|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Packages that use SVMKernel | |
---|---|
org.biojava.stats.svm | Support Vector Machine classification and regression. |
org.biojava.stats.svm.tools | Tools for use of the SVM package. |
Uses of SVMKernel in org.biojava.stats.svm |
---|
Classes in org.biojava.stats.svm that implement SVMKernel | |
---|---|
class |
CachingKernel
Caches the results of a nested kernel so that k(a, b) need only be calculated once. |
class |
DiagonalAddKernel
Adds a class specific constant to k(x, x). |
class |
DiagonalCachingKernel
Caches the leading diagonal of a kernel matrix. |
class |
LinearKernel
Deprecated. Just use SparseVector.kernel instead... |
class |
ListSumKernel
This kernel computes the sum of the dot products between items of two lists at corresponding indexes. |
class |
NestedKernel
Encapsulates a kernel that wraps another kernel up. |
class |
NormalizingKernel
Performs a normalization on the results of a nested kernel. |
class |
PolynomialKernel
This kernel computes all possible products of order features in feature space. |
class |
RadialBaseKernel
This kernel computes the radial base kernel that corresponds to a gausian distribution. |
class |
SigmoidKernel
This kernel implements a three layer neural net. |
static class |
SparseVector.NormalizingKernel
A version of the standard dot-product kernel that scales each column independently. |
Fields in org.biojava.stats.svm declared as SVMKernel | |
---|---|
static SVMKernel |
SparseVector.kernel
|
Methods in org.biojava.stats.svm that return SVMKernel | |
---|---|
SVMKernel |
SVMClassifierModel.getKernel()
|
SVMKernel |
SVMRegressionModel.getKernel()
|
SVMKernel |
SimpleSVMClassifierModel.getKernel()
|
SVMKernel |
NestedKernel.getNestedKernel()
Retrieve the currently nested SVMKernel. |
SVMKernel |
SigmoidKernel.getWrappedKernel()
|
Methods in org.biojava.stats.svm with parameters of type SVMKernel | |
---|---|
void |
SVMRegressionModel.setKernel(SVMKernel k)
|
void |
NestedKernel.setNestedKernel(SVMKernel k)
Set the SVMKernel to nest to k. |
void |
DiagonalCachingKernel.setNestedKernel(SVMKernel k)
Set the kernel to nest. |
void |
CachingKernel.setNestedKernel(SVMKernel k)
|
void |
SigmoidKernel.setWrappedKernel(SVMKernel kernel)
|
SVMClassifierModel |
SMOTrainer.trainModel(SVMTarget target,
SVMKernel kernel,
TrainingListener l)
|
Constructors in org.biojava.stats.svm with parameters of type SVMKernel | |
---|---|
CachingKernel(SVMKernel k)
|
|
DiagonalCachingKernel(SVMKernel k)
Creates a new DiagonalCachingKernel that nests k. |
|
NestedKernel(SVMKernel k)
Create a new NestedKernel that wraps k. |
|
NormalizingKernel(SVMKernel k)
|
|
PolynomialKernel(SVMKernel nested,
double order,
double a,
double c)
|
|
RadialBaseKernel(SVMKernel nested,
double width)
|
|
SimpleSVMClassifierModel(SVMKernel kernel)
|
|
SimpleSVMClassifierModel(SVMKernel kernel,
java.util.Collection items)
|
|
SimpleSVMClassifierModel(SVMKernel kernel,
SVMTarget target)
|
Uses of SVMKernel in org.biojava.stats.svm.tools |
---|
Classes in org.biojava.stats.svm.tools that implement SVMKernel | |
---|---|
class |
SuffixTreeKernel
Computes the dot-product of two suffix-trees as the sum of the products of the counts of all nodes they have in common. |
Fields in org.biojava.stats.svm.tools declared as SVMKernel | |
---|---|
static SVMKernel |
ClassifierExample.PointClassifier.polyKernel
|
static SVMKernel |
ClassifierExample.PointClassifier.rbfKernel
|
Methods in org.biojava.stats.svm.tools that return SVMKernel | |
---|---|
SVMKernel |
ClassifierExample.PointClassifier.getKernel()
Retrieve the currently used kernel |
Methods in org.biojava.stats.svm.tools with parameters of type SVMKernel | |
---|---|
void |
ClassifierExample.PointClassifier.setKernel(SVMKernel kernel)
Set the kernel used for classification. |
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |