
1

SEE THE LIGHT - AGILE, INDUSTRIAL STRENGTH, RAPID WEB APPLICATION
DEVELOPMENT MADE EASY

 | Frames No Frames

http://grails.org
http://grails.org/doc/latest/index.html
http://grails.org/doc/latest/guide/index.html
http://springsource.com

2

The Grails Framework - Reference Documentation

Authors: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown

Version: 1.3.3

Copies of this document may be made for your own use and for distribution to others, provided that you do not
charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

1. Introduction .. 6
2. Getting Started .. 7

2.1 Downloading and Installing .. 7
2.2 Upgrading from previous versions of Grails ... 7
2.3 Creating an Application ... 10
2.4 A Hello World Example .. 11
2.5 Getting Set-up in an IDE ... 11
2.6 Convention over Configuration ... 12
2.7 Running an Application ... 12
2.8 Testing an Application .. 13
2.9 Deploying an Application .. 13
2.10 Creating Artefacts .. 13
2.10 Supported Java EE Containers .. 14
2.11 Generating an Application ... 14

3. Configuration .. 15
3.1 Basic Configuration ... 15

3.1.1 Built in options .. 15
3.1.2 Logging .. 16
3.1.3 GORM ... 18

3.2 Environments ... 19
3.3 The DataSource ... 20

3.3.1 DataSources and Environments ... 21
3.3.2 JNDI DataSources ... 22
3.3.3 Automatic Database Migration .. 22
3.3.4 Transaction-aware DataSource Proxy ... 23

3.4 Externalized Configuration ... 23
3.5 Versioning ... 24
3.6 Project Documentation .. 24
3.7 Dependency Resolution ... 28

3.7.1 Configurations and Dependencies ... 29
3.7.2 Dependency Repositories .. 29
3.7.3 Debugging Resolution ... 31
3.7.4 Inherited Dependencies ... 31
3.7.5 Dependency Reports .. 31
3.7.6 Plugin JAR Dependencies ... 31
3.7.7 Maven Integration .. 32
3.7.8 Deploying to a Maven Repository ... 32
3.7.9 Plugin Dependencies ... 34

4. The Command Line .. 36
4.1 Creating Gant Scripts .. 36
4.2 Re-using Grails scripts .. 37
4.3 Hooking into Events .. 39
4.4 Customising the build .. 41
4.5 Ant and Maven .. 42

5. Object Relational Mapping (GORM) ... 46
5.1 Quick Start Guide .. 46

5.1.1 Basic CRUD .. 46
5.2 Domain Modelling in GORM ... 47

5.2.1 Association in GORM ... 48
5.2.1.1 One-to-one ... 48
5.2.1.2 One-to-many .. 49
5.2.1.3 Many-to-many ... 50

3

5.2.1.4 Basic Collection Types .. 51
5.2.2 Composition in GORM ... 52
5.2.3 Inheritance in GORM .. 52
5.2.4 Sets, Lists and Maps .. 53

5.3 Persistence Basics .. 55
5.3.1 Saving and Updating ... 55
5.3.2 Deleting Objects .. 56
5.3.3 Understanding Cascading Updates and Deletes .. 56
5.3.4 Eager and Lazy Fetching ... 58
5.3.5 Pessimistic and Optimistic Locking .. 59
5.3.6 Modification Checking .. 60

5.4 Querying with GORM ... 61
5.4.1 Dynamic Finders .. 62
5.4.2 Criteria ... 64
5.4.3 Hibernate Query Language (HQL) .. 67

5.5 Advanced GORM Features ... 68
5.5.1 Events and Auto Timestamping .. 68
5.5.2 Custom ORM Mapping ... 69

5.5.2.1 Table and Column Names .. 70
5.5.2.2 Caching Strategy .. 72
5.5.2.3 Inheritance Strategies ... 74
5.5.2.4 Custom Database Identity .. 74
5.5.2.5 Composite Primary Keys ... 75
5.5.2.6 Database Indices .. 75
5.5.2.7 Optimistic Locking and Versioning ... 76
5.5.2.8 Eager and Lazy Fetching ... 76
5.5.2.9 Custom Cascade Behaviour ... 78
5.5.2.10 Custom Hibernate Types ... 78
5.5.2.11 Derived Properties ... 79
5.5.2.12 Custom Naming Strategy ... 81

5.5.3 Default Sort Order ... 81
5.6 Programmatic Transactions ... 82
5.7 GORM and Constraints ... 82

6. The Web Layer ... 85
6.1 Controllers ... 85

6.1.1 Understanding Controllers and Actions .. 85
6.1.2 Controllers and Scopes .. 86
6.1.3 Models and Views ... 86
6.1.4 Redirects and Chaining .. 89
6.1.5 Controller Interceptors ... 90
6.1.6 Data Binding .. 92
6.1.7 XML and JSON Responses ... 96
6.1.8 More on JSONBuilder ... 98
6.1.9 Uploading Files .. 100
6.1.10 Command Objects ... 101
6.1.11 Handling Duplicate Form Submissions ... 102
6.1.12 Simple Type Converters .. 103

6.2 Groovy Server Pages ... 103
6.2.1 GSP Basics .. 104

6.2.1.1 Variables and Scopes ... 104
6.2.1.2 Logic and Iteration ... 104
6.2.1.3 Page Directives .. 105
6.2.1.4 Expressions .. 105

6.2.2 GSP Tags ... 106
6.2.2.1 Variables and Scopes ... 106
6.2.2.2 Logic and Iteration ... 107
6.2.2.3 Search and Filtering ... 107
6.2.2.4 Links and Resources .. 108
6.2.2.5 Forms and Fields .. 108
6.2.2.6 Tags as Method Calls ... 109

6.2.3 Views and Templates ... 109
6.2.4 Layouts with Sitemesh ... 111
6.2.5 Sitemesh Content Blocks ... 113
6.2.6 Making Changes to a Deployed Application ... 114

6.3 Tag Libraries ... 114

4

6.3.1 Variables and Scopes ... 115
6.3.2 Simple Tags ... 115
6.3.3 Logical Tags .. 116
6.3.4 Iterative Tags ... 116
6.3.5 Tag Namespaces .. 117
6.3.6 Using JSP Tag Libraries .. 118
6.3.7 Tag return value ... 118

6.4 URL Mappings .. 118
6.4.1 Mapping to Controllers and Actions ... 119
6.4.2 Embedded Variables .. 119
6.4.3 Mapping to Views ... 121
6.4.4 Mapping to Response Codes ... 121
6.4.5 Mapping to HTTP methods ... 122
6.4.6 Mapping Wildcards ... 122
6.4.7 Automatic Link Re-Writing ... 123
6.4.8 Applying Constraints ... 124
6.4.9 Named URL Mappings .. 124

6.5 Web Flow .. 126
6.5.1 Start and End States ... 126
6.5.2 Action States and View States ... 126
6.5.3 Flow Execution Events .. 128
6.5.4 Flow Scopes ... 129
6.5.5 Data Binding and Validation ... 130
6.5.6 Subflows and Conversations ... 131

6.6 Filters ... 132
6.6.1 Applying Filters ... 132
6.6.2 Filter Types .. 134
6.6.3 Variables and Scopes ... 134
6.6.4 Filter Dependencies ... 134

6.7 Ajax ... 135
6.7.1 Ajax using Prototype ... 135

6.7.1.1 Remoting Linking .. 136
6.7.1.2 Updating Content ... 136
6.7.1.3 Remote Form Submission .. 136
6.7.1.4 Ajax Events .. 137

6.7.2 Ajax with Dojo .. 137
6.7.3 Ajax with GWT ... 138
6.7.4 Ajax on the Server ... 138

6.8 Content Negotiation ... 139
7. Validation ... 143

7.1 Declaring Constraints .. 143
7.2 Validating Constraints ... 143
7.3 Validation on the Client ... 144
7.4 Validation and Internationalization ... 145
7.5 Validation Non Domain and Command Object Classes ... 146

8. The Service Layer .. 147
8.1 Declarative Transactions ... 147
8.2 Scoped Services ... 148
8.3 Dependency Injection and Services ... 148
8.4 Using Services from Java .. 149

9. Testing .. 151
9.1 Unit Testing ... 153
9.2 Integration Testing ... 157
9.3 Functional Testing ... 162

10. Internationalization ... 164
10.1 Understanding Message Bundles .. 164
10.2 Changing Locales .. 164
10.3 Reading Messages ... 164
10.4 Scaffolding and i18n .. 165

11. Security ... 166
11.1 Securing Against Attacks .. 166
11.2 Encoding and Decoding Objects ... 167
11.3 Authentication ... 169
11.4 Security Plug-ins ... 170

11.4.1 Spring Security .. 170

5

11.4.2 Shiro ... 170
12. Plug-ins ... 172

12.1 Creating and Installing Plug-ins .. 172
12.2 Plugin Repositories .. 173
12.3 Understanding a Plug-ins Structure ... 175
12.4 Providing Basic Artefacts .. 176
12.5 Evaluating Conventions ... 177
12.6 Hooking into Build Events .. 178
12.7 Hooking into Runtime Configuration .. 178
12.8 Adding Dynamic Methods at Runtime .. 179
12.9 Participating in Auto Reload Events ... 180
12.10 Understanding Plug-in Load Order ... 182

13. Web Services .. 184
13.1 REST ... 184
13.2 SOAP ... 186
13.3 RSS and Atom ... 186

14. Grails and Spring .. 188
14.1 The Underpinnings of Grails ... 188
14.2 Configuring Additional Beans ... 188
14.3 Runtime Spring with the Beans DSL .. 190
14.4 The BeanBuilder DSL Explained .. 192
14.5 Property Placeholder Configuration .. 196
14.6 Property Override Configuration ... 197

15. Grails and Hibernate ... 198
15.1 Mapping with Hibernate Annotations ... 198
15.2 Further Reading ... 199

16. Scaffolding ... 200
17. Deployment .. 203

6

1. Introduction

Java web development as it stands today is dramatically more complicated than it needs to be. Most modern web
frameworks in the Java space are over complicated and don't embrace the Don't Repeat Yourself (DRY) principles.
Dynamic frameworks like Rails, Django and TurboGears helped pave the way to a more modern way of thinking
about web applications. Grails builds on these concepts and dramatically reduces the complexity of building web
applications on the Java platform. What makes it different, however, is that it does so by building on already
established Java technology like Spring & Hibernate.
Grails is a full stack framework and attempts to solve as many pieces of the web development puzzle through the
core technology and it's associated plug-ins. Included out the box are things like:

An easy to use Object Relational Mapping (ORM) layer built on Hibernate
An expressive view technology called Groovy Server Pages (GSP)
A controller layer built on MVCSpring
A command line scripting environment built on the Groovy-powered Gant
An embedded container which is configured for on the fly reloadingTomcat
Dependency injection with the inbuilt containerSpring
Support for internationalization (i18n) built on Spring's core MessageSource concept
A transactional service layer built on Spring's transaction abstraction

All of these are made easy to use through the power of the language and the extensive use of DomainGroovy
Specific Languages (DSLs)
This documentation will take you through getting started with Grails and building web applications with the Grails
framework.

http://www.hibernate.org
http://www.springframework.org
http://groovy.codehaus.org/Gant
http://tomcat.apache.org
http://www.springframework.org
http://groovy.codehaus.org

7

2. Getting Started

2.1 Downloading and Installing

The first step to getting up and running with Grails is to install the distribution. To do so follow these steps:

Download a binary distribution of Grails and extract the resulting zip file to a location of your choice
Set the GRAILS_HOME environment variable to the location where you extracted the zip

On Unix/Linux based systems this is typically a matter of adding something like the following
 to your profileexport GRAILS_HOME=/path/to/grails

On Windows this is typically a matter of setting an environment variable under My
Computer/Advanced/Environment Variables

Now you need to add the directory to your variable:bin PATH
On Unix/Linux base system this can be done by doing a export
PATH="$PATH:$GRAILS_HOME/bin"
On windows this is done by modifying the environment variable under Path My
Computer/Advanced/Environment Variables

If Grails is working correctly you should now be able to type in the terminal window and see output similargrails
to the below:

Welcome to Grails 1.0 - http://grails.org/
Licensed under Apache Standard License 2.0
Grails home is set to: /Developer/grails-1.0
No script name specified. Use 'grails help' for more info

2.2 Upgrading from previous versions of Grails

Although the Grails development team have tried to keep breakages to a minimum there are a number of items to
consider when upgrading a Grails 1.0.x, 1.1.x, or 1.2.x applications to Grails 1.3. The major changes are described in
detail below.

Upgrading from Grails 1.2.x

Plugin Repositories
As of Grails 1.3, Grails no longer natively supports resolving plugins against secured SVN repositories. Grails 1.2
and below's plugin resolution mechanism has been replaced by one built on Ivy the upside of which is that you can
now resolve Grails plugins against Maven repositories as well as regular Grails repositories.
Ivy supports a much richer setter of repository resolvers for resolving plugins with, including support for Webdav,
HTTP, SSH and FTP. See the section on in the Ivy docs for all the available options and the section of resolvers

 in the user guide which explains how to configure additional resolvers.plugin repositories
If you still need support for resolving plugins against secured SVN repositories then the project provides a setIvySvn
of Ivy resolvers for resolving against SVN repositories.

Upgrading from Grails 1.1.x

Plugin paths
In Grails 1.1.x typically a variable was used to establish paths to plugin resources. ForpluginContextPath
example:

<g:resource dir= file= />"${pluginContextPath}/images" "foo.jpg"

In Grails 1.2 views have been made plugin aware and this is no longer necessary:

<g:resource dir= file= />"images" "foo.jpg"

Additionally the above example will no longer link to an application image from a plugin view. To do so you need to
change the above to:

http://grails.org/Download
http://ant.apache.org/ivy/history/trunk/settings/resolvers.html
http://code.google.com/p/ivysvn/

8

<g:resource contextPath= dir= file= />"" "images" "foo.jpg"

The same rules apply to the and javascript render

Tag and Body return values
Tags no longer return instances but instead return a instance. The java.lang.String StreamCharBuffer

 class implements all the same methods as , however code like this may break:StreamCharBuffer String

def foo = body()
(foo) {if instanceof String

 // somethingdo
}

In these cases you should use the interface, which both and java.lang.CharSequence String
 implement:StreamCharBuffer

def foo = body()
(foo CharSequence) {if instanceof

 // somethingdo
}

New JSONBuilder
There is a new version of which is semantically different to earlier versions of Grails. However, ifJSONBuilder
your application depends on the older semantics you can still use the now deprecated implementation by settings the
following property to in Config.groovy:true

grails.json.legacy.builder=true

Validation on Flush
Grails now executes validation routines when the underlying Hibernate session is flushed to ensure that no invalid
objects are persisted. If one of your constraints (such as a custom validator) is executing a query then this can cause
an addition flush resulting in a . Example:StackOverflowError

static constraints = {
 author validator: { a ->
 assert a != Book.findByTitle().author "My Book"
 }
}

The above code can lead to a in Grails 1.2. The solution is to run the query in a newStackOverflowError
Hibernate (which is recommended in general as doing Hibernate work during flushing can cause othersession
issues):

static constraints = {
 author validator: { a ->
 Book.withNewSession {
 assert a != Book.findByTitle().author "My Book"
 }
 }
}

Upgrading from Grails 1.0.x

http://grails.org/doc/latest/ref/Tags/javascript.html
http://grails.org/doc/latest/ref/Tags/render.html

9

Groovy 1.6
Grails 1.1 and above ship with Groovy 1.6 and no longer supports code compiled against Groovy 1.5. If you have a
library that is written in Groovy 1.5 you will need to recompile it against Groovy 1.6 before using it with Grails 1.1.

Java 5.0
Grails 1.1 now no longer supports JDK 1.4, if you wish to continue using Grails then it is recommended you stick to
the Grails 1.0.x stream until you are able to upgrade your JDK.

Configuration Changes
1) The setting has been renamed to grails.testing.reports.destDir

 for consistency.grails.project.test.reports.dir
2) The following settings have been moved from to grails-app/conf/Config.groovy

:grails-app/conf/BuildConfig.groovy

grails.config.base.webXml
grails.project.war.file (renamed from)grails.war.destFile
grails.war.dependencies
grails.war.copyToWebApp
grails.war.resources

3) The option is no longer supported, since Java 5.0 is now the baselinegrails.war.java5.dependencies
(see above).
4) The use of jsessionid (now considered harmful) is disabled by default. If your application requires jsessionid you
can re-enable its usage by adding the following to :grails-app/conf/Config.groovy

grails.views.enable.jsessionid=true

5) The syntax used to configure Log4j has changed. See the user guide section on for more information.Logging

Plugin Changes
Since 1.1, Grails no longer stores plugins inside your directory by default. This mayPROJECT_HOME/plugins
result in compilation errors in your application unless you either re-install all your plugins or set the following
property in :grails-app/conf/BuildConfig.groovy

grails.project.plugins.dir="./plugins"

Script Changes
1) If you were previously using Grails 1.0.3 or below the following syntax is no longer support for importing scripts
from GRAILS_HOME:

Ant.property(environment:) "env"
grailsHome = Ant.antProject.properties."env.GRAILS_HOME"
includeTargets << File ()new "${grailsHome}/scripts/Bootstrap.groovy"

Instead you should use the new method to import a named script:grailsScript

includeTargets << grailsScript()"Bootstrap.groovy"

2) Due to an upgrade to Gant all references to the variable should be changed to .Ant ant
3) The root directory of the project is no long on the classpath, the result is that loading a resource like this will no
longer work:

def stream = getClass().classLoader.getResourceAsStream()"grails-app/conf/my-config.xml"

10

Instead you should use the Java File APIs with the property:basedir

new File().withInputStream { stream ->"${basedir}/grails-app/conf/my-config.xml"
 // read the file
}

Command Line Changes
The and commands no longer exist and have been replaced by an argumentrun-app-https run-war-https
to :run-app

grails run-app -https

Data Mapping Changes
1) Enum types are now mapped using their String value rather than the ordinal value. You can revert to the old
behavior by changing your mapping as follows:

static mapping = {
 someEnum enumType:"ordinal"
}

2) Bidirectional one-to-one associations are now mapped with a single column on the owning side and a foreign key
reference. You shouldn't need to change anything, however you may want to drop the column on the inverse side as
it contains duplicate data.

REST Support
Incoming XML requests are now no longer automatically parsed. To enable parsing of REST requests you can do so
using the argument inside a URL mapping:parseRequest

"/book"(controller: ,parseRequest:)"book" true

Alternatively, you can use the new argument, which enables parsing by default:resource

"/book"(resource:)"book"

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the command which isgrails
used in the following manner:

grails [command name]

In this case the command you need to execute is :create-app

grails create-app helloworld

This will create a new directory inside the current one that contains the project. You should now navigate to this
directory in terminal:

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/create-app.html

11

cd helloworld

2.4 A Hello World Example

To implement the typical "hello world!" example run the command:create-controller

grails create-controller hello

This will create a new controller (Refer to the section on for more information) in the Controllers
 directory called .grails-app/controllers HelloController.groovy

Controllers are capable of dealing with web requests and to fulfil the "hello world!" use case our implementation
needs to look like the following:

class HelloController {
 def world = {
 render "Hello World!"
 }
}

Job done. Now start-up the container with another new command called :run-app

grails run-app

This will start-up a server on port 8080 and you should now be able to access your application with the URL:
http://localhost:8080/helloworld
The result will look something like the following screenshot:

This is the Grails intro page which is rendered by the file. You will note it has a detectedweb-app/index.gsp
the presence of your controller and clicking on the link to our controller we can see the text "Hello World!" printed to
the browser window.

2.5 Getting Set-up in an IDE

http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/run-app.html

12

IntelliJ IDEA
 and the plug-in offer good support for Groovy & Grails developer. Refer to the section on IntelliJ IDEA JetGroovy

 support on the JetBrains website for a feature overview.Groovy and Grails
To integrate Grails 1.2 to with IntelliJ run the following command to generate appropriate project files:

grails integrate-with --intellij

NetBeans
A good Open Source alternative is Sun's NetBeans, which provides a Groovy/Grails plugin that automatically
recognizes Grails projects and provides the ability to run Grails applications in the IDE, code completion and
integration with Sun's Glassfish server. For an overview of features see the guide on the GrailsNetBeans Integration
website which was written by the NetBeans team.

Eclipse
We recommend that users of looking to develop Grails application take a look at ,Eclipse SpringSource Tool Suite
which offers built in support for Grails including automatic classpath management, a GSP editor and quick access to
Grails commands. See the page for an overview.STS Integration

TextMate
Since Grails' focus is on simplicity it is often possible to utilize more simple editors and on the Mac has anTextMate
excellent Groovy/Grails bundle available from the .Texmate bundles SVN
To integrate Grails 1.2 to with TextMate run the following command to generate appropriate project files:

grails integrate-with --textmate

Alternatively TextMate can easily open any project with its command line integration by issuing the following
command from the root of your project:

mate .

2.6 Convention over Configuration

Grails uses "convention over configuration" to configure itself. This typically means that the name and location of
files is used instead of explicit configuration, hence you need to familiarize yourself with the directory structure
provided by Grails.
Here is a breakdown and links to the relevant sections:

grails-app - top level directory for Groovy sources
conf - .Configuration sources
controllers - - The C in MVC.Web controllers
domain - The .application domain
i18n - Support for .internationalization (i18n)
services - The .service layer
taglib - .Tag libraries
views - .Groovy Server Pages

scripts - .Gant scripts
src - Supporting sources

groovy - Other Groovy sources
java - Other Java sources

test - .Unit and integration tests

2.7 Running an Application

Grails applications can be run with the built in Tomcat server using the command which will load a serverrun-app
on port 8080 by default:

http://www.jetbrains.com/idea
http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.grails.org/NetBeans+Integration
http://www.eclipse.org/
http://www.springsource.com/products/sts
http://www.grails.org/STS+Integration
http://macromates.com/
http://wiki.macromates.com/Main/SubversionCheckout
http://grails.org/doc/latest/ref/Command Line/run-app.html

13

grails run-app

You can specify a different port by using the argument:server.port

grails -Dserver.port=8090 run-app

More information on the command can be found in the reference guide.run-app

2.8 Testing an Application

The commands in Grails automatically create integration tests for you within the create-*
 directory. It is of course up to you to populate these tests with valid test logic, informationtest/integration

on which can be found in the section on . However, if you wish to execute tests you can run the Testing test-app
command as follows:

grails test-app

Grails also automatically generates an Ant which can also run the tests by delegating to Grails' build.xml test-app
command:

ant test

This is useful when you need to build Grails applications as part of a continuous integration platform such as
CruiseControl.

2.9 Deploying an Application

Grails applications are deployed as Web Application Archives (WAR files), and Grails includes the commandwar
for performing this task:

grails war

This will produce a WAR file in the root of your project which can then be deployed as per your containers
instructions.

NEVER deploy Grails using the command as this command sets Grails up forrun-app
auto-reloading at runtime which has a severe performance and scalability implication

When deploying Grails you should always run your containers JVM with the option and with sufficient-server
memory allocation. A good set of VM flags would be:

-server -Xmx512M

2.10 Creating Artefacts

Grails ships with a few convenience targets such as , and so on that will create create-controller create-domain-class
 and different artefact types for you.Controllers

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/doc/latest/ref/Command Line/war.html
http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html

14

These are merely for your convenience and you can just as easily use an IDE or your
favourite text editor.

For example to create the basis of an application you typically need a :domain model

grails create-domain-class book

This will result in the creation of a domain class at such as:grails-app/domain/Book.groovy

class Book {
}

There are many such commands that can be explored in the command line reference guide.create-*

2.10 Supported Java EE Containers

Grails runs on any Servlet 2.4 and above container and is known to work on the following specific container
products:

Tomcat 5.5
Tomcat 6.0
SpringSource tc Server
SpringSource dm Server 1.0
GlassFish v1 (Sun AS 9.0)
GlassFish v2 (Sun AS 9.1)
GlassFish v3 Prelude
Sun App Server 8.2
Websphere 6.1
Websphere 5.1
Resin 3.2
Oracle AS
JBoss 4.2
Jetty 6.1
Jetty 5
Weblogic 7/8/9/10

Some containers have bugs however, which in most cases can be worked around. A list of known deployment issues
can be found on the Grails wiki.

2.11 Generating an Application

To get started quickly with Grails it is often useful to use a feature called to generate the skeleton of anScaffolding
application. To do this use one of the commands such as , which will generate a generate-* generate-all controller
and the relevant :views

grails generate-all Book

http://grails.org/Deployment
http://grails.org/doc/latest/ref/Command Line/generate-all.html

15

3. Configuration

It may seem odd that in a framework that embraces "convention-over-configuration" that we tackle this topic now,
but since what configuration there is typically a one off, it is best to get it out the way.
With Grails' default settings you can actually develop and application without doing any configuration whatsoever.
Grails ships with an embedded container and in-memory HSQLDB meaning there isn't even a database to set-up.
However, typically you want to set-up a real database at some point and the way you do that is described in the
following section.

3.1 Basic Configuration

For general configuration Grails provides a file called . This file usesgrails-app/conf/Config.groovy
Groovy's which is very similar to Java properties files except it is pure Groovy hence you can re-useConfigSlurper
variables and use proper Java types!
You can add your own configuration in here, for example:

foo.bar.hello = "world"

Then later in your application you can access these settings in one of two ways. The most common is via the
api:org.codehaus.groovy.grails.commons.GrailsApplication object, which is available as a variable in controllers and
tag libraries:

assert == grailsApplication.config.foo.bar.hello"world"

The other way involves getting a reference to the api:org.codehaus.groovy.grails.commons.ConfigurationHolder
class that holds a reference to the configuration object:

import org.codehaus.groovy.grails.commons.*
…
def config = ConfigurationHolder.config
assert == config.foo.bar.hello"world"

3.1.1 Built in options

Grails also provides the following configuration options:

grails.config.locations - The location of properties files or addition Grails Config files that should
be merged with main configuration
grails.enable.native2ascii - Set this to false if you do not require native2ascii conversion of
Grails i18n properties files
grails.views.default.codec - Sets the default encoding regime for GSPs - can be one of 'none',
'html', or 'base64' (default: 'none'). To reduce risk of XSS attacks, set this to 'html'.
grails.views.gsp.encoding - The file encoding used for GSP source files (default is 'utf-8')
grails.mime.file.extensions - Whether to use the file extension to dictate the mime type in
Content Negotiation
grails.mime.types - A map of supported mime types used for Content Negotiation
grails.serverURL - A string specifying the server URL portion of absolute links, including server name
e.g. grails.serverURL="http://my.yourportal.com". See .createLink

War generation

grails.project.war.file - Sets the location where the command should place the generatedwar
WAR file
grails.war.dependencies - A closure containing Ant builder syntax or a list of JAR filenames.
Allows you to customise what libaries are included in the WAR file.
grails.war.java5.dependencies - A list of the JARs that should be included in the WAR file for
JDK 1.5 and above.

http://groovy.codehaus.org/ConfigSlurper
http://grails.org/doc/latest/ref/Tags/createLink.html
http://grails.org/doc/latest/ref/Command Line/war.html

16

grails.war.copyToWebApp - A closure containing Ant builder syntax that is legal inside an Ant copy,
for example "fileset()". Allows you to control what gets included in the WAR file from the "web-app"
directory.
grails.war.resources - A closure containing Ant builder syntax. Allows the application to do any
other pre-warring stuff it needs to.

For more information on using these options, see the section on deployment

3.1.2 Logging

Logging Basics
Grails uses its common configuration mechanism to configure the underlying log system. To configureLog4j
logging you must modify the file located in the directory.Config.groovy grails-app/conf
This single file allows you to specify separate logging configurations for , ,Config.groovy development test
and . Grails processes the and configures Log4j appropriately.production environments Config.groovy
Since 1.1 Grails provides a Log4j DSL, that you can use to configure Log4j an example of which can be seen below:

log4j = {
 error 'org.codehaus.groovy.grails.web.servlet', // controllers
 'org.codehaus.groovy.grails.web.pages' // GSP
 warn 'org.mortbay.log'
}

Essentially, each method translates into a log level and you can pass the names of the packages you want to log at
that level as arguments to the method.
Some useful loggers include:

org.codehaus.groovy.grails.commons - Core artefact information such as class loading etc.
org.codehaus.groovy.grails.web - Grails web request processing
org.codehaus.groovy.grails.web.mapping - URL mapping debugging
org.codehaus.groovy.grails.plugins - Log plugin activity
org.springframework - See what Spring is doing
org.hibernate - See what Hibernate is doing

The Root Logger
The Root logger is the logger that all other loggers inherit from. You can configure the Root logger using the root
method:

root {
 error()
 additivity = true
}

The above example configures the root logger to log messages at the error level and above to the default standard out
appender. You can also configure the root logger to log to one or more named appenders:

appenders {
 file name:'file', file:'/ /logs/mylog.log'var
}
root {
 debug 'stdout', 'file'
 additivity = true
}

Here the root logger will log to two appenders - the default 'stdout' appender and a 'file' appender.
You can also configure the root logger from the argument passed into the Log4J closure:

http://logging.apache.org/log4j/1.2/index.html

17

log4j = { root ->
 root.level = org.apache.log4j.Level.DEBUG
 …
}

The closure argument "root" is an instance of , so refer to the API documentationorg.apache.log4j.Logger
for Log4J to find out what properties and methods are available to you.

Custom Appenders
Using the Log4j you can define custom appenders. The following appenders are available by default:

jdbc - An appender that logs to a JDBC connection
console - An appender that logs to standard out
file - An appender that logs to a file
rollingFile - An appender that logs to rolling set of files

For example to configure a rolling file appender you can do:

log4j = {
 appenders {
 rollingFile name: , maxFileSize:1024, file:"myAppender" "/tmp/logs/myApp.log"
 }
}

Each argument passed to the appender maps to a property of underlying class. The example above sets the Appender
, and properties of the class.name maxFileSize file RollingFileAppender

If you prefer to simply create the appender programmatically yourself, or you have your own appender
implementation then you can simply call the method and appender instance:appender

import org.apache.log4j.*
log4j = {
 appenders {
 appender RollingFileAppender(name: , maxFileSize:1024, file:)new "myAppender" "/tmp/logs/myApp.log"
 }
}

You can then log to a particular appender by passing the name as a key to one of the log level methods from the
previous section:

error myAppender:"org.codehaus.groovy.grails.commons"

Custom Layouts
By default the Log4j DSL assumes that you want to use a . However, there are other layouts availablePatternLayout
including:

xml - Create an XML log file
html - Creates an HTML log file
simple - A simple textual log
pattern - A Pattern layout

You can specify custom patterns to an appender using the setting:layout

log4j = {
 appenders {
 console name:'customAppender', layout:pattern(conversionPattern: '%c{2} %m%n')
 }
}

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Appender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

18

This also works for the built-in appender "stdout", which logs to the console:

log4j = {
 appenders {
 console name:'stdout', layout:pattern(conversionPattern: '%c{2} %m%n')
 }
}

Full stacktraces
When exceptions occur, there can be an awful lot of noise in the stacktrace from Java and Groovy internals. Grails
filters these typically irrelevant details and restricts traces to non-core Grails/Groovy class packages.
When this happens, the full trace is always written to the logger. This logs to a file called StackTrace

 - but you can change this in your to do anything you like. For example ifstacktrace.log Config.groovy
you prefer full stack traces to go to standard out you can add this line:

error stdout:"StackTrace"

You can completely disable stacktrace filtering by setting the VM property to grails.full.stacktrace
:true

grails -Dgrails.full.stacktrace= run-apptrue

Logging by Convention
All application artefacts have a dynamically added property. This includes , , taglog domain classes controllers
libraries and so on. Below is an example of its usage:

def foo = "bar"
log.debug "The value of foo is $foo"

Logs are named using the convention . Below is an example ofgrails.app.<artefactType>.ClassName
how to configure logs for different Grails artefacts:

log4j = {
 // Set level all application artefactsfor
 info "grails.app"
 // Set a specific controllerfor
 debug "grails.app.controller.YourController"
 // Set a specific domain classfor
 debug "grails.app.domain.Book"
 // Set all taglibsfor
 info "grails.app.tagLib"
}

The artefacts names are dictated by convention, some of the common ones are listed below:

bootstrap - For bootstrap classes
dataSource - For data sources
tagLib - For tag libraries
service - For service classes
controller - For controllers
domain - For domain entities

3.1.3 GORM

Grails provides the following GORM configuration options:

19

grails.gorm.failOnError - If set to , causes the save() method on domain classes to throw a true
 if fails during a save. This option may alsograils.validation.ValidationException validation

be assigned a list of Strings representing package names. If the value is a list of Strings then the failOnError
behavior will only be applied to domain classes in those packages (including sub-packages). See the save
method docs for more information.

Enable failOnError for all domain classes…

grails.gorm.failOnError=true

Enable failOnError for domain classes by package…

grails.gorm.failOnError = ['com.companyname.somepackage', 'com.companyname.someotherpackage']

grails.gorm.autoFlush = If set to , causes the , and methods to flush thetrue merge save delete
session, replacing the need to do something like .save(flush: true)

3.2 Environments

Per Environment Configuration
Grails supports the concept of per environment configuration. Both the file and the Config.groovy

 file within the directory can take advantage of per environmentDataSource.groovy grails-app/conf
configuration using the syntax provided by As an example consider the following default ConfigSlurper

 definition provided by Grails:DataSource

dataSource {
 pooled = false
 driverClassName = "org.hsqldb.jdbcDriver"
 username = "sa"
 password = ""
}
environments {
 development {
 dataSource {
 dbCreate = // one of 'create', 'createeate-drop','update'"create-drop"
 url = "jdbc:hsqldb:mem:devDB"
 }
 }
 test {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:mem:testDb"
 }
 }
 production {
 dataSource {
 dbCreate = "update"
 url = "jdbc:hsqldb:file:prodDb;shutdown= "true
 }
 }
}

Notice how the common configuration is provided at the top level and then an block specifies perenvironments
environment settings for the and properties of the . This syntax can also be useddbCreate url DataSource
within .Config.groovy

Packaging and Running for Different Environments
Grails' has built in capabilities to execute any command within the context of a specific environment.command line
The format is:

grails [environment] [command name]

http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/merge.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://groovy.codehaus.org/ConfigSlurper.

20

In addition, there are 3 preset environments known to Grails: , , and for , dev prod test development
 and . For example to create a WAR for the environment you could do:production test test

grails test war

If you have other environments that you need to target you can pass a variable to any command:grails.env

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection
Within your code, such as in a Gant script or a bootstrap class you can detect the environment using the
api:grails.util.Environment class:

import grails.util.Environment
...

(Environment.current) {switch
 Environment.DEVELOPMENT:case
 configureForDevelopment()
 break
 Environment.PRODUCTION:case
 configureForProduction()
 break
}

Per Environment Bootstrapping
Its often desirable to run code when your application starts up on a per-environment basis. To do so you can use the

 file's support for per-environment execution:grails-app/conf/BootStrap.groovy

def init = { ServletContext ctx ->
 environments {
 production {
 ctx.setAttribute(,)"env" "prod"
 }
 development {
 ctx.setAttribute(,)"env" "dev"
 }
 }
 ctx.setAttribute(,)"foo" "bar"
}

Generic Per Environment Execution
The previous example uses the class internally to execute. You canBootStrap grails.util.Environment
also use this class yourself to execute your own environment specific logic:

Environment.executeForCurrentEnvironment {
 production {
 // something in productiondo
 }
 development {
 // something only in developmentdo
 }
}

3.3 The DataSource

Since Grails is built on Java technology setting up a data source requires some knowledge of JDBC (the technology
that doesn't stand for Java Database Connectivity).
Essentially, if you are using another database other than HSQLDB you need to have a JDBC driver. For example for

21

MySQL you would need Connector/J
Drivers typically come in the form of a JAR archive. Drop the JAR into your project's directory.lib
Once you have the JAR in place you need to get familiar Grails' DataSource descriptor file located at

. This file contains the dataSource definition which includes thegrails-app/conf/DataSource.groovy
following settings:

driverClassName - The class name of the JDBC driver
username - The username used to establish a JDBC connection
password - The password used to establish a JDBC connection
url - The JDBC URL of the database
dbCreate - Whether to auto-generate the database from the domain model or not
pooled - Whether to use a pool of connections (defaults to true)
logSql - Enable SQL logging to stdout
dialect - A String or Class that represents the Hibernate dialect used to communicate with the database.
See the package for available dialects.org.hibernate.dialect
properties - Extra properties to set on the DataSource bean. See the Commons DBCP BasicDataSource
documentation.

A typical configuration for MySQL may be something like:

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost/yourDB"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "yourUser"
 password = "yourPassword"
}

When configuring the DataSource do not include the type or the def keyword before any of
the configuration settings as Groovy will treat these as local variable definitions and they will
not be processed. For example the following is invalid:

dataSource {
 pooled = // type declaration results in local variableboolean true
 …
}

Example of advanced configuration using extra properties:

dataSource {
 pooled = true
 dbCreate = "update"
 url = "jdbc:mysql://localhost/yourDB"
 driverClassName = "com.mysql.jdbc.Driver"
 dialect = org.hibernate.dialect.MySQL5InnoDBDialect
 username = "yourUser"
 password = "yourPassword"
 properties {
 maxActive = 50
 maxIdle = 25
 minIdle = 5
 initialSize = 5
 minEvictableIdleTimeMillis = 60000
 timeBetweenEvictionRunsMillis = 60000
 maxWait = 10000
 validationQuery = "/* ping */"
 }
}

3.3.1 DataSources and Environments

http://www.mysql.com/downloads/connector/j/
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/dialect/package-summary.html
http://commons.apache.org/dbcp/api-1.2.2/org/apache/commons/dbcp/BasicDataSource.html

22

The previous example configuration assumes you want the same config for all environments: production, test,
development etc.
Grails' DataSource definition is "environment aware", however, so you can do:

dataSource {
 // common settings here
}
environments {
 production {
 dataSource {
 url = "jdbc:mysql://liveip.com/liveDb"
 }
 }
}

3.3.2 JNDI DataSources

Referring to a JNDI DataSource
Since many Java EE containers typically supply instances via the DataSource Java Naming and Directory

 (JNDI). Sometimes you are required to look-up a via JNDI.Interface DataSource
Grails supports the definition of JNDI data sources as follows:

dataSource {
 jndiName = "java:comp/env/myDataSource"
}

The format on the JNDI name may vary from container to container, but the way you define the DataSource
remains the same.

Configuring a Development time JNDI resource
The way in which you configure JNDI data sources at development time is plugin dependent. Using the Tomcat
plugin you can define JNDI resources using the setting in grails.naming.entries

:grails-app/conf/Config.groovy

grails.naming.entries = [
 : ["bean/MyBeanFactory"
 auth: ,"Container"
 type: ,"com.mycompany.MyBean"
 factory: ,"org.apache.naming.factory.BeanFactory"
 bar: "23"
],
 : ["jdbc/EmployeeDB"
 type: , //required"javax.sql.DataSource"
 auth: , // optional"Container"
 description: , //optional"Data source Foo"for
 driverClassName: ,"org.hsql.jdbcDriver"
 url: ,"jdbc:HypersonicSQL:database"
 username: ,"dbusername"
 password: ,"dbpassword"
 maxActive: ,"8"
 maxIdle: "4"
],
 : ["mail/session"
 type: "javax.mail.Session,

Container auth: " ",
mail.smtp.host localhost" " ": "

]
]

3.3.3 Automatic Database Migration

The property of the definition is important as it dictates what Grails should do at runtimedbCreate DataSource
with regards to automatically generating the database tables from classes. The options are:GORM

create-drop - Drops and re-creates the database when Grails starts, and drops the schema at the end of a

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/
http://grails.org/plugin/tomcat

23

clean shutdown.
create - Drops and re-creates the database when Grails starts, but doesn't drop the schema at the end of a
clean shutdown.
update - Creates the database if it doesn't exist, and modifies it if it does exist. The modifications are rather
basic though, and generally only include adding missing columns and tables. Will not drop or modify
anything.
validate - Makes no changes to your database. Compares the configuration with the existing database
schema and reports warnings.
any other value - does nothing. Don't specify any value if you want to manage databases yourself or by using
a 3rd-party tool.

Both and will destroy all existing data hence use with caution!create-drop create

In mode is by default set to "create-drop":development dbCreate

dataSource {
 dbCreate = // one of 'create', 'create-drop','update'"create-drop"
}

What this does is automatically drop and re-create the database tables on each restart of the application. Obviously
this may not be what you want in production.

Although Grails does not currently support Rails-style Migrations out of the box, there are
currently three plugins that provide similar capabilities to Grails: Autobase
(http://wiki.github.com/RobertFischer/autobase), The plugin and the LiquiBase DbMigrate
plugin both of which are available via the commandgrails list-plugins

3.3.4 Transaction-aware DataSource Proxy

The actual bean is wrapped in a transaction-aware proxy so you will be given the connection that'sdataSource
being used by the current transaction or Hibernate if one is active.Session
If this were not the case, then retrieving a connection from the would be a new connection, and youdataSource
wouldn't be able to see changes that haven't been committed yet (assuming you have a sensible transaction isolation
setting, e.g. or better).READ_COMMITTED
The "real" unproxied is still available to you if you need access to it; its bean name is dataSource

.dataSourceUnproxied
You can access this bean like any other Spring bean, i.e. using dependency injection:

class MyService {
 def dataSourceUnproxied
 …
}

or by pulling it from the :ApplicationContext

def dataSourceUnproxied = ctx.dataSourceUnproxied

3.4 Externalized Configuration

The default configuration file in is fine in the majority of cases, but thereConfig.groovy grails-app/conf
may be circumstances where you want to maintain the configuration in a file the main application structure.outside
For example if you are deploying to a WAR some administrators prefer the configuration of the application to be

http://www.liquibase.org/manual/grails
http://code.google.com/p/dbmigrate/wiki/Grails

24

externalized to avoid having to re-package the WAR due to a change of configuration.
In order to support deployment scenarios such as these the configuration can be externalized. To do so you need to
point Grails at the locations of the configuration files Grails should be using by adding a

 setting in :grails.config.locations Config.groovy

grails.config.locations = [,"classpath:${appName}-config.properties"
 ,"classpath:${appName}-config.groovy"
 ,"file:${userHome}/.grails/${appName}-config.properties"
]"file:${userHome}/.grails/${appName}-config.groovy"

In the above example we're loading configuration files (both Java properties files and configurations)ConfigSlurper
from different places on the classpath and files located in .USER_HOME
Ultimately all configuration files get merged into the property of theconfig
api:org.codehaus.groovy.grails.commons.GrailsApplication object and are hence obtainable from there.

Grails also supports the concept of property place holders and property override configurers
as defined in For more information on these see the section on Spring Grails and Spring

3.5 Versioning

Versioning Basics
Grails has built in support for application versioning. When you first create an application with the create-app
command the version of the application is set to . The version is stored in the application meta data file called 0.1

 in the root of the project.application.properties
To change the version of your application you can run the command:set-version

grails set-version 0.2

The version is used in various commands including the command which will append the application version towar
the end of the created WAR file.

Detecting Versions at Runtime
You can detect the application version using Grails' support for application metadata using the
api:org.codehaus.groovy.grails.commons.GrailsApplication class. For example within there is an implicit controllers

 variable that can be used:grailsApplication

def version = grailsApplication.metadata['app.version']

If it is the version of Grails you need you can use:

def grailsVersion = grailsApplication.metadata['app.grails.version']

or the class:GrailsUtil

import grails.util.*
def grailsVersion = GrailsUtil.grailsVersion

3.6 Project Documentation

Since Grails 1.2, the documentation engine that powers the creation of this documentation is available to your Grails

http://groovy.codehaus.org/ConfigSlurper
http://www.springframework.org.
http://grails.org/doc/latest/ref/Command Line/create-app.html
http://grails.org/doc/latest/ref/Command Line/set-version.html
http://grails.org/doc/latest/ref/Command Line/war.html
http://grails.org/doc/latest/ref/Controllers/grailsApplication.html

25

projects.
The documentation engine uses a variation on the Textile syntax to automatically create project documentation with
smart linking, formatting etc.

