
srl Compiler and Language
Users' Guide

Version 4.2

Nevil Brownlee

Information Technology Systems & Services
The University of Auckland

Auckland, New Zealand

August 1998

1. Introduction 1
1.1. SRL the Simple Ruleset Language 1
1.2. srl the Ruleset Language Compiler 1
1.3. Compiler Options 1

2. Sample SRL Programs 2
2.1. Programs for 'special' packets 2

2.1.1,broadcast.srl Watch for broadcast packets 2
2.1.2.pr+bc.srl Count broadcasts, summarise protocols 3
2.1.3.icmp.srl Watch ICMP packets 4
2.1.4.other.srl Summarise ‘other’ packets 5

2.2. Programs for classifying IP ports 5
2.2.1.cs2.srl Simple example classifier 5
2.2.2.nifty.srl Generalised classifier (nifty default) 6

2.3. Programs which work with lists of IP networks 8
2.3.1.k1.srl Simple example, Kawaihiko network 8
2.3.2k8.srl Display Kawaihiko network 9
2.3.32ip8.srl Classify traffic from/between routers 12

3. Author's Address 13

SRL Users’ Guide - 1 - Version 4.2

1. Introduction

1.1. SRL the Simple Ruleset Language

An RTFM meter such as NeTraMet or NetFlowMet must be told which flows are of interest,
and what information shoud be saved for each flow. Configuring the meter requires the
user to create a 'ruleset,' to be downloaded to the meter by a manager such as NeMaC or
nifty. A ruleset is really a pattern-matching program for the meter's Pattern Matching
Engine (PME), described in RFC 2064. A lengthy introduction to rulesets and how to write
them appears in RFC 2123. Unfortunately, many users have been discouraged by the
apparent difficulties in doing this.

SRL, a language for specifying traffic flows and performing actions upon them, was
originally produced so as to provide an easier way to create rulesets. The syntax is
documented in an Internet Draft available from the NeTraMet and RTFM home pages.

The following section, documenting an SRL compiler, is copied from the NeTraMet 4.2
Users' Guide.

1.2. srl the Ruleset Language Compiler

The program srl is an optimising compiler for SRL, the Simple Ruleset Language. SRL is
documented in an Internet Draft, available from the NeTraMet or RTFM home pages. It is
used in the same way as other Unix compilers - when the compiler is executed it reads in
a source 'srl' file, parses it, and (if it is free from syntax errors) produces an object 'rules'
file.

srl [options] source

compiles the file 'source', producing a rules file ready to be used by NeMaC. Source files
will normally end with .srl and rules files with .rules. For example

srl test-prog.srl

produces test-prog.rules.

1.3. Compiler Options

-l List source program (default only lists statements with errors)

-s Syntax check only (don't produce an object file)

-ann set 'Assembler output' level for object file
nn=0 rules in numeric form only. Requires NeMaC v4.2.
nn=1 attributes and actions given as words. This is the default.
nn=2 as for nn=1, but don't delete intermediate files.

-Onn set Optimisation level.
nn=0 no optimisation at all.
nn=1 peephole optimising to delete redundant rules from intermediate

files. This is the default.
nn=2 optimise tests by mask length within expressions (shortest masks

first, after allowing for overlapping addresses/masks).
nn=3 as for nn=2, but optimise expression between if clauses and

between statements.
-t } Switches for
-v } compiler testing

SRL Users’ Guide - 2 - Version 4.2

srl extends the language as described in the Internet Draft by adding a number of extra
statements:

include fffff ;

Will read all the text from source file fffff. Includes may be nested (i.e. an include file may
include other files). srl looks for file fffff in the same directory as the source file specified
on its command line.

optimise nn ;

optimise * ;

optimise ;

Allow you to change the optimisation level as required for different parts of your program.
optimise nn ; sets optimising to level nn (described above for the -O option).
optimise ; resets the level to the value specified on the command line.
optimise * ; indicates a break between optimised expression groups .

set nn ;

format aaa .. aaa ;

statistics ;

These three statements are passed on (via the object rules file) to NeMaC. String
constants in a format (specifying separators in flow data files) may include C-style
constants (including non-ASCII characters introduced with a \).

