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The "molsurf" routines for computing molecular surface areas were adapted from routines writ-
ten by Paul Beroza.

The "sasad" routine for computing derivatives of solvent accessible surface areas was kindly pro-
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1. Installation and Getting Started.

1.1. Installation.

The nab package is available via anonymous ftp at ftp://ftp.scripps.edu/pub/case/nab-4.4.tar.gz as
a compressed tar file. The first step in setting up the nab package is to unzip the tar file using the
UNIX commands gunzip:

gunzip nab-4.4.tar.gz
tar xvf nab-4.4.tar.gz

The path to this new directory should be defined as the environment variable $SNABHOME. The
environment variables $NABHOME and $ARCH should be defined at this time, where $ARCH is the
architecture type of the machine. For the most part, you can make up your own architecture name (it
is just used to manage installations for different machines).

setenv NABHOME insertyourpathhere/nab-4.4

setenv ARCH  yourarchitecture
Now, in the top-level (SNABHOME) directory, you should edit "config.h" to specify any variables par-
ticular to your site. There are sample files {config.h.windows, config.h.linux, config.h.generic, con-
fig.h.sgi, config.h.hp} that should get you started. For example, for many machines, the following will
work:

cp config.h.generic config.h
(Instructions for what the options mean are in the config.h files) Then,

make

will construct the compiler. If the make fails, it is possible that some of the entries in "config.h" are
not correct.

This can be followed by
make test

which will run tests and will report successes or failures.

Now, add the path to the binary executable of nab to your own path and rehash the search path, e.g.,
set path = ( SNABHOME/bin/$ARCH $path )
rehash

Now, you should be able to compile nab programs. Eventually, you may wish to define the environ-

ment variables $NABHOME and $ARCH and add the path to the binary executable of nab explicitly
in your
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1.2.

Compiling nab Programs.

Compilingnab programs is very similar to compiling other high-level language programs, such as C
and FORTRAN. The command line syntax is

nab [-O] [-c] [-v] [-avs] [-noassert] [-nodebug] [-0 file]

[-Dstring] file(s)

where

-O optimizes the object code

-c suppresses the linking stage widh and produces a .o file
-v verbosely reports on the compile process

-avs creates a\VSmodule

-noassert  causes the compiler to ignore assert statements
-nodebug causes the compiler to ignore debug statements
-0 filenames the output file

-D string definesstring to the C preprocessor

Linking FORTRAN and C object code wittab is accomplished simply by including the source files
on the command line with theab file. For instance, if amab programbar.nab uses a C function
defined in the fildoo.c, compiling and linking optimizedab code would be accomplished by

nab -O bar.nab foo.c

The result is an executakdeout file.

1.3.

Tested platforms

We have carried out the compilation and test programs on the following machines; for most of

them we have also used NAB for several years.

(1)
(@)

(3)
(4)
(5)
(6)

DEC AXP machines, under Digital Unix, with DEC compilers.

SGI machines, with R4400 (32-bit) and R8000/R10000 (64-bit) architectures, using vendor-
supplied compilers.

Sun Sparc, under Solaris 2.5, using SUnPRO compilers.

Sun Sparc, under Solaris 2.5, using gcc 2.7.2, flex, and bison.

HP 735 PA-RISC, under HP-UX 10, using vendor-supplied compilers.
HP 735 PA-RISC, under HP-UX 10, using gcc 2.7.2 and flex.
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(7) RedHat Linux on Intel Pentium, using gcc 2.95.2, flex, and bison.

(8) Windows 95/98/2000 on Intel Pentium, using the Cygwin deveopment kit, available from
http://sources.redhat/com

1.4. Contacting the developers

Please send suggestions and questiomate@scripps.edu  or macke@scripps.edu.
We would appreciate receiving a message if you use the program, so that we can send bug fixes and
announcements of new versions.
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2. General introduction and overview.

Nucleic acid builder fab) is a high-level language that facilitates manipulations of macro-
molecules and their fragmenteab uses a C-like syntax for variables, expressions and control struc-
tures {f , for , while ) and has extensions for operating on molecules (new types and a large number
of builtins for providing the necessary operations). We expaiotto be useful in model building and
coordinate manipulation of proteins and nucleic acids, ranging in size from fairly small systems to the
largest systems for which an atomic level of description makes good computational sense. As a pro-
gramming language, it is not a solution or program in itself, but rather provides an environment that
eases many of the bookkeeping tasks involved in writing programs that manipulate three-dimensional
structural models.

The current implementation is version 4.0, and incorporates the following main features:

(1) Objects such as points, atoms, residues, strands and molecules can be referenced and manipu-
lated as named objects. The internal manipulations involved in operations like merging several
strands into a single molecule are carried out automatically; in most cases the programmer
need not be concerned about the internal data structures involved.

(2) Rigid body transformations of molecules or parts of molecules can be specified with a fairly
high-level set of routines. This functionality includes rotations and translations about particu-
lar axis systems, least-squares atomic superposition, and manipulations of coordinate frames
that can be attached to particular atomic fragments.

(3) Additional coordinate manipulation is achieved by a tight interface to distance geometry meth-
ods. This allows allows relationships that can be defined in terms of internal distance con-
straints to be realized in three-dimensional structural modedlb. includes subroutines to
manipulate distance bounds in a convenient fashion, in order to carry out tasks such as work-
ing with fragments within a molecule or establishing bounds based on model structures.

(4) Force field calculation®.¢. molecular dynamics and minimization) can be carried out with an
implementation of the AMBER force field. This works in both three and four dimensions, but
periodic simulations are not (yet) supported. You will need to have accesd teafhenodule
of AMBER to make full use of this facility.

(5) nab also implements a form of regular expressions that we call “atom regular expressions”,
which provide a uniform and convenient method for working on parts of molecules.

(6) Many of the general programming features of dlad language have been incorporated in
nab. These include regular expression pattern matching, “hashed” arrays (i.e. arrays with
strings as indices), the splitting of strings into fields, and simplified string manipulations.

(7)  There are built-in procedures for linkingb routines to other routines written in C or Fortran,
including access to most library routines normally available in system math libraries.

(8) Support is also present for compilingb code into an AVS (Application Visualization Sys-
tem) module rather than to a stand-alone program. In combination with the AVS Geometry
Viewer (or other AVS modules) this allows one to fairly easily build interactive programs that
manipulate and display complex molecular transformations. We currently support AVS ver-
sion 5; extensions to Data Explorer (openDX) are under development.

Our hope is thahab will serve to formalize the step-by-step process that is used to build com-
plex model structures, and will facilitate the management and use of higher level symbolic constraints.
Writing a program to create a structure forces more of the model's assumptions to be explicit in the
program itself. And amab description can serve as a way to show a model’s salient features, much
like helical parameters are used to characterize duplexes.
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The first three chapters of this document form a “users’ manual” that both introduces the lan-
guage through a series of sample programs, and illustrates the programming interfaces provided. The
examples are chosen not only to show the syntax of the language, but also to illustrate potential
approaches to the construction of some unusual nucleic acids, including DNA double- and triple-
helices, RNA pseudoknots, four-arm junctions, and DNA-protein interactions. A separate “language
reference manual” (in Chapter 4) gives a more formal and careful description of the requirements of
the language itself.

The basic literature reference for the code is: T. Macke and D.A. Case. Modeling unusual
nucleic acid structures. IMolecular Modeling of Nucleic Acids, N.B. Leontes and J. SantalLucia, Jr.,
eds. (Washington, DC: American Chemical Society, 1998), pp. 379-393. Users are requested to
include this citation in papers that make use of NAB.

2.1. Background

Using a computer language to model polynucleotides follows logically from the fundamental
nature of nucleic acids, which can be described as “conflicted” or “contradictory” molecules. Each
repeating unit contains seven rotatable bonds (creating a very flexible backbone), but also contains a
rigid, planar base which can participate in a limited number of regular interactions, such as base pair-
ing and stacking. The result of these opposing tendencies is a family of molecules that have the poten-
tial to adopt a virtually unlimited number of conformations, yet have very strong preferences for regu-
lar helical structures and for certain types of loops.

The controlled flexibility of nucleic acids makes them difficult to model. On one hand, the lim-
ited range of regular interactions for the bases permits the use of simplified and more abstract geomet-
ric representations. The most common of these is the replacement of each base by a plane, reducing
the representation of a molecule to the set of transformations that relate the planes to each other. On
the other hand, the flexible backbone makes it likely that there are entire families of nucleic acid struc-
tures that satisfy the constraints of any particular modeling problem. Families of structures must be
created and compared to the model's constraints. From this we can see that modeling nucleic acids
involves not just chemical knowledge but also three processes—abstraction, iteration and testing—that
are the basis of programming.

Molecular computation languages are not a new idea. Here we briefly describe some past
approaches to nucleic acid modeling, to provide a contexiator

2.1.1. Conformation build-up procedures
MC-SYM [1-3] is a high level molecular description language used to describe single stranded

1. F. Major, M. Turcotte, D. Gautheret, G. Lapalme, E. Fillon, and R. Cedergren, “The Combina-
tion of Symbolic and Numerical Computation for Three-Dimensional Modeling of RNA,”
Science253, (5025)1255-1260 (1991).

2. D. Gautheret, F. Major, and R. Cedergren, “Modeling the three-dimensional structure of RNA
using discrete nucleotide conformational sets,” J. Mol. B39, 1049-1064 (1993).

3.  W. Saenger, M. Turcotte, G. Lapalme, and F. Major, “Exploring the conformations of nucleic
acids,” J. Funct. Progrand, 443-460 (1995). Springer-Verlag,
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RNA molecules in terms of functional constraints. It then uses those constraints to generate structures
that are consistent with that description. MC-SYM structures are created from a small library of con-
formers for each of the four nucleotides, along with transformation matrices for each base. Building
up conformers from these starting blocks can quickly generate a very large tree of structures. The key
to MC-SYM's success is its ability to prune this tree, and the user has considerable flexibility in
designing this pruning process.

In a related approach, Ereal. [4] used a Monte-Carlo build-up procedure based on sets of low
energy dinucleotide conformers to construct longer low energy single stranded sequences that would
be suitable for incorporation into larger structures. Sets of low energy dinucleotide conformers were
created by selecting one value from each of the sterically allowed ranges for the six backbone torsion
angles andy. Instead of an exhaustive build- up search over a small set of conformers, this method
samples a much larger region of conformational space by randomly combining members of a larger set
of initial conformers. Unlike strict build-up procedures, any member of the initial set is allowed to fol-
low any other member, even if their corresponding torsion angles do not exactly match, a concession
to the extreme flexibility of the nucleic acid backbone. A key feature determined the probabilities of
the initial conformers so that the probability of each created structure accurately reflected its energy.

Tung and Carter [5,6] have used a reduced coordinate systemNAM®Tnucleic acid model-
ing tool) program to rotation matrices that build up nucleic acids from simplified descriptions. Special
procedures allow base-pairs to be preserved during deformations. This procedure allows simple algo-
rithmic descriptions to be constructed for non-regular structures like intercalation sites, hairpins, pseu-
doknots and bent helices.

2.1.2. Base-first strategies

An alternative approach that works well for some problems is the "base-first" strategy, which
lays out the bases in desired locations, and attempts to find conformations of the sugar-phosphate
backbone to connect them. Rigid-body transformations often provide a good way to place the bases.
One solution to the backbone problem would be to determine the relationship between the helicoidal
parameters of the bases and the associated backbone/sugar torsions. Work along these lines suggests
that the relationship is complicated and non-linear [7]. However, considerable simplification can be
achieved if instead of using the complete relationship between all the helicoidal parameters and the
entire backbone, the problem is limited to describing the relationship between the helicoidal parame-
ters and the backbone/sugar torsion angles of single nucleotides and then using this information to
drive a constraint minimizer that tries to connect adjacent nucleotides. This is the approach used in

4, D.A. Erie, K.J. Breslauer, and W.K. Olson, “A Monte Carlo Method for Generating Structures of
Short Single-Stranded DNA Sequenes,” Biopolym88ss (1)75-105 (1993).

5. C.-S. Tung and E.S. Carter, Il, “Nucleic acid modeling tool (NAMOT): an interactive graphic
tool for modeling nucleic acid structures,” CABIO®, 427-433 (1994).

6. E.S. Carter, Il and C.-S. Tung, “NAMQOT2--a redesigned nucleic acid modeling tool: construc-
tion of non-canonical DNA structures,” CABIO$2, 25-30 (1996).

7. V.B. Zhurkin, Yu. P. Lysov, and V. |. lvanov, “Different Families of Double Stranded Conforma-
tions of DNA as Revealed by Computer Calculations,” Biopolynmiefs277-312 (1978).
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JUMNA [8], which decomposes the problem of building a model nucleic acid structure into the con-
straint satisfaction problem of connecting adjacent flexible nucleotides. The sequence is decomposed
into 3'-nucleotide monophosphates. Each nucleotide has as independent variables its six helicoidal
parameters, its glycosidic torsion angle, three sugar angles, two sugar torsions and two backbone tor-
sions. JUMNA seeks to adjust these independent variables to satisfy the constraints involving sugar
ring and backbone closure.

Even constructing the base locations can be a non-trivial modeling task, especially for non-stan-
dard structures. Recognizing that coordinate frames should be chosen to provide a simple description
of the transformations to be used, Gabarro-Agpal. [9] devised “Object Command Language”
(OCL), a small computer language that is used to associate parts of molecules called objects, with
arbitrary coordinate frames defined by sets of their atoms or numerical points. OCL can “link”
objects, allowing other objects’ positions and orientations to be described in the frame of some refer-
ence object. Information describing these frames and links is written out and used by the program
MORCAD [10] which does the actual object transformations.

OCL contains several elements of a molecular modeling language. Users can create and operate
on sets of atoms called objects. Objects are built by naming their component atoms and to simplify
creation of larger objects, expressiolfs, statements, an interat€@®RIloop and limited 1/O are pro-
vided. Another nice feature is the equivalence between a literal 3-D point and the position represented
by an atom’s name. OCL includes numerous built-in functions on 3-vectors like the dot and cross
products as well as specialized molecular modeling functions like creating a vector that is normal to an
object. However, OCL is limited because these language elements can only be assembled into func-
tions that define coordinate frames for molecules that will be operated on by MORCAD. Functions
producing values of other data types and stand-alone OCL programs are not possible.

2.2. Methods for structure creation

As a structure-generating toolab provides three methods for building models. They are rigid-
body transformations, metric matrix distance geometry, and molecular mechanics. The first two meth-
ods are good initial methods, but almost always create structures with some distortion that must be
removed. On the other hand, molecular mechanics is a poor initial method but very good at refinement.
Thus the three methods work well together.

Rigid-body transformations. Rigid-body transformations create model structures by applying
coordinate transformations to members of a set of standard residuesddhem to new positions
and orientations where they are incorporated into the growing model structure. The method is espe-
cially suited to helical nucleic acid molecules with their highly regular structures. It is less satisfactory
for more irregular structures where internal rearrangement is required deerbad covalent or non-
bonded geometry, or where it may not be obvious how to place the bases.

8. R. Lavery, K. Zakrzewska, and H. Skelnar, “JUMNA (junction minimisation of nucleic acids),”
Comp. Phys. Commurf1, 135-158 (1995).

9. J. Gabarro-Arpa, J.A.H. Cognet, and M. Le Bret, “Object Command Language: a formalism to
build molecule models and to analyze structural parameters in macromolecules, with applica-
tions to nucleic acids,” J. Mol. Grapli0, 166-173 (1992).

10. M. Le Bret, J. Gabarro-Arpa, J. C. Gilbert, and C. Lemarechal, “MORCAD an object-oriented
molecular modeling package,” J. Chim. Ph@8, 2489-2496 (1991).
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nab uses thematrix type to hold a 44 transformation matrix. Transformations are applied to
residues and molecules toowe them into new orientations or positionsab doesnot require that
transformations applied to parts of residues or molecules be chemically valid. It simply transforms the
coordinates of the selected atoms leaving it to the user to correct (or ignore) any chemically incorrect
geometry caused by the transformation.

Every nab molecule includes a frame, or “handle” that can be used to position two molecules in a
generalization of superimposition. Traditionally, when a molecule is superimposed on a reference
molecule, the user first forms a correspondance between a set of atoms in the first molecule and
another set of atoms in the reference molecule. The superimposition algorithm then determines the
transformation that will minimize the rmsd between corresponding atoms. Because superimposition is
based on actual atom positions, it requires that the two molecules have a common substructure, and it
can only place one molecule on top of another and not at an arbitrary point in space.

Thenab frame is a way around these limitations. A frame is composed of three orthonormal
vectors originally aligned along the axes of a right handed coordinate frame centered on the origin.
nab provides two builtin functionsetframe()  andsetframep()  that are used to reposition this
frame based on vectors defined by atom expressions or arbitrary 3-D points, respectively. To position
two molecules via their frames, the user moves the frames so that when they are superimposed via the
nab builtin alignframe() , the two molecules have the desired orientation. This is a generalization
of the methods describedaefor OCL.

Distance geometry. nab’s second initial structure-creation methodnistric matrix distance
geometry [11,12], which can be a very powerful method of creating initial structures. It has two main
strengths. First, since it uses internal coordinates, the initial position of atoms about which nothing is
known may be left unspecified. This has the effect that distance geometry models use only the infor-
mation the modeler considers valid. No assumptions are required concerning the positions of unspeci-
fied atoms. The second advantage is that much structural information is in the form of distances.
These include constraints from NMR or fluorescence energy transfer experiments, implied propin-
quities from chemical probing and footprinting, and tertiary interactions inferred from sequence analy-
sis. Distance geometry provides a way to formally incorporate this information, or other assumptions,
into the model-building process.

Distance geometry converts a molecule represented as a set of interatomic distances into a 3-D
structure.nab has several builtin functions that are used together to provide metric matrix distance
geometry. Abounds object contains the molecule’s interatomic distance bounds matrix and a list of
its chiral centers and their volumes. The functi@wbounds() creates d@ounds object contain-
ing a distance bounds matrix containing initial upper and lower bounds for every pair of atoms, and a
list of the molecule’s chiral centers and their volumes. Distance bounds for pairs of atoms involving
only a single residue are derived from that residue’s coordinates. The 1,2 and 1,3 distance bounds are
set to the actual distance between the atoms. The 1,4 distance lower bound is set to the larger of the
sum of the two atoms Van der Waals radii or thgir (torsion angle = 9 distance, and the upper
bound is set to theanti (torsion angle = 180 distance.newbounds() also initializes the list of the

11. G.M. Crippen and T.F. HaveDistance Geometry and Molecular Conformation, Research Stud-
ies Press, Taunton, England, 1988.

12. D.C. Spellmeyer, A.K. Wong, M.J. Bower, and J.M. Blaney, “Conformational analysis using
distance geometry methods,” J. Mol. Graph. Moddd, 18-36 (1997).
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molecule’s chiral centers. Each chiral center is an ordered list of four atoms and the volume of the
tetrahedron those four atoms enclose. Each entrynabaresidue library contains a list of the chiral
centers composed entirely of atoms in that residue.

Once abounds object has been initialized, the modeler can use functions to tighten, loosen or
set other distance bounds and chiralities that correspond to expermental measurements or parts of the
model’'s hypothesis. The functiomsdbounds() andorbounds() allow logical manipulation of
bounds. setbounds_from_db()Fr Allows distance information from a model
structure or a database to be incorporated into a part of the cur-
rent molecule’s bounds object, facilitating transfer of information between partially-built
structures.

These primitive functions can be incorporated into higher-level routines. For example the func-
tionsstack() andwatsoncrick() set the bounds between the two specifed bases to what they
would be if they were stacked in a strand or base-paired in a standard Watson/Crick duplex, with
ranges of allowed distances derived from an analysis of structures in the Nucleic Acid Database.

After all experimental and model constraints have been entered intwotimels object, the
functiontsmooth()  applies “triangle smoothing” to pull in the large upper bounds, since the maxi-
mum distance between two atoms can not exceed the sum of the upper bounds of the shortest path
between them. Random pairwise metrization [13] can also be used to help ensure consistency of the
bounds and to impwe the sampling of conformational space. The functombed() finally takes
the smoothed bounds and converts them into a 3-D object. The newly embedded coordinates are sub-
ject to conjugate gradient refinement against the distance and chirality information contained in
bounds . The call toembed() is usually placed in a loop to explore the diversity of the structures
the bounds represent.

Molecular mechanics. The final structure creation method thab offers ismolecular mechan-

ics. This includes both energy minimization and molecular dynamics — simulated annealing. Since
this method requires a good estimate of the initial position of every atom in structure, it is not suitable
for creating initial structures. However, given a reasonable initial structure, it can be used to remove
bad initial geometry and to explore the conformational space around the initial structure. This makes
is a good method for refining structures created either by rigid body transformations or distance geom-
etry. nab has its own 3-D/4-D molecular mechanics package that implements several AMBER force
fields and reads AMBER parameter and topology files. Solvation effects can also be modelled with
generalized Born continuum models.

Our hope is thabhab will serve to formalize the step-by-step process that is used to build com-
plex model structures. It will facilitate the management and use of higher level symbolic constraints.
Writing a program to create a structure forces one to make explicit more of the model’'s assumptions in
the program itself. And an nab description can serve as a way to exhibit a model’s salient features,
much like helical parameters are used to characterize duplexes. So far, nab has been used to construct

13. M.E. Hodsdon, J.W. Ponder, and D.P. Cistola, “The NMR solution structure of intestinal fatty
acid-binding protein complexed with palmitate: Application of a novel distance geometry algo-
rithm,” J. Mol. Biol. 264, 585-602 (1996).

14. T. Macke, S.-M. Chen, and W.J. Chazin, Siructure and Function, Volume 1: Nucleic Acids,
R.H. Sarma and M.H. Sarma, Ed. (Adenine Press, Albany, 1992). pp.213-227.
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models for synthetic Holliday junctions [14], calcyclin dimers [15], HMG-protein/DNA complexes
[16], active sites of Rieske iron-sulfur proteins [17], and supercoiled DNA [18]. The Examples chap-
ter below provides a number of other sample applications.

2.3. First Examples.

This section introducesab via three simple examples. Allab programs in this user manual
are set in Courier, a typewriter style font. The line numbers at the beginning of each line are not parts
of the programs but have been added to make it easier to refer to specific program sections.

2.3.1. B-form DNA duplex.

One of the goals afab was that simple models should require simple programs. Hereneban
program that creates a model of a B-form DNA duplex and saves it as a PDB file.

/I Program 1 - Average B-form DNA duplex
molecule m;

m = bdna( "gcgttaacgc” );
putpdb( "gcg10.pdb”, m);

ga b wN Pk

Line 2 is a declaration used to tell thab compiler that the nammis a molecule variable,
somethingnab programs use to hold structures. Line 4 creates the actual model using the predefined
function bdna() . This function’s argument is a literal string which represents the sequence of the
duplex that is to be created. Here’s hbdna() converts this string into a molecule. Each letter
stands for one of the four standard base$or adeninec for cytosine,g for guanine and for
thymine. In a standard DNA duplex every adenine is paired with thymine and every cytosine with
guanine in an antiparallel double helix. Thus only one strand of the double helix has to be specified.
As bdna() reads the string from left to right, it creates one strand from 5’ to 3jd@ttaacgc
-3"), automatically creating the other antiparallel strand using Watson/Crick pairing. It uses a uniform
helical step of 3.38Arise and 36.D twist. Naturally,nab has other ways to create helical molecules
with arbitrary helical parameters and even mismatched base pairs, but if you need some “average”

15. B.C.M. Potts, J. Smith, M. Akke, T.J. Macke, K. Okazaki, H. Hidaka, D.A. Case, and W.J.

Chazin, “The structure of calcyclin reveals a novel homodimeric fold S180t@aing pro-
teins,” Nature Struct. Biol2, 790-796 (1995).

16. J.J. Love, X. Li, D.A. Case, K. Giese, R. Grossched|, and P.E. Wright, “DNA recognition and
bending by the architectural transcription factor LEF-1: NMR structure of the HMG domain
complexed with DNA,” Nature376, 791-795 (1995).

17. R.J. Gurbiel, P.E. Doan, G.T. Gassner, T.J. Macke, D.A. Case, T. Ohnishi, J.A. Fee, D.P. Ballou,
and B.M. Hoffman, “Active site structure of Rieske-type proteins: Electron nuclear double reso-
nance studies of isotopically labeled phthalate dioxygenase Bsmumomonas cepacia and
Rieske protein froniRhodobacter capsulatus and molecular modeling studies of a Rieske center,”
Biochemistry 35, 7834-7845 (1996).

18. T.J. MackeNAB, a Language for Molecular Manipulation, Ph.D. thesis, The Scripps Research
Institute 1996.
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DNA, you should be able to get it without having to specify every detail. The last line usebthe
builtin putpdb()  to write the newly created duplex to the fileg10.pdb

Program 1 is about the smallestb program that does any real work. Even so, it contains sev-
eral elements common to almost adb programs. The two consecutive forward slashes in line 1
introduce a comment which tells thab compiler to ignore all characters between them and the end
of the line. This particular comment begins in column 1, but that is not required as comments may
begin in any column. Line 3 is blank. It serves no purpose other than to visually separate the declara-
tion part from the action pamab input is free format. Runs of white space characters—spaces, tabs,
blank lines and page breaks—act like a single space which is required only to separate reserved words
like molecule from identifiers likem Thus white space can be used to increase readabilty.

2.3.2. Superimpose two molecules.

Here is another simplenab program. It reads two DNA molecules and superimposes them
using a rotation matrix made from a correspondence betweeiCttieatoms.

=

/I Program 2 - Superimpose two DNA duplexes
molecule m, mr;
float r;

m = getpdb( "test.pdb" );

mr = getpdb( "gcg10.pdb" );
superimpose( m, "::C1™, mr, "::C1™");
putpdb( "test.sup.pdb”, m);

rmsd( m, "::C1™, mr, "::C1™,r);
printf( "rmsd = %8.3\n", r );

© 0 ~NO O A~ WN
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This program uses three variables—two molecutesndmr and one float; . An nab declara-
tion can include any number of variables of the same type, but variables of different types must be in
separate declarations. The builtin functgpetpdb() reads two molecules in PDB format from the
filestest.pdb  andgcglO.pdb into the variablesnandmr. The superimposition is done with the
builtin functionsuperimpose() . The arguments tsuperimpose()  are two molecules and two
“atom expressions’hab uses atom expressions as a compact way of specifying sets of atoms. Atom
expressions and atom names are discussed in more detail below but for now an atom expression is a
pattern that selects one or more of the atoms in a molecule. In this example, they select all atoms with
namesC1l'.

superimpose()  uses the two atom expressions to associate the corresp@idiraarbons in
the two molecules. It uses these correspondences to create a rotation matrix that when apwiled to
minimize the root mean square deviation between the pairs. It applies this mairixntoving” it on
to mr. The transformed moleculais written out to the fileéest.sup.pdb in PDB format using the
builtin functionputpdb() . Finally the builtin function rmsd() is used to compute the actual root
mean square deviation between corresponding atoms in the two superimposed molecules. It returns the
result inr, which is written out using the C-like 1/O functiqrintf() . rmsd() also uses two
atom expressions to select the corresponding pairs. In this example, they are the same pairs that were
used in the superimposition, but any set of pairs would have been acceptable. An example of how this
might be used would be to use different subsets of corresponding atoms to compute trial superimposi-
tions and then usensd() over all atoms of both molecules to determine which subset did the best
job.
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2.3.3. Place residues in a standard orientation.

This is the last of the introductory examples. It places nucleic acid monomers in an orientation
that is useful for building Watson/Crick base pairs. It uses several atom expressions to create a frame
or handle attached to amab molecule that permits easy movement along important “molecular direc-
tions”. In a standard Watson/Crick base pair@eandN1 atoms of the purine base and th8 N3
and C6 atoms of the pyrimdine base are colinear. Such a line is obviously an important molecular
direction and would make a good coordinate axis. Program 3 aligns these monomers so that this
hydrogen bond is along the Y-axis.

1 /I Program 3 - orient nucleic acid monomers
2 molecule m;
3
4 m = getpdb( "ADE.pdb");
5 setframe( 2, m, I also for GUA
6 ":C4",
7 ":C5", ":IN3",
8 "C4", "uNLY);
9 alignframe( m, NULL );
10 putpdb( "ADE.std.pdb", m);
11
12 m = getpdb( "THY.pdb");
13 setframe( 2, m, /l also for CYT & URA
14 "::C6",
15 ":C5", "IN1",
16 ".C6", ":N3");
17 alignframe( m, NULL );
18 putpdb( "THY .std.pdb", m);

This program uses only one variable, the molecnleExecution begins on line 4 where the
builtin getpdb() is used to read in the coordinates of an adenine (created elsewhere) from the file
ADE.pdb . Thenab builtin setframe()  creates a coordinate frame for this molecule using vectors
defined by some of its atoms as shown in Figure 1. The first atom expression (line 6) sets the origin of
this coordinate frame to be the coordinates ofGA@tom. The two atom expressions on line 7 set the
X direction from the coordinates of ti&5 to the coordinates of tH¢3. The last two atom expressions
set the Y direction from th€4 to theN1. The Z-axis is created by the cross produs¥YXrames are
thus like sets of local coordinates that can be attached to molecules and used to facilitate defining
transformations; a more complete discussion is given in the séctomes below.

nab requires that the coordinate axes of all frames be orthogonal, and while the X and Y axes as
specified here are close, they are not quite exsetframe() uses its first parameter to specify
which of the original two axes is to be used as a formal axis. If this param#&{ehen the specified X
axis becomes the formal X axis and Y is recreated frew; & the value is2, then the specified Y
axis becomes the formal Y axis and X is recreated froid. Yn this example the specified Y axis is
used and X is recreated. The builiignframe() transforms the molecule so that the X, Y and Z
axes of the newly created coordinate frame point along the standard X, Y and Z directions and that the
origin is at (0,0,0). The transformed molecule is writen to theAfid&.std.pdb . A similar proce-
dure is performed on a thymine residue with the result that the hydrogen bond betweEnothe
thymine and thé&l1 of adenine in a Watson Crick pair is now along the Y axis of these two residues.
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Figure 1. ADE and THY after execution of Program 3.

2.4. Molecules, Residues and Atoms.

We now turn to a discussion of ways of describing and manipulating molecules. In addition to
the general-purpose variable types likeat , int andstring , nab has three types for working
with moleculesmolecule , residue andatom. Like their chemical counterpartsab molecules
are composed of residues which are in turn composed of atoms. The residuaabinnaolecule are
organized into one or more named, ordered lists called strands. Residues in a strand are usually
bonded so that the “exiting” atom of residue connected to the “entering” atom of residuel. The
residues in a strand need not be bonded; however, only residues in the same strand can be bonded.

Each of the three molecular types has a complex internal structure, only some of which is
directly accessable at tiab level. Simple elements of these types, like the number of atoms in a
molecule or the X coordinate of an atom are accessed via attributes—a suffix attached to a molecule,
residue or atom variable. Attributes behave almostitike, float andstring variables; the only
exception being that some attributes are read only with values that can t be changed. More complex
operations on these types such as adding a residue to a molecule or merging two strands into one are
handled with builtin functions. A complete listiw@b builtin functions and molecule attributes can be
found in thenab Language Reference.

2.5. Creating Molecules.

The following functions are used to create molecules. Only an overview is given here; more
details are in chapter 3.

molecule newmolecule();
int addstrand( molecule m, string str);

residue getresidue( string rname, string rlib );
residue transformres( matrix mat, residue res, string aex );
int addresidue( molecule m, string str, residue res);
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int connectres( molecule m, string str,
int rnl, string atm1, int rn2, string atm2 );

int mergestr( molecule m1, string strl, string end1,
molecule m2, string str2, string end?2 );

The general strategy for creating molecules wib is to create a new (empty) molecule then
build it one residue at a time. Each residue is fetched from a residue library, transformed to properly
position it and added to a growing strand. A template showing this strategy is shownrbaiom
andres are respectively anatrix , molecule andresidue variable declared elsewhere. Words
in italics indicate general instances of things that would be filled in according to actual application.

1

2 m = newmolecule();

3 addstrand( m, str-1 );

4

5 for( ... ){

6

7 res = getresidue( res-name, reslib );
8 res = transformres( mat, res, NULL );
9 addresidue( m, str-name, res);
10
11 }
12

In line 2, the functionnewmolecule() creates a molecule and stores itnm The new
molecule is empty—no strands, residues or atoms. Kedstrand() is used to add a strand
namedstr-1. Strand names may be up to 255 characters in length and can include any characters
except white space. Each strand in a molecule must have a uniqgue name. There is no limit on the num-
ber of strands a molecule may have.

The actual structure would be created in the loop on lines 5-11. Each time around the loop, the
function getresidue() is used to extract the next residue with the naesename from some
residue libraryres-lib and stores it in theesidue variableres . Next the functiontransform-
res() applies a transformation matrix, held in timatrix variablemat to the residue imes ,
which places it in the orientation and position it will have in the new molecule. Finally, the function
addresidue() appends the transformed residue to the end of the chain of residues in thetistrand
name of the new molecule.

Residues in each strand are numbered from N, twhereN is the number of residues in that
strand. The residue order is the order in which they were inserteddadthsidue() . While nab
does not require it, nucleic acid chains are usually numbered from 5’ to 3’ and proteins chains from
the N-terminus to the C-terminus. The residues in nucleic acid strands and protein chains are usually
bonded with the outgoing end of residumnded to the incoming end of residué&. However, as this
is not always the casmab requires the user to explicitly make all interresidue bonds with the builtin
connectres()

connectres() makes bonds between two atoms in different residues of the same strand of a
molecule. Only residues in the same strand can be borumethectres() takes six arguments.
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They are a molecule, the name of the strand containing the residues to be bonded, and two pairs each
of a residue number and the name of an atom in that residue. As an example, thiscraiets
tres()

connectres( m, "sense", i, "O3™, i+1, "P");

connects an atom namé®3™ in residuei to an atom namet" in residuei+l , creating the
phosphate bond that joins two nucleic acid monomers.

The functionmergestr() is used to either ove or copythe residues in one strand into
another strand. Details are provided in chapter 3.

2.6. Residues and Residue Libraries.

nab programs build molecules from residues that are parts of residue libraries. Residue libraries
contain coordinates and bonding information for each of their entries. They may also contain addi-
tional information such as the type of the residues, (dna, rna, amino acid or unknown), the level of
atomic detail (all atoms including hydrogens, united atom with only hydrogen bonding hydrogens or
unknown), lists of chiral centers including those for enforcing planarity, atomic charges andatadii.
is distributed with four residue libraries—A- and B-DNA, RNA and an amino acid library that pro-
duces fully extended peptides. In additiomtb residue libraries (denoted by.b  suffix), nab
can also read residues from thEaP object file format (OFF) files such ai _amino94.lib
(denoted by a A complete description ofreab residue library can be found in timab Language
Reference.

nab provides several functions for working with residues. All return a valid residue on success
and NULL on failure. The functiorgetres() is written innab and it source is shown below.
transformres() which applies a coordinate transformation to a residue and is discussed under the
sectionMatrices and Transformations.

residue getresidue( string resname, string reslib );
residue getres( string resname, string reslib );
residue transformres( matrix mat, residue res, string aexp );

getresidue() extracts the residue with namesname from the residue libraryeslib
reslib  is the name of a file that either contains the residue information or contains names of other
files that contain itreslib  is assumed to be in the direct@MABHOME/reslib unless it begins
with a slash/()

A common task of mangab programs is the translation of a string of characters into a structure
where each letter in the string represents a residue. Generally, some mapping of one or two character
names into actual residue names is requimad. supplies the functiogetres()  that maps the sin-
gle character names c, g, t andu and their 5’ and 3’ terminal analogues into the residABE,

CYT, GUATHYandURA Here is its source:

1 /I getres() - map 1-2 letter names into 3 letter names
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2 residue getres( string rname, string rlib )
3 {
4 residue res;
5
6 if(r=="a" || r=="A"){
7 res = getresidue( "ADE", rlib );
8 lelse if(r=="c" || r=="C" ¥
9 res = getresidue( "CYT", rlib );
10 lelse if(r=="g" || r=="G" {
11 res = getresidue( "GUA", rlib );
12 Yelse if(r=="t"[| r=="T" )
13 res = getresidue( "THY", rlib );
14 Yelse if(r=="u"|| r=="U" ){
15 res = getresidue( "URA", rlib );
16 telse{
17 fprintf( stderr, "undefined residue %s0, r);
18 exit(1);
19 }
20 return( res);
21 5

getres() s the first of severalab functions that are discussed in this User Manual. The fol-
lowing explanation will cover not jusietres()  but will serve as an introduction to user defined
nab functions in general.

An nab function is a nhamed group of declarations and statements that is executed as a unit by
using the function’s name in an expressiomab functions can have special variables called parame-
ters that allow the same function to operate on different data. A function definition begins with a
header that describes the function, followed by the function body which is a list of statements and dec-
larations enclosed in bracg$ () and ends with a semicolon. The headegdtres() is on line 2
and the body is on lines 3 to 21. Line 21 ends with the final semicolon.

Everynab function header begins with the reserved word that specifies its type, followed by the
function’s name followed by its parameters (if any) enclosed in parentheses. The parentheses are
always required, even if the function does not have parameigsfunctions may return a single
value of any of the 1@ab types.nab functions can not return arrays. In symbolic terms eveaity
function header uses this template:

type name( parameters? )
The parameters (if present) torab function are a comma separated list of type variable pairs:
typel variablel, type2variable2, ...
An nab function may have any number of parameters, including none. Parameters may of any of the

10 nab types, but unlike function values, parameters can be arrays, including “hashed” arrays. The
functiongetres()  has two parameters, the twsing  variablesresname andreslib
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Parameters taab functions are “called by reference” which means that they contain the actual
data—not copies of it—that the function was called with. Whemaln function parameter is
assigned, the actual data in the calling function is changed. The only exception is when an expression
is passed as a parameter tonab function. In this case, theab compiler evaluates the expression
into a temporary (and invisible to thab programmer) variable and then operates on its contents.

Immediately following the function header is the function body. It is a list of declarations fol-
lowed by a list of statements enclosed in braces. The list of declarations, the list of statements or both
may be emptygetres()  has several statements, and a single declaration, the vaeableThis
variable is a “local variables”. Local variables are defined only when the function is active. If a local
variable has the same name as variable defined outside of a it the local variable hides the global one.
Local variables can not be parameters.

The statement part getres()  begins on line 6. It consists of sevdfal statements organized
into a decision tree. The action of this tree is to translate one of the #trings, etc., or their lower
case equivalents into the corresponding three letter standard nucleic acid residue name and then extract
that residue fromreslib  using the low level residue library functigetresidue() . The value
returned bygetresidue() is stored in the local variables , except when the input string is not
one of those listed above. In that cagetres()  writes a message giderr  indicating that it can
not translate the input string and seds to the valueNULL nab usesNULL to represent non-exis-
tant values of the typesring , file , atom, residue , molecule andbounds. A value of
NULL generally means that a variable is unitialized or that an error ocurred in creating it.

A function returns a value by executingreturn statement, which is the reserved word
return followed by an expression. Thieturn statement evaluates the expression, sets the func-
tion value to it and returns control to the point just after the call. The expression is optional but if pre-
sent the type of the expression must be the same as the type of the function or both must be numeric
(int , float ). If the expression is missing, the function still returns, but its value is undefined.
getres()  includes onegeturn statements on line 20. A function also returns with an undefined
value when it “runs off the bottom”, i.e. executes the last statement before the closing brace and that
statement is not @turn

2.7. Atom Names and Atom Expressions.

Every atom in amab molecule has a name. This name is composed of the strand name, the
residuenumber and the atom name. As both PDB and off formats require that all atoms in a residue
have distinct names, the combination of strand name, residue number and atom name is unique for
each atom in a single molecule. Atoms in different molecules, however, may have the same name.

Many nab builtins require the user to specify exactly which atoms are to be covered by the oper-
ation.nab does this with special strings called “atom expressions”. An atom expression is a pattern
that matches one or more atom names in the specified molecule or residue. An atom expression con-
sists of three parts—a strand part, a residue part and an atom part. The parts are separated by colons
(: ). Not all three parts are required. An atom expression with no colons consists of only a strand part;
it selectsall atoms in the selected strands. An atom expression with one colon consists of a strand part
and a residue part; it seleet$ atoms in the selected residues in the selected strands. An “empty” part
selects all strands, residues or atoms depending on which parts are empty.

nab patterns specify thentire string to be matched. For example, the atom pa@amatches
only atoms name@ , and not those name@A HG etc. To match any name that begins withuse
C*, to match any name ending wi@) use*C and to match & in any position us¢C* . An atom
expression is first parsed into its parts. The strand part is evaluated selecting one or more strands in a
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molecule. Next the residue part is evaluated. Only residues in selected strands can be selected. Finally
the atom part is evaluated and only atoms in selected residues are selected. Here are some typical
atom expressions and the atoms they match.

:ADE: Select all atoms in any residue nandE All three parts are pre-
sent but both the strand and atom parts are “empty”. The atom ex-
pressionADE selects the same set of atoms.

C,CAN select all atoms with nam&s CAor Nin all residues in all strands—
typically the peptide backbone.

A:1-10,13,URA:CT’ Select atoms namedl’ (the glycosyl-carbons) in residues 1 to 10
and 13 and in any residues nani#RAin the strand named.

CHY Select all non-sugar carbons. Tfg is an example of a negated
character class. It matches any character in the last position &xcept

::P,0?P,C[3-5]?,0[35]? The nucleic acid backbone. THsselects phosphorous atoms. The

O7?P matches phosphate oxygens that have various second letters
O1P, O2Por OAPor OBR TheC[3-5]? matches the backbone cat
bons,C3',C4’,C5" or C3*, C4*, C5*. And theO[35]? match-
es the backbone oxyge@8', O5’ or O3*, O5*.

or: Select all atoms in the molcule.

An important property ohab atom expressions is that the order in which the strands, residues,
and atoms are listed is unimportaing., the atom expressidi,1:5,2,3:N1,C1™ is the exact
same atom expression ‘d52:3,2,5:C1’,N1" . All atom expressions are reordered, internal to
nab, in increasing atom number. So, in thead xample, the selected atoms will be selected in the
following sequence:

1:2:N1
1:2:.CY
1:3:N1
1:3:.CY
1:5:N1
1.5:.C1r
2:2:N1
2:2.CY
2:3:N1
2:3.CY
2:5:N1
2:5.CY

The order in which atoms are selected internal to a specific residue are the order in which they appear
in anab PDB file. As seen in the alke example,N1 appears befor€1’ in all nab nucleic acid
residues and PDB files.

2.8. Looping over atoms in molecules.

Another thing that manpab programs have to do is visit every atom of a molecuodda pro-
vides a special form of ifer -loop for accomplishing this task. These loops have this form:
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for( ain m)
stmt;

aandm represent aatom and amolecule variable. The action of the loop is to s&b each atom

in min this order. The first atom is the first atom of the first residue of the first strand. This is fol-
lowed by the rest of the atoms of this residue, followed by the atoms of the second residue, etc until all
the atoms in the first strand have been visited. The process is then repeated on the second and subse-
guent strands im until a has been set to every atomnmn The order of the strands in a molecule is

the order in which they were created wattddstrand() , the order of the residues in a strand is the

order in which they were added wiglidresidue() and the order of the atoms in a residue is the

order in which they are listed in the resdiue library entry that the residue is based on.

The following program uses two nestefdr -in ” loops to compute all the proton-proton dis-
tances in a molecule. Distances less thaoff  are written tostdout . The program uses the sec-
ond argument on the command to hold ¢heoff  value. The program also uses tkie operator to
compare a character string , in this case an atom name to pattern, speicified as a regular expression.

1 /I Program 4 - compute H-H distances <= cutoff
2 molecule m;
3 atom ai, aj;
4 float d, cutoff;
5
6 cutoff = atof( argv[ 2] );
7 m = getpdb( "gcgl0.pdb");
8
9 for(aiin m){
10 if( ai.atomname !I" "H" )continue;
11 for(aj in m){
12 if( aj.tatomnum <= ai.tatomnum )continue;
13 if( @j.atomname !" "H" )continue;
14 if(( d=distp(ai.pos,aj.pos))<=cutoff){
15 printf(
16 "%3d %-4s %-4s %3d %-4s %-4s %8.3f\n",
17 ai.tresnum, ai.resname, ai.atomname,
18 aj.tresnum, aj.resname, aj.atomname,
19 d);
20 }
21 }
22 }

The molecule is read intmusinggetpdb() . Two atom variableai andaj are used to hold
the pairs of atoms. The outer loop in lines 9-22 aietto each atom imin the order discussed above.
Since this program is only interested in proton-proton distancas, i§ not proton, all calculations
involving that atom can be skipped. Tifie in line 10 tests to seed is a proton. If does so by test-
ing to see ifai 's name, available via thetomname attribute doesn’t match the regular expression
"H" . If it doesn’'t match, the the program executesdbrtinue statement also on line 10, which
has the effect of advancing the outer loop to its next atom.
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From the section on attributes,atomname behaves like a character string. It can be com-
pared against other character strings or tested to see if it matches a pattern or regular expression. The
two operatorsz~ and!” stand formatch anddoesn’'t-match They also inform th@ab compiler that
the string on their right hand sides is to be treated like a regular expression. In this case, the regular
expression'H" matches any name that contains the ldtteor any proton which is just what is
required.

If ai is a proton, then the inner loop from 11-21 is executed. Thisapets each atom in the
same order as the loop in 9. Since distance is refledist?j E distj ), and the distance between an

atom and itself is 0, the inner loop usesitheon line 12 to skip the calculation @y unless it fol-
lowsai in the molecule’s atom order. Next tlie on line 13 checks to seedf is a proton, skipping

to the next atom if it is not. Finally, the on line 14 computes the distance between the two protons
ai andaj and if it is <=cutoff writes the information out using the C-like I/O function

printf()

2.9. Points, Transformations and Frames.

nab provides three kinds of geometric objects. They are the pypes andmatrix and the
“frame” component of aolecule

2.9.1. Points and Vectors.

The nab type point is an object that holds thrdleat  values. These values can represent
the X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of a
point variable are accessed via attributes or suffixes added to the variable name. Theitliree
attributes aré’x" , "y" and"z" . Many nab builtin functions use, return or cregteint values.
Details of operations on points are given in chapter 3.

2.9.2. Matrices and Transformations.

nab uses thematrix type to hold a 44 transformation matrix. Transformations are applied to
residues and molecules toowe them into new orientations and/or positions. Unlike a general coordi-
nate transformatiomab transformations can not alter the scale (size) of an object. However, transfor-
mations can be applied to a subset of the atoms of a residue or molecule changing its shape. For exam-
ple, nab would use a transformation to rotate a group of atoms about a m@mcioesnot require
that transformations applied to parts of residues or molecules be chemically valid. It simply transforms
the coordinates of the selected atoms leaving it to the user to correct (or ignore) any chemically incor-
rect geometry caused by the transformati@b uses the following builtin functions to create and use
transformations.

matrix newtransform( float dx, float dy, float dz,
float rx, float ry, float rz );
matrix rot4( molecule m, string tail, string head, float angle );
matrix rot4p( point tail, point head, float angle );
matrix trans4( molecule m, string tail, string head, float distance );
matrix trans4p( point tail, point head, float distance );
residue transformres( matrix mat, residue r, string aex );
int transformmol( matrix mat, molecule m, string aex );
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nab provides three ways to create a new transformation matrix. The funuwtrans-

form() creates a transformation matrix from 3 translations and 3 rotations. It is intended to position
objects with respect to the standard X, Y, and Z axes located at (0,0,0). Here is how it works. Imagine
two coordinate systems, X, Y, Z and X', Y’, Z’ that are initially superimposaelwtransform()
first rotates the the primed coordinate system aboutrZ ljegrees, then about Y by degrees, then
about X byrx degrees. Finally the reoriented primed coordinate system is translated to the point
(dx,dy,dz) in the unprimed system. The functior®4() androt4p() create a transformation
matrix that effects a clockwise rotation by an angle (in degrees) about an axis defined by two points.
The points can be specifed implicitly by atom expressions applied to a moleooié()n or explic-
itly as points in

rotdp() . If an atom expression irot4()  selects more that one atom, the average coordinate of
all selected atoms is used as the point’s value. (Note that a positive rotation angle here is defined to be
clockwise, which is in accord with the IUPAC rules for defining torsional angles in molecules, but is
opposite to the convention found in many other branches of mathematics.) Similary, rhe functions
trans4() andtrans4p() create a transformation that effects a translation by a distance along the
axis defined by two points. A positive translation is frimih to head.

transformres() applies a transformation to those atomsesf that match the atom expres-
sion aex. It returns acopy of the input residue with the changed coordinates. The input residue is
unchanged. It returnsIULL if the new residue could not be creat&@dnsformmol() applies a
transformation to those atomsmbl that matchaex . Unlike transformres() , transform-
mol() changesthe coordindates of the input molecule. It returfisan success antl on failure. In
both functions, the special atom expres$iWiL selects all atoms in the input residue or molecule.