Creating project documentation
To use the engine you need to follow a few conventions. Firstly you need to create a directorysrc/docs/guide
and then have numbered text files using the format. For example:gdoc

+ src/docs/guide/1. Introduction.gdoc
+ src/docs/guide/2. Getting Started.gdoc

The title of each chapter is taken from the file name. The order is dictated by the numerical value at the beginning of
the file name.

Creating reference items
Reference items appear in the left menu on the documentation and are useful for quick reference documentation.
Each reference item belongs to a category and a category is a directory located in the directory.src/docs/ref
For example say you defined a new method called , that belongs to a category called renderPDF Controllers
this can be done by creating a gdoc text file at the following location:

+ src/ref/Controllers/renderPDF.gdoc

Configuring Output Properties
There are various properties you can set within your file that customizegrails-app/conf/Config.groovy
the output of the documentation such as:

grails.doc.authors - The authors of the documentation
grails.doc.license - The license of the software
grails.doc.copyright - The copyright message to display
grails.doc.footer - The footer to use

Other properties such as the name of the documentation and the version are pulled from your project itself.

Generating Documentation
Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an
HTML version of the documentation using the command:

grails docs

This command will output an which can be opened to view your documentation.docs/manual/index.html

Documentation Syntax
As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk
you through the syntax basics.

Basic Formatting

Monospace: monospace

@monospace@

Italic: italic

italic

26

Bold: bold

bold

Image:

!http://grails.org/images/new/grailslogo_topNav.png!

Linking

There are several ways to create links with the documentation generator. A basic external link can either be defined
using confluence or textile style markup:

[SpringSource|http://www.springsource.com/] or :http://www.springsource.com/"SpringSource"

For links to other sections inside the user guide you can use the prefix:guide:

[Intro|guide:1. Introduction]

The documentation engine will warn you if any links to sections in your guide break. Sometimes though it is
preferable not to hard code the actual names of guide sections since you may move them around. To get around this
you can create an alias inside :grails-app/conf/Config.groovy

grails.doc.alias.intro="1. Introduction"

And then the link becomes:

[Intro|guide:intro]

This is useful since if you linked the to "1. Introduction" chapter many times you would have to change all of those
links.
To link to reference items you can use a special syntax:

[controllers|renderPDF]

In this case the category of the reference item is on the left hand side of the | and the name of the reference item on
the right.
Finally, to link to external APIs you can use the prefix. For example:api:

[|api:java.lang.]String String

The documentation engine will automatically create the appropriate javadoc link in this case. If you want to add
additional APIs to the engine you can configure them in . For example:grails-app/conf/Config.groovy

27

grails.doc.api.org.hibernate="http://docs.jboss.org/hibernate/stable/core/api"

The above example configures classes within the package to link to the Hibernate website's APIorg.hibernate
docs.

Lists and Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3.<space>Heading3
h4.<space>Heading4

Unordered lists are defined with the use of the * character:

* item 1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

item 1

Tables can be created using the macro:table

Name Number

Albert 46

Wilma 1348

James 12

{table}
 Name | * *Number
 Albert | 46
 Wilma | 1348
 James | 12
{table}

Code and Notes

You can define code blocks with the macro:code

class Book {
 titleString
}

28

{code}
class Book {
 titleString
}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can also highlight XML markup:

<hello>world</hello>

{code:xml}
<hello>world</hello>
{code}

There are also a couple of macros for displaying notes and warnings:
Note:

This is a note!

{note}
This is a note!
{note}

Warning:

This is a warning!

{warning}
This is a warning!
{warning}

3.7 Dependency Resolution

In order to control how JAR dependencies are resolved Grails features (since version 1.2) a dependency resolution
DSL that allows you to control how dependencies for applications and plugins are resolved.
Inside the file you can specify a grails-app/conf/BuildConfig.groovy

 property that configures how dependencies are resolved:grails.project.dependency.resolution

grails.project.dependency.resolution = {
 // config here
}

The default configuration looks like the following:

29

grails.project.dependency.resolution = {
 inherits // inherit Grails' dependencies"global" default
 log // log level of Ivy resolver, either 'error',"warn"
 // 'warn', 'info', 'debug' or 'verbose'
 repositories {
 grailsHome()
 // uncomment the below to enable remote dependency resolution
 // from Maven repositoriespublic
 //mavenCentral()
 //mavenRepo "http://snapshots.repository.codehaus.org"
 //mavenRepo "http://repository.codehaus.org"
 //mavenRepo "http://download.java.net/maven/2/"
 //mavenRepo "http://repository.jboss.com/maven2/
 }
 dependencies {
 // specify dependencies here under either 'build', 'compile',
 // 'runtime', 'test' or 'provided' scopes, e.g.
 // runtime 'com.mysql:mysql-connector-java:5.1.5'
 }
}

The details of the above will be explained in the next few sections.

3.7.1 Configurations and Dependencies

Grails features 5 dependency resolution configurations (or 'scopes') which you can take advantage of:

: Dependencies for the build system onlybuild
: Dependencies for the compile stepcompile
: Dependencies needed at runtime but not for compilation (see above)runtime

: Dependencies needed for testing but not at runtime (see above)test
: Dependencies needed at development time, but not during WAR deploymentprovided

Within the block you can specify a dependency that falls into one of these configurations bydependencies
calling the equivalent method. For example if your application requires the MySQL driver to function at runtime
you can specify as such:

runtime 'com.mysql:mysql-connector-java:5.1.5'

The above uses the string syntax which is . You can also use a map-based syntax:group:name:version

runtime group:'com.mysql', name:'mysql-connector-java', version:'5.1.5'

Multiple dependencies can be specified by passing multiple arguments:

runtime 'com.mysql:mysql-connector-java:5.1.5',
 'net.sf.ehcache:ehcache:1.6.1'
// Or
runtime(
 [group:'com.mysql', name:'mysql-connector-java', version:'5.1.5'],
 [group:'net.sf.ehcache', name:'ehcache', version:'1.6.1']
)

3.7.2 Dependency Repositories

Remote Repositories
Grails, when installed, does not use any remote public repositories. There is a default repositorygrailsHome()
that will locate the JAR files Grails needs from your Grails installation. If you want to take advantage of a public
repository you need to specify as such inside the block:repositories

30

repositories {
 mavenCentral()
}

In this case the default public Maven repository is specified. To use the SpringSource Enterprise Bundle Repository
you can use the method:ebr()

repositories {
 ebr()
}

You can also specify a specific Maven repository to use by URL:

repositories {
 mavenRepo "http://repository.codehaus.org"
}

Local Resolvers
If you do not wish to use a public Maven repository you can specify a flat file repository:

repositories {
 flatDir name:'myRepo', dirs:'/path/to/repo'
}

Custom Resolvers
If all else fails since Grails builds on Apache Ivy you can specify an Ivy resolver:

/*
 * Configure our resolver.
 */
def libResolver = org.apache.ivy.plugins.resolver.URLResolver()new
['libraries', 'builds'].each {
 libResolver.addArtifactPattern()"http://my.repository/${it}/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]"
 libResolver.addIvyPattern()"http://my.repository/${it}/[organisation]/[module]/[revision]/[type]s/[artifact].[ext]"
}
libResolver.name = "my-repository"
libResolver.settings = ivySettings
resolver libResolver

Authentication
If your repository requires some form of authentication you can specify as such using a block:credentials

credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
}

The above can also be placed in your file using the USER_HOME/.grails/settings.groovy
 setting:grails.project.ivy.authentication

31

grails.project.ivy.authentication = {
 credentials {
 realm = ".."
 host = "localhost"
 username = "myuser"
 password = "mypass"
 }
}

3.7.3 Debugging Resolution

If you are having trouble getting a dependency to resolve you can enable more verbose debugging from the
underlying engine using the method:log

// log level of Ivy resolver, either 'error', 'warn', 'info', 'debug' or 'verbose'
log "warn"

3.7.4 Inherited Dependencies

By default every Grails application inherits a bunch of framework dependencies. This is done through the line:

inherits "global"

Inside the file. If you wish exclude certain inherited dependencies then you can do soBuildConfig.groovy
using the method:excludes

inherits() {"global"
 excludes , "oscache" "ehcache"
}

3.7.5 Dependency Reports

As mentioned in the previous section a Grails application consists of dependencies inherited from the framework, the
plugins installed and the application dependencies itself.
To obtain a report of an application's dependencies you can run the command:dependency-report

grails dependency-report

This will output a report to the directory by default. You can specify whichtarget/dependency-report
configuration (scope) you want a report for by passing an argument containing the configuration name:

grails dependency-report runtime

3.7.6 Plugin JAR Dependencies

Specifying Plugin JAR dependencies
The way in which you specify dependencies for a is identical to how you specify dependencies in anplugin
application. When a plugin is installed into an application the application automatically inherits the dependencies of
the plugin.
If you want to define a dependency that is resolved for use with the plugin but not to the application thenexported
you can set the property of the dependency:exported

http://grails.org/doc/latest/ref/Command Line/dependency-report.html

32

compile('org.hibernate:hibernate-core:3.3.1.GA') {
 exported = false
}

In this can the dependency will be available only to the plugin and not resolved as anhibernate-core
application dependency.

Overriding Plugin JAR Dependencies in Your Application
If a plugin is using a JAR which conflicts with another plugin, or an application dependency then you can override
how a plugin resolves its dependencies inside an application using exclusions. For example:

plugins {
 runtime() {"org.grails.plugins:hibernate:1.3.0"
 excludes "javassist"
 }
}
dependencies {
 runtime "javassist:javassist:3.4.GA"
}

In this case the application explicitly declares a dependency on the "hibernate" plugin and specifies an exclusion
using the method, effectively excluding the javassist library as a dependency.excludes

3.7.7 Maven Integration

When using the Grails Maven plugin, Grails' dependency resolution mechanics are disabled as it is assumed that you
will manage dependencies via Maven's file.pom.xml
However, if you would like to continue using Grails regular commands like , and so on then you canrun-app test-app
tell Grails' command line to load dependencies from the Maven file instead.pom.xml
To do so simply add the following line to your :BuildConfig.groovy

grails.project.dependency.resolution = {
 pom true
 ..
}

The line tells Grails to parse Maven's and load dependencies from there.pom true pom.xml

3.7.8 Deploying to a Maven Repository

You can deploy a Grails project or plugin to a Maven repository using the plugin.maven-publisher
The plugin provides the ability to publish Grails projects and plugins to local and remote Maven repositories. There
are two key additional targets added by the plugin:

maven-install - Installs a Grails project or plugin into your local Maven cache
maven-deploy - Deploys a Grails project or plugin to a remote Maven repository

By default this plugin will automatically generate a valid for you unless a is already present inpom.xml pom.xml
the root of the project, in which case this file will be used.pom.xml

maven-install
The command will install the Grails project or plugin artifact into your local Maven cache:maven-install

grails maven-install

In the case of plugins, the plugin zip file will be installed, whilst for application the application WAR file will be
installed.

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/plugin/maven-publisher

33

maven-deploy
The command will deploy a Grails project or plugin into a remote Maven repository:maven-deploy

grails maven-deploy

It is assumed that you have specified the necessary configuration within a <distributionManagement>
 or that you specify the of the remote repository to deploy to:pom.xml id

grails maven-deploy --repository=myRepo

The argument specifies the 'id' for the repository. You need to configure the details of the repositoryrepository
specified by this 'id' within your file or in your grails-app/conf/BuildConfig.groovy

 file:USER_HOMER/.grails/settings.groovy

grails.project.dependency.distribution = {
 localRepository = "/path/to/my/local"
 remoteRepository(id: , url:)"myRepo" "http://myserver/path/to/repo"
}

The syntax for configuring remote repositories matches the syntax from the element in the AntremoteRepository
Maven tasks. For example the following XML:

<remoteRepository id= url= >"myRepo" "scp://localhost/www/repository"
 <authentication username= privateKey= />"..." "${user.home}/.ssh/id_dsa"
</remoteRepository>

Can be expressed as:

remoteRepository(id: , url:) {"myRepo" "scp://localhost/www/repository"
 authentication username: , privateKey:"..." "${userHome}/.ssh/id_dsa"
}

By default the plugin will try to detect the protocol to use from the URL of the repository (ie "http" from "http://.."
etc.), however if you need to explicitly specify a different protocol you can do:

grails maven-deploy --repository=myRepo --protocol=webdav

The available protocols are:

http
scp
scpexe
ftp
webdav

Groups, Artifacts and Versions
Maven defines the notion of a 'groupId', 'artifactId' and a 'version'. This plugin pulls this information from the Grails
project conventions or plugin descriptor.

Projects

http://maven.apache.org/ant-tasks/reference.html#remoteRepository

34

For applications this plugin will use the Grails application name and version provided by Grails when generating the
 file. To change the version you can run the command:pom.xml set-version

grails set-version 0.2

The Maven will be the same as the project name, unless you specify a different one in Config.groovy:groupId

grails.project.groupId="com.mycompany"

Plugins

With a Grails plugin the and are taken from the following properties in thegroupId version
*GrailsPlugin.groovy descriptor:

String groupId = 'myOrg'
 version = '0.1'String

The 'artifactId' is taken from the plugin name. For example if you have a plugin called the FeedsGrailsPlugin
 will be "feeds". If your plugin does not specify a then this defaults to "org.grails.plugins".artifactId groupId

3.7.9 Plugin Dependencies

As of Grails 1.3 you can declaratively specify dependencies on plugins rather than using the command:install-plugin

plugins {
 runtime ':hibernate:1.2.1'
}

If you don't specify a group id the default plugin group id of is used. You can specify toorg.grails.plugins
use the latest version of a particular plugin by using "latest.integration" as the version number:

plugins {
 runtime ':hibernate:latest.integration'
}

Integration vs. Release
The "latest.integration" version label will also include resolving snapshot versions. If you don't want to include
snapshot versions then you can use the "latest.release" label:

plugins {
 runtime ':hibernate:latest.release'
}

The "latest.release" label only works with Maven compatible repositories. If you have a
regular SVN-based Grails repository then you should use "latest.integration".

And of course if you are using a Maven repository with an alternative group id you can specify a group id:

http://grails.org/doc/latest/ref/Command Line/install-plugin.html

35

plugins {
 runtime 'mycompany:hibernate:latest.integration'
}

Plugin Exclusions
You can control how plugins transitively resolves both plugin and JAR dependencies using exclusions. For example:

plugins {
 runtime(':weceem:0.8') {
 excludes "searchable"
 }
}

Here we have defined a dependency on the "weceem" plugin which transitively depends on the "searchable" plugin.
By using the method you can tell Grails to transitively install the searchable plugin. You canexcludes not
combine this technique to specify an alternative version of a plugin:

plugins {
 runtime(':weceem:0.8') {
 excludes // excludes most recent version"searchable"
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

You can also completely disable transitive plugin installs, in which case no transitive dependencies will be resolved:

plugins {
 runtime(':weceem:0.8') {
 transitive = false
 }
 runtime ':searchable:0.5.4' // specifies a fixed searchable version
}

36

4. The Command Line

Grails' command line system is built on - a simple Groovy wrapper around .Gant Apache Ant
However, Grails takes it a bit further through the use of convention and the command. When you type:grails

grails [command name]

Grails does a search in the following directories for Gant scripts to execute:

USER_HOME/.grails/scripts
PROJECT_HOME/scripts
PROJECT_HOME/plugins/*/scripts
GRAILS_HOME/scripts

Grails will also convert command names that are in lower case form such as run-app into camel case. So typing

grails run-app

Results in a search for the following files:

USER_HOME/.grails/scripts/RunApp.groovy
PROJECT_HOME/scripts/RunApp.groovy
PLUGINS_HOME/*/scripts/RunApp.groovy
GLOBAL_PLUGINS_HOME/*/scripts/RunApp.groovy
GRAILS_HOME/scripts/RunApp.groovy

If multiple matches are found Grails will give you a choice of which one to execute. When Grails executes a Gant
script, it invokes the "default" target defined in that script. If there is no default, Grails will quit with an error.
To get a list and some help about the available commands type:

grails help

Which outputs usage instructions and the list of commands Grails is aware of:

Usage (optionals marked with *):
grails [environment]* [target] [arguments]*
Examples:
grails dev run-app
grails create-app books
Available Targets (type grails help 'target-name' more info):for
grails bootstrap
grails bug-report
grails clean
grails compile
...

Refer to the Command Line reference in left menu of the reference guide for more
information about individual commands

4.1 Creating Gant Scripts

You can create your own Gant scripts by running the command from the root of your project. Forcreate-script
example the following command:

grails create-script compile-sources

http://gant.codehaus.org/
http://ant.apache.org
http://grails.org/doc/latest/ref/Command Line/create-script.html

37

Will create a script called . A Gant script itself is similar to a regularscripts/CompileSources.groovy
Groovy script except that it supports the concept of "targets" and dependencies between them:

target(:) {default "The target is the one that gets executed by Grails"default
 depends(clean, compile)
}
target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}
target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/java" "output"
}

As demonstrated in the script above, there is an implicit variable that allows access to the .ant Apache Ant API

In previous versions of Grails (1.0.3 and below), the variable was , i.e. with a capital firstAnt
letter.

You can also "depend" on other targets using the method demonstrated in the target above.depends default

The default target
In the example above, we specified a target with the explicit name "default". This is one way of defining the default
target for a script. An alternative approach is to use the method:setDefaultTarget()

target(:) {"clean-compile" "Performs a clean compilation on the app's source files."
 depends(clean, compile)
}
target(clean:) {"Clean out things"
 ant.delete(dir:)"output"
}
target(compile:) {"Compile some sources"
 ant.mkdir(dir:)"mkdir"
 ant.javac(srcdir: , destdir:)"src/java" "output"
}
setDefaultTarget()"clean-compile"

This allows you to call the default target directly from other scripts if you wish. Also, although we have put the call
to at the end of the script in this example, it can go anywhere as long as it comes thesetDefaultTarget() after
target it refers to ("clean-compile" in this case).
Which approach is better? To be honest, you can use whichever you prefer - there don't seem to be any major
advantages in either case. One thing we would say is that if you want to allow other scripts to call your "default"
target, you should move it into a shared script that doesn't have a default target at all. We'll talk some more about this
in the next section.

4.2 Re-using Grails scripts

Grails ships with a lot of command line functionality out of the box that you may find useful in your own scripts (See
the command line reference in the reference guide for info on all the commands). Of particular use are the , compile

 and scripts.package bootstrap
The script for example allows you to bootstrap a Spring instance to get access to thebootstrap ApplicationContext
data source and so on (the integration tests use this):

http://ant.apache.org/manual/index.html
http://grails.org/doc/latest/ref/Command Line/compile.html
http://grails.org/doc/latest/ref/Command Line/package.html
http://grails.org/doc/latest/ref/Command Line/bootstrap.html
http://grails.org/doc/latest/ref/Command Line/bootstrap.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

38

includeTargets << grailsScript()"_GrailsBootstrap"
target (' ':) {default "Load the Grails interactive shell"
 depends(configureProxy, packageApp, classpath, loadApp, configureApp)
 Connection c
 {try
 // something with connectiondo
 c = appCtx.getBean('dataSource').getConnection()
 }
 {finally
 c?.close()
 }
}

Pulling in targets from other scripts
Gant allows you to pull in all targets (except "default") from another Gant script. You can then depend upon or
invoke those targets as if they had been defined in the current script. The mechanism for doing this is the

 property. Simply "append" a file or class to it using the left-shift operator:includeTargets

includeTargets << File()new "/path/to/my/script.groovy"
includeTargets << gant.tools.Ivy

Don't worry too much about the syntax using a class, it's quite specialised. If you're interested, look into the Gant
documentation.

Core Grails targets
As you saw in the example at the beginning of this section, you use neither the File- nor the class-based syntax for

 when including core Grails targets. Instead, you should use the special includeTargets grailsScript()
method that is provided by the Grails command launcher (note that this is not available in normal Gant scripts, just
Grails ones).
The syntax for the method is pretty straightforward: simply pass it the name of the Grails scriptgrailsScript()
you want to include, without any path information. Here is a list of Grails scripts that you may want to re-use:

Script Description

_GrailsSettings You really should include this! Fortunately, it is included automatically by all other Grails
scripts bar one (_GrailsProxy), so you usually don't have to include it explicitly.

_GrailsEvents
If you want to fire events, you need to include this. Adds an event(String eventName,

 method. Again, included by almost all other Grails scripts.List args)

_GrailsClasspath Sets up compilation, test, and runtime classpaths. If you want to use or play with them, include
this script. Again, included by almost all other Grails scripts.

_GrailsProxy If you want to access the internet, include this script so that you don't run into problems with
proxies.

_GrailsArgParsing
Provides a target that does what it says on the tin: parses the argumentsparseArguments
provided by the user when they run your script. Adds them to the property.argsMap

_GrailsTest Contains all the shared test code. Useful if you want to add any extra tests.

_GrailsRun
Provides all you need to run the application in the configured servlet container, either normally
(/) or from a WAR file (/).runApp runAppHttps runWar runWarHttps

There are many more scripts provided by Grails, so it is worth digging into the scripts themselves to find out what
kind of targets are available. Anything that starts with an "_" is designed for re-use.

In pre-1.1 versions of Grails, the "_Grails..." scripts were not available. Instead, you typically
include the corresponding command script, for example "Init.groovy" or "Bootstrap.groovy".
Also, in pre-1.0.4 versions of Grails you cannot use the method. Instead,grailsScript()
you must use and specify the script's locationincludeTargets << new File(...)
in full (i.e. $GRAILS_HOME/scripts).

39

Script architecture
You maybe wondering what those underscores are doing in the names of the Grails scripts. That is Grails' way of
determining that a script is _internal_, or in other words that it has not corresponding "command". So you can't run
"grails _grails-settings" for example. That is also why they don't have a default target.
Internal scripts are all about code sharing and re-use. In fact, we recommend you take a similar approach in your own
scripts: put all your targets into an internal script that can be easily shared, and provide simple command scripts that
parse any command line arguments and delegate to the targets in the internal script. Say you have a script that runs
some functional tests - you can split it like this:

./scripts/FunctionalTests.groovy:
includeTargets << File()new "${basedir}/scripts/_FunctionalTests.groovy"
target(:) {default "Runs the functional tests project."for this
 depends(runFunctionalTests)
}
./scripts/_FunctionalTests.groovy:
includeTargets << grailsScript()"_GrailsTest"
target(runFunctionalTests:) {"Run functional tests."
 depends(...)
 …
}

Here are a few general guidelines on writing scripts:

Split scripts into a "command" script and an internal one.
Put the bulk of the implementation in the internal script.
Put argument parsing into the "command" script.
To pass arguments to a target, create some script variables and initialise them before calling the target.
Avoid name clashes by using closures assigned to script variables instead of targets. You can then pass
arguments direct to the closures.

4.3 Hooking into Events

Grails provides the ability to hook into scripting events. These are events triggered during execution of Grails target
and plugin scripts.
The mechanism is deliberately simple and loosely specified. The list of possible events is not fixed in any way, so it
is possible to hook into events triggered by plugin scripts, for which there is no equivalent event in the core target
scripts.

Defining event handlers
Event handlers are defined in scripts called . Grails searches for these scripts in the following_Events.groovy
locations:

USER_HOME/.grails/scripts - user-specific event handlers
PROJECT_HOME/scripts - applicaton-specific event handlers
PLUGINS_HOME/*/scripts - plugin-specific event handlers
GLOBAL_PLUGINS_HOME/*/scripts - event handlers provided by global plugins

Whenever an event is fired, the registered handlers for that event are executed. Note that the registration ofall
handlers is performed automatically by Grails, so you just need to declare them in the relevant _Events.groovy
file.

In versions of Grails prior to 1.0.4, the script was called , that is withoutEvents.groovy
the leading underscore.

Event handlers are blocks defined in , with a name beginning with "event". The following_Events.groovy
example can be put in your /scripts directory to demonstrate the feature:

40

eventCreatedArtefact = { type, name ->
 println "Created $type $name"
}
eventStatusUpdate = { msg ->
 println msg
}
eventStatusFinal = { msg ->
 println msg
}

You can see here the three handlers , , eventCreatedArtefact eventStatusUpdate
. Grails provides some standard events, which are documented in the command line referenceeventStatusFinal

guide. For example the command fires the following events:compile

CompileStart - Called when compilation starts, passing the kind of compile - source or tests
CompileEnd - Called when compilation is finished, passing the kind of compile - source or tests

Triggering events
To trigger an event simply include the Init.groovy script and call the event() closure:

includeTargets << grailsScript()"_GrailsEvents"
event(, [])"StatusFinal" "Super duper plugin action complete!"

Common Events
Below is a table of some of the common events that can be leveraged:

Event Parameters Description

StatusUpdate message Passed a string indicating current script status/progress

StatusError message Passed a string indicating an error message from the current script

StatusFinal message
Passed a string indicating the final script status message, i.e. when
completing a target, even if the target does not exit the scripting
environment

CreatedArtefact artefactType,artefactName Called when a create-xxxx script has completed and created an
artefact

CreatedFile fileName Called whenever a project source filed is created, not including files
constantly managed by Grails

Exiting returnCode Called when the scripting environment is about to exit cleanly

PluginInstalled pluginName Called after a plugin has been installed

CompileStart kind Called when compilation starts, passing the kind of compile - source
or tests

CompileEnd kind Called when compilation is finished, passing the kind of compile -
source or tests

DocStart kind Called when documentation generation is about to start - javadoc or
groovydoc

DocEnd kind Called when documentation generation has ended - javadoc or
groovydoc

SetClasspath rootLoader

Called during classpath initialization so plugins can augment the
classpath with rootLoader.addURL(...). Note that this augments the
classpath event scripts are loaded so you cannot use this to loadafter
a class that your event script needs to import, although you can do this
if you load the class by name.

PackagingEnd none Called at the end of packaging (which is called prior to the Tomcat
server being started and after web.xml is generated)

http://grails.org/doc/latest/ref/Command Line/compile.html

41

4.4 Customising the build

Grails is most definitely an opinionated framework and it prefers convention to configuration, but this doesn't mean
you configure it. In this section, we look at how you can influence and modify the standard Grails build.can't

The defaults
In order to customise a build, you first need to know you can customise. The core of the Grails buildwhat
configuration is the class, which contains quite a bit of useful information. Itgrails.util.BuildSettings
controls where classes are compiled to, what dependencies the application has, and other such settings.
Here is a selection of the configuration options and their default values:

Property Config option Default value

grailsWorkDir grails.work.dir $USER_HOME/.grails/<grailsVersion>

projectWorkDir grails.project.work.dir <grailsWorkDir>/projects/<baseDirName>

classesDir grails.project.class.dir <projectWorkDir>/classes

testClassesDir grails.project.test.class.dir <projectWorkDir>/test-classes

testReportsDir grails.project.test.reports.dir <projectWorkDir>/test/reports

resourcesDir grails.project.resource.dir <projectWorkDir>/resources

projectPluginsDir grails.project.plugins.dir <projectWorkDir>/plugins

globalPluginsDir grails.global.plugins.dir <grailsWorkDir>/global-plugins

verboseCompile grails.project.compile.verbose false

The class has some other properties too, but they should be treated as read-only:BuildSettings

Property Description

baseDir The location of the project.

userHome The user's home directory.

grailsHome The location of the Grails installation in use (may be null).

grailsVersion The version of Grails being used by the project.

grailsEnv The current Grails environment.

compileDependencies A list of compile-time project dependencies as instances.File

testDependencies A list of test-time project dependencies as instances.File

runtimeDependencies A list of runtime-time project dependencies as instances.File

Of course, these properties aren't much good if you can't get hold of them. Fortunately that's easy to do: an instance
of is available to your scripts via the script variable. You can also access itBuildSettings grailsSettings
from your code by using the class, but this isn't recommended.grails.util.BuildSettingsHolder

Overriding the defaults
All of the properties in the first table can be overridden by a system property or a configuration option - simply use
the "config option" name. For example, to change the project working directory, you could either run this command:

grails -Dgrails.project.work.dir=work compile

or add this option to your file:grails-app/conf/BuildConfig.groovy

42

grails.project.work.dir = "work"

Note that the default values take account of the property values they depend on, so setting the project working
directory like this would also relocate the compiled classes, test classes, resources, and plugins.
What happens if you use both a system property and a configuration option? Then the system property wins because
it takes precedence over the file, which in turn takes precedence over the default values.BuildConfig.groovy
The file is a sibling of - the former containsBuildConfig.groovy grails-app/conf/Config.groovy
options that only affect the build, whereas the latter contains those that affect the application at runtime. It's not
limited to the options in the first table either: you will find build configuration options dotted around the
documentation, such as ones for specifying the port that the embedded servlet container runs on or for determining
what files get packaged in the WAR file.

Available build settings

Name Description

grails.server.port.http Port to run the embedded servlet container on ("run-app" and "run-war"). Integer.

grails.server.port.https Port to run the embedded servlet container on for HTTPS ("run-app --https" and
"run-war --https"). Integer.

grails.config.base.webXml Path to a custom web.xml file to use for the application (alternative to using the
web.xml template).

grails.compiler.dependencies Legacy approach to adding extra dependencies to the compiler classpath. Set it to a
closure containing "fileset()" entries.

grails.testing.patterns
A list of Ant path patterns that allow you to control which files are included in the
tests. The patterns should not include the test case suffix, which is set by the next
property.

grails.testing.nameSuffix
By default, tests are assumed to have a suffix of "Tests". You can change it to
anything you like but setting this option. For example, another common suffix is
"Test".

grails.project.war.file A string containing the file path of the generated WAR file, along with its full name
(include extension). For example, "target/my-app.war".

grails.war.dependencies A closure containing "fileset()" entries that allows you complete control over what
goes in the WAR's "WEB-INF/lib" directory.

grails.war.copyToWebApp
A closure containing "fileset()" entries that allows you complete control over what
goes in the root of the WAR. It overrides the default behaviour of including
everything under "web-app".

grails.war.resources
A closure that takes the location of the staging directory as its first argument. You
can use any Ant tasks to do anything you like. It is typically used to remove files
from the staging directory before that directory is jar'd up into a WAR.

grails.project.web.xml The location to generate Grails' web.xml to

4.5 Ant and Maven

If all the other projects in your team or company are built using a standard build tool such as Ant or Maven, you
become the black sheep of the family when you use the Grails command line to build your application. Fortunately,
you can easily integrate the Grails build system into the main build tools in use today (well, the ones in use in Java
projects at least).

Ant Integration
When you create a Grails application via the command, Grails automatically creates an create-app Apache Ant

 file for you containing the following targets:build.xml

clean - Cleans the Grails application
compile - Compiles your application's source code
test - Runs the unit tests

http://grails.org/doc/latest/ref/Command Line/create-app.html
http://ant.apache.org/

43

run - Equivalent to "grails run-app"
war - Creates a WAR file
deploy - Empty by default, but can be used to implement automatic deployment

Each of these can be run by Ant, for example:

ant war

The build file is all geared up to use for dependency management, which means that it will automaticallyApache Ivy
download all the requisite Grails JAR files and other dependencies on demand. You don't even have to install Grails
locally to use it! That makes it particularly useful for continuous integration systems such as or CruiseControl
Hudson
It uses the Grails api:grails.ant.GrailsTask to hook into the existing Grails build system. The task allows you to run
any Grails script that's available, not just the ones used by the generated build file. To use the task, you must first
declare it:

<taskdef name="grailsTask"
 classname="grails.ant.GrailsTask"
 classpathref= />"grails.classpath"

This raises the question: what should be in "grails.classpath"? The task itself is in the "grails-bootstrap" JAR artifact,
so that needs to be on the classpath at least. You should also include the "groovy-all" JAR. With the task defined,
you just need to use it! The following table shows you what attributes are available:

Attribute Description Required

home The location of the Grails installation directory to use
for the build.

Yes, unless classpath is
specified.

classpathref
Classpath to load Grails from. Must include the
"grails-bootstrap" artifact and should include
"grails-scripts".

Yes, unless is set orhome
you use a classpath
element.

script The name of the Grails script to run, e.g. "TestApp". Yes.

args The arguments to pass to the script, e.g. "-unit -xml". No. Defaults to "".

environment The Grails environment to run the script in. No. Defaults to the script
default.

includeRuntimeClasspath Advanced setting: adds the application's runtime
classpath to the build classpath if true.

No. Defaults to true.

The task also supports the following nested elements, all of which are standard Ant path structures:

classpath - The build classpath (used to load Gant and the Grails scripts).
compileClasspath - Classpath used to compile the application's classes.
runtimeClasspath - Classpath used to run the application and package the WAR. Typically includes
everything in @compileClasspath.
testClasspath - Classpath used to compile and run the tests. Typically includes everything in

.runtimeClasspath
How you populate these paths is up to you. If you are using the attribute and put your own dependencies in thehome

 directory, then you don't even need to use any of them. For an example of their use, take a look at the generatedlib
Ant build file for new apps.

Maven Integration
From 1.1 onwards, Grails provides integration with via a Maven plugin. The current Maven plugin is basedMaven 2
on, but effectively supercedes, the version created by , who did a great job.Octo

Preparation
In order to use the new plugin, all you need is Maven 2 installed and set up. This is because you no longer need to
install Grails separately to use it with Maven!

http://ant.apache.org/ivy/
http://cruisecontrol.sourceforge.net/
https://hudson.dev.java.net/.
http://maven.apache.org
http://forge.octo.com/maven/sites/mtg/grails-maven-plugin

44

The Maven 2 integration for Grails has been designed and tested for Maven 2.0.9 and above.
It will not work with earlier versions.

To make life easier for you, we do recommend that you add a plugin group for Grails to your Maven settings file (
):$USER_HOME/.m2/settings.xml

<settings>
 …
 <pluginGroups>
 org.grails<pluginGroup> </pluginGroup>
 </pluginGroups>
</settings>

In addition, if you have the Octo Maven Tools for Grails set up then you'll need to remove the com.octo.mtg
plugin group.

Creating a Grails Maven Project
To create a Mavenized Grails project simple run the following command:

mvn archetype:generate -DarchetypeGroupId=org.grails \
 -DarchetypeArtifactId=grails-maven-archetype \
 -DarchetypeVersion=1.0 \
 -DarchetypeRepository=http://snapshots.repository.codehaus.org \
 -DgroupId=example -DartifactId=my-app

Choose whichever group ID and artifact ID you want for your application, but everything else must be as written.
This will create a new Maven project with a POM and a couple of other files. What you won't see is anything that
looks like a Grails application. So, the next step is to create the project structure that you're used to:

cd my-app
mvn initialize

Now you have a Grails application all ready to go. The plugin integrates into the standard build cycle, so you can use
the standard Maven phases to build and package your app: , , , mvn clean mvn compile mvn test mvn

 .package
You can also take advantage of some of the Grails commands that have been wrapped as Maven goals:

grails:create-controller - Calls the commandcreate-controller
grails:create-domain-class - Calls the commandcreate-domain-class
grails:create-integration-test - Calls the commandcreate-integration-test
grails:create-pom - Creates a new Maven POM for an existing Grails project
grails:create-script - Calls the commandcreate-script
grails:create-service - Calls the commandcreate-service
grails:create-taglib - Calls the commandcreate-tag-lib
grails:create-unit-test - Calls the commandcreate-unit-test
grails:exec - Executes an arbitrary Grails command line script
grails:generate-all - Calls the commandgenerate-all
grails:generate-controller - Calls the commandgenerate-controller
grails:generate-views - Calls the commandgenerate-views
grails:install-plugin - Calls the commandinstall-plugin
grails:install-templates - Calls the commandinstall-templates
grails:list-plugins - Calls the commandlist-plugins
grails:package - Calls the commandpackage
grails:run-app - Calls the commandrun-app
grails:uninstall-plugin - Calls the commanduninstall-plugin

http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html
http://grails.org/doc/latest/ref/Command Line/create-integration-test.html
http://grails.org/doc/latest/ref/Command Line/create-script.html
http://grails.org/doc/latest/ref/Command Line/create-service.html
http://grails.org/doc/latest/ref/Command Line/create-tag-lib.html
http://grails.org/doc/latest/ref/Command Line/create-unit-test.html
http://grails.org/doc/latest/ref/Command Line/generate-all.html
http://grails.org/doc/latest/ref/Command Line/generate-controller.html
http://grails.org/doc/latest/ref/Command Line/generate-views.html
http://grails.org/doc/latest/ref/Command Line/install-plugin.html
http://grails.org/doc/latest/ref/Command Line/install-templates.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html
http://grails.org/doc/latest/ref/Command Line/package.html
http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/uninstall-plugin.html

45

Mavenizing an existing project
Creating a new project is great way to start, but what if you already have one? You don't want to create a new project
and then copy the contents of the old one over. The solution is to create a POM for the existing project using this
Maven command:

mvn grails:create-pom -DgroupId=com.mycompany

When this command has finished, you can immediately start using the standard phases, such as .mvn package
Note that you have to specify a group ID when creating the POM.

Adding Grails commands to phases
The standard POM created for you by Grails already attaches the appropriate core Grails commands to their
corresponding build phases, so "compile" goes in the "compile" phase and "war" goes in the "package" phase. That
doesn't help though when you want to attach a plugin's command to a particular phase. The classic example is
functional tests. How do you make sure that your functional tests (using which ever plugin you have decided on) are
run during the "integration-test" phase?
Fear not: all things are possible. In this case, you can associate the command to a phase using an extra "execution"
block:

<plugin>
 org.grails<groupId> </groupId>
 grails-maven-plugin<artifactId> </artifactId>
 1.0-SNAPSHOT<version> </version>
 true<extensions> </extensions>
 <executions>
 <execution>
 <goals>
 …
 </goals>
 </execution>
 <!-- Add the command to the phase -->"functional-tests" "integration-test"
 <execution>
 functional-tests<id> </id>
 integration-test<phase> </phase>
 <goals>
 exec<goal> </goal>
 </goals>
 <configuration>
 functional-tests<command> </command>
 </configuration>
 </execution>
 </executions>
</plugin>

This also demonstrates the goal, which can be used to run any Grails command. Simply pass thegrails:exec
name of the command as the system property, and optionally specify the arguments via the command args
property:

mvn grails:exec -Dcommand=create-webtest -Dargs=Book

46

5. Object Relational Mapping (GORM)

Domain classes are core to any business application. They hold state about business processes and hopefully also
implement behavior. They are linked together through relationships, either one-to-one or one-to-many.
GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses Hibernate 3 (an
extremely popular and flexible open source ORM solution) but because of the dynamic nature of Groovy, the fact
that it supports both static and dynamic typing, and the convention of Grails there is less configuration involved in
creating Grails domain classes.
You can also write Grails domain classes in Java. See the section on Hibernate Integration for how to write Grails
domain classes in Java but still use dynamic persistent methods. Below is a preview of GORM in action:

def book = Book.findByTitle()"Groovy in Action"
book
 .addToAuthors(name:)"Dierk Koenig"
 .addToAuthors(name:)"Guillaume LaForge"
 .save()

5.1 Quick Start Guide

A domain class can be created with the command:create-domain-class

grails create-domain-class Person

This will create a class at the location such as the one below:grails-app/domain/Person.groovy

class Person {
}

If you have the property set to "update", "create" or "create-drop" on your dbCreate
, Grails will automatically generated/modify the database tables for you.DataSource

You can customize the class by adding properties:

class Person {
 nameString
 ageInteger
 Date lastVisit
}

Once you have a domain class try and manipulate it via the or by typing:shell console

grails console

This loads an interactive GUI where you can type Groovy commands.

5.1.1 Basic CRUD

Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create
To create a domain class use the Groovy new operator, set its properties and call :save

http://grails.org/doc/latest/ref/Command Line/create-domain-class.html
http://grails.org/doc/latest/ref/Command Line/shell.html
http://grails.org/doc/latest/ref/Command Line/console.html
http://grails.org/doc/latest/ref/Domain Classes/save.html

47

def p = Person(name: , age:40, lastVisit: Date())new "Fred" new
p.save()

The method will persist your class to the database using the underlying Hibernate ORM layer.save

Read
Grails transparently adds an implicit property to your domain class which you can use for retrieval:id

def p = Person.get(1)
assert 1 == p.id

This uses the method that expects a database identifier to read the object back from the db. You can alsoget Person
load an object in a read-only state by using the method:read

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object will not be persisted. Note
that if you explicitly call the method then the object is placed back into a read-write state.save
In addition, you can also load an proxy for an instance by using the method:load

def p = Person.load(1)

This incurs no database access until a method other than getId() is called. Hibernate then initializes the proxied
instance, or throws an exception if no record is found for the specified id.

Update
To update an instance, set some properties and then simply call again:save

def p = Person.get(1)
p.name = "Bob"
p.save()

Delete
To delete an instance use the method:delete

def p = Person.get(1)
p.delete()

5.2 Domain Modelling in GORM

When building Grails applications you have to consider the problem domain you are trying to solve. For example if
you were building an bookstore you would be thinking about books, authors, customers and publishers toAmazon
name a few.
These are modeled in GORM as Groovy classes so a class may have a title, a release date, an ISBN numberBook
and so on. The next few sections show how to model the domain in GORM.
To create a domain class you can run the target as follows:create-domain-class

grails create-domain-class Book

http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/read.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/load.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://www.amazon.com/
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html

48

The result will be a class at :grails-app/domain/Book.groovy

class Book {
}

If you wish to use packages you can move the Book.groovy class into a sub directory under
the domain directory and add the appropriate declaration as per Groovy (andpackage
Java's) packaging rules.

The above class will map automatically to a table in the database called (the same name as the class). Thisbook
behaviour is customizable through the ORM Domain Specific Language
Now that you have a domain class you can define its properties as Java types. For example:

class Book {
 titleString
 Date releaseDate
 ISBNString
}

Each property is mapped to a column in the database, where the convention for column names is all lower case
separated by underscores. For example maps onto a column . The SQL types arereleaseDate release_date
auto-detected from the Java types, but can be customized via or the .Constraints ORM DSL

5.2.1 Association in GORM

Relationships define how domain classes interact with each other. Unless specified explicitly at both ends, a
relationship exists only in the direction it is defined.

5.2.1.1 One-to-one

A one-to-one relationship is the simplest kind, and is defined trivially using a property of the type of another domain
class. Consider this example:

Example A

class Face {
 Nose nose
}
class Nose {
}

In this case we have unidirectional many-to-one relationship from to . To make it a true one-to-one youFace Nose
should make unique:nose

class Face {
 Nose nose
 constraints = {static
 nose unique: true
 }
}
class Nose {
}

To make this relationship bidirectional define the other side as follows:

49

Example B

class Face {
 Nose nose
}
class Nose {
 belongsTo = [face:Face]static
}

In this case we use the setting to say that "belongs to" Face. The result of this is that we canbelongsTo Nose
create a Face and save it and the database updates/inserts will be down to :cascaded Nose

new Face(nose: Nose()).save()new

The example above will save both face and nose. Note that the inverse true and will result in an error due to ais not
transient :Face

new Nose(face: Face()).save() // will cause an errornew

Another important implication of is that if you delete a instance the will be deleted too:belongsTo Face Nose

def f = Face.get(1)
f.delete() // both Face and Nose deleted

In the previous example the foreign key associated the with the is stored in the parent as column called Face Nose
. If you want the foreign key to be stored in the child you need a association:nose_id hasOne

Example C

class Face {
 hasOne = [nose:Nose]static
}
class Nose {
 Face face
}

In this example you get a bidirectional one-to-one where the foreign key column is stored in the table inside anose
column called .face_id

5.2.1.2 One-to-many

A one-to-many relationship is when one class, example , has many instances of a another class, example Author
. With Grails you define such a relationship with the setting:Book hasMany

class Author {
 hasMany = [books : Book]static
 nameString
}
class Book {
 titleString
}

In this case we have a unidirectional one-to-many. Grails will, by default, map this kind of relationship with a join

50

table.

