
MySQL Connector/J

MySQL Connector/J

Abstract

This manual describes MySQL Connector/J, the JDBC implementation for communicating with MySQL servers.

Document generated on: 2012-09-05 (revision: 32081)

iii

Table of Contents
Preface and Legal Notices .. vii
1. MySQL Connector/J ... 1
2. Connector/J Versions ... 3

Java Versions Supported ... 3
3. Connector/J Installation .. 5

Installing Connector/J from a Binary Distribution .. 5
Installing the Driver and Configuring the CLASSPATH ... 5
Upgrading from an Older Version ... 6

Upgrading to MySQL Connector/J 5.1.x .. 7
JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer 7
Upgrading from MySQL Connector/J 3.0 to 3.1 ... 7

Installing from the Development Source Tree .. 9
4. Connector/J Examples ... 11
5. Connector/J (JDBC) Reference ... 13

Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J 13
Properties Files for the useConfigs Option ... 31

JDBC API Implementation Notes .. 32
Java, JDBC and MySQL Types .. 35
Using Character Sets and Unicode ... 38
Connecting Securely Using SSL ... 39
Connecting Using PAM Authentication .. 42
Using Master/Slave Replication with ReplicationConnection ... 42
Mapping MySQL Error Numbers to JDBC SQLState Codes ... 43

6. JDBC Concepts ... 49
Connecting to MySQL Using the JDBC DriverManager Interface ... 49
Using JDBC Statement Objects to Execute SQL ... 50
Using JDBC CallableStatements to Execute Stored Procedures .. 51
Retrieving AUTO_INCREMENT Column Values through JDBC ... 53

7. Connection Pooling with Connector/J .. 57
8. Load Balancing with Connector/J .. 61
9. Failover with Connector/J ... 65
10. Using the Connector/J Interceptor Classes .. 67
11. Using Connector/J with Tomcat .. 69
12. Using Connector/J with JBoss .. 71
13. Using Connector/J with Spring .. 73

Using JdbcTemplate ... 74
Transactional JDBC Access ... 75
Connection Pooling with Spring .. 77

14. Using Connector/J with GlassFish ... 79
A Simple JSP Application with Glassfish, Connector/J and MySQL ... 80
A Simple Servlet with Glassfish, Connector/J and MySQL .. 82

15. Troubleshooting Connector/J Applications ... 85
16. Connector/J Support .. 93

Connector/J Community Support .. 93
How to Report Connector/J Bugs or Problems .. 93
Connector/J Change History ... 94

A. MySQL Connector/J Change History .. 95
Changes in MySQL Connector/J 5.1.x .. 97

Changes in MySQL Connector/J 5.1.22 (Not yet released) ... 97
Changes in MySQL Connector/J 5.1.21 (2012-07-03) .. 97
Changes in MySQL Connector/J 5.1.20 (2012-05-01) .. 98

MySQL Connector/J

iv

Changes in MySQL Connector/J 5.1.19 (April 2012) .. 98
Changes in MySQL Connector/J 5.1.18 (2011-10-04) .. 99
Changes in MySQL Connector/J 5.1.17 (2011-07-07) ... 100
Changes in MySQL Connector/J 5.1.16 (Not released) ... 100
Changes in MySQL Connector/J 5.1.15 (2011-02-09) ... 101
Changes in MySQL Connector/J 5.1.14 (6th December 2010) .. 101
Changes in MySQL Connector/J 5.1.13 (2010-06-24) ... 101
Changes in MySQL Connector/J 5.1.12 (2010-02-18) ... 103
Changes in MySQL Connector/J 5.1.11 (2010-01-21) ... 103
Changes in MySQL Connector/J 5.1.10 (2009-09-23) ... 104
Changes in MySQL Connector/J 5.1.9 (2009-09-21) .. 104
Changes in MySQL Connector/J 5.1.8 (2009-07-16) .. 106
Changes in MySQL Connector/J 5.1.7 (2008-10-21) .. 111
Changes in MySQL Connector/J 5.1.6 (2008-03-07) .. 112
Changes in MySQL Connector/J 5.1.5 (2007-10-09) .. 115
Changes in MySQL Connector/J 5.1.4 (Not Released) ... 115
Changes in MySQL Connector/J 5.1.3 (2007-09-10) .. 115
Changes in MySQL Connector/J 5.1.2 (2007-06-29) .. 118
Changes in MySQL Connector/J 5.1.1 (2007-06-22) .. 118
Changes in MySQL Connector/J 5.1.0 (2007-04-11) .. 119

Changes in MySQL Connector/J 5.0.x ... 121
Changes in MySQL Connector/J 5.0.8 (2007-10-09) .. 121
Changes in MySQL Connector/J 5.0.7 (2007-07-20) .. 122
Changes in MySQL Connector/J 5.0.6 (2007-05-15) .. 124
Changes in MySQL Connector/J 5.0.5 (2007-03-02) .. 127
Changes in MySQL Connector/J 5.0.4 (2006-10-20) .. 130
Changes in MySQL Connector/J 5.0.3 (2006-07-26, beta) .. 130
Changes in MySQL Connector/J 5.0.2 (2006-07-11) .. 131
Changes in MySQL Connector/J 5.0.1 (Not Released) ... 131
Changes in MySQL Connector/J 5.0.0 (2005-12-22) .. 131

Changes in MySQL Connector/J 3.1.x ... 133
Changes in MySQL Connector/J 3.1.15 (Not yet released) ... 133
Changes in MySQL Connector/J 3.1.14 (2006-10-19) ... 133
Changes in MySQL Connector/J 3.1.13 (2006-05-26) ... 134
Changes in MySQL Connector/J 3.1.12 (2005-11-30) ... 136
Changes in MySQL Connector/J 3.1.11 (2005-10-07) ... 138
Changes in MySQL Connector/J 3.1.10 (2005-06-23) ... 141
Changes in MySQL Connector/J 3.1.9 (2005-06-22) .. 142
Changes in MySQL Connector/J 3.1.8 (2005-04-14) .. 144
Changes in MySQL Connector/J 3.1.7 (2005-02-18) .. 146
Changes in MySQL Connector/J 3.1.6 (2004-12-23) .. 147
Changes in MySQL Connector/J 3.1.5 (2004-12-02) .. 147
Changes in MySQL Connector/J 3.1.4 (2004-09-04) .. 149
Changes in MySQL Connector/J 3.1.3 (2004-07-07) .. 150
Changes in MySQL Connector/J 3.1.2 (2004-06-09) .. 150
Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha) ... 151
Changes in MySQL Connector/J 3.1.0 (2003-02-18, alpha) ... 153

Changes in MySQL Connector/J 3.0.x ... 154
Changes in MySQL Connector/J 3.0.17 (2005-06-23) ... 154
Changes in MySQL Connector/J 3.0.16 (2004-11-15) ... 155
Changes in MySQL Connector/J 3.0.15 (2004-09-04) ... 155
Changes in MySQL Connector/J 3.0.14 (2004-05-28) ... 156
Changes in MySQL Connector/J 3.0.13 (2004-05-27) ... 156
Changes in MySQL Connector/J 3.0.12 (2004-05-18) ... 157

MySQL Connector/J

v

Changes in MySQL Connector/J 3.0.11 (2004-02-19) ... 158
Changes in MySQL Connector/J 3.0.10 (2004-01-13) ... 158
Changes in MySQL Connector/J 3.0.9 (2003-10-07) .. 160
Changes in MySQL Connector/J 3.0.8 (2003-05-23) .. 161
Changes in MySQL Connector/J 3.0.7 (2003-04-08) .. 162
Changes in MySQL Connector/J 3.0.6 (2003-02-18) .. 162
Changes in MySQL Connector/J 3.0.5 (2003-01-22) .. 163
Changes in MySQL Connector/J 3.0.4 (2003-01-06) .. 163
Changes in MySQL Connector/J 3.0.3 (2002-12-17) .. 164
Changes in MySQL Connector/J 3.0.2 (2002-11-08) .. 165
Changes in MySQL Connector/J 3.0.1 (2002-09-21) .. 166
Changes in MySQL Connector/J 3.0.0 (2002-07-31) .. 166

Changes in MySQL Connector/J 2.0.x ... 167
Changes in MySQL Connector/J 2.0.14 (2002-05-16) ... 167
Changes in MySQL Connector/J 2.0.13 (2002-04-24) ... 168
Changes in MySQL Connector/J 2.0.12 (2002-04-07) ... 168
Changes in MySQL Connector/J 2.0.11 (2002-01-27) ... 169
Changes in MySQL Connector/J 2.0.10 (2002-01-24) ... 169
Changes in MySQL Connector/J 2.0.9 (2002-01-13) .. 169
Changes in MySQL Connector/J 2.0.8 (2001-11-25) .. 170
Changes in MySQL Connector/J 2.0.7 (2001-10-24) .. 170
Changes in MySQL Connector/J 2.0.6 (2001-06-16) .. 170
Changes in MySQL Connector/J 2.0.5 (2001-06-13) .. 171
Changes in MySQL Connector/J 2.0.3 (2000-12-03) .. 171
Changes in MySQL Connector/J 2.0.1 (2000-04-06) .. 171
Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000) ... 172
Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000) .. 172
Changes in MySQL Connector/J 2.0.0pre (17 August 1999) ... 172

Changes in MySQL Connector/J 1.2.x and lower ... 172
Changes in MySQL Connector/J 1.2b (04 July 1999) ... 172
Changes in MySQL Connector/J 1.2a (14 April 1999) .. 173
Changes in MySQL Connector/J 1.1i (24 March 1999) ... 173
Changes in MySQL Connector/J 1.1h (08 March 1999) .. 174
Changes in MySQL Connector/J 1.1g (19 February 1999) .. 174
Changes in MySQL Connector/J 1.1f (31 December 1998) ... 174
Changes in MySQL Connector/J 1.1b (03 November 1998) .. 174
Changes in MySQL Connector/J 1.1 (02 September 1998) ... 175
Changes in MySQL Connector/J 1.0 (24 August 1998) ... 175
Changes in MySQL Connector/J 0.9d (04 August 1998) ... 175
Changes in MySQL Connector/J 0.9 (28 July 1998) ... 176
Changes in MySQL Connector/J 0.8 (06 July 1998) ... 176
Changes in MySQL Connector/J 0.7 (01 July 1998) ... 176
Changes in MySQL Connector/J 0.6 (21 May 1998) ... 176

B. Licenses for Third-Party Components ... 179
Ant-Contrib License .. 179
Simple Logging Facade for Java (SLF4J) License ... 180

vi

vii

Preface and Legal Notices
This manual describes MySQL Connector/J, the JDBC implementation for communicating with MySQL
servers.

Legal Notices

Copyright © 1997, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be
subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which
may create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe
use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. MySQL is a trademark of Oracle
Corporation and/or its affiliates, and shall not be used without Oracle's express written authorization. Other
names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

This document in any form, software or printed matter, contains proprietary information that is the exclusive
property of Oracle. Your access to and use of this material is subject to the terms and conditions of your
Oracle Software License and Service Agreement, which has been executed and with which you agree
to comply. This document and information contained herein may not be disclosed, copied, reproduced,
or distributed to anyone outside Oracle without prior written consent of Oracle or as specifically provided
below. This document is not part of your license agreement nor can it be incorporated into any contractual
agreement with Oracle or its subsidiaries or affiliates.

Legal Notices

viii

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

For more information on the terms of this license, or for details on how the MySQL documentation is built
and produced, please visit MySQL Contact & Questions.

For additional licensing information, including licenses for third-party libraries used by MySQL products,
see Preface and Legal Notices.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists where you can
discuss your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other
languages, and downloadable versions in variety of formats, including HTML and PDF formats, see the
MySQL Documentation Library.

http://dev.mysql.com/contact/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc

1

Chapter 1. MySQL Connector/J
This section explains how to configure and develop Java applications with MySQL Connector/J, the JDBC
driver that is integrated with MySQL.

2

3

Chapter 2. Connector/J Versions

Table of Contents
Java Versions Supported ... 3

There are currently four versions of MySQL Connector/J available:

• Connector/J 5.1 is the Type 4 pure Java JDBC driver, which conforms to the JDBC 3.0 and JDBC 4.0
specifications. It provides compatibility with all the functionality of MySQL, including 4.1, 5.0, 5.1, 5.4
and 5.5. Connector/J 5.1 provides ease of development features, including auto-registration with the
Driver Manager, standardized validity checks, categorized SQLExceptions, support for the JDBC-4.0
XML processing, per connection client information, NCHAR, NVARCHAR and NCLOB types. This release
also includes all bug fixes up to and including Connector/J 5.0.6.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes
distributed transaction (XA) support.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides
support for all the functionality in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 3.0 provides core functionality and was designed for connectivity to MySQL 3.x or MySQL
4.1 servers, although it provides basic compatibility with later versions of MySQL. Connector/J 3.0 does
not support server-side prepared statements, and does not support any of the features in versions of
MySQL later than 4.1.

The following table summarizes the Connector/J versions available:

Connector/J
version

Driver Type JDBC version MySQL Server
version

Status

5.1 4 3.0, 4.0 4.1, 5.0, 5.1, 5.4,
5.5

Recommended
version

5.0 4 3.0 4.1, 5.0 Released version

3.1 4 3.0 4.1, 5.0 Obsolete

3.0 4 3.0 3.x, 4.1 Obsolete

The current recommended version for Connector/J is 5.1. This guide covers all four connector versions,
with specific notes given where a setting applies to a specific option.

Java Versions Supported

The following table summarizes Connector/J Java dependencies:

Connector/J version Java RTE required JDK required (to build source
code)

5.1 1.5.x, 1.6.x 1.6.x and 1.5.x

5.0 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

3.1 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Java Versions Supported

4

Connector/J version Java RTE required JDK required (to build source
code)

3.0 1.2.x, 1.3.x, 1.4.x, 1.5.x, 1.6.x 1.4.2, 1.5.x, 1.6.x

If you are building Connector/J from source code using the source distribution (see Installing from the
Development Source Tree), you must use JDK 1.4.2 or newer to compile the Connector package. For
Connector/J 5.1, you must have both JDK-1.6.x and JDK-1.5.x installed to be able to build the source
code.

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run
on a Java runtime older than 1.4 unless the class verifier is turned off (by setting the -Xverify:none
option to the Java runtime). This is because the class verifier will try to load the class definition for
java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint
functionality.

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than
1.4.x, as it relies on java.util.LinkedHashMap which was first available in JDK-1.4.0.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x.

5

Chapter 3. Connector/J Installation

Table of Contents
Installing Connector/J from a Binary Distribution .. 5
Installing the Driver and Configuring the CLASSPATH ... 5
Upgrading from an Older Version ... 6

Upgrading to MySQL Connector/J 5.1.x .. 7
JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer .. 7
Upgrading from MySQL Connector/J 3.0 to 3.1 ... 7

Installing from the Development Source Tree .. 9

You can install the Connector/J package using either the binary or source distribution. The binary
distribution provides the easiest method for installation; the source distribution lets you customize
your installation further. With either solution, you manually add the Connector/J location to your Java
CLASSPATH.

If you are upgrading from a previous version, read the upgrade information in Upgrading from an Older
Version before continuing.

Connector/J is also available as part of the Maven project. For more information, and to download the
Connector/J JAR files, see the Maven repository.

Installing Connector/J from a Binary Distribution
For the easiest method of installation, use the binary distribution of the Connector/J package. The binary
distribution is available either as a tar/gzip or zip file. Extract it to a suitable location, then optionally make
the information about the package available by changing your CLASSPATH (see Installing the Driver and
Configuring the CLASSPATH).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files,
and the JAR archive named mysql-connector-java-version-bin.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part of
the driver JAR file.

Starting with Connector/J 3.1.8, the archive also includes a debug build of the driver in a file named
mysql-connector-java-version-bin-g.jar. Do not use the debug build of the driver unless
instructed to do so when reporting a problem or a bug, as it is not designed to be run in production
environments, and will have adverse performance impact when used. The debug binary also depends on
the Aspect/J runtime library, which is located in the src/lib/aspectjrt.jar file that comes with the
Connector/J distribution.

Use the appropriate graphical or command-line utility to extract the distribution (for example, WinZip for
the .zip archive, and tar for the .tar.gz archive). Because there are potentially long file names in the
distribution, we use the GNU tar archive format. Use GNU tar (or an application that understands the GNU
tar archive format) to unpack the .tar.gz variant of the distribution.

Installing the Driver and Configuring the CLASSPATH
Once you have extracted the distribution archive, you can install the driver by placing mysql-connector-
java-version-bin.jar in your classpath, either by adding the full path to it to your CLASSPATH
environment variable, or by directly specifying it with the command line switch -cp when starting the JVM.

http://www.ibiblio.org/maven/

Upgrading from an Older Version

6

To use the driver with the JDBC DriverManager, use com.mysql.jdbc.Driver as the class that
implements java.sql.Driver.

You can set the CLASSPATH environment variable under UNIX, Linux or Mac OS X either locally for a user
within their .profile, .login or other login file. You can also set it globally by editing the global /etc/
profile file.

For example, add the Connector/J driver to your CLASSPATH using one of the following forms, depending
on your command shell:

Bourne-compatible shell (sh, ksh, bash, zsh):
shell> export CLASSPATH=/path/mysql-connector-java-ver-bin.jar:$CLASSPATH
C shell (csh, tcsh):
shell> setenv CLASSPATH /path/mysql-connector-java-ver-bin.jar:$CLASSPATH

Within Windows 2000, Windows XP, Windows Server 2003 and Windows Vista, you set the environment
variable through the System Control Panel.

To use MySQL Connector/J with an application server such as GlassFish, Tomcat or JBoss, read your
vendor's documentation for more information on how to configure third-party class libraries, as most
application servers ignore the CLASSPATH environment variable. For configuration examples for some
J2EE application servers, see Chapter 7, Connection Pooling with Connector/J Chapter 8, Load Balancing
with Connector/J, and Chapter 9, Failover with Connector/J. However, the authoritative source for JDBC
connection pool configuration information for your particular application server is the documentation for that
application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's .jar file in the WEB-INF/lib subdirectory of your webapp, as this is a standard location for third
party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the
com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or requires
them. Starting with Connector/J 5.0.0, the javax.sql.XADataSource interface is implemented using
the com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which supports XA distributed
transactions when used in combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set
mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

Upgrading from an Older Version

This section has information for users who are upgrading from one version of Connector/J to another,
or to a new version of the MySQL server that supports a more recent level of JDBC. A newer version of
Connector/J might include changes to support new features, improve existing functionality, or comply with
new standards.

Upgrading to MySQL Connector/J 5.1.x

7

Upgrading to MySQL Connector/J 5.1.x

• In Connector/J 5.0.x and earlier, the alias for a table in a SELECT statement is returned when accessing
the result set metadata using ResultSetMetaData.getColumnName(). This behavior however is
not JDBC compliant, and in Connector/J 5.1 this behavior was changed so that the original table name,
rather than the alias, is returned.

The JDBC-compliant behavior is designed to let API users reconstruct the DML statement based on the
metadata within ResultSet and ResultSetMetaData.

You can get the alias for a column in a result set by calling
ResultSetMetaData.getColumnLabel(). To use the old noncompliant behavior with
ResultSetMetaData.getColumnName(), use the useOldAliasMetadataBehavior option and
set the value to true.

In Connector/J 5.0.x, the default value of useOldAliasMetadataBehavior was true, but in
Connector/J 5.1 this was changed to a default value of false.

JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character encoding
was not supported by the server, however the JDBC driver could use it, allowing storage of multiple
character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL server
version 4.1 or newer, add the following property to your connection URL:

useOldUTF8Behavior=true

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer). If your
application encounters issues with server-side prepared statements, you can revert to the older client-
side emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major
changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode
character sets, server-side prepared statements, SQLState codes returned in error messages by the
server and various performance enhancements that can be enabled or disabled using configuration
properties.

• Unicode Character Sets: See the next section, as well as Character Set Support, for information on this
MySQL feature. If you have something misconfigured, it will usually show up as an error with a message
similar to Illegal mix of collations.

• Server-side Prepared Statements: Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing using all variants of
Connection.prepareStatement() to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/charset.html

Upgrading from MySQL Connector/J 3.0 to 3.1

8

prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the older
client-side emulated prepared statement code that is still presently used for MySQL servers older than
4.1.0 with the connection property useServerPrepStmts=false.

• Datetimes with all-zero components (0000-00-00 ...): These values cannot be represented reliably
in Java. Connector/J 3.0.x always converted them to NULL when being read from a ResultSet.

Connector/J 3.1 throws an exception by default when these values are encountered, as this is the most
correct behavior according to the JDBC and SQL standards. This behavior can be modified using the
zeroDateTimeBehavior configuration property. The permissible values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior using
noDatetimeStringSync=true (the default value is false) so that you can retrieve the unaltered
all-zero value as a String. Note that this also precludes using any time zone conversions, therefore the
driver will not allow you to enable noDatetimeStringSync and useTimezone at the same time.

• New SQLState Codes: Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL server
(if supported), which are different from the legacy X/Open state codes that Connector/J 3.0 uses. If
connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return SQLStates as part
of the error code), the driver will use a built-in mapping. You can revert to the old mapping by using the
configuration property useSqlStateCodes=false.

• ResultSet.getString(): Calling ResultSet.getString() on a BLOB column will now return the
address of the byte[] array that represents it, instead of a String representation of the BLOB. BLOB
values have no character set, so they cannot be converted to java.lang.Strings without data loss or
corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will treat as a
java.sql.Clob.

• Debug builds: Starting with Connector/J 3.1.8 a debug build of the driver in a file named mysql-
connector-java-version-bin-g.jar is shipped alongside the normal binary jar file that is named
mysql-connector-java-version-bin.jar.

Starting with Connector/J 3.1.9, we do not ship the .class files unbundled, they are only available in
the JAR archives that ship with the driver.

Do not use the debug build of the driver unless instructed to do so when reporting a problem or bug, as
it is not designed to be run in production environments, and will have adverse performance impact when
used. The debug binary also depends on the Aspect/J runtime library, which is located in the src/lib/
aspectjrt.jar file that comes with the Connector/J distribution.

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Installing from the Development Source Tree

9

Installing from the Development Source Tree
Caution

Read this section only if you are interested in helping us test our new code. To just
get MySQL Connector/J up and running on your system, use a standard binary
release distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following
prerequisites:

• A Bazaar client, to check out the sources from our Launchpad repository (available from http://bazaar-
vcs.org/).

• Apache Ant version 1.7 or newer (available from http://ant.apache.org/).

• JDK 1.4.2 or later. Although MySQL Connector/J can be be used with older JDKs, compiling it from
source requires at least JDK 1.4.2. To build Connector/J 5.1 requires JDK 1.6.x and an older JDK such
as JDK 1.5.x; point your JAVA_HOME environment variable at the older installation.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. Check out the latest code from the branch that you want with one of the following commands.

The source code repository for MySQL Connector/J is located on Launchpad at https://
code.launchpad.net/connectorj. To check out the latest development branch, use:

shell> bzr branch lp:connectorji

This creates a connectorj subdirectory in the current directory that contains the latest sources for the
requested branch.

To check out the latest 5.1 code, use:

shell> bzr branch lp:connectorj/5.1

This creates a 5.1 subdirectory in the current directory containing the latest 5.1 code.

2. To build Connector/J 5.1, make sure that you have both JDK 1.6.x installed and an older JDK such as
JDK 1.5.x. This is because Connector/J supports both JDBC 3.0 (which was prior to JDK 1.6.x) and
JDBC 4.0. Set your JAVA_HOME environment variable to the path of the older JDK installation.

3. Change your current working directory to either the connectorj or 5.1 directory, depending on which
branch you intend to build.

4. To build Connector/J 5.1, edit the build.xml to reflect the location of your JDK 1.6.x installation. The
lines to change are:

 <property name="com.mysql.jdbc.java6.javac" value="C:\jvms\jdk1.6.0\bin\javac.exe" />
 <property name="com.mysql.jdbc.java6.rtjar" value="C:\jvms\jdk1.6.0\jre\lib\rt.jar" />

Alternatively, you can set the value of these property names through the Ant -D option.

5. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory is
created in the build directory that includes the version number of the sources you are building from.

http://bazaar-vcs.org/
http://bazaar-vcs.org/
http://ant.apache.org/
https://code.launchpad.net/connectorj
https://code.launchpad.net/connectorj

Installing from the Development Source Tree

10

This directory contains the sources, compiled .class files, and a .jar file suitable for deployment.
For other possible targets, including ones that will create a fully packaged distribution, issue the
following command:

shell> ant -projecthelp

6. A newly created .jar file containing the JDBC driver will be placed in the directory build/mysql-
connector-java-version.

Install the newly created JDBC driver as you would a binary .jar file that you download from MySQL,
by following the instructions in Installing the Driver and Configuring the CLASSPATH.

