#4-2) , 2] , [x+(#4+1) ,1]1]
Like factorization over the rational number field, the result is presented, commonly to both
square-free factorization and factorization, as a list whose elements are pairs (list of two
elements) in the form [factor, multiplicity] without the constant multiple part.

Here, it should be noticed that the products of all factors of the result may DIFFER
from the input polynomial by a constant. The reason is that the factors are normalized so
that they have integral leading coefficients for the sake of readability.

This incongruity may happen to square-free factorization and factorization commonly.

The algorithm employed for factorization over algebraic number fields is an improvement
of the norm method by Trager. It is especially very effective to factorize a polynomial over
a field obtained by adjoining some of its root’s to the base field.

[119] af (T, [AD);

[[x"3-x+(-#4),2], [x"2+(-2*#4-3) ,2], [x+(#4+1),1]]
The function takes two arguments: The second argument is a list of root’s. Factorization
is performed over a field obtained by adjoining the root’s to the rational number field. It
is important to keep in mind that the ordering of the root’s must obey a restriction: Last
defined should come first. The automatic re-ordering is not done. It should be done by
yourself.

The efficiency of factorization via norm depends on the efficiency of the norm computation
and univariate factorization over the rationals. Especially the latter often causes combina-
torial explosion and the computation will stick in such a case.

[120] B=newalg(x~2-2*A-3);

(#5)

[121] af (T, [B,Al);

[[x+(#5),2], [x"3-x+(-#4),2], [x+(-#5) ,2], [x+(#4+1),1]]

9.3.3 Splitting fields

This operation may be somewhat unusual and for specific interest. (Galois Group for
example.) Procedurally, however, it is easy to obtain the splitting field of a polynomial
by repeated application of algebraic factorization described in the previous section. The
function is sp().

[103] sp(x~5-2);

[[x+(—#1) , 2%x+ (#0"3*# 1" 3+#0 " 4Ax#1 "2+ 2% #1+2x#0) , 2%x+ (-#0"4*#1°2) ,

2%x+(-#0"3*#1°3) ,x+(-#0)],

[L(#1) ,t# 17 4+t#O0*t#1 "3+t #O ™2+t #1 "2+t #0 " 3+t #1+t#0°4], [ (#0) ,t#0°5-2]1]
Function sp () takes only one argument. The result is a list of two element: The first element
is a list of linear factors, and the second one is a list whose elements are pairs (list of two
elements) in the form [root, algptorat (defining polynomial)]. The second element, a list
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of pairs of form [root,algptorat (defining polynomial)], corresponds to the root’s which
are adjoined to eventually obtain the splitting field. They are listed in the reverse order
of adjoining. Each of the defining polynomials in the list is, of course, guaranteed to be
irreducible over the field obtained by adjoining all root’s defined before it.

The first element of the result, a list of linear factors, contains all irreducible factors of the
input polynomial over the field obtained by adjoining all root’s in the second element of the
result. Because such field is the splitting field of the input polynomial, factors in the result
are all linear as the consequence.

Similarly to function af (), the product of all resulting factors may yield a polynomial
which differs by a constant.

9.4 Summary of functions for algebraic numbers

9.4.1 newalg

newalg (defpoly)
:: Creates a new root.

return algebraic number (root)

defpoly polynomial
e Creates a new root (algebraic number) with its defining polynomial defpoly.

e For constraints on defpoly, See Section 9.1 [Representation of algebraic numbers],
page 140.
[0] AO=newalg(x~2-2);
(#0)

Reference
Section 9.4.2 [defpoly]|, page 145

9.4.2 defpoly

defpoly(alg)

:: Returns the defining polynomial of root alg.
return polynomial
alg algebraic number (root)

e Returns the defining polynomial of root alg.
e If the argument alg, a root, is #n, then the main variable of its defining polynomial is
t#n.
[1] defpoly(A0);
t#072-2

Reference
Section 9.4.1 [newalg|, page 145, Section 9.4.3 [alg], page 146, Section 9.4.4
[algv], page 146
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9.4.3 alg

alg(i) :: Returns a root which correspond to the index i.
return algebraic number (root)

i integer

e Returns #i, a root.

e Because #i cannot be input directly, this function provides an alternative way: input
alg(i).
[2] x+#0;
syntax error
0
[3] alg(0);
(#0)

Reference
Section 9.4.1 [newalg], page 145, Section 9.4.4 [algv], page 146

9.4.4 algv

algv (i) :: Returns the associated indeterminate with alg(i).
return polynomial

i integer

e Returns an indeterminate t#i
e Since indeterminate t#i cannot be input directly, it is input by algv(i).
[4] var(defpoly(A0));
t#0
[56] t#0;
syntax error
0
[6] algv(0);
t#0

Reference
Section 9.4.1 [newalg], page 145, Section 9.4.2 [defpoly], page 145, Section 9.4.3
[alg], page 146

9.4.5 simpalg

simpalg(rat)

:: Simplifies algebraic numbers in a rational expression.
return rational expression
rat rational expression

e Defined in the file ‘sp’.

e Simplifies algebraic numbers contained in numbers, polynomials, and rational expres-
sions by the defining polynomials of root’s contained in them.
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e If the argument is a number having the denominator, it is rationalized and the result
is a polynomial in root’s.

e If the argument is a polynomial, each coefficient is simplified.

e If the argument is a rational expression, its denominator and numerator are simplified
as a polynomial.
[7] simpalg((1+A0)/(1-A0));
simpalg undefined
return to toplevel
[7] load("sp")$
[46] simpalg((1+A0)/(1-A0));
(-2x#0-3)
[47] simpalg((2-A0)/(2+A0)*x"2-1/(3+A0));
(—2%#0+3) *x~ 2+ (1/7*#0-3/7)
(48] simpalg((x+1/(A0-1))/(x-1/(A0+1)));
(x+(#0+1) ) / (x+(-#0+1))

9.4.6 algptorat

algptorat (poly)

:: Substitutes the associated indeterminate for every root
return polynomial
poly polynomial

e Defined in the file ‘sp’.
e Substitutes the associated indeterminate t#n for every root #n in a polynomial.