The allows mapping unidirectional relationships using a foreign key associationORM DSL
instead

Grails will automatically inject a property of type into the domain class based on the java.util.Set hasMany
setting. This can be used to iterate over the collection:

def a = Author.get(1)
a.books.each {
 println it.title
}

The default fetch strategy used by Grails is "lazy", which means that the collection will be
lazily initialized. This can lead to the if you are not careful.n+1 problem
If you need "eager" fetching you can use the or specify eager fetching as part of a ORM DSL
query

The default cascading behaviour is to cascade saves and updates, but not deletes unless a is alsobelongsTo
specified:

class Author {
 hasMany = [books : Book]static
 nameString
}
class Book {
 belongsTo = [author:Author]static
 titleString
}

If you have two properties of the same type on the many side of a one-to-many you have to use tomappedBy
specify which the collection is mapped:

class Airport {
 hasMany = [flights:Flight]static
 mappedBy = [flights:]static "departureAirport"
}
class Flight {
 Airport departureAirport
 Airport destinationAirport
}

This is also true if you have multiple collections that map to different properties on the many side:

class Airport {
 hasMany = [outboundFlights:Flight, inboundFlights:Flight]static
 mappedBy = [outboundFlights: , inboundFlights:]static "departureAirport" "destinationAirport"
}
class Flight {
 Airport departureAirport
 Airport destinationAirport
}

5.2.1.3 Many-to-many

http://www.javalobby.org/java/forums/t20533.html

51

Grails supports many-to-many relationships by defining a on both sides of the relationship and having a hasMany
 on the owned side of the relationship:belongsTo

class Book {
 belongsTo = Authorstatic
 hasMany = [authors:Author]static
 titleString
}
class Author {
 hasMany = [books:Book]static
 nameString
}

Grails maps a many-to-many using a join table at the database level. The owning side of the relationship, in this case
, takes responsibility for persisting the relationship and is the only side that can cascade saves across.Author

For example this will work and cascade saves:

new Author(name:)"Stephen King"
 .addToBooks(Book(title:))new "The Stand"
 .addToBooks(Book(title:)) new "The Shining"
 .save()

However the below will only save the and not the authors!Book

new Book(name:)"Groovy in Action"
 .addToAuthors(Author(name:))new "Dierk Koenig"
 .addToAuthors(Author(name:)) new "Guillaume Laforge"
 .save()

This is the expected behaviour as, just like Hibernate, only one side of a many-to-many can take responsibility for
managing the relationship.

Grails' feature currently support many-to-many relationship and henceScaffolding does not
you must write the code to manage the relationship yourself

5.2.1.4 Basic Collection Types

As well as associations between different domain classes, GORM also supports mapping of basic collection types.
For example, the following class creates a association that is a of instances:nicknames Set String

class Person {
 hasMany = [nicknames:]static String
}

GORM will map an association like the above using a join table. You can alter various aspects of how the join table
is mapped using the argument:joinTable

52

class Person {
 hasMany = [nicknames:]static String
 mapping = {static
 hasMany joinTable: [name: 'bunch_o_nicknames',
 key: 'person_id',
 column: 'nickname',
 type:]"text"
 }
}

The example above will map to a table that looks like the following:
bunch_o_nicknames Table

| person_id | nickname |

| 1 | Fred |

5.2.2 Composition in GORM

As well as , Grails supports the notion of composition. In this case instead of mapping classes ontoassociation
separate tables a class can be "embedded" within the current table. For example:

class Person {
 Address homeAddress
 Address workAddress
 embedded = ['homeAddress', 'workAddress']static
}
class Address {
 numberString
 codeString
}

The resulting mapping would looking like this:

If you define the class in a separate Groovy file in the Address grails-app/domain
directory you will also get an table. If you don't want this to happen use Groovy'saddress
ability to define multiple classes per file and include the class below the Address Person
class in the filegrails-app/domain/Person.groovy

5.2.3 Inheritance in GORM

GORM supports inheritance both from abstract base classes and concrete persistent GORM entities. For example:

53

class Content {
 authorString
}
class BlogEntry Content {extends
 URL url
}
class Book Content {extends
 ISBNString
}
class PodCast Content {extends
 [] audioStreambyte
}

In the above example we have a parent class and then various child classes with more specific behaviour.Content

Considerations
At the database level Grails by default uses table-per-hierarchy mapping with a discriminator column called class
so the parent class () and its sub classes (, etc.), share the table.Content BlogEntry Book same
Table-per-hierarchy mapping has a down side in that you have non-nullable properties with inheritancecannot
mapping. An alternative is to use table-per-subclass which can be enabled via the ORM DSL
However, excessive use of inheritance and table-per-subclass can result in poor query performance due to the
excessive use of join queries. In general our advice is if you're going to use inheritance, don't abuse it and don't make
your inheritance hierarchy too deep.

Polymorphic Queries
The upshot of inheritance is that you get the ability to polymorphically query. For example using the method onlist
the super class will return all sub classes of :Content Content

def content = Content.list() // list all blog entries, books and pod casts
content = Content.findAllByAuthor('Joe Bloggs') // find all by author
def podCasts = PodCast.list() // list only pod casts

5.2.4 Sets, Lists and Maps

Sets of objects
By default when you define a relationship with GORM it is a which is an unordered collectionjava.util.Set
that cannot contain duplicates. In other words when you have:

class Author {
 hasMany = [books:Book]static
}

The books property that GORM injects is a . The problem with this is there is no ordering whenjava.util.Set
accessing the collection, which may not be what you want. To get custom ordering you can say that the set is a

:SortedSet

class Author {
 SortedSet books
 hasMany = [books:Book]static
}

In this case a implementation is used which means you have to implement java.util.SortedSet
 in your Book class:java.lang.Comparable

http://grails.org/doc/latest/ref/Domain Classes/list.html

54

class Book Comparable {implements
 titleString
 Date releaseDate = Date()new
 compareTo(obj) {int
 releaseDate.compareTo(obj.releaseDate)
 }
}

The result of the above class is that the Book instances in the books collections of the Author class will be ordered by
their release date.

Lists of objects
If you simply want to be able to keep objects in the order which they were added and to be able to reference them by
index like an array you can define your collection type as a :List

class Author {
 List books
 hasMany = [books:Book]static
}

In this case when you add new elements to the books collection the order is retained in a sequential list indexed from
0 so you can do:

author.books[0] // get the first book

The way this works at the database level is Hibernate creates a column where it saves the index of thebooks_idx
elements in the collection in order to retain this order at the db level.
When using a , elements must be added to the collection before being saved, otherwise Hibernate will throw anList
exception (: null index column for collection):org.hibernate.HibernateException

// This won't work!
def book = Book(title: 'The Shining')new
book.save()
author.addToBooks(book)
// Do it way instead.this
def book = Book(title: 'Misery')new
author.addToBooks(book)
author.save()

Maps of Objects
If you want a simple map of string/value pairs GORM can map this with the following:

class Author {
 Map books // map of ISBN:book names
}
def a = Author()new
a.books = [:]"1590597583" "Grails Book"
a.save()

In this case the key and value of the map MUST be strings.
If you want a Map of objects then you can do this:

55

class Book {
 Map authors
 hasMany = [authors:Author]static
}
def a = Author(name:)new "Stephen King"
def book = Book()new
book.authors = [stephen:a]
book.save()

The static property defines the type of the elements within the Map. The keys for the map be strings.hasMany must

A Note on Collection Types and Performance
The Java type is a collection that doesn't allow duplicates. In order to ensure uniqueness when adding an entrySet
to a association Hibernate has to load the entire associations from the database. If you have a large numbers ofSet
entries in the association this can be costly in terms of performance.
The same behavior is required for types, since Hibernate needs to load the entire association in-order toList
maintain order. Therefore it is recommended that if you anticipate a large numbers of records in the association that
you make the association bidirectional so that the link can be created on the inverse side. For example consider the
following code:

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
book.author = author
book.save()

In this example the association link is being created by the child (Book) and hence it is not necessary to manipulate
the collection directly resulting in fewer queries and more efficient code. Given an with a large number ofAuthor
associated instances if you were to write code like the following you would see an impact on performance:Book

def book = Book(title:)new "New Grails Book"
def author = Author.get(1)
author.addToBooks(book)
author.save()

5.3 Persistence Basics

A key thing to remember about Grails is that under the surface Grails is using for persistence. If you areHibernate
coming from a background of using or Hibernate's "session" model may feel a little strange.ActiveRecord iBatis
Essentially, Grails automatically binds a Hibernate session to the currently executing request. This allows you to use
the and methods as well as other GORM methods transparently.save delete

5.3.1 Saving and Updating

An example of using the method can be seen below:save

def p = Person.get(1)
p.save()

A major difference with Hibernate is when you call it does not necessarily perform any SQL operations save at that
. Hibernate typically batches up SQL statements and executes them at the end. This is typically done for youpoint

automatically by Grails, which manages your Hibernate session.
There are occasions, however, when you may want to control when those statements are executed or, in Hibernate
terminology, when the session is "flushed". To do so you can use the flush argument to the save method:

http://www.hibernate.org/
http://wiki.rubyonrails.org/rails/pages/ActiveRecord
http://ibatis.apache.org/,
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/save.html

56

def p = Person.get(1)
p.save(flush:)true

Note that in this case all pending SQL statements including previous saves will be synchronized with the db. This
also allows you to catch any exceptions thrown, which is typically useful in highly concurrent scenarios involving

:optimistic locking

def p = Person.get(1)
 {try

 p.save(flush:)true
}

(Exception e) {catch
 // deal with exception
}

5.3.2 Deleting Objects

An example of the method can be seen below:delete

def p = Person.get(1)
p.delete()

By default Grails will use transactional write behind to perform the delete, if you want to perform the delete in place
then you can use the argument:flush

def p = Person.get(1)
p.delete(flush:)true

Using the argument will also allow you to catch any errors that may potentially occur during a delete. Aflush
common error that may occur is if you violate a database constraint, although this is normally down to a
programming or schema error. The following example shows how to catch a

 that is thrown when you violate the database constraints:DataIntegrityViolationException

def p = Person.get(1)
 {try

 p.delete(flush:)true
}

(org.springframework.dao.DataIntegrityViolationException e) {catch
 flash.message = "Could not delete person ${p.name}"
 redirect(action: , id:p.id)"show"
}

Note that Grails does not supply a method as deleting data is discouraged and can often be avoideddeleteAll
through boolean flags/logic.
If you really need to batch delete data you can use the method to do batch DML statements:executeUpdate

Customer.executeUpdate(, [oldName:])"delete Customer c where c.name = :oldName" "Fred"

5.3.3 Understanding Cascading Updates and Deletes

It is critical that you understand how cascading updates and deletes work when using GORM. The key part to
remember is the setting which controls which class "owns" a relationship.belongsTo
Whether it is a one-to-one, one-to-many or many-to-many if you define updates and deletes willbelongsTo

http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://grails.org/doc/latest/ref/Domain Classes/executeUpdate.html

57

cascade from the owning class to its possessions (the other side of the relationship).
If you define then no cascades will happen and you will have to manually save each object.do not belongsTo
Here is an example:

class Airport {
 nameString
 hasMany = [flights:Flight]static
}
class Flight {
 numberString
 belongsTo = [airport:Airport]static
}

If I now create an and add some s to it I can save the and have the updates cascadedAirport Flight Airport
down to each flight, hence saving the whole object graph:

new Airport(name:)"Gatwick"
 .addToFlights(Flight(number:))new "BA3430"
 .addToFlights(Flight(number:))new "EZ0938"
 .save()

Conversely if I later delete the all s associated with it will also be deleted:Airport Flight

def airport = Airport.findByName()"Gatwick"
airport.delete()

However, if I were to remove then the above cascading deletion code . To understandbelongsTo would not work
this better take a look at the summaries below that describe the default behaviour of GORM with regards to specific
associations.

Bidirectional one-to-many with belongsTo

class A { hasMany = [bees:B] }static
class B { belongsTo = [a:A] }static

In the case of a bidirectional one-to-many where the many side defines a then the cascade strategy isbelongsTo
set to "ALL" for the one side and "NONE" for the many side.

Unidirectional one-to-many

class A { hasMany = [bees:B] }static
class B { }

In the case of a unidirectional one-to-many where the many side defines no belongsTo then the cascade strategy is set
to "SAVE-UPDATE".

Bidirectional one-to-many no belongsTo

class A { hasMany = [bees:B] }static
class B { A a }

In the case of a bidirectional one-to-many where the many side does not define a then the cascadebelongsTo

58

strategy is set to "SAVE-UPDATE" for the one side and "NONE" for the many side.

Unidirectional One-to-one with belongsTo

class A { }
class B { belongsTo = [a:A] }static

In the case of a unidirectional one-to-one association that defines a then the cascade strategy is set tobelongsTo
"ALL" for the owning side of the relationship (A->B) and "NONE" from the side that defines the belongsTo
(B->A)
Note that if you need further control over cascading behaviour, you can use the .ORM DSL

5.3.4 Eager and Lazy Fetching

Associations in GORM are by default lazy. This is best explained by example:

class Airport {
 nameString
 hasMany = [flights:Flight]static
}
class Flight {
 numberString
 belongsTo = [airport:Airport]static
}

Given the above domain classes and the following code:

def airport = Airport.findByName()"Gatwick"
airport.flights.each {
 println it.name
}

GORM will execute a single SQL query to fetch the instance and then 1 extra query iterationAirport for each
over the association. In other words you get N+1 queries.flights
This can sometimes be optimal depending on the frequency of use of the association as you may have logic that
dictates the associations is only accessed on certain occasions.

Configuring Eager Fetching
An alternative is to use eager fetching which can specified as follows:

class Airport {
 nameString
 hasMany = [flights:Flight]static
 mapping = {static
 flight fetch:"join"
 }
}

In this case the association will be instance and the association will be loaded all at onceAirport flights
(depending on the mapping). This has the benefit of requiring fewer queries, however should be used carefully as
you could load your entire database into memory with too many eager associations.

Associations can also be declared non-lazy using the ORM DSL

Using Batch Fetching
Although eager fetching is appropriate for some cases, it is not always desirable. If you made everything eager you

59

could quite possibly load your entire database into memory resulting in performance and memory problems. An
alternative to eager fetching is to use batch fetching. Essentially, you can configure Hibernate to lazily fetch results
in "batches". For example:

class Airport {
 nameString
 hasMany = [flights:Flight]static
 mapping = {static
 flight batchSize:10
 }
}

In this case, due to the argument, when you iterate over the association, Hibernate will fetchbatchSize flights
results in batches of 10. For example if you had an that had 30 flights, if you didn't configure batchAirport
fetching you would get 1 query to fetch the and then queries to fetch each flight. With batch fetchingAirport 30
you get 1 query to fetch the and 3 queries to fetch each in batches of 10. In other words, batchAirport Flight
fetching is an optimization of the lazy fetching strategy. Batch fetching can also be configured at the class level as
follows:

class Flight {
 …
 mapping = {static
 batchSize 10
 }
}

5.3.5 Pessimistic and Optimistic Locking

Optimistic Locking
By default GORM classes are configured for optimistic locking. Optimistic locking essentially is a feature of
Hibernate which involves storing a version number in a special column in the database.version
The column gets read into a property that contains the current versioned state of persistentversion version
instance which you can access:

def airport = Airport.get(10)
println airport.version

When you perform updates Hibernate will automatically check the version property against the version column in the
database and if they differ will throw a and the transaction will be rolled back.StaleObjectException
This is useful as it allows a certain level of atomicity without resorting to pessimistic locking that has an inherit
performance penalty. The downside is that you have to deal with this exception if you have highly concurrent writes.
This requires flushing the session:

def airport = Airport.get(10)
 {try

 airport.name = "Heathrow"
 airport.save(flush:)true
}

(org.springframework.dao.OptimisticLockingFailureException e) {catch
 // deal with exception
}

The way you deal with the exception depends on the application. You could attempt a programmatic merge of the
data or go back to the user and ask them to resolve the conflict.
Alternatively, if it becomes a problem you can resort to pessimistic locking.

Pessimistic Locking
Pessimistic locking is equivalent to doing a SQL "SELECT * FOR UPDATE" statement and locking a row in the
database. This has the implication that other read operations will be blocking until the lock is released.

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/StaleObjectStateException.html

60

In Grails pessimistic locking is performed on an existing instance via the method:lock

def airport = Airport.get(10)
airport.lock() // lock updatefor
airport.name = "Heathrow"
airport.save()

Grails will automatically deal with releasing the lock for you once the transaction has been committed. However, in
the above case what we are doing is "upgrading" from a regular SELECT to a SELECT..FOR UPDATE and another
thread could still have updated the record in between the call to get() and the call to lock().
To get around this problem you can use the static method that takes an id just like :lock get

def airport = Airport.lock(10) // lock updatefor
airport.name = "Heathrow"
airport.save()

In this case only SELECT..FOR UPDATE is issued.

Though Grails, through Hibernate, supports pessimistic locking, the embedded HSQLDB
shipped with Grails which is used as the default in-memory database . If you need todoes not
test pessimistic locking you will need to do so against a database that does have support such
as MySQL.

As well as the method you can also obtain a pessimistic locking using queries. For example using a dynamiclock
finder:

def airport = Airport.findByName(, [lock:])"Heathrow" true

Or using criteria:

def airport = Airport.createCriteria().get {
 eq('name', 'Heathrow')
 lock true
}

5.3.6 Modification Checking

Once you have loaded and possibly modified a persistent domain class instance, it isn't straightforward to retrieve the
original values. If you try to reload the instance using Hibernate will return the current modified instance from itsget
Session cache. Reloading using another query would trigger a flush which could cause problems if your data isn't
ready to be flushed yet. So GORM provides some methods to retrieve the original values that Hibernate caches when
it loads the instance (which it uses for dirty checking).

isDirty
You can use the method to check if any field has been modified:isDirty

def airport = Airport.get(10)
assert !airport.isDirty()
airport.properties = params

 (airport.isDirty()) {if
 // something based on changed statedo
}

http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/isDirty.html

61

You can also check if individual fields have been modified:

def airport = Airport.get(10)
assert !airport.isDirty()
airport.properties = params

 (airport.isDirty('name')) {if
 // something based on changed namedo
}

getDirtyPropertyNames
You can use the method to retrieve the names of modified fields; this may be empty but willgetDirtyPropertyNames
not be null:

def airport = Airport.get(10)
assert !airport.isDirty()
airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 // something based on changed valuedo
}

getPersistentValue
You can use the method to retrieve the value of a modified field:getPersistentValue

def airport = Airport.get(10)
assert !airport.isDirty()
airport.properties = params
def modifiedFieldNames = airport.getDirtyPropertyNames()

 (fieldName in modifiedFieldNames) {for
 def currentValue = airport."$fieldName"
 def originalValue = airport.getPersistentValue(fieldName)
 (currentValue != originalValue) {if
 // something based on changed valuedo
 }
}

5.4 Querying with GORM

GORM supports a number of powerful ways to query from dynamic finders, to criteria to Hibernate's object oriented
query language HQL.
Groovy's ability to manipulate collections via and methods like sort, findAll and so on combined with GORMGPath
results in a powerful combination.
However, let's start with the basics.

Listing instances
If you simply need to obtain all the instances of a given class you can use the method:list

def books = Book.list()

The method supports arguments to perform pagination:list

def books = Book.list(offset:10, max:20)

as well as sorting:

http://grails.org/doc/latest/ref/Domain Classes/getDirtyPropertyNames.html
http://grails.org/doc/latest/ref/Domain Classes/getPersistentValue.html
http://groovy.codehaus.org/GPath
http://grails.org/doc/latest/ref/Domain Classes/list.html
http://grails.org/doc/latest/ref/Domain Classes/list.html

62

def books = Book.list(sort: , order:)"title" "asc"

Here, the argument is the name of the domain class property that you wish to sort on, and the sort order
argument is either for ending or for ending.asc asc desc desc

Retrieval by Database Identifier
The second basic form of retrieval is by database identifier using the method:get

def book = Book.get(23)

You can also obtain a list of instances for a set of identifiers using :getAll

def books = Book.getAll(23, 93, 81)

5.4.1 Dynamic Finders

GORM supports the concept of . A dynamic finder looks like a static method invocation, but thedynamic finders
methods themselves don't actually exist in any form at the code level.
Instead, a method is auto-magically generated using code synthesis at runtime, based on the properties of a given
class. Take for example the class:Book

class Book {
 titleString
 Date releaseDate
 Author author
}
class Author {
 nameString
}

The class has properties such as , and . These can be used by the and Book title releaseDate author findBy
 methods in the form of "method expressions":findAllBy

def book = Book.findByTitle()"The Stand"
book = Book.findByTitleLike()"Harry Pot%"
book = Book.findByReleaseDateBetween(firstDate, secondDate)
book = Book.findByReleaseDateGreaterThan(someDate)
book = Book.findByTitleLikeOrReleaseDateLessThan(, someDate)"%Something%"

Method Expressions
A method expression in GORM is made up of the prefix such as followed by an expression that combines onefindBy
or more properties. The basic form is:

Book.findBy([Property][Comparator][Operator])?[Property][Comparator]Boolean

The tokens marked with a '?' are optional. Each comparator changes the nature of the query. For example:

def book = Book.findByTitle()"The Stand"
book = Book.findByTitleLike()"Harry Pot%"

http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/getAll.html
http://grails.org/doc/latest/ref/Domain Classes/findBy.html
http://grails.org/doc/latest/ref/Domain Classes/findAllBy.html
http://grails.org/doc/latest/ref/Domain Classes/findBy.html

63

In the above example the first query is equivalent to equality whilst the latter, due to the comparator, isLike
equivalent to a SQL expression.like
The possible comparators include:

InList - In the list of given values
LessThan - less than the given value
LessThanEquals - less than or equal a give value
GreaterThan - greater than a given value
GreaterThanEquals - greater than or equal a given value
Like - Equivalent to a SQL like expression
Ilike - Similar to a , except case insensitiveLike
NotEqual - Negates equality
Between - Between two values (requires two arguments)
IsNotNull - Not a null value (doesn't require an argument)
IsNull - Is a null value (doesn't require an argument)

Notice that the last 3 require different numbers of method arguments compared to the rest, as demonstrated in the
following example:

def now = Date()new
def lastWeek = now - 7
def book = Book.findByReleaseDateBetween(lastWeek, now)
books = Book.findAllByReleaseDateIsNull()
books = Book.findAllByReleaseDateIsNotNull()

Boolean logic (AND/OR)
Method expressions can also use a boolean operator to combine two criteria:

def books =
 Book.findAllByTitleLikeAndReleaseDateGreaterThan(, Date()-30)"%Java%" new

In this case we're using in the middle of the query to make sure both conditions are satisfied, but you couldAnd
equally use :Or

def books =
 Book.findAllByTitleLikeOrReleaseDateGreaterThan(, Date()-30)"%Java%" new

At the moment, you can only use dynamic finders with a maximum of two criteria, i.e. the method name can only
have one boolean operator. If you need to use more, you should consider using either or the .Criteria HQL

Querying Associations
Associations can also be used within queries:

def author = Author.findByName()"Stephen King"
def books = author ? Book.findAllByAuthor(author) : []

In this case if the instance is not null we use it in a query to obtain all the instances for the given Author Book
.Author

Pagination & Sorting
The same pagination and sorting parameters available on the method can also be used with dynamic finders bylist
supplying a map as the final parameter:

http://grails.org/doc/latest/ref/Domain Classes/list.html

64

def books =
 Book.findAllByTitleLike(, [max:3,"Harry Pot%"
 offset:2,
 sort: ,"title"
 order:])"desc"

5.4.2 Criteria

Criteria is a type safe, advanced way to query that uses a Groovy builder to construct potentially complex queries. It
is a much better alternative to using StringBuffer.
Criteria can be used either via the or methods. The builder uses Hibernate's Criteria API,createCriteria withCriteria
the nodes on this builder map the static methods found in the class of the Hibernate Criteria API.Restrictions
Example Usage:

def c = Account.createCriteria()
def results = c {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
 or {
 like(,)"holderFirstName" "Fred%"
 like(,)"holderFirstName" "Barney%"
 }
 maxResults(10)
 order(,)"holderLastName" "desc"
}

This criteria will select up to 10 objects matching the following criteria:Account

balance is between 500 and 1000
branch is 'London'
holderFirstName starts with 'Fred' or 'Barney'

The results will be sorted in descending ordery by .holderLastName

Conjunctions and Disjunctions
As demonstrated in the previous example you can group criteria in a logical OR using a block:or { }

or {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

This also works with logical AND:

and {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

And you can also negate using logical NOT:

not {
 between(, 500, 1000)"balance"
 eq(,)"branch" "London"
}

All top level conditions are implied to be AND'd together.

http://grails.org/doc/latest/ref/Domain Classes/createCriteria.html
http://grails.org/doc/latest/ref/Domain Classes/withCriteria.html
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/Restrictions.html

65

Querying Associations
Associations can be queried by having a node that matches the property name. For example say the classAccount
had many objects:Transaction

class Account {
 …
 hasMany = [transactions:Transaction]static
 …
}

We can query this association by using the property name as a builder node:transaction

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 transactions {
 between('date',now-10, now)
 }
}

The above code will find all the instances that have performed within the last 10 days.Account transactions
You can also nest such association queries within logical blocks:

def c = Account.createCriteria()
def now = Date()new
def results = c.list {
 or {
 between('created',now-10,now)
 transactions {
 between('date',now-10, now)
 }
 }
}

Here we find all accounts that have either performed transactions in the last 10 days OR have been recently created
in the last 10 days.

Querying with Projections
Projections may be used to customise the results. To use projections you need to define a "projections" node within
the criteria builder tree. There are equivalent methods within the projections node to the methods found in the
Hibernate class:Projections

def c = Account.createCriteria()
def numberOfBranches = c.get {
 projections {
 countDistinct('branch')
 }
}

Using SQL Restrictions
You can access Hibernate's SQL Restrictions capabilities.

def c = Person.createCriteria()
def peopleWithShortFirstNames = c.list {
 sqlRestriction "char_length(first_name) <= 4"
}

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/Projections.html

66

Note that the parameter there is SQL. The attribute referenced in the examplefirst_name
relates to the persistence model, not the object model. The class may have aPerson
property named which is mapped to a column in the database named firstName

.first_name
Also note that the SQL used here is not necessarily portable across databases.

Using Scrollable Results
You can use Hibernate's feature by calling the scroll method:ScrollableResults

def results = crit.scroll {
 maxResults(10)
}
def f = results.first()
def l = results.last()
def n = results.next()
def p = results.previous()
def = results.scroll(10)future
def accountNumber = results.getLong('number')

To quote the documentation of Hibernate ScrollableResults:

A result iterator that allows moving around within the results by arbitrary increments. The Query /
ScrollableResults pattern is very similar to the JDBC PreparedStatement/ ResultSet pattern and the
semantics of methods of this interface are similar to the similarly named methods on ResultSet.

Contrary to JDBC, columns of results are numbered from zero.

Setting properties in the Criteria instance
If a node within the builder tree doesn't match a particular criterion it will attempt to set a property on the Criteria
object itself. Thus allowing full access to all the properties in this class. The below example calls setMaxResults
and on the instance:setFirstResult Criteria

import org.hibernate.FetchMode as FM
…
def results = c.list {
 maxResults(10)
 firstResult(50)
 fetchMode(, FM.EAGER)"aRelationship"
}

Querying with Eager Fetching
In the section on we discussed how to declaratively specify fetching to avoid the N+1Eager and Lazy Fetching
SELECT problem. However, this can also be achieved using a criteria query:

def criteria = Task.createCriteria()
def tasks = criteria.list{
 eq , task.assignee.id"assignee.id"
 join 'assignee'
 join 'project'
 order 'priority', 'asc'
}

Notice the usage of the method. This method indicates the criteria API that a query should be used tojoin JOIN
obtain the results.

Method Reference
If you invoke the builder with no method name such as:

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/ScrollableResults.html
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/Criteria.html

67

c { … }

The build defaults to listing all the results and hence the above is equivalent to:

c.list { … }

Method Description

list This is the default method. It returns all matching rows.

get
Returns a unique result set, i.e. just one row. The criteria has to be formed that way, that it only
queries one row. This method is not to be confused with a limit to just the first row.

scroll Returns a scrollable result set.

listDistinct
If subqueries or associations are used, one may end up with the same row multiple times in the result
set, this allows listing only distinct entities and is equivalent to of the DISTINCT_ROOT_ENTITY

 class.CriteriaSpecification

count Returns the number of matching rows.

5.4.3 Hibernate Query Language (HQL)

GORM classes also support Hibernate's query language HQL, a very complete reference for which can be found
 of the Hibernate documentation.Chapter 14. HQL: The Hibernate Query Language

GORM provides a number of methods that work with HQL including , and . An example offind findAll executeQuery
a query can be seen below:

def results =
 Book.findAll()"from Book as b where b.title like 'Lord of the%'"

Positional and Named Parameters
In this case the value passed to the query is hard coded, however you can equally use positional parameters:

def results =
 Book.findAll(, [])"from Book as b where b.title like ?" "The Shi%"

def author = Author.findByName()"Stephen King"
def books = Book.findAll(, [author])"from Book as book where book.author = ?"

Or even named parameters:

def results =
 Book.findAll(,"from Book as b where b.title like :search or b.author like :search"
 [search:])"The Shi%"

def author = Author.findByName()"Stephen King"
def books = Book.findAll(,"from Book as book where book.author = :author"
 [author: author])

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/CriteriaSpecification.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/queryhql.html
http://grails.org/doc/latest/ref/Domain Classes/find.html
http://grails.org/doc/latest/ref/Domain Classes/findAll.html
http://grails.org/doc/latest/ref/Domain Classes/executeQuery.html

68

Multiline Queries
If you need to separate the query across multiple lines you can use a line continuation character:

def results = Book.findAll("\
from Book as b, \
 Author as a \

, ['Smith'])where b.author = a and a.surname = ?"

Groovy multiline strings will NOT work with HQL queries

Pagination and Sorting
You can also perform pagination and sorting whilst using HQL queries. To do so simply specify the pagination
options as a map at the end of the method call and include an "ORDER BY" clause in the HQL:

def results =
 Book.findAll(,"from Book as b where b.title like 'Lord of the%' order by b.title asc"
 [max:10, offset:20])

5.5 Advanced GORM Features

The following sections cover more advanced usages of GORM including caching, custom mapping and events.

5.5.1 Events and Auto Timestamping

GORM supports the registration of events as methods that get fired when certain events occurs such as deletes,
inserts and updates. The following is a list of supported events:

beforeInsert - Executed before an object is initially persisted to the database
beforeUpdate - Executed before an object is updated
beforeDelete - Executed before an object is deleted
afterInsert - Executed after an object is persisted to the database
afterUpdate - Executed after an object has been updated
afterDelete - Executed after an object has been updated
onLoad - Executed when an object is loaded from the database

To add an event simply register the relevant closure with your domain class.

Do not attempt to flush the session within an event (such as with obj.save(flush:true)). Since
events are fired during flushing this will cause a StackOverflowError.

Event types

The beforeInsert event
Fired before an object is saved to the db

class Person {
 Date dateCreated
 def beforeInsert() {
 dateCreated = Date()new
 }
}

The beforeUpdate event
Fired before an existing object is updated

69

class Person {
 Date dateCreated
 Date lastUpdated
 def beforeInsert() {
 dateCreated = Date()new
 }
 def beforeUpdate() {
 lastUpdated = Date()new
 }
}

The beforeDelete event
Fired before an object is deleted.

class Person {
 nameString
 Date dateCreated
 Date lastUpdated
 def beforeDelete() {
 ActivityTrace.withNewSession {
 ActivityTrace(eventName: ,data:name).save()new "Person Deleted"
 }
 }
}

Notice the usage of method above. Since events are triggered whilst Hibernate is flushing usingwithNewSession
persistence methods like and won't result in objects being saved unless you run your operationssave() delete()
with a new .Session
Fortunately the method allows you to share the same transactional JDBC connection evenwithNewSession
though you're using a different underlying .Session

The onLoad event
Fired when an object is loaded from the db:

class Person {
 nameString
 Date dateCreated
 Date lastUpdated
 def onLoad() {
 name = "I'm loaded"
 }
}

Automatic timestamping
The examples above demonstrated using events to update a and property to keeplastUpdated dateCreated
track of updates to objects. However, this is actually not necessary. By merely defining a and lastUpdated

 property these will be automatically updated for you by GORM.dateCreated
If this is not the behaviour you want you can disable this feature with:

class Person {
 Date dateCreated
 Date lastUpdated
 mapping = {static
 autoTimestamp false
 }
}

5.5.2 Custom ORM Mapping

Grails domain classes can be mapped onto many legacy schemas via an Object Relational Mapping Domain Specify
Language. The following sections takes you through what is possible with the ORM DSL.

70

None if this is necessary if you are happy to stick to the conventions defined by GORM for
table, column names and so on. You only needs this functionality if you need to in anyway
tailor the way GORM maps onto legacy schemas or performs caching

Custom mappings are defined using a a static block defined within your domain class:mapping

class Person {
 ..
 mapping = {static
 }
}

5.5.2.1 Table and Column Names

Table names
The database table name which the class maps to can be customized using a call to :table

class Person {
 ..
 mapping = {static
 table 'people'
 }
}

In this case the class would be mapped to a table called instead of the default name of .people person

Column names
It is also possible to customize the mapping for individual columns onto the database. For example if its the name
you want to change you can do:

class Person {
 firstNameString
 mapping = {static
 table 'people'
 firstName column:'First_Name'
 }
}

In this case we define method calls that match each property name (in this case). We then use thefirstName
named parameter , to specify the column name to map onto.column

Column type
GORM supports configuration of Hibernate types via the DSL using the type attribute. This includes specifing user
types that subclass the Hibernate class, which allows complete customization oforg.hibernate.usertype.UserType
how a type is persisted. As an example if you had a you could use it as follows:PostCodeType

class Address {
 numberString
 postCodeString
 mapping = {static
 postCode type:PostCodeType
 }
}

Alternatively if you just wanted to map it to one of Hibernate's basic types other than the default chosen by Grails

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/usertype/UserType.html

71

you could use:

class Address {
 numberString
 postCodeString
 mapping = {static
 postCode type:'text'
 }
}

This would make the column map to the SQL TEXT or CLOB type depending on which database ispostCode
being used.
See the Hibernate documentation regarding for further information.Basic Types

One-to-One Mapping
In the case of associations it is also possible to change the foreign keys used to map associations. In the case of a
one-to-one association this is exactly the same as any regular column. For example consider the below:

class Person {
 firstNameString
 Address address
 mapping = {static
 table 'people'
 firstName column:'First_Name'
 address column:'Person_Adress_Id'
 }
}

By default the association would map to a foreign key column called . By using the aboveaddress address_id
mapping we have changed the name of the foreign key column to .Person_Adress_Id

One-to-Many Mapping
With a bidirectional one-to-many you can change the foreign key column used simple by changing the column name
on the many side of the association as per the example in the previous section on one-to-one associations. However,
with unidirectional association the foreign key needs to be specified on the association itself. For example given a
unidirectional one-to-many relationship between and the following code will change the foreignPerson Address
key in the table:address

class Person {
 firstNameString
 hasMany = [addresses:Address]static
 mapping = {static
 table 'people'
 firstName column:'First_Name'
 addresses column:'Person_Address_Id'
 }
}

If you don't want the column to be in the table, but instead some intermediate join table you can use the address
 parameter:joinTable

class Person {
 firstNameString
 hasMany = [addresses:Address]static
 mapping = {static
 table 'people'
 firstName column:'First_Name'
 addresses joinTable:[name:'Person_Addresses', key:'Person_Id', column:'Address_Id']
 }
}

http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-types-basictypes

72

Many-to-Many Mapping
Grails, by default maps a many-to-many association using a join table. For example consider the below
many-to-many association:

class Group {
 …
 hasMany = [people:Person]static
}
class Person {
 …
 belongsTo = Groupstatic
 hasMany = [groups:Group]static
}

In this case Grails will create a join table called containing foreign keys called and group_person person_id
 referencing the and tables. If you need to change the column names you can specify agroup_id person group

column within the mappings for each class.

class Group {
 …
 mapping = {static
 people column:'Group_Person_Id'
 }
}
class Person {
 …
 mapping = {static
 groups column:'Group_Group_Id'
 }
}

You can also specify the name of the join table to use:

class Group {
 …
 mapping = {static
 people column:'Group_Person_Id',joinTable:'PERSON_GROUP_ASSOCIATIONS'
 }
}
class Person {
 …
 mapping = {static
 groups column:'Group_Group_Id',joinTable:'PERSON_GROUP_ASSOCIATIONS'
 }
}

5.5.2.2 Caching Strategy

Setting up caching
 features a second-level cache with a customizable cache provider. This needs to be configured in the Hibernate

 file as follows:grails-app/conf/DataSource.groovy

hibernate {
 cache.use_second_level_cache=true
 cache.use_query_cache=true
 cache.provider_class='org.hibernate.cache.EhCacheProvider'
}

You can of course customize these settings how you desire, for example if you want to use a distributed caching
mechanism.

http://www.hibernate.org/

73

For further reading on caching and in particular Hibernate's second-level cache, refer to the
 on the subject.Hibernate documentation

Caching instances
In your mapping block to enable caching with the default settings use a call to the method:cache

class Person {
 ..
 mapping = {static
 table 'people'
 cache true
 }
}

This will configure a 'read-write' cache that includes both lazy and non-lazy properties. If you need to customize this
further you can do:

class Person {
 ..
 mapping = {static
 table 'people'
 cache usage:'read-only', include:'non-lazy'
 }
}

Caching associations
As well as the ability to use Hibernate's second level cache to cache instances you can also cache collections
(associations) of objects. For example:

class Person {
 firstNameString
 hasMany = [addresses:Address]static
 mapping = {static
 table 'people'
 version false
 addresses column:'Address', cache:true
 }
}
class Address {
 numberString
 postCodeString
}

This will enable a 'read-write' caching mechanism on the addresses collection. You can also use:

cache:'read-write' // or 'read-only' or 'transactional'

To further configure the cache usage.

Caching Queries
You can cache queries such as dynamic finders and criteria. To do so using a dynamic finder you can pass the

 argument:cache

def person = Person.findByFirstName(, [cache:])"Fred" true

http://docs.jboss.org/hibernate/stable/core/reference/en/html/performance.html#performance-cache

74

Note that in order for the results of the query to be cached, you still need to enable caching in
your mapping as discussed in the previous section.

You can also cache criteria queries:

def people = Person.withCriteria {
 like('firstName', 'Fr%')
 cache true
}

Cache usages
Below is a description of the different cache settings and their usages:

read-only - If your application needs to read but never modify instances of a persistent class, a read-only
cache may be used.
read-write - If the application needs to update data, a read-write cache might be appropriate.
nonstrict-read-write - If the application only occasionally needs to update data (ie. if it is extremely
unlikely that two transactions would try to update the same item simultaneously) and strict transaction
isolation is not required, a cache might be appropriate.nonstrict-read-write
transactional - The cache strategy provides support for fully transactional cachetransactional
providers such as JBoss TreeCache. Such a cache may only be used in a JTA environment and you must
specify in the hibernate.transaction.manager_lookup_class

 file's config.grails-app/conf/DataSource.groovy hibernate

5.5.2.3 Inheritance Strategies

By default GORM classes uses inheritance mapping. This has the disadvantage thattable-per-hierarchy
columns cannot have a constraint applied to them at the db level. If you would prefer to use a NOT-NULL

 inheritance strategy you can do so as follows:table-per-subclass

class Payment {
 idLong
 versionLong
 amountInteger
 mapping = {static
 tablePerHierarchy false
 }
}
class CreditCardPayment Payment {extends
 cardNumberString
}

The mapping of the root class specifies that it will not be using mapping forPayment table-per-hierarchy
all child classes.

5.5.2.4 Custom Database Identity

You can customize how GORM generates identifiers for the database using the DSL. By default GORM relies on the
native database mechanism for generating ids. This is by far the best approach, but there are still many schemas that
have different approaches to identity.
To deal with this Hibernate defines the concept of an id generator. You can customize the id generator and the
column it maps to as follows:

75

class Person {
 ..
 mapping = {static
 table 'people'
 version false
 id generator:'hilo', params:[table:'hi_value',column:'next_value',max_lo:100]
 }
}

In this case we're using one of Hibernate's built in 'hilo' generators that uses a separate table to generate ids.

For more information on the different Hibernate generators refer to the Hibernate reference
documentation

Note that if you want to merely customise the column that the id lives on you can do:

class Person {
 ..
 mapping = {static
 table 'people'
 version false
 id column:'person_id'
 }
}

5.5.2.5 Composite Primary Keys

GORM supports the concept of composite identifiers (identifiers composed from 2 or more properties). It is not an
approach we recommend, but is available to you if you need it:

class Person {
 firstNameString
 lastNameString
 mapping = {static
 id composite:['firstName', 'lastName']
 }
}

The above will create a composite id of the and properties of the Person class. When youfirstName lastName
later need to retrieve an instance by id you have to use a prototype of the object itself:

def p = Person.get(Person(firstName: , lastName:))new "Fred" "Flintstone"
println p.firstName

5.5.2.6 Database Indices

To get the best performance out of your queries it is often necessary to tailor the table index definitions. How you
tailor them is domain specific and a matter of monitoring usage patterns of your queries. With GORM's DSL you can
specify which columns need to live in which indexes:

http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-declaration-id-generator
http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-declaration-id-generator

76

class Person {
 firstNameString
 addressString
 mapping = {static
 table 'people'
 version false
 id column:'person_id'
 firstName column:'First_Name', index:'Name_Idx'
 address column:'Address', index:'Name_Idx,Address_Index'
 }
}

Note that you cannot have any spaces in the value of the attribute; in this example index index:'Name_Idx,
 will cause an error.Address_Index'

5.5.2.7 Optimistic Locking and Versioning

As discussed in the section on , by default GORM uses optimistic locking andOptimistic and Pessimistic Locking
automatically injects a property into every class which is in turn mapped to a column at theversion version
database level.
If you're mapping to a legacy schema this can be problematic, so you can disable this feature by doing the following:

class Person {
 ..
 mapping = {static
 table 'people'
 version false
 }
}

If you disable optimistic locking you are essentially on your own with regards to concurrent
updates and are open to the risk of users losing (due to data overriding) data unless you use
pessimistic locking

5.5.2.8 Eager and Lazy Fetching

Lazy Collections

As discussed in the section on , by default GORM collections use lazy fetching and is isEager and Lazy fetching
configurable through the setting. However, if you prefer to group all your mappings together inside the fetchMode

 block you can also use the ORM DSL to configure fetching:mappings

class Person {
 firstNameString
 hasMany = [addresses:Address]static
 mapping = {static
 addresses lazy:false
 }
}
class Address {
 streetString
 postCodeString
}

Lazy Single-Ended Associations
In GORM, one-to-one and many-to-one associations are by default lazy. Non-lazy single ended associations can be
problematic in cases when you are loading many entities which have an association to another entity as a new
SELECT statement is executed for each loaded entity.
You can make one-to-one and many-to-one associations non-lazy using the same technique as for lazy collections:

77

class Person {
 firstNameString
 belongsTo = [address:Address]static
 mapping = {static
 address lazy:false
 }
}
class Address {
 streetString
 postCodeString
}

Here we set the property of the class will be eagerly fetched.address Person

Lazy Single-Ended Associations and Proxies
In order to facilitate single-ended lazy associations Hibernate uses runtime generated proxies. The way this works is
that Hibernate dynamically subclasses the proxied entity to create the proxy.
In the previous example Hibernate would create a subclass of and return that as a proxy to the real entity.Address
When you call any of the getters or setters Hibernate will initialize the the entity from the database.
Unfortunately this technique can produce surprising results. Consider the following example classes:

class Animal {}
class Mammal Animal {}extends
class Dog Mammal {extends
 nameString
}
class Owner {
 Animal pet
}

Given you have an with a association that is a consider the following code:Owner pet Dog

def owner = Owner.get(1)
def pet = Animal.get(owner.petId)

(pet Dog) {if instanceof
 // doesn't work!
}

Now you may think this code will work, but in fact it will not. The reason is Hibernate creates a dynamic proxy by
subclassing for the association and caches it in the first level cache. So even if the actualAnimal owner.pet
proxied class is a it won't be an instance of the class due to the way proxies work.Dog Dog
The get around this problem GORM provides an method that should always be used:instanceOf

def owner = Owner.get(1)
def pet = Animal.get(owner.petId)

(pet?. (Dog)) {if instanceof
 // worksthis
}

However, there are cases where this particular Hibernate abstraction may still leak through. For example:

def owner = Owner.get(1)
Dog pet = Animal.get(owner.petId)

In this case you will get a because the proxied is not a even though theClassCastException Animal Dog
actual instance a .is Dog
Our best advice is to be aware of Hibernate proxies and how to deal with them when you do run into issues.