A package containing both the binary and source code for Connector/J 5.1 can also be found at the
following location: Connector/J 5.1 Download

http://dev.mysql.com/downloads/connector/j/5.1.html

11

Chapter 4. Connector/J Examples
Examples of using Connector/J are located throughout this document. This section provides a summary
and links to these examples.

• Example 6.1, “Connector/J: Obtaining a connection from the DriverManager”

• Example 6.2, “Connector/J: Using java.sql.Statement to execute a SELECT query”

• Example 6.3, “Connector/J: Calling Stored Procedures”

• Example 6.4, “Connector/J: Using Connection.prepareCall()”

• Example 6.5, “Connector/J: Registering output parameters”

• Example 6.6, “Connector/J: Setting CallableStatement input parameters”

• Example 6.7, “Connector/J: Retrieving results and output parameter values”

• Example 6.8, “Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()”

• Example 6.9, “Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 6.10, “Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets”

• Example 7.1, “Connector/J: Using a connection pool with a J2EE application server”

• Example 15.1, “Connector/J: Example of transaction with retry logic”

12

13

Chapter 5. Connector/J (JDBC) Reference

Table of Contents
Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J 13

Properties Files for the useConfigs Option ... 31
JDBC API Implementation Notes .. 32
Java, JDBC and MySQL Types .. 35
Using Character Sets and Unicode ... 38
Connecting Securely Using SSL ... 39
Connecting Using PAM Authentication .. 42
Using Master/Slave Replication with ReplicationConnection ... 42
Mapping MySQL Error Numbers to JDBC SQLState Codes ... 43

This section of the manual contains reference material for MySQL Connector/J.

Driver/Datasource Class Names, URL Syntax and Configuration
Properties for Connector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.jdbc.Driver. The org.gjt.mm.mysql.Driver class name is also usable for backward
compatibility with MM.MySQL, the predecessor of Connector/J. Use this class name when registering the
driver, or when otherwise configuring software to use MySQL Connector/J.

JDBC URL Format

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being
optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the host name is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306,
the default port number for MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

Here is a sample connection URL:

jdbc:mysql://localhost:3306/sakila?profileSQL=true

IPv6 Connections

For IPv6 connections, use this alternative syntax to specify hosts in the URL, address=(key=value).
Supported keys are:

• (protocol=tcp), or (protocol=pipe) for named pipes on Windows.

• (path=path_to_pipe) for named pipes.

• (host=hostname) for TCP connections.

• (port=port_number) for TCP connections.

For example:

Initial Database for Connection

14

jdbc:mysql://address=(protocol=tcp)(host=localhost)(port=3306)(user=test)/db

Any other parameters are treated as host-specific properties that follow the conventions of the JDBC URL
properties. This now allows per-host overrides of any configuration property for multi-host connections
(that is, when using failover, load balancing, or replication). Limit the overrides to user, password, network
timeouts and statement and metadata cache sizes; the results of other per-host overrides are not defined.

Initial Database for Connection

If the database is not specified, the connection is made with no default database. In this case, either call
the setCatalog() method on the Connection instance, or fully specify table names using the database
name (that is, SELECT dbname.tablename.colname FROM dbname.tablename...) in your SQL.
Opening a connection without specifying the database to use is generally only useful when building tools
that work with multiple databases, such as GUI database managers.

Note

Always use the Connection.setCatalog() method to specify the desired
database in JDBC applications, rather than the USE database statement.

Failover Support

MySQL Connector/J has failover support. This enables the driver to fail over to any number of
slave hosts and still perform read-only queries. Failover only happens when the connection is in an
autoCommit(true) state, because failover cannot happen reliably when a transaction is in progress.
Most application servers and connection pools set autoCommit to true at the end of every transaction/
connection use.

The failover functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and
failback occurs when the driver determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the
connection has failed (checked before every query), and falls back to the first host when it determines
that the host has become available again (after queriesBeforeRetryMaster queries have been
issued).

In either case, whenever you are connected to a “failed-over” server, the connection is set to read-only
state, so queries that attempt to modify data will throw exceptions (the query will never be processed by
the MySQL server).

Setting Configuration Properties

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the
preferred method when using implementations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to
DriverManager.getConnection() or Driver.connect()

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

Setting Configuration Properties

15

• As a JDBC URL parameter in the URL given to java.sql.DriverManager.getConnection(),
java.sql.Driver.connect() or the MySQL implementations of the javax.sql.DataSource
setURL() method.

Note

If the mechanism you use to configure a JDBC URL is XML-based, use the XML
character literal & to separate configuration parameters, as the ampersand
is a reserved character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since
Version

user The user to connect as all
versions

password The password to use when connecting all
versions

socketFactory The name of the class that the driver should
use for creating socket connections to the
server. This class must implement the interface
'com.mysql.jdbc.SocketFactory' and have public no-
args constructor.

com.mysql.jdbc.StandardSocketFactory3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with 0
being no timeout. Only works on JDK-1.4 or newer.
Defaults to '0'.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the
default means no timeout).

0 3.0.1

connectionLifecycleInterceptorsA comma-delimited list of classes that implement
"com.mysql.jdbc.ConnectionLifecycleInterceptor"
that should notified of connection lifecycle
events (creation, destruction, commit, rollback,
setCatalog and setAutoCommit) and potentially
alter the execution of these commands.
ConnectionLifecycleInterceptors are "stackable",
more than one interceptor may be specified via the
configuration property as a comma-delimited list,
with the interceptors executed in order from left to
right.

5.1.4

useConfigs Load the comma-delimited list of configuration
properties before parsing the URL or applying
user-specified properties. These configurations
are explained in the 'Configurations' of the
documentation.

3.1.5

authenticationPlugins Comma-delimited list of classes that implement
com.mysql.jdbc.AuthenticationPlugin and which
will be used for authentication unless disabled by
"disabledAuthenticationPlugins" property.

5.1.19

defaultAuthenticationPluginName of a class implementing
com.mysql.jdbc.AuthenticationPlugin which will

com.mysql.jdbc.authentication.MysqlNativePasswordPlugin5.1.19

Setting Configuration Properties

16

be used as the default authentication plugin
(see below). It is an error to use a class which
is not listed in "authenticationPlugins" nor it is
one of the built-in plugins. It is an error to set
as default a plugin which was disabled with
"disabledAuthenticationPlugins" property. It is an
error to set this value to null or the empty string (i.e.
there must be at least a valid default authentication
plugin specified for the connection, meeting all
constraints listed above).

disabledAuthenticationPluginsComma-delimited list of classes implementing
com.mysql.jdbc.AuthenticationPlugin or
mechanisms, i.e. "mysql_native_password". The
authentication plugins or mechanisms listed will not
be used for authentication which will fail if it requires
one of them. It is an error to disable the default
authentication plugin (either the one named by
"defaultAuthenticationPlugin" property or the hard-
coded one if "defaultAuthenticationPlugin" propery is
not set).

5.1.19

interactiveClient Set the CLIENT_INTERACTIVE flag, which
tells MySQL to timeout connections based
on INTERACTIVE_TIMEOUT instead of
WAIT_TIMEOUT

false 3.1.0

localSocketAddress Hostname or IP address given to explicitly configure
the interface that the driver will bind the client side of
the TCP/IP connection to when connecting.

5.0.5

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertiesTransform
that the driver will use to modify URL properties
passed to the driver before attempting a connection

3.1.4

useCompression Use zlib compression when communicating with the
server (true/false)? Defaults to 'false'.

false 3.0.17

Networking.

Property Name Definition Default
Value

Since
Version

maxAllowedPacket Maximum allowed packet size to send to
server. If not set, the value of system variable
'max_allowed_packet' will be used to initialize this
upon connecting. This value will not take effect if set
larger than the value of 'max_allowed_packet'.

-1 5.1.8

tcpKeepAlive If connecting using TCP/IP, should the driver set
SO_KEEPALIVE?

true 5.0.7

tcpNoDelay If connecting using TCP/IP, should the driver
set SO_TCP_NODELAY (disabling the Nagle
Algorithm)?

true 5.0.7

tcpRcvBuf If connecting using TCP/IP, should the driver set
SO_RCV_BUF to the given value? The default

0 5.0.7

Setting Configuration Properties

17

value of '0', means use the platform default value for
this property)

tcpSndBuf If connecting using TCP/IP, should the driver set
SO_SND_BUF to the given value? The default
value of '0', means use the platform default value for
this property)

0 5.0.7

tcpTrafficClass If connecting using TCP/IP, should the driver set
traffic class or type-of-service fields ?See the
documentation for java.net.Socket.setTrafficClass()
for more information.

0 5.0.7

High Availability and Clustering.

Property Name Definition Default
Value

Since
Version

autoReconnect Should the driver try to re-establish stale and/or
dead connections? If enabled the driver will throw
an exception for a queries issued on a stale or dead
connection, which belong to the current transaction,
but will attempt reconnect before the next query
issued on the connection in a new transaction. The
use of this feature is not recommended, because
it has side effects related to session state and
data consistency when applications don't handle
SQLExceptions properly, and is only designed to
be used when you are unable to configure your
application to handle SQLExceptions resulting from
dead and stale connections properly. Alternatively,
as a last option, investigate setting the MySQL
server variable "wait_timeout" to a high value, rather
than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for
connection pools (defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should
the connection be set to 'read-only'?

true 3.0.12

maxReconnects Maximum number of reconnects to attempt if
autoReconnect is true, default is '3'.

3 1.1

reconnectAtTxEnd If autoReconnect is set to true, should the
driver attempt reconnections at the end of every
transaction?

false 3.0.10

retriesAllDown When using loadbalancing, the number of times
the driver should cycle through available hosts,
attempting to connect. Between cycles, the driver
will pause for 250ms if no servers are available.

120 5.1.6

initialTimeout If autoReconnect is enabled, the initial time to wait
between re-connect attempts (in seconds, defaults
to '2').

2 1.1

roundRobinLoadBalance When autoReconnect is enabled, and
failoverReadonly is false, should we pick hosts to
connect to on a round-robin basis?

false 3.1.2

Setting Configuration Properties

18

queriesBeforeRetryMasterNumber of queries to issue before falling
back to master when failed over (when using
multi-host failover). Whichever condition
is met first, 'queriesBeforeRetryMaster' or
'secondsBeforeRetryMaster' will cause an attempt to
be made to reconnect to the master. Defaults to 50.

50 3.0.2

secondsBeforeRetryMasterHow long should the driver wait, when failed over,
before attempting

30 3.0.2

selfDestructOnPingMaxOperations=If set to a non-zero value, the driver will report
close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called
if the connnection's count of commands sent to the
server exceeds this value.

0 5.1.6

selfDestructOnPingSecondsLifetimeIf set to a non-zero value, the driver will report
close the connection and report failure when
Connection.ping() or Connection.isValid(int) is called
if the connnection's lifetime exceeds this value.

0 5.1.6

resourceId A globally unique name that identifies the resource
that this datasource or connection is connected to,
used for XAResource.isSameRM() when the driver
can't determine this value based on hostnames
used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since
Version

allowMultiQueries Allow the use of ';' to delimit multiple queries
during one statement (true/false), defaults to
'false', and does not affect the addBatch() and
executeBatch() methods, which instead rely on
rewriteBatchStatements.

false 3.1.1

useSSL Use SSL when communicating with the server (true/
false), defaults to 'false'

false 3.0.2

requireSSL Require SSL connection if useSSL=true? (defaults
to 'false').

false 3.1.0

verifyServerCertificate If "useSSL" is set to "true", should the driver verify
the server's certificate? When using this feature,
the keystore parameters should be specified by the
"clientCertificateKeyStore*" properties, rather than
system properties.

true 5.1.6

clientCertificateKeyStoreUrlURL to the client certificate KeyStore (if not
specified, use defaults)

5.1.0

clientCertificateKeyStoreTypeKeyStore type for client certificates (NULL or empty
means use the default, which is "JKS". Standard
keystore types supported by the JVM are "JKS"
and "PKCS12", your environment may have more
available depending on what security products are
installed and available to the JVM.

JKS 5.1.0

Setting Configuration Properties

19

clientCertificateKeyStorePasswordPassword for the client certificates KeyStore 5.1.0

trustCertificateKeyStoreUrlURL to the trusted root certificate KeyStore (if not
specified, use defaults)

5.1.0

trustCertificateKeyStoreTypeKeyStore type for trusted root certificates (NULL
or empty means use the default, which is "JKS".
Standard keystore types supported by the JVM are
"JKS" and "PKCS12", your environment may have
more available depending on what security products
are installed and available to the JVM.

JKS 5.1.0

trustCertificateKeyStorePasswordPassword for the trusted root certificates KeyStore 5.1.0

allowLoadLocalInfile Should the driver allow use of 'LOAD DATA LOCAL
INFILE...' (defaults to 'true').

true 3.0.3

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA
LOCAL INFILE' statements?

false 3.1.4

paranoid Take measures to prevent exposure sensitive
information in error messages and clear data
structures holding sensitive data when possible?
(defaults to 'false')

false 3.0.1

passwordCharacterEncodingWhat character encoding is used for passwords?
Leaving this set to the default value (null), uses the
platform character set, which works for ISO8859_1
(i.e. "latin1") passwords. For passwords in other
character encodings, the encoding will have to be
specified with this property, as it's not possible for
the driver to auto-detect this.

5.1.7

Performance Extensions.

Property Name Definition Default
Value

Since
Version

callableStmtCacheSize If 'cacheCallableStmts' is enabled, how many
callable statements should be cached?

100 3.1.2

metadataCacheSize The number of queries to cache ResultSetMetadata
for if cacheResultSetMetaData is set to
'true' (default 50)

50 3.1.1

useLocalSessionState Should the driver refer to the internal values
of autocommit and transaction isolation that
are set by Connection.setAutoCommit() and
Connection.setTransactionIsolation() and
transaction state as maintained by the protocol,
rather than querying the database or blindly sending
commands to the database for commit() or rollback()
method calls?

false 3.1.7

useLocalTransactionStateShould the driver use the in-transaction state
provided by the MySQL protocol to determine if a
commit() or rollback() should actually be sent to the
database?

false 5.1.7

prepStmtCacheSize If prepared statement caching is enabled, how many
prepared statements should be cached?

25 3.0.10

Setting Configuration Properties

20

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's the
largest SQL the driver will cache the parsing for?

256 3.0.10

parseInfoCacheFactory Name of a class implementing
com.mysql.jdbc.CacheAdapterFactory, which will be
used to create caches for the parsed representation
of client-side prepared statements.

com.mysql.jdbc.PerConnectionLRUFactory5.1.1

alwaysSendSetIsolation Should the driver always
communicate with the database when
Connection.setTransactionIsolation() is
called? If set to false, the driver will only
communicate with the database when the
requested transaction isolation is different than
the whichever is newer, the last value that was
set via Connection.setTransactionIsolation(), or
the value that was read from the server when
the connection was established. Note that
useLocalSessionState=true will force the same
behavior as alwaysSendSetIsolation=false,
regardless of how alwaysSendSetIsolation is set.

true 3.1.7

maintainTimeStats Should the driver maintain various internal timers
to enable idle time calculations as well as more
verbose error messages when the connection to the
server fails? Setting this property to false removes
at least two calls to System.getCurrentTimeMillis()
per query.

true 3.1.9

useCursorFetch If connected to MySQL > 5.0.2, and setFetchSize()
> 0 on a statement, should that statement use
cursor-based fetching to retrieve rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via
ServerPreparedStatements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of
CallableStatements

false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of
PreparedStatements of client-side prepared
statements, the "check" for suitability of server-
side prepared and server-side prepared statements
themselves?

false 3.0.10

cacheResultSetMetadata Should the driver cache ResultSetMetaData for
Statements and PreparedStatements? (Req.
JDK-1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfigurationShould the driver cache the results of 'SHOW
VARIABLES' and 'SHOW COLLATION' on a per-
URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value on
all newly-created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to
automatically track and close resources, however if
your application doesn't do a good job of explicitly
calling close() on statements or result sets, this can

false 3.1.7

Setting Configuration Properties

21

cause memory leakage. Setting this property to true
relaxes this constraint, and can be more memory
efficient for some applications.

dynamicCalendars Should the driver retrieve the default calendar when
required, or cache it per connection/session?

false 3.1.5

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver
only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by
Connection.setAutoCommit(boolean)?

false 3.1.3

enableQueryTimeouts When enabled, query timeouts set via
Statement.setQueryTimeout() use a shared
java.util.Timer instance for scheduling. Even if
the timeout doesn't expire before the query is
processed, there will be memory used by the
TimerTask for the given timeout which won't be
reclaimed until the time the timeout would have
expired if it hadn't been cancelled by the driver.
High-load environments might want to consider
disabling this functionality.

true 5.0.6

holdResultsOpenOverStatementCloseShould the driver close result sets on
Statement.close() as required by the JDBC
specification?

false 3.1.7

largeRowSizeThreshold What size result set row should the JDBC driver
consider "large", and thus use a more memory-
efficient way of representing the row internally?

2048 5.1.1

loadBalanceStrategy If using a load-balanced connection to
connect to SQL nodes in a MySQL Cluster/
NDB configuration (by using the URL prefix
"jdbc:mysql:loadbalance://"), which load balancing
algorithm should the driver use: (1) "random" - the
driver will pick a random host for each request.
This tends to work better than round-robin, as the
randomness will somewhat account for spreading
loads where requests vary in response time, while
round-robin can sometimes lead to overloaded
nodes if there are variations in response times
across the workload. (2) "bestResponseTime" - the
driver will route the request to the host that had the
best response time for the previous transaction.

random 5.0.6

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what size
buffer should be used when fetching BLOB data for
getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatementsShould the driver use multiqueries (irregardless
of the setting of "allowMultiQueries") as well as
rewriting of prepared statements for INSERT
into multi-value inserts when executeBatch()
is called? Notice that this has the potential for
SQL injection if using plain java.sql.Statements
and your code doesn't sanitize input correctly.
Notice that for prepared statements, server-
side prepared statements can not currently

false 3.1.13

Setting Configuration Properties

22

take advantage of this rewrite option, and that
if you don't specify stream lengths when using
PreparedStatement.set*Stream(), the driver won't
be able to determine the optimum number of
parameters per batch and you might receive an
error from the driver that the resultant packet is too
large. Statement.getGeneratedKeys() for these
rewritten statements only works when the entire
batch includes INSERT statements.

useDirectRowUnpack Use newer result set row unpacking code that skips
a copy from network buffers to a MySQL packet
instance and instead reads directly into the result
set row data buffers.

true 5.1.1

useDynamicCharsetInfo Should the driver use a per-connection cache of
character set information queried from the server
when necessary, or use a built-in static mapping
that is more efficient, but isn't aware of custom
character sets or character sets implemented after
the release of the JDBC driver?

true 5.0.6

useFastDateParsing Use internal String->Date/Time/Timestamp
conversion routines to avoid excessive object
creation?

true 5.0.5

useFastIntParsing Use internal String->Integer conversion routines to
avoid excessive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built
into the JVM, rather than using lookup tables for
single-byte character sets?

false 5.0.1

useReadAheadInput Use newer, optimized non-blocking, buffered input
stream when reading from the server?

true 3.1.5

Debugging/Profiling.

Property Name Definition Default
Value

Since
Version

logger The name of a class that implements
"com.mysql.jdbc.log.Log" that will be
used to log messages to. (default is
"com.mysql.jdbc.log.StandardLogger", which logs to
STDERR)

com.mysql.jdbc.log.StandardLogger3.1.1

gatherPerfMetrics Should the driver gather performance metrics,
and report them via the configured logger every
'reportMetricsIntervalMillis' milliseconds?

false 3.1.2

profileSQL Trace queries and their execution/fetch times to the
configured logger (true/false) defaults to 'false'

false 3.1.0

profileSql Deprecated, use 'profileSQL' instead. Trace queries
and their execution/fetch times on STDERR (true/
false) defaults to 'false'

2.0.14

reportMetricsIntervalMillisIf 'gatherPerfMetrics' is enabled, how often should
they be logged (in ms)?

30000 3.1.2

Setting Configuration Properties

23

maxQuerySizeToLog Controls the maximum length/size of a query that
will get logged when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when
'enablePacketDebug' is true

20 3.1.3

slowQueryThresholdMillisIf 'logSlowQueries' is enabled, how long should a
query (in ms) before it is logged as 'slow'?

2000 3.1.2

slowQueryThresholdNanos If 'useNanosForElapsedTime' is set to true, and
this property is set to a non-zero value, the driver
will use this threshold (in nanosecond units) to
determine if a query was slow.

0 5.0.7

useUsageAdvisor Should the driver issue 'usage' warnings advising
proper and efficient usage of JDBC and MySQL
Connector/J to the log (true/false, defaults to
'false')?

false 3.1.1

autoGenerateTestcaseScriptShould the driver dump the SQL it is executing,
including server-side prepared statements to
STDERR?

false 3.1.9

autoSlowLog Instead of using slowQueryThreshold* to determine
if a query is slow enough to be logged, maintain
statistics that allow the driver to determine queries
that are outside the 99th percentile?

true 5.1.4

clientInfoProvider The name of a class that implements the
com.mysql.jdbc.JDBC4ClientInfoProvider interface
in order to support JDBC-4.0's Connection.get/
setClientInfo() methods

com.mysql.jdbc.JDBC4CommentClientInfoProvider5.1.0

dumpMetadataOnColumnNotFoundShould the driver dump the field-level metadata
of a result set into the exception message when
ResultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the
query sent to the server in the message for
SQLExceptions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of
'packetDebugBufferSize' packets will be kept, and
dumped when exceptions are thrown in key areas in
the driver's code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver
automatically issue an 'EXPLAIN' on the server and
send the results to the configured log at a WARN
level?

false 3.1.2

includeInnodbStatusInDeadlockExceptionsInclude the output of "SHOW ENGINE INNODB
STATUS" in exception messages when deadlock
exceptions are detected?

false 5.0.7

includeThreadDumpInDeadlockExceptionsInclude a current Java thread dump in exception
messages when deadlock exceptions are detected?

false 5.1.15

includeThreadNamesAsStatementCommentInclude the name of the current thread as a
comment visible in "SHOW PROCESSLIST", or in
Innodb deadlock dumps, useful in correlation with
"includeInnodbStatusInDeadlockExceptions=true"

false 5.1.15

Setting Configuration Properties

24

and
"includeThreadDumpInDeadlockExceptions=true".

logSlowQueries Should queries that take longer than
'slowQueryThresholdMillis' be logged?

false 3.1.2

logXaCommands Should the driver log XA commands sent by
MysqlXaConnection to the server, at the DEBUG
level of logging?

false 5.0.5

profilerEventHandler Name of a class that implements the interface
com.mysql.jdbc.profiler.ProfilerEventHandler that
will be used to handle profiling/tracing events.

com.mysql.jdbc.profiler.LoggingProfilerEventHandler5.1.6

resultSetSizeThreshold If the usage advisor is enabled, how many rows
should a result set contain before the driver warns
that it is suspiciously large?

100 5.0.5

traceProtocol Should trace-level network protocol be logged? false 3.1.2

useNanosForElapsedTime For profiling/debugging functionality that measures
elapsed time, should the driver try to use
nanoseconds resolution if available (JDK >= 1.5)?

false 5.0.7

Miscellaneous.

Property Name Definition Default
Value

Since
Version

useUnicode Should the driver use Unicode character encodings
when handling strings? Should only be used
when the driver can't determine the character set
mapping, or you are trying to 'force' the driver to use
a character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to 'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character
encoding should the driver use when dealing with
strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set
collation_connection'

3.0.13

useBlobToStoreUTF8OutsideBMPTells the driver to treat [MEDIUM/LONG]BLOB
columns as [LONG]VARCHAR columns holding text
encoded in UTF-8 that has characters outside the
BMP (4-byte encodings), which MySQL server can't
handle natively.

false 5.1.3

utf8OutsideBmpExcludedColumnNamePatternWhen "useBlobToStoreUTF8OutsideBMP"
is set to "true", column names matching the
given regex will still be treated as BLOBs
unless they match the regex specified for
"utf8OutsideBmpIncludedColumnNamePattern".
The regex must follow the patterns used for the
java.util.regex package.

5.1.3

utf8OutsideBmpIncludedColumnNamePatternUsed to specify exclusion rules to
"utf8OutsideBmpExcludedColumnNamePattern".

5.1.3

Setting Configuration Properties

25

The regex must follow the patterns used for the
java.util.regex package.

loadBalanceEnableJMX Enables JMX-based management of load-balanced
connection groups, including live addition/removal of
hosts from load-balancing pool.

false 5.1.13

sessionVariables A comma-separated list of name/value pairs to be
sent as SET SESSION ... to the server when the
driver connects.

