Frames | No Frames

€2 GRAILS §) spring

urece

SEE THE LIGHT - AGILE, INDUSTRIAL STRENGTH, RAPID WEB APPLICATION
DEVELOPMENT MADE EASY

http://grails.org
http://grails.org/doc/latest/index.html
http://grails.org/doc/latest/guide/index.html
http://springsource.com

The Grails Framework - Reference Documentation

Authors: Graeme Rocher, Peter Ledbrook, Marc Palmer, Jeff Brown

Version: 1.3.3

Copies of this document may be made for your own use and for distribution to others, provided that you do not

charge any fee for such copies and further provided that each copy contains this Copyright Notice, whether
distributed in print or electronically.

Table of Contents

R 10 [o 6
A €T 11T 10 TS = (=0 OSSR 7
2.1 Downloading and INSEAITINGc.coeiviiuiieieeieiesiese ettt et e et e s be st e s beese e e e s e sesbessesbesaesbeessensensensessesrens 7
2.2 Upgrading from previous VErSIoNS Of GrailSccccciiiiiiiiiieicicse ettt sttt aena e srennens 7
RCH O (== (10 = A1 AN o]0 LTer= 10 o NP 10
A N (= L Lo YT Lo Fo I = 0] o) 11
2.5 Getting SEt-UP TN AN TDE ...ttt et e et e et s e e s bt e e e be e e sbessbessatessabessaeesabesaabessabesansessneeesrenas 11
2.6 Convention OVEr CONFIQUIBIIONeeeueeeeueeiireeireeeteessesessesessesstessabessssesssesessesssessssessabessseesasesasesassessnsessnseessens 12
2.7 RUNNING QN APPIICALION ...veeeeveeeeeee st eeeeeetee et e et e et e e steeeeseeeeaessabeesateessseessesesbesssesassesansesssseeasesenbesansesensessnsessaees 12
R I == (o = 01N o) L o= (o] o 13
AN o [0Vl aTo = 0N o] o) 1T or= (1 o) S 13
QL O =7 (01 N 1= = o1 £ 13
2.10 Supported Java EE CONLAINELSccoviieiee et etee st e steeee st e teesteeeesaeesbeesbeentesseesbeesteensesseesseesteentesneesseenseenes 14
2.11 Generating @n APPIICAIIONccveiviiiiiiiiiete ettt et e s e s e e besbe st e ese e e e s esesbestesseesesaeeseensesennesresrenns 14
B CONFIQUIBLIONecveeveiete ettt ettt et et e e e e e e s besbesbeeseebeeseess e sesesbesbeebeeheesseneensebesbesseebeeaeebeensensensenesrenras 15
R STz STl @00 0] 10 (87110 o R 15
G 0 = T 0T T a0 o) (o1 15
G002 o o 1o RSP 16
I ST 1 18
2 = 01V (0] 01101010 £ 19
R I 2 TSN B = o U o 20
3.3.1 DataSources and ENVIFONMENTScooviiireriitie e cieecreesteeeete e st e sreeeseeesbeeesseesnbeesabesssseessssesbesesesssessnsessasees 21
RN | B DT = S 01U = R 22
3.3.3 AutomatiC Database MIGQIatioNcccccueieiieiieiieite ettt eeeeesteste e te et et e et e e e e e e ssesbesbesbesbesseeseessensesensesresreas 22
3.3.4 Transaction-aware DataSOUICE PrOXYccceceiueieiieorieeeieeseessestessessessessesssessessessessessessessessessssssessessessessessens 23
3.4 Externalized CONFIQUIALIONcoviuiiuiiieieeeesie ettt sttt et e e s reste st e e se e e e e e sesbestesseesesreeseessensenseseesrens 23
NV <= Ko 100 [24
3.6 Proj€Ct DOCUMIENEALIONveeieveeieeieiieeeeieeeiesetessteseseeessessssessssesssbessasessasesesesesbesssessssessabesssessasesasbesssessnsessnensssenes 24
CIAIDI= 015010 = 0 01 A =0, L0111 0] [28
3.7.1 Configurations and DEPENAENCIESceeevvereereeirieirteeieeeeteeesresestessreesseeesbessssesssesssbessssesssessssessssessnsessssesssenes 29
I AAID < 0= 010 (= 0 A = 00110 1= 29
AT D= o U0 (o [aTo 1 =S 0) LU 1110 o RS 31
3.7.4 1Nherited DEPENAENCIESoeoiiireie ittt s et e e et e e e st e e e e eaeeesebbeeseesteeseabaeessbeessasbeeessabeessanseeesanreneas 31
3.7.5 DEPENUENCY REDOITSveiuiiciiiitie ittt st e te et e st e e st e et e steesbeesbe et e saaesbeesbeeseeasesbeesbeeseenseaseesbeeaseensenseesreens 31
3.7.6 Plugin JAR DEPRENUENCIESvecvieviieieueeiieiectecte st etesteste et e et e stesbesteebeebesbeess e s esensestesbessessesseaseessensesensessesteas 31
AT Y/ Y= a1 T011= 0 = (o) [OOSR 32
3.7.8 Deploying t0 AMaVen REPOSIEOIYccviiiueiietie i iieeeteeeeteeetes st s st e e ebeessbesssbeesabessabessstessbesssbessbesssessrenssrens 32
3. 7.9 PlUQIN DEPENAENCIES ...vveieveeiivieitie ettt eetee e stee e st e sae s sate s sbtessbes s bessabessatessbesssbessbesssbessabesssbesabesssbesssbessrsessreessrens 34
O 01X 00 0] 00=) 010 I 11 36
4.1 Creating GaANt SCIIPLS ...cvviiieeicrieitieietie et e ettt e steeeeteeeteesbesseeesseeesbesessesasessabessabessssesasesesbesssessnseessbessntesaresessesenres 36
A (ol 100 =1 EX= o 10 £ 37
4.3 HOOKING INEO EVENLSvviiceeeceie e ctee et ett e stte e etee et e st e st e e eaeeeebesesbessasessabessabessasesasesesbesesessnseesnbessnsessneeesesanres 39
O IS (e 0 4TS T a0 I 8T o0 T o 41
N 18- 210 Y= V<, 42
5. Object Relational Mapping (GORIMY)c.cccuieiiiiiiiereesteeieseeseeste e tesssesseesseetessaessaesseesseassesssesseesseessesssesseesseessesnns 46
5.1 QUICK SEAIT GUIEccveeiveeiteeie et e st et eee st e steeeteeteesteesbeesteeaeesbeesbeeebeeasesaeesbe e besnsesseesbeenbesntesseesbeebesntesnsesseensennns 46
LN S 7S Lol O 6 1 R 46
5.2 Domain MOAEIING IN GORMooiieiieiie ettt ettt ettt s e s st e e st e e sbe s e sbessbessatessabessaeesabesssbessabessnsessaeessrens 47
5.2.1 ASSOCIAION IN GORM ...ttt ettt etes et ee et e et e s sbae e ebes s bessabessstessbesesbeseasessabeesabesssteeabesebesanbessnsessreessrees 48
5.2.1.1 ONELO-ONEovveiiiirieceieee e ettt e et e e sttt e e s bt e e e ebe e e s sabeeeeabseessbbeseanbseesasbesesassaeesasaeessabbeesanseeesanbessessreeesssnsesnns 48
5.2.1.2 ONELO-TNANY ..vveiiirreeieiteieeeteeeeeteeeeetteeesetteeeebeeesabeeeeasseeesabbesesasseesasbesesassaeesssessabsessansseesanbessssssesesnssneesnns 49
5.2. 1.3 MANY-TO-MANY ...cictvieiiieieiiteeeectee e ettt e setteesebeeessbeeeeasseeesabbeseaasseesasbesesassaeesnsseessbseesansesesasbesessssesesnssneesnns 50

5.2.1.4 BaSiC COECHION TYPESccveiueeuieuieieieitecteeteeteete et e e e sae e stesbesbeebesteebeese e s ensensessesbesbesseeseeseessessesensesesrearas 51

5.2.2 ComPOSItioN IN GORMcviiiiiiiciiceieectee ettt e et e s be st e e b e ebe st e e ae e s e s ensesbesbesbesbeebesseessesensesestesreas 52
5.2.3 INNENtaNCEIN GORIMc.eeiivie it ettt etee et ee et s e e st e s e bt e e be s st e s satessbeessbeseabessabeesabesssbesabessbesebessasessreessrenes 52
O B A IS = 010 Y=o 53
R H S £ S (S A0 s == o 101 55
ORI NSz VAT o 1= 00 JL 016 = 1 0o [55
ORI B 1< 111 210 1@ o1 =lox £ 56
5.3.3 Understanding Cascading Updates and DEIELESccoveeeiererenenineseseeeeseesee e se st eesaeseeseesneseens 56
ORI N =0 (< =010 1 - 7AVAL = (o 111 [T 58
5.3.5 Pessimistic and OptimiStiC LOCKINGcccveieiiiieeiiiieeieitie et e e stee e e et e e e etbes s s ssteessbaeessebeessasseeessabeessansesesanbeneas 59
5.3.6 MOdification CRECKINGoiuviiiieiieeiecie ettt ettt st este et e eseesbeesbeesseeseesseesbeesseessesseesteesseensesseesreens 60
5.4 QUENYING With GORMcuooieieiie ittt ettt ettt st et e e e e e e s tessesteebeebesbeesee e essensesbestessesaesaesseensensenseeesrenns 61
5.4.1 DYNAMIC FINAEYSooviiieieie sttt sttt st e et e st e s bestesbeebesbeeae e s e s e s e sbesbesbeebeebesseessesesesestesreas 62
LN A O 10 £ - 64
5.4.3 Hibernate Query Language (HQL)cc.coeiiieiesi i steeeeeeee st s e ste st ste e eaeaeaessestestesseesesseessensensensessessens 67
5.5 AdVaNCEd GORM FEALUIEScccueiieiiieeeiieeiiteeeteeeteestessstesssaessabesssbessstesssesesbesssessssessabessseesssessbesastesssesssensssens 68
5.5.1 Events and AUtO TIMESAMING ...ccveeerereireriireeeeeeiteesseeesseeessesstesssesssesessesessessssessssessssesssessssessssessnsessssessnenes 68
5.5.2 CUSIOM ORM MEDPINGveeivieiieeieeeeteeeetesesteeseeesseeessessssesssessssesssesasesessesessesssessssessssesssssessessssessssesssseesseees 69
5.5.2.1 Table and COIUMN NGIMIESccoveeeeeeieiecetie e et e et e e ee e et e e et e etessseeesaeeesseeeseesnbesssesssssessesessesasessnseesanen 70
SRS Or= ol 111210 1S - (=0 AT SRR 72
5.5.2.3 INNENTANCE SLALEGIES .. .eververeeeueeueeiereestestestestestesteeseeeeeessesbessessessessesseeneeseensessesbesbessessessesseensensensenseseeses 74
5.5.2.4 Custom DatabaSe IAENLITYceeiuieireiieiiieiieieeie st ettt et e et e st e te et e eseesseesseenseessesseasseenseensesneas 74
5.5.2.5 COMPOSITE PriMEIY KEYSccveiviiiiiiitietieieeeie ettt sttt e te st e s te s be s besbeeaaesa e s e saesbestesbeesesseessensensesesreseas 75
ORI B 1 07z < <l 1110 [101=- PP 75
5.5.2.7 Optimistic LocKing aNd VEISIONINGcoveieuieiirieirieeeeeitesestessssesseesssessssessssesssresssesssessssessssessssessssssssenes 76
ORI H =010 (= 0= 010 = v A =0t 01100 [76
5.5.2.9 Custom CasCade BENAVIOULcccueiiiiiieie e iiee et eeee et s etessteesee s sreeessassbessabessatessseeessesssbessnsessneeesrens 78
5.5.2.10 CUSIOM HIDEINAEE TYPES ...uveeievieieeieiteecetieetie st e steeeaeesetesesbesssessseesssesessessssesssbessasesasesessesssesssessnsessrens 78
ORI M B 1 G Y=o I (0] 0= 1 (L= 79
5.5.2.12 CUStOM NAMING SEFALEAYveeecveeereeeitieeetieeeteeeteesteeeeeeeteeestessseesseessesessessssessssesssesssssessesessessnsesssessseees 81

oS RCH B < =0 Lo T A O (0 81
5.6 ProgrammatiC TraNSACHIONScceeitieiieiieiieiteesteeeesteesteesteeeesseesteesteassesseesbeestesnsesssesseesteansesseesseesteensesseesseesennes 82
5.7 GORM ANA CONSLIAINESveeiuvieieeieiieeeeieeetesstesstesseesssessssessesesssessasessssssssesessessssesssessssessssssssessssessssessnsessssnssenes 82
LR I SNV L= o = Y= SRS 85
LSRN Oa] 010 1= 85
6.1.1 Understanding ControllerS N ACHIONScceeivieiiieieie e eiessteesteeesee e sbessssessbessabesssaessbesssbesssbesssessseesssens 85
(oI A 0000110 LTS Xz 010 IS 070 o - 86
(SR GV Koo (S ET= a0 AV A=Y 86
6.1.4 REAITeCtS aNA CHAININGveeiveeitiecee e et eetee et ete e stte e et e et e s et e e sasessseeesbeseaseesnseesabessssesssesessesasessnsessnseesneees 89
(SR X @010 LTS A 01 (S C0= o] (0) 90
(SR T B = v= 1 =11 aTo 101 [T 92
6.1.7 XML aNd JSON RESDONSESecouveeieeeeerereirerieseesesessstssessssessasessasessssssssessssessssessssessesessssssssssssesssessssessssessssses 96
6.1.8 MOIre ON JSONBUIIAELccuveiiiitiie ettt ettt s et e et e e e st e e e et e e e s ebb e s s e esteeeeabaeeesbaeesaabeeessabeessanneeesanreneas 98
(SR IR0 o] o7=o [T a0 I L= RSO PTT 100
6.1.10 COmMMANA OBJECESccveveiiiiecie ettt ettt st e st e s b e e beebeebeess e s e s e sesbesbesbeeseeseessessesensensenrees 101
6.1.11 Handling Duplicate FOrm SUDMISSIONSeeivveeirireiieeeitieeteestesseesssessstessssessssessssssssessssessssesssesssssssesssres 102
(SRS T00] o T Y 1SN O] 11V/= (=, £ J 103
(WA €010 VAV S AYL= Bl =)0 (=R 103
(SR RIS ol 7S Tt 104
6.2.1.1 VariablES QN0 SCOPEScveeieveeetieceeeitteeeteeeeeeeteeesteeeteesateesaeeeesessbessbesssseessseessesessesssessnbessnseesnseearesesres 104
(SR W2 oo Tor= 010 I £ (= =10 o 104
I G = o (SN DI (= ol (LY = J P 105
B.2.1.4 EXIIESSIONS ...uveveveeueeeeneeeestessessessessesseessansasessessessesseaseessessessessessessessesseessensensessessessessessesseensessensessessens 105
B.2.2 GSP TAOSveveeueeueeuieiteeteete et eteete et et et et e s testeetestesbeebeeaseasess et e s beebesbeeheeaeehsess et e s eseebeebeeheeaeeaeene e s enretenrearees 106
6.2.2.1 VariableS aNd SCOPEScccveiviiiiitietiiteetieiteites e steste sttt eae e et e s testesbesbesbeeseessesesesbesbessesaeeseessensensesesresrens 106
SRV Mo o (1ol 010 H L= - 11] RSSO 107
OGS <= (o AT 010 I 1=, 1010 107
6.2.2.4 LINKS GNA RESOUICESvviitiieeieceee sttt e etee et s e tes st essteesateesaeesebessabessabessabessseessbesssbessbessabessatessnseesresssres 108
OIS N 0] 60015F 010 [L= [0 108
O ST = (0 oY= X 1YL L= 100 [O £ 109
6.2.3VIiEWS AN TEMPIAIESoecveeceeee ettt et e et e e et e et e et e sabe e sateesaseeasesesbesesessnsessaeeesseeesesenbessnseesnseeaneeeres 109
6.2.4 L ayOULS WIth SITEIMESH ...ttt e etee et e et e st e e et e e e ae e e sbeseteesasessnteesseesseesnbessnteeanseesneeeres 111
6.2.5 SItemMESh CONLENE BIOCKSoooiivviieieiie ettt sttt e ettt e et e e s et e e st e s e s bt e e s eabeeessabeessnenessbeesesneeesenrenens 113
6.2.6 Making Changes to a Deployed APPIICAIIONccviieiieiieiice ettt sttt ae e re s 114

B.3 TAQ LIDIAIIESovieieeceeeeeeeee ettt ettt ettt e s b et e s be e b e ebeeaeess e s e s e tesbesbesaeeaeeseensesesenresreares 114

6.3.1 VariableS aN0 SCOPESccveiviiviiiiitieiieeeie it st e et e st e te bt e et e e et e s besbesteebeeseeseessesesesesbesbesbeeseeasessensesesessesresns 115

(ORS00 0 =00 IF- o SRRSO 115
(SRS 0o [Tor= I IF= o R 116
(ORI N L= = LY/ IF= 0 116
6.3.5 TAO NAIMESDACES ...veeeeiuveeeiiieieeiitreeeeiteeeeibeeessiteeesateessasaeseassstesasbasesassaesabsesesasseesasbesesssbessesssaessbbesessseesanrenens 117
(SR N W LT alo TN S e =0 [1 o7 = 118
(SRS AT =T (= (0 [01NV Z= 11 (= 118
6.4 URL MADPINGS ...vveeveeireeiitieeitee ettt eitteeetesestessbesssesassseassseasesasesasseesasesasseasesansesansesanseessssessesssessnbessnsessnsesasesssses 118
6.4.1 Mapping to CONtrollerS AN ACLIONScceeievieeeeeceee e cee et ete e ettt e e et e e eteeere e sate e saaeeseeebessnbesenseesseeeares 119
(SN =111015.0 (0[50 VA= 1= o) 1. 0T R T RR 119
6.4.3 MADPING 1O VIBWSveevieieeieiiee ittt ettt ettt e e s e be et e e s tesseesae e be e s teeaeesse e seenbeenteeneesseenbeanteenaenneenreenns 121
6.4.4 Mapping t0 RESPONSE COUEScueeuieuieuiiieiieite st st ete et et et e st e s tesbe st e s beebeebe e e e s e s e ssesbesbesbesseeseessessensesessesrees 121
6.4.5 Mapping t0 HTTP MELNOAScceeieiciiieciecie sttt st sbe b beeae s e s e s e sesresre e 122
(SR XY= o1 a0 AT AT o [o7= o R 122
6.4.7 AUtOMALIC LINK RE-WWIITING ...veeivveeieeiiiee et ctie et stee s stesetes st s e s sae s s ebesesbesestessaeessateesseessbessnbessnbessneessrenssres 123
(SRR AN o]0 A1 00 I O0) 0 1 =) 11 124
6.4.9 NaMEd URL MADPINGSvveeevieiureeeeeeereeeetesastesssesssessssesessesassessssessssssasessssessssessssesssssssssssssessssessssessssesssssssses 124
(SRS ITAVZ< o X [0 126
(SRS NS = = 010 1 = 010 S = (- R 126
6.5.2 ACtion StALES ANA VIBW SEALESccuvieciiiicieeetie et ettt etee et et e s te et e e e te e e sbesebeesasessateesaseebeeenbessnbeesnseesreeesres 126
6.5.3 FIOW EXECULION EVENESoveeiitiie ettt ettt e sttt e et e e s et ee e s eatee s sabae s e sseeeseabeeessabesssnenessabeesesneeesenrenens 128
B.5.4 FIOW SCOPESecuveieiiitieitieite ettt st e bt et et e s heesse e st eateestesseesseeateesteeseesseenseenseaRaesse e seenbeentesneenseenbeanteennesneenreenes 129
6.5.5 DataBinding and Validationcccueiiiiiiiiiiiece ettt bbb ae e s srer e renre e 130
6.5.6 SUDFIOWS N CONVEISALIONSvveiveeiiiiitieetieceeestee e stes et es st e s st e s s e e e ebesssbessbessaeessatessbessabessabessabessresssressres 131
(SN CI 1 L= £ 132
SN TN o] o A1 a0 I 1 =, £ 132
(SN ST 1 = LY 0= 134
6.6.3VariablES AN SCOPEScocveeievieietieeieeetee et e et ee et e e stee e sbes e beesbessabeesseeeabesesbesarsessasessaessssesssessnbessnbessnsesarensres 134
(SN N 1 L A B 0 = 010 (= 0101 == S 134
LSO = T OS 135
(ST AN =V a0 1 £0]00) A4 = 135
6.7.1.1 REMOLNG LINKING ...veeiviiiiiiiitiesie ettt ae et e et e s aaeese e beenbeenteeseesaeenbeenteennesneenneenes 136
6.7.1.2 Updating CONLENEcceeuiiiiiiiite ettt ettt sttt et et e st e s besbesbeeseese e s esesbesbesbeeaseseessensensensesresrens 136
6.7.1.3 REMOLE FOIM SUDMUSSIONveeiuvie i ieiie ettt ettt st e s tte s st s sabe s st e s st e e saeeesbesssbessabessabessabessneeesresesres 136
A N V< 1 137
LSO N =)k 1 5 1o o 137
(SR N =)V 1 C 1YY 138
B.7.4 AJAX ONTNE SEIVEL ...ttt ettt e et e et e st e e te e et e e st e s sateeabesesbessasessaeessatessseesnbesenbessnbessneeeareessres 138
(SR ST 000100 8= (0 0] 1= (1) [139
A A= 110 = Lo o 143
7.1 DECIAriNG CONSITAINEScccveeeveeeieieitieeeteeeeteeeeteeseteeeeeeeteeestessseesbeesabeesssesasesasesanseeanseessssesseseseesnbesantessnsesaseeesses 143
WAVAAYE: 1o = 100 I G001 = 1 143
7.3 Validation ONTHE CHIENLooiieiiee it e e e e e bt e e et e e s sb e e e e ebeeeeesbeseesabeeesbeeeesabbeseenneeesanbens 144
7.4 Validation and INterNatioNAlIZAEIONcecveevrieieieeeieeriresteeeeeee st e e sbeesseesebeesbesssessseessresssbessssessabessrbessreesssesssres 145
7.5 Validation Non Domain and Command OBJECt CIASSESc.cceeviiierieiieiriiteceeieseesie et sreenas 146
T N SIS S VA L0 = L= SR 147
8.1 DECIAratiVe TIrANSACHIONSccveeiueieiteeeeteeeteeiteesteeeteeeetesestesstessaeeesabessbeessbessabesansessseesssesssbessasessnbessnbessnsesasensres 147
oIS 0 0] 0= 0 I = VA0 148
8.3 Dependency [NJECHION ANA SENVICESccvueivieirieiteceteeeetee e eteeeetee st e e s te e st e s be e s besasseesseessresesbeessessnbesssbessnsesaseessres 148
8.4 USING SENVICES FIOM JAVA ..ottt et ete e et e et e st e e st e e eat e s besebesanseesaseesaesesseessessnbesantessnseeaneeesres 149
LS R = 1o S RSRSRSN 151
1S 80 L T = o SRR 153
A 1= = 0o T =S 1 USSP 157
9.3 FUNCLIONAl TESHING ..vevveiveeitieieete et et ie st ee ettt et e et e et e st e st e e seessesaeesbeeseenseessees e e seenseessesseeeseenseensesnsesneeseennennns 162
O L1 =0T (a0t L= (L0 o O 164
10.1 Understanding MeSSage BUNAIESc.ccoveiviiiiiieiiiiieciecteeeeieeeeste s e stestesteesessaeaessessesaestestessesseessessensessensessessens 164
02 O 7= 0 (100 1 0 o7 L= 164
10.3 REAAING IMESSAGESceuvevereeeeitesteiteeseestetesestessessessesseaseeseessessessessessesseasessesssessesessessestessessessenseessensessessessessens 164
OIS lo= 0] Ko [T 0 =) A 165
TS o /S 166
S ol (] 0T N P 1 0 A 1= 166
11.2 Encoding and DECOAING ODJECESveeeiieieieeceee et e st e e etee et e et eeaeesaae e saeessesenbessnbesssseeaseeessessnsessnseesneees 167
G N U 11 a1 (7= (o o 169
10,4 SECUNILY PIUGFINSvviivieiteeie st st e ste ettt et e st e et e eae e sbeesteeteeaeesbeesbeesseaneeabeesbeesseenseeseesbeesteensesneesreesteeseennenrnnas 170
11.4.7 SPING SECUNLY ..oviiviiueeiieieie it ettt et et ete et et e st e st e st e sbeebeeseeseeasesbessesseebeebeeseessensessesesbesseeseeseeseensesensensesrearas 170

S 1 (o TSSOSO ST STPROR 170

R 1 o 0TRSO 172
12.1 Creating and [NStAIING PIUGEINSooveiieiieieii ettt ettt es st essae s sat e s sbessbeesabessabessssesssesssbesssessannssnees 172
N 1N (o (LT =, 010 L0 = 173
12.3 Understanding @ PIUGFINS SITUCLUIEoeiueeeieeecieeciee st seeeetee et esetessaae s sate s saessbessabessatessseseasesssbessssessnnnssneees 175
12.4 Providing BaSIC ATTEFACESccveiieieiiie ettt ettt et s et e st e s sat e s saeeebeeenbessabessaseesseeesbessseesnnessneees 176
12.5 EVAlUGLING CONVENLIONSvveeveeireectieeeee ettt e eteeeeaeestessatessseesesessbesasesasseesseesasesesesanbessasessssesasesessessnsesssessneees 177
12.6 HOOKING iNtO BUITA BEVENESooiiviiiiieceie et et st e st e s ee e eaee e tesetessasessatessseesbesanbessnbessnseeaseeesbesesessnnessneees 178
12.7 Hooking into RUNEIME CONFIQUIBEIONccueeiueeeieeeieeiteeeeeeeteeeeteeeeteeeeeesaeeesaeeeeaesebessnsesssseeeseeessesensessnneesnees 178
12.8 Adding Dynamic MethodSs at RUMLIMIEooiicuvieiiiiieiitiee ettt e et ete e s st e e e ebae e e s esbeesebeeessabeesssnreeesesbeneas 179
12.9 Participating in AUtO REIOB0 EVENLSceoiviiiiieieciie sttt te et et esteesteeaeeseesteesteetesneesreesteensesnnesraeas 180
12.10 Understanding Plug-in LOAO OFETcceiiiieeiiiiiie ettt sttt st sae s aesbesbesaeeaeeseessesessesnesrenneas 182

RIS oS AV Lo, 184
D30 REST .ottt ettt et et s s te e st e e etesatesbeesheesbesaeesbessbessbesaeesbessbeesbeeatesbessheesbeesteeatesbeesbeeebeeatesbeesbeesbeeeesreesraeas 184
TS0 L O 186
R S ST a0 17N (0] 1 o 186

R = Iz 010 S o 111 188
14.1 The UnderpinniNgS Of GIaIlSccveieueeieieceee e ctee e et e st e e ee et e et s eeteesaaeesaeessaesesesenbessnsessnsessseeesbessnsessnneesneees 188
14.2 Configuring AdditiONal BEANSccveeeveeitieeciee e etee st e e et et ee et e e eaessateesseeesessnbessnteessseeeseeessessasessnseesneees 188
14.3 Runtime Spring With the BEANS DISLcovieiiieiie ettt tee e etee et st saee e beeebeesnbesenseeesseesbeseseesnneesarees 190
14.4 The BeanBuilder DSL EXPIAINEDccovvieviiiieririeieiesesieteseetese sttt s s s st sessssesessstesesassanesneseneses 192
14.5 Property Placeholder CONfIQUIBLIONccveiieiieiieiiiesieesie et steesteeeesreesteesteesesseesbeesteesesseesseesseensesneesranas 196
14.6 Property Override CONfIQUIGLIONccceiveiueiieiieiteeeste st eeeseest e st estestestesaesseeaessessessesbesbesseeseeseessensessensessesrens 197

ST = Iz 010l L1 0= 7= (< 198
15.1 Mapping with HIbDErNate ANNOLAIIONSceeeiveeeeieeiieeeiteeeeeeetee et es et eesaessaeessaesssbessabessabessseeessesssbessssessenssnees 198
ST U L1 A == 0 1010 [199

S 5o o [T SO 200

1= o] 10177111 | S 203

1. Introduction

Javaweb development as it stands today is dramatically more complicated than it needs to be. Most modern web
frameworks in the Java space are over complicated and don't embrace the Don't Repeat Y ourself (DRY) principles.
Dynamic frameworks like Rails, Django and TurboGears helped pave the way to a more modern way of thinking
about web applications. Grails builds on these concepts and dramatically reduces the complexity of building web
applications on the Java platform. What makes it different, however, isthat it does so by building on aready
established Java technology like Spring & Hibernate.

Grailsisafull stack framework and attempts to solve as many pieces of the web development puzzle through the
core technology and it's associated plug-ins. Included out the box are things like:

An easy to use Object Relational Mapping (ORM) layer built on Hibernate
An expressive view technology called Groovy Server Pages (GSP)
A controller layer built on Spring MVC
A command line scripting environment built on the Groovy-powered Gant
An embedded Tomcat container which is configured for on the fly reloading
Dependency injection with the inbuilt Spring container
Support for internationalization (i18n) built on Spring's core M essageSource concept
© A transactional service layer built on Spring's transaction abstraction
All of these are made easy to use through the power of the Groovy language and the extensive use of Domain
Specific Languages (DSLS)
This documentation will take you through getting started with Grails and building web applications with the Grails
framework.

O 0O 0O O O O O

http://www.hibernate.org
http://www.springframework.org
http://groovy.codehaus.org/Gant
http://tomcat.apache.org
http://www.springframework.org
http://groovy.codehaus.org

2. Getting Started

2.1 Downloading and Installing

Thefirst step to getting up and running with Grailsisto install the distribution. To do so follow these steps:

© Download a binary distribution of Grails and extract the resulting zip file to alocation of your choice
© Setthe GRAILS HOME environment variable to the location where you extracted the zip
© On Unix/Linux based systemsthisistypically a matter of adding something like the following
export GRAI LS HOVE=/ pat h/to/ grail s toyour profile
© On Windows thisistypically amatter of setting an environment variable under My
Conmput er / Advanced/ Envi ronnent Vari abl es
© Now you need to add the bi n directory to your PATH variable:
© On Unix/Linux base system this can be done by doing aexpor t
PATH=" $PATH: $GRAI LS _HOVE/ bi n"
© Onwindows thisis done by modifying the Pat h environment variable under My
Conput er / Advanced/ Envi ronnent Vari abl es
If Grailsisworking correctly you should now be ableto type gr ai | s in the terminal window and see output similar
to the below:

Wel conme to Grails 1.0 - http://grails.org/

Li censed under Apache Standard License 2.0

Gails home is set to: /Developer/grails-1.0

No script name specified. Use 'grails help' for nmore info

2.2 Upgrading from previous versions of Grails

Although the Grails devel opment team have tried to keep breakages to a minimum there are a number of itemsto
consider when upgrading a Grails 1.0.x, 1.1.x, or 1.2.x applications to Grails 1.3. The major changes are described in
detail below.

Upgrading from Grails 1.2.x

Plugin Repositories

Asof Grails 1.3, Grails no longer natively supports resolving plugins against secured SVN repositories. Grails 1.2
and below's plugin resolution mechanism has been replaced by one built on vy the upside of which is that you can
now resolve Grails plugins against Maven repositories as well as regular Grails repositories.

Ivy supports a much richer setter of repository resolvers for resolving plugins with, including support for Webdav,
HTTP, SSH and FTP. See the section on resolvers in the Ivy docs for al the available options and the section of
plugin repositoriesin the user guide which explains how to configure additional resolvers.

If you still need support for resolving plugins against secured SV N repositories then the lvySvn project provides a set
of Ivy resolvers for resolving against SVN repositories.

Upgrading from Grails 1.1.x
Plugin paths

In Grails 1.1.x typically apl ugi nCont ext Pat h variable was used to establish paths to plugin resources. For
example:

<g: resource dir="${pl ugi nCont ext Pat h}/i mages" file="foo0.jpg" />

In Grails 1.2 views have been made plugin aware and thisis no longer necessary:

<g:resource dir="ineges" file="foo.|pg" />

Additionally the above example will no longer link to an application image from a plugin view. To do so you need to
change the above to:

http://grails.org/Download
http://ant.apache.org/ivy/history/trunk/settings/resolvers.html
http://code.google.com/p/ivysvn/

<g: resource contextPat h= di r="i mages" file="foo.jpg" />

The same rules apply to the javascript and render

Tag and Body return values
Tagsno longer returnj ava. | ang. St ri ng instances but instead return a St r eantChar Buf f er instance. The
St r eanChar Buf f er classimplements all the same methods as St r i ng, however code like this may break:

def foo = body()

i f(foo instanceof String) {
/] do sonething

}

In these cases you should use thej ava. | ang. Char Sequence interface, which both St ri ng and
St r eamChar Buf f er implement:

def foo = body()

i f(foo instanceof CharSequence) ({
/1 do sonething

}

New JSONBuilder

Thereisanew version of JSONBui | der which is semantically different to earlier versions of Grails. However, if
your application depends on the older semantics you can still use the now deprecated implementation by settings the
following property tot r ue in Config.groovy:

grails.json. | egacy. buil der=true

Validation on Flush

Grails now executes validation routines when the underlying Hibernate session is flushed to ensure that no invalid
objects are persisted. If one of your constraints (such as a custom validator) is executing a query then this can cause
an addition flush resultingina St ackOver f | owEr r or . Example:

static constraints = {
aut hor validator: { a ->
assert a != Book.findByTitle("M Book").author
}

The above code canlead to a St ackQver f | owEr r or in Grails 1.2. The solution isto run the query in anew
Hibernate sessi on (which isrecommended in general as doing Hibernate work during flushing can cause other
issues):

static constraints = {
aut hor validator: { a ->
Book. wi t hNewSessi on {
assert a != Book.findByTitle("M Book").author

Upgrading from Grails 1.0.x

http://grails.org/doc/latest/ref/Tags/javascript.html
http://grails.org/doc/latest/ref/Tags/render.html

Groovy 1.6
Grails 1.1 and above ship with Groovy 1.6 and no longer supports code compiled against Groovy 1.5. If you have a
library that iswritten in Groovy 1.5 you will need to recompile it against Groovy 1.6 before using it with Grails 1.1.

Java 5.0
Grails 1.1 now no longer supports JDK 1.4, if you wish to continue using Grails then it is recommended you stick to
the Grails 1.0.x stream until you are able to upgrade your JDK.

Configuration Changes

1) Thesettinggrai | s. testing. reports. dest D r hasbeenrenamed to
grails.project.test.reports.dir forconsistency.

2) The following settings have been moved from gr ai | s- app/ conf/ Confi g. gr oovy to
grail s-app/ conf/Bui |l dConfi g. groovy:

grails.config. base. webXn

grails.project.war.fil e (renamedfromgrails.war.destFile)

grail s. war. dependenci es

grails.war.copyToWebApp

grails.war.resources

3) Thegrail s.war.javab. dependenci es optionisno longer supported, since Java 5.0 is now the baseline
(see above).

4) The use of jsessionid (now considered harmful) is disabled by default. If your application requires jsessionid you
can re-enable its usage by adding the following to gr ai | s- app/ conf/ Confi g. gr oovy:

O O O O

e}

grails.views. enabl e. j sessi oni d=t rue

5) The syntax used to configure Log4j has changed. See the user guide section on Logging for more information.

Plugin Changes

Since 1.1, Grails no longer stores plugins inside your PRQJECT_HOVE/ pl ugi ns directory by default. This may
result in compilation errorsin your application unless you either re-install all your plugins or set the following
property ingr ai | s- app/ conf/ Bui | dConfi g. groovy:

grails.project.plugins.dir="./plugins"

Script Changes
1) If you were previously using Grails 1.0.3 or below the following syntax is no longer support for importing scripts
from GRAILS HOME:

Ant . property(envi ronnment: "env")
grail sHome = Ant.ant Proj ect. properties."env. GRAI LS HOWE"
i ncludeTargets << new File ("${grail sHone}/scri pts/Bootstrap.groovy")

Instead you should use the new gr ai | sScri pt method to import a named script:

i ncl udeTargets << grailsScript("Bootstrap.groovy")

2) Due to an upgrade to Gant al references to the variable Ant should be changed to ant .
3) Theroot directory of the project is no long on the classpath, the result is that loading a resource like thiswill no
longer work:

def stream = getd ass().cl assLoader. get ResourceAsStrean("grail s-app/conf/ny-config.xm")

Instead you should use the Java File APIswith the basedi r property:

new Fil e("${basedir}/grails-app/conf/ny-config.xm").w thlnputStream{ stream ->
/1 read the file
}

Command Line Changes
Ther un- app- htt ps andr un-war - ht t ps commands no longer exist and have been replaced by an argument

to run-app:

grails run-app -https

Data M apping Changes
1) Enum types are now mapped using their String value rather than the ordinal value. Y ou can revert to the old
behavior by changing your mapping as follows:

static mapping = {
soneEnum enuntype: "or di nal "
}

2) Bidirectional one-to-one associations are now mapped with a single column on the owning side and aforeign key
reference. Y ou shouldn't need to change anything, however you may want to drop the column on the inverse side as
it contains duplicate data.

REST Support
Incoming XML requests are now no longer automatically parsed. To enable parsing of REST requests you can do so
using the par seRequest argument inside a URL mapping:

"/ book" (controller:"book", par seRequest : true)

Alternatively, you can use the new r esour ce argument, which enables parsing by default:

"/ book" (resource: "book")

2.3 Creating an Application

To create a Grails application you first need to familiarize yourself with the usage of the gr ai | s command whichis
used in the following manner:

grails [command nane]

In this case the command you need to execute is create-app:

grails create-app helloworld

Thiswill create a new directory inside the current one that contains the project. Y ou should now navigate to this
directory in terminal:

10

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/create-app.html

11

cd hell oworld

2.4 A HelloWorld Example

To implement the typical "hello world!" example run the create-controller command:

grails create-controller hello

Thiswill create anew controller (Refer to the section on Controllers for more information) in the

grail s-app/controll ers directory caled Hel | oControl | er. groovy.

Controllers are capable of dealing with web requests and to fulfil the "hello world!" use case our implementation
needs to look like the following:

class HelloController {
def world = {
render "Hello World!"
}

Job done. Now start-up the container with another new command called run-app:

grails run-app

Thiswill start-up a server on port 8080 and you should now be able to access your application with the URL :
http://1 ocal host: 8080/ hel | oworl d
The result will look something like the following screenshot:

8o Welcome to Grails [)
i" '}' O http:/flocalhost:80 [Q~ Google |L|
Reload Location Search Bookmarks

Welcome to Grails

Congratulations, you have successfully started yvour first Grails application! At
the moment this is the default page, feel free to modify it to either redirect to
a controller or display whatever content you may choose. Below is a list of
controllers that are currently deployed in this application, click on each to
execute its default action:

® HellaController

4
Thisisthe Grailsintro page which is rendered by the web- app/ i ndex. gsp file. You will note it has a detected

the presence of your controller and clicking on the link to our controller we can see the text "Hello World!" printed to
the browser window.

2.5 Getting Set-up in an IDE

http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/run-app.html

IntelliJ IDEA

IntelliJ IDEA and the JetGroovy plug-in offer good support for Groovy & Grails developer. Refer to the section on
Groovy and Grails support on the JetBrains website for afeature overview.

To integrate Grails 1.2 to with IntelliJ run the following command to generate appropriate project files:

grails integrate-with --intellij

NetBeans

A good Open Source aternative is Sun's NetBeans, which provides a Groovy/Grails plugin that automatically
recognizes Grails projects and provides the ability to run Grails applications in the IDE, code completion and
integration with Sun's Glassfish server. For an overview of features see the NetBeans Integration guide on the Grails
website which was written by the NetBeans team.

Eclipse

We recommend that users of Eclipse looking to develop Grails application take alook at SpringSource Toal Suite,
which offers built in support for Grails including automatic classpath management, a GSP editor and quick access to
Grails commands. See the STS Integration page for an overview.

TextMate

Since Grails focusison simplicity it is often possible to utilize more simple editors and TextMate on the Mac has an
excellent Groovy/Grails bundle available from the Texmate bundles SV N.

To integrate Grails 1.2 to with TextMate run the following command to generate appropriate project files:

grails integrate-with --textmate

Alternatively TextMate can easily open any project with its command line integration by issuing the following
command from the root of your project:

mate .

2.6 Convention over Configuration

Grails uses "convention over configuration” to configure itself. This typically means that the name and location of
filesis used instead of explicit configuration, hence you need to familiarize yourself with the directory structure
provided by Grails.

Hereis abreakdown and linksto the relevant sections:

© grail s-app -topleve directory for Groovy sources
© conf - Configuration sources.
control |l ers - Web controllers- The Cin MVC.
donmai n - The application domain.
i 18n - Support for internationalization (i18n).
servi ces - Theservice layer.
tagli b -Taglibraries.
© vi ews - Groovy Server Pages.

© scripts - Gant scripts.
© sr ¢ - Supporting sources

© groovy - Other Groovy sources
© j ava - Other Java sources
© test - Unitand integration tests.

0O O O O O

2.7 Running an Application

Grails applications can be run with the built in Tomcat server using the run-app command which will load a server
on port 8080 by defaullt:

12

http://www.jetbrains.com/idea
http://www.jetbrains.net/confluence/display/GRVY/Groovy+Home
http://www.jetbrains.com/idea/features/groovy_grails.html
http://www.grails.org/NetBeans+Integration
http://www.eclipse.org/
http://www.springsource.com/products/sts
http://www.grails.org/STS+Integration
http://macromates.com/
http://wiki.macromates.com/Main/SubversionCheckout
http://grails.org/doc/latest/ref/Command Line/run-app.html

13

grails run-app

Y ou can specify adifferent port by using the ser ver . port argument:

grails -Dserver.port=8090 run-app

More information on the run-app command can be found in the reference guide.
2.8 Testing an Application

Thecr eat e- * commandsin Grails automatically create integration tests for you within the

test/integrati on directory. It isof course up to you to popul ate these tests with valid test logic, information
on which can be found in the section on Testing. However, if you wish to execute tests you can run the test-app
command as follows:

grails test-app

Grails also automatically generatesan Ant bui | d. xml which can aso run the tests by delegating to Grails' test-app
command:

ant test

Thisis useful when you need to build Grails applications as part of a continuous integration platform such as
CruiseControl.

2.9 Deploying an Application

Grails applications are deployed as Web Application Archives (WAR files), and Grails includes the war command
for performing this task:

grails war

Thiswill produce aWAR filein the root of your project which can then be deployed as per your containers
instructions.

@ NEVER deploy Grails using the run-app command as this command sets Grails up for
auto-reloading at runtime which has a severe performance and scalability implication

When deploying Grails you should always run your containers VM with the - ser ver option and with sufficient
memory allocation. A good set of VM flags would be;

-server -Xnx512M

2.10 Creating Artefacts

Grails ships with afew convenience targets such as create-contraller, create-domain-class and so on that will create
Controllers and different artefact types for you.

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/doc/latest/ref/Command Line/war.html
http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html

These are merely for your convenience and you can just as easily use an IDE or your
favourite text editor.

For example to create the basis of an application you typically need a domain model:

grails create-domain-cl ass book

Thiswill result in the creation of adomain classat gr ai | s- app/ domai n/ Book. gr oovy such as:

cl ass Book {

There are many such cr eat e- * commands that can be explored in the command line reference guide.

2.10 Supported Java EE Containers

Grails runs on any Servlet 2.4 and above container and is known to work on the following specific container
products:

Tomcat 5.5
Tomcat 6.0
SpringSource tc Server
SpringSource dm Server 1.0
GlassFish vl (Sun AS9.0)
GlassFishv2 (Sun AS9.1)
GlassFish v3 Prelude
Sun App Server 8.2
Websphere 6.1
Websphere 5.1
Resin 3.2
Oracle AS
JBoss 4.2
Jetty 6.1
Jetty 5

© Weblogic 7/8/9/10
Some containers have bugs however, which in most cases can be worked around. A list of known deployment issues
can be found on the Grails wiki.

O 0O 0O 0O 0 0O 0 0O O O O O O O O

2.11 Generating an Application

To get started quickly with Grailsit is often useful to use a feature called Scaffolding to generate the skeleton of an
application. To do this use one of the gener at e- * commands such as generate-all, which will generate a controller
and the relevant views:

grails generate-all Book

14

http://grails.org/Deployment
http://grails.org/doc/latest/ref/Command Line/generate-all.html

3. Configuration

It may seem odd that in aframework that embraces " convention-over-configuration™ that we tackle this topic now,
but since what configuration there is typically aone off, it is best to get it out the way.

With Grails' default settings you can actually develop and application without doing any configuration whatsoever.
Grails ships with an embedded container and in-memory HSQL DB meaning there isn't even a database to set-up.
However, typically you want to set-up areal database at some point and the way you do that is described in the
following section.

3.1 Basic Configuration

For general configuration Grails provides afilecalled gr ai | s- app/ conf/ Confi g. gr oovy. Thisfile uses
Groovy's ConfigSlurper which is very similar to Java properties files except it is pure Groovy hence you can re-use
variables and use proper Java types!

Y ou can add your own configuration in here, for example:

foo.bar.hello = "worl d"

Then later in your application you can access these settings in one of two ways. The most common is viathe
api:org.codehaus.groovy.grails.commons.Grail sA pplication object, which is available as a variable in controllers and
tag libraries:

assert "world" == grail sApplication.config.foo.bar.hello

The other way involves getting a reference to the api:org.codehaus.groovy.grails.commons.ConfigurationHol der
class that holds a reference to the configuration object:

i mport org.codehaus. groovy. grails. commons. *

def config = ConfigurationHol der.config
assert "world" == config.foo.bar.hello

3.1.1 Built in options

Grails also provides the following configuration options:

© grails.config.locations - Thelocation of propertiesfiles or addition Grails Config files that should
be merged with main configuration

© grails.enable. native2ascii - Setthistofaseif you do not require native2ascii conversion of
Grailsi18n propertiesfiles

© grails.views. default.codec - Setsthe default encoding regime for GSPs - can be one of 'none,
'html', or 'base64' (default: 'none’). To reduce risk of XSS attacks, set thisto 'html'.

© grails.views.gsp. encodi ng - Thefile encoding used for GSP source files (default is 'utf-8')

© grails.mnme.file.extensi ons - Whether to use the file extension to dictate the mime type in
Content Negotiation

© grails.mnme.types - A map of supported mime types used for Content Negotiation

© grails.server URL - A string specifying the server URL portion of absolute links, including server name
e.g. grails.serverURL ="http://my.yourportal .com". See createl ink.

War generation

© grails.project.war.fil e - Setsthelocation where the war command should place the generated
WAR file

© grails.war.dependenci es - A closure containing Ant builder syntax or alist of JAR filenames.
Allows you to customise what libaries are included in the WAR file.

© grails.war.javab. dependenci es - A list of the JARs that should be included in the WAR file for
JDK 1.5 and above.

http://groovy.codehaus.org/ConfigSlurper
http://grails.org/doc/latest/ref/Tags/createLink.html
http://grails.org/doc/latest/ref/Command Line/war.html

© grails.war.copyToWebApp - A closure containing Ant builder syntax that islegal inside an Ant copy,
for example "fileset()". Allows you to control what gets included in the WAR file from the "web-app”
directory.
© grails.war.resources - A closure containing Ant builder syntax. Allows the application to do any
other pre-warring stuff it needs to.
For more information on using these options, see the section on deployment

3.1.2 Logging

L ogging Basics

Grails uses its common configuration mechanism to configure the underlying Log4j log system. To configure
logging you must modify thefile Conf i g. gr oovy located inthegr ai | s- app/ conf directory.

Thissingle Conf i g. gr oovy file allows you to specify separate logging configurations for devel opnent , t est,
and pr oduct i on environments. Grails processes the Conf i g. gr oovy and configures Log4j appropriately.
Since 1.1 Grails provides aLog4j DSL, that you can use to configure Log4j an example of which can be seen below:

l og4j = {
error 'org.codehaus. groovy.grails.web.servlet', // controllers
' org. codehaus. groovy. grai |l s. web. pages' // P
war n 'org. nortbay. | og
}

Essentially, each method translates into alog level and you can pass the names of the packages you want to log at
that level as arguments to the method.
Some useful loggers include:

or g. codehaus. groovy. grai | s. commons - Core artefact information such as class loading etc.
or g. codehaus. groovy. grai | s. web - Grails web request processing

or g. codehaus. groovy. grail s. web. mappi ng - URL mapping debugging

or g. codehaus. groovy. grai |l s. pl ugi ns - Log plugin activity

or g. spri ngfranmewor k - Seewhat Spring is doing

or g. hi ber nat e - See what Hibernate is doing

O O O O O O

The Root Logger
The Root logger is the logger that all other loggers inherit from. Y ou can configure the Root logger using the root
method:

root {
error()
additivity = true
}

The above example configures the root logger to log messages at the error level and above to the default standard out
appender. Y ou can aso configure the root logger to log to one or more named appenders:

appenders {
file name: " file', file:'/var/logs/nyl og. ! og

root {
debug 'stdout', 'file
additivity = true

}

Here the root logger will log to two appenders - the default ‘stdout’ appender and a file' appender.
Y ou can also configure the root logger from the argument passed into the Log4J closure:

16

http://logging.apache.org/log4j/1.2/index.html

17

log4j = { root ->
root.|level = org.apache. | og4j. Level . DEBUG

The closure argument "root" isan instance of or g. apache. | og4j . Logger , so refer to the APl documentation
for Log4J to find out what properties and methods are available to you.