78

5.5.2.9 Custom Cascade Behaviour

As describes in the section on , the primary mechanism to control the way updates and deletes arecascading updates
cascading from one association to another is the static property.belongsTo
However, the ORM DSL gives you complete access to Hibernate's capabilities via the transitive persistence

 attribute.cascade
Valid settings for the cascade attribute include:

create - cascades creation of new records from one association to another
merge - merges the state of a detached association
save-update - cascades only saves and updates to an association
delete - cascades only deletes to an association
lock - useful if a pessimistic lock should be cascaded to its associations
refresh - cascades refreshes to an association
evict - cascades evictions (equivalent to discard() in GORM) to associations if set
all - cascade ALL operations to associations
all-delete-orphan - Applies only to one-to-many associations and indicates that when a child is removed from
an association then it should be automatically deleted. Children are also deleted when the parent is.

It is advisable to read the section in the Hibernate documentation on totransitive persistence
obtain a better understanding of the different cascade styles and recommendation for their
usage

To specific the cascade attribute simply define one or many (comma-separated) of the aforementioned settings as its
value:

class Person {
 firstNameString
 hasMany = [addresses:Address]static
 mapping = {static
 addresses cascade:"all-delete-orphan"
 }
}
class Address {
 streetString
 postCodeString
}

5.5.2.10 Custom Hibernate Types

You saw in an earlier section that you can use composition (via the property) to break a table intoembedded
multiple objects. You can achieve a similar effect via Hibernate's custom user types. These are not domain classes
themselves, but plain Java or Groovy classes with associated. Each of these types also has a corresponding
"meta-type" class that implements .org.hibernate.usertype.UserType
The has some information on custom types, but here we will focus on how to map themHibernate reference manual
in Grails. Let's start by taking a look at a simple domain class that uses an old-fashioned (pre-Java 1.5) type-safe
enum class:

class Book {
 titleString
 authorString
 Rating rating
 mapping = {static
 rating type: RatingUserType
 }
}

All we have done is declare the field the enum type and set the property's type in the custom mapping to therating
corresponding implementation. That's all you have to do to start using your custom type. If you want,UserType
you can also use the other column settings such as "column" to change the column name and "index" to add it to an
index.

http://grails.org/doc/latest/ref/Domain Classes/belongsTo.html
http://www.hibernate.org/http://docs.jboss.org/hibernate/stable/core/reference/en/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/stable/core/reference/en/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/usertype/UserType.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-types-custom

79

Custom types aren't limited to just a single column - they can be mapped to as many columns as you want. In such
cases you need to explicitly define in the mapping what columns to use, since Hibernate can only use the property
name for a single column. Fortunately, Grails allows you to map multiple columns to a property using this syntax:

class Book {
 titleString
 Name author
 Rating rating
 mapping = {static
 name type: NameUserType, {
 column name: "first_name"
 column name: "last_name"
 }
 rating type: RatingUserType
 }
}

The above example will create "first_name" and "last_name" columns for the property. You'll be pleased toauthor
know that you can also use some of the normal column/property mapping attributes in the column definitions. For
example:

column name: , index: , unique: "first_name" "my_idx" true

The column definitions do support the following attributes: , , , , and .not type cascade lazy cache joinTable
One thing to bear in mind with custom types is that they define the for the corresponding databaseSQL types
columns. That helps take the burden of configuring them yourself, but what happens if you have a legacy database
that uses a different SQL type for one of the columns? In that case, you need to override column's SQL type using
the attribute:sqlType

class Book {
 titleString
 Name author
 Rating rating
 mapping = {static
 name type: NameUserType, {
 column name: , sqlType: "first_name" "text"
 column name: , sqlType: "last_name" "text"
 }
 rating type: RatingUserType, sqlType: "text"
 }
}

Mind you, the SQL type you specify needs to still work with the custom type. So overriding a default of "varchar"
with "text" is fine, but overriding "text" with "yes_no" isn't going to work.

5.5.2.11 Derived Properties

A derived property is a property that takes its value from a SQL expression, often but not necessarily based on the
value of some other persistent property. Consider a Product class like this:

class Product {
 priceFloat
 taxRateFloat
 taxFloat
}

If the property is derived based on the value of and properties then there may be no need totax price taxRate
persist the property in the database. The SQL used to derive the value of a derived property may be expressed intax
the ORM DSL like this:

80

class Product {
 priceFloat
 taxRateFloat
 taxFloat
 mapping = {static
 tax formula: 'PRICE * TAX_RATE'
 }
}

Note that the formula expressed in the ORM DSL is SQL so references to other properties should relate to the
persistence model not the object model, which is why the example refers to and instead of PRICE TAX_RATE

 and .price taxRate
With that in place, when a Product is retrieved with something like , the SQL that is generatedProduct.get(42)
to support that will look something like this:

select
 product0_.id as id1_0_,
 product0_.version as version1_0_,
 product0_.price as price1_0_,
 product0_.tax_rate as tax4_1_0_,
 product0_.PRICE * product0_.TAX_RATE as formula1_0_
from
 product product0_
where
 product0_.id=?

Since the property is being derived at runtime and not stored in the database it might seem that the same effecttax
could be achieved by adding a method like to the class that simply returns the product of the getTax() Product

 and properties. With an approach like that you would give up the ability query the database basedtaxRate price
on the value of the property. Using a derived property allows exactly that. To retrieve all objects thattax Product
have a value greater than 21.12 you could execute a query like this:tax

Product.findAllByTaxGreaterThan(21.12)

Derived properties may be referenced in the Criteria API:

Product.withCriteria {
 gt 'tax', 21.12f
}

The SQL that is generated to support either of those would look something like this:

select
 this_.id as id1_0_,
 this_.version as version1_0_,
 this_.price as price1_0_,
 this_.tax_rate as tax4_1_0_,
 this_.PRICE * this_.TAX_RATE as formula1_0_
from
 product this_
where
 this_.PRICE * this_.TAX_RATE>?

Note that because the value of a derived property is generated in the database and depends on
the execution of SQL code, derived properties may not have GORM constraints applied to
them. If constraints are specified for a derived property, they will be ignored.

81

5.5.2.12 Custom Naming Strategy

By default Grails uses Hibernate's to convert domain class Class and field names toImprovedNamingStrategy
SQL table and column names by converting from camel-cased Strings to ones that use underscores as word
separators. You can customize these on a per-instance basis in the closure but if there's a consistentmapping
pattern you can specify a different class to use.NamingStrategy
Configure the class name to be used in in the section,grails-app/conf/DataSource.groovy hibernate
e.g.

dataSource {
 pooled = true
 dbCreate = "create-drop"
 …
}
hibernate {
 cache.use_second_level_cache = true
 …
 naming_strategy = com.myco.myproj.CustomNamingStrategy
}

You can use an existing class or write your own, for example one that prefixes table names and column names:

package com.myco.myproj
 org.hibernate.cfg.ImprovedNamingStrategyimport
 org.hibernate.util.StringHelperimport

class CustomNamingStrategy ImprovedNamingStrategy {extends
 classToTableName(className) {String String
 + StringHelper.unqualify(className)"table_"
 }
 propertyToColumnName(propertyName) {String String
 + StringHelper.unqualify(propertyName)"col_"
 }
}

5.5.3 Default Sort Order

You can sort objects using queries arguments such as those found in the method:list

def airports = Airport.list(sort:'name')

However, you can also declare the sort order declaratively:

class Airport {
 …
 mapping = {static
 sort "name"
 }
}

You can also configure the sort order if necessary:

class Airport {
 …
 mapping = {static
 sort name:"desc"
 }
}

http://grails.org/doc/latest/ref/Domain Classes/list.html

82

Alternatively, you can configure sort order at the association level:

class Airport {
 …
 hasMany = [flights:Flight]static
 mapping = {static
 flights sort:'number'
 }
}

5.6 Programmatic Transactions

Grails is built on Spring and hence uses Spring's Transaction abstraction for dealing with programmatic transactions.
However, GORM classes have been enhanced to make this more trivial through the method whichwithTransaction
accepts a block the first argument to which is the Spring object.TransactionStatus
A typical usage scenario is as follows:

def transferFunds = {
 Account.withTransaction { status ->
 def source = Account.get(params.from)
 def dest = Account.get(params.to)
 def amount = params.amount.toInteger()
 (source.active) {if
 source.balance -= amount
 (dest.active) {if
 dest.amount += amount
 }
 {else
 status.setRollbackOnly()
 }
 }

 }
}

In this example we rollback the transactions if the destination account is not active and if any exception are thrown
during the process the transaction will automatically be rolled back.
You can also use "save points" to rollback a transaction to a particular point in time if you don't want to rollback the
entire transaction. This can be achieved through the use of Spring's interface.SavePointManager
The method deals with the begin/commit/rollback logic for you within the scope of the block.withTransaction

5.7 GORM and Constraints

Although constraints are covered in the section, it is important to mention them here as some of theValidation
constraints can affect the way in which the database schema is generated.
Where feasible, Grails uses a domain class's constraints to influence the database columns generated for the
corresponding domain class properties.
Consider the following example. Suppose we have a domain model with the following property.

String name
 descriptionString

By default, in MySQL, Grails would define these columns as...

column name | data type
description | varchar(255)

But perhaps the business rules for this domain class state that a description can be up to 1000 characters in length. If
that were the case, we'd likely define the column as follows we were creating the table via an SQL script.if

http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionStatus.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/SavepointManager.html
http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html

83

column name | data type
description | TEXT

Chances are we'd also want to have some application-based validation to make sure we don't exceed that 1000
character limit we persist any records. In Grails, we achieve this validation via . We'd add thebefore constraints
following constraint declaration to the domain class.

static constraints = {
 description(maxSize:1000)
}

This constraint would provide both the application-based validation we want and it would also cause the schema to
be generated as shown above. Below is a description of the other constraints that influence schema generation.

Constraints Affecting String Properties

inList
maxSize
size

If either the or the constraint is defined, Grails sets the maximum column length based on themaxSize size
constraint value.
In general, it's not advisable to use both constraints on the same domain class property. However, if both the

 constraint and the constraint are defined, then Grails sets the column length to the minimum of the maxSize size
 constraint and the upper bound of the size constraint. (Grails uses the minimum of the two, because anymaxSize

length that exceeds that minimum will result in a validation error.)
If the inList constraint is defined (and the and the constraints are not defined), then Grails sets themaxSize size
maximum column length based on the length of the longest string in the list of valid values. For example, given a list
including values "Java", "Groovy", and "C++", Grails would set the column length to 6 (i.e., the number of
characters in the string "Groovy").

Constraints Affecting Numeric Properties

min
max
range

If the constraint, the constraint, or the constraint is defined, Grails attempts to set the column max min range
 based on the constraint value. (The success of this attempted influence is largely dependent on howprecision

Hibernate interacts with the underlying DBMS.)
In general, it's not advisable to combine the pair min/max and range constraints together on the same domain class
property. However, if both of these constraints is defined, then Grails uses the minimum precision value from the
constraints. (Grails uses the minimum of the two, because any length that exceeds that minimum precision will result
in a validation error.)

scale
If the scale constraint is defined, then Grails attempts to set the column based on the constraint value. This rulescale
only applies to floating point numbers (i.e., java.lang.Float, java.Lang.Double, java.lang.BigDecimal, or subclasses
of java.lang.BigDecimal). (The success of this attempted influence is largely dependent on how Hibernate interacts
with the underlying DBMS.)
The constraints define the minimum/maximum numeric values, and Grails derives the maximum number of digits for
use in the precision. Keep in mind that specifying only one of min/max constraints will not affect schema generation
(since there could be large negative value of property with max:100, for example), unless specified constraint value
requires more digits than default Hibernate column precision is (19 at the moment). For example...

someFloatValue(max:1000000, scale:3)

would yield:

http://grails.org/doc/latest/ref/Constraints/inList.html
http://grails.org/doc/latest/ref/Constraints/maxSize.html
http://grails.org/doc/latest/ref/Constraints/size.html
http://grails.org/doc/latest/ref/Constraints/min.html
http://grails.org/doc/latest/ref/Constraints/max.html
http://grails.org/doc/latest/ref/Constraints/range.html
http://uk.builder.com/architecture/db/0,39026552,20268520,00.htm
http://grails.org/doc/latest/ref/Constraints/scale.html
http://uk.builder.com/architecture/db/0,39026552,20268520,00.htm

84

someFloatValue DECIMAL(19, 3) // precision is default

but

someFloatValue(max:12345678901234567890, scale:5)

would yield:

someFloatValue DECIMAL(25, 5) // precision = digits in max + scale

and

someFloatValue(max:100, min:-100000)

would yield:

someFloatValue DECIMAL(8, 2) // precision = digits in min + scaledefault

85

6. The Web Layer

6.1 Controllers

A controller handles requests and creates or prepares the response and is request-scoped. In other words a new
instance is created for each . A controller can generate the response or delegate to a view. To create arequest
controller simply create a class whose name ends with and place it within the Controller

 directory.grails-app/controllers
The default setup ensures that the first part of your controller name is mapped to a URI and eachURL Mapping
action defined within your controller maps to URI within the controller name URI.

6.1.1 Understanding Controllers and Actions

Creating a controller
Controllers can be created with the target. For example try running the following command from thecreate-controller
root of a Grails project:

grails create-controller book

The command will result in the creation of a controller at the location
:grails-app/controllers/BookController.groovy

class BookController { … }

 by default maps to the /book URI (relative to your application root).BookController

The command is merely for convenience and you can just as easilycreate-controller
create controllers using your favorite text editor or IDE

Creating Actions
A controller can have multiple properties that are each assigned a block of code. Each of these properties maps to a
URI:

class BookController {
 def list = {
 // controller logicdo
 // create model
 modelreturn
 }
}

This example maps to the URI by default thanks to the property being named ./book/list list

The Default Action
A controller has the concept of a default URI that maps to the root URI of the controller. By default the default URI
in this case is . The default URI is dictated by the following rules:/book

If only one action is present the default URI for a controller maps to that action.
If you define an action which is the action that handles requests when no action is specified in theindex
URI /book
Alternatively you can set it explicitly with the property:defaultAction

http://grails.org/doc/latest/ref/Controllers/request.html
http://grails.org/doc/latest/ref/Command Line/create-controller.html

86

static defaultAction = "list"

6.1.2 Controllers and Scopes

Available Scopes
Scopes are essentially hash like objects that allow you to store variables. The following scopes are available to
controllers:

servletContext - Also known as application scope, this scope allows you to share state across the entire web
application. The servletContext is an instance of javax.servlet.ServletContext
session - The session allows associating state with a given user and typically uses cookies to associate a
session with a client. The session object is an instance of HttpSession
request - The request object allows the storage of objects for the current request only. The request object is an
instance of HttpServletRequest
params - Mutable map of incoming request (CGI) parameters
flash - See below.

Accessing Scopes
Scopes can be accessed using the variable names above in combination with Groovy's array index operator even on
classes provided by the Servlet API such as the :HttpServletRequest

class BookController {
 def find = {
 def findBy = params[]"findBy"
 def appContext = request[]"foo"
 def loggedUser = session[]"logged_user"
 }
}

You can even access values within scopes using the de-reference operator making the syntax even clearer:

class BookController {
 def find = {
 def findBy = params.findBy
 def appContext = request.foo
 def loggedUser = session.logged_user
 }
}

This is one of the ways that Grails unifies access to the different scopes.

Using Flash Scope
Grails supports the concept of scope is a temporary store for attributes which need to be available for thisflash
request and the next request only. Afterwards the attributes are cleared. This is useful for setting a message directly
before redirection, for example:

def delete = {
 def b = Book.get(params.id)
 (!b) {if
 flash.message = "User not found id ${params.id}"for
 redirect(action:list)
 }
 … // remaining code
}

6.1.3 Models and Views

Returning the Model

http://grails.org/doc/latest/ref/Controllers/servletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://grails.org/doc/latest/ref/Controllers/session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
http://grails.org/doc/latest/ref/Controllers/request.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://grails.org/doc/latest/ref/Controllers/flash.html

87

A model is essentially a map that the view uses when rendering. The keys within that map translate to variable names
accessible by the view. There are a couple of ways to return a model, the first way is to explicitly return a map
instance:

def show = {
 [book : Book.get(params.id)]
}

If no explicit model is returned the controller's properties will be used as the model thus allowing you to write code
like this:

class BookController {
 List books
 List authors
 def list = {
 books = Book.list()
 authors = Author.list()
 }
}

This is possible due to the fact that controllers are prototype scoped. In other words a new
controller is created for each request. Otherwise code such as the above would not be thread
safe.

In the above example the and properties will be available in the view.books authors
A more advanced approach is to return an instance of the Spring class:ModelAndView

import org.springframework.web.servlet.ModelAndView
def index = {
 def favoriteBooks = … // get some books just the index page, perhaps your favoritesfor
 // forward to the list view to show them
 ModelAndView(, [bookList : favoriteBooks])return new "/book/list"
}

Selecting the View
In both of the previous two examples there was no code that specified which to render. So how does Grailsview
know which view to pick? The answer lies in the conventions. For the action:

class BookController {
 def show = {
 [book : Book.get(params.id)]
 }
}

Grails will automatically look for a view at the location (actually Grailsgrails-app/views/book/show.gsp
will try to look for a JSP first, as Grails can equally be used with JSP).
If you wish to render another view, then the method there to help:render

def show = {
 def map = [book : Book.get(params.id)]
 render(view: , model:map)"display"
}

In this case Grails will attempt to render a view at the location .grails-app/views/book/display.gsp
Notice that Grails automatically qualifies the view location with the folder of the book grails-app/views

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://grails.org/doc/latest/ref/Controllers/render.html

88

directory. This is convenient, but if you have some shared views you need to access instead use:

def show = {
 def map = [book : Book.get(params.id)]
 render(view: , model:map)"/shared/display"
}

In this case Grails will attempt to render a view at the location .grails-app/views/shared/display.gsp

Rendering a Response
Sometimes its easier (typically with Ajax applications) to render snippets of text or code to the response directly
from the controller. For this, the highly flexible method can be used:render

render "Hello World!"

The above code writes the text "Hello World!" to the response, other examples include:

// write some markup
render {
 (b in books) {for
 div(id:b.id, b.title)
 }
}
// render a specific view
render(view:'show')
// render a template each item in a collectionfor
render(template:'book_template', collection:Book.list())
// render some text with encoding and content type
render(text: ,contentType: ,encoding:)"<xml>some xml</xml>" "text/xml" "UTF-8"

If you plan on using Groovy's MarkupBuilder to generate html for use with the render method becareful of naming
clashes between html elements and Grails tags. e.g.

def login = {
 StringWriter w = StringWriter()new
 def builder = groovy.xml.MarkupBuilder(w)new
 builder.html{
 head{
 title 'Log in'
 }
 body{
 h1 'Hello'
 form{
 }
 }
 }
 def html = w.toString()
 render html
}

Will actually (which will return some text that will be ignored by the MarkupBuilder). To correctlycall the form tag
output a <form> elemement, use the following:

89

def login = {
 // …
 body{
 h1 'Hello'
 builder.form{
 }
 }
 // …
}

6.1.4 Redirects and Chaining

Redirects
Actions can be redirected using the method present in all controllers:redirect

class OverviewController {
 def login = {}
 def find = {
 (!session.user)if
 redirect(action:login)
 …
 }
}

Internally the method uses the object's method.redirect HttpServletResonse sendRedirect
The method expects either:redirect

Another closure within the same controller class:

// Call the login action within the same class
redirect(action:login)

The name of a controller and action:

// Also redirects to the index action in the home controller
redirect(controller:'home',action:'index')

A URI for a resource relative the application context path:

// Redirect to an explicit URI
redirect(uri:)"/login.html"

Or a full URL:

// Redirect to a URL
redirect(url:)"http://grails.org"

Parameters can be optionally passed from one action to the next using the argument of the method:params

redirect(action:myaction, params:[myparam:])"myvalue"

http://grails.org/doc/latest/ref/Controllers/redirect.html
http://grails.org/doc/latest/ref/Controllers/redirect.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html

90

These parameters are made available through the dynamic property that also accesses request parameters. If aparams
parameter is specified with the same name as a request parameter the request parameter is overridden and the
controller parameter used.
Since the object is also a map, you can use it to pass the current request parameters from one action to theparams
next:

redirect(action: , params:params)"next"

Finally, you can also include a fragment in the target URI:

redirect(controller: , action: , fragment:)"test" "show" "profile"

will (depending on the URL mappings) redirect to something like "/myapp/test/show#profile".

Chaining
Actions can also be chained. Chaining allows the model to be retained from one action to the next. For example
calling the action in the below action:first

class ExampleChainController {
 def first = {
 chain(action:second,model:[one:1])
 }
 def second = {
 chain(action:third,model:[two:2])
 }
 def third = {
 [three:3])
 }
}

Results in the model:

[one:1, two:2, three:3]

The model can be accessed in subsequent controller actions in the chain via the map. This dynamicchainModel
property only exists in actions following the call to the method:chain

class ChainController {
 def nextInChain = {
 def model = chainModel.myModel
 …
 }
}

Like the method you can also pass parameters to the method:redirect chain

chain(action: , model:[one:1], params:[myparam:])"action1" "param1"

6.1.5 Controller Interceptors

Often it is useful to intercept processing based on either request, session or application state. This can be achieved via
action interceptors. There are currently 2 types of interceptors: before and after.

http://grails.org/doc/latest/ref/Controllers/params.html

91

If your interceptor is likely to apply to more than one controller, you are almost certainly
better off writing a . Filters can be applied to multiple controllers or URIs, without theFilter
need to change the logic of each controller

Before Interception
The intercepts processing before the action is executed. If it returns then thebeforeInterceptor false
intercepted action will not be executed. The interceptor can be defined for all actions in a controller as follows:

def beforeInterceptor = {
 println "Tracing action ${actionUri}"
}

The above is declared inside the body of the controller definition. It will be executed before all actions and does not
interfere with processing. A common use case is however for authentication:

def beforeInterceptor = [action: .&auth,except:'login']this
// defined as a regular method so its private
def auth() {
 (!session.user) {if
 redirect(action:'login')
 return false
 }
}
def login = {
 // display login page
}

The above code defines a method called . A method is used so that it is not exposed as an action to the outsideauth
world (i.e. it is private). The then defines an interceptor that is used on all actions 'except'beforeInterceptor
the login action and is told to execute the 'auth' method. The 'auth' method is referenced using Groovy's method
pointer syntax, within the method itself it detects whether there is a user in the session otherwise it redirects to the
login action and returns false, instruction the intercepted action not to be processed.

After Interception
To define an interceptor that is executed after an action use the property:afterInterceptor

def afterInterceptor = { model ->
 println "Tracing action ${actionUri}"
}

The after interceptor takes the resulting model as an argument and can hence perform post manipulation of the model
or response.
An after interceptor may also modify the Spring MVC object prior to rendering. In this case, theModelAndView
above example becomes:

def afterInterceptor = { model, modelAndView ->
 println "Current view is ${modelAndView.viewName}"
 (model.someVar) modelAndView.viewName = if "/mycontroller/someotherview"
 println "View is now ${modelAndView.viewName}"
}

This allows the view to be changed based on the model returned by the current action. Note that the
 may be if the action being intercepted called redirect or render.modelAndView null

Interception Conditions

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html

92

Rails users will be familiar with the authentication example and how the 'except' condition was used when executing
the interceptor (interceptors are called 'filters' in Rails, this terminology conflicts with the servlet filter terminology in
Java land):

def beforeInterceptor = [action: .&auth,except:'login']this

This executes the interceptor for all actions except the specified action. A list of actions can also be defined as
follows:

def beforeInterceptor = [action: .&auth,except:['login','register']]this

The other supported condition is 'only', this executes the interceptor for only the specified actions:

def beforeInterceptor = [action: .&auth,only:['secure']]this

6.1.6 Data Binding

Data binding is the act of "binding" incoming request parameters onto the properties of an object or an entire graph
of objects. Data binding should deal with all necessary type conversion since request parameters, which are typically
delivered via a form submission, are always strings whilst the properties of a Groovy or Java object may well not be.
Grails uses underlying data binding capability to perform data binding.Spring's

Binding Request Data to the Model
There are two ways to bind request parameters onto the properties of a domain class. The first involves using a
domain classes' implicit constructor:

def save = {
 def b = Book(params)new
 b.save()
}

The data binding happens within the code . By passing the object to the domain classnew Book(params) params
constructor Grails automatically recognizes that you are trying to bind from request parameters. So if we had an
incoming request like:

/book/save?title=The%20Stand&author=Stephen%20King

Then the and request parameters would automatically get set on the domain class. If you need totitle author
perform data binding onto an existing instance then you can use the property:properties

def save = {
 def b = Book.get(params.id)
 b.properties = params
 b.save()
}

This has exactly the same effect as using the implicit constructor.

Data binding and Single-ended Associations
If you have a or association you can use Grails' data binding capability to updateone-to-one many-to-one
these relationships too. For example if you have an incoming request such as:

http://www.springframework.org
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Domain Classes/properties.html

93

/book/save?author.id=20

Grails will automatically detect the suffix on the request parameter and look-up the instance for the.id Author
given id when doing data binding such as:

def b = Book(params)new

An association property can be set to by passing the literal "null". For example:null String

/book/save?author.id=null

Data Binding and Many-ended Associations
If you have a one-to-many or many-to-many association there are different techniques for data binding depending of
the association type.
If you have a based association (default for a) then the simplest way to populate an association is toSet hasMany
simply send a list of identifiers. For example consider the usage of below:<g:select>

<g:select name="books"
 from="${Book.list()}"
 size= multiple= optionKey="5" "yes" "id"
 value= />"${author?.books}"

This produces a select box that allows you to select multiple values. In this case if you submit the form Grails will
automatically use the identifiers from the select box to populate the association.books
However, if you have a scenario where you want to update the properties of the associated objects the this technique
won't work. Instead you have to use the subscript operator:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"

However, with based association it is critical that you render the mark-up in the same order that you plan to doSet
the update in. This is because a has no concept of order, so although we're referring to and itSet books0 books1
is not guaranteed that the order of the association will be correct on the server side unless you apply some explicit
sorting yourself.
This is not a problem if you use based associations, since a has a defined order and an index you canList List
refer to. This is also true of based associations.Map
Note also that if the association you are binding to has a size of 2 and you refer to an element that is outside the size
of association:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"
<g:textField name= value= />"books[2].title" "Red Madder"

Then Grails will automatically create a new instance for you at the defined position. If you "skipped" a few elements
in the middle:

<g:textField name= value= />"books[0].title" "the Stand"
<g:textField name= value= />"books[1].title" "the Shining"
<g:textField name= value= />"books[5].title" "Red Madder"

94

Then Grails will automatically create instances in between. For example in the above case Grails will create 4
additional instances if the association being bound had a size of 2.
You can bind existing instances of the associated type to a using the same syntax as you would use with aList .id
single-ended association. For example:

<g:select name= from= value= />"books[0].id" "${Book.list()}" "${author?.books[0]?.id}"
<g:select name= from= value= />"books[1].id" "${Book.list()}" "${author?.books[1]?.id}"
<g:select name= from= value= />"books[2].id" "${Book.list()}" "${author?.books[2]?.id}"

Would allow individual entries in the to be selected separately.books List
Entries at particular indexes can be removed in the same way too. For example:

<g:select name= from= value= noSelection= />"books[0].id" "${Book.list()}" "${author?.books[0]?.id}" "['null': '']"

Will render a select box that will remove the association at if the empty option is chosen.books0
Binding to a property works in exactly the same way except that the list index in the parameter name is replacedMap
by the map key:

<g:select name= from= value= noSelection= />"images[cover].id" "${Image.list()}" "${book?.images[cover]?.id}" "['null': '']"

This would bind the selected image into the property under a key of .Map images "cover"

Data binding with Multiple domain classes
It is possible to bind data to multiple domain objects from the object.params
For example so you have an incoming request to:

/book/save?book.title=The%20Stand&author.name=Stephen%20King

You'll notice the difference with the above request is that each parameter has a prefix such as or author. book.
which is used to isolate which parameters belong to which type. Grails' object is like a multi-dimensionalparams
hash and you can index into to isolate only a subset of the parameters to bind.

def b = Book(params['book'])new

Notice how we use the prefix before the first dot of the parameter to isolate only parameters belowbook.title
this level to bind. We could do the same with an domain class:Author

def a = Author(params['author'])new

Data binding and type conversion errors
Sometimes when performing data binding it is not possible to convert a particular String into a particular target type.
What you get is a type conversion error. Grails will retain type conversion errors inside the property of a Grailserrors
domain class. Take this example:

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Domain Classes/errors.html

95

class Book {
 …
 URL publisherURL
}

Here we have a domain class that uses the Java concrete type to represent URLs. Now sayBook java.net.URL
we had an incoming request such as:

/book/save?publisherURL=a-bad-url

In this case it is not possible to bind the string to the property os a type mismatcha-bad-url publisherURL
error occurs. You can check for these like this:

def b = Book(params)new
(b.hasErrors()) {if

 println "The value ${b.errors.getFieldError('publisherURL').rejectedValue} is not a valid URL!"
}

Although we have not yet covered error codes (for more information see the section on), for typeValidation
conversion errors you would want a message to use for the error inside the grails-app/i18n/messages.properties file.
You can use a generic error message handler such as:

typeMismatch.java.net.URL=The field {0} is not a valid URL

Or a more specific one:

typeMismatch.Book.publisherURL=The publisher URL you specified is not a valid URL

Data Binding and Security concerns
When batch updating properties from request parameters you need to be careful not to allow clients to bind malicious
data to domain classes that end up being persisted to the database. You can limit what properties are bound to a given
domain class using the subscript operator:

def p = Person.get(1)
p.properties['firstName','lastName'] = params

In this case only the and properties will be bound.firstName lastName
Another way to do this is instead of using domain classes as the target of data binding you could use Command

. Alternatively there is also the flexible method.Objects bindData
The method allows the same data binding capability, but to arbitrary objects:bindData

def p = Person()new
bindData(p, params)

However, the method also allows you to exclude certain parameters that you don't want updated:bindData

http://grails.org/doc/latest/ref/Controllers/bindData.html

96

def p = Person()new
bindData(p, params, [exclude:'dateOfBirth'])

Or include only certain properties:

def p = Person()new
bindData(p, params, [include:['firstName','lastName]])

6.1.7 XML and JSON Responses

Using the render method to output XML
Grails' supports a few different ways to produce XML and JSON responses. The first one covered is via the render
method.
The method can be passed a block of code to do mark-up building in XML:render

def list = {
 def results = Book.list()
 render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title:b.title)
 }
 }
 }
}

The result of this code would be something like:

<books>
 <book title= />"The Stand"
 <book title= />"The Shining"
</books>

Note that you need to be careful to avoid naming conflicts when using mark-up building. For example this code
would produce an error:

def list = {
 def books = Book.list() // naming conflict here
 render(contentType:) {"text/xml"
 books {
 (b in results) {for
 book(title:b.title)
 }
 }
 }
}

The reason is that there is local variable which Groovy attempts to invoke as a method.books

Using the render method to output JSON
The method can also be used to output JSON:render

http://grails.org/doc/latest/ref/Controllers/render.html

97

def list = {
 def results = Book.list()
 render(contentType:) {"text/json"
 books = array {
 (b in results) {for
 book title:b.title
 }
 }
 }
}

In this case the result would be something along the lines of:

[
 {title: },"The Stand"
 {title: }"The Shining"
]

Again the same dangers with naming conflicts apply to JSON building.

Automatic XML Marshalling
Grails also supports automatic marshaling of to XML via special converters.domain classes
To start off with import the package into your controller:grails.converters

import grails.converters.*

Now you can use the following highly readable syntax to automatically convert domain classes to XML:

render Book.list() as XML

The resulting output would look something like the following::

<?xml version= encoding= ?>"1.0" "ISO-8859-1"
<list>
 <book id= >"1"
 <author>Stephen King</author>
 <title>The Stand</title>
 </book>
 <book id= >"2"
 <author>Stephen King</author>
 <title>The Shining</title>
 </book>
</list>

An alternative to using the converters is to use the feature of Grails. The codecs feature provides codecs
 and methods:encodeAsXML encodeAsJSON

def xml = Book.list().encodeAsXML()
render xml

For more information on XML marshaling see the section on REST

Automatic JSON Marshalling
Grails also supports automatic marshaling to JSON via the same mechanism. Simply substitute with :XML JSON

98

render Book.list() as JSON

The resulting output would look something like the following:

[
 { :1,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : },"title" "The Stand"
 { :2,"id"
 : ,"class" "Book"
 : ,"author" "Stephen King"
 : Date(1194127343161),"releaseDate" new
 : }"title" "The Shining"
]

Again as an alternative you can use the to achieve the same effect.encodeAsJSON

6.1.8 More on JSONBuilder

The previous section on on XML and JSON responses covered simplistic examples of rendering XML and JSON
responses. Whilst the XML builder used by Grails is the standard found in Groovy, the JSON builder is aXmlSlurper
custom implementation specific to Grails.

JSONBuilder and Grails versions
JSONBuilder behaves different depending on the version of Grails you use. For version below 1.2 there deprecated
api:grails.util.JSonBuilder class is used. This section covers the usage of the Grails 1.2 JSONBuilder
For backwards compatibility the old class is used with the method for older applications, ifJSonBuilder render
you want to use the newer/better class then you can do so by setting the following in JSONBuilder

:Config.groovy

grails.json.legacy.builder=false

Rendering Simple Objects
To render a simple JSON object just set properties within the context of the closure:

render(contentType:) {"text/json"
 hello = "world"
}

The above will produce the JSON:

{ : }"hello" "world"

Rendering JSON Arrays
To render a list of objects simple assign a list:

render(contentType:) {"text/json"
 categories = ['a', 'b', 'c']
}

This will produce:

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

99

{ :[, ,]}"categories" "a" "b" "c"

You can also render lists of complex objects, for example:

render(contentType:) {"text/json"
 categories = [{ a = }, { b = }]"A" "B"
}

This will produce:

{ :[{ : } , { : }] }"categories" "a" "A" "b" "B"

If you want to return a list as the root then you have to use the special method:element

render(contentType:) {"text/json"
 element 1
 element 2
 element 3
}

The above code produces:

[1,2,3]

Rendering Complex Objects
Rendering complex objects can be done with closures. For example:

render(contentType:) {"text/json"
 categories = ['a', 'b', 'c']
 title ="Hello JSON"
 information = {
 pages = 10
 }
}

The above will produce the JSON:

{ :[, ,], : , :{ :10}}"categories" "a" "b" "c" "title" "Hello JSON" "information" "pages"

Arrays of Complex Objects
As mentioned previously you can nest complex objects within arrays using closures:

render(contentType:) {"text/json"
 categories = [{ a = }, { b = }]"A" "B"
}

However, if you need to build them up dynamically then you may want to use the method:array

100

def results = Book.list()
render(contentType:) {"text/json"
 books = array {
 (b in results) {for
 book title:b.title
 }
 }
}

Direct JSONBuilder API Access
If you don't have access to the method, but still want to produce JSON you can use the API directly:render

def builder = JSONBuilder()new
def result = builder.build {
 categories = ['a', 'b', 'c']
 title ="Hello JSON"
 information = {
 pages = 10
 }
}
// prints the JSON text
println result.toString()
def sw = StringWriter()new
result.render sw

6.1.9 Uploading Files

Programmatic File Uploads
Grails supports file uploads via Spring's interface. To upload a file the first step is toMultipartHttpServletRequest
create a multipart form like the one below:

Upload Form:

 <g:form action= method= enctype= >"upload" "post" "multipart/form-data"
 <input type= name= />"file" "myFile"
 <input type= />"submit"
 </g:form>

There are then a number of ways to handle the file upload. The first way is to work with the Spring MultipartFile
instance directly:

def upload = {
 def f = request.getFile('myFile')
 (!f.empty) {if
 f.transferTo(File('/some/local/dir/myfile.txt'))new
 response.sendError(200,'Done');
 }
 {else
 flash.message = 'file cannot be empty'
 render(view:'uploadForm')
 }
}

This is clearly handy for doing transfers to other destinations and manipulating the file directly as you can obtain an
InputStream and so on via the interface.MultipartFile

File Uploads through Data Binding
File uploads can also be performed via data binding. For example say you have an domain class as per theImage
below example:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html

101

class Image {
 [] myFilebyte
}

Now if you create an image and pass in the object such as the below example, Grails will automaticallyparams
bind the file's contents as a byte to the property:myFile

def img = Image(params)new

It is also possible to set the contents of the file as a string by changing the type of the property on the imagemyFile
to a String type:

class Image {
 myFileString
}

6.1.10 Command Objects

Grails controllers support the concept of command objects. A command object is similar to a form bean in something
like Struts and they are useful in circumstances when you want to populate a subset of the properties needed to
update a domain class. Or where there is no domain class required for the interaction, but you need features such as

 and .data binding validation

Declaring Command Objects
Command objects are typically declared in the same source file as a controller directly below the controller class
definition. For example:

class UserController {
 …
}
class LoginCommand {
 usernameString
 passwordString
 constraints = {static
 username(blank: , minSize:6)false
 password(blank: , minSize:6)false
 }
}

As the previous example demonstrates you can supply to command objects just as you can with constraints domain
.classes

Using Command Objects
To use command objects, controller actions may optionally specify any number of command object parameters. The
parameter types must be supplied so that Grails knows what objects to create, populate and validate.
Before the controller action is executed Grails will automatically create an instance of the command object class,
populate the properties of the command object with request parameters having corresponding names and the
command object will be validated. For Example:

102

class LoginController {
 def login = { LoginCommand cmd ->
 (cmd.hasErrors()) {if
 redirect(action:'loginForm')
 }
 {else
 // something do else
 }
 }
}

Command Objects and Dependency Injection
Command objects can participate in dependency injection. This is useful if your command object has some custom
validation logic which may need to interact with Grails :services

class LoginCommand {
 def loginService
 usernameString
 passwordString
 constraints = {static
 username validator: { val, obj ->
 obj.loginService.canLogin(obj.username, obj.password)
 }
 }
}

In this example the command object interacts with a bean injected by name from the Spring
.ApplicationContext

6.1.11 Handling Duplicate Form Submissions

Grails has built in support for handling duplicate form submissions using the "Synchronizer Token Pattern". To get
started you need to define a token on the tag:form

<g:form useToken= ...>"true"

Then in your controller code you can use the method to handle valid and invalid requests:withForm

withForm {
 // good request
}.invalidToken {
 // bad request
}

If you only provide the method and not the chained method then by default Grails willwithForm invalidToken
store the invalid token in a variable and redirect the request back to the original page.flash.invalidToken
This can then be checked in the view:

<g:if test= >"${flash.invalidToken}"
 Don't click the button twice!
</g:if>

The tag makes use of the and hence requires session affinity if used in awithForm session
cluster.

http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/session.html

103

6.1.12 Simple Type Converters

Type Conversion Methods
If you prefer to avoid the overhead of and simply want to convert incoming parameters (typicallyData Binding
Strings) into another more appropriate type the object has a number of convenience methods for each type:params

def total = params. ('total')int

The above example uses the method, there are also methods for , , , and so on.int boolean long char short
Each of these methods are null safe and safe from any parsing errors so you don't have to perform any addition
checks on the parameters.
These same type conversion methods are also available on the parameter of GSP tags.attrs

Handling Multi Parameters
A common use case is dealing with multiple request parameters of the same name. For example you could get a
query string such as .?name=Bob&name=Judy
In this case dealing with 1 parameter and dealing with many has different semantics since Groovy's iteration
mechanics for iterate over each character. To avoid this problem the object provides a String params list
method that always returns a list:

for(name in params.list('name')) {
 println name
}

6.2 Groovy Server Pages

Groovy Servers Pages (or GSP for short) is Grails' view technology. It is designed to be familiar for users of
technologies such as ASP and JSP, but to be far more flexible and intuitive.
In Grails GSPs live in the directory and are typically rendered automatically (by convention)grails-app/views
or via the method such as:render

render(view:)"index"

A GSP is typically a mix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be
covered in this document the practice is strongly discouraged. Mixing mark-up and code is a

 thing and most GSP pages contain no code and needn't do so.bad

A GSP typically has a "model" which is a set of variables that are used for view rendering. The model is passed to
the GSP view from a controller. For example consider the following controller action:

def show = {
 [book: Book.get(params.id)]
}

This action will look-up a instance and create a model that contains a key called . This key can then beBook book
reference within the GSP view using the name :book

<%=book.title%>

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/render.html

104

6.2.1 GSP Basics

In the next view sections we'll go through the basics of GSP and what is available to you. First off let's cover some
basic syntax that users of JSP and ASP should be familiar with.
GSP supports the usage of blocks to embed Groovy code (again this is discouraged):<% %>

<html>
 <body>
 <% out << %>"Hello GSP!"
 </body>
</html>

As well as this syntax you can also use the syntax to output values:<%= %>

<html>
 <body>
 <%= %>"Hello GSP!"
 </body>
</html>

GSP also supports JSP-style server-side comments as the following example demonstrates:

<html>
 <body>
 <%-- This is my comment --%>
 <%= %>"Hello GSP!"
 </body>
</html>

6.2.1.1 Variables and Scopes

Within the brackets you can of course declare variables:<% %>

<% now = new Date() %>

And then re-use those variables further down the page:

<%=now%>

However, within the scope of a GSP there are a number of pre-defined variables including:

application - The instancejavax.servlet.ServletContext
applicationContext The Spring instanceApplicationContext
flash - The objectflash
grailsApplication - The api:org.codehaus.groovy.grails.commons.GrailsApplication instance
out - The response writer for writing to the output stream
params - The object for retrieving request parametersparams
request - The instanceHttpServletRequest
response - The instanceHttpServletResponse
session - The instanceHttpSession
webRequest - The api:org.codehaus.groovy.grails.web.servlet.mvc.GrailsWebRequest instance

6.2.1.2 Logic and Iteration

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html

105

Using the syntax you can of course embed loops and so on using this syntax:<% %>

<html>
 <body>
 %><% [1,2,3,4].each { num ->
 <p><%= %>"Hello ${num}!" </p>
 <%}%>
 </body>
</html>

As well as logical branching:

<html>
 <body>
 <% if(params.hello == 'true')%>
 <%= %>"Hello!"
 <% else %>
 <%= %>"Goodbye!"
 </body>
</html>

6.2.1.3 Page Directives

GSP also supports a few JSP-style page directives.
The import directive allows you to import classes into the page. However, it is rarely needed due to Groovy's default
imports and :GSP Tags

<%@ page import= %>"java.awt.*"

GSP also supports the contentType directive:

<%@ page contentType= %>"text/json"

The contentType directive allows using GSP to render other formats.