3.1.8

useColumnNamesInFindColumnPrior to JDBC-4.0, the JDBC specification had a
bug related to what could be given as a "column
name" to ResultSet methods like findColumn(),
or getters that took a String property. JDBC-4.0
clarified "column name" to mean the label,
as given in an "AS" clause and returned by
ResultSetMetaData.getColumnLabel(), and if
no AS clause, the column name. Setting this
property to "true" will give behavior that is congruent
to JDBC-3.0 and earlier versions of the JDBC
specification, but which because of the specification
bug could give unexpected results. This property
is preferred over "useOldAliasMetadataBehavior"
unless you need the specific behavior that it
provides with respect to ResultSetMetadata.

false 5.1.7

allowNanAndInf Should the driver allow NaN or +/- INF values in
PreparedStatement.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on
streams/readers passed as arguments via set*()
methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-
serialize objects stored in BLOB fields?

false 3.1.5

blobsAreStrings Should the driver always treat BLOBs as Strings
- specifically to work around dubious metadata
returned by the server for GROUP BY clauses?

false 5.0.8

capitalizeTypeNames Capitalize type names in DatabaseMetaData?
(usually only useful when using WebObjects, true/
false, defaults to 'false')

true 2.0.7

clobCharacterEncoding The character encoding to use for sending and
retrieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection
characterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be
automatically closed, and any outstanding data still
streaming from the server to be discarded if another
query is executed before all the data has been read
from the server.

false 3.0.9

compensateOnDuplicateKeyUpdateCountsShould the driver compensate for the update counts
of "ON DUPLICATE KEY" INSERT statements (2 =
1, 0 = 1) when using prepared statements?

false 5.1.7

Setting Configuration Properties

26

continueBatchOnError Should the driver continue processing batch
commands if one statement fails. The JDBC spec
allows either way (defaults to 'true').

true 3.0.3

createDatabaseIfNotExistCreates the database given in the URL if it doesn't
yet exist. Assumes the configured user has
permissions to create databases.

false 3.1.9

emptyStringsConvertToZeroShould the driver allow conversions from empty
string fields to numeric values of '0'?

true 3.1.8

emulateLocators Should the driver emulate java.sql.Blobs with
locators? With this feature enabled, the driver will
delay loading the actual Blob data until the one of
the retrieval methods (getInputStream(), getBytes(),
and so forth) on the blob data stream has been
accessed. For this to work, you must use a column
alias with the value of the column to the actual
name of the Blob. The feature also has the following
restrictions: The SELECT that created the result
set must reference only one table, the table must
have a primary key; the SELECT must alias the
original blob column name, specified as a string,
to an alternate name; the SELECT must cover all
columns that make up the primary key.

false 3.1.0

emulateUnsupportedPstmtsShould the driver detect prepared statements that
are not supported by the server, and replace them
with client-side emulated versions?

true 3.1.7

exceptionInterceptors Comma-delimited list of classes that implement
com.mysql.jdbc.ExceptionInterceptor. These
classes will be instantiated one per Connection
instance, and all SQLExceptions thrown by the
driver will be allowed to be intercepted by these
interceptors, in a chained fashion, with the first class
listed as the head of the chain.

5.1.8

functionsNeverReturnBlobsShould the driver always treat data from functions
returning BLOBs as Strings - specifically to work
around dubious metadata returned by the server for
GROUP BY clauses?

false 5.0.8

generateSimpleParameterMetadataShould the driver generate simplified parameter
metadata for PreparedStatements when no
metadata is available either because the server
couldn't support preparing the statement, or server-
side prepared statements are disabled?

false 5.0.5

ignoreNonTxTables Ignore non-transactional table warning for rollback?
(defaults to 'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation
exceptions when data is truncated as is required by
the JDBC specification when connected to a server
that supports warnings (MySQL 4.1.0 and newer)?
This property has no effect if the server sql-mode
includes STRICT_TRANS_TABLES.

true 3.1.2

Setting Configuration Properties

27

loadBalanceAutoCommitStatementRegexWhen load-balancing is enabled
for auto-commit statements (via
loadBalanceAutoCommitStatementThreshold), the
statement counter will only increment when the SQL
matches the regular expression. By default, every
statement issued matches.

5.1.15

loadBalanceAutoCommitStatementThresholdWhen auto-commit is enabled, the number of
statements which should be executed before
triggering load-balancing to rebalance. Default
value of 0 causes load-balanced connections to
only rebalance when exceptions are encountered,
or auto-commit is disabled and transactions are
explicitly committed or rolled back.

0 5.1.15

loadBalanceBlacklistTimeoutTime in milliseconds between checks of servers
which are unavailable, by controlling how long a
server lives in the global blacklist.

0 5.1.0

loadBalanceConnectionGroupLogical group of load-balanced connections within
a classloader, used to manage different groups
independently. If not specified, live management of
load-balanced connections is disabled.

5.1.13

loadBalanceExceptionCheckerFully-qualified class name of custom
exception checker. The class must implement
com.mysql.jdbc.LoadBalanceExceptionChecker
interface, and is used to inspect SQLExceptions and
determine whether they should trigger fail-over to
another host in a load-balanced deployment.

com.mysql.jdbc.StandardLoadBalanceExceptionChecker5.1.13

loadBalancePingTimeout Time in milliseconds to wait for ping response from
each of load-balanced physical connections when
using load-balanced Connection.

0 5.1.13

loadBalanceSQLExceptionSubclassFailoverComma-delimited list of classes/interfaces used
by default load-balanced exception checker to
determine whether a given SQLException should
trigger failover. The comparison is done using
Class.isInstance(SQLException) using the thrown
SQLException.

5.1.13

loadBalanceSQLStateFailoverComma-delimited list of SQLState codes used
by default load-balanced exception checker
to determine whether a given SQLException
should trigger failover. The SQLState of a given
SQLException is evaluated to determine whether it
begins with any value in the comma-delimited list.

5.1.13

loadBalanceValidateConnectionOnSwapServerShould the load-balanced Connection explicitly
check whether the connection is live when swapping
to a new physical connection at commit/rollback?

false 5.1.13

maxRows The maximum number of rows to return (0, the
default means return all rows).

-1 all
versions

netTimeoutForStreamingResultsWhat value should the driver automatically set
the server setting 'net_write_timeout' to when the
streaming result sets feature is in use? (value has

600 5.1.0

Setting Configuration Properties

28

unit of seconds, the value '0' means the driver will
not try and adjust this value)

noAccessToProcedureBodiesWhen determining procedure parameter types
for CallableStatements, and the connected user
can't access procedure bodies through "SHOW
CREATE PROCEDURE" or select on mysql.proc
should the driver instead create basic metadata
(all parameters reported as IN VARCHARs, but
allowing registerOutParameter() to be called on
them anyway) instead of throwing an exception?

false 5.0.3

noDatetimeStringSync Don't ensure that
ResultSet.getDatetimeType().toString().equals(ResultSet.getString())

false 3.1.7

noTimezoneConversionForTimeTypeDon't convert TIME values using the server
timezone if 'useTimezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'catalog'
parameter, does the value null mean use the current
catalog? (this is not JDBC-compliant, but follows
legacy behavior from earlier versions of the driver)

true 3.1.8

nullNamePatternMatchesAllShould DatabaseMetaData methods that accept
*pattern parameters treat null the same as '%' (this
is not JDBC-compliant, however older versions
of the driver accepted this departure from the
specification)

true 3.1.8

overrideSupportsIntegrityEnhancementFacilityShould the driver return "true" for
DatabaseMetaData.supportsIntegrityEnhancementFacility()
even if the database doesn't support it to
workaround applications that require this method to
return "true" to signal support of foreign keys, even
though the SQL specification states that this facility
contains much more than just foreign key support
(one such application being OpenOffice)?

false 3.1.12

padCharsWithSpace If a result set column has the CHAR type and
the value does not fill the amount of characters
specified in the DDL for the column, should the
driver pad the remaining characters with space (for
ANSI compliance)?

false 5.0.6

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalConnectionWhen using XAConnections, should the driver
ensure that operations on a given XID are always
routed to the same physical connection? This allows
the XAConnection to support "XA START ... JOIN"
after "XA END" has been called

false 5.0.1

populateInsertRowWithDefaultValuesWhen using ResultSets that are
CONCUR_UPDATABLE, should the driver pre-
populate the "insert" row with default values from
the DDL for the table used in the query so those
values are immediately available for ResultSet
accessors? This functionality requires a call to the
database for metadata each time a result set of this
type is created. If disabled (the default), the default

false 5.0.5

Setting Configuration Properties

29

values will be populated by the an internal call to
refreshRow() which pulls back default values and/or
values changed by triggers.

processEscapeCodesForPrepStmtsShould the driver process escape codes in queries
that are prepared?

true 3.1.12

queryTimeoutKillsConnectionIf the timeout given in Statement.setQueryTimeout()
expires, should the driver forcibly abort the
Connection instead of attempting to abort the
query?

false 5.1.9

relaxAutoCommit If the version of MySQL the driver connects to does
not support transactions, still allow calls to commit(),
rollback() and setAutoCommit() (true/false, defaults
to 'false')?

false 2.0.13

retainStatementAfterResultSetCloseShould the driver retain the Statement reference in
a ResultSet after ResultSet.close() has been called.
This is not JDBC-compliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logical
connection in a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC
compliance testsuite version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used
when timezone from server doesn't map to Java
timezone

3.0.2

statementInterceptors A comma-delimited list of classes that implement
"com.mysql.jdbc.StatementInterceptor" that should
be placed "in between" query execution to influence
the results. StatementInterceptors are "chainable",
the results returned by the "current" interceptor will
be passed on to the next in in the chain, from left-to-
right order, as specified in this property.

5.1.1

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary
keys selected) of updatable result sets (true, false,
defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1) as
the BIT type (because the server silently converts
BIT -> TINYINT(1) when creating tables)?

true 3.0.16

transformedBitIsBoolean If the driver converts TINYINT(1) to a different type,
should it use BOOLEAN instead of BIT for future
compatibility with MySQL-5.0, as MySQL-5.0 has a
BIT type?

false 3.1.9

treatUtilDateAsTimestampShould the driver treat java.util.Date
as a TIMESTAMP for the purposes of
PreparedStatement.setObject()?

true 5.0.5

ultraDevHack Create PreparedStatements for prepareCall() when
required, because UltraDev is broken and issues
a prepareCall() for _all_ statements? (true/false,
defaults to 'false')

false 2.0.3

Setting Configuration Properties

30

useAffectedRows Don't set the CLIENT_FOUND_ROWS flag when
connecting to the server (not JDBC-compliant, will
break most applications that rely on "found" rows
vs. "affected rows" for DML statements), but does
cause "correct" update counts from "INSERT ...
ON DUPLICATE KEY UPDATE" statements to be
returned by the server.

false 5.1.7

useGmtMillisForDatetimesConvert between session timezone and GMT before
creating Date and Timestamp instances (value
of "false" is legacy behavior, "true" leads to more
JDBC-compliant behavior.

false 3.1.12

useHostsInPrivileges Add '@hostname' to users in
DatabaseMetaData.getColumn/TablePrivileges()
(true/false), defaults to 'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should
the driver use the INFORMATION_SCHEMA to
derive information used by DatabaseMetaData?

false 5.0.0

useJDBCCompliantTimezoneShiftShould the driver use JDBC-compliant rules
when converting TIME/TIMESTAMP/DATETIME
values' timezone information for those JDBC
arguments which take a java.util.Calendar
argument? (Notice that this option is exclusive of the
"useTimezone=true" configuration option.)

false 5.0.0

useLegacyDatetimeCode Use code for DATE/TIME/DATETIME/TIMESTAMP
handling in result sets and statements that
consistently handles timezone conversions from
client to server and back again, or use the legacy
code for these datatypes that has been in the driver
for backwards-compatibility?

true 5.1.6

useOldAliasMetadataBehaviorShould the driver use the legacy behavior
for "AS" clauses on columns and tables,
and only return aliases (if any) for
ResultSetMetaData.getColumnName() or
ResultSetMetaData.getTableName() rather than the
original column/table name? In 5.0.x, the default
value was true.

false 5.0.4

useOldUTF8Behavior Use the UTF-8 behavior the driver did when
communicating with 4.0 and older servers

false 3.1.6

useOnlyServerErrorMessagesDon't prepend 'standard' SQLState error messages
to error messages returned by the server.

true 3.0.15

useSSPSCompatibleTimezoneShiftIf migrating from an environment
that was using server-side prepared
statements, and the configuration property
"useJDBCCompliantTimeZoneShift" set to "true",
use compatible behavior when not using server-side
prepared statements when sending TIMESTAMP
values to the MySQL server.

false 5.0.5

useServerPrepStmts Use server-side prepared statements if the server
supports them?

false 3.1.0

Properties Files for the useConfigs Option

31

useSqlStateCodes Use SQL Standard state codes instead of 'legacy' X/
Open/SQL state codes (true/false), default is 'true'

true 3.1.3

useStreamLengthsInPrepStmtsHonor stream length parameter in
PreparedStatement/ResultSet.setXXXStream()
method calls (true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server
timezones (true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data
from the server

true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type
"YEAR" as a java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters
DATETIME values that are composed entirely
of zeros (used by MySQL to represent invalid
dates)? Valid values are "exception", "round" and
"convertToNull".

exception3.1.4

Connector/J also supports access to MySQL using named pipes on Windows NT, Windows 2000,
or Windows XP using the NamedPipeSocketFactory as a plugin-socket factory using the
socketFactory property. If you do not use a namedPipePath property, the default of '\\.\pipe
\MySQL' is used. If you use the NamedPipeSocketFactory, the host name and port number values in
the JDBC url are ignored. To enable this feature, use:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine where the
JDBC driver is running. In simple performance tests, named pipe access is between 30%-50% faster than
the standard TCP/IP access. However, this varies per system, and named pipes are slower than TCP/IP in
many Windows configurations.

To create your own socket factories, follow the example code in
com.mysql.jdbc.NamedPipeSocketFactory, or com.mysql.jdbc.StandardSocketFactory.

Properties Files for the useConfigs Option

The useConfigs connection option is a convenient shorthand for specifying combinations of options
for particular scenarios. The argument values you can use with this option correspond to the names of
.properties files within the Connector/J mysql-connector-java-version-bin.jar JAR file. For
example, the Connector/J 5.1.9 driver includes the following configuration properties files:

$ unzip mysql-connector-java-5.1.19-bin.jar '*/configs/*'
Archive: mysql-connector-java-5.1.19-bin.jar
 creating: com/mysql/jdbc/configs/
 inflating: com/mysql/jdbc/configs/3-0-Compat.properties
 inflating: com/mysql/jdbc/configs/5-0-Compat.properties
 inflating: com/mysql/jdbc/configs/clusterBase.properties
 inflating: com/mysql/jdbc/configs/coldFusion.properties
 inflating: com/mysql/jdbc/configs/fullDebug.properties
 inflating: com/mysql/jdbc/configs/maxPerformance.properties
 inflating: com/mysql/jdbc/configs/solarisMaxPerformance.properties

To specify one of these combinations of options, specify useConfigs=3-0-Compat,
useConfigs=maxPerformance, and so on. The following sections show the options that are part of each
useConfigs setting. For the details of why each one is included, see the comments in the .properties
files.

JDBC API Implementation Notes

32

3-0-Compat

emptyStringsConvertToZero=true
jdbcCompliantTruncation=false
noDatetimeStringSync=true
nullCatalogMeansCurrent=true
nullNamePatternMatchesAll=true
transformedBitIsBoolean=false
dontTrackOpenResources=true
zeroDateTimeBehavior=convertToNull
useServerPrepStmts=false
autoClosePStmtStreams=true
processEscapeCodesForPrepStmts=false
useFastDateParsing=false
populateInsertRowWithDefaultValues=false
useDirectRowUnpack=false

5-0-Compat

useDirectRowUnpack=false

clusterBase

autoReconnect=true
failOverReadOnly=false
roundRobinLoadBalance=true

coldFusion

useDynamicCharsetInfo=false
alwaysSendSetIsolation=false
useLocalSessionState=true
autoReconnect=true

fullDebug

profileSQL=true
gatherPerMetrics=true
useUsageAdvisor=true
logSlowQueries=true
explainSlowQueries=true

maxPerformance

cachePrepStmts=true
cacheCallableStmts=true
cacheServerConfiguration=true
useLocalSessionState=true
elideSetAutoCommits=true
alwaysSendSetIsolation=false
enableQueryTimeouts=false

solarisMaxPerformance

useUnbufferedInput=false
useReadAheadInput=false
maintainTimeStats=false

JDBC API Implementation Notes
MySQL Connector/J passes all of the tests in the publicly available version of Sun's JDBC compliance test
suite. This section gives details on a interface-by-interface level about implementation decisions that might
affect how you code applications with MySQL Connector/J. The JDBC specification is vague about how
certain functionality should be implemented, or the specification enables leeway in implementation.

JDBC API Implementation Notes

33

• BLOB

Starting with Connector/J version 3.1.0, you can emulate BLOBs with locators by adding the property
emulateLocators=true to your JDBC URL. Using this method, the driver will delay loading the actual
BLOB data until you retrieve the other data and then use retrieval methods (getInputStream(),
getBytes(), and so forth) on the BLOB data stream.

You must use a column alias with the value of the column to the actual name of the BLOB, for example:

SELECT id, 'data' as blob_data from blobtable

You must also follow these rules:

• The SELECT must reference only one table. The table must have a primary key.

• The SELECT must alias the original BLOB column name, specified as a string, to an alternate name.

• The SELECT must cover all columns that make up the primary key.

The BLOB implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the corresponding
PreparedStatement.setBlob() or ResultSet.updateBlob() (in the case of updatable result
sets) methods to save changes back to the database.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL version
5.0 or newer using the CallableStatement interface. Currently, the getParameterMetaData()
method of CallableStatement is not supported.

• CLOB

The CLOB implementation does not allow in-place modification (they are copies, as reported
by the DatabaseMetaData.locatorsUpdateCopies() method). Because of this, use the
PreparedStatement.setClob() method to save changes back to the database. The JDBC API
does not have a ResultSet.updateClob() method.

• Connection

Unlike the pre-Connector/J JDBC driver (MM.MySQL), the isClosed() method does not ping the server
to determine if it is available. In accordance with the JDBC specification, it only returns true if closed()
has been called on the connection. If you need to determine if the connection is still valid, issue a simple
query, such as SELECT 1. The driver will throw an exception if the connection is no longer valid.

• DatabaseMetaData

Foreign key information (getImportedKeys()/getExportedKeys() and getCrossReference())
is only available from InnoDB tables. The driver uses SHOW CREATE TABLE to retrieve this information,
so if any other storage engines add support for foreign keys, the driver would transparently support them
as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared
statement feature. Because of this, the driver does not implement getParameterMetaData() or
getMetaData() as it would require the driver to have a complete SQL parser in the client.

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://dev.mysql.com/doc/refman/5.5/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html

JDBC API Implementation Notes

34

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-encoded
result sets are used when the server supports them.

Take care when using a server-side prepared statement with large parameters that are set using
setBinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob(), or setClob().
To re-execute the statement with any large parameter changed to a nonlarge parameter, call
clearParameters() and set all parameters again. The reason for this is as follows:

• During both server-side prepared statements and client-side emulation, large data is exchanged only
when PreparedStatement.execute() is called.

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and cannot be read from again.

• If a parameter changes from large to nonlarge, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior large
value. This removes all of the large data that has already been sent to the server, thus requiring the
data to be re-sent, using the setBinaryStream(), setAsciiStream(), setUnicodeStream(),
setBlob() or setClob() method.

Consequently, to change the type of a parameter to a nonlarge one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate, and due to the design of the MySQL network protocol is easier to implement. If
you are working with ResultSets that have a large number of rows or large values, and cannot allocate
heap space in your JVM for the memory required, you can tell the driver to stream the results back one
row at a time.

To enable this functionality, create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_READ_ONLY);
stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of Integer.MIN_VALUE
serves as a signal to the driver to stream result sets row-by-row. After this, any result sets created with
the statement will be retrieved row-by-row.

There are some caveats with this approach. You must read all of the rows in the result set (or close it)
before you can issue any other queries on the connection, or an exception will be thrown.

The earliest the locks these statements hold can be released (whether they be MyISAM table-level locks
or row-level locks in some other storage engine such as InnoDB) is when the statement completes.

If the statement is within scope of a transaction, then locks are released when the transaction completes
(which implies that the statement needs to complete first). As with most other databases, statements
are not complete until all the results pending on the statement are read or the active result set for the
statement is closed.

Therefore, if using streaming results, process them as quickly as possible if you want to maintain
concurrent access to the tables referenced by the statement producing the result set.

Java, JDBC and MySQL Types

35

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier
than 5.0.3, the setFetchSize() method has no effect, other than to toggle result set streaming as
described above.

Connector/J 5.0.0 and later include support for both Statement.cancel() and
Statement.setQueryTimeout(). Both require MySQL 5.0.0 or newer server, and require a
separate connection to issue the KILL QUERY statement. In the case of setQueryTimeout(), the
implementation creates an additional thread to handle the timeout functionality.

Note

Failures to cancel the statement for setQueryTimeout() may manifest
themselves as RuntimeException rather than failing silently, as there is
currently no way to unblock the thread that is executing the query being cancelled
due to timeout expiration and have it throw the exception instead.

Note

The MySQL statement KILL QUERY (which is what the driver uses to
implement Statement.cancel()) is non-deterministic; thus, avoid the use
of Statement.cancel() if possible. If no query is in process, the next query
issued will be killed by the server. This race condition is guarded against as of
Connector/J 5.1.18.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so
setCursorName() has no effect.

Connector/J 5.1.3 and later include two additional methods:

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or
URLInputStream that represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execute*()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL
INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream
as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data
in response to a LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using setLocalInfileInputStream().

Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Java, JDBC and MySQL Types

36

In general, any MySQL data type can be converted to a java.lang.String, and any numeric type
can be converted to any of the Java numeric types, although round-off, overflow, or loss of precision may
occur.

Note

All TEXT types return Types.LONGVARCHAR with different getPrecision()
values (65535, 255, 16777215, and 2147483647 respectively) with
getColumnType() returning -1. This behavior is intentional even though
TINYTEXT does not fall, regarding to its size, within the LONGVARCHAR
category. This is to avoid different handling inside the same base type. And
getColumnType() returns -1 because the internal server handling is of type
TEXT, which is similar to BLOB.

Also note that getColumnTypeName() will return VARCHAR even though
getColumnType() returns Types.LONGVARCHAR, because VARCHAR is the
designated column database-specific name for this type.

Starting with Connector/J 3.1.0, the JDBC driver issues warnings or throws DataTruncation exceptions
as is required by the JDBC specification unless the connection was configured not to do so by using the
property jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM, and
SET

java.lang.String, java.io.InputStream,
java.io.Reader, java.sql.Blob,
java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION,
NUMERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double, java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Note

Round-off, overflow or loss of precision may occur if you choose a Java numeric
data type that has less precision or capacity than the MySQL data type you are
converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and
Java types, following the JDBC specification where appropriate. The value returned by
ResultSetMetaData.GetColumnClassName() is also shown below. For more information on the
java.sql.Types classes see Java 2 Platform Types.

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of
GetColumnClassName

Returned as Java Class

BIT(1) (new in
MySQL-5.0)

BIT java.lang.Boolean

BIT(> 1) (new in
MySQL-5.0)

BIT byte[]

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

Java, JDBC and MySQL Types

37

MySQL Type Name Return value of
GetColumnClassName

Returned as Java Class

TINYINT TINYINT java.lang.Boolean if the configuration property
tinyInt1isBit is set to true (the default) and
the storage size is 1, or java.lang.Integer if
not.

BOOL, BOOLEAN TINYINT See TINYINT, above as these are aliases for
TINYINT(1), currently.

SMALLINT[(M)]
[UNSIGNED]

SMALLINT [UNSIGNED] java.lang.Integer (regardless if UNSIGNED or
not)

MEDIUMINT[(M)]
[UNSIGNED]

MEDIUMINT
[UNSIGNED]

java.lang.Integer, if UNSIGNED
java.lang.Long (C/J 3.1 and earlier), or
java.lang.Integer for C/J 5.0 and later

INT,INTEGER[(M)]
[UNSIGNED]

INTEGER [UNSIGNED] java.lang.Integer, if UNSIGNED
java.lang.Long

BIGINT[(M)]
[UNSIGNED]

BIGINT [UNSIGNED] java.lang.Long, if UNSIGNED
java.math.BigInteger

FLOAT[(M,D)] FLOAT java.lang.Float

DOUBLE[(M,B)] DOUBLE java.lang.Double

DECIMAL[(M[,D])] DECIMAL java.math.BigDecimal

DATE DATE java.sql.Date

DATETIME DATETIME java.sql.Timestamp

TIMESTAMP[(M)] TIMESTAMP java.sql.Timestamp

TIME TIME java.sql.Time

YEAR[(2|4)] YEAR If yearIsDateType configuration property is
set to false, then the returned object type is
java.sql.Short. If set to true (the default), then
the returned object is of type java.sql.Date with
the date set to January 1st, at midnight.

CHAR(M) CHAR java.lang.String (unless the character set for
the column is BINARY, then byte[] is returned.