[49] algptorat((-2*alg(0)+3)*x~2+(1/7*alg(0)-3/7));
(—2%t#0+3) *x~2+1/7*t#0-3/7

Reference
Section 9.4.2 [defpoly]|, page 145, Section 9.4.4 [algv|, page 146

9.4.7 rattoalgp

rattoalgp(poly, alglist)
:: Substitutes a root for the associated indeterminate with the root.

return polynomial
poly polynomial
alglist list

e Defined in the file ‘sp’.
e The second argument is a list of root’s. Function rattoalgp() substitutes a root for
the associated indeterminate of the root.
[51] rattoalgp((-2*algv(0)+3)*x~2+(1/T*algv(0)-3/7), [alg(0)]);
(-2+#0+3) *x "2+ (1/7*#0-3/7)

Reference
Section 9.4.3 [alg|, page 146, Section 9.4.4 [algv], page 146
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9.4.8 cr_gcda

cr_gcda(polyl, poly2)
;2 GCD of two uni-variate polynomials over an algebraic number field.

return polynomial
polyl poly2
polynomial
e Defined in the file ‘sp’.
e Finds the GCD of two uni-variate polynomials.
[76] X=x"6+3%x"5+6*x"4+x"3-3%x"2+12*x+16$

[77] Y=x"6+6%x"5+24%x"4+8%x"~3-48*x"2+384*x+1024$
[78] A=newalg(X);

(#0)
[79] cr_gcda(X,subst(Y,x,x+A));
x+(-#0)
Reference
Section 8.9.1 [gr hgr gr_mod], page 117, Section 9.4.10 [asq af af_noalg],
page 149

9.4.9 sp_norm

sp_norm(alg, var, poly, alglist)
:: Norm computation over an algebraic number field.

return polynomial

var The main variable of poly
poly univariate polynomial

alg root

alglist root list

e Defined in the file ‘sp’.

e Computes the norm of poly with respect to alg. Namely, if we write K = Q(alglist \
{alg}), The function returns a product of all conjugates of poly, where the conjugate
of polynomial poly is a polynomial in which the algebraic number alg is substituted
for its conjugate over K.

e The result is a polynomial over K.

e The method of computation depends on the input. Currently direct computation of
resultant and Chinese remainder theorem are used but the selection is not necessarily
optimal. By setting the global variable USE_RES to 1, the builtin function res() is
always used.

[0] load("sp")$

[39] AO=newalg(x~2+1)$

[40] Al=newalg(x~2+A0)$

[41] sp_norm(Al,x,x"3+A0*x+A1,[A1,A0]);
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X" 6+ (2x#0) *x "4+ (#0°2) *x~ 2+ (#0)
[42] sp_norm(A0,x,@@, [AO]);
X" 1242xx"8+5xx"4+1

Reference

Section 6.3.13 [res]|, page 50, Section 9.4.10 [asq af af_noalg], page 149

9.4.10 asq, af, af_noalg

asq(poly) :: Square-free factorization of polynomial poly over an algebraic number field.

af (poly, alglist)
af _noalg(poly, defpolylist)

:: Factorization of polynomial poly over an algebraic number field.

return list
poly polynomial
alglist root list

defpolylist root list of pairs of an indeterminate and a polynomial

Both defined in the file ‘sp’.

If the inputs contain no root’s, these functions run fast since they invoke functions over
the integers. In contrast to this, if the inputs contain root’s, they sometimes take a
long time, since cr_gcda() is invoked.

Function af () requires the specification of base field, i.e., list of root’s for its second
argument.

In the second argument alglist, root defined last must come first.

In af (F,AL), AL denotes a list of roots and it represents an algebraic number field. In
AlL=[An,...,A1] each Ak should be defined as a root of a defining polynomial whose
coefficients are in Q(A(k+1),...,An).

[1] Al = newalg(x"2+1);

[2] A2 = newalg(x~2+A1);

[3] A3 = newalg(x"2+A2*x+A1);

[4] af (x"2+A2xx+A1,[A2,A1]);

[[x"2+(#1) *x+(#0) ,1]]

To call sp_noalg, one should replace each algebraic number ai in poly with an inde-

terminate vi. defpolylist is a list [[vn,dn(vn,...,v1)],...,[v1,d(v1)]]. In this expression

di(vi,...,v1) is a defining polynomial of ai represented as a multivariate polynomial.
[1] af_noalg(x~2+a2*x+al,[[a2,a2"2+al],[al,a1"2+1]]);
[[x~2+a2*x+al,1]]

The result is a list, as a result of usual factorization, whose elements is of the form
[factor, multiplicity]. In the result of af _noalg, algebraic numbers in factor are replaced
by the indeterminates according to defpolylist.

The product of all factors with multiplicities counted may differ from the input poly-
nomial by a constant.
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[98] A = newalg(t~2-2);

(#0)

[99] asq(-x"4+6*x"3+(2*alg(0)-9)*x~2+(-6*alg(0))*x-2) ;
[[-x"2+3*x+(#0) ,2]]

[100] af (-x"2+3*x+alg(0), [alg(0)]);

[[x+(#0-1),1], [-x+(#0+2) ,1]1]

[101] af_noalg(-x"2+3*x+a, [[a,x"2-2]]);

[[x+a-1,1], [-x+a+2,1]]

Reference
Section 9.4.8 [cr_gcdal, page 148, Section 6.3.14 [fctr sqfr|, page 50

9.4.11 sp, sp_noalg

sp(poly)
sp_noalg(poly)
:: Finds the splitting field of polynomial poly and splits.

return list

poly polynomial
e Defined in the file ‘sp’.

e Finds the splitting field of poly, an uni-variate polynomial over with rational coeffi-
cients, and splits it into its linear factors over the field.

e The result consists of a two element list: The first element is the list of all linear factors
of poly; the second element is a list which represents the successive extension of the
field. In the result of sp_noalg all the algebraic numbers are replaced by the special
indeterminate associated with it, that is t#i for #i. By this operation the result of
sp_noalg is a list containing only integral polynomials.

e The splitting field is represented as a list of pairs of form [root,
algptorat (defpoly(root))]. In more detail, the list is interpreted as a
representation of successive extension obtained by adjoining root’s to the rational
number field. Adjoining is performed from the right root to the left.

e sp() invokes sp_norm() internally. Computation of norm is done by several methods
according to the situation but the algorithm selection is not always optimal and a
simple resultant computation is often superior to the other methods. By setting the
global variable USE_RES to 1, the builtin function res() is always used.