2.9.3. Frames.
Every nab molecule includes a frame, a handle that allows arbitrary and precise movement of
the molecule. This frame is set with thab builtins setframe() andsetframep() . It is ini-

tially set to the standard X, Y and Z directions centered at (Og&tilame()  creates a coordinate

frame from atom expressions that specify the the origin, the X direction and the Y direction. If any
atom expression selects more that one atom, the average of the selected atoms’ coordinates is used. Z
is created from XY. Since the initial X and Y directions are unlikely to be orthogonal,uge
parameter specifies which of the input X and Y directions is to become the formal X or Y direction. If
use is 1, X is chosen and Y is recreated fromX If use is 2, then Y is chosen and X is recreated

from YxZ. setframep() is identical except that the five points defining the frame are explicitly
provided.

intsetframe( int use, molecule mol, string origin,
string xtail, string xhead,
string ytail, string yhead );
intsetframep( int use, molecule mol, point origin,
point xtail, point xhead,
point ytail, point yhead );
intalignframe( molecule mol, molecule mref);

alignframe() is similar tosuperimpose() , but works on the molecules’ frames rather
than selected sets of their atoms. It transfomoé to superimpose itame on theframe of mref . If
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mref is NULL, alignframe() superimposes the frame wiol on the standard X, Y and Z coordi-
nate system centered at (0,0,0).

Here's how frames and transformations work together to permit precise motion between two
molecules. Corresponding frames are defined for two molecules. These frames are based on “molecu-
lar directions”. alignframe() is first used to align the frame of one molecule along with the stan-
dard X, Y and Z directions. The molecule is then moved and reoriented via transformations. Because
its initial frame was along these molecular directions, the transformations are likely to be along or
about the axes. Finallglignframe() is used to realign the transformed molecule on the frame of
the fixed molecule.

One use of this method would be the rough placement of a drug intooeegoo a DNA
molecule to create a starting structure for restrained molecular dynaseifsame() is used to
define a frame for the DNA along the appropriate groove, with its origin at the center of the binding
site. A similar frame is defined for the drugignframe() first aligns the drug on the standard
coordinate system whose axes are now important directions between the DNA and the drug. The drug
is transformed andlignframe() realigns the transformed drug on the DNA's frame.

2.10. Creating Watson Crick duplexes.

Watson/Crick duplexes are fundamental components of almost all nucleic acid structures and
nab provides several functions for use in creating them. They are

residue getres( string resname, string reslib );
molecule bdna( string seq );
molecule fd_helix( string helix_type, string seq, string acid_type );
string wc_complement( string seq, string reslib, string natype );
molecule wc_basepair( residue sres, residue ares );
molecule wc_helix( string seq, string rlib, string natype,
string aseq, string arlib, string anatype, float xoff,
float incl, float twist, float rise, string opts );

All of these functions are written imab allowing the user to modify or extend them as needed with-
out having to modify th@ab compiler.getres()  which maps one letter residue names into actual
residue names was discussed in the seResidues and Residue Libraries

2.10.1. bdna() and fd_helix().

The functionbdna() which was used in the first example converts a string into a Watson/Crick
DNA duplex using average DNA helical parameters.

1 /I bdna() - create average B-form duplex

2 molecule bdna( string seq )

3 {

4 molecule m;

5 string cseq;

7 cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );
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8 m = wc_helix( seq, "dna.amber94.rlb", "dna”,

9 cseq, "dna.amber94.rlb", "dna",
10 2.25,-4.96, 36.0, 3.38, "sba5s3a3" );
11 return( m);
12 h

bdna() callswc_helix()  to create the molecule. However;_helix() requires both strands of
the duplex sdbdna() callswc_complement() to create a string that represents the Watson/Crick
complement of the sequence contained in its pararseter The string'ssabs3a3" replaces both the
sense an@nti 5’ terminal phospates with hydrogens and adds hydrogens to baderibe andinti 3’
terminal O3’ oxygens. The finished moleculamis returned as the function’s value. If any errors had
occured in creating it would have the valuBlULL, indicating thatbdna() failed.

Note that the simple method usedina() for constructing the helix is not very generic, since
it assumes that theternal geometry of the residues in the library (in this case,amber94.rib) are
appropriate for this sort of helix. This is in fact the case for B-DNA, but this method cannot be triv-
ially generalized to other forms of helices. One could create initial models of other helical forms in
the way described above, and fix up the internal geometry by subsequent energy minimization. An
alternative is to directly use fiber-diffraction models for other types of helices.fdl inelix()
routine does this, reading a database of experimental coordinates from fiber diffraction data, and con-
structing a helix of the appropriate form, with the helix axis albn§ylore details are given in the
Language Reference chapter below.

2.10.2. wc_complement().

The functionwc_complement() takes three strings. The first is a sequence using the standard
one letter code, the second is the name afadnresidue library, and the third is the nucleic acid type
(RNA or DNA). It returns a string that contains the Watson/Crick complement of the input sequence in
the same one letter code. The input string and the returned complement string have opposite direc-
tions. If the left end of the input string is the 5’ base then the left end of the returned string will be the
3’ base. The actual direction of the two strings depends on their use.

1 /I we_complement() - create a string that is the W/C
2 /I complement of the string seq
3 string wc_complement( string seq, string rlib, string rit)
4 {
5 string acbase, base, wcbase, wcseq;
6 inti, len;
8
9 if( rit =="dna")
10 acbase = "t";
11 else if(rlt =="rna")
12 acbase ="u";
13 else{
14 fprintf( stderr,
15 "wc_complement: rlib is not dna/rna, no W/C comp.",

=
[ep)

rlib ):
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17 return( NULL );

18 }

20 len = length( seq );

21 wcseq = NULL;

22 for(i=1;i<=len;i=i+1){

23 base = substr( seq, i, 1);

24 if( base == "a" || base =="A")

25 wchase = acbase;

26 else if( base == "c" || base =="C")
27 wcbase = "g";

28 else if( base == "g" || base =="G")
29 wchase = "c";

30 else if( base == "t" || base =="T")
31 wchase = "a";

32 else if( base == "u" || base =="U")
33 wchase = "a";

34 else{

35 fprintf( stderr,

36 "wc_complement: unknown base %sn",
37 base );

38 return( NULL );

39 }

40 wcseq = wcseq + wcbase;

41 }

42 return( wcseq );

43 }

wc_complement() begins its work in line 9, where the nucleic acid type, as indicateldl by
as DNA or RNA is used to determine the correct complement fa. alfi the residue library is not
nucleic acid, the complementary sequence can not be creatadcaodmplement()  returns the
valueNULL indicating failure. The complementary sequence is created fiorthdéoop that begins in
line 22 and extends to line 41. Thab builtin substr()  is used to extract single characters from
the input sequence beginning with with position 1 and working from left to right until entire input
sequence has been converted. iThdree from lines 24 to 39 is used to set the character complemen-
tary to the current character, using the previously deterng@ioledse if the input character is amor
A. Any character other than the expecéed, g,t, u (or A, C, G T, U) is an error causingic_com-
plement() to print an error message and rettidLL, indicating that it failed. Line 40 shows how
nab uses the infix- to concatentate character strings. When the entire string has been complemented,
thefor loop terminates and the complementary sequence neweseq is returned as the function
value. Note that if the input sequence is empty, complement() returnsNULL, indicating fail-
ure.

2.10.3. wc_helix() Overview.

wc_helix() generates a uniform helical duplex from a sequence, its complement, two residue
libraries and four helical parameters: x-offset, inclination, twist and rise. By using two residue
libraries, wc_helix() can generate RNA/DNA heteroduplexesc helix() returns annab
molecule containing two strands. The streey] becomes thésense” strand and the stringseq
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becomes théanti” strand.seq andaseq are required to be complementary although this is not
checkedwec_helix() creates the molecule one base pair at a th®g. is read from left to right,

aseq is read from right to left and corresponding letters are extracted and converted to residues by
getres() . These residues are in turn combined into an idealized Watson/Crick base pair by
wc_basepair() . An AT created byvc_basepair() is shown in Figure 2.

A Watson/Crick duplex can be modeled as a set of planes stacked in a helix. The numbers that
describe the relationships between the planes and between the planes and the helical axis are called
helical parameters. Planes can be defined for each base or base pair. Six numbers (three displacements
and three angles) can be defined for every pair of planes; however, helical parameters for nucleic acid
bases are restricted to the six numbers describing the the relationship between the two bases in a base
pair and the six numbers describing the relationship between adjacent base pairs. A complete descrip-
tion of helical parameters can be found in Dickerson [19]

wc_helix() uses only four of the 12 helical parameters. It builds its helices from idealized
Watson/Crick pairs. These pairs are planar so the three intra base angles are 0. In addition the displace-
ments are displacements from the idealized Watson/Crick geometry and are alsé\ @ndh&eT in
Figure 2 are in plane of the page:_helix() uses four of the six parameters that relate a base pair
to the helical axis. The helices createdvy helix() have a single axis (the Z axis, not shown)
which is at the intersection of the X and Y axes of Figure 2. Now imagine keeping the axes fixed in the
plane of the paper and moving the base pair. X-offset is the displacement along the X axis between the
Y axis and the line marked Y'. A positive X-offset is toward the arrow on the X-axis. Inclination is the
rotation of the base pair about the X axis. A rotation that moves theve Hie plane of page and the
T below is positive. Twist involves a rotation of the base pair about the Z-axis. A counterclockwise
twist is positive. Finally, rise is a displacement along the Z-axis. A positive rise is out of the page
toward the reader.

2.10.4. wc_basepair().

The functionwc_basepair()  takes two residues and assembles them into a two straabtied
molecule containing one base pair. Resiges is placed in thédsense" strand and residusres
is placed in théanti" strand. The work begins in line 14 wherewmolecule() is used to cre-
ate an empty molecule storedrmn Two strandssense andanti are added usingddstrand()
In addition, two more molecules are createdsense for the sense residue and anti for the anti
residue. Théf -trees in lines 26-61 and 63-83 are used to select residue dependent atoms that will be
used to mve the base pairs into a convenient orientation for helix generationpdrivee:C4 and
pyrimidine:C6 distance which is residue dependent is also set. In linedi&esidue() adds
sres to the strandsense of m_sense. In line 84, addresidue() addsares to the strand
anti of m_anti . Lines 86 and 87 align the molecules containing the sense residue and anti residue
so thatsres andares are on top of each other. Line 88 creates a transformation matrix that rotates
m_anti ( containingares ) 180 about the X-axis. After applying this transformation, the two bases
are still occupying the same space ags is now antiparallel tsres . Line 90 creates a transfor-
mation matrix that displaces_anti andares along the Y-axis bypep A. The properly positioned
molecules containingres andares are merged into a single molecule, mompleting the
base pair. Lines 95-96 move this base pair to a more convenient

19. R. E. Dickerson, “Definitions and Nomenclature of Nucleic Acid Structure Parameters,” J.
Biomol. Struct. Dyn.6, (4)627-634 (1989).
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Figure 2. ADE:THY from wc_basepair().

orientation for helix generation. Initially the base as shown in

Figure 2 is in the plane of page with origin on the C4 of theA. The calls to
setframe()  andalignframe() movethe base pair so that the origin is at the intersection of the
lines marked X and Y’.
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/I wec_basepair() - create Watson/Crick base pair
#define AT_SEP 8.29
#define CG_SEP 8.27
molecule wc_basepair( residue sres, residue ares )
{

residue r;

molecule m;

float sep;

string srname, arname;

string xtail, xhead,;

string ytail, yhead,;

matrix mat;

m = newmolecule();

m_sense = newmolecule();
m_anti = newmolecule();
addstrand( m, "sense");
addstrand( m, "anti");
addstrand( m_sense, "sense" );
addstrand( m_anti, "anti" );

srname = getresname( sres );
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arname = getresname( ares );
ytail = "sense::C1™";
yhead = "anti::C1";
if( ( srname =="ADE") || ( srname == "DA") ||
( srname =="RA") || ( srname =" "[DR]A[35]" ) X
sep = AT_SEP;
xtail = "sense::C5";
xhead = "sense::N3";
setframe( 2, m_sense,
":C4", "Ch", "IN3Y, "iC4T, N1 );
}else if( ( srname =="CYT") || ( srname =" "[DR]C[35]*" )
sep = CG_SEP;
xtail = "sense::C6";
xhead = "sense::N1";
setframe( 2, m_sense,
":C6", ":Ch", ":N1", "::C6", "::N3");
}else if( ( srname == "GUA") || ( srname =" "[DR]G[35]*" ) )
sep = CG_SEP;
xtail = "sense::C5";
xhead = "sense::N3";
setframe( 2, m_sense,
":C4", "Ch", "IN3Y, MiC4T, "NL");
Yelse if( ( srname =="THY") || ( srname =""DT[35]*" ) }{
sep = AT_SEP;
xtail = "sense::C6";
xhead = "sense::N1";
setframe( 2, m_sense,
":C6", ":Ch", ":N1", "::C6", "::N3");
Yelse if( ( srname == "URA") || ( srname =" "RU[35]*" ) }{
sep = AT_SEP;
xtail = "sense::C6";
xhead = "sense::N1";
setframe( 2, m_sense,
":C6", ":Ch", ":N1", "::C6", "::N3");
Yelse{
fprintf( stderr,

"wc_basepair : unknown sres %s0,srname );

exit(1);
}
addresidue( m_sense, "sense", sres );
if( (arname =="ADE") || (arname == "DA") ||
( arname =="RA") || (arname =" "[DR]A[35]" ) {
setframe( 2, m_anti,
":C4", ":CH", "N3", ":C4", N1t );
}else if( (arname =="CYT") || (arname =" "[DR]C[35]*" ) ){
setframe( 2, m_anti,
"::C6", "::C5", ":N1", "::C6", "::N3");

30
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70 }else if( (arname =="GUA") || (arname =" "[DR]G[35]*" ) X
71 setframe( 2, m_anti,

72 ":C4", ":Ch", "N3", ":C4", N1t );
73 lelse if( (arname =="THY") || (arname =" "DT[35]*" ) ){
74 setframe( 2, m_anti,

75 "::C6", "::C5", ":N1", "::C6", "::N3");
76 }else if( (arname =="URA") || (arname =" "RU[35]*" ) ¥
77 setframe( 2, m_anti,

78 "::C6", "::C5", ":N1", "::C6", "::N3" );
79 Jelse{

80 fprintf( stderr,

81 "wc_basepair : unknown ares %s0,arname );
82 exit(1);

83 }

84 addresidue( m_anti, "anti", ares );

85

86 alignframe( m_sense, NULL );

87 alignframe( m_anti, NULL );

88 mat = newtransform( 0., 0., 0., 180., 0., 0.);

89 transformmol( mat, m_anti, NULL );

90 mat = newtransform( 0., sep, 0., 0., 0., 0.);

91 transformmol( mat, m_anti, NULL );

92 mergestr( m, "sense", "last", m_sense, "sense", "first" );
93 mergestr( m, "anti", "last", m_anti, "anti", "first" );

94

95 setframe( 2, m, "::C1™, xtail, xhead, ytail, yhead );

96 alignframe( m, NULL );

97 return( m);

98 3

2.10.5. wc_helix() Implementation.

The functionwc_helix()  assembles base pairs frevo_basepair()  into a helical duplex.
It is a fairly complicated function that uses several transformations and showsdrgestr() is
used to combine smaller molecules into a larger one. In addition to creating complete duplexes,
wc_helix() can also create molecules that contain only one strand of a duplex. Using the special
valueNULL for eitherseq or aseq creates a duplex that omits the residues foNbiéL sequence.
The molecule still contains two strandgnse andanti , but the strand corresponding to thelLL
sequence has zero residues. helix() first determines which strands are required, then creates
the first base pair, then creates the subsequent base pairs and assembles them into a helix and finally
packages the requested strands into the returned molecule.

Lines 19-34 test the input sequences to see which strands are required. The Vagldes
andhas_a are flags where a value dbfindicates thaseq and/oraseq was requested. If an input
sequence idIULL, wc_complement() is used to create it and the appropriate flag is s@t t6he
nab builtin setreslibkind() is used to set the nucleic acid type so that the proper residue ( DNA
or RNA) is extracted from the residue library. The first base pair is created in lines 38-87. The two
letters corresponding the 5’ basesefj and the 3’ base aiseq are extracted using theab builtin
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substr() , converted to residues usiggtres() and assembled into a base pairiay base-

pair() . This base pair is oriented as in Figure 2 with the origin at the intersection of the lines X and
Y'. Two transformations are createdpmat for the x-offset andnmat for the inclination and
applied to this pair. Base pairs 2dien-1 are created in thior loop in lines 95-118 substr()

is used to extract the appropriate letters figeg andaseq which are converted into another base
pair by getres() andwc_basepair() . Four transformations are applied to these base pairs -
two to set the x-offset and the inclination and two more to set the twist and the risenRlake
molecule containing the newly created properly positioned base pair must be bonded to the previously
created molecule im1 Since nab only permits bonds between residues in the same strand,
mergestr()  must be used to combine the corresponding strands in the two moleculescbafore
nectres()  can create the bonds.

Because the two strands in a Watson/Crick duplex are antiparallel, adding a base pair to one end
requires that one residue be addéédr thelast residue of one strand and that the other residue added
before thefirst residue of the other strand.Wwt_helix()  thesense strand is extended after its last
residue and thanti strand is extended before its first residue. The catheogestr() in lines
108-109 extends thesense strand ofml with the the residue of thesense strand ofm2 The
residue ofm2is added after the'last” residue of of thesense strand ofml The final argument
"first" indicates that the residue wi2are copied in their original ordemnl:sense:last is fol-
lowed bym2:sense:first . After the strands have been mergechnnectres() makes a bond
between the@3' of the next to last residuéX ) and theP of the last residue §. The next call to
mergestr()  works similarly for the residues in thanti strands. The residue in thati strand
of m2are copied into the thanti strand ofm1 before the first residue of thanti strand of m1l
m2:anti: last precedesnl:anti: first . After mergingconnectres() creates a bond between
the O3’ of the new first residue and tlireof the second residue. Lines 184-194 create the returned
moleculem3 If the flaghas_s is 1, mergestr()  copies the entire senserand of mlinto the
empty sensstrand of m3 If the flaghas_a is 1, theanti strand is also copied.

1 Il we_helix() - create Watson/Crick duplex
2 string wc_complement();
3 molecule wc_basepair();
4 molecule wc_helix(
5 string seq, string sreslib, string snatype,
6 string aseq, string areslib, string anatype,
7 float xoff, float incl, float twist, float rise,
8 string opts )
9 {

10 molecule m1, m2, m3;

11 matrix xomat, inmat, mat;

12 string arname, srname;

13 string sreslib_use, areslib_use;

14 residue sres, ares;

15 int has_s, has_a;

16 inti, slen;

17 float  ttwist, trise;

=
(o]
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has s=1;has a=1;

if( sreslib =="") sreslib_use = "dna.amber94.rlb";
else sreslib_use = sreslib;

if( areslib =="") areslib_use = "dna.amber94.rlb";

else areslib_use = areslib;

if( seq == NULL && aseq == NULL ){
fprintf( stderr, "wc_helix: no sequence0 );
return( NULL );

}else if( seq == NULL ¥
seq = wc_complement( aseq, areslib_use, snatype );
has s =0;

}else if( aseq == NULL ){
aseq = wc_complement( seq, sreslib_use, anatype );
has a=0;

}
slen = length( seq );

srname = substr( seq, 1, 1);
setreslibkind( sreslib, snatype );
if ( substr( sreslib_use, length(sreslib_use)-2,
length(sreslib_use ) ) =="rlb" }{
if( opts =" "s5")
sres = getres( srname, substr( sreslib_use, 1,
length(sreslib_use)-3) + "5.rlb");
else if( opts =7 "s3" && slen ==1)
sres = getres( srname, substr( sreslib_use, 1,
length(sreslib_use)-3) + "3.rlb");
else sres = getres( srname, sreslib_use );
}else if ( substr( sreslib_use, length(sreslib_use)-2,
length(sreslib_use ) ) =="lib" }{
if( opts =" "s5")
sres = getres( srname + "5", sreslib_use );
else if( opts =7 "s3" && slen ==1)
sres = getres( srname + "3", sreslib_use );
else sres = getres( srname, sreslib_use );

Yelse{
fprintf(stderr,
"wc_helix : unknown sense residue library : %s0,
sreslib_use);
exit(1);
}

arname = substr( aseq, 1, 1);
setreslibkind( areslib, anatype );
if ( substr( areslib_use, length(areslib_use)-2,
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length(areslib_use ) ) =="rlb" }{
if( opts =" "a3")
ares = getres( arname, substr( areslib_use, 1,
length(areslib_use)-3) + "3.rlb");
else if( opts =" "a5" && slen==1)
ares = getres( arname, substr( areslib_use, 1,
length(areslib_use)-3) + "5.rlb");
else ares = getres( arname, areslib_use );
}else if ( substr( areslib_use, length(areslib_use)-2,
length(areslib_use ) ) =="lib" ){
if( opts =" "a3")
ares = getres( arname + "3", areslib_use );
else if( opts =~ "a5" && slen==1)
ares = getres( arname + "5", areslib_use );
else ares = getres( arname, areslib_use );

Yelse{
fprintf(stderr,
"wc_helix : unknown anti residue library : %s0,
areslib_use );
exit(1);
}

m1l = wc_basepair( sres, ares );
freeresidue( sres ); freeresidue( ares );

xomat = newtransform(xoff, 0., 0., 0., 0., 0.);
transformmol( xomat, m1, NULL );
inmat = newtransform( 0., 0., 0., incl, 0., 0.);
transformmol( inmat, m1, NULL );

trise = rise; ttwist = twist;
for(i=2;i<=slen-1;i=i+1){
srname = substr( seq, i, 1);
setreslibkind( sreslib, snatype );
sres = getres( srname, sreslib_use );
arname = substr( aseq, i, 1);
setreslibkind( areslib, anatype );
ares = getres( arname, areslib_use );
m2 = wc_basepair( sres, ares );
freeresidue( sres ); freeresidue( ares );
transformmol( xomat, m2, NULL );
transformmol( inmat, m2, NULL );
mat = newtransform( 0., 0., trise,

0., 0., ttwist );
transformmol( mat, m2, NULL );
mergestr( m1, "sense", "last",

m2, "sense", "first");
connectres( m1, "sense",
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i-1, "03™, i, "P");
mergestr( m1, "anti", "first",
m2, "anti", "last" );
connectres( m1, "anti",
1,"03™, 2,"P");
trise = trise + rise;
ttwist = ttwist + twist;
freemolecule( m2 );

i = slen; /I add in final residue pair
if(i>1)

srname = substr( seq, i, 1);
setreslibkind( sreslib, snatype );
if ( substr( sreslib_use, length(sreslib_use)-2,
length(sreslib_use ) ) =="rlb" }{
if( opts =" "s3")
sres = getres( srname, substr( sreslib_use, 1,
length(sreslib_use)-3) + "3.rIb");
else
sres = getres( srname, sreslib_use );
}else if ( substr( sreslib_use, length(sreslib_use)-2,
length(sreslib_use ) ) =="lib" }{
if( opts =7 "s3" )
sres = getres( srname + "3", sreslib_use );

else
sres = getres( srname, sreslib_use );
Yelse{
fprintf(stderr,
"wc_helix : unknown sense residue library : %s0,
sreslib_use);
exit(1);
}

arname = substr( aseq, i, 1);
setreslibkind( areslib, anatype );
if ( substr( areslib_use, length(areslib_use)-2,
length(areslib_use ) ) =="rlb" }{
if( opts =" "ab")
ares = getres( arname, substr( areslib_use, 1,
length(areslib_use)-3) + "5.rlb");
else
ares = getres( arname, areslib_use );
}else if ( substr( areslib_use, length(areslib_use)-2,
length(areslib_use ) ) =="lib" ){
if( opts =" "a5")
ares = getres( arname + "5", areslib_use );

35
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157 else

158 ares = getres( arname, areslib_use );
159 Yelse{

160 fprintf(stderr,

161 "wc_helix : unknown anti residue library : %s0,
162 areslib_use );
163 exit(1);

164 }

165

166 m2 = wc_basepair( sres, ares );
166 freeresidue( sres ); freeresidue( ares );
167 transformmol( xomat, m2, NULL );
168 transformmol( inmat, m2, NULL );
169 mat = newtransform( 0., 0., trise,
170 0., 0., ttwist );

171 transformmol( mat, m2, NULL );
172 mergestr( m1, "sense", "last",

173 m2, "sense", "first");
174 connectres( m1, "sense",

175 i-1, "03™, i, "P");

176 mergestr( m1, "anti", "first",

177 m2, "anti", "last" );

178 connectres( mi, "anti",

179 1,"03", 2,"P");

180 trise = trise + rise;

181 ttwist = ttwist + twist;

181 freemolecule( m2 );

182 }

183

184 m3 = newmolecule();

185 addstrand( m3, "sense" );

186 addstrand( m3, "anti");

187 if( has_s)

188 mergestr( m3, "sense", "last",

189 m1, "sense", "first");

190 if( has_a)

191 mergestr( m3, "anti", "last",

192 m1, "anti", "first" );

193 freemolecule( m1);

194

195 return( m3);

196 h

2.11. Structure Quality and Energetics.

Up to this point, all the structures in the examples have been built using only transformations.
These transformations properly place the purine and pyrimidine rings. However, since they are rigid
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body transformations, they will create distorted sugar/backbone geometry if any internal sugar/back-
bone rearrangements are required to accomodate the base geometry. The amount of this distortion
depends on both the input residues and transformations applied and can vary from trivial to so severe
that the created structures are uselesb. offers two methods for fixing bad sugar/backbone geome-

try. They are molecular mechanics and distance geonrethy.provides distance geometry routines

and has its own molecular mechanics package. The latter requitdsafh@rogram, which is part of

the AMBER suite of programs developed at the University of California, San Francisco and at The
Scripps Research Institute. Information about how to obtain this program is available on the Internet at
http://www.amber.ucsf.edu/amber/amber.html . Details on the routines involved are

given in theLanguage Referencehapter, and some examples are given below.

2.11.1. Creating a Parallel DNA Triplex.

Parallel DNA triplexes are thought to be intermediates in homologous DNA recombination.
These triplexes, investigated by Zhurkiral. [20] are called R-form DNA, and are believed to exist in
two distinct conformations. In the presence of recombination proteins (eg. RecA), they adopt an
extended conformation that is underwound with respect to standard helices (a twistaid20ery
large base stacking distances (a rise of k. However, in the absence of recombination proteins, R-
form DNA exists in a “collapsed” form that resembles conventional triplexes but with two very impor-
tant differences—the two parallel strands have the same sequence and the triplex can be made from
any Watson/Crick duplex irregardless of its base composition. The remainder of this section discusses
how this triplex could be modeled and twab programs that implement that strategy.

If the degrees of freedom of a triplex are specified by the helicoidal parameters requried to place
the bases, then a triplex bNfbases has B(- 1) degrees of freedom, an impossibly large humber for
any but trivial N. Fortunately, the nature of homologous recombination allows some simplifying
assumptions. Since the recombination must workmynduplex, the overall shape of the triplex must
be sequence independent. This implies that each helical step uses the same set of transformational
parameters which reduces the size of the problem to six degrees of freedom once the individual base
triads have been created.

The individual triads are created by assuming that they are planar, that the third base is hydrogen
bonded on the major goge side of the base pair as it appears in a standard Watson/Crick duplex, that
the original Watson Crick base pair pair is essentially undisturbed by the insertion of the third base and
finally that the third base belongs at the point that maximizes its hydrogen bonding with respect to the
original Watson/Crick base pair. After the optimized triads have been created, they are assembled into
dimers. The dimers assume that the helical axis passes through the center of the circle defined by the
positions of the thre€1’ atoms. Several instances of a two parameter family (rise, twist) of dimers
are created for each of the 16 pairs of triads and minimized.

2.11.2. Creating Base Triads.

Here is amab program that computes the vacuum energi6fX base triads as a function of
the position and orientation of te(non-Watson/Crick) base. A minimum eneryy:A found by the
program along with the potential energy surface keyed to the position of the Festhiown in

20. V. B. Zhurkin, G Raghunathan, N. B. Ulynaov, R. D. Camerini-Otero, and R. L. Jernigan, “A
Parallel DNA Triplex as a Model for the Intermediate in Homologous Recombination,” Journal
of Molecular Biology 239, 181-200 (1994).
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Figure 3. The program creates a single Watson/Crick DNA base pair and then computes the energy of
a third DNA base at each position of a user defined rectangular grid. Since hydrogen bonding is both

distance and orientation dependent the program allows the user to specify a range of orientations to try
at each grid point. The orientation giving the lowest energy at each grid point and its associated energy
are written to a file. The position and orientation giving the lowest overall energy is saved and is used

to recreate the best triad after the search is completed.

1 /I Program 5 - Investigate energies of base triads
2 molecule m;
3 residue tr;
4 string sb, ab, tb;
5 matrix rmat, tmat;
6
7 file ef;
8 string mfnm, efnm;
9 point txyz[ 35 ];
10 float x, Ix, hx, xi, mx;
11 floaty, ly, hy, yi, my;
12 float rz, Irz, hrz, rzi, urz, mrz, brz;
13
14 int prm;
15 point xyz[ 100 ], force[ 100 ];
16 float me, be, energy;
17
18 scanf( "%s %s %s", sb, ab, th );
19 scanf( "%lIf %lf %lf", Ix, hx, xi );
20 scanf( "%lIf %lf %lf", ly, hy, yi);
21 scanf( "%lIf %lf %lIf", Irz, hrz, rzi );
22
23 mfnm = sprintf( "%s%s%s.triad.min.pdb", sb, ab, tb);
24 efnm = sprintf( "%s%s%s.energy.dat”, sb, ab, tb);
25
26 m = wc_helix(sb, "dna.amber94.rlb", "dna”, ab,
27 "dna.amber94.rlb", "dna", 2.25, 0.0, 0.0, 0.0 );
28
29 addstrand( m, "third" );
30 tr = getres( tb, "dna.amber94.rlb" );
31 addresidue( m, "third", tr);
32 setxyz_from_mol( m, “third::", txyz );
33
34 leap(m, ™, ™ ); readparm( m, "prmtop" );
35 mme_init( m, NULL, "::Z2ZZ", xyz, NULL );
36
37 ef = fopen( efnm, "w");
38

w
©

mrz=urz=lrz - 1;
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40 for(x = Ix; x <= hx; x = x + xi §

41 for(y =ly;y <=hy;y =y +yi )}

42 brz = urz;

43 for(rz=1Irz;rz<=hrz;rz =rz + rzi ){

44 setmol_from_xyz( m, "third::", txyz );
45 rmat=newtransform( 0., 0., 0., 0., 0., rz);
46 transformmol( rmat, m, "third::");

47 tmat=newtransform( x, y, 0., 0., 0., 0.));
48 transformmol( tmat, m, "third::");

49

50 setxyz_from_mol( m, NULL, xyz );
51 energy = mme( xyz, force, 1);

52

53 if( brz == urz {

54 brz = rz; be = energy;

55 }else if( energy < be ¥

56 brz = rz; be = energy;

57 }

58 if(mrz == urz ){

59 me = energy;

60 mx = X; my =y; mrz = rz,

61 }else if( energy < me )}

62 me = energy;

63 mx = X; my =y; mrz = rz,

64 }

65 }

66 fprintf( ef, "%10.3f %210.3f %10.3f %10.3fn",
67 X, Y, brz, be);

68 }

69 }

70 fclose( ef );

71

72 setmol_from_xyz( m, "third::", txyz );

73 rmat = newtransform( 0.0, 0.0, 0.0, 0.0, 0.0, mrz);
74 transformmol( rmat, m, "third::");

75 tmat = newtransform( mx, my, 0.0, 0.0, 0.0, 0.0);

76 transformmol( tmat, m, "third::");

77 putpdb( mfnm, m);

Program 5 begins by reading in a description of the desired triad and data defining the location
and granularity of the search area. It does this with the calls toathéuiltin scanf() on lines
18-21. scanf()  uses its first argument as a “format” string which directs the conversion of text ver-
sions ofint , float andstring values into their internal formats. The first calstanf() reads
the three letters that specify the bases, the next two calls read the X and Y location, extent and granu-
larity of the the search rectangle and the last call reads in the first, last and increment values that will
be used specify the orientation of the third base at each point on the search grid.
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Lines 23 and 24 respectively, create the names of the files that will hold the best structure found
and the values of the potential energy surface. The file names are created using the builtin
sprintf() . Like scanf()  this function also uses its first argument as a format string, used here to
construct a string from the data values that follow it in the parameter list. The action of these calls is
to replace the each format descriptars( with the values of the corresponding string variable in the
parameter list. The file names created forAkkeA shown in Figure 3 werAUA.triad.min.pdb
andAUA.energy.dat . Format expressions and formatted 1/O including the 1/O dikentf()
are discussed in the sectioRsrmat Expressionsand Ordinary I/O Functions of the nab Lan-
guage Reference

The triad is created in two major steps in lines 26-32. First a Watson/Crick base pair is created
with wc_helix() . The base pair has an X-offset of 22&4d an inclination of 0.0 meaning it lies in
the XY plane. Twist and rise although they are not used in creating a single base pair are also set to
0.0. The X-offset which is that of standard B-DNA was chosen to faciliate extension of triplexes made
from the triads created here with standard duplex DNA. Absent this consideration any X-offset includ-
ing 0.0 would have been satisfactory. A third strdhdifd" ) is added tam the stringtb is con-
verted into a DNA residue and this residue is added to the new strand. Finally in the coordinates of the
third strand are saved in th@int arraytxyz . Referring to Figure 3, the third base is located
directly on top of the Watson/Crick pair. A purine would haveCsatom at the origin and i84-N1
vector along the Y axis; a pyrimidine {86 at the origin and it€6-N3 vector along the Y axis. Obvi-
ously this is not a real structure; however, as will be seen in the next section, this initial placement
greatly simplifies the transformations required to explore the search area.
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2.11.3. Finding the lowest energy triad.

The energy calculation begins in line 34 and extends to line 69. Elements of the general molecu-
lar mechanics code skeleton discussed ilLtmguage Referencehapter are seen at lines 34-35 and
lines 50-51. Initialization takes place in lines 34 and 35 with the chdbfn() to prepare th@rm-
top that contains the information needed to compute molecular mechanics energies. This is followed
by the call toreadparm which reads back in the newly creafgthtop file, and creates an internal
data structure. The force field routine is initialized in line 35, asking that all atoms be allowed to
move. The actual energy calculation is done in lines 50 andebdyz_from_mol() copies the
current conformation afol into thepoint arrayxyz and thermme() evaluates the energy of this
conformation. Note that the energy evaluation is in a loop, in this case nested inside the three loops
that control the conformational search.

The search area shown in Figure 3 is on the left side of the Watson/Crick base pair. This corre-
sponds to inserting the third base into the majoowg®fthe duplex. Now as the third base is initially
positioned at the origin with its hydrogen bonding edge pointing towards the top of the page, it must
be both moved to the left or in the -X direction and rotated approximatelysedthat its hydrogen
bonding sites can interact with those on the left side of the Watson/Crick pair.

The search is executed by the three nefted loops in lines 40, 41 and 43. They control the
third base’s X and Y position and its orientation in the XY plane. Two transformations are used to
place the base. The first step of the placement process is in line 44 wheab theiltin set-
mol_from_xyz() is used to restore the original (untransformed) coordinates of the base. The call to
newtransform() in line 45 creates a transformation matrix that will point the third base so that its
hydrogen bonding sites are aimed in the positive X direction. A second transformation matrix created
on line 47 is used to owve the properly oriented third base to a point on the search area. The call to
setxyz_from_mol() extracts the coordinates of this conformation kyte andmme() computes
and returns its energy.

The remainder of the loop determines if this is either the best overall energy or the best energy
for this grid point. Lines 53-57 compute the best energy at this point and lines 58-64 compute the best
overall energy. The complexity arises from the fact that the energy returnmenby) can be any
float value. Thus it is not possible to to pick a value that is guaranteed to be higher than any value
returned during the search. The solution is to use the value from the first iteration of the loop as the
value to test against. The two variablesz andbrz are used to indicate the very first iteration and
the first iteration of the rz loop. The gray rectangle of Figure 3 shows the vacuum energy of the best
AU:A triad found when the origin of the X’ Y’ axes are at that point on the rectangle. Darker grays
are lower energies. Figure 3 shows the Bés®A found.

2.11.4. Assembling the Triads into Dimers.

Once the minimized base triads have been created, they must be assembled into triplexes. Since
these triplexes are believed to be intermediates in homologous recombination, their structure should be
nearly sequence independent. This means that they can be assembled by applying the same set of heli-
cal parameters to each optimized triad. However, several things still need to be determined. These are
the location of the helical axis and just what helical parameters are to be applied. This code assumes
that the three backbone strands are roughly on the surface of a cylinder whose axis is the global helical
axis. In particular the helical axis is the center of the circle defined by theGQhteatoms in each
triad. While the four circles defined by the four minimized triads are not exactly the same, their radii
are within XA of each other with the XY:X triad having the largest offset 6f YAe code makes two
additional assumptions. The sugar rings are all in the C2’-endo conformation and the triads are not
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Figure 3. Minimum energy AUA triad and Potential Energy Surfafe.

inclined with respect to the helical axis. The program that creates and evaluates the dimers is shown
below. A detailed explanation of the program follows the listing.

1 /l Program 6 - Assemble triads into dimers

2 molecule gettriad( string mname )

3 {

4 molecule m;

5 point pl, p2, p3, pc;

6 matrix mat;

7

8 if( mname =="a" ){

9 m = getpdb( "ata.triad.min.pdb" );
10 setpoint( m, "A:ADE:C1™, p1);
11 setpoint( m, "B:THY:C1™, p2);
12 setpoint( m, "C:ADE:C1™, p3);
13 }else if( mname == "c" }{
14 m = getpdb( "cgc.triad.min.pdb" );
15 setpoint( m, "A:CYT:C1™, pl1);
16 setpoint( m, "B:GUA:C1™, p2);
17 setpoint( m, "C:CYT:C1™, p3);
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}else if( mname =="g" }{
m = getpdb( "gcg.triad.min.pdb" );
setpoint( m, "A:GUA:C1™, p1);
setpoint( m, "B:CYT:C1™, p2);
setpoint( m, "C:GUA:C1™, p3);

}else if( mname =="t" }{
m = getpdb( "tat.triad.min.pdb" );
setpoint( m, "A:THY:C1™, p1);
setpoint( m, "B:ADE:C1™, p2);
setpoint( m, "C:THY:C1™, p3);

}

circle( p1, p2, p3, pc);

mat = newtransform( -pc.x, -pc.y, -pc.z, 0.0, 0.0, 0.0 );

transformmol( mat, m, NULL );
setreskind( m, NULL, "DNA");
return( m);

int mk_dimer( string ti, string tj )

{

molecule mi, mj;

matrix mat;

int sid;

float r, tw;
string ifname, sfname, mfname;
file idx;

int natoms;

float dgrad, fret;
float box[ 3 ];
float xyz[ 1000 J;
float fxyz[ 1000 ];
float energy;

sid = 0;

mi = gettriad( ti );

mj = gettriad( tj );

mergestr( mi, "A", "3™, mj, "A", "5 );
mergestr( mi, "B", "5™, mj, "B", "3");
mergestr( mi, "C", "3™, mj, "C", "5™);
connectres( mi, "A", 1, "O3™, 2, "P");
connectres( mi, "B", 1, "O3™, 2, "P");
connectres( mi, "C", 1, "O3™, 2, "P");

leap( mi, ™, "™);
readparm( mi, "prmtop" );

43
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65 ifname = sprintf( "%s%s3.idx", ti, tj );
66 idx = fopen( ifname, "w");
67 for(ri=3.2;ri<=4.4;ri=ri+.2)
68 for(tw = 25; tw <=45; tw =tw + 5 ){
69 sid = sid + 1;
70 fprintf(idx, "%3d %5.1f %5.1f", sid, ri, tw );
71
72 mi = gettriad( ti );
73 mj = gettriad( tj );
74
75 mat = newtransform( 0.0, 0.0, ri, 0.0, 0.0, tw);
76 transformmol( mat, mj, NULL );
77
78 mergestr( mi, "A", "3™, mj, "A", "5™);
79 mergestr( mi, "B", "5™, mj, "B", "3");
80 mergestr( mi, "C", "3™, mj, "C", "5™);
81 connectres( mi, "A", 1, "O3™, 2, "P");
82 connectres( mi, "B", 1, "O3™, 2, "P");
83 connectres( mi, "C", 1, "O3™, 2, "P");
84
85 sfname = sprintf( "%s%s3.%03d.pdb", ti, tj, sid );
86 putpdb( sfname, mi ); /[ starting coords
87
88 natoms = getmolyz( mi, NULL, xyz );
89 mme_init( m, NULL, "::Z2ZZ7", xyz, NULL );
90
1 dgrad = 0.1;
92 conjgrad( xyz, 3*natoms, fret, mme, dgrad, 10, 100 );
93 energy = mme( xyz, fxyz, 1);
9
95 setmol_from_xyz( mi, NULL, xyz );
96 mfname = sprintf( "%s%s3.%03d.min.pdb", ti, tj, sid );
97 putpdb( mfname, mi ); /I minimized coords
98 }
99 }
100 fclose(idx );
101 |5
102
103 inti, j;

104 string i, tj;
105 for(i=1;i<=4;i=i+1){

106 for(j=1;j<=4;j=j+ 1)
107 ti = substr( "acgt", i, 1);
108 tj = substr( "acgt", j, 1);
109 mk_dimer( ti, tj );

110 }

111}
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Program 6 assembles, minimizes and writes the final energies of a family of dimers for each of
the 16 pairs of optimized triads. The program is long but straightforward. It is organized into two sub-
routines followed by a main program. The first subrougjetriad() is defined in lines 2-34, the
second subroutinuak_dimer() in lines 36-101 and the main program in lines 103-111. The overall
organization is that the main program controls the sequence of the dimers beginnifg arith con-
tinuing with AC, AG ... and on up td'T. Each time it selects the sequence of the dimer, it calls
mk_dimer() to explore the family of structures defined by variation in the rise and twist.

mk_dimer() in turn callsgettriad() to fetch and orient the specified base triples.
The functiongettriad() (lines 2-34) takes a string with one of the four valtads, "c" ,
"g" or"t" . Theif -tree in lines 8-28 uses this string to select the coordinates of the corresponding

optimized triad. Thdf -tree sets the value of the three poipls p2 andp3 that will be used to

define the circle whose center will intersect the global helical axis. Once these points are defined, the
nab builtin circle() (line 29) returns the center of the circle they definpdnThe builtincir-

cle() returns dl if the three points do not define a circle ar@lifithey do. In this case it is known

that the positions of the thr€xl’ atoms are well behaved, so the return value is ignored. The selected
triad is properly centered in lines 30-31. Each residue of the triad is set to be dDNAE via the

call to setreskind() in line 32 so that its atomic charges and forcefield potentials can be set cor-
rectly to perform the minimization. The new molecule is returned as the function’s value in line 33.

The dimers are created by the functiok_dimers() that is defined in lines 36-101. The pro-
cess uses two stages. The molecule is first prepared for molecular mechanics in lines 53-63 and then
dimers are created and minimized in the two nested loops in lines 67-99. The results of the minimiza-
tions are stored in a file whose name is derived from the name of the triads in the dimer. For example,
the results for a\A would be in the fild'aa3.idx" . There is one file for each of the 16 dimers.
The file name is created in line 65 and opened for writing in line 66. It is closed just before the func-
tion returns in line 100. Each line of the file contains a number that identifies the dimer's parameters
followed by its rise, twist and final (minimized) energy.

In order to perform molecular on a molecule tiad program must create a “parameter” struc-
ture for it. This structure contains the topology of the molecule and parameters for the various terms of
forcefield—things like bond lengths and angles, torsions, chirality and planarity. This is done in lines
53-63. The particular dimer is created. The functettriad() is called twice to return the two
properly centered triads in the molecuhgisandmj. Next the three strands ofj are merged into the
three strands ahi to create a triplex of length 2. THA" and"B" strands form the Watson/Crick
pairs of the triplex and th&C" strand contains the strand that is parallel td'&e strand. The three’
calls toconnectres() create arD3-P  bond between the newly added residue and the existing
residues in each of the three strands. After all this is done, the éadit) in line 64 builds the
parameter structure, returnitigon failure and on success.

This section of code seems simple enough except for one thing—the two triads in the dimer are
obviously directly on top of each other. However, this is not a problem beleayge ignores the
molecule’s coordinates. Instead it uses the molecule’s residue names to get each residue’s internal
coordinates and other information from a library which it uses to up the parameter and topology struc-
ture required by the minimization routines.

The dimers are built and minimized in the two nested loops in lines 69-104. The outer loop
varies the rise from 32f0 4.4Aby 0.2Aand the inner loop varies the twist from°26 45 in steps
of 5° creating 35 different starting dimers. The variabld is a number that identifies each
(rise,twist) pair. It is inserted into the file names of the starting coordinates (lines 85-86) and mini-
mized coordinates (lines 96-97) to make it easy to identify them.
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Each dimer is created in lines 72-83. The two specififed triads are returned by the geails to
triad() as the molecule’mi andmj. Next the triad immj is transformed to give it the current rise
and twist with respect to the triadnm . The transformed triad imj is merged intoni and bonded to
mi. These starting coordinates are written to a file whose name contains both the dimer sequence and
sid . For example, the first dimer f&tAwould be"aa3.01.pdb" , the01l indicating that this dimer
used a rise of 3.:2And a twist of 25

The minimization is performed in lines 88-95. The calsétxyz from_mol() extracts the
current atom positions ahi into the arrayxyz . The coordinates are passedrime_init()  which
initializes the molecular mechanics system. The actual minimization is done with the aaii-to
grad() which performsl00 cycles of conjugate gradient minimization, printing the results eM@ry
cycles. The final energy is written to the filx and the molecule’s original coordinates are updated
with the minimized coordinates by the callgetmol_from_xyz() . Once all dimers have been
made for this sequence the loops terminate. The last thing dank laimer() before it returns to
the main program is to close the file containing the energy results for this family of dimer.

The very simple main program followsk_dimer() . It consists of two nested loops that pro-
duce the pairs of strings( ,"a" ), ("a" ,'c" ),....("t" ,"t" ) callingmk_dimer() for each pair.
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3. NAB Language Reference.

3.1. Introduction.

nab is a computer language used to create, modify and describe models of macromolecules,
especially those of unusual nucleic acids. The following sections provide a complete description of the
nab language. The discussion begins with its lexical elements, continues with sections on expressions,
statements and user defined functions and concludes with an explanation ofredzs btiltin func-
tions. Two appendices contain a more detailed and formal description of the lexical and syntactic ele-
ments of the language including the acteal andyacc input used to create the compiler. Two other
appendices descrilv@b’s internal data structures and the C code generated to support snatesof
higher level operations.

3.2. Language Elements.

An nab program is composed of several basic lexical elements: identifiers, reserved words, liter-
als, operators and special characters. These are discussed in the following sections.

3.2.1. Identifiers.

An identifier is a sequence of letters, digits and underscores beginning with a letter. Upper and
lower case letters are distinct. Identifiers are limited to 255 characters in length. The underscore () is
a letter. Identifiers beginning with underscore must be used carefully as they may conflict with operat-
ing system names am@db created temporaries. Here are sorab identifiers.

mol i3 twist TWIST Watson_Crick_Base_ Pair

3.2.2. Reserved Words.

Certain identifiers are reserved words, special symbols usedtbyo denote control flow and
program structure. Here are thab reserved words:

allocate assert atom bounds break
continue deallocate debug delete dynamic
else file for float hashed
if in int matrix molecule
point residue return string while

3.2.3. Literals.

Literals are self defining terms used to introduce constant values into exprasammsovides
three types of literals: integers, floats and character strings. Integer literals are sequences of one or
more decimal digits. Float literals are sequences of decimal digits that include a decimal point and/or
are followed by an exponent. An exponent is the |etter E followed by an optionat or - followed
by one to three decimal digits. The exponent is interpreted as “times 10 to the p@x@rwahere
exp is the number following the or E. All numeric literals are base 10. Here are some integer and
float literals:

1 3.14159 5 234 3.0e7 1E-7
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String literals are sequences of characters enclosed in double duptes double quote is
placed into a string literal by preceding it with a backsl&ghA backslash is inserted into a string by
preceding it with a backslash. Strings of zero length are permitted.