2. Sample SRL Programs
A collection of SRL programs is provided in the examples/srl directory. Those programs
are listed here, with description and commentary. They should provide a good
introduction to the language and its capabilities.

2.1. Programs for 'special' packets
2.1.1, broadcast.srl Watch for broadcast packets

This program watches for packets with MAC address FF-FF-FF-FF-FF-FF, and saves all
their address attributes. It can be used with nm_rc to provide regular lists of broadcast
activity on a network.

broadcast.srl: Look for Broadcast packets
#

 if SourcePeerType == dummy # PC meter time-filler packets
 ignore;

 if DestAdjacentAddress == FF-FF-FF-FF-FF-FF {
 save SourcePeerType;
 save SourcePeerAddress/32;
 save DestPeerAddress/32;
 save SourceTransType;
 save SourceTransAddress/16;
 save DestTransAddress/16;
 count;
 }

set 9;

The first test is for 'dummy' packets. These are generated (and reported) by the PC
versions of the NeTraMet meter as a background activity. The ratio of 'dummy' vs 'normal'
packets gives a reasonable estimate of the processor idle time percentage.

SRL Users’ Guide - 3 - Version 4.2

The second test looks for a destination MAC address (DestAdjacentAddress) of
FF-FF-FF-FF-FF-FF. Packets passing this test cause the compound statement (enclosed
in braces) to be executing, saving a list of address attribute values and counting the
packet.

This program has only one 'NeMaC' statement, indicating that it is to be run (on a meter)
using '9' as its set name. It doesn't have a format statement, since nm_rc will use its built-
in default format.

Here is some sample output obtained from nm_rc running this program’s output rules file ..
/examples/srl> ../../nm_rc -c30 -r broadcast.rules bluebottle.itss Nevil-32

nm_rc: Remote Console for NeTraMet: V4.2
Using MIB file: /dept/itc/nevil/au-snmp/mib/mib.txt
>> manager 1: Status=1, Owner=NeTraMet
>> ruleset 1: Status=1, Owner=NeTraMet, Name=1

#Format: flowruleset flowindex firsttime sourcepeertype sourcepeeraddress destpeeraddress
 sourcetranstype sourcetransaddress desttransaddress topdus frompdus tooctets fromoctets

#--- bluebottle.itss le0 2 flows 0pps 16Bps 17:21:19 Mon 10 Aug 1998 ---
50% 5 6 0s ip4 130.216.169.115 255.255.255.255 udp nbio nbio 1 0 243B 0B
50% 5 7 0s ip4 130.216.96.251 255.255.255.255 udp nbio nbio 1 0 243B 0B
 0% bytes in 0 other flows

#--- bluebottle.itss le0 143 flows 7pps 2kBps 17:21:30 Mon 10 Aug 1998 ---
 7% 5 44 8s ip4 130.216.4.253 255.255.255.255 udp 520 520 7 0 4kB 0B
 6% 5 29 10s ip4 130.216.97.74 255.255.255.255 udp nbio nbio 13 0 3kB 0B
 5% 5 26 11s ip4 130.216.97.201 255.255.255.255 udp nbio nbio 11 0 3kB 0B
 4% 5 40 9s ip4 130.216.4.254 130.216.4.255 udp 520 520 4 0 2kB 0B
 3% 5 34 10s ip4 130.216.61.42 255.255.255.255 udp nbio nbio 6 0 2kB 0B
 3% 5 103 5s ip4 130.216.7.14 255.255.255.255 udp nbio nbio 6 0 1kB 0B
 3% 5 42 8s ip4 130.216.7.137 255.255.255.255 udp nbio nbio 6 0 1kB 0B
 2% 5 43 8s ip4 130.216.97.72 255.255.255.255 udp nbio nbio 5 0 1kB 0B
 2% 5 27 11s ip4 130.216.4.10 255.255.255.255 udp snmp 162 8 0 896B 0B
 1% 5 36 9s ip4 130.216.97.85 255.255.255.255 udp nbio nbio 3 0 771B 0B
65% bytes in 133 other flows