[101] L=sp(x~9-54);

[[x+(-#2) ,-Bdxx+ (#1"6%#274) ,54*x+ (#1 " 6x#2"4+54x#2) ,

54xx+ (—#1"8%#2°2) , -54x*xx+ (#1"5*%#2°5) ,54*x+ (#1 "5*#2"5+#1"8*#2"2) ,
—B4xx+(—#1"T*#2°3-54%#1) ,54*xx+(-#1"7*#2°3) ,x+(-#1) ],

[[(#2) ,t#276+t#1 " 3%t#2"3+t#17°6], [(#1) ,t#1°9-54]11]

[102] for(I=0,M=1;I<9;I++)Mx=L[0][I];

[111] M=simpalg(M);

-1338925209984*x~9+72301961339136

[112] ptozp(M);

-x"9+54
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Reference
Section 9.4.10 [asq af af_noalg], page 149, Section 9.4.2 [defpoly]|, page 145,
Section 9.4.6 [algptorat], page 147, Section 9.4.9 [sp_norm|, page 148.
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10 Finite fields

10.1 Representation of finite fields

On Asir GF(p), GF(2°n), GF(p~n) can be defined, where GF(p) is a finite prime field of
charateristic p, GF(2"n) is a finite field of characteristic 2 and GF(p~n) is a finite extension
of GF(p). These are all defined by setmod_££f ().

[0] P=pari(nextprime,2°50);
1125899906842679

[1] setmod_ff(P);
1125899906842679

[2] field_type_ff(Q);

1

[3] load("fff");

1

[4] F=defpoly_mod2(50);
Xx"B50+x"4+x"3+x"2+1

[5] setmod_ff(F);
x"50+x74+x"3+x"2+1

[6] field_type_ffQ);

2

[7] setmod_ff(x"3+x+1,1125899906842679) ;
[1*x~3+1%x+1,1125899906842679]
[8] field_type_ff(Q);

3

[9] setmod_ff(3,5);
[3,x"5+2%x+1,x]

[10] field_type_ff();

4

If p is a positive integer, setmod_ff (p) sets GF(p) as the current base field. If f is a
univariate polynomial of degree n, setmod_£ff (f) sets GF(2°n) as the current base field.
GF(2°n) is represented as an algebraic extension of GF(2) with the defining polynomial f
mod 2. Furthermore, finite extensions of prime finite fields can be defined. See Section 3.2
[Types of numbers|, page 14. In all cases the primality check of the argument is not done
and the caller is responsible for it.

Correctly speaking there is no actual object corresponding to a ’base field’. Setting
a base field means that operations on elements of finite fields are done according to the
arithmetics of the base field. Thus, if operands of an arithmetic operation are both rational
numbers, then the result is also a rational number. However, if one of the operands is in
a finite field, then the other is automatically regarded as in the same finite field and the
operation is done in the finite field.

A non zero element of a finite field belongs to the number and has object identifier 1.
Its number identifier is 6 if the finite field is GF(p), 7 if it is GF(2"n).

There are several methods to input an element of a finite field. An element of GF(p)
can be input by simp_££ ().
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[0] P=pari(nextprime,2750);
1125899906842679
[1] setmod_ff(P);
1125899906842679
[2] A=simp_ff(27100);
3025
[3] ntype(@@);
6
In the case of GF(2~n) the following methods are available.
[0] setmod_ff(x"50+x"4+x"~3+x"2+1);
Xx"50+x74+x"3+x"2+1
[1] A=e;
(®
[2] ptogf2n(x~50+1);
(@~50+1)
[3] simp_£ff(QQ);
(@°4+0~3+0"2)
[4] ntogf2n(2°10-1);
(@"9+@"8+0@"7+@"6+0@"5+@"4+0@"3+0"2+0+1)

Elements of finite fields are numbers and one can apply field arithmetics to them. @ is a
generator of GF(2°n) over GF(2). See Section 3.2 [Types of numbers], page 14.

10.2 Univariate polynomials on finite fields
In ‘£££’ square-free factorization, DDF (distinct degree factorization), irreducible factoriza-
tion and primality check are implemented for univariate polynomials over finite fields.

Factorizers return lists of [factor,multiplicity]. The factor part is monic and the infor-
mation on the leading coefficient of the input polynomial is abandoned.

The algorithm used in square-free factorization is the most primitive one.
The irreducible factorization proceeds as follows.

DDF
Nullspace computation by Berlekamp algorithm

Root finding of minimal polynomials of bases of the nullspace

Ll

Separation of irreducible factors by the roots

10.3 Polynomials on small finite fields

A multivariate polynomial over small finite field set by setmod_£f (p,n) can be factorized
by using a builtin function sffctr(). modfctr() also factorizes a polynomial over a finite
prime field. Internally, modfctr () creates a sufficiently large field extension of the specified
ground field, and it calls sffctr(), then it constructs irreducible factors over the ground
field from the factors returned by sffctr().



Chapter 10: Finite fields 154

10.4 Elliptic curves on finite fields

Several fundamental operations on elliptic curves over finite fields are provided as built-in
functions.

An elliptic curve is specified by a vector [a b] of length 2, where a, b are elements of
finite fields. If the current base field is a prime field, then [a b] represents y~2=x"3+ax+b.
If the current base field is a finite field of characteristic 2, then [a b] represents
v~ 2+xy=x"3+ax" 2+b.

Points on an elliptic curve together with the point at infinity forms an additive group.
The addition, the subtraction and the additive inverse operation are provided as ecm_add_
f£(), ecm_sub_ff() and ecm_chsgn_£ff () respectively. Here the representation of points
are as follows.

e 0 denotes the point at infinity.
e The other points are represented by vectors [x y z| of length 3 with non-zero z.
[x y z] represents a projective coordinate and it corresponds to [x/z y/z| in the affine
coordinate. To apply the above operations to a point [x y|, [x ¥ 1] should be used instead
as an argument. The result of an operation is also represented by the projective coordinate.

As the third coordinate is not always equal to 1, one has to divide the first and the scond
coordinate by the third one to obtain the affine coordinate.