"a string"  "string with a\ "string with a \\"

Non-printing characters are inserted into strings via escape sequences: one to three characters follow-
ing a backslash. Here are thab string escapes and their meanings:

\a Bell (a for audible alarm).

\b Back space.

\f Form feed (New page).

\n New line.

\r Carriage return.

\t Horizontal tab.

\v Vertical tab.

\" Literal double quote.

\\ Literal backslash.

\ooo character with valueoo whereooo is 1 to 3 octal digitsQ-7 ).
\xhh character with valubh wherehh is 1 or 2 hex digits@-9 ,a-f ,A-F).

Here are some strings with escapes:

"Molecule\tResidue\tAtom\n" Two tabs and a newline.

"\252Real quotes\272" Octal values)252 , the left dou-
ble quote* and\272 the right
double quotég .

3.2.4. Operators.

nab uses several additional 1 or 2 character symbols as operators. Operators combine literals
and identifiers into expressions.
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Operator Meaning Precedence Associates
() Expression grouping 9
[ ] Array indexing 9
. Select attribute 8
Unary - Negation 8 Right to left
! Not 8
" Cross product 7 Left to right
@ Dot product 6
* Multiplication 6 Left to right
/ Division 6 Left to right
% Modulus 6 Left to right
+ Addition, concatenation 5 Left to right
Binary - Subtraction 5 Left to right
< Less than 4
<= Less than or equal to 4
== Equal 4
I= Not equal 4
>= Greater than or equal to 4
> Greater than 4
= Match 4
I Doesn’t match 4
in Member of hashed ar- 4

ray, or atom in a

molecule
&& And 3
[l Or 2
= Assignment 1 Right to left

3.2.5. Special Characters.

nab uses braceq)}( ) to group statements into compound statements and statements and declara-
tions into function bodies. The semicolan) (s used to terminate statements. The comnmaépa-
rates items in parameter lists and declarations. The shangsé€d in column 1 designates a preproces-
sor directive, which invokes the standard C preprocessor to provide constants, macros and file inclu-
sion. A# in any other column, except in a comment or a literal string is an error. Two consecutive for-
ward slashed//( ) indicate that the rest of the line is a comment which is ignored. All other characters
except white space (spaces, tabs, newlines and formfeeds) are illegal except in literal strings and com-
ments.

3.3. Higher-level constructs.

3.3.1. Variables.

A variable is a name given to a part of memory that is used to hold data.ri&kemariable has
type which determines how the computer interprets the variable’'s contatsprovides 10 data
types. They are the numeric types andfloat which are translated into the underlying C com-
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piler'sint anddouble respectively.* Thestring type is used to hold null (zero byte) terminated
(C) character strings. ThHde type is used to access files (equivalent toRIlE * ). There are
three types—atom, residue andmolecule for creating and working with molecules. Tpeint

type holds thredloat values which can represent the X, Y and Z coordinates of a point or the com-
ponents of a 3-vector. Theatrix type holds 1€loat values in a 44 matrix and théounds

type is used to hold distance bounds and other information for use in distance geometry calculations.

nab string variables are mapped intocBar * variables which are allocated as needed and
freed when possible. However, all of this is invisible atrihb level wherestring s are atomic
objects. Theatom, residue , molecule andbounds types become pointers to the appropriate C
struct s.point andmatrix are implemented doat [3] andfloat [4][4] respectively.
Again thenab compiler automatically generates all the C code required to makes these types appear
as atomic objects.

Every nab variable must be declared. All declarations for functions or variables in the main
block must precede the first executable statement of that block. Also all declarations in a user defined
nab function must precede the first executable statement of that functiorabAmariable declaration
begins with the reserved word that specifies the variable’s type followed by a comma separated list of
identifiers which become variables of that type. Each declaration ends with a semicolon.

inti, j,j;
matrix mat;
point origin;

Six nab types—string , file , atom, residue , molecule andbounds use the predefined
identifierNULL to indicate a non-existent object of these typas. builtin functions returning objects
of these types returNULL to indicate that the object could not be createdb considers aNULL
value to be false. The emphab string™ is not equal toNULL

3.3.2. Attributes.

Four nab types—atom, residue , molecule andpoint —have attributes which are ele-
ments of their internal structure directly accessible antte level. Attributes are accessed via the
select operator. () which takes a variable as its left hand operand and an attribute name (an identifier)
as its right. The general form is

var. attr

Most attributes behave exactly like ordinary variables of the same type. However, some attributes are
read only. They are not permitted to appear as the left hand side of an assignment. When a read only
attribute is passed to amab function, it is copied into temporary variable which in turn is passed to

the function. Read only attributes are not permitted to appear as destination variaoi@sfn

*This translation ofloat to double is new at version 3.0. Previous versions of the code used (single-predlizain) variables
in both C and NAB programs. Carrying out manipulations in double-precision generally helps numerical stability, especittyder gi-
ometry and molecular mechanics calculations. The earlier behavior can be re-obtained by chadefmeglthéneader file.
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parameter lists. Attribute names are kept separate from variable and function names and since
attributes can only appear to the right of select there is no conflict between variable and attribute
names. For example fis apoint , then

x /I the point variable x
x.x/l x coordinate of x
X /I Error!

Here is the complete list ofab attributes.

Atom attributes Type Write?  Meaning

atomname string Yes Ordinarily taken from columns 13-16 of an input pdb
file, or from a residue library. Spaces are removed.

atomnum int No The number of the atom startinglafor each strand
in the molecule.

tatomnum int No The total number of the atom starting &t Unlike
atomnum, tatomnum does not restart dt for each
strand.

fullname string No The fully qualified atom name, having the form

strandnum; resnum: atomname.

resid string Yes Theresid of the residue containing this atom; see the
Residue attributestable.

resname string Yes The name of the residue containing this atom.

resnum int No The number of the residue containing the atpm.
resnum starts afl for each strand.

tresnum int No Thetotal number of the residue containing this atom

starting atl. Unlike resnum , tresnum does not
restart atl for each strand.

strandname string Yes The name of the strand containing this atom.
strandnum int No The number of the strand containing this atom.
pos point Yes point variable giving the atom’s position.

X float Yes The atom’s X coordinate.

y float Yes The atom’s Y coordinate.

z float Yes The atom’s Z coordinate.

charge float Yes

radius float Yes

intl int Yes User settable int value.

floatl float Yes User settable float value.




4/20/02 NAB Language Reference 52

Residue attributes  Type Write?  Meaning
resid string Yes A 6-character string, ordinarily taken from columns
22-27 of a PDB file. It can be re-set to something
else, but should always be either empty or exactly 6
characters long, since this string is used (if it is |not
empty) byputpdb.

resname string Yes Three-character identifier.

resnum int No The number of the residue starting latresnum
starts afl for each strand.

tresnum int No Thetotal number of the residue startingJatUnlike

resnumtresnum  does not restart for each strand.
for each strand.

strandname string Yes The name of the strand containing this residue.

strandnum int No The number of the strand containing this residue.

Molecule attributes  Type Write?  Meaning

natoms int No The total number of atoms in the molecule.

nresidues int No The total number of residues in the molecule.

nstrands int No The total number of strands in the molecule.
3.3.3. Arrays.

nab supports two kinds of arrays—ordinary arrays where the selector is a comma separated list
of integer expressions and associative or “hashed” arrays where the selector is a character string. The
set of character strings that is associated with data in a hashed array is called its keys. Array elements
may be of anyab type. All the dimensions of an ordinary array are indexed ftamN , whereN,

is the size of thel” dimension. Non parameter array declarations are similar to scalar declarations
except the variable name is followed by either a comma separated list of integer constants surrounded
by square bracket§ () for ordinary arrays or the reserved wérashed in square brackets for asso-
ciative arrays. Associative arrays have no predefined size.

float energy[ 20 ], surface[ 13,13 ];
int attr[ dynamic, dynamic J;
molecule structs[ hashed ];

The syntax for multi-dimensional arrays like that for Fortran, not C. ré2c compiler lin-
earizes all index references, and the underlying C code sees only single-dimension arrays. Arrays are
stored in "column-order”, so that the most-rapidly varying index is the first index, as in Fortran. Multi-
dimensionaint or float arrays created inab can generally be passed to Fortran routines expect-
ing the analogous construct.
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Dynamic arrays are not allocated space upon program startup, but are created and freed by the
allocate  anddeallocate  statements:

allocate attr[ i,j];

deallocate attr;

Herei andj must be integer expressions that may be evaluated at run-time. It is an error (generally
fatal) to refer to the contents of such an array before it has been allocated or after it has been deallo-
cated.

3.3.4. Expressions.

Expressions use operators to combine variables, constants and function values into new values.
nab uses standard algebraic notatiarlf*c , etc) for expressions. Operators with higher precedence
are evaluated first. Parentheses are used to alter the evaluation order. The completablisipeia-
tors with precedence levels and associativity is listed udderators.

nab permits mixed mode arithmetic in that andfloat data may be freely combined in
expressions as long as the operation(s) are defined. The only exceptions are that the modulus operator
(% does not accefiloat  operands, and that subscripts to ordinary arrays must be integer valued. In
all other cases except parameter passing and assignment, winén andfloat are combined by
an operator, thint is converted tdloat then the operation is executed. In the case of parameter
passinghab requires (but does not check) that actual parameters passed to functions have the same
type as the corresponding formal parameters. As for assignmahe(right hand side is converted to
the type of the left hand side (as long as both are numeric) and then assighddeats assignment
like any other binary operator which permits multiple assignmentb=c) as well as “embedded”
assignments like:

if( mol = newmolecule() ) ...

nab relational operators are strictly binary. Any two objects can be compared provided that both
are numeric, both arstring  or both are the same type. Comparisons for objects otheiirthan
float andstring are limited to tests for equality. Comparisons betwfden , atom, residue ,
molecule andbounds objects test for “pointer” equality, meaning that if the pointers are the same,
the objects are same and thus equal, but if the pointers are different, no inference about the actual
objects can be made. The most common comparison on objects of these types iNbgaitsisee
if the object was correctly created. Note thahals considerdNULLto be false the following expres-
sions are equivalent.

if(t  var == NULL)... isthe sameas if(! wvar )..
if( var !=NULL)... isthe sameas if( var )...
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The Boolean operato&& and|| evaluate only enough of an expression to determine its truth
value.nab considers the valu@ to be false an@ny non-zero value to be truemab supports direct
assignment and concatenation of string values. Thetnfixused foistring  concatenation.

nab provides several infix vector operations fooint values. They can be assigned and
point valued functions are permitted. Twoint values can be added or subtracteghoiit can
be multiplied or divided by #oat or anint . The unary minus can be applied tpa@nt which
has the same effect as multiplying it bY. Finally, the at sign@ is used to form the dot product of
two point s and the circumflex () is used to form their cross product.

3.3.5. Regular expressions.

The =" and!” operators (match and not match) have strings on the left-hand-sidesyaliad
expression strings on their right-hand-sides. These regular expressions are interpreted according to
standard conventions drawn from the UNIX libraries. These are not documented here, but they should
be, and we will try to work on that for the next version of this document.

3.3.6. Atom Expressions.

An atom expression is a character string that contains one or more patterns that match a set of
atom names in a molecule. Atom expressions contain three substrings separated by koldrey (
represent the strand, residue and atom parts of the atom expression. Each subexpression consists of a
comma () separated list of patterns, or for the residue part, patterns and/or number ranges. Several
atom expressions may be placed the in a single character string by separating them with the vertical
bar ().

Patterns in atom expressions are similar to Unix shell expressions. Each pattern is a sequence of
1 or more single character patterns and/or stgrs The star matchegro or more occurrences ahy
single character. Each part of an atom expression is composed of a comma separated list of limited
regular expressions, or in the case of the residue part, limited regular expressions and/or ranges. A
range is a number or a pair of numbers separated by a dastgubfer expression is a sequence of
ordinary characters and “metacharacters”. Ordinary characters represent themselves, while the
metacharacters are operators used to construct more complicated patterns from the ordinary characters.
All characters exce@®, *,[,],-,, (comma),: and| are ordinary characters. Regular expressions
and the strings they match follow these rules.
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aexpr matches

X An ordinary character matches itself.

? A question mark matches any single character.

* A star matches any run of zero of more characters. The pattern *
matches anything.

[ xyzZ] A character class. It matches a single occurrence of any character be-
tween the [ and the ].

[C xyZ A “negated” character class. It matches a single occurrence of any char-

acter not between the [ and the ]. Character ranfes,, are per-
mitted in both types of character class. This is a shorthand for all [char-
acters beginning with f up to and including |. Useful ranges are| 0-9
for all the digits and a-zA-Z for all the letters.
- The dash is used to delimit ranges in characters classes and to separate
numbers in residue ranges.
$ The dollar sign is used in a residue range to represent the “last” residue
without having to know its number.
, The comma separates regular expressions and/or ranges in an atom ex-
pression part.
: The colon separates the parts of an atom expression.
| The vertical bar separates atom expressions in the same character
string.
\ The backslash is used as an escape. Any character including metachar-
acters following a backslash matches itself.

Atom expressions match theatire name. The patter@, matches onhyC, not CA HG etc. To
match any name that begins wittuseC*; to match any name that ends w@&huse*C; to match any
name containing €, use*C* . A table of examples was given in chapter 1.

3.3.7. Format Expressions.

A format expression is a special character string that is used to direct the conversion between the
computer’s internal data representations and their character equivalabtaises the underlying C
compiler’s printf() /scanf()  system to provide formatted I/O. This section provides a short
introduction to this system. For the complete description, consult any standard C reference. Note that
sincenab supports fewer types than its underlying C compiler, formatted 1/O options pertaining to the
data subtypedh(l ,L) are not applicable toab format expressions.

An input format string is a mixture of ordinary charactepmces and format descriptors. An
output format string is mixture of ordinary characters including spaces and format descriptors. Each
format descriptor begins with a percent sigihfollowed by several optional characters describing the
format and ends with single character that specifies the type of the data to be converted. Here are the
most common format descriptors. The represent optional characters described below.
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% ...C convert a character
% ...d convert an integer
% ... If convert a float

% ...s convert a string
%% convert a literabo

Input and output format descriptors and format expressions resemble each other and in many
cases the same format expression can be used for both input and output. However, the two types of for-
mat descriptors have different options and their actions are sufficiently distinct to consider in some
detail. Generally, C based formatted output is more useful than C based formatted input.

When an input format expression is executed, it is scanned at most once from left to right. If the
current format expression character is an ordinary character (anything but spécé orust match
the current character in the input stream. If they match then both the current character of the format
expression and current character of the stream are advanced one character to the right. If they don’t
match, the scan ends. If the current format expression character is a space or a run of spaces and if the
current input stream is one or more “white space” characters (spaceewttbe), then both the for-
mat and input stream are advanced to the next non-white space character. If the input format is one or
more spaces but the current character of the input stream is non-blank, then only the format expression
is advanced to the next non-blank character. If the current format character is a percent sign, the format
descriptor is used to convert the next “field” in the input stream. A field is a sequence of non-blank
characters surrounded by white space or the beginning or end of the stream. This means that a format
descriptor willskip white space including newlines to find non blank characters to convert, even if it is
the first element of the format expression. This implicit scanning is what limits the ability of C based
formatted input to read fixed format data that contains any spaces.

Note thatif is used to input a NAHBoat variable, rather than tHeargument that would be used
in C. This is becaustoat in NAB is converted talouble in the output C code (safefreal.h if you
want to change this behavior.) Ideally, the NAB compiler should parse the format string, and make the
appropriate substitutions, but this is not (yet) done: NAB translates the format string directly into the C
code, so that the NAB code must also generallyfusas a format descriptor for floating point values.

nab input format descriptors have two options, a field width, and an assignment suppression
indicator. The field width is an integer which specifies how much of cufi@dtand not the input
stream is to be converted. Conversion begins with the first character of the field and stops when the
correct number of characters have been converted or white space is encountered.* YAogtaon
indicates that the field is to be converted, but the result of the conversion is not stored. This can be
used to skip unwanted items in a data stream. The order of the two options does not matter.

The execution of an output format expression is somewhat different. It is scanned once from left
to right. If the current character is not a percent sign, it placed on the output stream. Thus spaces have
no special significance in formatted output. When the scan encounters a percent sign it replaces the
entire format descriptor with the properly formatted value of the corresponding output expression.

Each output format descriptor has four optional attributes—width, alignment, padding and preci-
sion. The width is theninimum number of characters the data is to occupy for output. Padding con-
trols how the field will be filled if the number of characters required for the data is less than the field
width. Alignment specifies whether the data is to start in the first character of the field (left aligned) or
end in the last (right aligned). Finally precision, which applies only to string and float conversions
controls how much of the string is be converted or how many digits should follow the decimal point.
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Output field attributes are specified by optional characters between the initial percent sign and
the final data type character. Alignment is first, with left alignment specified by a minus ysigmy
other character after the percent sign indicates right alignment. Padding is specified next. Padding
depends on both the alignment and the type of the data being converted. Character corfsions (
are always filled with spaces, irregardless of their alignment. Left aligned conversions are also always
filled with spaces. However, right aligned string and numeric conversions carOuseralicate that
left fill should be zeroes instead of spaces. In addition numeric conversions can also specify an
optional + to indicate that non-negative numbers should be preceded by a plus sign. The default action
for numeric conversions is that negative numbers are preceded by a minus, and other numbers have no
sign. If bothO and+ are specified, their order does not matter.

Output field width and precision are last and are specified by one or two integers dr)saps (
arated by a period §. The first number (or star) is the field width, the second is its precision. If the
precision is not specified, a default precision is chosen based on the conversion type. Fasfjldats (
is six decimal places and for strings it is the entire string. Precision is not applicable to character or
integer conversions and is ignored if specified. Precision may be specified without the field width by
use of single integer (or star) preceded by a period. Again, the action is conversion type dependent.
For strings %9, the action is to print the firt characters of the string or the entire string, whichever
is shorter. For floats¥%f), it will print N decimal places but will extend the field to whatever size if
required to print the whole number part of the float. The use of ther$tas @n output width or pre-
cision indicates that the width or precision is specified as the next argument in the conversion list
which allows for runtime widths and precisions.

Output Format Options

Alignment.

- left justified.

default right justified.

Padding.

0 %d %f, %sonly, left fill with zeros, right fill with spaces.

+ %d %f only, precede non-negative numbers with. a

default left and right fill with spaces.

Width & Precision.

w minimum field width of W. W is either an integer or’awhere the staf
indicates that the width is the next argument in the parameter list.

W.P minimum field width of W, with a precision oP. W,P are integers of

stars, where stars indicate that they are to be set from the appropriate
arguments in the parameter list. Precision is ignoreébfoand%d
P %s print the firstP characters of the string or the entire string whichev-
er is shorter%f, print P decimal places in a field wide enough to hpld
the integer and fractional parts of the numBBécand%d use whatev+
er width is required. AgaiR is either an integer or a star where the star
indicates that it is to be taken from the next expression in the parameter
list.
default %c¢ %d %s use whatever width is required to exactly hold the data.
%f, use a precision of 6 and whatever width is required to hold the|data.
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3.4. Statements.

nab statements describe the action tied program is to perform. The expression statement
evaluates expressions. Tiie statement provides a two way branch. Wiele andfor statements
provide loops. Thdreak statement is used to “short circuit” or exit these loops. ddrinue
statement advanced@ loop to its next iteration. Theeturn  statement assigns a function’s value
and returns control to the caller. Finally a list of statements can be enclosed in ffradescfeate a
compound statement.

3.4.1. Expression Statement.

An expression statement is an expression followed by a semicolon. It evaluates the expression.
Many expression statements include an assignment operator and its evaluation will update the values
of those variables on the left hand side of the assignment operator. These kinds of expression state-
ments are usually called “assignment statements” in other languages. Other expression statements con-
sist of a single function call with its result ignored. These statements take the place of “call state-
ments” in other languages. Note that an expression statement can eogtaxpression, even ones
that have no lasting effect.

mref = getpdb( "5p21.pdb" ); /[ "assignment” stmt
m = getpdb("6g21.pdb");
superimpose( m,"::CA",mref,"::CA"); // "call" stmt

0; /I expression stmt.

3.4.2. Delete Statement.
nab provides thalelete statement to reoveelements ohashed arrays. The syntax is

delete h array[ str ];

whereh_array is ahashed array andstr is astring  valued expression. If the specified element is
in h_array it is removed; if not, the statement has no effect.

3.4.3. If Statement.

Theif statement is used to choose between two options based on the valué ofetkpres-
sion. There are two kinds df statements—the simpié and theif-else . The simpleif con-
tains an expression and a statement. If the expression is true (any non-zero value), the statement is
executed. If the expression is fal€g, (the statement is skipped.

if(  expr )
true_stmt;



4/20/02 NAB Language Reference 59

The if-else statement places two statements under control offthe One is executed if the
expression is true, the other if it is false.

if(  expr )
true_stnt;
else
false_stnt;

The single statement in a simpfe or the two statements in ahelse can be anynab state-

ment(s) including othdf statements. This can introduce ambiguity as to wifiicis associated with
anelse :

if(l expr 1)
if( expr_2)
stmt_1;
else
stmt_2;

Whichif has theelse , theif on the first line or thd on the second? The rule is thatedse is
associated with the nearest unpaiifed In this example, thelse is associated with thié on the
second line. To associate thlse with theif on line 1 would require hiding the innégr inside
braces:

if( expr 1)
{
if( expr_2)
stmt_1;
}
else
stmt_2;

The braces convert the inriér into a compound statement removing the ambiguity.

3.4.4. While Statement.

Thewhile statement is used to execute the statement under its control as long asvtiikethe

expression is true (non-zero). A compound statement is required to place more than one statement
under thewvhile statement’s control.

while(  expr )
stmt;
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while(  expr )

{
stmt_1;
stmt_2;
stmt_N;
}

3.4.5. For Statement.

Thefor statementis a loop statement that allows the user to include initialization and an incre-
ment as well as a loop condition in the loop header. The single statement under the contfol of the
statement is executed as long as the condition is true (non-zero). A compound statement is required to
place more than one statement under controffof a The general form of thier statement is

for(  expr_1; expr 2; expr_3)
stmt;

which behaves like

expr_1;
while(  expr_2 )
{
stmt;
expr_3;
}

expr_3is generally an expression that computes the next value of the loop index. Any axptl df
expr_2 or expr_3 can be omitted. An omitteekpr_2 is considered to be true, thus giving rise to an
“infinite” loop. Here are somfor loops.

for(i=1;i<=10;i=i+1)

printf( "%3d\n", i ); /I print 1 to 10
for(; ;) /I "infinite" loop
{
getcmd( cmd); /I Exit better be in
docmd(cmd ); /I getemd() or docmd().
}

nab also includes a special kind fofr  statement that is used to range over all the entries of a hashed
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array or all the atoms of a molecule. The forms are

/l hashed version
for( sr in h_ array )
stimt;

/I molecule version
for( ain mal )
stmt;

In the first code fragmensir is string anch_array is a hashed array. This loop sstisto each key or

string associated with data marray. Keys are returned in increasing lexical order. In the second

code fragmena is an atom ananol is a molecule. This loop seésto each atom imol. The first

atom is the first atom in the first residue of the first strand. Once all the atoms in this residue have
been visited, it moves to the first atom of the next residue in the first strand. Once all atoms in all
residues in the first strand have been visited, the process is repeated on the second and subsequent
strands in mol until all atoms have been visited. The order of the strands of molecule is the order in
which they were created usirgidstrand() . Residues in each strand are numbered fromN. to

The order of the atoms in a residue is the order in which the atoms were listed in the reslib entry or
pdbfile that that residue derives from.

3.4.6. Break Statement.

Execution of doreak statement exits the immediately enclosiog or while loop. By plac-
ing thebreak under control of arf conditional exits can be creatdateak statements are only
permitted insidevhile orfor loops.

for(  expr_1; expr 2; expr_3)
{

if(  expr )
break; /I "break" out of loop

3.4.7. Continue Statement.

Execution of econtinue  statement causes the immediately enclogimng loop to skip to its
next value. If the next value causes the loop control expression to be false, the loop iscerited.
tinue statements are permitted only insideile andfor loops.

for(  expr_1; expr_2; expr_3)
{
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if(  expr )
continue; /I "continue" with next value

3.4.8. Return Statement.

Thereturn statement has two uses. It terminates execution of the current function returning
control to the point immediately following the call and when followed by an optional expression,
returns the value of the expression as the value of the function. A function’s execution also ends when
it “runs off the bottom”. When a function executes the last statement of its definition, it returns even if
that statement is notraturn . The value of the function in such cases is undefined.

return  expr; /I return the value expr
return; /I return, function value undefined.

3.4.9. Compound Statement.

A compound statement is a list of statements enclosed in braces. Compound statements are
required when a loop or ah has to control more than one statement. They are also required to asso-
ciate anelse with anif other than the nearest unpaired one. Compound statements may include
other compound statements. Unliker@p compound statements are not blocks and may not include
declarations.

3.5. Functions.

A function is a named group of declarations and statements that is executed as a unit by using the
function’s name in an expression. Functions may include special variables called parameters that
enable the same function to work on different data.nalb functions return a value which can be
ignored in the calling expression. Expression statements consisting of a single function call where the
return value is ignored resemble procedure call statements in other languages.

All parameters to user definedb functions are passed by reference. This means thanheach
parameter operates on the actual data that was passed to the function during the call. Changes made to
parameters during the execution of the function will persist after the function returns. The only excep-
tion to this is if an expression is passed in as a parameter to a user dabinechction. It this case,
nab evaluates the expression, stores its value in a compiler created temporary variable and uses that
temporary variable as the actual parameter. For example if a user were to pass in the constant 1 to an
nab function which in turned used it and then assigned it the value 6, the 6 would be stored in the
temporary location and the external 1 would be unchanged.

3.5.1. Function Definitions.

An nab function definition begins with a header that describes the function value type, the func-
tion name and the parameters if any. If a function does not have parameters, an empty parameter list is
still required. Following the header is a list of declarations and statements enclosed in braces. The
function’s declarations must precede all of its statements. A function can include zero or more
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declarations and/or zero or more statements. The empty function—no declarations and no statements
is legal.

The function header begins with the reserved word specifying the type of the functioabAll
functions must be typed. Amab function can return a single value of amgb type.nab functions
can not returmab arrays. Following the type is an identifier which is the name of the function. Each
parameter declaration begins with the parameter type followed by its name. Parameter declarations
are enclosed in parentheses and separated by commas. If a function has no parameters, there is nothing
between the parentheses. Here is the general form of a function definition:

ftype fname( ptypel parmi, ...)
{

decls

stmts

3.5.2. Function Declarations.

nab requires that every function be declared or made known to the compiler before it is used.
Unfortunately this is not possible if functions used in one source file are defined in other source files or
if two functions are mutually recursive. To solve these probleah, permits functions to be declared
as well as defined. A function declaration resembles the header of a function definition. However, in
place of the function body, the declaration ends with a semicolon or a semicolon preceded by either
the wordc or the wordfortran  indicating the external function is written in CEDRTRANNstead
of nab.

ftype fname( ptypel parmi, ...) flang;

3.6. Points and Vectors.

The nab type point is an object that holds thrdleat values. These values can represent
the X, Y and Z coordinates of a point or the components of 3-vector. The individual elements of a
point variable are accessed via attributes or suffixes added to the variable name. Theitliree
attributes aréx" , "y" and"z" . Many nab builtin functions use, return or cregteint values.
When used in this context, the three attributes represent the point's X, Y and Z coordiadites.
allows users to combine point values with numbers in expressions using conventional algebraic or infix
notation.nab does not support operations between numbergpaimd s where the number must be
converted into a vector to perform the operation. For exampbeisifapoint then the expression
+ 1. is an error, anab does not know how to expand the scalar 1. into a 3-vector. The following
table containsiab point and vector operationp, g arepoint variablessa numeric expression.
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Operator Example Precedence  Explanation.

Unary - -p 8 Vector negation, same ds* p

" p~q 7 Compute the cross or vector producpof.
@ p @ q 6 Compute the scalar or dot producpofy.
* sS*p 6 Multiply p by s, same ap * s.

/ p/ s 6 Dividep bys, s / p not allowed.

+ p+q 5 Vector addition

Binary - p-q 5 Vector subtraction

== p == 4 Test ifp andq equal.

I= p '=q 4 Test ifp andq are different.

= p=q 1 Set the value gf to g.

3.7. String Functions.

nab provides the followingawk-like string functions. Unlikeawk, the nab functions do not
have optional parameters or builtin variables that control the actions or receive results from these func-
tions. nab string s are indexed frort to N whereN is the number of characters in the string.

int length( string s);
int index( string s, string t);
int match( string s, string r, int rlength );

string substr( string s, int pos, int len);

int split( string s, string fields]], string fsep );
int sub( string r, string s, string t );
int gsub( string r, string s, string t);

length() returns the length of the strirgg Both ™ and NULL have length0. index()
returns the position of the left most occurrence of s. If t is notins, index()  returnsO. match
returns the position of the longest leftmost substring tfat matches the regular expressiorirhe
length of this substring is returnedriength . If no substring ofs matches , match() returnsO
andrlength  is set to0. substr()  extracts the substring of lengdim from s beginning at posi-
tion pos. If len is greater than the rest of the string beginningoat, return the substring fromos
to N whereN is the length of thetring . If pos is <1 or >N, return™ .

split() partitionss into fields separated bgep . These field strings are returned in the array
fields . The number of fields is returned as the function value. The fietdy  must be allocated
before split() is called and must be large enough to hold all the field strings. The action of
split() depends on the value fsep . If fsep is a string containing one or more blanks, the fields
of s are considered to be separated s of white space. Also, leading and trailing white spacg in
do not indicate an empty initial or final field. Howeverfsép contains any value but blank, then
fields are considered to be delimiteddygle characters fronfisep and initial and/or trailingsep
characters do represent initial and/or trailing fields with valué$ oNULL and the empty string’
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haveO fields. If boths andfsep are composed of only white space tisealso had fields. Iffsep
is not white space argl consists of nothing but characters frésep , s will have N + 1 fields of""
whereN is the number of charactersf

sub() replaces the leftmost longest substringt othat matches the regular expression
gsub() replaces all non overlapping substringst othat match the regular expressiorwith the
strings.

3.8. Math Functions.

nab provides the following builtin mathematical functions. Simed is intended for chemical
structure calculations which always measure angles in degrees, the argument to the trig functions—
cos() ,sin() andtan() — and the return value of the inverse trig functiormees() , asin()
atan() andatan2() —are in degrees instead of radians as they are in other languages.
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Inverse Trig Functions.
float acos( float x );
float asin( float x );
float atan( float x );

float atan2( float y, float x );

Return cosi( x ) in degrees.
Return sin( x ) in degrees.
Return tan*( x ) in degrees.

Return tan*(y / x ) in degrees. By keeping x and
separate, 90can be returned without encountering
zero divide. Alsoatan2 will return an angle in the

full range [-186, 1807.

J a

1%

Trig Functions.

float cos( float x );
float sin( float x );
float tan( float x );

Return cos( x ), where x is in degrees.
Return sin( x ), where x is in degrees.
Return tan( x ), where x is in degrees.

Conversion Functions.
float atof( string str);

int  atoi( string str);

Interpret the next run of non blank characterstin
as afloat  and return its value. Retuthon error.
Interpret the next run of non blank characterstin
as anint and return its value. Retuéhon error.

Other Functions.

float rand2( int iseed );
float ceil( float x );
float cosh( float x );

float exp( float x );
float fabs( float x );
float floor( float x );

float log( float x );
float log10( float x );

float sinh( float x );
float sqrt( float x );
float tanh( float x );

float fmod( float x, floaty );

float pow( float x, floaty );

Return random number in (0,1) and update seed.
Return X

Return the hyberbolic cosine of x.

Return é&.

Return | x |.

Return[ X[

Return r, the remainder of x with respect to y.| < |
y |; the signs of r and y are the same.

Return the natural logarithm of x.

Return the base 10 logarithm of x.

Return X, x > 0.

Return the hyperbolic sine of x.

Return positive square root of x, x >= 0.

Return the hyperbolic tangent of x.

3.9. System Functions.

int exit( inti);

int system( string cmd );

The functionexit()  terminates the callingab program with return status. system() invoke
subshell to executemd. The subshell is alway#in/sh . The return value o$ystem() is the
return value of the subshell and not the command it executed.

sa



4/20/02 NAB Language Reference 67

3.10. I/O Functions.

nab uses the C I/O model. Instead of special /0 statemeals)/O is done via calls to special
builtin functions. These function calls have the same syntax as ordinary function calls but some of
them have different semantics, in that they accept both a variable number of parameters and the param-
eters can be various typasb uses the underlying C compilersintf() /scanf()  system to
perform I/O onint , float andstring objects. I/O orpoint is via theirfloatx ,y and z
attributesmolecule 1/O is covered in the next section, whileunds can be written usingump-
bounds() . Transformation matrices can be written usilignpmatrix() , but there is currently no
builtin for reading them. The value of aab file  object may be written by treating as an integer.
Input tofile  variables is not defined.

3.10.1. Ordinary I/O Functions. nab provides these functions for streamFLE * 1/O of
int ,float andstring objects.

int fclose( file f);

file fopen( string fname, string mode );
int unlink( string fname );

int printf( string fmt, ... );

int fprintf( file f, string fmt, ... );
string sprintf( string fmt, ... );

int scanf( string fmt, ... );
int fscanf( file f, string fmt, ... );
int sscanf( string str, string fmt, ... );

string getline( file f);

fclose()  closes (disconnects) the file representedl dyreturnsO on success antll on fail-
ure. All opennab files are automatically closed when the program terminates. However, since the
number of open files is limited, it is a good idea to close open files when they are no longer needed.
The system callinlink  removes (deletes) the file.

fopen() attempts to open (prepare for use) the file nafnache with modemode. It returns
a valid nabfile on success, and NULL on failure. Code should thus check for a return value of
NULL, and do the appropriate thing. (An alternatigafe_fopen() sends an error message to
stderr and exits on failure; this is sometimes a convenient alternatifepen() itself, fitting
with a general bias afab system functions to exit on failure, rather than to return error codes that
must always be processed.) Here are the most common value®derand their meanings. For
other values, consult any standard C reference.
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fopen() mode values.

"r" Open for reading. The filname must exist and be readahle
by the user.
"w" Open for writing. If the file exists and is writable by the user,

truncate it to zero length. If the file does not exist, and if| the
directory in which it will exist is writable by the user, then cre-
ate it.
"a" Open for appending. The file must exist and be writable by the
user.

The three functionprintf() , fprintf() andsprintf() are for formatted (ASCII) out-
put tostdout , the filef and astring . Strictly speakingsprintf() does not perform output,
but is discussed here because it acts as if “writes” to a string. Each of these functions uses the format
string fmt to direct the conversion of the expressions that follow it in the parameter list. Format
strings and expressions are discudsainat Expressions The first format descriptor dint is used
to convert the first expression affient , the second descriptor, the next expression etc. If there are
more expressions than format descriptors, the extra expressions are not converted. If there are fewer
expressions than format descriptors, the program will likely die when the function tries to covert non-
existent data.

The three functionscanf() , fscanf() andsscanf()  are for formatted (ASCII) input
from stdin , the filef and the stringtr . Again,sscanf()  does not perform input but the function
behaves like it is “reading” frorstr . The action of these functions is similar to their output counter-
parts in that the format expressiorfiimt is used to direct the conversion of characters in the input and
store the results in the variables specified by the parameters follimtindg-ormat descriptors ifmt
correspond to variables followirfgit , with the first descriptor corresponding to the first variable, etc.
If there are fewer descriptors than variables, then extra variables are not assigned; if there are more
descriptors than variables, the program will most likely die due to a reference to a non-existent
address.

There are two very important differences betweeh formatted 1/0 and C formatted 1/0. In C,
formatted input is assigned through pointers to the varialles)( In nab formatted 1/O, the com-
piler automatically supplies the addresses of the variables to be assigned The second difference is
when astring  object receives data during aab formatted I/Onab string s are allocated when
needed. However, in the case of any kindadnf() to astring or the implied (and hidden) writ-
ing to a string witksprintf() , the number of characters to be written to the string is unknown until
the string has been writtenab automatically allocates strings of length 256 to hold such data with
the idea that 256 is usually big enough. However, there will be cases where it is not big enough and
this will cause the program to die or behave strangely as it will overwrite other data.

Also note that the default precision for floats mab is double precision (se&NAB-
HOME/src/defreal.h , since this could be changed, or may be different on your system.) Formats
for floats for thescanf functions then need to be "%If" rather than "%f".

The getline() function returns a string that has the next line fromffileThe end-of-line
character has been stripped off.

3.11. Molecule Creation Functions.

Thenab molecule type has a complex and dynamic internal structure organized in a three level
hierarchy. Amolecule contains zero or more named strands. Strand names are strings of any
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characters except white space and can not exceed 255 characters in length. Each strand in a molecule
must have a unique name. Strands in different molecules may have the same name. A strand contains
zero or more residues. Residues in each strand are numberetl. fidrare is no upper limit on the

number of residues a strand may contain. Residues have names, which need not be unique. However,
the combination oftrand-name: res-num is unique for every residue in a molecule. Finally residues
contain one or more atoms. Each atom name in a residue should be distinct, although this is neither
required nor checked mab. nab uses the following functions to create and modify molecules.

molecule newmolecule();

molecule copymolecule( molecule mol);
int freemolecule( molecule mol );

int freeresidue( residue r);

int addstrand( molecule mol, string sname );
int addresidue( molecule mol, string sname, residue res );
int connectres( molecule mol, string sname,
int res1, string anamel, int res2, string aname?2 );
int mergestr( molecule moll, string strl, string endl,

molecule mol2, string str2, string end2 );

newmolecule()  creates an “empty” molecule—one with no strands, residues or atoms. It
returnsNULL if it can not create it.copymolecule() makes a copy of an existing molecule and
returns aNULL on failure. freemolecule() andfreeresidue() are used to deallocate memory set
aside for a molecule or residue. In most programs, these functions are usually not necessary, but
should be used when a large number of molecules are being copied. Once a molecule has been cre-
ated,addstrand() is used to add one or more named strands. Strands can be added at any to a
molecule. There is no limit on the number of strands in a molecule. Strands can be added to molecules
created bygetpdb() or other functions as long as the strand names are urdaddstrand()
returnsO on success antl on failure. Finallyaddresidue() is used to add residues to a strand.
The first residue is numberddand subsequent residues are humberegl, etc. addresidue()
also return® on success artlon failure.

nab requires that users explicitly make all inter-residue bomrgdsinectres() makes a bond
between two atoms alifferent residues of the strand with nasigame. It returnsO on success ant
on failure. Atoms in different strands can not be bonded. The bonding between atoms in a residue is
set by the residue library entry and can not be changed at runtimenabthevel.

The last functiormergestr()  is used to merge two strands of the same molecule or copy a
strand of the second molecule into a strand of the first. The residues of a strand are ordered from
N, whereN is the number of residues in that stramab imposes no chemical ordering on the residues
in a strand. However, since the strands are generally ordered, there are four ways to combine the two
strandsmergestr()  uses the two value$irst" and"last"  to stand for residues 1 ahd The
four combinations and their meanings are shown in the next table. In thesteblehasN residues
andstr2 hasM residues.
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endl end2 Action

first first The residues o$tr2 are reversed and then inserted before those of
str1 :M, ..,2,1:1,2,..,N

first last The residues oftr2  are inserted before thosestfl :1,2,....,M:1
,2,...N

last first The residues oftr2 are inserted after thosestfl :1,2,...,N:1,
2,.,.M

last last The residues oftr2 are reversed and then inserted after those of
str1 :1,2,.,N:M, .., 2,1

3.12. Creating Bioplymers

molecule linkprot( string strandname, string seq, string reslib );
molecule link_na( string strandname, string seq, string reslib,
string natype, string opts );

int getseq_from_pdb( string filename, int numstrand,
string seq[], string strandname[], string type][] );
int getxyz_from_pdb( string filename, molecule m, string naexp,

int add_protons );
molecule getpdb_rlb( string pdbfile, string reslibl[], string strandname]],
string seq[], string typel[] );

Although manynab functions don't care what kind of molecule they operate on, specific support
for proteins is currently somewhat limitedinkprot() takes a strand identifier and a sequence,
and returns a molecule with this sequence. The molecule has an extended structure, s@,tlpat the

andw angles are all 180 Theredlib input determines which residue library is used; if it is an empty
string, the AMBER 94 all-atom library is used, with charged end groups at the N and C termini. All
nab residue libraries are denoted by the suffisn ~ and LEaP residue libraries are denoted by the

suffix .lib . If redlibis set to "nneut”, "cneut” or "neut”, then neutral groups will be used at the N-ter-
minus, the C-terminus, or both, respectively.

The seq string should give the amino acids using the one-letter code with upper-case letters.
Some non-standard names are: "H" for histidine with the proton od pusition; "h" for histidine
with the proton at the position; "3" for protonated histidine; "n" for an acetyl blocking group; "c" for
an HNMe blocking group, "a" for an NHjroup, and "w" for a water molecule. If the sequence con-

tains one or more "|" characters, the molecule will consist of separate polypeptide strands broken at
these positions.

Thelink_na() routine works much the same way for DNA and RNA, using an input residue
library to build a single-strand with correct local geometry but arbitrary torsion angles connecting one
residue to the nextatype is used to specify either DNA or RNA. If thepts string contains a "5",
the 5’ residue will be "capped” (a hydrogen will be attached to the O5’ atom); if this string contains a
"3" the O3’ atom will be capped.

Thegetseq_from_pdb() routine can be used to extract an appropriate single letter sequence
from an input pdb file. For each strand in the input file (separated by TER cards) the wgpable
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returns "protein”, "dna" or "rna" depending on how it interpreted the sequence; the strandname
returned is the value of the chain-id in the input pdb file. The function return is the number of residues
that it could not identify; these are placedéy as "?", and this return value should be zero for a suc-
cessful invocation.

The getxyz_from_pdb() routine will read the pdb file given iflename , extract the
coordinates, and put them into the corresponding positions in molacéltom order within residues
in the pdb file does not need to match that in the moleaqaexyz from_pdb() also returns
naexp , an atom expression string identifying atoms found in the pdb file but not in the molecule. If
add_protons is not 0, then missing protons are built in plausible (but probably not optimal) posi-
tions.

One typical use of these routines would be as folloidjs:use getseq_from_pdb() to
extract the sequence from a pdb file you got from somew{reselinkprot() or link_na()
(or both) to create amab version of the moleculd3) usegetxyz_from_pdb() to the molecular
pdb coordinates into your molecule and to build in missing hydrogens if necessary. These steps are
encapsulated in the relatively high-lexggtpdb_rlb() routine. Creating a molecule kyet-
pdb_rlb() guarantees that the atoms and their order in each residue will be the same as in the
residue library used. Each atom will therefore have a charge, and the resulting molecule should be
ready to send to thikeap() routine, if desired. On the other harggtpdb_rib() will fail for
molecules that contain residues not in the standard residue libraries, wdetpely) is designed
to work on "almost anything." The second argumemgeipdb_rlb  is an array of three strings, giv-
ing the resiudue libraries to be used for proteins, DNA and RNA, respectivelystieimelname
seq andtype arrays are populated on return, with one entry for each strand (or "chain" or
"molecule”) found in the pdb file. Strands must be separated by TER cards in the input pdb file.

3.13. Fiber Diffraction Duplexes in NAB

The primary function in NAB for creating Watson-Crick duplexes based on fibre-diffraction data
is fd_helix:

molecule fd_helix( string helix_type, string seq, string acid_type );

fd_helix() takes as its arguments three strings - the helix type of the duplex, the sequence of one
strand of the duplex, and the acid type (which is "dna" or "rna"). Available helix types are as follows:

Helix type options for fd_helix()
arna  Right Handed A-RNA (Arnott)
aprna  Right Handed A-RNA (Arnott)
Ibdna  Right Handed B-DNA (Langridge)
abdna Right Handed B-DNA (Arnott)
sbdna  Left Handed B-DNA (Sasisekhara
adna  Right Handed A-DNA (Arnott)

=)
N—

The molecule returns contains a Watson-Crick double-stranded helix, with the helix axiz along
For a further explanation of the fd_helix code, please see the code comments in the source file
fd_helix.nab.
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References for the fibre-diffraction data:

(1) Structures of synthetic polynucleotides in the A-RNA and A-RNA conformations. X-ray
diffraction analyses of the molecule conformations of (polyadenylic acid) and (polyinosinic
acid).(polycytidylic acid). Arnott, S.; Hukins, D.W.L.; Dover, S.D.; Fuller, W.; Hodgson, A.R.
J.Mol. Bial. (1973), 81(2), 107-22.

(2) Left-handed DNA helices. Arnott, S; Chandrasekaran, R; Birdsall, D.L.; Leslie, A.G.W,;
Ratliff, R.L. Nature (1980), 283(5749), 743-5.

(3) Stereochemistry of nucleic acids and polynucleotides. Lakshimanarayanan, A.V.; Sasisekha-
ran, V.Biochim. Biophys. Acta 204, 49-53.

(4) Fuller, W., Wilkins, M.H.F., Wilson, H.R., Hamilton, L.D. and Arnott, S. (1965)Mol. Biol.
12, 60.

(5) Arnott, S.; Campbell Smith, P.J.; Chandraseharan, Radbook of Biochemistry and Molec-
ular Biology, 3rd Edition. Nucleic Acids--Volume |1, Fasman, G.P., ed. (Cleveland: CRC Press,
1976), pp. 411-422.

3.14. Reduced Representation DNA Modeling Functions.

nab provides several functions for creating the reduced representation models of DNA described
by R. Tan and S. Haey [21]. This model uses only 3 pseudo-atoms to represent a base pair. The
pseudo atom namedE represents the helix axis, the atom narBédrepresents the position of the
sugar-phosphate backbone on the sense strand and the atomMWap@edts into the major groove.
The plane described by these three atoms ( and a corresponding virtual atom that represents the anti
sugar-phosphate backbone ) represents quite nicely an all atom watson-crick base pair plane.

molecule  dna3( int nbases, float roll, float tilt, float twist,
float rise );

molecule  dna3_to_allatom( molecule m_dna3, string seq, string aseq,
string reslib, string natype );

molecule allatom_to_dna3( molecule m_allatom, string sense,
string anti );

The functiondna3() creates a reduced representation DNA structuhea3() takes as
parameters the number of basdmses , and four helical parametersll , tilt , twist , and
rise

dna3_to_allatom() makes an all-atom dna model from a dna3 molecule as input. The
moleculem_dna3 is a dna3 molecule, and the strirsgs] andaseq are the sense and anti sequences
of the all-atom helix to be constructed. Obviously, the number of bases in the all-atom model should
be the same as in the dna3 model. If the saay is left blank ("), the sequence generated is the

21. R. Tan and S. Harvey, “Molecular Mechanics Model of Supercoiled DNA,” J. Mol.
Biol. 205, 573-591 (1989).
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wc_complement() of the sense sequenceeslib  names the residue library from which the all-
atom model is to be constructed. If left blank, this will defauldit@.amber94.rlb. The
last parameter is either "dna "or"rna " and defaults tana if left blank.

The allatom_to_dna3() function creates a dna3 model from a double stranded all-atom
helix. The function takes as parameters the input all-atom molecudlatom , the name of the
sense strand in the all-atom molecslkense and the name of the anti stra@adii

3.15. Molecule I/O Functions.
nab provides several functions for reading and writing molecule and residue objects.

residue getresidue( string rname, string rlib );

molecule getpdb( string fname [, string options | );
molecule getcif( string fname, string blockld );

int putpdb( string fname, molecule mol [, string options ] );
int putcif( string fname, molecule mol );

int putbnd( string fname, molecule mol );

int putdist( string fname, molecule mol);

The functiongetresidue() returns a copy of the residue with namame from the residue
library namedlib . If it can not do so it returns the valdgJLL

The functiongetpdb()  converts the contents of the PDB file with naim&me into annab
molecule . getpdb() creates bonds between any two atoms in the same residue using this rule:

El. 20 Angstroms if either atom is a hydrogen
bondftom;, atom;) if dist(atom;, atom;) < J2. 20 Angstroms if either atom is a sulphur
El. 85 Angstroms otherwise

Atoms in different residues are never bondedgbtipdb() . getpdb() creates a new strand each
time the chain id changes or if the chain id remains the same &E® aard is encountered. The
strand name is the chain id if it is not blank drdl', whereN is the number of that strand in the
molecule beginning witl. For example, a PDB file containing chain with no chain ID, followed by
chainA, followed by another blank chain would have three strands with n&ihes'A" and"3" .
getpdb() returns a molecule on success altdl_L on failure.