Custom Appenders
Using the Log4j you can define custom appenders. The following appenders are available by default:

© j dbc - An appender that logs to a JDBC connection

© consol e - An appender that logs to standard out

© file-Anappender that logsto afile

rol I'i ngFi | e - An appender that logs to rolling set of files
For example to configure arolling file appender you can do:

o

log4j = {
appenders {
rol lingFile nane: "nyAppender”, maxFil eSize: 1024, file:"/tnp/l ogs/ nyApp. | og"
}

Each argument passed to the appender maps to a property of underlying Appender class. The example above sets the
nane, maxFi | eSi ze andf i | e properties of the RollingFileA ppender class.

If you prefer to simply create the appender programmatically yourself, or you have your own appender
implementation then you can simply call the appender method and appender instance:

i nport org.apache. |l og4j.*
log4j = {
appenders {
appender new Rol | i ngFi | eAppender (name: " nmyAppender ", nmaxFil eSize: 1024, file:"/tnp/| g

Y ou can then log to a particular appender by passing the name as a key to one of the log level methods from the
previous section:

error myAppender: "org. codehaus. groovy. grails. conmons"

Custom Layouts

By default the Log4j DSL assumes that you want to use a PatternL ayout. However, there are other layouts available
including:

xm - Create an XML log file

ht M - Createsan HTML log file

si npl e - A smpletextual log

patt er n - A Pattern layout

Y ou can specify custom patterns to an appender using the | ayout setting:

O O O O

log4j = {
appenders {
consol e nane: ' cust omAppender', |ayout: pattern(conversionPattern: '%{2} %)

http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/Appender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/RollingFileAppender.html
http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html

This also works for the built-in appender "stdout", which logs to the console:

log4j = {
appenders {
consol e nane:'stdout', |ayout:pattern(conversionPattern: '%{2} %?®m')

Full stacktraces

When exceptions occur, there can be an awful lot of noise in the stacktrace from Java and Groovy internals. Grails
filtersthese typically irrelevant details and restricts traces to non-core Grail/Groovy class packages.

When this happens, the full trace is always written to the St ack Tr ace logger. Thislogsto afile called

st acktrace. | og - but you can change thisin your Conf i g. gr oovy to do anything you like. For example if
you prefer full stack traces to go to standard out you can add thisline:

error stdout:"StackTrace"

Y ou can completely disable stacktrace filtering by settingthegrai | s. ful | . st ackt race VM property to
true:

grails -Dgrails.full.stacktrace=true run-app

L ogging by Convention
All application artefacts have a dynamically added | og property. Thisincludes domain classes, contrallers, tag
libraries and so on. Below is an example of its usage:

def foo = "bar"
| og. debug "The val ue of foo is $foo"

Logs are named using the convention gr ai | s. app. <art ef act Type>. C assNane. Below isan example of
how to configure logs for different Grails artefacts:

log4j = {
/1 Set level for all application artefacts
info "grails.app"
/1 Set for a specific controller
debug "grails.app.controller. YourController"
/] Set for a specific domain class
debug "grails. app. donmai n. Book"
[l Set for all taglibs
info "grails.app.tagLib"

The artefacts names are dictated by convention, some of the common ones are listed below:

© boot st r ap - For bootstrap classes

© dat aSour ce - For data sources

© tagLi b - Fortaglibraries

O servi ce - For service classes

© controll er -Forcontrollers

© dommi n - For domain entities
3.1.3GORM

Grails provides the following GORM configuration options:

18

19

© grails.gormfail OnError -Ifsettot r ue, causesthe save() method on domain classes to throw a
grails.validation. ValidationExcepti on if validation fails during a save. This option may aso
be assigned allist of Strings representing package names. If the valueis alist of Strings then the failOnError
behavior will only be applied to domain classes in those packages (including sub-packages). See the save
method docs for more information.

Enable failOnError for all domain classes...

grails.gormfail OnError=true

Enable failOnError for domain classes by package. ..

grails.gormfail OnError = ['com conpanynane. somepackage', 'com conpanyname. soneot her packagg

© grails.gorm autoFl ush =If settot r ue, causes the merge, save and delete methods to flush the
session, replacing the need to do something likesave(fl ush: true).

3.2 Environments

Per Environment Configuration

Grails supports the concept of per environment configuration. Both the Conf i g. gr oovy file and the

Dat aSour ce. gr oovy filewithinthegr ai | s- app/ conf directory can take advantage of per environment
configuration using the syntax provided by ConfigSlurper As an example consider the following default

Dat aSour ce definition provided by Grails:

dat aSour ce {
pool ed = fal se
driverd assName = "org. hsqgl db. j dbcDriver"
usernane = "sa"
password "

envi ronment s {
devel opnent {
dat aSour ce {
dbCreate = "create-drop" // one of 'create', 'createeate-drop','update
url = "jdbc: hsgl db: mrem devDB"

}

}
test {
dat aSour ce {
dbCreate = "update”
url = "jdbc: hsgl db: mrem t est Db"

}

production {
dat aSour ce {
dbCreate = "update”
url = "jdbc: hsgl db: fil e: prodDb; shut down=t rue"

Notice how the common configuration is provided at the top level and then an envi r onnent s block specifies per
environment settings for the dbCr eat e and ur | properties of the Dat aSour ce. This syntax can also be used
within Confi g. gr oovy.

Packaging and Running for Different Environments
Grails command line has built in capabilities to execute any command within the context of a specific environment.
Theformat is:

grails [environment] [conmand nane]

http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/merge.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://groovy.codehaus.org/ConfigSlurper.

In addition, there are 3 preset environments known to Grails: dev, pr od, andt est for devel opnent,
producti onandt est . For exampleto create aWAR for thet est environment you could do:

grails test war

If you have other environments that you need to target you can passagr ai | s. env variable to any command:

grails -Dgrails.env=UAT run-app

Programmatic Environment Detection
Within your code, such asin a Gant script or a bootstrap class you can detect the environment using the
api:grails.util.Environment class:

i mport grails.util.Environment

swi t ch(Environment . current) {
case Environnent. DEVELOPMENT:
confi gur eFor Devel opnent ()
br eak
case Environnent. PRODUCTI ON:
confi gur eFor Producti on()
br eak

Per Environment Bootstrapping
Its often desirable to run code when your application starts up on a per-environment basis. To do so you can use the
grail s-app/ conf/ Boot St rap. gr oovy file's support for per-environment execution:

def init = { ServletContext ctx ->
envi ronnent s {
production {
ctx.setAttribute("env", "prod")

devel opnent {
ctx.setAttribute("env", "dev")
}

}
ctx.setAttribute("foo", "bar")

Generic Per Environment Execution
The previous Boot St r ap exampleusesthegrai | s. uti |l . Envi ronment classinternally to execute. Y ou can
also use this class yourself to execute your own environment specific logic:

Envi r onnent . execut eFor Cur r ent Envi r onnent {
production {
/1 do sonething in production

devel oprent {
/1 do sonething only in devel opnent
}

3.3 The DataSour ce

Since Grailsis built on Java technology setting up a data source requires some knowledge of JDBC (the technology
that doesn't stand for Java Database Connectivity).
Essentidly, if you are using another database other than HSQL DB you need to have a JDBC driver. For example for

20

21

MySQL you would need Connector/J
Driverstypically comein the form of a JAR archive. Drop the JAR into your project's| i b directory.
Once you have the JAR in place you need to get familiar Grails DataSource descriptor file located at

grai

| s- app/ conf/ Dat aSour ce. gr oovy. Thisfile contains the dataSource definition which includes the

following settings:

O O O 0O O O O ©

dri ver C assNane - The class name of the JDBC driver

user nane - The username used to establish a JDBC connection

passwor d - The password used to establish a JDBC connection

url - TheJDBC URL of the database

dbCr eat e - Whether to auto-generate the database from the domain model or not

pool ed - Whether to use a pool of connections (defaults to true)

| 0gSql - Enable SQL logging to stdout

di al ect - A String or Class that represents the Hibernate dialect used to communicate with the database.
See the org.hibernate.dialect package for available dialects.

properti es - Extrapropertiesto set on the DataSource bean. See the Commons DBCP BasicDataSource
documentation.

A typical configuration for MySQL may be something like:

dat aSour ce {

pool ed = true

dbCreate = "update"

url = "jdbc: mysql://1ocal host/your DB"

driverC assNanme = "com nysql .| dbc. Driver"

di al ect = org. hi bernate. di al ect. My\SQL51 nnoDBDi al ect
user nane "your User"

password "your Passwor d"

© When configuring the DataSource do not include the type or the def keyword before any of
the configuration settings as Groovy will treat these as local variable definitions and they will

not be processed. For example the following isinvalid:

dat aSour ce {

bool ean pooled = true // type declaration results in |ocal variable

Example of advanced configuration using extra properties:

dat aSour ce {

pool ed = true
dbCreate = "update”
url = "jdbc: nmysql://1ocal host/your DB"
driverd assNane = "com nysql .jdbc. Driver”
di al ect = org. hi bernate. di al ect. My\SQL51 nnoDBDi al ect
username = "your User"
password = "your Passwor d"
properties {
maxActive = 50
maxl dl e = 25
mnldle =5
initial Size =5
m nEvictableldleTimreMIlis = 60000
ti meBet weenEvi cti onRunsM | Iis = 60000
maxWait = 10000
val i dati onQuery = "/* ping */"

3.3.1 DataSour ces and Environments

http://www.mysql.com/downloads/connector/j/
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/dialect/package-summary.html
http://commons.apache.org/dbcp/api-1.2.2/org/apache/commons/dbcp/BasicDataSource.html

The previous example configuration assumes you want the same config for al environments: production, test,
development etc.
Grails DataSource definition is"environment aware", however, so you can do:

dat aSour ce {
/] common settings here

envi ronments {
production {
dat aSour ce {
url = "jdbc:nmysqgl://liveip.conliveDb"
}

}
}

3.3.2 INDI DataSources

Referring to a JNDI DataSour ce

Since many Java EE containers typically supply Dat aSour ce instances via the Java Naming and Directory
Interface (JNDI). Sometimes you are required to look-up a Dat aSour ce viaJJNDI.

Grails supports the definition of INDI data sources as follows:

dat aSource {
j ndi Name = "java: conp/ env/ myDat aSour ce"

The format on the INDI name may vary from container to container, but the way you define the Dat aSour ce
remains the same.

Configuring a Development time JNDI resource

The way in which you configure INDI data sources at development time is plugin dependent. Using the Tomcat
plugin you can define INDI resources using thegr ai | s. nami ng. entri es settingin

grail s-app/ conf/ Confi g. groovy:

grails.nam ng.entries = [
"bean/ MyBeanFact ory": [
aut h: " Cont ai ner",
type: "com nyconpany. MyBean",
factory: "org.apache. nam ng.factory. BeanFact ory",
bar: "23"

],

"j dbc/ Enpl oyeeDB":
type: "javax.sql.DataSource", //required
auth: "Container", // optional
description: "Data source for Foo", //optional
driverC assNane: "org. hsql.jdbcDriver",
url: "jdbc: Hypersoni cSQ.: dat abase",
user nane: "dbusernane",
password: "dbpassword",
maxActive: "8",
max| dl e: "4"

"mai |l /session": [

type: "javax.nail . Session,
aut h: " Cont ai ner",
"mai |l .sntp.host": "local host"

3.3.3 Automatic Database Migration

The dbCr eat e property of the Dat aSour ce definition isimportant as it dictates what Grails should do at runtime
with regards to automatically generating the database tables from GORM classes. The options are:

© creat e- dr op - Drops and re-creates the database when Grails starts, and drops the schema at the end of a

22

http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/
http://grails.org/plugin/tomcat

23

clean shutdown.

© cr eat e - Drops and re-creates the database when Grails starts, but doesn't drop the schema at the end of a
clean shutdown.

© updat e - Createsthe database if it doesn't exist, and modifiesit if it does exist. The modifications are rather
basic though, and generally only include adding missing columns and tables. Will not drop or modify
anything.

© val i dat e - Makes no changes to your database. Compares the configuration with the existing database
schema and reports warnings.

O any other value - does nothing. Don't specify any value if you want to manage databases yourself or by using
a 3rd-party tool.

&)

Both cr eat e- dr op and cr eat e will destroy all existing data hence use with caution!

In development mode dbCr eat e is by default set to "create-drop”:

dat aSour ce {
dbCreate = "create-drop” // one of 'create', 'create-drop','update
}

What this does is automatically drop and re-create the database tables on each restart of the application. Obviously
this may not be what you want in production.

Although Grails does not currently support Rails-style Migrations out of the box, there are
currently three plugins that provide similar capabilitiesto Grails: Autobase
(http://wiki.github.com/RobertFischer/autobase), The LiquiBase plugin and the DbMigrate
plugin both of which are availableviathegrai | s | i st - pl ugi ns command

3.3.4 Transaction-awar e DataSour ce Proxy

The actual dat aSour ce bean iswrapped in a transaction-aware proxy so you will be given the connection that's
being used by the current transaction or Hibernate Sessi on if oneisactive.

If this were not the case, then retrieving a connection from the dat aSour ce would be a new connection, and you
wouldn't be able to see changes that haven't been committed yet (assuming you have a sensible transaction isolation
setting, e.g. READ_COWM TTED or better).

The"real" unproxied dat aSour ce is still available to you if you need accessto it; its bean nameis

dat aSour ceUnpr oxi ed.

Y ou can access this bean like any other Spring bean, i.e. using dependency injection:

class MyService {
def dat aSour ceUnpr oxi ed

}

or by pulling it from the Appl i cat i onCont ext :

def dat aSour ceUnproxi ed = ct x. dat aSour ceUnpr oxi ed

3.4 Externalized Configuration

The default configuration file Conf i g. gr oovy ingr ai | s- app/ conf isfinein the majority of cases, but there
may be circumstances where you want to maintain the configuration in afile outside the main application structure.
For example if you are deploying to aWAR some administrators prefer the configuration of the application to be

http://www.liquibase.org/manual/grails
http://code.google.com/p/dbmigrate/wiki/Grails

externalized to avoid having to re-package the WAR due to a change of configuration.

In order to support deployment scenarios such as these the configuration can be externalized. To do so you need to
point Grails at the locations of the configuration files Grails should be using by adding a
grails.config.locations settinginConfi g. groovy:

grails.config.locations = ["cl asspat h: ${appNane}-confi g. properti es"
"cl asspat h: ${ appNane} - confi g. gr oovy"
"file:${userHone}/.grail s/ ${appNane}-config. properties"
"file:${userHone}/. grail s/ ${appNane}-config. groovy"]

In the above example we're loading configuration files (both Java properties files and ConfigSlurper configurations)
from different places on the classpath and files located in USER _HOVE.

Ultimately al configuration files get merged into the conf i g property of the
api:org.codehaus.groovy.grails.commons.Grail SA pplication object and are hence obtainable from there.

Grails also supports the concept of property place holders and property override configurers
as defined in Spring For more information on these see the section on Grails and Spring

3.5Versioning

Versioning Basics

Grails has built in support for application versioning. When you first create an application with the create-app
command the version of the applicationisset to 0. 1. The version is stored in the application meta datafile called
appl i cation. properti es intheroot of the project.

To change the version of your application you can run the set-version command:

grails set-version 0.2

The version is used in various commands including the war command which will append the application version to
the end of the created WAR file.

Detecting Versions at Runtime

Y ou can detect the application version using Grails support for application metadata using the
api:org.codehaus.groovy.grails.commons.Grail sSApplication class. For example within controllers thereis an implicit
grailsApplication variable that can be used:

def version = grailsApplication. netadata['app.version']

If it isthe version of Grailsyou need you can use:

def grailsVersion = grail sApplication.netadatal'app.grails.version']

ortheGrail sUtil class:

import grails.util.*
def grailsVersion = GrailsUtil.grailsVersion

3.6 Project Documentation

Since Grails 1.2, the documentation engine that powers the creation of this documentation is available to your Grails

24

http://groovy.codehaus.org/ConfigSlurper
http://www.springframework.org.
http://grails.org/doc/latest/ref/Command Line/create-app.html
http://grails.org/doc/latest/ref/Command Line/set-version.html
http://grails.org/doc/latest/ref/Command Line/war.html
http://grails.org/doc/latest/ref/Controllers/grailsApplication.html

25

projects.
The documentation engine uses a variation on the Textile syntax to automatically create project documentation with
smart linking, formatting etc.

Creating project documentation
To use the engine you need to follow a few conventions. Firstly you need to create asr ¢/ docs/ gui de directory
and then have numbered text files using the gdoc format. For example;

+ src/docs/ guide/ 1. Introduction. gdoc
+ src/docs/guide/2. Getting Started. gdoc

Thetitle of each chapter istaken from the file name. The order is dictated by the numerical value at the beginning of
the file name.

Creating referenceitems

Reference items appear in the left menu on the documentation and are useful for quick reference documentation.
Each reference item belongs to a category and a category is adirectory located inthe sr ¢/ docs/ r ef directory.
For example say you defined a new method called r ender PDF, that belongs to a category called Control | er s
this can be done by creating a gdoc text file at the following location:

+ src/ref/Controll ers/render PDF. gdoc

Configuring Output Properties
There are various properties you can set within your gr ai | s- app/ conf/ Confi g. gr oovy filethat customize
the output of the documentation such as:

© grailsdoc.authors - The authors of the documentation

© grails.doc.license - The license of the software

© grails.doc.copyright - The copyright message to display

grails.doc.footer - The footer to use

Other properties such as the name of the documentation and the version are pulled from your project itself.

o

Generating Documentation
Once you have created some documentation (refer to the syntax guide in the next chapter) you can generate an
HTML version of the documentation using the command:

grails docs

This command will output an docs/ manual / i ndex. ht n which can be opened to view your documentation.
Documentation Syntax

As mentioned the syntax is largely similar to Textile or Confluence style wiki markup. The following sections walk
you through the syntax basics.

Basic For matting

Monospace: nonospace

@monospace@

Italic: italic

italic

Bold: bold

bol d

e) GRAILS

Thttp://grails.org/inmges/new grail sl ogo_topNav. png!

Linking

There are severa ways to create links with the documentation generator. A basic externa link can either be defined
using confluence or textile style markup:

[Spri ngSource| http://ww. springsource.con] or "SpringSource":http://ww.springsource.com

For links to other sections inside the user guide you can use the gui de: prefix:

[Intro|]guide:1. Introduction]

The documentation engine will warn you if any links to sectionsin your guide break. Sometimes though it is
preferable not to hard code the actual names of guide sections since you may move them around. To get around this
you can create an dliasinside gr ai | s- app/ conf/ Confi g. gr oovy:

grails.doc.alias.intro="1. Introduction"

And then the link becomes;

[I'ntro| guide:intro]

Thisisuseful since if you linked the to "1. Introduction™ chapter many times you would have to change al of those
links.
To link to reference items you can use a specia syntax:

[control |l ers|render PDF]

In this case the category of the referenceitem is on the left hand side of the | and the name of the referenceitem on
the right.
Finally, to link to external APIsyou can usethe api : prefix. For example:

[String|api:java.lang. String]

The documentation engine will automatically create the appropriate javadoc link in this case. If you want to add
additional APIsto the engine you can configurethemingr ai | s- app/ conf/ Confi g. gr oovy. For example:

26

grails. doc. api . org. hi bernate="http://docs. jboss. org/ hi bernat e/ st abl e/ cor e/ api "

The above example configures classes within the or g. hi ber nat e package to link to the Hibernate website's API
docs.

Listsand Headings

Headings can be created by specifying the letter 'h' followed by a number and then a dot:

h3. <space>Headi ng3
h4. <space>Headi ng4

Unordered lists are defined with the use of the * character:

* jtem1
** subitem 1
** subitem 2
* item 2

Numbered lists can be defined with the # character:

#iteml

Tables can be created using thet abl e macro:

Name Number
Albert 46

Wilma 1348

James 12

{tabl e}

Name | *Nunber*
Al bert | 46
Wlm | 1348
James | 12

{t abl e}

Code and Notes

Y ou can define code blocks with the code macro:

cl ass Book {
String title

{code}
cl ass Book {
String title

}
{code}

The example above provides syntax highlighting for Java and Groovy code, but you can aso highlight XML markup:

<hel | o>wor | d</ hel | 0>

{code: xm }
<hel | o>wor | d</ hel | 0>
{code}

There are aso a couple of macros for displaying notes and warnings.
Note:

Thisis anote!

{not e}
This is a note!
{not e}

Warning:

=]

Thisisawarning!

{war ni ng}
This is a warning!
{war ni ng}

3.7 Dependency Resolution

In order to control how JAR dependencies are resolved Grails features (since version 1.2) a dependency resolution
DSL that allows you to control how dependencies for applications and plugins are resolved.

Insidethegr ai | s- app/ conf/ Bui | dConfi g. gr oovy fileyou can specify a

grails. project. dependency. resol uti on property that configures how dependencies are resolved:

grails. project. dependency.resolution = {
/'l config here
}

The default configuration looks like the following:

28

29

grails. project. dependency. resol ution = {
inherits "global™ // inherit Gails' default dependencies
log "warn" // log |level of Ivy resolver, either "error',

/1 "warn', 'info', 'debug' or 'verbose
repositories {
grail sHone()

[/ uncoment the below to enabl e renote dependency resol ution
/1 from public Maven repositories

/I mavenCentral ()

/I mavenRepo "ht
/I mvenRepo "ht
/I mavenRepo " ht
/I mavenRepo "ht

./ / snapshot s. reposi tory. codehaus. or g"
://repository. codehaus. org"

./ / downl oad. j ava. net / maven/ 2/ "
://repository.jboss. coml maven2/

T TTDO

t
t
t
t

dependenci es {
/'l specify dependenci es here under either 'build', 'conpile',
[l 'runtime', '"test' or 'provided scopes, e.g.
[l runtinme 'com nysqgl:nysql-connector-java:5.1.5"

The details of the above will be explained in the next few sections.

3.7.1 Configurations and Dependencies

Grails features 5 dependency resolution configurations (or 'scopes) which you can take advantage of :

bui | d: Dependencies for the build system only
conpi | e: Dependencies for the compile step
runt i me: Dependencies needed at runtime but not for compilation (see above)
t est : Dependencies needed for testing but not at runtime (see above)
o provi ded: Dependencies needed at development time, but not during WAR deployment
Within the dependenci es block you can specify a dependency that falls into one of these configurations by
calling the equivalent method. For example if your application requires the MySQL driver to functionat r unt i ne
you can specify as such:

O O O ©O

runtime 'com nysql: nmysql - connector-java:5.1.5'

The above uses the string syntax which isgr oup: nane: ver si on. You can also use a map-based syntax:

runtime group:'comnysgl', name:'nmysqgl-connector-java', version:'5.1.5

Muultiple dependencies can be specified by passing multiple arguments:

runtime ' com nysql: nmysqgl -connector-java:5.1.5",
'net. sf.ehcache: ehcache: 1. 6. 1'
Il O
runtime(
[group: ' com nysqgl ', name:' mysql -connector-java', version:'5.1.5"]
[group: ' net. sf.ehcache', nane:'ehcache', version:'1.6.1"]

3.7.2 Dependency Repositories

Remote Repositories

Grails, when installed, does not use any remote public repositories. Thereisadefault gr ai | sHorre() repository
that will locate the JAR files Grails needs from your Grailsinstallation. If you want to take advantage of a public
repository you need to specify assuch insidether eposi t ori es block:

repositories {
mavenCentral ()
}

In this case the default public Maven repository is specified. To use the SpringSource Enterprise Bundle Repository
you can usethe ebr () method:

repositories {
ebr ()

Y ou can also specify a specific Maven repository to use by URL.:

repositories {
mavenRepo "http://repository. codehaus. org"

L ocal Resolvers
If you do not wish to use a public Maven repository you can specify aflat file repository:

{
name: ' nyRepo', dirs:'/path/tol/repo'

Custom Resolvers
If all elsefails since Grails builds on Apache Ivy you can specify an lvy resolver:

/*

* Configure our resolver.
*/
def |ibResol ver = new org. apache. ivy. pl ugi ns. resol ver. URLResol ver ()

["libraries', "builds'].each {

| i bResol ver. addArtifactPattern("http: r

|l i bResol ver. addl vyPattern("http://ny.repository/ ${it}/[organisation]/[nodule]/[revis
}
| i bResol ver. nane = "ny-repository"
| i bResol ver.settings = ivySettings
resol ver |ibResol ver

[/ nmy.repository/${it}/[organisation]/[nodule]/[re

on

Authentication
If your repository requires some form of authentication you can specify assuch using acr edent i al s block:

credentials {

realm=".."

host = "l ocal host"
usernane = "nmyuser"
password = "nmypass"

The above can also be placed in your USER_ HOVE/ . grai | s/ setti ngs. groovy file using the
grails.project.ivy.authenticati on setting:

30

31

grails.project.ivy.authentication = {
credentials {

realm=".."

host = "l ocal host"
usernane = "nmyuser"
password = "nmypass"

3.7.3 Debugging Resolution

If you are having trouble getting a dependency to resolve you can enable more verbose debugging from the
underlying engine using the | og method:

/1 log level of lvy resolver, either "error', 'warn', 'info', 'debug' or 'verbose
| og "warn"

3.7.4 Inherited Dependencies

By default every Grails application inherits a bunch of framework dependencies. Thisis done through the line:

i nherits "gl obal "

Insidethe Bui | dConf i g. gr oovy file. If you wish exclude certain inherited dependencies then you can do so
using the excl udes method:

i nherits("global") {
excl udes "oscache", "ehcache"

3.7.5 Dependency Reports

As mentioned in the previous section a Grails application consists of dependencies inherited from the framework, the
plugins installed and the application dependencies itself.
To obtain areport of an application's dependencies you can run the dependency-report command:

grails dependency-report

Thiswill output areport tothet ar get / dependency-r eport directory by default. Y ou can specify which
configuration (scope) you want areport for by passing an argument containing the configuration name:

grails dependency-report runtine

3.7.6 Plugin JAR Dependencies

Specifying Plugin JAR dependencies

The way in which you specify dependenciesfor aplugin isidentical to how you specify dependenciesin an
application. When a plugin isinstalled into an application the application automatically inherits the dependencies of
the plugin.

If you want to define a dependency that is resolved for use with the plugin but not exported to the application then
you can set the expor t ed property of the dependency:

http://grails.org/doc/latest/ref/Command Line/dependency-report.html

conpi |l e(' org. hi bernate: hi bernate-core:3.3.1. GA') {
exported = fal se

In this can the hi ber nat e- cor e dependency will be available only to the plugin and not resolved as an
application dependency.

Overriding Plugin JAR Dependenciesin Your Application
If apluginisusing a JAR which conflicts with another plugin, or an application dependency then you can override
how a plugin resolves its dependencies inside an application using exclusions. For example:

pl ugi ns {
runtine("org.grails.plugins:hibernate:1.3.0") {
excl udes "] avassi st"
}

dependenci es {
runtime "javassist:javassist:3.4. GA"
}

In this case the application explicitly declares a dependency on the "hibernate" plugin and specifies an exclusion
using the excl udes method, effectively excluding the javassist library as a dependency.

3.7.7 Maven Integration

When using the Grails Maven plugin, Grails' dependency resolution mechanics are disabled as it is assumed that you
will manage dependencies viaMaven'spom xni file.

However, if you would like to continue using Grails regular commands like run-app, test-app and so on then you can
tell Grails command line to load dependencies from the Maven pom xmi fileinstead.

To do so simply add the following line to your Bui | dConfi g. gr oovy:

grails. project. dependency. resol ution = {
pom true

}

Thelinepom t r ue tells Grailsto parse Maven'spom xmni and load dependencies from there.

3.7.8 Deploying to a Maven Repository

Y ou can deploy a Grails project or plugin to a Maven repository using the maven-publisher plugin.
The plugin provides the ability to publish Grails projects and plugins to local and remote Maven repositories. There
aretwo key additional targets added by the plugin:

° maven-ingtall - Installs a Grails project or plugin into your local Maven cache

© maven-deploy - Deploys a Grails project or plugin to aremote Maven repository
By default this plugin will automatically generate avalid pom xml for you unlessapom xmi isaready present in
the root of the project, in which casethispom xmi file will be used.

maven-install
Themaven-i nst al I command will install the Grails project or plugin artifact into your local Maven cache:

grails maven-install

In the case of plugins, the plugin zip file will be installed, whilst for application the application WAR file will be
installed.

32

http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/test-app.html
http://grails.org/plugin/maven-publisher

33

maven-deploy
Themaven- depl oy command will deploy a Grails project or plugin into a remote Maven repository:

grails maven-depl oy

It is assumed that you have specified the necessary <di st ri but i onManagenent > configuration within a
pom xmi or that you specify thei d of the remote repository to deploy to:

grails maven-depl oy --repository=nyRepo

Ther eposi t ory argument specifies the 'id' for the repository. Y ou need to configure the details of the repository
specified by this'id' within your gr ai | s- app/ conf/ Bui | dConfi g. gr oovy fileor inyour
USER HOVER/ . grai |l s/ settings. groovy file

grails. project. dependency. distribution = {
| ocal Repository = "/path/to/ny/local"
renot eReposi tory(id: "nmyRepo”, url:"http://nyserver/path/to/repo")

The syntax for configuring remote repositories matches the syntax from the remoteRepository element in the Ant
Maven tasks. For example the following XML.:

<renot eRepository id="nmyRepo" url="scp://|ocal host/ww/ repository">
<aut henti cation usernane="..." privateKey="${user. hone}/.ssh/id dsa"/>
</ r enot eReposi t ory>

Can be expressed as:

renot eReposi tory(id: "nyRepo", url:"scp://|ocal host/ww/ repository") {
aut hentication usernane:"...", privateKey:"${userHone}/.ssh/id dsa"

By default the plugin will try to detect the protocol to use from the URL of the repository (ie "http" from "http://.."
etc.), however if you need to explicitly specify a different protocol you can do:

grails maven-depl oy --repository=nyRepo --protocol =webdav

The available protocols are:

http
Scp
scpexe
ftp
webdav

O O O O O

Groups, Artifactsand Versions
Maven defines the notion of a'groupld', 'artifactld' and a'version'. This plugin pulls thisinformation from the Grails
project conventions or plugin descriptor.

Projects

http://maven.apache.org/ant-tasks/reference.html#remoteRepository

For applications this plugin will use the Grails application name and version provided by Grails when generating the
pom xm file. To change the version you can run the set - ver si on command:

grails set-version 0.2

The Maven gr oupl d will be the same as the project name, unless you specify a different one in Config.groovy:

grails. project.groupld="com myconpany"

Plugins

With a Grails plugin the gr oupl d and ver si on are taken from the following propertiesin the
*Grail sPlugin.groovy descriptor:

String groupld

! [myOrg’
String version '0.1'

The 'artifactld' is taken from the plugin name. For exampleif you have aplugin caled FeedsGr ai | sPl ugi n the
artifact!dwill be"feeds'. If your plugin does not specify agr oupl d then this defaults to "org.grails.plugins’.

3.7.9 Plugin Dependencies

Asof Grails 1.3 you can declaratively specify dependencies on plugins rather than using the install-plugin command:

pl ugi ns {
runtine ':hibernate:1.2. 1"

If you don't specify agroup id the default plugin group id of or g. grai | s. pl ugi ns isused. Y ou can specify to
use the latest version of a particular plugin by using "latest.integration” as the version number:

pl ugi ns {
runtime ':hibernate:latest.integration’
}

Integration vs. Release
The "latest.integration™ version label will aso include resolving snapshot versions. If you don't want to include
snapshot versions then you can use the "latest.release” label:

pl ugi ns {
runtine ':hibernate:l atest.rel ease'
}

The "latest.release” l1abel only works with Maven compatible repositories. If you have a
regular SV N-based Grails repository then you should use "latest.integration".

And of courseif you are using a Maven repository with an alternative group id you can specify agroup id:

http://grails.org/doc/latest/ref/Command Line/install-plugin.html

35

pl ugi ns {
runtinme 'myconpany: hi bernate: | atest.integration
}

Plugin Exclusions
Y ou can control how plugins transitively resolves both plugin and JAR dependencies using exclusions. For example:

pl ugi ns {
runtime(':weceem0.8") {
excl udes "searchabl e"
}

Here we have defined a dependency on the "weceem" plugin which transitively depends on the "searchable” plugin.
By using the excl udes method you can tell Grails not to transitively install the searchable plugin. Y ou can
combine this technique to specify an alternative version of a plugin:

pl ugi ns {
runtime(':weceem0.8") {
excl udes "searchabl e® // excludes nbst recent version

runtine ':searchable:0.5.4" // specifies a fixed searchable version

Y ou can also completely disable transitive plugin installs, in which case no transitive dependencies will be resolved:

pl ugi ns {
runtime(':weceem0.8) {
transitive = fal se

runtime ':searchable:0.5.4" // specifies a fixed searchabl e version

4. The Command Line

Grails command line system is built on Gant - a simple Groovy wrapper around Apache Ant.
However, Grailstakesit abit further through the use of convention and the gr ai | s command. When you type:

grails [command nane]

Grails does a search in the following directories for Gant scripts to execute:

USER HOVE/ . grail s/ scripts
PRQIECT_HOME/ scri pts
PRQIECT_HOVE/ pl ugi ns/ */ scripts
© GRAI LS _HOVE/ scripts
Grails will also convert command names that are in lower case form such as run-app into camel case. So typing

O O O

grails run-app

Results in a search for the following files:

USER HOVE/ . grai | s/ scri pt s/ RunApp. gr oovy
PRQIECT_HOVE/ scri pt s/ RunApp. gr oovy
PLUG NS_HOME/ */ scri pt s/ RunApp. gr oovy
GLOBAL_PLUG NS _HOVE/ */ scri pt s/ RunApp. gr oovy
© GRAI LS HOVE/ scri pt s/ RunApp. gr oovy
If multiple matches are found Grails will give you a choice of which one to execute. When Grails executes a Gant
script, it invokes the "default” target defined in that script. If thereis no default, Grails will quit with an error.
To get alist and some help about the available commands type:

O O O O

grails help

Which outputs usage instructions and the list of commands Grails is aware of:

Usage (optionals marked with *):

grails [environment]* [target] [argunents]*

Exanpl es:

grails dev run-app

grails create-app books

Avai |l abl e Targets (type grails help 'target-name’ for nore info):
grails bootstrap

grails bug-report

grails clean

grails conpile

Refer to the Command Line reference in left menu of the reference guide for more
information about individual commands

4.1 Creating Gant Scripts

Y ou can create your own Gant scripts by running the create-script command from the root of your project. For
exampl e the following command:

grails create-script conpile-sources

36

http://gant.codehaus.org/
http://ant.apache.org
http://grails.org/doc/latest/ref/Command Line/create-script.html

37

Will create ascript called scri pt s/ Conpi | eSour ces. gr oovy. A Gant script itself issimilar to aregular
Groovy script except that it supports the concept of "targets' and dependencies between them:

target (default:"The default target is the one that gets executed by Gails") {
depends(cl ean, conpil e)

target (clean:"Cl ean out things") {
ant . del ete(dir: "output")

target (conpile:"Conpil e some sources") ({
ant . nkdi r(dir:"nkdir")
ant.javac(srcdir:"src/java", destdir:"output")

As demonstrated in the script above, thereisan implicit ant variable that allows access to the Apache Ant API.

In previous versions of Grails (1.0.3 and below), the variable was Ant , i.e. with a capital first
letter.

Y ou can also "depend" on other targets using the depends method demonstrated in the def aul t target above.

The default target
In the example above, we specified a target with the explicit name "default". Thisis one way of defining the default
target for ascript. An alternative approach isto use the set Def aul t Tar get () method:

target ("clean-conpile": "Perforns a clean conpilation on the app's source files.") {
depends(cl ean, conpil e)

target (clean:"C ean out things") {
ant . del ete(dir: "output")

target (conpil e: " Conpile sone sources") {
ant . nkdi r(dir:"nkdir")
ant.javac(srcdir:"src/java", destdir:"output")

}
set Def aul t Target (" cl ean-conpi | e")

This alowsyou to call the default target directly from other scriptsif you wish. Also, although we have put the call
toset Def aul t Tar get () at the end of the script in this example, it can go anywhere aslong as it comes after the
target it refers to ("clean-compil€" in this case).

Which approach is better? To be honest, you can use whichever you prefer - there don't seem to be any major
advantages in either case. One thing we would say isthat if you want to alow other scriptsto call your "default”
target, you should move it into a shared script that doesn't have a default target at all. Welll talk some more about this
in the next section.

4.2 Re-using Grails scripts

Grails shipswith alot of command line functionality out of the box that you may find useful in your own scripts (See
the command line reference in the reference guide for info on all the commands). Of particular use are the compile,
package and bootstrap scripts.

The bootstrap script for example alows you to bootstrap a Spring ApplicationContext instance to get access to the
data source and so on (the integration tests use this):

http://ant.apache.org/manual/index.html
http://grails.org/doc/latest/ref/Command Line/compile.html
http://grails.org/doc/latest/ref/Command Line/package.html
http://grails.org/doc/latest/ref/Command Line/bootstrap.html
http://grails.org/doc/latest/ref/Command Line/bootstrap.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html

i ncl udeTargets << grailsScript(" G ailsBootstrap")
target ('default': "Load the Grails interactive shell") ({
depends(confi gureProxy, packageApp, classpath, |oadApp, configureApp)
Connection c
try {
/1 do sonething with connection
c = appCt x. get Bean(' dat aSource'). get Connecti on()

finally {
c?.cl ose()

Pulling in targets from other scripts

Gant allows you to pull in all targets (except "default") from another Gant script. Y ou can then depend upon or
invoke those targets as if they had been defined in the current script. The mechanism for doing thisisthe

i ncl udeTar get s property. Simply "append” afile or classto it using the left-shift operator:

i ncl udeTargets << new File("/path/to/ny/script.groovy")
i ncl udeTargets << gant.tools.|vy

Don't worry too much about the syntax using aclass, it's quite specialised. If you're interested, look into the Gant
documentation.

Core Grailstargets

Asyou saw in the example at the beginning of this section, you use neither the File- nor the class-based syntax for

i ncl udeTar get s when including core Grails targets. Instead, you should use the special gr ai | sScri pt ()
method that is provided by the Grails command launcher (note that thisis not available in normal Gant scripts, just
Grails ones).

The syntax for thegr ai | sScri pt () method is pretty straightforward: simply pass it the name of the Grails script
you want to include, without any path information. Hereisalist of Grails scripts that you may want to re-use:

Script Description

Y ou redlly should include this! Fortunately, it isincluded automatically by all other Grails

_Clilessiings scripts bar one (_GrailsProxy), so you usually don't have to include it explicitly.

GrailsEvents If you want to fire events, you need to include this. Addsan event (St ri ng event Nane,
- Li st args) method. Again, included by almost all other Grails scripts.

GrailsCl ath Sets up compilation, test, and runtime classpaths. If you want to use or play with them, include
- assp this script. Again, included by almost all other Grails scripts.
_GrailsProxy If you want to access the internet, include this script so that you don't run into problems with

proxies.

Providesapar seAr gunent s target that does what it says on the tin: parses the arguments

_CrllegReing provided by the user when they run your script. Adds them to the ar gs Map property.

_GrailsTest Contains al the shared test code. Useful if you want to add any extra tests.

Provides all you need to run the application in the configured servlet container, either normally

_GrEllern (runApp/r unAppHt t ps) or from aWAR file (r un\War /r un\Var Ht t ps).

There are many more scripts provided by Grails, so it isworth digging into the scripts themselves to find out what
kind of targets are available. Anything that startswith an"_" is designed for re-use.

Inpre-1.1 versions of Grails, the"_Grails..." scripts were not available. Instead, you typically
include the corresponding command script, for example "Init.groovy" or "Bootstrap.groovy".
Also, in pre-1.0.4 versions of Grailsyou cannot usethegr ai | sScri pt () method. Instead,
youmust usei ncl udeTargets << new Fil e(...) and specify the script'slocation
infull (i.e. $GRAILS HOME/scripts).

38

39

Script architecture

Y ou maybe wondering what those underscores are doing in the names of the Grails scripts. That is Grails way of
determining that ascript is_interna _, or in other words that it has not corresponding "command”. So you can't run
"grails _grails-settings' for example. That is aso why they don't have a default target.

Internal scripts are all about code sharing and re-use. In fact, we recommend you take a similar approach in your own
scripts: put al your targets into an internal script that can be easily shared, and provide simple command scripts that
parse any command line arguments and del egate to the targets in the internal script. Say you have a script that runs
some functional tests - you can split it like this:

./scripts/Functional Tests. groovy:

i ncludeTargets << new Fil e("${basedir}/scripts/_Functional Tests.groovy")

target (default: "Runs the functional tests for this project.") {
depends(runFuncti onal Tests)

./ scripts/_Functional Tests. groovy:

i ncl udeTargets << grailsScript("_GailsTest")

target (runFunctional Tests: "Run functional tests.") {
depends(...)

Here are afew general guidelines on writing scripts:

Split scriptsinto a"command" script and an internal one.

Put the bulk of the implementation in the internal script.

Put argument parsing into the "command" script.

To pass arguments to atarget, create some script variables and initialise them before calling the target.
Avoid name clashes by using closures assigned to script variables instead of targets. Y ou can then pass
arguments direct to the closures.

O O O O O

4.3 Hooking into Events

Grails provides the ability to hook into scripting events. These are events triggered during execution of Grails target
and plugin scripts.

The mechanism is deliberately simple and loosely specified. Thelist of possible eventsis not fixed in any way, so it
is possible to hook into eventstriggered by plugin scripts, for which there is no equivalent event in the core target
scripts.

Defining event handlers
Event handlers are defined in scriptscalled _Event s. gr oovy. Grails searches for these scripts in the following
locations:

USER HOVE/ . grai | s/ scri pts - user-specific event handlers
PRQIECT_HOVE/ scri pt s - applicaton-specific event handlers
PLUG NS_HOME/ */ scri pt s - plugin-specific event handlers

© GLOBAL_PLUG NS _HOVE/ */ scri pt s - event handlers provided by global plugins
Whenever an event isfired, all the registered handlers for that event are executed. Note that the registration of
handlersis performed automatically by Grails, so you just need to declarethemintherelevant _Event s. gr oovy
file.

O O O

In versions of Grails prior to 1.0.4, the script was called Event s. gr oovy, that is without
the leading underscore.

Event handlers are blocks defined in _Event s. gr oovy, with a name beginning with "event". The following
example can be put in your /scripts directory to demonstrate the feature:

event CreatedArtefact = { type, name ->
println "Created $type $nane"

event St at usUpdate = { msg ->
println nsg

event StatusFinal = { msg ->
println nmsg

Y ou can see here the three handlers event Cr eat edArt ef act , event St at usUpdat e,
event St at usFi nal . Grails provides some standard events, which are documented in the command line reference
guide. For example the compile command fires the following events:

© Conpi |l eStart - Caled when compilation starts, passing the kind of compile - source or tests
© Conpi | eEnd - Called when compilation is finished, passing the kind of compile - source or tests

Triggering events
To trigger an event smply include the Init.groovy script and call the event() closure:

i ncl udeTargets << grailsScript(" GailsEvents")
event ("StatusFinal", ["Super duper plugin action conplete!"])

Common Events
Below is atable of some of the common events that can be leveraged:

Event Parameters Description

StatusUpdate message Passed a string indicating current script status/progress

StatusError message Passed a string indicating an error message from the current script
Passed a string indicating the final script status message, i.e. when

StatusFinal message completing atarget, even if the target does not exit the scripting
environment

Called when a create-xxxx script has completed and created an

CreatedArtefact artefactType,artefactName artefact

Called whenever a project source filed is created, not including files

Seeilrle Menterse constantly managed by Grails

Exiting returnCode Called when the scripting environment is about to exit cleanly
Plugininstalled pluginName Called after a plugin has been installed

Called when compilation starts, passing the kind of compile - source

CompileStart kind or tests

Called when compilation is finished, passing the kind of compile -

CompileEnd kind source or tests

Called when documentation generation is about to start - javadoc or

DocStart kind groovydoc

Called when documentation generation has ended - javadoc or

DocEnd kind groovydoc

Called during classpath initialization so plugins can augment the
classpath with rootL oader.addURL (...). Note that this augments the

SetClasspath rootL oader classpath after event scripts are loaded so you cannot use thisto load
aclass that your event script needs to import, although you can do this
if you load the class by name.

Called at the end of packaging (which is called prior to the Tomcat
server being started and after web.xml is generated)

PackagingEnd none

40

http://grails.org/doc/latest/ref/Command Line/compile.html

41

4.4 Customising the build

Grailsis most definitely an opinionated framework and it prefers convention to configuration, but this doesn't mean
you can't configureit. In this section, we look at how you can influence and modify the standard Grails build.

Thedefaults

In order to customise a build, you first need to know what you can customise. The core of the Grails build
configurationisthegrai | s. util. Buil dSetti ngs class, which contains quite abit of useful information. It
controls where classes are compiled to, what dependencies the application has, and other such settings.

Here is a selection of the configuration options and their default values:

Property Config option Default value

grailsWorkDir grails.work.dir $USER_HOME/.grails/<grailsVersion>
projectWorkDir grails.project.work.dir <grailswWorkDir>/projects/<baseDirName>
classesDir grails.project.class.dir <projectWorkDir>/classes

testClassesDir grails.project.test.class.dir <projectWorkDir>/test-classes
testReportsDir grails.project.test.reports.dir <projectWorkDir>/test/reports
resourcesDir grails.project.resource.dir <projectWorkDir>/resources
projectPluginsDir grails.project.plugins.dir <projectWorkDir>/plugins
globaPluginsDir grails.globa.plugins.dir <grailsWorkDir>/global-plugins

verboseCompile

grails.project.compile.verbose false

TheBui | dSet ti

ngs class has some other properties too, but they should be treated as read-only:

Property Description

baseDir The location of the project.

userHome The user's home directory.

grailsHome The location of the Grailsinstallation in use (may be null).
grailsvVersion The version of Grails being used by the project.

grailseEnv The current Grails environment.

compileDependencies A list of compile-time project dependenciesas Fi | e instances.
testDependencies A list of test-time project dependenciesas Fi | e instances.
runtimeDependencies A list of runtime-time project dependencies as Fi | e instances.

Of course, these properties aren't much good if you can't get hold of them. Fortunately that's easy to do: an instance
of Bui | dSet ti ngs isavailableto your scriptsviathegr ai | sSet t i ngs script variable. You can also access it

from your code by

usingthegrail s. util.Buil dSettingsHol der class, but thisisn't recommended.

Overriding the defaults
All of the propertiesin the first table can be overridden by a system property or a configuration option - simply use

the "config option"

name. For example, to change the project working directory, you could either run this command:

grails -Dgrails.project.work.dir=work conpile

or add this option to your gr ai | s- app/ conf / Bui | dConfi g. gr oovy file:

grails.project.work.dir = "work"

Note that the default values take account of the property values they depend on, so setting the project working
directory like this would a so relocate the compiled classes, test classes, resources, and plugins.

What happens if you use both a system property and a configuration option? Then the system property wins because
it takes precedence over the Bui | dConf i g. gr oovy file, which in turn takes precedence over the default values.
TheBui | dConfi g. groovy fileisasibling of gr ai | s- app/ conf/ Confi g. gr oovy - the former contains
options that only affect the build, whereas the latter contains those that affect the application at runtime. It's not
limited to the optionsin the first table either: you will find build configuration options dotted around the
documentation, such as ones for specifying the port that the embedded servlet container runs on or for determining
what files get packaged in the WAR file.

Available build settings

Name Description

grails.server.port.http Port to run the embedded servlet container on ("run-app" and "run-war"). Integer.

Port to run the embedded servlet container on for HTTPS ("run-app --https" and

grails.server.port.https "run-war —-https"). Integer.

Path to a custom web.xml file to use for the application (alternative to using the

grails.config.base.webXmi web.xml template).

Legacy approach to adding extra dependencies to the compiler classpath. Set it to a

grails.compiler.dependencies closure containing "fileset()" entries.

A list of Ant path patterns that allow you to control which files areincluded in the
grails.testing.patterns tests. The patterns should not include the test case suffix, which is set by the next

property.

By default, tests are assumed to have a suffix of "Tests". Y ou can changeit to
grails.testing.nameSuffix anything you like but setting this option. For example, another common suffix is
"Test".

A string containing the file path of the generated WAR file, along with its full name

aellspigleein e (include extension). For example, "target/my-app.war".

A closure containing "fileset()" entries that allows you complete control over what

grails.war.dependencies goesinthe WAR's "WEB-INF/Iib" directory.

A closure containing "fileset()" entries that allows you complete control over what
grailswar.copyToWebApp goesintheroot of the WAR. It overrides the default behaviour of including
everything under "web-app".

A closure that takes the location of the staging directory asitsfirst argument. Y ou
grails.war.resources can use any Ant tasks to do anything you like. It istypically used to removefiles
from the staging directory before that directory isjar'd up into aWAR.

grails.project.web.xml The location to generate Grails web.xml to

45 Ant and Maven

If al the other projectsin your team or company are built using a standard build tool such as Ant or Maven, you
become the black sheep of the family when you use the Grails command line to build your application. Fortunately,
you can easily integrate the Grails build system into the main build tools in use today (well, the onesin usein Java
projects at |east).