10.5 Functions for Finite fields

10.5.1 setmod_ff

setmod_ff ([prime| poly])
setmod_ff (prime,n])
;1 Sets/Gets the current base fields.

return number or polynomial

prime prime

poly univariate polynomial irreducible over GF(2)
n the extension degree

e If the argument is a non-negative integer prime, GF(prime) is set as the current base
field.

e If the argument is a polynomial poly, GF(2~deg(poly mod 2)) = GF(2)[t]/(poly(t)
mod?2) is set as the current base field.

e If the arguments are a prime p and an extension degree n, GF(p~n) is set as the current
base field. p~n must be less than 2729 and if p is greater than or equal to 2~ 14, then
n must be equal to 1.

e If no argument is specified, the modulus indicating the current base field is returned.
If the current base field is GF(prime), prime is returned. If it is GF(2°n), the
defining polynomial is returned. If it is GF(p~n), where p~n is less than 2~14,
[p,defpoly,prim_elem] is returned. Here, defpoly is the defining polynomial of the n-th
extension, and prim_elem is the generator of the multiplicative group of GF(p~n).
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e Any irreducible univariate polynomial over GF(2) is available to set GF(2"n). However
the use of defpoly_mod2() is recommended for efficiency.
[174] defpoly_mod2(100);
x7100+x"15+1
[175] setmod_ff (QQ) ;
x~100+x715+1
[176] setmod_ff();
x~100+x~15+1
[177] setmod_ff(2,5);
[2,x"5+x"2+1,x]

References
Section 10.5.14 [defpoly_mod2], page 161

10.5.2 field_type_ff

field_type_ff()
:» Type of the current base field.

return integer
e Returns the type of the current base field.

e If no field is set, 0 is returned. If GF(p) is set, 1 is returned. If GF(2°n) is set, 2 is
returned.
[0] field_type_ff();
0
[1] setmod_ff(3);
3
[2] field_type_ff(Q);
1
[3] setmod_ff(x"2+x+1);
X" 2+x+1
[4] field_type_ff(Q);
2

References
Section 10.5.1 [setmod_££], page 154

10.5.3 field_order_ff

field_order_f£ff()
;2 Order of the current base field.

return integer
e Returns the order of the current base field.

e ¢ is returned if the current base field is GF(q).

[0] field_order_ff();

field_order_ff : current_ff is not set
return to toplevel

[0] setmod_ff(3);
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3

[1] field_order_ff();

3

[2] setmod_ff(x"2+x+1);
X" 2+x+1

[3] field_order_ff();

4

References
Section 10.5.1 [setmod_£ff], page 154

10.5.4 characteristic_ff

characteristic_ff()
:: Characteristic of the current base field.

return integer
e Returns the characteristic of the current base field.
e p is returned if GF(p), where p is a prime, is set. 2 is returned if GF(2"n) is set.
[0] characteristic_ff();
characteristic_ff : current_ff is not set
return to toplevel
[0] setmod_ff(3);
3
[1] characteristic_ff();
3
[2] setmod_ff(x"2+x+1);
X" 2+x+1
[3] characteristic_ff();
2

References
Section 10.5.1 [setmod_££], page 154

10.5.5 extdeg_ff

extdeg_£ff ()
:: Extension degree of the current base field over the prime field.

return integer
e Returns the extension degree of the current base field over the prime field.
e 1 is returned if GF(p), where p is a prime, is set. n is returned if GF(2"n) is set.

[0] extdeg_ff();

extdeg_ff : current_ff is not set
return to toplevel

[0] setmod_ff(3);

3

[1] extdeg_ff();

1
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[2] setmod_ff(x"2+x+1);
X" 2+x+1

[3] extdeg_ff();

2

References
Section 10.5.1 [setmod_£ff], page 154

10.5.6 simp_ff

simp_£ff (obj)
:: Converts numbers or coefficients of polynomials into elements in finite fields.

return number or polynomial

obj number or polynomial
e Converts numbers or coefficients of polynomials into elements in finite fields.

e It is used to convert integers or intrgral polynomials int elements of finite fields or
polynomials over finite fields.

e An element of a finite field may not have the reduced representation. In such case an
application of simp_ff ensures that the output has the reduced representation. If a
small finite field is set as a ground field, an integer is projected the finite prime field,
then it is embedded into the ground field. ptosfp() can be used for direct projection
to the ground field.

[0] simp_ff((x+1)710);
x710+10%x"9+45%x"8+120%x"7+210*%x"6+252*%x"5+210%x"4+120*x " 3+45%x"2+10*x+1
[1] setmod_£ff(3);

3

[2] simp_ff((x+1)710);
1%x710+1%x"9+1*x+1

[3] ntype(coef(@@,10));
6

[4] setmod_ff(2,3);
[2,x73+x+1,x]

[5] simp_ff(1);

@_0

(6] simp_ff(2);

0

[7] ptosfp(2);

e_1

References
Section 10.5.1 [setmod_ff], page 154, Section 10.5.8 [lmptop], page 158, Sec-
tion 10.5.10 [gf2nton], page 159, Section 10.5.13 [ptosfp sfptop|, page 160

10.5.7 random_ff

random_£f ()
:: Random generation of an element of a finite field.
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return element of a finite field
e Generates an element of the current base field randomly.
e The same random generator as in random(), 1random() is used.

[0] random_ff();

random_ff : current_ff is not set
return to toplevel

[0] setmod_ff (pari(nextprime,2740));
1099511627791

[1] random_ff();

561856154357

[2] random_ff();

45141628299

References
Section 10.5.1 [setmod_ff], page 154, Section 6.1.7 [random|, page 35, Sec-
tion 6.1.8 [1random], page 35

10.5.8 1lmptop

1mptop (obj)

:: Converts the coefficients of a polynomial over GF(p) into integers.
return integral polynomial
obj polynomial over GF(p)

e Converts the coefficients of a polynomial over GF(p) into integers.

e An element of GF(p) is represented by a non-negative integer r less than p. Each
coefficient of a polynomial is converted into an integer object whose value is r.

[0] setmod_ff (pari(nextprime,2740));

1099511627791

[1] F=simp_ff((x-1)"10);
1%x710+1099511627781*x"9+45%x~8+1099511627671*x"7+210*x"6
+1099511627539%x"5+210%*x"4+1099511627671*x~3+45*x"2+1099511627781*x+1
[2] setmod_ff(547);

547

[3] F=simp_£ff((x-1)"10);
1%x710+537*x"9+45%x " 8+427*x"7+210%x"6+295%x"5+210%x"4+427*x"3
+45%x72+537*x+1

[4] lmptop(F);

x"10+537*x " 9+45%x"8+427*x " 7+210%x " 6+295*%x " 5+210%*x " 4+427%x"3
+45%x72+537*x+1

[5] lmptop(coef(F,1));

537

[6] ntype(@Q);

0

References
Section 10.5.6 [simp_ff], page 157
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10.5.9 ntogfon

ntogf2n(m)

:: Converts a non-negative integer into an element of GF(2"n).
return element of GF(2"n)
m non-negative integer

Let m be a non-negative integer. m has the binary representation
m=m0+mI1*2+..+mk*2~k.  This function returns an element of GF(2°n) =
GF(2)[t]/(g(t)), mO+mI*t+...+mk*t"k mod g(t).
Apply simp_££ () to reduce the result.