The optional final argument tetpdb can be used for options. Currently, only a single option
is recognized: ifpgr is found in the options string, the routine will read in atomic charges and radii
immediately following the xyz coordinates (using eight columns for each). Since these columns
would ordinarily be used for occupancy and B-factors, the latter are set to 1.0 and 0.0, respectively.
Alternatively, if -pgr does not appear in tloptions  string, occupancies and B-factors are read from
the input pdb file, radii are set to default values (see the code for details), and charges are set to zero.

The (experimental!) functiogetcif s like getpdb , but reads an mmCIF (macro-molecular
crystallographic information file) formatted file, and extracts "atom-site" information from data block
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blockiD . You will need to compile and install tieéfparse library in order to use this.

The next group of builtins write various parts of the moleaut¢ to the filefname . All return
0 on success antl on failure. Iffname exists and is writable, it is overwritten without warning.
putpdb() writes the moleculenol into the PDB filefname . If the "resid" of a residue has been set
(either by usinggetpdb to create the molecule, or by an explicit operation ima@mn routine) then
columns 22-27 of the output pdb file will use it; otherwisab will assign a chain-id and residue
number and use those. In this latter case, a molecule with a single strand will have a blank chain-id; if
there is more than one strand, each strand is written as a separate chain with"&4aiassigned to
the first strand imol , "B" to the second, etc.

There are several options availablegatpdb :

Options flags for putpdb
keyword meaning
-pqr Put charges and radii into the columns following the xyz coordinates.
-nobocc Do not put occupancy and b-factor into the columns following the xyz coordi-
nates. than occupancies and charges. This is impligdyifis present, but may
also be used to save space in the output file, or for compatibility with programs
that do not work well if such data is present.
-brook Convert atom and residue names to the conventions used in Brookhaven PDB
files. This often gives greater compatibility with other software that may expect
these conventions to hold, but the conversion may not be what is desired in many
cases. Also, put the first character of the atom name in column 78, a preliminary
effort at identifying it as in the most recent PDB format. If#breok flag is not
present, no conversion of atom and residue names is made, and no id ig in col-

umn 78.
-nocid Do not put the chain-id (see the descriptiorgeipdb, above) in the outputi.€.
if this flag is present, the chain-id column will be blank).
-tr Do not start numbering residues over again when a new chain is encountered,

i.e. the residue numbers are consecutive across chains, as required by some
force-field programs like Amber.

putbnd() writes the bonds ahol into fnrame . Each bond is a pair of integers on a line. The
integers refer to atom records in the corresponding PDB-stylpdileist() writes the interatomic
distances between all atomsnobl a, a wherei < j, in this seven column format.

rnuml rnamel anamel rnum2 rname2 aname2 distance

3.16. Other Molecular Functions.

matrix superimpose( molecule mol, string aex1,
molecule r_mol, string aex2 );

int rmsd( molecule mol, string aex1,
molecule r_mol, string aex2, floatr);
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float angle( molecule mol, string aex1, string aex2, string aex3 );
float anglep( point ptl, point pt2, point pt3);
float  torsion( molecule mol, string aex1, string aex2,
string aex3, string aex4 );
float  torsionp( point ptl, point pt2, point pt3, point pt4 );
float  dist( molecule mol, string aex1, string aex2 );
float  distp( point ptl, point pt2);

int countmolatoms( molecule mol, string aex );
int sugarpuckeranal( molecule mol, int strandnum,
int startres, int endres );
int helixanal( molecule mol );
int plane( molecule mol, string aex, float A, float B, float C);

float molsurf( molecule mol, string aex, float probe_rad );

superimpose()  transforms moleculenol so that the root mean square deviation between corre-
sponding atoms imol andr_mol is minimized. The corresponding atoms are those selected by the
atom expressionaex1l applied tomol andaex2 applied tor_mol . The atom expressions must
select the same number of atoms in each molecule. No checking is done to insure that the atoms
selected by the two atom expressions actually correspsupmerimpose()  returns the transforma-

tion matrix it found. rmsd() computes the root mean square deviation between the pairs of corre-
spoinding atoms selected by applyagx1l to mol andaex2 tor_mol and returns the value in

The two atom expressions must select the same number of atoms. Again, it is the user’s responsibilty
to insure the two atom expressions select corresponding atmisd) returnsO on success and

on failure.

angle() andanglep() compute the angle in degrees between three paamgle() uses
atoms expressions to determine the average coordinates of tharggep() takes as an argument
three explicit points. Similarlytorsion() andtorsionp() compute a torsion angle in degrees
defined by four pointgorsion() uses atom expressions to specify the points. These atom expres-
sion match sets of atomsimol. The points are defined by the average coordinates of theéasets.
sionp()  uses four explicipoint s. Both functions retur@ if the torsion angle is not defined.

dist() and distp() compute the distance in Angstroms between two explicit atoms.
dist() uses atom expressions to determine which atoms to include in the calculation. An atom
expression which selects more than one atom results in the distance being calculated from the average
coordinate of the selected atondistp() returns the distance between two explicit points. The
functioncountmolatoms() returns the number of atoms selectecby in mol.

sugarpuckeranal() is a function that reports the various torsion angles in a nucleic acid
structure. helixanal() is an interactive helix analysis function based on the methods described by
Babcocket al. [22] plane() takes an atom expressiaex and calculates the least-squares plane
and returns the answer in the form z = Ax + By + C. It returns the number of atoms used to calculate
the plane.

22. M.S. Babcock, E.P.D. Pednault, and W.K. Olson, “Nucleic Acid Structure Analysis,” J. Mol.
Biol. 237, 125-156 (1994).
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Themolsurf()  routine is an NAB adaptation of Paul Beroza’s program of the same name. It
takes coordinates and radii of atoms matching the atom expression the input molecule, and
returns the molcular surface area (the area of the solvent-excluded surface), in square Angstroms. To
compute the solvent-accessible area, add the probe radius to each atom’s radiudgusanma
m ) loop), and calmolsurf with a zero value foprobe_rad.

3.17. Debugging Functions.
nab provides the following builtin functions that allow the user to write the contents of various

nab objects to an ASCII file. The file must be opened for writing before any of these functions are
called.
int dumpmatrix( file, matrix mat );

int dumpbounds( file f, bounds b, int binary );

float dumpboundsviolations( file f, bounds b, int cutoff );

int dumpmolecule( file f, molecule mol,

int dres, int datom, int dbond );
int dumpresidue( file f, resdiue res, int datom, int dbond );
int dumpatom( file f, residue res, int anum, int dbond );
int assert( condition );
int debug( expression(s) );

dumpmatrix()  writes the 1@loat values ofmat to the filef . The matrix is written as four rows
of four numbers.dumpbounds() writes the distance bounds information contained o the filef
using this eight column format:

atom-numberl atom-number2 lower upper

If binary is set to a non-zero value, equivalent information is writen in binary format, which can
save disk-space, and is much faster to read back in on subsequent runs.

dumpboundsviolations() writes all the bounds violations in the bounds object that are
more tharcutoff, and returns the bounds violation energumpmolecule()  writes the contents of
mol to the filef . If dres is 1, then detailed residue information will also be writtenddtom or
dbond is 1, then detailed atom and/or bond information will be writtedmmpresidue()  writes
the contents of residues to the filef . Again if datom or dbond is 1, detailed information about
that residue’s atoms and bonds will be written. Findlilynpatom() writes the contents of the atom
anum of residueres to the filef . If dbond is 1, bonding information about that atom is also written.

Theassert()  statement will evaluate the condition expression, and terminate (with an error
message) if the expression is not true. Unlike the corresponding "C" language construct (which is a
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macro), code is generated at compile time to indicate both the file and line number where the assertion
failed, and to parse the condition expression and print the values of subexpressions inside it. Hence,
for a code fragment like:

i=20; MAX=17;
assert(i < MAX);

the error message will provide the assertion that failed, its location in the code, and the current values
of "i" and "MAX". If the -noassert flag is set at compile tim@ssert statements in the code are
ignored.

Thedebug() statment will evaluate and print a comma-separated expression list along with the
source file(s) and line number(s). Continuing thevebxample, the statment

debug( i, MAX);

would print the values of "i" and "MAX" tetdout, and continue execution. If theodebug flag is set
at compile timedebug statements in the code are ignored.

3.18. Time and date routines
NAB incorporates a few interfaces to time and date routines:

string date();

string timeofday();

string ftime( string fmt);
float second();

The date() routine returns a string in the format "03/08/1999", andtitineofday/() routine

returns the current time as "13:45:00". If you need access to more sophisticated time and date func-
tions, theftime()  routine is just a wrapper for the standard C rousitnitime  , where the format

string is used to determine what is output; see standard C doumentation for how this works.

Thesecond() routine returns the number of seconds of CPU utilization since the beginning of
the process. It is really just a wrapper for the C funatiook()/CLOCKS PER_SEC , and so the
meaning and precision of the output will depend upon the implementation of the underlying C com-
piler and libraries. Generally speaking, you should be able to time a certain section of code in the fol-
lowing manner:

t1 = second();
t2 = second();
elapsed = t2 - t1;

3.19. nab and AVS.

The nab compiler can generate code to convert sorak functions into AVS modules. The
function type is limited tant , float , string andmolecule . The function value will be placed
on an AVS output port. The function’s name must have the fvi@_ident, whereident becomes the
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name of the created module. All parameters to the function are either mapped onto AVS widgets or
other input and output ports. Details of the mapping are specified using special comments or pragmas
with this form:

/IAVSinfo parm-class parm-name parm-options

A detailed description afiab’s AVS capabilities is provided in the Chapteab and AVS”.
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4. Rigid-Body Transformations

This chapter describes NAB functions to create and manipulate molecules through a variety of
rigid-body transformations. This capability, when combined with distance geometry (described in the
next chapter) offers a powerful approach to many problems in initial structure generation.

4.1. Transformation Matrix Functions.

nab uses 44 matrices to hold coordinate transformatiamesb provides these functions to cre-
ate transformation matrices.

matrix newtransform( float dx, float dy, float dz,

float rx, float ry, float rz );
matrix rot4( molecule mol, string aex1, string aex2, float ang );
matrix rot4p( point p1, point p2, float angle );

newtransform() creates a4 matrix that will rotate an object by degrees about the Z axiy,

degrees about the Y axix, degrees about the X axis and then translate the rotated objxt ty,

dz along the X, Y and Z axes. All rotations and transformations are with respect the standard X, Y and

Z axes centered at (0,0,0pt4() androtdp() create transformation matrices that rotate an object
about an arbitrary axis. The rotation amount is in degre¢$() uses two atom expressions to

define an axis that goes fromex1 to aex2 . If an atom expression matches more that one atom in

mol, the average of the coordinates of the matched atoms are used. If an atom expression matches no
atoms inmol, the zero matrix is returnedbtdp()  uses explicit points instead of atom expressions

to specify the axis. Ip1 andp2 are the same, the zero matrix is returned.

4.2. Frame Functions.

Every nab molecule has a “frame” which is three orthonormal vectors and their origin. The
frame acts like a handle attached to the molecule allowing control over its movement. Two frames
attached to different molecules allow for precise positioning of one molecule with respect to the other.
These functions are used in frame creation and manipulation. All @tmrsuccess ant on failure.

int setframe( int use, molecule mol, string org,
string xtail, string xhead,
string ytail, string yhead );

int setframep( int use, molecule mol, point org,
point xtail, point xhead,
point ytail, point yhead );

int alignframe( molecule mol, molecule r_mol);

setframe() and setframep() create coordinate frames for molecai@! from an origin and
two independent vectors. bBetframe() , the origin and two vectors are specified by atom expres-
sions. These atom expressions match sets of atomslinThe average coordinates of the selected
sets are used to define the origorg(), an X-axis xtail to xhead) and a Y-axis \ftail to
yhead ). The Z-axis is created asxX. Since it is unlikely that the original X and Y axes are
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orthogonal, the parametase specifies which of them is to be a real axisudé == , then the
specified X-axis is the real X-axis and Y is recreated frof{.4f use == 2 , then the specified
Y-axis is the real Y-axis and X is recreated fromZY setframep() ~ works exactly the same way
except the vectors and origin are specified as expbaitt  s.

alignframe() transformsmol to superimpose its frame on the frame ahol . If r_mol
is NULL, alignframe() transformamol to superimpose its frame on the standard X,Y,Z directions
centered at (0,0,0).

4.3. Functions for working with Atomic Coordinates. nab provides several functions for
getting and setting user defined sets of molecular coordinates.

int setpoint( molecule mol, string aex, point pt);

int setxyz_from_mol( molecule mol, string aex, point pts[] );
int setxyzw_from_mol( molecule mol, string aex, float xyzw[] );
int setmol_from_xyz( molecule mol, string aex, point pts[] );
int setmol_from_xyzw( molecule mol, string aex, float xyzw[] );
int transformmol( matrix mat, molecule mol, string aex );

residue transformres( matrix mat, residue res, string aex );

setpoint() setspt to the average value of the coordinates of all atoms selected by the atom
expression aex. If no atoms were selected it returng, otherwise it returns a0.
setxyz_from_mol() copies the coordinates of all atoms selected by the atom exprassicdo
thepoint arraypt . It returns the number of atoms selectsgtmol_from_xyz() replaces the

coordinates of the selected atoms from the values irt returns the number of replaced coordinates.
The routinessetxyzw_from_mol  and setmol_from xyzw work in the same way, except that they
use four-dimensional coordinates rather than three-dimensional sets.

transformmoil() applies the transformation matnrat to those atoms ofmol that were
selected by the atom expressiaex . It returns the number of atoms selectdnsformres()
applies the transformation matnmat to those atoms afes that were selected by the atom expres-
sionaex and returns a transformedpy of the input residue. It returM$ULL if the operation failed.

4.4. Symmetry Functions.

Here we describe a set of NAB routines that provide an interface for rigid-body transformations
based on crystallographic, point-group, or other symmetries. These are primarily higher-level ways to
creating and manipulating sets of transformation matrices corresponding to common types of symme-
try operations.

4.4.1. Matrix Creation Functions.

intMAT _cube( point pts[3], matrix mats[24] )
intMAT _ico( point pts[3], matrix mats[60] )
intMAT _octa( point pts[3], matrix mats[24] )
intMAT _tetra( point pts[3], matrix mats[12] )
intMAT _dihedral( point pts[3], int nfold, matrix mats[1] )
intMAT _cyclic( point pts[2], float ang, int cnt,
matrix mats[1] )
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intMAT _helix( point pts[2], float ang, float dst,
int cnt, matrix mats[1] )

intMAT _orient( point pts[4], float angs[3], matrix mats[1] )
intMAT _rotate( point pts[2], float ang, matrix mats[1] )
intMAT _translate( point pts[2], float dst, matrix mats[1] )

These two groups of functions produce arrays of matrices that can be applied to objects to gener-
ate point group symmetries (first group) or useful transformations (second group). The operations are
defined with respect to a center and a set of axes specified by the points in tisfrray Every
function requires a center and one axis whichpasgl] and the vectopts[l] -pts[2] . The
other two points (if required) define two additional directionsts[l] - pts[3] and
pts[1] - pts[4] .How these directions are used depends on the function.

The point groups generated by the functid&T_cube() , MAT _ico() , MAT octa() and
MAT tetra()  have three internal 2-fold axes. While these 2-fold are orthogonal, the 2 directions
specified by the three points jots[] need only be independent (not parallel). The 2-fold axes are
constructed in this fashion. Axis-1 is along the direcipds{1] - pts[2] . Axis-3 is along the
vectorpts[l] -pts[2] x pts[l] -pts[3] and axis-2 is recreated along the vector axis-3
axis-1. Each of these four functions creates a fixed number of matrices.

Diehedral symmetry is generated by an N-fold rotation about an axis followed by a 2-fold rota-
tion about a second axis orthogonal to the first aMAT _dihedral() produces matrices that gen-
erate this symmetry. The N-fold axis #s[0] -pts[l] and the second axis is created by the
same orthogonalization process described above. Unlike the previous point group functions the num-
ber of matrices created BJAT _dihedral() is not fixed but is equal to>2nfold

MAT _cyclic() createscnt matrices that produce uniform rotations about the axis
pts[l] -pts[2] . The rotations are in multiples of the angleg beginning with 0, and increas-
ing by ang until cnt matrices have been creatett is required to be > 0, bang can be 0, in
which caseMAT_cyclic returnscnt copies of the identity matrix.

MAT helix()  createscnt matrices that produce a uniform helical twist about the axis
pts[l] -pts[2] . The rotations are in multiples ahg and the translations in multiples dét .
cnt must be > 0, but eithesing or dst or both may be zero. lang is not 0, butdst s,
MAT helix()  produces a uniform plane rotation and is equivaleMAd cyclic() . Anang of
0 and a non-zerdst produces matrices that generate a uniform translation along the axis. If both
ang anddst are 0, theMAT _helix() createxnt copies of the identity matrix.

The three functionsMAT _orient() , MAT_rotate() and MAT _translate() are not
really symmetry operations but are auxilliary operations that are useful for positioning the objects
which are to be operated on by the true symmetry operators. Two of these ful&ibntate()
and MAT _translate() produce a single matrix that either rotates or translates an object along the axis
pts[l] -pts[2] . A zeroang ordst is acceptable in which case the function creates an identity
matrix. Except for a different user interface these two functions are equivalent nalthkuiltins
rot4p() andtran4p()

MAT orient()  creates a matrix that rotates a object about the thregtsfgs - pts[2]
pts[l] -pts[3] and pts[l] -pts[4] . The rotations are specified by the values of the array
angs[] , with ang[1] the rotation about axis-1 etc. The rotations are applied in the order axis-3,
axis-2, axis-1. The axes remained fixed throughout the operation and zero angle values are acceptable.
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If all three angles are zeIAT _orient()  creates an identity matrix.

4.4.2. Matrix I/O Functions.

intMAT _fprint( file f, int nmats, matrix mats[1] )
intMAT _sprint( string str, int nmats, matrix mats[1] )
intMAT _fscan( file f, int smats, matrix mats[1] )
iNtMAT _sscan( string str, int smats, matrix mats[1] )

string MAT_getsyminfo()

This group of functions is used to read and wniddomatrix  variables. The two functions
MAT_fprint() andMAT _sprint()  write the the matrix to the file or the stringstr . The num-
ber of matrices is specified by the paramateats and the matrices are passed in the amajigs][]

The two functionsMAT fscan() and MAT _sscan() read matrices from the file or the
string str  into the arraymats[] . The parametesmats is the size of the matrix array and if the
source file or string contains more tremats only the firstsmats will be returned. These two func-
tions return the number of matrices read unless there the number of matrices is greataathan
the last matrix was incomplete in which case they retlirn

In order to understand the last function in this grouptAT_getsyminfo() it is necessary to
discuss both the internal structure tie matrix type and one of its most important uses. fiale
matrix type is used to hold transformation matrices. Although these are atomic objectaiab the
level, they are actually ¥4 matrices where the first three elements of the fourth row are the X Y and
Z components of the translation part of the transformation. The matrix print functions write each
matrix as four lines of four numbers separated by a single space. Similarly the matrix read functions
expect each matrix to be represented as four lines of four white space (any number of tabs and spaces)
separated numbers. The print functions #863.6e for each number in order to produce output with
aligned columns, but the scan functions only require that each matrix be contained in four lines of four
numbers each.

Most nab programs usenatrix variables as intermediates in creating structures. The struc-
tures are then saved and the matrices disappear when the program exits. Rabenths used to
create a set of routines called a “symmetry server”. This is a setboprograms that work together
to create matrix streams that are used to assemble composite objects. In order to make it most general,
the symmetry server produces only matrices leaving it to the user to apply them. Since these programs
will be used to create hierarchies of symmetries or transformations we decided that the external repre-
sentation (files or strings) of matrices would consist of two kinds of information — required lines of
row values and optional lines beginning with the charat®sme of which are used to contain infor-
mation that describes how these matrices were created.

MAT_getsyminfo()  is used to extract this symmetry information from either a matrix file or
a string that holds the contents of a matrix file. Each time the user MAI fscan() or
MAT_sscan() , any symmetry information present in the source file or string is saved in private
buffer. The previous contents of this buffer are overwritten and M#&T_getsyminfo() returns
the contents of this buffer. If the buffer is empty, indicating no symmetry information was present in
either the source file or stringlAT_getsyminfo()  returnsNULL



4/20/102 Rigid-Body Transformations 83

4.5. Symmetry server programs

This section describes a setr@b programs that are used together to create composite objects
described by a hierarchical nest of transformations. There are four programs for creating and operat-
ing on transformation matricesnatgen , matmerge , matmul and matextract , a program,
transform , for transforming PDB or point files, and two progratss, init andtss_next for
searching spaces defined by transformation hierarchies. In addition to these programs, all of this func-
tionality is available directly at theab level via theMAT _andtss_  builtins described above.

4.5.1. matgen

The programmatgen creates matrices that correspond to a symmetry or transformation opera-
tion. It has one required argument, the name of a file containing a description of this operation. The
created matrices are written $tdout . A single matgen may be used by itself or two or more
matgen programs may be connected in a pipeline producing nested symmetries.

matgen -create sydef-1 | matgen symdef-2 | ... | matgen symdef-N

Because anatgen can be in the middle of a pipeline, it automatically looks for an stream of matrices
onstdin . This means the firshatgen in a pipeline will wait for arEOF(generally Ctl-D) from the
terminal unless connected to an empty file or equivalent. In order to avoid the nuisance of having to
create an empty matrix stream the fimsttgen in a pipeline should use thereate flag which tells
matgen to ignorestdin

If input matrices are read, each input matrix left multiplies the first generated matrix, then the
second etc. The table below shows the effect wlatgen performing a 2-fold rotation on an input
stream of three matrices.

Input: IMl, |M2, |M3
Operation:  2-fold rotationR;, R,
Output: IMl X Rl! |M2 X Rl! |M3 X Rl! IMl X Rz, |M2 X Rz, |M3 X RZ

4.5.2. Symmetry Definition Files.

Transformations are specified in text files containing several lines of keyword/value pairs. These
lines define the operation, its associated axes and other parameters such as angles, a distance or count.
Most keywords have a default value, although the operation, center and axes are always required.
Keyword lines may be in any order. Blank lines and most lines starting with a ghauge (ignored.

Lines beginning witi#S{, #S+ and#S} are structure comments that describe how the matrices were
created. These lines are required to search the space defined by the transformation hierarchy and their
meaning and use is convered in the section on “Searching Transformation Spaces”. A complete list of
keywords, their accepatable values and defaults is shown below.
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Keyword Possible Values Default Value
symmetry cube, cyclic , dihedral , dodeca, he- None
lix ,ico ,octa ,tetra
transform orient ,rotate ,translate . None
name Any string of nonblank characters. mPid
noid frue ,false . false
axestype absolute , relative . relative
center Any three numbers separated by tabs or spacesNone
axis ,axis 1% None
axis2 None
axis3 None
angle ,angle 1' | Any number. 0
angle2 0
angle3 0
dist 0
count Any integer. 1

1.axis andaxisl are synonyms as aamgle andanglel .

Thesymmetry andtransform  keywords specify the operation. One or the other but not both must
be specified.

The name keyword names a particular symmetry operation. The default namienisiediately
followed by the process ID, @ag2286. name is used by the transformation space seaarch routines
tss_init andtss_next and is described later in the section “Searching Transformation Spaces”.

Thenoid keyword with valuegtrue suppresses generation of the identity matrix in symmetry
operations. For example, the keywords below

symmetry cyclic
noid false

center 00O
axis 001
count 3

produce three matrices which perform rotations 9f12C¢ and 240 about the Z-axis. Ihoid is

true , only the two non-identity matrices are created. This option is useful in building objects with
two or three orthogonal 2-fold axes and is discussed further in the example “Icosahedron from Rota-
tions”. The default value afoid is false

Theaxestype , center andaxis* keywords defined the symmetry axes. Teater and
axis* keywords each require a point value which is three numbers separated by tabs or spaces.
Numbers may integer or real and in fixed or exponential format. Internally all numbers are converted
tonab typefloat which is actually double precision. No space is permitted between the minus sign
of a negative number and the digits.
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The interpretation of these points depends on the value of the kewwestype . If it is
absolute then the axes are defined as the veaterder - axisl , center - axis2 andcen-

ter -axis3 . If it relative , then the axes are vectors whose directions @reaxi s1,
O-axi s2 and O-axi s3 with their origins atcenter . If the value ofcenter is 0,0,0, then
absolute and relative are equivalent. The defualt vadixestype is relative ; center and

theaxis* do not have defaults.

The angle keywords specify the rotation about the axanglel is associated witlaxisl
etc. Note thaangle andanglel are synonyms. The angle is in degrees, with positive being in the
counterclockwise direction as you sight from thés point to thecenter point. Either an integer
or real value is acceptable. No space is permitted between the minus sign of a negative number and its
digits. All angle* keywords have a default value @f

Thedist keyword specifies the translation along an axis. The positive direction iéom
ter to axis . Either integer or real value is acceptable. No space is permitted between the minus
sign of a negative number and its digits. The default valagsof is 0.

Thecount keyword is used in three related ways. Forapdic  value of thesymmetry it
specifiesount matrices, each representing a rotation of 8@t °. It also specifies the same rota-
tions about the non 2-fold axis dihedral  symmetry. Forhelix symmetry, it indicates that
count matrices should be created, each with a rotatiangfe °. In all cases the default valuelis

This table shows which keywords are used and/or required for each type of operation.

symmetry name |noid axestype center axes | angles dist gount
cube m Pid | false relative Required | 1,2 K 1 -
cyclic m Pid | false relative Required | 1 - - D=1
dihedral m Pid | false relative Required | 1,2 | 1 D=1
dodeca m Pid | false relative Required | 1,2 K 1 -
helix m Pid false relative Required | 1 1,D=0 D=0 D=1
ico m Pid | false relative Required | 1,2 | 1 -
octa m Pid | false relative Required | 1,2 K 1 -
tetra m Pid false relative Required | 1,2 | 1 -
transform name naqid axestype center axes | angles dist gount
orient m Pid | - relative Required | All All,D=0 |-

rotate m Pid | - relative Required | 1 1,D=0 |

translate m Pid | - relative Required | 1 - D=0

4.5.3. matmerge

Thematmerge program combines 2-4 files of matrices into a single stream of matrices written
to stdout . Input matrices are in files whose names are given on as arguments roattherge
command line. For example, the command line below

matmerge A.mat B.mat C.mat

copies the matrices frorA.mat to stdout , followed by those oB.mat and finally those of



4/20/102 Rigid-Body Transformations 86

C.mat . Thusmatmerge is similar to the Unixcat command. The difference is that while they are

called matrix files, they can contain special comments that describe how the matrices they contain
were created. When matrix files are merged, these comments must be collected and grouped so that
they are kept together in any further matrix processing. All of this is described in the section “Search-
ing Transformation Spaces”.

45.4. matmul

The matmul program takes two files of matrices, and creates a new stream of matrices formed
by the pair wise product of the matrices in the input streams. The new matrices are watten to
out . If the number of matrices in the two input files differ, the last matrix of the shorter file is repli-
cated and applied to all remaining matrices of the longer file. For example, if tBarfde has three
matrices and the fil®.mat has five, then this command

matmul 3.mat 5.mat

would result in the third matrix & mat mulitplying the third, forth and fifth matrices 6fmat .

4.5.5. matextract

Thematextract  is used to extract matrices from the matrix stream presentsttlion and
writes them tostdout . Matrices are numbered from 1 to N, where N is the number of matrices in
the input stream. The matrices are selected by giving their numbers as the argumentsatexhe
tract command. Each argument is comma or space separated list of one or more ranges, where a
range is either a number or two numbers separated by a-gash (ange beginning with starts with
the first matrix and a range ending wittends with the last matrix. The rangeselects all matrices.
Here are some examples.

Command Action

matextract 2 Extract matrix number 2.

matextract 2,5 Extract matrices number 2 and 5.

matextract 2 5 Extract matrices number 2 and 5.

matextract 2-5 Extract matrices number 2 up to and including 5.

matextract -5 Extract matrices 1 to 5.

matextract 2- Extract all matrices beginning with number 2.

matextract - Extract all matrices.

matextract 2-4,7 13 15,19- Extract matrices 2 to 4, 7, 13, 15 and all matrices
numbered 19 or higher.

4 .5.6. transform

Thetransform  program applies matrices to an object creating a composite object. The matri-
ces are read frostdin  and the new object is written sbdout . transform  takes one argument,
the name of the file holding the object to be transformeshsform is limited to two types of
objects, a molecule in PDB format, or a set of points in a text file, three space/tab separated num-
bers/line. The name of object file is preceded by a flag specifying its type.
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Command

Action

transform -pdb X.pdb
transform -point X.pts

Transform a PDB format file.
Transform a set of points.

87
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5. Distance Geometry.

The second main element in NAB for the generation of initial structures is distance geometry.
The next subsection gives a brief overview of the basic theory, and is followed by sections giving
details about the implementation in NAB.

5.1. Metric Matrix Distance Geometry.

A popular method for constructing initial structure that satisfy distance constraints is based on a
metric matrix or "distance geometry" approach [23,24]. If we consider describing a macromolecule in
terms of the distances between atoms, it is clear that there are many constraints that these distances
must satisfy, since faN atoms there ardl(N —1)/2 distances but onlyN\Bcoordinates. General con-
siderations for the conditions required to "embed" a set of interatomic distances into a realizable three-
dimensional object forms the subject of distance geometry. The basic approach starts fmetriche
matrix that contains the scalar products of the vectptisat give the positions of the atoms:

These matrix elements can be expressed in terms of the distgncks andd;o:
gj = 3(d+df-df) )

If the origin ("0") is chosen at the centroid of the atoms, then it can be shown that distances from this
point can be computed from the interatomic distances alone. A fundamental theorem of distance
geometry states that a set of distances can correspond to a three-dimensional object only if the metric
matrix g is rank three, i.e. if it has three positive and N-3 zero eigenvalues. This is not a trivial theo-
rem, but it may be made plausible by thinking of the eigenanalysis as a principal component analysis:
all of the distance properties of the molecule should be describable in terms of three "components,"
which would be the, y andz coordinates. If we denote the eigenvector matriw @nd the eigenval-

uesAy, the metric matrix can be written in two ways:

3 3
gij = 2 Xik Xjk = 2 Wik Wjk Ak 3
k=1 k=1

The first equality follows from the definition of the metric tensor, Eqg. (1); the upper limit of three in
the second summation reflects the fact that a rank three matrix has only three non-zero eigenvalues.
Eqg. (3) then provides an expression for the coordingten terms of the eigenvalues and eigenvectors

of the metric matrix:

1
Xik = /]li Wik (4)

23. T.F. Havel, I.D. Kuntz, and G.M. Crippen, “The theory and practice of distance geometry,” Bull.
Math. Biol. 45, 665-720 (1983).

24. G.M. Crippen and T.F. HaveDistance Geometry and Molecular Conformation, Research Stud-
ies Press, Taunton, England, 1988.
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If the input distances are not exact, then in general the metric matrix will have more than three
non-zero eigenvalues, but an approximate scheme can be made by using Eq. (4) with the three largest
eigenvalues. Since information is lost by discarding the remaining eigenvectors, the resulting dis-
tances will not agree with the input distances, but will approximate them in a certain optimal fashion.

A further "refinement" of these structures in three-dimensional space can then be used to improve
agreement with the input distances.

In practice, even approximate distances are not known for most atom pairs; rather, one can set
upper and lower bounds on acceptable distances, based on the covalent structure of the protein and on
the observed NOE cross peaks. Then particular instances can be generated by choosing (often ran-
domly) distances between the upper and lower bounds, and embedding the resulting metric matrix.

Considerable attention has been paid recently to improving the performance of distance geome-
try by examining the ways in which the bounds are "smoothed" and by which distances are selected
between the bounds [25,26]. The use of triangle bound inequalities toviegansistency among the
bounds has been used for many years, and NAB implements the "random pairwise metrization" algo-
rithm developed by Jay Ponder [27]. Methods like these are important especially for undercon-
strainted problems, where a goal is to generate a reasonably random distribution of acceptable struc-
tures, and the difference between individual members of the ensemble may be quite large.

An alternative procedure, which we call "random embedding"”, implements the procedure of
deGrootet al. for satisfying distance constraints [28]. This does not use the embedding idea discussed
above, but rather randomly corrects individual distances, ignoring all couplings between distances.
Doing this a great many times turns out to actually find fairly good structures in many cases, although
the properties of the ensembles generated for underconstrained problems are not well understood.

5.2. Creating and manipulating bounds, embeding structures A variety of metric-matrix
distance geometry routines are included as builtimain
bounds newbounds( molecule mol, string opts );

int andbounds( bounds b, molecule mol,
string aexl1, string aex2, float Ib, float ub );

25. T.F. Havel, “An evaluation of computational strategies for use in the determination of protein
structure from distance constraints obtained by nuclear magnetic resonance,” Prog. Biophys.
Mol. Biol. 56, 43-78 (1991).

26. J. Kuszewski, M. Nilges, and A.T. Briinger, “Sampling and efficiency of metric matrix distance
geometry: A novel partial metrization algorithm,” J. Biomolec. NNR 33-56 (1992).

27. M.E. Hodsdon, J.W. Ponder, and D.P. Cistola, “The NMR solution structure of intestinal fatty
acid-binding protein complexed with palmitate: Application of a novel distance geometry algo-
rithm,” J. Mol. Biol. 264, 585-602 (1996).

28. B.L. deGroot, D.M.F. van Aalten, R.M. Scheek, A. Amadei, G. Vriend, and H.J.C.
Berendsen, “Prediction of protein conformational freedom from distance constraints,”
Proteins 29, 240-251 (1997).
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The call tonewbounds()

Distance Geometry

orbounds( bounds b, molecule mol,

string aex1, string aex2, float Ib, float ub );
setbounds( bounds b, molecule mol,

string aex1, string aex2, float Ib, float ub );
showbounds( bounds b, molecule mol,

string aex1, string aex2 );
useboundsfrom( bounds b, molecule moll, string aex1,

molecule mol2, string aex2, float deviation );
setboundsfromdb( bounds b, molecule mol,

string aex1, string aex2, string dbase, float mul );
setchivol( bounds b, molecule mol, string aex1,

string aex2, string aex3, string aex4, float vol );
setchiplane( bounds b, molecule mol, string aex );

getchivol( molecule mol, string aex1, string aex2,
string aex3, string aex4 );

getchivolp( point p1, point p2, point p3, point p4 );

tsmooth( bounds b, float delta );

geodesics( bounds b );

dg_options( bounds b, string opts );

embed( bounds b, float xyz[] );

90

is necessary to establish a bounds matrix for further work. This rou-
tine sets lower bounds to van der Waals limits, along with bounds derived from the input geometry for

atoms bonded to each other, and for atoms bonded to a common iadosasdalled 1-2 and 1-3 inter-

actions.) Upper and lower bounds for 1-4 interactions are set to the maximum and minimum possibili-
ties (the max éyn, "Van der Waals limits" ) andanti distances).newbounds()
its last parameter. This string is used to pass in options that control the details of how those routines

execute. The string can baJLL, or contain one or moreptions surrounded by white space. The

formats of an option are

- name=value
- name to select the default value if it exists.

The options tmewbounds() are listed below.

has astring

as
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Option type Default Action
newbounds()
-rbm string None The value of the option is the name of a file contain-

ing the bounds matrix for this molecule. This file
would ordinarliy be made by the dumpbounds com-
mand.

-binary If this flag is present, bounds read in with thiem
will expect a binary file created by tdempbounds
command.

-nocov If this flag is present, no covalent (bonding) informa-
tion will be used in constructing the bounds matrix,

-nchi int 4 The option containing the keywomthi allocatesn
extra chiral atoms for each residue of this molecule.
This allows for additional chirality information to be
provided by the user. The default is 4 extra chiral
atoms per residue.

The next five routines use atom expressiamsl andaex2 to select two sets of atoms. Each
of these four routines returns the number of bounds set or changed. For each pair ofhioms (
aexl anda2 in aex2) andbounds() sets the lower bound to maxyrrent_lb, Ib) and the upper
bound to the min ¢urrent_ub, ub). If ub < current_lb or if Ib > current_ub, the bounds for that pair
are unchanged. The routimebounds()  works in a similar fashion, except that it uses the less
restrictive of the two sets of bounds, rather than the more restrictive onesefforinds()  call
updates the bounds, overwriting whatever was thehewbounds() prints all the bounds between
the atoms selected in the first atom expression and those selected in the second atom expression. The
useboundsfrom()  routine sets the the bounds between all the selected atonakliaccording to
the geometry of a reference molecut®]2. The bounds are set between every pair of atoms selected
in the first atom expressioaex1 to the distance between the corresponding pair of atoms selected by
aex2 in the reference molecule. In addition, a slack tedemijation, is used to allow some variance
from the reference geometry by decreasing the lower bound and increasing the upper bound between
every pair of atoms selected. The amount of increase or decrease depends on the distance between the
two atoms. Thus, deviation of 0.25 will result in the lower bound set between two atoms to be 75%
of the actual distance separating the corresponding two atoms selected in the reference molecule. Sim-
ilarly, the upper bound between two atoms will be set to 125% of the actual distance separating the
corresponding two atoms selected in the reference molecule. For instance, the call

useboundsfrom(b, moll, "1:2:C1’,N1", mref, "3:4:C1’,N1", 0.10 );

sets the lower bound between the C1’ and N1 atoms in strand 1, residue 2 of nmdtttde90% of

the distance between the corresponding pair of atoms in strand 3, residue 4 of the reference molecule,
mref. Similarly, the upper bound between the C1" and N1 atoms seleatealdinis set to 110% of the

distance between the corresponding pair of atomséh A deviation of 0.0 sets the upper and lower

bounds between every pair of atoms selected to be the actual distance between the corresponding refer-
ence atoms. l&exl selects the same atomsaex2, the bounds between those atoms selected will be
constrained to the current geometry. Thus the call,
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useboundsfrom(b, mol1, "1:1:", mol1, "1:1", 0.0 );

essentially constrains the current geometry of all the atoms in strand 1, residue 1, by setting the upper
and lower bounds to the actual distances separating each atonugaoundsfrom() only

checks the number of atoms selectedabyl and compares it to the number of atoms selected by
aex2. If the number of atoms selected by both atom expressions are not equal, an error message is out-
put. Note, however, that there is no checking on the atom types selected by either atom expression.
Hence, it is important to understand the method in whadh atom expressions are evaluated. For

more information, refer to Section 2.6, “Atom Names and Atom Expressions”.

The useboundsfrom() function can also be used with distance geometry "templates"”, as
discussed in the next subsection.

The routinesetchivol() uses four atom expressions to select exactly four different atoms
and sets the volume of the chiral (ordered) tetrahedron they describk .t&ettingvol to O forces
the four atoms to be planaetchivol() returnsO on success antl on failure.setchivol()
does not affect any distance boundb iand may precede or follow triangle smoothing.

Similar tosetchivol() , setchiplane() enforces planarity across four or more atoms by
setting the chiral volume @ for every quartet of atoms selectedd®x . setchiplane() returns
the number of quartets constraingdote: If the number of chiral contraints set is larger than the
default number of chiral objects allocated in the cahaavbounds() , a chiral table overflow will
result. Thus, it may be necessary to allocate space for additional chiral objects by specifying a larger
number for the optionchi in the call tonewbounds()

getchivol() takes as an argument four atom expressions and returns the chiral volume of the
tetrahedron described by those atoms. If more than one atom is selected for a particular point, the
atomic coordinate is calculated from the average of the atoms selected. Sigdtuiyyolp()
takes as an argument four parameters of pgiet and returns the chiral volume of the tetrahedron
described by those points.

After bounds and chirality have been set in this way, the general approach would be to call
tsmooth()  to carry out triangle inequality smoothing, followed émbed() to create a three-
dimensional object. This might then be refined against the distance bounds by a conjugate-gradient
minimization routine. Thasmooth() routine takes two arguments: a bounds object, and a toler-
ance parametalelta, which is the amount by which an upper bound may exceed a lower bound with-
out triggering a triangle error. For most circumstandelda would be chosen as a small number, like
0.0005, to allow for modest round-off. In some circumstances, howdslrcould be larger, to allow
some significant inconsistencies in the bounds (in the hopes that the problems would be fixed in subse-
guent refinement steps.) If th@mooth()  routine detects a violation, it will (arbitrarily) adjust the
upper bound to equal the lower bound. Ideally, one should fix the bounds inconsistencies before pro-
ceeding, but in some cases this fix will allow the refinments to proceed even when the underlying
cause of the inconsistency is not corrected.

For larger systems, thtemooth()  routine becomes quite time-consuming as it scales O(N"3).
In this case, a more efficient triangle smoothing routyemdesics() is used. geodesics()
smoothes the bounds matrix via the triangle inequality using a sparse matrix version of a shortest path
algorithm.

Theembed routine takes a bounds object as input, and returns a four-dimensional array of coor-
dinates; (values of the 4-th coordinate may be nearly zero, depending on the Vallieseé below.)
Options for how the embed is done are passed in throughgtieptions routine, whose option string



4/20/102 Distance Geometry 93

hasname=value pairs, separated by commas or whitespace. Allowed options are listed in the follow-
ing table.

Options parameters for dg_options

keyword default meaning

ddm none Dump distance matrix to this file.

rdm none Instead of creating a distance matrix, read it from| this
file.

dmm none Dump the metric matrix to this file.

rmm none Instead of creating a metric matrix, read it from this
file.

gdist 0 If set to non-zero value, use a Gaussian distribution

for selecting distances; this will have a mean at|the
center of the allowed range, and a standard deviation
equal to 1/4 of the range. If gdist=0, select distances
from a uniform distribution in the allowed range.

randpair 0. Use random pair-wise metrization for this percentage
of the distancesj.e, randpair=10. would metrize
10% of the distance pairs.

eamax 10 Maximum number of embed attempts before bailing
out.

seed -1 Initial seed for the random number generator.
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Options parameters for dg_options (cont.)
keyword  default meaning
rembed O If set to a non-zero value, use the "random embed-

ding" scheme of de Groet al., Proteins29, 240-251
(1997), rather than metric matrix embedding.
rbox 20.0 Size, in Angstroms, of each side of the cubic nto
which the coordinates are randomly created in|the
random-embed procedure.

riter 1000 Maximum number of cycles for random-embed pro-
cedure. Each cycle selects 1000 pairs for adjustment.

kchi 1.0 Force constant for enforcement of chirality con-
straints.

kad 1.0 Force constant for squeezing out the fourth dimen-

sional coordinate. If this is non-zero, a penalty func-
tion will be added to the bounds-violation energy,
which is equal to 0.5 ®4d * w * w, wherew is the
value of the fourth dimensional coordinate.

sqviol 0 If set to non-zero value, use parabolas for the viola-
tion energy when upper or lower bounds are violated;
otherwise use functions based on those irdtieom
program. See the codeémbed.c for details.

Ibpen 3.5 Weighting factor for lower-bounds violations, relatjive
to upper-bounds violations. The default penaligzes
lower bounds 3.5 times as much as the equivalent
upper-bounds violations, which is frequently appro-
priate distance geometry calculations on molecules.

ntpr 10 Frequency at which the bounds matrix violations will
be printed in subsequent refinements.
pencut -1.0 If pencut >= 0.0, individual distance and chirality |vi-

olations greater than pencut will be printed out (along
with the total energy) every ntpr steps.

Typical calling sequences. The following segment shows some ways in which these routines can
be put together to do some simple embeds:

1 molecule m;
2 bounds b;
3 float fret, xyz[ 10000 J;
4 int ier;
5
6 m = getpdb( argv[2] );
7 b = newbounds(m, ™);
8 tsmooth( b, 0.0005 );
9
10 dg_options( b, "gdist=1, ntpr=50, k4d=2.0, randpair=10." );
11 embed( b, xyz);
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12 ier = conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 200 );
13 printf( "conjgrad returns %dO, ier );

14

15 setmol_from_xyzw( m, NULL, xyz );

16 putpdb( "new.pdb”, m);

In lines 6-8, the molecule is created by reading in a pdb file, then bounds are created and
smoothed for it. The embed options (established in line 10) include 10% random pairwise metrization,
use of Gaussian distance selection, squeezing out the 4-th dimension with a force constant of 2.0, and
printing every 50 steps. The coordinates developed iertied step (line 11) are passed to a conju-
gate gradient minimizer (see the description below), which will minimize for 200 steps, using the
bounds-violation routindb_viol as the target function. Finally, in lines 15-16, teamol_from_ xyzw
routine is used to put the coordinates fromxyearray back into the molecule, and a new pdb file is
written.

More complex and representative examples of distance geometry are givenEBratheles
chapter below.

5.3. Distance geometry templates.

The useboundsfrom() function can be used with structures supplied by the user, or by
canonical structures supplied with thab distribution called "templates”. These templates include
stacking schemes for all standard residues in a A-DNA, B-DNA, C-DNA, D-DNA, T-DNA, Z-DNA,
A-RNA, or A-RNA stack. Also included are the 28 possible basepairing schemes as described in
Saenger[29 ]. The templates are in PDB format and are locat§NABHOME/dgdb/tem-
plate/basepairs/ and$NABHOME/dgdb/template/stacking/

A typical use of these templates would be to set the bounds between two residues to some per-
centage of the idealized distance described by the template. In this case, the template would be the
reference molecule ( the second molecule passed to the function ). A typical call might be:

useboundsfrom(b, m, "1:2,3:??,H?["T]", getpdb( PATH +
"gc.bdna.pdb™), "::??,H?["T]", 0.1);

wherePATHis $SNABHOME/dgdb/template/stacking/ . This call sets the bounds of all
the base atoms in residues 2 ( GUA ) and 3 ( CYT ) of strand 1 to be within 10% of the distances
found in the template.

The basepair templates are named so that the first field of the template name is the one-character
initials of the two individual residues and the next field is the Roman numeral corresponding to same
bonding scheme described by Sanger, p. I¥le: since no specific sugar or backbone conformation
is assumed in the templates, the non-base atoms should not be referenced. The base atoms of the tem-
plates are show in figures 5 and 6.