2.1.2. pr+bc.srl Count broadcasts, summarise protocols

This program watches for broadcast packets too. Non-broadcast packets are also
summarised, creating one flow for each PeerType (network protocol) observed on the
network.

pr+bc.srl: broadcast ruleset, in SRL
#

 if SourcePeerType == dummy ignore; # PC meter time-filler packets

 if DestAdjacentAddress == 01-00 & 01-00 {
 store FlowClass := 1;
 if SourcePeerType == IP
 save SourcePeerAddress/24;
 else if SourcePeerType == ethertalk
 save SourcePeerAddress/16;
 else save SourcePeerAddress/32;
 save SourcePeerType;
 count;
 }
 else if SourceAdjacentAddress == 01-00 & 01-00
 nomatch; # Broadcast packet with direction reversed ???
 else { # Not a broadcast packet
 save SourcePeerType;
 count;
 }

SET 4; # 'NeMaC' commands
FORMAT
 SourcePeerType " " ToPDUs " " ToOctets " # "
 FlowClass " " SourcePeerAddress;

SRL Users’ Guide - 4 - Version 4.2

The test used for 'broadcast' packets only looks at the bottom bit of the first
AdjacentAddress byte. Note the trailing zeroes in the address and mask for this test -
without it the compiler would assume that the value was to be right-justified in the six-bit
attribute!

The FlowClass variable is used to indicate whether the flow is a 'broadcast' one. It is set
to one by the Store statement for broadcast packets. The SourcePeerAddress os saved
for broadcasts, bu the SourcePeerType is used to determine how many bits of the address
should be saved; 24 for IP addresses, 16 for Ethertalk and 32 for any other protocols.

The ruleset will be run using set name '4,' and a format statement is used to tell NeMaC
which attribute values should be read and saved in flow data files. String constants
(delimited by quote marks) are used to separate groups of attribute values.

2.1.3. icmp.srl Watch ICMP packets

This program watches for ICMP packets, and sets the FlowKind variable to a letter
indicating the ICMP packet type. FlowKind values are used by nifty as plotting symbols
for the flows with the most traffic.

icmp.srl: Look at ICMP packets
#

 if SourcePeerType == IP && SourceTransType == ICMP save, {

 if SourceTransAddress == 0 # Echo reply
 store FlowKind := 'e';
 else if SourceTransAddress == 3 # Destination unreachable
 store FlowKind := 'U';
 else if SourceTransAddress == 8 # Echo request
 store FlowKind := 'E';
 else if SourceTransAddress == 11 # Time exceeded
 store FlowKind := 'X';
 else if SourceTransAddress == 13 # Timestamp request
 store FlowKind := 'T';
 else if SourceTransAddress == 14 # Timestamp reply
 store FlowKind := 't';
 else if SourceTransAddress == 17 # Address Mask request
 store FlowKind := 'M';
 else if SourceTransAddress == 18 # Address Mask reply
 store FlowKind := 'm';
 else store FlowKind := '?';

 save SourceTransAddress; # ICMP type
 save DestTransAddress; # ICMP dest
 save SourcePeerAddress;
 save DestPeerAddress;
 count;
 }

 else ignore; # Not an IP packet

set 5;

This program uses an expression containing two comparisons ANDed together, allowing it
to find IP/ICMP packets with a single IF statement. The compiler groups the code
together for the tests in the sequence of else- clauses – this allows the NeTraMet meter to
execute the else- tests as a single hashed comparison.

SRL Users’ Guide - 5 - Version 4.2

2.1.4. other.srl Summarise ‘other’ packets

The NeTraMet meter looks at the Ethernet type and LSAP fields of every packet it sees,
so as to determine the packet’s PeerType. If it’s not a PeerType which RTFM knows
about, NeTraMet gives it PeerType ‘other,’ and puts its Ethertype and LSAP values into
the Source- and DestPeerAddress attribute. This program looks for ‘other’ packets and
saves their Ethertypes and LSAPs.

other.srl: Look at 'other' packets (this is a NeTraMet
implementation feature, not part of the RTFM Architecture)
#

 if SourcePeerType == other save, {

 # Since IP wasn't tested for, NeTraMet counts
 # all packets as 'other'

 save SourcePeerAddress; # Ethertype
 save DestPeerAddress; # LSAP
 count;
 }

 else ignore; # Not an IP packet

set 5;
#format
SourceKind DestKind FlowKind " "
SourcePeerType SourcePeerAddress DestPeerAddress " "
SourceTransType SourceTransAddress DestTransAddress;

(The format statement was commented out because I normally use this program with
nm_rc, which provides its own default format).