VARCHAR(M) [BINARY] VARCHAR java.lang.String (unless the character set for
the column is BINARY, then byte[] is returned.

BINARY(M) BINARY byte[]

VARBINARY(M) VARBINARY byte[]

TINYBLOB TINYBLOB byte[]

TINYTEXT VARCHAR java.lang.String

BLOB BLOB byte[]

TEXT VARCHAR java.lang.String

MEDIUMBLOB MEDIUMBLOB byte[]

MEDIUMTEXT VARCHAR java.lang.String

LONGBLOB LONGBLOB byte[]

LONGTEXT VARCHAR java.lang.String

Using Character Sets and Unicode

38

MySQL Type Name Return value of
GetColumnClassName

Returned as Java Class

ENUM('value1','value2',...)CHAR java.lang.String

SET('value1','value2',...)CHAR java.lang.String

Using Character Sets and Unicode
All strings sent from the JDBC driver to the server are converted automatically from native Java Unicode
form to the client character encoding, including all queries sent using Statement.execute(),
Statement.executeUpdate(), Statement.executeQuery() as well as all PreparedStatement
and CallableStatement parameters with the exclusion of parameters set using setBytes(),
setBinaryStream(), setAsciiStream(), setUnicodeStream() and setBlob().

Number of Encodings Per Connection

In MySQL Server 4.1 and higher, Connector/J supports a single character encoding between client
and server, and any number of character encodings for data returned by the server to the client in
ResultSets.

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which
could either be automatically detected from the server configuration, or could be configured by the user
through the useUnicode and characterEncoding properties.

Setting the Character Encoding

The character encoding between client and server is automatically detected upon connection. You specify
the encoding on the server using the character_set_server for server versions 4.1.0 and newer, and
character_set system variable for server versions older than 4.1.0. The driver automatically uses the
encoding specified by the server. For more information, see Server Character Set and Collation.

For example, to use 4-byte UTF-8 character sets with Connector/J, configure the MySQL server
with character_set_server=utf8mb4, and leave characterEncoding out of the Connector/J
connection string. Connector/J will then autodetect the UTF-8 setting.

To override the automatically detected encoding on the client side, use the characterEncoding property
in the URL used to connect to the server.

To allow multiple character sets to be sent from the client, use the UTF-8 encoding, either by configuring
utf8 as the default server character set, or by configuring the JDBC driver to use UTF-8 through the
characterEncoding property.

When specifying character encodings on the client side, use Java-style names. The following table lists
Java-style names for MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL
Server < 4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server
http://dev.mysql.com/doc/refman/5.5/en/charset-server.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_server

Connecting Securely Using SSL

39

MySQL Character Set Name Java-Style Character Encoding Name

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 Cp1252

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

ucs2 UnicodeBig

Warning

Do not issue the query set names with Connector/J, as the driver will not detect
that the character set has changed, and will continue to use the character set
detected during the initial connection setup.

Connecting Securely Using SSL
SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC driver
and the server. The performance penalty for enabling SSL is an increase in query processing time between
35% and 50%, depending on the size of the query, and the amount of data it returns.

For SSL support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not
currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the following
JSSE bug: http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is MySQL
4.0.4 or later. For more information, see Configuring MySQL for SSL.

• A client certificate (covered later in this section)

The system works through two Java truststore files, one file contains the certificate information for
the server (truststore in the examples below). The other file contains the certificate for the client
(keystore in the examples below). All Java truststore files are password protected by supplying a suitable
password to the keytool when you create the files. You need the file names and associated passwords to
create an SSL connection.

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html
http://dev.mysql.com/doc/refman/5.5/en/configuring-for-ssl.html

Connecting Securely Using SSL

40

SSL will use to determine if you are communicating with a secure MySQL server. Alternatively, use the CA
Certificate that you have generated or been provided with by your SSL provider.

To use Java's keytool to create a truststore in the current directory , and import the server's CA
certificate (cacert.pem), you can do the following (assuming that keytool is in your path. The keytool
is typically located in the bin subdirectory of your JDK or JRE):

shell> keytool -import -alias mysqlServerCACert \
 -file cacert.pem -keystore truststore

Enter the password when prompted for the keystore file. Interaction with keytool looks like this:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus,
 O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus,
 O=MySQL AB, L=Orenburg, ST=Some-State, C=RU
Serial number: 0
Valid from:
 Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:
 MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
 SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C
Trust this certificate? [no]: yes
Certificate was added to keystore

You then have two options: either import the client certificate that matches the CA certificate you just
imported, or create a new client certificate.

Importing an existing certificate requires the certificate to be in DER format. You can use openssl to
convert an existing certificate into the new format. For example:

shell> openssl x509 -outform DER -in client-cert.pem -out client.cert

Now import the converted certificate into your keystore using keytool:

shell> keytool -import -file client.cert -keystore keystore -alias mysqlClientCertificate

To generate your own client certificate, use keytool to create a suitable certificate and add it to the
keystore file:

shell> keytool -genkey -keyalg rsa \
 -alias mysqlClientCertificate -keystore keystore

Keytool will prompt you for the following information, and create a keystore named keystore in the
current directory.

Respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?
 [Unknown]: Matthews
What is the name of your organizational unit?
 [Unknown]: Software Development
What is the name of your organization?
 [Unknown]: MySQL AB
What is the name of your City or Locality?
 [Unknown]: Flossmoor
What is the name of your State or Province?
 [Unknown]: IL
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Matthews, OU=Software Development, O=MySQL AB,
 L=Flossmoor, ST=IL, C=US> correct?

Connecting Securely Using SSL

41

 [no]: y
Enter key password for <mysqlClientCertificate>
 (RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the
following system properties when you start your JVM, replacing path_to_keystore_file with the full
path to the keystore file you created, path_to_truststore_file with the path to the truststore file
you created, and using the appropriate password values for each property. You can do this either on the
command line:

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=password
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=password

Or you can set the values directly within the application:

System.setProperty("javax.net.ssl.keyStore","path_to_keystore_file");
System.setProperty("javax.net.ssl.keyStorePassword","password");
System.setProperty("javax.net.ssl.trustStore","path_to_truststore_file");
System.setProperty("javax.net.ssl.trustStorePassword","password");

You will also need to set useSSL to true in your connection parameters for MySQL Connector/
J, either by adding useSSL=true to your URL, or by setting the property useSSL to true in the
java.util.Properties instance you pass to DriverManager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the
following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, »
 54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, »
 217, 219, 239, 202, 19, 121, 78 }
Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00 yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, »
 202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, »
 132, 110, 82, 148, 160, 92 }
Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, »
 182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, »
 219, 158, 177, 187, 143}
Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

Connecting Using PAM Authentication

42

JSSE provides debugging (to stdout) when you set the following system property: -
Djavax.net.debug=all This will tell you what keystores and truststores are being used, as well as what
is going on during the SSL handshake and certificate exchange. It will be helpful when trying to determine
what is not working when trying to get an SSL connection to happen.

Connecting Using PAM Authentication
Java applications using Connector/J 5.1.21 and higher can can connect to MySQL servers that use the
pluggable authentication module (PAM) authentication scheme.

For PAM authentication to work, you must have the following:

• A MySQL server that supports PAM authentication: a commercial distribution of MySQL 5.5.16 or higher.
See The PAM Authentication Plugin for more information. Connector/J implements the same cleartext
authentication method as in The Cleartext Client-Side Authentication Plugin.

• SSL capability, as explained in Connecting Securely Using SSL. Because the PAM authentication
scheme sends the original password to the server, the connection to the server must be encrypted.

PAM authentication support is enabled by default in Connector/J 5.1.21 and up, so no extra configuration is
needed.

To disable the PAM authentication feature, specify mysql_clear_password (the method) or
com.mysql.jdbc.authentication.MysqlClearPasswordPlugin (the class name) in the comma-
separated list of arguments for the disabledAuthenticationPlugins connection option. See Driver/
Datasource Class Names, URL Syntax and Configuration Properties for Connector/J for details about that
connection option.

Using Master/Slave Replication with ReplicationConnection
Connector/J 3.1.7 and higher includes a variant of the driver that will automatically send queries to
a read/write master, or a failover or round-robin loadbalanced set of slaves based on the state of
Connection.getReadOnly().

An application signals that it wants a transaction to be read-only by calling
Connection.setReadOnly(true), this replication-aware connection will use one of the slave
connections, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to
a slave unless that slave is removed from service). If you have a write transaction, or if you have a read
that is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not read-
only, by calling Connection.setReadOnly(false) and the driver will ensure that further calls are
sent to the master MySQL server. The driver takes care of propagating the current state of autocommit,
isolation level, and catalog between all of the connections that it uses to accomplish this load balancing
functionality.

To enable this functionality, use the com.mysql.jdbc.ReplicationDriver class when configuring
your application server's connection pool or when creating an instance of a JDBC driver for your
standalone application. Because it accepts the same URL format as the standard MySQL JDBC driver,
ReplicationDriver does not currently work with java.sql.DriverManager-based connection
creation unless it is the only MySQL JDBC driver registered with the DriverManager .

Here is a short example of how ReplicationDriver might be used in a standalone application:

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;
import com.mysql.jdbc.ReplicationDriver;
public class ReplicationDriverDemo {
 public static void main(String[] args) throws Exception {

http://dev.mysql.com/doc/refman/5.5/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/cleartext-authentication-plugin.html

Mapping MySQL Error Numbers to JDBC SQLState Codes

43

 ReplicationDriver driver = new ReplicationDriver();
 Properties props = new Properties();
 // We want this for failover on the slaves
 props.put("autoReconnect", "true");
 // We want to load balance between the slaves
 props.put("roundRobinLoadBalance", "true");
 props.put("user", "foo");
 props.put("password", "bar");
 //
 // Looks like a normal MySQL JDBC url, with a
 // comma-separated list of hosts, the first
 // being the 'master', the rest being any number
 // of slaves that the driver will load balance against
 //
 Connection conn =
 driver.connect("jdbc:mysql:replication://master,slave1,slave2,slave3/test",
 props);
 //
 // Perform read/write work on the master
 // by setting the read-only flag to "false"
 //
 conn.setReadOnly(false);
 conn.setAutoCommit(false);
 conn.createStatement().executeUpdate("UPDATE some_table");
 conn.commit();
 //
 // Now, do a query from a slave, the driver automatically picks one
 // from the list
 //
 conn.setReadOnly(true);
 ResultSet rs =
 conn.createStatement().executeQuery("SELECT a,b FROM alt_table");

 }
}

Consider investigating the Load Balancing JDBC Pool (lbpool) tool, which provides a wrapper around the
standard JDBC driver and enables you to use DB connection pools that includes checks for system failures
and uneven load distribution. For more information, see Load Balancing JDBC Pool (lbpool).

Mapping MySQL Error Numbers to JDBC SQLState Codes
The table below provides a mapping of the MySQL error numbers to JDBC SQLState values.

Table 5.1. Mapping of MySQL Error Numbers to SQLStates

MySQL Error
Number

MySQL Error Name Legacy (X/Open)
SQLState

SQL Standard
SQLState

1022 ER_DUP_KEY S1000 23000

1037 ER_OUTOFMEMORY S1001 HY001

1038 ER_OUT_OF_SORTMEMORY S1001 HY001

1040 ER_CON_COUNT_ERROR 08004 08004

1042 ER_BAD_HOST_ERROR 08004 08S01

1043 ER_HANDSHAKE_ERROR 08004 08S01

1044 ER_DBACCESS_DENIED_ERROR S1000 42000

1045 ER_ACCESS_DENIED_ERROR 28000 28000

1047 ER_UNKNOWN_COM_ERROR 08S01 HY000

1050 ER_TABLE_EXISTS_ERROR S1000 42S01

http://code.tailrank.com/lbpool

Mapping MySQL Error Numbers to JDBC SQLState Codes

44

MySQL Error
Number

MySQL Error Name Legacy (X/Open)
SQLState

SQL Standard
SQLState

1051 ER_BAD_TABLE_ERROR 42S02 42S02

1052 ER_NON_UNIQ_ERROR S1000 23000

1053 ER_SERVER_SHUTDOWN S1000 08S01

1054 ER_BAD_FIELD_ERROR S0022 42S22

1055 ER_WRONG_FIELD_WITH_GROUP S1009 42000

1056 ER_WRONG_GROUP_FIELD S1009 42000

1057 ER_WRONG_SUM_SELECT S1009 42000

1058 ER_WRONG_VALUE_COUNT 21S01 21S01

1059 ER_TOO_LONG_IDENT S1009 42000

1060 ER_DUP_FIELDNAME S1009 42S21

1061 ER_DUP_KEYNAME S1009 42000

1062 ER_DUP_ENTRY S1009 23000

1063 ER_WRONG_FIELD_SPEC S1009 42000

1064 ER_PARSE_ERROR 42000 42000

1065 ER_EMPTY_QUERY 42000 42000

1066 ER_NONUNIQ_TABLE S1009 42000

1067 ER_INVALID_DEFAULT S1009 42000

1068 ER_MULTIPLE_PRI_KEY S1009 42000

1069 ER_TOO_MANY_KEYS S1009 42000

1070 ER_TOO_MANY_KEY_PARTS S1009 42000

1071 ER_TOO_LONG_KEY S1009 42000

1072 ER_KEY_COLUMN_DOES_NOT_EXITS S1009 42000

1073 ER_BLOB_USED_AS_KEY S1009 42000

1074 ER_TOO_BIG_FIELDLENGTH S1009 42000

1075 ER_WRONG_AUTO_KEY S1009 42000

1080 ER_FORCING_CLOSE S1000 08S01

1081 ER_IPSOCK_ERROR 08S01 08S01

1082 ER_NO_SUCH_INDEX S1009 42S12

1083 ER_WRONG_FIELD_TERMINATORS S1009 42000

1084 ER_BLOBS_AND_NO_TERMINATED S1009 42000

1090 ER_CANT_REMOVE_ALL_FIELDS S1000 42000

1091 ER_CANT_DROP_FIELD_OR_KEY S1000 42000

1101 ER_BLOB_CANT_HAVE_DEFAULT S1000 42000

1102 ER_WRONG_DB_NAME S1000 42000

1103 ER_WRONG_TABLE_NAME S1000 42000

1104 ER_TOO_BIG_SELECT S1000 42000

1106 ER_UNKNOWN_PROCEDURE S1000 42000

Mapping MySQL Error Numbers to JDBC SQLState Codes

45

MySQL Error
Number

MySQL Error Name Legacy (X/Open)
SQLState

SQL Standard
SQLState

1107 ER_WRONG_PARAMCOUNT_TO_PROCEDURES1000 42000

1109 ER_UNKNOWN_TABLE S1000 42S02

1110 ER_FIELD_SPECIFIED_TWICE S1000 42000

1112 ER_UNSUPPORTED_EXTENSION S1000 42000

1113 ER_TABLE_MUST_HAVE_COLUMNS S1000 42000

1115 ER_UNKNOWN_CHARACTER_SET S1000 42000

1118 ER_TOO_BIG_ROWSIZE S1000 42000

1120 ER_WRONG_OUTER_JOIN S1000 42000

1121 ER_NULL_COLUMN_IN_INDEX S1000 42000

1129 ER_HOST_IS_BLOCKED 08004 HY000

1130 ER_HOST_NOT_PRIVILEGED 08004 HY000

1131 ER_PASSWORD_ANONYMOUS_USER S1000 42000

1132 ER_PASSWORD_NOT_ALLOWED S1000 42000

1133 ER_PASSWORD_NO_MATCH S1000 42000

1136 ER_WRONG_VALUE_COUNT_ON_ROW S1000 21S01

1138 ER_INVALID_USE_OF_NULL S1000 42000

1139 ER_REGEXP_ERROR S1000 42000

1140 ER_MIX_OF_GROUP_FUNC_AND_FIELDS S1000 42000

1141 ER_NONEXISTING_GRANT S1000 42000

1142 ER_TABLEACCESS_DENIED_ERROR S1000 42000

1143 ER_COLUMNACCESS_DENIED_ERROR S1000 42000

1144 ER_ILLEGAL_GRANT_FOR_TABLE S1000 42000

1145 ER_GRANT_WRONG_HOST_OR_USER S1000 42000

1146 ER_NO_SUCH_TABLE S1000 42S02

1147 ER_NONEXISTING_TABLE_GRANT S1000 42000

1148 ER_NOT_ALLOWED_COMMAND S1000 42000

1149 ER_SYNTAX_ERROR S1000 42000

1152 ER_ABORTING_CONNECTION S1000 08S01

1153 ER_NET_PACKET_TOO_LARGE S1000 08S01

1154 ER_NET_READ_ERROR_FROM_PIPE S1000 08S01

1155 ER_NET_FCNTL_ERROR S1000 08S01

1156 ER_NET_PACKETS_OUT_OF_ORDER S1000 08S01

1157 ER_NET_UNCOMPRESS_ERROR S1000 08S01

1158 ER_NET_READ_ERROR S1000 08S01

1159 ER_NET_READ_INTERRUPTED S1000 08S01

1160 ER_NET_ERROR_ON_WRITE S1000 08S01

1161 ER_NET_WRITE_INTERRUPTED S1000 08S01

Mapping MySQL Error Numbers to JDBC SQLState Codes

46

MySQL Error
Number

MySQL Error Name Legacy (X/Open)
SQLState

SQL Standard
SQLState

1162 ER_TOO_LONG_STRING S1000 42000

1163 ER_TABLE_CANT_HANDLE_BLOB S1000 42000

1164 ER_TABLE_CANT_HANDLE_AUTO_INCREMENTS1000 42000

1166 ER_WRONG_COLUMN_NAME S1000 42000

1167 ER_WRONG_KEY_COLUMN S1000 42000

1169 ER_DUP_UNIQUE S1000 23000

1170 ER_BLOB_KEY_WITHOUT_LENGTH S1000 42000

1171 ER_PRIMARY_CANT_HAVE_NULL S1000 42000

1172 ER_TOO_MANY_ROWS S1000 42000

1173 ER_REQUIRES_PRIMARY_KEY S1000 42000

1177 ER_CHECK_NO_SUCH_TABLE S1000 42000

1178 ER_CHECK_NOT_IMPLEMENTED S1000 42000

1179 ER_CANT_DO_THIS_DURING_AN_TRANSACTIONS1000 25000

1184 ER_NEW_ABORTING_CONNECTION S1000 08S01

1189 ER_MASTER_NET_READ S1000 08S01

1190 ER_MASTER_NET_WRITE S1000 08S01

1203 ER_TOO_MANY_USER_CONNECTIONS S1000 42000

1205 ER_LOCK_WAIT_TIMEOUT 41000 41000

1207 ER_READ_ONLY_TRANSACTION S1000 25000

1211 ER_NO_PERMISSION_TO_CREATE_USER S1000 42000

1213 ER_LOCK_DEADLOCK 41000 40001

1216 ER_NO_REFERENCED_ROW S1000 23000

1217 ER_ROW_IS_REFERENCED S1000 23000

1218 ER_CONNECT_TO_MASTER S1000 08S01

1222 ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECTS1000 21000

1226 ER_USER_LIMIT_REACHED S1000 42000

1230 ER_NO_DEFAULT S1000 42000

1231 ER_WRONG_VALUE_FOR_VAR S1000 42000

1232 ER_WRONG_TYPE_FOR_VAR S1000 42000

1234 ER_CANT_USE_OPTION_HERE S1000 42000

1235 ER_NOT_SUPPORTED_YET S1000 42000

1239 ER_WRONG_FK_DEF S1000 42000

1241 ER_OPERAND_COLUMNS S1000 21000

1242 ER_SUBQUERY_NO_1_ROW S1000 21000

1247 ER_ILLEGAL_REFERENCE S1000 42S22

1248 ER_DERIVED_MUST_HAVE_ALIAS S1000 42000

1249 ER_SELECT_REDUCED S1000 01000

Mapping MySQL Error Numbers to JDBC SQLState Codes

47

MySQL Error
Number

MySQL Error Name Legacy (X/Open)
SQLState

SQL Standard
SQLState

1250 ER_TABLENAME_NOT_ALLOWED_HERE S1000 42000

1251 ER_NOT_SUPPORTED_AUTH_MODE S1000 08004

1252 ER_SPATIAL_CANT_HAVE_NULL S1000 42000

1253 ER_COLLATION_CHARSET_MISMATCH S1000 42000

1261 ER_WARN_TOO_FEW_RECORDS S1000 01000

1262 ER_WARN_TOO_MANY_RECORDS S1000 01000

1263 ER_WARN_NULL_TO_NOTNULL S1000 01000

1264 ER_WARN_DATA_OUT_OF_RANGE S1000 01000

1265 ER_WARN_DATA_TRUNCATED S1000 01000

1280 ER_WRONG_NAME_FOR_INDEX S1000 42000

1281 ER_WRONG_NAME_FOR_CATALOG S1000 42000

1286 ER_UNKNOWN_STORAGE_ENGINE S1000 42000

48

49

Chapter 6. JDBC Concepts

Table of Contents
Connecting to MySQL Using the JDBC DriverManager Interface .. 49
Using JDBC Statement Objects to Execute SQL ... 50
Using JDBC CallableStatements to Execute Stored Procedures .. 51
Retrieving AUTO_INCREMENT Column Values through JDBC ... 53

This section provides some general JDBC background.

Connecting to MySQL Using the JDBC DriverManager Interface
When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of Connections.

Specify to the DriverManager which JDBC drivers to try to make Connections with. The easiest way
to do this is to use Class.forName() on the class that implements the java.sql.Driver interface.
With MySQL Connector/J, the name of this class is com.mysql.jdbc.Driver. With this method, you
could use an external configuration file to supply the driver class name and driver parameters to use when
connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the main()
method of your application. If testing this code, first read the installation section at Chapter 3, Connector/J
Installation, to make sure you have connector installed correctly and the CLASSPATH set up. Also, ensure
that MySQL is configured to accept external TCP/IP connections.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
// Notice, do not import com.mysql.jdbc.*
// or you will have problems!
public class LoadDriver {
 public static void main(String[] args) {
 try {
 // The newInstance() call is a work around for some
 // broken Java implementations
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 } catch (Exception ex) {
 // handle the error
 }
 }
}

After the driver has been registered with the DriverManager, you can obtain a Connection instance
that is connected to a particular database by calling DriverManager.getConnection():

Example 6.1. Connector/J: Obtaining a connection from the DriverManager

If you have not already done so, please review the section Connecting to MySQL Using the JDBC
DriverManager Interface before working with these examples.

This example shows how you can obtain a Connection instance from the DriverManager. There are
a few different signatures for the getConnection() method. Consult the API documentation that comes
with your JDK for more specific information on how to use them.

import java.sql.Connection;

Using JDBC Statement Objects to Execute SQL

50

import java.sql.DriverManager;
import java.sql.SQLException;
Connection conn = null;
...
try {
 conn =
 DriverManager.getConnection("jdbc:mysql://localhost/test?" +
 "user=monty&password=greatsqldb");
 // Do something with the Connection
 ...
} catch (SQLException ex) {
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}

Once a Connection is established, it can be used to create Statement and PreparedStatement
objects, as well as retrieve metadata about the database. This is explained in the following sections.

Using JDBC Statement Objects to Execute SQL
Statement objects allow you to execute basic SQL queries and retrieve the results through the
ResultSet class, which is described later.

To create a Statement instance, you call the createStatement() method on the
Connection object you have retrieved using one of the DriverManager.getConnection() or
DataSource.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the
executeQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method returns
the number of rows matched by the update statement, not the number of rows that were modified.

If you do not know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement
was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 6.2. Connector/J: Using java.sql.Statement to execute a SELECT query

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.Statement;
import java.sql.ResultSet;
// assume that conn is an already created JDBC connection (see previous examples)
Statement stmt = null;
ResultSet rs = null;
try {
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT foo FROM bar");
 // or alternatively, if you don't know ahead of time that
 // the query will be a SELECT...
 if (stmt.execute("SELECT foo FROM bar")) {
 rs = stmt.getResultSet();
 }
 // Now do something with the ResultSet
}

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html

Using JDBC CallableStatements to Execute Stored Procedures

51

catch (SQLException ex){
 // handle any errors
 System.out.println("SQLException: " + ex.getMessage());
 System.out.println("SQLState: " + ex.getSQLState());
 System.out.println("VendorError: " + ex.getErrorCode());
}
finally {
 // it is a good idea to release
 // resources in a finally{} block
 // in reverse-order of their creation
 // if they are no-longer needed
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) { } // ignore
 rs = null;
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) { } // ignore
 stmt = null;
 }
}

Using JDBC CallableStatements to Execute Stored Procedures
Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the
java.sql.CallableStatement interface is fully implemented with the exception of the
getParameterMetaData() method.