The stacking templates are named in the same manner as the basepair templates. The first two
letters of the template name are the one-character initials of the two residues involved in the stacking
scheme ( 5’ residue, then 3’ residue ) and the second field is the actual helical padterma-{na

29. W. Saenger, M. Turcotte, G. Lapalme, and F. Major, “Exploring the conformations of nucleic
acids,” J. Funct. Progranb, 443-460 (1995). Springer-Verlag,
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Figure 5. Basepair templates for use witkeboundsfrom()
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Figure 6. Basepair templates for use witkeboundsfrom()
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represents the helical parameters of a'rna ). The following stacking shemes are included inriab
distribution:

aa.a-rna.pdb ca.adna.pdb ga.adna.pdb ta.bdna.pdb
aa.adna.pdb ca.arna.pdb ga.arna.pdb ta.cdna.pdb
aa.arna.pdb ca.bdna.pdb ga.bdna.pdb ta.ddna.pdb
aa.bdna.pdb ca.cdna.pdb ga.cdna.pdb ta.tdna.pdb
aa.cdna.pdb ca.ddna.pdb ga.ddna.pdb tc.adna.pdb
aa.ddna.pdb ca.tdna.pdb ga.tdna.pdb tc.bdna.pdb
aa.tdna.pdb cc.a-rna.pdb gc.a-rna.pdb tc.cdna.pdb
ac.a-rna.pdb cc.adna.pdb gc.adna.pdb tc.ddna.pdb
ac.adna.pdb cc.arna.pdb gc.arna.pdb tc.tdna.pdb
ac.arna.pdb cc.bdna.pdb gc.bdna.pdb tg.adna.pdb
ac.bdna.pdb cc.cdna.pdb gc.cdna.pdb tg.bdna.pdb
ac.cdna.pdb cc.ddna.pdb gc.ddna.pdb tg.cdna.pdb
ac.ddna.pdb cc.tdna.pdb gc.tdna.pdb tg.ddna.pdb
ac.tdna.pdb cg.a-rna.pdb gc.zdna.pdb tg.tdna.pdb
ag.a-rna.pdb cg.adna.pdb gg.a-rna.pdb tt.adna.pdb
ag.adna.pdb cg.arna.pdb gg.adna.pdb tt.bdna.pdb
ag.arna.pdb cg.bdna.pdb gg.arna.pdb tt.cdna.pdb
ag.bdna.pdb cg.cdna.pdb 09.bdna.pdb tt.ddna.pdb
ag.cdna.pdb cg.ddna.pdb gg.cdna.pdb tt.tdna.pdb
ag.ddna.pdb cg.tdna.pdb gg.ddna.pdb ua.a-rna.pdb
ag.tdna.pdb cg.zdna.pdb gg.tdna.pdb ua.arna.pdb
at.adna.pdb ct.adna.pdb gt.adna.pdb uc.a-rna.pdb
at.bdna.pdb ct.bdna.pdb gt.bdna.pdb uc.arna.pdb
at.cdna.pdb ct.cdna.pdb gt.cdna.pdb ug.a-rna.pdb
at.ddna.pdb ct.ddna.pdb gt.ddna.pdb ug.arna.pdb
at.tdna.pdb ct.tdna.pdb gt.tdna.pdb uu.a-rna.pdb
au.a-rna.pdb cu.a-rna.pdb gu.a-rna.pdb uu.arna.pdb
au.arna.pdb cu.arna.pdb gu.arna.pdb

ca.a-rna.pdb ga.a-rna.pdb ta.adna.pdb

5.4. Bounds databases.

In addition to canonical templates, it is also possible to specify bounds information from a
database of known molecular structures. This provides the option to use data obtained from actual
structures, rather than from an idealized, canonical conformation.

The functionsetboundsfromdb() sets the bounds of all pairs of atoms between the two
residues selected laex1 andaex2 to a statistically averaged distance calculated from known struc-
tures plus or minus a multiple of the standard deviation. The statistical information is kept in database
files. Currently, there are three types of database files - Those containing bounds information between
Watson-Crick basepairs, those containing bounds information between helically stacked residues, and
those containing intra-residue bounds information for residues in any conformation. The standard
deviation is multiplied by the parameteul and subtracted from the average distance to determine the
lower bound and similarly added to the average distance to determine the upper bound of all base-base
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atom distances. Base-backbone bounds, that is, bounds between pairs of atoms in which one atom is a
base atom and the other atom is a backbone atom, are set to be looser than base-base atoms. Specifi-
cally, the lower bound between a base-backbone atom pair is set to the smallest measured distance of
all the structures considered in creating the database. Similarly, the upper bound between a base-back-
bone atom pair is set to the largest measured distance of all the structures considered. Base-base, and
base-sugar bounds are set in a similar manner. This was done to avoid imposing false constraints on
the atomic bounds, since Watson-Crick basepairing and stacking does not preclude any specific back-
bone and sugar conformatiosetboundsfromdb() first searches the current directory tinase

before checking the default database locatdABHOME/dgdb

Each entry in the database file has six fields: The atoms whose bounds are to be set, the number
of separate structures sampled in constructing these statistics, the average distance between the two
atoms, the standard deviation, the minimum measured distance, and the maximum measured distance.
For example, the databalsdna.basepair.db has the following sample entries:

A:C2-T:C1' 424 6.167 0.198 5.687 6.673
A:C2-T:C2 424 3.986 0.175 3.554 4.505
A:C2-T:C2' 424 7.255 0.304 5.967 7.944
A:C2-T:C3" 424 8.349 0.216 7.456 8.897
A:C2-T:C4 424 4.680 0.182 4.122 5.138
A:C2-T:C4" 424 8.222 0.248 7.493 8.800
A:C2-T:C5 424 5.924 0.168 5.414 6.413
A:C2-T:C5" 424 9.385 0.306 8.273 10.104
A:C2-T:C6 424 6.161 0.163 5.689 6.679
A:C2-T:C7 424 7.205 0.184 6.547 7.658

The first column identifies the atoms from the adenosine C2 atom to various thymidine atoms in a
Watson-Crick basepair. The second column indicatesAfdastructures were sampled in determining

the next four columns: the average distance, the standard deviation, and the minimum and maximum
distances.

The databases were constructing using the coordinates from all the known nucleid acid structures
from the Nucleic Acid Database (NDBhttp://www.ndbserver.ebi.ac.uk:5700/NDB/
If one wishes to remake the databases, the coordinates of all the NDB structures should be downloaded
and kept in theéNABHOME/coords directory. The databases are made by issuing the command
$NABHOME/dgdb/make_databases dblist wheredblist is a list of nucleic acid types (i.e., bdna,
arna,etc. ). If one wants to add new structures to the structure reposit@\ABHOME/coords, it
is necessary to make sure that the first two letters of the pdb file identify the nucleic acig.tyadk.
bdna pdb files must begin witial.

Thenab functions used to create the databases are locagABHOME/dgdb/functions
The stacking databases were constructed as follows: If two residues stacked 5’ to 3’ in a helix have
fewer than ten inter-residue atom distances closer than ¢t.G#xger than 9.0Aand if the normals
between the base planes are less thar? 20@ residues were considered stacked. The base plane is
calculated as the normal to the N1-C4 and midpoint of the C2-N3 and N1-C4 vectors. The first atom
expression given teetboundsfromdb() specifies the 5’ residue and the second atom expression
specifies the 3’ residue. The source for this functigetstackdist.nab

Similarly, the basepair databases were constructed by measuring the heavy atom distances of cor-
responding residues in a helix to check for hydrogen bonding. Specifically, if an A-U basepair has an
N1-N3 distance of between Z.3#d 3.ZAand a N6-O4 distance of between 284d 3.3A then the
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A-U basepair is considered a Waton-Crick basepair and is used in the database. A C-G basepair is
considered Watson-Crick paired if the N3-N1 distance is betweenah848.3A the N4-O6 distance
is between 2.3&nd 3.7A and the 02-N2 distance is between 2884 3.7A

The nucleotide databases contain all the distance information between atoms in the same residue.
No residues in the coordinates directory are excluded from this database. The intent was to allow the
residues of this database to assume all possible conformations and ensure that a nucleotide residue
would not be biased to a particular conformation.

For the basepair and stacking databases, setting the paramleterl.O results in lower bounds
being set from the average database distance minus one standard deviation, and upper bounds as the
average database distance plus one standard deviation, between base-base atoms. Base-backbone and
base-sugar upper and lower bounds are set to the maximum and minimum measured database values,
respectively. Note, however, that a stacking multiple of 0.0 may not correspond to consistent bounds.
A stacking multiple of 0.0 will probably have conflicting bounds information as the bounds informa-
tion is derived from many different structures.

The three different database types provided with theb distribution are named
nucleic_acid type.database type.db. The following databases are included in the distribution:

adna.basepair.db
adna.stack.db
adna.nucleotide.db
arna.basepair.db
arna.stack.db
arna.nucleotide.db
bdna.basepair.db
bdna.stack.db
bdna.nucleotide.db
trna.nucleotide.db
trna.stack.db
zdna.basepair.db
zdna.stack.db
zdna.nucleotide.db
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6. Molecular mechanics and molecular dynamics.

The initial models created by rigid-body transformations or distance geometry are often in need
of further refinement, and molecular mechanics and dynamics can often be usefabbehas facil-
ities to allow molecular mechanics and molecular dynamics calculations to be carried out. At present,
this uses the AMBER program LEaP to set up the parameters and topology; the force field calculations
and manipulations like minimization and dynamics are done by routines irathsuite. A version
of LEaP is included in the NAB distribution, and is accessed ble#pf) discussed below. A later
chapter gives a more detailed description.

6.1. Basic molecular mechanics routines

int leap( molecule mol, string commands_1, string commands_2 );
int readparm( molecule m, string parmfile );
int mme_init( molecule mol, string aexp, string aexp2,
point xyz_ref]], file f);
int mm_options( string opts );

float mme( point xyz[], point grad[], int iter );

int conjgrad( float x[], int n, float fret, float func(),
float rmsgrad, float dfpred, int maxiter );

int md( int n, int maxstep, point xyz[], point minv[], point f[],
float v], float func );

int getxv( string filename, int natom, float start_time, float x[], float v[]

int putxv( string filename, string title, int natom, float start_time,
float x[], float v[] );

leap() converts amab molecule into into an AMBERrmtop file. This file is created in the
nab’s current working directory whefteap() is called. Thecommands_1 string is passed to
LEaP, and would typically point tolaaprc file that contained parameter and force field libraries to
load. Ifcommands_1 is empty, the all-atom AMBER 94 force field will be used. This string is inter-
preted by LEaP at the beginning of the run. Ebmmands_2 string is interpreted after the molecule
has been read in to a unit called "X". Typicattpmmands_2 would modify the molecule, say by
adding or removing bonds, etteap() creates a "parameter-topology" file call@ntop , which
typically is read by theeadparm routine.

readparm reads an AMBER parameter-topology file, createdelap or with other AMBER
programs, and sets up a data structure which we call a "parmstruct". This is part of the molecule, but
is not directly accessible (yet) tab programs. This routine was written by Bill Ross at the Univer-
sity of California, San Franscisco, and is redistributed with permission.

setxyz_from_mol() copies the atomic coordinates afol to the arrayxyz . set-
mol_from_xyz() replaces the atomic coodinateswdl with the contents atyz . Both return the
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number of atoms copied withGaindicating an error occurred.

The getxv() and putxv() routines read and write Amber-style restart files that have coordinates
and velocities.

The mme_init function must be called before callsrtone. It sets up parameters for future
force field evaluations, and takes as inpunab molecule. The stringexp is an atom expression
that which atoms are to be allowed t@va in minimization or dynamics: atoms that do not match
aexp will have their positions in the gradient vector set to zerdNWALL atom expression will allow
all atoms to move. The second striagxp2 identifies atoms whose positions are to be restrained to
the positions in the arraxyz_ref . The strength of this restraint will be given by tlweons vari-
able set in mm_options. AIULL value foraexp2 will cause all atoms to be constrained. The last
parameter tonme_init is a file pointer for the output trajectory file. This should be NULL if no out-
put file is desired.

mm_options is used to set parameters. Tas string contains keyword/value pairs of the
form keyword=value separated by white space or commas. Allowed values are shown in the fol-
lowing table.

Options parameters for mm_options

keyword  default meaning

ntpr 10 frequency of printing of the energy and its compo-
nents

nsnb 25 frequency at which the non-bonded list is updated

cut 8.0 non-bonded cutoff, in Angstroms

scnb 2.0 Scaling factor for 1-4 nonbonded interactions; default
corresponds to the all-atom Amber force fields

scee 1.2 Scaling factor for 1-4 electrostatic interactions. (de-
fault corresponds to the 1994 and later Amber force
fields.

wcons 0.0 Restraint weight for keeping atoms close to their|po-
sitions inxyz_ref (seemme_init).

dim 3 Number of spatial dimensions; supported values are 3
and 4.

kad 1.0 Force constant for squeezing out the fourth dimen-
sional coordinate, if dim=4. If this is non-zero, a
penalty function will be added to the bounds-vigla-
tion energy, which is equal to 0.5k4d * w * w,
wherew is the value of the fourth dimensional coor-
dinate.
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Options parameters for mm_options (continued)

keyword default meaning

dt 0.001 time step, ps.

t 0.0 initial time, ps.

tautp 0.2 temperature coupling parameter, in ps.

tempO 300. target temperature, K

vlimit 20. maximum absolute value of any component of the ve-
locity vector

ntpr_md 10 printing fregeuncy for dynamics information

zerov 0 if non-zero, then the initial velocities will be set|to
zero; otherwise, the values passed intontidegoutine
will be used.

genmass 10. The general mass to use for MD if indivudal masses

are not read from a prmtop file; value in amu.

diel R Code for the dielectric model. "C" gives a dielectric
constant of 1; "R" makes the dielectric constant equal
to distance in Angstroms; "RL" uses the sigmoidal
function of Ramstein & Lavery, PNAS®5, 7231
(1988); "RL94" is the same thing, but speeded ug as-
suming one is using the Corneit al force field;
"R94" is a distance-dependent dielectric, again with
speedups that assume the Coretedll. force field.

gb 0 If set to 1, use the pairwise generalized Born model
for solvation. For now, see the codesfi.c  for
details. Setdiel to "C" if you use this option.

gb_debug 0 If set to 1, print out detailed information about the
generalized Born calculations. Only useful for small
molecules, since it generates voluminous output.

epsext 78.5 Exterior dielectric for generalized Born; interior di-
electric is always 1.

kappa 0.0 Inverse of the Debye-Huckel length, if gb is turned
on, in AL

The mmefunction takes a coordinate set and returns the energy in the function value and the gra-
dient of the energy igrad . The input parametdter is used to control printing and non-bonded
updates.

The conjgrad() function will carry out conjugate gradient minimization of the function
func that depends upon parameters, whose initial values are in tharray. The functiorfunc
must be of the fornfunc( x[], g[], iter) , Wherex contains the input values, and the func-
tion value is returned through the function call, and its gradient with respec¢htough theg array.
The iteration number is passed throutgh , whichfunc can use for whatever purpose it wants; a
typical use would just be to determine when to print results. The input paratfigted is the
expected drop in the function value on the first iteration; generally only a rough estimate is needed.
The minimization will proceed untiinaxiter steps have been performed, or until the root-mean-
square of the components of the gradient is lessrthagrad. The value of the function at the end
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of the minimization is returned in the varialilet . conjgrad can return a variety of exit codes:

Return codes for conjgrad routine
>0  minimization converged; gives number of final iteratjon
-1 bad line search; probably an error in the relation of the

funtion to its gradient (perhaps from round-off if ypu
push too hard on the minimization).
-2 search direction was uphill
-3 exceeded the maximum number of iterations
-4 could not further reduce function value

Finally, the md function will run maxstep steps of molecular dyanmics, usifignc as the
force field (this would typcially be set to a function likene) The number of dynamical variables is
given as input parameter this would be 3 times the number of atoms for ordinary cases, but might be
different for other force fields or functions. The arrafjsf] andv[] hold the coordinates, gra-
dient of the potential, and velocities, respectively, and are updated as the simulation progress. The
input arrayminv[] must reserve space to hold the inverse of the masses of the particles.

6.2. Typical calling sequences.

The following segment shows some ways in which these routines can be put together to do some
molecular mechanics and dynamics:

1 Il carry out molecular mechanics minimization and some simple dynamics
2 molecule m;
3 int ier;
4 float m_xyz[ dynamic ], f xyz[ dynamic ], v[ dynamic ], minv[ dynamic ] ;
5 float dgrad, fret, dummy;
6
7 m = bdna( "gcgc");
8 allocate m_xyz[ 3*m.natoms ]; allocate f_xyz[ 3*m.natoms |;
9 allocate v[ 3*m.natoms ]; allocate minv[ 3*m.natoms |;
10
11 leap(m, ™, ™);
12 readparm( m, "prmtop" );
13 setxyz_from_mol( m, NULL, m_xyz );
14
15 mm_options( "cut=25.0, ntpr=10, nsnb=999" );
16 mme_init( m, NULL, "::ZZZ", dummy, NULL );
17 fret = mme( m_xyz, f xyz, 1);
18 printf( "Initial energy is %f0, fret);
19
20 dgrad = 0.1;
21 ier = conjgrad( m_xyz, 3*m.natoms, fret, mme, dgrad, 10.0, 100 );
22 setmol_from_xyz( m, NULL, m_xyz );
23 putpdb( "gcgc.min.pdb", m);

N
N
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25 mm_options( "tautp=0.4, temp0=100.0, ntpr_md=10, tempi=50.");
26 md( 3*natom, 1000, m_xyz, minv, f_xyz, v, mme);
27 setmol_from_xyz( m, NULL, m_xyz );

28 putpdb( "gcgc.md.pdb”, m);

Line 7 creates an nab molecule; any nab creation method could be used here. Then the parame-
ter topology file is created in line 11, and read back in at line 12. (The reason for separating these is
that future runs of the program for the same molecule could omit line 9, and simply read in a pre-exist-
ing parameter-topology file.) Lines 15-17 initialize the force field routine, and call it once to get the
initial energy. The atom expression "::ZZZ" will match no atoms, so that there will be no restraints on
the atoms; hence the fourth argumentime_init can just be a place-holder, since there are no ref-
erence positions for this example. Minimization takes place at line 21, which withgedlepeatedly,
and which also arranges for its own printout of results. Finally, in lines 25-28, a short (1000-step)
molecular dynamics run is made. Note the the initialization romtime_init must be called before
calling the evaluation routinesmeor md

Elaboration of the the ale scheme is generally straightforward. For example, a simulated
annealing run in which the target temperature is slowly reduced to zero could be written as successive
calls tomm_options (setting thetempO parameter) andhd (to run a certain number of steps with
the new target temperature.) Note also that routines othenth@tould be sent teonjgrad and
md any routine that takes the same three arguments and returns function value as a float could be used.
In particular, the routinedb_viol (to get violations of distance bounds from a bounds matrix) or
mme4(to compute molecular mechanics energies in four spatial dimensions) could be used here. Or,
you can write your ownab routine to do this as well.
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7. Sample NAB applications.

This chapter provides a variety of examples that use the basic NAB functionality described in
earlier chapters to solve interesting molecular manipulation problems. Our hope is that the ideas and
approaches illustrated here will facilitate construction of similar programs to solve other problems.

7.1. Duplex Creation Functions.

nab provides a variety of functions for creating Watson/Crick duplexes. A short description of
four of them is given in this section. All four of these functions are writtarabn and the details of
their implementation is covered in the secti@neating Watson/Crick Duplexesof theUser Manaul.
You should also look at the functidd_helix() to see how to create duplex helices that corre-
spond to fibre-diffraction models. As with the PERL language, "there is more than one way to do it."

molecule bdna( string seq );

string wc_complement( string seq, string rlib, string rit );

molecule wc_helix( string seq, string rlib, string natype,
string cseq, string crlib, string cnatype,
float xoffset, float incl, float twist, float rise,
string options );

molecule dg_helix( string seq, string rlib, string natype,
string cseq, string crlib, string cnatype,
float xoffset, float incl, float twist, float rise,
string options );

molecule wc_basepair( residue res, residue cres );

bdna() converts the character strisgq containing one or mora, C, Gor Ts (or their lower
case equivalents) into a uniform ideal Watson/Crick B-form DNA duplex. Each basepair has an X-off-
set of 2.25Aan inclination of -4.96and a helical step of 3.38#se and 36.Dtwist. The first charac-
ter of seq is the 5’ base of the straidense” of the molecule returned dydna() . The other
strand is calledanti" . The phosphates of the two 5’ bases have been replaced by hydrogens and
and hydrogens have been added to the @80 atoms of the three prime basésina() returns
NULLIf it can not create the molecule.

wc_complement() returns astring  that is the Watson/Crick complement of its argument
seq. EachC, G T (U) in seq is replaced byG C andA. The replacements fgk depends iflt is
DNA or RNA. Ifitis DNA, Ais replaced byl. If itis RNA Alis replaced byJ. wc_complement()
considers lower case and upper case letters to be the same and always returns upper case letters.
wc_complement()  returnsNULL on error. Note that the while the orientations of the argument
string and the returned string are opposite, their absolute orientatiamglefiaed until they are used
to create a molecule.

wc_helix() creates a uniform duplex from its arguments. The two strands of the returned
molecule are called'sense” and"anti" . The two sequenceseq andcseq must specify Wat-
son/Crick base pairs. The nulcleic acid type ( DNA or RNA ) of the sense strand is specified by
natype and of the complementary strandeq by cnatype . Two residue libraries-#ib  and
crlib  — permit creation of DNA:RNA heteroduplexes. If eitlseig or cseq (but not both) ifNULL
only the specified strand of what would have been a uniform duplex is createdptidres  string
contains some combination of the strings "s5", "s3", "a5" and "a3"; these indicate which (if any) of the
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ends of the helices should be "capped" with hydrogens attached to the O5’ atom (in place of a phos-
phate) if "s5" or "a5" is specified, and a proton added to the O3’ position if "s3" or "a3" is specified. A
blank string indicates no capping, which would be appropriate if this section of helix were to be
inserted into a larger molecule. The string "s5a5s3a3" would cap the 5 and 3’ ends of both the
"sense" and "anti" strands, leading to a chemically complete molewalehelix() returnsNULL

on error.

dg_helix() is the functional equivalent ofic_helix() but with the backbone geometry
minimized via a distance constraint error functiaag_helix() takes the same arguments as
wc_helix()

wc_basepair()  assembles two nucleic acid residues (assumed to be in a standard orientation)
into a two stranded molecule containing one Watson/Crick base pair. The two strands of the new
molecule arésense” and"anti" . It returnsNULLon error.
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7.2. nab and Distance Geometry.

Distance geometry is a method which converts a molecule represented as a set of interatomic dis-
tances and related information into a 3-D structaed has several builtin functions that are used
together to provide metric matrix distance geometap also provides théounds type for holding
a molecule’s distance geometry informationbAunds object contains the molecule’s interatomic
distance bounds matrix and a list of its chiral centers and their voloatesises chiral centers with a
volume of0 to enforce planarity.

Distance geometry has several advantages. It is unique in its power to create structures from very
incomplete descriptions. It easily incorporates “low resolution structural data” such as that derived
from chemical probing since these kinds of experiments generally return only distance bounds. And it
also provides an elegant method by which structures may be described functionally.

Thenab distance geometry package is described more fully in the s@tfiBrLanguage Ref-
erence Generally, the functiomewbounds() creates and returnsk®unds object corresponding
to the moleculemol. This object contains two things—a distance bounds matrix containing initial
upper and lower bounds for every pair of atomsiogdl and a initial list of the molecules chiral centers
and their volumes. Oncelmounds object has been initialized, the modeller uses functions from the
middle of the distance geometry function list to tighten, loosen or set other distance bounds and chiral-
ities that correspond to expermental measurements or parts of the model’'s hypothesis. The four func-
tionsandbounds() , orbounds() , setbounds anduseboundsfrom()  work in similar fash-
ion. Each uses two atom expressions to select pairs of atomsrobrin andbounds() , the cur-
rent distance bounds of each pair are compared adlairesdidub and are replaced bl , ub if they
represent tighter boundsrbounds()  replaces the current bounds of each selected péir,,itib
represent looser boundsetbounds() sets the bounds of all selected pairslig ub. use-
boundsfrom()  sets the bounds between each atom selected in the first expression to a percentage of
the distance between the atoms selected in the second atom expression. If the two atom expressions
select the same atoms from the same molecule, the bounds between all the atoms selected will be con-
strained to the current geometisetchivol() takes four atom expressions that must select exactly
four atoms and sets the volume of the tetrahedron enclosed by those atains Settingvol to 0
forces those atoms to be planagetchivol() returns the chiral volume of the tetrahedron
described by the four points.

After all experimental and model constraints have been entered intmotimels object, the
functiontsmooth()  applies a process called “triangle smoothing” to them. This tests each triple of
distance bounds to see if they can form a triangle. If they can not form a triangle then the distance
bounds do not even represent a Euclidean object let alone a 3-D one. If this tstoacth()
quits and returns & indicating failure. If all triples can form triangleésmooth()  returns &. Tri-
angle smoothing pulls in the large upper bounds. After all, the maximum distance between two atoms
can not exceed the sum of the upper bounds of the shortest path between them. Triangle smoothing can
also increase lower bounds, but this process is much less effective as it requires one or more large
lower bounds to begin with.

The functionembed() takes the smoothed bounds and converts them into a 3-D object. This
process is called “embedding”. It does this by choosing a random distance for each pair of atoms
within the bounds of that pair. Sometimes the bounds simply do not represent a 3-D object and
embed() fails, returning the valué. This is rare and usually indicates the that the distance bounds
matrix part of thebounds object contains errors. If the distance set does endoegyrad() can
subject newly embedded coordinates to conjugate gradient refinement against the distance and chiral-
ity information contained itbounds . The refined coordinates can replace the current coordinates of
the molecule inmol. embed() returns a0 on success andonjgrad() returns an exit code
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explained further in theanguage Referencesection of this manual. The call émnbed() is usually
placed in a loop with each new structure saved after each call to see the diversity of the structures the
bounds represent.

In addition to the explicit bounds manipulation functiomsb provides an implicit way of set-
ting bounds between interacting residues. The funatitiboundsfromdb() is for use in creating
distance and chirality bounds for nucleic acidgtboundsfromdb() takes as an argument two
atom expressions selecting two residues, the name of a database containing bounds information, and a
number which dictates the tightness of the bounds. For instance, if the déiddrastack.db is spec-
ified, setboundsfromdb() sets the bounds between the two residues to what they would be if they
were stacked in strand in a typical Watson-Crick B-form duplex. Similarly, if the databaskase-
pair.db is specified setboundsfromdb() sets the bounds between the two residues to what they
would be if the two residues form a typical Watson-Crick basepair in an A-form helix.

7.2.1. Refine DNA Backbone Geometry.

As mentioned previouslyyc helix() performs rigid body transformations on residues and
does not correct for poor backbone geometry. Using distance geometry, several techniques are avail-
able to correct the backbone geometry. In program 7, an 8-basepair dna sequence is created using
wc_helix() . A new bounds object is created on line 14, which automatically sets all the 1-2, 1-3,
and 1-4 distance bounds information according the geometry of the model. Since this molecule was
created usingvc_helix() , the O3'-P distance between adjacent stacked residues is often not the
optimal 1.595°Aand hence, the 1-2, 1-3, and 1-4, distance bounds setvidyounds() are incor-
rect. We want to preserve the position of the nucleotide bases, however, since this is the helix whose
backbone we wish to minimize. Hence the calusgboundsfrom() on line 17 which sets the
bounds from every atom in each nucleotide base to the actual distance to every other atom in every
other nucleotide basdn general, the likelihood of a distance geometry refinement to satisfy a given
bounds criteria is proportional to the number of ( consistent ) bounds set supporting that criteria. In
other words, the more bounds that are set supporting a given conformation, the greater the chance that
conformation will resolve after the refinement. An example of this concept is the usse-of
boundsfrom() in line 17, which works to preserve our rigid helix conformation of all the
nucleotide base atoms.

We can correct the backbone geometry by overwriting the erroneous bounds with more appropri-
ate bounds. In lines 19-29, all the 1-2, 1-3, and 1-4 bounds involving the O3’-P connection between
strand 1 residues are set to that which would be appropriate for an idealized phosphate linkage. Simi-
larly, in lines 31-41, all the 1-2, 1-3, and 1-4 bounds involving the O3’-P connection among strand 2
residues are set to an idealized conformation. This technique is effective since all the 1-2, 1-3, and 1-4
distance bounds created bgwbounds() include those of the idealized nucleotides in the nucleic
acid librariesdna.amber94.rlb , rna.amber94.rlb , etc. contained inreslib . Hence, by
setting these bounds and refining against the distance energy function, we are spreading the ’error’
across the backbone, where the ’error’ is the departure from the idealized sugar conformation and ide-
alized phospate linkage.

On line 43, we smooth the bounds matrix, and on line 44 we give a substantial penalty for deviat-
ing from a 3-D refinement by setting k4418. Notice that there is no need to embed the molecule in
this program, as the actual coordinates are sufficient for any refinement.

1 /I Progra m 7 - refine backbone geometry using distance function
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Sample NAB applications

molecule m;

bounds b;

string seq, cseq;

inti;

float xyz[ dynamic ], fret;

seq = "acgtacgt";
cseq = wc_complement( "acgtacgt”, "dna.amber94.rlb", "dna" );

m = wc_helix( seq, "dna.amber94.rlb", "dna", cseq, "dna.amber94.rlb",
"dna", 2.25, -4.96, 36.0, 4.38, "");

b = newbounds(m, ™);
allocate xyz[ 4*m.natoms ];

useboundsfrom(b, m, "::?2?,H?["T']", m, "::??,H?['T']", 0.0);
for (i=1;i<m.nresidues/2 ;i=i+ 1)
setbounds(b,m, sprintf("1:%d:03™,i),
sprintf("1:%d:P",i+1), 1.595,1.595);
setbounds(b,m, sprintf("1:%d:03™,i),
sprintf("1:%d:05™,i+1), 2.469,2.469);
setbounds(b,m, sprintf("1:%d:C3™,i),
sprintf("1:%d:P",i+1), 2.609,2.609);
setbounds(b,m, sprintf("1:%d:03™,i),
sprintf("1:%d:01P",i+1), 2.513,2.513);
setbounds(b,m, sprintf("1:%d:03™,i),
sprintf("1:%d:02P",i+1), 2.515,2.515);
setbounds(b,m, sprintf("1:%d:C4™,i),
sprintf("1:%d:P",i+1), 3.550,4.107);
setbounds(b,m, sprintf("1:%d:C2™,i),
sprintf("1:%d:P",i+1), 3.550,4.071);
setbounds(b,m, sprintf("1:%d:C3™,i),
sprintf("1:%d:01P",i+1), 3.050,3.935);
setbounds(b,m, sprintf("1:%d:C3™,i),
sprintf("1:%d:02P",i+1), 3.050,4.004);
setbounds(b,m, sprintf("1:%d:C3™,i),
sprintf("1:%d:05™,i+1), 3.050,3.859);
setbounds(b,m, sprintf("1:%d:03™,i),
sprintf("1:%d:C5™,i+1), 3.050,3.943);

setbounds(b,m, sprintf("2:%d:P",i+1),
sprintf("2:%d:03™,i), 1.595,1.595);
setbounds(b,m, sprintf("2:%d:05™,i+1),
sprintf("2:%d:03™,i), 2.469,2.469);
setbounds(b,m, sprintf("2:%d:P",i+1),
sprintf("2:%d:C3™,i), 2.609,2.609);
setbounds(b,m, sprintf("2:%d:01P",i+1),

110
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49 sprintf("2:%d:03™,i), 2.513,2.513);
50 setbounds(b,m, sprintf("2:%d:02P",i+1),

51 sprintf("2:%d:03™,i), 2.515,2.515);
52 setbounds(b,m, sprintf("2:%d:P",i+1),

53 sprintf("2:%d:C4™,i),  3.550,4.107);
54 setbounds(b,m, sprintf("2:%d:P",i+1),

55 sprintf("2:%d:C2™,i), 3.550,4.071);
56 setbounds(b,m, sprintf("2:%d:01P",i+1),

57 sprintf("2:%d:C3™,i),  3.050,3.935);
58 setbounds(b,m, sprintf("2:%d:02P",i+1),

59 sprintf("2:%d:C3™,i),  3.050,4.004);
60 setbounds(b,m, sprintf("2:%d:05™,i+1),

61 sprintf("2:%d:C3™,i),  3.050,3.859);
62 setbounds(b,m, sprintf("2:%d:C5™,i+1),

63 sprintf("2:%d:03™,i),  3.050,3.943);
64 }

65 tsmooth( b, 0.0005 );

66 dg_options(b, "seed=33333, gdist=0, ntpr=100, k4d=4.0");

67 setxyzw_from_mol( m, NULL, xyz );

68 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );

69 setmol_from_xyzw( m, NULL, xyz );

70 putpdb( "acgtacgt.pdb”, m);

The approach of Program 7 is effective but has a disadvantage in that it does not scale linearly
with the number of atoms in the molecule. In particuamooth()  and conjgrad() require
extensive CPU cycles for large numbers of residues. For this reason, the faligctihix() was
created. dg_helix() takes uses the same method of Program 7, but employs a 3-basepair helix
template which traverses the new helix as it is being constructed. In this way, the helix is built in a
piecewise manner and the maximum number of residues considered in each refinement is less than or
equal to six. This is the preferred method of helix construction for large, idealized canonical duplexes.

7.2.2. RNA Pseudoknots.

In addition to the standard helix generating functioredy provides extensive support for gener-
ating initial structures from low structural information. As an example, we will describe the construc-
tion of a model of an RNA pseudoknot based on a small number of secondary and teriary structure
descriptions. Shen and Tinocé Mol. Biol. 247,963-978, 1995) used the molecular mechanics pro-
gram X-PLOR to determine the three dimensional structure of a 34 nucleotide RNA sequence that
folds into a pseudoknot. This pseudoknot prometedrame shifting in Mouse Mammary Tumor
Virus. A pseudoknot is a single stranded nucleic acid molecule that contains two improperly nested
hairpin loops as shown in Figure 4. NMR distance and angle constraints were converted into a three
dimensional structure using a two stage restrained molecular dynamics protocol. Here we show how a
three-dimensional model can be constructed using just a few key features derived from the NMR
investigation.

Program 8 uses distance geometry followed by minimization and simulated annealing to create a
model of a pseudoknot. Distance geometry code begins in line 20 with thereaNthounds() and
ends on line 53 with the call ®mbed() . The structure created with distance geometry is further
refined with molecular dynamics in lines 58-74. Note that very little structural information is given -
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Figure 4. Single stranded RN#4top) folded into a pseudoknd@bottom). The black and dark gray base
pairs can be stacked.

only connectivity and general base-base interactions. The stacking and base-pair interactions here are
derived from NMR evidence, but in other cases might arise from other sorts of experiments, or as a
model hypothesis to be tested.

The 20-base RNA sequence is defined on line 9. The molecule itself is created with the
link_na() function call which creates an extended conformation of the RNA sequence and caps the
5 and 3’ ends. Lines 15-18 define arrays that will be used in the simulated annealing of the structure.
The bounds object is created in line 20 which automatically sets the 1-2, 1-3, and 1-4 distance bounds
in the molecule. The loop in lines 22-25 sets the bounds of each atom in each residue base to the
actual distance to every other atom in the same base. This has the effect of enforcing the planarity of
the base by treating the base somewhat like a rigid body. In lines 27-45, bounds are set according to
information stored in a database. Tetboundsfromdb() call sets the bounds from all the atoms
in the two specified residues tdl® multiple of the standard deviation of the bounds distances in the
specified database. Specifically, line 27 sets the bounds between the base atoms of the first and second
residues of strand 1 to be within one standard deviatiortypf@l aRNA stacked pair. Similarly, line
39 sets the bounds between residues 1 and 13 to be thymicaf Watson-Crick basepairs. For a
description of thesetboundsfromdb() function, see Chapter 1.

Line 47 smooths the bounds matrix, by attempting to adjust any sets of bounds that violate the
triangle equality. Lines 49-50 initialize some distance geometry variables by setting the random num-
ber generator seed, declaring the type of distance distribution, how often to print the energy refinement
process, declaring the penalty for using a 4th dimension in refinement, and which atoms to use to form
the initial metric matrix. The coordinates are calculated and embedded into a 3D coordinakyzrray,
by theembed() function call on line 51.

The coordinatexyz are subject to a series of conjugate gradient refinements and simulated
annealing in lines 53-63. Line 65 replaces the old molecular coordinates with the new refined ones,
and lastly, on line 66, the molecule is saved as "pseudoknot.pdb”.

1 /l Program 8 - create a pseudoknot using distance geometry

2 molecule m;

3 float  xyz[ dynamic ],minv[ dynamic ],f[ dynamic ],v[ dynamic ];
4 bounds b;
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int i, seglen;
float fret;
string seq, opt;

seq = "gcggaaacgccgcguaagcg';

seqglen = length(seq);

m = link_na("1", seq, "rna.amber94.rlb", "rna", "35");
allocate xyz[ 4*m.natoms |;

allocate minv[ 4*m.natoms J;

allocate f[ 4*m.natoms |;

allocate v[ 4*m.natoms J;

b = newbounds(m, ");
for(i=1;i<=seqglen;i=i+1){

useboundsfrom(b, m, sprintf("1:%d:??,H?["T]", i), m,
sprintf("1:%d:??,H?["T]", i), 0.0 );

}

setboundsfromdb(b, m, "1:1:", "1:2:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:2:", "1:3:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:3:", "1:18:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:18:", "1:19:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:19:", "1:20:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:8:", "1:9:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:9:", "1:10:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:10:", "1:11:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:11:", "1:12:", "arna.stack.db", 1.0);
setboundsfromdb(b, m, "1:12:", "1:13:", "arna.stack.db", 1.0);

setboundsfromdb(b, m, "1:1:", "1:13:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:2:", "1:12:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:3:", "1:11:", "arna.basepair.db”, 1.0);

setboundsfromdb(b, m, "1:8:", "1:20:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:9:", "1:19:", "arna.basepair.db”, 1.0);
setboundsfromdb(b, m, "1:10:", "1:18:", "arna.basepair.db”, 1.0);

tsmooth(b, 0.0005);
opt = "seed=571, gdist=0, ntpr=50, k4d=2.0, randpair=5.";

dg_options( b, opt);
embed(b, xyz );
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52

53 for (i=3000;i>2800;i=i-100 )

54 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.1, 10., 500 );
55

56 dg_options( b, "ntpr=1000, k4d=0.2");

57 mm_options( "ntpr_md=50, zerov=1, tempO0=" +sprintf("%d.",i));
58 md( 4*m.natoms, 1000, xyz, minv, f, v, db_viol );

59

60 dg_options( b, "ntpr=1000, k4d=4.0");

61 mm_options( "zerov=0, temp0=0., tautp=0.3");

62 md( 4*m.natoms, 8000, xyz, minv, f, v, db_viol );

63 }

64

65 setmol_from_xyzw( m, NULL, xyz );

66 putpdb( "pseudoknot.pdb”, m);

The resulting structure of Program 8 is shown in Figure 5. This structure had an final total
energy of 9.41 units. The helical region, shown as polytubes, shows stacking and wc-pairing interac-
tions and a well-defined right-handed helical twist. Of course, good modeling of a "real" pseudoknot
would require putting in more constraints, but this example should illustrate how to get started on
problems like this.
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Figure 5. 20-base example RNA pseudoknot
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7.2.3. NMR refinement for a protein

Distance geometry techniques are often used to create starting structures in NMR refinement.
Here, in addition to the covalent connections, one makes use of a set of distance and torsional
restraints derived from NMR data. While NAB is not (yet?) a fully-functional NMR refinement pack-
age, it has enough capabilities to illustrate the basic ideas, and could be the starting point for a flexibile
procedure. Here we give an illustration of how the rough structure of a protein can be determined
using distance geometry and NMR distance constraints; the structures obtained here would then be
candidates for further refinement in programs like X-plor or Amber.

The program below illustrates a general procedure for a primarily helical DNA binding domain.
Lines 15-22 just construct the sequence in an extended conformation, such that bond lenghts and
angles are correct, but none of the torsions are correct. The bond lengths and angles anmeeused by
bounds() to construct the "covalent” part of the bounds matrix.

1 /I Program 8a. General driver routine to do distance geometry

2 /I on proteins, with DYANA-like distance restraints.

3

4 #define MAXCOORDS 12000

5

6 molecule m;

7 atom a,

8 bounds b;

9 int ier,i, numstrand, ires,jres;
10 float fret, rms, ub;
11 float xyz[ MAXCOORDS ], ff MAXCOORDS ], vl MAXCOORDS ], minv[ MAXCOORDS |;
12 file boundsf;
13 string iresname,jresname,iat,jat,aex1,aex2,aex3,aex4,line,dgopts,seq;
14

15 /I sequence of the mrf2 protein:
16 seq = "RADEQAFLVALYKYMKERKTPIERIPYLGFKQINLWTMFQAAQKLGGYETITARRQWKHIY"

17 + "DELGGNPGSTSAATCTRRHYERLILPYERFIKGEEDKPLPPIKPRK";
18
19 /I build this sequence in an extended conformation, and construct a bounds

20 /I matrix just based on the covalent structure:
21 m = linkprot( "A", seq, " );

22 b = newbounds(m, "™);

23

24 /I read in constraints, updating the bounds matrix using "andbounds":
25

26 /I distance constraints are basically those from Y.-C. Chen, R.H. Whitson
27 /I Q. Liu, K. Itakura and Y. Chen, "A novel DNA-binding motif shares

28 /I structural homology to DNA replication and repair nucleases and
29 /I polymerases,” Nature Surct. Biol. 5:959-964 (1998).
30

31 boundsf = fopen( "mrf2.7col", "r");
32 while( line = getline( boundsf ) }{
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sscanf( line, "%d %s %s %d %s %s %lf", ires, iresname, iat,
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jres, jresname, jat, ub );

/I tranglations for DYANA-style pseudoatoms:

if(iat == "HN" )}{ iat = "H"; }

if( jat == "HN" ){ jat = "H"; }

if(iat == "QA" ){ iat = "CA"; ub +=1.0; }

if( jat == "QA" ){ jat = "CA"; ub +=1.0; }
if(iat == "QB" ){ iat = "CB"; ub +=1.0; }

if( jat =="QB" ){ jat = "CB"; ub +=1.0; }
if(iat == "QG" ){ iat = "CG"; ub += 1.0; }
if(jat =="QG" ){ jat = "CG"; ub += 1.0; }
if(iat =="QD" }{ iat ="CD"; ub += 1.0; }

if( jat =="QD" }{ jat ="CD"; ub += 1.0; }
if(iat == "QE" ){ iat = "CE"; ub +=1.0; }

if( jat == "QE" ){ jat = "CE"; ub +=1.0; }
if(iat == "QQG" ){ iat = "CB"; ub +=1.8; }
if( jat == "QQG" ){ jat = "CB"; ub +=1.8; }
if(iat == "QQD" { iat ="CG"; ub +=1.8; }
if( jat =="QQD" }{ jat ="CG"; ub +=1.8; }
if(iat == "QG1" ){ iat = "CG1"; ub +=1.0; }
if( jat == "QG1" ){ jat = "CG1"; ub +=1.0; }
if( lat == "QG2" ){ iat = "CG2"; ub +=1.0; }
if( jat == "QG2" ){ jat = "CG2"; ub +=1.0; }
if(iat =="QD1" ){ iat = "CD1"; ub +=1.0; }
if( jat =="QD1" ){ jat = "CD1"; ub +=1.0; }
if(iat == "QD2" ){ iat = "ND2"; ub +=1.0; }
if( jat == "QD2" ){ jat = "ND2"; ub +=1.0; }
if(iat == "QE2" ){ iat = "NE2"; ub += 1.0; }
if( jat == "QE2" ){ jat = "NE2"; ub += 1.0; }
aexl ="" + sprintf( "%d", ires) + ":" + iat;
aex2 ="" + sprintf( "%d", jres) + ":" + jat;

andbounds( b, m, aex1, aex2, 0.0, ub);

}

fclose( boundsf );

/l add in helical chirality constraints to force right-handed helices:

/I (hardwirein locations 1-16, 36-43, 88-92)
for(i=1; i<=12; i++){

aexl="
aex2 ="
aex3 ="
aex4 ="

+ sprintf( "%d", i) + ":CA";

+ sprintf( "%d", i+1) + ":CA";
+ sprintf( "%d", i+2 ) + ":CA";
+ sprintf( "%d", i+3 ) + ":CA";
setchivol( b, m, aex1, aex2, aex3, aex4, 7.0);

117
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80 for(i=36; i<=39; i++){

81 aex1 ="" + sprintf( "%d", i) + ":CA";

82 aex2 ="" + sprintf( "%d", i+1) + ":CA";

83 aex3 ="" + sprintf( "%d", i+2 ) + ":CA";

84 aex4 ="" + sprintf( "%d", i+3 ) + ":CA";

85 setchivol( b, m, aex1, aex2, aex3, aex4, 7.0);
86 }

87 for( i=88; i<=89; i++){

88 aex1 ="" + sprintf( "%d", i) + ":CA";

89 aex2 ="" + sprintf( "%d", i+1) + ":CA";

90 aex3 ="" + sprintf( "%d", i+2 ) + ":CA";

1 aex4 ="" + sprintf( "%d", i+3 ) + ":CA";

92 setchivol( b, m, aex1, aex2, aex3, aex4, 7.0);
93 }

9

95 /I set up some options for the distance geometry calculation

96 /I here use the random embed method:

97 dgopts = "ntpr=10000,rembed=1,rbox=300.,riter=250000,seed=8511135";
98 dg_options( b, dgopts );

99
100 /I do triangle-smoothing on the bounds matrix, then embed:
101 geodesics( b ); embed( b, xyz );
102
103 /I now do conjugate-gradient minimization on the resulting structures:
104

105 /I first, weight the chirality constraints heavily:
106 dg_options( b, "ntpr=20, k4d=5.0, sqviol=0, kchi=50.");
107 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.02, 1000., 300 );

108
109 /I next, squeeze out the fourth dimension, and increase penalties for
110 /I distance violations:

111 dg_options( b, "k4d=10.0, sqviol=1, kchi=50." );

112 conjgrad( xyz, 4*m.natoms, fret, db_viol, 0.02, 100., 400 );
113

114 /I transfer the coordinates fromthe "xyz" array to the molecule
115 /I itself, and print out the violations:

116 setmol_from_xyzw( m, NULL, xyz );

117 dumpboundsviolations( stdout, b, 0.5);

118

119 /I do a final short molecular-mechanics "clean-up":
120 setxyz_from_mol( m, NULL, xyz );

121 leap(m, ™, "™);

122 readparm( m, "prmtop" );

123

124 mm_options( "cut=10.0");
125 mme_init( m, NULL, "::2ZZ7", xyz, NULL );
126 conjgrad( xyz, 3*m.natoms, fret, mme, 0.02, 100., 200 );
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127 setmol_from_xyz( m, NULL, xyz );
128 putpdb( argv[3] + ".mm.pdb", m);

Once the covalent bounds are created, the the bounds matrix is modified by constraints con-
structed from an NMR analysis program. This particular example uses the format of the DYANA pro-
gram, but NAB could be easily modified to read in other formats as well. Here are a few lines from
themrf2.7cal file:

1 ARG+ QB 2 ALA QB 7.0
4 GLU- HA 93LYS+ QB 7.0
5 GLN QB 8 LEU QQD 9.9
5 GLN HA 9 VAL QQG 6.4
85ILE  HA 92 ILE QD1 6.0
5 GLN HN 1 ARG+ O 2.0
5 GLN N 1 ARG+ O 3.0
6 ALA HN 2 ALA O 2.0
6 ALA N 2 ALA O 3.0

The format should be self-explanatory, with the final number giving the upper bound. Code in lines
31-69 reads these in, and translates pseudo-atom codes like "QQD" into atom names. Lines 71-93 add
in chirality constraints to ensure right-handed alpha-helices: distance constraints alone do not distin-
guish chirality, so additions like this are often necessary. The "actual” distance geometry steps take
place in line 101, first by triangle-smoothing the bounds, then by embedding them into a three-dimen-
sional object. The structures at this point are actually generally quite bad, so "real-space” refinene-
ment is carried out in lines 103-112, and a final short molecular mechanics minimzation in lines

119-126.

It is important to realize that many of the structures for thevebcheme will get "stuck”, and
not lead to good structures for the complex. Helical proteins are especially difficult for this sort of dis-
tance geometry, since helices (or even parts of helices) start out left-handed, and it is not always possi-
ble to easily convert these to right-handed structures. For this particular example, (using different val-
ues for theseed in line 97), we find that about 30-40% of the structures are "acceptable", in the sense
that futher refinement in Amber yields good structures.
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7.3. Building Larger Structures.

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that they
can be bent into a wide variety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles that have relaxed into circles with twists and the nucleosome
core fragment where the duplex itself is wound into a short helix. This section showmahaan be
used to “wrap” DNA around a curve. Three examples are provided: the first produces closed circles
with or without supercoiling, the second creates a simple model of the nucleosome core fragment and
the third shows how to wind a duplex around a more arbitrary open curve specified as a set of points.
The examples are fairly general but do require that the curves be relatively smooth so that the deforma-
tion from a linear duplex at each step is small.

Before discussing the examples and the general approach they use, it will be helpful to define
some terminology. The helical axis of a base pair is the helical axis defined by an ideal B-DNA duplex
that contains that base pair. The base pair plane is the mean plane of both bases. The origin of a base
pair is at the intersection the base pair’'s helical axis and its mean plane. Finally the rise is the distance
between the origins of adjacent base pairs.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points on
the curve that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the curve and finally rotate the base pairs so that they have the correct heli-
cal twist. In all the examples below, the points are chosen so that the rise is constant. This is by no
means an absolute requirement, but it does simplify the calculations needed to locate base pairs, and is
generally true for the gently bending curves these examples are designed for. In examples 1 and 2, the
curve is simple, either a circle or a helix, so the points that locate the base pairs are computed directly.
In addition, the bases are rotated about their original helical axes so that they have the correct helical
orientation before being placed on the curve.