Ant Integration
When you create a Grails application via the create-app command, Grails automatically creates an Apache Ant
bui | d. xm filefor you containing the following targets:

© cl ean - Cleansthe Grails application
© conpi | e - Compiles your application's source code
© test - Runsthe unit tests

42

http://grails.org/doc/latest/ref/Command Line/create-app.html
http://ant.apache.org/

43

© run - Equivalent to "grails run-app"

© war - CreatesaWARfile

© depl oy - Empty by default, but can be used to implement automatic deployment
Each of these can be run by Ant, for example:

ant war

The build fileis all geared up to use Apache Ivy for dependency management, which means that it will automatically
download all the requisite Grails JAR files and other dependencies on demand. Y ou don't even haveto install Grails
locally to useit! That makesit particularly useful for continuous integration systems such as CruiseControl or
Hudson

It uses the Grails api:grails.ant.GrailsTask to hook into the existing Grails build system. The task allows you to run
any Grails script that's available, not just the ones used by the generated build file. To use the task, you must first
declareit:

<t askdef name="grail sTask"
cl assname="grails. ant. G ail sTask"
cl asspat href ="grail s. cl asspath"/>

This rai ses the question: what should be in "grails.classpath”? The task itself isin the "grails-bootstrap” JAR artifact,
so that needs to be on the classpath at least. Y ou should also include the "groovy-all" JAR. With the task defined,
you just need to use it! The following table shows you what attributes are available;

Attribute Description Required
h The location of the Grailsinstallation directory touse Yes, unless classpath is
ome . o
for the build. specified.
Classpath to load Grails from. Must include the Yes, unlesshone isset or
classpathref "grails-bootstrap™" artifact and should include youuseacl asspat h
"grails-scripts’. element.
script The name of the Grails script to run, e.g. "TestApp". Yes.
args The arguments to pass to the script, e.g. "-unit -xml". No. Defaultsto "".
environment The Grails environment to run the script in. g;aaffaults R
. . Advanced setting: adds the application's runtime
includeRuntimeClasspath classpath to the build classpath if true. No. Defaultsto true.

The task also supports the following nested elements, all of which are standard Ant path structures:

© cl asspat h - The build classpath (used to load Gant and the Grails scripts).
© conpi | ed asspat h - Classpath used to compile the application's classes.
° runti meC asspat h - Classpath used to run the application and package the WAR. Typically includes
everything in @compileClasspath.
© test asspat h - Classpath used to compile and run the tests. Typically includes everything in
runti meC asspat h.
How you populate these pathsis up to you. If you are using the horre attribute and put your own dependenciesin the
I i b directory, then you don't even need to use any of them. For an example of their use, take alook at the generated
Ant build file for new apps.

Maven Integration
From 1.1 onwards, Grails provides integration with Maven 2 viaa Maven plugin. The current Maven plugin is based
on, but effectively supercedes, the version created by Octo, who did a great job.

Preparation
In order to use the new plugin, al you need is Maven 2 installed and set up. Thisis because you no longer need to
install Grails separately to useit with Maven!

http://ant.apache.org/ivy/
http://cruisecontrol.sourceforge.net/
https://hudson.dev.java.net/.
http://maven.apache.org
http://forge.octo.com/maven/sites/mtg/grails-maven-plugin

The Maven 2 integration for Grails has been designed and tested for Maven 2.0.9 and above.
It will not work with earlier versions.

To make life easier for you, we do recommend that you add a plugin group for Grailsto your Maven settingsfile (
$USER _HOMWE/ . 2/ set ti ngs. xml):

<settings>

<pl ugi nG oups>
<pl ugi nGroup>or g. gr ai | s</ pl ugi nGr oup>
</ pl ugi nG oups>
</settings>

In addition, if you have the Octo Maven Tools for Grails set up then you'll need to removethecom octo. nt g
plugin group.

Creating a Grails Maven Project
To create a Mavenized Grails project simple run the following command:

mvn ar chet ype: generate -DarchetypeG oupld=org.grails \
-DarchetypeArtifactld=grail s- maven-ar chetype \
- Dar chet ypeVersi on=1.0 \
- Dar chet ypeReposi t ory=htt p: // snapshot s. reposi t ory. codehaus. org \
- Dgr oupl d=exanpl e -Dartifact!d=my-app

Choose whichever group ID and artifact ID you want for your application, but everything else must be as written.
Thiswill create anew Maven project with a POM and a couple of other files. What you won't see is anything that
looks like a Grails application. So, the next step isto create the project structure that you're used to:

cd ny-app
mvn initialize

Now you have a Grails application all ready to go. The plugin integrates into the standard build cycle, so you can use

the standard Maven phases to build and package your app: nvn cl ean,nvn conpile,nvn test ,nmvn
package .
Y ou can also take advantage of some of the Grails commands that have been wrapped as Maven goals:

grails:create-controll er - Cdlsthe create-controller command

grail s: create-domai n-cl ass - Callsthe create-domain-class command
grails:create-integration-test - Calsthe create-integration-test command
grail s: creat e- pom- Creates anew Maven POM for an existing Grails project
grail s:create-script - Cdlsthe create-script command

grail s: creat e-servi ce - Calsthe create-service command

grail s:create-taglib - Calsthe create-tag-lib command
grails:create-unit-test - Calsthe create-unit-test command

grail s: exec - Executes an arbitrary Grails command line script

grail s: generate-al |l - Calsthe generate-all command

grail s: generate-control | er - Calsthe generate-controller command
grail s: gener at e- vi ews - Calls the generate-views command
grails:install-plugin-Calstheinstall-plugin command
grails:install-tenpl at es - Cdlsthe install-templates command
grails:|ist-plugins - Cdlsthe list-plugins command

grai | s: package - Calls the package command

grail s: run-app - Calsthe run-app command

grail s: uninstall-pl ugi n- Callsthe uninstal-plugin command

O 0O 0O OO0 OO O o0 0O o O O o o o o0 o

http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html
http://grails.org/doc/latest/ref/Command Line/create-integration-test.html
http://grails.org/doc/latest/ref/Command Line/create-script.html
http://grails.org/doc/latest/ref/Command Line/create-service.html
http://grails.org/doc/latest/ref/Command Line/create-tag-lib.html
http://grails.org/doc/latest/ref/Command Line/create-unit-test.html
http://grails.org/doc/latest/ref/Command Line/generate-all.html
http://grails.org/doc/latest/ref/Command Line/generate-controller.html
http://grails.org/doc/latest/ref/Command Line/generate-views.html
http://grails.org/doc/latest/ref/Command Line/install-plugin.html
http://grails.org/doc/latest/ref/Command Line/install-templates.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html
http://grails.org/doc/latest/ref/Command Line/package.html
http://grails.org/doc/latest/ref/Command Line/run-app.html
http://grails.org/doc/latest/ref/Command Line/uninstall-plugin.html

45

Mavenizing an existing project

Creating anew project is great way to start, but what if you already have one? Y ou don't want to create a new project
and then copy the contents of the old one over. The solution isto create a POM for the existing project using this
Maven command:

mvn grails:create-pom -Dgroupl d=com myconpany

When this command has finished, you can immediately start using the standard phases, such asnmvn package.
Note that you have to specify agroup ID when creating the POM.

Adding Grails commandsto phases

The standard POM created for you by Grails already attaches the appropriate core Grails commands to their
corresponding build phases, so ""compile"’ goesin the "compile" phase and "war" goesin the "package" phase. That
doesn't help though when you want to attach a plugin's command to a particular phase. The classic exampleis
functional tests. How do you make sure that your functional tests (using which ever plugin you have decided on) are
run during the "integration-test” phase?

Fear not: all things are possible. In this case, you can associate the command to a phase using an extra "execution”
block:

<pl ugi n>
<gr oupl d>or g. gr ai | s</ gr oupl d>
<artifactld>grails-maven-plugin</artifactld>
<ver si on>1. 0- SNAPSHOT</ ver si on>
<ext ensi ons>t r ue</ ext ensi ons>
<executi ons>
<execution>

<goal s>
éigoals>
</ executi on>
<l-- Add the "functional -tests" comand to the "integration-test" phase -->

<executi on>
<i d>functional -tests</id>
<phase>i nt egrati on-t est </ phase>
<goal s>
<goal >exec</ goal >
</ goal s>
<confi guration>
<conmmand>f uncti onal -t est s</ command>
</ confi guration>
</ executi on>
</ executi ons>
</ pl ugi n>

This also demonstratesthe gr ai | s: exec goal, which can be used to run any Grails command. Simply pass the
name of the command as the comrand system property, and optionally specify the argumentsviathe ar gs

property:

m/n grails: exec - Dcommand=cr eat e- webt est - Dar gs=Book

5. Object Relational Mapping (GORM)

Domain classes are core to any business application. They hold state about business processes and hopefully also
implement behavior. They are linked together through relationships, either one-to-one or one-to-many.

GORM is Grails' object relational mapping (ORM) implementation. Under the hood it uses Hibernate 3 (an
extremely popular and flexible open source ORM solution) but because of the dynamic nature of Groovy, the fact
that it supports both static and dynamic typing, and the convention of Grails there is|ess configuration involved in
creating Grails domain classes.

Y ou can also write Grails domain classes in Java. See the section on Hibernate Integration for how to write Grails
domain classes in Java but still use dynamic persistent methods. Below is a preview of GORM in action:

def book = Book.findByTitle("G oovy in Action")
book
. addToAut hor s(nane: "Di erk Koeni g")
. addToAut hor s(nane: "Cui | | aume LaFor ge")
.save()

5.1 Quick Start Guide

A domain class can be created with the create-domain-class command:

grails create-donmai n-cl ass Person

Thiswill create aclass at the location gr ai | s- app/ donai n/ Per son. gr oovy such as the one below:

cl ass Person {

If you have the dbCr eat e property set to "update”, "create” or "create-drop” on your
DataSource, Grails will automatically generated/modify the database tables for you.

Y ou can customize the class by adding properties:

cl ass Person {
String nane
I nt eger age
Date | astVisit

Once you have adomain class try and manipulate it viathe shell or console by typing:

grails consol e

Thisloads an interactive GUI where you can type Groovy commands.
5.1.1 Basic CRUD
Try performing some basic CRUD (Create/Read/Update/Delete) operations.

Create
To create adomain class use the Groovy new operator, set its properties and call save:

46

http://grails.org/doc/latest/ref/Command Line/create-domain-class.html
http://grails.org/doc/latest/ref/Command Line/shell.html
http://grails.org/doc/latest/ref/Command Line/console.html
http://grails.org/doc/latest/ref/Domain Classes/save.html

47

def p = new Person(name: "Fred", age:40, lastVisit:new Date())
p. save()

The save method will persist your class to the database using the underlying Hibernate ORM layer.

Read
Grailstransparently adds animplicit i d property to your domain class which you can use for retrieval:

def p = Person. get(1)
assert 1 == p.id

This uses the get method that expects a database identifier to read the Per son object back from the db. Y ou can aso
load an object in aread-only state by using the read method:

def p = Person.read(1)

In this case the underlying Hibernate engine will not do any dirty checking and the object will not be persisted. Note
that if you explicitly call the save method then the object is placed back into aread-write state.
In addition, you can also load an proxy for an instance by using the load method:

def p = Person.|oad(1)

Thisincurs no database access until a method other than getld() is called. Hibernate then initializes the proxied
instance, or throws an exception if no record isfound for the specified id.

Update
To update an instance, set some properties and then simply call save again:

def p = Person. get(1)
p. name = "Bob"
p. save()

Delete
To delete an instance use the delete method:

def p = Person. get(1)
p. del et e()

5.2 Domain Modellingin GORM

When building Grails applications you have to consider the problem domain you are trying to solve. For example if
you were building an Amazon bookstore you would be thinking about books, authors, customers and publishersto
name afew.

These are modeled in GORM as Groovy classes so a Book class may have atitle, arelease date, an ISBN number
and so on. The next few sections show how to model the domain in GORM.

To create a domain class you can run the creaste-domain-class target as follows:

grails create-domai n-cl ass Book

http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/read.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/load.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://www.amazon.com/
http://grails.org/doc/latest/ref/Command Line/create-domain-class.html

Theresult will beaclassat gr ai | s- app/ domai n/ Book. gr oovy:

cl ass Book {

If you wish to use packages you can move the Book.groovy class into a sub directory under
the domain directory and add the appropriate package declaration as per Groovy (and
Java's) packaging rules.

The above class will map automatically to atable in the database called book (the same name as the class). This
behaviour is customizable through the ORM Domain Specific Language
Now that you have adomain class you can define its properties as Java types. For example:

cl ass Book {
String title
Dat e rel easeDat e
String | SBN

Each property is mapped to a column in the database, where the convention for column namesis all lower case
separated by underscores. For exampler el easeDat e mapsonto acolumnr el ease_dat e. The SQL types are
auto-detected from the Java types, but can be customized via Constraints or the ORM DSL.

5.2.1 Association in GORM

Relationships define how domain classes interact with each other. Unless specified explicitly at both ends, a
relationship exists only in the direction it is defined.

5.2.1.1 One-to-one

A one-to-one relationship is the simplest kind, and is defined trivially using a property of the type of another domain
class. Consider this example:

Example A

cl ass Face {
Nose nose

cl ass Nose {

In this case we have unidirectional many-to-one relationship from Face to Nose. To make it atrue one-to-one you
should make nose unique:

cl ass Face {
Nose nose
static constraints = {
nose uni que: true

cl ass Nose {

To make this relationship bidirectiona define the other side as follows:

49

Example B

cl ass Face {
Nose nose

cl ass Nose {
static bel ongsTo = [face: Face]

In this case we use the bel ongsTo setting to say that Nose "belongsto" Face. The result of thisisthat we can
create a Face and save it and the database updates/inserts will be cascaded down to Nose:

new Face(nose: new Nose()).save()

The example above will save both face and nose. Note that the inverse is not true and will result in an error due to a
transient Face:

new Nose(face: new Face()).save() // will cause an error

Another important implication of bel ongsTo isthat if you delete a Face instance the Nose will be deleted too:

def f = Face.get(1)
f.delete() // both Face and Nose del eted

In the previous example the foreign key associated the Face with the Nose is stored in the parent as column called
nose_i d. If you want the foreign key to be stored in the child you need ahas One association:

Example C

cl ass Face {
static hasOne = [nose: Nose]

cl ass Nose {
Face face

In this example you get a bidirectional one-to-one where the foreign key column is stored in the nose table inside a
columncaledface_i d.

5.2.1.2 One-to-many

A one-to-many relationship is when one class, example Aut hor , has many instances of a another class, example
Book. With Grails you define such arelationship with the has Many setting:

cl ass Aut hor {
static hasMany = [books : Book]
String nane

}
cl ass Book {
String title

In this case we have a unidirectional one-to-many. Grails will, by default, map thiskind of relationship with ajoin

table.

The ORM DSL alows mapping unidirectional relationships using a foreign key association
instead

Grailswill automatically inject a property of typej ava. uti | . Set into the domain class based on the hasMany
setting. This can be used to iterate over the collection:

def a = Author.get(1)
a. books. each {
printlnit.title

The default fetch strategy used by Grailsis"lazy", which means that the collection will be
lazily initialized. This can lead to the n+1 problem if you are not careful.

If you need "eager” fetching you can use the ORM DSL or specify eager fetching as part of a
query

The default cascading behaviour is to cascade saves and updates, but not deletes unlessabel ongsTo isaso
specified:

cl ass Aut hor {
static hasMany = [books : Book]
String nane

cl ass Book {
static belongsTo = [aut hor: Aut hor]
String title

If you have two properties of the same type on the many side of a one-to-many you have to use mappedBy to
specify which the collection is mapped:

class Airport {
static hasMany = [flights:Flight]
static mappedBy = [flights:"departureAirport”]

}

class Flight {
Ai rport departureAirport
Ai rport destinati onAirport

Thisisaso true if you have multiple collections that map to different properties on the many side:

class Airport ({
static hasMany = [out boundFlights: Flight, inboundFlights:Flight]

}

class Flight {
Ai rport departureAirport
Ai rport destinationAi rport

static mappedBy = [out boundFlights:"departureAirport”, inboundFlights:"destinati onAirpg

=

5.2.1.3 Many-to-many

50

http://www.javalobby.org/java/forums/t20533.html

51

Grails supports many-to-many relationships by defining ahasMany on both sides of the relationship and having a
bel ongsTo on the owned side of the relationship:

cl ass Book {
static bel ongsTo = Aut hor
static hasMany = [authors: Aut hor]
String title

cl ass Aut hor {
static hasivany = [books: Book]
String nane

Grails maps a many-to-many using a join table at the database level. The owning side of the relationship, in this case
Aut hor , takes responsibility for persisting the relationship and is the only side that can cascade saves across.
For example this will work and cascade saves:

new Aut hor (nane: " St ephen Ki ng")
. addToBooks(new Book(title:"The Stand"))
. addToBooks(new Book(title:"The Shining"))
.save()

However the below will only save the Book and not the authors!

new Book(name: " G oovy in Action")
. addToAut hor s(new Aut hor (nane: "Di erk Koeni g"))
. addToAut hor s(new Aut hor (nane: "Gui | | aune Laforge"))
. save()

Thisisthe expected behaviour as, just like Hibernate, only one side of a many-to-many can take responsibility for
managing the relationship.

Grails Scaffolding feature does not currently support many-to-many relationship and hence
you must write the code to manage the relationship yourself

5.2.1.4 Basic Collection Types

Aswell as associations between different domain classes, GORM also supports mapping of basic collection types.
For example, the following class createsani cknanes association that isa Set of St ri ng instances:

cl ass Person {
static hasMany = [ni cknanes: Stri ng]

GORM will map an association like the above using ajoin table. You can ater various aspects of how the join table
is mapped using thej oi nTabl e argument:

cl ass Person {
static hasMany = [nicknanes: String]
static mapping = {
hasMany joi nTabl e: [name: 'bunch_o_ni cknanes',
key: 'person_id',
col um: ' ni cknanme',
type: "text"]

The example above will map to atable that looks like the following:
bunch_o_nicknames Table

5.2.2 Composition in GORM

Aswell as association, Grails supports the notion of composition. In this case instead of mapping classes onto
separate tables a class can be "embedded” within the current table. For example:

cl ass Person {
Addr ess honeAddr ess
Addr ess wor kAddr ess
static enbedded = [' homeAddress', 'workAddress']

}

cl ass Address {
String nunber
String code

The resulting mapping would looking like this:

Person Table

id home address | home address | work address | work address
| number code number code
47 343432 a7 43545

If you define the Addr ess classin aseparate Groovy fileinthegr ai | s- app/ donai n
directory you will also get an addr ess table. If you don't want this to happen use Groovy's
ability to define multiple classes per file and include the Addr ess class below the Per son
classinthegr ai | s- app/ domai n/ Per son. gr oovy file

5.2.3 Inheritancein GORM

GORM supports inheritance both from abstract base classes and concrete persistent GORM entities. For example:

53

cl ass Content {
String aut hor

cl ass Bl ogEntry extends Content {
URL url

cl ass Book extends Content {
String | SBN

}
cl ass PodCast extends Content {
byte[] audi oStream

In the above example we have a parent Cont ent class and then various child classes with more specific behaviour.

Considerations

At the database level Grails by default uses table-per-hierarchy mapping with a discriminator column called cl ass
so the parent class (Cont ent) and its sub classes (Bl ogEnt r y, Book etc.), share the same table.
Table-per-hierarchy mapping has adown side in that you cannot have non-nullable properties with inheritance
mapping. An aternative is to use table-per-subclass which can be enabled viathe ORM DSL

However, excessive use of inheritance and table-per-subclass can result in poor query performance due to the
excessive use of join queries. In general our adviceisif you're going to use inheritance, don't abuse it and don't make
your inheritance hierarchy too deep.

Polymor phic Queries
The upshot of inheritance is that you get the ability to polymorphically query. For example using the list method on
the Cont ent super classwill return all sub classes of Cont ent :

() /1 list all blog entries, books and pod casts
ByAut hor (' Joe Bloggs') // find all by author
t /

content = Content.findAl u
st() // list only pod casts

def content = Content.li st
I
def podCasts = PodCast.|li

5.2.4 Sets, Listsand Maps

Sets of objects
By default when you define arelationship with GORM itisaj ava. uti | . Set whichisan unordered collection
that cannot contain duplicates. In other words when you have:

cl ass Author {
static hasMany = [books: Book]
}

The books property that GORM injectsisaj ava. uti | . Set . The problem with thisisthere is no ordering when
accessing the collection, which may not be what you want. To get custom ordering you can say that the setisa
Sort edSet :

cl ass Author {
Sort edSet books
static hasmvany = [books: Book]

}

Inthiscaseaj ava. util . Sort edSet implementation is used which means you have to implement
j ava. |l ang. Conpar abl e in your Book class:

http://grails.org/doc/latest/ref/Domain Classes/list.html

cl ass Book inpl enents Conparabl e {
String title
Date rel easeDate = new Dat e()
int conpareTo(obj) {
rel easeDat e. conpar eTo(obj . rel easeDat e)
}

}

The result of the above class is that the Book instances in the books collections of the Author class will be ordered by
their release date.

Lists of objects
If you simply want to be able to keep objects in the order which they were added and to be able to reference them by
index like an array you can define your collection typeasali st :

cl ass Aut hor {

Li st books

static hasMany = [books: Book]
}

In this case when you add new elements to the books collection the order isretained in a sequential list indexed from
0 so you can do:

aut hor. books[0] // get the first book

The way thisworks at the database level is Hibernate creates abooks_i dx column where it saves the index of the
elementsin the collection in order to retain this order at the db level.

When using aLi st , elements must be added to the collection before being saved, otherwise Hibernate will throw an
exception (or g. hi ber nat e. Hi ber nat eExcept i on: null index column for collection):

[/ This won't work!

def book = new Book(title: 'The Shining')
book. save()

aut hor . addToBooks(book)

/] Do it this way instead.

def book = new Book(title: 'Msery')

aut hor . addToBooks(book)

aut hor . save()

Maps of Objects
If you want a simple map of string/value pairs GORM can map this with the following:

cl ass Aut hor {
Map books // map of | SBN: book nanes

def a = new Aut hor ()
a. books = ["1590597583": "Grail s Book"]
a. save()

In this case the key and value of the map MUST be strings.
If you want a Map of objects then you can do this:

55

cl ass Book {
Map aut hors
static hasMany = [aut hors: Aut hor]

def a = new Aut hor (nane: " St ephen King")
def book = new Book()

book. aut hors = [stephen: a]

book. save()

The static hasMany property defines the type of the elements within the Map. The keys for the map must be strings.

A Note on Collection Types and Performance

The Java Set typeisacollection that doesn't allow duplicates. In order to ensure uniqueness when adding an entry
toaSet association Hibernate has to load the entire associations from the database. If you have alarge numbers of
entries in the association this can be costly in terms of performance.

The same behavior isrequired for Li st types, since Hibernate needs to load the entire association in-order to
maintain order. Therefore it is recommended that if you anticipate alarge numbers of recordsin the association that
you make the association bidirectional so that the link can be created on the inverse side. For example consider the
following code:

def book = new Book(title:"New Gails Book")
def aut hor = Aut hor.get(1)

book. aut hor = aut hor

book. save()

In this example the association link is being created by the child (Book) and hence it is not necessary to manipulate
the collection directly resulting in fewer queries and more efficient code. Given an Aut hor with alarge number of
associated Book instancesif you were to write code like the following you would see an impact on performance:

def book = new Book(title:"New Gails Book")
def aut hor = Aut hor.get (1)

aut hor . addToBooks(book)

aut hor . save()

5.3 Persistence Basics

A key thing to remember about Grailsis that under the surface Grails is using Hibernate for persistence. If you are
coming from a background of using ActiveRecord or iBatis Hibernate's "session” model may feel alittle strange.
Essentially, Grails automatically binds a Hibernate session to the currently executing request. This allows you to use
the save and del ete methods as well as other GORM methods transparently.

5.3.1 Saving and Updating

An example of using the save method can be seen below:

def p = Person. get(1)
p. save()

A major difference with Hibernate is when you call save it does not necessarily perform any SQL operations at that
point. Hibernate typically batches up SQL statements and executes them at the end. Thisistypically done for you
automatically by Grails, which manages your Hibernate session.

There are occasions, however, when you may want to control when those statements are executed or, in Hibernate
terminology, when the session is "flushed”. To do so you can use the flush argument to the save method:

http://www.hibernate.org/
http://wiki.rubyonrails.org/rails/pages/ActiveRecord
http://ibatis.apache.org/,
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/save.html

def p = Person. get(1)
p. save(flush:true)

Note that in this case all pending SQL statements including previous saves will be synchronized with the db. This
also allows you to catch any exceptions thrown, which istypically useful in highly concurrent scenarios involving

optimistic locking:

def p = Person. get(1)
try {
p. save(flush: true)

cat ch(Exception e) {
/] deal with exception
}

5.3.2 Deleting Objects

An example of the delete method can be seen below:

def p = Person. get(1)
p. del et e()

By default Grails will use transactional write behind to perform the delete, if you want to perform the delete in place
then you can usethe f | ush argument:

def p = Person. get (1)
p.del ete(flush:true)

Using thef | ush argument will also alow you to catch any errors that may potentially occur during a delete. A
common error that may occur isif you violate a database constraint, although thisis normally down to a
programming or schema error. The following example shows how to catch a

Dat al nt egri tyVi ol ati onExcept i on that isthrown when you violate the database constraints:

def p = Person. get (1)
try {
p. del ete(flush:true)

cat ch(org. springfranework. dao. Dat al nt egri tyVi ol ati onException e) {
flash. message = "Coul d not del ete person ${p. nane}"
redirect (action: "show', id:p.id)

Note that Grails does not supply adel et eAl | method as deleting data is discouraged and can often be avoided
through boolean flags/logic.
If you really need to batch delete data you can use the executeUpdate method to do batch DML statements:

Cust oner . execut eUpdat e("del ete Custoner ¢ where c.nane = :ol dNane", [ol dName:"Fred"])

5.3.3 Under standing Cascading Updates and Deletes

Itiscritical that you understand how cascading updates and del etes work when using GORM. The key part to
remember isthe bel ongsTo setting which controls which class "owns* arelationship.
Whether it is a one-to-one, one-to-many or many-to-many if you define bel ongsTo updates and deletes will

56

http://grails.org/doc/latest/ref/Domain Classes/delete.html
http://grails.org/doc/latest/ref/Domain Classes/executeUpdate.html

57

cascade from the owning class to its possessions (the other side of the relationship).
If you do not define bel ongsTo then no cascades will happen and you will have to manually save each object.
Hereis an example:

class Airport {
String nane
static hasMany = [flights: Flight]

}
class Flight {
String nunber
static bel ongsTo = [airport:Airport]

If | now createan Ai r port and add some Fl i ght stoit| can savethe Ai r por t and have the updates cascaded
down to each flight, hence saving the whole object graph:

new Airport (nanme: " Gatw ck")
.addToFl i ght s(new Fl i ght (nunber: " BA3430"))
. addToFl i ght s(new Fl i ght (nunber: " EZ0938"))
.save()

Conversely if | later deletethe Ai r por t al Fl i ght sassociated with it will aso be deleted:

def airport = Airport.findByNane("Gatw ck")
airport. del ete()

However, if | wereto remove bel ongsTo then the above cascading deletion code would not work. To understand
this better take alook at the summaries below that describe the default behaviour of GORM with regards to specific
associations.

Bidirectional one-to-many with belongsTo

class A{ static hasvany = [bees: B] }
class B { static belongsTo = [a: A] }

In the case of abidirectional one-to-many where the many side definesabel ongsTo then the cascade strategy is
setto "ALL" for the one side and "NONE" for the many side.

Unidirectional one-to-many

class A{ static hasMany = [bees: B] }
class B{ }

In the case of aunidirectional one-to-many where the many side defines no belongsTo then the cascade strategy is set
to "SAVE-UPDATE".

Bidirectional one-to-many no belongsTo

class A{ static hasvany = [bees: B] }
class B{ Aa}

In the case of ahidirectional one-to-many where the many side does not define abel ongsTo then the cascade

strategy is set to "SAVE-UPDATE" for the one side and "NONE" for the many side.

Unidirectional One-to-one with belongsTo

class A{ }
class B { static belongsTo = [a: A] }

In the case of aunidirectional one-to-one association that definesabel ongsTo then the cascade strategy is set to
"ALL" for the owning side of the relationship (A->B) and "NONE" from the side that definesthe bel ongsTo
(B->A)

Note that if you need further control over cascading behaviour, you can use the ORM DSL..

5.3.4 Eager and Lazy Fetching
Associationsin GORM are by default lazy. Thisis best explained by example:

class Airport {
String nane
static hasMany = [flights: Flight]

}
class Flight {
String nunber
static bel ongsTo = [airport:Airport]

Given the above domain classes and the following code:

def airport = Airport.findByName(" Gatw ck")
airport.flights.each {
println it.nane

GORM will execute asingle SQL query to fetch the Ai r por t instance and then 1 extra query for each iteration
over thef | i ght s association. In other words you get N+1 queries.

This can sometimes be optimal depending on the frequency of use of the association as you may have logic that
dictates the associationsis only accessed on certain occasions.

Configuring Eager Fetching
An dternative is to use eager fetching which can specified as follows:

class Airport {
String nane
static hasMany
static nmapping

= [flights:Flight]
=
flight fetch:"join"

In this case the association will be Ai r por t instance and thef | i ght s association will be loaded all at once
(depending on the mapping). This has the benefit of requiring fewer queries, however should be used carefully as
you could load your entire database into memory with too many eager associations.

Associations can also be declared non-lazy using the ORM DSL

Using Batch Fetching
Although eager fetching is appropriate for some cases, it is not always desirable. If you made everything eager you

58

59

could quite possibly load your entire database into memory resulting in performance and memory problems. An
alternative to eager fetching is to use batch fetching. Essentially, you can configure Hibernate to lazily fetch results
in "batches'. For example:

class Airport {

String nane
static hasMany
static mapping
flight batchSize: 10

[flights:Flight]

In this case, dueto the bat chSi ze argument, when you iterate over thef | i ght s association, Hibernate will fetch
resultsin batches of 10. For exampleif you had an Ai r por t that had 30 flights, if you didn't configure batch
fetching you would get 1 query to fetch the Ai r por t and then 30 queries to fetch each flight. With batch fetching
you get 1 query to fetchthe Ai r port and 3 queriesto fetch each Fl i ght in batches of 10. In other words, batch
fetching is an optimization of the lazy fetching strategy. Batch fetching can also be configured at the class level as
follows:

class Flight {

static mappi ng = {
bat chSi ze 10

5.3.5 Pessimistic and Optimistic L ocking

Optimistic Locking

By default GORM classes are configured for optimistic locking. Optimistic locking essentially is a feature of
Hibernate which involves storing a version number in aspecia ver si on column in the database.

Thever si on column getsread into aver si on property that contains the current versioned state of persistent
instance which you can access.

def airport = Airport.get(10)
println airport.version

When you perform updates Hibernate will automatically check the version property against the version column in the
database and if they differ will throw a StaleObjectException and the transaction will be rolled back.

Thisisuseful asit allows a certain level of atomicity without resorting to pessimistic locking that has an inherit
performance penalty. The downside is that you have to deal with this exception if you have highly concurrent writes.
This requires flushing the session:

def airport = Airport.get(10)
try {
ai rport.name = "Heat hr ow
airport.save(flush:true)

}

cat ch(org. spri ngfranmewor k. dao. Opti m sti cLocki ngFai | ureExcepti on e) {
/] deal with exception

}

The way you deal with the exception depends on the application. Y ou could attempt a programmeatic merge of the
data or go back to the user and ask them to resolve the conflict.
Alternatively, if it becomes a problem you can resort to pessimistic locking.

Pessimistic L ocking
Pessimistic locking is equivalent to doing a SQL "SELECT * FOR UPDATE" statement and locking arow in the
database. This has the implication that other read operations will be blocking until the lock is released.

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/StaleObjectStateException.html

In Grails pessimistic locking is performed on an existing instance via the lock method:

def airport = Airport.get(10)
airport.lock() // lock for update
ai rport.name = "Heat hr ow

airport. save()

Grails will automatically deal with releasing the lock for you once the transaction has been committed. However, in
the above case what we are doing is "upgrading" from aregular SELECT to a SELECT..FOR UPDATE and another
thread could still have updated the record in between the call to get() and the call to lock().
To get around this problem you can use the static lock method that takes an id just like get:

def airport = Airport.lock(10) // lock for update
airport.nane = "Heat hrow'
airport. save()

In this case only SELECT..FOR UPDATE isissued.

© Though Grails, through Hibernate, supports pessimistic locking, the embedded HSQLDB
shipped with Grails which is used as the default in-memory database does not. If you need to
test pessimistic locking you will need to do so against a database that does have support such

asMySQL.

Aswell asthe lock method you can also obtain a pessimistic locking using queries. For example using a dynamic
finder:

def airport = Airport.findByName("Heathrow', [l ock:true])

Or using criteria:

def airport = Airport.createCriteria().get {
eq(’' name', ' Heathrow)
| ock true

}

5.3.6 Madification Checking

Once you have loaded and possibly modified a persistent domain class instance, it isn't straightforward to retrieve the
original values. If you try to reload the instance using get Hibernate will return the current modified instance from its
Session cache. Reloading using another query would trigger a flush which could cause problems if your dataisn't
ready to be flushed yet. So GORM provides some methods to retrieve the original values that Hibernate caches when
it loads the instance (which it uses for dirty checking).

isDirty
Y ou can use the isDirty method to check if any field has been modified:

def airport = Airport.get(10)
assert lairport.isDirty()
airport.properties = parans
if (airport.isDirty()) {

/1 do sonet hing based on changed state
}

60

http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/lock.html
http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/isDirty.html

61

Y ou can aso check if individual fields have been modified:

def airport = Airport.get(10)
assert lairport.isDirty()
airport.properties = parans
if (airport.isDirty('name')) {

/1 do sonet hing based on changed nane
}

getDirtyPropertyNames
Y ou can use the getDirtyPropertyNames method to retrieve the names of modified fields; this may be empty but will
not be null:

def airport = Airport.get(10)
assert lairport.isDirty()
airport.properties = parans
def nodifiedFi el dNanes = airport.getDirtyPropertyNanes()
for (fieldName in nodifiedFiel dNanes) {
/1 do sonething based on changed val ue
}

getPersistentValue
Y ou can use the getPersistentV alue method to retrieve the value of a modified field:

def airport = Airport.get(10)
assert lairport.isDirty()
airport.properties = parans
def nodifiedFi el dNanes = airport.getDirtyPropertyNanes()
for (fieldName in nodifiedFi el dNanes) {
def currentValue = airport."$fiel dNane"
def original Value = airport.getPersistentVal ue(fiel dNane)
if (currentValue != original Val ue) {
/1 do sonet hing based on changed val ue
}

5.4 Querying with GORM

GORM supports a number of powerful ways to query from dynamic finders, to criteriato Hibernate's object oriented
query language HQL.

Groovy's ability to manipulate collections via GPath and methods like sort, findAll and so on combined with GORM
resultsin apowerful combination.

However, let's start with the basics.

Listing instances
If you simply need to abtain all the instances of a given class you can use the list method:

def books = Book.list()

The list method supports arguments to perform pagination:

def books = Book.list(offset: 10, nax: 20)

aswell as sorting:

http://grails.org/doc/latest/ref/Domain Classes/getDirtyPropertyNames.html
http://grails.org/doc/latest/ref/Domain Classes/getPersistentValue.html
http://groovy.codehaus.org/GPath
http://grails.org/doc/latest/ref/Domain Classes/list.html
http://grails.org/doc/latest/ref/Domain Classes/list.html

def books = Book.list(sort:"title", order:"asc")

Here, thesort argument isthe name of the domain class property that you wish to sort on, and the or der
argument is either asc for ascending or desc for descending.

Retrieval by Database | dentifier
The second basic form of retrieval is by database identifier using the get method:

def book = Book. get (23)

You can also abtain alist of instances for a set of identifiers using getAll:

def books = Book.getAll (23, 93, 81)

5.4.1 Dynamic Finders

GORM supports the concept of dynamic finders. A dynamic finder looks like a static method invocation, but the
methods themselves don't actually exist in any form at the code level.

Instead, a method is auto-magically generated using code synthesis at runtime, based on the properties of a given
class. Take for example the Book class:

cl ass Book {
String title
Dat e rel easeDat e
Aut hor aut hor

}
cl ass Aut hor {
String nane

The Book class has propertiessuch asti t| e, r el easeDat e and aut hor . These can be used by the findBy and
findAlIBy methodsin the form of "method expressions’:

def book = Book.findByTitle("The Stand")

book = Book.findByTitleLi ke("Harry Pot %)

book = Book. fi ndByRel easeDat eBet ween(firstDate, secondDate)

book = Book. fi ndByRel easeDat eGr eat er Than(soneDate)

book = Book. findByTitl elLi keOr Rel easeDat eLessThan(" %Sonet hi ng% , soneDate)

Method Expressions
A method expression in GORM is made up of the prefix such as findBy followed by an expression that combines one
or more properties. The basic form is:

Book. fi ndBy ([Property] [Conparat or] [Bool ean Operator]) ?[Property][Conparat or]

The tokens marked with a'? are optional. Each comparator changes the nature of the query. For example:

def book = Book.findByTitle("The Stand")
book = Book.findByTitleLike("Harry Pot %)

62

http://grails.org/doc/latest/ref/Domain Classes/get.html
http://grails.org/doc/latest/ref/Domain Classes/getAll.html
http://grails.org/doc/latest/ref/Domain Classes/findBy.html
http://grails.org/doc/latest/ref/Domain Classes/findAllBy.html
http://grails.org/doc/latest/ref/Domain Classes/findBy.html

63

In the above example the first query is equivalent to equality whilst the latter, due to the Li ke comparator, is
equivalenttoaSQL | i ke expression.
The possible comparators include:

I nLi st - Inthelist of given values

LessThan - lessthan the given value

LessThanEqual s - lessthan or equa agive value

Gr eat er Than - greater than a given value

Gr eat er ThanEqual s - greater than or equal a given value

Li ke - Equivalent to a SQL like expression

I'li ke -Smilartoali ke, except case insensitive

Not Equal - Negates equality

Bet ween - Between two values (requires two arguments)

I sNot Nul | - Not anull value (doesn't require an argument)
© I'sNull -Isanull value (doesn't require an argument)

Notice that the last 3 require different numbers of method arguments compared to the rest, as demonstrated in the

following example:

@]
O
o
@]
@]
O
o
@]
@]
@]

def now = new Dat e()

def | astWek = now - 7

def book = Book. findByRel easeDat eBet ween(| ast ek, now)
books Book. fi ndAl | ByRel easeDat el sNul | ()

books Book. fi ndAl | ByRel easeDat el sNot Nul | ()

Boolean logic (AND/OR)
Method expressions can also use a boolean operator to combine two criteria:

def books =
Book. fi ndAl | ByTi t| eLi keAndRel easeDat eG eat er Than(" %ava% , new Date()-30)

In this case we're using And in the middle of the query to make sure both conditions are satisfied, but you could
equally use Or :

def books =
Book. fi ndAl | ByTi tl eLi keOr Rel easeDat eGr eat er Than(" %ava% , new Date()-30)

At the moment, you can only use dynamic finders with a maximum of two criteria, i.e. the method name can only
have one boolean operator. If you need to use more, you should consider using either Criteria or the HQL .

Querying Associations
Associations can also be used within queries:

def aut hor = Aut hor.findByName(" St ephen Ki ng")
def books = author ? Book. findAl |l ByAuthor(author) : []

Inthis caseif the Aut hor instanceis not null we useit in aquery to obtain all the Book instances for the given
Aut hor .

Pagination & Sorting
The same pagination and sorting parameters available on the list method can also be used with dynamic finders by
supplying a map as the final parameter:

http://grails.org/doc/latest/ref/Domain Classes/list.html

def books =
Book. fi ndAl | ByTi t| eLi ke("Harry Pot% , [max:3,
of fset: 2,
sort:"title",
order: "desc"])

5.4.2 Criteria

Criteriais atype safe, advanced way to query that uses a Groovy builder to construct potentially complex queries. It
isamuch better aternative to using StringBuffer.

Criteria can be used either via the createCriteria or withCriteria methods. The builder uses Hibernate's Criteria API,
the nodes on this builder map the static methods found in the Restrictions class of the Hibernate Criteria API.
Example Usage:

def ¢ = Account.createCriteria()
def results = c {
bet ween("bal ance"”, 500, 1000)
eq("branch", "London")
or {
I'i ke("hol der Fi rst Name", "Fred%)
l'i ke("hol der FirstNane", "Barney%)

maxResul t s(10)
order (" hol der Last Nane", "desc")

This criteriawill select up to 10 Account objects matching the following criteria:

© bal ance isbetween 500 and 1000
© branch is'London'
© hol der Fi r st Nane startswith 'Fred' or 'Barney’
The results will be sorted in descending ordery by hol der Last Nane.

Conjunctions and Digunctions
As demonstrated in the previous example you can group criteriain alogical OR usingaor { } block:

or {
bet ween("bal ance", 500, 1000)
eq("branch", "London")

This also works with logical AND:

and {
bet ween(" bal ance", 500, 1000)
eq("branch", "London")

And you can also negate using logical NOT:

not {
bet ween("bal ance", 500, 1000)
eq("branch", "London")

All top level conditions are implied to be AND'd together.

http://grails.org/doc/latest/ref/Domain Classes/createCriteria.html
http://grails.org/doc/latest/ref/Domain Classes/withCriteria.html
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/Restrictions.html

65

Querying Associations
Associations can be queried by having a node that matches the property name. For example say the Account class
had many Tr ansact i on objects:

cl ass Account {

static hasMany = [transacti ons: Transacti on]

We can query this association by using the property namet r ansact i on asabuilder node:

def ¢ = Account.createCriteria()
def now = new Dat e()
def results = c.list {
transactions {
bet ween(' date', now 10, now)

The above code will find all the Account instances that have performed t r ansact i ons within the last 10 days.
Y ou can also nest such association queries within logical blocks:

def ¢ = Account.createCriteria()
def now = new Dat e()
def results = c.list {
or {
bet ween(' created', now 10, now)
transactions {
bet ween(' date', now 10, now)
}

Here we find al accounts that have either performed transactions in the last 10 days OR have been recently created
inthelast 10 days.

Querying with Projections

Projections may be used to customise the results. To use projections you need to define a"projections’ node within
the criteria builder tree. There are equivaent methods within the projections node to the methods found in the
Hibernate Projections class:

def ¢ = Account.createCriteria()
def nunber OfF Branches = c.get {
proj ections {
count Di stinct (' branch')
}

Using SQL Restrictions
Y ou can access Hibernate's SQL Restrictions capabilities.

def ¢ = Person.createCriteria()
def peopl eWthShortFirstNames = c.list {
sql Restriction "char_length(first_nane) <= 4"

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/Projections.html

Note that the parameter thereis SQL. Thef i r st _nane attribute referenced in the example
relates to the persistence model, not the object model. The Per son class may have a
property named f i r st Name which is mapped to a column in the database named
first_name.

Also note that the SQL used hereis not necessarily portable across databases.

Using Scrollable Results
Y ou can use Hibernate's ScrollableResults feature by calling the scroll method:

def results = crit.scroll {
maxResul t s(10)

}

def f = results.first()
def | = results.last()

def n = results. next()
def p = results. previous()

def future = results.scroll (10)
def account Nunber = results.getlLong(' nunber')

To quote the documentation of Hibernate ScrollableResults:

Aresult iterator that allows moving around within the results by arbitrary increments. The Query /

ScrollableResults pattern is very similar to the JDBC PreparedSatement/ ResultSet pattern and the

semantics of methods of thisinterface are similar to the similarly named methods on ResultSet.
Contrary to JDBC, columns of results are numbered from zero.

Setting propertiesin the Criteriainstance

If a node within the builder tree doesn't match a particular criterion it will attempt to set a property on the Criteria
object itself. Thus alowing full accessto al the propertiesin this class. The below example callsset MaxResul t s
and set Fi r st Resul t onthe Criteriainstance:

i mport org. hi bernate. FetchMbde as FM

def results = c.list {
maxResul t s(10)
firstResult(50)
f et chMbde(" aRel ati onshi p", FM EACGER)

Querying with Eager Fetching
In the section on Eager and L azy Fetching we discussed how to declaratively specify fetching to avoid the N+1
SELECT problem. However, this can also be achieved using a criteriaquery:

def criteria = Task.createCriteria()
def tasks = criteria.list{
eq "assignee.id", task.assignee.id
join 'assignee'
join 'project’
order "priority', 'asc'

Notice the usage of thej oi h method. This method indicates the criteria API that aJO N query should be used to
obtain the results.

Method Reference
If you invoke the builder with no method name such as:

66

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/ScrollableResults.html
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/Criteria.html

67

c{ ...}

The build defaultsto listing all the results and hence the above is equivalent to:

c.list { ...}

M ethod Description

list Thisisthe default method. It returns all matching rows.

o Returns aunique result set, i.e. just one row. The criteria has to be formed that way, that it only
9 gueries one row. This method is not to be confused with alimit to just the first row.
scroll Returns a scrollable result set.

If subqueries or associations are used, one may end up with the same row multiple timesin the result
listDistinct set, this allows listing only distinct entitiesand is equivalent to DI STI NCT_ROOT_ENTI TY of the

CriteriaSpecification class.

count Returns the number of matching rows.

5.4.3 Hibernate Query Language (HQL)

GORM classes also support Hibernate's query language HQL, a very complete reference for which can be found
Chapter 14. HQL : The Hibernate Query L anguage of the Hibernate documentation.

GORM provides a number of methods that work with HQL including find, findAll and executeQuery. An example of
aquery can be seen below:

def results =
Book. findAl | ("from Book as b where b.title like 'Lord of the%")

Positional and Named Parameters
In this case the value passed to the query is hard coded, however you can equally use positional parameters:

def results =
Book. findAll ("from Book as b where b.title like ?", ["The Shi%])

def author = Author.findByName("Stephen King")
def books = Book.findAll ("from Book as book where book.author = ?", [author])

Or even named parameters:

def results =
Book. findAll ("from Book as b where b.title |ike :search or b.author |ike :search",
[search: " The Shi%])

def aut hor = Aut hor. findByName(" St ephen Ki ng")
def books = Book.findAl Il ("from Book as book where book. author = :author",
[aut hor: author])

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/criterion/CriteriaSpecification.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/queryhql.html
http://grails.org/doc/latest/ref/Domain Classes/find.html
http://grails.org/doc/latest/ref/Domain Classes/findAll.html
http://grails.org/doc/latest/ref/Domain Classes/executeQuery.html

Multiline Queries
If you need to separate the query across multiple lines you can use aline continuation character:

def results = Book.findAl Il ("\
from Book as b, \
Aut hor as a \
where b.author = a and a.surname = ?", ['Snmith'])

Groovy multiline strings will NOT work with HQL queries

Pagination and Sorting
Y ou can also perform pagination and sorting whilst using HQL queries. To do so simply specify the pagination
options as a map at the end of the method call and include an "ORDER BY" clause in the HQL :

def results =

[max: 10, of fset: 20])

Book. findAl | ("from Book as b where b.title |ike '"Lord of the% order by b.title asc",

5.5 Advanced GORM Features

The following sections cover more advanced usages of GORM including caching, custom mapping and events.

5.5.1 Eventsand Auto Timestamping

GORM supports the registration of events as methods that get fired when certain events occurs such as del etes,
inserts and updates. The following isalist of supported events:

bef or el nsert - Executed before an object isinitially persisted to the database
bef or eUpdat e - Executed before an object is updated
bef or eDel et e - Executed before an object is deleted
afterl nsert - Executed after an object is persisted to the database
af t er Updat e - Executed after an object has been updated
af t er Del et e - Executed after an object has been updated
© onlLoad - Executed when an object is loaded from the database
To add an event simply register the relevant closure with your domain class.

O O O O O O

@ Do not attempt to flush the session within an event (such as with obj.save(flush:true)). Since
events are fired during flushing this will cause a StackOverflowError.

Event types

Thebeforelnsert event
Fired before an object is saved to the db

cl ass Person {
Dat e dat eCreated
def beforelnsert() {
dat eCreated = new Date()

The beforeUpdate event
Fired before an existing object is updated

68

69

cl ass Person {
Dat e dat eCr eat ed
Dat e | ast Updat ed
def beforelnsert() {
dat eCreated = new Date()

}
def beforeUpdate() {
| ast Updat ed = new Date()

The beforeDelete event
Fired before an object is deleted.

cl ass Person {
String nane
Dat e dat eCreated
Dat e | ast Updat ed
def beforeDelete() {
ActivityTrace. w t hNewSessi on {
new ActivityTrace(event Nane: " Person Del et ed", dat a: nane) . save()
}

}
}

Notice the usage of wi t hNewSessi on method above. Since events are triggered whilst Hibernate is flushing using
persistence methods like save() and del et e() won't result in objects being saved unless you run your operations
with anew Sessi on.

Fortunately thewi t hNewSessi on method allows you to share the same transactional JDBC connection even
though you're using a different underlying Sessi on.

TheonLoad event
Fired when an object is loaded from the db:

cl ass Person {
String nane
Dat e dat eCreated
Dat e | ast Updat ed
def onLoad() ({
name = "1'm | oaded"
}

}

Automatic timestamping

The examples above demonstrated using eventsto update al ast Updat ed and dat eCr eat ed property to keep
track of updates to objects. However, thisis actually not necessary. By merely defining al ast Updat ed and

dat eCr eat ed property these will be automatically updated for you by GORM.