2.2. Programs for classifying IP ports
2.2.1. cs2.srl Simple example classifier

This program is from the SRL Internet Draft, and is a very much simplified version of
nifty.srl. It finds IP packets with port numbers we are interested in (www, ftp and telnet),
sets FlowKind to a plotting symbol suitable for nifty, and saves the Source- and
DestPeerAddresses.

cs2.srl: Classify IP port numbers - with compound statements
#

 IF SourcePeerType == IP save, {

 IF SourceTransAddress == (www, ftp, telnet) NOMATCH;
 # We want the well-known port as Dest

 IF DestTransAddress == telnet
 SAVE, STORE FlowKind := 'T';
 ELSE IF DestTransAddress == www
 SAVE, STORE FlowKind := 'W';
 ELSE IF DestTransAddress == ftp
 SAVE, STORE FlowKind := 'F';
 ELSE {
 SAVE DestTransAddress;
 STORE FlowKind := '?';
 }

SRL Users’ Guide - 6 - Version 4.2

 SAVE SourcePeerAddress /32;
 SAVE DestPeerAddress /32;
 COUNT;
 }

 IGNORE; # Not an IP packet

SET 7; # NeMaC commands
FORMAT
 firsttime " " topdus frompdus " # " tooctets fromoctets
 sourcepeertype " \" "
 sourcepeeraddress destpeeraddress desttransaddress " \x3F "
 flowkind; # Must have the semicolon !
STATISTICS;

The second if- statement is interesting for two reasons. One, it tests a list of operands
(values and masks) in a single comparison. Since no explicit mask is specified, the whole
value field is used in the test. Two, it executes a ‘nomatch’ statement if the comparison
succeeds. The effect of this is to ensure that the ports we are interested in always appear
as the DestTransAddress of the reported flows, which makes processing the collected flow
data a little bit easier.

2.2.2. nifty.srl Generalised classifier (nifty default)

This program is an srl version of the original nifty ruleset. It is a generalisation of cs2.srl
(above).

SET 4; # NeMaC commands
FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType SourcePeerAddress DestPeerAddress " "
 SourceTransType SourceTransAddress DestTransAddress " "
 ToPDUs FromPDUs " " ToOctets FromOctets;

nifty ruleset, in SRL
#
Nevil Brownlee, ITSS Technology Development, The University of Auckland
#

 if SourcePeerType == IP
 save; # Fall through to IP handling below
 else if SourcePeerType == other { # ethertype/LSAP in source/dest peer
 store FlowKind := 3; # Plot as SQUARE
 save SourcePeerAddress/16;
 save DestPeerAddress/16;
 count;
 }
 else if SourcePeerType == dummy
 ignore;
 else {
 store FlowKind := 3; # Plot as SQUARE
 count;
 }

 if SourceTransType == (tcp, udp) save, { # Look at well-known ports

 if SourceTransAddress == (
 domain, ftp, ftpdata, gopher, nntp, ntp, smtp, snmp, telnet, www,
 79, 110, 143, 513, 515, # finger, pop, imap, login, printer
 137, 138, 139, # NETBIOS name service, datagram, session
 2049, # NFS
 1080, 8080, # UA socks gateway, www proxy
 3128, 3130, # Squid cache, cache control
 6000 # X-Windows
) nomatch; # We want the well-known port as Dest