6.2.1.4 Expressions

In GSP the syntax introduced earlier is rarely used due to the support for GSP expressions. It is present<%= %>
mainly to allow ASP and JSP developers to feel at home using GSP. A GSP expression is similar to a JSP EL
expression or a Groovy GString and takes the form :${expr}

<html>
 <body>
 Hello ${params.name}
 </body>
</html>

However, unlike JSP EL you can have any Groovy expression within the parenthesis. Variables within the ${..}
 are escaped by default, so any HTML in the variable's string is output directly to the page. To reduce the${..} not

risk of Cross-site-scripting (XSS) attacks, you can enable automatic HTML escaping via the
 setting in :grails.views.default.codec grails-app/conf/Config.groovy

grails.views. .codec='html'default

106

Other possible values are 'none' (for no default encoding) and 'base64'.

6.2.2 GSP Tags

Now that the less attractive JSP heritage has been set aside, the following sections cover GSP's built-in tags, which
are the favored way to define GSP pages.

The section on covers how to add your own custom tag libraries.Tag Libraries

All built-in GSP tags start with the prefix . Unlike JSP, you don't need to specify any tag library imports. If a tagg:
starts with it is automatically assumed to be a GSP tag. An example GSP tag would look like:g:

<g:example />

GSP tags can also have a body such as:

<g:example>
 Hello world
</g:example>

Expressions can be passed into GSP tag attributes, if an expression is not used it will be assumed to be a String
value:

<g:example attr= >"${new Date()}"
 Hello world
</g:example>

Maps can also be passed into GSP tag attributes, which are often used for a named parameter style syntax:

<g:example attr= attr2= >"${new Date()}" "[one:1, two:2, three:3]"
 Hello world
</g:example>

Note that within the values of attributes you must use single quotes for Strings:

<g:example attr= attr2= >"${new Date()}" "[one:'one', two:'two']"
 Hello world
</g:example>

With the basic syntax out the way, the next sections look at the tags that are built into Grails by default.

6.2.2.1 Variables and Scopes

Variables can be defined within a GSP using the tag:set

<g:set var= value= />"now" "${new Date()}"

Here we assign a variable called to the result of a GSP expression (which simply constructs a new now
 instance). You can also use the body of the tag to define a variable:java.util.Date <g:set>

http://grails.org/doc/latest/ref/Tags/set.html

107

<g:set var= >"myHTML"
 Some re-usable code on: ${new Date()}
</g:set>

Variables can also be placed in one of the following scopes:

page - Scoped to the current page (default)
request - Scoped to the current request
flash - Placed within scope and hence available for the next requestflash
session - Scoped for the user session
application - Application-wide scope.

To select which scope a variable is placed into use the attribute:scope

<g:set var= value= scope= />"now" "${new Date()}" "request"

6.2.2.2 Logic and Iteration

GSP also supports logical and iterative tags out of the box. For logic there are , and which support yourif else elseif
typical branching scenarios:

<g:if test= >"${session.role == 'admin'}"
 <%-- show administrative functions --%>
</g:if>
<g:else>
 <%-- show basic functions --%>
</g:else>

For iteration GSP has the and tags:each while

<g:each in= var= >"${[1,2,3]}" "num"
 Number ${num}<p> </p>
</g:each>
<g:set var= value= />"num" "${1}"
<g:while test= >"${num < 5 }"
 Number ${num++}<p> </p>
</g:while>

6.2.2.3 Search and Filtering

If you have collections of objects you often need to sort and filter them in some way. GSP supports the and findAll
 for this task:grep

Stephen King's Books:
<g:findAll in= expr= >"${books}" "it.author == 'Stephen King'"
 Title: ${it.title}<p> </p>
</g:findAll>

The attribute contains a Groovy expression that can be used as a filter. Speaking of filters the tag does aexpr grep
similar job such as filter by class:

<g:grep in= filter= >"${books}" "NonFictionBooks.class"
 Title: ${it.title}<p> </p>
</g:grep>

http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Tags/if.html
http://grails.org/doc/latest/ref/Tags/else.html
http://grails.org/doc/latest/ref/Tags/elseif.html
http://grails.org/doc/latest/ref/Tags/each.html
http://grails.org/doc/latest/ref/Tags/while.html
http://grails.org/doc/latest/ref/Tags/findAll.html
http://grails.org/doc/latest/ref/Tags/grep.html
http://grails.org/doc/latest/ref/Tags/grep.html

108

Or using a regular expression:

<g:grep in= filter= >"${books.title}" "~/.*?Groovy.*?/"
 Title: ${it}<p> </p>
</g:grep>

The above example is also interesting due to its usage of GPath. GPath is Groovy's equivalent to an XPath like
language. Essentially the collection is a collection of instances. However assuming each has a books Book Book

, you can obtain a list of Book titles using the expression . Groovy will auto-magically gotitle books.title
through the list of Book instances, obtain each title, and return a new list!

6.2.2.4 Links and Resources

GSP also features tags to help you manage linking to controllers and actions. The tag allows you to specifylink
controller and action name pairing and it will automatically work out the link based on the , even ifURL Mappings
you change them! Some examples of the can be seen below:link

<g:link action= id= >"show" "1" Book 1</g:link>
${currentBook.name}<g:link action= id= >"show" "${currentBook.id}" </g:link>

Book Home<g:link controller= >"book" </g:link>
Book List<g:link controller= action= >"book" "list" </g:link>

Book List<g:link url= >"[action:'list',controller:'book']" </g:link>
<g:link action= params= >"list" "[sort:'title',order:'asc',author:currentBook.author]"
 Book List
</g:link>

6.2.2.5 Forms and Fields

Form Basics
GSP supports many different tags for aiding in dealing with HTML forms and fields, the most basic of which is the

 tag. The tag is a controller/action aware version of the regular HTML form tag. The attribute allowsform form url
you to specify which controller and action to map to:

<g:form name= url= >"myForm" "[controller:'book',action:'list']" ...</g:form>

In this case we create a form called that submits to the 's action. Beyond that allmyForm BookController list
of the usual HTML attributes apply.

Form Fields
As well as easy construction of forms GSP supports custom tags for dealing with different types of fields including:

textField - For input fields of type 'text'
checkBox - For input fields of type 'checkbox'
radio - For input fields of type 'radio'
hiddenField - For input fields of type 'hidden'
select - For dealing with HTML select boxes

Each of these allow GSP expressions as the value:

<g:textField name= value= />"myField" "${myValue}"

GSP also contains extended helper versions of the above tags such as (for creating groups of tags), radioGroup radio
, and (for selecting locale's, currencies and time zone's respectively).localeSelect currencySelect timeZoneSelect

Multiple Submit Buttons
The age old problem of dealing with multiple submit buttons is also handled elegantly with Grails via the

 tag. It is just like a regular submit, but allows you to specify an alternative action to submit to:actionSubmit

http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Tags/textField.html
http://grails.org/doc/latest/ref/Tags/checkBox.html
http://grails.org/doc/latest/ref/Tags/radio.html
http://grails.org/doc/latest/ref/Tags/hiddenField.html
http://grails.org/doc/latest/ref/Tags/select.html
http://grails.org/doc/latest/ref/Tags/radioGroup.html
http://grails.org/doc/latest/ref/Tags/radio.html
http://grails.org/doc/latest/ref/Tags/localeSelect.html
http://grails.org/doc/latest/ref/Tags/currencySelect.html
http://grails.org/doc/latest/ref/Tags/timeZoneSelect.html
http://grails.org/doc/latest/ref/Tags/actionSubmit.html

109

<g:actionSubmit value= action= />"Some update label" "update"

6.2.2.6 Tags as Method Calls

One major different between GSP tags and other tagging technologies is that GSP tags can be called as either regular
tags or as method calls from either , or GSP views.controllers tag libraries

Tags as method calls from GSPs
When called as methods tags return their results as a String instead of writing directly to the response. So for
example the tag can equally be called as a method:createLinkTo

Static Resource: ${createLinkTo(dir: , file:)}"images" "logo.jpg"

This is particularly useful when you need to use a tag within an attribute:

"${createLinkTo(dir:'images', file:'logo.jpg')}"

In view technologies that don't support this feature you have to nest tags within tags, which becomes messy quickly
and often has an adverse effect of WYSWIG tools such as Dreamweaver that attempt to render the mark-up as it is
not well-formed:

<img src= images logo.jpg ""<g:createLinkTo dir=" " file=" " /> />

Tags as method calls from Controllers and Tag Libraries
You can also invoke tags from controllers and tag libraries. Tags within the default can be invokedg: namespace
without the prefix and a String result is returned:

def imageLocation = createLinkTo(dir: , file:)"images" "logo.jpg"

However, you can also prefix the namespace to avoid naming conflicts:

def imageLocation = g.createLinkTo(dir: , file:)"images" "logo.jpg"

If you have a you can use that prefix instead (Example using the):custom namespace FCK Editor plugin

def editor = fck.editor()

6.2.3 Views and Templates

As well as views, Grails has the concept of templates. Templates are useful for separating out your views into
maintainable chunks and combined with provide a highly re-usable mechanism for structure views.Layouts

Template Basics
Grails uses the convention of placing an underscore before the name of a view to identify it as a template. For
example a you may have a template that deals with rendering Books located at

:grails-app/views/book/_bookTemplate.gsp

http://grails.org/doc/latest/ref/Tags/createLinkTo.html
http://grails.org/FCK+editor+plugin

110

<div class= id= >"book" "${book?.id}"
 Title: ${book?.title}<div> </div>
 Author: ${book?.author?.name}<div> </div>
</div>

To render this template from one of the views in you can use the tag:grails-app/views/book render

<g:render template= model= />"bookTemplate" "[book:myBook]"

Notice how we pass into a model to use using the attribute of the render tag. If you have multiple model Book
instances you can also render the template for each using the render tag:Book

<g:render template= var= collection= />"bookTemplate" "book" "${bookList}"

Shared Templates
In the previous example we had a template that was specific to the and its views at BookController

. However, you may want to share templates across your application.grails-app/views/book
In this case you can place them in the root views directory at grails-app/views or any subdirectory below that location
and then with the template attribute use a before the template name to indicate the relative template path. For/
example if you had a template called , you couldgrails-app/views/shared/_mySharedTemplate.gsp
reference it as follows:

<g:render template= />"/shared/mySharedTemplate"

You can also use this technique to reference templates in any directory from any view or controller:

<g:render template= model= />"/book/bookTemplate" "[book:myBook]"

The Template Namespace
Since templates are used so frequently there is template namespace, called , available that makes usingtmpl
templates easier. Consider for example the following usage pattern:

<g:render template= model= />"bookTemplate" "[book:myBook]"

This can be expressed with the namespace as follows:tmpl

<tmpl:bookTemplate book= />"${myBook}"

Templates in Controllers and Tag Libraries
You can also render templates from controllers using the method found within controllers, which is useful for render

 applications:Ajax

http://grails.org/doc/latest/ref/Tags/render.html
http://grails.org/doc/latest/ref/Controllers/render.html

111

def show = {
 def b = Book.get(params.id)
 render(template: , model:[book:b])"bookTemplate"
}

The method within controllers writes directly to the response, which is the most common behaviour. If yourender
need to instead obtain the result of template as a String you can use the tag:render

def show = {
 def b = Book.get(params.id)
 content = g.render(template: , model:[book:b])String "bookTemplate"
 render content
}

Notice the usage of the namespace which tells Grails we want to use the instead of the g. tag as method call render
method.

6.2.4 Layouts with Sitemesh

Creating Layouts
Grails leverages , a decorator engine, to support view layouts. Layouts are located in the Sitemesh

 directory. A typical layout can be seen below:grails-app/views/layouts

<html>
 <head>
 <title><g:layoutTitle default= />"An example decorator" </title>
 <g:layoutHead />
 </head>
 <body onload= >"${pageProperty(name:'body.onload')}"
 <div class= >"menu" <!--my common menu goes here--></menu>
 <div class= >"body"
 <g:layoutBody />
 </div>
 </div>
 </body>
</html>

The key elements are the , and tag usages, here is what they do:layoutHead layoutTitle layoutBody

layoutTitle - outputs the target page's title
layoutHead - outputs the target pages head tag contents
layoutBody - outputs the target pages body tag contents

The previous example also demonstrates the tag which can be used to inspect and return aspects of thepageProperty
target page.

Triggering Layouts
There are a few ways to trigger a layout. The simplest is to add a meta tag to the view:

<html>
 <head>
 An Example Page<title> </title>
 <meta name= content= >"layout" "main" </meta>
 </head>
 This is my content!<body> </body>
</html>

In this case a layout called will be used to layout the page. If wegrails-app/views/layouts/main.gsp
were to use the layout from the previous section the output would resemble the below:

http://grails.org/doc/latest/ref/Controllers/render.html
http://grails.org/doc/latest/ref/Tags/render.html
http://grails.org/doc/latest/ref/Controllers/render.html
http://www.opensymphony.com/sitemesh/
http://grails.org/doc/latest/ref/Tags/layoutHead.html
http://grails.org/doc/latest/ref/Tags/layoutTitle.html
http://grails.org/doc/latest/ref/Tags/layoutBody.html
http://grails.org/doc/latest/ref/Tags/pageProperty.html

112

<html>
 <head>
 An Example Page<title> </title>
 </head>
 <body onload= >""
 <div class= >"menu" <!--my common menu goes here--></div>
 <div class= >"body"
 This is my content!
 </div>
 </body>
</html>

Specifying A Layout In A Controller
Another way to specify a layout is to specify the name of the layout by assigning a value to the "layout" property in a
controller. For example, if you have a controller such as:

class BookController {
 layout = 'customer'static
 def list = { … }
}

You can create a layout called which will be applied to allgrails-app/views/layouts/customer.gsp
views that the delegates to. The value of the "layout" property may contain a directory structureBookController
relative to the directory. For example:grails-app/views/layouts/

class BookController {
 layout = 'custom/customer'static
 def list = { … }
}

Views rendered from that controller would be decorated with the
 template.grails-app/views/layouts/custom/customer.gsp

Layout by Convention
Another way to associate layouts is to use "layout by convention". For example, if you have a controller such as:

class BookController {
 def list = { … }
}

You can create a layout called , by convention, which will begrails-app/views/layouts/book.gsp
applied to all views that the delegates to.BookController
Alternatively, you can create a layout called which willgrails-app/views/layouts/book/list.gsp
only be applied to the action within the .list BookController
If you have both the above mentioned layouts in place the layout specific to the action will take precedence when the
list action is executed.
If a layout may not be located using any of those conventions, the convention of last resort is to look for the
application default layout which is . The name of thegrails-app/views/layouts/application.gsp
application default layout may be changed by defining a property in asgrails-app/conf/Config.groovy
follows:

// grails-app/conf/Config.groovy
grails.sitemesh. .layout='myLayoutName'default

With that property in place, the application default layout will be
.grails-app/views/layouts/myLayoutName.gsp

113

Inline Layouts
Grails' also supports Sitemesh's concept of inline layouts with the tag. The tag can beapplyLayout applyLayout
used to apply a layout to a template, URL or arbitrary section of content. Essentially, this allows to even further
modularize your view structure by "decorating" your template includes.
Some examples of usage can be seen below:

<g:applyLayout name= template= collection= />"myLayout" "bookTemplate" "${books}"
<g:applyLayout name= url= />"myLayout" "http://www.google.com"
<g:applyLayout name= >"myLayout"
The content to apply a layout to
</g:applyLayout>

Server-Side Includes
While the tag is useful for applying layouts to external content, if you simply want to include externalapplyLayout
content in the current page you can do so with the :include

<g:include controller= action= >"book" "list" </g:include>

You can even combine the tag and the tag for added flexibility:include applyLayout

<g:applyLayout name= >"myLayout"
 <g:include controller= action= >"book" "list" </g:include>
</g:applyLayout>

Finally, you can also call the tag from a controller or tag library as a method:include

def content = include(controller: , action:)"book" "list"

The resulting content will be provided via the return value of the tag.include

6.2.5 Sitemesh Content Blocks

Although it is useful to decorate an entire page sometimes you may find the need to decorate independent sections of
your site. To do this you can use content blocks. To get started you need to divide the page to be decorate using the

 tag:<content>

<content tag= >"navbar"
… draw the navbar here…
</content>
<content tag= >"header"
… draw the header here…
</content>
<content tag= >"footer"
… draw the footer here…
</content>
<content tag= >"body"
… draw the body here…
</content>

Then within the layout you can reference these components and apply individual layouts to each:

http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/include.html

114

<html>
 <body>
 <div id= >"header"
 <g:applyLayout name= >"headerLayout"
 <g:pageProperty name= >"page.header"
 </g:applyLayout>
 </div>
 <div id= >"nav"
 <g:applyLayout name= >"navLayout"
 <g:pageProperty name= >"page.navbar"
 </g:applyLayout>
 </div>
 <div id= >"body"
 <g:applyLayout name= >"bodyLayout"
 <g:pageProperty name= >"page.body"
 </g:applyLayout>
 </div>
 <div id= >"footer"
 <g:applyLayout name= >"footerLayout"
 <g:pageProperty name= >"page.footer"
 </g:applyLayout>
 </div>
 </body>
</html>

6.2.6 Making Changes to a Deployed Application

One of the main issues with deploying a Grails application (or typically any servlet-based one) is that any change to
the views requires you to redeploy your whole application. If all you want to do is fix a typo on a page, or change an
image link, it can seem like a lot of unnecessary work. For such simple requirements, Grails does have a solution: the

 configuration setting.grails.gsp.view.dir
How does this work? The first step is to decide where the GSP files should go. Let's say we want to keep them
unpacked in a directory. We add these two lines to /var/www/grails/my-app

 :grails-app/conf/Config.groovy

grails.gsp.enable.reload = true
grails.gsp.view.dir = "/ /www/grails/my-app/"var

The first line tells Grails that modified GSP files should be reloaded at runtime. If you don't have this setting, you
can make as many changes as you like but they won't be reflected in the running application. The second line tells
Grails where to load the views and layouts from.

The trailing slash on the value is important! Without it, Grailsgrails.gsp.view.dir
will look for views in the parent directory.

With those settings in place, all you need to do is copy the views from your web application to the external directory.
On a Unix-like system, this would look something like this:

mkdir -p / /www/grails/my-app/grails-app/viewsvar
cp -R grails-app/views/* / /www/grails/my-app/grails-app/viewsvar

The key point here is that you must retain the view directory structure, including the bit. Sograils-app/views
you end up with the path ./var/www/grails/my-app/grails-app/views/...
One thing to bear in mind with this technique is that every time you modify a GSP, it uses up permgen space. So at
some point you will eventually hit "out of permgen space" errors unless you restart the server. So this technique is
not recommended for frequent or large changes to the views.

6.3 Tag Libraries

Like (JSP), GSP supports the concept of custom tag libraries. Unlike JSP, Grails tag libraryJava Server Pages
mechanism is simply, elegant and completely reload-able at runtime.
Quite simply, to create a tag library create a Groovy class that ends with the convention and place it withinTagLib

http://java.sun.com/products/jsp/

115

the directory:grails-app/taglib

class SimpleTagLib {
}

Now to create a tag simply create property that is assigned a block of code that takes two arguments: The tag
attributes and the body content:

class SimpleTagLib {
 def simple = { attrs, body ->
 }
}

The argument is a simple map of the attributes of the tag, whilst the argument is another invokableattrs body
block of code that returns the body content:

class SimpleTagLib {
 def emoticon = { attrs, body ->
 out << body() << (attrs.happy == ' ' ? :) true " :-)" " :-("
 }
}

As demonstrated above there is an implicit variable that refers to the output which you can use toout Writer
append content to the response. Then you can simply reference the tag inside your GSP, no imports necessary:

<g:emoticon happy= >"true" Hi John</g:emoticon>

6.3.1 Variables and Scopes

Within the scope of a tag library there are a number of pre-defined variables including:

actionName - The currently executing action name
controllerName - The currently executing controller name
flash - The objectflash
grailsApplication - The api:org.codehaus.groovy.grails.commons.GrailsApplication instance
out - The response writer for writing to the output stream
pageScope - A reference to the object used for GSP rendering (i.e. the binding)pageScope
params - The object for retrieving request parametersparams
pluginContextPath - The context path to the plugin that contains the tag library
request - The instanceHttpServletRequest
response - The instanceHttpServletResponse
servletContext - The instancejavax.servlet.ServletContext
session - The instanceHttpSession

6.3.2 Simple Tags

As demonstrated it the previous example it is trivial to write simple tags that have no body and merely output
content. Another example is a style tag:dateFormat

def dateFormat = { attrs, body ->
 out << java.text.SimpleDateFormat(attrs.format).format(attrs.date)new
}

The above uses Java's class to format a date and then write it to the response. The tag canSimpleDateFormat

http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Tag Libraries/pageScope.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html

116

then be used within a GSP as follows:

<g:dateFormat format= date= />"dd-MM-yyyy" "${new Date()}"

With simple tags sometimes you need to write HTML mark-up to the response. One approach would be to embed the
content directly:

def formatBook = { attrs, body ->
 out << "<div id="${attrs.book.id}">"
 out << "Title : ${attrs.book.title}"
 out << "</div>"
}

Although this approach may be tempting it is not very clean. A better approach would be to re-use the tag:render

def formatBook = { attrs, body ->
 out << render(template: , model:[book:attrs.book]) "bookTemplate"
}

And then have a separate GSP template that does the actual rendering.

6.3.3 Logical Tags

You can also create logical tags where the body of the tag is only output once a set of conditions have been met. An
example of this may be a set of security tags:

def isAdmin = { attrs, body ->
 def user = attrs['user']
 (user != && checkUserPrivs(user)) {if null
 out << body()
 }
}

The tag above checks if the user is an administrator and only outputs the body content if he/she has the correct set of
access privileges:

<g:isAdmin user= >"${myUser}"
 // some restricted content
</g:isAdmin>

6.3.4 Iterative Tags

Iterative tags are trivial too, since you can invoke the body multiple times:

def repeat = { attrs, body ->
 attrs.times?.toInteger().times { num ->
 out << body(num)
 }
}

In this example we check for a attribute and if it exists convert it to a number then use Groovy's times times
method to iterate by the number of times specified by the number:

http://grails.org/doc/latest/ref/Tags/render.html

117

<g:repeat times= >"3"
Repeat this 3 times! Current repeat = ${it}<p> </p>

</g:repeat>

Notice how in this example we use the implicit variable to refer to the current number. This works because whenit
we invoked the body we passed in the current value inside the iteration:

out << body(num)

That value is then passed as the default variable to the tag. However, if you have nested tags this can lead toit
conflicts, hence you should should instead name the variables that the body uses:

def repeat = { attrs, body ->
 def = attrs. ? attrs. : var var var "num"
 attrs.times?.toInteger().times { num ->
 out << body(():num)var
 }
}

Here we check if there is a attribute and if there is use that as the name to pass into the body invocation on thisvar
line:

out << body(():num)var

Note the usage of the parenthesis around the variable name. If you omit these Groovy
assumes you are using a String key and not referring to the variable itself.

Now we can change the usage of the tag as follows:

<g:repeat times= var= >"3" "j"
Repeat this 3 times! Current repeat = ${j}<p> </p>

</g:repeat>

Notice how we use the attribute to define the name of the variable and then we are able to reference thatvar j
variable within the body of the tag.

6.3.5 Tag Namespaces

By default, tags are added to the default Grails namespace and are used with the prefix in GSP pages. However,g:
you can specify a different namespace by adding a static property to your class:TagLib

class SimpleTagLib {
 namespace = static "my"
 def example = { attrs ->
 …
 }
}

Here we have specified a of and hence the tags in this tag lib must then be referenced from GSPnamespace my
pages like this:

118

<my:example name= />"..."

Where the prefix is the same as the value of the static property. Namespaces are particularly useful fornamespace
plugins.
Tags within namespaces can be invoked as methods using the namespace as a prefix to the method call:

out << my.example(name:)"foo"

This works from GSP, controllers or tag libraries

6.3.6 Using JSP Tag Libraries

In addition to the simplified tag library mechanism provided by GSP, you can also use JSP tags from GSP. To do so
simply declare the JSP you want to use via the directive:taglib

<%@ taglib prefix= uri= %>"fmt" "http://java.sun.com/jsp/jstl/fmt"

Then you can use it like any other tag:

<fmt:formatNumber value= pattern= />"${10}" ".00"

With the added bonus that you can invoke JSP tags like methods:

${fmt.formatNumber(value:10, pattern:)}".00"

6.3.7 Tag return value

Since Grails 1.2, a tag library call returns an instance of
 class by default. This change improvesorg.codehaus.groovy.grails.web.util.StreamCharBuffer

performance by reducing object creation and optimizing buffering during request processing. In earlier Grails
versions, a instance was returned.java.lang.String
Tag libraries can also return direct object values to the caller since Grails 1.2.. Object returning tag names are listed
in a static property in the tag library class.returnObjectForTags
Example:

class ObjectReturningTagLib {
 namespace = static "cms"
 returnObjectForTags = ['content']static
 def content = { attrs, body ->
 CmsContent.findByCode(attrs.code)?.content
 }
}

6.4 URL Mappings

Throughout the documentation so far the convention used for URLs has been the default of
. However, this convention is not hard wired into Grails and is in fact controlled by a/controller/action/id

URL Mappings class located at .grails-app/conf/UrlMappings.groovy
The class contains a single property called that has been assigned a block of code:UrlMappings mappings

119

class UrlMappings {
 mappings = {static
 }
}

6.4.1 Mapping to Controllers and Actions

To create a simple mapping simply use a relative URL as the method name and specify named parameters for the
controller and action to map to:

"/product"(controller: , action:)"product" "list"

In this case we've mapped the URL to the action of the . You could of/product list ProductController
course omit the action definition to map to the default action of the controller:

"/product"(controller:)"product"

An alternative syntax is to assign the controller and action to use within a block passed to the method:

"/product" {
 controller = "product"
 action = "list"
}

Which syntax you use is largely dependent on personal preference. If you simply want to rewrite on URI onto
another explicit URI (rather than a controller/action pair) this can be achieved with the following example:

"/hello"(uri:)"/hello.dispatch"

Rewriting specific URIs is often useful when integrating with other frameworks.

6.4.2 Embedded Variables

Simple Variables
The previous section demonstrated how to map trivial URLs with concrete "tokens". In URL mapping speak tokens
are the sequence of characters between each slash / character. A concrete token is one which is well defined such as
as . However, in many circumstances you don't know what the value of a particular token will be until/product
runtime. In this case you can use variable placeholders within the URL for example:

static mappings = {
 (controller:)"/product/$id" "product"
}

In this case by embedding a $id variable as the second token Grails will automatically map the second token into a
parameter (available via the object) called . For example given the URL , theparams id /product/MacBook
following code will render "MacBook" to the response:

http://grails.org/doc/latest/ref/Controllers/params.html

120

class ProductController {
 def index = { render params.id }
}

You can of course construct more complex examples of mappings. For example the traditional blog URL format
could be mapped as follows:

static mappings = {
 (controller: , action:)"/$blog/$year/$month/$day/$id" "blog" "show"
}

The above mapping would allow you to do things like:

/graemerocher/2007/01/10/my_funky_blog_entry

The individual tokens in the URL would again be mapped into the object with values available for , params year
, , and so on.month day id

Dynamic Controller and Action Names
Variables can also be used to dynamically construct the controller and action name. In fact the default Grails URL
mappings use this technique:

static mappings = {
 ()"/$controller/$action?/$id?"
}

Here the name of the controller, action and id are implicitly obtained from the variables , andcontroller action
 embedded within the URL.id

You can also resolve the controller name and action name to execute dynamically using a closure:

static mappings = {
 {"/$controller"
 action = { params.goHere }
 }
}

Optional Variables
Another characteristic of the default mapping is the ability to append a at the end of a variable to make it an?
optional token. In a further example this technique could be applied to the blog URL mapping to have more flexible
linking:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

With this mapping all of the below URLs would match with only the relevant parameters being populated in the
 object:params

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html

121

/graemerocher/2007/01/10/my_funky_blog_entry
/graemerocher/2007/01/10
/graemerocher/2007/01
/graemerocher/2007
/graemerocher

Arbitrary Variables
You can also pass arbitrary parameters from the URL mapping into the controller by merely setting them in the block
passed to the mapping:

"/holiday/win" {
 id = "Marrakech"
 year = 2007
}

This variables will be available within the object passed to the controller.params

Dynamically Resolved Variables
The hard coded arbitrary variables are useful, but sometimes you need to calculate the name of the variable based on
runtime factors. This is also possible by assigning a block to the variable name:

"/holiday/win" {
 id = { params.id }
 isEligible = { session.user != } // must be logged innull
}

In the above case the code within the blocks is resolved when the URL is actually matched and hence can be used in
combination with all sorts of logic.

6.4.3 Mapping to Views

If you want to resolve a URL to a view, without a controller or action involved, you can do so too. For example if
you wanted to map the root URL to a GSP at the location you could use:/ grails-app/views/index.gsp

static mappings = {
 (view:) // map the root URL"/" "/index"
}

Alternatively if you need a view that is specific to a given controller you could use:

static mappings = {
 (controller: ,view:) // to a view a controller"/help" "site" "help" for
}

6.4.4 Mapping to Response Codes

Grails also allows you to map HTTP response codes to controllers, actions or views. All you have to do is use a
method name that matches the response code you are interested in:

static mappings = {
 (controller: , action:)"403" "errors" "forbidden"
 (controller: , action:)"404" "errors" "notFound"
 (controller: , action:)"500" "errors" "serverError"
}

http://grails.org/doc/latest/ref/Controllers/params.html

122

Or alternatively if you merely want to provide custom error pages:

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (view:)"500" "/errors/serverError"
}

Declarative Error Handling
In addition you can configure handlers for individual exceptions:

static mappings = {
 (view:)"403" "/errors/forbidden"
 (view:)"404" "/errors/notFound"
 (controller: , action: , exception: IllegalArgumentException)"500" "errors" "illegalArgument"
 (controller: , action: , exception: NullPointerException)"500" "errors" "nullPointer"
 (controller: , action: , exception: MyException)"500" "errors" "customException"
 (view:)"500" "/errors/serverError"
}

With this configuration, an will be handled by the actionIllegalArgumentException illegalArgument
in , a will be handled by the action, and a ErrorsController NullPointerException nullPointer

 will be handled by the action. Other exceptions will be handled by theMyException customException
catch-all rule and use the view./errors/serverError

6.4.5 Mapping to HTTP methods

URL mappings can also be configured to map based on the HTTP method (GET, POST, PUT or DELETE). This is
extremely useful for RESTful APIs and for restricting mappings based on HTTP method.
As an example the following mappings provide a RESTful API URL mappings for the :ProductController

static mappings = {
 (controller:){"/product/$id" "product"
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
 }
}

6.4.6 Mapping Wildcards

Grails' URL mappings mechanism also supports wildcard mappings. For example consider the following mapping:

static mappings = {
 (controller:)"/images/*.jpg" "image"
}

This mapping will match all paths to images such as . Of course you can achieve the same/image/logo.jpg
effect with a variable:

static mappings = {
 (controller:)"/images/$name.jpg" "image"
}

However, you can also use double wildcards to match more than one level below:

123

static mappings = {
 (controller:)"/images/**.jpg" "image"
}

In this cases the mapping will match as well as . Even better/image/logo.jpg /image/other/logo.jpg
you can use a double wildcard variable:

static mappings = {
 // will match /image/logo.jpg and /image/other/logo.jpg
 (controller:)"/images/$name**.jpg" "image"
}

In this case it will store the path matched by the wildcard inside a parameter obtainable from the name params
object:

def name = params.name
println name // prints or "logo" "other/logo"

If you are using wildcard URL mappings then you may want to exclude certain URIs from Grails' URL mapping
process. To do this you can provide an setting inside the class:excludes UrlMappings.groovy

class UrlMappings = {
 excludes = [,]static "/images/*" "/css/*"
 mappings = {static
 …
 }
}

In this case Grails won't attempt to match any URIs that start with or ./images /css

6.4.7 Automatic Link Re-Writing

Another great feature of URL mappings is that they automatically customize the behaviour of the tag so thatlink
changing the mappings don't require you to go and change all of your links.
This is done through a URL re-writing technique that reverse engineers the links from the URL mappings. So given a
mapping such as the blog one from an earlier section:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

If you use the link tag as follows:

<g:link controller= action= params= >"blog" "show" "[blog:'fred', year:2007]" My Blog</g:link>
My Blog - October 2007 Posts<g:link controller= action= params= >"blog" "show" "[blog:'fred', year:2007, month:10]" </g:link>

Grails will automatically re-write the URL in the correct format:

"/fred/2007" My Blog
My Blog - October 2007 Posts"/fred/2007/10"

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Tags/link.html

124

6.4.8 Applying Constraints

URL Mappings also support Grails' unified mechanism, which allows you to furthervalidation constraints
"constrain" how a URL is matched. For example, if we revisit the blog sample code from earlier, the mapping
currently looks like this:

static mappings = {
 (controller: , action:)"/$blog/$year?/$month?/$day?/$id?" "blog" "show"
}

This allows URLs such as:

/graemerocher/2007/01/10/my_funky_blog_entry

However, it would also allow:

/graemerocher/not_a_year/not_a_month/not_a_day/my_funky_blog_entry

This is problematic as it forces you to do some clever parsing in the controller code. Luckily, URL Mappings can be
constrained to further validate the URL tokens:

"/$blog/$year?/$month?/$day?/$id?" {
 controller = "blog"
 action = "show"
 constraints {
 year(matches:/\d{4}/)
 month(matches:/\d{2}/)
 day(matches:/\d{2}/)
 }
}

In this case the constraints ensure that the , and parameters match a particular valid pattern thusyear month day
relieving you of that burden later on.

6.4.9 Named URL Mappings

URL Mappings also support named mappings. Simply put, named mappings are mappings which have a name
associated with them. The name may be used to refer to a specific mapping when links are being generated.
The syntax for defining a named mapping is as follows:

static mappings = {
 name <mapping name>: <url pattern> {
 // …
 }
}

An example:

125

static mappings = {
 name personList: {"/showPeople"
 controller = 'person'
 action = 'list'
 }
 name accountDetails: {"/details/$acctNumber"
 controller = 'product'
 action = 'accountDetails'
 }
}

The mapping may be referenced in a link tag in a GSP.

<g:link mapping= >"personList" List People</g:link>

That would result in:

"/showPeople" List People

Parameters may be specified using the params attribute.

<g:link mapping= params= >"accountDetails" "[acctNumber:'8675309']" Show Account</g:link>

That would result in:

"/details/8675309" Show Account

Alternatively you may reference a named mapping using the link namespace.

<link:personList>List People</link:personList>

That would result in:

"/showPeople" List People

The link namespace approach allows parameters to be specified as attributes.

<link:accountDetails acctNumber= >"8675309" Show Account</link:accountDetails>

That would result in:

"/details/8675309" Show Account

126

6.5 Web Flow

Overview
Grails supports the creation of web flows built on the project. A web flow is a conversation thatSpring Web Flow
spans multiple requests and retains state for the scope of the flow. A web flow also has a defined start and end state.
Web flows don't require an HTTP session, but instead store their state in a serialized form, which is then restored
using a flow execution key that Grails passes around as a request parameter. This makes flows far more scalable than
other forms of stateful application that use the HttpSession and its inherit memory and clustering concerns.
Web flow is essentially an advanced state machine that manages the "flow" of execution from one state to the next.
Since the state is managed for you, you don't have to be concerned with ensuring that users enter an action in the
middle of some multi step flow, as web flow manages that for you. This makes web flow perfect for use cases such
as shopping carts, hotel booking and any application that has multi page work flows.

Creating a Flow
To create a flow create a regular Grails controller and then add an action that ends with the convention . ForFlow
example:

class BookController {
 def index = {
 redirect(action:)"shoppingCart"
 }
 def shoppingCartFlow = {
 …
 }
}

Notice when redirecting or referring to the flow as an action we omit the suffix. In other words the name of theFlow
action of the above flow is .shoppingCart

6.5.1 Start and End States

As mentioned before a flow has a defined start and end state. A start state is the state which is entered when a user
first initiates a conversation (or flow). The start state of A Grails flow is the first method call that takes a block. For
example:

class BookController {
 …
 def shoppingCartFlow = {
 showCart {
 on().to "checkout" "enterPersonalDetails"
 on().to "continueShopping" "displayCatalogue"
 }
 …
 displayCatalogue {
 redirect(controller: , action:)"catalogue" "show"
 }
 displayInvoice()
 }
}

Here the node is the start state of the flow. Since the showCart state doesn't define an action or redirect itshowCart
is assumed be a that, by convention, refers to the view view state

.grails-app/views/book/shoppingCart/showCart.gsp
Notice that unlike regular controller actions, the views are stored within a directory that matches the name of the
flow: .grails-app/views/book/shoppingCart
The flow also has two possible end states. The first is which performs anshoppingCart displayCatalogue
external redirect to another controller and action, thus exiting the flow. The second is which isdisplayInvoice
an end state as it has no events at all and will simply render a view called

 whilst ending the flow at the samegrails-app/views/book/shoppingCart/displayInvoice.gsp
time.
Once a flow has ended it can only be resumed from the start state, in this case , and not from any othershowCart
state.

6.5.2 Action States and View States

http://www.springsource.org/webflow

127

View states
A view state is a one that doesn't define an or a . So for example the below is a view state:action redirect

enterPersonalDetails {
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

It will look for a view called grails-app/views/book/shoppingCart/enterPersonalDetails.gsp
by default. Note that the state defines two events: and . The view isenterPersonalDetails submit return
responsible for these events. If you want to change the view to be rendered you can do so with the rendertriggering
method:

enterPersonalDetails {
 render(view:)"enterDetailsView"
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

Now it will look for . If you wantgrails-app/views/book/shoppingCart/enterDetailsView.gsp
to use a shared view, start with a / in view argument:

enterPersonalDetails {
 render(view:)"/shared/enterDetailsView"
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

Now it will look for grails-app/views/shared/enterDetailsView.gsp

Action States
An action state is a state that executes code but does not render any view. The result of the action is used to dictate
flow transition. To create an action state you need to define an action to to be executed. This is done by calling the

 method and passing it a block of code to be executed:action

listBooks {
 action {
 [bookList:Book.list()]
 }
 on().to "success" "showCatalogue"
 on(Exception).to "handleError"
}

As you can see an action looks very similar to a controller action and in fact you can re-use controller actions if you
want. If the action successfully returns with no errors the event will be triggered. In this case since wesuccess
return a map, this is regarded as the "model" and is automatically placed in .flow scope
In addition, in the above example we also use an exception handler to deal with errors on the line:

on(Exception).to "handleError"

What this does is make the flow transition to a state called in the case of an exception.handleError
You can write more complex actions that interact with the flow request context:

128

processPurchaseOrder {
 action {
 def a = flow.address
 def p = flow.person
 def pd = flow.paymentDetails
 def cartItems = flow.cartItems
 flow.clear()
 def o = Order(person:p, shippingAddress:a, paymentDetails:pd)new
 o.invoiceNumber = Random().nextInt(9999999)new
 cartItems.each { o.addToItems(it) }
 o.save()
 [order:o]
 }
 on().to "error" "confirmPurchase"
 on(Exception).to "confirmPurchase"
 on().to "success" "displayInvoice"
}

Here is a more complex action that gathers all the information accumulated from the flow scope and creates an
 object. It then returns the order as the model. The important thing to note here is the interaction with theOrder

request context and "flow scope".

Transition Actions
Another form of action is what is known as a action. A transition action is executed directly prior to statetransition
transition once an has been triggered. A trivial example of a transition action can be seen below:event

enterPersonalDetails {
 on() {"submit"
 log.trace "Going to enter shipping"
 }.to "enterShipping"
 on().to " "return "showCart"
}

Notice how we pass a block of the code to event that simply logs the transition. Transition states aresubmit
extremely useful for , which is covered in a later section.data binding and validation

6.5.3 Flow Execution Events

In order to execution of a flow from one state to the next you need some way of trigger an thattransition event
indicates what the flow should do next. Events can be triggered from either view states or action states.

Triggering Events from a View State
As discussed previously the start state of the flow in a previous code listing deals with two possible events. A

 event and a event:checkout continueShopping

def shoppingCartFlow = {
 showCart {
 on().to "checkout" "enterPersonalDetails"
 on().to "continueShopping" "displayCatalogue"
 }
 …
}

Since the event is a view state it will render the view showCart
. Within this view you need to have components thatgrails-app/book/shoppingCart/showCart.gsp

trigger flow execution. On a form this can be done use the tag:submitButton

<g:form action= >"shoppingCart"
 <g:submitButton name= value= >"continueShopping" "Continue Shopping" </g:submitButton>
 <g:submitButton name= value= >"checkout" "Checkout" </g:submitButton>
</g:form>

http://grails.org/doc/latest/ref/Tags/submitButton.html

129

The form must submit back to the flow. The name attribute of each tag signalsshoppingCart submitButton
which event will be triggered. If you don't have a form you can also trigger an event with the tag as follows:link

<g:link action= event= />"shoppingCart" "checkout"

Triggering Events from an Action
To trigger an event from an you need to invoke a method. For example there is the built in and action error()

 methods. The example below triggers the event on validation failure in a transition action:success() error()

enterPersonalDetails {
 on() {"submit"
 def p = Person(params)new
 flow.person = p
 (!p.validate()) error()if return
 }.to "enterShipping"
 on().to " "return "showCart"
}

In this case because of the error the transition action will make the flow go back to the enterPersonalDetails
state.
With an action state you can also trigger events to redirect flow:

shippingNeeded {
 action {
 (params.shippingRequired) yes()if
 no()else
 }
 on().to "yes" "enterShipping"
 on().to "no" "enterPayment"
}

6.5.4 Flow Scopes

Scope Basics
You'll notice from previous examples that we used a special object called to store objects within "flow scope".flow
Grails flows have 5 different scopes you can utilize:

request - Stores an object for the scope of the current request
flash - Stores the object for the current and next request only
flow - Stores objects for the scope of the flow, removing them when the flow reaches an end state
conversation - Stores objects for the scope of the conversation including the root flow and nested
subflows
session - Stores objects inside the users session

Grails service classes can be automatically scoped to a web flow scope. See the
documentation on for more information.Services

Also returning a model map from an action will automatically result in the model being placed in flow scope. For
example, using a transition action, you can place objects within scope as follows:flow

enterPersonalDetails {
 on() {"submit"
 [person: Person(params)]new
 }.to "enterShipping"
 on().to " "return "showCart"
}

http://grails.org/doc/latest/ref/Tags/submitButton.html
http://grails.org/doc/latest/ref/Tags/link.html

130

1.
2.

Be aware that a new request is always created for each state, so an object placed in request scope in an action state
(for example) will not be available in a subsequent view state. Use one of the other scopes to pass objects from one
state to another. Also note that Web Flow:

Moves objects from flash scope to request scope upon transition between states;
Merges objects from the flow and conversation scopes into the view model before rendering (so you shouldn't
include a scope prefix when referencing these objects within a view, e.g. GSP pages).