If thisis not the behaviour you want you can disable this feature with:

cl ass Person {
Dat e dat eCr eat ed
Dat e | ast Updat ed
static mapping = {
aut oTi mest anp fal se

5.5.2 Custom ORM M apping

Grails domain classes can be mapped onto many legacy schemas via an Object Relational Mapping Domain Specify
Language. The following sections takes you through what is possible with the ORM DSL.

Noneif thisis necessary if you are happy to stick to the conventions defined by GORM for
table, column names and so on. Y ou only needs this functionality if you need to in anyway
tailor the way GORM maps onto legacy schemas or performs caching

Custom mappings are defined using aa static mappi ng block defined within your domain class:

cl ass Person {

static mappi ng = {

5.5.2.1 Table and Column Names

Table names
The database table name which the class maps to can be customized using acall to t abl e:

cl ass Person {

static mappi ng = {
tabl e ' peopl €'

In this case the class would be mapped to atable called peopl e instead of the default name of per son.

Column names
It isalso possible to customize the mapping for individua columns onto the database. For example if its the name

you want to change you can do:

cl ass Person {
String firstNanme
static mapping = {
tabl e ' peopl e’
firstName colum: ' First_Nane'

In this case we define method calls that match each property name (inthiscasef i r st Nane). We then use the
named parameter col urm, to specify the column name to map onto.

Column type

GORM supports configuration of Hibernate types viathe DSL using the type attribute. This includes specifing user

types that subclass the Hibernate org.hibernate.usertype.UserType class, which allows complete customization of
how atypeis persisted. As an example if you had a Post CodeType you could useit as follows:

cl ass Address {
String nunber
String post Code
static mapping = {
post Code type: Post CodeType

Alternatively if you just wanted to map it to one of Hibernate's basic types other than the default chosen by Grails

70

http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/usertype/UserType.html

71

you could use:

cl ass Address {
String nunber
String post Code
static mapping = {
post Code type:'text'

Thiswould make the post Code column map to the SQL TEXT or CLOB type depending on which database is
being used.
See the Hibernate documentation regarding Basic Types for further information.

One-to-One M apping
In the case of associationsit is also possible to change the foreign keys used to map associations. In the case of a
one-to-one association thisis exactly the same as any regular column. For example consider the below:

cl ass Person {
String firstNane
Addr ess address
static mapping = {
tabl e ' peopl €'
firstNane colum: ' First_Nane'
address col um: ' Person_Adress_Id'

By default the addr ess association would map to aforeign key column called addr ess_i d. By using the above
mapping we have changed the name of the foreign key column to Per son_Adr ess_1 d.

One-to-Many Mapping

With a bidirectional one-to-many you can change the foreign key column used simple by changing the column name
on the many side of the association as per the example in the previous section on one-to-one associations. However,
with unidirectional association the foreign key needs to be specified on the association itself. For example given a
unidirectional one-to-many relationship between Per son and Addr ess the following code will change the foreign
key inthe addr ess table:

cl ass Person {
String firstNanme
static hasMany = [addresses: Address]
static mapping = {
tabl e ' peopl €'
firstName colum:' First_Nane'
addresses col um: ' Person_Address_Id'

If you don't want the column to bein the addr ess table, but instead some intermediate join table you can use the
j oi nTabl e parameter:

cl ass Person {
String firstName
static hasMany = [addresses: Addr ess]
static mapping =
tabl e ' peopl e'
firstName colum:' First_Nane'
addr esses joi nTabl e: [nane: ' Person_Addresses', key:'Person_ld', columm:'Address_|d']

http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-types-basictypes

Many-to-Many Mapping
Grails, by default maps a many-to-many association using ajoin table. For example consider the below
many-to-many association:

class G oup {
static hasivany = [peopl e: Person]
cl ass Person {

static bel ongsTo = G oup
static hasMany = [groups: G oup]

In this case Grails will create ajoin table called gr oup_per son containing foreign keys called per son_i d and
group_i d referencing the per son and gr oup tables. If you need to change the column names you can specify a
column within the mappings for each class.

class G oup {
static mappi ng = {
peopl e col um: ' Group_Person_Id'
cl ass Person {

static mappi ng = {
groups colum:' Goup_G oup_Id'

Y ou can also specify the name of the join table to use:

class G oup {
static mappi ng = {
peopl e colum: ' Group_Person_ld',joinTabl e:' PERSON_GROUP_ASSCOCI ATl ONS'
cl ass Person {

static mappi ng = {
groups colum:' Group_G oup_Id',joinTabl e:' PERSON_GROUP_ASSCCI ATI ONS'

5.5.2.2 Caching Strategy

Setting up caching
Hibernate features a second-level cache with a customizable cache provider. This needs to be configured in the
grail s-app/ conf/ Dat aSour ce. gr oovy fileasfollows:

hi bernate {
cache. use_second_| evel _cache=true
cache. use_query_cache=true
cache. provi der _cl ass=' org. hi bernat e. cache. EhCachePr ovi der'

Y ou can of course customize these settings how you desire, for example if you want to use a distributed caching
mechanism.

http://www.hibernate.org/

73

For further reading on caching and in particular Hibernate's second-level cache, refer to the
Hibernate documentation on the subject.

Caching instances
In your mapping block to enable caching with the default settings use a call to the cache method:

cl ass Person {

static mappi ng = {
tabl e ' peopl €'
cache true

Thiswill configure a 'read-write' cache that includes both lazy and non-lazy properties. If you need to customize this
further you can do:

cl ass Person {

static mappi ng = {
tabl e ' peopl €'
cache usage:'read-only', include:' non-Iazy'

Caching associations
Aswell asthe ability to use Hibernate's second level cache to cache instances you can also cache collections
(associations) of abjects. For example:

cl ass Person {
String firstName
static hasMany = [addresses: Address]
static mapping = {
tabl e ' peopl e’
version fal se
addr esses col um: ' Address', cache:true

}

cl ass Address {
String number
String post Code

Thiswill enable a 'read-write' caching mechanism on the addresses collection. Y ou can aso use:

cache:'read-wite' // or 'read-only' or 'transactional'’

To further configure the cache usage.

Caching Queries
Y ou can cache queries such as dynamic finders and criteria. To do so using a dynamic finder you can pass the
cache argument:

def person = Person. findByFirstName("Fred", [cache:true])

http://docs.jboss.org/hibernate/stable/core/reference/en/html/performance.html#performance-cache

Note that in order for the results of the query to be cached, you still need to enable caching in
your mapping as discussed in the previous section.

Y ou can also cache criteria queries:

def people = Person.withCriteria {
like('firstNane', 'Fr%)
cache true

}

Cache usages
Below is adescription of the different cache settings and their usages:

© read-only - If your application needs to read but never modify instances of a persistent class, a read-only
cache may be used.

© read-writ e - If the application needs to update data, a read-write cache might be appropriate.

© nonstrict-read-wite -If theapplication only occasionally needs to update data (ie. if it is extremely
unlikely that two transactions would try to update the same item simultaneously) and strict transaction
isolation is not required, anonst ri ct - r ead- wr i t e cache might be appropriate.

© transactional - Thetransacti onal cache strategy provides support for fully transactional cache
providers such as JBoss TreeCache. Such a cache may only be used in a JTA environment and you must
specify hi ber nat e. t ransacti on. manager _| ookup_cl ass inthe
grail s-app/ conf/ Dat aSour ce. gr oovy fileshi ber nat e config.

5.5.2.3 Inheritance Strategies

By default GORM classes usest abl e- per - hi er ar chy inheritance mapping. This has the disadvantage that
columns cannot have a NOT- NULL constraint applied to them at the db level. If you would prefer to use a
t abl e- per - subcl ass inheritance strategy you can do so as follows:

cl ass Paynent {
Long id
Long version
I nt eger anount
static mapping = {
tabl ePer Hi erarchy fal se
}

cl ass CreditCardPaynent extends Paynment {
String cardNunber

The mapping of the root Payment class specifiesthat it will not beusing t abl e- per - hi er ar chy mapping for
all child classes.

5.5.2.4 Custom Database | dentity

Y ou can customize how GORM generates identifiers for the database using the DSL. By default GORM relies on the
native database mechanism for generating ids. Thisis by far the best approach, but there are still many schemas that
have different approaches to identity.

To deal with this Hibernate defines the concept of an id generator. Y ou can customize the id generator and the
column it mapsto as follows:

74

75

cl ass Person {

static mapping = {
tabl e ' peopl e’
version fal se
id generator:'hilo', params:[table:'hi_val ue', colum:' next_val ue', max_| o: 100]

In this case we're using one of Hibernate's built in hilo' generators that uses a separate table to generate ids.

For more information on the different Hibernate generators refer to the Hibernate reference
documentation

Note that if you want to merely customise the column that theid lives on you can do:

cl ass Person {

static mapping = {
tabl e ' peopl €'
version fal se
id colum: ' person_id

5.5.2.5 Composite Primary Keys

GORM supports the concept of composite identifiers (identifiers composed from 2 or more properties). It isnot an
approach we recommend, but is available to you if you need it:

cl ass Person {
String firstNanme
String | ast Nanme
static mapping = {
id conposite:['firstName', 'l astNane']

The above will create acompositeid of thef i r st Narme and | ast Nane properties of the Person class. When you
later need to retrieve an instance by id you have to use a prototype of the object itself:

def p = Person. get (new Person(firstNane:"Fred", |astNane:"Flintstone"))
println p.firstNane

5.5.2.6 Database I ndices

To get the best performance out of your queriesit is often necessary to tailor the table index definitions. How you
tailor them is domain specific and a matter of monitoring usage patterns of your queries. With GORM's DSL you can
specify which columns need to live in which indexes:

http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-declaration-id-generator
http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-declaration-id-generator

cl ass Person {

String firstNanme

String address

static mapping = {
tabl e ' peopl e’
version fal se
id colum: ' person_id'
firstNane colum: ' First_ Nane', index:'Nane_|dx’
address col um: ' Address', index:' Name_| dx, Address_| ndex'

Note that you cannot have any spacesin the value of thei ndex attribute; in this examplei ndex: ' Narme_| dx,
Addr ess_| ndex" will cause an error.

5.5.2.7 Optimistic Locking and Versioning

As discussed in the section on Optimistic and Pessimistic Locking, by default GORM uses optimistic locking and
automatically injectsaver si on property into every classwhich isin turn mapped to aver si on column at the
database level.

If you're mapping to alegacy schema this can be problematic, so you can disable this feature by doing the following:

cl ass Person {

static mappi ng = {
tabl e ' peopl e’
version fal se

If you disable optimistic locking you are essentially on your own with regards to concurrent
updates and are open to the risk of userslosing (due to data overriding) data unless you use
pessimistic locking

5.5.2.8 Eager and Lazy Fetching

Lazy Collections

Asdiscussed in the section on Eager and Lazy fetching, by default GORM collections use lazy fetching and isis
configurable through the f et chIMbde setting. However, if you prefer to group all your mappings together inside the
mappi ngs block you can aso use the ORM DSL to configure fetching:

cl ass Person {
String firstName
static hasMany = [addresses: Address]
static mapping = {
addresses | azy:fal se

}

cl ass Address {
String street
String post Code

Lazy Single-Ended Associations

In GORM, one-to-one and many-to-one associations are by default lazy. Non-lazy single ended associations can be
problematic in cases when you are loading many entities which have an association to another entity as a new
SELECT statement is executed for each loaded entity.

Y ou can make one-to-one and many-to-one associations non-lazy using the same technique as for lazy collections:

76

77

cl ass Person {
String firstNanme
static bel ongsTo = [address: Address]
static mapping = {
address | azy:fal se

}

cl ass Address {
String street
String post Code

Here we set the addr ess property of the Per son class will be eagerly fetched.

Lazy Single-Ended Associations and Proxies

In order to facilitate single-ended lazy associations Hibernate uses runtime generated proxies. The way thisworksis
that Hibernate dynamically subclasses the proxied entity to create the proxy.

In the previous example Hibernate would create a subclass of Addr ess and return that as a proxy to the real entity.
When you call any of the getters or setters Hibernate will initialize the the entity from the database.

Unfortunately this technique can produce surprising results. Consider the following example classes:

class Aninmal {}

cl ass Mammual extends Animal {}

cl ass Dog extends Manmmal {
String nane

}
cl ass Omner {
Ani mal pet

Given you have an Omner with apet association that isaDog consider the following code:

def owner = Oamner.get (1)
def pet = Ani mal . get (owner. petld)
i f(pet instanceof Dog) {
/1 doesn't worKk!
}

Now you may think this code will work, but in fact it will not. The reason is Hibernate creates a dynamic proxy by
subclassing Ani mal for the owner . pet association and cachesit in the first level cache. So even if the actual
proxied classis a Dog it won't be an instance of the Dog class due to the way proxies work.

The get around this problem GORM providesan i nst anceO method that should always be used:

def owner = Oaner.get (1)
def pet = Ani mal . get (owner. petld)
i f(pet?.instanceof(Dog)) {
/1 this works
}

However, there are cases where this particular Hibernate abstraction may still leak through. For example:

def owner = Oaner.get (1)
Dog pet = Ani nmal . get (owner. petld)

In this case you will get aCl assCast Except i on because the proxied Ani mal isnot aDog even though the
actual instanceisaDog.
Our best adviceisto be aware of Hibernate proxies and how to deal with them when you do run into issues.

5.5.2.9 Custom Cascade Behaviour

As describes in the section on cascading updates, the primary mechanism to control the way updates and deletes are
cascading from one association to another is the belongsT o stetic property.

However, the ORM DSL gives you complete access to Hibernate's transitive persistence capabilities viathe
cascade attribute.

Valid settings for the cascade attribute include:

create - cascades creation of new records from one association to another

merge - merges the state of a detached association

save-update - cascades only saves and updates to an association

delete - cascades only deletes to an association

lock - useful if apessimistic lock should be cascaded to its associations

refresh - cascades refreshes to an association

evict - cascades evictions (equivalent to discard() in GORM) to associationsif set

all - cascade AL L operations to associations

all-delete-orphan - Applies only to one-to-many associations and indicates that when a child is removed from
an association then it should be automatically deleted. Children are also deleted when the parent is.

O O 0O 0O 0O O O O O

It is advisable to read the section in the Hibernate documentation on transitive persistence to
obtain a better understanding of the different cascade styles and recommendation for their

usage

To specific the cascade attribute simply define one or many (comma-separated) of the aforementioned settings as its
value:

cl ass Person {
String firstName
static hasMany = [addresses: Address]
static mapping = {
addr esses cascade: "al | - del et e- or phan”

}

cl ass Address {
String street
String post Code

5.5.2.10 Custom Hibernate Types

You saw in an earlier section that you can use composition (viathe embedded property) to break atable into
multiple objects. Y ou can achieve a similar effect via Hibernate's custom user types. These are not domain classes
themselves, but plain Java or Groovy classes with associated. Each of these types also has a corresponding
"meta-type" class that implements org.hibernate.usertype.UserType.

The Hibernate reference manual has some information on custom types, but here we will focus on how to map them
in Grails. Let's start by taking alook at a simple domain class that uses an old-fashioned (pre-Java 1.5) type-safe
enum class:

cl ass Book {
String title
String aut hor
Rating rating
static mapping = {
rating type: RatingUser Type

All we have doneis declarether at i ng field the enum type and set the property's type in the custom mapping to the
corresponding User Ty pe implementation. That's all you have to do to start using your custom type. If you want,
you can aso use the other column settings such as "column" to change the column name and "index" to add it to an
index.

78

http://grails.org/doc/latest/ref/Domain Classes/belongsTo.html
http://www.hibernate.org/http://docs.jboss.org/hibernate/stable/core/reference/en/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/stable/core/reference/en/html/objectstate.html#objectstate-transitive
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/usertype/UserType.html
http://docs.jboss.org/hibernate/stable/core/reference/en/html/mapping.html#mapping-types-custom

Custom types aren't limited to just asingle column - they can be mapped to as many columns as you want. In such
cases you need to explicitly define in the mapping what columns to use, since Hibernate can only use the property
name for a single column. Fortunately, Grails allows you to map multiple columns to a property using this syntax:

cl ass Book {

String title

Nane aut hor

Rating rating

static mapping = {

nane type: NaneUser Type, {

colum nane: "first_nane"
colum nane: "l ast nanme"

}
rating type: RatingUser Type

The above example will create "first_name" and "last_name" columns for the aut hor property. You'll be pleased to
know that you can also use some of the normal column/property mapping attributes in the column definitions. For
example:

colum nane: "first_nane", index: "ny_idx", unique: true

The column definitions do not support the following attributes: t ype, cascade, | azy, cache, andj oi nTabl e.
One thing to bear in mind with custom types is that they define the SQL types for the corresponding database
columns. That helps take the burden of configuring them yourself, but what happens if you have alegacy database
that uses a different SQL type for one of the columns? In that case, you need to override column's SQL type using
thesql Type attribute:

cl ass Book {
String title
Name aut hor
Rating rating
static mapping = {
name type: NaneUser Type, {
colum nane: "first_nane", sql Type: "text"
colum nane: "l ast_nanme", sql Type: "text”

}
rating type: RatingUserType, sql Type: "text"”

Mind you, the SQL type you specify needs to still work with the custom type. So overriding a default of "varchar"
with "text" isfine, but overriding "text" with "yes no" isn't going to work.

5.5.2.11 Derived Properties

A derived property is aproperty that takesits value from a SQL expression, often but not necessarily based on the
value of some other persistent property. Consider a Product class like this:

cl ass Product {
Fl oat price
Fl oat taxRate
Fl oat tax

If thet ax property isderived based on the value of pri ce andt axRat e properties then there may be no need to
persist thet ax property in the database. The SQL used to derive the value of aderived property may be expressed in
the ORM DSL like this:

cl ass Product {
Fl oat price
Fl oat taxRate
Fl oat tax
static mapping = {
tax formula: 'PRICE * TAX RATE
}

}

Note that the formula expressed in the ORM DSL is SQL so referencesto other properties should relate to the
persistence model not the object model, which is why the example refersto PRI CE and TAX _RATE instead of

priceandt axRat e.
With that in place, when a Product is retrieved with something like Pr oduct . get (42) , the SQL that is generated

to support that will look something like this:

sel ect

productO_.id as idl_0O_,

productO_.version as versionl 0_,

productO_.price as pricel 0_,

productO0_.tax_rate as tax4_1 0_,

product O_. PRICE * productO_. TAX RATE as fornulal_0_
from

product productO_
wher e

productO_.id="?

Sincethet ax property isbeing derived at runtime and not stored in the database it might seem that the same effect
could be achieved by adding a method like get Tax() tothePr oduct classthat simply returns the product of the
t axRat e and pr i ce properties. With an approach like that you would give up the ability query the database based
on the value of thet ax property. Using aderived property allows exactly that. To retrieve all Pr oduct objects that
have at ax value greater than 21.12 you could execute a query like this:

Product . fi ndAl | ByTaxG eat er Than(21. 12)

Derived properties may be referenced in the Criteria API:

Product.withCriteria {
gt 'tax', 21.12f

The SQL that is generated to support either of those would look something like this:

t
his_.id as idl_0_,

his .version as versionl 0 ,
his_.price as pricel _0_,

his .tax rate as tax4_1 0,
hi s

PRICE * this_. TAX RATE as fornulal 0_

Note that because the value of a derived property is generated in the database and depends on
the execution of SQL code, derived properties may not have GORM constraints applied to
them. If constraints are specified for a derived property, they will be ignored.

80

81

5.5.2.12 Custom Naming Strategy

By default Grails uses Hibernate's | mpr ovedNani ngSt r at egy to convert domain class Class and field names to
SQL table and column names by converting from camel-cased Strings to ones that use underscores as word
separators. Y ou can customize these on a per-instance basisin the mappi ng closure but if there's a consistent
pattern you can specify a different Nani ngSt r at egy classto use.

Configurethe classnameto beusedingr ai | s- app/ conf/ Dat aSour ce. gr oovy inthe hi ber nat e section,
eg.

dat aSour ce {
pool ed = true
dbCreate = "create-drop"”

hi bernate {
cache. use_second | evel cache = true

nani ng_strategy = com myco. myproj . Cust onNam ngSt r at egy

Y ou can use an existing class or write your own, for example one that prefixes table names and column names:

package com myco. nypr oj
i mport org. hi bernate. cfg. | nmprovedNani ngSt r at egy
i mport org. hibernate.util.StringHel per
cl ass Cust omNani ngStrat egy extends | nprovedNanm ngStrategy {
String classToTabl eName(String cl assName) {
"table " + StringHel per.unqualify(classNane)

}

String propertyToCol utmNane(String propertyName) {
“col _" + StringHel per.unqualify(propertyNane)

}

5.5.3 Default Sort Order

Y ou can sort objects using queries arguments such as those found in the list method:

def airports = Airport.list(sort:'nanme')

However, you can also declare the sort order declaratively:

class Airport {

static mappi ng = {
sort "nane"
}

Y ou can also configure the sort order if necessary:

class Airport {

static mappi ng = {
sort nane: "desc"

http://grails.org/doc/latest/ref/Domain Classes/list.html

Alternatively, you can configure sort order at the association level:

class Airport {

static has Many
static mapping

= [flights: Flight]
flights sor{:'nunbeﬂ

5.6 Programmatic Transactions

Grailsis built on Spring and hence uses Spring's Transaction abstraction for dealing with programmeatic transactions.
However, GORM classes have been enhanced to make this more trivial through the withTransaction method which
accepts a block the first argument to which is the Spring TransactionStatus object.

A typical usage scenario is asfollows:

def transferFunds = {
Account . wi t hTransaction { status ->

def source = Account. get(parans.fron
def dest = Account. get(parans.to)
def anount = parans. anount.tol nteger()
i f(source.active) {

sour ce. bal ance -= anount

i f(dest.active) {

dest. anpbunt += anpunt

el se {
stat us. set Rol | backOnl y()
}

In this example we rollback the transactionsif the destination account is not active and if any exception are thrown
during the process the transaction will automatically be rolled back.

Y ou can also use "save points' to rollback atransaction to a particular point in timeif you don't want to rollback the
entire transaction. This can be achieved through the use of Spring's SavePointManager interface.

The withTransaction method deals with the begin/commit/rollback logic for you within the scope of the block.

5.7 GORM and Constraints

Although constraints are covered in the Validation section, it isimportant to mention them here as some of the
constraints can affect the way in which the database schemais generated.

Where feasible, Grails uses adomain class's constraints to influence the database columns generated for the
corresponding domain class properties.

Consider the following example. Suppose we have a domain model with the following property.

String nane
String description

By default, in MySQL, Grails would define these columns as...

colum nane | data type
description | varchar (255)

But perhaps the business rules for this domain class state that a description can be up to 1000 charactersin length. If
that were the case, we'd likely define the column as follows if we were creating the table viaan SQL script.

http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionStatus.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/SavepointManager.html
http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html

83

colum nane | data type
description | TEXT

Chances are we'd also want to have some application-based validation to make sure we don't exceed that 1000
character limit before we persist any records. In Grails, we achieve this validation via constraints. We'd add the
following constraint declaration to the domain class.

static constraints = {
descri pti on(maxSi ze: 1000)

This constraint would provide both the application-based validation we want and it would also cause the schemato
be generated as shown above. Below is a description of the other constraints that influence schema generation.

Constraints Affecting String Properties

© inList

© maxSize

© size
If either the maxSi ze or the si ze constraint is defined, Grails sets the maximum column length based on the
constraint value.
In general, it's not advisable to use both constraints on the same domain class property. However, if both the
maxSi ze constraint and the si ze constraint are defined, then Grails sets the column length to the minimum of the
maxSi ze constraint and the upper bound of the size constraint. (Grails uses the minimum of the two, because any
length that exceeds that minimum will result in avalidation error.)
If theinList constraint is defined (and the max Si ze and the si ze constraints are not defined), then Grails sets the
maximum column length based on the length of the longest string in the list of valid values. For example, given alist
including values "Java', "Groovy", and "C++", Grails would set the column length to 6 (i.e., the number of
characters in the string "Groovy").

Constraints Affecting Numeric Properties

O
' m
O m@
If the max constraint, the m n constraint, or ther ange constraint is defined, Grails attempts to set the column
precision based on the constraint value. (The success of this attempted influenceis largely dependent on how
Hibernate interacts with the underlying DBMS.)
In general, it's not advisable to combine the pair min/max and range constraints together on the same domain class
property. However, if both of these constraintsis defined, then Grails uses the minimum precision value from the
constraints. (Grails uses the minimum of the two, because any length that exceeds that minimum precision will result
inavalidation error.)

=
=

R

© scae
If the scale constraint is defined, then Grails attempts to set the column scale based on the constraint value. Thisrule
only appliesto floating point numbers (i.e., java.lang.Float, java.Lang.Double, java.lang.BigDecimal, or subclasses
of javalang.BigDecimal). (The success of this attempted influence is largely dependent on how Hibernate interacts
with the underlying DBMS.)
The constraints define the minimum/maximum numeric values, and Grails derives the maximum number of digits for
use in the precision. Keep in mind that specifying only one of min/max constraints will not affect schema generation
(since there could be large negative value of property with max:100, for example), unless specified constraint value
requires more digits than default Hibernate column precision is (19 at the moment). For example...

soneFl oat Val ue(max: 1000000, scal e: 3)

would yield:

http://grails.org/doc/latest/ref/Constraints/inList.html
http://grails.org/doc/latest/ref/Constraints/maxSize.html
http://grails.org/doc/latest/ref/Constraints/size.html
http://grails.org/doc/latest/ref/Constraints/min.html
http://grails.org/doc/latest/ref/Constraints/max.html
http://grails.org/doc/latest/ref/Constraints/range.html
http://uk.builder.com/architecture/db/0,39026552,20268520,00.htm
http://grails.org/doc/latest/ref/Constraints/scale.html
http://uk.builder.com/architecture/db/0,39026552,20268520,00.htm

soneFl| oat Val ue DECI MAL(19, 3) // precision is default

but

soneFl oat Val ue(max: 12345678901234567890, scal e: 5)

would yield:

soneFl oat Val ue DECI MAL(25, 5) // precision = digits in nax + scale

and

soneFl oat Val ue(max: 100, ni n:-100000)

would yield:

soneFl oat Val ue DECI MAL(8, 2) // precision = digits in mn + default scale

85

6. TheWeb Layer

6.1 Controllers

A controller handles requests and creates or prepares the response and is request-scoped. In other words a new
instanceis created for each request. A controller can generate the response or delegate to aview. To create a
controller simply create a class whose name ends with Cont r ol | er and placeit within the

grail s-app/ controll ers directory.

The default URL Mapping setup ensures that the first part of your controller name is mapped to a URI and each
action defined within your controller mapsto URI within the controller name URI.

6.1.1 Under standing Controllersand Actions
Creating a controller

Controllers can be created with the create-controller target. For example try running the following command from the
root of a Grails project:

grails create-controller book

The command will result in the creation of a controller at the location
grail s-app/control | ers/BookControll er.groovy:

cl ass BookController { ...}

BookCont r ol | er by default mapsto the /book URI (relative to your application root).

Thecr eat e- control | er command is merely for convenience and you can just as easily
create controllers using your favorite text editor or IDE

Creating Actions
A controller can have multiple properties that are each assigned a block of code. Each of these properties mapsto a
URI:

cl ass BookControl |l er {
def list = {
/] do controller logic
/'l create nodel
return nodel

This example mapsto the/ book/ | i st URI by default thanks to the property being named | i st .

The Default Action
A controller has the concept of adefault URI that maps to the root URI of the controller. By default the default URI
inthiscaseis/ book. The default URI is dictated by the following rules:

© If only one action is present the default URI for a controller maps to that action.

© If you defineani ndex action which isthe action that handles requests when no action is specified in the
URI / book

o Alternatively you can set it explicitly with the def aul t Act i on property:

http://grails.org/doc/latest/ref/Controllers/request.html
http://grails.org/doc/latest/ref/Command Line/create-controller.html

static defaultAction = "list"

6.1.2 Controllersand Scopes

Available Scopes
Scopes are essentially hash like objects that allow you to store variables. The following scopes are available to
controllers:

© servletContext - Also known as application scope, this scope allows you to share state across the entire web
application. The servletContext is an instance of javax.servlet.ServletContext

© session - The session allows associating state with a given user and typically uses cookies to associate a
session with aclient. The session object is an instance of HttpSession

© request - The request object allows the storage of objects for the current request only. The request object is an
instance of HttpServletRequest

O params - Mutable map of incoming request (CGI) parameters

© flash - See below.

Accessing Scopes
Scopes can be accessed using the variable names above in combination with Groovy's array index operator even on
classes provided by the Servlet API such as the HttpServletRequest:

cl ass BookController {
def find = {
def findBy = parans["findBy"]
def appContext = request["fo00"]
def | oggedUser sessi on["l ogged_user"]

Y ou can even access val ues within scopes using the de-reference operator making the syntax even clearer:

cl ass BookControl ler {
def find = {
def findBy = paramns. findBy
def appContext = request.foo
def | oggedUser = session. | ogged_user

Thisis one of the ways that Grails unifies access to the different scopes.

Using Flash Scope

Grails supports the concept of flash scope is atemporary store for attributes which need to be available for this
request and the next request only. Afterwards the attributes are cleared. Thisis useful for setting a message directly
before redirection, for example:

def delete = {
def b = Book.get(paranms.id)
if(!'b) {
fl ash. message = "User not found for id ${parans.id}"
redirect(action:list)

.../l remaining code

6.1.3 Modelsand Views

Returning the Model

86

http://grails.org/doc/latest/ref/Controllers/servletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://grails.org/doc/latest/ref/Controllers/session.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html
http://grails.org/doc/latest/ref/Controllers/request.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://grails.org/doc/latest/ref/Controllers/flash.html

87

A model is essentially a map that the view uses when rendering. The keys within that map translate to variable names
accessible by the view. There are a couple of ways to return amodel, the first way isto explicitly return amap
instance:

def show = {
[book : Book.get(parans.id)]
}

If no explicit model is returned the controller's properties will be used as the model thus allowing you to write code
like this:

cl ass BookControl |l er {
Li st books
Li st authors
def list ={
books = Book. | i st ()
authors = Author.list()

Thisis possible due to the fact that controllers are prototype scoped. In other words a new
controller is created for each request. Otherwise code such as the above would not be thread
safe.

In the above example the books and aut hor s properties will be availablein the view.
A more advanced approach is to return an instance of the Spring Madel AndView class:

i mport org.springframework. web. servl et. Mbdel AndVi ew
def index = {
def favoriteBooks = ...// get sone books just for the index page, perhaps your favorites
Il forward to the list viewto show them
return new Model AndVi ew("/ book/|list", [bookList : favoriteBooks])

Selecting the View

In both of the previous two examples there was no code that specified which view to render. So how does Grails
know which view to pick? The answer liesin the conventions. For the action:

cl ass BookController {
def show =
[book : Book.get(parans.id)]
}

Grails will automatically look for aview at the location gr ai | s- app/ vi ews/ book/ show. gsp (actualy Grails
will try to look for a JSP first, as Grails can equally be used with JSP).
If you wish to render another view, then the render method there to help:

def show = {
def map = [book : Book.get(params.id)]
render (vi ew "di splay", nodel : map)

In this case Grails will attempt to render aview at the location gr ai | s- app/ vi ews/ book/ di spl ay. gsp.
Notice that Grails automatically qualifies the view location with the book folder of thegr ai | s- app/ vi ews

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://grails.org/doc/latest/ref/Controllers/render.html

directory. Thisis convenient, but if you have some shared views you need to access instead use:

def show = {
def map = [book : Book.get(params.id)]
render (vi ew "/ shared/di splay", nodel : map)

In this case Grails will attempt to render aview at the location gr ai | s- app/ vi ews/ shar ed/ di spl ay. gsp.

Rendering a Response
Sometimes its easier (typically with Ajax applications) to render snippets of text or code to the response directly
from the controller. For this, the highly flexibler ender method can be used:

render "Hello World!"

The above code writes the text "Hello World!" to the response, other examplesinclude:

/1l wite sone markup
render {
for(b in books) {
div(id:b.id, b.title)

/'l render a specific view

render (vi ew. ' show)

/1 render a tenplate for each itemin a collection

render (tenpl ate: ' book_tenplate', collection:Book.list())

/1l render sone text with encodi ng and content type

render (text:"<xm >sone xm </ xm >", content Type: "text/xm ", encodi ng: " UTF- 8")

If you plan on using Groovy's MarkupBUuilder to generate html for use with the render method becareful of naming
clashes between html elements and Grails tags. e.g.

def login = {
StringWiter w = new StringWiter()
def buil der = new groovy.xm . Mar kupBui | der (w)
bui I der . ht m {
head{
title "Log in'

}
body{
hl ' Hel | o’

form
}
}

}
def htm = w. toString()
render htm

Will actually call the form tag (which will return some text that will be ignored by the MarkupBuilder). To correctly

output a <form> elemement, use the following:

88

89

def login = {
...

body{
hl 'Hell o'
bui | der. f or n{
}

}

I/

6.1.4 Redirects and Chaining

Redirects
Actions can be redirected using the redirect method present in al controllers:

cl ass OverviewController {
def login = {}
def find = {
i f(!session. user)
redi rect (action: | ogin)

Internally the redirect method uses the HttpServletResonse object's sendRedi r ect method.
Ther edi r ect method expects either:

© Another closure within the same controller class:

/1 Call the login action within the sanme cl ass
redirect (action: | ogin)

© The name of acontroller and action:

/1 Also redirects to the index action in the honme controller
redirect (controller:'home', action:'index')

© A URI for aresource relative the application context path:

/] Redirect to an explicit URI
redirect (uri:"/login.htm")

© Or afull URL:

/'l Redirect to a URL
redirect(url:"http://grails.org")

Parameters can be optionally passed from one action to the next using the par ans argument of the method:

redi rect (acti on: myaction, parans:[mnmyparam "nyval ue"])

http://grails.org/doc/latest/ref/Controllers/redirect.html
http://grails.org/doc/latest/ref/Controllers/redirect.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html

These parameters are made available through the params dynamic property that al so accesses request parameters. If a
parameter is specified with the same name as arequest parameter the request parameter is overridden and the
controller parameter used.

Since the par ans object is aso amap, you can use it to pass the current request parameters from one action to the
next:

redirect (action: "next", parans: parans)

Finally, you can aso include a fragment in the target URI:

redirect(controller: "test", action: "show', fragment: "profile")

will (depending on the URL mappings) redirect to something like "/myapp/test/show#profile".

Chaining
Actions can also be chained. Chaining allows the model to be retained from one action to the next. For example
calingthef i r st action in the below action:

cl ass Exanpl eChai nControl | er {
def first ={
chai n(acti on: second, nodel : [one: 1])

def second = {
chai n(action:third, nodel : [two: 2])

éef third = {
[three: 3])

Results in the model:

[one: 1, two:2, three: 3]

The model can be accessed in subsequent controller actions in the chain viathe chai nModel map. This dynamic
property only existsin actions following the call to the chai n method:

cl ass ChainController {
def nextlnChain = {
def nodel = chai nMbdel . nyMode

Likether edi r ect method you can aso pass parameters to the chai n method:

chai n(action: "actionl", nodel:[one: 1], parans:[myparam "paranil"])

6.1.5 Controller Interceptors

Often it is useful to intercept processing based on either request, session or application state. This can be achieved via
action interceptors. There are currently 2 types of interceptors: before and after.

90

http://grails.org/doc/latest/ref/Controllers/params.html

If your interceptor is likely to apply to more than one controller, you are amost certainly
better off writing a Filter. Filters can be applied to multiple controllers or URIs, without the
need to change the logic of each controller

Before I nterception
Thebef or el nt er cept or intercepts processing before the action is executed. If it returns f al se then the

intercepted action will not be executed. The interceptor can be defined for all actionsin a controller asfollows:

def beforelnterceptor = {
println "Tracing action ${actionUri}"

The above is declared inside the body of the controller definition. It will be executed before all actions and does not
interfere with processing. A common use case is however for authentication:

def beforelnterceptor = [action:this. &uth, except:'login']
/1 defined as a regular nmethod so its private
def auth() {
i f(!session.user) {
redirect(action:'login')
return false

in={
di spl ay | ogi n page

The above code defines a method called aut h. A method is used so that it is not exposed as an action to the outside
world (i.e. it isprivate). The bef or el nt er cept or then defines an interceptor that is used on all actions 'except’
the login action and istold to execute the 'auth’ method. The 'auth' method is referenced using Groovy's method
pointer syntax, within the method itself it detects whether there is a user in the session otherwise it redirects to the
login action and returns false, instruction the intercepted action not to be processed.

After Interception
To define an interceptor that is executed after an action usethe af t er | nt er cept or property:

def afterinterceptor = { nodel ->
println "Tracing action ${actionUri}"

The after interceptor takes the resulting model as an argument and can hence perform post manipulation of the model

or response.
An after interceptor may also modify the Spring MV C ModelAndView object prior to rendering. In this case, the
above example becomes:

def afterlnterceptor = { nodel, nodel AndView ->
println "Current view is ${nodel AndVi ew. vi ewNane} "
i f (nodel . someVar) nodel AndVi ew. vi ewNane = "/ nmycontrol | er/ soneot her vi ew'
println "View is now ${nodel AndVi ew. vi ewNane} "

This allows the view to be changed based on the model returned by the current action. Note that the
nodel AndVi ewmay benul | if the action being intercepted called redirect or render.

I nterception Conditions

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html

Rails users will be familiar with the authentication example and how the 'except' condition was used when executing
the interceptor (interceptors are called 'filters in Rails, this terminology conflicts with the servlet filter terminology in
Java land):

def beforelnterceptor = [action:this. &uuth, except:'login']

This executes the interceptor for all actions except the specified action. A list of actions can aso be defined as
follows:

def beforelnterceptor = [action:this. &uth,except:['login', 'register']]

The other supported condition is 'only', this executes the interceptor for only the specified actions:

def beforelnterceptor = [action:this.&uth,only:['secure']]

6.1.6 Data Binding

Data binding is the act of "binding" incoming request parameters onto the properties of an object or an entire graph
of objects. Data binding should deal with all necessary type conversion since request parameters, which are typically
delivered viaaform submission, are always strings whilst the properties of a Groovy or Java object may well not be.
Grails uses Spring's underlying data binding capability to perform data binding.

Binding Request Data to the M odel
There are two ways to bind request parameters onto the properties of adomain class. Thefirst involves using a
domain classes implicit constructor:

def save = {
def b = new Book(par ans)
b. save()

The data binding happens within the code new Book(par ams) . By passing the params object to the domain class
constructor Grails automatically recognizes that you are trying to bind from request parameters. So if we had an
incoming reguest like:

/ book/ save?ti t| e=The%20St and&aut hor =St ephen%20Ki ng

Thentheti t| e and aut hor request parameters would automatically get set on the domain class. If you need to
perform data binding onto an existing instance then you can use the properties property:

def save = {
def b = Book. get (parans.id)
b. properti es = parans
b. save()

This has exactly the same effect as using the implicit constructor.
Data binding and Single-ended Associations

If you haveaone-t 0- one or many-t 0- one association you can use Grails' data binding capability to update
these relationships too. For example if you have an incoming request such as:

92

http://www.springframework.org
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Domain Classes/properties.html

93

/ book/ save?aut hor. i d=20

Grailswill automatically detect the . i d suffix on the request parameter and look-up the Aut hor instance for the
given id when doing data binding such as:

def b = new Book(par ans)

An association property can be set to nul | by passing the literal St ri ng "null”. For example:

/ book/ save?aut hor . i d=nul

Data Binding and Many-ended Associations

If you have a one-to-many or many-to-many association there are different techniques for data binding depending of
the association type.

If you have a Set based association (default for ahasMany) then the ssmplest way to populate an association is to
simply send alist of identifiers. For example consider the usage of <g: sel ect > below:

<g: sel ect nane="books"
from="${Book.list()}"
size="5" nultiple="yes" optionKey="id"
val ue="${aut hor ?. books}" />

This produces a select box that allows you to select multiple values. In this case if you submit the form Grails will
automatically use the identifiers from the select box to populate the books association.

However, if you have a scenario where you want to update the properties of the associated objects the this technique
won't work. Instead you have to use the subscript operator:

val ue="t he Stand" />

<g:textFi el d nane="books[O0].title
1] . title" value="the Shining" />

<g:textFi el d name="books|

However, with Set based association it is critical that you render the mark-up in the same order that you plan to do
the updatein. Thisis because a Set has no concept of order, so although we're referring to books0 and books1 it
is not guaranteed that the order of the association will be correct on the server side unless you apply some explicit
sorting yourself.

Thisisnot aproblem if you use Li st based associations, sinceali st hasadefined order and an index you can
refer to. Thisisalso true of Map based associations.

Note also that if the association you are binding to has asize of 2 and you refer to an element that is outside the size
of association:

<g:textFi el d name="books[0].title" value="the Stand" />
<g:textFi el d name="books[1].title" val ue="t he Shini ng" />
<g:textFi el d name="books[2].title" val ue="Red Madder" />

Then Grails will automatically create a new instance for you at the defined position. If you "skipped" afew elements
inthe middle:

<g:textFi el d name="books[0].title" value="the Stand" />
<g:textFi el d name="books[1].title" val ue="t he Shi ni ng" />
<g:textFi el d name="books[5].title" val ue="Red Madder" />

Then Grails will automatically create instances in between. For example in the above case Grails will create 4
additional instances if the association being bound had a size of 2.

Y ou can bind existing instances of the associated typetoalLi st usingthesame. i d syntax as you would use with a
single-ended association. For example:

<g: sel ect nane="books[O0].id" fronm="${Book.list()}" val ue="${author?. books[O0]?.id}"
<g: sel ect nanme="books[1].id" from="${Book.list()}" value="${author?. books[1]?.id}" />
<g: sel ect nane="books[2].id" fron="${Book.list()}" value="${author?. books[2]?.id}"

Would alow individual entriesinthebooks Li st to be selected separately.
Entries at particular indexes can be removed in the same way too. For example:

<g: sel ect nanme="books[O0].id" from"${Book.list()}" value="${author?. books[0]?.id}" noSel ect

Will render a select box that will remove the association at booksO0 if the empty option is chosen.
Binding to a Map property works in exactly the same way except that the list index in the parameter nameis replaced
by the map key:

<g: sel ect name="inages[cover].id" from"${Image.list()}" val ue="${book?.images[cover]?.id}’

This would bind the selected image into the Map property i mages under akey of " cover".

Data binding with Multiple domain classes
It is possible to bind data to multiple domain objects from the params object.
For example so you have an incoming request to:

/ book/ save?book. titl e=The¥20St and&aut hor . nanme=St ephen%20Ki ng

You'll notice the difference with the above request is that each parameter has a prefix such as aut hor . or book.
which is used to isolate which parameters belong to which type. Grails' par ans object is like a multi-dimensional
hash and you can index into to isolate only a subset of the parametersto bind.

def b = new Book(parans[' book'])

Notice how we use the prefix before the first dot of the book. ti t | e parameter to isolate only parameters below
this level to bind. We could do the same with an Aut hor domain class:

def a = new Aut hor(parans['author'])

Data binding and type conversion errors

Sometimes when performing data binding it is not possible to convert a particular String into a particul ar target type.
What you get is atype conversion error. Grails will retain type conversion errors inside the errors property of a Grails
domain class. Take this example:

94

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Domain Classes/errors.html

95

cl ass Book {

URL publ i sher URL

Here we have adomain class Book that uses the Java concretetypej ava. net . URL to represent URLs. Now say
we had an incoming request such as:

/ book/ save?publ i sher URL=a- bad- ur |

Inthis caseit isnot possible to bind the string a- bad- ur | tothe publ i sher URL property os a type mismatch
error occurs. Y ou can check for these like this:

def b = new Book(par amns)
i f(b.hasErrors()) {
println "The val ue ${b.errors.getFiel dError (' publisherURL").rejectedValue} is not a vali

Although we have not yet covered error codes (for more information see the section on Validation), for type
conversion errors you would want a message to use for the error inside the grails-app/i 18n/messages.properties file.
Y ou can use a generic error message handler such as:

typeM smat ch. java. net. URL=The field {0} is not a valid URL

Or amore specific one:

t ypeM snat ch. Book. publ i sher URL=The publisher URL you specified is not a valid URL

Data Binding and Security concerns

When batch updating properties from regquest parameters you need to be careful not to allow clients to bind malicious
data to domain classes that end up being persisted to the database. Y ou can limit what properties are bound to a given
domain class using the subscript operator:

def p = Person. get(1)
p. properties['firstNane','lastNane'] = parans

Inthiscaseonly thefir st Name and | ast Nare properties will be bound.

Another way to do thisisinstead of using domain classes as the target of data binding you could use Command
Objects. Alternatively thereis also the flexible bindData method.

The bi ndDat a method allows the same data binding capability, but to arbitrary objects:

def p = new Person()
bi ndDat a(p, parans)

However, the bi ndDat a method also allows you to exclude certain parameters that you don't want updated:

http://grails.org/doc/latest/ref/Controllers/bindData.html

def p = new Person()
bi ndDat a(p, parans, [exclude:'dateOfBirth'])

Or include only certain properties:

def p = new Person()
bi ndDat a(p, paranms, [include:['firstNane','lastNane]])

6.1.7 XML and JSON Responses

Using therender method to output XML

Grails supports afew different ways to produce XML and JSON responses. The first one covered is viathe render
method.

Ther ender method can be passed a block of code to do mark-up building in XML:

def list = {
def results = Book.list()
render (cont ent Type: "text/xm ") {
books {
for(b in results)
book(title:b.title)

The result of this code would be something like:

<books>
<book title="The Stand" />
<book title="The Shining" />
</ books>

Note that you need to be careful to avoid naming conflicts when using mark-up building. For example this code
would produce an error:

def list = {
def books = Book.list() // nam ng conflict here
render (cont ent Type: "text/xm ") {
books {
for(b in results) {
book(title:b.title)

Thereason is that thereislocal variable books which Groovy attempts to invoke as a method.

Using therender method to output JSON
Ther ender method can also be used to output JSON:

http://grails.org/doc/latest/ref/Controllers/render.html

97

def list = {
def results = Book.list()
render (cont ent Type: "text/json") ({
books = array {
for(b in results) {
book title:b.title
}

In this case the result would be something along the lines of:

{title:"The Stand"},
{title:"The Shining"}

Again the same dangers with naming conflicts apply to JSON building.

Automatic XML Marshalling
Grails also supports automatic marshaling of domain classesto XML via specia converters.
To start off with import thegr ai | s. convert er s package into your controller:

i mport grails.converters.*

Now you can use the following highly readable syntax to automatically convert domain classesto XML.:

render Book.list() as XM

The resulting output would look something like the following::

<?xm version="1.0" encodi ng="1 SO 8859-1"?>
<list>
<book id="1">
<aut hor >St ephen Ki ng</ aut hor >
<title>The Stand</title>
</ book>
<book id="2">
<aut hor >St ephen Ki ng</ aut hor >
<title>The Shining</title>
</ book>
</list>

An dternative to using the convertersis to use the codecs feature of Grails. The codecs feature provides
encodeAsXML and encodeAsISON methods:

def xml = Book.list().encodeAsXM ()
render xmni

For more information on XML marshaling see the section on REST

Automatic JSON Marshalling
Grails also supports automatic marshaling to JSON via the same mechanism. Simply substitute XM_ with JSON:

render Book.list() as JSON

The resulting output would look something like the following:

{"id":1,
"cl ass": " Book",
"aut hor": " St ephen Ki ng",
“"title":"The Stand"},
{"id":2,
"cl ass": " Book",
"aut hor":" St ephen Ki ng",
"rel easeDat e": new Dat e(1194127343161),
"title":"The Shining"}

Again as an aternative you can use the encodeAs JSON to achieve the same effect.

6.1.8 More on JSONBuilder

The previous section on on XML and JSON responses covered simplistic examples of rendering XML and JSON
responses. Whilst the XML builder used by Grailsis the standard XmlISlurper found in Groovy, the JSON builder isa
custom implementation specific to Grails.