[1] setmod_ff(x~30+x+1);

x"30+x+1

[2] N=ntogf2n(27100);

(@7100)

[3] simp_ff(N);

(@"13+@"12+@~11+@"~10)

References

Section 10.5.10 [gf2nton], page 159

10.5.10 gf2nton

gf2nton(m)

:: Converts an element of GF(27n) into a non-negative integer.
return non-negative integer
m element of GF(2"n)

e The inverse of gf2nton.

[1] setmod_ff(x~30+x+1);
x~30+x+1

[2] N=gf2nton(27100);

(@°100)

[3] simp_ff(N);
(@"13+@"12+@"11+@"10)

[4] gf2nton(N);
1267650600228229401496703205376
[5] gf2nton(simp_£ff(N));

15360

References

Section 10.5.10 [gf2nton], page 159

10.5.11 ptogf2n

ptogf2n(poly)

:: Converts a univariate polynomial into an element of GF(2"n).

return element of GF(2"n)
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poly univariate polynomial
e Generates an element of GF(2~n) represented by poly. The coefficients are reduced
modulo 2. The output is equal to the result by substituting @ for the variable of poly.
[1] setmod_ff(x~30+x+1);
x"30+x+1
[2] ptogf2n(x~100);
(@°100)

References
Section 10.5.12 [gf2ntop|, page 160

10.5.12 gf2ntop

gf2ntop(m(,v])
:: Converts an element of GF(2°n) into a polynomial.

return univariate polynomial
m an element of GF(2"n)
v indeterminate

e Returns a polynomial representing m.

e If v is used as the variable of the output. If v is not specified, the variable of the
argument of the latest ptogf2n() call. The default variable is x.
[1] setmod_ff(x~30+x+1);
x"30+x+1
[2] N=simp_ff (gf2ntop(2°100));
(@~13+@~12+@~11+@~10)
[5] gf2ntop(N);
[207] gf2ntop(N);
x"13+x712+x711+x710
[208] gf2ntop(N,t);
t713+t712+t711+t710

References
Section 10.5.11 [ptogf2n], page 159

10.5.13 ptosfp, sfptop

ptosfp(p)
sfptop(p)
:: Transformation to/from a small finite field

return polynomial

p polynomial

e ptosfp() converts coefficients of a polynomial to elements in a small finite field
GF(p~n) set as a ground field. If a coefficient is already an element of the field, no
conversion is done. If a coefficient is a positive integer, then its residue modulo p~n
is expanded as p-adic integer, then p is substituted by x, finally the polynomial is
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converted to its correspoding logarithmic representation with respect to the primitive
element. For example, GF(3°5) is represented as F(3)[x]/(x~5+2*x+1), and each
element of the field is represented as @_k by its exponent k with respect to the
primitive element x. 23 = 2*3~2+3+2 is represented as 2*x~2+x+2 and it is equivalent
to x~17 modulo x~5+2*x+1. Therefore an integer 23 is conterted to @_17.

e sfptop() is the inverse of ptosfp().
[196] setmod_£ff(3,5);
[3,x"°5+2%x+1,x]

[197] A = ptosfp(23);

Q_17

[198] 9%*2+3+2;

23

[199] x~17-(2*x"2+x+2);
X"17-2%x"2-x-2

[200] sremm(@,x"5+2*x+1,3);
0

[201] sfptop(A);

23

References
Section 10.5.1 [setmod_£ff], page 154, Section 10.5.6 [simp_ff|, page 157

10.5.14 defpoly_mod2

defpoly_mod2(d)
:: Generates an irreducible univariate polynomial over GF(2).

return univariate polynomial

d positive integer
e Defined in ‘fff’.
e An irreducible univariate polynomial of degree d is returned.

e If an irreducible trinomial x~d+x"~m+1 exists, then the one with the smallest m is re-
turned. Otherwise, an irreducible pentanomial x~d+x"ml+x"m2+x m3+1 (mI>m2>m3
is returned. ml, m2 and m3 are determined as follows: Fix m1 as small as possible.
Then fix m2 as small as possible. Then fix m3 as small as possible.

References
Section 10.5.1 [setmod_£ff], page 154

10.5.15 sffctr

sffctr(poly)

:: Irreducible factorization over a small finite field.
return list
poly polynomial over a finite field

e Factorize poly into irreducible factors over a small finite field currently set.
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e The result is a list [[f1,m1],[f2,m2],...], where fi is a monic irreducible factor and mi is
its multiplicity.
[0] setmod_ff(2,10);
[2,x710+x"3+1,x]
[1] sffctr((z*xy 3+z*y)*x"3+(y 5+y 3+zxy 2+z)*x"2+z " 11xy*x+z"10%y~3+z"11) ;
[[@_0,1], [@_O*z*y*x+Q@_0*y~3+Q@_0*z,1], [(@_O*y+@_0) *x+@_0*z"~5,2]]
References
Section 10.5.1 [setmod_£ff], page 154, Section 6.3.16 [modfctr|, page 52

10.5.16 fctr_ff

fctr_ff (poly)
:: Irreducible univariate factorization over a finite field.

return list

poly univariate polynomial over a finite field

e Defined in ‘fff’.

e Factorize poly into irreducible factors over the current base field.

e The result is a list [[f1,m1],[f2,m2],...], where fi is a monic irreducible factor and mi is

its multiplicity.

e The leading coefficient of poly is abandoned.
[178] setmod_ff(2°64-95);
18446744073709551521
[179] fctr_ff(x"Bb+x+1);
[[1%x+14123390394564558010,1], [1*xx+6782485570826905238,1],
[1*x+15987612182027639793,1], [1*x"2+1*x+1,1]]

References
Section 10.5.1 [setmod_£ff], page 154

10.5.17 irredcheck_ff

irredcheck_£f (poly)
:: Primality check of a univariate polynomial over a finite field.

return 0l1

poly univariate polynomial over a finite field
e Defined in ‘fff’.
e Returns 1 if poly is irreducible over the current base field. Returns 0 otherwise.

[178] setmod_ff(2°64-95);
18446744073709551521

[179] ] F=x"10+random_£ff();
x~10+14687973587364016969
[180] irredcheck_£ff(F);

1

References
Section 10.5.1 [setmod_£ff], page 154
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10.5.18 randpoly_ff

randpoly_£f(d,v)
:: Generation of a random univariate polynomial over a finite field.

return polynomial
d positive integer
v indeterminate

e Defined in ‘fff’.

e Generates a polynomial of v such that the degree is less than d and the coefficients are
in the current base field. The coefficients are generated by random_£ff ().