Flow Scopes and Serialization
When placing objects in , or scope they must implement flash flow conversation

 otherwise you will get an error. This has an impact on in that domainjava.io.Serializable domain classes
classes are typically placed within a scope so that they can be rendered in a view. For example consider the following
domain class:

class Book {
 titleString
}

In order to place an instance of the class in a flow scope you will need to modify it as follows:Book

class Book Serializable {implements
 titleString
}

This also impacts associations and closures you declare within a domain class. For example consider this:

class Book Serializable {implements
 titleString
 Author author
}

Here if the association is not you will also get an error. This also impacts closures usedAuthor Serializable
in such as , and so on. The following domain class will cause an error if an instanceGORM events onLoad onSave
is placed in a flow scope:

class Book Serializable {implements
 titleString
 def onLoad = {
 println "I'm loading"
 }
}

The reason is that the assigned block on the event cannot be serialized. To get around this you shouldonLoad
declare all events as :transient

class Book Serializable {implements
 titleString
 onLoad = {transient
 println "I'm loading"
 }
}

6.5.5 Data Binding and Validation

131

In the section on , the start state in the first example triggered a transition to the start and end states
 state. This state renders a view and waits for the user to enter the required information:enterPersonalDetails

enterPersonalDetails {
 on().to "submit" "enterShipping"
 on().to " "return "showCart"
}

The view contains a form with two submit buttons that either trigger the submit event or the return event:

<g:form action= >"shoppingCart"
 <!-- Other fields -->
 <g:submitButton name= value= >"submit" "Continue" </g:submitButton>
 <g:submitButton name= value= >"return" "Back" </g:submitButton>
</g:form>

However, what about the capturing the information submitted by the form? To to capture the form info we can use a
flow transition action:

enterPersonalDetails {
 on() {"submit"
 flow.person = Person(params)new
 !flow.person.validate() ? error() : success()
 }.to "enterShipping"
 on().to " "return "showCart"
}

Notice how we perform data binding from request parameters and place the instance within scope.Person flow
Also interesting is that we perform and invoke the method if validation fails. This signals to thevalidation error()
flow that the transition should halt and return to the view so valid entries can beenterPersonalDetails
entered by the user, otherwise the transition should continue and go to the state.enterShipping
Like regular actions, flow actions also support the notion of by defining the first argument of theCommand Objects
closure:

enterPersonalDetails {
 on() { PersonDetailsCommand cmd -> "submit"
 flow.personDetails = cmd
 !flow.personDetails.validate() ? error() : success()
 }.to "enterShipping"
 on().to " "return "showCart"
}

6.5.6 Subflows and Conversations

Grails' Web Flow integration also supports subflows. A subflow is like a flow within a flow. For example take this
search flow:

132

def searchFlow = {
 displaySearchForm {
 on().to "submit" "executeSearch"
 }
 executeSearch {
 action {
 [results:searchService.executeSearch(params.q)]
 }
 on().to "success" "displayResults"
 on().to "error" "displaySearchForm"
 }
 displayResults {
 on().to "searchDeeper" "extendedSearch"
 on().to "searchAgain" "displaySearchForm"
 }
 extendedSearch {
 subflow(extendedSearchFlow) // <--- extended search subflow
 on().to "moreResults" "displayMoreResults"
 on().to "noResults" "displayNoMoreResults"
 }
 displayMoreResults()
 displayNoMoreResults()
}

It references a subflow in the state. The subflow is another flow entirely:extendedSearch

def extendedSearchFlow = {
 startExtendedSearch {
 on().to "findMore" "searchMore"
 on().to "searchAgain" "noResults"
 }
 searchMore {
 action {
 def results = searchService.deepSearch(ctx.conversation.query)
 (!results) error()if return
 conversation.extendedResults = results
 }
 on().to "success" "moreResults"
 on().to "error" "noResults"
 }
 moreResults()
 noResults()
}

Notice how it places the in conversation scope. This scope differs to flow scope as it allowsextendedResults
you to share state that spans the whole conversation not just the flow. Also notice that the end state (either

 or of the subflow triggers the events in the main flow:moreResults noResults

extendedSearch {
 subflow(extendedSearchFlow) // <--- extended search subflow
 on().to "moreResults" "displayMoreResults"
 on().to "noResults" "displayNoMoreResults"
}

6.6 Filters

Although Grails support fine grained interceptors, these are only really useful when applied to a fewcontrollers
controllers and become difficult to manage with larger applications. Filters on the other hand can be applied across a
whole group of controllers, a URI space or a to a specific action. Filters are far easier to plug-in and maintain
completely separately to your main controller logic and are useful for all sorts of cross cutting concerns such as
security, logging, and so on.

6.6.1 Applying Filters

To create a filter create a class that ends with the convention in the directory.Filters grails-app/conf
Within this class define a code block called that contains the filter definitions:filters

133

class ExampleFilters {
 def filters = {
 // your filters here
 }
}

Each filter you define within the block has a name and a scope. The name is the method name and thefilters
scope is defined using named arguments. For example if you need to define a filter that applies to all controllers and
all actions you can use wildcards:

sampleFilter(controller:'*', action:'*') {
 // interceptor definitions
}

The scope of the filter can be one of the following things:

A controller and/or action name pairing with optional wildcards
A URI, with Ant path matching syntax

Filter rule attributes:

controller - controller matching pattern, by default * is replaced with .* and a regex is compiled
action - action matching pattern, by default * is replaced with .* and a regex is compiled
regex (true/false) - use regex syntax (don't replace '*' with '.*')
uri - a uri to match, expressed with as Ant style path (e.g. /book/**)
find (true/false) - rule matches with partial match (see java.util.regex.Matcher.find())
invert (true/false) - invert the rule (NOT rule)

Some examples of filters include:

All controllers and actions

all(controller:'*', action:'*') {
}

Only for the BookController

justBook(controller:'book', action:'*') {
}

All controllers except the BookController

notBook(controller:'book', invert:) {true
}

All actions containing 'save' in the action name

saveInActionName(action:'save', find:) {true
}

Applied to a URI space

134

someURIs(uri:'/book/**') {
}

Applied to all URIs

allURIs(uri:'/**') {
}

In addition, the order in which you define the filters within the code block dictates the order in which theyfilters
are executed. To control the order of execution between classes, you can use the propertyFilters dependsOn
discussed in section.filter dependencies

6.6.2 Filter Types

Within the body of the filter you can then define one or several of the following interceptor types for the filter:

before - Executed before the action. Can return false to indicate all future filters and the action should not
execute
after - Executed after an action. Takes a first argument as the view model
afterView - Executed after view rendering

For example to fulfill the common authentication use case you could define a filter as follows:

class SecurityFilters {
 def filters = {
 loginCheck(controller:'*', action:'*') {
 before = {
 (!session.user && !actionName.equals('login')) {if
 redirect(action:'login')
 return false
 }
 }
 }
 }
}

Here the filter uses a interceptor to execute a block of code that checks if a user is in theloginCheck before
session and if not redirects to the login action. Note how returning false ensure that the action itself is not executed.

6.6.3 Variables and Scopes

Filters support all the common properties available to and , plus the application context:controllers tag libraries

request - The HttpServletRequest object
response - The HttpServletResponse object
session - The HttpSession object
servletContext - The ServletContext object
flash - The flash object
params - The request parameters object
actionName - The action name that is being dispatched to
controllerName - The controller name that is being dispatched to
grailsApplication - The Grails application currently running
applicationContext - The ApplicationContext object

However, filters only support a subset of the methods available to controllers and tag libraries. These include:

redirect - For redirects to other controllers and actions
render - For rendering custom responses

6.6.4 Filter Dependencies

In a class, you can specify any other classes that should first be executed using the Filters Filters

http://grails.org/doc/latest/ref/Controllers/request.html
http://grails.org/doc/latest/ref/Controllers/response.html
http://grails.org/doc/latest/ref/Controllers/session.html
http://grails.org/doc/latest/ref/Controllers/servletContext.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/actionName.html
http://grails.org/doc/latest/ref/Controllers/controllerName.html
http://grails.org/doc/latest/ref/Controllers/grailsApplication.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.org/doc/latest/ref/Controllers/redirect.html
http://grails.org/doc/latest/ref/Controllers/render.html

135

 property. The property is used when a class depends on the behavior ofdependsOn dependsOn Filters
another class (e.g. setting up the environment, modifying the request/session, etc.) and is defined as anFilters
array of classes.Filters
Take the following example classes:Filters

class MyFilters {
 def dependsOn = [MyOtherFilters]
 def filters = {
 checkAwesome(uri:) {"/*"
 before = {
 (request.isAwesome) { // something awesome }if do
 }
 }
 checkAwesome2(uri:) {"/*"
 before = {
 (request.isAwesome) { // something awesome }if do else
 }
 }
 }
}
class MyOtherFilters {
 def filters = {
 makeAwesome(uri:) {"/*"
 before = {
 request.isAwesome = ;true
 }
 }
 doNothing(uri:) {"/*"
 before = {
 // nothingdo
 }
 }
 }
}

MyFilters specifically MyOtherFilters. This will cause all the filters in MyOtherFilters to be executeddependsOn
before those in MyFilters, given their scope matches the current request. For a request of "/test", which will match
the scope of every filter in the example, the execution order would be as follows:

MyOtherFilters - makeAwesome
MyOtherFilters - doNothing
MyFilters - checkAwesome
MyFilters - checkAwesome2

The filters within the MyOtherFilters class are processed in order first, followed by the filters in the MyFilters class.
Execution order between classes are enabled and the execution order of filters within each Filters Filters
class are preserved.
If any cyclical dependencies are detected, the filters with cyclical dependencies will be added to the end of the filter
chain and processing will continue. Information about any cyclical dependencies that are detected will be written to
the logs. Ensure that your root logging level is set to at least WARN or configure an appender for the Grails Filters
Plugin (org.codehaus.groovy.grails.plugins.web.filters.FiltersGrailsPlugin) when debugging filter dependency issues.

6.7 Ajax

Ajax stands for Asynchronous Javascript and XML and is the driving force behind the shift to richer web
applications. These types of applications in general are better suited to agile, dynamic frameworks written in
languages like and Grails provides support for building Ajax applications through its Ajax tag libraryRuby Groovy
for a full list of these see the Tag Library Reference.

6.7.1 Ajax using Prototype

By default Grails ships with the library, but through the provides support for otherPrototype Plug-in system
frameworks such as and the Dojo Yahoo UI Google Web Toolkit
This section covers Grails' support for Prototype. To get started you need to add this line to the tag of your<head>
page:

<g:javascript library= />"prototype"

http://www.ruby-lang.org/
http://groovy.codehaus.org.
http://www.prototypejs.org/
http://dojotoolkit.org/,
http://developer.yahoo.com/yui/
http://code.google.com/webtoolkit/.

136

This uses the tag to automatically place the correct references in place for Prototype. If you require javascript
 too you can do the following instead:Scriptaculous

<g:javascript library= />"scriptaculous"

This works because of Grails' support for adaptive tag libraries. Thanks to Grails' plugin system there is support for a
number of different Ajax libraries including (but not limited to):

prototype
dojo
yui
mootools

6.7.1.1 Remoting Linking

Remote content can be loaded in a number of ways, the most commons way is through the tag. This tagremoteLink
allows the creation of HTML anchor tags that perform an asynchronous request and optionally set the response in an
element. The simplest way to create a remote link is as follows:

<g:remoteLink action= id= >"delete" "1" Delete Book</g:remoteLink>

The above link sends an asynchronous request to the action of the current controller with an id of .delete 1

6.7.1.2 Updating Content

This is great, but usually you would want to provide some kind of feedback to the user as to what has happened:

def delete = {
 def b = Book.get(params.id)
 b.delete()
 render "Book ${b.id} was deleted"
}

GSP code:

<div id= >"message" </div>
Delete Book<g:remoteLink action= id= update= >"delete" "1" "message" </g:remoteLink>

The above example will call the action and set the contents of the to the response in this case message div "Book
. This is done by the attribute on the tag, which can also take a map to indicate what1 was deleted" update

should be updated on failure:

<div id= >"message" </div>
<div id= >"error" </div>
<g:remoteLink action= id="delete" "1"

Delete Book update= >"[success:'message',failure:'error']" </g:remoteLink>

Here the div will be updated if the request failed.error

6.7.1.3 Remote Form Submission

An HTML form can also be submitted asynchronously in one of two ways. Firstly using the tag whichformRemote
expects similar attributes to those for the tag:remoteLink

http://grails.org/doc/latest/ref/Tags/javascript.html
http://script.aculo.us/
http://grails.org/doc/latest/ref/Tags/remoteLink.html
http://grails.org/doc/latest/ref/Tags/formRemote.html
http://grails.org/doc/latest/ref/Tags/remoteLink.html

137

<g:formRemote url="[controller:'book',action:'delete']"
 update= >"[success:'message',failure:'error']"
 <input type= name= value= />"hidden" "id" "1"
 <input type= value= />"submit" "Delete Book!"
</g:formRemote >

Or alternatively you can use the tag to create a submit button. This allows some buttons to submitsubmitToRemote
remotely and some not depending on the action:

<form action= >"delete"
 <input type= name= value= />"hidden" "id" "1"
 <g:submitToRemote action= update= />"delete" "[success:'message',failure:'error']"
</form>

6.7.1.4 Ajax Events

Specific javascript can be called if certain events occur, all the events start with the "on" prefix and allow you to give
feedback to the user where appropriate, or take other action:

<g:remoteLink action="show"
 id="1"
 update="success"
 onLoading="showProgress()"
 onComplete= >"hideProgress()" Show Book 1</g:remoteLink>

The above code will execute the "showProgress()" function which may show a progress bar or whatever is
appropriate. Other events include:

onSuccess - The javascript function to call if successful
onFailure - The javascript function to call if the call failed
on_ERROR_CODE - The javascript function to call to handle specified error codes (eg on404="alert('not
found!')")
onUninitialized - The javascript function to call the a ajax engine failed to initialise
onLoading - The javascript function to call when the remote function is loading the response
onLoaded - The javascript function to call when the remote function is completed loading the response
onComplete - The javascript function to call when the remote function is complete, including any updates

If you need a reference to the object you can use the implicit event parameter to obtain it:XmlHttpRequest e

<g:javascript>
 function fireMe(e) {
 alert(+ e)"XmlHttpRequest = "
 }
}
</g:javascript>
<g:remoteLink action="example"
 update="success"

Ajax Link onSuccess= >"fireMe(e)" </g:remoteLink>

6.7.2 Ajax with Dojo

Grails features an external plug-in to add support to Grails. To install the plug-in type the following commandDojo
from the root of your project in a terminal window:

grails install-plugin dojo

This will download the current supported version of Dojo and install it into your Grails project. With that done you

http://grails.org/doc/latest/ref/Tags/submitToRemote.html
http://dojotoolkit.org/

138

can add the following reference to the top of your page:

<g:javascript library= />"dojo"

Now all of Grails tags such as , and work with Dojo remoting.remoteLink formRemote submitToRemote

6.7.3 Ajax with GWT

Grails also features support for the through a plug-in comprehensive for can beGoogle Web Toolkit documentation
found on the Grails wiki.

6.7.4 Ajax on the Server

Although Ajax features the X for XML there are a number of different ways to implement Ajax which are typically
broken down into:

Content Centric Ajax - Where you merely use the HTML result of a remote call to update the page
Data Centric Ajax - Where you actually send an XML or JSON response from the server and
programmatically update the page
Script Centric Ajax - Where the server sends down a stream of Javascript to be evaluated on the fly

Most of the examples in the section cover Content Centric Ajax where you are updating the page, but you mayAjax
also want to use Data Centric or Script Centric. This guide covers the different styles of Ajax.

Content Centric Ajax
Just to re-cap, content centric Ajax involves sending some HTML back from the server and is typically done by
rendering a template with the method:render

def showBook = {
 def b = Book.get(params.id)
 render(template: , model:[book:b])"bookTemplate"
}

Calling this on the client involves using the tag:remoteLink

<g:remoteLink action= id="showBook" "${book.id}"
 update= >"book${book.id}" Update Book</g:remoteLink>
<div id= >"book${book.id}"
 <!--existing book mark-up -->
</div>

Data Centric Ajax with JSON
Data Centric Ajax typically involves evaluating the response on the client and updating programmatically. For a
JSON response with Grails you would typically use Grails' capability:JSON marshaling

import grails.converters.*
def showBook = {
 def b = Book.get(params.id)
 render b as JSON
}

And then on the client parse the incoming JSON request using an Ajax event handler:

http://grails.org/doc/latest/ref/Tags/remoteLink.html
http://grails.org/doc/latest/ref/Tags/formRemote.html
http://grails.org/doc/latest/ref/Tags/submitToRemote.html
http://code.google.com/webtoolkit/
http://grails.org/GWT+Plugin
http://grails.org/doc/latest/ref/Controllers/render.html
http://grails.org/doc/latest/ref/Tags/remoteLink.html

139

<g:javascript>
function updateBook(e) {
 var book = eval(+e.responseText+) // evaluate the JSON"(" ")"
 $(+ book.id +).innerHTML = book.title"book" "_title"
}
<g:javascript>

Update Book<g:remoteLink action= update= onSuccess= >"test" "foo" "updateBook(e)" </g:remoteLink>
book${book.id}<g:set var= >"bookId" </g:set>

<div id= >"${bookId}"
 The Stand<div id= >"${bookId}_title" </div>
</div>

Data Centric Ajax with XML
On the server side using XML is equally trivial:

import grails.converters.*
def showBook = {
 def b = Book.get(params.id)
 render b as XML
}

However, since DOM is involved the client gets more complicated:

<g:javascript>
function updateBook(e) {
 var xml = e.responseXML
 var id = xml.getElementsByTagName().getAttribute()"book" "id"
 $(+ id +) = xml.getElementsByTagName()[0].textContent"book" "_title" "title"
}
<g:javascript>

Update Book<g:remoteLink action= update= onSuccess= >"test" "foo" "updateBook(e)" </g:remoteLink>
book${book.id}<g:set var= >"bookId" </g:set>

<div id= >"${bookId}"
 The Stand<div id= >"${bookId}_title" </div>
</div>

Script Centric Ajax with JavaScript
Script centric Ajax involves actually sending Javascript back that gets evaluated on the client. An example of this can
be seen below:

def showBook = {
 def b = Book.get(params.id)
 response.contentType = "text/javascript"
 title = b.title.encodeAsJavascript()String
 render "$('book${b.id}_title')='${title}'"
}

The important thing to remember is to set the to . If you are using PrototypecontentType text/javascript
on the client the returned Javascript will automatically be evaluated due to this setting.contentType
Obviously in this case it is critical that you have an agreed client-side API as you don't want changes on the client
breaking the server. This is one of the reasons Rails has something like RJS. Although Grails does not currently have
a feature such as RJS there is a that offers similar capabilities.Dynamic JavaScript Plug-in

6.8 Content Negotiation

Grails has built in support for using either the HTTP header, an explicit format requestContent negotiation Accept
parameter or the extension of a mapped URI.

Configuring Mime Types
Before you can start dealing with content negotiation you need to tell Grails what content types you wish to support.
By default Grails comes configured with a number of different content types within

http://grails.org/Dynamic+Javascript+Plugin
http://en.wikipedia.org/wiki/Content_negotiation

140

 using the setting:grails-app/conf/Config.groovy grails.mime.types

grails.mime.types = [xml: ['text/xml', 'application/xml'],
 text: 'text-plain',
 js: 'text/javascript',
 rss: 'application/rss+xml',
 atom: 'application/atom+xml',
 css: 'text/css',
 csv: 'text/csv',
 all: '*/*',
 json: 'text/json',
 html: ['text/html','application/xhtml+xml']
]

The above bit of configuration allows Grails to detect to format of a request containing either the 'text/xml' or
'application/xml' media types as simply 'xml'. You can add your own types by simply adding new entries into the
map.

Content Negotiation using the Accept header
Every incoming HTTP request has a special header that defines what media types (or mime types) a clientAccept
can "accept". In older browsers this is typically:

/

Which simply means anything. However, on newer browser something all together more useful is sent such as (an
example of a Firefox header):Accept

text/xml,application/xml,application/xhtml+xml,text/html;q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5

Grails parses this incoming format and adds a to the object that outlines the preferred requestproperty request
format. For the above example the following assertion would pass:

assert 'html' == request.format

Why? The media type has the highest "quality" rating of 0.9, therefore is the highest priority. If youtext/html
have an older browser as mentioned previously the result is slightly different:

assert 'all' == request.format

In this case 'all' possible formats are accepted by the client. To deal with different kinds of requests from Controllers
you can use the method that acts as kind of a switch statement:withFormat

import grails.converters.*
class BookController {
 def books
 def list = {
 .books = Book.list()this
 withFormat {
 html bookList:books
 js { render }"alert('hello')"
 xml { render books as XML }
 }
 }
}

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://grails.org/doc/latest/ref/Servlet API/request.html
http://grails.org/doc/latest/ref/Controllers/withFormat.html

141

What happens here is that if the preferred format is then Grails will execute the call only. What thishtml html()
is does is make Grails look for a view called either or grails-app/views/books/list.html.gsp

. If the format is then the closure will be invoked and an XMLgrails-app/views/books/list.gsp xml
response rendered.
How do we handle the "all" format? Simply order the content-types within your block so thatwithFormat
whichever one you want executed comes first. So in the above example, "all" will trigger the handler.html

When using make sure it is the last call in your controller action as the returnwithFormat
value of the method is used by the action to dictate what happens next.withFormat

Content Negotiation with the format Request Parameter
If fiddling with request headers if not your favorite activity you can override the format used by specifying a

 request parameter:format

/book/list?format=xml

You can also define this parameter in the definition:URL Mappings

"/book/list"(controller: , action:) {"book" "list"
 format = "xml"
}

Content Negotiation with URI Extensions
Grails also supports content negotiation via URI extensions. For example given the following URI:

/book/list.xml

Grails will shave off the extension and map it to instead whilst simultaneously setting the content/book/list
format to based on this extension. This behaviour is enabled by default, so if you wish to turn it off, you mustxml
set the property in to :grails.mime.file.extensions grails-app/conf/Config.groovy false

grails.mime.file.extensions = false

Testing Content Negotiation
To test content negotiation in an integration test (see the section on) you can either manipulate the incomingTesting
request headers:

void testJavascriptOutput() {
 def controller = TestController()new
 controller.request.addHeader ,"Accept"
 "text/javascript, text/html, application/xml, text/xml, */*"
 controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

Or you can set the format parameter to achieve a similar effect:

http://grails.org/doc/latest/ref/Controllers/withFormat.html

142

void testJavascriptOutput() {
 def controller = TestController()new
 controller.params.format = 'js'
 controller.testAction()
 assertEquals , controller.response.contentAsString"alert('hello')"
}

143

7. Validation

Grails validation capability is built on and data binding capabilities. However Grails takesSpring's Validator API
this further and provides a unified way to define validation "constraints" with its constraints mechanism.
Constraints in Grails are a way to declaratively specify validation rules. Most commonly they are applied to domain

, however and also support constraints.classes URL Mappings Command Objects

7.1 Declaring Constraints

Within a domain class a are defined with the constraints property that is assigned a code block:constraints

class User {
 loginString
 passwordString
 emailString
 ageInteger
 constraints = {static
 …
 }
}

You then use method calls that match the property name for which the constraint applies in combination with named
parameters to specify constraints:

class User {
 ...
 constraints = {static
 login(size:5..15, blank: , unique:)false true
 password(size:5..15, blank:)false
 email(email: , blank:)true false
 age(min:18, nullable:)false
 }
}

In this example we've declared that the property must be between 5 and 15 characters long, it cannot be blanklogin
and must be unique. We've all applied other constraints to the , and properties.password email age

A complete reference for the available constraints can be found on the reference guide

7.2 Validating Constraints

Validation Basics
To validate a domain class you can call the method on any instance:validate

def user = User(params)new
(user.validate()) {if

 // something with userdo
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

The property on domain classes is an instance of the Spring interface. The interfaceerrors Errors Errors
provides methods to navigate the validation errors and also retrieve the original values.

Validation Phases

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/package-summary.html
http://grails.org/doc/latest/ref/Domain Classes/constraints.html
http://grails.org/doc/latest/ref/Domain Classes/validate.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/Errors.html

144

Within Grails there are essentially 2 phases of validation, the first phase is which occurs when you binddata binding
request parameters onto an instance such as:

def user = User(params)new

At this point you may already have errors in the property due to type conversion (such as converting Stringserrors
to Dates). You can check these and obtain the original input value using the API:Errors

if(user.hasErrors()) {
 (user.errors.hasFieldErrors()) {if "login"
 println user.errors.getFieldError().rejectedValue"login"
 }
}

The second phase of validation happens when you call or . This is when Grails will validate the boundvalidate save
values againts the you defined. For example, by default the persistent method calls constraints save validate
before executing hence allowing you to write code like:

if(user.save()) {
 userreturn
}

 {else
 user.errors.allErrors.each {
 println it
 }
}

7.3 Validation on the Client

Displaying Errors
Typically if you get a validation error you want to redirect back to the view for rendering. Once there you need some
way of rendering errors. Grails supports a rich set of tags for dealing with errors. If you simply want to render the
errors as a list you can use :renderErrors

<g:renderErrors bean= />"${user}"

If you need more control you can use and :hasErrors eachError

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 ${err}
 </g:eachError>

</g:hasErrors>

Highlighting Errors
It is often useful to highlight using a red box or some indicator when a field has been incorrectly input. This can also
be done with the by invoking it as a method. For example:hasErrors

<div class='value ${hasErrors(bean:user,field:'login','errors')}'>
 <input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"
</div>

http://grails.org/doc/latest/ref/Domain Classes/validate.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/constraints.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Tags/renderErrors.html
http://grails.org/doc/latest/ref/Tags/hasErrors.html
http://grails.org/doc/latest/ref/Tags/eachError.html
http://grails.org/doc/latest/ref/Tags/hasErrors.html

145

What this code does is check if the field of the bean has any errors and if it does adds an CSSlogin user errors
class to the thus allowing you to use CSS rules to highlight the .div div

Retrieving Input Values
Each error is actually an instance of the class in Spring, which retains the original input value within it.FieldError
This is useful as you can use the error object to restore the value input by the user using the tag:fieldValue

<input type= name= value= />"text" "login" "${fieldValue(bean:user,field:'login')}"

This code will look if there is an existing in the bean and if there is obtain the originally inputFieldError User
value for the field.login

7.4 Validation and Internationalization

Another important thing to note about errors in Grails is that the messages that the errors display are not hard coded
anywhere. The class in Spring essentially resolves messages from message bundles using Grails' FieldError i18n
support.

Constraints and Message Codes
The codes themselves are dictated by a convention. For example consider the constraints we looked at earlier:

package com.mycompany.myapp
class User {
 ...
 constraints = {static
 login(size:5..15, blank: , unique:)false true
 password(size:5..15, blank:)false
 email(email: , blank:)true false
 age(min:18, nullable:)false
 }
}

If the constraint was violated Grails will, by convention, look for a message code in the form:blank

[Name].[Property Name].[Constraint Code]Class

In the case of the constraint this would be so you would need a message such as theblank user.login.blank
following in your file:grails-app/i18n/messages.properties

user.login.blank=Your login name must be specified!

The class name is looked for both with and without a package, with the packaged version taking precedence. So for
example, com.mycompany.myapp.User.login.blank will be used before user.login.blank. This allows for cases where
you domain class encounters message code clashes with plugins.
For a reference on what codes are for which constraints refer to the reference guide for each constraint.

Displaying Messages
The tag will automatically deal with looking up messages for you using the tag. However, ifrenderErrors message
you need more control of rendering you will need to do this yourself:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://grails.org/doc/latest/ref/Tags/fieldValue.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://grails.org/doc/latest/ref/Tags/renderErrors.html
http://grails.org/doc/latest/ref/Tags/message.html

146

<g:hasErrors bean= >"${user}"

 <g:eachError var= bean= >"err" "${user}"
 <g:message error= />"${err}"
 </g:eachError>

</g:hasErrors>

In this example within the body of the tag we use the tag in combination with its eachError message error
argument to read the message for the given error.

7.5 Validation Non Domain and Command Object Classes

 and support validation by default. Other classes may be made validateable byDomain classes command objects
defining the static constraints property in the class (as described above) and then telling the framework about them. It
is important that the application register the validateable classes with the framework. Simply defining the constraints
property is not sufficient.

The Validateable Annotation
Classes which define the static constraints property and are marked with the @Validateable annotation may be made
validateable by the framework. Consider this example:

// src/groovy/com/mycompany/myapp/User.groovy
 com.mycompany.myapppackage

 org.codehaus.groovy.grails.validation.Validateableimport
@Validateable
class User {
 ...
 constraints = {static
 login(size:5..15, blank: , unique:)false true
 password(size:5..15, blank:)false
 email(email: , blank:)true false
 age(min:18, nullable:)false
 }
}

You need to tell the framework which packages to search for @Validateable classes by assigning a list of Strings to
the grails.validateable.packages property in Config.groovy.

// grails-app/conf/Config.groovy
...
grails.validateable.packages = ['com.mycompany.dto', 'com.mycompany.util']
...

The framework will only search those packages (and child packages of those) for classes marked with
@Validateable.

Registering Validateable Classes
If a class is not marked with @Validateable, it may still be made validateable by the framework. The steps required
to do this are to define the static constraints property in the class (as described above) and then telling the framework
about the class by assigning a value to the grails.validateable.classes property in Config.groovy.

// grails-app/conf/Config.groovy
...
grails.validateable.classes = [com.mycompany.myapp.User, com.mycompany.dto.Account]
...

http://grails.org/doc/latest/ref/Tags/eachError.html
http://grails.org/doc/latest/ref/Tags/message.html

147

8. The Service Layer

As well as the , Grails defines the notion of a service layer. The Grails team discourages the embedding ofWeb layer
core application logic inside controllers, as it does not promote re-use and a clean separation of concerns.
Services in Grails are seen as the place to put the majority of the logic in your application, leaving controllers
responsible for handling request flow via redirects and so on.

Creating a Service
You can create a Grails service by running the command from the root of your project in a terminalcreate-service
window:

grails create-service simple

The above example will create a service at the location .grails-app/services/SimpleService.groovy
A service's name ends with the convention , other than that a service is a plain Groovy class:Service

class SimpleService {
}

8.1 Declarative Transactions

Default Declarative Transactions
Services are typically involved with co-ordinating logic between , and hence often involved withdomain classes
persistence that spans large operations. Given the nature of services they frequently require transactional behaviour.
You can of course use programmatic transactions with the method, however this is repetitive andwithTransaction
doesn't fully leverage the power of Spring's underlying transaction abstraction.
Services allow the enablement of transaction demarcation, which is essentially a declarative way of saying all
methods within this service are to be made transactional. All services have transaction demarcation enabled by
default - to disable it, simply set the property to :transactional false

class CountryService {
 transactional = static false
}

You may also set this property to in case the default changes in the future, or simply to make it clear that thetrue
service is intentionally transactional.

Warning: is the way that declarative transactions work. You willdependency injection only
not get a transactional service if you use the operator such as new new BookService()

The result is all methods are wrapped in a transaction and automatic rollback occurs if an exception is thrown in the
body of one of the methods. The propagation level of the transaction is by default set to

.PROPAGATION_REQUIRED

Custom Transaction Configuration
Grails also fully supports Spring's annotation for cases where you need more fine-grained controlTransactional
over transactions at a per-method level or need specify an alternative propagation level:

http://grails.org/doc/latest/ref/Command Line/create-service.html
http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

148

import org.springframework.transaction.annotation.*
class BookService {
 @Transactional(readOnly =)true
 def listBooks() { Book.list() }
 @Transactional def updateBook() {
 // …
 }
}

For more information refer to the section of the Spring user guide on .Using @Transactional

Unlike Spring you do not need any prior configuration to use , just specifyTransactional
the annotation as needed and Grails will pick them up automatically.

8.2 Scoped Services

By default, access to service methods is not synchronised, so nothing prevents concurrent execution of those
functions. In fact, because the service is a singleton and may be used concurrently, you should be very careful about
storing state in a service. Or take the easy (and better) road and never store state in a service.
You can change this behaviour by placing a service in a particular scope. The supported scopes are:

prototype - A new service is created every time it is injected into another class
request - A new service will be created per request
flash - A new service will be created for the current and next request only
flow - In web flows the service will exist for the scope of the flow
conversation - In web flows the service will exist for the scope of the conversation. ie a root flow and its
sub flows
session - A service is created for the scope of a user session
singleton (default) - Only one instance of the service ever exists

If your service is , or scoped it will need to implement flash flow conversation
 and can only be used in the context of a java.io.Serializable Web Flow

To enable one of the scopes, add a static scope property to your class whose value is one of the above:

static scope = "flow"

8.3 Dependency Injection and Services

Dependency Injection Basics
A key aspect of Grails services is the ability to take advantage of the dependency injectionSpring Framework's
capability. Grails supports "dependency injection by convention". In other words, you can use the property name
representation of the class name of a service, to automatically inject them into controllers, tag libraries, and so on.
As an example, given a service called , if you place a property called within aBookService bookService
controller as follows:

class BookController {
 def bookService
 …
}

In this case, the Spring container will automatically inject an instance of that service based on its configured scope.
All dependency injection is done by name. You can also specify the type as follows:

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-declarative-annotations
http://www.springframework.org/

149

class AuthorService {
 BookService bookService
}

NOTE: Normally the property name is generated by lower casing the first letter of the type.
For example, an instance of the class would map to a property named BookService

.bookService
To be consistent with standard JavaBean convetions, if the first 2 letters of the class name are
upper case, the property name is the same as the class name. For example, an instance of the

 class would map to a property named .MYhelperService MYhelperService
See section 8.8 of the JavaBean specification for more information on de-capitalization rules.

Dependency Injection and Services
You can inject services in other services with the same technique. Say you had an that needed toAuthorService
use the , declaring the as follows would allow that:BookService AuthorService

class AuthorService {
 def bookService
}

Dependency Injection and Domain Classes
You can even inject services into domain classes, which can aid in the development of rich domain models:

class Book {
 …
 def bookService
 def buyBook() {
 bookService.buyBook()this
 }
}

8.4 Using Services from Java

One of the powerful things about services is that since they encapsulate re-usable logic, you can use them from other
classes, including Java classes. There are a couple of ways you can re-use a service from Java. The simplest way is to
move your service into a package within the directory. The reason this is a critical stepgrails-app/services
is that it is not possible to import classes into Java from the default package (the package used when no package
declaration is present). So for example the below cannot be used from Java as it stands:BookService

class BookService {
 void buyBook(Book book) {
 // logic
 }
}

However, this can be rectified by placing this class in a package, by moving the class into a sub directory such as
 and then modifying the package declaration:grails-app/services/bookstore

package bookstore
class BookService {
 void buyBook(Book book) {
 // logic
 }
}

150

An alternative to packages is to instead have an interface within a package that the service implements:

package bookstore;
 BookStore {interface

 void buyBook(Book book);
}

And then the service:

class BookService bookstore.BookStore {implements
 void buyBook(Book b) {
 // logic
 }
}

This latter technique is arguably cleaner, as the Java side only has a reference to the interface and not to the
implementation class. Either way, the goal of this exercise to enable Java to statically resolve the class (or interface)
to use, at compile time. Now that this is done you can create a Java class within the package, andsrc/java
provide a setter that uses the type and the name of the bean in Spring:

package bookstore;
// note: is Java classthis

 class BookConsumer {public
 BookStore store;private
 void setBookStore(BookStore storeInstance) {public
 .store = storeInstance;this
 }
 …
}

Once this is done you can configure the Java class as a Spring bean in
 (For more information one this see the section on grails-app/conf/spring/resources.xml Grails and

):Spring

<bean id= class= >"bookConsumer" "bookstore.BookConsumer"
 <property name= ref= />"bookStore" "bookService"
</bean>

151

9. Testing

Automated testing is seen as a key part of Grails, implemented using . Hence, Grails provides manyGroovy Tests
ways to making testing easier from low level unit testing to high level functional tests. This section details the
different capabilities that Grails offers in terms of testing.
The first thing to be aware of is that all of the commands actually end up creating testscreate-* unit
automatically for you. For example say you run the command as follows:create-controller

grails create-controller com.yourcompany.yourapp.simple

Not only will Grails create a controller at
, but also angrails-app/controllers/com/yourcompany/yourapp/SimpleController.groovy

unit test at . What Grailstest/unit/com/yourcompany/yourapp/SimpleControllerTests.groovy
won't do however is populate the logic inside the test! That is left up to you.

As of Grails 1.2.2,the suffix of is also supported for test cases.Test

Running Tests
Test are run with the command:test-app

grails test-app

The above command will produce output such as:

Running Unit Tests…
Running test FooTests...FAILURE
Unit Tests Completed in 464ms …

Tests failed: 0 errors, 1 failures

Whilst reports will have been written out the directory.target/test-reports

You can force a clean before running tests by passing to the command.-clean test-app

Targeting Tests

You can selectively target the test(s) to be run in different ways. To run all tests for a controller named
 you would run:SimpleController

grails test-app SimpleController

This will run any tests for the class named . Wildcards can be used...SimpleController

grails test-app *Controller

http://groovy.codehaus.org/Testing+Guide
http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/test-app.html

152

This will test all classes ending in . Package names can optionally be specified...Controller

grails test-app some.org.*Controller

or to run all tests in a package...

grails test-app some.org.*

or to run all tests in a package including subpackages...

grails test-app some.org.**

You can also target particular test methods...

grails test-app SimpleController.testLogin

This will run the test in the tests. You can specify as many patterns intestLogin SimpleController
combination as you like...

grails test-app some.org.* SimpleController.testLogin BookController

Targeting Test Types and/or Phases

In addition to targeting certain tests, you can also target test and/or by using the syntax.types phases phase:type

Grails organises tests by phase and by type. A test phase relates to the state of the Grails
application during the tests, and the type relates to the testing mechanism.
Grails comes with support for 4 test phases (, , and unit integration functional

) and JUnit test types for the and phases. These test types haveother unit integration
the same name as the phase.
Testing plugins may provide new test phases or new test types for existing phases. Refer to
the plugin documentation.

To execute the JUnit tests you can run:integration

grails test-app integration:integration

Both and are optional. Their absence acts as a wildcard. The following command will run all test typesphase type
in the phase:unit

grails test-app unit:

The Grails is one plugin that adds new test types to Grails. It adds a test type to the , Spock Plugin spock unit
 and phases. To run all spock tests in all phases you would run the following:integration functional

http://grails.org/plugin/spock

153

grails test-app :spock

To run the all of the spock tests in the phase you would run...functional

grails test-app functional:spock

More than one pattern can be specified...

grails test-app unit:spock integration:spock

Targeting Tests in Types and/or Phases

Test and type/phase targetting can be applied at the same time:

grails test-app integration: unit: some.org.**

This would run all tests in the and phases that are in the page or a subpackage of.integration unit some.org

9.1 Unit Testing

Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without
considering for surrounding infrastructure. In Grails you need to be particularity aware of the difference between unit
and integration tests because in unit tests Grails inject any of the dynamic methods present duringdoes not
integration tests and at runtime.
This makes sense if you consider that the methods injected by Grails typically communicate with the database (with
GORM) or the underlying Servlet engine (with Controllers). For example say you have service like the following in

:BookController

class MyService {
 def otherService
 createSomething() {String
 def stringId = otherService.newIdentifier()
 def item = Item(code: stringId, name:)new "Bangle"
 item.save()
 stringIdreturn
 }
 countItems(name) {int String
 def items = Item.findAllByName(name)
 items.size()return
 }
}

As you can see the service takes advantage of GORM methods. So how do you go about testing the above code in a
unit test? The answer can be found in Grails' testing support classes.

The Testing Framework
The core of the testing plugin is the class. This is a sub-class of grails.test.GrailsUnitTestCase

 geared towards Grails applications and their artifacts. It provides several methods for mockingGroovyTestCase
particular types as well as support for general mocking a la Groovy's MockFor and StubFor classes.
Normally you might look at the example shown previously and the dependency on another service andMyService
the use of dynamic domain class methods with a bit of a groan. You can use meta-class programming and the "map
as object" idiom, but these can quickly get ugly. How might we write the test with GrailsUnitTestCase ?

154

import grails.test.GrailsUnitTestCase
class MyServiceTests GrailsUnitTestCase {extends
 void testCreateSomething() {
 // Mock the domain class.
 mockDomain(Item)
 // Mock the service."other"
 testId = String "NH-12347686"
 def otherControl = mockFor(OtherService)
 otherControl.demand.newIdentifier(1..1) {-> testId }return
 // Initialise the service and test the target method.
 def testService = MyService()new
 testService.otherService = otherControl.createMock()
 def retval = testService.createSomething()
 // Check that the method returns the identifier returned by the
 // mock service and also that a Item instance has"other" new
 // been saved.
 def testInstances = Item.list()
 assertEquals testId, retval
 assertEquals 1, testInstances.size()
 assertTrue testInstances[0] Iteminstanceof
 }
 void testCountItems() {
 // Mock the domain class, time providing a list of testthis
 // Item instances that can be searched.
 def testInstances = [Item(code: , name:),new "NH-4273997" "Laptop"
 Item(code: , name:),new "EC-4395734" "Lamp"
 Item(code: , name:)]new "TF-4927324" "Laptop"
 mockDomain(Item, testInstances)
 // Initialise the service and test the target method. def testService = MyService()new
 assertEquals 2, testService.countItems()"Laptop"
 assertEquals 1, testService.countItems()"Lamp"
 assertEquals 0, testService.countItems()"Chair"
 }
}

OK, so a fair bit of new stuff there, but once we break it down you should quickly see how easy it is to use the
methods available to you. Take a look at the "testCreateSomething()" test method. The first thing you will probably
notice is the method, which is one of several provided by :mockDomain() GrailsUnitTestCase

def testInstances = []
mockDomain(Item, testInstances)

It adds all the common domain methods (both instance and static) to the given class so that any code using it sees it
as a full-blown domain class. So for example, once the class has been mocked, we can safely call the Item save()
method on instances of it. Invoking the method doesn't really save the instance to any database but it willsave()
cache the object in the testing framework so the instance will be visible to certain queries. The following code
snippet demonstrates the effect of calling the method.save()

void testSomething() {
 def testInstances=[]
 mockDomain(Song, testInstances)
 assertEquals(0, Song.count())
 Song(name:).save()new "Supper's Ready"
 assertEquals(1, Song.count())
}

The next bit we want to look at is centered on the method:mockFor

def otherControl = mockFor(OtherService)
otherControl.demand.newIdentifier(1..1) {-> testId }return

This is analagous to the and classes that come with Groovy and it can be used to mock anyMockFor StubFor
class you want. In fact, the "demand" syntax is identical to that used by Mock/StubFor, so you should feel right at
home. Of course you often need to inject a mock instance as a dependency, but that is pretty straight forward with the

155

 method, which you simply call on the mock control as shown. For those familiar with EasyMock,createMock()
the name highlights the role of the object returned by - it is a control object ratherotherControl mockFor()
than the mock itself.
The rest of the method should be pretty familiar, particularly as you now know thattestCreateSomething()
the mock method adds instances to list. However, there is an important techniquesave() testInstances
missing from the test method. We can determine that the mock method is called because itsnewIdentifier()
return value has a direct impact on the result of the method. But what if that weren't thecreateSomething()
case? How would we know whether it had been called or not? With Mock/StubFor the check would be performed at
the end of the closure, but that's not available here. Instead, you can call on the control object -use() verify()
in this case . This will perform the check and throw an assertion error if it hasn't been called whenotherControl
it should have been.
Lastly, in the example demonstrates another facet of the method:testCountItems() mockDomain()

def testInstances = [Item(code: , name:),new "NH-4273997" "Laptop"
 Item(code: , name:),new "EC-4395734" "Lamp"
 Item(code: , name:)]new "TF-4927324" "Laptop"
mockDomain(Item, testInstances)

It is normally quite fiddly to mock the dynamic finders manually, and you often have to set up different data sets for
each invocation. On top of that, if you decide a different finder should be used then you have to update the tests to
check for the new method! Thankfully the method provides a lightweight implementation of themockDomain()
dynamic finders backed by a list of domain instances. Simply provide the test data as the second argument of the
method and the mock finders will just work.