For more information on MySQL stored procedures, please refer to http://dev.mysql.com/doc/mysql/en/
stored-routines.html.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note

Current versions of MySQL server do not return enough information for the JDBC
driver to provide result set metadata for callable statements. This means that when
using CallableStatement, ResultSetMetaData may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented by 1,
and the string passed in using inputParam as a ResultSet:

Example 6.3. Connector/J: Calling Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), \
 INOUT inOutParam INT)
BEGIN
 DECLARE z INT;
 SET z = inOutParam + 1;
 SET inOutParam = z;
 SELECT inputParam;
 SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall().

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the parameter
placeholders are not optional:

http://dev.mysql.com/doc/mysql/en/stored-routines.html
http://dev.mysql.com/doc/mysql/en/stored-routines.html

Using JDBC CallableStatements to Execute Stored Procedures

52

Example 6.4. Connector/J: Using Connection.prepareCall()

import java.sql.CallableStatement;
...
 //
 // Prepare a call to the stored procedure 'demoSp'
 // with two parameters
 //
 // Notice the use of JDBC-escape syntax ({call ...})
 //
 CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");
 cStmt.setString(1, "abcdefg");

Note

Connection.prepareCall() is an expensive method, due to the metadata
retrieval that the driver performs to support output parameters. For performance
reasons, minimize unnecessary calls to Connection.prepareCall() by
reusing CallableStatement instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you created
the stored procedure), JDBC requires that they be specified before statement execution using the
various registerOutputParameter() methods in the CallableStatement interface:

Example 6.5. Connector/J: Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//
//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter(2, Types.INTEGER);
//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//
cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Retrieving AUTO_INCREMENT Column Values through JDBC

53

Example 6.6. Connector/J: Setting CallableStatement input parameters

...
 //
 // Set a parameter by index
 //
 cStmt.setString(1, "abcdefg");
 //
 // Alternatively, set a parameter using
 // the parameter name
 //
 cStmt.setString("inputParameter", "abcdefg");
 //
 // Set the 'in/out' parameter using an index
 //
 cStmt.setInt(2, 1);
 //
 // Alternatively, set the 'in/out' parameter
 // by name
 //
 cStmt.setInt("inOutParam", 1);
...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods
(executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 6.7. Connector/J: Retrieving results and output parameter values

...
 boolean hadResults = cStmt.execute();
 //
 // Process all returned result sets
 //
 while (hadResults) {
 ResultSet rs = cStmt.getResultSet();
 // process result set
 ...
 hadResults = cStmt.getMoreResults();
 }
 //
 // Retrieve output parameters
 //
 // Connector/J supports both index-based and
 // name-based retrieval
 //
 int outputValue = cStmt.getInt(2); // index-based
 outputValue = cStmt.getInt("inOutParam"); // name-based
...

Retrieving AUTO_INCREMENT Column Values through JDBC
Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases
that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could
always use a MySQL-specific method on the Statement interface, or issue the query SELECT
LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Using the
MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT key's value
requires another round-trip to the database, which isn't as efficient as possible. The following code snippets
demonstrate the three different ways to retrieve AUTO_INCREMENT values. First, we demonstrate the use
of the new JDBC 3.0 method getGeneratedKeys() which is now the preferred method to use if you

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/select.html

Retrieving AUTO_INCREMENT Column Values through JDBC

54

need to retrieve AUTO_INCREMENT keys and have access to JDBC 3.0. The second example shows how
you can retrieve the same value using a standard SELECT LAST_INSERT_ID() query. The final example
shows how updatable result sets can retrieve the AUTO_INCREMENT value when using the insertRow()
method.

Example 6.8. Connector/J: Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

 Statement stmt = null;
 ResultSet rs = null;
 try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets assuming you have a
 // Connection 'conn' to a MySQL database already
 // available
 stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_UPDATABLE);
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //
 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')",
 Statement.RETURN_GENERATED_KEYS);
 //
 // Example of using Statement.getGeneratedKeys()
 // to retrieve the value of an auto-increment
 // value
 //
 int autoIncKeyFromApi = -1;
 rs = stmt.getGeneratedKeys();
 if (rs.next()) {
 autoIncKeyFromApi = rs.getInt(1);
 } else {
 // throw an exception from here
 }
 rs.close();
 rs = null;
 System.out.println("Key returned from getGeneratedKeys():"
 + autoIncKeyFromApi);
} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Retrieving AUTO_INCREMENT Column Values through JDBC

55

Example 6.9. Connector/J: Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

 Statement stmt = null;
 ResultSet rs = null;
 try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets.
 stmt = conn.createStatement();
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Insert one row that will generate an AUTO INCREMENT
 // key in the 'priKey' field
 //
 stmt.executeUpdate(
 "INSERT INTO autoIncTutorial (dataField) "
 + "values ('Can I Get the Auto Increment Field?')");
 //
 // Use the MySQL LAST_INSERT_ID()
 // function to do the same thing as getGeneratedKeys()
 //
 int autoIncKeyFromFunc = -1;
 rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");
 if (rs.next()) {
 autoIncKeyFromFunc = rs.getInt(1);
 } else {
 // throw an exception from here
 }
 rs.close();
 System.out.println("Key returned from " +
 "'SELECT LAST_INSERT_ID()': " +
 autoIncKeyFromFunc);
} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Example 6.10. Connector/J: Retrieving AUTO_INCREMENT column values in Updatable
ResultSets

 Statement stmt = null;
 ResultSet rs = null;
 try {
 //
 // Create a Statement instance that we can use for
 // 'normal' result sets as well as an 'updatable'

Retrieving AUTO_INCREMENT Column Values through JDBC

56

 // one, assuming you have a Connection 'conn' to
 // a MySQL database already available
 //
 stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
 java.sql.ResultSet.CONCUR_UPDATABLE);
 //
 // Issue the DDL queries for the table for this example
 //
 stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
 stmt.executeUpdate(
 "CREATE TABLE autoIncTutorial ("
 + "priKey INT NOT NULL AUTO_INCREMENT, "
 + "dataField VARCHAR(64), PRIMARY KEY (priKey))");
 //
 // Example of retrieving an AUTO INCREMENT key
 // from an updatable result set
 //
 rs = stmt.executeQuery("SELECT priKey, dataField "
 + "FROM autoIncTutorial");
 rs.moveToInsertRow();
 rs.updateString("dataField", "AUTO INCREMENT here?");
 rs.insertRow();
 //
 // the driver adds rows at the end
 //
 rs.last();
 //
 // We should now be on the row we just inserted
 //
 int autoIncKeyFromRS = rs.getInt("priKey");
 rs.close();
 rs = null;
 System.out.println("Key returned for inserted row: "
 + autoIncKeyFromRS);
} finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException ex) {
 // ignore
 }
 }
}

Running the preceding example code should produce the following output:

Key returned from getGeneratedKeys(): 1
Key returned from SELECT LAST_INSERT_ID(): 1
Key returned for inserted row: 2

At times, it can be tricky to use the SELECT LAST_INSERT_ID() query, as that function's value is scoped
to a connection. So, if some other query happens on the same connection, the value is overwritten. On the
other hand, the getGeneratedKeys() method is scoped by the Statement instance, so it can be used
even if other queries happen on the same connection, but not on the same Statement instance.

57

Chapter 7. Connection Pooling with Connector/J
Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them. Connection pooling can greatly increase the performance of your Java
application, while reducing overall resource usage.

How Connection Pooling Works

Most applications only need a thread to have access to a JDBC connection when they are actively
processing a transaction, which often takes only milliseconds to complete. When not processing a
transaction, the connection sits idle. Connection pooling enables the idle connection to be used by some
other thread to do useful work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so that
it can be used by any other threads.

When the connection is loaned out from the pool, it is used exclusively by the thread that
requested it. From a programming point of view, it is the same as if your thread called
DriverManager.getConnection() every time it needed a JDBC connection. With connection pooling,
your thread may end up using either a new connection or an already-existing connection.

Benefits of Connection Pooling

The main benefits to connection pooling are:

• Reduced connection creation time.

Although this is not usually an issue with the quick connection setup that MySQL offers compared to
other databases, creating new JDBC connections still incurs networking and JDBC driver overhead that
will be avoided if connections are recycled.

• Simplified programming model.

When using connection pooling, each individual thread can act as though it has created its own JDBC
connection, allowing you to use straightforward JDBC programming techniques.

• Controlled resource usage.

If you create a new connection every time a thread needs one, rather than using connection pooling,
your application's resource usage can be wasteful and lead to unpredictable behavior under load.

Using Connection Pooling with Connector/J

Sun has standardized the concept of connection pooling in JDBC through the JDBC 2.0 Optional
interfaces, and all major application servers have implementations of these APIs that work with MySQL
Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
through the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 7.1. Connector/J: Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import javax.naming.InitialContext;

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_thread
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction

Using Connection Pooling with Connector/J

58

import javax.sql.DataSource;
public class MyServletJspOrEjb {
 public void doSomething() throws Exception {
 /*
 * Create a JNDI Initial context to be able to
 * lookup the DataSource
 *
 * In production-level code, this should be cached as
 * an instance or static variable, as it can
 * be quite expensive to create a JNDI context.
 *
 * Note: This code only works when you are using servlets
 * or EJBs in a J2EE application server. If you are
 * using connection pooling in standalone Java code, you
 * will have to create/configure datasources using whatever
 * mechanisms your particular connection pooling library
 * provides.
 */
 InitialContext ctx = new InitialContext();
 /*
 * Lookup the DataSource, which will be backed by a pool
 * that the application server provides. DataSource instances
 * are also a good candidate for caching as an instance
 * variable, as JNDI lookups can be expensive as well.
 */
 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");
 /*
 * The following code is what would actually be in your
 * Servlet, JSP or EJB 'service' method...where you need
 * to work with a JDBC connection.
 */
 Connection conn = null;
 Statement stmt = null;
 try {
 conn = ds.getConnection();
 /*
 * Now, use normal JDBC programming to work with
 * MySQL, making sure to close each resource when you're
 * finished with it, which permits the connection pool
 * resources to be recovered as quickly as possible
 */
 stmt = conn.createStatement();
 stmt.execute("SOME SQL QUERY");
 stmt.close();
 stmt = null;
 conn.close();
 conn = null;
 } finally {
 /*
 * close any jdbc instances here that weren't
 * explicitly closed during normal code path, so
 * that we don't 'leak' resources...
 */
 if (stmt != null) {
 try {
 stmt.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here
 }
 stmt = null;
 }
 if (conn != null) {
 try {
 conn.close();
 } catch (sqlexception sqlex) {
 // ignore, as we can't do anything about it here

Sizing the Connection Pool

59

 }
 conn = null;
 }
 }
 }
}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the
DataSource, the rest of the code follows familiar JDBC conventions.

When using connection pooling, always make sure that connections, and anything created by them
(such as statements or result sets) are closed. This rule applies no matter what happens in your code
(exceptions, flow-of-control, and so forth). When these objects are closed, they can be re-used; otherwise,
they will be stranded, which means that the MySQL server resources they represent (such as buffers,
locks, or sockets) are tied up for some time, or in the worst case can be tied up forever.

Sizing the Connection Pool

Each connection to MySQL has overhead (memory, CPU, context switches, and so forth) on both the client
and server side. Every connection limits how many resources there are available to your application as
well as the MySQL server. Many of these resources will be used whether or not the connection is actually
doing any useful work! Connection pools can be tuned to maximize performance, while keeping resource
utilization below the point where your application will start to fail rather than just run slower.

The optimal size for the connection pool depends on anticipated load and average database transaction
time. In practice, the optimal connection pool size can be smaller than you might expect. If you take Sun's
Java Petstore blueprint application for example, a connection pool of 15-20 connections can serve a
relatively moderate load (600 concurrent users) using MySQL and Tomcat with acceptable response times.

To correctly size a connection pool for your application, create load test scripts with tools such as Apache
JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used
connections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

Validating Connections

MySQL Connector/J can validate the connection by executing a lightweight ping against a server. In the
case of load-balanced connections, this is performed against all active pooled internal connections that are
retained. This is beneficial to Java applications using connection pools, as the pool can use this feature to
validate connections. Depending on your connection pool and configuration, this validation can be carried
out at different times:

1. Before the pool returns a connection to the application.

2. When the application returns a connection to the pool.

3. During periodic checks of idle connections.

To use this feature, specify a validation query in your connection pool that starts with /* ping
*/. Note that the syntax must be exactly as specified. This will cause the driver send a ping to the
server and return a dummy lightweight result set. When using a ReplicationConnection or
LoadBalancedConnection, the ping will be sent across all active connections.

It is critical that the syntax be specified correctly. The syntax needs to be exact for reasons of efficiency, as
this test is done for every statement that is executed:

Validating Connections

60

protected static final String PING_MARKER = "/* ping */";
...
if (sql.charAt(0) == '/') {
if (sql.startsWith(PING_MARKER)) {
doPingInstead();
...

None of the following snippets will work, because the ping syntax is sensitive to whitespace, capitalization,
and placement:

sql = "/* PING */ SELECT 1";
sql = "SELECT 1 /* ping*/";
sql = "/*ping*/ SELECT 1";
sql = " /* ping */ SELECT 1";
sql = "/*to ping or not to ping*/ SELECT 1";

All of the previous statements will issue a normal SELECT statement and will not be transformed into
the lightweight ping. Further, for load-balanced connections, the statement will be executed against one
connection in the internal pool, rather than validating each underlying physical connection. This results
in the non-active physical connections assuming a stale state, and they may die. If Connector/J then re-
balances, it might select a dead connection, resulting in an exception being passed to the application.
To help prevent this, you can use loadBalanceValidateConnectionOnSwapServer to validate the
connection before use.

If your Connector/J deployment uses a connection pool that allows you to specify a validation query, take
advantage of it, but ensure that the query starts exactly with /* ping */. This is particularly important
if you are using the load-balancing or replication-aware features of Connector/J, as it will help keep alive
connections which otherwise will go stale and die, causing problems later.

61

Chapter 8. Load Balancing with Connector/J
Connector/J has long provided an effective means to distribute read/write load across multiple MySQL
server instances for Cluster or master-master replication deployments. Starting with Connector/J 5.1.3, you
can now dynamically configure load-balanced connections, with no service outage. In-process transactions
are not lost, and no application exceptions are generated if any application is trying to use that particular
server instance.

There are two connection string options associated with this functionality:

• loadBalanceConnectionGroup – This provides the ability to group connections from different
sources. This allows you to manage these JDBC sources within a single class loader in any combination
you choose. If they use the same configuration, and you want to manage them as a logical single
group, give them the same name. This is the key property for management: if you do not define a
name (string) for loadBalanceConnectionGroup, you cannot manage the connections. All load-
balanced connections sharing the same loadBalanceConnectionGroup value, regardless of how the
application creates them, will be managed together.

• loadBalanceEnableJMX – The ability to manage the connections is exposed when you define
a loadBalanceConnectionGroup, but if you want to manage this externally, enable JMX by
setting this property to true. This enables a JMX implementation, which exposes the management
and monitoring operations of a connection group. Further, start your application with the -
Dcom.sun.management.jmxremote JVM flag. You can then perform connect and perform operations
using a JMX client such as jconsole.

Once a connection has been made using the correct connection string options, a number of monitoring
properties are available:

• Current active host count.

• Current active physical connection count.

• Current active logical connection count.

• Total logical connections created.

• Total transaction count.

The following management operations can also be performed:

• Add host.

• Remove host.

The JMX interface, com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManagerMBean, has the
following methods:

• int getActiveHostCount(String group);

• int getTotalHostCount(String group);

• long getTotalLogicalConnectionCount(String group);

• long getActiveLogicalConnectionCount(String group);

• long getActivePhysicalConnectionCount(String group);

62

• long getTotalPhysicalConnectionCount(String group);

• long getTotalTransactionCount(String group);

• void removeHost(String group, String host) throws SQLException;

• void stopNewConnectionsToHost(String group, String host) throws SQLException;

• void addHost(String group, String host, boolean forExisting);

• String getActiveHostsList(String group);

• String getRegisteredConnectionGroups();

The getRegisteredConnectionGroups() method returns the names of all connection groups defined
in that class loader.

You can test this setup with the following code:

public class Test {
 private static String URL = "jdbc:mysql:loadbalance://" +
 "localhost:3306,localhost:3310/test?" +
 "loadBalanceConnectionGroup=first&loadBalanceEnableJMX=true";
 public static void main(String[] args) throws Exception {
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 new Thread(new Repeater()).start();
 }
 static Connection getNewConnection() throws SQLException, ClassNotFoundException {
 Class.forName("com.mysql.jdbc.Driver");
 return DriverManager.getConnection(URL, "root", "");
 }
 static void executeSimpleTransaction(Connection c, int conn, int trans){
 try {
 c.setAutoCommit(false);
 Statement s = c.createStatement();
 s.executeQuery("SELECT SLEEP(1) /* Connection: " + conn + ", transaction: " + trans + " */");
 c.commit();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
 public static class Repeater implements Runnable {
 public void run() {
 for(int i=0; i < 100; i++){
 try {
 Connection c = getNewConnection();
 for(int j=0; j < 10; j++){
 executeSimpleTransaction(c, i, j);
 Thread.sleep(Math.round(100 * Math.random()));
 }
 c.close();
 Thread.sleep(100);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

After compiling, the application can be started with the -Dcom.sun.management.jmxremote
flag, to enable remote management. jconsole can then be started. The Test main class

63

will be listed by jconsole. Select this and click Connect. You can then navigate to the
com.mysql.jdbc.jmx.LoadBalanceConnectionGroupManager bean. At this point, you can click on
various operations and examine the returned result.

If you now had an additional instance of MySQL running on port 3309, you could ensure that Connector/J
starts using it by using the addHost(), which is exposed in jconsole. Note that these operations can be
performed dynamically without having to stop the application running.

For further information on the combination of load balancing and failover, see Chapter 9, Failover with
Connector/J.

64

65

Chapter 9. Failover with Connector/J

Connector/J provides a useful load-balancing implementation for Cluster or multi-master deployments,
as explained in Chapter 8, Load Balancing with Connector/J. As of Connector/J 5.1.12, this same
implementation is used for balancing load between read-only slaves with ReplicationDriver. When
trying to balance workload between multiple servers, the driver has to determine when it is safe to swap
servers, doing so in the middle of a transaction, for example, could cause problems. It is important not
to lose state information. For this reason, Connector/J will only try to pick a new server when one of the
following happens:

1. At transaction boundaries (transactions are explicitly committed or rolled back).

2. A communication exception (SQL State starting with "08") is encountered.

3. When a SQLException matches conditions defined by user, using the extension points defined by
the loadBalanceSQLStateFailover, loadBalanceSQLExceptionSubclassFailover or
loadBalanceExceptionChecker properties.

The third condition revolves around three new properties introduced with Connector/J 5.1.13. It allows you
to control which SQLExceptions trigger failover.

• loadBalanceExceptionChecker - The loadBalanceExceptionChecker property
is really the key. This takes a fully-qualified class name which implements the new
com.mysql.jdbc.LoadBalanceExceptionChecker interface. This interface is very simple, and you
only need to implement the following method:

public boolean shouldExceptionTriggerFailover(SQLException ex)

A SQLException is passed in, and a boolean returned. A value of true triggers a failover, false does
not.

You can use this to implement your own custom logic. An example where this might be useful is when
dealing with transient errors when using MySQL Cluster, where certain buffers may become overloaded.
The following code snippet illustrates this:

public class NdbLoadBalanceExceptionChecker
 extends StandardLoadBalanceExceptionChecker {
 public boolean shouldExceptionTriggerFailover(SQLException ex) {
 return super.shouldExceptionTriggerFailover(ex)
 || checkNdbException(ex);
 }
 private boolean checkNdbException(SQLException ex){
 // Have to parse the message since most NDB errors
 // are mapped to the same DEMC.
 return (ex.getMessage().startsWith("Lock wait timeout exceeded") ||
 (ex.getMessage().startsWith("Got temporary error")
 && ex.getMessage().endsWith("from NDB")));
 }
}

The code above extends com.mysql.jdbc.StandardLoadBalanceExceptionChecker,
which is the default implementation. There are a few convenient shortcuts built into this, for those
who want to have some level of control using properties, without writing Java code. This default
implementation uses the two remaining properties: loadBalanceSQLStateFailover and
loadBalanceSQLExceptionSubclassFailover.

66

• loadBalanceSQLStateFailover - allows you to define a comma-delimited list of SQLState code
prefixes, against which a SQLException is compared. If the prefix matches, failover is triggered. So, for
example, the following would trigger a failover if a given SQLException starts with "00", or is "12345":

loadBalanceSQLStateFailover=00,12345

• loadBalanceSQLExceptionSubclassFailover - can be used in conjunction with
loadBalanceSQLStateFailover or on its own. If you want certain subclasses of SQLException to
trigger failover, simply provide a comma-delimited list of fully-qualified class or interface names to check
against. For example, if you want all SQLTransientConnectionExceptions to trigger failover, you
would specify:

loadBalanceSQLExceptionSubclassFailover=java.sql.SQLTransientConnectionException

While the three fail-over conditions enumerated earlier suit most situations, if auto-commit is enabled,
Connector/J never re-balances, and continues using the same physical connection. This can be
problematic, particularly when load-balancing is being used to distribute read-only load across multiple
slaves. However, Connector/J can be configured to re-balance after a certain number of statements are
executed, when auto-commit is enabled. This functionality is dependent upon the following properties:

• loadBalanceAutoCommitStatementThreshold – defines the number of matching statements
which will trigger the driver to potentially swap physical server connections. The default value, 0, retains
the behavior that connections with auto-commit enabled are never balanced.

• loadBalanceAutoCommitStatementRegex – the regular expression against which statements must
match. The default value, blank, matches all statements. So, for example, using the following properties
will cause Connector/J to re-balance after every third statement that contains the string “test”:

loadBalanceAutoCommitStatementThreshold=3
loadBalanceAutoCommitStatementRegex=.*test.*

loadBalanceAutoCommitStatementRegex can prove useful in a number of situations. Your
application may use temporary tables, server-side session state variables, or connection state, where
letting the driver arbitrarily swap physical connections before processing is complete could cause data
loss or other problems. This allows you to identify a trigger statement that is only executed when it is
safe to swap physical connections.

67

Chapter 10. Using the Connector/J Interceptor Classes
An interceptor is a software design pattern that provides a transparent way to extend or modify some
aspect of a program, similar to a user exit. No recompiling is required. With Connector/J, the interceptors
are enabled and disabled by updating the connection string to refer to different sets of interceptor classes
that you instantiate.

The connection properties that control the interceptors are explained in Driver/Datasource Class Names,
URL Syntax and Configuration Properties for Connector/J:

• connectionLifecycleInterceptors, where you specify the fully qualified names of classes that
implement the com.mysql.jdbc.ConnectionLifecycleInterceptor interface. In these kinds of
interceptor classes, you might log events such as rollbacks, measure the time between transaction start
and end, or count events such as calls to setAutoCommit().

• exceptionInterceptors, where you specify the fully qualified names of classes that implement the
com.mysql.jdbc.ExceptionInterceptor interface. In these kinds of interceptor classes, you
might add extra diagnostic information to exceptions that can have multiple causes or indicate a problem
with server settings. Because exceptionInterceptors classes are only called when handling a
SQLException thrown from Connector/J code, they can be used even in production deployments
without substantial performance overhead.

• statementInterceptors, where you specify the fully qualified names of classes that implement the
com.mysql.jdbc.StatementInterceptorV2 interface. In these kinds of interceptor classes, you
might change or augment the processing done by certain kinds of statements, such as automatically
checking for queried data in a memcached server, rewriting slow queries, logging information about
statement execution, or route requests to remote servers.

68

69

Chapter 11. Using Connector/J with Tomcat
The following instructions are based on the instructions for Tomcat-5.x, available at http://
tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html which is current at the time this
document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, configure the JNDI DataSource by adding a declaration resource to $CATALINA_HOME/conf/
server.xml in the context that defines your web application:

 <Context>
 ...
 <Resource name="jdbc/MySQLDB"
 auth="Container"
 type="javax.sql.DataSource"/>
 <ResourceParams name="jdbc/MySQLDB">
 <parameter>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </parameter>
 <parameter>
 <name>maxActive</name>
 <value>10</value>
 </parameter>
 <parameter>
 <name>maxIdle</name>
 <value>5</value>
 </parameter>
 <parameter>
 <name>validationQuery</name>
 <value>SELECT 1</value>
 </parameter>
 <parameter>
 <name>testOnBorrow</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>testWhileIdle</name>
 <value>true</value>
 </parameter>
 <parameter>
 <name>timeBetweenEvictionRunsMillis</name>
 <value>10000</value>
 </parameter>
 <parameter>
 <name>minEvictableIdleTimeMillis</name>
 <value>60000</value>
 </parameter>
 <parameter>
 <name>username</name>
 <value>someuser</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>somepass</value>
 </parameter>
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>
 <parameter>
 <name>url</name>

http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html
http://tomcat.apache.org/tomcat-5.5-doc/jndi-datasource-examples-howto.html

70

 <value>jdbc:mysql://localhost:3306/test</value>
 </parameter>
 </ResourceParams>
</Context>

Note that Connector/J 5.1.3 introduced a facility whereby, rather than use a validationQuery value of
SELECT 1, it is possible to use validationQuery with a value set to /* ping */. This sends a ping to
the server which then returns a fake result set. This is a lighter weight solution. It also has the advantage
that if using ReplicationConnection or LoadBalancedConnection type connections, the ping will
be sent across all active connections. The following XML snippet illustrates how to select this option:

<parameter>
 <name>validationQuery</name>
 <value>/* ping */</value>
</parameter>

Note that /* ping */ has to be specified exactly.