JSONBUuilder and Grailsversions

JSONBuilder behaves different depending on the version of Grails you use. For version below 1.2 there deprecated
api:grails.util.JSonBuilder classis used. This section covers the usage of the Grails 1.2 JSONBuilder

For backwards compatibility the old JSonBui | der classisused with ther ender method for older applications, if
you want to use the newer/better JSONBuUIi | der classthen you can do so by setting the following in

Confi g. groovy:

grails.json. | egacy. bui |l der =f al se

Rendering Simple Objects
To render asimple JSON aobject just set properties within the context of the closure:

render (content Type: "text/json") ({
hello = "worl d"
}

The above will produce the JSON:

{"hello":"worl d"}

Rendering JSON Arrays
Torender alist of objects simple assign alist:

render (content Type: "text/]son") {
categories = ['a'", 'b'", 'c']

Thiswill produce:

98

http://groovy.codehaus.org/Reading+XML+using+Groovy's+XmlSlurper

99

{"categories":["a","b","c"]}

Y ou can also render lists of complex objects, for example:

render (cont ent Type: "text/json") ({
categories = [{ a="A"}, { b ="B"}]

Thiswill produce:

{"categories":[{"a":"A"} , {"b":"B"}] }

If you want to return alist as the root then you have to use the special el ement method:

render (content Type: "text/]json") {
el ement 1
el enent 2
el ement 3

The above code produces:

[1,2,3]

Rendering Complex Objects
Rendering complex objects can be done with closures. For example:

render (cont ent Type: "text/json") ({
categories = ['a'", 'b'", 'c']
title ="Hell o JSON'
information = {

pages = 10

The above will produce the JSON:

{"categories":["a","b","c"],"title":"Hello JSON', "informati on": {"pages": 10}}

Arrays of Complex Objects
As mentioned previously you can nest complex objects within arrays using closures:

render (content Type: "text/]json") {
categories = [{ a="A"}, { b ="B" }]

However, if you need to build them up dynamically then you may want to use the ar r ay method:

def results = Book.list()
render (content Type: "text/]json") {
books = array {
for(b in results) {
book title:b.title
}

Direct JSONBuilder API Access
If you don't have accessto ther ender method, but still want to produce JSON you can use the API directly:

def buil der = new JSONBui |l der ()
def result = builder.build {
categories = ['a', 'b'", 'c']
title ="Hell o JSON'
information = {
pages = 10

}

/] prints the JSON text
println result.toString()
def sw = new StringWiter()
resul t.render sw

6.1.9 Uploading Files

Programmatic File Uploads
Grails supports file uploads via Spring's M ultipartHttpServletRequest interface. To upload afile thefirst stepisto
create a multipart form like the one below:

Upl oad Form

<g:form acti on="upl oad" net hod="post" enctype="nultipart/form data">
<i nput type="file" name="nyFile" />
<i nput type="submt" />
</g:forne

There are then a number of ways to handle the file upload. The first way isto work with the Spring MultipartFile
instance directly:

def upload = {
def f = request.getFile('nyFile")
if(!f.emty) {
f.transferTo(new File('/some/local/dir/nyfile.txt'))
response. sendError (200, ' Done');

el se {
flash. message = 'fil e cannot be enpty'
render (vi ew ' upl oadFor m)

Thisisclearly handy for doing transfers to other destinations and manipulating the file directly as you can obtain an
InputStream and so on via the MultipartFile interface.

File Uploadsthrough Data Binding

File uploads can a so be performed via data binding. For example say you have an | nage domain class as per the
below example:

100

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/multipart/MultipartFile.html

101

cl ass I mage {
byte[] nmyFile

Now if you create an image and passin the par ans object such as the below example, Grails will automatically
bind the file's contents as a byte to the my Fi | e property:

def ing = new | mage(par ans)

It isalso possible to set the contents of the file as a string by changing the type of the nyFi | e property on the image
to a String type:

cl ass I mage {
String nyFile

6.1.10 Command Objects

Grails controllers support the concept of command objects. A command object is similar to aform bean in something
like Struts and they are useful in circumstances when you want to populate a subset of the properties needed to
update a domain class. Or where there is no domain class required for the interaction, but you need features such as
data binding and validation.

Declaring Command Objects
Command objects are typically declared in the same source file as a controller directly below the controller class
definition. For example:

class UserController {

cl ass Logi nCommand {
String usernane
String password
static constraints = {
user nane(bl ank: fal se, m nSi ze: 6)
passwor d(bl ank: fal se, m nSi ze: 6)

As the previous example demonstrates you can supply constraints to command objects just as you can with domain
classes.

Using Command Objects

To use command objects, controller actions may optionally specify any number of command object parameters. The
parameter types must be supplied so that Grails knows what objects to create, populate and validate.

Before the controller action is executed Grails will automatically create an instance of the command object class,
populate the properties of the command object with request parameters having corresponding names and the
command object will be validated. For Example:

cl ass LoginController {
def login = { Logi nConmand cnmd ->
i f(cmd. hasErrors()) {
redirect(action: 'l oginForm)

el se {
/] do something el se
}

Command Objects and Dependency I njection
Command objects can participate in dependency injection. Thisis useful if your command object has some custom
validation logic which may need to interact with Grails services:

cl ass Logi nConmand {
def | ogi nService
String usernane
String password
static constraints = {
usernane validator: { val, obj ->
obj . |1 ogi nServi ce. canLogi n(obj . user nane, obj . password)

In this example the command object interacts with a bean injected by name from the Spring
Appl i cati onCont ext.

6.1.11 Handling Duplicate Form Submissions

Grails has built in support for handling duplicate form submissions using the "Synchronizer Token Pattern". To get
started you need to define a token on the form tag:

<g: form useToken="true" ...>

Then in your controller code you can use the withForm method to handle valid and invalid requests:

wi t hFor m {
/1l good request
}.invalidToken {
/1 bad request
}

If you only provide the withForm method and not the chained i nval i dToken method then by default Grails will
storetheinvaid tokeninaf | ash. i nval i dToken variable and redirect the request back to the original page.
This can then be checked in the view:

<g:if test="${flash.invalidToken}">
Don't click the button twi ce!
</g:if>

© The withForm tag makes use of the session and hence requires session affinity if used in a
cluster.

102

http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/withForm.html
http://grails.org/doc/latest/ref/Controllers/session.html

6.1.12 Simple Type Converters

Type Conversion M ethods
If you prefer to avoid the overhead of Data Binding and simply want to convert incoming parameters (typically
Strings) into another more appropriate type the params object has a number of convenience methods for each type:

def total = paranms.int('total"')

The above example uses the i nt method, there are also methods for bool ean, | ong, char, short and soon.
Each of these methods are null safe and safe from any parsing errors so you don't have to perform any addition
checks on the parameters.

These same type conversion methods are al'so available onthe at t r s parameter of GSP tags.

Handling Multi Parameters

A common use case is dealing with multiple request parameters of the same name. For example you could get a
query string such as ?nane=Bob&nane=Judy.

In this case dealing with 1 parameter and dealing with many has different semantics since Groovy'siteration
mechanics for St r i ng iterate over each character. To avoid this problem the params object providesal i st
method that always returns a list:

for(name in parans.|list('nanme')) {
println nanme

6.2 Groovy Server Pages

Groovy Servers Pages (or GSP for short) is Grails view technology. It is designed to be familiar for users of
technologies such as ASP and JSP, but to be far more flexible and intuitive.

In GrailsGSPsliveinthegrai | s- app/ vi ews directory and are typically rendered automatically (by convention)
or viathe render method such as:

render (vi ew "i ndex")

A GSPistypically amix of mark-up and GSP tags which aid in view rendering.

Although it is possible to have Groovy logic embedded in your GSP and doing this will be
covered in this document the practice is strongly discouraged. Mixing mark-up and codeisa
bad thing and most GSP pages contain no code and needn't do so.

A GSP typically hasa"model" whichis a set of variables that are used for view rendering. The model is passed to
the GSP view from a controller. For example consider the following controller action:

def show = {
[book: Book. get (parans.id)]

This action will look-up a Book instance and create a model that contains akey called book. This key can then be
reference within the GSP view using the name book:

<%book.titl e%

103

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/render.html

6.2.1 GSP Basics

In the next view sections we'll go through the basics of GSP and what is available to you. First off let's cover some
basic syntax that users of JSP and ASP should be familiar with.
GSP supports the usage of <% %> blocks to embed Groovy code (again thisis discouraged):

<htm >
<body>
<% out << "Hello GSP!'" %
</ body>
</htm >

Aswell asthis syntax you can also usethe <%= % syntax to output values:

<htm >
<body>
<%"Hello GSP!" %
</ body>
</htm >

GSP also supports JSP-style server-side comments as the following example demonstrates:

<htm >
<body>
<% - This is ny comment --%
<%"Hello GSP'" %
</ body>
</htm >

6.2.1.1 Variables and Scopes

Within the <% %> brackets you can of course declare variables:

<% now = new Date() %

And then re-use those variables further down the page:

<%=nows>

However, within the scope of a GSP there are a number of pre-defined variables including:

appl i cati on - The javax.servlet.ServletContext instance

appl i cati onCont ext The Spring ApplicationContext instance

f I ash - Theflash object

grai |l sAppl i cati on - The api:org.codehaus.groovy.grails.commons.Grail sApplication instance
out - Theresponse writer for writing to the output stream

par ans - The params object for retrieving request parameters

request - The HttpServletRequest instance

r esponse - The HttpServletResponse instance

sessi on - The HttpSession instance

webRequest - The api:org.codehaus.groovy.grails.web.servlet. mvc.GrailsWebRequest instance

O 0O 0O 0O O 0 O 0O O O

6.2.1.2 Logic and Iteration

104

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html

105

Using the <% %> syntax you can of course embed |oops and so on using this syntax:

<htm >
<body>
<%[1,2,3,4].each { num-> %
<p><%"Hell o ${nun}!" %</ p>
<% %
</ body>
</htm >

Aswell aslogical branching:

<htm >
<body>
<%if(parans. hello == "true')%
<%"Hel | o! " %
<% el se %
<%" Goodbye! " %
</ body>
</htm >

6.2.1.3 Page Directives

GSP also supports a few JSP-style page directives.
The import directive allows you to import classes into the page. However, it israrely needed due to Groovy's default
imports and GSP Tags:

<%@ page i nport="java.awt.*" %

GSP also supports the contentType directive:

<% page content Type="text/json" %

The contentType directive allows using GSP to render other formats.
6.2.1.4 Expressions

In GSPthe <%= 9% syntax introduced earlier israrely used due to the support for GSP expressions. It is present
mainly to allow ASP and JSP developers to feel at home using GSP. A GSP expression is similar to a JSP EL
expression or a Groovy GString and takes the form ${ expr}:

<htm >
<body>
Hel | o ${par ans. nane}
</ body>
</htm >

However, unlike JSP EL you can have any Groovy expression withinthe ${ . . } parenthesis. Variables within the
${. .} arenot escaped by default, so any HTML in the variable's string is output directly to the page. To reduce the
risk of Cross-site-scripting (XSS) attacks, you can enable automatic HTML escaping viathe

grails.views. defaul t. codec settingingrai | s-app/ conf/ Confi g. gr oovy:

grails.views. defaul t.codec="htm"

Other possible values are 'none' (for no default encoding) and 'base64'.

6.2.2 GSP Tags

Now that the less attractive JSP heritage has been set aside, the following sections cover GSP's built-in tags, which
are the favored way to define GSP pages.

The section on Tag Libraries covers how to add your own custom tag libraries.

All built-in GSP tags start with the prefix g: . Unlike JSP, you don't need to specify any tag library imports. If atag
startswith g: it isautomatically assumed to be a GSP tag. An example GSP tag would look like:

<g: exanmple />

GSP tags can aso have a body such as:

<g: exanpl e>
Hell o worl d
</ g: exanpl e>

Expressions can be passed into GSP tag attributes, if an expression is not used it will be assumed to be a String
value:

<g:exanple attr="${new Date()}">
Hel l o world
</ g: exanpl e>

Maps can a so be passed into GSP tag attributes, which are often used for a named parameter style syntax:

<g:exanple attr="%${new Date()}" attr2="[one:1, two:2, three:3]">
Hell o world
</ g: exanpl e>

Note that within the values of attributes you must use single quotes for Strings:

<g:exanple attr="${new Date()}" attr2="[one:'one', two:'two']">
Hell o world
</ g: exanpl e>

With the basic syntax out the way, the next sections look at the tags that are built into Grails by default.

6.2.2.1 Variables and Scopes
Variables can be defined within a GSP using the set tag:

<g: set var="now' val ue="${new Date()}" />

Here we assign avariable called nowto the result of a GSP expression (which simply constructs a new
java. util . Dat e instance). You can also use the body of the <g: set > tag to define avariable:

106

http://grails.org/doc/latest/ref/Tags/set.html

107

<g:set var="nyHTM.">
Sone re-usabl e code on: ${new Date()}
</ g:set>

Variables can aso be placed in one of the following scopes:

© page - Scoped to the current page (default)
© request - Scoped to the current request
© fl ash - Placed within flash scope and hence available for the next request
© sessi on - Scoped for the user session
© appl i cati on - Application-wide scope.
To select which scope avariableis placed into use the scope attribute:

<g: set var="now' val ue="${new Date()}" scope="request" />

6.2.2.2 Logic and Iteration

GSP also supports logical and iterative tags out of the box. For logic there are if, else and elseif which support your
typical branching scenarios:

<g:if test="%{session.role == "admn'}">
<% - show adm ni strative functions --%
</g:if>
<g: el se>
<% - show basic functions --%
</g:el se>

For iteration GSP has the each and while tags:

<g:each in="8${[1,2,3]}" var="nunl>
<p>Nunber ${nun}</p>
</ g: each>
<g:set var="nun' val ue="${1}" />
<g:while test="$%{num< 5 }">
<p>Nunber ${numt+} </ p>
</ g: whi | e>

6.2.2.3 Search and Filtering

If you have collections of objects you often need to sort and filter them in some way. GSP supports the findAll and
grep for thistask:

St ephen King's Books:

<g:findA'l in="${books}" expr="it.author == "'Stephen King' ">
<p>Title: ${it.title}</p>
</ g:findAll>

Theexpr attribute contains a Groovy expression that can be used as afilter. Speaking of filters the grep tag does a
similar job such asfilter by class:

<g:grep i n="${books}" filter="NonFictionBooks.class">
<p>Title: ${it.title}</p>
</ g: grep>

http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Tags/if.html
http://grails.org/doc/latest/ref/Tags/else.html
http://grails.org/doc/latest/ref/Tags/elseif.html
http://grails.org/doc/latest/ref/Tags/each.html
http://grails.org/doc/latest/ref/Tags/while.html
http://grails.org/doc/latest/ref/Tags/findAll.html
http://grails.org/doc/latest/ref/Tags/grep.html
http://grails.org/doc/latest/ref/Tags/grep.html

Or using aregular expression:

<g:grep in="${books.title}" filter="~/.*?2G oovy.*?/">
<p>Title: ${it}</p>
</ g: grep>

The above example is aso interesting due to its usage of GPath. GPath is Groovy's equivalent to an XPath like
language. Essentially the books collection isa collection of Book instances. However assuming each Book hasa
titl e, youcanobtainalist of Book titles using the expression books. ti t | e. Groovy will auto-magically go
through the list of Book instances, obtain each title, and return a new list!

6.2.2.4 Links and Resour ces

GSP also features tags to help you manage linking to controllers and actions. The link tag allows you to specify
controller and action name pairing and it will automatically work out the link based on the URL Mappings, even if
you change them! Some examples of the link can be seen below:

<g:link action="show' id="1">Book 1</g:link>

<g:link action="show' id="${currentBook.id}">%${currentBook. nane}</g:|ink>

<g:link controller="book">Book Home</g:I|ink>

<g:link controller="book" action="Ilist">Book List</g:link>

<g:link url="[action:"list',controller:'book']">Book List</g:!link>

<g:link action="list" parans="[sort:"'title',order:"asc', author:currentBook. author]">
Book Li st

</ g:link>

6.2.2.5 Formsand Fields

Form Basics

GSP supports many different tags for aiding in dealing with HTML forms and fields, the most basic of which isthe
formtag. The f or mtag is acontroller/action aware version of theregular HTML formtag. Theur | attribute allows
you to specify which controller and action to map to:

<g: form name="nyForn' url="[controller:'book',action:"list']"> ..</g:fornme

In this case we create aform called my For mthat submits to the BookCont r ol | er'sl i st action. Beyond that al
of the usual HTML attributes apply.

Form Fields
Aswell as easy construction of forms GSP supports custom tags for dealing with different types of fieldsincluding:

textField - For input fields of type 'text'
checkBox - For input fields of type 'checkbox'
radio - For input fields of type 'radio’
hiddenField - For input fields of type 'hidden’
© select - For dealing with HTML select boxes
Each of these allow GSP expressions as the value:

O O O O

<g:textField name="nyFi el d" val ue="${nyVal ue}" />

GSP also contains extended helper versions of the above tags such as radioGroup (for creating groups of radio tags),
localeSelect, currencySelect and timeZoneSelect (for selecting local€'s, currencies and time zone's respectively).

Multiple Submit Buttons
The age old problem of dealing with multiple submit buttonsis also handled elegantly with Grails viathe
actionSubmit tag. It isjust like aregular submit, but allows you to specify an alternative action to submit to:

108

http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Tags/textField.html
http://grails.org/doc/latest/ref/Tags/checkBox.html
http://grails.org/doc/latest/ref/Tags/radio.html
http://grails.org/doc/latest/ref/Tags/hiddenField.html
http://grails.org/doc/latest/ref/Tags/select.html
http://grails.org/doc/latest/ref/Tags/radioGroup.html
http://grails.org/doc/latest/ref/Tags/radio.html
http://grails.org/doc/latest/ref/Tags/localeSelect.html
http://grails.org/doc/latest/ref/Tags/currencySelect.html
http://grails.org/doc/latest/ref/Tags/timeZoneSelect.html
http://grails.org/doc/latest/ref/Tags/actionSubmit.html

109

<g:actionSubmt val ue="Sonme update |abel" action="update" />

6.2.2.6 Tagsas Method Calls

One major different between GSP tags and other tagging technologiesis that GSP tags can be called as either regular
tags or as method calls from either controllers, tag libraries or GSP views.

Tags as method calls from GSPs
When called as methods tags return their results as a String instead of writing directly to the response. So for
example the createl inkTo tag can equally be called as a method:

Static Resource: ${createLinkTo(dir:"imges", file:"logo.jpg")}

Thisis particularly useful when you need to use a tag within an attribute:

<ing src="3%{createLinkTo(dir:"'imges', file:'logo.jpg)}" />

In view technologies that don't support this feature you have to nest tags within tags, which becomes messy quickly
and often has an adverse effect of WY SWIG tools such as Dreamweaver that attempt to render the mark-up asitis
not well-formed:

<img src="<g:createLinkTo dir="inages" file="logo.jpg" />" />

Tags as method callsfrom Controllersand Tag Libraries
Y ou can also invoke tags from controllers and tag libraries. Tags within the default g: namespace can be invoked
without the prefix and a String result is returned:

def inmagelLocati on = createLinkTo(dir:"inmges", file:"logo.]pg")

However, you can a so prefix the namespace to avoid naming conflicts:

def inmagelLocation = g.createlLi nkTo(dir:"innages", file:"logo.jpg")

If you have a custom namespace you can use that prefix instead (Example using the FCK Editor plugin):

def editor = fck.editor()

6.2.3 Viewsand Templates

Aswell as views, Grails has the concept of templates. Templates are useful for separating out your views into
maintai nable chunks and combined with Layouts provide a highly re-usable mechanism for structure views.

Template Basics

Grails uses the convention of placing an underscore before the name of aview to identify it as atemplate. For
example ayou may have atemplate that deals with rendering Books located at

grail s-app/vi ews/ book/ _bookTenpl at e. gsp:

http://grails.org/doc/latest/ref/Tags/createLinkTo.html
http://grails.org/FCK+editor+plugin

<di v cl ass="book" id="${book?.id}">
<div>Title: ${book?.title}</div>
<di v>Aut hor: ${book?. aut hor ?. nane} </ di v>
</ di v>

To render this template from one of the viewsin gr ai | s- app/ vi ews/ book you can use the render tag:

<g: render tenpl ate="bookTenpl ate" nodel ="[book: myBook] " />

Notice how we passinto amodel to use using the nodel attribute of the render tag. If you have multiple Book
instances you can also render the template for each Book using the render tag:

<g: render tenpl ate="bookTenpl ate" var="book" coll ecti on="${bookList}" />

Shared Templates

In the previous example we had a template that was specific to the BookCont r ol | er and itsviews at

grail s-app/ vi ews/ book. However, you may want to share templates across your application.

In this case you can place them in the root views directory at grails-app/views or any subdirectory below that location
and then with the template attribute use a/ before the template name to indicate the relative template path. For
exampleif you had atemplate called gr ai | s- app/ vi ews/ shar ed/ _nyShar edTenpl at e. gsp, you could
reference it as follows:

<g: render tenpl ate="/shared/ mySharedTenpl ate" />

Y ou can also use this technique to reference templatesin any directory from any view or controller:

<g: render tenpl ate="/book/bookTenpl ate" nodel ="[book: myBook]" />

The Template Namespace
Since templates are used so frequently there is template namespace, called t npl , available that makes using
templates easier. Consider for example the following usage pattern:

<g: render tenpl ate="bookTenpl ate" nodel ="[book: myBook]" />

This can be expressed with the t npl namespace as follows:

<t npl : bookTenpl at e book="${ myBook}" />

Templatesin Controllersand Tag Libraries
Y ou can also render templates from controllers using the render method found within controllers, which is useful for
Ajax applications:

110

http://grails.org/doc/latest/ref/Tags/render.html
http://grails.org/doc/latest/ref/Controllers/render.html

111

def show = {
def b = Book. get (parans.id)
render (t enpl at e: "bookTenpl ate”, nodel : [book: b])

The render method within controllers writes directly to the response, which is the most common behaviour. If you
need to instead obtain the result of template as a String you can use the render tag:

def show = {
def b = Book. get (parans.id)
String content = g.render(tenplate: "bookTenpl ate", nodel :[book: b])
render content

Notice the usage of the g. namespace which tells Grails we want to use the tag as method call instead of the render
method.

6.2.4 Layoutswith Sitemesh

Creating Layouts
Grails leverages Sitemesh, a decorator engine, to support view layouts. Layouts are located in the
grai |l s-app/ vi ews/ | ayout s directory. A typical layout can be seen below:

<htm >
<head>
<title><g:layoutTitle default="An exanpl e decorator" /></title>
<g: | ayout Head />
</ head>
<body onl oad="${ pagePr operty(nane:' body. onload')}">
<di v class="nenu"><!--nmy comon nenu goes here--></nmenu>
<di v cl ass="body">
<g: | ayout Body />
</ di v>
</ div>
</ body>
</htm >

The key elements are the |layoutHead, layoutTitle and |ayoutBody tag usages, here is what they do:

© | ayout Ti t e - outputs the target page'stitle
© | ayout Head - outputs the target pages head tag contents
© | ayout Body - outputs the target pages body tag contents
The previous example also demonstrates the pageProperty tag which can be used to inspect and return aspects of the

target page.

Triggering Layouts
There are afew waysto trigger alayout. The simplest isto add a meta tag to the view:

<htm >
<head>
<title>An Exanpl e Page</title>
<neta nane="l| ayout" content="nmai n"></neta>
</ head>
<body>This is nmy content!</body>
</htm >

Inthiscasealayout called gr ai | s- app/ vi ews/ | ayout s/ mai n. gsp will be used to layout the page. If we
were to use the layout from the previous section the output would resembl e the below:

http://grails.org/doc/latest/ref/Controllers/render.html
http://grails.org/doc/latest/ref/Tags/render.html
http://grails.org/doc/latest/ref/Controllers/render.html
http://www.opensymphony.com/sitemesh/
http://grails.org/doc/latest/ref/Tags/layoutHead.html
http://grails.org/doc/latest/ref/Tags/layoutTitle.html
http://grails.org/doc/latest/ref/Tags/layoutBody.html
http://grails.org/doc/latest/ref/Tags/pageProperty.html

<htm >
<head>
<title>An Exanpl e Page</title>
</ head>
<di v class="nenu"><!--nmy conmon nenu goes here--></div>
<di v cl ass="body">
This is ny content!
</ di v>
</ body>
</htm >

Specifying A Layout In A Controller
Another way to specify alayout is to specify the name of the layout by assigning avalue to the "layout” property in a
controller. For example, if you have a controller such as:

cl ass BookController {
static |layout = 'custoner’
def list ={

You can create alayout called gr ai | s- app/ vi ews/ | ayout s/ cust orrer . gsp which will be applied to all
views that the BookCont r ol | er delegatesto. The value of the "layout” property may contain a directory structure
relativetothegr ai | s- app/ vi ews/ | ayout s/ directory. For example:

cl ass BookController {
static layout = 'custom custoner’
def list ={ ..}

Views rendered from that controller would be decorated with the
grail s-app/views/| ayout s/ cust onf cust oner . gsp template.

Layout by Convention
Another way to associate layoutsis to use "layout by convention”. For example, if you have a controller such as:

cl ass BookController {
def list = { ..}
}

You can create alayout called gr ai | s- app/ vi ews/ | ayout s/ book. gsp, by convention, which will be
applied to al views that the BookCont r ol | er delegatesto.

Alternatively, you can create alayout caled gr ai | s- app/ vi ews/ | ayout s/ book/ |'i st. gsp which will
only be appliedtothel i st action withinthe BookControl | er.

If you have both the above mentioned layouts in place the layout specific to the action will take precedence when the
list action is executed.

If alayout may not be located using any of those conventions, the convention of last resort isto look for the
application default layout whichisgr ai | s- app/ vi ews/ | ayout s/ appl i cati on. gsp. The name of the
application default layout may be changed by defining aproperty ingr ai | s- app/ conf/ Confi g. gr oovy as
follows:

/1 grails-app/ conf/Config.groovy
grails.sitemesh. defaul t. | ayout="myLayout Nane'

With that property in place, the application default layout will be
grail s-app/ vi ews/ | ayout s/ nyLayout Nane. gsp.

112

Inline Layouts

Grails also supports Sitemesh's concept of inline layouts with the applyl ayout tag. Theappl yLayout tag can be
used to apply alayout to atemplate, URL or arbitrary section of content. Essentially, this allows to even further
modularize your view structure by "decorating” your template includes.

Some examples of usage can be seen below:

<g: appl yLayout name="nyLayout" tenpl at e="bookTenpl ate" col | ecti on="%${books}" />
<g: appl yLayout name="myLayout" url="http://ww. googl e. cont’ />

<g: appl yLayout name="nmyLayout">

The content to apply a | ayout to

</ g: appl yLayout >

Server-Side Includes
While the applyL ayout tag is useful for applying layouts to external content, if you simply want to include external
content in the current page you can do so with the include;

<g:include control |l er="book" action="list"></g:include>

Y ou can even combine the include tag and the applyL ayout tag for added flexibility:

<g: appl yLayout name="nylLayout ">
<g:include controller="book" action="1ist"></g:include>
</ g: app! yLayout >

Finally, you can aso call the include tag from a controller or tag library as a method:

def content = include(controller:"book", action:"list")

The resulting content will be provided via the return value of the include tag.

6.2.5 Sitemesh Content Blocks

Although it is useful to decorate an entire page sometimes you may find the need to decorate independent sections of
your site. To do this you can use content blocks. To get started you need to divide the page to be decorate using the
<cont ent > tag:

<content tag="navbar">
...draw t he navbar here...
</ cont ent >

<content tag="header">
...draw t he header here...
</ cont ent >

<content tag="footer">
...draw the footer here...
</ cont ent >

<content tag="body">
...draw t he body here...
</ cont ent >

Then within the layout you can reference these components and apply individua layouts to each:

113

http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/applyLayout.html
http://grails.org/doc/latest/ref/Tags/include.html
http://grails.org/doc/latest/ref/Tags/include.html

<htm >
<body>
<di v i d="header">
<g: appl yLayout name="header Layout ">
<g: pageProperty nane="page. header">
</ g: appl yLayout >
</ di v>
<di v id="nav">
<g: appl yLayout name="navlLayout">
<g: pageProperty nane="page. navbar">
</ g: appl yLayout >
</ di v>
<di v id="body">
<g: appl yLayout nanme="bodylLayout ">
<g: pageProperty nane="page. body" >
</ g: appl yLayout >
</ di v>
<div id="footer">
<g: appl yLayout name="f oot er Layout ">
<g: pageProperty nane="page. footer">
</ g: appl yLayout >
</ di v>
</ body>
</htm >

6.2.6 Making Changesto a Deployed Application

One of the main issues with deploying a Grails application (or typically any servlet-based one) is that any change to
the views requires you to redeploy your whole application. If al you want to do isfix atypo on apage, or change an
image link, it can seem like alot of unnecessary work. For such simple requirements, Grails does have a solution: the
grails. gsp. view. di r configuration setting.

How does thiswork? The first step is to decide where the GSP files should go. Let's say we want to keep them
unpackedina/ var/ ww gr ai | s/ my- app directory. We add these two lines to

grail s-app/ conf/ Confi g. groovy :

grails.gsp.enable.reload = true
grails.gsp.viewdir = "/var/ww grails/ny-app/"

Thefirst line tells Grails that modified GSP files should be reloaded at runtime. If you don't have this setting, you
can make as many changes as you like but they won't be reflected in the running application. The second linetells
Grails where to load the views and layouts from.

Thetrailing dlash onthegr ai | s. gsp. vi ew. di r valueisimportant! Without it, Grails
will look for viewsin the parent directory.

With those settingsin place, al you need to do is copy the views from your web application to the external directory.
On a Unix-like system, this would look something like this:

nkdir -p /var/ww/ grails/ny-app/grails-app/views
cp -R grail s-app/views/* [var/ww/ grails/ny-app/grails-app/views

The key point hereisthat you must retain the view directory structure, including the gr ai | s- app/ vi ews bit. So
you end up with the path / var / www/ gr ai | s/ my- app/ grail s-app/views/... .

One thing to bear in mind with this technique is that every time you modify a GSP, it uses up permgen space. So at
some point you will eventually hit "out of permgen space” errors unless you restart the server. So this techniqueis
not recommended for frequent or large changes to the views.

6.3 TagLibraries

Like Java Server Pages (JSP), GSP supports the concept of custom tag libraries. Unlike JSP, Grailstag library
mechanism is simply, elegant and completely reload-able at runtime.
Quite simply, to create atag library create a Groovy class that ends with the convention TagLi b and place it within

114

http://java.sun.com/products/jsp/

thegrai | s-app/tagli b directory:

cl ass Sinpl eTagLib {
}

Now to create atag ssimply create property that is assigned a block of code that takes two arguments: The tag
attributes and the body content:

class Sinpl eTagLib {
def sinple = { attrs, body ->
}

Theat t r s argument is asimple map of the attributes of the tag, whilst the body argument is another invokable
block of code that returns the body content:

cl ass Sinpl eTagLi b {
def enoticon = { attrs, body ->
out << body() << (attrs.happy == "true' 2?2 " :-)" : " -(")

As demonstrated above thereis an implicit out variable that refersto the output Wi t er which you can useto
append content to the response. Then you can simply reference the tag inside your GSP, no imports necessary:

<g: enoti con happy="true">H John</g:enoticon>

6.3.1 Variables and Scopes

Within the scope of atag library there are a number of pre-defined variables including:

act i onNane - The currently executing action name

cont rol | er Narne - The currently executing controller name

f 1 ash - Theflash object

grai | sAppl i cati on - The api:org.codehaus.groovy.grails.commons.Grail sApplication instance
out - Theresponse writer for writing to the output stream

pageScope - A reference to the pageScope object used for GSP rendering (i.e. the binding)
par ans - The params object for retrieving request parameters

pl ugi nCont ext Pat h - The context path to the plugin that contains the tag library
request - The HttpServletRequest instance

r esponse - The HttpServletResponse instance

servl et Cont ext - The javax.servlet.ServletContext instance

sessi on - The HttpSession instance

O 0O 0O 0O O O o0 0O o O O O

6.3.2 Simple Tags

As demonstrated it the previous exampleit istrivial to write smple tags that have no body and merely output
content. Another exampleisadat eFor mat styletag:

def dateFormat = { attrs, body ->
out << new java.text.Sinpl eDateFormat (attrs.format).fornmat(attrs. date)
}

The above uses Java's Si npl eDat eFor mat classto format a date and then write it to the response. The tag can

115

http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Tag Libraries/pageScope.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletRequest.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpServletResponse.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/ServletContext.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/http/HttpSession.html

then be used within a GSP as follows;

<g: dat eFormat format ="dd- MMt yyyy" date="${new Date()}" />

With simpl e tags sometimes you need to write HTML mark-up to the response. One approach would be to embed the
content directly:

def formatBook = { attrs, body ->
out << "<div id="${attrs. book.id}">"
out << "Title : ${attrs.book.title}"
out << "</div>"

Although this approach may be tempting it is not very clean. A better approach would be to re-use the render tag:

def formatBook = { attrs, body ->
out << render(tenpl ate: "bookTenpl ate", nodel:[book: attrs. book])
}

And then have a separate GSP template that does the actual rendering.
6.3.3 Logical Tags

Y ou can also create logical tags where the body of the tag is only output once a set of conditions have been met. An
example of this may be a set of security tags:

def isAdmin = { attrs, body ->
def user = attrs['user']
if(user '= null && checkUserPrivs(user)) {
out << body()

The tag above checks if the user is an administrator and only outputs the body content if he/she has the correct set of
access privileges:

<g:isAdm n user="${nyUser}">
/] some restricted content
</ g:isAdm n>

6.3.4 Iterative Tags

Iterative tags are trivial too, since you can invoke the body multiple times:

def repeat = { attrs, body ->
attrs.times?.tolnteger().tines { num->
out << body(num
}

In this example we check for at i nes attribute and if it exists convert it to a number then use Groovy'st i mes
method to iterate by the number of times specified by the number:

116

http://grails.org/doc/latest/ref/Tags/render.html

117

<g:repeat tines="3">
<p>Repeat this 3 tines! Current repeat = ${it}</p>
</ g: repeat >

Notice how in this example we use the impliciti t variable to refer to the current number. This works because when
we invoked the body we passed in the current value inside the iteration:

out << body(num

That value is then passed as the default variablei t to the tag. However, if you have nested tags this can lead to
conflicts, hence you should should instead name the variables that the body uses:

def repeat = { attrs, body ->
def var = attrs.var ? attrs.var : "nuni
attrs.tinmes?.tolnteger().tines { num->

out << body((var):num

Here we check if thereisavar attribute and if thereis use that as the name to pass into the body invocation on this
line:

out << body((var):num

Note the usage of the parenthesis around the variable name. If you omit these Groovy
assumes you are using a String key and not referring to the variable itself.

Now we can change the usage of the tag as follows:

<g:repeat times="3" var="j">
<p>Repeat this 3 times! Current repeat = ${j}</p>
</ g: repeat >

Notice how we usethe var attribute to define the name of the variablej and then we are able to reference that
variable within the body of the tag.

6.3.5 Tag Namespaces

By default, tags are added to the default Grails namespace and are used with the g: prefix in GSP pages. However,
you can specify a different namespace by adding a static property to your TagLi b class:

cl ass Sinpl eTagLib {

static namespace = "ny"
def exanmple = { attrs ->
}

Here we have specified anamespace of nmy and hence the tagsin this tag lib must then be referenced from GSP
pages like this:

<ny: exanpl e name="..." />

Where the prefix is the same as the value of the static namespace property. Namespaces are particularly useful for
plugins.
Tags within namespaces can be invoked as methods using the namespace as a prefix to the method call:

out << ny.exanpl e(nane: "foo")

Thisworks from GSP, controllers or tag libraries
6.3.6 Using JSP Tag Libraries

In addition to the simplified tag library mechanism provided by GSP, you can aso use JSP tags from GSP. To do so
simply declare the JSP you want to use viathet agl i b directive:

<v@taglib prefix="fnt" uri="http://java.sun.com jsp/jstl/fnm" %

Then you can use it like any other tag:

<fnt:formatNunber val ue="${10}" pattern=".00"/>

With the added bonus that you can invoke JSP tags like methods:

${fnt.format Number (val ue: 10, pattern:".00")}

6.3.7 Tag return value

Since Grails 1.2, atag library call returns an instance of

or g. codehaus. groovy. grail s. web. util. StreanChar Buf f er classby default. This change improves
performance by reducing object creation and optimizing buffering during request processing. In earlier Grails
versions, aj ava. | ang. St ri ng instance was returned.

Tag libraries can also return direct object values to the caller since Grails 1.2.. Object returning tag names are listed
inastaticr et ur nCbj ect For Tags property in the tag library class.

Example:

cl ass Obj ect Returni ngTagLi b {
static nanespace = "cns"
static returnObj ect ForTags = ['content']
def content = { attrs, body ->
) CrsCont ent . fi ndByCode(attrs. code) ?. cont ent

6.4 URL Mappings

Throughout the documentation so far the convention used for URL s has been the default of

/controll er/action/id.However, thisconvention isnot hard wired into Grails and isin fact controlled by a
URL Mappings classlocated at gr ai | s- app/ conf/ Ur | Mappi ngs. gr oovy.

The Ur | Mappi ngs class contains a single property called mappi ngs that has been assigned a block of code:

118

119

cl ass Url Mappi ngs {
static mappings = {

6.4.1 Mapping to Controllersand Actions

To create asimple mapping simply use arelative URL as the method name and specify named parameters for the
controller and action to map to:

"/ product”(controller:"product”, action:"list")

In this case we've mapped the URL / pr oduct tothel i st action of the Pr oduct Cont r ol | er . You could of
course omit the action definition to map to the default action of the controller:

"/ product”(controller:"product")

An dternative syntax isto assign the controller and action to use within a block passed to the method:

"/ product" {
control ler = "product"”
action = "list"

Which syntax you use is largely dependent on personal preference. If you simply want to rewrite on URI onto
another explicit URI (rather than a controller/action pair) this can be achieved with the following example:

“/hello"(uri:"/hello.dispatch")

Rewriting specific URIsis often useful when integrating with other frameworks.
6.4.2 Embedded Variables

Simple Variables

The previous section demonstrated how to map trivial URLs with concrete "tokens'. In URL mapping speak tokens
are the sequence of characters between each slash / character. A concrete token is one which iswell defined such as
as/ pr oduct . However, in many circumstances you don't know what the value of a particular token will be until
runtime. In this case you can use variable placeholders within the URL for example:

static mappings = {
"/ product/$id"(co

ntrol l er:"product")

In this case by embedding a $id variable as the second token Grails will automatically map the second token into a
parameter (available via the params object) called i d. For example given the URL / pr oduct / MacBook, the
following code will render "MacBook™ to the response:

http://grails.org/doc/latest/ref/Controllers/params.html

cl ass ProductController {
def index = { render parans.id }
}

Y ou can of course construct more complex examples of mappings. For example the traditional blog URL format
could be mapped as follows:

statlc mappi ngs = {
"/ $bl og/ $year/ $nont h/ $day/ $i d" (control | er: "bl og", action:"show")
}

The above mapping would allow you to do things like:

/ graenmer ocher/ 2007/ 01/ 10/ my_funky_bl og_entry

Theindividual tokensin the URL would again be mapped into the params object with values available for year ,
nont h, day, i d and so on.

Dynamic Controller and Action Names
Variables can aso be used to dynamically construct the controller and action name. In fact the default Grails URL
mappings use this technique:

static mappings = {
"/ $controller/$action?/ $id?" ()
}

Here the name of the controller, action and id are implicitly obtained from the variablescont rol | er,acti on and
i d embedded within the URL.
Y ou can also resolve the controller name and action name to execute dynamically using a closure:

static mappings = {
"/$controller" {
action = { parans. goHere }

Optional Variables

Another characteristic of the default mapping is the ability to append a ? at the end of avariable to makeit an
optional token. In afurther example this technique could be applied to the blog URL mapping to have more flexible
linking:

static mappings = {
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control | er: "bl og", action:"show"')

With this mapping all of the below URL s would match with only the relevant parameters being populated in the
params object:

120

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html

121

/ graenmer ocher/ 2007/ 01/ 10/ my_funky_bl og_entry
/ gr aener ocher/ 2007/ 01/ 10

/ gr aener ocher/ 2007/ 01

/ gr aemer ocher /2007

/ gr aener ocher

Arbitrary Variables
Y ou can also pass arbitrary parameters from the URL mapping into the controller by merely setting them in the block
passed to the mapping:

"/ holi day/wi n" {
id = "Marrakech"
year = 2007

This variables will be available within the params object passed to the controller.

Dynamically Resolved Variables
The hard coded arbitrary variables are useful, but sometimes you need to calcul ate the name of the variable based on
runtime factors. Thisis also possible by assigning a block to the variable name:

"/ holi day/wi n" {
id={ parans.id }
isEligible = { session.user !'=null } // nust be |ogged in

In the above case the code within the blocks is resolved when the URL is actually matched and hence can be used in
combination with all sorts of logic.

6.4.3 Mappingto Views

If you want to resolve a URL to aview, without a controller or action involved, you can do so too. For example if
you wanted to map the root URL / to a GSP at the location gr ai | s- app/ vi ews/ i ndex. gsp you could use:

static mappings = {
"/"(view "/index") [/ map the root URL
}

Alternatively if you need aview that is specific to a given controller you could use:

static mappings = {
"/hel p"(controller:"site",view "help") // to a view for a controller
}

6.4.4 Mapping to Response Codes

Grails also alows you to map HTTP response codes to controllers, actions or views. All you haveto doisusea
method name that matches the response code you are interested in:

static mappings = {
"403"(control ler: "errors", action: "forbidden")
"404" (control ler: "errors", action: "notFound")
"500"(control ler: "errors", action: "serverError")

}

http://grails.org/doc/latest/ref/Controllers/params.html

Or aternatively if you merely want to provide custom error pages:

static mappings = {
"403"(view "/errors/forbidden")
"404" (view. "/errors/not Found")
"500"(view "/errors/serverError")

Declarative Error Handling
In addition you can configure handlers for individual exceptions:

static mappings = {
"403"(view "/errors/forbidden")
"404" (view. "/errors/notFound")
"500"(controller: "errors", action: "illegal Argunent”, exception: III|egal Argunent Exceptifo
"500"(controller: "errors", action: "null Pointer", exception: Null PointerException)
"500"(control ler: "errors", action: "custonException", exception: My/Exception)
"500"(view "/errors/serverError")

With this configuration, an | | | egal Ar gument Except i on will be handled by thei | | egal Ar gunment action
inErrorsController,aNul | Poi nt er Excepti on will be handled by thenul | Poi nt er action, and a
MyExcept i on will be handled by the cust onmExcept i on action. Other exceptions will be handled by the
catch-all ruleand usethe/ err or s/ server Err or view.

6.4.5 Mappingto HTTP methods

URL mappings can aso be configured to map based on the HTTP method (GET, POST, PUT or DELETE). Thisis
extremely useful for RESTful APIsand for restricting mappings based on HTTP method.
As an exampl e the following mappings provide a RESTful API URL mappings for the Pr oduct Cont rol | er:

static mappings = {
"/ product/$id"(controller:"product"){
action = [GET: "show', PUT:"update", DELETE:"delete", POST:"save"]
}

}

6.4.6 Mapping Wildcards

Grails URL mappings mechanism al so supports wildcard mappings. For example consider the following mapping:

static mappings = {
"/images/*.jpg"(controller:"i mage")
}

This mapping will match all paths to imagessuch as/ i mage/ | ogo. j pg. Of course you can achieve the same
effect with avariable:

static mappings = {
"/i mages/ $nane. j pg"(controller:"i mage")

However, you can also use double wildcards to match more than one level below:

122

123

static mappings = {
"/images/**.jpg"(controller:"image")
}

In this cases the mapping will match/ i mage/ | ogo. j pg aswell as/ i mage/ ot her /| ogo. j pg. Even better
you can use a double wildcard variable:

static mappings = {
/1 will match /image/l ogo.jpg and /inmage/ ot her/| ogo.jpg
"/i mages/ $nane**.j pg" (controller:"i nage")

}

In this case it will store the path matched by the wildcard inside a nanme parameter obtainable from the params
object:

def name = parans. nane
println name // prints "logo" or "other/| ogo"

If you are using wildcard URL mappings then you may want to exclude certain URIs from Grails URL mapping
process. To do thisyou can provide an excl udes setting inside the Ur | Mappi ngs. gr oovy class:

cl ass Url Mappi ngs = {
static excludes
static mappi ngs

}

["/images/*", "/css/*"]

In this case Grails won't attempt to match any URIsthat start with / i mages or/ css.
6.4.7 Automatic Link Re-Writing

Another great feature of URL mappings is that they automatically customize the behaviour of the link tag so that
changing the mappings don't require you to go and change al of your links.

Thisis done through a URL re-writing technique that reverse engineers the links from the URL mappings. So given a
mapping such as the blog one from an earlier section:

static mappi ngs =
"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" (control | er: "bl og", action:"show"')

If you use the link tag as follows:

<g:link controller

"bl og" action="show' paranms="[blog:'fred' , year:2007]">M/ Bl og</g:|ink>
<g:link controller="b

| og" action="show' parans="[blog:'fred' , year:2007, nonth:10]">M BI og

Grails will automatically re-write the URL in the correct format:

My Bl og</ a>
My Bl og - October 2007 Posts

http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Tags/link.html

6.4.8 Applying Constraints

URL Mappings also support Grails unified validation constraints mechanism, which alows you to further
"constrain” how a URL is matched. For example, if we revisit the blog sample code from earlier, the mapping
currently looks like this:

ngs = {

static mappi
g/ $year ?/ $nont h?/ $day?/ $i d?" (control |l er: "bl og", action:"show")

"/ $bl o

Thisalows URLSs such as:

/ graener ocher/ 2007/ 01/ 10/ my_funky_bl og _entry

However, it would also allow:

/ graenmerocher/ not _a_year/not_a_nonth/not _a day/ny_funky bl og entry

Thisis problematic as it forces you to do some clever parsing in the controller code. Luckily, URL Mappings can be
constrained to further validate the URL tokens:

"/ $bl og/ $year ?/ $nont h?/ $day?/ $i d?" {
controller = "bl og"
action = "show'
constraints {

year (mat ches: /\ d{4}/
nmont h(mat ches: /\ d{ 2}
day(mat ches: /\d{2}/)

)
l)

In this case the constraints ensure that the year , nont h and day parameters match a particular valid pattern thus
relieving you of that burden later on.

6.4.9 Named URL Mappings

URL Mappings also support named mappings. Simply put, named mappings are mappings which have a name
associated with them. The name may be used to refer to a specific mapping when links are being generated.
The syntax for defining a named mapping is as follows:

static mappings = {
name <mappi ng name>: <url pattern> {
...

}
}

An example:

124

static mappings = {
nane personList: "/showPeople" {

controller = 'person'
action = 'list’
nane accountDetails: "/details/$acctNunmber" {
control ler = 'product'
action = 'accountDetails'

The mapping may be referenced in alink tag in a GSP.

<g: | i nk mappi ng="personLi st">Li st Peopl e</g: | i nk>

That would result in:

Li st Peopl e</ a>

Parameters may be specified using the params attribute.

<g: |l i nk mappi ng="account Detai |l s" parans="[acct Nunber:' 8675309'] ">Show Account </ g: | i nk>

That would result in:

Show Account </ a>

Alternatively you may reference a named mapping using the link namespace.

<li nk: personLi st >Li st Peopl e</|i nk: personLi st >

That would result in:

Li st Peopl e</ a>

The link namespace approach allows parameters to be specified as attributes.

<l i nk:account Det ai | s acct Nunber ="8675309" >Show Account </ | i nk: account Det ai | s>

That would result in:

Show Account </ a>

125

6.5 Web Flow

Overview

Grails supports the creation of web flows built on the Spring Web Flow project. A web flow is a conversation that
spans multiple requests and retains state for the scope of the flow. A web flow also has a defined start and end state.
Web flows don't require an HT TP session, but instead store their state in a serialized form, which is then restored
using a flow execution key that Grails passes around as a request parameter. This makes flows far more scalable than
other forms of stateful application that use the HttpSession and its inherit memory and clustering concerns.

Web flow is essentially an advanced state machine that manages the "flow" of execution from one state to the next.
Since the state is managed for you, you don't have to be concerned with ensuring that users enter an action in the
middle of some multi step flow, as web flow manages that for you. This makes web flow perfect for use cases such
as shopping carts, hotel booking and any application that has multi page work flows.

Creating a Flow
To create aflow create aregular Grails controller and then add an action that ends with the convention FI ow. For

example:

cl ass BookController {
def index = {
redirect (action: "shoppi ngCart")

}
def shoppi ngCartFl ow = {

}
}

Notice when redirecting or referring to the flow as an action we omit the FI ow suffix. In other words the name of the
action of the above flow isshoppi ngCart .

6.5.1 Start and End States

As mentioned before aflow has a defined start and end state. A start state is the state which is entered when a user
first initiates a conversation (or flow). The start state of A Grails flow is the first method call that takes a block. For
example:

cl ass BookController {

def shoppi ngCartFl ow = {
showCart {
on("checkout").to "enterPersonal Details"
on("conti nueShoppi ng").to "di spl ayCat al ogue"
}

di spl ayCat al ogue {
redirect (controller:"catal ogue", action:"show")

di spl ayl nvoi ce()

Herethe showCar t nodeis the start state of the flow. Since the showCart state doesn't define an action or redirect it
is assumed be a view state that, by convention, refersto the view

grail s-app/ vi ews/ book/ shoppi ngCart/showCart. gsp.

Notice that unlike regular controller actions, the views are stored within a directory that matches the name of the
flow: grai | s-app/ vi ews/ book/ shoppi ngCart.

The shoppi ngCart flow aso hastwo possible end states. Thefirstisdi spl ayCat al ogue which performs an
external redirect to another controller and action, thus exiting the flow. The second isdi spl ayl nvoi ce whichis
an end state as it has no events at all and will simply render aview called

grail s-app/ vi ews/ book/ shoppi ngCart/ di spl ayl nvoi ce. gsp whilst ending the flow at the same
time.

Once aflow has ended it can only be resumed from the start state, in this case showCar t , and not from any other
state.