[178] setmod_ff(2°64-95);

18446744073709551521

[179] 1 F=x"10+random_£ff();

[180] randpoly_ff(3,x);
17135261454578964298*x~2+4766826699653615429*x+18317369440429479651
[181] randpoly_£ff(3,x);
7565988813172050604*x~2+7430075767279665339%x+4699662986224873544
[182] randpoly_£ff(3,x);
10247781277095450395%x~2+10243690944992524936*x+4063829049268845492

References
Section 10.5.1 [setmod_£ff], page 154, Section 10.5.7 [random_£ff], page 157

10.5.19 ecm_add_ff, ecm_sub_ff, ecm_chsgn_£ff

ecm_add_£f(pl,p2,ec)
ecm_sub_£ff(pl,p2,ec)
ecm_chsgn_ff(pl)
:: Addition, Subtraction and additive inverse for points on an elliptic curve.

return vector or 0
pl p2 vector of length 3 or 0
ec vector of length 2

e Let pl, p2 be points on the elliptic curve represented by ec over the current base field.
ecm_add_ff(p1,p2,ec), ecm_sub_ff(p1,p2,ec) and ecm_chsgn_ff(p1) returns pl+p2, pl-p2
and -pl respectively.

e If the current base field is a prime field of odd order, then ec represents
y~2=x"3+ec[0]x+ec[l]. If the characteristic of the current base field is 2, then ec
represents y~2+xy=x"3+ec[0]x"2+ec[1].

e The point at infinity is represented by 0.

e If an argument denoting a point is a vector of length 3, then it is the projective coor-
dinate. In such a case the third coordinate must not be 0.
e If the result is a vector of length 3, then the third coordinate is not equal to 0 but

not necessarily 1. To get the result by the affine coordinate, the first and the second
coordinates should be divided by the third coordinate.
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e The check whether the arguments are on the curve is omitted.

[0] setmod_ff(1125899906842679)$

[1] EC=newvect(2, [ptolmp(1),ptolmp(1)1)$

[2] Ptl=newvect(3,[1,-412127497938252,1]1)%$
[3] Pt2=newvect(3,[6,-252647084363045,1]1)%
[4] Pt3=ecm_add_ff(Pt1,Pt2,EC);

[ 560137044461222 184453736165476 125 ]

[6] F=y~2-(x"3+EC[0]*x+EC[1]1)$

[6] subst(F,x,Pt3[0]/Pt3[2],y,Pt3[1]1/Pt3[2]);
0

[7] ecm_add_£ff(Pt3,ecm_chsgn_ff(Pt3),EC);

0

[8] D=ecm_sub_ff(Pt3,Pt2,EC);

[ 886545905133065 119584559149586 886545905133065 ]
[9] D[01/D[2]==Pt1[0]1/Pt1[2];

1

[10] D[1]1/D[2]==Pt1[1]/Pt1[2];

1

References
Section 10.5.1 [setmod_£ff], page 154
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Appendix A Appendix

A.1 Details of syntax

<expression>:
¢(’<expression>‘)’
<expression> <binary operator> <expression>
‘+’ <expression>
‘-’ <expression>
<left value>
<left value> <assignment operator> <expression>
<left value> ‘++’
<left value> ‘--’
‘++> <left value>
‘--7 <left value>
‘1’ <expression>
<expression> ‘?’ <expression>
<function> ‘(’ <expr list> )’

¢:? <expression>

<function> ‘(’ <expr list> ‘|’ <option list> ‘)’
<string>

<exponent vector>

<atom>

<list>

(See Section 4.2.10 [various expressions|, page 25.)
<left value>:
<program variable> [‘[’<expression>‘]’]*

<binary operator>:

C47 =2 G0 /2 (0 €7 (exponentiation)
[ N ] (<J {>; (<=) (>=; (&&; ¢||J
(== (=) () (3) (g=) (5= (g ¢||7

<assignment operator>:
(=) (4=) (oo (x=d (/=) (Yo (~o

<expr list>:
<empty>
<expression> [‘,’ <expression>]*
<option>:
Character sequence beginning with an alphabetical letter ‘=’ <expr>
<option list>:
<option>
<option> [‘,’ <option>]*
<list>:
‘[’ <expr list> ‘]’
<program variable>:
Sequence of alphabetical letters or numeric digits or

that begins with a capital alphabetical letter
(X,Y,Japan etc.)
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(See Section 4.2.2 [variables and indeterminates|, page 20.)

<function>:
Sequence of alphabetical letters or numeric digits or _
that begins with a small alphabetical letter
(fctr,ged etc.)

<atom>:
<indeterminate>
<number>

<indeterminate>:
Sequence of alphabetical letters or numeric digits or _
that begin with a small alphabetical letter
(a,bCD,cl1_2 etc.)

(See Section 4.2.2 [variables and indeterminates|, page 20.)

<number>:
<rational number>
<floating point number>
<algebraic number>
<complex number>

(See Section 3.2 [Types of numbers|, page 14.)
<rational number>:
0, 1, -2, 3/4
<floating point number>:
0.0, 1.2e10

<algebraic number>:
newalg(x~2+1), alg(0)~2+1

(See Chapter 9 [Algebraic numbers|, page 140.)
<complex number>:
1+@i, 2.3*@1
<string>:
character sequence enclosed by two ‘"’’s.
<exponent vector>:
<<’ <expr 1list> >>’
(See Chapter 8 [Groebner basis computation]|, page 108.)

<statement>:
<expression> <terminator>
<compound statement>
‘break’ <terminator>
‘continue’ <terminator>
‘return’ <terminator>
‘return’ <expression> <terminator>
“if’ ¢’ <expr list> ‘)’ <statement>
“if? ‘(’ <expr list> ‘)’ <statement> ‘else’ <statement>
‘for’ ‘(’ <expr list> ¢;’ <expr list> ‘;’ <expr list> ¢)’ <statement>
‘do’ <statement> ‘while’ ‘(’ <expr list> ‘)’ <terminator>
‘while’ ‘(’ <expr list> ‘)’ <statement>
‘def’ <function> ‘(’ <expr list> ¢)’ ‘{’ <variable declaration> <stat list> ‘}’
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‘end(quit)’ <terminator>

(See Section 4.2.5 [statements], page 22.)