GrailsUnitTestCase - the mock methods
You have already seen a couple of examples in the introduction of the methods provided by the mock..()

 class. Here we will look at all the available methods in some detail, starting with theGrailsUnitTestCase
all-purpose . But before we do, there is a very important point to make: using these methods ensuresmockFor()
that any changes you make to the given classes do not leak into other tests! This is a common and serious problem
when you try to perform the mocking yourself via meta-class programming, but that headache just disappears as long
as you use at least one of methods on each class you want to mock.mock..()

mockFor(class, loose =)false

General purpose mocking that allows you to set up either strict or loose demands on a class.
This method is surprisingly intuitive to use. By default it will create a strict mock control object (one for which the
order in which methods are called is important) that you can use to specify demands:

def strictControl = mockFor(MyService)
strictControl.demand.someMethod(0..2) { arg1, arg2 -> ‚Ä¶ }String int
strictControl.demand. .aStaticMethod {-> ‚Ä¶ }static

Notice that you can mock static methods as well as instance ones simply by using the "static" property after
"demand". You then specify the name of the method that you want to mock with an optional range as its argument.
This range determines how many times you expect the method to be called, so if the number of invocations falls
outside of that range (either too few or too many) then an assertion error will be thrown. If no range is specified, a
default of "1..1" is assumed, i.e. that the method must be called exactly once.
The last part of a demand is a closure representing the implementation of the mock method. The closure arguments
should match the number and types of the mocked method, but otherwise you are free to add whatever you want in
the body.
As we mentioned before, if you want an actual mock instance of the class that you are mocking, then you need to call

. In fact, you can call this as many times as you like to create as many mockmockControl.createMock()
instances as you need. And once you have executed the test method, you can call tomockControl.verify()
check whether the expected methods were actually called or not.
Lastly, the call:

156

def looseControl = mockFor(MyService,)true

will create a mock control object that has only loose expectations, i.e. the order that methods are invoked does not
matter.

mockDomain(class, testInstances =)
Takes a class and makes mock implementations of all the domain class methods (both instance- and static-level)
accessible on it.
Mocking domain classes is one of the big wins from using the testing plugin. Manually doing it is fiddly at best, so
it's great that mockDomain() takes that burden off your shoulders.
In effect, provides a lightweight version of domain classes in which the "database" is simply a listmockDomain()
of domain instances held in memory. All the mocked methods (, , , etc.) worksave() get() findBy*()
against that list, generally behaving as you would expect them to. In addition to that, both the mocked andsave()
validate() methods will perform real validation (support for the unique constraint included!) and populate an errors
object on the corresponding domain instance.
There isn't much else to say other than that the plugin does not support the mocking of criteria or HQL queries. If
you use either of those, simply mock the corresponding methods manually (for example with) or usemockFor()
an integration test with real data.

mockForConstraintsTests(class, testInstances =)
Highly specialised mocking for domain classes and command objects that allows you to check whether the
constraints are behaving as you expect them to.
Do you test your domain constraints? If not, why not? If your answer is that they don't need testing, think again.
Your constraints contain logic and that logic is highly susceptible to bugs - the kind of bugs that can be tricky to
track down (particularly as save() doesn't throw an exception when it fails). If your answer is that it's too hard or
fiddly, that is no longer an excuse. Enter the method.mockForConstraintsTests()
This is like a much reduced version of the method that simply adds a method to amockDomain() validate()
given domain class. All you have to do is mock the class, create an instance with field values, and then call

. You can then access the errors property on your domain instance to find out whether the validationvalidate()
failed or not. So if all we are doing is mocking the method, why the optional list of test instances?validate()
That is so that we can test unique constraints as you will soon see.
So, suppose we have a simple domain class like so:

class Book {
 titleString
 authorString
 constraints = {static
 title(blank: , unique:)false true
 author(blank: , minSize: 5)false
 }
}

Don't worry about whether the constraints are sensible or not (they're not!), they are for demonstration only. To test
these constraints we can do the following:

157

class BookTests GrailsUnitTestCase {extends
 void testConstraints() {
 def existingBook = Book(title: , author:)new "Misery" "Stephen King"
 mockForConstraintsTests(Book, [existingBook])
 // Validation should fail both properties are .if null
 def book = Book()new
 assertFalse book.validate()
 assertEquals , book.errors[]"nullable" "title"
 assertEquals , book.errors[]"nullable" "author"
 // So let's demonstrate the unique and minSize constraints.
 book = Book(title: , author:)new "Misery" "JK"
 assertFalse book.validate()
 assertEquals , book.errors[]"unique" "title"
 assertEquals , book.errors[]"minSize" "author"
 // Validation should pass!
 book = Book(title: , author:)new "The Shining" "Stephen King"
 assertTrue book.validate()
 }
}

You can probably look at that code and work out what's happening without any further explanation. The one thing
we will explain is the way the errors property is used. First, it does return a real Spring instance, so you canErrors
access all the properties and methods you would normally expect. Second, this particular object also hasErrors
map/property access as shown. Simply specify the name of the field you are interested in and the map/property
access will return the name of the constraint that was violated. Note that it is the constraint name , not the message
code (as you might expect).
That's it for testing constraints. One final thing we would like to say is that testing the constraints in this way catches
a common error: typos in the "constraints" property! It is currently one of the hardest bugs to track down normally,
and yet a unit test for your constraints will highlight the problem straight away.

mockLogging(class, enableDebug = false)
Adds a mock "log" property to a class. Any messages passed to the mock logger are echoed to the console.

mockController(class)
Adds mock versions of the dynamic controller properties and methods to the given class. This is typically used in
conjunction with the class.ControllerUnitTestCase

mockTagLib(class)
Adds mock versions of the dynamic taglib properties and methods to the given class. This is typically used in
conjunction with the class.TagLibUnitTestCase

9.2 Integration Testing

Integration tests differ from unit tests in that you have full access to the Grails environment within the test. Grails
will use an in-memory HSQLDB database for integration tests and clear out all the data from the database in between
each test.

Testing Controllers
To test controllers you first have to understand the Spring Mock Library.
Essentially Grails automatically configures each test with a , ,MockHttpServletRequest MockHttpServletResponse
and which you can then use to perform your tests. For example consider the following controller:MockHttpSession

class FooController {
 def text = {
 render "bar"
 }
 def someRedirect = {
 redirect(action:)"bar"
 }
}

The tests for this would be:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletResponse.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpSession.html

158

class FooControllerTests GroovyTestCase {extends
 void testText() {
 def fc = FooController()new
 fc.text()
 assertEquals , fc.response.contentAsString"bar"
 }
 void testSomeRedirect() {
 def fc = FooController()new
 fc.someRedirect()
 assertEquals , fc.response.redirectedUrl"/foo/bar"
 }
}

In the above case the response is an instance of which we can use to obtain the MockHttpServletResponse
 (when writing to the response) or the URL redirected to for example. These mocked versionscontentAsString

of the Servlet API are, unlike the real versions, all completely mutable and hence you can set properties on the
request such as the and so on.contextPath
Grails invoke or servlet filters automatically when calling actions during integration testing.does not interceptors
You should test interceptors and filters in isolation, and via if necessary.functional testing

Testing Controllers with Services
If your controller references a service (or other Spring beans), you have to explicitly initialise the service from your
test.
Given a controller using a service:

class FilmStarsController {
 def popularityService
 def update = {
 // something with popularityServicedo
 }
}

The test for this would be:

class FilmStarsTests GroovyTestCase {extends
 def popularityService
 void testInjectedServiceInController () {
 def fsc = FilmStarsController()new
 fsc.popularityService = popularityService
 fsc.update()
 }
}

Testing Controller Command Objects
With command objects you just supply parameters to the request and it will automatically do the command object
work for you when you call your action with no parameters:
Given a controller using a command object:

class AuthenticationController {
 def signup = { SignupForm form ->
 …
 }
}

You can then test it like this:

159

def controller = AuthenticationController()new
controller.params.login = "marcpalmer"
controller.params.password = "secret"
controller.params.passwordConfirm = "secret"
controller.signup()

Grails auto-magically sees your call to as a call to the action and populates the command object from thesignup()
mocked request parameters. During controller testing, the are mutable with a mocked request supplied byparams
Grails.

Testing Controllers and the render Method
The method allows you to render a custom view at any point within the body of an action. For instance,render
consider the example below:

def save = {
 def book = Book(params)
 (book.save()) {if
 // handle
 }
 {else
 render(view: , model:[book:book])"create"
 }
}

In the above example the result of the model of the action is not available as the return value, but instead is stored
within the property of the controller. The property is an instance of SpringmodelAndView modelAndView
MVC's class and you can use it to the test the result of an action:ModelAndView

def bookController = BookController()new
bookController.save()
def model = bookController.modelAndView.model.book

Simulating Request Data
If you're testing an action that requires request data such as a REST web service you can use the Spring

 object to do so. For example consider this action which performs data binding from anMockHttpServletRequest
incoming request:

def create = {
 [book: Book(params['book'])]new
}

If you wish the simulate the 'book' parameter as an XML request you could do something like the following:

void testCreateWithXML() {
 def controller = BookController()new
 controller.request.contentType = 'text/xml'
 controller.request.content = '''<?xml version= encoding= ?>"1.0" "ISO-8859-1"
 <book>
 <title>The Stand</title>
 …
 </book>
 '''.getBytes() // note we need the bytes
 def model = controller.create()
 assert model.book
 assertEquals , model.book.title"The Stand"
}

The same can be achieved with a JSON request:

http://grails.org/doc/latest/ref/Controllers/render.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html

160

void testCreateWithJSON() {
 def controller = BookController()new
 controller.request.contentType = "text/json"
 controller.request.content = '{ :1, : , : }'.getBytes()"id" "class" "Book" "title" "The Stand"
 def model = controller.create()
 assert model.book
 assertEquals , model.book.title"The Stand"
}

With JSON don't forget the property to specify the name the target type to bind too.class
In the XML this is implicit within the name of the node, but with JSON you need<book>
this property as part of the JSON packet.

For more information on the subject of REST web services see the section on .REST

Testing Web Flows
Testing requires a special test harness called which sub classesWeb Flows grails.test.WebFlowTestCase
Spring Web Flow's class.AbstractFlowExecutionTests

Subclasses of be integration testsWebFlowTestCase must

For example given this trivial flow:

class ExampleController {
 def exampleFlow = {
 start {
 on() {"go"
 flow.hello = "world"
 }.to "next"
 }
 next {
 on().to "back" "start"
 on().to "go" "end"
 }
 end()
 }
}

You need to tell the test harness what to use for the "flow definition". This is done via overriding the abstract
 method:getFlow

class ExampleFlowTests grails.test.WebFlowTestCase {extends
 def getFlow() { ExampleController().exampleFlow }new
 …
}

If you need to specify the flow id you can do so by overriding the getFlowId method otherwise the default is :test

class ExampleFlowTests grails.test.WebFlowTestCase {extends
 getFlowId() { }String "example"
 …
}

Once this is done in your test you need to kick off the flow with the method which returns a startFlow
 object:ViewSelection

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/webflow/test/execution/AbstractFlowExecutionTests.html

161

void testExampleFlow() {
 def viewSelection = startFlow()
 assertEquals , viewSelection.viewName"start"
 …
}

As demonstrated above you can check you're on the right state using the property of the viewName
 object. To trigger and event you need to use the method:ViewSelection signalEvent

void testExampleFlow() {
 …
 viewSelection = signalEvent()"go"
 assertEquals , viewSelection.viewName"next"
 assertEquals , viewSelection.model.hello"world"
}

Here we have signaled to the flow to execute the event "go" this causes a transition to the "next" state. In the example
a transition action placed a variable into the flow scope. We can test the value of this variable by inspectinghello
the property of the as above.model ViewSelection

Testing Tag Libraries
Testing tag libraries is actually pretty trivial because when a tag is invoked as a method it returns its result as a string.
So for example if you have a tag library like this:

class FooTagLib {
 def bar = { attrs, body ->
 out << "<p>Hello World!</p>"
 }
 def bodyTag = { attrs, body ->
 out << "<${attrs.name}>"
 out << body()
 out << "</${attrs.name}>"
 }
}

The tests would look like:

class FooTagLibTests GroovyTestCase {extends
 void testBarTag() {
 assertEquals , FooTagLib().bar(,).toString()"<p>Hello World!</p>" new null null
 }
 void testBodyTag() {
 assertEquals , FooTagLib().bodyTag(name:) {"<p>Hello World!</p>" new "p"
 "Hello World!"
 }.toString()
 }
}

Notice that for the second example, , we pass a block that returns the body of the tag. This is handytestBodyTag
for representing the body as a String.

Testing Tag Libraries with GroovyPagesTestCase
In addition to doing simply testing of tag libraries like the above you can also use the

 class to test tag libraries.grails.test.GroovyPagesTestCase
The class is a sub class of the regular class and provides utilityGroovyPagesTestCase GroovyTestCase
methods for testing the output of a GSP rendering.

 can only be used in an integration test.GroovyPagesTestCase

162

As an example given a date formatting tag library such as the one below:

class FormatTagLib {
 def dateFormat = { attrs, body ->
 out << java.text.SimpleDateFormat(attrs.format) << attrs.datenew
 }
}

This can be easily tested as follows:

class FormatTagLibTests GroovyPagesTestCase {extends
 void testDateFormat() {
 def template = '<g:dateFormat format= date= />'"dd-MM-yyyy" "${myDate}"
 def testDate = … // create the date
 assertOutputEquals('01-01-2008', template, [myDate:testDate])
 }
}

You can also obtain the result of a GSP using the method of the applyTemplate GroovyPagesTestCase
class:

class FormatTagLibTests GroovyPagesTestCase {extends
 void testDateFormat() {
 def template = '<g:dateFormat format= date= />'"dd-MM-yyyy" "${myDate}"
 def testDate = … // create the date
 def result = applyTemplate(template, [myDate:testDate])
 assertEquals '01-01-2008', result
 }
}

Testing Domain Classes
Testing domain classes is typically a simple matter of using the , however there are some things to beGORM API
aware of. Firstly, if you are testing queries you will often need to "flush" in order to ensure the correct state has been
persisted to the database. For example take the following example:

void testQuery() {
 def books = [Book(title:), Book(title:)]new "The Stand" new "The Shining"
 books*.save()
 assertEquals 2, Book.list().size()
}

This test will actually fail, because calling does not actually persist the instances when called. Calling save Book
 merely indicates to Hibernate that at some point in the future these instances should be persisted. If you wishsave

to commit changes immediately you need to "flush" them:

void testQuery() {
 def books = [Book(title:), Book(title:)]new "The Stand" new "The Shining"
 books*.save(flush:)true
 assertEquals 2, Book.list().size()
}

In this case since we're passing the argument with a value of the updates will be persisted immediatelyflush true
and hence will be available to the query later on.

9.3 Functional Testing

Functional tests involve testing the actual running application and are often harder to automate. Grails does not ship

http://grails.org/doc/latest/ref/Domain Classes/save.html

163

with any functional testing support out of the box, but has support for via a plug-in.Canoo WebTest
To get started install Web Test with the following commands:

grails install-plugin webtest

Then refer to the which explains how to go about using Web Test and Grails.reference on the wiki

http://webtest.canoo.com/
http://grails.org/Functional+Testing

164

10. Internationalization

Grails supports Internationalization (i18n) out of the box through the underlying Spring MVC support for
internationalization. With Grails you are able to customize the text that appears in any view based on the users
Locale. To quote the javadoc for the class in Java:Locale

A Locale object represents a specific geographical, political, or cultural region. An operation that
requires a Locale to perform its task is called locale-sensitive and uses the Locale to tailor information
for the user. For example, displaying a number is a locale-sensitive operation--the number should be
formatted according to the customs/conventions of the user's native country, region, or culture.

A Locale is made up of a and a . For example "en_US" is the code for US english, whilstlanguage code country code
"en_GB" is the for British English.

10.1 Understanding Message Bundles

Now that you have an idea of locales, to take advantage of them in Grails you have to create message bundles that
contain the different languages that you wish to render. Message bundles in Grails are located inside the

 directory and are simple Java properties files.grails-app/i18n
Each bundle starts with the name by convention and ends with the locale. Grails ships with a bunch ofmessages
built in message bundles for a whole range of languages within the directory. For example:grails-app/i18n

messages.properties
messages_de.properties
messages_es.properties
etc.

By default Grails will look in for messages, unless the user has specified a custommessages.properties
locale. You can create your own message bundle by simply creating a new properties file that ends with the locale
you are interested. For example for British English.messages_en_GB.properties

10.2 Changing Locales

By default the user locale is detected from the incoming header. However, you can provideAccept-Language
users the capability to switch locales by simply passing a parameter called to Grails as a request parameter:lang

/book/list?lang=es

Grails will automatically switch the user locale and store it in a cookie so subsequent requests will have the new
header.

10.3 Reading Messages

Reading Messages in the View
The most common place that you need messages is inside the view. To read messages from the view just use the

 tag:message

<g:message code= />"my.localized.content"

As long as you have a key in your (with appropriate locale suffix) such as the one belowmessages.properties
then Grails will look-up the message:

my.localized.content=Hola, Me llamo John. Hoy es domingo.

Note that sometimes you may need to pass arguments to the message. This is also possible with the tag:message

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://grails.org/doc/latest/ref/Tags/message.html

165

<g:message code= args= />"my.localized.content" "${ ['Juan', 'lunes'] }"

And then use positional parameters in the message:

my.localized.content=Hola, Me llamo {0}. Hoy es {1}.

Reading Messages in Controllers and Tag Libraries
Since you can invoke tags as methods from controllers it is also trivial to read messages within in a controller:

def show = {
 def msg = message(code: , args:['Juan', 'lunes'])"my.localized.content"
}

The same technique can be used on , but note if your tag library has a different then you willtag libraries namespace
need to prefix:g.

def myTag = { attrs, body ->
 def msg = g.message(code: , args:['Juan', 'lunes'])"my.localized.content"
}

10.4 Scaffolding and i18n

Grails does not ship with i18n aware templates to generate the controller and views. However, i18nscaffolding
aware templates are available via the i18n templates plugin. The templates are identical to the default scaffolding
templates, except that they are i18n aware using the tag for labels, buttons etc.message
To get started install the i18n templates with the following command:

grails install-plugin i18n-templates

Then refer to the which explains how to use the i18n templates.reference on the wiki

http://grails.org/doc/latest/ref/Tags/message.html
http://grails.org/I18n+Templates+Plugin

166

1.

2.
3.

4.

11. Security

Grails is no more or less secure than Java Servlets. However, Java servlets (and hence Grails) are extremely secure
and largely immune to common buffer overrun and malformed URL exploits due to the nature of the Java Virtual
Machine underpinning the code.
Web security problems typically occur due to developer naivety or mistakes, and there is a little Grails can do to
avoid common mistakes and make writing secure applications easier to write.

What Grails Automatically Does
Grails has a few built in safety mechanisms by default.

All standard database access via domain objects is automatically SQL escaped to prevent SQLGORM
injection attacks
The default templates HTML escape all data fields when displayedscaffolding
Grails link creating tags (, , , and others) all use appropriate escapinglink form createLink createLinkTo
mechanisms to prevent code injection
Grails provides to allow you to trivially escape data when rendered as HTML, JavaScript and URLs tocodecs
prevent injection attacks here.

11.1 Securing Against Attacks

SQL injection
Hibernate, which is the technology underlying GORM domain classes, automatically escapes data when committing
to database so this is not an issue. However it is still possible to write bad dynamic HQL code that uses unchecked
request parameters. For example doing the following is vulnerable to HQL injection attacks:

def vulnerable = {
 def books = Book.find(+ params.title +)"from Book as b where b.title ='" "'"
}

Do do this. If you need to pass in parameters use named or positional parameters instead:not

def safe = {
 def books = Book.find(, [params.title])"from Book as b where b.title =?"
}

Phishing
This really a public relations issue in terms of avoiding hijacking of your branding and a declared communication
policy with your customers. Customers need to know how to identify bonafide emails received.

XSS - cross-site scripting injection
It is important that your application verifies as much as possible that incoming requests were originated from your
application and not from another site. Ticketing and page flow systems can help this and Grails' support for Spring

 includes security like this by default.Web Flow
It is also important to ensure that all data values rendered into views are escaped correctly. For example when
rendering to HTML or XHTML you must call on every object to ensure that people cannotencodeAsHTML
maliciously inject JavaScript or other HTML into data or tags viewed by others. Grails supplies several Dynamic

 for this purpose and if your output escaping format is not supported you can easily write yourEncoding Methods
own codec.
You must also avoid the use of request parameters or data fields for determining the next URL to redirect the user to.
If you use a parameter for example to determine where to redirect a user to after a successful login,successURL
attackers can imitate your login procedure using your own site, and then redirect the user back to their own site once
logged in, potentially allowing JS code to then exploit the logged-in account on the site.

HTML/URL injection
This is where bad data is supplied such that when it is later used to create a link in a page, clicking it will not cause
the expected behaviour, and may redirect to another site or alter request parameters.
HTML/URL injection is easily handled with the supplied by Grails, and the tag libraries supplied by Grails allcodecs
use where appropriate. If you create your own tags that generate URLs you will need to be mindful ofencodeAsURL

http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Tags/createLink.html
http://grails.org/doc/latest/ref/Tags/createLinkTo.html
http://www.springsource.org/webflow
http://www.springsource.org/webflow

167

doing this too.

Denial of service
Load balancers and other appliances are more likely to be useful here, but there are also issues relating to excessive
queries for example where a link is created by an attacker to set the maximum value of a result set so that a query
could exceed the memory limits of the server or slow the system down. The solution here is to always sanitize
request parameters before passing them to dynamic finders or other GORM query methods:

def safeMax = .max(params.max?.toInteger(), 100) // limit to 100 resultsMath
 Book.list(max:safeMax)return

Guessable IDs
Many applications use the last part of the URL as an "id" of some object to retrieve from GORM or elsewhere.
Especially in the case of GORM these are easily guessable as they are typically sequential integers.
Therefore you must assert that the requesting user is allowed to view the object with the requested id before returning
the response to the user.
Not doing this is "security through obscurity" which is inevitably breached, just like having a default password of
"letmein" and so on.
You must assume that every unprotected URL is publicly accessible one way or another.

11.2 Encoding and Decoding Objects

Grails supports the concept of dynamic encode/decode methods. A set of standard codecs are bundled with Grails.
Grails also supports a simple mechanism for developers to contribute their own codecs that will be recognized at
runtime.

Codec Classes
A Grails codec class is a class that may contain an encode closure, a decode closure or both. When a Grails
application starts up the Grails framework will dynamically load codecs from the directory.grails-app/utils/
The framework will look under for class names that end with the convention . Forgrails-app/utils/ Codec
example one of the standard codecs that ship with Grails is .HTMLCodec
If a codec contains an property assigned a block of code Grails will create a dynamic method andencode encode
add that method to the Object class with a name representing the codec that defined the encode closure. For example,
the class defines an block so Grails will attach that closure to the class with theHTMLCodec encode Object
name .encodeAsHTML
The and classes also define a block so Grails will attach those with the names HTMLCodec URLCodec decode

 and . Dynamic codec methods may be invoked from anywhere in a Grails application.decodeHTML decodeURL
For example, consider a case where a report contains a property called 'description' and that description may contain
special characters that need to be escaped to be presented in an HTML document. One way to deal with that in a GSP
is to encode the description property using the dynamic encode method as shown below:

${report.description.encodeAsHTML()}

Decoding is performed using syntax.value.decodeHTML()

Standard Codecs
HTMLCodec
This codec perfoms HTML escaping and unescaping, so that values you provide can be rendered safely in an HTML
page without creating any HTML tags or damaging the page layout. For example, given a value "Don't you know
that 2 > 1?" you wouldn't be able to show this safely within an HTML page because the > will look like it closes a
tag, which is especially bad if you render this data within an attribute, such as the value attribute of an input field.
Example of usage:

<input name= value= />"comment.message" "${comment.message.encodeAsHTML()}"

168

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use
double quotes on attribute values to avoid text with apostrophes messing up your page.

URLCodec
URL encoding is required when creating URLs in links or form actions, or any time data may be used to create a
URL. It prevents illegal characters getting into the URL to change its meaning, for example a "Apple & Blackberry"
is not going to work well as a parameter in a GET request as the ampersand will break the parsing of parameters.
Example of usage:

Repeat last search"/mycontroller/find?searchKey=${lastSearch.encodeAsURL()}"

Base64Codec
Performs Base64 encode/decode functions. Example of usage:

Your registration code is: ${user.registrationCode.encodeAsBase64()}

JavaScriptCodec
Will escape Strings so they can be used as valid JavaSctipt strings. Example of usage:

Element.update('${elementId}', '${render(template:).encodeAsJavaScript()}')"/common/message"

HexCodec
Will encode byte arrays or lists of integers to lowercase hexadecimal strings, and can decode hexadecimal strings
into byte arrays. Example of usage:

Selected colour: #${[255,127,255].encodeAsHex()}

MD5Codec
Will use the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a lowercase hexadecimal string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsMD5()}

MD5BytesCodec
Will use the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a byte array. Example of usage:

byte[] passwordHash = params.password.encodeAsMD5Bytes()

SHA1Codec
Will use the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a lowercase hexadecimal string. Example of usage:

169

Your API Key: ${user.uniqueID.encodeAsSHA1()}

SHA1BytesCodec
Will use the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a byte array. Example of usage:

byte[] passwordHash = params.password.encodeAsSHA1Bytes()

SHA256Codec
Will use the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a lowercase hexadecimal string. Example of usage:

Your API Key: ${user.uniqueID.encodeAsSHA256()}

SHA256BytesCodec
Will use the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a byte array. Example of usage:

byte[] passwordHash = params.password.encodeAsSHA256Bytes()

Custom Codecs
Applications may define their own codecs and Grails will load them along with the standard codecs. A custom codec
class must be defined in the directory and the class name must end with . The codecgrails-app/utils/ Codec
may contain a block, a block or both. The block should expect a singlestatic encode static decode
argument which will be the object that the dynamic method was invoked on. For Example:

class PigLatinCodec {
 encode = { str ->static
 // convert the string to piglatin and the resultreturn
 }
}

With the above codec in place an application could do something like this:

${lastName.encodeAsPigLatin()}

11.3 Authentication

Although there is no current default mechanism for authentication as it is possible to implement authentication in
literally thousands of different ways. It is however, trivial to implement a simple authentication mechanism using
either or .interceptors filters
Filters allow you to apply authentication across all controllers or across a URI space. For example you can create a
new set of filters in a class called :grails-app/conf/SecurityFilters.groovy

170

class SecurityFilters {
 def filters = {
 loginCheck(controller:'*', action:'*') {
 before = {
 (!session.user && actionName !=) {if "login"
 redirect(controller: ,action:)"user" "login"
 return false
 }
 }
 }
 }
}

Here the filter will intercept execution an action executed and if their is no user in the sessionloginCheck before
and the action being executed is not the action then redirect to the action.login login
The action itself is trivial too:login

def login = {
 (request.get) render(view:)if "login"
 {else
 def u = User.findByLogin(params.login)
 (u) {if
 (u.password == params.password) {if
 session.user = u
 redirect(action:)"home"
 }
 {else
 render(view: , model:[message:]) "login" "Password incorrect"
 }
 }
 {else
 render(view: , model:[message:]) "login" "User not found"
 }
 }
}

11.4 Security Plug-ins

If you need more advanced functionality beyond simple authentication such as authorization, roles etc. then you may
want to consider using one of the available security plug-ins.

11.4.1 Spring Security

The Spring Security plugins are built on the project which provides a flexible, extensible frameworkSpring Security
for building all sorts of authentication and authorization schemes. The plugins are modular so you can install just the
functionality that you need for your application. There is a Core plugin which supports form-based authentication,
encrypted/salted passwords, HTTP Basic authentication, etc. and secondary dependent plugins provide alternate
functionality such as OpenID authentication, ACL support, etc.
See the for basic information and the for detailed information.plugin page user guide

11.4.2 Shiro

 is a Java POJO oriented security framework that provides a default domain model that models realms, users,Shiro
roles and permissions. With Shiro you have to extends a controller base called called in eachJsecAuthBase
controller you want secured and then provide an block to setup the roles. An example below:accessControl

class ExampleController JsecAuthBase {extends
 accessControl = {static
 // All actions require the 'Observer' role.
 role(name: 'Observer')
 // The 'edit' action requires the 'Administrator' role.
 role(name: 'Administrator', action: 'edit')
 // Alternatively, several actions can be specified.
 role(name: 'Administrator', only: ['create', 'edit', 'save', 'update'])
 }
 …
}

http://static.springsource.org/spring-security/site/
http://grails.org/plugin/spring-security-core
http://burtbeckwith.github.com/grails-spring-security-core/
http://incubator.apache.org/shiro/

171

For more information on the Shiro plugin refer to the .documentation

http://grails.org/plugin/shiro

172

12. Plug-ins

Grails provides a number of extension points that allow you to extend anything from the command line interface to
the runtime configuration engine. The following sections detail how to go about it.

12.1 Creating and Installing Plug-ins

Creating Plugins
Creating a Grails plugin is a simple matter of running the command:

grails create-plugin [PLUGIN NAME]

This will create a plugin project for the name you specify. Say for example you run grails create-plugin
. This would create a new plugin project called .example example

The structure of a Grails plugin is exactly the same as a regular Grails project's directory structure, except that in the
root of the plugin directory you will find a plugin Groovy file called the "plugin descriptor".
Being a regular Grails project has a number of benefits in that you can immediately get going testing your plugin by
running:

grails run-app

The plugin descriptor itself ends with the convention and is found in the root of the plugin project.GrailsPlugin
For example:

class ExampleGrailsPlugin {
 def version = 0.1
 …
}

All plugins must have this class in the root of their directory structure to be valid. The plugin class defines the
version of the plugin and optionally various hooks into plugin extension points (covered shortly).
You can also provide additional information about your plugin using several special properties:

title - short one sentence description of your plugin
version - The version of your problem. Valid versions are for example "0.1", "0.2-SNAPSHOT", "0.1.4"
etc.
grailsVersion - The version of version range of Grails that the plugin supports. eg. "1.1 > *"
author - plug-in author's name
authorEmail - plug-in author's contact e-mail
description - full multi-line description of plug-in's features
documentation - URL where plug-in's documentation can be found

Here is an example from Quartz Grails plugin

class QuartzGrailsPlugin {
 def version = "0.1"
 def grailsVersion = "1.1 > *"
 def author = "Sergey Nebolsin"
 def authorEmail = "nebolsin@gmail.com"
 def title = "This plugin adds Quartz job scheduling features to Grails application."
 def description = '''
Quartz plugin allows your Grails application to schedule jobs to be
executed using a specified interval or cron expression. The underlying
system uses the Quartz Enterprise Job Scheduler configured via Spring,
but is made simpler by the coding by convention paradigm.
'''
 def documentation = "http://grails.org/Quartz+plugin"
 …
}

http://grails.org/Quartz+plugin:

173

Installing & Distributing Plugins
To distribute a plugin you need to navigate to its root directory in a terminal window and then type:

grails -pluginpackage

This will create a zip file of the plugin starting with then the plugin name and version. For example withgrails-
the example plug-in created earlier this would be . The grails-example-0.1.zip package-plugin
command will also generate file which contains machine-readable information about plugin's name,plugin.xml
version, author, and so on.
Once you have a plugin distribution file you can navigate to a Grails project and type:

grails install-plugin /path/to/plugin/grails-example-0.1.zip

If the plugin is hosted on a remote HTTP server you can also do:

grails install-plugin http://myserver.com/plugins/grails-example-0.1.zip

Notes on excluded Artefacts
Although the command creates certain files for you so that the plug-in can be run as a Grailscreate-plugin
application, not all of these files are included when packaging a plug-in. The following is a list of artefacts created,
but not included by :package-plugin

grails-app/conf/DataSource.groovy
grails-app/conf/UrlMappings.groovy
build.xml
Everything within /web-app/WEB-INF

If you need artefacts within it is recommended you use the script (covered later),WEB-INF _Install.groovy
which is executed when a plug-in is installed, to provide such artefacts. In addition, although

 is excluded you are allowed to include a definition with a differentUrlMappings.groovy UrlMappings
name, such as .FooUrlMappings.groovy

Specifying Plugin Locations
An application can load plugins from anywhere on the file system, even if they have not been installed. Simply add
the location of the (unpacked) plugin to the application's file:grails-app/conf/BuildConfig.groovy

// Useful to test plugins you are developing.
grails.plugin.location.jsecurity = "/home/dilbert/dev/plugins/grails-jsecurity"
// Useful modular applications where all plugins andfor
// applications are in the same directory.
grails.plugin.location.'grails-ui' = "../grails-grails-ui"

This is particularly useful in two cases:

You are developing a plugin and want to test it in a real application without packaging and installing it first.
You have split an application into a set of plugins and an application, all in the same "super-project" directory.

12.2 Plugin Repositories

Distributing Plugins in the Grails Central Plugins Repository
The preferred way of plugin distribution is to publish your under Grails Plugins Repository. This will make your
plugin visible to the command:list-plugins

http://grails.org/doc/latest/ref/Command Line/create-plugin.html
http://grails.org/doc/latest/ref/Command Line/package-plugin.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html

174

grails list-plugins

Which lists all plugins in the Grails Plugin repository and also the command:plugin-info

grails plugin-info [plugin-name]

Which outputs more information based on the meta info entered into the plug-in descriptor.

If you have created a Grails plugin and want it to be hosted in the central repository take a
look at the wiki page , which details how to go about releasing your plugin in the repository.

When you have access to the Grails Plugin repository to release your plugin you simply have to execute the
 command:release-plugin

grails release-plugin

This will automatically commit changes to SVN, do some tagging and make your changes available via the
 command.list-plugins

Configuring Additional Repositories
The way in which you configure repositories in Grails differs between Grails versions. For version of Grails 1.2 and
earlier please refer to the on the subject. The following sections cover Grails 1.3 and above.Grails 1.2 documentation
Grails 1.3 and above use Ivy under the hood to resolve plugin dependencies. The mechanism for defining additional
plugin repositories is largely the same as . For example you can define adefining repositories for JAR dependencies
remote Maven repository that contains Grails plugins using the following syntax in

:grails-app/conf/BuildConfig.groovy

repositories {
 mavenRepo "http://repository.codehaus.org"
}

You can also define a SVN-based Grails repository (such as the one hosted at http://plugins.grails.org/) using the
 method:grailsRepo

repositories {
 grailsRepo "http://myserver/mygrailsrepo"
}

There is a shortcut to setup the Grails central repository:

repositories {
 grailsCentral()
}

The order in which plugins are resolved is based on the ordering of the repositories. So for example in this case the
Grails central repository will be searched last:

http://grails.org/doc/latest/ref/Command Line/plugin-info.html
http://grails.org/Creating+Plugins
http://grails.org/doc/latest/ref/Command Line/release-plugin.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html
http://grails.org/doc/1.2.x/guide/12.%20Plug-ins.html#12.2%20Plugin%20Repositories

175

repositories {
 grailsRepo "http://myserver/mygrailsrepo"
 grailsCentral()
}

All of the above examples use HTTP, however you can specify any to resolve plugins with. Below is anIvy resolver
example that uses an SSH resolver:

def sshResolver = SshResolver(user: , host:)new "myuser" "myhost.com"
sshResolver.addArtifactPattern()"/path/to/repo/grails-[artifact]/tags/LATEST_RELEASE/grails-[artifact]-[revision].[ext]"
sshResolver.latestStrategy = org.apache.ivy.plugins.latest.LatestTimeStrategy()new
sshResolver.changingPattern = ".*SNAPSHOT"
sshResolver.setCheckmodified()true

The above example defines an artifact pattern which tells Ivy how to resolve a plugin zip file. For a more detailed
explanation on Ivy patterns see the in the Ivy user guide.relevant section

Publishing to Maven Compatible Repositories
In general it is recommended for Grails 1.3 and above to use standard Maven-style repositories to self host plugins.
The benefits of doing so include the ability for existing tooling and repository managers to interpret the structure of a
Maven repository. In addition Maven compatible repositories are not tied to SVN as Grails repositories are.
In order to publish a plugin to a Maven repository you need to use the Maven publisher plugin. Please refer to the
section of the user guide on the subject.Maven deployment

Publishing to Grails Compatible Repositories
To publish a Grails plugin to a Grails compatible repository you specify the

 setting within thegrails.plugin.repos.distribution.myRepository
grails-app/conf/BuildConfig.groovy file:

grails.plugin.repos.distribution.myRepository="https://svn.codehaus.org/grails/trunk/grails-test-plugin-repo"

You can also provide this settings in the USER_HOME/.grails/settings.groovy file if you prefer to share the same
settings across multiple projects.
Once this is done you need to use the argument of the command to specify therepository release-plugin
repository you want to release the plugin into:

grails release-plugin -repository=myRepository

12.3 Understanding a Plug-ins Structure

As as mentioned previously, a plugin is merely a regular Grails application with a contained plug-in descriptors.
However when installed, the structure of a plugin differs slightly. For example, take a look at this plugin directory
structure:

+ grails-app
 + controllers
 + domain
 + taglib
 etc.
 + lib
 + src
 + java
 + groovy
 + web-app
 + js
 + css

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/2.1.0/concept.html#patterns

176

Essentially when a plugin is installed into a project, the contents of the directory will go into agrails-app
directory such as . They be copied into the main source tree. Aplugins/example-1.0/grails-app will not
plugin never interferes with a project's primary source tree.
Dealing with static resources is slightly different. When developing a plugin, just like an application, all static
resources can go in the directory. You can then link to static resources just like in an application (exampleweb-app
below links to a javascript source):

<g:resource dir= file= />"js" "mycode.js"

When you run the plugin in development mode the link to the resource will resolve to something like
. However, when the plugin is installed into an application the path will automatically change to/js/mycode.js

something like and Grails will deal with making sure the resources/plugin/example-0.1/js/mycode.js
are in the right place.
There is a special variable that can be used whilst both developing the plugin and when inpluginContextPath
the plugin is installed into the application to find out what the correct path to the plugin is.
At runtime the variable will either evaluate to an empty string or pluginContextPath /plugins/example
depending on whether the plugin is running standalone or has been installed in an application
Java & Groovy code that the plugin provides within the lib and and directories will besrc/java src/groovy
compiled into the main project's directory so that they are made available atweb-app/WEB-INF/classes
runtime.

12.4 Providing Basic Artefacts

Adding a new Script
A plugin can add a new script simply by providing the relevant Gant script within the scripts directory of the plugin:

+ MyPlugin.groovy
 + scripts <-- additional scripts here
 + grails-app
 + controllers
 + services
 + etc.
 + lib

Adding a new Controller, Tag Library or Service
A plugin can add a new controller, tag libraries, service or whatever by simply creating the relevant file within the

 tree. Note that when the plugin is installed it will be loaded from where it is installed and not copiedgrails-app
into the main application tree.

+ ExamplePlugin.groovy
 + scripts
 + grails-app
 + controllers <-- additional controllers here
 + services <-- additional services here
 + etc. <-- additional XXX here
 + lib

Providing Views, Templates and View resolution
When a plug-in provides a controller it may also provide default views to be rendered. This is an excellent way to
modularize your application through plugins. The way it works is that Grails' view resolution mechanism will first
look the view in the application it is installed into and if that fails will attempt to look for the view within the plug-in.
For example given a plug-n provided controller called if the actionAmazonGrailsPlugin BookController
being executed is , Grails will first look for a view called then iflist grails-app/views/book/list.gsp
that fails will look for the same view relative to the plug-in.
Note however that if the view uses templates that are also provided by the plugin then the following syntax may be
necessary:

177

<g:render template= plugin= />"fooTemplate" "amazon"

Note the usage of the attribute, which contains the name of the plugin where the template resides. If this isplugin
not specified then Grails will look for the template relative to the application.

Excluded Artefacts
Note that by default, when packaging a plug-in, Grails will excludes the following files from the packaged plug-in:

grails-app/conf/DataSource.groovy
grails-app/conf/UrlMappings.groovy
Everything under web-app/WEB-INF

If your plug-in does require files under the directory it is recommended that you modify theweb-app/WEB-INF
plug-in's Gant script to install these artefacts into the target project's directory tree.scripts/_Install.groovy
In addition, the default file is excluded to avoid naming conflicts, however you are free toUrlMappings.groovy
add a UrlMappings definition under a different name which be included. For example a file called will

 is fine.grails-app/conf/BlogUrlMappings.groovy
Additionally the list of includes is extensible via the property:pluginExcludes

// resources that are excluded from plugin packaging
def pluginExcludes = [
 "grails-app/views/error.gsp"
]

This is useful, for example, if you want to include demo or test resources in the plugin repository, but not include
them in the final distribution.

12.5 Evaluating Conventions

Before moving onto looking at providing runtime configuration based on conventions you first need to understand
how to evaluated those conventions from a plug-in. Essentially every plugin has an implicit variableapplication
which is an instance of the api:org.codehaus.groovy.grails.commons.GrailsApplication interface.
The interface provides methods to evaluate the conventions within the project andGrailsApplication
internally stores references to all classes within a GrailsApplication using the
api:org.codehaus.groovy.grails.commons.GrailsClass interface.
A represents a physical Grails resources such as a controller or a tag library. For example to get all GrailsClass

 instances you can do:GrailsClass

application.allClasses.each { println it.name }

There are a few "magic" properties that the instance possesses that allow you to narrow theGrailsApplication
type of artefact you are interested in. For example if you only want to controllers you can do:

application.controllerClasses.each { println it.name }

The dynamic method conventions are as follows:

*Classes - Retrieves all the classes for a particular artefact name. Example
.application.controllerClasses

get*Class - Retrieves a named class for a particular artefact. Example
application.getControllerClass("ExampleController")
is*Class - Returns true if the given class is of the given artefact type. Example
application.isControllerClass(ExampleController.class)

The interface itself provides a number of useful methods that allow you to further evaluate and workGrailsClass
with the conventions. These include:

178

getPropertyValue - Gets the initial value of the given property on the class
hasProperty - Returns true if the class has the specified property
newInstance - Creates a new instance of this class.
getName - Returns the logical name of the class in the application without the trailing convention part if
applicable
getShortName - Returns the short name of the class without package prefix
getFullName - Returns the full name of the class in the application with the trailing convention part and
with the package name
getPropertyName - Returns the name of the class as a property name
getLogicalPropertyName - Returns the logical property name of the class in the application without
the trailing convention part if applicable
getNaturalName - Returns the name of the property in natural terms (eg. 'lastName' becomes 'Last Name')
getPackageName - Returns the package name

For a full reference refer to the api:org.codehaus.groovy.grails.commons.GrailsClass.

12.6 Hooking into Build Events

Post-Install Configuration and Participating in Upgrades
Grails plug-ins can do post-install configuration and participate in application upgrade process (the upgrade
command). This is achieved via two specially named scripts under directory of the plugin - scripts

 and ._Install.groovy _Upgrade.groovy
 is executed after the plugin has been installed and is executed each_Install.groovy _Upgrade.groovy

time the user upgrades his application with command.upgrade
These scripts are normal scripts so you can use the full power of Gant. An addition to the standard GantGant
variables is the variable which points at the plugin installation basedir.pluginBasedir
As an example the below script will create a new directory type under the _Install.groovy grails-app
directory and install a configuration template:

Ant.mkdir(dir:)"${basedir}/grails-app/jobs"
Ant.copy(file: ,"${pluginBasedir}/src/samples/SamplePluginConfiguration.groovy"
 todir:)"${basedir}/grails-app/conf"
// To access Grails home you can use following code:
// Ant.property(environment:)"env"
// grailsHome = Ant.antProject.properties."env.GRAILS_HOME"

Scripting events
It is also possible to hook into command line scripting events through plug-ins. These are events triggered during
execution of Grails target and plugin scripts.
For example, you can hook into status update output (i.e. "Tests passed", "Server running") and the creation of files
or artefacts.
A plug-in merely has to provide an script to listen to the required events. Refer the_Events.groovy
documentation on for further information.Hooking into Events

12.7 Hooking into Runtime Configuration

Grails provides a number of hooks to leverage the different parts of the system and perform runtime configuration by
convention.