6.5.2 Action States and View States

126

http://www.springsource.org/webflow

127

View states
A view stateisaone that doesn't defineanact i on or ar edi r ect . So for example the below isaview state:

ent er Personal Detail s {
on("submt").to "enter Shipping"
on("return").to "showCart"

}

It will look for aview caled gr ai | s- app/ vi ews/ book/ shoppi ngCart/ ent er Personal Detai |l s. gsp
by default. Note that the ent er Per sonal Det ai | s state definestwo events: subni t andr et urn. Theview is
responsible for triggering these events. If you want to change the view to be rendered you can do so with the render
method:

ent er Personal Detai |l s {
render (vi ew "enterDet ai | sView')
on("submt").to "enter Shipping"
on("return").to "showCart"

Now it will look for gr ai | s- app/ vi ews/ book/ shoppi ngCart/ ent er Det ai | sVi ew. gsp. If you want
to use a shared view, start with a/ in view argument:

ent er Personal Detai |l s {
render (vi ew. "/ shared/ enterDetail sView')
on("submt").to "enter Shipping"
on("return").to "showCart"

}

Now it will look for gr ai | s- app/ vi ews/ shar ed/ ent er Det ai | sVi ew. gsp

Action States

An action state is a state that executes code but does not render any view. The result of the action is used to dictate
flow transition. To create an action state you need to define an action to to be executed. Thisis done by calling the
act i on method and passing it a block of code to be executed:

| i st Books ({
action {
[bookLi st: Book.list()]

on("success").to "showCat al ogue"
on(Exception).to "handl eError"

Asyou can see an action looks very similar to a controller action and in fact you can re-use controller actions if you
want. If the action successfully returns with no errorsthe success event will be triggered. In this case since we
return amap, thisis regarded as the "model" and is automatically placed in flow scope.

In addition, in the above example we also use an exception handler to deal with errors on the line:

on(Exception).to "handl eError"

What this does is make the flow transition to a state called handl eEr r or in the case of an exception.
Y ou can write more complex actions that interact with the flow request context:

processPurchaseOrder {

action {
def a = flow address
def p = fl ow person

def pd = flow paynentDetails

def cartltens = flow cartltens

flow. cl ear()

def o = new Order(person:p, shippi ngAddress: a, paynentDetail s: pd)
0. i nvoi ceNunber = new Randon{). next | nt (9999999)

cartltenms. each { o.addToltens(it) }

0. save()

[order: o]

on("error").to "confirnmPurchase"
on(Exception).to "confirnPurchase"
on("success").to "di spl ayl nvoi ce"

Here is amore complex action that gathers all the information accumulated from the flow scope and creates an
Or der object. It then returns the order as the model. The important thing to note here is the interaction with the
request context and "flow scope”.

Transition Actions
Another form of action iswhat is known as atransition action. A transition action is executed directly prior to state
transition once an event has been triggered. A trivial example of atransition action can be seen below:

ent er Personal Detai |l s {
on("submt") {
log.trace "CGoing to enter shipping"
}.to "enter Shippi ng"
on("return").to "showCart"

}

Notice how we pass a block of the codeto subm t event that smply logs the transition. Transition states are
extremely useful for data binding and validation, which is covered in alater section.

6.5.3 Flow Execution Events

In order to transition execution of aflow from one state to the next you need some way of trigger an event that
indicates what the flow should do next. Events can be triggered from either view states or action states.

Triggering Eventsfrom a View State
As discussed previously the start state of the flow in a previous code listing deals with two possible events. A
checkout event andacont i nueShoppi ng event:

def shoppi ngCart Fl ow = {
showCart {
on("checkout").to "enterPersonal Details"
on("conti nueShoppi ng").to "di spl ayCat al ogue"

Sincethe showCar t eventisaview state it will render the view
grail s-app/ book/ shoppi ngCart/ showCart . gsp. Within this view you need to have components that
trigger flow execution. On aform this can be done use the submitButton tag:

<g: form acti on="shoppi ngCart " >
<g: submi t But t on nane="conti nueShoppi ng" val ue="Conti nue Shoppi ng"></ g: submi t Butt on>
<g: submi t But t on name="checkout" val ue="Checkout"></g: subm t Button>

</g:forne

128

http://grails.org/doc/latest/ref/Tags/submitButton.html

129

The form must submit back to the shoppi ngCart flow. The name attribute of each submitButton tag signals
which event will be triggered. If you don't have aform you can aso trigger an event with the link tag as follows:

<g:link action="shoppi ngCart" event="checkout" />

Triggering Eventsfrom an Action
Totrigger an event from an act i on you need to invoke a method. For example thereisthe builtinerror () and
success() methods. The example below triggerstheer r or () event on validation failure in atransition action:

ent er Personal Detai |l s {
on("submt") {
def p = new Person(parans)
fl ow. person =
if(!p.validate())return error()
}.to "enter Shi pping"
on("return").to "showCart"

In this case because of the error the transition action will make the flow go back to the ent er Per sonal Det ai | s

state.
With an action state you can also trigger events to redirect flow:

shi ppi ngNeeded {
action {
i f (params. shi ppi ngRequi red) yes()
el se no()

}
on("yes").to "enter Shi ppi ng"
on("no").to "enterPaynent"

6.5.4 Flow Scopes

Scope Basics
You'll notice from previous examples that we used a special object called f | owto store objects within "flow scope”.
Grails flows have 5 different scopes you can utilize:

© request - Storesan object for the scope of the current request

© fl ash - Storesthe object for the current and next request only

° fl ow- Stores objects for the scope of the flow, removing them when the flow reaches an end state

© conver sati on - Stores objects for the scope of the conversation including the root flow and nested
subflows

sessi on - Stores objects inside the users session

o

Grails service classes can be automatically scoped to aweb flow scope. See the
documentation on Services for more information.

Also returning a model map from an action will automatically result in the model being placed in flow scope. For
example, using atransition action, you can place objects within f | ow scope as follows:

ent er Personal Detail s {
on("submt") {
[per son: new Per son(par ans) |
}.to "enter Shi pping"
on("return").to "showCart"

http://grails.org/doc/latest/ref/Tags/submitButton.html
http://grails.org/doc/latest/ref/Tags/link.html

Be aware that a new request is always created for each state, so an object placed in request scope in an action state
(for example) will not be available in a subsequent view state. Use one of the other scopes to pass objects from one
state to another. Also note that Web Flow:

1. Moves objects from flash scope to request scope upon transition between states;
2. Merges objects from the flow and conversation scopes into the view model before rendering (so you shouldn't
include a scope prefix when referencing these objects within aview, e.g. GSP pages).

Flow Scopes and Serialization

When placing objectsinf | ash, f| owor conver sat i on scope they must implement

java.io. Serializabl e otherwise you will get an error. This has an impact on domain classes in that domain
classes are typically placed within a scope so that they can be rendered in a view. For example consider the following
domain class:

cl ass Book {
String title

In order to place an instance of the Book classin aflow scope you will need to modify it as follows:

cl ass Book inplenments Serializable {
String title

This also impacts associations and closures you declare within a domain class. For example consider this:

cl ass Book inplenments Serializable {
String title
Aut hor aut hor

Hereif the Aut hor associationisnot Seri al i zabl e you will also get an error. This aso impacts closures used
in GORM events such asonLoad, onSave and so on. The following domain class will cause an error if an instance
isplaced in aflow scope:

cl ass Book inplenments Serializable {
String title
def onLoad = {
println "I'm | oadi ng"

The reason is that the assigned block on the onLoad event cannot be serialized. To get around this you should
declare dl eventsast r ansi ent :

cl ass Book inplenents Serializable {
String title
transi ent onLoad = {
println "1'm |l oadi ng"

6.5.5 Data Binding and Validation

130

In the section on start and end states, the start state in the first example triggered a transition to the
ent er Per sonal Det ai | s state. This state renders aview and waits for the user to enter the required information:

ent er Personal Detail s {
on("submt").to "enter Shipping"
on("return").to "showCart"

}

The view contains aform with two submit buttons that either trigger the submit event or the return event:

<g: form acti on="shoppi ngCart" >
<I-- OGher fields -->
<g: submi t Button nanme="submit" val ue="Conti nue"></g: submi t Button>
<g: subm t Button name="return" val ue="Back"></g: submi t Button>

</ g: fornmp

However, what about the capturing the information submitted by the form? To to capture the form info we can use a
flow transition action:

ent er Personal Detai |l s {
on("submt") {
fl ow. person = new Person(par ans)
Iflow person.validate() ? error() : success()
}.to "enter Shippi ng"
on("return").to "showCart"

Notice how we perform data binding from request parameters and place the Per son instance within f | ow scope.
Alsointeresting is that we perform validation and invoke the er r or () method if validation fails. This signalsto the
flow that the transition should halt and return to the ent er Per sonal Det ai | s view so valid entries can be
entered by the user, otherwise the transition should continue and go to the ent er Shi ppi ng state.

Like regular actions, flow actions al so support the notion of Command Objects by defining the first argument of the
closure:

ent er Personal Detail s {
on("submt") { PersonDetail sConmand cnd ->
fl ow. personDetails = cnd
1flow personDetails.validate() ? error() : success()
}.to "enter Shippi ng"
on("return”).to "showCart"

}

6.5.6 Subflows and Conver sations

Grails Web Flow integration also supports subflows. A subflow islike aflow within aflow. For example take this
search flow:

131

def searchFl ow = {
di spl aySear chForm {
on("submt").to "executeSearch"

execut eSear ch {
action {
[resul ts:searchServi ce. execut eSear ch(parans. q)]

on("success").to "displayResul ts"
on("error").to "displ aySear chFor nt

}

di spl ayResul ts {
on("searchDeeper").to "extendedSearch"
on("searchAgai n").to "di spl aySear chFor nf

}

ext endedSearch {
subf | ow ext endedSear chFl ow) /] <--- extended search subfl ow
on("noreResults").to "displ ayMreResul ts"
on("noResul ts").to "di spl ayNoMor eResul t s"

}
di spl ayMor eResul t s()
di spl ayNoMor eResul t s()

It references a subflow in the ext endedSear ch state. The subflow is another flow entirely:

def extendedSear chFl ow = {
st art Ext endedSear ch {
on("findMore").to "searchMore"
on("searchAgain").to "noResul ts"

searchMore {
action {
def results = searchService. deepSearch(ctx. conversati on. query)
if(!'results)return error()
conversation. extendedResults = results

on("success").to "noreResul ts"
on("error").to "noResul ts"

}
nmor eResul t s()
noResul t s()

Notice how it places the ext endedResul t s in conversation scope. This scope differsto flow scope asit allows
you to share state that spans the whole conversation not just the flow. Also notice that the end state (either
nmor eResul t s or noResul t s of the subflow triggers the events in the main flow:

ext endedSear ch {
subf | ow ext endedSear chFl ow) /1 <--- extended search subfl ow
on("nmoreResults").to "displayMreResul ts"
on("noResul ts").to "di spl ayNoMor eResul t s"

6.6 Filters

Although Grails controllers support fine grained interceptors, these are only really useful when applied to afew
controllers and become difficult to manage with larger applications. Filters on the other hand can be applied across a
whole group of controllers, a URI space or ato a specific action. Filters are far easier to plug-in and maintain
completely separately to your main controller logic and are useful for all sorts of cross cutting concerns such as
security, logging, and so on.

6.6.1 Applying Filters

To create afilter create a class that ends with the convention Fi | t er s inthegr ai | s- app/ conf directory.
Within this class define acode block called f i | t er s that contains the filter definitions:

132

133

cl ass Exanpl eFilters {
def filters = {
/1 your filters here

Each filter you define withinthef i | t er s block has a name and a scope. The name is the method name and the
scope is defined using named arguments. For example if you need to define afilter that appliesto all controllers and
all actions you can use wildcards:

sanpleFilter(controller:"*"', action:'*") {
/1 interceptor definitions
}

The scope of the filter can be one of the following things:

© A controller and/or action name pairing with optional wildcards
° A URI, with Ant path matching syntax
Filter rule attributes:

control | er - controller matching pattern, by default * is replaced with .* and aregex is compiled
act i on - action matching pattern, by default * is replaced with .* and aregex is compiled
r egex (trueffalse) - use regex syntax (don't replace *' with '.*")
uri -auri to match, expressed with as Ant style path (e.g. /book/**)
fi nd (trueffase) - rule matches with partial match (see java.util.regex.Matcher.find())
° invert (trueffase) - invert the rule (NOT rule)
Some examples of filtersinclude:

O O O O O

© All controllers and actions

all (controller:"*", action:'*") {

© Only for the BookCont rol | er

just Book(control |l er:'book', action:'*") {

© All controllers except the BookCont r ol | er

not Book(control | er: ' book', invert:true) {

}

© All actions containing 'save' in the action name

savel nActi onNane(action:'save', find:true) {

° Applied to aURI space

soneURI s(uri:'/book/**") {
}

© Appliedtoal URIs

?IIURIs(uri:'/**') {

In addition, the order in which you define the filterswithinthef i | t er s code block dictates the order in which they
are executed. To control the order of execution between Fi | t er s classes, you can use the depends On property
discussed in filter dependencies section.

6.6.2 Filter Types

Within the body of the filter you can then define one or several of the following interceptor types for the filter:

© bef or e - Executed before the action. Can return false to indicate al future filters and the action should not
execute
© after - Executed after an action. Takes afirst argument as the view model
© afterVi ew- Executed after view rendering
For example to fulfill the common authentication use case you could define afilter asfollows:

class SecurityFilters {
def filters = {
| ogi nCheck(controller:'*", action:'*") {
before = {
i f(!session.user &% !actionNane.equals('login')) {
redirect (action:'login)
return fal se

Herethel ogi nCheck filter usesabef or e interceptor to execute ablock of code that checksif auser isin the
session and if not redirects to the login action. Note how returning false ensure that the action itself is not executed.

6.6.3 Variables and Scopes

Filters support al the common properties available to controllers and tag libraries, plus the application context:

request - The HttpServletRequest object

response - The HttpServletResponse object

session - The HttpSession object

servietContext - The ServletContext object

flash - The flash object

params - The request parameters object

actionName - The action name that is being dispatched to
controllerName - The controller name that is being dispatched to
grailsApplication - The Grails application currently running
applicationContext - The ApplicationContext object

However, filters only support a subset of the methods available to controllers and tag libraries. These include:

O 0O 0O 0O O O O O O O

© redirect - For redirects to other controllers and actions
© render - For rendering custom responses

6.6.4 Filter Dependencies

InaFi |t ers class, you can specify any other Fi | t er s classes that should first be executed using the

134

http://grails.org/doc/latest/ref/Controllers/request.html
http://grails.org/doc/latest/ref/Controllers/response.html
http://grails.org/doc/latest/ref/Controllers/session.html
http://grails.org/doc/latest/ref/Controllers/servletContext.html
http://grails.org/doc/latest/ref/Controllers/flash.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/actionName.html
http://grails.org/doc/latest/ref/Controllers/controllerName.html
http://grails.org/doc/latest/ref/Controllers/grailsApplication.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://grails.org/doc/latest/ref/Controllers/redirect.html
http://grails.org/doc/latest/ref/Controllers/render.html

135

dependsOn property. The dependsOn property isused when aFi | t er s class depends on the behavior of
another Fi | t er s class (e.g. setting up the environment, modifying the request/session, etc.) and is defined as an
array of Fi | t er s classes.

Take the following exampleFi | t er s classes:

class M/Filters {
def dependsOn = [MyQt herFilters]
def filters = {
checkAwesome(uri:"/*") {
before = {
if (request.isAwesone) { // do something awesone }

checkAwesome2(uri:"/*") {
before = {
if (request.isAwesone) { // do sonething el se awesone }

}
}

}
class My herFilters {
def filters = {
makeAwesone(uri:"/*") {
before = {
request.i sAwesone = true;

}
doNot hi ng(uri:"/*") {
before = {
/1 do not hing
}

MyFilters specifically depends On MyOtherFilters. Thiswill cause all the filtersin MyOtherFilters to be executed
before those in MyFilters, given their scope matches the current request. For arequest of "/test”, which will match
the scope of every filter in the example, the execution order would be as follows:

MyOtherFilters - makeAwesome
MyOtherFilters - doNothing
MyFilters - checkAwesome

© MykFilters - checkAwesome2
The filters within the MyOtherFilters class are processed in order first, followed by thefilters in the MyFilters class.
Execution order between Fi | t er s classes are enabled and the execution order of filterswithineach Fi | t er s
class are preserved.
If any cyclical dependencies are detected, the filters with cyclical dependencies will be added to the end of the filter
chain and processing will continue. Information about any cyclical dependencies that are detected will be written to
the logs. Ensure that your root logging level is set to at least WARN or configure an appender for the Grails Filters
Plugin (org.codehaus.groovy.grails.plugins.web.filters.FiltersGrail sPlugin) when debugging filter dependency issues.

6.7 Ajax

o O O

Ajax stands for Asynchronous Javascript and XML and is the driving force behind the shift to richer web
applications. These types of applicationsin general are better suited to agile, dynamic frameworks written in
languages like Ruby and Groovy Grails provides support for building Ajax applications through its Ajax tag library
for afull list of these see the Tag Library Reference.

6.7.1 Ajax using Prototype

By default Grails ships with the Prototype library, but through the Plug-in system provides support for other
frameworks such as Dojo Y ahoo Ul and the Google Web Toolkit
This section covers Grails' support for Prototype. To get started you need to add this line to the <head> tag of your

page:

<g:javascript library="prototype" />

http://www.ruby-lang.org/
http://groovy.codehaus.org.
http://www.prototypejs.org/
http://dojotoolkit.org/,
http://developer.yahoo.com/yui/
http://code.google.com/webtoolkit/.

This uses the javascript tag to automatically place the correct references in place for Prototype. If you require
Scriptaculous too you can do the following instead:

<g:javascript library="scriptacul ous" />

This works because of Grails' support for adaptive tag libraries. Thanks to Grails' plugin system there is support for a
number of different Ajax librariesincluding (but not limited to):

© prototype
° dojo

o yui

© mootools

6.7.1.1 Remoting Linking

Remote content can be loaded in anumber of ways, the most commons way is through the remotel ink tag. Thistag
allows the creation of HTML anchor tags that perform an asynchronous request and optionally set the responsein an
element. The simplest way to create aremote link is as follows:

<g: renoteLi nk acti on="del ete" id="1">Del et e Book</g: renot eLi nk>

The above link sends an asynchronous request to the del et e action of the current controller with anid of 1.

6.7.1.2 Updating Content

Thisisgreat, but usually you would want to provide some kind of feedback to the user as to what has happened:

def delete = {
def b = Book.get(parans.id)
b. del et e()
render "Book ${b.id} was del eted"

GSP code:

<di v i d="nessage"></di v>
<g:renot eLi nk action="del ete" id="1" update="nessage">Del ete Book</g: renoteLi nk>

The above example will call the action and set the contents of the nessage di v to the response in this case " Book
1 was del et ed". Thisisdone by the updat e attribute on the tag, which can also take a map to indicate what
should be updated on failure:

<di v i d="nmessage" ></di v>
<div id="error"></div>
<g: renoteLi nk acti on="del ete" id="1"
updat e="[success: ' nmessage' ,failure:" ' error']">Del ete Book</g:renotelLi nk>

Heretheer r or div will be updated if the request failed.

6.7.1.3 Remote Form Submission

An HTML form can also be submitted asynchronously in one of two ways. Firstly using the formRemote tag which
expects similar attributes to those for the remotel ink tag:

136

http://grails.org/doc/latest/ref/Tags/javascript.html
http://script.aculo.us/
http://grails.org/doc/latest/ref/Tags/remoteLink.html
http://grails.org/doc/latest/ref/Tags/formRemote.html
http://grails.org/doc/latest/ref/Tags/remoteLink.html

137

<g:fornRenote url="[control |l er:'book',action:"'delete']"
updat e="[success: ' nessage' ,failure:"error']">
<i nput type="hi dden" nane="id" val ue="1" />
<i nput type="submt" val ue="Del ete Book!" />
</ g: fornRenote >

Or alternatively you can use the submitToRemote tag to create a submit button. This allows some buttons to submit
remotely and some not depending on the action:

<form acti on="del ete">

<i nput type="hi dden" nane="id" val ue="1" />

<g: submi t ToRenpt e acti on="del ete" update="[success:' nessage',failure:"error']" />
</form

6.7.1.4 Ajax Events

Specific javascript can be called if certain events occur, al the events start with the "on" prefix and alow you to give
feedback to the user where appropriate, or take other action:

<g: renot eLi nk acti on="show"
i d="1"
updat e="success"
onLoadi ng="showPr ogress()"
onConpl et e="hi dePr ogr ess() ">Show Book 1</g:renoteli nk>

The above code will execute the "showProgress()" function which may show a progress bar or whatever is
appropriate. Other events include:

© onSuccess - Thejavascript function to call if successful

© onFai | ur e - Thejavascript function to call if the call failed

© on_ERROR _CODE - Thejavascript function to call to handle specified error codes (eg on404="alert(‘not
found!")")

onUni ni tiali zed - Thejavascript function to call the agjax enginefailed to initialise

onLoadi ng - Thejavascript function to call when the remote function is loading the response

onLoaded - Thejavascript function to call when the remote function is completed loading the response
onConpl et e - Thejavascript function to call when the remote function is complete, including any updates
If you need areference to the Xm Ht t pRequest object you can use theimplicit event parameter e to obtain it:

O O O O

<g:j avascri pt >
function fireMe(e) {
alert("Xm Htt pRequest =" + e)

</ g:javascript>
<g: renot eLi nk acti on="exanpl e"
updat e="success"
onSuccess="fireMe(e)">A ax Link</g:renoteLink>

6.7.2 Ajax with Dojo

Grails features an external plug-in to add Dojo support to Grails. To install the plug-in type the following command
from the root of your project in aterminal window:

grails install-plugin dojo

Thiswill download the current supported version of Dojo and install it into your Grails project. With that done you

http://grails.org/doc/latest/ref/Tags/submitToRemote.html
http://dojotoolkit.org/

can add the following reference to the top of your page:

<g:javascript library="dojo" />

Now all of Grailstags such as remotel ink, formRemote and submitToRemote work with Dojo remoting.

6.7.3 Ajax with GWT

Grails also features support for the Google Web Toolkit through a plug-in comprehensive documentation for can be
found on the Grails wiki.

6.7.4 Ajax on the Server

Although Ajax features the X for XML there are a number of different ways to implement Ajax which are typically
broken down into:

© Content Centric Ajax - Where you merely use the HTML result of aremote call to update the page
© Data Centric Ajax - Where you actually send an XML or JSON response from the server and
programmatically update the page
o Script Centric Ajax - Where the server sends down a stream of Javascript to be evaluated on the fly
Most of the examplesin the Ajax section cover Content Centric Ajax where you are updating the page, but you may
also want to use Data Centric or Script Centric. This guide covers the different styles of Ajax.

Content Centric Ajax
Just to re-cap, content centric Ajax involves sending some HTML back from the server and is typically done by
rendering atemplate with the render method:

def showBook = {
def b = Book. get (parans.id)
render (t enpl at e: "bookTenpl ate", nodel : [book: b])

Calling this on the client involves using the remotel ink tag:

<g: renot eLi nk acti on="showBook" i d="${book.id}"
updat e="book${ book. i d} ">Updat e Book</ g: r enot eLi nk>
<di v id="book${book.id}">
<!'--existing book mark-up -->
</ div>

Data Centric Ajax with JISON
Data Centric Ajax typically involves evaluating the response on the client and updating programmatically. For a
JSON response with Grails you would typically use Grails' JSON marshaling capability:

i nport grails.converters.*

def showBook = {
def b = Book. get (parans.id)
render b as JSON

And then on the client parse the incoming JSON reguest using an Ajax event handler:

138

http://grails.org/doc/latest/ref/Tags/remoteLink.html
http://grails.org/doc/latest/ref/Tags/formRemote.html
http://grails.org/doc/latest/ref/Tags/submitToRemote.html
http://code.google.com/webtoolkit/
http://grails.org/GWT+Plugin
http://grails.org/doc/latest/ref/Controllers/render.html
http://grails.org/doc/latest/ref/Tags/remoteLink.html

139

<g:j avascri pt>
function updat eBook(e) {
var book = eval ("("+e.responseText+")") // evaluate the JSON
$("book" + book.id + " _title").innerHTM. = book.title
}
<g:j avascri pt >
<g: renoteLi nk action="test" update="fo00" onSuccess="updat eBook(e)">Update Book</g: renoteLi
<g: set var="bookl d">book${book. i d} </ g: set >
<di v id="${bookl d}">
<di v id="${bookld} title">The Stand</div>
</ div>

Data Centric Ajax with XML
On the server side using XML is equally trivial:

i nport grails.converters.*

def showBook = {
def b = Book. get (parans.id)
render b as XM

However, since DOM isinvolved the client gets more complicated:

<g:j avascri pt >
function updat eBook(e) {
var xm = e.responseXM
var id = xm . get El enent sByTagNanme("book").getAttribute("id")
$("book" + id + " _title") = xml.getEl enentsByTagNane("title")[0].textContent

<g:j avascri pt >
<g: renot eLi nk acti on="test" update="fo00" onSuccess="updat eBook(e)">Updat e Book</g: renotelLi
<g: set var="bookl d">book${book. i d} </ g: set >
<di v id="${bookld}">

<div id="${bookld}_title">The Stand</div>
</ di v>

Script Centric Ajax with JavaScript
Script centric Ajax involves actually sending Javascript back that gets evaluated on the client. An example of this can
be seen below:

def showBook = {
def b = Book. get (parans.id)
response. content Type = "text/javascript”
String title = b.title.encodeAsJavascri pt ()
render "$(' book${b.id} title)= ${title}""

The important thing to remember isto set thecont ent Type tot ext/j avascri pt . If you are using Prototype
on the client the returned Javascript will automatically be evaluated due to thiscont ent Type setting.

Obvioudly in this caseit is critical that you have an agreed client-side API as you don't want changes on the client
breaking the server. Thisis one of the reasons Rails has something like RJS. Although Grails does not currently have
afeature such as RIS there is a Dynamic JavaScript Plug-in that offers similar capabilities.

6.8 Content Negotiation

Grails has built in support for Content negotiation using either the HTTP Accept header, an explicit format request
parameter or the extension of a mapped URI.

Configuring Mime Types
Before you can start dealing with content negotiation you need to tell Grails what content types you wish to support.
By default Grails comes configured with a number of different content types within

http://grails.org/Dynamic+Javascript+Plugin
http://en.wikipedia.org/wiki/Content_negotiation

grail s-app/ conf/ Confi g. groovy usingthegrail s. m ne. t ypes setting:

grails.mne.types = [xm: ['"text/xm', 'application/xm"],
text: '"text-plain',
js: "text/javascript',
rss: 'application/rss+xm ',
atom ‘' application/atomtxm "',
css: 'text/css',
csv: 'text/csv',
all: "*/*"
json: 'text/json',
html: ["text/html', " application/xhtm +xm "]

The above bit of configuration allows Grails to detect to format of areguest containing either the ‘text/xml’ or
‘application/xml’ media types as simply 'xml'. Y ou can add your own types by simply adding new entriesinto the

map.

Content Negotiation using the Accept header
Every incoming HTTP request has a special Accept header that defines what media types (or mime types) aclient
can "accept”. In older browsersthisistypically:

/

Which simply means anything. However, on newer browser something all together more useful is sent such as (an
example of aFirefox Accept header):

~

text/xm , application/xm ,application/xhtm +xm ,text/htm ; g=0.9, text/plain;q=0.8,inagel/png,}

Grails parses this incoming format and adds apr oper t y to the request object that outlines the preferred request
format. For the above example the following assertion would pass:

assert 'htm' == request.format

Why? Thet ext / ht Ml mediatype has the highest "quality" rating of 0.9, therefore is the highest priority. If you
have an older browser as mentioned previously the result is slightly different:

assert 'all' == request.fornmat

In this case 'all' possible formats are accepted by the client. To deal with different kinds of requests from Controllers
you can use the withFormat method that acts as kind of a switch statement:

i nport grails.converters.*
cl ass BookController {
def books
def list = {
t hi s. books = Book. list()
wi t hFormat {
ht M bookLi st : books
is { render "alert('hello)" }
xm { render books as XM }

140

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://grails.org/doc/latest/ref/Servlet API/request.html
http://grails.org/doc/latest/ref/Controllers/withFormat.html

141

What happens hereisthat if the preferred format isht m then Grails will execute the ht mi () call only. What this
is doesis make Grailslook for aview called either gr ai | s- app/ vi ews/ books/ i st. htm .gspor

grail s-app/ vi ews/ books/ |ist. gsp.Iftheformatisxni thenthe closure will be invoked and an XML
response rendered.

How do we handle the "all" format? Simply order the content-types within your wi t hFor mat block so that
whichever one you want executed comes first. So in the above example, "al" will trigger the ht i handler.

When using withFormat make sureit is the last call in your controller action as the return
value of thewi t hFor mat method is used by the action to dictate what happens next.

Content Negotiation with the format Request Par ameter
If fiddling with request headers if not your favorite activity you can override the format used by specifying a
f or mat request parameter:

/ book/ |'i st ?f or mat =xni

Y ou can also define this parameter in the URL Mappings definition:

"/ book/list"(controller:"book", action:"list") {
format = "xm"
}

Content Negotiation with URI Extensions
Grails also supports content negotiation via URI extensions. For example given the following URI:

/ book/ l'i st . xn

Grails will shave off the extension and map itto / book/ | i st instead whilst simultaneously setting the content
format to xm based on this extension. This behaviour is enabled by default, so if you wish to turn it off, you must
setthegrail s. mine. fil e. ext ensi ons property ingr ai | s- app/ conf/ Confi g. groovy tof al se:

grails.mne.file.extensions = fal se

Testing Content Negotiation
To test content negotiation in an integration test (see the section on Testing) you can either manipulate the incoming
request headers:

voi d testJavascri ptQutput () {
def controller = new TestController()
control |l er.request. addHeader "Accept”,
"text/javascript, text/htm, application/xm, text/xm,k */*"
control l er.testAction()
assertEquals "alert('hello")", controller.response.contentAsString

Or you can set the format parameter to achieve a similar effect:

http://grails.org/doc/latest/ref/Controllers/withFormat.html

voi d testJavascri pt Qut put ()

{
def controller = new TestController()

control |l er.paranms. format = 'js'

controller.testAction()
assert Equals "alert('hello)",

control | er.response. content AsStri ng

142

7. Validation

Grails validation capability is built on Spring's Validator APl and data binding capabilities. However Grails takes
this further and provides a unified way to define validation "constraints* with its constraints mechanism.
Constraintsin Grails are away to declaratively specify validation rules. Most commonly they are applied to domain
classes, however URL Mappings and Command Objects also support constraints.

7.1 Declaring Constraints

Within a domain class a constraints are defined with the constraints property that is assigned a code block:

class User {
String login
String password
String enuil
I nt eger age
static constraints = {

}

Y ou then use method calls that match the property name for which the constraint applies in combination with named
parameters to specify constraints:

class User {

static constraints = {
| ogi n(si ze:5..15, blank:fal se, unique:true)
passwor d(si ze: 5..15, bl ank:false)
emai | (emai | :true, blank:false)
age(m n: 18, null abl e:fal se)

In this example we've declared that the | ogi n property must be between 5 and 15 characters long, it cannot be blank
and must be unique. We've all applied other constraints to the passwor d, emai | and age properties.

A complete reference for the available constraints can be found on the reference guide

7.2 Validating Constraints

Validation Basics
To validate adomain class you can call the validate method on any instance:

def user = new User (parans)
i f(user.validate()) {
/1 do sonething with user

el se {
user.errors.all Errors. each {
println it

Theer r or s property on domain classesis an instance of the Spring Errorsinterface. The Er r or s interface
provides methods to navigate the validation errors and also retrieve the original values.

Validation Phases

143

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/package-summary.html
http://grails.org/doc/latest/ref/Domain Classes/constraints.html
http://grails.org/doc/latest/ref/Domain Classes/validate.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/Errors.html

Within Grails there are essentially 2 phases of validation, the first phase is data binding which occurs when you bind
reguest parameters onto an instance such as:

def user = new User (parans)

At this point you may aready have errorsinthe er r or s property due to type conversion (such as converting Strings
to Dates). Y ou can check these and obtain the original input value using the Er r or s API:

i f(user.hasErrors()) {
i f(user.errors. hasFieldErrors("login")) {
println user.errors.getFieldError("login").rejectedVal ue

The second phase of validation happens when you call validate or save. Thisis when Grails will validate the bound
values againts the constraints you defined. For example, by default the persistent save method callsval i dat e
before executing hence allowing you to write code like:

i f(user.save()) {
return user

el se {
user.errors.all Errors. each {
printlnit

7.3 Validation on the Client

Displaying Errors
Typicaly if you get avalidation error you want to redirect back to the view for rendering. Once there you need some

way of rendering errors. Grails supports arich set of tags for dealing with errors. If you simply want to render the
errors as alist you can use renderErrors:

<g:renderErrors bean="${user}" />

If you need more control you can use hasErrors and eachError:

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
${err}
</ g: eachError>
</ ul >
</ g: hasErrors>

Highlighting Errors

It is often useful to highlight using ared box or some indicator when afield has been incorrectly input. This can also
be done with the hasErrors by invoking it as a method. For example:

<di v class='val ue ${hasErrors(bean:user,field:"login',"errors')}'>

og
<input type="text" name="|ogin" val ue="${fi el dval ue(bean: user,field:"'login)}"/>
</ di v>

144

http://grails.org/doc/latest/ref/Domain Classes/validate.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Domain Classes/constraints.html
http://grails.org/doc/latest/ref/Domain Classes/save.html
http://grails.org/doc/latest/ref/Tags/renderErrors.html
http://grails.org/doc/latest/ref/Tags/hasErrors.html
http://grails.org/doc/latest/ref/Tags/eachError.html
http://grails.org/doc/latest/ref/Tags/hasErrors.html

145

What this code doesis check if thel ogi n field of the user bean hasany errorsand if it doesaddsan err or s CSS
classtothedi v thus alowing you to use CSS rulesto highlight the di v.

Retrieving Input Values
Each error is actually an instance of the FieldError classin Spring, which retains the origina input value within it.
Thisis useful as you can use the error abject to restore the value input by the user using the fieldValue tag:

<i nput type="text" name="l|ogin" val ue="${fi el dval ue(bean: user,field:'login)}"/>

This code will look if thereisan existing Fi el dEr r or inthe User bean and if there is obtain the originally input
valuefor thel ogi n field.

7.4 Validation and I nternationalization

Another important thing to note about errorsin Grailsis that the messages that the errors display are not hard coded
anywhere. The FieldError classin Spring essentially resolves messages from message bundles using Grails i18n
support.

Constraints and M essage Codes
The codes themselves are dictated by a convention. For example consider the constraints we looked at earlier:

package com nmyconpany. nyapp
class User {

static constraints =
| ogi n(si ze:5..15, blank:fal se, unique:true)
passwor d(si ze: 5. .15, bl ank:false)
emai | (emai | :true, blank:false)
age(m n: 18, null abl e: fal se)

If the bl ank constraint was violated Grails will, by convention, look for a message code in the form:

[A ass Nane].[Property Nanme].[Constraint Code]

In the case of the bl ank constraint thiswould beuser . | ogi n. bl ank so you would need a message such as the
following inyour gr ai | s- app/i 18n/ messages. properti es file

user. | ogi n. bl ank=Your | ogi n name nust be specified!

The class nameis looked for both with and without a package, with the packaged version taking precedence. So for
example, com.mycompany.myapp.User.login.blank will be used before user.login.blank. This allows for cases where
you domain class encounters message code clashes with plugins.

For areference on what codes are for which constraints refer to the reference guide for each constraint.

Displaying M essages
The renderErrors tag will automatically deal with looking up messages for you using the message tag. However, if
you need more control of rendering you will need to do this yourself:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://grails.org/doc/latest/ref/Tags/fieldValue.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/validation/FieldError.html
http://grails.org/doc/latest/ref/Tags/renderErrors.html
http://grails.org/doc/latest/ref/Tags/message.html

<g: hasErrors bean="${user}">

<g: eachError var="err" bean="${user}">
<g: message error="%{err}" /></Ii>
</ g: eachError>
</ ul >
</ g: hasErrors>

In this example within the body of the eachError tag we use the message tag in combination with itser r or
argument to read the message for the given error.

7.5 Validation Non Domain and Command Object Classes

Domain classes and command objects support validation by default. Other classes may be made validateable by
defining the static constraints property in the class (as described above) and then telling the framework about them. It
isimportant that the application register the validateabl e classes with the framework. Simply defining the constraints
property is not sufficient.

The Validateable Annotation
Classes which define the static constraints property and are marked with the @V alidateable annotation may be made
validateable by the framework. Consider this example:

/'l src/groovy/ coml nyconpany/ nyapp/ User. gr oovy

package com nyconpany. nyapp

i mport org. codehaus. groovy. grails.validation.Validateable
@al i dat eabl e

cl ass User {

static constraints = {
| ogi n(si ze:5..15, blank:fal se, unique:true)
passwor d(si ze: 5..15, bl ank:false)
emai | (emai |l : true, bl ank:fal se)
age(mn: 18, null able:fal se)

Y ou need to tell the framework which packages to search for @V alidateable classes by assigning alist of Stringsto
the grails.validateable.packages property in Config.groovy.

/1 grails-app/ conf/Config.groovy

Q}éiIs.validateable.packages = ['com myconpany.dto', 'com myconpany.util']

The framework will only search those packages (and child packages of those) for classes marked with
@Validateable.

Registering Validateable Classes

If aclassis not marked with @V aidateable, it may still be made validateable by the framework. The steps required
to do this are to define the static constraints property in the class (as described above) and then telling the framework
about the class by assigning a value to the grails.validateable.classes property in Config.groovy.

/] grail s-app/conf/Config.groovy

Q}éiIs.validateable.classes = [com nmyconpany. myapp. User, com nyconpany. dt o. Account]

146

http://grails.org/doc/latest/ref/Tags/eachError.html
http://grails.org/doc/latest/ref/Tags/message.html

147

8. The Service Layer

Aswell asthe Web layer, Grails defines the notion of a service layer. The Grails team discourages the embedding of
core application logic inside controllers, as it does not promote re-use and a clean separation of concerns.
Servicesin Grails are seen as the place to put the mgjority of the logic in your application, leaving controllers
responsible for handling request flow viaredirects and so on.

Creating a Service
Y ou can create a Grails service by running the create-service command from the root of your project in atermina
window:

grails create-service sinple

The above example will create a service at the location gr ai | s- app/ servi ces/ Si npl eSer vi ce. gr oovy.
A service's name ends with the convention Ser vi ce, other than that a serviceisaplain Groovy class:

cl ass Sinpl eService {

8.1 Declar ative Transactions

Default Declar ative Transactions

Services are typically involved with co-ordinating logic between domain classes, and hence often involved with
persistence that spans large operations. Given the nature of services they frequently require transactiona behaviour.
Y ou can of course use programmatic transactions with the withTransaction method, however thisis repetitive and
doesn't fully leverage the power of Spring's underlying transaction abstraction.

Services allow the enablement of transaction demarcation, which is essentially a declarative way of saying all
methods within this service are to be made transactional. All services have transaction demarcation enabled by
default - to disableit, simply set thet r ansact i onal propertytof al se:

cl ass CountryService {
static transactional = false
}

You may also set this property to t r ue in case the default changes in the future, or smply to make it clear that the
serviceisintentionally transactional.

Warning: dependency injection is the only way that declarative transactions work. Y ou will
not get atransactional serviceif you use the new operator such asnew BookSer vi ce()

The result is all methods are wrapped in a transaction and automatic rollback occursif an exception is thrown in the
body of one of the methods. The propagation level of the transaction is by default set to
PROPAGATION_REQUIRED.

Custom Transaction Configuration
Grails also fully supports Spring's Tr ansact i onal annotation for cases where you need more fine-grained control
over transactions at a per-method level or need specify an alternative propagation level:

http://grails.org/doc/latest/ref/Command Line/create-service.html
http://grails.org/doc/latest/ref/Domain Classes/withTransaction.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/transaction/TransactionDefinition.html#PROPAGATION_REQUIRED

i mport org.springfranmework. transaction. annotation. *
cl ass BookService {
@ransactional (readOnly = true)
def |istBooks() { Book.list() }
@ransactional def updateBook() {
...

}

For more information refer to the section of the Spring user guide on Using @Transactional.

Unlike Spring you do not need any prior configuration to use Tr ansact i onal , just specify
the annotation as needed and Grails will pick them up automatically.

8.2 Scoped Services

By default, access to service methods is not synchronised, so nothing prevents concurrent execution of those
functions. In fact, because the service is a singleton and may be used concurrently, you should be very careful about
storing state in a service. Or take the easy (and better) road and never store state in a service.

Y ou can change this behaviour by placing a service in a particular scope. The supported scopes are:;

pr ot ot ype - A new serviceis created every timeit isinjected into another class

request - A new servicewill be created per request

f 1 ash - A new service will be created for the current and next request only

f I ow- In web flows the service will exist for the scope of the flow

conver sati on - Inweb flows the service will exist for the scope of the conversation. ie aroot flow and its
sub flows

© sessi on - A serviceis created for the scope of a user session

© si ngl et on (default) - Only one instance of the service ever exists

O O O O O

If your serviceisf | ash, fl owor conver sat i on scoped it will need to implement
java.io. Serial i zabl e and can only be used in the context of a Web Flow

To enable one of the scopes, add a static scope property to your class whose value is one of the above:

static scope = "flow

8.3 Dependency I njection and Services

Dependency I njection Basics

A key aspect of Grails services is the ability to take advantage of the Spring Framework's dependency injection
capability. Grails supports "dependency injection by convention". In other words, you can use the property name
representation of the class name of a service, to automatically inject them into controllers, tag libraries, and so on.
Asan example, given aservice called BookSer vi ce, if you place a property called book Ser vi ce withina
controller asfollows:

cl ass BookController {
def bookService

In this case, the Spring container will automatically inject an instance of that service based on its configured scope.
All dependency injection is done by name. Y ou can aso specify the type as follows:

148

http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/transaction.html#transaction-declarative-annotations
http://www.springframework.org/

149

cl ass Aut hor Service {
BookSer vi ce bookServi ce
}

NOTE: Normally the property name is generated by lower casing the first |etter of the type.
For example, an instance of the Book Ser vi ce class would map to a property named
bookSer vi ce.

To be consistent with standard JavaBean convetions, if the first 2 |etters of the class name are
upper case, the property name is the same as the class name. For example, an instance of the
Myhel per Ser vi ce class would map to a property named Myhel per Ser vi ce.

See section 8.8 of the JavaBean specification for more information on de-capitalization rules.

Dependency I njection and Services
Y ou can inject servicesin other services with the same technique. Say you had an Aut hor Ser vi ce that needed to
use the Book Ser vi ce, declaring the Aut hor Ser vi ce asfollowswould alow that:

cl ass Aut hor Service {
def bookService
}

Dependency Injection and Domain Classes
Y ou can even inject servicesinto domain classes, which can aid in the development of rich domain models:

cl ass Book {

def bookSer vi ce

def buyBook() {
bookSer vi ce. buyBook(t hi s)

}

8.4 Using Servicesfrom Java

One of the powerful things about services isthat since they encapsulate re-usable logic, you can use them from other
classes, including Java classes. There are a couple of ways you can re-use a service from Java. The simplest way isto
move your service into a package withinthe gr ai | s- app/ ser vi ces directory. The reason thisis acritical step
isthat it is not possible to import classes into Java from the default package (the package used when no package
declaration is present). So for example the Book Ser vi ce below cannot be used from Java asit stands:

cl ass BookService {
voi d buyBook(Book book) {
/1 logic

However, this can be rectified by placing this class in a package, by moving the class into a sub directory such as
grail s-app/ servi ces/ bookst or e and then modifying the package declaration:

package bookstore
cl ass BookService {
voi d buyBook(Book book) {
/'l logic

An dternative to packages is to instead have an interface within a package that the service implements:

package bookst ore;
interface BookStore {
voi d buyBook(Book book);

And then the service:

cl ass BookService inpl ements bookstore. BookStore {
voi d buyBook(Book b) {
/'l logic

This latter technique is arguably cleaner, as the Java side only has a reference to the interface and not to the
implementation class. Either way, the goal of this exercise to enable Java to statically resolve the class (or interface)
to use, at compile time. Now that thisis done you can create a Java class within the sr ¢/ j ava package, and
provide a setter that uses the type and the name of the bean in Spring:

package bookst ore;
/1 note: this is Java cl ass
public class BookConsumer {
private BookStore store;
public void set BookStore(BookStore storel nstance) ({
this.store = storel nstance;
}

Oncethisis done you can configure the Java class as a Spring bean in
grail s-app/ conf/spring/resources. xm (For moreinformation one this see the section on Grails and

Spring):

<bean i d="bookConsuner" cl ass="bookst ore. BookConsuner" >

<property nane="bookStore" ref="bookService" />
</ bean>

150

151

9. Testing

Automated testing is seen as akey part of Grails, implemented using Groovy Tests. Hence, Grails provides many
ways to making testing easier from low level unit testing to high level functiona tests. This section details the
different capabilities that Grails offersin terms of testing.

Thefirst thing to be aware of isthat all of the cr eat e- * commands actually end up creating uni t tests
automatically for you. For example say you run the create-controller command as follows:

grails create-controller com yourconpany. yourapp. sinple

Not only will Grails create a controller at

grail s-app/ control | ers/coniyourconpany/ your app/ Si npl eControl | er. groovy, but aso an
unittestatt est/ uni t/ conf your conpany/ your app/ Si npl eControl | er Test s. groovy. What Grails
won't do however is populate the logic inside the test! That is left up to you.

As of Grails 1.2.2,the suffix of Test isalso supported for test cases.

Running Tests
Test are run with the test-app command:

grails test-app

The above command will produce output such as:

Running Unit Tests...
Runni ng test FooTests. .. FAl LURE
Unit Tests Conpleted in 464ns ...

Tests failed: 0 errors, 1 failures

Whilst reports will have been written out thet ar get / t est - r epor t s directory.

Y ou can force a clean before running tests by passing - cl ean tothet est - app command.

Targeting Tests

Y ou can selectively target the test(s) to be run in different ways. To run all tests for a controller named
Si npl eControl | er you would run:

grails test-app SinpleController

Thiswill run any tests for the class named Si npl eCont r ol | er . Wildcards can be used...

grails test-app *Controller

http://groovy.codehaus.org/Testing+Guide
http://grails.org/doc/latest/ref/Command Line/create-controller.html
http://grails.org/doc/latest/ref/Command Line/test-app.html

Thiswill test al classes ending in Cont r ol | er . Package names can optionally be specified...

grails test-app sone.org.*Controller

or torun al testsin a package...

grails test-app sone.org.*

or to run al testsin a package including subpackages...

grails test-app sone.org.**

Y ou can also target particular test methods...

grails test-app SinpleController.testLogin

Thiswill runthet est Logi n testinthe Si npl eCont r ol | er tests. You can specify as many patternsin
combination asyou like...

grails test-app sone.org.* SinpleController.testLogin BookController

Targeting Test Typesand/or Phases

In addition to targeting certain tests, you can also target test types and/or phases by using the phase: t ype syntax.

Grails organises tests by phase and by type. A test phase relates to the state of the Grails
application during the tests, and the type relates to the testing mechanism.

Grails comes with support for 4 test phases (uni t , i nt egrati on,functi onal and

ot her) and JUnit test typesfor theuni t andi nt egr at i on phases. These test types have
the same name as the phase.

Testing plugins may provide new test phases or new test types for existing phases. Refer to
the plugin documentation.

To execute the JUnit i nt egr at i on testsyou can run:

grails test-app integration:integration

Both phase and t ype are optional. Their absence acts as awildcard. The following command will run al test types
intheuni t phase

grails test-app unit:

The Grails Spock Plugin is one plugin that adds new test typesto Grails. It addsa spock test typetotheuni t,
i ntegrationandfunctional phases. Torunall spock testsin al phases you would run the following:

152

http://grails.org/plugin/spock

153

grails test-app :spock

Toruntheall of the spock testsinthe f unct i onal phase you would run...

grails test-app functional: spock

More than one pattern can be specified...

grails test-app unit:spock integration: spock

Targeting Testsin Typesand/or Phases

Test and type/phase targetting can be applied at the same time:

grails test-app integration: unit: sone.org.**

Thiswould run all testsinthei nt egr at i on and uni t phasesthat arein the page sone. or g or a subpackage of.
9.1 Unit Testing

Unit testing are tests at the "unit" level. In other words you are testing individual methods or blocks of code without
considering for surrounding infrastructure. In Grails you need to be particularity aware of the difference between unit
and integration tests because in unit tests Grails does not inject any of the dynamic methods present during
integration tests and at runtime.

This makes sense if you consider that the methods injected by Grails typically communicate with the database (with
GORM) or the underlying Servlet engine (with Controllers). For example say you have service like the following in
BookControl |l er:

cl ass MyService {
def ot her Service
String createSomet hing() {
def stringld = otherService.newidentifier()
def item = new Item(code: stringld, nane: "Bangle")
i tem save()
return stringld

int countltens(String nane) ({
def items = Item findAl | ByName(nane)
return itens. size()

As you can see the service takes advantage of GORM methods. So how do you go about testing the above codein a
unit test? The answer can be found in Grails' testing support classes.

The Testing Framework

The core of the testing pluginisthegrai | s. test. Grai | sUni t Test Case class. Thisis asub-class of

Gr oovyTest Case geared towards Grails applications and their artifacts. It provides several methods for mocking
particular types as well as support for general mocking ala Groovy's MockFor and StubFor classes.