In general, follow the installation instructions that come with your version of Tomcat, as the way you
configure datasources in Tomcat changes from time to time, and if you use the wrong syntax in your XML
file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

Note that the auto-loading of drivers having the META-INF/service/java.sql.Driver class in
JDBC 4.0 causes an improper undeployment of the Connector/J driver in Tomcat on Windows. Namely,
the Connector/J jar remains locked. This is an initialization problem that is not related to the driver. The
possible workarounds, if viable, are as follows: use "antiResourceLocking=true" as a Tomcat Context
attribute, or remove the META-INF/ directory.

71

Chapter 12. Using Connector/J with JBoss
These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the .jar file that comes with Connector/J to the lib directory for your server configuration (which
is usually called default). Then, in the same configuration directory, in the subdirectory named deploy,
create a datasource configuration file that ends with -ds.xml, which tells JBoss to deploy this file as a
JDBC Datasource. The file should have the following contents:

<datasources>
 <local-tx-datasource>
 <jndi-name>MySQLDB</jndi-name>
 <connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
 <driver-class>com.mysql.jdbc.Driver</driver-class>
 <user-name>user</user-name>
 <password>pass</password>
 <min-pool-size>5</min-pool-size>
 <max-pool-size>20</max-pool-size>
 <idle-timeout-minutes>5</idle-timeout-minutes>
 <exception-sorter-class-name>
 com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter
 </exception-sorter-class-name>
 <valid-connection-checker-class-name>
 com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker
 </valid-connection-checker-class-name>
 </local-tx-datasource>
</datasources>

72

73

Chapter 13. Using Connector/J with Spring

Table of Contents
Using JdbcTemplate ... 74
Transactional JDBC Access ... 75
Connection Pooling with Spring .. 77

The Spring Framework is a Java-based application framework designed for assisting in application design
by providing a way to configure components. The technique used by Spring is a well known design pattern
called Dependency Injection (see Inversion of Control Containers and the Dependency Injection pattern).
This article will focus on Java-oriented access to MySQL databases with Spring 2.0. For those wondering,
there is a .NET port of Spring appropriately named Spring.NET.

Spring is not only a system for configuring components, but also includes support for aspect oriented
programming (AOP). This is one of the main benefits and the foundation for Spring's resource and
transaction management. Spring also provides utilities for integrating resource management with JDBC
and Hibernate.

For the examples in this section the MySQL world sample database will be used. The first task is to set up
a MySQL data source through Spring. Components within Spring use the “bean” terminology. For example,
to configure a connection to a MySQL server supporting the world sample database, you might use:

<util:map id="dbProps">
 <entry key="db.driver" value="com.mysql.jdbc.Driver"/>
 <entry key="db.jdbcurl" value="jdbc:mysql://localhost/world"/>
 <entry key="db.username" value="myuser"/>
 <entry key="db.password" value="mypass"/>
</util:map>

In the above example, we are assigning values to properties that will be used in the configuration. For the
datasource configuration:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
</bean>

The placeholders are used to provide values for properties of this bean. This means that you can specify
all the properties of the configuration in one place instead of entering the values for each property on
each bean. We do, however, need one more bean to pull this all together. The last bean is responsible for
actually replacing the placeholders with the property values.

<bean
 class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="dbProps"/>
</bean>

Now that we have our MySQL data source configured and ready to go, we write some Java code to access
it. The example below will retrieve three random cities and their corresponding country using the data
source we configured with Spring.

http://www.martinfowler.com/articles/injection.html

Using JdbcTemplate

74

// Create a new application context. this processes the Spring config
ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex1appContext.xml");
// Retrieve the data source from the application context
 DataSource ds = (DataSource) ctx.getBean("dataSource");
// Open a database connection using Spring's DataSourceUtils
Connection c = DataSourceUtils.getConnection(ds);
try {
 // retrieve a list of three random cities
 PreparedStatement ps = c.prepareStatement(
 "select City.Name as 'City', Country.Name as 'Country' " +
 "from City inner join Country on City.CountryCode = Country.Code " +
 "order by rand() limit 3");
 ResultSet rs = ps.executeQuery();
 while(rs.next()) {
 String city = rs.getString("City");
 String country = rs.getString("Country");
 System.out.printf("The city %s is in %s%n", city, country);
 }
} catch (SQLException ex) {
 // something has failed and we print a stack trace to analyse the error
 ex.printStackTrace();
 // ignore failure closing connection
 try { c.close(); } catch (SQLException e) { }
} finally {
 // properly release our connection
 DataSourceUtils.releaseConnection(c, ds);
}

This is very similar to normal JDBC access to MySQL with the main difference being that we are using
DataSourceUtils instead of the DriverManager to create the connection.

While it may seem like a small difference, the implications are somewhat far reaching. Spring manages
this resource in a way similar to a container managed data source in a J2EE application server. When a
connection is opened, it can be subsequently accessed in other parts of the code if it is synchronized with
a transaction. This makes it possible to treat different parts of your application as transactional instead of
passing around a database connection.

Using JdbcTemplate

Spring makes extensive use of the Template method design pattern (see Template Method
Pattern). Our immediate focus will be on the JdbcTemplate and related classes, specifically
NamedParameterJdbcTemplate. The template classes handle obtaining and releasing a connection for
data access when one is needed.

The next example shows how to use NamedParameterJdbcTemplate inside of a DAO (Data Access
Object) class to retrieve a random city given a country code.

public class Ex2JdbcDao {
 /**
 * Data source reference which will be provided by Spring.
 */
 private DataSource dataSource;
 /**
 * Our query to find a random city given a country code. Notice
 * the ":country" parameter toward the end. This is called a
 * named parameter.
 */
 private String queryString = "select Name from City " +
 "where CountryCode = :country order by rand() limit 1";
 /**
 * Retrieve a random city using Spring JDBC access classes.
 */

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern

Transactional JDBC Access

75

 public String getRandomCityByCountryCode(String cntryCode) {
 // A template that permits using queries with named parameters
 NamedParameterJdbcTemplate template =
 new NamedParameterJdbcTemplate(dataSource);
 // A java.util.Map is used to provide values for the parameters
 Map params = new HashMap();
 params.put("country", cntryCode);
 // We query for an Object and specify what class we are expecting
 return (String)template.queryForObject(queryString, params, String.class);
 }
 /**
 * A JavaBean setter-style method to allow Spring to inject the data source.
 * @param dataSource
 */
 public void setDataSource(DataSource dataSource) {
 this.dataSource = dataSource;
 }
}

The focus in the above code is on the getRandomCityByCountryCode() method. We pass a country
code and use the NamedParameterJdbcTemplate to query for a city. The country code is placed in a
Map with the key "country", which is the parameter is named in the SQL query.

To access this code, you need to configure it with Spring by providing a reference to the data source.

<bean id="dao" class="code.Ex2JdbcDao">
 <property name="dataSource" ref="dataSource"/>
</bean>

At this point, we can just grab a reference to the DAO from Spring and call
getRandomCityByCountryCode().

 // Create the application context
 ApplicationContext ctx =
 new ClassPathXmlApplicationContext("ex2appContext.xml");
 // Obtain a reference to our DAO
 Ex2JdbcDao dao = (Ex2JdbcDao) ctx.getBean("dao");
 String countryCode = "USA";
 // Find a few random cities in the US
 for(int i = 0; i < 4; ++i)
 System.out.printf("A random city in %s is %s%n", countryCode,
 dao.getRandomCityByCountryCode(countryCode));

This example shows how to use Spring's JDBC classes to completely abstract away the use of traditional
JDBC classes including Connection and PreparedStatement.

Transactional JDBC Access

You might be wondering how we can add transactions into our code if we do not deal directly with
the JDBC classes. Spring provides a transaction management package that not only replaces JDBC
transaction management, but also enables declarative transaction management (configuration instead of
code).

To use transactional database access, we will need to change the storage engine of the tables in the world
database. The downloaded script explicitly creates MyISAM tables which do not support transactional
semantics. The InnoDB storage engine does support transactions and this is what we will be using. We
can change the storage engine with the following statements.

ALTER TABLE City ENGINE=InnoDB;
ALTER TABLE Country ENGINE=InnoDB;
ALTER TABLE CountryLanguage ENGINE=InnoDB;

Transactional JDBC Access

76

A good programming practice emphasized by Spring is separating interfaces and implementations. What
this means is that we can create a Java interface and only use the operations on this interface without any
internal knowledge of what the actual implementation is. We will let Spring manage the implementation and
with this it will manage the transactions for our implementation.

First you create a simple interface:

public interface Ex3Dao {
 Integer createCity(String name, String countryCode,
 String district, Integer population);
}

This interface contains one method that will create a new city record in the database and return the id of
the new record. Next you need to create an implementation of this interface.

public class Ex3DaoImpl implements Ex3Dao {
 protected DataSource dataSource;
 protected SqlUpdate updateQuery;
 protected SqlFunction idQuery;
 public Integer createCity(String name, String countryCode,
 String district, Integer population) {
 updateQuery.update(new Object[] { name, countryCode,
 district, population });
 return getLastId();
 }
 protected Integer getLastId() {
 return idQuery.run();
 }
}

You can see that we only operate on abstract query objects here and do not deal directly with the JDBC
API. Also, this is the complete implementation. All of our transaction management will be dealt with in the
configuration. To get the configuration started, we need to create the DAO.

<bean id="dao" class="code.Ex3DaoImpl">
 <property name="dataSource" ref="dataSource"/>
 <property name="updateQuery">...</property>
 <property name="idQuery">...</property>
</bean>

Now you need to set up the transaction configuration. The first thing you must do is create transaction
manager to manage the data source and a specification of what transaction properties are required for the
dao methods.

<bean id="transactionManager"
 class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>
<tx:advice id="txAdvice" transaction-manager="transactionManager">
 <tx:attributes>
 <tx:method name="*"/>
 </tx:attributes>
</tx:advice>

The preceding code creates a transaction manager that handles transactions for the data source provided
to it. The txAdvice uses this transaction manager and the attributes specify to create a transaction for all
methods. Finally you need to apply this advice with an AOP pointcut.

<aop:config>
 <aop:pointcut id="daoMethods"

Connection Pooling with Spring

77

 expression="execution(* code.Ex3Dao.*(..))"/>
 <aop:advisor advice-ref="txAdvice" pointcut-ref="daoMethods"/>
</aop:config>

This basically says that all methods called on the Ex3Dao interface will be wrapped in a transaction. To
make use of this, you only have to retrieve the dao from the application context and call a method on the
dao instance.

Ex3Dao dao = (Ex3Dao) ctx.getBean("dao");
Integer id = dao.createCity(name, countryCode, district, pop);

We can verify from this that there is no transaction management happening in our Java code and it is all
configured with Spring. This is a very powerful notion and regarded as one of the most beneficial features
of Spring.

Connection Pooling with Spring

In many situations, such as web applications, there will be a large number of small database transactions.
When this is the case, it usually makes sense to create a pool of database connections available for web
requests as needed. Although MySQL does not spawn an extra process when a connection is made,
there is still a small amount of overhead to create and set up the connection. Pooling of connections also
alleviates problems such as collecting large amounts of sockets in the TIME_WAIT state.

Setting up pooling of MySQL connections with Spring is as simple as changing the data source
configuration in the application context. There are a number of configurations that we can use. The
first example is based on the Jakarta Commons DBCP library. The example below replaces the source
configuration that was based on DriverManagerDataSource with DBCP's BasicDataSource.

<bean id="dataSource" destroy-method="close"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="${db.driver}"/>
 <property name="url" value="${db.jdbcurl}"/>
 <property name="username" value="${db.username}"/>
 <property name="password" value="${db.password}"/>
 <property name="initialSize" value="3"/>
</bean>

The configuration of the two solutions is very similar. The difference is that DBCP will pool connections
to the database instead of creating a new connection every time one is requested. We have also set a
parameter here called initialSize. This tells DBCP that we want three connections in the pool when it
is created.

Another way to configure connection pooling is to configure a data source in our J2EE application server.
Using JBoss as an example, you can set up the MySQL connection pool by creating a file called mysql-
local-ds.xml and placing it in the server/default/deploy directory in JBoss. Once we have this setup, we
can use JNDI to look it up. With Spring, this lookup is very simple. The data source configuration looks like
this.

<jee:jndi-lookup id="dataSource" jndi-name="java:MySQL_DS"/>

http://jakarta.apache.org/commons/dbcp/

78

79

Chapter 14. Using Connector/J with GlassFish

Table of Contents
A Simple JSP Application with Glassfish, Connector/J and MySQL ... 80
A Simple Servlet with Glassfish, Connector/J and MySQL .. 82

This section explains how to use MySQL Connector/J with Glassfish ™ Server Open Source Edition 3.0.1.
Glassfish can be downloaded from the Glassfish website.

Once Glassfish is installed you will need to make sure it can access MySQL Connector/J. To do this copy
the MySQL Connector/J JAR file to the directory GLASSFISH_INSTALL/glassfish/lib. For example,
copy mysql-connector-java-5.1.12-bin.jar to C:\glassfishv3\glassfish\lib. Restart the
Glassfish Application Server.

You are now ready to create JDBC Connection Pools and JDBC Resources.

Creating a Connection Pool

1. In the Glassfish Administration Console, using the navigation tree navigate to Resources, JDBC,
Connection Pools.

2. In the JDBC Connection Pools frame click New. You will enter a two step wizard.

3. In the Name field under General Settings enter the name for the connection pool, for example enter
MySQLConnPool.

4. In the Resource Type field, select javax.sql.DataSource from the drop-down listbox.

5. In the Database Vendor field, select MySQL from the drop-down listbox. Click Next to go to the next
page of the wizard.

6. You can accept the default settings for General Settings, Pool Settings and Transactions for this
example. Scroll down to Additional Properties.

7. In Additional Properties you will need to ensure the following properties are set:

• ServerName - The server to connect to. For local testing this will be localhost.

• User - The user name with which to connect to MySQL.

• Password - The corresponding password for the user.

• DatabaseName - The database to connect to, for example the sample MySQL database World.

8. Click Finish to exit the wizard. You will be taken to the JDBC Connection Pools page where all current
connection pools, including the one you just created, will be displayed.

9. In the JDBC Connection Pools frame click on the connection pool you just created. Here you can
review and edit information about the connection pool.

10. To test your connection pool click the Ping button at the top of the frame. A message will be displayed
confirming correct operation or otherwise. If an error message is received recheck the previous steps,
and ensure that MySQL Connector/J has been correctly copied into the previously specified location.

Now that you have created a connection pool you will also need to create a JDBC Resource (data source)
for use by your application.

https://glassfish.dev.java.net/public/downloadsindex.html#top

A Simple JSP Application with Glassfish, Connector/J and MySQL

80

Creating a JDBC Resource

Your Java application will usually reference a data source object to establish a connection with the
database. This needs to be created first using the following procedure.

• Using the navigation tree in the Glassfish Administration Console, navigate to Resources, JDBC, JDBC
Resources. A list of resources will be displayed in the JDBC Resources frame.

• Click New. The New JDBC Resource frame will be displayed.

• In the JNDI Name field, enter the JNDI name that will be used to access this resource, for example enter
jdbc/MySQLDataSource.

• In the Pool Name field, select a connection pool you want this resource to use from the drop-down
listbox.

• Optionally, you can enter a description into the Description field.

• Additional properties can be added if required.

• Click OK to create the new JDBC resource. The JDBC Resources frame will list all available JDBC
Resources.

A Simple JSP Application with Glassfish, Connector/J and MySQL
This section shows how to deploy a simple JSP application on Glassfish, that connects to a MySQL
database.

This example assumes you have already set up a suitable Connection Pool and JDBC Resource, as
explained in the preceding sections. It is also assumed you have a sample database installed, such as
world.

The main application code, index.jsp is presented here:

<%@ page import="java.sql.*, javax.sql.*, java.io.*, javax.naming.*" %>
<html>
<head><title>Hello world from JSP</title></head>
<body>
<%
 InitialContext ctx;
 DataSource ds;
 Connection conn;
 Statement stmt;
 ResultSet rs;
 try {
 ctx = new InitialContext();
 ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
 //ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");
 conn = ds.getConnection();
 stmt = conn.createStatement();
 rs = stmt.executeQuery("SELECT * FROM Country");
 while(rs.next()) {
%>
 <h3>Name: <%= rs.getString("Name") %></h3>
 <h3>Population: <%= rs.getString("Population") %></h3>
<%
 }
 }
 catch (SQLException se) {
%>
 <%= se.getMessage() %>
<%

A Simple JSP Application with Glassfish, Connector/J and MySQL

81

 }
 catch (NamingException ne) {
%>
 <%= ne.getMessage() %>
<%
 }
%>
</body>
</html>

In addition two XML files are required: web.xml, and sun-web.xml. There may be other files present,
such as classes and images. These files are organized into the directory structure as follows:

index.jsp
WEB-INF
 |
 - web.xml
 - sun-web.xml

The code for web.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">
 <display-name>HelloWebApp</display-name>
 <distributable/>
 <resource-ref>
 <res-ref-name>jdbc/MySQLDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
 </resource-ref>
</web-app>

The code for sun-web.xml is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sun-web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Application Server 8.1 Servlet 2.4//EN" "http://www.sun.com/software/appserver/dtds/sun-web-app_2_4-1.dtd">
<sun-web-app>
 <context-root>HelloWebApp</context-root>
 <resource-ref>
 <res-ref-name>jdbc/MySQLDataSource</res-ref-name>
 <jndi-name>jdbc/MySQLDataSource</jndi-name>
 </resource-ref>
</sun-web-app>

These XML files illustrate a very important aspect of running JDBC applications on Glassfish. On Glassfish
it is important to map the string specified for a JDBC resource to its JNDI name, as set up in the Glassfish
administration console. In this example, the JNDI name for the JDBC resource, as specified in the
Glassfish Administration console when creating the JDBC Resource, was jdbc/MySQLDataSource.
This must be mapped to the name given in the application. In this example the name specified in the
application, jdbc/MySQLDataSource, and the JNDI name, happen to be the same, but this does not
necessarily have to be the case. Note that the XML element <res-ref-name> is used to specify the name as
used in the application source code, and this is mapped to the JNDI name specified using the <jndi-name>
element, in the file sun-web.xml. The resource also has to be created in the web.xml file, although the
mapping of the resource to a JNDI name takes place in the sun-web.xml file.

If you do not have this mapping set up correctly in the XML files you will not be able to lookup the data
source using a JNDI lookup string such as:

ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");

You will still be able to access the data source directly using:

A Simple Servlet with Glassfish, Connector/J and MySQL

82

ds = (DataSource) ctx.lookup("jdbc/MySQLDataSource");

With the source files in place, in the correct directory structure, you are ready to deploy the application:

1. In the navigation tree, navigate to Applications - the Applications frame will be displayed. Click
Deploy.

2. You can now deploy an application packaged into a single WAR file from a remote client, or you can
choose a packaged file or directory that is locally accessible to the server. If you are simply testing an
application locally you can simply point Glassfish at the directory that contains your application, without
needing to package the application into a WAR file.

3. Now select the application type from the Type drop-down listbox, which in this example is Web
application.

4. Click OK.

Now, when you navigate to the Applications frame, you will have the option to Launch, Redeploy, or
Restart your application. You can test your application by clicking Launch. The application will connection
to the MySQL database and display the Name and Population of countries in the Country table.

A Simple Servlet with Glassfish, Connector/J and MySQL
This section describes a simple servlet that can be used in the Glassfish environment to access a MySQL
database. As with the previous section, this example assumes the sample database world is installed.

The project is set up with the following directory structure:

index.html
WEB-INF
 |
 - web.xml
 - sun-web.xml
 - classes
 |
 - HelloWebServlet.java
 - HelloWebServlet.class

The code for the servlet, located in HelloWebServlet.java, is as follows:

import javax.servlet.http.*;
import javax.servlet.*;
import java.io.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
public class HelloWebServlet extends HttpServlet {
 InitialContext ctx = null;
 DataSource ds = null;
 Connection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 String sql = "SELECT Name, Population FROM Country WHERE Name=?";
 public void init () throws ServletException {
 try {
 ctx = new InitialContext();
 ds = (DataSource) ctx.lookup("java:comp/env/jdbc/MySQLDataSource");
 conn = ds.getConnection();
 ps = conn.prepareStatement(sql);
 }
 catch (SQLException se) {

A Simple Servlet with Glassfish, Connector/J and MySQL

83

 System.out.println("SQLException: "+se.getMessage());
 }
 catch (NamingException ne) {
 System.out.println("NamingException: "+ne.getMessage());
 }
 }
 public void destroy () {
 try {
 if (rs != null)
 rs.close();
 if (ps != null)
 ps.close();
 if (conn != null)
 conn.close();
 if (ctx != null)
 ctx.close();
 }
 catch (SQLException se) {
 System.out.println("SQLException: "+se.getMessage());
 }
 catch (NamingException ne) {
 System.out.println("NamingException: "+ne.getMessage());
 }
 }
 public void doPost(HttpServletRequest req, HttpServletResponse resp){
 try {
 String country_name = req.getParameter("country_name");
 resp.setContentType("text/html");
 PrintWriter writer = resp.getWriter();
 writer.println("<html><body>");
 writer.println("<p>Country: "+country_name+"</p>");
 ps.setString(1, country_name);
 rs = ps.executeQuery();
 if (!rs.next()){
 writer.println("<p>Country does not exist!</p>");
 }
 else {
 rs.beforeFirst();
 while(rs.next()) {
 writer.println("<p>Name: "+rs.getString("Name")+"</p>");
 writer.println("<p>Population: "+rs.getString("Population")+"</p>");
 }
 }
 writer.println("</body></html>");
 writer.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 public void doGet(HttpServletRequest req, HttpServletResponse resp){
 try {
 resp.setContentType("text/html");
 PrintWriter writer = resp.getWriter();
 writer.println("<html><body>");
 writer.println("<p>Hello from servlet doGet()</p>");
 writer.println("</body></html>");
 writer.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

In the preceding code a basic doGet() method is implemented, but is not used in the example. The
code to establish the connection with the database is as shown in the previous example, A Simple JSP

A Simple Servlet with Glassfish, Connector/J and MySQL

84

Application with Glassfish, Connector/J and MySQL, and is most conveniently located in the servlet
init() method. The corresponding freeing of resources is located in the destroy method. The main
functionality of the servlet is located in the doPost() method. If the user enters nto the input form a
country name that can be located in the database, the population of the country is returned. The code is
invoked using a POST action associated with the input form. The form is defined in the file index.html:

<html>
 <head><title>HelloWebServlet</title></head>

 <body>
 <h1>HelloWebServlet</h1>

 <p>Please enter country name:</p>

 <form action="HelloWebServlet" method="POST">
 <input type="text" name="country_name" length="50" />
 <input type="submit" value="Submit" />
 </form>

 </body>
</html>

The XML files web.xml and sun-web.xml are as for the example in the preceding section, A Simple JSP
Application with Glassfish, Connector/J and MySQL, no additional changes are required.

Whe compiling the Java source code, you will need to specify the path to the file javaee.jar. On
Windows, this can be done as follows:

shell> javac -classpath c:\glassfishv3\glassfish\lib\javaee.jar HelloWebServlet.java

Once the code is correctly located within its directory structure, and compiled, the application can be
deployed in Glassfish. This is done in exactly the same way as described in the preceding section, A
Simple JSP Application with Glassfish, Connector/J and MySQL.

Once deployed the application can be launched from within the Glassfish Administration Console. Enter a
country name such as “England”, and the application will return “Country does not exist!”. Enter “France”,
and the application will return a population of 59225700.

85

Chapter 15. Troubleshooting Connector/J Applications
This section explains the symptoms and resolutions for the most commonly encountered issues with
applications using MySQL Connector/J.

Questions

• 15.1: [86] When I try to connect to the database with MySQL Connector/J, I get the following
exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

• 15.2: [86] My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 15.3: [86] I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 15.4: [87] I have a servlet/application that works fine for a day, and then stops working overnight

• 15.5: [89] I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result
set is not updatable.

• 15.6: [89] I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

• 15.7: [89] I am trying to connect to my MySQL server within my application, but I get the following
error and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

• 15.8: [90] My application is deployed through JBoss and I am using transactions to handle the
statements on the MySQL database. Under heavy loads I am getting a error and stack trace, but these
only occur after a fixed period of heavy activity.