SRL Users’ Guide - 7 - Version 4.2

 if DestTransAddress == (137, 138, 139) # NETBIOS
 save, store FlowKind := 'B';
 else if DestTransAddress == 3128 # Squid data
 save, store FlowKind := 'C';
 else if DestTransAddress == 3130 # Squid control
 save, store FlowKind := 'c';
 else if DestTransAddress == domain
 save, store FlowKind := 'D';
 else if DestTransAddress == (ftp, ftpdata)
 save, store FlowKind := 'F';
 else if DestTransAddress == 143 # imap
 save, store FlowKind := 'I';
 else if DestTransAddress == nntp
 save, store FlowKind := 'N';
 else if DestTransAddress == 110 # pop
 save, store FlowKind := 'P';
 else if DestTransAddress == smtp
 save, store FlowKind := 'M';
 else if DestTransAddress == 1080 # UA socks gateway
 save, store FlowKind := 'S';
 else if DestTransAddress == snmp
 save, store FlowKind := 's';
 else if DestTransAddress == telnet
 save, store FlowKind := 'T';
 else if DestTransAddress == (www, 8080) # UA WWW proxy
 save, store FlowKind := 'W';
 else if DestTransAddress == 6000 # xwin
 save, store FlowKind := 'X';

 else if SourceTransType == udp
 store FlowKind := 2; # Plot as PLUS
 else if SourceTransType == tcp
 store FlowKind := 1; # Plot as DIAMOND
 else
 store FlowKind := 3; # Plot as SQUARE
 }

 else { # Not tcp or udp
 store FlowKind := 3; # Plot as SQUARE
 save SourceTransType;
 }

 save SourcePeerAddress/32;
 save DestPeerAddress/32;
 save SourceTransAddress/16;
 save DestTransAddress/16;
 count;

The sample plot which follows was produced by nifty while running this program on a PC
NeTraMet meter. The plot colour indicates how many samples have been collected since
there was any activity for this flow (black = currently active, red = idle for 8 samples).

SRL Users’ Guide - 8 - Version 4.2

2.3. Programs which work with lists of IP networks
2.3.1. k1.srl Simple example, Kawaihiko network

This program is one of a series which displays flows from the Kawaihiko network.

It uses define statements to specify lists of network addresses (each with a specified
address width, e.g. /16 indicates a mask of 255.255.0.0), and these defines are used in if-
statements to form expressions testing long lists of networks.

k1.srl: Display flows from the Kawaihiko network
#

define Auckland_B =
 130.216/16;
define AIT_B =
 156.62/16;
define Waikato_B =
 130.217/16,
 163.7/16,
 166.83/16;
define Canterbury_B =
 132.181/16,
 153.111/16,
 155.32/16;
 CCNET3define Lincoln_B =
 138.75/16;
define Otago_B =
 139.80/16;

SRL Users’ Guide - 9 - Version 4.2

define Kawaihiko_B =
 Auckland_B, AIT_B, Waikato_B, Canterbury_B, Lincoln_B, Otago_B;

 if SourcePeerType == IP save;
 else ignore;

 if DestPeerAddress == (Kawaihiko_B) nomatch;
 # We want the Kawaihiko site as source

 if SourcePeerAddress == (Auckland_B)
 save, store FlowKind := 'A';
 else if SourcePeerAddress == (AIT_B)
 save, store FlowKind := 'T';
 else if SourcePeerAddress == (Waikato_B)
 save, store FlowKind := 'W';
 else if SourcePeerAddress == (Canterbury_B)
 save, store FlowKind := 'C';
 else if SourcePeerAddress == (Lincoln_B)
 save, store FlowKind := 'L';
 else if SourcePeerAddress == (Otago_B)
 save, store FlowKind := 'O';
 else {
 save SourcePeerAddress;
 store FlowKind := '?';
 }

 save DestPeerAddress;
 count;

set 3;
format
 FlowKind " "
 SourcePeerType SourcePeerAddress DestPeerAddress " "
 SourceTransType SourceTransAddress DestTransAddress;

2.3.2 k8.srl Display Kawaihiko network

This program is a more elaborate one in the series of programs which display flows from
the Kawaihiko network.

Include statements are used to read in files of define statements. These are similar to the
defines in k1.srl (above), except that they contain defines for all the Kawaihiko networks
(k-nets.srl) and all the New Zealand networks (nz-nets.srl).

Subroutine net-group() is used to classify a peer address, and to set a variable indicating
which of the Kawiahiko networks the peer address belongs to.