Normally you might look at the MySer vi ce example shown previously and the dependency on another service and
the use of dynamic domain class methods with a bit of agroan. Y ou can use meta-class programming and the "map
as object” idiom, but these can quickly get ugly. How might we write the test with GrailsUnitTestCase ?

import grails.test.GailsUnitTestCase
cl ass MyServiceTests extends Grail sUnitTest Case {
voi d testCreateSonething() {

/1 Mock the domain class.
nmockDomai n(1tem
/1 Mock the "other” service.
String testld = "NH 12347686"
def ot herControl = nmockFor (CQ her Servi ce)
ot her Control . demand. newi dentifier(1..1) {-> return testlid }
I Initialise the service and test the target nethod.
def testService = new MyService()
t est Servi ce. ot her Servi ce = ot her Control . creat eMck()
def retval = testService.createSonething()
/1 Check that the nethod returns the identifier returned by the
/'l nock "other" service and al so that a new Iteminstance has
/| been saved.
def testlnstances = Itemlist()
assert Equal s testld, retval
assert Equal s 1, testlnstances. size()
assert True testlnstances[0] instanceof Item

}
voi d testCountltens() {
/1 Mock the domain class, this tine providing a |ist of test
/1l lteminstances that can be searched.
def testlnstances = [new Item(code: "NH 4273997", name: "Laptop"),
new | ten(code: "EC 4395734", nane: "Lanp"),
new | ten(code: "TF-4927324", name: "Laptop")]
nmockDomai n(l1tem testlnstances)
/1 Initialise the service and test the target nmethod. def testService = new MyServilc
assert Equal s 2, testService.countltens("Laptop")
assertEqual s 1, testService.countltens("Lanp")
assert Equal s 0, testService.countltens("Chair")

OK, so afair bit of new stuff there, but once we break it down you should quickly see how easy it isto use the
methods available to you. Take alook at the "testCreateSomething()" test method. The first thing you will probably
noticeisthe mockDomai n() method, which is one of severa provided by Gr ai | sUni t Test Case:

def testlnstances = []
nmockDomai n(l1tem testlnstances)

It adds all the common domain methods (both instance and static) to the given class so that any code using it sees it
as afull-blown domain class. So for example, oncethe | t emclass has been mocked, we can safely call the save()
method on instances of it. Invoking the save() method doesn't really save the instance to any database but it will
cache the object in the testing framework so the instance will be visible to certain queries. The following code
snippet demonstrates the effect of calling the save() method.

voi d test Somet hing() {
def testlnstances=[]
nmockDomai n(Song, testlnstances)
assert Equal s(0, Song.count())
new Song(name: " Supper's Ready").save()
assert Equal s(1, Song.count())

The next bit we want to look at is centered on the nock For method:

def ot herControl = nmockFor (CQ her Servi ce)
ot her Control . demand. newi dentifier(1..1) {-> return testld }

Thisisanalagousto the Mock For and St ubFor classes that come with Groovy and it can be used to mock any
class you want. In fact, the "demand” syntax isidentical to that used by Mock/StubFor, so you should feel right at
home. Of course you often need to inject a mock instance as a dependency, but that is pretty straight forward with the

154

155

cr eat eMbck() method, which you simply call on the mock control as shown. For those familiar with EasyMock,
the name ot her Cont r ol highlights the role of the object returned by nockFor () -itisacontrol object rather
than the mock itself.

Therest of thet est Cr eat eSornet hi ng() method should be pretty familiar, particularly as you now know that
the mock save() method addsinstancestot est | nst ances list. However, there is an important technique
missing from the test method. We can determine that the mock newl denti fi er () method iscalled becauseits
return value has a direct impact on the result of the cr eat eSonet hi ng() method. But what if that weren't the
case? How would we know whether it had been called or not? With Mock/StubFor the check would be performed at
the end of theuse() closure, but that's not available here. Instead, you can call veri f y() on the control object -
inthiscase ot her Cont r ol . Thiswill perform the check and throw an assertion error if it hasn't been called when
it should have been.

Lastly, t est Count | t ens() inthe example demonstrates another facet of the mock Domai n() method:

def testlnstances = [new Item(code: "NH 4273997", name: "Laptop"),
new | ten{code: "EC- 4395734", nanme: "Lamp"),
new | ten(code: "TF-4927324", nane: "Laptop")]
nmockDonmai n(ltem testlnstances)

It isnormally quite fiddly to mock the dynamic finders manually, and you often have to set up different data sets for
each invocation. On top of that, if you decide a different finder should be used then you have to update the tests to
check for the new method! Thankfully the mrockDormai n() method provides a lightweight implementation of the
dynamic finders backed by alist of domain instances. Simply provide the test data as the second argument of the
method and the mock finders will just work.

GrailsUnitTestCase - the mock methods

Y ou have aready seen a couple of examplesin theintroduction of the nock. . () methods provided by the

Grai | sUni t Test Case class. Here we will look at all the available methods in some detail, starting with the
al-purpose nockFor (') . But before we do, there is avery important point to make: using these methods ensures
that any changes you make to the given classes do not leak into other tests! Thisisacommon and serious problem
when you try to perform the mocking yourself via meta-class programming, but that headache just disappears aslong
asyou use at least one of mock. . () methods on each class you want to mock.

nmockFor (cl ass, | oose = fal se)

General purpose mocking that allows you to set up either strict or loose demands on a class.
This method is surprisingly intuitive to use. By default it will create a strict mock control object (one for which the
order in which methods are called isimportant) that you can use to specify demands:

def strictControl = nockFor(M/Service) B
strictControl.demand. someMet hod(0..2) { String argl, int arg2 -> ,Af }
strictControl.denmand. static.aStati cMethod {-> , A }

Notice that you can mock static methods as well as instance ones simply by using the "static" property after
"demand". Y ou then specify the name of the method that you want to mock with an optional range asits argument.
This range determines how many times you expect the method to be called, so if the number of invocations falls
outside of that range (either too few or too many) then an assertion error will be thrown. If no range is specified, a
default of "1..1" isassumed, i.e. that the method must be called exactly once.

Thelast part of ademand is a closure representing the implementation of the mock method. The closure arguments
should match the number and types of the mocked method, but otherwise you are free to add whatever you want in
the body.

Aswe mentioned before, if you want an actual mock instance of the class that you are mocking, then you need to call
nockCont r ol . creat eMbck() . Infact, you can call this as many times as you like to create as many mock
instances as you need. And once you have executed the test method, you can call nockControl . verify() to
check whether the expected methods were actually called or not.

Lastly, the cal:

def | ooseControl = nockFor(MService, true)

will create amock control object that has only loose expectations, i.e. the order that methods are invoked does not
matter.

mockDomain(class, testI nstances =)

Takes a class and makes mock implementations of al the domain class methods (both instance- and static-level)
accessible onit.

Mocking domain classes is one of the big wins from using the testing plugin. Manually doing it is fiddly at best, so
it's great that mockDomain() takes that burden off your shoulders.

In effect, mockDomai n() provides alightweight version of domain classesin which the "database" issimply alist
of domain instances held in memory. All the mocked methods (save() ,get () ,findBy*() ,etc.) work
against that list, generally behaving as you would expect them to. In addition to that, both the mocked save() and
validate() methods will perform real validation (support for the unique constraint included!) and populate an errors
object on the corresponding domain instance.

Thereisn't much elseto say other than that the plugin does not support the mocking of criteria or HQL queries. If
you use either of those, simply mock the corresponding methods manually (for example with mockFor ()) or use
an integration test with real data.

mockFor ConstraintsTests(class, testl nstances =)

Highly specialised mocking for domain classes and command objects that allows you to check whether the
constraints are behaving as you expect them to.

Do you test your domain constraints? If not, why not? If your answer is that they don't need testing, think again.

Y our constraints contain logic and that logic is highly susceptible to bugs - the kind of bugs that can betricky to
track down (particularly as save() doesn't throw an exception when it fails). If your answer isthat it's too hard or
fiddly, that is no longer an excuse. Enter the nockFor Const r ai nt sTest s() method.

Thisislike amuch reduced version of the nockDormai n() method that simply addsaval i dat e() methodto a
given domain class. All you have to do is mock the class, create an instance with field values, and then call

val i dat e() . You can then access the errors property on your domain instance to find out whether the validation
failed or not. So if all we are doing ismocking theval i dat e() method, why the optional list of test instances?
That is so that we can test unique constraints as you will soon see.

S0, suppose we have asimple domain class like so:

cl ass Book {
String title
String aut hor
static constraints = {
title(blank: false, unique: true)
aut hor (bl ank: fal se, mnSize: 5)

}

Don't worry about whether the constraints are sensible or not (they're not!), they are for demonstration only. To test
these constraints we can do the following:

156

157

cl ass BookTests extends G ail sUnit Test Case {
voi d testConstraints() {

def existingBook = new Book(title: "M sery", author: "Stephen King")
nmockFor Const r ai nt sTest s(Book, [existingBook])
/] Validation should fail if both properties are null.
def book = new Book()
assert Fal se book. val i dat e()
assert Equal s "nul | abl e", book.errors["title"]
assert Equal s "nul | abl e", book. errors["author"]
/1 So let's denonstrate the uni que and mi nSize constraints.
book = new Book(title: "M sery", author: "JK")
assert Fal se book. val i dat e()
assert Equal s "uni que", book. errors["title"]
assert Equal s "m nSi ze", book.errors["author"]
/] Validation should pass!
book = new Book(title: "The Shining", author: "Stephen King")
assert True book. val i date()

Y ou can probably look at that code and work out what's happening without any further explanation. The one thing
we will explain isthe way the errors property is used. First, it doesreturn areal Spring Er r or s instance, so you can
access all the properties and methods you would normally expect. Second, this particular Er r or s object also has
map/property access as shown. Simply specify the name of the field you are interested in and the map/property
access will return the name of the constraint that was violated. Note that it is the constraint name , not the message
code (as you might expect).

That's it for testing constraints. One final thing we would like to say is that testing the constraints in this way catches
acommon error: typos in the "constraints” property! It is currently one of the hardest bugs to track down normally,
and yet a unit test for your constraints will highlight the problem straight away.

mockL ogging(class, enableDebug = false)
Addsamock "log" property to a class. Any messages passed to the mock logger are echoed to the console.

mockController (class)
Adds mock versions of the dynamic controller properties and methods to the given class. Thisistypically used in
conjunction with the Cont r ol | er Uni t Test Case class.

mock TagL ib(class)
Adds mock versions of the dynamic taglib properties and methods to the given class. Thisistypicaly usedin
conjunction with the TagLi bUni t Test Case class.

9.2 Integration Testing

Integration tests differ from unit tests in that you have full access to the Grails environment within the test. Grails
will use anin-memory HSQL DB database for integration tests and clear out all the data from the database in between
each test.

Testing Controllers

To test controllers you first have to understand the Spring Mock Library.

Essentialy Grails automatically configures each test with a MockHttpServletRequest, M ockHttpServletResponse,
and MockHttpSession which you can then use to perform your tests. For example consider the following controller:

cl ass FooController {
def text = {
render "bar"

def someRedirect = {
redirect(action: "bar")
}

The tests for this would be;

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletResponse.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpSession.html

cl ass FooControl | er Tests extends G oovyTest Case {
voi d testText () {
def fc = new FooController()
fc.text()
assert Equal s "bar", fc.response.contentAsString

voi d test SoneRedirect () {
def fc = new FooController()
fc. soneRedi rect ()
assert Equal s "/foo/bar", fc.response.redirectedUrl

In the above case the response is an instance of MockHt t pSer vl et Response which we can use to obtain the
cont ent AsSt ri ng (when writing to the response) or the URL redirected to for example. These mocked versions
of the Servlet APl are, unlike the real versions, all completely mutable and hence you can set properties on the
request such asthe cont ext Pat h and so on.

Grails does not invoke interceptors or servlet filters automatically when calling actions during integration testing.

Y ou should test interceptors and filtersin isolation, and via functional testing if necessary.

Testing Controllerswith Services
If your controller references a service (or other Spring beans), you have to explicitly initialise the service from your

test.
Given a controller using a service:

class FilnStarsController {
def popul arityService
def update = {
/1 do sonething with popul arityService
}

The test for this would be:

class Fil nStarsTests extends G oovyTest Case {
def popul arityService
voi d testlnjectedServicelnController () {
def fsc = new FilnStarsController()
fsc.popul arityService = popul arityService
fsc. updat e()

Testing Controller Command Objects
With command objects you just supply parameters to the request and it will automatically do the command object

work for you when you call your action with no parameters:
Given a controller using a command object:

cl ass Aut henticationController {
def signup = { SignupFormform ->

}

You can then test it like this:

158

159

def controller = new AuthenticationController()
control |l er.parans. |l ogin = "narcpal ner"

control |l er. paramns. password = "secret”

control | er. parans. passwordConfirm = "secret"
control |l er.signup()

Grails auto-magically seesyour call to si gnup() asacall to the action and popul ates the command object from the
mocked request parameters. During controller testing, the par ars are mutable with a mocked request supplied by
Grails.

Testing Controllersand therender Method
The render method allows you to render a custom view at any point within the body of an action. For instance,
consider the example below:

def save = {
def book = Book(parans)
i f (book.save()) {
/] handl e

el se {
render (vi ew "create", nodel:[book: book])

In the above example the result of the model of the action is not available as the return value, but instead is stored
within the model AndVi ew property of the controller. The nodel AndVi ew property is an instance of Spring
MV C's ModelAndView class and you can use it to the test the result of an action:

def bookController = new BookController()
bookControl | er. save()
def nodel = bookControll er.nbdel AndVi ew. nodel . book

Simulating Request Data

If you're testing an action that requires request data such as a REST web service you can use the Spring
MockHttpServietRequest object to do so. For example consider this action which performs data binding from an
incoming request:

def create = {
[book: new Book(parans[' book'])]
}

If you wish the simulate the 'book’ parameter as an XML request you could do something like the following:

void testCreateWthXM. () {
def controller = new BookController()

control |l er.request.content Type = 'text/xm"'
controller.request.content = '''<?xm version="1.0" encodi ng="1SO 8859-1"?>
<book>
<title>The Stand</title>
</ book>
'''.getBytes() // note we need the bytes
def nodel = controller.create()

assert nodel . book
assert Equal s "The Stand", nodel.book.title

The same can be achieved with a JSON request:

http://grails.org/doc/latest/ref/Controllers/render.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/ModelAndView.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/mock/web/MockHttpServletRequest.html

voi d testCreat eWt hJSON() ({
def controller = new BookController()

control |l er.request.content Type = "text/]son"
controller.request.content = '{"id":1,"class":"Book","title":"The Stand"}'. get Bytes()
def nodel = controller.create()

assert nodel . book
assert Equal s "The Stand", nodel.book.title

With JSON don't forget the cl ass property to specify the name the target type to bind too.
In the XML thisisimplicit within the name of the <book> node, but with JSON you need
this property as part of the JSON packet.

For more information on the subject of REST web services see the section on REST.

Testing Web Flows
Testing Web Flows requires a special test harnesscalled gr ai | s. t est . WebFl owTest Case which sub classes
Spring Web Flow's AbstractFlowExecutionTests class.

Subclasses of WebFl owTest Case must be integration tests

For example given thistrivia flow:

cl ass Exanpl eControl | er {
def exanpl eFl ow = {
start {
on("go") {
flow hello = "worl d"
}.to "next"

next {
on("back").to "start"
on("go").to "end"

}
end()

Y ou need to tell the test harness what to use for the "flow definition”. This is done via overriding the abstract
get FI owmethod:

cl ass Exanpl eFl owTests extends grails.test.WbFl owTest Case {
def getFlow() { new Exanpl eController().exanpl eFl ow }

If you need to specify the flow id you can do so by overriding the getFlowld method otherwise the default ist est :

cl ass Exanpl eFl owTests extends grails.test.WbFl owTest Case {
String getFlow d() { "exanple" }

Once thisis donein your test you need to kick off the flow with the st ar t FI ow method which returns a
Vi ewSel ect i on object:

160

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/webflow/test/execution/AbstractFlowExecutionTests.html

161

voi d test Exanpl eFl om() {
def viewSel ection = startFl ow()
assert Equal s "start", viewSel ection.vi ewNane

As demonstrated above you can check you're on the right state using the vi ewNane property of the
Vi ewSel ect i on object. To trigger and event you need to usethe si gnal Event method:

voi d test Exanpl eFl om() {

vi ewSel ection = si gnal Event (" go")
assert Equal s "next", viewSel ection.vi ewNane
assert Equal s "worl d", viewSel ection. nodel . hello

Here we have signaled to the flow to execute the event "go" this causes atransition to the "next" state. In the example
atransition action placed ahel | o variable into the flow scope. We can test the value of this variable by inspecting
the model property of the Vi ewSel ect i on asabove.

Testing Tag Libraries
Testing tag librariesis actually pretty trivial because when atag isinvoked as a method it returnsits result as a string.
So for example if you have atag library like this:

cl ass FooTagLi b {
def bar = { attrs, body ->
out << "<p>Hello World! </ p>"

}
def bodyTag = { attrs, body ->
out << "<${attrs.nane}>"
out << body()
out << "</ ${attrs. nane}>"

}
}

The tests would look like:

cl ass FooTagLi bTests extends G oovyTest Case {
voi d testBarTag() ({
assert Equal s "<p>Hel | o Wor |l d! </ p>", new FooTagLi b().bar(null,null).toString()

}
voi d testBodyTag() ({
assert Equal s "<p>Hel |l o World! </ p>", new FooTagLi b().bodyTag(nane: "p") {
"Hello World!"
}.toString()

Notice that for the second example, t est Body Tag, we pass a block that returns the body of the tag. Thisis handy
for representing the body as a String.

Testing Tag Librarieswith GroovyPagesT estCase

In addition to doing simply testing of tag libraries like the above you can also use the

grails.test. GoovyPagesTest Case classtotest tag libraries.

The Gr oovyPagesTest Case classisasub class of theregular G oovyTest Case class and provides utility
methods for testing the output of a GSP rendering.

Gr oovyPagesTest Case can only be used in an integration test.

As an example given a date formatting tag library such as the one below:

cl ass Fornmat TagLi b {
def dateFormat = { attrs, body ->
out << new java.text.SinpleDateFormat(attrs.format) << attrs.date
}

This can be easily tested as follows:

cl ass Fornat TagLi bTests extends G oovyPagesTest Case {
voi d test DateFormat () {
def tenplate = '<g:dateFormat format="dd- M} yyyy" date="${nyDate}" />
def testDate = ...// create the date
assert Qut put Equal s(' 01-01-2008', tenplate, [nyDate:testDate])

Y ou can also abtain the result of a GSP using the appl y Tenpl at e method of the G oovyPagesTest Case
class:

cl ass For mat TagLi bTests extends G oovyPagesTest Case {
voi d test DateFormat () {
def tenplate = '<g:dateFormat format="dd-M}yyyy" date="${nyDate}" />
def testDate = ...// create the date
def result = applyTenplate(tenplate, [nmyDate:testDate])
assert Equal s ' 01-01-2008', result

Testing Domain Classes

Testing domain classes is typically a simple matter of using the GORM API, however there are some things to be
aware of. Firstly, if you are testing queries you will often need to "flush" in order to ensure the correct state has been
persisted to the database. For example take the following example:

voi d testQuery() {
def books = [new Book(title:"The Stand"), new Book(title:"The Shining")]
books*. save()
assert Equal s 2, Book.list().size()

Thistest will actually fail, because calling save does not actually persist the Book instances when called. Calling
save merely indicatesto Hibernate that at some point in the future these instances should be persisted. If you wish
to commit changes immediately you need to "flush” them:

voi d testQuery() {
def books = [new Book(title:"The Stand"), new Book(title:"The Shining")]
books*. save(fl ush:true)
assert Equal s 2, Book.list().size()

In this case since we're passing the argument f | ush with avalue of t r ue the updates will be persisted immediately
and hence will be available to the query later on.

9.3 Functional Testing

Functional tests involve testing the actual running application and are often harder to automate. Grails does not ship

162

http://grails.org/doc/latest/ref/Domain Classes/save.html

with any functional testing support out of the box, but has support for Canoo WebTest viaa plug-in.
To get started install Web Test with the following commands:

grails install-plugin webtest

Then refer to the reference on the wiki which explains how to go about using Web Test and Grails.

163

http://webtest.canoo.com/
http://grails.org/Functional+Testing

10. Internationalization

Grails supports Internationalization (i18n) out of the box through the underlying Spring MV C support for
internationalization. With Grails you are able to customize the text that appears in any view based on the users
Locale. To quote the javadoc for the Locale classin Java:

A Locale object represents a specific geographical, political, or cultural region. An operation that
requires a Locale to performitstask is called locale-sensitive and uses the Locale to tailor information
for the user. For example, displaying a number is a local e-sensitive operation--the number should be
formatted according to the customs/conventions of the user's native country, region, or culture.
A Locale is made up of alanguage code and a country code. For example "en_US" is the code for US english, whilst
"en_GB" isthefor British English.

10.1 Under standing M essage Bundles

Now that you have an idea of locales, to take advantage of them in Grails you have to create message bundles that
contain the different languages that you wish to render. Message bundlesin Grails are located inside the

grail s-app/i 18n directory and are simple Java properties files.

Each bundle starts with the name nessages by convention and ends with the locale. Grails ships with a bunch of
built in message bundles for awhole range of languages withinthe gr ai | s- app/ i 18n directory. For example:

nmessages. properties
messages_de. properties
nmessages_es. properties
et c.

By default Grailswill look in messages. properti es for messages, unless the user has specified a custom
locale. Y ou can create your own message bundle by simply creating a new properties file that ends with the locale
you are interested. For example nessages_en_GB. properti es for British English.

10.2 Changing L ocales

By default the user locale is detected from the incoming Accept - Language header. However, you can provide
users the capability to switch locales by ssimply passing a parameter called | ang to Grails as arequest parameter:

/ book/ |'i st ?l ang=es

Grails will automatically switch the user locale and store it in a cookie so subsequent requests will have the new
header.

10.3 Reading M essages

Reading M essagesin the View
The most common place that you need messages is inside the view. To read messages from the view just use the

message tag:

<g: nessage code="ny.localized.content" />

Aslong asyou have akey inyour nessages. properti es (with appropriate locale suffix) such as the one below
then Grails will look-up the message:

ny.l ocalized. content=Hola, Me |l anp John. Hoy es dom ngo.

Note that sometimes you may need to pass arguments to the message. Thisis aso possible with the nessage tag:

164

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Locale.html
http://www.loc.gov/standards/iso639-2/englangn.html
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/list-en1.html
http://grails.org/doc/latest/ref/Tags/message.html

165

<g: message code="ny. | ocalized.content" args="${ ['Juan', 'lunes'] }" />

And then use positional parametersin the message:

nmy.l ocalized. content=Hola, Me |lanmp {0}. Hoy es {1}.

Reading Messagesin Controllersand Tag Libraries
Since you can invoke tags as methods from controllersit is also trivial to read messages within in a controller:

def show = {
def msg = message(code: "ny. |l ocalized.content”, args:['Juan', 'lunes'])
}

The same technigque can be used on tag libraries, but note if your tag library has a different namespace then you will
needtog. prefix:

def nyTag = { attrs, body ->
def nsg = g.nessage(code: "ny.|ocalized.content”, args:['Juan', 'lunes'])
}

10.4 Scaffolding and i18n

Grails does not ship with i18n aware scaffolding templates to generate the controller and views. However, i18n
aware templates are available via the i18n templates plugin. The templates are identical to the default scaffolding
templates, except that they are i18n aware using the message tag for labels, buttons etc.

To get started install the i18n templates with the following command:

grails install-plugin il8n-tenplates

Then refer to the reference on the wiki which explains how to use the i18n templates.

http://grails.org/doc/latest/ref/Tags/message.html
http://grails.org/I18n+Templates+Plugin

11. Security

Grailsis no more or less secure than Java Servlets. However, Java servlets (and hence Grails) are extremely secure
and largely immune to common buffer overrun and malformed URL exploits due to the nature of the Java Virtual
Machine underpinning the code.

Web security problems typically occur due to developer naivety or mistakes, and there is alittle Grails can do to
avoid common mistakes and make writing secure applications easier to write.

What Grails Automatically Does
Grails has afew built in safety mechanisms by default.

1. All standard database access via GORM domain objects is automatically SQL escaped to prevent SQL
injection attacks

2. The default scaffolding templates HTML escape all data fields when displayed

3. Grailslink creating tags (link, form, createl ink, createl inkTo and others) all use appropriate escaping
mechanisms to prevent code injection

4. Grails provides codecs to allow you to trivialy escape data when rendered as HTML, JavaScript and URLsto
prevent injection attacks here.

11.1 Securing Against Attacks

SQL injection

Hibernate, which is the technology underlying GORM domain classes, automatically escapes data when committing
to database so thisis not an issue. However it is still possible to write bad dynamic HQL code that uses unchecked
request parameters. For example doing the following is vulnerable to HQL injection attacks:

def vul nerable = {
def books = Book.find("from Book as b where b.title =" + parans.title + ""'")
}

Do not do this. If you need to pass in parameters use named or positional parameters instead:

def safe = {

def books = Book.find("from Book as b where b.title =?", [parans.title])
}
Phishing

Thisreally apublic relationsissue in terms of avoiding hijacking of your branding and a declared communication
policy with your customers. Customers need to know how to identify bonafide emails received.

XSS - cross-site scripting injection

It isimportant that your application verifies as much as possible that incoming requests were originated from your
application and not from another site. Ticketing and page flow systems can help this and Grails' support for Spring
Web Flow includes security like this by default.

It isaso important to ensure that all data values rendered into views are escaped correctly. For example when
rendering to HTML or XHTML you must call encodeAsHTML on every object to ensure that people cannot
maliciously inject JavaScript or other HTML into data or tags viewed by others. Grails supplies several Dynamic
Encoding Methods for this purpose and if your output escaping format is not supported you can easily write your
own codec.

Y ou must also avoid the use of request parameters or data fields for determining the next URL to redirect the user to.
If you use asuccessURL parameter for example to determine where to redirect a user to after a successful login,
attackers can imitate your login procedure using your own site, and then redirect the user back to their own site once
logged in, potentially allowing JS code to then exploit the logged-in account on the site.

HTML/URL injection

Thisiswhere bad datais supplied such that when it is later used to create alink in a page, clicking it will not cause
the expected behaviour, and may redirect to another site or alter request parameters.

HTML/URL injection is easily handled with the codecs supplied by Grails, and the tag libraries supplied by Grails all
use encodeAsURL where appropriate. If you create your own tags that generate URL s you will need to be mindful of

166

http://grails.org/doc/latest/ref/Tags/link.html
http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Tags/createLink.html
http://grails.org/doc/latest/ref/Tags/createLinkTo.html
http://www.springsource.org/webflow
http://www.springsource.org/webflow

167

doing thistoo.

Denial of service

L oad balancers and other appliances are more likely to be useful here, but there are also issues relating to excessive
queries for example where alink is created by an attacker to set the maximum value of aresult set so that a query
could exceed the memory limits of the server or slow the system down. The solution here isto aways sanitize
request parameters before passing them to dynamic finders or other GORM query methods:

def saf eMax = Mat h. max(parans. max?.tol nteger(), 100) // limt to 100 results
return Book. |ist(max: saf eMax)

Guessable | Ds

Many applications use the last part of the URL asan "id" of some object to retrieve from GORM or elsewhere.
Especialy in the case of GORM these are easily guessable as they are typically sequential integers.

Therefore you must assert that the requesting user is allowed to view the object with the requested id before returning
the response to the user.

Not doing thisis "security through obscurity” which isinevitably breached, just like having a default password of
"letmein” and so on.

Y ou must assume that every unprotected URL is publicly accessible one way or ancther.

11.2 Encoding and Decoding Objects

Grails supports the concept of dynamic encode/decode methods. A set of standard codecs are bundled with Grails.
Grails also supports a simple mechanism for devel opers to contribute their own codecs that will be recognized at
runtime.

Codec Classes

A Grails codec classis aclass that may contain an encode closure, a decode closure or both. When a Grails
application starts up the Grails framework will dynamically load codecs from the gr ai | s- app/ uti | s/ directory.
The framework will look under gr ai | s- app/ uti | s/ for class namesthat end with the convention Codec. For
example one of the standard codecs that ship with Grailsis HTM_Codec.

If acodec contains an encode property assigned ablock of code Grails will create adynamic encode method and
add that method to the Object class with a name representing the codec that defined the encode closure. For example,
the HTM_Codec class defines an encode block so Grails will attach that closure to the Obj ect class with the
nameencodeAsHTM..

The HTMLCodec and URLCodec classes also define adecode block so Grails will attach those with the names
decodeHTM. and decodeURL. Dynamic codec methods may be invoked from anywhere in a Grails application.
For example, consider a case where areport contains a property called 'description’ and that description may contain
specia characters that need to be escaped to be presented in an HTML document. One way to deal with that in a GSP
is to encode the description property using the dynamic encode method as shown below:

${report.description.encodeAsHTM()}

Decoding is performed using val ue. decodeHTM_() syntax.

Standard Codecs

HTML Codec

This codec perfoms HTML escaping and unescaping, so that values you provide can be rendered safely in an HTML
page without creating any HTML tags or damaging the page layout. For example, given avalue "Don't you know
that 2 > 17" you wouldn't be able to show this safely within an HTML page because the > will ook like it closes a
tag, which is especially bad if you render this data within an attribute, such as the value attribute of an input field.
Example of usage:

<i nput name="conmment. message" val ue="${comrent. message. encodeAsHTM.()}"/>

Note that the HTML encoding does not re-encode apostrophe/single quote so you must use
double quotes on attribute values to avoid text with apostrophes messing up your page.

URL Codec

URL encoding is required when creating URLs in links or form actions, or any time data may be used to create a
URL. It preventsillegal characters getting into the URL to change its meaning, for example a"Apple & Blackberry
is not going to work well as a parameter in a GET request as the ampersand will break the parsing of parameters.
Example of usage:

Repeat | ast search

Base64Codec
Performs Base64 encode/decode functions. Example of usage:

Your registration code is: ${user.registrati onCode. encodeAsBase64()}

JavaScriptCodec
Will escape Strings so they can be used as valid JavaSctipt strings. Example of usage:

El enent . updat e(’ ${el enent1d}’', '${render(tenplate: “/common/nessage").encodeAsJavaScri pt ()}

HexCodec
Will encode byte arrays or lists of integers to lowercase hexadecimal strings, and can decode hexadecimal strings
into byte arrays. Example of usage:

Sel ect ed col our: #${[255, 127, 255] . encodeAsHex() }

M D5Codec
Will use the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uniquel D. encodeAsMD5()}

M D5BytesCodec
Will use the MD5 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. passwor d. encodeAsVD5Byt es()

SHA1Codec
Will use the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as alowercase hexadecimal string. Example of usage:

168

169

Your APl Key: ${user.uniquel D. encodeAsSHAL()}

SHA1BytesCodec
Will use the SHA1 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as a byte array. Example of usage:

byte[] passwordHash = parans. passwor d. encodeAsSHALByt es()

SHA?256Codec
Will use the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as alowercase hexadecimal string. Example of usage:

Your APl Key: ${user.uni quel D. encodeAsSHA256() }

SHA256BytesCodec
Will use the SHA256 algorithm to digest byte arrays or lists of integers, or the bytes of a string (in default system
encoding), as abyte array. Example of usage:

byte[] passwordHash = parans. passwor d. encodeAsSHA256Byt es()

Custom Codecs

Applications may define their own codecs and Grails will load them along with the standard codecs. A custom codec
class must bedefinedinthegr ai | s- app/ uti | s/ directory and the class name must end with Codec. The codec
may containast at i ¢ encode block, ast ati ¢ decode block or both. The block should expect asingle
argument which will be the object that the dynamic method was invoked on. For Example:

cl ass Pi gLati nCodec ({
static encode = { str ->
/1 convert the string to piglatin and return the result
}

}

With the above codec in place an application could do something like this:

${1 ast Nanme. encodeAsPi gLati n()}

11.3 Authentication

Although there is no current default mechanism for authentication as it is possible to implement authentication in
literally thousands of different ways. It is however, trivial to implement a simple authentication mechanism using
either interceptors or filters.

Filters allow you to apply authentication across all controllers or across a URI space. For example you can create a
new set of filtersinaclasscalled gr ai | s- app/ conf/ SecurityFilters. groovy:

class SecurityFilters {
def filters = {
| ogi nCheck(controller:"*", action:'*") {
before = {
i f(!session.user & actionNanme != "login") {
redirect(controller:"user",action:"login")
return fal se

Herethel ogi nCheck filter will intercept execution before an action executed and if their is no user in the session
and the action being executed is not the | ogi n action then redirect to the | ogi n action.
Thel ogi n actionitself istrivia too:

def login = {
i f(request.get) render(view "l ogin")
el se {
def u = User.findByLogi n(parans.| ogin)
if(u) {
i f(u. password == parans. password) {
session.user = u
redirect(action: "hone")
el se {
render (view "l ogi n", nodel:[nessage: "Password incorrect"])
el se {
render (view "l ogi n", nodel:[nessage: "User not found"])
}
}

11.4 Security Plug-ins

If you need more advanced functionality beyond simple authentication such as authorization, roles etc. then you may
want to consider using one of the available security plug-ins.

11.4.1 Spring Security

The Spring Security plugins are built on the Spring Security project which provides aflexible, extensible framework
for building all sorts of authentication and authorization schemes. The plugins are modular so you can install just the
functionality that you need for your application. Thereis a Core plugin which supports form-based authentication,
encrypted/salted passwords, HT TP Basic authentication, etc. and secondary dependent plugins provide aternate
functionality such as Openl D authentication, ACL support, etc.

See the plugin page for basic information and the user guide for detailed information.

11.4.2 Shiro

Shiro is a Java POJO oriented security framework that provides a default domain model that models realms, users,
roles and permissions. With Shiro you have to extends a controller base called called Jsec Aut hBase in each
controller you want secured and then provide an accessCont r ol block to setup the roles. An example below:

cl ass Exanpl eControl |l er extends JsecAut hBase {
static accessControl = {

/1 Al actions require the 'Cbserver' role.
rol e(name: ' Cbserver')
/1 The 'edit' action requires the 'Adnministrator' role.
rol e(name: 'Administrator', action: 'edit')
/1 Aternatively, several actions can be specified.
rol e(name: 'Adm nistrator', only: ['create', 'edit', 'save', 'update'])

170

http://static.springsource.org/spring-security/site/
http://grails.org/plugin/spring-security-core
http://burtbeckwith.github.com/grails-spring-security-core/
http://incubator.apache.org/shiro/

For more information on the Shiro plugin refer to the documentation.

171

http://grails.org/plugin/shiro

12. Plug-ins

Grails provides a number of extension points that allow you to extend anything from the command line interface to
the runtime configuration engine. The following sections detail how to go about it.

12.1 Creating and Installing Plug-ins

Creating Plugins
Creating a Grails plugin is a simple matter of running the command:

grails create-plugin [PLUG N NAVE]

Thiswill create aplugin project for the name you specify. Say for exampleyourungrai | s creat e-pl ugi n
exanpl e. Thiswould create anew plugin project called exanpl e.

The structure of a Grails plugin is exactly the same as aregular Grails project's directory structure, except that in the
root of the plugin directory you will find a plugin Groovy file called the "plugin descriptor".

Being aregular Grails project has a number of benefitsin that you can immediately get going testing your plugin by
running:

grails run-app

The plugin descriptor itself ends with the convention Gr ai | sPl ugi n andisfound in the root of the plugin project.
For example:

cl ass Exanpl eGail sPlugin {
def version = 0.1

All plugins must have this class in the root of their directory structure to be valid. The plugin class defines the
version of the plugin and optionally various hooks into plugin extension points (covered shortly).
Y ou can also provide additional information about your plugin using several specia properties:

© titl e - short one sentence description of your plugin
© versi on - Theversion of your problem. Valid versions are for example "0.1", "0.2-SNAPSHOT", "0.1.4"
etc.
grai | sVer si on - Theversion of version range of Grailsthat the plugin supports. eg. "1.1 > *"
aut hor - plug-in author's name
aut hor Emai | - plug-in author's contact e-mail
descri pti on - full multi-line description of plug-in's features
© docunent at i on - URL where plug-in's documentation can be found
Here is an example from Quartz Grails plugin

O O O O

class QuartzGailsPlugin {

def version = "0.1

def grailsVersion = "1.1 > *"

def aut hor = "Sergey Nebol sin"

def authorEnmi|l = "nebol si n@mail . conf

def title = "This plugin adds Quartz job scheduling features to Gails application."”

def description =
Quartz plugin allows your Grails application to schedule jobs to be
executed using a specified interval or cron expression. The underlying
system uses the Quartz Enterprise Job Schedul er configured via Spring
but is made sinpler by the coding by convention paradi gm

def docunmentation = "http://grails.org/ Quartz+pl ugin"

172

http://grails.org/Quartz+plugin:

173

Installing & Distributing Plugins
To distribute a plugin you need to navigate to its root directory in atermina window and then type:

grails package-pl ugin

Thiswill create a zip file of the plugin starting with gr ai | s- then the plugin name and version. For example with
the example plug-in created earlier thiswould be gr ai | s- exanpl e- 0. 1. zi p. The package- pl ugi n
command will also generate pl ugi n. xm file which contains machine-readable information about plugin's name,
version, author, and so on.

Once you have a plugin distribution file you can navigate to a Grails project and type:

grails install-plugin /path/to/plugin/grails-exanple-0.1.zip

If the plugin is hosted on aremote HT TP server you can also do:

grails install-plugin http://myserver.com pl ugi ns/grails-exanple-0.1.zip

Notes on excluded Artefacts

Although the create-plugin command creates certain files for you so that the plug-in can be run as a Grails
application, not all of these files are included when packaging a plug-in. The following isalist of artefacts created,
but not included by package-plugin:

grail s-app/ conf/ Dat aSour ce. gr oovy

grail s-app/ conf/ Ur| Mappi ngs. gr oovy

buil d. xn

Everything within / web- app/ VEEB- | NF

If you need artefacts within WEB- | NF it is recommended you usethe | nst al | . gr oovy script (covered later),
which is executed when aplug-in isinstalled, to provide such artefacts. In addition, although

Ur | Mappi ngs. gr oovy isexcluded you are alowed to include a Ur | Mappi ngs definition with a different
name, such as FooUr | Mappi ngs. gr oovy.

O O O O

Specifying Plugin L ocations
An application can load plugins from anywhere on the file system, even if they have not been installed. Simply add
the location of the (unpacked) plugin to the application'sgr ai | s- app/ conf / Bui | dConf i g. gr oovy file:

/1 Useful to test plugins you are devel opi ng

grails.plugin.location.jsecurity = "/hone/dilbert/dev/plugins/grails-jsecurity"
[l Useful for nodul ar applications where all plugins and

/1 applications are in the sane directory.

grails.plugin.location.'grails-ui' ="../grails-grails-ui"

Thisis particularly useful in two cases:

© You are developing a plugin and want to test it in areal application without packaging and installing it first.
© You have split an application into a set of plugins and an application, all in the same "super-project” directory.

12.2 Plugin Repositories
Distributing Pluginsin the Grails Central Plugins Repository

The preferred way of plugin distribution is to publish your under Grails Plugins Repository. This will make your
plugin visible to the list-plugins command:

http://grails.org/doc/latest/ref/Command Line/create-plugin.html
http://grails.org/doc/latest/ref/Command Line/package-plugin.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html

grails list-plugins

Which lists al pluginsin the Grails Plugin repository and also the plugin-info command:

grails plugin-info [plugin-nane]

Which outputs more information based on the metainfo entered into the plug-in descriptor.

If you have created a Grails plugin and want it to be hosted in the central repository take a
look at the wiki page , which details how to go about releasing your plugin in the repository.

When you have access to the Grails Plugin repository to release your plugin you simply have to execute the
release-plugin command:

grails rel ease-plugin

Thiswill automatically commit changesto SVN, do some tagging and make your changes available viathe
list-plugins command.

Configuring Additional Repositories

The way in which you configure repositories in Grails differs between Grails versions. For version of Grails 1.2 and
earlier please refer to the Grails 1.2 documentation on the subject. The following sections cover Grails 1.3 and above.
Grails 1.3 and above use vy under the hood to resolve plugin dependencies. The mechanism for defining additional
plugin repositoriesis largely the same as defining repositories for JAR dependencies. For example you can define a
remote Maven repository that contains Grails plugins using the following syntax in

grail s-app/ conf/Buil dConfi g. groovy:

repositories {
mavenRepo "http://repository. codehaus. org"”
}

Y ou can also define a SVN-based Grails repository (such as the one hosted at http://plugins.grails.org/) using the
gr ai | sRepo method:

repositories {
grail sRepo "http://nyserver/ mygrail srepo”

There is ashortcut to setup the Grails central repository:

repositories {
grailsCentral ()

The order in which plugins are resolved is based on the ordering of the repositories. So for example in this case the
Grails central repository will be searched last:

174

http://grails.org/doc/latest/ref/Command Line/plugin-info.html
http://grails.org/Creating+Plugins
http://grails.org/doc/latest/ref/Command Line/release-plugin.html
http://grails.org/doc/latest/ref/Command Line/list-plugins.html
http://grails.org/doc/1.2.x/guide/12.%20Plug-ins.html#12.2%20Plugin%20Repositories

175

repositories {
grail sRepo "http://nyserver/nygrail srepo”
grailsCentral ()

All of the above examples use HTTP, however you can specify any vy resolver to resolve plugins with. Below is an
example that uses an SSH resolver:

def sshResol ver = new SshResol ver (user: "nyuser", host:"nyhost.coni)

sshResol ver. addArtifactPattern("/path/to/repo/grails-[artifact]/tags/ LATEST RELEASE/ grail s
sshResol ver. | atest Strategy = new org. apache. i vy. pl ugins. | atest. LatestTi neStrategy()
sshResol ver. changi ngPattern = ".* SNAPSHOT"

sshResol ver. set Checknodi fi ed(true)

The above exampl e defines an artifact pattern which tells Ivy how to resolve a plugin zip file. For amore detailed
explanation on lvy patterns see the relevant section in the vy user guide.

Publishing to Maven Compatible Repositories

In general it isrecommended for Grails 1.3 and above to use standard Maven-style repositories to self host plugins.
The benefits of doing so include the ability for existing tooling and repository managers to interpret the structure of a
Maven repository. In addition Maven compatible repositories are not tied to SVN as Grails repositories are.

In order to publish a plugin to a Maven repository you need to use the Maven publisher plugin. Please refer to the
section of the Maven deployment user guide on the subject.

Publishing to Grails Compatible Repositories

To publish a Grails plugin to a Grails compatible repository you specify the
grails.plugin.repos.distribution. myRepository setting within the
grails-app/conf/BuildConfig.groovy file:

grails.plugin.repos.distribution.nyRepository="https://svn.codehaus.org/grails/trunk/grail{

Y ou can also provide this settings in the USER_HOME/.grails/settings.groovy fileif you prefer to share the same
settings across multiple projects.

Once thisis done you need to usether eposi t or y argument of ther el ease- pl ugi n command to specify the
repository you want to release the plugin into:

grails rel ease-plugin -repository=nyRepository

12.3 Under standing a Plug-ins Structure

As as mentioned previously, aplugin is merely aregular Grails application with a contained plug-in descriptors.
However when installed, the structure of a plugin differs slightly. For example, take alook at this plugin directory
structure:

+ grails-app

+ controllers
+ donmi n
+ taglib
etc.

+ lib

+ src
+ java
+ groovy

+ web- app
+ s
+ CSs

—

http://ant.apache.org/ivy/history/latest-milestone/settings/resolvers.html
http://ant.apache.org/ivy/history/2.1.0/concept.html#patterns

Essentially when a pluginisinstalled into a project, the contents of the gr ai | s- app directory will gointo a
directory such aspl ugi ns/ exanpl e- 1. 0/ grai | s- app. They will not be copied into the main source tree. A
plugin never interferes with a project's primary source tree.

Dealing with static resourcesis dlightly different. When developing a plugin, just like an application, all static
resources can go in the web- app directory. Y ou can then link to static resources just like in an application (example
below links to a javascript source):

<g:resource dir="js" file="nycode.js" />

When you run the plugin in devel opment mode the link to the resource will resolve to something like

/j s/ mycode. j s. However, when the plugin isinstalled into an application the path will automatically change to
something like/ pl ugi n/ exanpl e-0. 1/ j s/ mycode. j s and Grailswill deal with making sure the resources
areintheright place.

Thereisaspecia pl ugi nCont ext Pat h variable that can be used whilst both developing the plugin and when in
the plugin isinstalled into the application to find out what the correct path to the plugin is.

At runtime the pl ugi nCont ext Pat h variable will either evaluate to an empty string or / pl ugi ns/ exanpl e
depending on whether the plugin is running standalone or has been installed in an application

Java & Groovy code that the plugin provides withintheliband sr ¢/ j ava and sr ¢/ gr oovy directories will be
compiled into the main project'sweb- app/ VEEB- | NF/ ¢l asses directory so that they are made available at
runtime.

12.4 Providing Basic Artefacts

Adding a new Script
A plugin can add a new script simply by providing the relevant Gant script within the scripts directory of the plugin:

+ MyPl ugi n. gr oovy
+ scripts <-- additional scripts here
+ grails-app
+ controllers
+ services
+ etc.
+ lib

Adding a new Controller, Tag Library or Service

A plugin can add a new controller, tag libraries, service or whatever by simply creating the relevant file within the
grai |l s- app tree. Note that when the plugin isinstalled it will be loaded from whereit isinstalled and not copied
into the main application tree.

+ Exanpl ePl ugi n. gr oovy
+ scripts
+ grails-app
+ controllers <-- additional controllers here
+ services <-- additional services here
+ etc. <-- additional XXX here
+ 1lib

Providing Views, Templates and View resolution

When a plug-in provides a controller it may also provide default views to be rendered. Thisis an excellent way to
modularize your application through plugins. The way it worksisthat Grails' view resolution mechanism will first
look the view in the application it isinstalled into and if that fails will attempt to look for the view within the plug-in.
For example givenaAnmazonG ai | sPI ugi n plug-n provided controller called BookCont r ol | er if the action
being executed is| i st , Grailswill first look for aview caled gr ai | s- app/ vi ews/ book/ I i st. gsp thenif
that fails will look for the same view relative to the plug-in.

Note however that if the view uses templates that are also provided by the plugin then the following syntax may be
necessary:

176

177

<g: render tenplate="fooTenplate" plugi n="amazon"/>

Note the usage of the pl ugi n attribute, which contains the name of the plugin where the template resides. If thisis
not specified then Grails will look for the template relative to the application.

Excluded Artefacts
Note that by default, when packaging a plug-in, Grails will excludes the following files from the packaged plug-in:

o grails-app/conf/DataSource.groovy

o grails-app/conf/UrlMappings.groovy

© Everything under web-app/WEB-INF
If your plug-in does require files under the web- app/ VEB- | NF directory it is recommended that you modify the
plug-in'sscri pts/ _I nstall.groovy Gant script to install these artefacts into the target project's directory tree.
In addition, the default Ur | Mappi ngs. gr oovy fileisexcluded to avoid naming conflicts, however you are free to
add a UrlMappings definition under a different name which will be included. For example afile called
grail s-app/ conf/ Bl ogUr| Mappi ngs. gr oovy isfine.
Additionally thelist of includes is extensible viathe pl ugi nExcl udes property:

/'l resources that are excluded from pl ugi n packagi ng
def plugi nExcl udes = [

"grail s-app/views/error.gsp"
]

Thisisuseful, for example, if you want to include demo or test resources in the plugin repository, but not include
them in the final distribution.

12.5 Evaluating Conventions

Before moving onto looking at providing runtime configuration based on conventions you first need to understand
how to evaluated those conventions from a plug-in. Essentially every plugin has an implicit appl i cat i on variable
which is an instance of the api:org.codehaus.groovy.grails.commons.GrailsApplication interface.

TheGrai | sAppl i cati on interface provides methods to evaluate the conventions within the project and
internally stores referencesto all classes within a GrailsApplication using the
api:org.codehaus.groovy.grails.commons.Grail sClass interface.

A Grai |l sd ass represents a physical Grails resources such as a controller or atag library. For example to get all
Grai | s ass instances you can do:

application.allC asses.each { println it.name }

There are afew "magic" properties that the Gr ai | sAppl i cat i on instance possesses that allow you to narrow the
type of artefact you are interested in. For example if you only want to controllers you can do:

application.controll erC asses.each { println it.name }

The dynamic method conventions are as follows:

© *(Cl asses - Retrieves all the classes for a particular artefact name. Example
application.controllerd asses.
© get * ass - Retrieves anamed class for a particular artefact. Example
application.getControllerC ass("Exanpl eController")
© is*C ass - Returnstrueif the given classis of the given artefact type. Example
application.isControll erd ass(Exanpl eController.cl ass)
The G ai | sC ass interface itself provides a number of useful methods that allow you to further evaluate and work
with the conventions. These include:

get Propert yVal ue - Getstheinitial value of the given property on the class
hasPr operty - Returnstrueif the class has the specified property
newl nst ance - Creates a new instance of this class.
get Name - Returns the logical name of the class in the application without the trailing convention part if
applicable
© get Short Nane - Returns the short name of the class without package prefix
© get Ful | Name - Returns the full name of the class in the application with the trailing convention part and
with the package name
© get Propert yName - Returns the name of the class as a property name
o get Logi cal Propert yName - Returnsthe logical property name of the class in the application without
the trailing convention part if applicable
© get Nat ur al Nane - Returns the name of the property in natural terms (eg. 'lastName' becomes ‘Last Name')
© get PackageNan®e - Returns the package name
For afull reference refer to the api:org.codehaus.groovy.grails.commons.GrailsClass.