<terminator>:

[
)

J

($J

<variable declaration>:

[“extern’ <program variable> [¢,’ <program variable>]* <terminator>]*

<compound statement>:

“{’ <stat list> ‘}’

<stat list>:

[<statement>] *

A.2 Files of user defined functions

There are

several files of user defined functions under the standard library directory.

(‘/usr/local/lib/asir’ by default.) Here, we explain some of them.

fff°

‘alpi’
ngk7
‘cyclic’
‘katsura’
‘kimura’

‘defs.h’

‘fctrtest’

‘fctrdata’

Univariate factorizer over large finite fields (See Chapter 10 [Finite fields],
page 152.)

Groebner basis package. (See Chapter 8 [Groebner basis computation],

page 108.)

Operations over algebraic numbers and factorization, Splitting fields.
Chapter 9 [Algebraic numbers], page 140.)

(See

Example polynomial sets for benchmarks of Groebner basis computation. (See
Section 8.9.29 [katsura hkatsura cyclic heyclic], page 136.)

Macro definitions. (See Section 4.2.11 [preprocessor], page 26.)

Test program of factorization of integral polynomials. It includes ‘factor.tst’
of REDUCE and several examples for large multiplicity factors. If this file is
load () ’ed, computation will begin immediately. You may use it as a first test
whether Asir at you hand runs correctly.

This contains example polynomials for factorization. It includes polynomials
used in ‘fctrtest’. Polynomials contained in vector Alg[] is for the algebraic
factorization af (). (See Section 9.4.10 [asq af af noalg], page 149.)

[45] load("sp"™)$

[84] load("fctrdata")$
[175] cputime(1)$
Omsec

[176] Alg[5];
x"9-15%x"6-87*x"3-125
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‘ifplot’

3 ?

mat

‘ratint’

‘primdec’

Omsec

[177]1 af(Alg[5], [newalg(Alg[51)1);

[[1,1], [75*x" 2+ (10*#0"7-175%#0"4-470*#0) *x
+(3*#0°8-45*%#0"5-261*#0"2) ,1],

[75%x" 2+ (—10*#0"7+175*%#0"4+395%#0) *x
+(3%#0°8-45%#0"5-261%#0"2) ,1],

[25%x~2+ (25%#0) *x+ (#0~8-15%#0"5-87*#0"2) , 1],
[x"2+(#0) *x+(#0"2) ,1], [x+(-#0) ,1]]

3.600sec + gc : 1.040sec

Examples for plotting. (See Section 7.5.15 [ifplot conplot plot polarplot plo-
tover], page 104.) Vector IS[] contains several famous algebraic curves. Vari-
ables H, D, C, S contains something like the suits (Heart, Diamond, Club, and
Spade) of cards.

Examples of simple operations on numbers.
Examples of simple operations on matrices.

Indefinite integration of rational functions. For this, files ‘sp’ and ‘gr’ is neces-
sary. A function ratint () is defined. Its returns a rather complex result.

[0] load("gr")$

[45] load("sp")$

[84] load("ratint")$

[102] ratint(x~6/(x"5+x+1),x);

[1/2%x°2,

[[(#2) *1log (-140*x+(-2737*#2"2+552x#2-131) ),
161%t#2°3-23%t#2"2+15xt#2-1],

[(#1)*x1og (-B*x+(-21*#1-4)) ,21*t#1"2+3*t#1+1]]]

In this example, indefinite integral of the rational function x~6/(x"5+x+1) is
computed. The result is a list which comprises two elements: The first element
is the rational part of the integral; The second part is the logarithmic part of
the integral. The logarithmic part is again a list which comprises finite number
of elements, each of which is of form [root*log(poly) ,defpoly]. This pair
should be interpreted to sum up the expression root*log(poly) through all
root’s root’s of the defpoly. Here, poly contains root, and substitution for
root is equally applied to poly. The logarithmic part in total is obtained by
applying such interpretation to all element pairs in the second element of the
result and then summing them up all.

Primary ideal decomposition of polynomial ideals and prime compotision of
radicals over the rationals (see Section 8.9.30 [primadec primedec], page 136).

‘primdec_mod’

‘bfct’

Prime decomposition of radicals of polynomial ideals over finite fields (see Sec-
tion 8.9.31 [primedec_mod], page 137).

Computation of b-function. (see Section 8.9.32 [bfunction bfct generic_bfct ann
ann0], page 138).



Appendix A: Appendix 169

A.3 Input interfaces

A command line editing facility and a history substitution facility are built-in for DOS,
Windows version of Asir. UNIX versions of Asir do not have such built-in facilites. Instead,
the following input interfaces are prepared. This are also available from our ftp server. As
for our ftp server See Section 1.3 [How to get Risa/Asir], page 2.

On Windows, ‘asirgui.exe’ has a copy and paste functionality different from Windows
convention. Press the left button of the mouse and drag the mouse cursor on a text, then
the text is selected and is highlighted. When the button is released, highlighted text returns
to the normal state and it is saved in the copy buffer. If the right button is pressed, the
text in the copy buffer is inserted at the current text cursor position. Note that the existing
text is read-only and one cannot modify it.

A.3.1 fep

Fep is a general purpose front end processor. The author is K. Utashiro (SRA Inc.).

Under fep, emacs- or vi-like command line editing and csh-like history substitution are
available for UNIX commands, including ‘asir’.

% fep asir

[O] fctr(x~5-1);
[[1,1],[x-1,1], [x"4+x"3+x"~2+x+1,1]]

[1] ! /* !1+Return */
fetr(x5-1); /* The last input appears. */
/* Edit+Return */

fctr(x~5+1);

[[1,1], [x+1,1], [x"4-x"3+x"2-x+1,1]]
Fep is a free software and the source is available. However machines or operating systems on
which the original one can run are limited. The modified version by us running on several
unsupported environments is available from our ftp server.

A.3.2 asir.el

‘asir.el’ is a GNU Emacs interface for Asir. The author is Koji Miyajima
(YVE25250@pcvan.or. jp). In ‘asir.el’, completion of file names and command names is
realized other than the ordinary editing functions which are available on Emacs.

‘asir.el’ is distributed on PC-VAN. The version where several changes have been made
according to the current version of Asir is available via ftp.

The way of setting up and the usage can be found at the top of ‘asir.el’.