However, this method is inadequate for the more complicated curves that can be handled by
example 3. Here each base is placed on the curve so that its helical axis is aligned correctly, but its
helical orientation with respect to the previous base is arbitrary. It is then rotated about its helical axis
so that it has the correct twist with respect to the previous base.

7.4. Closed Circular DNA.

This section describes how to usab to make closed circular duplex DNA with a uniform rise
of 3.38A Since the distance between adjacent base pairs is fixed, the radius of the circle that forms the
axis of the duplex depends only on the number of base pairs and is given by this rule:

rad = rise/(2 sin(180hbp))

wherenbp is the number of base pairs. To see why this is so, consider the triangle below formed by the
center of the circle and the centers of two adjacent base pairs. The two long sides are radii of the circle
and the third side is the rise. Since the the base pairs are uniformly distributed about the circle the
angle between the two radii is 360p. Now consider the right triangle in the top half of the original
triangle. The angle at the center is I8/ the opposite side i3se/2 andrad follows from the defini-

tion of sin.
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In addition to the radius, the helical twist which is a function of the amount of supercoiling must
also be computed. In a closed circular DNA molecule, the last base of the duplex must be oriented in
such a way that a single helical step will superimpose it on the first base. In circles based on ideal B-
DNA, with 10 bases/turn, this requires that the number of base pairs in the duplex be a multiple of 10.
Supercoiling adds or subtracts one or more whole turns. The amount of supercoiling is specified by the
Alinking number which is the number of extra turns to add or substract. If the original circle had
nbp/10 turns, the supercoiled circle will hampb/10+ Alk turns. As each turn represents 360twist
and there arabp base pairs, the twist between base pairs is:

(nbp/10 + Alk) x 360hbp

At this point, we are ready to create models of circular DNA. Bases are added to model in three
stages. Each base pair is created usingahebuiltin wc_helix() . It is originally in the XY plane
with its center at the origin. This makes it convenient to create the DNA circle in the XZ plane. After
the base pair has been created, it is rotated around its own helical axis to give it the proper twist, trans-
lated along the global X axis to the point where its center intersects the circle and finally rotated about
the Y axis to mve it toits final location. Since the first base pair would be both twisted about Z and
rotated about Y Q those steps are skipped for base one. A detailed description follows the code.

1 /I Program 9 - Create closed circular DNA.
2 #define RISE 3.38
3
4 int b, nbp, dik;
5 float rad, twist, ttw;
6 molecule m, mil,;
7 matrix matdx, mattw, matry;
8 string sbase, abase;
9 int getbase();
10
11 if(argc =3 ){
12 fprintf( stderr, "usage: %s nbp dlk\n", argv[ 1] );
13 exit(1);
14 }
15
16 nbp = atoi( argv[21]);
17 if( Inbp || nbp % 10 )
18 fprintf( stderr,
19 "%s: Num. of base pairs must be multiple of 10\n",
20 argv[1]);
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21 exit(1);

22 }

23

24 dlk = atoi( argv[ 31]);
25

26 twist = (nbp / 10 + dlk ) * 360.0 / nbp;
27 rad = 0.5 * RISE / sin( 180.0 / nbp );

28

29 matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0 );
30

31 m = newmolecule();

32 addstrand( m, "A");

33 addstrand( m, "B");

34 ttw = 0.0;
35 for(b=1;b<=nbp;b=b+1){

36

37 getbase( b, sbase, abase );

38

39 m1l = wc_helix(

40 sbase, "dna.amber94.rlb", "dna", abase, "dna.amber94.rib",
41 "dna", 2.25, -4.96, 0.0, 0.0 );

42

43 if(b>1)

44 mattw = newtransform( 0.,0.,0.,0.,0.,ttw );
45 transformmol( mattw, m1, NULL );

46 }

47

48 transformmol( matdx, m1, NULL );

49

50 if(b>1)

51 matry = newtransform(

52 0.,0.,0.,0.,-360.*(b-1)/nbp,0. );

53 transformmol( matry, m1, NULL );

54 }

55

56 mergestr( m, "A", "last", m1, "sense", "first" );
57 mergestr( m, "B", "first", m1, "anti", "last" );
58 if(b>1)

59 connectres(m, "A", b-1,"03™, b, "P");
60 connectres( m, "B", 1, "O3™, 2, "P");
61 }

62

63 ttw = ttw + twist;

64 if( ttw >= 360.0)

65 ttw = ttw - 360.0;

66 }

67
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68 connectres( m, "A", nbp, "O3™, 1, "P");
69 connectres( m, "B", nbp, "O3™, 1, "P");
70

71 putpdb( "circ.pdb”, m);
72 putbnd( "circ.bnd", m);

The code requires two integer arguments which specify the number of base pairs and the
Alinking number or the amount of supercoiling. Lines 11-24 process the arguments making sure that
they conform to the model's assumptions. In lines 11-14, the code checks that there are exactly three
arguments (theab program’s name is argument one), and exits with a error message if the number of
arguments is different. Next lines 16-22 set the number of base migirsdnd test to make certain it
is a nonzero multiple of 10, again exiting with an error message if it is not. Finalyitheng num-
ber (dlk ) is set in line 24. The helical twist and circle radius are computed in lines 26 and 27 in accor-
dance with the formulas developed above. Line 29 creates a transformation matdx,, that is
used to mve each base from the global origin along the X-axis to the point where its center intersects
the circle.

The circular DNA is built in the molecule variabdg@ which is initialized and given two strands,
"A" and"B" in lines 30-32. The variabktw in line 34 holds the total twist applied to each base pair
The molecule is created in the loop from lines 35-66. The base pair numbercbnverted to the
appropriate strings specifying the two nucleotides in this pair. This is done by the fugetion
base() . This source of this function must be provided by the user who is creating the circles as only
he or she will know the actual DNA sequence of the circle. Once the two bases are specified they are
passed to theab builtin wc_helix()  which returns a single base pair in the XY plane with its cen-
ter at the origin. The helical axis of this base pair is on the Z-axis with the 5’-3’ direction oriented in
the positive Z-direction.

One or three transformations is required to position this base in its correct place in the circle. It
must be rotated about the Z-axis (its helical axis) so that it is one additional unit of twist beyond the
previous base. This twist is done in lines 43-46. Since the first base Aaefts,his step is skipped
for it. In line 48, the base pair is moved in the positive direction along the X-axis to place the base
pair’s origin on the circle. Finally, the base pair is rotated about the Y-axis in lines 50-54 to bring it to
its proper position on the circle. Again, since this rotatiorf i0Obase 1, this step is also skipped for
the first base.

In lines 56-57, the newly positioned base paimibis added to the growing moleculermNote
that since the two strands of DNA are antiparallel,"dense” strand ofmlis added after the last
base of the A" strand ofmand the"anti"  strand ofmlis added before the first base of tiB
strand ofm For all but the first base, the newly added residues are bonded to the residues they follow
(or precede). This is done by the two callsctmnectres() in lines 59-60. Again, due to the
antiparallel nature of DNA, the new residue in tA8 strand is residub, but is residud. in the"B"
strand. In line 63-65, the total twidtw ) is updated and adjusted to keep in in the range [0,360).
After all base pairs have been added the loop exits.

After the loop exit, since this iscosed circular molecule the first and last bases of each strand
must be bonded and this is done with the two caltotmectres() in lines 67-68. The last step is
to save the molecule’s coordinates and connectivity in lines 71-7dthéuiltin putpdb()  writes
the coordinate information in PDB format to the fitérc.pdb" and thenab builtin putbnd()
saves the bonding as pairs of integers, one pair/line in thkeifikebnd" , Where each integer in a
pair refers to al\TOMecord in the previously written PDB file.



4/20/02 Sample NAB applications 124

7.5. Nucleosome Model

While the DNA duplex is locally rather stiff, many DNA molecules are sufficiently long that they
can be bent into a wide variety of both open and closed curves. Some examples would be simple
closed circles, supercoiled closed circles that have relaxed into circles with twists, and the nucleosome
core fragment, where the duplex itself is wound into a short helix.

The overall strategy for wrapping DNA around a curve is to create the curve, find the points on
the curve that contain the base pair origins, place the base pairs at these points, oriented so that their
helical axes are tangent to the curve, and finally rotate the base pairs so that they have the correct heli-
cal twist. In the example below, the simplifying assumption is made that the rise is constant at 3.38
RA.

The nucleosome core fragment [30] is composed of duplex DNA wound in a left handed helix
around a cental protein core. A typical core fragment has about 145 base pairs of duplex DNA forming
about 1.75 superhelical turns. Measurements of the overall dimensions of the core fragment indicate
that there is very little space between adjacent wraps of the duplex. A side view of a schematic of core
particle is shown below.

Computing the points at which to place the base pairs on a helix requires us to spiral an inelastic
wire (representing the helical axis of the bent duplex) around a cylinder (representing the protein
core). The system is described by four numbers of which only three are independent. They are the
number of base pairs the number of turns its makes around the proteintctine “winding” anglegd
(which controls how quickly the the helix advances along the axis of the core) and the helix.radius
Both the the number of base pairs and the number of turns around the core can be measured. The
leaves two choices for the third parameter. Since the relationship of the winding angle to the overall
particle geometry seems more clear than that of the radius, this code lets the user specify the number
of turns, the number of base pairs and the winding angle, then computes the helical radius and the dis-
placement along the helix axis for each base pair:

d =3.38sinf); @=360/(n—-1) (_&dy)
(= 3.38(n -1) cosk)

2mt
whered andg are the displacement along and rotation about the protein core axis for each base pair.

(_&rad)

These relationships are easily derived. Let the nucleosome core particle be oriented so that its
helical axis is along the global Y-axis and the lower cap of the protein core is in the XZ plane.

30. B.Lewin, inGeneslV, (Cell Press, Cambridge, Mass., 1990). pp. 409-425.
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Consider the circle that is the projection of the helical axis of the DNA duplex onto the XZ plane. As
the duplex spirals along the core particle it will go around the dirtlmes, for a total rotation of
360°. The duplex contains —1 steps, resulting 36@n —1)° of rotation between successive base

pairs.

QUOWO~NOUITEAWNPE
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/I Program 10. Create simple nucleosome model.
#define PI  3.141593

#define RISE 3.38

#define TWIST  36.0

int b, nbp; int getbase();

float nt, theta, phi, rad, dy, ttw, len, plen, side;
molecule m, mil,;

matrix matdx, matrx, maty, matry, mattw;

string sbase, abase;

nt = atof( argv[ 2] ); I number of turns

nbp = atoi( argv[ 31]); 1 number of base pairs
theta = atof( argv[41]); // winding angle

dy = RISE * sin( theta );
phi =360.0 * nt/ ( nbp-1);
rad = (( nbp-1 )*RISE*cos( theta ))/( 2*PI*nt );

matdx = newtransform( rad, 0.0, 0.0, 0.0, 0.0, 0.0);
matrx = newtransform( 0.0, 0.0, 0.0, -theta, 0.0, 0.0 );

m = newmolecule();
addstrand( m, "A"); addstrand( m, "B" );
ttw = 0.0;
for(b=1;b<=nbp;b=b+1){
getbase( b, sbase, abase );
m1l = wc_helix( sbase, "™, "dna", abase, ™, "dna",
2.25,-4.96,0.0,0.0);
mattw = newtransform( 0., 0., 0., 0., 0., ttw );
transformmol( mattw, m1, NULL );
transformmol( matrx, m1, NULL );
transformmol( matdx, m1, NULL );
maty = newtransform( 0.,dy*(b-1),0., 0.,-phi*(b-1),0.);
transformmol( maty, m1, NULL );

mergestr( m, "A", "last", m1, "sense", "first" );
mergestr( m, "B", "first”, m1, "anti", "last" );
if(b>1)
connectres(m, "A", b -1, "03™, b, "P");
connectres( m, "B", 1, "O3™, 2, "P");
}
ttw += TWIST; if( ttw >= 360.0 ) ttw -= 360.0;

}
putpdb( "nuc.pdb”, m);
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Finding the radius of the superhelix is a little tricky. In general a single turn of the helix will not
contain an integral number of base pairs. For example, using typical numbers of 1.75 turns and 145
base pairs requires82. 9 base pairs to make one turn. An approximate solution can be found by con-
sidering the ideal superhelix that the DNA duplex is wrapped aroundL betthe arc length of this
helix. ThenL cos@) is the arc length of its projection into the XZ plane. Since this projection is an
overwound circleL is also equal to 2rt, wheret is the number of turns ands the unknown radius.

Now L is not known but is approximately 3.38¢1). Substituting and solving far gives Eg.
(_&rad).

The resultinghab code is shown in Program 2. This code requires three arguments—the num-
ber of turns, the number of base pairs and the winding angle. In lines 15-17, the heliayf kise (
twist (phi ) and radiusrad ) are computed according to the formulas developed above.

Two constant transformation matricesatdx andmatrx are created in lines 19-2thatdx is
used to mve the newly created base pair along the X-axis to the circle that is the helix’s projection
onto the XZ planematrx is used to rotate the new base pair about the X-axis so it will be tangent to
the local helix of spirally wound duplex. The model of the nucleosome will be built in the mabecule
which is created and given two strarids and"B" in line 23. The variabl&w will hold the total
local helical twist for each base pair.

The molecule is created in the loop in lines 25-43. The user specified fugettmase()
takes the number of the current base gailad returns two strings that specify the actual nucleotides
to use at this position. These two strings are converted into a single base pair usialg theltin
wc_helix() . The new base pair is in the XY plane with its origin at the global origin and its helical
axis along Z oriented so that the 5’-3’ direction is positive.

Each base pair must be rotated about its Z-axis so that when it is added to the global helix it has
the correct amount of helical twist with respect to the previous base. This rotation is performed in lines
29-30. Once the base pair has the correct helical twist it must rotated about the X-axis so that its local
origin will be tangent to the global helical axes (line 31).

The properly-oriented base is next moved into place on the global helix in two stages in lines
32-34. It is first moved along the X-axis (line 32) so it intersects the circle in the XZ plane that is pro-
jection of the duplex’s helical axis. Then it is simultaneously rotated about and displaced along the
global Y-axis to mve it tofinal place in the nucleosome. Since both these movements are with respect
to the same axis, they can be combined into a single transformation.

The newly positioned base pairnml is added to the growing moleculermusing two calls to
thenab buitin mergestr() . Note that since the two strands of a DNA duplex are antiparallel, the
base of the'sense” strand of moleculenl is addedafter the last base of thBA" strand of
moleculemand the base of th@anti"  strand of moleculenlis before the first base of theB"
strand of moleculen For all base pairs except the first one, the new base pair must be bonded to its
predecessor. Finally, the total twistw{ ) is updated and adjusted to remain in the interval [0,360) in
line 42. After all base pairs have been created, the loop exits, and the molecule is written out. The
coordinates are saved in PDB format usingrthle builtin putpdb()

7.6. “Wrapping” DNA Around a Path.

This last code develops twab programs that are used together to wrap B-DNA around a more
general open curve specified as a cubic spline through a set of points. The first program takes the ini-
tial set of points defining the curve and interpolates them to produce a new set of points with one point
at the location of each base pair. The new set of points always includes the first point of the original set
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but may or may include that last point. These new points are read by the second program which actu-
ally bends the DNA.

The overall strategy used in this example is slightly different from the one used in both the circu-
lar DNA and nucleosome codes. In those codes it was possible to directly compute both the orientation
and position of each base pair. This is not possible in this case. Here only the location of the base
pair's origin can be computed directly. When the base pair is placed at that point its helical axis will be
tangent to the curve and point in the right direction, but its rotation about this axis will be arbitrary. It
will have to rotated about its new helical axis to give the proper amount of helical twist to stack it
properly on the previous base. Now if the helical twist of a base pair is determined with respect to the
previous base pair, either the first base pair is left in arbitrary orientation, or some other way must be
devised to define the helical of it. Since this orientation will depend both on the curve and its ultimate
use, this code leaves this task to the user with the result that the helical orientation of the first base pair
is undefined.

7.6.1. Interpolating the Curve.

This section describes the code that finds the base pair origins along the curve. This program
takes an ordered set of points

P1: P2, Pn
and interpolates it to produce a new set of points

NP1, NP2, * -+, NP,

such that the distance between egphandnp;.; is constant, in this case equal to 3.38 which is the
rise of an ideal B-DNA duplex. The interpolation begins by settimgto p; and continues through
the p; until a new pointnp,, has been found that is within the constant distangg, twithout having
gone beyond it.

The interpolation is done viapline() [31] and splint() , two routines that perform a
cubic spline interpolation on a tabulated function

yi = f(x)
In order forspline()  /splint() to work on this problem, two things must be done. These func-
tions work on a table ofx(,y;) pairs, of which we have only theg;. However, since the only
requirment imposed on theg is that they be monotonically increasing we can simply use the sequence
1,2,..,n for thex;, producing the producing the table ). The second difficulty is that
spline()  /splint() interpolate along a one dimensional curve but we need an interpolation along
a three dimensional curve. This is solved by creating three different splines one for each of the three
dimensions.

spline()  /splint() perform the interpolation in two steps. The functgpiine() is
called first with the original table and computes the value of the second derivative at each point. In
order to do this, the values of the second derivative at two points must be specified. In this code these
points are the first and last points of the table, and the values chosen are 0 (signified by the unlikely
value of 1e30 in the calls tospline() ). After the second derivatives have been computed, the

31. W. H. Press, S. A. Teukolsky, W. T. Vettering, and B. P. Flannery\uimerical Recipesin C,
(Cambridge, New York, 1992). pp. 113-117.
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interpolated values are computed using one or more calfdii()

What is unusual about this interpolation is that the points at which the interpolation is to be per-
formed are unknown. Instead, these points are chosen so that the distance between each point and its
successor is the constant vaRESE, set here to 3.38 which is the rise of an ideal B-DNA duplex.

Thus, we have to search for the points and most of the code is devoted to doing this search. The details
follow the listing.

1 /I Program 11 - Build DNA along a curve
2 #define RISE 3.38
3
4 #define EPS le-3
5 #define APPROX(a,b) (fabs((a)-(b))<=EPS)
6 #define MAXI 20
7
8 #define MAXPTS 150
9 int npts;
10 float a] MAXPTS];
11 float x| MAXPTS], yl| MAXPTS ], zl MAXPTS |;
12 float x2[ MAXPTS ], y2[ MAXPTS ], z2[ MAXPTS ];
13 float tmp[ MAXPTS];
14
15 string line;
16
17 int i, li, ni;
18 float dx, dy, dz;
19 float la, Ix,ly, Iz, na, nx, ny, nz;
20 float d, tfrac, frac;
21
22 int spline();
23 int splint();
24
25 for( npts = 0O; line = getline( stdin ); ){
26 npts = npts + 1;
27 a[ npts ] = npts;
28 sscanf( line, "%If %lf %If",
29 X[ npts ], y[ npts ], z[ npts ] );
30 }
31
32 spline( a, x, npts, 1e30, 1e30, x2, tmp );
33 spline( a, y, npts, 1e30, 1e30, y2, tmp );
34 spline( a, z, npts, 1e30, 1e30, z2, tmp );
35
36 li=1;la=1.0; Ix =x[1]; ly = y[1]; Iz = z[1];
37 printf( "%8.3f %8.3f %8.3f\n", Ix, ly, 1z );

w
(o]
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39 while( li < npts }{

40 ni=li+1;

41 na=a[nil];

42 nx=x[ni];ny=y[ni];nz=2z[ni];

43 dx=nx-Ix;dy=ny-ly; dz=nz - lz;

44 d = sqrt( dx*dx + dy*dy + dz*dz );

45 if(d > RISE ){

46 tfrac = frac = .5;

47 for(i=1;i<=MAXIL;i=i+1)

48 na = la + tfrac * (a[ni] - la);

49 splint( a, x, X2, npts, na, nx);

50 splint( a, y, y2, npts, na, ny );

51 splint( a, z, z2, npts, na, nz);

52 dx=nx-Ix;dy=ny-ly; dz=nz - lz;
53 d = sqrt( dx*dx + dy*dy + dz*dz );
54 frac = 0.5 * frac;

55 if APPROX(d, RISE))

56 break;

57 else if(d > RISE)

58 tfrac = tfrac - frac;

59 else if(d < RISE)

60 tfrac = tfrac + frac;

61 }

62 printf( "%8.3f %8.3f %8.3f\n", nx, ny, nz);
63 lelse if( d < RISE ){

64 li = ni;

65 continue;

66 }else if( d == RISE ){

67 printf( "%8.3f %8.3f %8.3f\n", nx, ny, nz);
68 li = ni;

69 }

70 la = na;

71 Ix = nx; ly = ny; Iz = nz;

72 }

Execution begins in line 25 where the points are read Btmim one point or three num-
bers/line and stored in the three arrayy andz. The independent variable for each spline, stored in
the arraya is created at this time holding the numb&te npts . The second derivatives for the three
splines, one each for interpolation along the X, Y and Z directions are computed in lines 32-34. Each
call to spline() has two arguments set 1@30 which indicates that the second derivative values
should be 0 at the first and last points of the table. The first point of the interpolated set is set to the
first point of the original set and writtengtout in lines 36-37.

The search that finds the new points is lines 39-72. To see how it works consider the figure
below. The dots markepy, po, . ..., p, correspond to the orginal points that define the spline. The cir-
cles markedhpy, np,, Np; represent the new points at which base pairs will be placed. The curve is a
function of the parametex, which as it ranges from 1 fipts sweeps out the curve fromy( y4, z;) to
(Xnpts Ynpts: Znpts)- Since the original points will in general not be the correct distance apart we have to
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find new points by interpolating between the original points.

The search works by first finding a point of the original table that is atR¢&Et distance from
the last point found. If the last point of the original table is not far enough from the last point found,
the search loop exits and the program ends. However, if the search does find a point in the original
table that is at leafRISE distance from the last point found, it starts an interpolation loop in lines
47-61 to zero on the best valueadthat will produce a new point that is the correct distance from the
previous point. After this point is found, the new point becomes the last point and the loop is repeated
until the original table is exhausted.

The main search loop usks to hold the index of the point in the original table that is closest to,
but does not pass, the last point found. The loop begins its search for the next point by assuming it will
be before the next point in the original table (lines 40-42). It computes the distance between this point
(nx,ny,nz) and the last pointX ,ly ,Iz ) inlines 43-44 and then takes one of three actions depending
it the distance is greater thBASE (lines 46-62), less thaRISE (lines 64-65) or equal tRISE (lines
67-68).

If this distance is greater th&ISE, then the desired point is between the last point found which
is the point generated ibg and the point corresponding &ni] . Lines 46-61 perform a bisection
of the interval ka ,a[ni] ], a process that splits this interval in half, determines which half contains
the desired point, then splits that half and continues in this fashion until the either the distance between
the last and new points is close enough as determined by the ARRROX() or MAXI subdivisions
have been at made, in which case the new point is taken to be the point computed after the last subdivi-
sion. After the bisection the new point is writtenstolout (line 62) and execution skips to line
70-71 where the new valuesa and fx,ny,nz) become the last valués and (x ,ly ,Iz ) and then
back to the top of the loop to continue the interpolation. The nfeeRROX() defined in line 4, tests
to see if the absolute value of the difference between the current distarRES&ni$ less tharEPS
defined in line 3 as I8. This more complicated test is used instead of simply testing for equality
because floating point arithmetic is inexact, which means that while it will get close to the target dis-
tance, it may never actually reach it.

If the distance between the last and candidate points is lesRiB&n the desired point lies
beyond the point &[ni] . In this case the action is lines 64-65 is performed which advances the can-
didate point tdi+2 then goes back to the top of the loop (line 38) and tests to see that this index is
still in the table and if so, repeats the entire process using the point corresporafin@lo . If the
points are close together, this step may be taken more than once to look for the next candidate at
afli+2] , a[li+3] , etc. Eventually, it will find a point that RISE beyond the last point at which
case it interpolates or it runs out points, indicating that the next point lies beyond the last point in the
table. If this happens, the last point found, becomes the last point of the new set and the process ends.

The last case is if the distance between the last point found and the pfmi at is exactly
equal toRISE. If it is, the point ata[ni] becomes the new point aftid is updated tai . (lines
67-68). Then lines 70-71 are executed to uptiatand (x ,ly ,Iz ) and then back to the top of the
loop to continue the process.
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7.6.2. Driver Code.

This section describes the main routine or driver of the second program which is the actual DNA
bender. This routine reads in the points, then galtdna() (described in the next section) to place
base pairs at each point. The points are either readdidim or from the file whose name is the
second command line argument. The source of the points is determined in lines 8-18tdiringf
the command line contained a single arguments or in the second argument if it was present. If the argu-
ment count was greater than two, the program prints an error message and exits. The points are read in
the loop in lines 20-26. Any line with#in column 1 is a comment and is ignored. All other lines are
assumed to contain three humbers which are extracted from the latiéng,and stored in the point
arraypts by thenab builtin sscanf()  (lines 23-24). The number of points is kephjpts . Once
all points have been read, the loop exits and the point file is closed if it gdiot . Finally, the
points are passed to the functipntdna()  which will place a base pair at each point and save the
coordinates and connectivity of the resulting molecule in the pair of dibespath.pdb and
dna.path.bnd

1 /I Program 12 - DNA bender main program
2 string line;
3 file pf;
4 int npts;
5 point pts[ 5000 J;
6 int putdna();
7
8 iflargc==1)
9 pf = stdin;
10 else if( argc > 2 ){
11 fprintf( stderr, "usage: %s [ path-file \n",
12 argv[1],argv[2]);
13 exit(1);
14 }else if( !( pf =fopen(argv[ 2], "r')) X
15 fprintf( stderr, "%s: can’t open %s\n",
16 argv[1],argv[2]);
17 exit(1);
18 }
19
20 for( npts = 0; line = getline( pf); )}{
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21 if( substr( line, 1, 1) !="#" ){
22 npts = npts + 1;

23 sscanf( line, "%lf %lf %lf",
24 pts[ npts ].x, pts[ npts ].y, pts[ npts 1.z );
25 }

26 }

27

28 if( pf I= stdin )

29 fclose( pf );

30

31 putdna( "dna.path", pts, npts );

7.6.3. Wrap DNA.

Every nab molecule contains a frame, a moveable handle that can be used to position the
molecule. A frame consists of three othogonal unit vectors and an origin that can be placed in an arbi-
trary position and orientation with respect to its associated molecule. When the molecule is created its
frame is initialized to the unit vectors along the global X, Y and Z axes with the origin at (0,0,0).

nab provides three operations on frames. They can be defined by atom expressions or absolute
points Eetframe() andsetframep() ), one frame can be aligned or superimposed on another
(alignframe() ) and a frame can be placed at a point on an axis{frame() ). A frame is
defined by specifying its origin, two points that define its X direction and two points that define its Y
direction. The Z direction is X¥. Since it is convenient to not require the original X and Y be orthog-
onal, both frame creation builtins allow the user to specify which of the original X or Y directions is to
be the true X or Y direction. If X is chosen then Y is recreated freX; & Y is chosen then X is
recreated from ¥XZ.

When the frame of one molecule is aligned on the frame of another, the frame of the first
molecule is transformed to superimpose it on the frame of the second. At the same time the coordi-
nates of the first molecule are also transformed to maintain their original position and orientation with
respect to their own frame. In this way frames provide a way to precisely position one molecule with
respect to another. The frame of a molecule can also be positioned on an axis defined by two points.
This is done by placing the frame’s origin at the first point of the axis and aligning the frame’s Z-axis
to point from the first point of the axis to the second. After this is done, the orientation of the frame’s
X and Y vectors about this axis is undefined.

Frames have two other properties that need to be discussed. Although the aligittin
frame() is normally used to position two molecules by superimposing their frames, if the second
molecule (represented by the second argumealigoframe() ) has the special valugdULL, the
first molecule is positioned so that its frame is superimposed on the global X, Y and Z axes with its
origin at (0,0,0). The second property is that whah applies a transformation to a molecule (or just
a subset of its atoms), only the atomic coordinates are transformed. The frame’s origin and its orthorg-
onal unit vectors remain untouched. While this may at first glance seem odd, it makes possible the fol-
lowing three stage process of setting the molecule’s frame, aligning that frame ginbdieframe,
then transforming the molecule with respect to the global axes and origin which provides a convenient
way to position and orient a molecule’s frame at arbitrary points in space. With all this in mind, here is
the source tputdna() which bends a B-DNA duplex about an open space curve.
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/I Program 13 - place base pairs on a curve.
point s ax[ 4 ];
int getbase();

int putdna( string mname, point pts[ 1 ], int npts )

{
int p;
float  tw;
residue r;

molecule m, m_path, m_ax, m_bp;
point  pl, p2, p3, p4;

string sbase, abase;

string aex;

matrix mat;

m_ax = newmolecule();

addstrand( m_ax, "A");

r = getresidue( "AXS", "axes.rlb");
addresidue( m_ax, "A", r);
setxyz_from_mol( m_ax, NULL, s_ax );

m_path = newmolecule();
addstrand( m_path, "A");

m = newmolecule();
addstrand( m, "A");
addstrand( m, "B");

for(p=1;p<npts;p=p+1)

setmol_from_xyz( m_ax, NULL, s_ax);

setframe( 1, m_ax,
":ORG", "::ORG", "::SXT", ":ORG", "::CYT");

axis2frame( m_path, pts[p], pts[p+11]);

alignframe( m_ax, m_path );

mergestr( m_path, "A", "last", m_ax, "A", "first");

if(p>1)
setpoint( m_path, sprintf( "A:%d:CYT",p-1), p1);
setpoint( m_path, sprintf( "A:%d:ORG",p-1), p2);
setpoint( m_path, sprintf( "A:%d:ORG",p ), p3);
setpoint( m_path, sprintf( "A:%d:CYT",p ), p4);
tw = 36.0 - torsionp( p1, p2, p3, p4);
mat = rotdp( p2, p3, tw);
aex = sprintf( ":%d:", p );
transformmol( mat, m_path, aex );
setpoint( m_path, sprintf( "A:%d:ORG",p ), p1);
setpoint( m_path, sprintf( "A:%d:SXT",p ), p2);
setpoint( m_path, sprintf( "A:%d:CYT",p ), p3);

133
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48 setframep( 1, m_path, p1, p1, p2, p1, p3);
49 }

50

51 getbase( p, sbase, abase );

52 m_bp = wc_helix( sbase, "dna.amber94.rlb", "dna",
53 abase, "dna.amber94.rlb", "dna”,

54 2.25,-5.0,0.0,0.0);

55 alignframe( m_bp, m_path );

56 mergestr( m, "A", "last", m_bp, "sense", "first" );
57 mergestr( m, "B", "first", m_bp, "anti", "last");
58 iftlp> 1 )

59 connectres(m, "A", p-1,"03™, p, "P");
60 connectres( m, "B", 2, "P", 1, "O3™);

61 }

62 }

63

64 putpdb( mname + ".pdb", m);

65 putbnd( mname + ".bnd", m);

66 3

putdna() takes three argumentgiame, a string that will be used to name the PDB and bond
files that hold the bent duplegpfs an array of points containing the origin of each base pair and
npts the number of points in the arrgutdna()  uses four moleculesa_ax holds a small artificial
molecule containing four atoms that is a proxy for the some of the frame’s used placing the base pairs.
The moleculem_path will eventually hold one copy ah_ax for each point in the input array. The
moleculem_bp holds each base pair after it is creatednay helix() andmwill eventually hold
the bent dna. Once again the functgmtbase() (to be defined by the user) provides the mapping
between the current point)and the nucleotides required in the base pair at that point.

Execution ofputdna()  begins in line 16 with the creation of_ax. This molecule is given
one strand'A" , into which is added one copy of the special residXs from the standarahab
residue library'axes.rlb" (lines 17-19). This residue contains four atoms na®B& SXT, CYT
andNZT. These atoms are placed so tB®Gs at (0,0,0) an®XT, CYTandNZT are 1 Aalong the
X, Y and Z axes respectively. Thus the residd¢s has the exact geometry as the molecules initial
frame—three unit vectors along the standard axes centered on the origin. The iniital coordinates of
m_ax are saved in theoint arrays_ax . The moleculesn_path andmare created in lines 22-23
and 25-27 respectively.

The actual DNA bending occurs in the loop in lines 29-62. Each base pair is added in a two stage
process that usea_ax to properly orient the frame oh_path , so that when the frame of new the
base pair irm_bp is aligned on the frame a@f_path , the new base pair will be correctly positioned
on the curve.

Setting up the frame is done is lines 30-49. The process begins by restoring the original coordi-
nates ofm_ax (line 30), so that the the ato®RGis at (0,0,0) anXT, CYTandNZT are each 1A
along the global X, Y and Z axes. These atoms are then used to redefine the framax ¢line
32-33) so that it is equal to the three standard unit vectors at the global origin. Next the frame of
m_path is aligned so that its origin is pts[p] and its Z-axis points fromts[p] to pts[p+1]
(line 34). The call talignframe() in line 34 transformsn_ax to align its frame on the frame of
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m_path , which has the effect of moving_ax so that the atonr®RGis atpts[p] and theORG—
NZT vector points towardgts[p+1] . A copy of the newly positionenh_ax is merged inton_path

in line 35. The result of this process is that each time around thenbogath gets a new residue that
resembles a coordinate frame located at the point the new base pair is to be added.

Whennab sets a frame from an axis, the orienation of its X and Y vectors is arbitary. While this
is does not matter for the first base pair for which any orientation is acceptable, it does matter for the
second and subsequent base pairs which must be rotated about their Z axis so that they have the proper
helical twist with respect to the previous base pair. This rotation is done by the code in lines 37-48. It
does this by considering the torsion angle formed by the fours at@¥3-and ORGof the previous
AXSresidue andDRGand CYT of the currenfAXSresidue. The coordinates of these points are deter-
mined in lines 37-40. Since this torsion angle is a marker for the helical twist between pairs of the bent
duplex, it must be 36°0 The amount of rotation required to give it the correct twist is computed in
line 41. A transformation matrix that will rotate the n&XSresidue about thORG—-ORGaxis by this
amount is created in line 42, the atom expression that namaX8wesidue is created in line 43 and
the residue rotated in line 44. Once the new residue is given the correct twist therfraaté is
moved to the new residue in lines 45-48.

The base pair is added in lines 51-60. The user defined furgetibase()  converts the point
nubmer p) into the names of the nucleotides needed for this base pair which is createdhbl the
builtin wc_helix() . It is then placed on the curve in the correct orientaton using by aligning its
frame on the frame ah_path that we hvae just created (line 55). The new pair is mergednatw
bonded with the previous base pair if it exits. After the loop exits, the bend DNA duplex coordinates
are save as PDB and it connectivity as a bnd file in the cafiatttpb() andputbnd() in lines
64-65, whereupoputdna() returns to the caller.

7.7. Building peptides

The next example was created by Paul Beroza to construct peptides with given backbone torsion
angles. The idea is to cdihkprot to create a peptide in an extended conformation, then to set
frames and do rotations to construct the proper torsions. This can be used as just a stand-alone pro-
gram to perform this task, or as a source for ideas for constructing similar functionality imadther
programs.

/I Program 14 -- build a peptide sequence

/[ "peptide"” is an nab program that will generate a pdb file given a structure
/[ type and a sequence. It was created by Paul Beroza.

/I The command line syntax for peptide is:
/I % peptide  structure sequence pdbout [ -lib libfile ]

/I where "structure" defines the type of structure to be created and "sequence"
/l'is a string o of 1 letter amino acid codes. For example:

Il % peptide ALPHA  AAAAA aaaa.pdb
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/I will create and alanine pentapeptide in an alpha helical structure.

/I The structure definitions are stored in a library file that can be specified
/I on the command line (the "-lib libfile" option), or by default is in
/ $NABHOME/reslib/cont.lib.

/I 've included a sample library  “"conf.lib" This file looks like:

/[ ALPHA 1 alpha helix
/I phi -57.0 psi -47.0 omega 180.0

/I ABETA 1 anti-parallel beta sheet

/I phi -139.0 psi 135.0 omega -178.0
1

1

/I The file contains sets of definitions, one for each structure type. The

/I definitions above are separated by a blank line, but that is not necessary.

/I Each time peptide finds a line that begins with an alphanumeric character,

/l it initializes a new structure type with the first string in the line as its

/I identifying string.  The <structure> on the command line must match one of
/I the structure types in the "conf.lib" file.

/I The next field on the structure type line is the number of residues in the

/I structure.  The following lines must contain the phi psi and omega values
/l for each of the residues in the structure type. The angles may be in any
/I order, but the string defining the angle must precede its floating point

Il value.

/I'If the number of residues = 1, it is a special structure for which the phi

/I psi and omega values are the same for all residues in the structure. For
/I these structure types, the <sequence> may be of any length. For other

/I structure types, the number of residues in <sequence> must agree with the
/I number of residues in the corresponding structure type in the "conf.lib"

/[ file.  The resulting pdb file is written to standard out.

/I Please let me know of any bugs or suggestions.

/I Enjoy,

/l Paul Beroza <pberoza@info.combichem.com>

#define MAXRES 500
#define USAGE "Usage: %s structure_type sequence pdbout <-lib XXX>0, argv[1]
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int fix_angles( molecule m1, int i, int nr, float omega, float psi, float phi)

{

/latom expressions to rotate about angles:
string omega_string, psi_string, phi_string;

/latom expressions for backbone atoms:
string npos, cpos, capos, nmlpos, cmlpos, caml1pos;

point n_xyz, ca_xyz, ¢_xyz; //coords for res i bb
point cm1_xyz; //coords for resi- 1 bb
point u, v, zax, p_head, p_tail;

point va, vb, vc;

float a0, rot_angle, phi0, psiO, omega0;
atom a;

int ii;

matrix mat;

if (i>nr)nr=i

omega_string = sprintf(":%d-%d:", i, nr);

psi_string = sprintf(":%d:0|:%d-%d:", i - 1, i, nr);

phi_string = sprintf(":%d:C*,0*,?[A-Z]*|:%d-%d:*", i, i + 1, nr);
npos = sprintf(":%d:N", i);

cpos = sprintf(":%d:C", i);

capos = sprintf(":%d:CA", i);

cmlpos = sprintf(":%d:C", i - 1);

camlpos = sprintf(":%d:CA", i - 1);

nmlpos = sprintf(":%d:N", i - 1);

/[create z - axis for rotation to get
/I C(i - 1) - N(i) - CA(i) bond angle = 121.9;

setpoint(m1, npos, n_xyz);
setpoint(m1, capos, ca_xyz);
setpoint(m1, cpos, c_xyz);
setpoint(m1, cmlpos, cml_xyz);

u = ca_Xyz-n_xyz,
v = cml_xyz - n_xyz,

zax=u"v;

a0 = angle(m1, cm1pos, npos, capos);
rot_angle =121.9 - a0;

p_tail = n_xyz;
p_head = n_xyz + zax;

mat = rotdp(p_head, p_tail, rot_angle);
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transformmol(mat, m1, omega_string);

psiO = torsion(m1, nm1pos, camlpos, cm1pos, npos);
rot_angle = psi - psiO;

mat = rot4(m1, camlpos, cmlpos, rot_angle);
transformmol(mat, m1, psi_string);

omega0 = torsion(m1, camlpos, cmlpos, npos, capos);
rot_angle = omega - omegao;

mat = rot4(m1, cm1pos, npos, rot_angle);
transformmol(mat, m1, omega_string);

phiO = torsion(m1, cm1pos, npos, capos, cpos);
rot_angle = phi - phi0;

mat = rot4(m1, npos, capos, rot_angle);
transformmol(mat, m1, phi_string);

return O;

#define MAXTEMPLATES 50

int match_template(file f, float phi[1], float psi[1], float omega[1],

{

string struct_type, int nres)

string line;

int ir, template_nres, ntemp, found;

string ttype, template_name[MAXTEMPLATES];
string sl, s2,s3;

float f1, 2, f3;

string ftmp;

found = 0;

ntemp = 0;

while (line = getline(f)) {
sscanf(line, "%s %d", ttype, template_nres);
if (ttype =="")
continue;
if (template_nres < 1) {

fprintf(stderr, "template has no residuesO);

exit(0);

}

++ntemp;

template_name[ntemp] = ttype;

if (ttype != struct_type) {

for (ir = 1; ir <= template_nres; ir++)
line = getline(f);
continue;

138
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}

found = 1,

if (template_nres =1 && template_nres = nres) {

fprintf(stderr, "template has %d atoms and sequence has %d0,
template_nres, nres);

exit(0);
}
for (ir = 1; ir <= template_nres; ir++) {
line = getline(f);
sscanf(line, "%s %lf %s %If %s %lf", s1, f1, s2, 2, s3, f3);
if (s1 =="phi") phi[ir] = f1;
else if (s1 == "psi") psi[ir] = f1;
else if (s1 == "omega") omega]ir] = f1,;
if (s2 == "phi") phi[ir] = 2;
else if (s2 == "psi") psi[ir] = f2;
else if (s2 == "omega") omegalir] = f2;
if (s3 == "phi") phi[ir] = f3;
else if (s3 == "psi") psi[ir] = f3;
else if (s3 == "omega") omegalir] = f3;
}

/ltemplate_nres == 1 is a special case for which all
/I residues in the sequence adopt the 1 triplet of phi / psi / omega values

if (template_nres == 1) {
for (ir = 2; ir <= nres; ir++) {
phifir] = phi[1];
psifir] = psi[1];
omega]ir] = omegall];

}
}
break;
}
if (ffound) {
fprintf(stderr, "template not found0);
fprintf(stderr, "must be one of:");
for (ir = 1; ir <= ntemp; ++ir)
fprintf(stderr, " %s", template_namelir]);
fprintf(stderr, "0);
exit(0);
}
return O;

h

/Imain routine: process the input, then call the above routines
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int ir, nr;

string seq, struct_type;

molecule m1;

float omega[MAXRES], psii[MAXRES], phii[MAXRES];
point ax, center;

atom a;

file conformation_file;

string outfile;

int ac;

if (argc '=4 && argc 1= 6) {
fprintf(stderr, USAGE);
exit(1);
}
if (argc > 4) {
if (argv[5] !'="-lib") {
fprintf(stderr, USAGE);
exit(1);
}
conformation_file = fopen(argv[6], "r");
if (conformation_file == NULL) {
fprintf(stderr, "conformation file not found %s0, argv[6]);

exit(1);
}
} else {
conformation_file = fopen(getenv("NABHOME") + "/reslib/conf.lib", "r");
if (conformation_file == NULL) {
fprintf(stderr, "conformation file not found %s0,
getenv("NABHOME") + "/reslib/conf.lib" );
exit(1);
}
}

struct_type = sprintf("%s", argv[2]);
seq = sprintf("%s", argv[3]);

nr = length(seq);

outfile = argv[4];

if (nr > MAXRES) {
fprintf(stderr, "MAXRES exceededO0);
exit(0);

}

/lget the needed phi, psi and omega values from a template:
match_template(conformation_file, phi, psi, omega, struct_type, nr);

/lgenerate a structure in the extended conformation:
m1 = linkprot("new", seq, "™);



4/20/02 Sample NAB applications 141

/ladjust the phi, psi, and omega angles:
for (ir = 2; ir <= nr; ++ir){
fix_angles(m1, ir, nr, omegalir], psi[ir - 1], phi[ir]);

}

putpdb(outfile, m1);
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8. NAB and AVS.

8.1. Introduction.

nab encourages users to build models of structure families defined by one or more parameters.
Unfortunately, while a family’s parameters may be obvious, their interaction and limits are often diffi-
cult to fully grasp. The usual approach to this situation is to create sufficient instances of the family to
sample the parameter space and to view the results with a molecular graphics rsyisteffiers an
alternative. In conjunction with the AVS graphics environmeiaty) can convert a standalomab
program into an AVS module. Parameters to the former program will automatically be connected to
AVS widgets and/or ports allowing real time interactive viewing of their effects and interactions.

This capability was originally intended as a quick way to visualize the interactions of a model's
parameters; howevemab’s AVS capabilities have been extended to permit it to perform a variety of
data flow molecular calculations. Subject to some limitatioab, can generate AVS modules that can
read and/or writent |, float , string andmolecule values to and/or from a network. Parameters
may be mapped onto widgets or directly onto ports.

8.2. AVS.

AVS is a program that allows users to create “visualization networks”. It does this by providing
an environment called the “Network Editor” which is used to connect elements of a library of standard
visualization and data manipulation tools called modules. A module is incorporated into a network by
dragging its icon from the appropriate module library menu into the Network Editor's work space.
Each module has one or more “ports” represented as small colored bars on either the top and/or bot-
tom edge(s) of its rectangular icon. Colored bars on the top of a module’s icon are input ports which
can accept data from other modules in the network. Colored bars on the bottom of the icon are output
ports which are used to send data created or modified by this module to other modules in the network.
A port’s colors represent the type of its data. A port is connected by moving the mouse onto it and
pressing the middle button. The Network Editor will draw thin lines between the port and all other
ports to which it can be connected. To select a connection, the user continues to hold down the middle
button and moves the mouse onto the desired connection. Once the connection is established, the Net-
work Editor replaces the thin line by a thick line and the mouse button is released. The general rule
involving connections is that any input port may be connected to any output port as long as their colors
match.

AVS divides modules into four classes depending on their role in a network. Modules in differ-
ent classes are placed into separate Module Library Menus in the Network Editor’'s “Resource Area”.
Modules that introduce data into a network are called “Data Input” modules. Modules that accept data,
operate on it and send it on are called “Filters” if the output data has the same general type as the input
data or “Mappers” if they are different. Modules that terminate a data path are called “Data Output”
modules. This classification is both artificial and somewhat arbitrary. It is artificial in that the Flow
Executive which runs the modules does not distinguish between module classes. And it can be arbi-
trary because sometimes a module can be used in more than one role in a network. However, since
most modules do fit this classification, having a separate Module Library Menu for each class simpli-
fies finding the right module for the task at hand.

AVS offers a very high level 3-D graphics application programming interface (API) through its
geometry type. It provides a standard module called the “Geometry Viewer” which accepts connec-
tions from other modules in the network that have geometry outputs. It renders the structures that are
sent over these connections. The Geometry Viewer is a complete 3-D viewing system. Its most
important capabilities include the ability to select and position objects, to control their surface
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properties and rendering levels (sticks, flat shading, etc), and to set the number, color and location of
lights.

AVS supports several types of connections of wihiabh uses only a few. These are the simple
types that contain a singiet |, float orstring value and the field type which is used to represent
mathematical fields—functions that have a value at every point in some space. These values can be
scalars or vectors. The vector length is arbitrary but all vectors in a particular field must have the same
length. Also all the values of a field including components of the vectors must have the same simple
type, for exampldloat . The dimensionality of the space can be 1-, 2- or 3-D and the mapping of the
field values to points in space can be implicit or explicit. Thus the AVS field type serves as a general-
ized array. nab also uses the geometry type as maab generated modules create or modify
molecules which are eventually converted into AVS geometry and displayed. However, this use is indi-
rect asnab represents molecules as fields and uses other modules, rmotdlfl@ which is discussed
in the Appendices to convert these fields into geometry that can be viewed.

AVS provides a large set of standard modules, but they can not provide for every possible appli-
cation. They do offer a chemistry type, but it was designed for quantum chemistry and is not suitable
for macromolecules. However, it is relatively easy for users to design and implement their own “cus-
tom” modules. AVS provides a “Module Generator” for producing a new module’s skeleton. This
skeleton includes code that creates both ports for the module’s data and widgets for its parameters. The
stylized nature of the code required to create modules made it easy nalgities capability.

8.3. nab Extensions for Defining Modules.

The conversion of anab function into an AVS module is straightforward, but it does require
that additional information about the function be made available to theatheompiler. The com-
piler needs to know which function is to be converted into a module and which of its parameters are to
be mapped onto ports and which onto widgets. There are two possible ways to present this information
to the compiler. One would be to extend the grammar with additional productions that would only be
used for module creation. This approach was rejected as the number of new productions would be con-
siderable. In addition, AVS is licensed separately fraab and a site without an AVS distribution
would be unable to properly create modules.

The method used hbyab to convert a function into a module uses three things. The function’s
name must have the forAVS ident, whereident is an identifier—a letter followed by zero or more
letters, digits and underscores. A special comment line describing each of that function’s parameters is
required. And in order to activate any AVS module creationn#ie source must be compiled with
the-avs option. The comments that contain the compiler directives that are used to convert a function
into a module have the following forms. Items in italics stand for general instances of things that
depend on the function being converted.