• 15.9: [90] When using gcj an java.io.CharConversionException is raised when working with
certain character sequences.

• 15.10: [90] Updating a table that contains a primary key that is either FLOAT or compound primary
key that uses FLOAT fails to update the table and raises an exception.

http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html

86

• 15.11: [90] You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size
you want to insert using JDBC is safely below the max_allowed_packet size.

• 15.12: [90] What should you do if you receive error messages similar to the following:
“Communications link failure – Last packet sent to the server was X ms ago”?

• 15.13: [91] Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure, instead of throwing an Exception, even though I use the autoReconnect
connection string option?

• 15.14: [92] How can I use 3-byte UTF8 with Connector/J?

• 15.15: [92] How can I use 4-byte UTF8, utf8mb4 with Connector/J?

• 15.16: [92] Using useServerPrepStmts=false and certain character encodings can lead to
corruption when inserting BLOBs. How can this be avoided?

Questions and Answers

15.1: When I try to connect to the database with MySQL Connector/J, I get the following exception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What is going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix
Domain Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will use its grant tables to determine whether the connection is permitted.

You must add the necessary security credentials to the MySQL server for this to happen, using the GRANT
statement to your MySQL Server. See GRANT Syntax, for more information.

Note

Testing your connectivity with the mysql command-line client will not work unless
you add the "host" flag, and use something other than localhost for the host. The
mysql command-line client will use Unix domain sockets if you use the special host
name localhost. If you are testing connectivity to localhost, use 127.0.0.1
as the host name instead.

Warning

Changing privileges and permissions improperly in MySQL can potentially cause
your server installation to not have optimal security properties.

15.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Chapter 3, Connector/J Installation.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the
location of the Connector/J driver.

15.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception similar
to:

http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/grant.html
http://dev.mysql.com/doc/refman/5.5/en/grant.html

87

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?
(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "skip-networking" option
set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served
the .class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets from
your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "skip-networking" option set (the Debian Linux package of MySQL
server does this for example), you need to comment it out in the file /etc/mysql/my.cnf or /etc/my.cnf. Of
course your my.cnf file might also exist in the data directory of your MySQL server, or anywhere else
(depending on how MySQL was compiled for your system). Binaries created by us always look in /etc/
my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you will need to have the firewall
configured to allow TCP/IP connections from the host where your Java code is running to the MySQL
server on the port that MySQL is listening to (by default, 3306).

15.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the "autoReconnect" parameter (see Driver/Datasource Class Names,
URL Syntax and Configuration Properties for Connector/J).

Also, catch SQLExceptions in your application and deal with them, rather than propagating them all the
way until your application exits. This is just good programming practice. MySQL Connector/J will set the
SQLState (see java.sql.SQLException.getSQLState() in your API docs) to "08S01" when it
encounters network-connectivity issues during the processing of a query. Attempt to reconnect to MySQL
at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 15.1. Connector/J: Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
 Connection conn = null;
 Statement stmt = null;
 ResultSet rs = null;
 //
 // How many times do you want to retry the transaction
 // (or at least _getting_ a connection)?
 //
 int retryCount = 5;
 boolean transactionCompleted = false;
 do {
 try {
 conn = getConnection(); // assume getting this from a
 // javax.sql.DataSource, or the
 // java.sql.DriverManager
 conn.setAutoCommit(false);
 //
 // Okay, at this point, the 'retry-ability' of the
 // transaction really depends on your application logic,

88

 // whether or not you're using autocommit (in this case
 // not), and whether you're using transactional storage
 // engines
 //
 // For this example, we'll assume that it's _not_ safe
 // to retry the entire transaction, so we set retry
 // count to 0 at this point
 //
 // If you were using exclusively transaction-safe tables,
 // or your application could recover from a connection going
 // bad in the middle of an operation, then you would not
 // touch 'retryCount' here, and just let the loop repeat
 // until retryCount == 0.
 //
 retryCount = 0;
 stmt = conn.createStatement();
 String query = "SELECT foo FROM bar ORDER BY baz";
 rs = stmt.executeQuery(query);
 while (rs.next()) {
 }
 rs.close();
 rs = null;
 stmt.close();
 stmt = null;
 conn.commit();
 conn.close();
 conn = null;
 transactionCompleted = true;
 } catch (SQLException sqlEx) {
 //
 // The two SQL states that are 'retry-able' are 08S01
 // for a communications error, and 40001 for deadlock.
 //
 // Only retry if the error was due to a stale connection,
 // communications problem or deadlock
 //
 String sqlState = sqlEx.getSQLState();
 if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
 retryCount -= 1;
 } else {
 retryCount = 0;
 }
 } finally {
 if (rs != null) {
 try {
 rs.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this...
 }
 }
 if (stmt != null) {
 try {
 stmt.close();
 } catch (SQLException sqlEx) {
 // You'd probably want to log this as well...
 }
 }
 if (conn != null) {
 try {
 //
 // If we got here, and conn is not null, the
 // transaction should be rolled back, as not
 // all work has been done
 try {
 conn.rollback();
 } finally {
 conn.close();

89

 }
 } catch (SQLException sqlEx) {
 //
 // If we got an exception here, something
 // pretty serious is going on, so we better
 // pass it up the stack, rather than just
 // logging it...
 throw sqlEx;
 }
 }
 }
 } while (!transactionCompleted && (retryCount > 0));
}

Note

Use of the autoReconnect option is not recommended because there is no safe
method of reconnecting to the MySQL server without risking some corruption of
the connection state or database state information. Instead, use a connection
pool, which will enable your application to connect to the MySQL server using an
available connection from the pool. The autoReconnect facility is deprecated, and
may be removed in a future release.

15.5: I'm trying to use JDBC 2.0 updatable result sets, and I get an exception saying my result set
is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that have
come from queries on tables that have at least one primary key, the query must select every primary key
and the query can only span one table (that is, no joins). This is outlined in the JDBC specification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is
unable to guarantee that it can identify the correct rows within the result set to be updated without having
a unique reference to each row. There is no requirement to have a unique field on a table if you are using
UPDATE or DELETE statements on a table where you can individually specify the criteria to be matched
using a WHERE clause.

15.6: I cannot connect to the MySQL server using Connector/J, and I'm sure the connection
parameters are correct.

Make sure that the skip-networking option has not been enabled on your server. Connector/J must be
able to communicate with your server over TCP/IP, named sockets are not supported. Also ensure that you
are not filtering connections through a Firewall or other network security system. For more information, see
Can't connect to [local] MySQL server.

15.7: I am trying to connect to my MySQL server within my application, but I get the following error
and stack trace:

java.net.SocketException
MESSAGE: Software caused connection abort: recv failed
STACKTRACE:
java.net.SocketException: Software caused connection abort: recv failed
at java.net.SocketInputStream.socketRead0(Native Method)
at java.net.SocketInputStream.read(Unknown Source)
at com.mysql.jdbc.MysqlIO.readFully(MysqlIO.java:1392)
at com.mysql.jdbc.MysqlIO.readPacket(MysqlIO.java:1414)
at com.mysql.jdbc.MysqlIO.doHandshake(MysqlIO.java:625)
at com.mysql.jdbc.Connection.createNewIO(Connection.java:1926)
at com.mysql.jdbc.Connection.<init>(Connection.java:452)
at com.mysql.jdbc.NonRegisteringDriver.connect(NonRegisteringDriver.java:411)

http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_skip-networking
http://dev.mysql.com/doc/refman/5.5/en/can-not-connect-to-server.html

90

The error probably indicates that you are using a older version of the Connector/J JDBC driver (2.0.14 or
3.0.x) and you are trying to connect to a MySQL server with version 4.1x or newer. The older drivers are
not compatible with 4.1 or newer of MySQL as they do not support the newer authentication mechanisms.

It is likely that the older version of the Connector/J driver exists within your application directory or your
CLASSPATH includes the older Connector/J package.

15.8: My application is deployed through JBoss and I am using transactions to handle the
statements on the MySQL database. Under heavy loads I am getting a error and stack trace, but
these only occur after a fixed period of heavy activity.

This is a JBoss, not Connector/J, issue and is connected to the use of transactions. Under heavy loads the
time taken for transactions to complete can increase, and the error is caused because you have exceeded
the predefined timeout.

You can increase the timeout value by setting the TransactionTimeout attribute to the
TransactionManagerService within the /conf/jboss-service.xml file (pre-4.0.3) or /deploy/
jta-service.xml for JBoss 4.0.3 or later. See TransactionTimeoute within the JBoss wiki for more
information.

15.9: When using gcj an java.io.CharConversionException is raised when working with
certain character sequences.

This is a known issue with gcj which raises an exception when it reaches an unknown character or one
it cannot convert. Add useJvmCharsetConverters=true to your connection string to force character
conversion outside of the gcj libraries, or try a different JDK.

15.10: Updating a table that contains a primary key that is either FLOAT or compound primary key
that uses FLOAT fails to update the table and raises an exception.

Connector/J adds conditions to the WHERE clause during an UPDATE to check the old values of the primary
key. If there is no match then Connector/J considers this a failure condition and raises an exception.

The problem is that rounding differences between supplied values and the values stored in the database
may mean that the values never match, and hence the update fails. The issue will affect all queries, not
just those from Connector/J.

To prevent this issue, use a primary key that does not use FLOAT. If you have to use a floating point
column in your primary key use DOUBLE or DECIMAL types in place of FLOAT.

15.11: You get an ER_NET_PACKET_TOO_LARGE exception, even though the binary blob size you
want to insert using JDBC is safely below the max_allowed_packet size.

This is because the hexEscapeBlock() method in
com.mysql.jdbc.PreparedStatement.streamToBytes() may almost double the size of your data.

15.12: What should you do if you receive error messages similar to the following:
“Communications link failure – Last packet sent to the server was X ms ago”?

Generally speaking, this error suggests that the network connection has been closed. There can be several
root causes:

• Firewalls or routers may clamp down on idle connections (the MySQL client/server protocol does not
ping).

• The MySQL Server may be closing idle connections which exceed the wait_timeout or
interactive_timeout threshold.

http://wiki.jboss.org/wiki/Wiki.jsp?page=TransactionTimeout
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/error-messages-server.html#error_er_net_packet_too_large
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

91

To help troubleshoot these issues, the following tips can be used. If a recent (5.1.13+) version of
Connector/J is used, you will see an improved level of information compared to earlier versions. Older
versions simply display the last time a packet was sent to the server, which is frequently 0 ms ago. This
is of limited use, as it may be that a packet was just sent, while a packet from the server has not been
received for several hours. Knowing the period of time since Connector/J last received a packet from the
server is useful information, so if this is not displayed in your exception message, it is recommended that
you update Connector/J.

Further, if the time a packet was last sent/received exceeds the wait_timeout or
interactive_timeout threshold, this is noted in the exception message.

Although network connections can be volatile, the following can be helpful in avoiding problems:

• Ensure connections are valid when used from the connection pool. Use a query that starts with /* ping
*/ to execute a lightweight ping instead of full query. Note, the syntax of the ping needs to be exactly as
specified here.

• Minimize the duration a connection object is left idle while other application logic is executed.

• Explicitly validate the connection before using it if the connection has been left idle for an extended
period of time.

• Ensure that wait_timeout and interactive_timeout are set sufficiently high.

• Ensure that tcpKeepalive is enabled.

• Ensure that any configurable firewall or router timeout settings allow for the maximum expected
connection idle time.

Note

Do not expect to be able to reuse a connection without problems, if it has being
lying idle for a period. If a connection is to be reused after being idle for any length
of time, ensure that you explicitly test it before reusing it.

15.13: Why does Connector/J not reconnect to MySQL and re-issue the statement after a
communication failure, instead of throwing an Exception, even though I use the autoReconnect
connection string option?

There are several reasons for this. The first is transactional integrity. The MySQL Reference Manual states
that “there is no safe method of reconnecting to the MySQL server without risking some corruption of the
connection state or database state information”. Consider the following series of statements for example:

conn.createStatement().execute(
 "UPDATE checking_account SET balance = balance - 1000.00 WHERE customer='Smith'");
conn.createStatement().execute(
 "UPDATE savings_account SET balance = balance + 1000.00 WHERE customer='Smith'");
conn.commit();

Consider the case where the connection to the server fails after the UPDATE to checking_account.
If no exception is thrown, and the application never learns about the problem, it will continue executing.
However, the server did not commit the first transaction in this case, so that will get rolled back. But
execution continues with the next transaction, and increases the savings_account balance by 1000.
The application did not receive an exception, so it continued regardless, eventually committing the second
transaction, as the commit only applies to the changes made in the new connection. Rather than a transfer
taking place, a deposit was made in this example.

92

Note that running with auto-commit enabled does not solve this problem. When Connector/J encounters
a communication problem, there is no means to determine whether the server processed the currently
executing statement or not. The following theoretical states are equally possible:

• The server never received the statement, and therefore no related processing occurred on the server.

• The server received the statement, executed it in full, but the response was not received by the client.

If you are running with auto-commit enabled, it is not possible to guarantee the state of data on the
server when a communication exception is encountered. The statement may have reached the server, or
it may not. All you know is that communication failed at some point, before the client received confirmation
(or data) from the server. This does not only affect auto-commit statements though. If the communication
problem occurred during Connection.commit(), the question arises of whether the transaction was
committed on the server before the communication failed, or whether the server received the commit
request at all.

The second reason for the generation of exceptions is that transaction-scoped contextual data may be
vulnerable, for example:

• Temporary tables.

• User-defined variables.

• Server-side prepared statements.

These items are lost when a connection fails, and if the connection silently reconnects without generating
an exception, this could be detrimental to the correct execution of your application.

In summary, communication errors generate conditions that may well be unsafe for Connector/J to simply
ignore by silently reconnecting. It is necessary for the application to be notified. It is then for the application
developer to decide how to proceed in the event of connection errors and failures.

15.14: How can I use 3-byte UTF8 with Connector/J?

To use 3-byte UTF8 with Connector/J set characterEncoding=utf8 and set useUnicode=true in the
connection string.

15.15: How can I use 4-byte UTF8, utf8mb4 with Connector/J?

To use 4-byte UTF8 with Connector/J configure the MySQL server with
character_set_server=utf8mb4. Connector/J will then use that setting as long as
characterEncoding has not been set in the connection string. This is equivalent to autodetection of the
character set.

15.16: Using useServerPrepStmts=false and certain character encodings can lead to corruption
when inserting BLOBs. How can this be avoided?

When using certain character encodings, such as SJIS, CP932, and BIG5, it is possible that BLOB data
contains characters that can be interpreted as control characters, for example, backslash, '\'. This can lead
to corrupted data when inserting BLOBs into the database. There are two things that need to be done to
avoid this:

1. Set the connection string option useServerPrepStmts to true.

2. Set SQL_MODE to NO_BACKSLASH_ESCAPES.

93

Chapter 16. Connector/J Support

Table of Contents
Connector/J Community Support .. 93
How to Report Connector/J Bugs or Problems .. 93
Connector/J Change History ... 94

Connector/J Community Support

Oracle provides assistance to the user community by means of its mailing lists. For Connector/J related
issues, you can get help from experienced users by using the MySQL and Java mailing list. Archives and
subscription information is available online at http://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit http://
lists.mysql.com/. See MySQL Mailing Lists.

Community support from experienced users is also available through the JDBC Forum. You may also
find help from other users in the other MySQL Forums, located at http://forums.mysql.com. See MySQL
Community Support at the MySQL Forums.

How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you will
also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to <security@mysql.com>.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release.

This section will help you write your report correctly so that you do not waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less
troublesome to write a couple more lines in your report than to wait longer for the answer if we must ask
you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the JVM
version, and the platform type and version number that MySQL itself is installed on).

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://dev.mysql.com/doc/refman/5.5/en/mailing-lists.html
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://dev.mysql.com/doc/refman/5.5/en/forums.html
http://dev.mysql.com/doc/refman/5.5/en/forums.html
http://bugs.mysql.com/
http://bugs.mysql.com/

Connector/J Change History

94

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested wasn't
implemented in that MySQL version, or that a bug described in a report has already been fixed in newer
MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, create a repeatable, standalone testcase that doesn't involve any third-party classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class, create
your own class that inherits from com.mysql.jdbc.util.BaseBugReport and override the methods
setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed to
demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created
in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, use one of the variants of the getConnection() method to create a
JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a connection
already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (that is, there
is more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the given URL
and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method getUrl() as
well.

Use the assertTrue(boolean expression) and assertTrue(String failureMessage,
boolean expression) methods to create conditions that must be met in your testcase demonstrating
the behavior you are expecting (vs. the behavior you are observing, which is why you are most likely filing
a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run method:

public static void main(String[] args) throws Exception {
 new MyBugReport().run();
 }

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

Connector/J Change History
The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See
Appendix A, MySQL Connector/J Change History.

http://bugs.mysql.com/

95

Appendix A. MySQL Connector/J Change History

Table of Contents
Changes in MySQL Connector/J 5.1.x .. 97

Changes in MySQL Connector/J 5.1.22 (Not yet released) ... 97
Changes in MySQL Connector/J 5.1.21 (2012-07-03) .. 97
Changes in MySQL Connector/J 5.1.20 (2012-05-01) .. 98
Changes in MySQL Connector/J 5.1.19 (April 2012) .. 98
Changes in MySQL Connector/J 5.1.18 (2011-10-04) .. 99
Changes in MySQL Connector/J 5.1.17 (2011-07-07) ... 100
Changes in MySQL Connector/J 5.1.16 (Not released) ... 100
Changes in MySQL Connector/J 5.1.15 (2011-02-09) ... 101
Changes in MySQL Connector/J 5.1.14 (6th December 2010) .. 101
Changes in MySQL Connector/J 5.1.13 (2010-06-24) ... 101
Changes in MySQL Connector/J 5.1.12 (2010-02-18) ... 103
Changes in MySQL Connector/J 5.1.11 (2010-01-21) ... 103
Changes in MySQL Connector/J 5.1.10 (2009-09-23) ... 104
Changes in MySQL Connector/J 5.1.9 (2009-09-21) .. 104
Changes in MySQL Connector/J 5.1.8 (2009-07-16) .. 106
Changes in MySQL Connector/J 5.1.7 (2008-10-21) .. 111
Changes in MySQL Connector/J 5.1.6 (2008-03-07) .. 112
Changes in MySQL Connector/J 5.1.5 (2007-10-09) .. 115
Changes in MySQL Connector/J 5.1.4 (Not Released) ... 115
Changes in MySQL Connector/J 5.1.3 (2007-09-10) .. 115
Changes in MySQL Connector/J 5.1.2 (2007-06-29) .. 118
Changes in MySQL Connector/J 5.1.1 (2007-06-22) .. 118
Changes in MySQL Connector/J 5.1.0 (2007-04-11) .. 119

Changes in MySQL Connector/J 5.0.x .. 121
Changes in MySQL Connector/J 5.0.8 (2007-10-09) .. 121
Changes in MySQL Connector/J 5.0.7 (2007-07-20) .. 122
Changes in MySQL Connector/J 5.0.6 (2007-05-15) .. 124
Changes in MySQL Connector/J 5.0.5 (2007-03-02) .. 127
Changes in MySQL Connector/J 5.0.4 (2006-10-20) .. 130
Changes in MySQL Connector/J 5.0.3 (2006-07-26, beta) .. 130
Changes in MySQL Connector/J 5.0.2 (2006-07-11) .. 131
Changes in MySQL Connector/J 5.0.1 (Not Released) ... 131
Changes in MySQL Connector/J 5.0.0 (2005-12-22) .. 131

Changes in MySQL Connector/J 3.1.x .. 133
Changes in MySQL Connector/J 3.1.15 (Not yet released) ... 133
Changes in MySQL Connector/J 3.1.14 (2006-10-19) ... 133
Changes in MySQL Connector/J 3.1.13 (2006-05-26) ... 134
Changes in MySQL Connector/J 3.1.12 (2005-11-30) ... 136
Changes in MySQL Connector/J 3.1.11 (2005-10-07) ... 138
Changes in MySQL Connector/J 3.1.10 (2005-06-23) ... 141
Changes in MySQL Connector/J 3.1.9 (2005-06-22) .. 142
Changes in MySQL Connector/J 3.1.8 (2005-04-14) .. 144
Changes in MySQL Connector/J 3.1.7 (2005-02-18) .. 146
Changes in MySQL Connector/J 3.1.6 (2004-12-23) .. 147
Changes in MySQL Connector/J 3.1.5 (2004-12-02) .. 147
Changes in MySQL Connector/J 3.1.4 (2004-09-04) .. 149

96

Changes in MySQL Connector/J 3.1.3 (2004-07-07) .. 150
Changes in MySQL Connector/J 3.1.2 (2004-06-09) .. 150
Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha) .. 151
Changes in MySQL Connector/J 3.1.0 (2003-02-18, alpha) .. 153

Changes in MySQL Connector/J 3.0.x .. 154
Changes in MySQL Connector/J 3.0.17 (2005-06-23) ... 154
Changes in MySQL Connector/J 3.0.16 (2004-11-15) ... 155
Changes in MySQL Connector/J 3.0.15 (2004-09-04) ... 155
Changes in MySQL Connector/J 3.0.14 (2004-05-28) ... 156
Changes in MySQL Connector/J 3.0.13 (2004-05-27) ... 156
Changes in MySQL Connector/J 3.0.12 (2004-05-18) ... 157
Changes in MySQL Connector/J 3.0.11 (2004-02-19) ... 158
Changes in MySQL Connector/J 3.0.10 (2004-01-13) ... 158
Changes in MySQL Connector/J 3.0.9 (2003-10-07) .. 160
Changes in MySQL Connector/J 3.0.8 (2003-05-23) .. 161
Changes in MySQL Connector/J 3.0.7 (2003-04-08) .. 162
Changes in MySQL Connector/J 3.0.6 (2003-02-18) .. 162
Changes in MySQL Connector/J 3.0.5 (2003-01-22) .. 163
Changes in MySQL Connector/J 3.0.4 (2003-01-06) .. 163
Changes in MySQL Connector/J 3.0.3 (2002-12-17) .. 164
Changes in MySQL Connector/J 3.0.2 (2002-11-08) .. 165
Changes in MySQL Connector/J 3.0.1 (2002-09-21) .. 166
Changes in MySQL Connector/J 3.0.0 (2002-07-31) .. 166

Changes in MySQL Connector/J 2.0.x .. 167
Changes in MySQL Connector/J 2.0.14 (2002-05-16) ... 167
Changes in MySQL Connector/J 2.0.13 (2002-04-24) ... 168
Changes in MySQL Connector/J 2.0.12 (2002-04-07) ... 168
Changes in MySQL Connector/J 2.0.11 (2002-01-27) ... 169
Changes in MySQL Connector/J 2.0.10 (2002-01-24) ... 169
Changes in MySQL Connector/J 2.0.9 (2002-01-13) .. 169
Changes in MySQL Connector/J 2.0.8 (2001-11-25) .. 170
Changes in MySQL Connector/J 2.0.7 (2001-10-24) .. 170
Changes in MySQL Connector/J 2.0.6 (2001-06-16) .. 170
Changes in MySQL Connector/J 2.0.5 (2001-06-13) .. 171
Changes in MySQL Connector/J 2.0.3 (2000-12-03) .. 171
Changes in MySQL Connector/J 2.0.1 (2000-04-06) .. 171
Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000) .. 172
Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000) .. 172
Changes in MySQL Connector/J 2.0.0pre (17 August 1999) ... 172

Changes in MySQL Connector/J 1.2.x and lower ... 172
Changes in MySQL Connector/J 1.2b (04 July 1999) ... 172
Changes in MySQL Connector/J 1.2a (14 April 1999) .. 173
Changes in MySQL Connector/J 1.1i (24 March 1999) ... 173
Changes in MySQL Connector/J 1.1h (08 March 1999) .. 174
Changes in MySQL Connector/J 1.1g (19 February 1999) .. 174
Changes in MySQL Connector/J 1.1f (31 December 1998) ... 174
Changes in MySQL Connector/J 1.1b (03 November 1998) .. 174
Changes in MySQL Connector/J 1.1 (02 September 1998) ... 175
Changes in MySQL Connector/J 1.0 (24 August 1998) ... 175
Changes in MySQL Connector/J 0.9d (04 August 1998) ... 175
Changes in MySQL Connector/J 0.9 (28 July 1998) ... 176
Changes in MySQL Connector/J 0.8 (06 July 1998) ... 176
Changes in MySQL Connector/J 0.7 (01 July 1998) ... 176
Changes in MySQL Connector/J 0.6 (21 May 1998) .. 176

Changes in MySQL Connector/J 5.1.x

97

Changes in MySQL Connector/J 5.1.x

Changes in MySQL Connector/J 5.1.22 (Not yet released)

Fixes bugs found since release 5.1.21.