A.4 Library interfaces

It is possible to link an Asir library to use the functionalities of Asir from other programs.
The necessary libraries are included in the OpenXM distribution (http://www.math.kobe-
u.ac.jp/0OpenXM). At present only the OpenXM interfaces are available. Here we assume
that OpenXM is already installed. In the following $0penXM_HOME denotes the OpenXM
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root directory. All the library files are placed in ‘$0penXM_HOME/1ib’. There are three kinds
of libraries as follows.

In

‘libasir.a’

It does not contain the functionalities related to PARI and X11. Only ‘libasir-gc.a’
is necessary for linking.

‘libasir_pari.a’

It does not contain the functionalities related to X11. ‘libasir-gc.a’, ‘libpari.a’
are necessary for linking.

‘libasir_pari_X.a’

All the functionalities are included. ‘libasir-gc.a’, ‘libpari.a’ and libraries related
to X11 are necessary for linking.

int asir_ox_init (int byteorder)

It initializes the library. byteorder specifies the format of binary CMO data on the
memory. If byteorder is 0, the byteorder native to the machine is used. If byteorder
is 1, the network byteorder is used. It returns O if the initialization is successful, -1
otherwise.

void asir_ox_push_cmo(void *cmo)

int asir_ox_peek_cmo_size()

It returns the size of the object at the top of the stack as CMO object. It returns -1 if
the object cannot be converted into CMO object.

int asir_ox_pop_cmo(void *cmo, int limit)

It pops an Asir object at the top of the stack and it converts the object into CMO
data. If the size of the CMO data is not greater than limit, then the data is written in
cmo and the size is returned. Otherwise -1 is returned. The size of the array pointed
by cmo must be at least limit. In order to know the size of converted CMO data in
advance asir_ox_peek_cmo_size is called.

void asir_ox_push_cmd(int cmd)

It executes a stack machine command cmd.

void asir_ox_execute_string(char *str)

It evaluates str as a string written in the Asir user language. The result is pushed onto
the stack.

A program calling the above functions should include ‘$0penXM_HOME/include/asir/ox.h’.

this file all the definitions of OpenXM tags and commands. The following example

(‘$0penXM_HOME/doc/ox1lib/test3.c’) illustrates the usage of the above functions.

#include <asir/ox.h>
#include <signal.h>

main(int argc, char x*argv)
{
char buf [BUFSIZ+1];
int c;
unsigned char sendbuf [BUFSIZ+10];
unsigned char *result;
unsigned char h[3];
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int len,i,j;

static int result_len = O;
char *xkwd,*bdy;

unsigned int cmd;

signal (SIGINT,SIG_IGN);
asir_ox_init(1); /* 1: network byte order; 0: native byte order */
result_len = BUFSIZ;
result = (void *)malloc(BUFSIZ);
while (1) {
printf ("Input>"); fflush(stdout);
fgets (buf ,BUFSIZ,stdin) ;
for (i = 0; buf[i] && isspace(bufl[il); i++ );
if ( 'buf[i] )
continue;
kwd = buf+i;
for ( ; buf[i] && !isspace(buf([i]); i++ );
buf [i] = 0;
bdy = buf+i+l;
if ( !strcmp(kwd,"asir") ) {
sprintf (sendbuf,"%s;",bdy) ;
asir_ox_execute_string(sendbuf) ;
} else if ( !strcmp(kwd,"push") ) {

h[0] = 0;
h[2] = 0;
j=0;

while ( 1) {
for ( ; (c= *bdy) && isspace(c); bdy++ );
if ( !c)
break;
else if ( h[0] ) {
hi1] = c;
sendbuf [j++] = strtoul(h,0,16);
h[0] = 0;
} else
h[0] = c;
bdy++;
}
if ( hfo] )
fprintf (stderr,"Number of characters is odd.\n");
else {
sendbuf [j] = 0;
asir_ox_push_cmo (sendbuf) ;
}

} else if ( !strcmp(kwd,"cmd") ) {
cmd = atoi(bdy);
asir_ox_push_cmd(cmd) ;

} else if ( !strcmp(kwd,"pop") ) {
len = asir_ox_peek_cmo_size();
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if ( !len )
continue;

if ( len > result_len ) {
result = (char *)realloc(result,len);
result_len = len;

}

asir_ox_pop_cmo(result,len);

printf ("Output>"); fflush(stdout);

printf ("\n");

for (i =0; i< len; ) {
printf ("%02x ",result[i]);
i++;
if ( 1@E%8) )

printf ("\n");
}
printf("\n");
}
}
}

This program receives a line in the form of keyword body as an input and it executes
the following operations according to keyword.

e asir body
body is regarded as an expression written in the Asir user language. The expression
is evaluated and the result is pushed onto the stack. asir_ox_execute_string() is
called.

e push body
body is regarded as a CMO object in the hexadecimal form. The CMO object is
converted into an Asir object and is pushed onto the stack. asir_ox_push_cmo() is
called.

® pop
The object at the top of the stack is converted into a CMO object and it is displayed in
the hexadecimal form. asir_ox_peek_cmo_size() and asir_ox_pop_cmo () are called.

e cmd body
body is regarded as an SM command and the command is executed. asir_ox_push_
cmd () is called.

A.5 Appendix

A.5.1 Version 990831

Four years have passed since the last distribution. Though the look and feel seem
unchanged, internally there are several changes such as 32-bit representation of bignums.
Plotting facilities are not available on Windows.

If you have files created by bsave on the older version, you have to use bload27 to read
such files.
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A.5.2 Version 950831

A.5.2.1 Debugger

e One can enter the debug mode anytime.
e A command finish has been appended.
e One can examine any stack frame with up, down and frame.

e A command trace has been appended.

A.5.2.2 Built-in functions

e One can specify a main variable for sdiv() etc.

e Functions for polynomial division over finite fields such as sdivm() have been appended.
e det(), res() can produce results over finite fields.

e vtol(), conversion from a vector to a list has been appended.

e map() has been appended.

A.5.2.3 Groebner basis computation

e Functions for Groebner basis computation have been implemented as built-in functions.
e grm() and hgrm() have been changed to gr () and hgr () respectively.

e gr() and hgr () requires explicit specification of an ordering type.

e Extension of specification of a term ordering type.

e Groebner basis computations over finite fields.

e Lex order Groebner basis computation via a modular change of ordering algorithm.

e Several new built-in functions.

A.5.2.4 Others

e Implementation of tools for distributed computation.

e Application of modular computation for GCD computation over algebraic number
fields.

e Implementation of primary decompostion of ideals.

e Porting to Windows.

A.5.3 Version 940420

The first public verion.
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