The program sets optimise level 3, requesting the compiler to group the comparisons into
the largest groups it can manage, and uses an optimise * statement to make sure that
network 10.0 is tested on its own, after all the other New Zealand networks.

k8.srl: Display flows from the Kawaihiko network
#

include k-nets.srl; # Kawaihiko nets
include nz-nets.srl; # New Zealand nets (including Kawaihiko)

optimise 3; # Over expressions and statements

 if SourcePeerType == IP save;
 else ignore;
 call net_group(SourcePeerAddress, FlowKind)

SRL Users’ Guide - 10 - Version 4.2

 1: { # Kawaihiko
 call net_group(DestPeerAddress, DestKind)
 1: # Kawaihiko
 store FlowKind := '*';
 2: # NZIX
 store FlowKind := 'Z';
 3: { # Not Kawaihiko
 if DestPeerAddress == (nz_nets) # Test the NZ nets
 store DestKind := '@';

optimise *; # Force break in cross-statement optimisation

 else if DestPeerAddress == 10.0/8 # Test 10.0 last
 store DestKind := '@';
 else store DestKind := '?';
 if DestKind == '@' { # LC letters for Kawaiahiko-NZ
 if FlowKind == 'A' store FlowKind := 'a';
 else if FlowKind == 'T' store FlowKind := 't';
 else if FlowKind == 'W' store FlowKind := 'w';
 else if FlowKind == 'C' store FlowKind := 'c';
 else if FlowKind == 'L' store FlowKind := 'l';
 else if FlowKind == 'O' store FlowKind := 'o';
 }
 }
 endcall;
 save SourcePeerAddress; save DestPeerAddress;
 save SourceTransType;
 save SourceTransAddress; save DestTransAddress;
 count;
 }
 endcall;

 if MatchingStoD == 1 nomatch; # We want Kawaihiko as source
 else {
 save SourcePeerAddress; save DestPeerAddress;
 save SourceTransType;
 save SourceTransAddress; save DestTransAddress;
 count;
 }

 subroutine net_group(ADDRESS peer, VARIABLE kind)
 if peer == (Auckland_B) save, { # Test the /16 nets first
 store kind := 'A'; return 1;
 }
 else if peer == (AIT_B) save, {
 store kind := 'T'; return 1;
 }
 else if peer == (Waikato_B) save, {
 store kind := 'W'; return 1;
 }
 else if peer == (Canterbury_B) save, {
 store kind := 'C'; return 1;
 }
 else if peer == (Lincoln_B) save, {
 store kind := 'L'; return 1;
 }
 else if peer == (Otago_B) save, {
 store kind := 'O'; return 1;
 }

 else if peer == (NZIX) save, { # Test the other Kawaihiko nets
 store kind := 'Z'; return 2;
 }
 else if # peer == (Auckland) ||
 peer == (Auckland_N) save, {
 store kind := 'A'; return 1;

SRL Users’ Guide - 11 - Version 4.2

 }
 else if peer == (Waikato) || peer == (Waikato_N) save, {
 store kind := 'W'; return 1;
 }
 else if peer == (Canterbury) || peer == (Canterbury_N) save, {
 store kind := 'C'; return 1;
 }
 else if peer == (Lincoln) || peer == (Lincoln_N) save, {
 store kind := 'L'; return 1;
 }
 else if peer == (Otago) || peer == (Otago_N) save, {
 store kind := 'O'; return 1;
 }

 else { # Not a Kawaihiko net
 save peer;
 store kind := '?'; return 3;
 }
 endsub;

set 3;
#format
SourceKind DestKind FlowKind " "
SourcePeerType SourcePeerAddress DestPeerAddress " "
SourceTransType SourceTransAddress DestTransAddress;

The above sample plot was produced by nifty while running this program on a
NetFlowMet meter. Flows from Kawaihiko sites to other New Zealand networks are

SRL Users’ Guide - 12 - Version 4.2

plotted with lower-case letters (e.g. ‘c’ is Canterbury), from Kawaihiko to networks outside
New Zealand in upper-case letters (e.g. ‘W’ is Waikato). The flow plotted as ‘?’ (pointed to
by the cursor) is from a non-Kawaihiko site to the Kawaihiko web cache.