/[AVSinfo  port pname  direction Map parameter onto a port.
/[AVSinfo  parm pname  options Map parameter onto a widget.
/[AVSinfo  send pname  properties Molecule properties to send.
/[AVSinfo  free pname Free space allocated poame.

direction is one or both of the words or out . A value ofin maps the parameter onto an input
port and reads its value from it. A valueaft maps the parameter onto an output port and writes its
value to it. A port may be boih andout in which case, the value is read from the input port and
written back to the output port. The two stringout  andout in  are equivalentab variables
that correspond to widgets or input only ports are read only and can not appear on the left hand side of
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an assignment statement.

The value ofoptions depends on the type of the parameter. iRbr andfloat parameters,
options, if present, is a triple of numbers specifying the parameter’s default, minimum and maximum
values. Ifoptionsis not given, the default, minimum and maximum values are $gt-t®000 and
10000. For astring  parameterpptions, if present consists of the string’s default value. If the
default value includes white space, it must be enclosed in double quptéfsaptions is absent, the
default value isNULL

The send directive applies only tanolecule parameters mapped onto output ports or the
return value of anolecule function. It tells thenab compiler which of the molecule’s atomic prop-
erties are to be sent along with its coordingtespertiesis one or more of the following words in any
order: charge , radius , floatl or float2 . The wordall can be used to send all of a
molecule ’s properties. Ifpname has the special valueturn-value , thissend applies to the
function’s return value.

The free directive tells thenab compiler to free thanab variable pname after the module
executes. This directive applies onlystoing andmolecule variables. Storage allocated to mod-
ule variables without &ree directive is lost after each module execution. Agaipnéime has the
valuereturn-value the function’s return value will be freed after module execution. Users should
always includefree directives for thosestring andmolecule variables that can be freed after
execution since the amount of storage lost over a large number of module executions can be enough to
cause the program to run out of memory and abati. can not automatically generate free directives
because it can not always tell if two variables point to the same data. The most common example of
this would be in a module that reads a molecule from the network and modifies it, then returns the
modified molecule. In this case the input molecule parameter and the function return value point to the
same data. If the module wrapper automatically freed all data after use, it would successfully free the
returned molecule the first time, and then fail when it tried to free it again.

8.4. How nab Creates Modules.

nab converts a function into a module by generating a “wrapper’—additional code invisible at
thenab level—that sets up and calls the original function. The wrapper does the following things. It
registers the function and its description with the AVS Network Editor. This allows the Network Editor
to create the function’s module icon and to determine the types of data it can send and receive. The
wrapper sets up the module’s ports and widgets. It copies data from the input ports and widgets into
the function’s parameters. If the function executes successfully, it copies any output parameters and the
function’s return value to the output ports. The wrapper also performs any required conversions
betweemab data types and their AVS equivalents.

8.4.1. Molecule Fields.

The choice of an AVS representation fiab molecules was limited to those AVS types that sup-
port objects with internal structure. These are the field, UCD (for “Unstructured Cell Data”), geometry
and chemistry types. The chemistry type was designed for quantum calculations and is not suitable for
macromolecules. Both the geometry and UCD types are powerful enough to represent molecules, but
the implementation would be somewhat opaque. This left the field type. The AVS limitation that all the
data in a field have the same fundamental type meant tha@btamolecule required at least three
fields as it contains a mixture it , float andstring data organized into a three level hierarchy
of strands, residues and atoms.
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The current implementation which is not entirely satisfactory uses three fields. A byte field con-
taining one entry of 16 bytes/atom carries names and some hierarchy information. Each entry is
organized as follows. The atom’s name starts at byte 0, takes 1 to 4 bytes and is terminated with a zero
byte. The name of the residue that contains this atom begins at byte 5, takes 1 to 4 bytes and is termi-
nated with a zero byte. Finally the number of the residue that contains this atom represented as a char-
acter string %09 starts at byte 10, takes 1 to 5 places and is terminated by a zero byte. Residues are
numbered consecutively frofbeginning with the first residue of the first strand inrthlb molecule.

The residues of the second and subsequent strands follow in the order that the strands were created
with addstrand() . A float field with one entry/atom carries the atom’s coordinates and a user
selected subset of its properties. The third field is an integer field that carries the molecule’s bonding
information, one entry/bond, where the two elements of an entry refer to atoms in the byte and float
fields. The implementation which was motivated by the available macromolecular viexté2
reducemab’s three level molecular hierarchy of strands, residues and atoms to a two level hierarchy
of residues and atoms. The table below shows how the various fields are declared.

Component AVS Field Type

Names 1-D 1-space 1-vector uniform byte
Bonds 1-D 1-space 2-vector uniform integer
Atoms 1-D 1-space uniform integer

8.4.2. Implementation Details.

To understand howmab converts a function into a module requires a short description of the
basic AVS module and how it works. A module is a standalone program that is executed under control
of the AVS Network Editor's “Flow Executive”. Every module must contain two subroutines, called
the “description procedure” and the “compute procedure”. The description procedure is a function that
makes calls to the AVS runtime library to describe the module’s ports and parameters and identifies its
compute procedure. When a module is loaded into a “Module Library”, the Flow Executive runs its
description procedure. This registers the module with the Flow Executive which builds the new mod-
ule’s icon, and enters its port and parameter requirements into the Flow Executive’s internal data base.

A module’s compute procedure is what actually does the module’'s work. When the module is
inserted into a network and it becomes active because new data has been presented to its input ports or
its parameter widgets have been changed, the Flow Executive runs the compute procedure. This proce-
dure in turns calls whatever user code is required to perform the module’s task. In the casabof an
generated module, it calls thab function. AVS expects a module’s compute procedure to retrn a
if it fails and a non-zero value if it succeeds. When the compute procedure fails, AVS aborts execution
of the network without sending the module’s data downstream.

8.4.3. Limitations of nab created AVS modules.

Thenab module generator is still in the early phase of its development, and it contains several
implementation restrictions, some of which will be removed as the development continues. These limi-
tations are: 1) the loss of information whenrat molecule is converted into its AVS representation;

2) the limitation of parameters to scalars; 3) the inability to send and receive upstream geometry data;
4) the blocking of the entire AVS system if the module attempts to readdidim , and 5) the
requirement that a function return valuedahdicates the module failed aborting network execution.

Restrictions 1-3 will be removed in Version 1.2nab . The information that is lost in the trans-
lation from annab molecule the current AVS representation will be placed in a fixed length block that



4/20/02 NAB and AVS 146

precedes the molecule’s names in its byte field. The mapping of array parameters onto fields is
straightforward except in the casging andmolecule data, where AVS’s field requirement of
uniform vector length results in wasted space. Accepting upstream geometry data requires defining a
mapping onto standarthb constructs and extending the wrapper to perform this translation.

Restrictions 4 and 5 are harder to remove. Since an AVS module operates as a child process of
the Flow Executive, the module inherits its three standard file descriptors. These are generally attached
to the tty that AVS was started in and successfully reading §tdin  is very difficult. Writing to
eitherstdout orstderr is possible as long as neither has been redirected. The last restriction, that
of using a0 to indicate module failure can not be removed without modifying the semanticsiaban
function to allow it to returnwo values, the actual function value and and an indicator that this value is
valid, which is impossible since functions by definition return a single value.

8.5. Examples of nab Created Modules.

nab classifies a module by what it does wittolecule data. Modules that only create
molecule data are Data Input, modules that read and wrdkecule data are Filters, and modules
that only usemolecule data are Data Outpuhab does not creat®apper modules. Anynab
module that does not involveolecule data is a Data Input module.

8.5.1. Data Input Modules.

nab has been used to create numerous Data Input modules involving both nucleic acids and pro-
teins. Two of them are discussed in some detail below. The first is a DNA Duplex Generator that was
the very firstnab generated module. The second is a DNA Bender that shows the power of this
approach.

8.5.1.1. DNA Duplex Generator.

This module creates models of uniform DNA duplexes of Watson/Crick base pairs. The inputs
are the sequence of one strand and four numbers that define the duplex’s X-offset, inclination, twist
and rise. Duplex creation requires two steps. fide builtin functionwc_complement() creates a
string that represents the complement of the input sequence. Then the input string, the newly created
complement string and the four helical parameters are sent talthéuiltin wc_helix() which
converts them into the desired duplex which in turn is returned as the value of the function
AVS_dna() and displayed by the AVS Geometry Viewer.

The function includes sevéfAVSinfo  directives and is calleAVS_dna() . The name of the
module it generates dna. Each of the four float parameters will be mapped onto an AVS dial widget
and the directives limit the ranges of the dials frd®,000 - 10,000 to something more appropri-
ate. The parametseq has no default. The twioee directives (lines 8-9) cause thab to free the
space that holds the input sequence and returned molecule after module execution.

/I AVS_dna() - AVS Watson/Crick duplex generator

/IAVSinfo  parm seq

/IAVSinfo  parm xoff 2.25 -510
/IAVSinfo  parm incl -4.96 -20 30
/IAVSinfo  parm twist 36.0 2045

DOk WDN PP
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7 /IAVSinfo  parm rise 3.38 2 45
8 /IAVSinfo  free seq
9 /IAVSinfo  free return-value
10 molecule AVS_dna( string seq,
11 float xoff, float incl, float twist, float rise )
12 {
13 string cseq;
14 molecule m;
15
16 cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );
17
18 m = wc_helix( seq, "dna.amber94.rlb", "dna”,
19 cseq, "dna.amber94.rlb", "dna",
20 xoff, incl, twist, rise );
21 return( m);
22 h

8.5.1.2. DNA Bender.

There are many times when it is necessary to deform a piece of duplex DNA. It might need to be
“unwound” in order to insert an intercalator between two base pairs or it might need to be “bent” to
see to align the grooves on one side of the duplex with “ridges” on another molecule. The traditional
way of doing this is to select and interactively change the relevant torsion angles. Unfortunately, due
the complexity of the DNA backbone, several torsion angles may need to be changed in a concerted
fashion to achieve the desired base positions. And to make things even worse, these torsion angle
movements will nhot mve the complementary strand which is only hydrogen bonded to the strand
being bent. It would be much simpler if the user could insert a “hinge” between adjacent base pairs of
the original duplex and thenawe one side of the duplex (both strands) without moving the other side.
Thenab module discussed in this section does just that.

The DNA bender module is a fairly longb program. However it not very complex. The first

half of the code—the functioAVS_ dnabender() —creates a strandard B-form duplex with the
desired sequence, uses litsse parameter to wve the “hinge” or bending site, and then uses the
other six parameters to change the position and/or orientation of the selected half of the duplex. The
second half of the DNA bender—the functipntaxes() —is used to create a coordinate frame that

is placed at the bending site so the user can predict the effect of translation or rotation. This coordinate
frame is the one defined by the Watson/Crick pair at the bending site and remains associated with that
base pair as it is transformed.

The first time the DNA bender executes, it creates the molecule with the specified sequence. Sub-
sequent executions either change the hinge point or translate or rotate a portion of the duplex about a
one of the axes at the bending site. Each time the module executes a transfornaiémgestthe
coordinates of the DNA. Thus the effects of the sequence of transformations accumulate in the
molecule’s coordinates. This requires that the molecule continue to exist when the module is inactive
and that the module’s first execution be distinguished from the others. Both requirements are met by
using a global variable to hold the molecule (liner@b global variables exist throughout program
execution, or in the case of aab generated AVS module, for the entire time the module is connected
in a network. Since attab global variables are initialized @ a0 or NULLvalue ofmcan be used to
indicate the module’s first execution.
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Theif statement in lines 30-54 detects the module’s first execution. It creates the molecule by
usingwc_complement() to create the string representing the the complementary strand followed
by a call towc_helix() to create a standard B-form DNA duplex. The number of residues in the
duplex is saved tares . Lines 36-38 translate the new duplex so its center of mass is at the origin.

The module uses a second molecule of four atoms to represent a coordinate frame. One atom is
at the origin and the other three are’ 1l8ng the individual axes. These atoms are read from a PDB
file into m_axes. Since they are both distant and in separate residues, the three caligéc-
tres() inlines 44-46 are used to bond the atom at the origin to the other three. When this molecule
is drawn as lines, it will look like a coordinate frame. Since the coordinates of this molecule will be
transformed each time the DNA is bent, their original coordinates are saved foittte array
s_axes (line 47). Finally, a third strand “"axes” is added to the duplex and the contentsaaEs is
added to it (lines 49-51) and the new molecule is sent out to network.

The second time and subsequent times the module is called, tlsgtement is skipped and
lines 56-93 are executed instead. Tthetree in lines 58-67 computes the atom expression that will be
use to select which residues of the duplex are to be transformegseA value of0 transforms the
entire duplex with respect to the global coordinate system. @#s® values transform the subdu-
plex that extends from the selected base to the 3’ end of the strand that contains that baseseThus
values from 1 ta\/2 bend one half of the duplex ahdse values fromN/2+1 to N bend the other
half. As example, consider a molecule of 20 bases (or 10 base palra3elfis set to6, then sub
duplex consisting of bases 6-10:11-15 will be transformed. Nbasé is changed td5 the comple-
ment of6, the sub duplex 1-6:15-20 will be transformed.

The actual transformations are applied in lines 68-90. Lines 68-82 apply the rotations and 83-90
apply the translations. Rotations are done in the order of Z then Y then X. Each rotation is done
around the the two atoms of the the third strémas" that both define the selected axis and repre-
sent it in the display. After each transformation the input parameter specifying that transformation’s
value is reset t0.0 using the AVS library calAVSmodify float parameter() . hab has the
builtin functionrot4()  to provide rotations about an arbitrary axis, but does have an analogous func-
tion for translating along an arbitrary axis. The user written C funcidwd() converts the desired
translations along the axes at the bending site into equivalent displacements along standard axes. These
displacements are converted into a transformation matrix in line 85 and then applied to the selected
sub duplexputaxes() is called to update the position and orientation of'téixes" strand and the
newly bent molecule is sent to the network byrétarn  statement in line 93.

Thenab functionputaxes() (lines 96-154) transforms the coordinates of‘thees" strand
of mso they represent either the global coordinate frame or the coordinate frame defined by the Wat-
son/Crick base pair frorhase to its mate. The function must deal with three cases defined by the
value ofbase . If base is 0, then the global frame has been selected. This is handled in line 104 by
the nab builtin setmol_from_xyz() which replaces the current coordinatesnig "axes"
strand with their original values which were saved iaxes .

The other two cases are foase values between 1 and/2 and betweem/2+ 1 to N. These
are handled by the code in lines 105-128 and lines 129-153 respectively. These two sections do the
same thing except that the first group of lines creates a frame that goes ffeenged base to the
"anti"  base and the the second group creates a frame that goes frdamtthe base to the
"sense" Dbase.

A Watson/Crick base pair is normally associated with the following coordinate frame. The Y
axis is along the direction from tl@&l’ atom of a base to tH@l’ atom of its mate, the X axis is the
perpendicular bisector of this vector that is in the mean base pair plane and the Z aRésTiseX
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origin is located at the intersection of the base pair plane and the helical axis formed by a uniform
duplex created from this base pair geometry.

The Y axis is directly accessible tab, but it needs to create a stand in for the X axis from two
atoms of the selected base. However, the the names of the required atoms depend on the type of
selected base, which is not directly available antiie level. The solution is another small user writ-
ten C functiongetname_res_r() which returns the residue name of the selected base. If the name
begins with arA or aG it is a purine and the X axis can be approximated by the vector fro@btte
the N3 atoms, otherwise it is a pyrimidine and the X axis goes fronC&i® theN1 atoms. Once the
four atoms have been selecteditad builtin setframe()  to build the desired coordinate frame.

Next the"axes" strand ofmis transformed so that it agrees with this frame. This is done in
lines 121-128 (or 145-152). First, the coordinatesnofixes are restored to their original values.
Then the frame ofm_axes is reset to be the global coordinate frame. The transformation in line 124
(148) translates these coordinates so that when the frameaodes is aligned with the frame created
from the selected base pair in line 119 (143), the two atomms akis representing the Z axis will be
aligned along the helical axis made by an ideal B-form duplex formed by the selected base pair.
m_axes is transformed by aligning its frame on the frame of the selected base pair and its new coordi-
nates are replace the coordinates of'éxes" strand ofmthus completing the operation.

1 /I AVS_dnabender() - use helical parameters to deform DNA.
2

3 molecule m, m_axes;

4 int nres;

5 point s_axes[ 4 |

6 matrix a_mat;

-

8 string getname_res _r() c;

9 int putaxes();

10 int AVSmodify float_parameter() c;
11 int d2rd();

12

13 /IAVSinfo  parm base 0 0 1000
14 /IAVSinfo  parm dx 0 -33

15 /IAVSinfo  parm dy 0 -33

16 /IAVSinfo  parm dz 0 -33

17 /IAVSinfo  parm rx 0 -2020

18 /IAVSinfo  parm ry 0 -2020

19 /IAVSinfo  parm rz 0 -2020

20 molecule AVS_dnabender( string seq, int base,
21 float dx, float dy, float dz,

22 float rx, float ry, float rz )

23 {

24 string cseq, arg;

25 string aex;

26 matrix mat;

27 point  com;
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float  rdx, rdy, rdz;

if( 'm ){
cseq = wc_complement( seq, "dna.amber94.rlb", "dna" );
m = wc_helix( seq, "dna.amber94.rlb", "dna”,
cseq, "dna.amber94.rlb", "dna",
2.25,-4.96, 36.0, 3.38);
nres = 2 * length( seq);
setpoint( m, NULL, com );
mat = newtransform( -com.x,-com.y,-com.z,0.,0.,0. );
transformmol( mat, m, NULL );

a_mat = newtransform( -2.25,0.,0.,0.,0.,0. );

m_axes = getpdb(
"lhome/macke/nab5/nreslib.0/XYZ.big.axes" );
connectres( m_axes, "1", 1, "ORG", 2, "SXT");
connectres( m_axes, "1", 1, "ORG", 3, "CYT");
connectres( m_axes, "1", 1, "ORG", 4, "NZT");
setxyz_from_mol( m_axes, NULL, s_axes);

addstrand( m, "axes" );

mergestr( m, "axes", "last",
m_axes, "1", "first");

return( m);

}

if( base > nres)
base = nres;
if( base == 0 {
aex = NULL;
}else if( base <= nres/2 }{
aex = sprintf( "sense:%d-%d:|anti:%d-%d:",
base, nres/2,1,nres/2-base +1);
Yelse{
aex = sprintf( "sense:%d-%d:|anti:%d-%d:",
1, nres - base + 1,
base -nres/2,nres/2);
}
if(rz 1= 0.0 ){
mat = rot4( m, "axes::O*", "axes::*Z*", rz );
transformmol( mat, m, aex );
AVSmodify_float_parameter( "rz",1,0.,0.,0.);
}
if(ry 1= 0.0 ){
mat = rot4( m, "axes::O*", "axes::*Y*" ry );
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transformmol( mat, m, aex );
AVSmaodify_float_parameter( "ry",1,0.,0.,0.);

}

if(rx 1= 0.0 ){
mat = rot4( m, "axes::O*", "axes::*X*", rx );
transformmol( mat, m, aex );
AVSmaodify_float_parameter( "rx",1,0.,0.,0.);

}

if( dx 1= 0.0 || dy != 0.0 || dz = 0.0 ){

}

d2rd( m,dx,dy,dz,rdx,rdy,rdz );

mat = newtransform( rdx,rdy,rdz,0.,0.,0.);
transformmol( mat, m, aex );

AVSmaodify float_parameter( "dx",1,0.,0.,0.);
AVSmodify_float_parameter( "dy",1,0.,0.,0.);
AVSmodify_float_parameter( "dz",1,0.,0.,0.)

putaxes( m, base );

return( m);

int putaxes( molecule m, int base )

{

int sb, ab;

string

rname;

string xt, xh, yt, yh;

point

apts[ 4 ];

if( base == 0)

setmol_from_xyz( m, "axes::", s_axes);

else if( base <= nres/2 ){

rname = getname_res_r( m, base );
sb = base;
ab =nres/2 - base + 1,
if( rname =" "[AG]" §
xt = sprintf( "sense:%d:C5", sb);
xh = sprintf( "sense:%d:N3", sb);
Yelse{
xt = sprintf( "sense:%d:C5", sb);
xh = sprintf( "sense:%d:N1", sb);
}
yt = sprintf( "sense:%d:C1™, sb);
yh = sprintf( "anti:%d:C1™, ab );

setframe( 2, m, yt + "|" + yh, xt, xh, yt, yh);

setmol_from_xyz( m_axes, NULL, s_axes);
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122 setframe( 2, m_axes,

123 ":ORG", ":ORG", "::SXT", ":ORG", "::CYT");
124 transformmol( a_mat, m_axes, NULL );
125

126 alignframe( m_axes, m);

127 setxyz_from_mol( m_axes, NULL, apts);
128 setmol_from_xyz( m, "axes::", apts );

129 Yelse{

130 rname = getname_res_r( m, base );

131 sb = nres - base + 1;

132 ab = base - nres/ 2;

133 if( rname =" "[AG]" §

134 xt = sprintf( "anti:%d:C5", ab );

135 xh = sprintf( "anti:%d:N3", ab );

136 Yelse{

137 xt = sprintf( "anti:%d:C5", ab );

138 xh = sprintf( "anti:%d:N1", ab );

139 }

140 yt = sprintf( "anti:%d:C1™, ab );

141 yt = sprintf( "sense:%d:C1™, sb);

142

143 setframe( 2, m, yt + "|" + yh, xt, xh, yt, yh);
144

145 setmol_from_xyz( m_axes, NULL, s_axes);
146 setframe( 2, m_axes,

147 ":ORG", ":ORG", "::SXT", ":ORG", "::CYT");
148 transformmol( a_mat, m_axes, NULL );
149

150 alignframe( m_axes, m);

151 setxyz_from_mol( m_axes, NULL, apts );
152 setmol_from_xyz( m, "axes::", apts );

153 }

154 3

8.5.2. Filter Modules.

This section covergab generated filters, modules that receive a molecule from the network,
process it and then send it back to the network. The computationsathaenerated filters can per-
form are limited by what can be received and sent in the three fieldsghatses to create a
“molecule port”. A network molecule can have up to four eftvat  values per atom, accessed in
nab as theatom attributescharge , radius , floatl andfloat2 , that can contain the data for
and the results of a filter's computation. Any other data required for or generated by the filter must
either must be packed into themtem attributes or not passed along the network. Nevertheless, there
are many molecular computations that either operate at a per atom level or can be cast into that form.
The two examples discussed next use the atom attflbaté  to hold the result of their “per atom”
calculations. This value will be used by the molecular display madulé?2 to color the atoms, pro-
viding a visual display of the computations.
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8.5.2.1. Helical Interaction.

This example computes the hydrogen bonding patterns of a short helical peptide in a molecular
dynamics trajectory. The peptide, (AAQAA]Js created in an ali-helical conformation. As the simu-
lation proceeds parts of the helix shift between 3,10card the very end of the trajectory, the C-ter-
minal end shifts betweetn and iz This code considers that a carbonyl oxygen is hydrogen bonded to
an amino hydrogen if the OsesH distance is between h&@ 3.0 Aand the COeesH angle between
12¢° and 180. The code assigns a value to each atom depending on the type of hydrogen bond it
forms. The carbonyl atoms and the amino hydrogen atoms involved inah@,helices are given
the values3, 4 and5, which is the distance in residues between the donor and acceptor groups. An
amino hydrogen atom that is shared between two carbonyl oxygens is given the average value of the
two carbonyls. Atoms not involved in hydrogen bonding are assigned the “undefined*lvalue

The code uses two “usedtom attributes—ntl andfloatl .intl will contain the number
of hydrogen bonds an atom forms diwhtl  will contain the "sum" of the donor:acceptor residue
distances for each of these hydrogen bonds. After all hydrogen bonds have been detected, this sum will
be divided by the number of hydrogen bonds to give valu8s4fnd5 for 3,10,a and rhelices and
3.5 and4.5 for donors that are shared between 3,10ahdlices andr and rhelices. The attributes
are initialized in thedor -in loop in lines 16-18 and the average computed infdhe-in loop in
lines 48-53. Atoms not participating in hydrogen bondingn(i# still 0) are given the valuel.0
which is the default value that thev102 viewing module uses for an “undefined” property value.

The peptide has 17 residues—the 15 amino acids (AAQAKWE two end caps. The heart of the
code is the two nested loops in lines 21-46. The outer loop ranges over the potential acceptor residues
2-13 and the inner loop over each acceptor’s potential donors which are the residues 3 to 5 down-
stream from it. Since acceptor residues after residue 11 can not all three donors, the inner loop has
exitif (lines 23-24) that is taken if the donor residue number would be greater than 16.

If both donor and acceptor residues exist then they are checked for hydrogen bonding. The OeeeH
distance is computed in lines 26-29 and if it is outside of the range,B108 the inner loop in lines
22-45 is advanced to the next donor candidate usingothinue  statement in line 29. If the OseeH
distance is acceptable, the COessH angle is computed in lines 33-36 and if it is betwandl280
theatom attributes are updated. These two tests make usald$ point  or vector operations. The
OeeeH and CO vectors are created ugpagnt differences in lines 28 and 34. Their lengths are deter-
mined using the infix dot product operat@ (n lines 29 and 35. Finally the angle between the CO
and Oee*H vectors is computed using another infix dot product in line 36.

The functionfindatom() is a user written C function that is used in place ofrthe builtin
setpoint() . Normally nab users seledets of atoms including those containing a single atom via
atom expressions—strings that contains the desired atoms’ strand, residue and atom names. To do so
here would require creating atom expressions for the carbonyl carbon and oxygen and the amino
hydrogen througimab’s string operations. For example, the atom expression that selects the carbonyl
oxygen of residué is":6:0" . Unfortunately while atom expressions are convenient they are not fast
as they must be tested agaial$tthe atoms of molecule to see which ones they match. Since speed is
important in this application, the C functifindatom() = was written to quickly selectsingle atom
from a specified residue resulting in an execution speed up of about 30! For this reason it is likely that
some mechanism likéndatom() but using some form of infix notation will be addedntb to
quickly selecsingle atoms from a molecule.
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1 /I AVS_helix() - compute hbonds in a peptide helix
2
3 atom findatom() c;
4 /IAVSinfo  port m in
5 /IAVSinfo  free m
6 /IAVSinfo  free return-value
7 /IAVSinfo  send return-value floatl
8 molecule AVS_helix( molecule m)
9 {
10 atom a,
11 int ra, rd, r;
12 atom ¢, o, h;
13 point  oc, oh;
14 float ds, dy, dz,d _oh,d oc, a coh;
15
16 for(ain m){
17 a.floatl = 0;
18 a.intl =0;
19 }
20
21 for(ra=2;ra<=13;ra=ra+1){
22 for(r=3;r<=5;r=r+1){
23 if((rd=ra+r)>16)
24 break;
25
26 o = findatom(m, "1", ra, "O");
27 h = findatom( m, "1", rd, "H" );
28 oh = h.pos - 0.pos;
29 d_oh = sqgrt( oh @ oh);
30 ifld oh<1.50]|d oh>3.00)
31 continue;
32
33 ¢ = findatom(m, "1", ra, "C");
34 OC = C.pos - 0.pos;
35 d_oc =sqrt( oc @ oc);
36 a coh=acos((oh@oc)/(d oh*d oc));
37 if(a_coh >= 120 && a_coh < 180.0 }{
38 c.floatl = c.floatl +r;
39 c.intl = c.intl + 1;
40 o.floatl = o.floatl +r;
41 o.intl = o.intl + 1;
42 h.floatl = h.floatl +r;
43 h.intl = h.intl + 1;
44 }
45 }
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46 }

47

48 for(ain m){

49 if( a.intl)

50 a.floatl = a.floatl / a.int1;
51 else

52 a.floatl = -1.0;
53 }

54

55 return( m);

56 h

8.5.2.2. Protein Folding on a Lattice.

This filter analyses the conformations adopted by a protein during a folding simulation. It com-
putes the distance for each atom between its position in the current conformation and its position in the
final or folded conformation. This distance is saved inatoen attributefloatl . Thesend direc-
tive in line 10 insures that these values are sent down the network along with the returned molecule
where it will be used bynv102 to color the atom depending on how far away it is from its final posi-
tion.

The final conformation is read from the PDB file whose name is providéshbyne parame-
ter. The positions of the atoms in this file are saved in the local private and persistent (declared as
static  in the C code) arrap_fs (line 4). Theif -tree in lines 17-26 insures that the final confor-
mation file is read only once. Once the final structure file has been readplbeule variable
m_fs will no longer have the valudULL and thef will skip lines 18-25. The distances are are com-
puted in thdor -in loop in lines 29-33. The distances are always computed, even if the final structure
has not yet been read in. In such cases, the distance will be the distance of the current atom’s position
from the origin, asab initializes all global variables to O.

1 /I AVS_dist() - Compute atomic dist. between cur. & final conf.
2

3 molecule m_fs;

4 point p_fs[ 100 ];

5 int natoms;

6 /IAVSinfo  port m in

7 //AVSinfo  parm fsname "

8 /IAVSinfo  free m

9 /IAVSinfo  free return-value

10 //AVSinfo  send return-value floatl
11 molecule AVS_dist( molecule m, string fsname )
12 {

13 atom a;

14 int anum;

15 point vec;

16

17 if( 'm_fs ){
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18 if( fsname && fsname =" ){

19 m_fs = getpdb( fsname );
20 natoms = 0;

21 for(ain m_fs ){

22 natoms = natoms + 1;
23 p_fs[ natoms ] = a.pos;
24 }

25 }

26 }

27

28 anum = 0;

29 for(ain m ){

30 anum = anum + 1;

31 vec = a.pos - p_fs[ anum |;

32 a.floatl = sgrt( vec @ vec);

33 }

34

35 return( m);

36 b

8.6. Data Output Example.

Data Output modules are the least used category ofrladticreated modules and user written
modules in general. AVS iswisualization system, and nearly all networks end in either the Geometry
Viewer or some other graphic output module. Nevertheless, there is at least one usefoganer-
ated Data Output module which is to save a “network molecule” as a PDB file. The module that does
this is discussed next.

8.6.1. Write molecule.

AVS writepdb()  reads a molecule from its netwark ports and saves it as a PDB file. The
name of the PDB file ifhame . The file will only be written when the integer parametdte is 1.
This is necessary because each module in a network is activated each time new data is presented to it.
Without thewrite  switch, AVS_writepdb()  would be constantly writing and rewriting the file
fname .

/I AVS_writepdb() - save a network molecule as a PDB file

1

2

3 /IAVSinfo  parm fname

4 /IAVSinfo  parm write 0 0 1

5 /IAVSinfo  port mol in

6 //AVSinfo  free mol

7 int AVS_writepdb( string fname, int write, molecule mol )
8

9

{

10 if( write ){
11 if( fname && fname 1= "™")
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return( putpdb( fname, mol ) );

return( 0);
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9. LEaP

9.1. Introduction

LEaP is a module from the AMBER suite of programs, which can be used to generate force field
files compatible with NAB. Usingeap, the user can:

Read AMBER PREP input files

Read AMBER PARM format parameter sets

Read and write Object File Format files (OFF)

Read and write PDB files

Construct new residues and molecules using simple commands

Link together residues and create nonbonded complexes of molecules

Place counterions around a molecule

Solvate molecules in arbitrary solvents

Modify internal coordinates within a molecule

Generate files that contain topology and parameters for AMBER and SPASMS

9.2. Concepts

In order to effectively use LEaP it is necessary to understand the philosophy behind the program,
especially of concepts of LEai®mmands, variables, andobjects. In addition to exploring these con-
cepts, this section also addresses the use of external files and libraries with the program.

9.2.1. Commands

A researcher uses LEaP by entering commands that manipulate objects. An object is just a basic
building block; some examples of objects are ATOMs, RESIDUEs, UNITs, and PARMSETs. The
commands that are supported within LEaP are described throughout the manual and are defined in
detail in the "Command Reference" section.

The heart of LEaP is a command-line interface that accepts text commands which direct the pro-
gram to perform operations on objects. All LEaP commands have one of the following two forms:

command argumentl argument2 argument3 ...
variable = command argumentl argument?2 ...

For example:

edit ALA
trypsin = loadPdb trypsin.pdb

Each command is followed by zero or more arguments that are separated by whitespace. Some com-
mands return objects which are then associated with a variable using an assignment (=) statement.
Each command acts upon its arguments, and some of the commands modify their arguments’ contents.
The commands themselves are case- insensitive. That is, inotfeeebmple,edit could have been

entered a&dit , eDiT , or any combination of upper and lower case characters. SimitzatjPdb
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could have been entered a number of different ways, inclddadpdb . In this manual, we fre-

guently use a mixed case for commands. We do this to enhance the differences between commands
and as a mnemonic device. Thus, while we werEateAtom |, createResidue , andcreate-

Unit in the manual, the user can use any case when entering these commands into the program.

The arguments in the command text maybjects such as NUMBERs, STRINGS, or LISTs or
they may bevariables. These two subjects are discussed next.

9.2.2. Variables

A variable is a handle for accessing an object. A variable name can be any alphanumeric string
whose first character is an alphabetic character. (Alphanumeric means that the characters of the name
may be letters, numbers, or special symbols such as "*". The following special symbols should not be
used in variable names: dollar sign, comma, period, pound sign, equal sign, space, semicolon, double
guote, or list open or close characters { and }. LEaP commands should not be used as variable names.
Variable nhames are case-sensitive: "ARG" and "arg" are different variables. Variables are associated
with objects using an assignment statement not unlike regular computer languages such as FORTRAN
or C.

mole = 6.02E23

MOLE = 6.02E23

myName = "Joe Smith"

listOf7Numbers ={1.22.33.445678}

In the alove examples, bothmole and MOLEare variable names, whose contents are the same
(6.02E23). Despite the fact that batiole andMOLEhave the same contents, they apethe same
variable. This is due to the fact that variable names are case-sensitive. LEaP maintains a list of vari-
ables that are currently defined and this list can be displayed usiligf thecommand. The contents

of a variable can be printed using thesc command.

9.2.3. Objects

Theobject is the fundamental entity in LEaP. Objects range from the simple objects NUMBERS
and STRINGS to the complex objects UNITs, RESIDUESs, ATOMs. Complex objects have properties
that can be altered using teet command and some complex objects can contain other objects. For
example, RESIDUEs are complex objects that can contain ATOMs and have the properties: residue
name, connect atoms, and residue type.

9.2.3.1. NUMBERSs

NUMBERSs are simple objects and they are identical to double precision variables in FORTRAN
and double in C.

9.2.3.2. STRINGs

STRINGS are simple objects that are identical to character arrays in C and similar to character
strings in FORTRAN. STRINGS are represented by sequences of characters which may be delimited
by double quote characters. Example strings are:

"Hello there"
"String with a "™ (quote) character"
"Strings contain letters and numbers:;1231232"
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9.2.3.3. LISTs

LISTs are made up of sequences of other objects delimited by LIST open and close characters.
The LIST open character is an open curly bracket ({) and the LIST close character is a close curly
bracket (}). LISTs can contain other LISTs and be nested arbitrarily deep. Example LISTs are:

{1234}
{ 1.2 "string" }
{123{12}{34}}

LISTs are used by many commands to provide a more flexible way of passing data to the commands.
The zMatrix command has two arguments, one of which is a LIST of LISTs where each subLIST
contains between three and eight objects.

9.2.3.4. PARMSETs (Parameter Sets)

PARMSETS are objects that contain bond, angle, torsion, and nonbond parameters for AMBER
force field calculations. They are normally loaded fregy parm94.dat andfrcmod files.

9.2.3.5. ATOMs

ATOMs are complex objects that do not contain any other objects. The ATOM object is similar
to the chemical concept of atoms. Thus, it is a single entity that may be bonded to other ATOMSs and it
may be used as a building block for creating molecules. ATOMs have many properties that can be
changed using theet command. These properties are defined below.

name
This is a case-sensitive STRING property and it is the ATOM’s name ndines for
all ATOMs in a RESIDUE should be unique. Tihame has no relevance to molecu-
lar mechanics force field parameters; it is chosen arbitrarily as a means to identify
ATOMs. Ideally, thename should correspond to the PDB standard, being 3 characters
long except for hydrogens, which can have an extra digit as a 4th character.

type
This is a STRING property. It defines the AMBER force field atom type. It is impor-
tant that the character case match the canonical type definition used in the appropriate
"parm.dat” or "frcmod" file. For smooth operation, all atom types need to have ele-
ment and hybridization defined by tl&ldAtomTypes command. The standard
AMBER force field atom types are added by the default "leaprc" file.

charge
The charge property is a NUMBER that represents the ATOM'’s electrostatic point
charge to be used in a molecular mechanics force field.

element
The atomic element provides a simpler description of the atom thaypthe and is
used only for LEaP’s internal purposes (typically when force field information is not
available). The element names correspond to standard nomenclature; the character "?"
is used for special cases.

position
This property is a LIST of NUMBERS. The LIST must contain three values: the (X,
Y, Z) Cartesian coordinates of the ATOM.



LEaP Concepts Page 161

AMBER also supports a type of calculation known as Free Energy Perturbation. During Free
Energy Perturbation, one chemical species is slowly transformed into another and the energy change
associated with the transformation is measured. In order to perform a Free Energy Perturbation, the
properties of the perturbed ATOMs must also be set. These properties correspond to the ATOM prop-
erties described above, but the values represent the final state of the perturbed species, as described
below. If a Free Energy Perturbation calculation is not to be performed, the following properties can
be left asnull . They are only used when the "PERTURB" property’s value is "true" for that atom,
when doing ssaveAmberParmPert to save a perturbation topology file. (Note that mass is never
perturbed.)

pertName
This property can either beull or a case sensitive STRING. The property is a
unique identifier for an ATOM in its final state during a Free Energy Perturbation cal-
culation. Ifitisnull then the perturbed ATOM will inherit the unperturbed name.
The pertName has no effect on calculations and is mainly useful as a reminder of
what was intended.

pertType
This property can either baull or a STRING. If the value isull then the ATOM
type will not be perturbed in a perturbation calculation. If getType is a
STRING, the STRING is the AMBER force field atom type of the perturbed ATOM.
This property is case-sensitive.

pertCharge

ThepertCharge property is a NUMBER. It represents the final electrostatic point
charge on an ATOM during a Free Energy Perturbation.

9.2.3.6. RESIDUEs

RESIDUEs are complex objects that contain ATOMs. RESIDUEs are collections of ATOMs,
and are either molecules (e.g. formaldehyde) or are linked together to form molecules (e.g. amino acid
monomers). RESIDUESs have several properties that can be changed usieg temmand. (Note
that database RESIDUEs are each contained within a UNIT having the same name; the residue GLY is
referred to as GLY.1 when setting properties. When two of these single-UNIT residues are joined, the
result is a single UNIT containing the two RESIDUES.)

One property of RESIDUES is connection ATOMs. Connection ATOMs are ATOMs that are
used to make linkages between RESIDUEs. For example, in order to create a protein, the N-terminus
of one amino acid residue must be linked to the C-terminus of the next residue. This linkage can be
made within LEaP by setting the N ATOM to be a connection ATOM at the N-terminus and the C
ATOM to be a connection ATOM at the C-terminus. As another example, two CYX amino acid
residues may form a disulfide bridge by crosslinking a connection atom on each residue.

There are several properties of RESIDUESs that can be modified usisgttheommand. The
properties are described below:

connectO
This defines an ATOM that is used in making links to other RESIDUESs. In UNITs
containing single RESIDUES, the RESIDUEsOnnect0 ATOM is usually defined
as the UNITs’head ATOM. (This is how the standard library UNITs are defined.)
For amino acids, the convention is to make the N-terminal nitrogenotmeectO
ATOM.
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connectl This defines an ATOM that is used in making links to other RESIDUEs. In UNITs
containing single RESIDUEs, the RESIDUEsnnectl ATOM is usually defined
as the UNITstail ATOM. (This is done in the standard library UNITs.) For amino
acids, the convention is to make the C-terminal oxygecdhaectl ATOM.

connect2 This is an ATOM property which defines an ATOM that can be used in making links
to other RESIDUESs. In amino acids, the convention is that this is the ATOM to which
disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently, it can
have one of the following valuesundefined" , "solvent" , "protein" ,
"nucleic" , or "saccharide" . Some of the LEaP commands behave in differ-
ent ways depending on the type of a residue. For example, the solvate commands
require that the solvent residues be of typelvent” . It is important that the
proper character case be used when defining this property.

name The RESIDUE name is a STRING property. It is important that the proper character
case be used when defining this property.

9.2.3.7. UNITs

UNITs are the most complex objects within LEaP, and the most important. UNITs, when paired
with one or more PARMSETS, contain all of the information required to perform a calculation using
AMBER. UNITs have the following properties which can be changed usinrgetheommand:

head

tail These define the ATOMs within the UNIT that are connected when UNITs are joined
together using theequence command or when UNITs are joined together with the
PDB or PREP file reading commands. Tk ATOM of one UNIT is connected to
the head ATOM of the next UNIT in any sequence. (Note: a "TER card" in a PDB
file causes a new UNIT to be started.)

box This property can either baull , a NUMBER, or a LIST. The property defines the
bounding box of the UNIT. Ifitis defined amll then no bounding box is defined.
If the value is a single NUMBER then the bounding box will be defined to be a cube
with each side being NUMBER of angstroms across. If the value is a LIST then it
must be a LIST containing three numbers, the lengths of the three sides of the bound-
ing box.

cap This property can either beull or a LIST. The property defines the solvent cap of
the UNIT. If it is defined aswll then no solvent cap is defined. If the value is a
LIST then it must contain four numbers, the first three define the Cartesian coordi-
nates (X, Y, Z) of the origin of the solvent cap in angstroms, the fourth NUMBER
defines the radius of the solvent cap in angstroms.

Examples of setting the ale properties are:

set dipeptide head dipeptide.1.N
set dipeptide box { 5.0 10.0 15.0}
set dipeptide cap { 15.0 10.05.08.0}

The first example makes the amide nitrogen in the first RESIDUE within "dipeptiddieto
ATOM. The second example places a rectangular bounding box around the origin with the (X, Y, 2Z)
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dimensions of ( 5.0, 10.0, 15.0 ) in angstroms. The third example defines a solvent cap centered at (
15.0, 10.0, 5.0 ) angstroms with a radius of 8.0N&te: the "set cap" command does not actually sol-
vate, it just sets an attribute. See gbévateCap command for a more practical case.

UNITs are complex objects that can contain RESIDUEs and ATOMs. UNITs can be created using the
createUnit  command and modified using tket commands. The contents of a UNIT can be
modified using theadd andremove commands.

9.2.3.8. Complex objects and accessing subobjects

UNITs and RESIDUEs are complex objects. Among other things, this means that they can con-
tain other objects. There is a loose hierarchy of complex objects and what they are allowed to contain.
The hierarchy is as follows:

. UNITs can contain RESIDUEs and ATOMSs.
. RESIDUES can contain ATOMSs.

The hierarchy is loose because it does not forbid UNITs from containing ATOMs directly. However,
the convention that has evolved within LEaP is to have UNITs directly contain RESIDUEs which
directly contain ATOMs.

Objects that are contained within other objects can be accessed using dot "." notation. An example
would be a UNIT which describes a dipeptide ALA-PHE. The UNIT contains two RESIDUESs each of
which contain several ATOMs. If the UNIT is referenced (hamed) by the vadgi#ptide |, then

the RESIDUE named ALA can be accessed in two ways. The user may type one of the following com-
mands to display the contents of the RESIDUE:

desc dipeptide.ALA
desc dipeptide.1

The first translates to "some RESIDUE namdé¢d\ within the UNIT namedlipeptide ". The sec-

ond form translates as "the RESIDUE with sequence nurhbeithin the UNIT nameddipep-

tide ". The second form is more useful because every subobject within an object is guaranteed to
have a unique sequence number. If the first form is used and there is more than one RESIDUE with the
name ALA, then an arbitrary residue with the namAkA is returned. To access ATOMs within
RESIDUEs, the notation to use is as follows:

desc dipeptide.1.CA
desc dipeptide.1.3

Assuming that the ATOM with the nan@A has a sequence numifrthen both of the alwve com-

mands will print a description of the $alpha$-carbon of RESIRIlfeptide. ALA or dipep-

tide.1 . The reader should keep in mind tlipeptide.1.CA is the ATOM, an object, con-
tained within the RESIDUE name&LA within the variabledipeptide . This means thadipep-

tide.1.CA can be used as an argument to any command that requires an ATOM as an argument.
Howeverdipeptide.1.CA is not a variable and cannot be used on the left hand side of an assign-
ment statement.

In order to further illustrate the concepts of UNITs, RESIDUES, and ATOMs, we can examine
the log file from a LEaP session. Part of this log file is printed below.
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> loadOff all_amino94.lib

> desc GLY

UNIT name: GLY

Head atom: .R<GLY 1>.A<N 1>

Tail atom: .R<GLY 1>.A<C 6>

Contents:

R<GLY 1>

> desc GLY.1

RESIDUE name: GLY

RESIDUE sequence number: 1

RESIDUE PDB sequence number: O

Type: protein

Connection atoms:

Connect atom 0: A<N 1>
Connect atom 1: A<C 6>

Contents:

A<N 1>

A<HN 2>

A<CA 3>

A<HAZ2 4>

A<HA3 5>

A<C 6>

A<O 7>

> desc GLY.1.3

ATOM

Normal Perturbed

Name: CA CA

Type: CT CT

Charge: -0.025 0.000

Element: C (not affected by pert)

Atom position: 3.970048, 2.845795, 0.000000

Atom velocity: 0.000000, 0.000000, 0.000000
Bonded to .R<GLY 1>.A<N 1> by a single bond.
Bonded to .R<GLY 1>.A<HA2 4> by a single bond.
Bonded to .R<GLY 1>.A<HAS3 5> by a single bond.
Bonded to .R<GLY 1>.A<C 6> by a single bond.

In this example, command lines are prefaced by ">" and the LEaP program output has no such charac-
ter preface. The first command,

> loadOff all_amino94.lib

loads an OFF library containing amino acids. The second command,

> desc GLY
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allows us to examine the contents of the amino acid UNIT, GLY. The UNIT contains one RESIDUE
which is named GLY and this RESIDUE is the first residue in the URKGLY 1>). In fact, it is

also the only RESIDUE in the UNIT. Thead andtail ATOMSs of the UNIT are defined as the N-

and C-termini, respectively. THeox andcap UNIT properties are defined as "null". If these latter
two properties had values other than "null”, the information would have been included in the output of
thedesc command.

The next command line in the session,

> desc GLY.1

enables us to examine the first residue in the GLY UNIT. This RESIDUE is named GLY and its
residue type is that of protein . Theconnect0 ATOM (N) is the same as the UNIThead

ATOM and theconnectl ATOM (C) is the same as the UNIT&il ATOM. There are seven
ATOM objects contained within the RESIDUE GLY in the UNIT GLY.

Finally, let us look at one of the ATOMs in the GLY RESIDUE.

> desc GLY.1.3

The ATOM has a name (CA) that is unique among the atoms of the residue. The AMBER force field

atom type for CA is CT. The type of element, atomic point charge, and Cartesian coordinates for this
ATOM have been defined along with its bonding attributes. Other force field parameters, such as the
van der Waals well depth, are obtained from PARMSETSs.

9.3. Basic instructions for using LEaP with NAB

This section gives an overview of how LEaP is most commonly used. Detailed descriptions of
all the commands are given in the following section

9.3.1. Building a Molecule For Molecular Mechanics
In order to prepare a molecule within LEaP for AMBER, three basic tasks need to be completed.
(1) Anyneeded UNIT or PARMSET objects must be loaded;
(2) The molecule must be constructed within LEaP;
(3) The user must output topology and coordinate files from LEaP to use in AMBER.
The most typical command sequence is the following:

source leaprc.ff94 load a force field
x = loadPdb trypsin.pdb load in a structure
add in cross-links, solvate, etc.
set default OldPrmtopFormat on NAB uses an older version format
saveAmberParm x prmtop prmcrd save files for sander or gibbs

There are a number of variants of this:

(1) AlthoughloadPdb is by far the most common way to enter a structure, one mighoaceff,
or loadAmberPrep, or use thezmat command to build a molecule from a z-matrix. See the



LEaP Using LEap with AMBER Page 166

Commands section below for desciptions of these options. For case where you do not have a
starting structure (in the form of a pdb file) LEaP can be used to build the molecule; you will
find, however, that this is not always as easy as it might be. Many experienced Amber users
turn to other (commerical and non-commerical) programs to create their initial structures.