O O O O

12.6 Hooking into Build Events

Post-Install Configuration and Participating in Upgrades

Grails plug-ins can do post-install configuration and participate in application upgrade process (the upgrade
command). Thisis achieved viatwo specially named scriptsunder scri pt s directory of the plugin -
_Install.groovy and Upgrade. groovy.

_I'nstal | . groovy isexecuted after the plugin has been installed and _Upgr ade. gr oovy isexecuted each
time the user upgrades his application with upgrade command.

These scripts are normal Gant scripts so you can use the full power of Gant. An addition to the standard Gant
variablesisthe pl ugi nBasedi r variable which points at the plugin installation basedir.

Asan examplethebelow _| nst al | . gr oovy script will create anew directory type under the gr ai | s- app
directory and install a configuration template:

Ant . mkdi r (di r: " ${basedir}/grail s-app/jobs")

Ant . copy(file:"${plugi nBasedi r}/src/ sanpl es/ Sanpl ePl ugi nConfi gur ati on. gr oovy",
todir:"${basedir}/grails-app/conf")

/1 To access Grails hone you can use foll ow ng code:

/] Ant.property(environnent:"env")

/1 grailsHonme = Ant.antProject.properties."env. GRAI LS HOVE"

Scripting events

It isalso possible to hook into command line scripting events through plug-ins. These are events triggered during
execution of Grailstarget and plugin scripts.

For example, you can hook into status update output (i.e. "Tests passed”, "Server running") and the creation of files
or artefacts.

A plug-in merely hasto providean _Event s. gr oovy script to listen to the required events. Refer the
documentation on Hooking into Events for further information.

12.7 Hooking into Runtime Configuration

Grails provides a number of hooks to leverage the different parts of the system and perform runtime configuration by
convention.

Hooking into the Grails Spring configuration

First, you can hook in Grails runtime configuration by providing a property called doW t hSpri ng whichis
assigned a block of code. For example the following snippet is from one of the core Grails plugins that provides i18n
support:

178

http://grails.org/doc/latest/ref/Command Line/upgrade.html
http://grails.org/doc/latest/ref/Command Line/upgrade.html

179

i mport org.springframework. web. servl et.i 18n. Cooki eLocal eResol ver;
i nport org.springfranmewor k. web. servl et.i 18n. Local eChangel nt er cept or;
i mport org.springfranework. cont ext.support. Rel oadabl eResour ceBundl eMessageSour ce;
class 118nGrail sPlugin {

def version = 0.1

def doWthSpring = {

messageSour ce(Rel oadabl eResour ceBundl eMessageSour ce) {
basenanme = "WEB- | NF/ grail s-app/i 18n/ nessages"

| ocal eChangel nt er cept or (Local eChangel nterceptor) {
paramNanme = "| ang"

| ocal eResol ver (Cooki eLocal eResol ver)

This plugin sets up the Grails messageSour ce bean and a couple of other beans to manage Locale resolution and
switching. It using the Spring Bean Builder syntax to do so.

Participating in web.xml Generation

Grails generates the VEB- | NF/ web. xmi file at load time, and although plugins cannot change thisfile directly,
they can participate in the generation of the file. Essentially a plugin can provide adoW t hWebDescr i pt or
property that is assigned a block of code that gets passed theweb. xm asaXm Sl ur per GPat hResul t .
Consider the below example from the Cont r ol | er sPl ugi n:

def doWthWebDescriptor = { webXm ->
def mappi ngEl ement = webXm . ' servl et - mappi ng'
def | ast Mappi ng = mappi ngEl enent [mappi ngEl emrent . si ze() - 1]
| ast Mappi ng + {
' servl et - mappi ng'
"servlet-nanme' ("grails")
"url-pattern' ("*.dispatch")

Here the plugin goes through gets areference to the last <ser vl et - mappi ng> element and appends Grails
servlet to the end of it using XmlSlurper's ability to programmatically modify XML using closures and blocks.

Doing Post I nitialisation Configuration
Sometimes it is useful to be able do some runtime configuration after the Spring ApplicationContext has been built.
In this case you can defineadoW t hAppl i cat i onCont ext closure property.

cl ass Sinpl ePlugin {
def nane="sinpl e"
def version = 1.1
def doWthApplicati onContext = { appCtx ->
Sessi onFactory sf = appCtx. get Bean("sessi onFactory")
/1 do sonething here wth session factory

12.8 Adding Dynamic Methods at Runtime

TheBasics

Grails plugins allow you to register dynamic methods with any Grails managed or other class at runtime. New
methods can only be added within adoW t hDynami cMet hods closure of aplugin.

For Grails managed classes like controllers, tag libraries and so forth you can add methods, constructors etc. using
the ExpandoM etaClass mechanism by accessing each controller's MetaClass:

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://groovy.codehaus.org/ExpandoMetaClass
api:http://groovy.codehaus.org/api/groovy/lang/MetaObjectProtocol.html

cl ass Exanpl ePl ugi n {
def doWt hDynam cMet hods = { applicati onContext ->
application.control |l erC asses. each { controllerd ass ->
control |l erC ass. netad ass. myNewMet hod = {-> println "hello world" }
}

In this case we use the implicit application object to get areference to al of the controller classes MetaClass
instances and then add a new method called my Newivet hod to each controller. Alternatively, if you know before
hand the class you wish the add a method to you can simple reference that classes net aCl ass property:

cl ass Exanpl ePl ugi n {
def doWthDynam cMet hods = { applicati onContext ->
String. met ad ass. swapCase = {->
def sb = new StringBuffer()
del egat e. each {
sb << (Character.isUpperCase(it as char) ?
Character.toLowerCase(it as char) :
Char act er.toUpper Case(it as char))

}
sb.toString()
}
assert "UpAndDown" == "uPaNDdOMN'. swapCase()

In this example we add a new method swapCase toj ava. | ang. Stri ng directly by accessingitsnet adl ass.

I nteracting with the ApplicationContext

ThedoW t hDynam cMet hods closure gets passed the Spring Appl i cat i onCont ext instance. Thisis useful
asit alowsyou to interact with objects within it. For example if you where implementing a method to interact with
Hibernate you could use the Sessi onFact or y instance in combination with aHi ber nat eTenpl at e:

i nport org.springfranmework. orm hi ber nat e3. Hi ber nat eTenpl at e
cl ass Exanpl eHi ber nat ePl ugi n {
def doWthDynam cMet hods = { applicati onContext ->
appl i cati on. domai nCl asses. each { donmai nCl ass ->
domai nCl ass. netaC ass. static.load = { Long id->

def sf = applicationContext.sessionFactory
def tenplate = new Hi bernat eTenpl at e(sf)
tenpl ate. | oad(del egate, id)

Also because of the autowiring and dependency injection capability of the Spring container you can implement more
powerful dynamic constructors that use the application context to wire dependencies into your object at runtime:

cl ass MyConstructorPlugin {
def doW t hDynam cMet hods = { applicati onContext ->
appl i cati on. domai nCl asses. each { donai nCl ass ->
domai nCl ass. net adl ass. constructor = {->
return applicati onCont ext. get Bean(domai nCl ass. nane)

Here we actually replace the default constructor with one that 1ooks up prototyped Spring beans instead!

12.9 Participating in Auto Reload Events

180

Monitoring Resourcesfor Changes

Often it is valuable to monitor resources for changes and then rel oad those changes when they occur. Thisis how
Grails implements advanced reloading of application state at runtime. For example, consider the below simplified
snippet from the Ser vi cesPl ugi n that Grails comes with:

cl ass ServicesGail sPlugin {
def wat chedResources = "file: ./ grails-app/services/*Service. groovy"

def onChange = { event ->
i f(event.source) {
def serviceC ass = application.addServiced ass(event. source)
def serviceName = "${serviceC ass. propertyNane}"
def beans = beans {
"$servi ceNane" (servi ceC ass. get Cl azz()) { bean ->
bean. autowire = true

}
i f(event.ctx) {
event. ct x. regi st er BeanDefi ni ti on(servi ceNane,
beans. get BeanDef i ni ti on(servi ceNane))

Firstly it defines a set of wat chedResour ces aseither aString or aList of strings that contain either the
references or patterns of the resources to watch. If the watched resourcesis a Groovy file, when it is changed it will
automatically be reloaded and passed into the onChange closure inside the event object.

Theevent object defines anumber of useful properties:

O event. sour ce - The source of the event which is either the reloaded class or a Spring Resource

© event. ctx - The Spring Appl i cat i onCont ext instance

© event. pl ugi n - The plugin object that manages the resource (Usually this)

© event.application-TheG ail sApplicati on instance
From these objects you can evaluate the conventions and then apply the appropriate changes to the
Appl i cati onCont ext and so forth based on the conventions, etc. In the "Services' example above, a new
services bean is re-registered with the Appl i cat i onCont ext when one of the service classes changes.

Influencing Other Plugins

Aswell as being able to react to changes that occur when a plugin changes, sometimes one plugin needsto
"influence" another plugin.

Take for example the Services & Controllers plugins. When a service is reloaded, unless you reload the controllers
too, problems will occur when you try to auto-wire the reloaded service into an older controller Class.

To get round this, you can specify which plugins another plugin "influences'. What this meansis that when one
plugin detects a change, it will reload itself and then reload all influenced plugins. See this snippet from the

Servi cesGai |l sPl ugi n:

def influences = ['controllers']

Observing other plugins
If there is a particular plugin that you would like to observe for changes but not necessary watch the resources that it
monitors you can use the "observe" property:

def observe = ["controllers"]

In this case when a controller is changed you will also receive the event chained from the controllers plugin. It is also
possible for a plugin to observe al loaded plugins by using awildcard:

181

def observe = ["*"]

The Logging plugin does exactly this so that it can add the | og property back to any artefact that changes while the
application is running.

12.10 Under standing Plug-in Load Order

Controlling Plug-in Dependencies

Plug-ins often depend on the presence of other plugins and can also adapt depending on the presence of others. To
cover this, aplugin can define two properties. Thefirst iscaled dependsOn. For example, take alook at this
snippet from the Grails Hibernate plugin:

cl ass HibernateGail sPlugin {
def version = 1.0
def dependsOn = [dataSource: 1.0,
domai nCl ass: 1. 0,
i18n: 1.0,
core: 1.0]

As the above example demonstrates the Hibernate plugin is dependent on the presence of 4 plugins: The

dat aSour ce plugin, Thedomai nCl ass plugin, thei 18n plugin and the cor e plugin.

Essentially the dependencies will be loaded first and then the Hibernate plugin. If all dependencies do not load, then
the plugin will not load.

The dependsOn property also supports amini expression language for specifying version ranges. A few examples
of the syntax can be seen below:

def dependsOn = [foo:"* > 1.0"]
def dependsOn = [foo0:"1.0 > 1.1"]
def dependsOn = [foo0:"1.0 > *"]

When the wildcard * character is used it denotes "any" version. The expression syntax also excludes any suffixes
such as-BETA, -ALPHA etc. so for example the expression "1.0 > 1.1" would match any of the following versions:

11

10

101
1.0.3-SNAPSHOT
1.1-BETA2

O O O O O

Controlling Load Order
Using dependsOn establishes a"hard" dependency in that if the dependency is not resolved, the plugin will give up
and won't load. It is possible though to have a "weaker" dependency using the | oadAf t er property:

def | oadAfter = ['controllers']

Here the plugin will be loaded after the cont r ol | er s plugin if it exists, otherwise it will just be loaded. The
plugin can then adapt to the presence of the other plugin, for example the Hibernate plugin has this code in the
doW t hSpri ng closure:

182

i f (manager ?. hasGrai |l sPlugin("controllers")) {
openSessi onl nVi ewl nt er cept or (QpenSessi onl nVi ewl nterceptor) {
fl ushMode = Hi ber nat eAccessor. FLUSH MANUAL
sessi onFactory = sessi onFactory

grail sUrl Handl er Mappi ng. i nterceptors << openSessi onl nVi ew nt er cept or

Here the Hibernate plugin will only register an QpenSessi onl nVi ewl nt er cept or if thecontrol | ers
plugin has been loaded. The manager variable is an instance of the

api:org.codehaus.groovy.grails.plugins.Grail sPluginM anager interface and it provides methods to interact with other
plugins and the Gr ai | sPlI ugi nManager itself from any plugin.

183

13. Web Services

Web services are all about providing aweb APl onto your web application and are typically implemented in either
SOAP or REST.

13.1 REST

REST is not really atechnology in itself, but more an architectural pattern. REST is extremely simple and just
involves using plain XML or JSON as a communication medium, combined with URL patterns that are
"representational” of the underlying system and HTTP methods such as GET, PUT, POST and DELETE.
Each HTTP method maps to an action. For example GET for retrieving data, PUT for creating data, POST for
updating and so on. In this sense REST fits quite well with CRUD.

URL patterns
Thefirst step to implementing REST with Grailsisto provide RESTful URL mappings:

static mappings = {
"/ product/ $i d?" (resource: "product")

What this doesis map the URI / pr oduct ontoaPr oduct Contr ol | er. Each HTTP method such as GET, PUT,
POST and DEL ETE map to unique actions within the controller as outlined by the table below:

Method Action

GET show
PUT updat e
POST save

DELETE del ete

Y ou can alter how HTTP methods by using the capability of URL Mappings to map to HTTP methods:

"/ product/ $i d"(controller:"product"){
action = [GET: "show', PUT:"update", DELETE:"delete", POST:"save"]
}

However, unlikether esour ce argument used previously, in this case Grails will not provide automatic XML or
JSON marshaling for you unless you specify the par seRequest argument in the URL mapping:

"/ product/$id"(controller:"product”, parseRequest:true){
action = [GET: "show', PUT:"update", DELETE:"delete", POST:"save"]
}

HTTP Methods

In the previous section you saw how you can easily define URL mappings that map specific HTTP methods onto
specific controller actions. Writing a REST client that then sends a specific HTTP method is then trivial (examplein
Groovy's HTTPBUuilder module):

184

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/Representational_State_Transfer

i mport groovyx.net.http.*
i nport static groovyx.net.http. Content Type. JSON
def http = new HTTPBui |l der("http://| ocal host: 8080/ amazon")
http. request (Met hod. GET, JSON) {

url.path = '/book/list'

response. success = {resp, json ->

j son. books. each { book ->
println book.title

However, issuing a request with a method other than GET or POST from aregular browser is not possible without
some help from Grails. When defining aform you can specify an aternative method such as DELETE:

<g:form control |l er="book" nethod="DELETE">

</g:fbrnb

Grails will send ahidden parameter called et hod, which will be used as the request's HT TP method. Another
alternative for changing the method for non-browser clientsisto use the X- HTTP- Met hod- Over ri de to specify
the aternative method name.

XML Marshaling - Reading
The controller implementation itself can use Grails XML marshaling support to implement the GET method:

i mport grails.converters.*
cl ass Product Controller {
def show = {
i f(parans.id & Product. exi sts(parans.id
def p = Product. fi ndByName(parans.id
render p as XM

) A

~——

el se {
def all = Product.list()
render all as XM

Herewhat we doisif thereisan i d we search for the Pr oduct by name and return it otherwise we return all
Products. Thisway if wegoto/ pr oduct s we get al products, otherwise if wegoto/ pr oduct / MacBook we
only get aMacBook.

XML Marshalling - Updating
To support updates such as PUT and POST you can use the params object which Grails enhances with the ability to

read an incoming XML packet. Given an incoming XML packet of:

<?xm version="1.0" encodi ng="1 SO 8859- 1" ?>
<pr oduct >
<nanme>MacBook</ name>
<vendor id="12">
<name>Appl e</ nanme>
</ vender >
</ pr oduct >

Y ou can read this XML packet using the same techniques described in the Data Binding section via the params
object:

185

http://grails.org/doc/latest/ref/Tags/form.html
http://grails.org/doc/latest/ref/Controllers/params.html
http://grails.org/doc/latest/ref/Controllers/params.html

def save = {
def p = new Product (parans[' product'])

i f(p.save()) {
render p as XML

el se {
render p.errors

In this example by indexing into the par ans object using thekey ' pr oduct' we can automatically create and
bind the XML using the constructor of the Pr oduct class. Aninteresting aspect of the line:

def p = new Product (parans[' product'])

Isthat it requires no code changes to deal with aform submission that submits form data than it does to deal with an
XML request. The exact same technigue can be used with a JSON request too.

If you require different responses to different clients (REST, HTML etc.) you can use content
negotation

The Pr oduct object isthen saved and rendered as XML, otherwise an error message is produced using Grails
validation capabilitiesin the form:

<error>
<nmessage>The property 'title' of class 'Person' nust be specified</nessage>
</error>

13.2 SOAP

There are severa plugins that add SOAP support to Grails depending on your preferred approach. For Contract First
SOAP services thereis a Spring WS plugin, whilst if you want to generate a SOAP API from Grails services there
are severa plugins that do thisincluding:

o XFire plugin which uses the XFire SOAP stack

0 CXE plugin which uses the CXF SOAP stack

© Axis2 plugin which uses Axis2

© Metro plugin which uses the Metro framework (and can also be used for Contract First)
Most of the SOAP integrations integrate with Grails services viathe exposes static property. The below exampleis
taken from the XFire plugin:

cl ass BookService {
static expose=['xfire']

Book[] get Books(){
Book. l'ist() as Book[]

The WSDL can then be accessed at the location:
http://127.0.0.1: 8080/ your _grails_app/services/book?wsdl
For more information on the XFire plug-in refer the documentation on the wiki.

13.3 RSS and Atom

No direct support is provided for RSS or Atom within Grails. Y ou could construct RSS or ATOM feeds with the
render method's XML capability. Thereis however a Feeds plug-in available for Grails that provides a RSS and

186

http://grails.org/plugin/springws
http://xfire.codehaus.org/
http://xfire.codehaus.org/
http://grails.org/plugin/cxf/
http://cxf.apache.org/
http://grails.org/plugin/axis2
http://ws.apache.org/axis2/
https://jax-ws-commons.dev.java.net/grails/
https://jax-ws-commons.dev.java.net/grails/
http://docs.codehaus.org/pages/viewpage.action?pageId=88342530
http://grails.org/XFire+plugin
http://grails.org/doc/latest/ref/Controllers/render.html
http://docs.codehaus.org/display/GRAILS/Feeds+Plugin

187

Atom builder using the popular ROME library. An example of its usage can be seen below:

def feed = {
render (f eedType: "rss”, feedVersion:"2.0") {
title ="My test feed"
link = "http://your.test.server/yourController/feed"
Article.list().each() {
entry(it.title) {
link = "http://your.test.server/article/${it.id}"
it.content // return the content
}
}
}
}

https://rome.dev.java.net/

14. Grailsand Spring

This section is for advanced users and those who are interested in how Grails integrates with and builds on the Spring
Framework This section is also useful for plug-in devel opers considering doing runtime configuration Grails.

14.1 The Underpinnings of Grails

Grailsis actualy a Spring MV C application in disguise. Spring MV C is the Spring framework's built-in MV C web

application framework. Although Spring MV C suffers from the same difficulties as frameworks like Struts in terms
of its ease of use, it is superbly designed and architected and was, for Grails, the perfect framework to build another
framework on top of .

Grails leverages Spring MV C in the following areas:

© Basic controller logic - Grails subclasses Spring's DispatcherServlet and uses it to delegate onto Grails
controllers

© DataBinding and Validation - Grails validation and data binding capabilities are built on those provided by
Spring

© Runtime configuration - Grails entire runtime convention based system is wired together by a Spring
ApplicationContext

© Transactions - Grails uses Spring's transaction management in GORM

In other words Grails has Spring embedded running all the way through it.

The Grails ApplicationContext
Spring devel opers are often keen to understand how the Grails Appl i cat i onCont ext instance is constructed.
The basics of it are asfollows.

© Grails constructs aparent Appl i cat i onCont ext from the
web- app/ VEEB- | NF/ appl i cati onCont ext . xm . ThisAppl i cat i onCont ext setsup the
api:org.codehaus.groovy.grails.commons.Grail sA pplication instance and the
api:org.codehaus.groovy.grails.plugins.Grail sPluginM anager.

© UsingthisAppl i cati onCont ext asaparent Grails analyses the conventions with the
Grai | sAppl i cati on instance and constructsachild Appl i cat i onCont ext that isused as the root
Appl i cati onCont ext of theweb application

Configured Spring Beans

Most of Grails' configuration happens at runtime. Each plug-in may configure Spring beans that are registered with
the Appl i cat i onCont ext . For areference as to which beans are configured refer to the reference guide which
describes each of the Grails plug-ins and which beans they configure.

14.2 Configuring Additional Beans

Using XML

Beans can be configured using thegr ai | s- app/ conf/ spri ng/ resour ces. xm fileof your Grails
application. Thisfileistypical Spring XML file and the Spring documentation has an excellent reference on how to
go about configuration Spring beans. As atrivial example you can configure a bean with the following syntax:

<bean i d="nmyBean" cl ass="nmny.conpany. MyBeanl npl " ></ bean>

Once configured the bean, in this case named my Bean, can be auto-wired into most Grails types including
controllers, tag libraries, services and so on:

cl ass Exanpl eControl l er {
def nyBean

Referencing Existing Beans

Beansdeclared inr esour ces. xm can aso reference Grails classes by convention. For exampleif you need a
reference to a service such as Book Ser vi ce inyour bean you use the property name representation of the class
name. In the case of Book Ser vi ce thiswould be bookSer vi ce. For example:

188

http://www.springframework.org/.
http://www.springframework.org/.
http://www.springframework.org/docs/MVC-step-by-step/Spring-MVC-step-by-step.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/web/servlet/DispatcherServlet.html
http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/context/ApplicationContext.html
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-basics

<bean i d="myBean" cl ass="nmny. conpany. MyBeanl npl ">
<property nane="bookServi ce" ref="bookService" />
</ bean>

The bean itself would of course need a public setter, which in Groovy is defined like this:

package ny.conpany

cl ass MyBeanl mpl {
BookSer vi ce bookService

}

or in Javalikethis:

package ny. conpany;
cl ass MyBeanl npl {
private BookServi ce bookService
publ i c voi d set BookServi ce(BookService theBookService) {
thi s. bookServi ce = t heBookService

Since much of Grails configuration is done at runtime by convention many of the beans are not declared anywhere,
but can still be referenced inside your Spring configuration. For exampleif you need areference to the Grails
Dat aSour ce you could do:

<bean i d="nyBean" cl ass="ny. conpany. MyBeanl npl ">
<property nane="bookServi ce" ref="bookService" />
<property nane="dat aSource" ref="dataSource" />
</ bean>

Or if you need the Hibernate Sessi onFact or y thiswill work:

<bean i d="myBean" cl ass="nmny. conpany. MyBeanl npl ">
<property nane="bookServi ce" ref="bookService" />
<property nane="sessionFactory" ref="sessionFactory" />
</ bean>

For afull reference of the available beans see the Plug-in reference in the reference guide.

Using the Spring DSL

If you want to use the Spring DSL that Grails provides then you need to create a

grai |l s-app/ conf/spring/resources. groovy fileand define aproperty called beans that isassigned a
block:

beans = {
/'l beans here
}

The same configuration for the XML example could be represented as:

189

beans = {

nmyBean(ny. conpany. MyBean! npl) {
bookServi ce = ref ("bookService")
}

The main advantage of thisway isthat you can now mix logic in within your bean definitions, for example based on
the environment:

import grails.util.*
beans = {
switch(GailsUil.environment) ({
case "production":
nmyBean(ny. conpany. MyBean! npl) {
bookServi ce = ref("bookService")

br eak
case "devel opnent"
nmyBean(ny. conpany. nock. Mockl npl) {
bookServi ce = ref("bookService")

br eak

14.3 Runtime Spring with the Beans DSL

This Bean builder in Grails aimsto provide a simplified way of wiring together dependencies that uses Spring at its
core.

In addition, Spring's regular way of configuration (via XML) is essentially static and very difficult to modify and
configure at runtime other than programmatic XML creation which is both error prone and verbose. Grails
api:grails.spring.BeanBuilder changes al that by making it possible to programmatically wire together components at
runtime thus allowing you to adapt the logic based on system properties or environment variables.

This enables the code to adapt to its environment and avoids unnecessary duplication of code (having different
Spring configs for test, development and production environments)

The BeanBuilder class
Grails provides a api:grails.spring.BeanBuil der class that uses dynamic Groovy to construct bean definitions. The
basics are asfollows:

i mport org. apache. conmons. dbcp. Basi cDat aSour ce
i mport org.codehaus. groovy. grails. orm hi bernate. Confi gurabl eLocal Sessi onFact or yBean;
i mport org.springfranmework. cont ext. Appl i cati onCont ext ;
def bb = new grails. spring. BeanBui | der ()
bb. beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assNanme = "org. hsql db.j dbcDriver"

url = "jdbc: hsgl db: mem grai | sDB"
usernane = "sa"
password = ""

sessi onFact or y(Conf i gur abl eLocal Sessi onFact or yBean) {
dat aSour ce = dat aSour ce
hi ber nat eProperties = ["hi bernate. hbnRddl . aut 0": " cr eat e- dr op"
"hi bernat e. show_sql ":true]

}
Appl i cati onCont ext appContext = bb. createApplicati onContext ()

Within plug-ins and the grails-app/conf/spring/resources.groovy file you don't need to create
anew instance of BeanBui | der . Instead the DSL isimplicitly available inside the
doW t hSpri ng and beans blocks respectively.

190

191

The above example shows how you would configure Hibernate with an appropriate data source with the

BeanBui | der class.

Essentially, each method call (in this case dat aSour ce and sessi onFact or y calls) map to the name of the
bean in Spring. The first argument to the method is the bean's class, whilst the last argument is a block. Within the
body of the block you can set properties on the bean using standard Groovy syntax

Bean references are resolved automatically be using the name of the bean. This can be seen in the example above
with the way the sessi onFact or y bean resolvesthe dat aSour ce reference.

Certain specia properties related to bean management can also be set by the builder, as seen in the following code:

sessi onFact or y(Confi gur abl eLocal Sessi onFact oryBean) { bean ->

bean. aut owi re = ' byNan®g' /1 Autowi ring behaviour. The other option is 'byType'. [a
bean.initMethod = "init’ /1l Sets the initialisation method to "init'. [init-method
bean. destroyMet hod = 'destroy' // Sets the destruction nmethod to 'destroy'. [destroy-ngt
bean. scope = 'request"’ /'l Sets the scope of the bean. [scope]

dat aSour ce = dat aSour ce
hi ber nat eProperties = ["hi bernate. hbnRddl . aut 0": " cr eat e- dr op"
"hi bernate. show _sql ":true]

The strings in square brackets are the names of the equivalent bean attributes in Spring's XML definition.

Using BeanBuilder with SpringMVC

If you want to take advantage of BeanBuilder in aregular Spring MV C application you need to make sure the
grail s-spring-<version>.jar fileisinyour classpath. Once that is done you can need to set the following
<cont ext - par an® valuesin your / VEB- | NF/ web. xm file:

<cont ext - par an>

<par am nane>cont ext Conf i gLocat i on</ par am nane>

<par am val ue>/ WWEB- | NF/ appl i cat i onCont ext . gr oovy</ par am val ue>
</ cont ext - par an>
<cont ext - par an>

<par am nane>cont ext d ass</ par am nane>

<par am val ue>or g. codehaus. groovy. grai | s. commons. spri ng. G ai | sWebAppl i cati onCont ext </ pana
</ cont ext - par an>

With that done you can then create a/WEB-INF/applicationContext.groovy file that does the rest:

beans {
dat aSour ce(or g. apache. commons. dbcp. Basi cDat aSour ce) {
driverCl assName = "org. hsqgl db. j dbcDriver"

url = "jdbc: hsqgl db: mem grai | sDB"
usernane = "sa"
password = ""

L oading Bean Definitions from the File System
You can use the BeanBui | der classto load external Groovy scripts that define beans using the same path
matching syntax defined here. Example:

def bb = new BeanBui | der ()
bb. | oadBeans("cl asspat h: *Spri ngBeans. gr oovy")
def applicationContext = bb.createApplicationContext()

Herethe BeanBui | der will load all Groovy files on the classpath ending with Spr i nhgBeans. gr oovy and
parse them into bean definitions. An example script can be seen below:

beans {
dat aSour ce(Basi cDat aSour ce) {
driverC assName = "org. hsqgl db. j dbcDriver"

url = "jdbc: hsql db: mrem grai | sDB"
usernane = "sa"
password = ""

sessi onFact or y(Conf i gur abl eLocal Sessi onFact or yBean) {
dat aSour ce = dat aSour ce
hi ber nat eProperties = ["hi bernate. hbnRddl . aut 0": "cr eat e-dr op"”,
"hi bernat e. show _sql ":true]

Adding Variablesto the Binding (Context)
If you're loading beans from a script you can set the binding to use by creating a Groovy Binding object:

def bindi ng = new Bi ndi ng()
bi ndi ng. foo = "bar"

def bb = new BeanBui | der ()

bb. bi ndi ng = bi ndi ng

bb. | oadBeans(" cl asspat h: * Spri ngBeans. gr oovy")
def ctx = bb.createApplicationContext()

14.4 The BeanBuilder DSL Explained

Using Constructor Arguments
Constructor arguments can be defined using parameters to each method that reside between the class of the bean and
the last closure:

bb. beans {
exanpl eBean(MyExanpl eBean, "firstArgunent”, 2) {
soneProperty = [1, 2, 3]
}

Configuring the BeanDefinition (Using factory methods)
Thefirst argument to the closure is a reference to the bean configuration instance, which you can use to configure
factory methods and invoke any method on the AbstractBeanDefinition class:

bb. beans {
exanpl eBean(MyExanpl eBean) { bean ->
bean. f act oryMet hod = "get | nstance”
bean. si ngl eton = fal se
soneProperty = [1, 2, 3]

As an alternative you can also use the return value of the bean defining method to configure the bean:

bb. beans {
def exanpl e = exanpl eBean(MyExanpl eBean) {
soneProperty = [1, 2, 3]

exanpl e. fact oryMet hod = "get | nst ance"

Using Factory beans
Spring defines the concept of factory beans and often abean is created not from a class, but from one of these
factories. In this case the bean has no class and instead you must pass the name of the factory bean to the bean:

192

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/support/AbstractBeanDefinition.html

193

bb. beans {
myFact or y(Exanpl eFact or yBean) {
soneProperty = [1, 2, 3]

}

nmyBean(nyFactory) ({
name = "bl ah"

}

Note in the example above instead of a class we pass areference to the myFact or y bean into the bean defining
method. Another common task is provide the name of the factory method to call on the factory bean. This can be
done using Groovy's named parameter syntax:

bb. beans {
myFact or y(Exanpl eFact or yBean) {
soneProperty = [1, 2, 3]

}

nmyBean(nyFactory: "get | nstance") {
nanme = "bl ah"

}

Heretheget | nst ance method on the Exanpl eFact or yBean bean will be called in order to create the
nmy Bean bean.

Creating Bean References at Runtime
Sometimes you don't know the name of the bean to be created until runtime. In this case you can use a string
interpolation to invoke a bean defining method dynamically:

def beanNane = "exanpl e"
bb. beans {
"${ beanNane} Bean" (MyExanpl eBean) {
soneProperty = [1, 2, 3]
}

In this case the beanNane variable defined earlier is used when invoking a bean defining method.
Furthermore, because sometimes bean names are not known until runtime you may need to reference them by name
when wiring together other beans. In this case using the r ef method:

def beanNane = "exanpl e"
bb. beans {
"${ beanNane} Bean" (MyExanpl eBean) {
soneProperty = [1, 2, 3]

anot her Bean(Anot her Bean) {
exampl e = ref ("${beanNane} Bean")

Here the example property of Anot her Bean is set using aruntime reference to the exanpl eBean. Ther ef
method can also be used to refer to beans from a parent Appl i cat i onCont ext that is provided in the constructor
of the BeanBui | der:

Appl i cati onContext parent = ...//
der bb = new BeanBui | der (parent)
bb. beans {
anot her Bean(Anot her Bean)
exanpl e = ref ("${beanNane} Bean", true)

Here the second parameter t r ue specifiesthat the reference will look for the bean in the parent context.

Using Anonymous (Inner) Beans
Y ou can use anonymous inner beans by setting a property of the bean to a block that takes an argument that is the
bean type:

bb. beans {
mar ge(Person. cl ass) {
name = "nmarge"
husband = { Person p ->
name = "honer"
age = 45
props = [overweight:true, height:"1.8m']

children = [bart, lisa]

}

bart (Person) ({
name = "Bart"
age = 11

i sa(Person) {
nanme = "Lisa"
age = 9

In the above example we set the mar ge bean's husband property to a block that creates an inner bean reference.

Alternatively if you have afactory bean you can ommit the type and just use passed bean definition instead to setup
the factory:

bb. beans {
per sonFact or y(Per sonFact ory. cl ass)
mar ge(Person. cl ass) {
name = "nmarge"

husband = { bean ->
bean. f act oryBean = "personFactory"
bean. fact oryMet hod = "new nst ance"
name = "homner”
age = 45

props = [overweight:true, height:"1.8ni]

children = [bart, lisa]

Abstract Beans and Parent Bean Definitions
To create an abstract bean definition define a bean that takes no class:

194

195

cl ass Hol yGrail Quest {
def start() { println "lets begin" }

}
cl ass Kni ght Of TheRoundTabl e {
String nane
String | eader
Kni ght Of TheRoundTabl e(String n) {
this.name = n

}
Hol yGrai | Quest quest

def enbar kOnQuest () {
quest.start()

def bb = new grails. spring. BeanBui | der ()

bb. beans {
abstract Bean {
| eader = "Lancel ot™"
}
}

Here we define an abstract bean that setsthat hasal eader property with the value of " Lancel ot " . Now to use
the abstract bean set it as the parent of the child bean:

bb. beans {

quest (Hol yGrai | Quest)

kni ght s(Kni ght O TheRoundTabl e, "Canelot") { bean ->
bean. parent = abstract Bean
guest = quest

When using a parent bean you must set the parent property of the bean before setting any
other properties on the bean!

If you want an abstract bean that has a class you can do it this way:

def bb = new grails. spring. BeanBui | der ()
bb. beans {
abstract Bean(Kni ght Of TheRoundTabl e) { bean ->
bean. ' abstract' = true
| eader = "Lancel ot"

}

quest (Hol yGrai | Quest)

kni ghts(" Canel ot") { bean ->
bean. parent = abstract Bean
quest = quest

In the above example we create an abstract bean of type Kni ght OF TheRoundTabl e and use the bean argument
to set it to abstract. Later we define a knights bean that has no class, but inherits the class from the parent bean.

Using Spring Namespaces
Since Spring 2.0, users of Spring have been granted easier access to key features via XML namespaces. With
BeanBuilder you can use any Spring namespace by first declaring it:

xm ns context:"http://ww. springfranmework. org/ schema/ cont ext"

And then invoking a method that matches the names of the Spring namespace tag and its associated attributes:

context.' conponent-scan' (' base-package' :"ny.conpany.donain")

Y ou can do some useful things with Spring namespaces, such as looking up a JINDI resource:

xm ns jee:"http://ww. springfranmework. org/ schena/ j ee"
jee.'jndi-lookup' (id:"dataSource", 'jndi-nane':"java: conp/env/ nmyDat aSource")

The example above will create a Spring bean with the identifier of dat aSour ce by performing a INDI lookup on
the given INDI name. With Spring namespaces you also get full accessto all of the powerful AOP support in Spring
from BeanBuilder. For example given the following two classes:

cl ass Person {

int age;

String nane;

voi d birthday() {
++age;

cl ass BirthdayCardSender {
Li st peopl eSent Cards = []
voi d onBirthday(Person person) ({
peopl eSent Cards << person

Y ou can define an AOP aspect that uses a pointcut to detect whenever the bi rt hday () method is called:

xm ns aop: "http://ww. springfranmework. or g/ schena/ aop"
fred(Person) {

name = "Fred"

age = 45

}
bi rt hdayCar dSender Aspect (Bi rt hdayCar dSender)
aop {
config("proxy-target-class":true) ({
aspect (1d:"sendBirthdayCard", ref:"birthdayCardSender Aspect”) {
after method: "onBirthday", pointcut: "execution(void ..Person.birthday()) and thi
}

]

14.5 Property Placeholder Configuration

Grails supports the notion of property placeholder configuration through an extended version of Spring's
PropertyPlaceholderConfigurer, which is typically useful when used in combination with externalized configuration.
Settings defined in either ConfigSlurper scripts of Java properties files can be used as placeholder values for Spring
configurationingr ai | s- app/ conf/ spri ng/ resour ces. xm . For example given the following entriesin
grail s-app/ conf/ Confi g. groovy (or an externalized config):

dat abase. dri ver="com nysql . j dbc. Driver"
dat abase. dbnane="nysql : nydb"

Y ou can then specify placeholdersinr esour ces. xm asfollows using the familiar ${..} syntax:

196

http://static.springsource.org/spring/docs/3.0.x/javadoc-api/org/springframework/beans/factory/config/PropertyPlaceholderConfigurer.html
http://groovy.codehaus.org/ConfigSlurper

<bean i d="dat aSour ce" cl ass="org. springframework.jdbc. dat asource. Dri ver Manager Dat aSour ce" >
<property nanme="driver G assNane" ><val ue>${ dat abase. dri ver} </ val ue></ property>
<property nanme="url "><val ue>j dbc: ${dat abase. dbnane} </ val ue></ pr operty>

</ bean>

14.6 Property Override Configuration

Grails supports setting of bean properties via configuration. Thisis often useful when used in combination with

externalized configuration.
Essentially you defineabeans block with the names of beans and their values:

beans {
bookServi ce {
webServi ceURL = "http://ww. anazon. cont'
}
}

The general format is:

[bean nane].[property nane] = [val ue]

The same configuration in a Java properties file would be:

beans. bookSer vi ce. webSer vi ceURL=ht t p: / / www. amazon. com

197

15. Grailsand Hibernate

If GORM (Grails Object Relational Mapping) is not flexible enough for your liking you can aternatively write some
or al of your domain classesin Javaor re-use an existing domain model that has been mapped using Hibernate. To
dothiscreateahi ber nat e. cf g. xnl fileinthegr ai | s- app/ conf/ hi ber nat e directory of your project
and add the corresponding HBM mapping xml files for your domain classes. Y ou can do this manually or by running
the create-hibernate-cfg-xml script.

For more info on how to do this read the documentation on mapping at the Hibernate Website

Thiswill alow you to map Grails domain classes onto awider range of legacy systems and have more flexibility in
the creation of your database schema.
Additionally, you will still be able to call all of the dynamic persistent and query methods alowed in GORM!

15.1 Mapping with Hibernate Annotations

Grails also supports creating domain classes mapped with Hibernate's Java 5.0 Annotations support.
To create an annotated domain class, create anew classin sr ¢/ j ava and use the annotations defined as part of the
EJB 3.0 spec (for more info on this see the Hibernate Annotations Docs):

package com books

@ntity

public class Book {
private Long id;
private String title;
private String description
private Date date;
@d

@zener at edVal ue
public Long getld() {
return id;

}

public void setld(Long id) {
this.id = id;

}

public String getTitle() {
return title;

}
public void setTitle(String title) {
this.title =title;

}
public String getDescription() {
return description;

}

public void setDescription(String description) {
this.description = description;

}

Once that is done you need to register the class with the Hibernate sessi onFact or y, to do you need to add
entriestothegr ai | s- app/ conf/ hi ber nat e/ hi ber nate. cfg. xm fileasfollows:

<! DOCTYPE hi ber nat e-confi gurati on SYSTEM
"http://hibernate. sourceforge. net/ hi bernate-configuration-3.0.dtd">
<hi ber nat e- confi gurati on>
<sessi on-factory>
<mappi ng package="com books" />
<mappi ng cl ass="com books. Book" />
</ sessi on-factory>
</ hi ber nat e- conf i gur ati on>

By default the hi ber nat e. cf g. xml fileislocatedinthegr ai | s- app/ conf/ hi ber nat e directory. If you
wish to change this you can do so by specifying an alternative location in
grail s-app/ conf/ Dat aSour ce. gr oovy:

198

http://grails.org/doc/latest/ref/Command Line/create-hibernate-cfg-xml.html
http://docs.jboss.org/hibernate/core/3.3/reference/en/html/mapping.html
http://annotations.hibernate.org/

199

hi bernate {
config.location = "file:/path/to/ny/hibernate.cfg.xm"

Or even alist of locations:

hi bernate {
config.location = ["file:/path/to/one/hibernate.cfg.xm",
“file:/path/to/two/ hibernate.cfg.xm"]

When Grailsloads it will register the necessary dynamic methods with the class. To see what else you can do with a
Hibernate domain class see the section on Scaffolding.

15.2 Further Reading

Grails committer, Jason Rudolph, took the time to write many useful articles about using Grails with custom
Hibernate mappings including:

© Hoisting Grailsto Your Legacy DB - An excellent article about using Grails with Hibernate XML
© Grails + EJB3 Domain Models - Another great article about using Grails with EJB3-style annotated domain
models

http://jasonrudolph.com/blog/2006/06/20/hoisting-grails-to-your-legacy-db/
http://www.infoq.com/articles/grails-ejb-tutorial

16. Scaffolding
Scaffolding allows you to auto-generate a whole application for a given domain class including:

© The necessary views
© Controller actions for create/read/update/delete (CRUD) operations

Enabling Scaffolding
The simplest way to get started with scaffolding is to enable scaffolding viathe scaf f ol d property. For the Book
domain class, you need to set the scaf f ol d property on acontroller to true:

cl ass BookController {
def scaffold = true

The above works because the BookCont r ol | er follows the same naming convention as the Book domain class,
if we wanted to scaffold a specific domain class you can reference the class directly in the scaffold property:

def scaffold = Author

With that doneif you run this grails application the necessary actions and views will be auto-generated at runtime.
The following actions are dynamically implemented by default by the runtime scaffolding mechanism:

list
show
edit
delete
Create
save
© update
Aswell asthisa CRUD interface will be generated. To access the interface in the above example simply go to
http://1 ocal host: 8080/ app/ book
If you prefer to keep your domain model in Java and mapped with Hibernate you can still use scaffolding, ssimply
import the necessary class and set the scaffold property to it.

O O O O O O

Dynamic Scaffolding

Note that when using the scaffold property Grails does not use code templates, or code generation to achieve this so
you can add your own actions to the scaffolded controller that interact with the scaffolded actions. For example, in
the below example, changeAut hor redirects to the show action which doesn't actually exist physically:

cl ass BookController {

def scaffold = Book

def changeAut hor = {
def b = Book.get(paranms["id"])
b. aut hor = Author.get(parans["author.id"])
b. save()
/1 redirect to a scaffol ded action
redi rect (acti on: show)

Y ou can also override the scaffolded actions with your own actions if necessary:

200

201

cl ass BookController {
def scaffold = Book
// overrides scaffolded action to return both authors and books
def list = {
["books" : Book.list(), "authors": Author.list()]

All of thisiswhat is known as "dynamic scaffolding” where the CRUD interface is generated dynamically at
runtime. Grails also supports "static" scaffolding which will be discussed in the following sections.

Customizing the Generated Views
The views that Grails generates have some form of intelligence in that they adapt to the Validation constraints. For
example you can change the order that fields appear in the views simply by re-ordering the constraints in the builder:

def constraints = {
title()
rel easeDat e()

Y ou can also get the generator to generate listsinstead of text inputsif you usethei nLi st constraint:

def constraints = {
title()
category(inList:["Fiction", "Non-fiction", "Biography"])
rel easeDat e()

}

Or if you use the r ange constraint on a number:

def constraints = {
age(range: 18. . 65)

Restricting the size via a constraint aso effects how many characters can be entered in the generated view:

def constraints = {
nane(si ze: 0.. 30)

Generating Controllers & Views

The above scaffolding features are useful but in real world situationsiits likely that you will want to customize the
logic and views. Grails allows you to generate a controller and the views used to create the above interface viathe
command line. To generate a controller type:

grails generate-control |l er Book

Or to generate the views type:

grails generate-views Book

Or to generate everything type:

grails generate-all Book

If you have a domain classin a package or are generating from a Hibernate mapped class remember to include the
fully qualified package name:

grails generate-all com bookst ore. Book

Customizing the Scaffolding templates
The templates used by Grails to generate the controller and views can be customized by installing the templates with
the install-templ ates command.

202

http://grails.org/doc/latest/ref/Command Line/install-templates.html

203

17. Deployment
Grails applications can be deployed in a number of ways, each of which hasits pros and cons.

" grails run-app"

Y ou should be very familiar with this approach by now, sinceit is the most common method of running an
application during the development phase. An embedded Tomcat server islaunched that 1oads the web application
from the devel opment sources, thus allowing it to pick up an changes to application files.

This approach is not recommended at all for production deployment because the performance is poor. Checking for
and loading changes places a sizable overhead on the server. Having said that, grai | s prod run-app removes
the per-request overhead and allows you to fine tune how fregquently the regular check takes place.

Setting the system property "disable.auto.recompile” to t r ue disables thisregular check completely, while the
property "recompile.frequency” controls the frequency. This latter property should be set to the number of seconds
you want between each check. The default is currently 3.

"grailsrun-war"

Thisisvery similar to the previous option, but Tomcat runs against the packaged WAR file rather than the
development sources. Hot-reloading is disabled, so you get good performance without the hassle of having to deploy
the WAR file elsewhere.

WAR file

When it comes down to it, current java infrastructures almost mandate that web applications are deployed as WAR
files, so thisis by far the most common approach to Grails application deployment in production. Creating aWAR
fileis as simple as executing the war command:

grails war

There are a'so many ways in which you can customise the WAR file that is created. For example, you can specify a
path (either absolute or relative) to the command that instructs it where to place the file and what name to giveit:

grails war /opt/javal/tontat-5.5.24/foobar. war

Alternatively, you can add alineto gr ai | s- app/ conf/ Bui | dConf i g. gr oovy that changes the default
location and filename:

grails.project.war.file = "foobar-prod. war"

Of course, any command line argument that you provide overrides this setting.

It isalso possible to control what libraries are included in the WAR file, in case you need to avoid conflicts with
librariesin a shared folder for example. The default behavior isto include in the WAR file al libraries required by
Grails, plus any libraries contained in plugin "lib" directories, plus any libraries contained in the application's "lib"
directory. As an alternative to the default behavior you can explicitly specify the complete list of libraries to include
in the WAR file by setting the propertiesgr ai | s. war . dependenci es and

grails.war.javab. dependenci es in Config.groovy to either lists of Ant include patterns or closures
containing AntBuilder syntax. Closures are invoked from within an Ant "copy" step, so only elements like "fileset"
can be included, whereas each item in a pattern list isincluded. Any closure or pattern assigned to the latter property
will beincluded in additionto gr ai | s. war . dependenci es only if you are running JDK 1.5 or above.

Be careful with these properties: if any of the libraries Grails depends on are missing, the application will almost
certainly fail. Here is an example that includes a small subset of the standard Grails dependencies:

http://grails.org/doc/latest/ref/Command Line/war.html

def deps = [
"hi bernate3.jar",
"groovy-all-*.jar",
"standard- ${servl et Version}.jar",
"jstl-${servletVersion}.jar",
"oscache-*.jar",
"commons- | oggi ng-*.jar",
"sitenesh-*.jar",
"spring-*.jar",
"log4j-*.jar",
"ognl-*.jar",
"commons-*.jar",
"xstream1.2.1.jar",
"xpp3_mn-1.1.3.4.0jar"]
grails.war. dependenci es = {
fileset(dir: "libs") {
deps. each { pattern ->
i ncl ude(nane: pattern)

This example only exists to demonstrate the syntax for the properties. If you attempt to use it asisin your own
application, the application will probably not work. You can find alist of dependencies required by Grailsin the
"dependencies.txt” file that resides in the root directory of the unpacked distribution. Y ou can also find alist of the
default dependencies included in WAR generation in the "War.groovy" script - seethe "DEFAULT_DEPS" and
"DEFAULT_J5_DEPS" variables.

The remaining two configuration options available to you aregr ai | s. war . copy ToWwebApp and

grail s.war.resources. Thefirst of these allows you to customise what files are included in the WAR file
from the "web-app" directory. The second allows you to do any extra processing you want before the WAR fileis
finally created.

/1 This closure is passed the command |ine argunents used to start the
[l war process.
grails.war.copyToWebApp = { args ->
fileset(dir:"web-app") {
i ncl ude(nanme: "js/**")
i ncl ude(nanme: "css/**")
i ncl ude(nane: "WVEB-|NF/**")
}

}
/1 This closure is passed the location of the staging directory that
[l is zipped up to nake the WAR file, and the conmand |ine argunents.
/'l Here we override the standard web.xm w th our own.
grails.war.resources = { stagingDir, args ->
copy(file: "grails-app/conf/customweb.xm ", tofile: "${stagingDir}/WEB-IN~ web.xm ")

Application servers

Ideally you should be able to simply drop a WAR file created by Grails into any application server and it should
work straight away. However, things are rarely ever this simple. The Grails website contains an up-to-date list of
application servers that Grails has been tested with, along with any additional steps required to get a Grails WAR file
working.

Sponsored by SpringSource

204

http://grails.org/Deployment
http://springsource.com