2.3.3 2ip8.srl Classify traffic from/between routers

This program is an SRL version of /examples/rules.two-ip-groups.

2ip8.srl: rules.two-ip-groups in SRL
#
Nevil Brownlee, ITSS Technology Development, University of Auckland
#
#
Rule specification file to tally IP packets in three groups:
UA to AIT, UA to elsewhere, AIT to elsewhere
#
-------+-------------------+-----------------+--------
| | |
+----+-----+ +----+-----+ +---+---+
| UA | | AIT | | meter |
+-+-+-+-+--+ +-+-+-+-+--+ +-------+
#
The rules work as follows:
Non-IP packets are ignored
The 'classify' subroutine is used to determine which IP addresses
are part of 'UA' and which are part of 'AIT.'
ua-to-ait is the 'forward' direction for these flows; ait to ua
packets are retried
#

DEFINE ua = (130.216/16, 202.37.88/24);
DEFINE ait = (156.62/16, 192.73.21/24);

 IF SourcePeerType == IP SAVE ;
 ELSE IGNORE; # Not IP

 CALL classify(SourcePeerAddress)
 1: { # from ua
 CALL classify(DestPeerAddress)
 1: IGNORE; # ua -> ua
 2: COUNT; # ua -> ait
 ENDCALL;
 COUNT; # Not ua or ait
 }
 2: { # from ait
 CALL classify(DestPeerAddress)
 1: NOMATCH; # ait -> ua
 2: IGNORE; # ait -> ait
 ENDCALL;
 COUNT; # ait -> other
 }
 ENDCALL; # End of outer CALL classify()

 SUBROUTINE classify (ADDRESS peer)
 IF peer == ua {
 SAVE peer/24; RETURN 1; # ua
 }
 ELSE IF peer == ait {
 SAVE peer/24; RETURN 2; # ait
 }
 SAVE peer/32; # other
 ENDSUB;

SRL Users’ Guide - 13 - Version 4.2

SET 5;
FORMAT FlowRuleSet FlowIndex FirstTime " "
 SourcePeerType " "
 SourcePeerAddress DestPeerAddress " "
 ToOctets FromOctets;
STATISTICS ;

end of file

Here is some sample output obtained from nm_rc running this program’s output rules file ..

/examples/srl > ../../nm_rc -c30 -r 2ip8.rules bluebottle.itss Nevil-32

nm_rc: Remote Console for NeTraMet: V4.2
Using MIB file: /dept/itc/nevil/au-snmp/mib/mib.txt
>> manager 1: Status=1, Owner=NeTraMet
>> ruleset 1: Status=1, Owner=NeTraMet, Name=1

#Format: flowruleset flowindex firsttime sourcepeertype sourcepeeraddress
destpeeraddress tooctets fromoctets

#--- bluebottle.itss udp-9996 0 flows 0pps 0Bps
 17:26:14 Mon 10 Aug 1998 ---
100% bytes in 0 other flows

#--- bluebottle.itss udp-9996 120 flows 37pps 18kBps
 17:26:30 Mon 10 Aug 1998 ---
16% 17 2 21s ip4 130.216.1.0 140.200.128.19 0B 82kB
 8% 17 89 28s ip4 130.216.4.0 195.116.85.71 0B 45kB
 8% 17 52 18s ip4 130.216.191.0 207.48.52.225 0B 42kB
 8% 17 12 24s ip4 130.216.96.0 207.82.250.251 0B 40kB
 7% 17 67 19s ip4 130.216.92.0 209.83.166.88 0B 38kB
 5% 17 13 21s ip4 156.62.3.0 207.200.75.4 0B 27kB
 4% 17 104 20s ip4 156.62.3.0 204.162.96.57 0B 21kB
 4% 17 81 16s ip4 156.62.3.0 208.10.192.196 0B 21kB
 4% 17 40 44s ip4 130.216.12.0 210.65.0.33 0B 20kB
 4% 17 60 17s ip4 130.216.191.0 62.144.115.98 0B 19kB
33% bytes in 110 other flows

3. Author's Address
Please send any comments, suggestions, bug reports to me, Nevil Brownlee, i.e.

n.brownlee@auckland.ac.nz