Hooking into the Grails Spring configuration
First, you can hook in Grails runtime configuration by providing a property called which isdoWithSpring
assigned a block of code. For example the following snippet is from one of the core Grails plugins that provides i18n
support:

http://grails.org/doc/latest/ref/Command Line/upgrade.html
http://grails.org/doc/latest/ref/Command Line/upgrade.html

179

import org.springframework.web.servlet.i18n.CookieLocaleResolver;
 org.springframework.web.servlet.i18n.LocaleChangeInterceptor;import
 org.springframework.context.support.ReloadableResourceBundleMessageSource;import

class I18nGrailsPlugin {
 def version = 0.1
 def doWithSpring = {
 messageSource(ReloadableResourceBundleMessageSource) {
 basename = "WEB-INF/grails-app/i18n/messages"
 }
 localeChangeInterceptor(LocaleChangeInterceptor) {
 paramName = "lang"
 }
 localeResolver(CookieLocaleResolver)
 }
}

This plugin sets up the Grails bean and a couple of other beans to manage Locale resolution andmessageSource
switching. It using the syntax to do so.Spring Bean Builder

Participating in web.xml Generation
Grails generates the file at load time, and although plugins cannot change this file directly,WEB-INF/web.xml
they can participate in the generation of the file. Essentially a plugin can provide a doWithWebDescriptor
property that is assigned a block of code that gets passed the as a .web.xml XmlSlurper GPathResult
Consider the below example from the :ControllersPlugin

def doWithWebDescriptor = { webXml ->
 def mappingElement = webXml.'servlet-mapping'
 def lastMapping = mappingElement[mappingElement.size()-1]
 lastMapping + {
 'servlet-mapping' {
 'servlet-name'()"grails"
 'url-pattern'()"*.dispatch"
 }
 }
}

Here the plugin goes through gets a reference to the last element and appends Grails'<servlet-mapping>
servlet to the end of it using XmlSlurper's ability to programmatically modify XML using closures and blocks.

Doing Post Initialisation Configuration
Sometimes it is useful to be able do some runtime configuration after the Spring has been built.ApplicationContext
In this case you can define a closure property.doWithApplicationContext

class SimplePlugin {
 def name="simple"
 def version = 1.1
 def doWithApplicationContext = { appCtx ->
 SessionFactory sf = appCtx.getBean()"sessionFactory"
 // something here with session factorydo
 }
}

12.8 Adding Dynamic Methods at Runtime

The Basics
Grails plugins allow you to register dynamic methods with any Grails managed or other class at runtime. New
methods can only be added within a closure of a plugin.doWithDynamicMethods
For Grails managed classes like controllers, tag libraries and so forth you can add methods, constructors etc. using
the mechanism by accessing each controller's :ExpandoMetaClass MetaClass

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://groovy.codehaus.org/ExpandoMetaClass
api:http://groovy.codehaus.org/api/groovy/lang/MetaObjectProtocol.html

180

class ExamplePlugin {
 def doWithDynamicMethods = { applicationContext ->
 application.controllerClasses.each { controllerClass ->
 controllerClass.metaClass.myNewMethod = {-> println }"hello world"
 }
 }
}

In this case we use the implicit application object to get a reference to all of the controller classes' MetaClass
instances and then add a new method called to each controller. Alternatively, if you know beforemyNewMethod
hand the class you wish the add a method to you can simple reference that classes property:metaClass

class ExamplePlugin {
 def doWithDynamicMethods = { applicationContext ->
 .metaClass.swapCase = {->String
 def sb = ()new StringBuffer
 delegate.each {
 sb << (.isUpperCase(it as) ?Character char
 .toLowerCase(it as) :Character char
 .toUpperCase(it as))Character char
 }
 sb.toString()
 }
 assert == .swapCase() "UpAndDown" "uPaNDdOWN"
 }
}

In this example we add a new method to directly by accessing its .swapCase java.lang.String metaClass

Interacting with the ApplicationContext
The closure gets passed the Spring instance. This is usefuldoWithDynamicMethods ApplicationContext
as it allows you to interact with objects within it. For example if you where implementing a method to interact with
Hibernate you could use the instance in combination with a :SessionFactory HibernateTemplate

import org.springframework.orm.hibernate3.HibernateTemplate
class ExampleHibernatePlugin {
 def doWithDynamicMethods = { applicationContext ->
 application.domainClasses.each { domainClass ->
 domainClass.metaClass. .load = { id->static Long
 def sf = applicationContext.sessionFactory
 def template = HibernateTemplate(sf)new
 template.load(delegate, id)
 }
 }
 }
}

Also because of the autowiring and dependency injection capability of the Spring container you can implement more
powerful dynamic constructors that use the application context to wire dependencies into your object at runtime:

class MyConstructorPlugin {
 def doWithDynamicMethods = { applicationContext ->
 application.domainClasses.each { domainClass ->
 domainClass.metaClass.constructor = {->
 applicationContext.getBean(domainClass.name)return
 }
 }
 }
}

Here we actually replace the default constructor with one that looks up prototyped Spring beans instead!

12.9 Participating in Auto Reload Events

181

Monitoring Resources for Changes
Often it is valuable to monitor resources for changes and then reload those changes when they occur. This is how
Grails implements advanced reloading of application state at runtime. For example, consider the below simplified
snippet from the that Grails comes with:ServicesPlugin

class ServicesGrailsPlugin {
 …
 def watchedResources = "file:./grails-app/services/*Service.groovy"
 …
 def onChange = { event ->
 (event.source) {if
 def serviceClass = application.addServiceClass(event.source)
 def serviceName = "${serviceClass.propertyName}"
 def beans = beans {
 (serviceClass.getClazz()) { bean ->"$serviceName"
 bean.autowire = true
 }
 }
 (event.ctx) {if
 event.ctx.registerBeanDefinition(serviceName,
 beans.getBeanDefinition(serviceName))
 }
 }
 }
}

Firstly it defines a set of as either a String or a List of strings that contain either thewatchedResources
references or patterns of the resources to watch. If the watched resources is a Groovy file, when it is changed it will
automatically be reloaded and passed into the closure inside the object.onChange event
The object defines a number of useful properties:event

event.source - The source of the event which is either the reloaded class or a Spring Resource
event.ctx - The Spring instanceApplicationContext
event.plugin - The plugin object that manages the resource (Usually this)
event.application - The instanceGrailsApplication

From these objects you can evaluate the conventions and then apply the appropriate changes to the
 and so forth based on the conventions, etc. In the "Services" example above, a newApplicationContext

services bean is re-registered with the when one of the service classes changes.ApplicationContext

Influencing Other Plugins
As well as being able to react to changes that occur when a plugin changes, sometimes one plugin needs to
"influence" another plugin.
Take for example the Services & Controllers plugins. When a service is reloaded, unless you reload the controllers
too, problems will occur when you try to auto-wire the reloaded service into an older controller Class.
To get round this, you can specify which plugins another plugin "influences". What this means is that when one
plugin detects a change, it will reload itself and then reload all influenced plugins. See this snippet from the

:ServicesGrailsPlugin

def influences = ['controllers']

Observing other plugins
If there is a particular plugin that you would like to observe for changes but not necessary watch the resources that it
monitors you can use the "observe" property:

def observe = []"controllers"

In this case when a controller is changed you will also receive the event chained from the controllers plugin. It is also
possible for a plugin to observe all loaded plugins by using a wildcard:

182

def observe = []"*"

The Logging plugin does exactly this so that it can add the property back to artefact that changes while thelog any
application is running.

12.10 Understanding Plug-in Load Order

Controlling Plug-in Dependencies
Plug-ins often depend on the presence of other plugins and can also adapt depending on the presence of others. To
cover this, a plugin can define two properties. The first is called . For example, take a look at thisdependsOn
snippet from the Grails Hibernate plugin:

class HibernateGrailsPlugin {
 def version = 1.0
 def dependsOn = [dataSource:1.0,
 domainClass:1.0,
 i18n:1.0,
 core: 1.0]
}

As the above example demonstrates the Hibernate plugin is dependent on the presence of 4 plugins: The
 plugin, The plugin, the plugin and the plugin.dataSource domainClass i18n core

Essentially the dependencies will be loaded first and then the Hibernate plugin. If all dependencies do not load, then
the plugin will not load.
The property also supports a mini expression language for specifying version ranges. A few examplesdependsOn
of the syntax can be seen below:

def dependsOn = [foo:]"* > 1.0"
def dependsOn = [foo:]"1.0 > 1.1"
def dependsOn = [foo:]"1.0 > *"

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes
such as -BETA, -ALPHA etc. so for example the expression "1.0 > 1.1" would match any of the following versions:

1.1
1.0
1.0.1
1.0.3-SNAPSHOT
1.1-BETA2

Controlling Load Order
Using establishes a "hard" dependency in that if the dependency is not resolved, the plugin will give updependsOn
and won't load. It is possible though to have a "weaker" dependency using the property:loadAfter

def loadAfter = ['controllers']

Here the plugin will be loaded after the plugin if it exists, otherwise it will just be loaded. Thecontrollers
plugin can then adapt to the presence of the other plugin, for example the Hibernate plugin has this code in the

 closure:doWithSpring

183

if(manager?.hasGrailsPlugin()) {"controllers"
 openSessionInViewInterceptor(OpenSessionInViewInterceptor) {
 flushMode = HibernateAccessor.FLUSH_MANUAL
 sessionFactory = sessionFactory
 }
 grailsUrlHandlerMapping.interceptors << openSessionInViewInterceptor
 }

Here the Hibernate plugin will only register an if the OpenSessionInViewInterceptor controllers
plugin has been loaded. The manager variable is an instance of the
api:org.codehaus.groovy.grails.plugins.GrailsPluginManager interface and it provides methods to interact with other
plugins and the itself from any plugin.GrailsPluginManager

184

13. Web Services

Web services are all about providing a web API onto your web application and are typically implemented in either
 or .SOAP REST

13.1 REST

REST is not really a technology in itself, but more an architectural pattern. REST is extremely simple and just
involves using plain XML or JSON as a communication medium, combined with URL patterns that are
"representational" of the underlying system and HTTP methods such as GET, PUT, POST and DELETE.
Each HTTP method maps to an action. For example GET for retrieving data, PUT for creating data, POST for
updating and so on. In this sense REST fits quite well with .CRUD

URL patterns
The first step to implementing REST with Grails is to provide RESTful :URL mappings

static mappings = {
 (resource:)"/product/$id?" "product"
}

What this does is map the URI onto a . Each HTTP method such as GET, PUT,/product ProductController
POST and DELETE map to unique actions within the controller as outlined by the table below:

Method Action

GET show

PUT update

POST save

DELETE delete

You can alter how HTTP methods by using the capability of URL Mappings to :map to HTTP methods

"/product/$id"(controller:){"product"
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
}

However, unlike the argument used previously, in this case Grails will not provide automatic XML orresource
JSON marshaling for you unless you specify the argument in the URL mapping:parseRequest

"/product/$id"(controller: , parseRequest:){"product" true
 action = [GET: , PUT: , DELETE: , POST:]"show" "update" "delete" "save"
}

HTTP Methods
In the previous section you saw how you can easily define URL mappings that map specific HTTP methods onto
specific controller actions. Writing a REST client that then sends a specific HTTP method is then trivial (example in
Groovy's HTTPBuilder module):

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_State_Transfer

185

import groovyx.net.http.*
 groovyx.net.http.ContentType.JSONimport static

def http = HTTPBuilder()new "http://localhost:8080/amazon"
 http.request(Method.GET, JSON) {
 url.path = '/book/list'
 response.success = {resp, json ->
 json.books.each { book ->
 println book.title
 }
 }
 }

However, issuing a request with a method other than or from a regular browser is not possible withoutGET POST
some help from Grails. When defining a you can specify an alternative method such as :form DELETE

<g:form controller= method= >"book" "DELETE"
 ..
</g:form>

Grails will send a hidden parameter called , which will be used as the request's HTTP method. Another_method
alternative for changing the method for non-browser clients is to use the to specifyX-HTTP-Method-Override
the alternative method name.

XML Marshaling - Reading
The controller implementation itself can use Grails' support to implement the GET method:XML marshaling

import grails.converters.*
class ProductController {
 def show = {
 (params.id && Product.exists(params.id)) {if
 def p = Product.findByName(params.id)
 render p as XML
 }
 {else
 def all = Product.list()
 render all as XML
 }
 }
 ..
}

Here what we do is if there is an we search for the by name and return it otherwise we return allid Product
Products. This way if we go to we get all products, otherwise if we go to we/products /product/MacBook
only get a MacBook.

XML Marshalling - Updating
To support updates such as and you can use the object which Grails enhances with the ability toPUT POST params
read an incoming XML packet. Given an incoming XML packet of:

<?xml version= encoding= ?>"1.0" "ISO-8859-1"
<product>
 MacBook<name> </name>
 <vendor id= >"12"
 Apple<name> </name>
 </vender>
</product>

You can read this XML packet using the same techniques described in the section via the Data Binding params
object:

http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html

186

def save = {
 def p = Product(params['product'])new
 (p.save()) {if
 render p as XML
 }
 {else
 render p.errors
 }
}

In this example by indexing into the object using the key we can automatically create andparams 'product'
bind the XML using the constructor of the class. An interesting aspect of the line:Product

def p = Product(params['product'])new

Is that it requires no code changes to deal with a form submission that submits form data than it does to deal with an
XML request. The exact same technique can be used with a JSON request too.

If you require different responses to different clients (REST, HTML etc.) you can use content
negotation

The object is then saved and rendered as XML, otherwise an error message is produced using Grails' Product
 capabilities in the form:validation

<error>
 The property 'title' of class 'Person' must be specified<message> </message>
</error>

13.2 SOAP

There are several plugins that add SOAP support to Grails depending on your preferred approach. For Contract First
SOAP services there is a plugin, whilst if you want to generate a SOAP API from Grails services thereSpring WS
are several plugins that do this including:

XFire plugin which uses the SOAP stackXFire
CXF plugin which uses the SOAP stackCXF
Axis2 plugin which uses Axis2
Metro plugin which uses the framework (and can also be used for)Metro Contract First

Most of the SOAP integrations integrate with Grails via the static property. The below example isservices exposes
taken from the XFire plugin:

class BookService {
 expose=['xfire']static
 Book[] getBooks(){
 Book.list() as Book[]
 }
}

The WSDL can then be accessed at the location:
http://127.0.0.1:8080/your_grails_app/services/book?wsdl
For more information on the XFire plug-in refer on the wiki.the documentation

13.3 RSS and Atom

No direct support is provided for RSS or Atom within Grails. You could construct RSS or ATOM feeds with the
 method's XML capability. There is however a available for Grails that provides a RSS andrender Feeds plug-in

http://grails.org/plugin/springws
http://xfire.codehaus.org/
http://xfire.codehaus.org/
http://grails.org/plugin/cxf/
http://cxf.apache.org/
http://grails.org/plugin/axis2
http://ws.apache.org/axis2/
https://jax-ws-commons.dev.java.net/grails/
https://jax-ws-commons.dev.java.net/grails/
http://docs.codehaus.org/pages/viewpage.action?pageId=88342530
http://grails.org/XFire+plugin
http://grails.org/doc/latest/ref/Controllers/render.html
http://docs.codehaus.org/display/GRAILS/Feeds+Plugin

187

Atom builder using the popular library. An example of its usage can be seen below:ROME

def feed = {
 render(feedType: , feedVersion:) {"rss" "2.0"
 title = "My test feed"
 link = "http://your.test.server/yourController/feed"
 Article.list().each() {
 entry(it.title) {
 link = "http://your.test.server/article/${it.id}"
 it.content // the contentreturn
 }
 }
 }
}

https://rome.dev.java.net/

188

14. Grails and Spring

This section is for advanced users and those who are interested in how Grails integrates with and builds on the Spring
 This section is also useful for considering doing runtime configuration Grails.Framework plug-in developers

14.1 The Underpinnings of Grails

Grails is actually a application in disguise. Spring MVC is the Spring framework's built-in MVC webSpring MVC
application framework. Although Spring MVC suffers from the same difficulties as frameworks like Struts in terms
of its ease of use, it is superbly designed and architected and was, for Grails, the perfect framework to build another
framework on top of.
Grails leverages Spring MVC in the following areas:

Basic controller logic - Grails subclasses Spring's and uses it to delegate onto Grails DispatcherServlet
controllers
Data Binding and Validation - Grails' and capabilities are built on those provided byvalidation data binding
Spring
Runtime configuration - Grails' entire runtime convention based system is wired together by a Spring
ApplicationContext
Transactions - Grails uses Spring's transaction management in GORM

In other words Grails has Spring embedded running all the way through it.

The Grails ApplicationContext
Spring developers are often keen to understand how the Grails instance is constructed.ApplicationContext
The basics of it are as follows.

Grails constructs a parent from the ApplicationContext
. This sets up theweb-app/WEB-INF/applicationContext.xml ApplicationContext

api:org.codehaus.groovy.grails.commons.GrailsApplication instance and the
api:org.codehaus.groovy.grails.plugins.GrailsPluginManager.
Using this as a parent Grails' analyses the conventions with the ApplicationContext

 instance and constructs a child that is used as the root GrailsApplication ApplicationContext
 of the web applicationApplicationContext

Configured Spring Beans
Most of Grails' configuration happens at runtime. Each may configure Spring beans that are registered withplug-in
the . For a reference as to which beans are configured refer to the reference guide whichApplicationContext
describes each of the Grails plug-ins and which beans they configure.

14.2 Configuring Additional Beans

Using XML
Beans can be configured using the file of your Grailsgrails-app/conf/spring/resources.xml
application. This file is typical Spring XML file and the Spring documentation has an on how toexcellent reference
go about configuration Spring beans. As a trivial example you can configure a bean with the following syntax:

<bean id= class= >"myBean" "my.company.MyBeanImpl" </bean>

Once configured the bean, in this case named , can be auto-wired into most Grails types includingmyBean
controllers, tag libraries, services and so on:

class ExampleController {
 def myBean
}

Referencing Existing Beans
Beans declared in can also reference Grails classes by convention. For example if you need aresources.xml
reference to a service such as in your bean you use the property name representation of the classBookService
name. In the case of this would be . For example:BookService bookService

http://www.springframework.org/.
http://www.springframework.org/.
http://www.springframework.org/docs/MVC-step-by-step/Spring-MVC-step-by-step.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-basics

189

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= ref= />"bookService" "bookService"
</bean>

The bean itself would of course need a public setter, which in Groovy is defined like this:

package my.company
class MyBeanImpl {
 BookService bookService
}

or in Java like this:

package my.company;
class MyBeanImpl {
 BookService bookService;private
 void setBookService(BookService theBookService) {public
 .bookService = theBookService;this
 }
}

Since much of Grails configuration is done at runtime by convention many of the beans are not declared anywhere,
but can still be referenced inside your Spring configuration. For example if you need a reference to the Grails

 you could do:DataSource

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= ref= />"bookService" "bookService"
 <property name= ref= />"dataSource" "dataSource"
</bean>

Or if you need the Hibernate this will work:SessionFactory

<bean id= class= >"myBean" "my.company.MyBeanImpl"
 <property name= ref= />"bookService" "bookService"
 <property name= ref= />"sessionFactory" "sessionFactory"
</bean>

For a full reference of the available beans see the Plug-in reference in the reference guide.

Using the Spring DSL
If you want to use the that Grails provides then you need to create a Spring DSL

 file and define a property called that is assigned agrails-app/conf/spring/resources.groovy beans
block:

beans = {
 // beans here
}

The same configuration for the XML example could be represented as:

190

beans = {
 myBean(my.company.MyBeanImpl) {
 bookService = ref()"bookService"
 }
}

The main advantage of this way is that you can now mix logic in within your bean definitions, for example based on
the :environment

import grails.util.*
beans = {
 (GrailsUtil.environment) {switch
 :case "production"
 myBean(my.company.MyBeanImpl) {
 bookService = ref()"bookService"
 }
 break
 :case "development"
 myBean(my.company.mock.MockImpl) {
 bookService = ref()"bookService"
 }
 break
 }
}

14.3 Runtime Spring with the Beans DSL

This Bean builder in Grails aims to provide a simplified way of wiring together dependencies that uses Spring at its
core.
In addition, Spring's regular way of configuration (via XML) is essentially static and very difficult to modify and
configure at runtime other than programmatic XML creation which is both error prone and verbose. Grails'
api:grails.spring.BeanBuilder changes all that by making it possible to programmatically wire together components at
runtime thus allowing you to adapt the logic based on system properties or environment variables.
This enables the code to adapt to its environment and avoids unnecessary duplication of code (having different
Spring configs for test, development and production environments)

The BeanBuilder class
Grails provides a api:grails.spring.BeanBuilder class that uses dynamic Groovy to construct bean definitions. The
basics are as follows:

import org.apache.commons.dbcp.BasicDataSource
 org.codehaus.groovy.grails.orm.hibernate.ConfigurableLocalSessionFactoryBean;import
 org.springframework.context.ApplicationContext;import

def bb = grails.spring.BeanBuilder()new
bb.beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.hsqldb.jdbcDriver"
 url = "jdbc:hsqldb:mem:grailsDB"
 username = "sa"
 password = ""
 }
 sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" true
 }
}
ApplicationContext appContext = bb.createApplicationContext()

Within and the file you don't need to createplug-ins grails-app/conf/spring/resources.groovy
a new instance of . Instead the DSL is implicitly available inside the BeanBuilder

 and blocks respectively.doWithSpring beans

191

The above example shows how you would configure Hibernate with an appropriate data source with the
 class.BeanBuilder

Essentially, each method call (in this case and calls) map to the name of thedataSource sessionFactory
bean in Spring. The first argument to the method is the bean's class, whilst the last argument is a block. Within the
body of the block you can set properties on the bean using standard Groovy syntax
Bean references are resolved automatically be using the name of the bean. This can be seen in the example above
with the way the bean resolves the reference.sessionFactory dataSource
Certain special properties related to bean management can also be set by the builder, as seen in the following code:

sessionFactory(ConfigurableLocalSessionFactoryBean) { bean ->
 bean.autowire = 'byName' // Autowiring behaviour. The other option is 'byType'. [autowire]
 bean.initMethod = 'init' // Sets the initialisation method to 'init'. [init-method]
 bean.destroyMethod = 'destroy' // Sets the destruction method to 'destroy'. [destroy-method]
 bean.scope = 'request' // Sets the scope of the bean. [scope]
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" true
}

The strings in square brackets are the names of the equivalent bean attributes in Spring's XML definition.

Using BeanBuilder with Spring MVC
If you want to take advantage of BeanBuilder in a regular Spring MVC application you need to make sure the

 file is in your classpath. Once that is done you can need to set the following grails-spring-<version>.jar
 values in your file:<context-param> /WEB-INF/web.xml

<context-param>
 contextConfigLocation<param-name> </param-name>
 /WEB-INF/applicationContext.groovy<param-value> </param-value>
</context-param>
<context-param>
 contextClass<param-name> </param-name>
 org.codehaus.groovy.grails.commons.spring.GrailsWebApplicationContext<param-value> </param-value>
</context-param>

With that done you can then create a /WEB-INF/applicationContext.groovy file that does the rest:

beans {
 dataSource(org.apache.commons.dbcp.BasicDataSource) {
 driverClassName = "org.hsqldb.jdbcDriver"
 url = "jdbc:hsqldb:mem:grailsDB"
 username = "sa"
 password = ""
 }
}

Loading Bean Definitions from the File System
You can use the class to load external Groovy scripts that define beans using the same pathBeanBuilder
matching syntax defined here. Example:

def bb = BeanBuilder()new
bb.loadBeans()"classpath:*SpringBeans.groovy"
def applicationContext = bb.createApplicationContext()

Here the will load all Groovy files on the classpath ending with andBeanBuilder SpringBeans.groovy
parse them into bean definitions. An example script can be seen below:

192

beans {
 dataSource(BasicDataSource) {
 driverClassName = "org.hsqldb.jdbcDriver"
 url = "jdbc:hsqldb:mem:grailsDB"
 username = "sa"
 password = ""
 }
 sessionFactory(ConfigurableLocalSessionFactoryBean) {
 dataSource = dataSource
 hibernateProperties = [: ,"hibernate.hbm2ddl.auto" "create-drop"
 :]"hibernate.show_sql" true
 }
}

Adding Variables to the Binding (Context)
If you're loading beans from a script you can set the binding to use by creating a Groovy Binding object:

def binding = Binding()new
binding.foo = "bar"
def bb = BeanBuilder()new
bb.binding = binding
bb.loadBeans()"classpath:*SpringBeans.groovy"
def ctx = bb.createApplicationContext()

14.4 The BeanBuilder DSL Explained

Using Constructor Arguments
Constructor arguments can be defined using parameters to each method that reside between the class of the bean and
the last closure:

bb.beans {
 exampleBean(MyExampleBean, , 2) {"firstArgument"
 someProperty = [1,2,3]
 }
}

Configuring the BeanDefinition (Using factory methods)
The first argument to the closure is a reference to the bean configuration instance, which you can use to configure
factory methods and invoke any method on the class:AbstractBeanDefinition

bb.beans {
 exampleBean(MyExampleBean) { bean ->
 bean.factoryMethod = "getInstance"
 bean.singleton = false
 someProperty = [1,2,3]
 }
}

As an alternative you can also use the return value of the bean defining method to configure the bean:

bb.beans {
 def example = exampleBean(MyExampleBean) {
 someProperty = [1,2,3]
 }
 example.factoryMethod = "getInstance"
}

Using Factory beans
Spring defines the concept of factory beans and often a bean is created not from a class, but from one of these
factories. In this case the bean has no class and instead you must pass the name of the factory bean to the bean:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

193

bb.beans {
 myFactory(ExampleFactoryBean) {
 someProperty = [1,2,3]
 }
 myBean(myFactory) {
 name = "blah"
 }
}

Note in the example above instead of a class we pass a reference to the bean into the bean definingmyFactory
method. Another common task is provide the name of the factory method to call on the factory bean. This can be
done using Groovy's named parameter syntax:

bb.beans {
 myFactory(ExampleFactoryBean) {
 someProperty = [1,2,3]
 }
 myBean(myFactory:) {"getInstance"
 name = "blah"
 }
}

Here the method on the bean will be called in order to create the getInstance ExampleFactoryBean
 bean.myBean

Creating Bean References at Runtime
Sometimes you don't know the name of the bean to be created until runtime. In this case you can use a string
interpolation to invoke a bean defining method dynamically:

def beanName = "example"
bb.beans {
 (MyExampleBean) {"${beanName}Bean"
 someProperty = [1,2,3]
 }
}

In this case the variable defined earlier is used when invoking a bean defining method.beanName
Furthermore, because sometimes bean names are not known until runtime you may need to reference them by name
when wiring together other beans. In this case using the method:ref

def beanName = "example"
bb.beans {
 (MyExampleBean) {"${beanName}Bean"
 someProperty = [1,2,3]
 }
 anotherBean(AnotherBean) {
 example = ref()"${beanName}Bean"
 }
}

Here the example property of is set using a runtime reference to the . The AnotherBean exampleBean ref
method can also be used to refer to beans from a parent that is provided in the constructorApplicationContext
of the :BeanBuilder

194

ApplicationContext parent = ...//
der bb = BeanBuilder(parent)new
bb.beans {
 anotherBean(AnotherBean) {
 example = ref(,)"${beanName}Bean" true
 }
}

Here the second parameter specifies that the reference will look for the bean in the parent context.true

Using Anonymous (Inner) Beans
You can use anonymous inner beans by setting a property of the bean to a block that takes an argument that is the
bean type:

bb.beans {
 marge(Person.class) {
 name = "marge"
 husband = { Person p ->
 name = "homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [bart, lisa]
 }
 bart(Person) {
 name = "Bart"
 age = 11
 }
 lisa(Person) {
 name = "Lisa"
 age = 9
 }
}

In the above example we set the bean's husband property to a block that creates an inner bean reference.marge
Alternatively if you have a factory bean you can ommit the type and just use passed bean definition instead to setup
the factory:

bb.beans {
 personFactory(PersonFactory.class)
 marge(Person.class) {
 name = "marge"
 husband = { bean ->
 bean.factoryBean = "personFactory"
 bean.factoryMethod = "newInstance"
 name = "homer"
 age = 45
 props = [overweight: , height:]true "1.8m"
 }
 children = [bart, lisa]
 }
}

Abstract Beans and Parent Bean Definitions
To create an abstract bean definition define a bean that takes no class:

195

class HolyGrailQuest {
 def start() { println }"lets begin"
}
class KnightOfTheRoundTable {
 nameString
 leaderString
 KnightOfTheRoundTable(n) {String
 .name = nthis
 }
 HolyGrailQuest quest
 def embarkOnQuest() {
 quest.start()
 }
}
def bb = grails.spring.BeanBuilder()new
bb.beans {
 abstractBean {
 leader = "Lancelot"
 }
 …
}

Here we define an abstract bean that sets that has a property with the value of . Now to useleader "Lancelot"
the abstract bean set it as the parent of the child bean:

bb.beans {
 …
 quest(HolyGrailQuest)
 knights(KnightOfTheRoundTable,) { bean ->"Camelot"
 bean.parent = abstractBean
 quest = quest
 }
}

When using a parent bean you must set the parent property of the bean before setting any
other properties on the bean!

If you want an abstract bean that has a class you can do it this way:

def bb = grails.spring.BeanBuilder()new
bb.beans {
 abstractBean(KnightOfTheRoundTable) { bean ->
 bean.' ' = abstract true
 leader = "Lancelot"
 }
 quest(HolyGrailQuest)
 knights() { bean ->"Camelot"
 bean.parent = abstractBean
 quest = quest
 }
}

In the above example we create an abstract bean of type and use the bean argumentKnightOfTheRoundTable
to set it to abstract. Later we define a knights bean that has no class, but inherits the class from the parent bean.

Using Spring Namespaces
Since Spring 2.0, users of Spring have been granted easier access to key features via XML namespaces. With
BeanBuilder you can use any Spring namespace by first declaring it:

xmlns context:"http://www.springframework.org/schema/context"

196

And then invoking a method that matches the names of the Spring namespace tag and its associated attributes:

context.'component-scan'('base- ' :)package "my.company.domain"

You can do some useful things with Spring namespaces, such as looking up a JNDI resource:

xmlns jee:"http://www.springframework.org/schema/jee"
jee.'jndi-lookup'(id: , 'jndi-name':)"dataSource" "java:comp/env/myDataSource"

The example above will create a Spring bean with the identifier of by performing a JNDI lookup ondataSource
the given JNDI name. With Spring namespaces you also get full access to all of the powerful AOP support in Spring
from BeanBuilder. For example given the following two classes:

class Person {
 age;int
 name;String
 void birthday() {
 ++age;
 }
}
class BirthdayCardSender {
 List peopleSentCards = []
 void onBirthday(Person person) {
 peopleSentCards << person
 }
}

You can define an AOP aspect that uses a pointcut to detect whenever the method is called:birthday()

xmlns aop:"http://www.springframework.org/schema/aop"
fred(Person) {
 name = "Fred"
 age = 45
}
birthdayCardSenderAspect(BirthdayCardSender)
aop {
 config(:) {"proxy-target-class" true
 aspect(id: ,ref:) {"sendBirthdayCard" "birthdayCardSenderAspect"
 after method: , pointcut: "onBirthday" "execution(void ..Person.birthday()) and (person)"this
 }
 }
}

14.5 Property Placeholder Configuration

Grails supports the notion of property placeholder configuration through an extended version of Spring's
, which is typically useful when used in combination with .PropertyPlaceholderConfigurer externalized configuration

Settings defined in either scripts of Java properties files can be used as placeholder values for SpringConfigSlurper
configuration in . For example given the following entries in grails-app/conf/spring/resources.xml

 (or an externalized config):grails-app/conf/Config.groovy

database.driver="com.mysql.jdbc.Driver"
database.dbname="mysql:mydb"

You can then specify placeholders in as follows using the familiar ${..} syntax:resources.xml

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
http://groovy.codehaus.org/ConfigSlurper

197

<bean id= class= >"dataSource" "org.springframework.jdbc.datasource.DriverManagerDataSource"
 ${database.driver}<property name= >"driverClassName" <value> </value></property>
 jdbc:${database.dbname}<property name= >"url" <value> </value></property>
 </bean>

14.6 Property Override Configuration

Grails supports setting of bean properties via . This is often useful when used in combination with configuration
.externalized configuration

Essentially you define a block with the names of beans and their values:beans

beans {
 bookService {
 webServiceURL = "http://www.amazon.com"
 }
}

The general format is:

[bean name].[property name] = [value]

The same configuration in a Java properties file would be:

beans.bookService.webServiceURL=http://www.amazon.com

198

15. Grails and Hibernate

If (Grails Object Relational Mapping) is not flexible enough for your liking you can alternatively write someGORM
or all of your domain classes in Java or re-use an existing domain model that has been mapped using Hibernate. To
do this create a file in the directory of your projecthibernate.cfg.xml grails-app/conf/hibernate
and add the corresponding HBM mapping xml files for your domain classes. You can do this manually or by running
the script.create-hibernate-cfg-xml

For more info on how to do this read the at the Hibernate Websitedocumentation on mapping

This will allow you to map Grails domain classes onto a wider range of legacy systems and have more flexibility in
the creation of your database schema.
Additionally, you will still be able to call all of the dynamic persistent and query methods allowed in !GORM

15.1 Mapping with Hibernate Annotations

Grails also supports creating domain classes mapped with Hibernate's Java 5.0 Annotations support.
To create an annotated domain class, create a new class in and use the annotations defined as part of thesrc/java
EJB 3.0 spec (for more info on this see the):Hibernate Annotations Docs

package com.books;
@Entity

 class Book {public
 id;private Long
 title;private String
 description;private String
 Date date;private
 @Id
 @GeneratedValue
 getId() {public Long
 id;return
 }
 void setId(id) {public Long
 .id = id;this
 }
 getTitle() {public String
 title;return
 }
 void setTitle(title) {public String
 .title = title;this
 }
 getDescription() {public String
 description;return
 }
 void setDescription(description) {public String
 .description = description;this
 }
}

Once that is done you need to register the class with the Hibernate , to do you need to addsessionFactory
entries to the file as follows:grails-app/conf/hibernate/hibernate.cfg.xml

<!DOCTYPE hibernate-configuration SYSTEM
 >"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd"
<hibernate-configuration>
 <session-factory>
 <mapping package= />"com.books"
 <mapping class= />"com.books.Book"
 </session-factory>
</hibernate-configuration>

By default the file is located in the directory. If youhibernate.cfg.xml grails-app/conf/hibernate
wish to change this you can do so by specifying an alternative location in

:grails-app/conf/DataSource.groovy

http://grails.org/doc/latest/ref/Command Line/create-hibernate-cfg-xml.html
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html
http://annotations.hibernate.org/

199

hibernate {
 config.location = "file:/path/to/my/hibernate.cfg.xml"
}

Or even a list of locations:

hibernate {
 config.location = [,"file:/path/to/one/hibernate.cfg.xml"
]"file:/path/to/two/hibernate.cfg.xml"
}

When Grails loads it will register the necessary dynamic methods with the class. To see what else you can do with a
Hibernate domain class see the section on .Scaffolding

15.2 Further Reading

Grails committer, Jason Rudolph, took the time to write many useful articles about using Grails with custom
Hibernate mappings including:

Hoisting Grails to Your Legacy DB - An excellent article about using Grails with Hibernate XML
Grails + EJB3 Domain Models - Another great article about using Grails with EJB3-style annotated domain
models

http://jasonrudolph.com/blog/2006/06/20/hoisting-grails-to-your-legacy-db/
http://www.infoq.com/articles/grails-ejb-tutorial

200

16. Scaffolding

Scaffolding allows you to auto-generate a whole application for a given domain class including:

The necessary views
Controller actions for create/read/update/delete (CRUD) operations

Enabling Scaffolding
The simplest way to get started with scaffolding is to enable scaffolding via the property. For the scaffold Book
domain class, you need to set the property on a controller to true:scaffold

class BookController {
 def scaffold = true
}

The above works because the follows the same naming convention as the domain class,BookController Book
if we wanted to scaffold a specific domain class you can reference the class directly in the scaffold property:

def scaffold = Author

With that done if you run this grails application the necessary actions and views will be auto-generated at runtime.
The following actions are dynamically implemented by default by the runtime scaffolding mechanism:

list
show
edit
delete
create
save
update

As well as this a CRUD interface will be generated. To access the interface in the above example simply go to
http://localhost:8080/app/book
If you prefer to keep your domain model in Java and you can still use scaffolding, simplymapped with Hibernate
import the necessary class and set the scaffold property to it.

Dynamic Scaffolding
Note that when using the scaffold property Grails does not use code templates, or code generation to achieve this so
you can add your own actions to the scaffolded controller that interact with the scaffolded actions. For example, in
the below example, redirects to the action which doesn't actually exist physically:changeAuthor show

class BookController {
 def scaffold = Book
 def changeAuthor = {
 def b = Book.get(params[])"id"
 b.author = Author.get(params[])"author.id"
 b.save()
 // redirect to a scaffolded action
 redirect(action:show)
 }
}

You can also override the scaffolded actions with your own actions if necessary:

201

class BookController {
 def scaffold = Book
 // overrides scaffolded action to both authors and booksreturn
 def list = {
 [: Book.list(), : Author.list()]"books" "authors"
 }
}

All of this is what is known as "dynamic scaffolding" where the CRUD interface is generated dynamically at
runtime. Grails also supports "static" scaffolding which will be discussed in the following sections.

Customizing the Generated Views
The views that Grails generates have some form of intelligence in that they adapt to the . ForValidation constraints
example you can change the order that fields appear in the views simply by re-ordering the constraints in the builder:

def constraints = {
 title()
 releaseDate()
}

You can also get the generator to generate lists instead of text inputs if you use the constraint:inList

def constraints = {
 title()
 category(inList:[, ,])"Fiction" "Non-fiction" "Biography"
 releaseDate()
}

Or if you use the constraint on a number:range

def constraints = {
 age(range:18..65)
}

Restricting the size via a constraint also effects how many characters can be entered in the generated view:

def constraints = {
 name(size:0..30)
}

Generating Controllers & Views
The above scaffolding features are useful but in real world situations its likely that you will want to customize the
logic and views. Grails allows you to generate a controller and the views used to create the above interface via the
command line. To generate a controller type:

grails generate-controller Book

Or to generate the views type:

grails generate-views Book

202

Or to generate everything type:

grails generate-all Book

If you have a domain class in a package or are generating from a remember to include theHibernate mapped class
fully qualified package name:

grails generate-all com.bookstore.Book

Customizing the Scaffolding templates
The templates used by Grails to generate the controller and views can be customized by installing the templates with
the command.install-templates

http://grails.org/doc/latest/ref/Command Line/install-templates.html

203

17. Deployment

Grails applications can be deployed in a number of ways, each of which has its pros and cons.

"grails run-app"
You should be very familiar with this approach by now, since it is the most common method of running an
application during the development phase. An embedded Tomcat server is launched that loads the web application
from the development sources, thus allowing it to pick up an changes to application files.
This approach is not recommended at all for production deployment because the performance is poor. Checking for
and loading changes places a sizable overhead on the server. Having said that, removesgrails prod run-app
the per-request overhead and allows you to fine tune how frequently the regular check takes place.
Setting the system property "disable.auto.recompile" to disables this regular check completely, while thetrue
property "recompile.frequency" controls the frequency. This latter property should be set to the number of seconds
you want between each check. The default is currently 3.

"grails run-war"
This is very similar to the previous option, but Tomcat runs against the packaged WAR file rather than the
development sources. Hot-reloading is disabled, so you get good performance without the hassle of having to deploy
the WAR file elsewhere.

WAR file
When it comes down to it, current java infrastructures almost mandate that web applications are deployed as WAR
files, so this is by far the most common approach to Grails application deployment in production. Creating a WAR
file is as simple as executing the command:war

grails war

There are also many ways in which you can customise the WAR file that is created. For example, you can specify a
path (either absolute or relative) to the command that instructs it where to place the file and what name to give it:

grails war /opt/java/tomcat-5.5.24/foobar.war

Alternatively, you can add a line to that changes the defaultgrails-app/conf/BuildConfig.groovy
location and filename:

grails.project.war.file = "foobar-prod.war"

Of course, any command line argument that you provide overrides this setting.
It is also possible to control what libraries are included in the WAR file, in case you need to avoid conflicts with
libraries in a shared folder for example. The default behavior is to include in the WAR file all libraries required by
Grails, plus any libraries contained in plugin "lib" directories, plus any libraries contained in the application's "lib"
directory. As an alternative to the default behavior you can explicitly specify the complete list of libraries to include
in the WAR file by setting the properties and grails.war.dependencies

 in Config.groovy to either lists of Ant include patterns or closuresgrails.war.java5.dependencies
containing AntBuilder syntax. Closures are invoked from within an Ant "copy" step, so only elements like "fileset"
can be included, whereas each item in a pattern list is included. Any closure or pattern assigned to the latter property
will be included in addition to only if you are running JDK 1.5 or above.grails.war.dependencies
Be careful with these properties: if any of the libraries Grails depends on are missing, the application will almost
certainly fail. Here is an example that includes a small subset of the standard Grails dependencies:

http://grails.org/doc/latest/ref/Command Line/war.html

204

def deps = [
 ,"hibernate3.jar"
 ,"groovy-all-*.jar"
 ,"standard-${servletVersion}.jar"
 ,"jstl-${servletVersion}.jar"
 ,"oscache-*.jar"
 ,"commons-logging-*.jar"
 ,"sitemesh-*.jar"
 ,"spring-*.jar"
 ,"log4j-*.jar"
 ,"ognl-*.jar"
 ,"commons-*.jar"
 ,"xstream-1.2.1.jar"
]"xpp3_min-1.1.3.4.O.jar"
grails.war.dependencies = {
 fileset(dir:) {"libs"
 deps.each { pattern ->
 include(name: pattern)
 }
 }
}

This example only exists to demonstrate the syntax for the properties. If you attempt to use it as is in your own
application, the application will probably not work. You can find a list of dependencies required by Grails in the
"dependencies.txt" file that resides in the root directory of the unpacked distribution. You can also find a list of the
default dependencies included in WAR generation in the "War.groovy" script - see the "DEFAULT_DEPS" and
"DEFAULT_J5_DEPS" variables.
The remaining two configuration options available to you are and grails.war.copyToWebApp

. The first of these allows you to customise what files are included in the WAR filegrails.war.resources
from the "web-app" directory. The second allows you to do any extra processing you want before the WAR file is
finally created.

// This closure is passed the command line arguments used to start the
// war process.
grails.war.copyToWebApp = { args ->
 fileset(dir:) {"web-app"
 include(name:)"js/**"
 include(name:)"css/**"
 include(name:)"WEB-INF/**"
 }
}
// This closure is passed the location of the staging directory that
// is zipped up to make the WAR file, and the command line arguments.
// Here we override the standard web.xml with our own.
grails.war.resources = { stagingDir, args ->
 copy(file: , tofile:)"grails-app/conf/custom-web.xml" "${stagingDir}/WEB-INF/web.xml"
}

Application servers
Ideally you should be able to simply drop a WAR file created by Grails into any application server and it should
work straight away. However, things are rarely ever this simple. The contains an up-to-date list ofGrails website
application servers that Grails has been tested with, along with any additional steps required to get a Grails WAR file
working.

Sponsored by SpringSource

http://grails.org/Deployment
http://springsource.com