(2) Be very attentive to any errors produced inltieglPdb step; these generally mean that LEaP
has mis-read the file. A general rule of thumb is to keep editing your input pdb file until LEaP
stops complaining. It is often convenient to useat@PdbAtomMap or addPdbResMap com-
mands to make systematic changes from the names in your pdb files to those in the Amber
topology files; see thieaprc files for examples of this.

(3) ThesaveAmberParm command cited alve isappropriate for calculations that do not compute
free energies; for the latter you will need to saeeAmberParmPert. For polarizable force
fields, you will need to adBol to the alovecommands (see the Commands section, below.)

9.3.2. Amino Acid Residues

The accompanying table shows the amino acid UNITs and their aliases are defined in the LEaP
libraries.

For each of the amino acids found in the LEaP libraries, there has been created an n-terminal and
a c-terminal analog. The n-terminal amino acid UNIT/RESIDUE names and aliases are prefaced by
the letter N (e.g. NALA) and the c-terminal amino acids by the letter C (e.g. CALA}. If the user
models a peptide or protein within LEaP, they may choose one of three ways to represent the terminal
amino acids. The user may use 1) standard amino acids, 2) protecting groups (ACE/NME), or 3) the
charged c- and n-terminal amino acid UNITS/RESIDUEs. If the standard amino acids are used for the
terminal residues, then these residues will have incomplete valences. These three options are illus-
trated below:

{ ALA VAL SER PHE }
{ ACE ALA VAL SER PHE NME }
{ NALA VAL SER CPHE }

The default for loading from PDB files is to use n- and c-terminal residues; this is established by the
addPdbResMap command in the defaulkaprc files. To force incomplete valences with the stan-
dard residues, one would have to define a sequenee £' { ALA VAL SER PHE } ") and use
loadPdbUsingSeq , or useclearPdbResMap to completely remvethe mapping feature.

Histidine can exist either as the protonated species or as a neutral species with a hydrogen at the
delta or epsilon position. For this reason, the histidine UNIT/RESIDUE name is either HIP, HID, or
HIE (but not HIS). The default "leaprc” file assigns the name HIS to HID. Thus, if a PDB file is read
that contains the residue HIS, the residue will be assigned to the HID UNIT object. This feature can
be changed within one’s own "leaprc" file.

The AMBER force fields also differentiate between the residue cysteine (CYS) and the similar
residue which participates in disulfide bridges, cystine (CYX). The user will have to explicitly define,
using thebond command, the disulfide bond for a pair of cystines, as this information is not read from
the PDB file. In addition, the user will need to load the PDB file usindodPdbUsingSeq
command, substituting CYX for CYS in the sequence wherever a disulfide bond will be created.
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Group or residue

Residue Name, Alia

192}

Acetyl beginning group
Amine ending group

Alanine
Arginine
Asparagine
Aspartic acid

Cysteine
Cystine, S--S crosslink
Glutamic acid

Glutamine

Glycine

Histidine, delta H
Histidine, epsilon H
Histidine, protonated
Isoleucine

Leucine

Lysine

Methionine
Phenylalanine
Proline

Serine

Threonine
Tryptophan
Tyrosine

Valine

N-methylamine ending group

Aspartic acid--protonated

Glutamic acid--protonated

ACE
NHE
NME
ALA
ARG
ASN
ASP
ASH
CYS
CYX
GLU
GLH
GLN
GLY
HID
HIE
HIP
ILE
LEU
LYS
MET
PHE
PRO
SER
THR
TRP
TYR
VAL

9.3.3. Nucleic Acid Residues
The following are defined for the 1994 force field.

defaultleaprc

Group or residue

Residue Name, Alia

192}

Adenine
Thymine
Uracil

Cytosine
Guanine

DA,RA
DT
RU
DC,RC
DG,RG

The "D" or "R" prefix can be used to distinguish between deoxyribose and ribose units; with the

file, ambiguous residues are assumed to be deoxy. Residue names like "DA" can be

followed by a "5" or "3" ("DA5", "DA3") for residues at the ends of chains; this is also the default
established baddPdbResMap, even if the "5" or "3" are not added in the PDB file. The "5" and "3"
residues are "capped" by a hydrogen; the plain and "3" residues include a "leading" phosphate group.
Neutral residues capped by hydrogens are end in "N," such as "DAN."
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9.3.4. Miscellaneous Residues

Miscellaneous Residue unit/residue name
TIP3P water molecule TP3
Periodic box of TIP3P water WATBOX216
TIP4P water model TP4
TIP5P water model TP5
SPC/E water model SPC
Cesium cation Cs+
Potassium cation K+
Rubidium cation Rb+
Lithium cation Li+
Sodium cation Na+ or IP
Chlorine Cl-or IM
Large cation B

"IB" represents a solvated monovalent cation (say, sodium) for use in vacuum simulations. The cation
UNITs are found in the files "ions91.lib" and "ions94.lib", while the water UNITs are in the file "sol-
vents.lib". Theleaprc files assign the variables WAT and HOH to the TP3 UNIT found in the OFF
library file. Thus, if a PDB file is read and that file contains either the residue name HOH or WAT, the
TP3 UNIT will be substituted. See Chapter 3 for a discussion of how to use other water models.

A periodic box of 216 TIP3P waters (WATBOX216) is provided in the file "solvents.lib". The
box measures 18.774 angstroms on a side. This box of waters has been equilibrated by a Monte Carlo
simulation. It is the UNIT that should be used to solvate systems with TIP3P water molecules within
LEaP. It has been provided by W. L. Jorgensen. Boxes are also available for chloroform, methanol,
and N-methylacetamide; these are described in Chapter 2.

9.4. Commands

The following is a description of the commands that can be accessed using the command line
interface intleap, or through the command line editordeap. Whenever an argument in a command
line definition is enclosed in brackets ([arg]), then that argument is optional. When examples are
shown, the command line is prefaced by "> ", and the program output is shown without this character
preface.

Some commands that are almost never used have been removed from this description to save
space. You can use the "help" facility to obtain information about these commands; most only make
sense if you understand what the program is doing behind the scenes.

9.4.1. add
add a b

UNIT/RESIDUE/ATOM ab

Add the objecb to the objeca. This command is used to place ATOMs within RESIDUEsS,
and RESIDUEs within UNITs. This command will work onlyhkifis not contained by any
other object.
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The following example illustrates both tlregld command and the way the tip3p water
molecule is created for the LEaP distribution tape.

> hl = createAtom H1L HW 0.417
> h2 = createAtom H2 HW 0.417
> 0 = createAtomO OW -0.834
>

> set hl element H

> set h2 element H

> seto element O

>

> r = createResidue TIP3

> addrhl

> addrh2

> addro

>

> bond hlo

> bond h2 o

> bond hl h2

>

> TIP3 = createUnit TIP3

>

> add TIP3 r

> set TIP3.1 restype solvent

> set TIP3.1 imagingAtom TIP3.1.0
>

> zMatrix TIP3 {

> { HL O 0.9572}

> { H2 O H10.9572 104.52 }
>}

>

> saveOff TIP3 water.lib

Saving TIP3.
Building topology.
Building atom parameters.

9.4.2. addAtomTypes
addAtomTypes { { type element hybrid } { ... } ... }

STRING type
STRING element
STRING hybrid

Define element and hybridization for force field atom types. This command for the standard
force fields can be seen in the defdedtprc files. The STRINGs are most safely rendered
using quotation marks. If atom types are not defined, confusing messages about hybridization
can result when loading PDB files.
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addlons
addlons unit ion1 numlonl [ion2 numlon2]

UNIT  unit
UNIT ionl
NUMBER numionl
UNIT ion2

NUMBER numlon2

Adds counterions in a shell aroundit using a Coulombic potential on a grid.nlimlonl is

0, then theunit is neutralized. In this casaumionl must be opposite in charge tait and
numlon2 cannot be specified. If solvent is present, it is ignored in the charge and steric calcu-
lations, and if an ion has a steric conflict with a solvent molecule, the ion is moved to the cen-
ter of said molecule, and the latter is deleted. (To avoid this behavior, either solvate _after
addions, or use addlons2.) lons must be monoatomic. This procedure is not guaranteed to
globally minimize the electrostatic energy. When neutralizing regular-backbone nucleic acids,
the first cations will generally be placed between phosphates, leaving the final two ions to be
placed somewhere around the middle of the molecule.The default grid resolution is 1 A,
extending from an inner radius of ( maxlonVdwRadius + maxSoluteAtomVdwRadius ) to an
outer radius 4 A beyond. A distance-dependent dielectric is used for speed.

addlons2
addlons?2 unit ion1 numlonl [ion2 numlion2]

UNIT  unit
UNIT ionl
NUMBER numionl
UNIT  ion2

NUMBER numlon2

Same as addlons, except solvent and solute are treated the same.

addPath
addPath path

STRING path

Add the directory impath to the list of directories that are searched for files specified by other
commmands. The following example illustrates this command.

> addPath /disk/howard
/disk/howard added to file search path.

After the alove command is entered, the program will search for a file in this directory if a file
is specified in a command. Thus, if a user has a library named "/disk/howard/rings.lib" and
the user wants to load that library, one only needs to enter load rings.lib and not load
/disk/howard/rings.lib.
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addPdbAtomMap
addPdbAtomMap list

LIST list

The atom Name Map is used to try to map atom names read from PDB files to atoms within
residue UNITs when the atom name in the PDB file does not match an atom in the residue.
This enables PDB files to be read in without extensive editing of atom names. Typically, this
command is placed in the LEaP start-up file, "leaprc”, so that assignments are made at the
beginning of the session. The LIST is a LIST of LISTs. Each sublist contains two entries to
add to the Name Map. Each entry has the form:

{ string string }

where the firsstring is the name within the PDB file, and the secatniohg is the name in the
residue UNIT.

addPdbResMap
addPdbResMap list

LIST  list

The Name Map is used to map RESIDUE names read from PDB files to variable names within
LEaP. Typically, this command is placed in the LEaP start-up file, "leaprc”, so that assign-
ments are made at the beginning of the session. The LIST is a LIST of LISTs. Each sublist
contains two or three entries to add to the Name Map. Each entry has the form:

{ double string string }
wheredouble can be 0 or 1, the first string is the name within the PDB file, and the second
string is the variable name to which the first string will be mapped. To illustrate, the following
is part of the Name Map that exists when LEaP is started from the "leaprc" file included in the
distribution tape:

ADE --> DADE

0 ALA --> NALA
0 ARG --> NARG

1 ALA --> CALA
1 ARG --> CARG

1 VAL --> CVAL
Thus, the residuBLA will be mapped toNALAIf it is the N-terminal residue ardALAIf it is

found at the C-terminus. The @le Name Map was produced using the following (edited)
command line:
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> addPdbResMap {
> { 0 ALANALA} {1 ALACALA}
> { 0 ARG NARG }{1 ARG CARG}

> {0 VALNVAL} { 1 VALCVAL}
>

> { ADE DADE }

>}

9.4.8. alias
alias [ stringl [ string2 ] ]

STRING stringl
STRING string2

This command will add or remwe anentry to the Alias Table or list entries in the Alias Table.

If both strings are present, then stringl becomes the alias to string2, the original command. If
only one string is used as an argument, then this string is removed from the Alias Table. If no
arguments are given with the command, the current aliases stored in the Alias Table will be
listed.

The proposed alias is first checked for conflict with the LEaP commands and it is rejected if a
conflict is found. A proposed alias will replace an existing alias with a warning being issued.
The alias can stand for more than a single word, but also as an entire string so the user can
quickly repeat entire lines of input.

9.4.9. bond
bond atom1 atom2 [ order ]

ATOM atoml
ATOM atom?2
STRING order

Create a bond between atoml and atom2. Both of these ATOMs must be contained by the
same UNIT. By default, the bond will be a single bond. By specifying "-", "=", "#", or ":" as
the optional argumengrder, the user can specify a single, double, triple, or aromatic bond,
respectively. Example:

bond trx.32.SG trx.35.SG

9.4.10. bondByDistance
bondByDistance container [ maxBond ]

CONT  container
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NUMBER maxBond

Create single bonds between all ATOMs in container that are within maxBond angstroms of
each other. If maxBond is not specified then a default distance will be used. This command is
especially useful in building molecules. Example:

bondByDistance alkylChain

9.4.11. center
center container

UNIT/RESIDUE/ATOM container

Display the coordinates of the geometric center of the ATOMs within container. In the follow-

ing example, the alanine UNIT found in the amino acid library has been examined by the cen-
ter command:

> center ALA
The center is at: 4.04, 2.80, 0.49

9.4.12. charge
charge container

UNIT/RESIDUE/ATOM container

This command calculates the total charge of the ATOMs within container. The total charges
for both standard and, where applicable, perturbed systems are displayed. In the following

example, the alanine UNIT found in the amino acid library has been examined by the charge
command:

> charge ALA
Total unperturbed charge: 0.00
Total perturbed charge: 0.00

9.4.13. check
check unit [ parms ]

UNIT  unit
PARMSEparms

This command can be used to check the UNIT for internal inconsistencies that could cause
problems when performing calculations. This is a very useful command that should be used
before a UNIT is saved witkaveAmberParm or its variants. Currently it checks for the fol-

lowing possible problems:
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* long bonds

» short bonds

* non-integral total charge of the UNIT.

* missing force field atom types

« close contacts (< 1.5 A) between nonbonded ATOMs.

The user may collect any missing molecular mechanics parameters in a PARMSET for subse-
guent editing. In the following example, the alanine UNIT found in the amino acid library has
been examined by themeck command:

> check ALA

Checking "ALA'....

Checking parameters for unit 'ALA'.
Checking for bond parameters.
Checking for angle parameters.
Unit is OK.

9.4.14. combine
variable = combine list

object variable
LIST list

Combine the contents of the UNITs within list into a single UNIT. The new UNIT is placed in
variable. This command is similar to tlsequence command except it does not link the
ATOMs of the UNITs together. In the following example, the input and output should be
compared with the example given for geguence command.

> tripeptide = combine { ALA GLY PRO }
Sequence: ALA

Sequence: GLY

Sequence: PRO

> desc tripeptide

UNIT name: ALA Il bug: this should be tripeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>
Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

9.4.15. copy
newvariable = copy variable

object newvariable
object variable
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Creates an exact duplicate of the object variable. Since newvariable is not pointing to the
same object as variable, changing the contents of one object will not alter the other object.
Example:

> tripeptide = sequence { ALA GLY PRO}
> tripeptideSol = copy tripeptide
> solvateBox tripeptideSol WATBOX216 8 2

In the alove example, tripeptide is a separate object from tripeptideSol and is not solvated.
Had the user instead entered

> tripeptide = sequence { ALA GLY PRO}
> tripeptideSol = tripeptide
> solvateBox tripeptideSol WATBOX216 8 2

then both tripeptide and tripeptideSol would be solvated since they would both point to the
same object.

9.4.16. createAtom
variable = createAtom name type charge

ATOM  variable
STRING name
STRING type
NUMBER charge

Return a new and empty ATOM with name, type, and charge as its atom name, atom type, and
electrostatic point charge. (See th#gd command for an example of tloeeateAtom com-
mand.)

9.4.17. createParmset
variable = createParmset name

PARMSEYVariable
STRING name

Return a new and empty PARMSET with the name "name".

> newparms = createParmset pertParms

9.4.18. createResidue
variable = createResidue name

RESIDUEvariable
STRING name
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Return a new and empty RESIDUE with the name "name". (Seadtheommand for an
example of thereateResidue command.)

9.4.19. createUnit
variable = createUnit name

UNIT  variable
STRING name

Return a new and empty UNIT with the name "name". (Seadieommand for an example
of thecreateUnit command.)

9.4.20. deleteBond
deleteBond atom1 atom?2

ATOM atoml
ATOM atom2

Delete the bond between the ATOMs atoml1 and atom2. If no bond exists, an error will be dis-
played.

9.4.21. desc
desc variable

object variable

Print a description of the object. In the following example, the alanine UNIT found in the
amino acid library has been examined bydése command:

> desc ALA

UNIT name: ALA

Head atom: .R<ALA 1>.A<N 1>
Tail atom: .R<ALA 1>.A<C 9>
Contents:

R<ALA 1>

Now, thedesc command is used to examine the first residue (1) of the alanine UNIT:

> desc ALA.1

RESIDUE name: ALA
RESIDUE sequence number: 1
Type: protein

Connection atoms:

Connect atom 0: A<N 1>
Connect atom 1: A<C 9>
Contents:

A<N 1>
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A<HN 2>
A<CA 3>
A<HA 4>
A<CB 5>
A<HB1 6>
A<HB2 7>
A<HB3 8>
A<C 9>
A<O 10>

Next, we illustrate the desc command by examining the ATOM the first residue (1) of the
alanine UNIT:

> desc ALA.1.N

ATOM

Name: N
Type: N
Charge: -0.463
Element: N

Atom flags: 20000|posfxd- posblt- posdrn- sel- pert-
notdisp- tchd- posknwn+ int - nmin- nbld-

Atom position: 3.325770, 1.547909, -0.000002
Atom velocity: 0.000000, 0.000000, 0.000000
Bonded to .R<ALA 1>.A<HN 2> by a single bond.
Bonded to .R<ALA 1>.A<CA 3> by a single bond.

Since the N ATOM is also the first atom of the ALA residue, the following command will give
the same output as the previous example:

> desc ALA.1.1

9.4.22. edit
edit unit

UNIT  unit

In xleap this command creates a Unit Editor that contains the UNIT unit. The user can view
and edit the contents of the UNIT using the mouse. The command causes a copy of the object
to be edited. If the object that the user wants to edit is "null", then the edit command assumes
that the user wants to edit a new UNIT with a single RESIDUE within it. PARMSETs can
also be edited. In tleap this command prints an error message.

9.4.23. groupSelectedAtoms
groupSelectedAtoms unit name

UNIT  unit
STRING name
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Create a group within unit with the name, "name”, using all of the ATOMSs within the UNIT
that are selected. If the group has already been defined then overwrite the old grodgsc The
command can be used to list groups. Example:

groupSelectedAtoms TRP sideChain
An expression like "TRP@sideChain" returns a LIST, so any commands that require LIST ’s
can take advantage of this notation. After assignment, one can access groups using the "@"
notation. Examples:

select TRP@sideChain

center TRP@sideChain

The latter example will calculate the center of the atoms in the "sideChain" group. (see the
select command for a more detailed example.)

9.4.24. help
help [string]

STRING string

This command prints a description of the command in string. If the STRING is not given then
a list of help topics is provided.

9.4.25. impose
impose unit seqlist internals
UNIT  unit
LIST  seqlist

LIST internals

The impose command allows the user to impose internal coordinates on the UNIT. The list of
RESIDUESs to impose the internal coordinates upon is in seqlist. The internal coordinates to
impose are in the LIST internals.

The command works by looking into each RESIDUE within the UNIT that is listed in the
seqlist argument and attempts to apply each of the internal coordinates within internals. The
seqglist argument is a LIST of NUMBERS that represent sequence numbers or ranges of
sequence numbers. Ranges of sequence numbers are represented by two element LISTs that
contain the first and last sequence number in the range. The user can specify sequence number
ranges that are larger than what is found in the UNIT. For example, the range { 1 999 } repre-
sents all RESIDUESs in a 200 RESIDUE UNIT.

The internals argument is a LIST of LISTs. Each sublist contains a sequence of ATOM names
which are of type STRING followed by the value of the internal coordinate. An example of the
impose command would be:
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impose peptide {12 3 }{
{ N CACN-40.0}
{C N CA C-60.0}

}

This would cause the RESIDUE with sequence numbers 1, 2, and 3 within the UNIT peptide
to assume an alpha helical conformation. The command

impose peptide {12{510} 12 }{
{ CACB 5.0}}

will impose on the residues with sequence numbers 1, 2, 5, 6, 7, 8, 9, 10, and 12 within the
UNIT peptide a bond length of 5.0 angstroms between the alpha and beta carbons. RESIDUEs
without an ATOM named CB (like glycine) will be unaffected.

Three types of conformational change are supported: bond length changes, bond angle
changes, and torsion angle changes. If the conformational change involves a torsion angle,
then all dihedrals around the central pair of atoms are rotated. The entire list of internals are
applied to each RESIDUE.

9.4.26. list

List all of the variables currently defined. To illustrate, the following (edited) output shows
the variables defined when LEaP is started from the leaprc file included in the distribution
tape:

> [ist

A

ACE ALA
ARG ASN
VAL w
WAT Y

9.4.27. loadAmberParams

variable = loadAmberParams filename

PARMSEVariable
STRING filename

Load an AMBER format parameter set file and place it in variable. All interactions defined in
the parameter set will be contained within variable. This command causes the loaded parame-
ter set to be included in LEaP ’s list of parameter sets that are searched when parameters are
required. General proper and improper torsion parameters are modified during the command
execution with the LEaP general type "?" replacing the AMBER general type "X".

> parm91l = loadAmberParams parm91X.dat
> saveOff parm91 parm9Ll.lib
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Saving parm91.

9.4.28. loadAmberPrep
loadAmberPrep filename [ prefix ]

STRING filename
STRING prefix

This command loads an AMBER PREP input file. For each residue that is loaded, a new UNIT
is constructed that contains a single RESIDUE and a variable is created with the same name as
the name of the residue within the PREP file. If the optional argument prefix is provided it will
be prefixed to each variable name; this feature is used to prefix UATOM residues, which have
the same names as AATOM residues with the string "U" to distinguish them. Let us imagine
that the following AMBER PREP input file exists:

0 0 2
Crown Fragment A

cra.res
CRA INT O
CORRECT NOMIT DU BEG
0.0
1 DUMM DUM 0 0 O 0. 0. 0.
2 bDuMM DUM 0 0 O 1.000 O. 0.
3 buMM DUM 0 0 O 1.000 90. 0.
4 C1 CTMO0O0O 1.540 112. 169.
5 HIA HCE 0 O O 1.098 109.47 -110.0
6 HIB HCE 0O O O 1.098 109.47 110.0
7 02 OSM O0O0O 1.430 112. -72.
8 C3 CTMO0OO 1.430 112. 169.
9 H3A HCE O O O 1.098 109.47 -49.0
10 H3B HCE 0 0 O 1.098 109.47  49.0

CHARGE
0.2442 -0.0207 -0.0207 -0.4057 0.2442
-0.0207 -0.0207

DONE
STOP

This fragment can be loaded into LEaP using the following command:

> loadAmberPrep cra.in
Loaded UNIT: CRA
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9.4.29. loadOff
loadOff filename

STRING filename

This command loads the OFF library within the file named filename. All UNITs and PARM-
SETs within the library will be loaded. The objects are loaded into LEaP under the variable
names the objects had when they were saved. Variables already in existence that have the same
names as the objects being loaded will be overwritten. Any PARMSETSs loaded using this
command are included in LEaP ’s library of PARMSETS that is searched whenever parameters
are required (The old AMBER format is used for PARMSETS rather than the OFF format in
the default configuration). Example command line:

> loadOff parm91.lib
Loading library: parm91.lib
Loading: PARAMETERS

9.4.30. loadPdb
variable = loadPdb filename

STRING filename
object variable

Load a Protein Databank format file with the file name filename. The sequence numbers of the
RESIDUES will be determined from the order of residues within the PDB file ATOM records.
This function will search the variables currently defined within LEaP for variable names that
map to residue names within the ATOM records of the PDB file. If a matching variable name
is found then the contents of the variable are added to the UNIT that will contain the structure
being loaded from the PDB file. Adding the contents of the matching UNIT into the UNIT
being constructed means that the contents of the matching UNIT are copied into the UNIT
being built and that a bond is created between the connect0 ATOM of the matching UNIT and
the connectl ATOM of the UNIT being built. The UNITs are combined in the same way
UNITs are combined using the sequence command. As atoms are read from the ATOM
records their coordinates are written into the correspondingly named ATOMSs within the UNIT
being built. If the entire residue is read and it is found that ATOM coordinates are missing,
then external coordinates are built from the internal coordinates that were defined in the
matching UNIT. This allows LEaP to build coordinates for hydrogens and lone-pairs which
are not specified in PDB files.

> crambin = loadPdb 1crn

Loading PDB file

Matching PDB residue names to LEaP variables.
Mapped residue THR, term: 0, seq. number: 0 to: NTHR.
Residue THR, term: M, seq. humber: 1 was not

found in name map.

Residue CYS, term: M, seq. humber: 2 was not

found in name map.
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Residue CYS, term: M, seq. humber: 3 was not
found in name map.
Residue PRO, term: M, seq. number: 4 was not
found in name map.

Residue TYR, term: M, seq. number: 43 was not

found in name map.

Residue ALA, term: M, seq. number: 44 was not

found in name map.

Mapped residue ASN, term: 1, seq. number: 45 to: CASN.
Joining NTHR - THR

Joining THR - CYS

Joining CYS - CYS

Joining CYS - PRO

Joining ASP - TYR
Joining TYR - ALA
Joining ALA - CASN

The alove edited listing shows the use of this command to load a PDB file for the protein
crambin. Several disulphide bonds are present in the protein and these bonds are indicated in
the PDB file. The loadPdb command, however, cannot read this information from the PDB
file. Itis necessary for the user to explicitly define disulphide bonds usitgriieommand.

9.4.31. loadPdbUsingSeq

loadPdbUsingSeq filename unitlist

STRING filename
LIST  unitlist

This command reads a Protein Data Bank format file from the file named filename. This com-
mand is identical tdoadPdb except it does not use the residue names within the PDB file.
Instead the sequence is defined by the user in unitlist. For more det&dadsst.

> peptSeq = { UALA UASN UILE UVAL UGLY }
> pept = loadPdbUsingSeq pept.pdb peptSeq

In the alove example, a variable is first defined as a LIST of united atom RESIDUEs. A PDB
file is then loaded, in this sequence order, from the file "pept.pdb".

9.4.32. logFile

logFile filename
STRING filename

This command opens the file with the file name filename as a log file. User input and all out-
put is written to the log file. Output is written to the log file as if the verbosity level were set to
2. An example of this command is:
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> lodfile /disk/howard/leapTrpSolvate.log

9.4.33. measureGeom
measureGeom atoml atom2 [ atom3 [ atom4 ] ]

ATOM
ATOM
ATOM
ATOM

atoml
atom2
atom3
atom4

Measure the distance, angle, or torsion between two, three, or four ATOMSs, respectively.

In the following example, we first describe the RESIDUE ALA of the ALA UNIT in order to
find the identity of the ATOMs. Next, the measureGeom command is used to determine a dis-
tance, simple angle, and a dihedral angle. As shown in the example, the ATOMs may be iden-
tified using atom names or numbers.

> desc ALA.ALA
RESIDUE name: ALA

RESIDUE sequence number: 1
Type: protein

Connection atoms:
Connect atom 0: A<N 1>
Connect atom 1: A<C 9>
Contents:

A<N 1>

A<HN 2>
A<CA 3>
A<HA 4>
A<CB 5>

A<HB1 6>
A<HB2 7>
A<HB3 8>

A<C 9>
A<O 10>

> measureGeom ALA.ALA.1 ALA.ALA.3

Distance: 1.45 angstroms

> measureGeom ALA.ALA.1 ALA.ALA.3 ALA.ALA.5

Angle: 111.10 degrees

> measureGeom ALA.ALA.N ALA.ALA.CA ALA.ALA.C ALA.ALA.O

Torsion angle: 0.00 degrees

9.4.34. quit

Quit the LEaP program.
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9.4.35. remove

remove a b
CONT a
CONT b

Removethe object b from the object a. If b is not contained by a then an error message will be
displayed. This command is used to oz ATOMs from RESIDUES, and RESIDUESs from
UNITs. If the object represented by b is not referenced by some variable name then it will be
destroyed.

> dipeptide = combine { ALA GLY }
Sequence: ALA

Sequence: GLY

> desc dipeptide

UNIT name: ALA Il bug: this should be dipeptide!
Head atom: .R<ALA 1>.A<N 1>
Tail atom: .R<GLY 2>.A<C 6>
Contents:

R<ALA 1>

R<GLY 2>

> remove dipeptide dipeptide.2

> desc dipeptide

UNIT name: ALA Il bug: this should be dipeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: null

Contents:

R<ALA 1>

9.4.36. saveAmberParm
saveAmberParm unit topologyfilename coordinatefilename

UNIT  unit
STRING topologyfilename
STRING coordinatefilename

Save the AMBER/SPASMS topology and coordinate files for the UNIT into the files named

topologyfilename and coordinatefilename respectively. This command will cause LEaP to
search its list of PARMSETs for parameters defining all of the interactions between the
ATOMs within the UNIT. This command produces topology files and coordinate files that are
identical in format to those produced by AMBER PARM and can be read into AMBER and

SPASMS for calculations. The output of this operation can be used for minimizations, dynam-
ics, and thermodynamic perturbation calculations.

In the following example, the topology and coordinates from the all_amino94.lib UNIT ALA
are generated:
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> saveamberparm ALA ala.top ala.crd
Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.
Building improper torsion parameters.
Building H-Bond parameters.

9.4.37. saveAmberParmPol
saveAmberParmPol unit topologyfilename coordinatefilename

UNIT  unit
STRING topologyfilename
STRING coordinatefilename

Like saveAmberParm, but includes atomic polarizabilities in the topology file for use with
IPOL=1 in Sander. The polarizabilities are according to atom type, and are defined in the
'mass’ section of thearm.dat or frcmod file. Note: charges are normally scaled when polariz-
abilities are used - see scaleCharges for an easy way of doing this.

9.4.38. saveAmberParmPert
saveAmberParmPert unit topologyfilename coordinatefilename

UNIT  unit
STRING topologyfilename
STRING coordinatefilename

This command is the same saveAmberParm, except a perturbation topology file is written
instead of a plain minimization/dynamics one.

Save the AMBER topology and coordinate files for the UNIT into the files named topology-
filename and coordinatefilename respectively. This command will cause LEaP to search its
list of PARMSETS for parameters defining all of the interactions between the ATOMs within
the UNIT. This command produces topology files and coordinate files that are identical in for-
mat to those produced by AMBER PARM and can be read into gibbs for perturbation calcula-
tions.

> saveAmberParmPert pert pert.leap.top pert.leap.crd
Building topology.

Building atom parameters.

Building bond parameters.

Building angle parameters.

Building proper torsion parameters.

Building improper torsion parameters.

Building H-Bond parameters.
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9.4.39. saveAmberParmPolPert
saveAmberParmPolPert unit topologyfilename coordinatefilename

UNIT  unit
STRING topologyfilename
STRING coordinatefilename

Like saveAmberParmPert, but includes atomic polarizabilities in the topology file for use with
IPOL=1 in Gibbs. The polarizabilities are according to atom type, and are defined in the
'mass’ section of the parm.dat or frcmod file. Note: charges are normally scaled when polariz-
abilities are used - see scaleCharges for an easy way of doing this.

9.4.40. saveOff
saveOff object filename

object object
STRING filename

The saveOff command allows the user to save UNITs and PARMSETSs to a file fiemed
name. The file is written using the Object File Format (off) and can accommodate an unlim-
ited number of uniquely named objects. The names by which the objects are stored are the
variable names specified in the argument of this command. If thddilame already exists

then the new objects will be added to the file. If there are objects within the file with the same
names as objects being saved then the old objects will be overwritten. The argument object
can be a single UNIT, a single PARMSET, or a LIST of mixed UNITs and PARMSETs. (See
theadd command for an example of teaveOff command.)

9.4.41. savePdb
savePdb unit flename

UNIT  unit
STRING filename

Write UNIT to the filefilename as a PDB format file. In the following example, the PDB file
from the "all_amino94.lib" UNIT ALA is generated:

> savepdb ALA ala.pdb

9.4.42. scaleCharges
scaleCharges container scale_factor

UNIT/RESIDUE/ATOM  container
NUMBER scale_factor

This command scales the charges in the object by _scale_factor_, which must be > 0. It is
useful for building systems for use with polarizable atoms, e.g.
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X = copy solute

scaleCharges x 0.8

y = copy WATBOX216
scalecharges y 0.875
solvatebox x y 10
saveamberparmpol x x.top x.crd

V V.V V V V

9.4.43. sequence

variable = sequence list

UNIT  variable
LIST list

The sequence command is used to create a new UNIT by combining the contents of a LIST of
UNITs. The first argument is a LIST of UNITs. A new UNIT is constructed by taking each
UNIT in the sequence in turn and copying its contents into the UNIT being constructed. As
each new UNIT is copied, a bond is created between the tail ATOM of the UNIT being con-
structed and the head ATOM of the UNIT being copied, if both connect ATOMs are defined. If
only one is defined, a warning is generated and no bond is created. If neither connection
ATOM is defined then no bond is created. As each RESIDUE is copied into the UNIT being
constructed it is assigned a sequence number which represents the order the RESIDUES are
added. Sequence numbers are assigned to the RESIDUESs so as to maintain the same order as
was in the UNIT before it was copied into the UNIT being constructed. This command builds
reasonable starting coordinates for all ATOMs within the UNIT; it does this by assigning inter-
nal coordinates to the linkages between the RESIDUEs and building the external coordinates
from the internal coordinates from the linkages and the internal coordinates that were defined
for the individual UNITs in the sequence.

> tripeptide = sequence { ALA GLY PRO }
Sequence: ALA

Sequence: GLY

Joining ALA - GLY

Sequence: PRO

Joining GLY - PRO

> desc tripeptide

UNIT name: ALA Il bug: this should be tripeptide!
Head atom: .R<ALA 1>.A<N 1>

Tail atom: .R<PRO 3>.A<C 13>

Contents:

R<ALA 1>

R<GLY 2>

R<PRO 3>

9.4.44. set

set default variable value
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STRING variable
STRING value

or
set container parameter object

CONT  container
STRING parameter
object object

This command sets the values of some global parameters (when the first argument is "default")
or sets various parameters associated with container. The following parameters can be set
within LEaP:

For "default" parameters

OldPrmtopFormat
If set to "on", the saveAmberParm command will write a prmtop file in the for-
mat used in Amber6 and before; if set to "off" (the default), it will use the new

format.

Dielectric If set to "distance" (the default), electrostatic calculations in LEaP will use a
distance-dependent dielectric; if set to "constant", and constant dielectric will be
used.

PdbWriteCharges

If set to "on", atomic charges will be placed in the "B-factor" field of pdb files
saved with the savePdb command; if set to "off" (the default), no such charges
will be written.

For ATOMs:

name A unique STRING descriptor used to identify ATOMs.

type This is a STRING property that defines the AMBER force field atom type.

charge The charge property is a NUMBER that represents the ATOM's electrostatic
point charge to be used in a molecular mechanics force field.

position This property is a LIST of NUMBERS containing three values: the (X, Y, 2)
Cartesian coordinates of the ATOM.

pertName The STRING is a unique identifier for an ATOM in its final state during a Free
Energy Perturbation calculation.

pertType The STRING is the AMBER force field atom type of a perturbed ATOM.

pertCharge This NUMBER represents the final electrostatic point charge on an ATOM dur-
ing a Free Energy Perturbation.

For RESDUEs:

connectO This defines an ATOM that is used in making links to other RESIDUEs. In
UNITs containing single RESIDUES, the RESIDUESS connectO ATOM is usu-
ally defined as the UNIT’s head ATOM.
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connectl This is an ATOM property which defines an ATOM that is used in making links
to other RESIDUEs. In UNITs containing single RESIDUEs, the RESIDUESS
connectl ATOM is usually defined as the UNIT’s tail ATOM.

connect2 This is an ATOM property which defines an ATOM that can be used in making
links to other RESIDUEs. In amino acids, the convention is that this is the
ATOM to which disulphide bridges are made.

restype This property is a STRING that represents the type of the RESIDUE. Currently,
it can have one of the following values: "undefined", "solvent", "protein”,
"nucleic", or "saccharide".

name This STRING property is the RESIDUE name.
For UNITs:
head Defines the ATOM within the UNIT that is connected when UNITs are joined

together: the tail ATOM of one UNIT is connected to the head ATOM of the
subsequent UNIT in any sequence.

tail Defines the ATOM within the UNIT that is connected when UNITs are joined
together: the tail ATOM of one UNIT is connected to the head ATOM of the
subsequent UNIT in any sequence.

box The property defines the bounding box of the UNIT. If it is defined as null then
no bounding box is defined. If the value is a single NUMBER then the bound-
ing box will be defined to be a cube with each side being NUMBER of
angstroms across. If the value is a LIST then it must be a LIST containing three
numbers, the lengths of the three sides of the bounding box.

cap The property defines the solvent cap of the UNIT. If it is defined as null then no
solvent cap is defined. If the value is a LIST then it must contain four numbers,
the first three define the Cartesian coordinates (X, Y, Z) of the origin of the sol-
vent cap in angstroms, the fourth NUMBER defines the radius of the solvent
cap in angstroms.

9.4.45. setBox
setBox unit  vdw OR centers [ buffer OR buffer_xyz_list]

UNIT  unit

The setBox command adds a periodic box to the UNIT, turning it into a periodic system for
the simulation programs. It does not add any solvent to the system. The choice of "vdw" or
"centers" determines whether the box encloses the entire atoms or just the atom centers - use
"centers" if the system has been previously equilibrated as a periodic box. See the solvateBox
command for a description of the buffer variable, which extends either type of box by an arbi-
trary amount.
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9.4.46. solvateBox

solvateBox solute solvent buffer [ iso ] [ closeness ]

UNIT  solute
UNIT  solvent
object buffer
NUMBER closeness

The solvateBox command creates a rectangular parallelopiped solvent box around the solute
UNIT. The solute UNIT is modified by the addition of solvent RESIDUEs. (For most liquid
state simulations, thedlvateOct command discussed below is probably a better choice.)

The normal choice for a TIP3 _solvent_ UNIT is WATBOX216, which is a snapshot from a
room-temperature equilibration for this model. If you want to solvate with other water models
(say TIP4P), try the followingfa) solvate the system with WATBOX216, using the default
TIP3 model;(b) useambpdb to convert yourprmtop file to Brookhaven format(c) restart

LEaP, choose the TIP4P water model (instructions are in the Database chapter), then use load-
Pdb to bring back in the system you have created.

Note that equilibration will always be required to bring the artificial box to reasonable density,
since Van der Waals voids remain due to the impossibility of natural packing of solvent around
the solute and at the edges of the box. First, equilibrate the system at constant volume to the
temperature you want, then turn on constant pressure to adjust the system density to the
desired value.

The solvent UNIT is copied and repeated in all three spatial directions to create a box contain-
ing the entire solute and a buffer zone defined by the buffer argument. The buffer argument
defines the distance, in angstroms, between the wall of the box and the closest ATOM in the
solute. If the buffer argument is a single NUMBER, then the buffer distance is the same for
the x, y, and z directions, unless the ’iso’ option is used to make the box cubic, with the short-
est box clearance = buffer. If the buffer argument is a LIST of three NUMBERS, then the
NUMBERSs are applied to the x, y, and z axes respectively. As the larger box is created and
superimposed on the solute, solvent molecules overlapping the solute are removed.

The optional closeness parameter can be used to control how close, in angstroms, solvent
ATOMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for
rejection of overlapping solvent RESIDUEs is if the distance between any solvent ATOM to
the closest solute ATOM is less than the sum of the ATOMs VANDERWAAL distances multi-
plied by the closeness argument.

This command modifies the _solute_ UNIT in several ways. First, the coordinates of the
ATOMs are modified to ove the center of a box enclosing the Van der Waals radii of the
atoms to the origin. Secondly, the UNIT is modified by the addition of _solvent_ RESIDUEs
copied from the _solvent_ UNIT. Finally, the box parameter of the new system (still named for
the _solute ) is modified to reflect the fact that a periodic, rectilinear solvent box has been cre-
ated around it.

In this example, it is assumed that the file solvents.lib, containing WATBOX216, has been
loaded already (as is done by the default leaprc):

>> mol = loadpdb my.pdb
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>> solvateBox sol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 30.995 35.538 35.416 angstroms.

Total mass 14470.768 amu, Density 0.616 g/cc
Added 785 residues.

Again, note that the density of 0.601 g/cc points to the need for constant pressure equilibra-
tion. (See the discussion of equilibration in the Q&A section of the amber web.)

9.4.47. solvateCap
solvateCap solute solvent position radius [ closeness ]

UNIT  solute
UNIT  solvent
object position
NUMBER radius
NUMBER closeness

The solvateCap command creates a solvent cap around the solute UNIT. The solute UNIT is
modified by the addition of solvent RESIDUEs. The solvent box will be repeated in all three
spatial directions to create a large solvent sphere with a radius of radius angstroms.

The position argument defines where the center of the solvent cap is to be placed. If position is
a RESIDUE, ATOM, or a LIST of UNITs, RESIDUES, or ATOMs, then the geometric center

of the ATOMSs within the object will be used as the center of the solvent cap sphere. If position
is a LIST containing three NUMBERS, then the position argument will be treated as a vector
that defines the position of the solvent cap sphere center.

The optional closeness parameter can be used to control how close, in angstroms, solvent
ATOMs can come to solute ATOMs. The default value of the closeness argument is 1.0.
Smaller values allow solvent ATOMs to come closer to solute ATOMs. The criterion for rejec-
tion of overlapping solvent RESIDUEsS is if the distance between any solvent ATOM to the
closest solute ATOM is less than the sum of the ATOMs VANDERWAAL's distances multi-
plied by the closeness argument.

This command modifies the solute UNIT in several ways. First, the UNIT is modified by the
addition of solvent RESIDUESs copied from the solvent UNIT. Secondly, the cap parameter of
the UNIT solute is modified to reflect the fact that a solvent cap has been created around the
solute.

>> mol = loadpdb my.pdb
>> solvateCap mol WATBOX216 mol.2.CA 8.0 2.0
Added 3 residues.

9.4.48. solvateDontClip
solvateDontClip solute solvent buffer [ closeness |
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UNIT  solute
UNIT  solvent
object buffer
NUMBER closeness

This command is identical to tfselvateBox command except that the solvent box that is cre-
ated is not clipped to the boundary of the buffer region. This command forms larger solvent
boxes than doesolvateBox because it does not cause solvent that is outside the buffer region
to be discarded. This helps to preserve the periodic structure of properly constructed solvent
boxes, preventing hot-spots from forming.

>> mol = loadpdb my.pdb
>> solvateDontClip mol WATBOX216 10

Solute vdw bounding box: 7.512 12.339 12.066

Total bounding box for atom centers: 27.512 32.339 32.066

Solvent unit box: 18.774 18.774 18.774

Total vdw box size: 41.120 40.899 41.075 angstroms.

Total mass 30595.088 amu, Density 0.735 g/cc
Added 1680 residues.

Note the larger number of waters added, compared to solvateBox; in the case of this solute and
choice of buffer, the overall box size is increased by about 10 angstroms in each direction.

9.4.49. solvateOct

solvateOct solute solvent buffer [aniso] [ closeness ]

UNIT _solute_
UNIT _solvent_
object _buffer_
NUMBER _closeness_

The solvateOct command is the same as solvateBox, except the corners of the box are sliced
off, resulting in a truncated octahedron, which typically gives a more uniform distribution of
solvent around the solute. In solvateOct, when a LIST is given for the buffer argument, four
numbers are given instead of three, where the fourth is the diagonal clearance. If 0.0 is given
as the fourth number, the diagonal clearance resulting from the application of the x,y,z clear-
ances is reported. If a non-0 value is given, this may require scaling up the other clearances,
which is also reported.

Unless the 'aniso’ option is used, an isometric truncated octahedron is produced and rotated to
an orientation used by trsander PME code. (Note: don’t use the 'aniso’ option unless you

are sure you know what you are doing; it is only there for expert backward compatibility, and
probably has no real use anymore.)

9.4.50. solvateShell

solvateShell solute solvent thickness [ closeness |

UNIT  solute
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UNIT  solvent
NUMBER thickness
NUMBER closeness

The solvateShell command adds a solvent shell to the solute UNIT. The resulting solute/sol-
vent UNIT will be irregular in shape since it will reflect the contours of the solute. The solute
UNIT is modified by the addition of solvent RESIDUESs. The solvent box will be repeated in
three directions to create a large solvent box that can contain the entire solute and a shell
thickness angstroms thick. The solvent RESIDUESs are then added to the solute UNIT if they
lie within the shell defined by thickness and do not overlap with the solute ATOMs. The
optional closeness parameter can be used to control how close solvent ATOMs can come to
solute ATOMs. The default value of the closeness argument is 1.0. Please s#eatbBox
command for more details on the closeness parameter.

>> mol = loadpdb my.pdb
>> solvateShell mol WATBOX216 8.0

Solute vdw bounding box: 7.512 12.339 12.066
Total bounding box for atom centers: 23.512 28.339 28.066
Solvent unit box: 18.774 18.774 18.774

Added 147 residues.

9.4.51. source

source filename
STRING filename

This command executes commands within a text file. To display the commands as they are
read, see theerbosity command.

9.4.52. transform

transform atoms, matrix

CONT atoms
LIST  matrix

Transform all of the ATOMs within atoms by the &3 ) or ( 4% 4 ) matrix represented by
the nine or sixteen NUMBERS in the LIST of LISatrix. The general matrix looks like:

r11rl2rl13-tx
r21r22r23-ty
r31r32r33-tz
O 0 o0 1

The matrix elements represent the intended symmetry operation. For example, a reflection in
the (X, y) plane would be produced by the matrix:

1 0 0
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This reflection could be combined with a six angstrom translation along the x-axis by using
the following matrix.

1 0 0 6
0 1 0 0
0O 0 -1 0
0O O 01

In the following example, wrB is transformed by an inversion operation:

transform wrpB {

{1 0 0 }
{ 0-1 0}
{ 0 0-11}
}

9.4.53. translate
translate atoms direction

CONT atoms
LIST direction

Translate all of the ATOMs within atoms by the vector defined by the three NUMBERS in the
LIST direction.

Example:

translate wrpB {0 0 -24.53333}

9.4.54. verbosity
verbosity level

NUMBER level

This command sets the level of output that LEaP provides the user. A value of 0 is the default,
providing the minimum of messages. A value of 1 will produce more output, and a value of 2
will produce all of the output of level 1 and display the text of the script lines executed with
thesource command. The following line is an example of this command:

> verbosity 2
Verbosity level: 2
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9.4.55. zMatrix
zMatrix object zmatrix

CONT  object
LIST  matrix

The zZMatrix command is quite complicated. It is used to define the external coordinates of
ATOMs within object using internal coordinates. The second parameter zifldtex com-
mand is a LIST of LISTs; each sub-list has several arguments:

{ al a2 bond12}

This entry defines the coordinate of al by placing it bond12 angstroms along the x-axis from
ATOM a2. If ATOM a2 does not have coordinates defined then ATOM a2 is placed at the ori-

gin.

{ al a2 a3 bondl2 anglel23}

This entry defines the coordinate of al by placing it bond12 angstroms away from ATOM a2
making an angle of angle123 degrees between al, a2 and a3. The angle is measured in a right
hand sense and in the x-y plane. ATOMs a2 and a3 must have coordinates defined.

{ al a2 a3 a4 bondl12 angle123 torsion1234 }

This entry defines the coordinate of al by placing it bond12 angstroms away from ATOM a2,
creating an angle of angle123 degrees between al, a2, and a3, and making a torsion angle of
torsion1234 between al, a2, a3, and a4.

{ al a2 a3 a4 bondl2 angle123 anglel24 orientation }

This entry defines the coordinate of al by placing it bond12 angstroms away from ATOM a2,
making angles angle123 between ATOMs al, a2, and a3, and angle124 between ATOMs al,
a2, and a4. The argument orientation defines whether the ATOM advis atbelow a plane
defined by the ATOMSs a2, a3, and a4. If orientation is positive then al will be placed in such a
way so that the inner product of (a3-a2) cross (a4-a2) with (al-a2) is positive. Otherwise al
will be placed on the other side of the plane. This allows the coordinates of a molecule like
fluoro-chloro-bromo-methane to be defined without having to resort to dummy atoms.

The first arguments within tteMatrix entries ( al, a2, a3, a4 ) are either ATOMs or STRINGS
containing names of ATOMs within object. The subsequent arguments are all NUMBERS.
Any ATOM can be placed at the al position, even those that have coordinates defined. This
feature can be used to provide an endless supply of dummy atoms, if they are required. A pre-
defined dummy atom with the name "*" (a single asterisk, no quotes) can also be used.

There is no order imposed in the sub-lists. The user can place sub-lists in arbitrary order, as
long as they maintain the requirement that all atoms a2, a3, and a4 must have external coordi-
nates defined, except for entries that define the coordinate of an ATOM using only a bond
length. (See thadd command for an example of thlatrix command.)
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