>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary
m&v y is defined as m v y; that is,
the left argument m is bonded with the dyad v
to produce a monadic function.
|
|
x m&v y ↔ m&v^:x y
x u&n y ↔ u&n^:x y
|
For example:
10&^. 2 3 10 100 200
0.30103 0.477121 1 2 2.30103
base10log=: 10&^.
base10log 2 3 10 100 200
0.30103 0.477121 1 2 2.30103
sine=: 1&o.
sine o. 0 0.25 0.5 1.5 2
0 0.707107 1 _1 0
Similarly, u&n y is defined as y u n ;
in other words, as the dyad u provided with the right
argument n to produce a monadic function. For example:
^&3 (1 2 3 4 5)
1 8 27 64 125
^&2 3"0 (1 2 3 4 5)
1 1
4 8
9 27
16 64
25 125
Use of the bond conjunction is often called Currying
in honor of Haskell Curry.
The phrase x f@[&0 y is equivalent to f^:x y , apply
the monad f x times to y . For example:
fib=: (0 1,:1 1)&(+/ .*)@[&0 & 0 1
fib i.10
0 1
1 1
1 2
2 3
3 5
5 8
8 13
13 21
21 34
34 55
>>
<<
Ndx
Usr
Pri
Phr
Dic
Rel
Voc
!:
wd
Help
Dictionary