Bugs Fixed

• Performance: The com.mysql.jdbc.getCharsetNameForIndex() method was made more
efficient, resulting in better performance for queries against tables containing many columns with string
data types. (Bug #14236302, Bug #65508)

• The LoadBalancingConnectionProxy.pickNewConnection() method could incorrectly flag
the current connection as invalid after testing another connection. The selection process could choose
another (potentially offline) host, leading to a “connection is closed” error when trying to use a connection
after re-balancing:

No operations allowed after connection closed.
Connection closed after inability to pick valid new connection during fail-over.

(Bug #14563127)

• With profileSQL=true and useNanosForElapsedTime=true specified in
the connection URL, query and fetch duration were not reported correctly. The
com.mysql.jdbc.MysqlIO.sqlQueryDirect() method always measured times in milliseconds
rather than switching between milliseconds and nanoseconds. (Bug #14273046, Bug #57662)

• ResultSet objects created by the getGeneratedKeys() method were not being automatically
closed, leading to potential memory leaks if the application did not explicitly close the ResultSet
objects. (Bug #14192873, Bug #65503)

• Implemented the getVersionColumns() method, which formerly always returned an empty result set.
Now this method returns the timestamp columns that are updated every time a row is changed. (Bug
#13636546, Bug #63800)

• Connecting to a server that used a UCS2 character set would throw an exception:

com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error
in your SQL syntax; check the manual that corresponds to your MySQL server
version for the right syntax to use near '??' at line 1

Now, Connector/J sets characterEncoding implicitly to UTF-8 when the server character set is
UCS2. Because the Connector/J UTF-8 implementation does not cover all UCS-2 characters, note that
truncation might occur in some cases. (Bug #11751035, Bug #41752)

Changes in MySQL Connector/J 5.1.21 (2012-07-03)

Fixes bugs found since release 5.1.20.

Functionality Added or Changed

• InnoDB: Connector/J applications can now connect to MySQL servers that use the PAM authentication
system. See Connecting Using PAM Authentication for details about the Connector/J support, and The
PAM Authentication Plugin for information about this authentication feature of the MySQL server.

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/pam-authentication-plugin.html

Changes in MySQL Connector/J 5.1.20 (2012-05-01)

98

• With a connection encoding of gbk and a server encoding of latin1, a call such as
PreparedStatement.setString(1, "0f0f0702") could throw an exception
java.lang.StringIndexOutOfBoundsException. (Bug #13943893, Bug #64731)

• When Connector/J was connected to a MySQL 5.5 server, the error message for an invalid query could
be returned in the wrong character set and appear garbled. (Bug #13702427, Bug #64205)

• The timezone entry was missing for “MEST - Middle European Summer Time”. (Bug #11748548, Bug
#36662)

• Specifying a non-existent character set in the characterEncoding or characterSetResults
connection options could produce a NullPointerException error. The error could occur with a
typographical mistake, such as using a hyphen instead of an underscore in the name. (Bug #11749010,
Bug #37931)

Changes in MySQL Connector/J 5.1.20 (2012-05-01)

Fixes bugs found since release 5.1.19.

Bugs Fixed

• Important Change: This fix corrects an issue introduced in Connector/J
5.1.19 that caused connection errors with MySQL 4.1 and earlier servers. A
java.lang.ClassCastException exception occurred during connection initialization when
com.mysql.jdbc.ConnectionImpl.buildCollationMapping() interpreted the output of the
SHOW COLLATION statement. (Bug #13958793)

• Using Connector/J 5.1.19 in combination with JBoss could result in an error while establishing a
connection: MySQLNonTransientConnectionException: Bad handshake. This issue occurred
when using the old-style password hash, which requires the mysql_old_password plugin during
handshake. A workaround was to replace the 16-byte hash with a 41-byte one, as explained in
Password Hashing in MySQL. (Bug #13990612, Bug #64983)

• A java.lang.StringIndexOutOfBoundsException exception could occur when manipulating
date/time values with fractional seconds. (Bug #13960556)

• A MySQLSyntaxErrorException could occur when calling certain methods while connected to
a MySQL 5.6.5 or higher server. Affected methods included StatementImpl.execute() and
PreparedStatement.execute(). (Bug #13955027)

• The savepoint identifier generated by the java.sql.Connection#.setSavepoint() function could
be misinterpreted as a floating-point number, for example values such as 123e10 or 123e10foo. Such
values could cause replication errors on slave servers because the values are not quoted in the binary
log. The fix ensures that the savepoint identifiers do not begin with digits. (Bug #11763271, Bug #55962)

• If the string limit was used in a column name, prepared statements incorrectly treated the statement
as if it used a LIMIT clause. For example, a prepared statement with maxrows set to 0 could incorrectly
reuse the value from a previous call to setMaxRows(). This issue applied to both quoted and unquoted
column names, and server-side and client-side prepared statements. (Bug #11748492, Bug #36478)

Changes in MySQL Connector/J 5.1.19 (April 2012)

Fixes bugs found since release 5.1.18.

Functionality Added or Changed

• Added support for pluggable authentication. via the com.mysql.jdbc.AuthenticationPlugin
interface (which extends the standard “extension” interface). Examples are in com/mysql/jdbc/

http://dev.mysql.com/doc/refman/5.5/en/password-hashing.html

Changes in MySQL Connector/J 5.1.18 (2011-10-04)

99

authentication and in testsuite.regression.ConnectionRegressionTest. This feature
introduces three new connection properties:

• authenticationPlugins defines a comma-delimited list of classes that implement
com.mysql.jdbc.AuthenticationPlugin and are used for authentication unless disabled by the
disabledAuthenticationPlugins property.

• disabledAuthenticationPlugins defines a comma-delimited list of classes implementing
com.mysql.jdbc.AuthenticationPlugin or mechanisms, i.e. mysql_native_password.
The authentication plugins or mechanisms cannot be used for authentication. Authentication will
fail if it requires one of these classes. It is an error to disable the default authentication plugin,
either the one named by defaultAuthenticationPlugin property or the hardcoded one if
defaultAuthenticationPlugin property is not set.

• defaultAuthenticationPlugin defines the name of a class implementing
com.mysql.jdbc.AuthenticationPlugin, which is used as the default authentication plugin.
It is an error to use a class that is not listed in authenticationPlugins and is not one of
the built-in plugins. It is an error to set as default a plugin that is disabled by being listed in the
disabledAuthenticationPlugins property. It is an error to set this value to null or the empty
string; there must be at least one valid default authentication plugin specified for the connection,
meeting all the constraints listed above.

Bugs Fixed

• Reduced the memory overhead for server-side prepared statements. Each prepared statement allocated
a 4K buffer for converting streams. Now this allocation is skipped when no set*Stream() methods
have been used.

• The Connection.changeUser() method did not check for closed connections, leading to
NullPointerException errors when this method was called on a closed connection.

Changes in MySQL Connector/J 5.1.18 (2011-10-04)

Fixes bugs found since release 5.1.17.

Functionality Added or Changed

• Added the function MYSQL_INDEX_TO_MYSQL_CHARSET to retrieve the server charset name, using an
index instead of parsing variables to CharsetMapping.java

Bugs Fixed

• The LRUCache implementation removed the eldest entry, rather than the least-recently accessed. (Bug
#13036537)

• Changed cacheCallableStatements to cacheCallableStmts in
maxPerformance.properties, to allow proper caching. (Bug #13036309)

• Added a new ant flag, com.mysql.jdbc.junit.fork, which controls whether JUnit will fork new
processes.

The value on: The default, and legacy behavior. Or off): Required for Windows, as otherwise process
fork failure errors will result while running the test suite via ant on Windows. (Bug #12784170)

• Not putting a space between VALUES() and ON DUPLICATE KEY UPDATE causes connector/J to both
(A) Rewrite the query, although it includes an ON UPDATE statement and (B) To generate the wrong
query with multiple ON DUPLICATE KEY statements. (Bug #12565726)

http://dev.mysql.com/doc/refman/5.5/en/miscellaneous-functions.html#function_values
http://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html
http://dev.mysql.com/doc/refman/5.5/en/insert-on-duplicate.html

Changes in MySQL Connector/J 5.1.17 (2011-07-07)

100

• The loadBalanceBlacklistTimeout option was not functioning properly. Working connections were
not being removed from the blacklist. (Bug #63135)

• Connector/J now guards against the condition where a call to KILL QUERY will kill the next query issued
by the server, if no query is in process. (Bug #61501)

• The "old" warnings were returned when Statement.getWarnings() was called after
Statement.clearWarnings(). (Bug #61866, Bug #12791594)

• Calling Statement.cancel() on a statement that isn't currently executing, will cause a later-executed
query on the same connection to be unexpectedly canceled. The driver now guards against this
condition, but it is an underlying server issue. The MySQL statement KILL QUERY (which is what the
driver uses to implement Statement.cancel()) is rather non-deterministic, and thus the use of
Statement.cancel() should be avoided if possible. (Bug #61501)

• A connection could not be established when the URL contained both sessionVariables and
characterEncoding. (Bug #61201, Bug #12649557)

• Reverting changes made to ConnectionImpl.java, the private boolean
characterSetNamesMatches function.

Changes in MySQL Connector/J 5.1.17 (2011-07-07)

Fixes bugs found since release 5.1.16.

Bugs Fixed

• LIKE was not optimized in then server when run against INFORMATION_SCHEMA tables and no
wildcards were used. Databases/tables with '_' or '%' in their names (escaped or not) are handled by
this code path, although slower, since it is rare to find these characters in table names in SQL. If there
is a '_' or '%' in the string, LIKE takes care of that; otherwise, '=' is now used instead. The only
exception is the information_schema database, which is handled separately. The patch covers both
getTables() and getColumns(). (Bug #61332)

• The first call to a stored procedure failed with “No Database Selected”. The workaround introduced in
DatabaseMetaData.getCallStmtParameterTypes to fix the server bug where SHOW CREATE
PROCEDURE was not respecting lowercase table names was misbehaving when the connection was not
attached to a database and on case-insensitive operating systems. (Bug #61150)

• There was a concurrency bottleneck in Java's character set encoding/decoding when converting bytes
to/from String values.

Important

No longer use String.getBytes(...), or new String(byte[]...). Use
the StringUtils method instead.

(Bug #61105)

Changes in MySQL Connector/J 5.1.16 (Not released)

Fixes bugs found since release 5.1.15.

Functionality Added or Changed

• The Connection.isServerLocal() method can now determine if a connection is against a server
on the same host.

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/string-comparison-functions.html#operator_like
http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html

Changes in MySQL Connector/J 5.1.15 (2011-02-09)

101

Changes in MySQL Connector/J 5.1.15 (2011-02-09)

Fixes bugs found since release 5.1.14.

Bugs Fixed

• Optional logging class com.mysql.jdbc.log.Log4JLogger was not included in the source/binary
package for 5.1.14.

5.1.15 will ship with an SLF4J logger (which can then be plugged into Log4J). Unfortunately, it is not
possible to ship a direct Log4J integration because the GPL is not compatible with Log4J's license. (Bug
#59511, Bug #11766408)

• The hard-coded list of reserved words in Connector/J was not updated to reflect the list of reserved
words in MySQL Server 5.5. (Bug #59224)

• MySqlProcedure accepted null arguments as parameters, however the JDBC meta data did not indicate
that. (Bug #38367, Bug #11749186)

• Using Connector/J to connect from a z/OS machine to a MySQL Server failed when the database name
to connect to was included in the connection URL. This was because the name was sent in z/OS default
platform encoding, but the MySQL Server expected Latin1.

It should be noted that when connecting from systems that do not use Latin1 as the
default platform encoding, the following connection string options can be useful:
passwordCharacterEncoding=ASCII and characterEncoding=ASCII. (Bug #18086, Bug
#11745647)

Changes in MySQL Connector/J 5.1.14 (6th December 2010)

Fixes bugs found since release 5.1.13.

Version 5.1.14 has no changelog entries.

Changes in MySQL Connector/J 5.1.13 (2010-06-24)

Fixes bugs found since release 5.1.12.

Functionality Added or Changed

• Connector/J did not support utf8mb4 for servers 5.5.2 and newer.

Connector/J now auto-detects servers configured with character_set_server=utf8mb4 or treats
the Java encoding utf-8 passed using characterEncoding=... as utf8mb4 in the SET NAMES=
calls it makes when establishing the connection. (Bug #54175)

Bugs Fixed

• When the allowMultiQueries connection string option was set to true, a call to
Statement.executeBatch() scanned the query for escape codes, even though
setEscapeProcessing(false) had been called previously. (Bug #51704)

• The method unSafeStatementInterceptors() contained an erroneous line of code, which resulted
in the interceptor being called, but the result being thrown away. (Bug #53041)

• There was a performance regression of roughly 25% between r906 and r907, which appeared to be
caused by pushing the Proxy down to the I/O layer. (Bug #52534)

Changes in MySQL Connector/J 5.1.13 (2010-06-24)

102

• In the file DatabaseMetadata.java, the function private void getCallStmtParameterTypes
failed if the parameter was defined over more than one line by using the '\n' character. (Bug #52167)

• The catalog parameter, PARAM_CAT, was not correctly processed when calling for metadata with
getMetaData() on stored procedures. This was because PARAM_CAT was hardcoded in the code
to NULL. In the case where nullcatalogmeanscurrent was true, which is its default value, a
crash did not occur, but the metadata returned was for the stored procedures from the catalog currently
attached to. If, however, nullcatalogmeanscurrent was set to false then a crash resulted.

Connector/J has been changed so that when NULL is passed as PARAM_CAT it will not crash when
nullcatalogmeanscurrent is false, but rather iterate all catalogs in search of stored procedures.
This means that PARAM_CAT is no longer hardcoded to NULL (see Bug #51904). (Bug #51912)

• Logic in implementations of LoadBalancingConnectionProxy and LoadBalanceStrategy
behaved differently as to which SQLExceptions trigger failover to a new host. The former looked at the
first two characters of the SQLState:

if (sqlState.startsWith("08"))
...

The latter used a different test:

if (sqlEx instanceof CommunicationsException
 || "08S01".equals(sqlEx.getSQLState())) {
...

This meant it was possible for a new Connection object to throw an Exception when the first
selected host was unavailable. This happened because MySqlIO.createNewIO() could throw an
SQLException with a SQLState of “08001”, which did not trigger the “try another host” logic in the
LoadBalanceStrategy implementations, so an Exception was thrown after having only attempted
connecting to a single host. (Bug #52231)

• A load balanced Connection object with multiple open underlying physical connections rebalanced on
commit(), rollback(), or on a communication exception, without validating the existing connection.
This caused a problem when there was no pinging of the physical connections, using queries starting
with “/* ping */”, to ensure they remained active. This meant that calls to Connection.commit() could
throw a SQLException. This did not occur when the transaction was actually committed; it occurred
when the new connection was chosen and the driver attempted to set the auto-commit or transaction
isolation state on the newly chosen physical connection. (Bug #51783)

• The rollback() method could fail to rethrow a SQLException if the server became unavailable
during a rollback. The errant code only rethrew when ignoreNonTxTables was true and the exception
did not have the error code 1196, SQLError.ER_WARNING_NOT_COMPLETE_ROLLBACK. (Bug #51776)

• Objects created by ConnectionImpl, such as prepared statements, hold a reference to the
ConnectionImpl that created them. However, when the load balancer picked a new connection, it did
not update the reference contained in, for example, the PreparedStatement. This resulted in inserts
and updates being directed to invalid connections, while commits were directed to the new connection.
This resulted in silent data loss. (Bug #51643)

• When a StatementInterceptor was used and an alternate ResultSet was returned from
preProcess(), the original statement was still executed. (Bug #51666)

• jdbc:mysql:loadbalance:// would connect to the same host, even though
loadBalanceStrategy was set to a value of random, and multiple hosts were specified. (Bug
#51266)

• An unexpected exception when trying to register OUT parameters in CallableStatement.

Changes in MySQL Connector/J 5.1.12 (2010-02-18)

103

Sometimes Connector/J was not able to register OUT parameters for CallableStatements. (Bug
#43576)

Changes in MySQL Connector/J 5.1.12 (2010-02-18)

Fixes bugs found since release 5.1.11.

Bugs Fixed

• The catalog parameter was ignored in the DatabaseMetaData.getProcedure() method. It returned
all procedures in all databases. (Bug #51022)

• A call to DatabaseMetaData.getDriverVersion() returned the revision as mysql-connector-
java-5.1.11 (Revision: ${svn.Revision}). The variable ${svn.Revision} was not
replaced by the SVN revision number. (Bug #50288)

Changes in MySQL Connector/J 5.1.11 (2010-01-21)

Fixes bugs found since release 5.1.10.

Functionality Added or Changed

• Replication connections, those with URLs that start with jdbc:mysql:replication, now use a
jdbc:mysql:loadbalance connection for the slave pool. This means that it is possible to set load balancing
properties such as loadBalanceBlacklistTimeout and loadBalanceStrategy to choose
a mechanism for balancing the load, and failover or fault tolerance strategy for the slave pool. (Bug
#49537)

Bugs Fixed

• NullPointerException sometimes occurred in invalidateCurrentConnection() for load-
balanced connections. (Bug #50288)

• For pooled connections, Connector/J did not process the session variable time_zone when set using
the URL, resulting in incorrect timestamp values being stored. (Bug #49700)

• The deleteRow method caused a full table scan, when using an updatable cursor and a multi-byte
character set. (Bug #49745)

• The ExceptionInterceptor class did not provide a Connection context. (Bug #49607)

• Ping left closed connections in the liveConnections map, causing subsequent Exceptions when that
connection was used. (Bug #48605)

• Using MysqlConnectionPoolDataSource with a load-balanced URL generated exceptions of type
ClassCastException:

ClassCastException in MysqlConnectionPoolDataSource
Caused by: java.lang.ClassCastException: $Proxy0
 at
com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource.getPooledConnection(MysqlConne
ctionPoolDataSource.java:80)

java.lang.ClassCastException: $Proxy2
 at com.mysql.jdbc.jdbc2.optional.StatementWrapper.executeQuery(StatementWrapper.java:744)

(Bug #48486)

Changes in MySQL Connector/J 5.1.10 (2009-09-23)

104

• The implementation for load-balanced Connection used a proxy, which delegated method calls,
including equals() and hashCode(), to underlying Connection objects. This meant that successive
calls to hashCode() on the same object potentially returned different values, if the proxy state had
changed such that it was utilizing a different underlying connection. (Bug #48442)

• The batch rewrite functionality attempted to identify the start of the VALUES list by looking for “VALUES ”
(with trailing space). However, valid MySQL syntax permits VALUES to be followed by whitespace or an
opening parenthesis:

INSERT INTO tbl VALUES
(1);

INSERT INTO tbl VALUES(1);

Queries written with the above formats did not therefore gain the performance benefits of the batch
rewrite. (Bug #48172)

• A PermGen memory leaked was caused by the Connector/J statement cancellation timer
(java.util.Timer). When the application was unloaded the cancellation timer did not terminate,
preventing the ClassLoader from being garbage collected. (Bug #36565)

• With the connection string option noDatetimeStringSync set to true, and server-side prepared
statements enabled, the following exception was generated if an attempt was made to obtain, using
ResultSet.getString(), a datetime value containing all zero components:

java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Date

(Bug #32525)

Changes in MySQL Connector/J 5.1.10 (2009-09-23)

Fixes bugs found since release 5.1.9.

Bugs Fixed

• The DriverManager.getConnection() method ignored a non-standard port if it was specified in the
JDBC connection string. Connector/J always used the standard port 3306 for connection creation. For
example, if the string was jdbc:mysql://localhost:6777, Connector/J would attempt to connect to
port 3306, rather than 6777. (Bug #47494)

Changes in MySQL Connector/J 5.1.9 (2009-09-21)

Bugs Fixed

• When Connector/J encountered an error condition that caused it to create a
CommunicationsException, it tried to build a friendly error message that helped diagnose what was
wrong. However, if there had been no network packets received from the server, the error message
contained the following incorrect text:

The last packet successfully received from the server was 1,249,932,468,916 milliseconds
ago. The last packet sent successfully to the server was 0 milliseconds ago.

(Bug #46637)

• In the class com.mysql.jdbc.jdbc2.optional.SuspendableXAConnection,
which is used when pinGlobalTxToPhysicalConnection=true, there is a static map
(XIDS_TO_PHYSICAL_CONNECTIONS) that tracks the Xid with the XAConnection, however this map

Changes in MySQL Connector/J 5.1.9 (2009-09-21)

105

was not populated. The effect was that the SuspendableXAConnection was never pinned to the real
XA connection. Instead it created new connections on calls to start, end, resume, and prepare. (Bug
#46925)

• When using the ON DUPLICATE KEY UPDATE functionality together with the
rewriteBatchedStatements option set to true, an exception was generated when trying to execute the
prepared statement:

INSERT INTO config_table (modified,id_) VALUES (?,?) ON DUPLICATE KEY UPDATE modified=?

The exception generated was:

java.sql.SQLException: Parameter index out of range (3 > number of parameters, which is
2).
 at com.sag.etl.job.processors.JdbcInsertProcessor.flush(JdbcInsertProcessor.java:135)
......
Caused by: java.sql.SQLException: Parameter index out of range (3 > number of parameters,
which is 2).
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1055)
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:956)
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:926)
 at com.mysql.jdbc.PreparedStatement.checkBounds(PreparedStatement.java:3657)
 at com.mysql.jdbc.PreparedStatement.setInternal(PreparedStatement.java:3641)
 at
com.mysql.jdbc.PreparedStatement.setBytesNoEscapeNoQuotes(PreparedStatement.java:3391)
 at
com.mysql.jdbc.PreparedStatement.setOneBatchedParameterSet(PreparedStatement.java:4203)
 at com.mysql.jdbc.PreparedStatement.executeBatchedInserts(PreparedStatement.java:1759)
 at com.mysql.jdbc.PreparedStatement.executeBatch(PreparedStatement.java:1441)
 at com.sag.etl.job.processors.JdbcInsertProcessor.flush(JdbcInsertProcessor.java:131)
 ... 16 more

(Bug #46788)

• Accessing result set columns by name after the result set had been closed resulted in a
NullPointerException instead of a SQLException. (Bug #41484)

• The getSuperTypes method returned a result set with incorrect names for the first two columns. The
name of the first column in the result set was expected to be TYPE_CAT and that of the second column
TYPE_SCHEM. The method however returned the names as TABLE_CAT and TABLE_SCHEM for first and
second column respectively. (Bug #44508)

• Calling ResultSet.deleteRow() on a table with a primary key of type BINARY(8) silently failed
to delete the row, but only in some repeatable cases. The generated DELETE statement generated
corrupted part of the primary key data. Specifically, one of the bytes was changed from 0x90 to 0x9D,
although the corruption appeared to be different depending on whether the application was run on
Windows or Linux. (Bug #43759)

• SQLException for data truncation error gave the error code as 0 instead of 1265. (Bug #44324)

• QueryTimeout did not work for batch statements waiting on a locked table.

When a batch statement was issued to the server and was forced to wait because of a locked table,
Connector/J only terminated the first statement in the batch when the timeout was exceeded, leaving the
rest hanging. (Bug #34555)

• The parseURL method in class com.mysql.jdbc.Driver did not work as expected. When
given a URL such as “jdbc:mysql://www.mysql.com:12345/my_database” to parse, the property
PORT_PROPERTY_KEY was found to be null and the HOST_PROPERTY_KEY property was found to be
“www.mysql.com:12345”.

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

106

Note

Connector/J has been fixed so that it will now always fill in the PORT property
(using 3306 if not specified), and the HOST property (using localhost if not
specified) when parseURL() is called. The driver also parses a list of hosts into
HOST.n and PORT.n properties as well as adding a property NUM_HOSTS for the
number of hosts it has found. If a list of hosts is passed to the driver, HOST and
PORT will be set to the values given by HOST.1 and PORT.1 respectively. This
change has centralized and cleaned up a large section of code used to generate
lists of hosts, both for load-balanced and fault tolerant connections and their
tests.

(Bug #32216)

• Attempting to delete rows using ResultSet.deleteRow() did not delete rows correctly. (Bug #27431)

• The setDate method silently ignored the Calendar parameter. The code was implemented as follows:

public void setDate(int parameterIndex, java.sql.Date x, Calendar cal) throws SQLException {
 setDate(parameterIndex, x);
}

From reviewing the code it was apparent that the Calendar parameter cal was ignored. (Bug #23584)

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

Bugs Fixed

• Calling Connection.serverPreparedStatement() variants that do not take result set type or
concurrency arguments returned statements that produced result sets with incorrect defaults, namely
TYPE_SCROLL_SENSITIVE. (Bug #45171)

• The reported milliseconds since the last server packets were received/sent was incorrect by a factor of
1000. For example, the following method call:

SQLError.createLinkFailureMessageBasedOnHeuristics(
(ConnectionImpl) this.conn,
System.currentTimeMillis() - 1000,
System.currentTimeMillis() - 2000,
e,
false);

returned the following string:

The last packet successfully received from the server
was 2 milliseconds ago. The last packet sent successfully to the
server was 1 milliseconds ago.

(Bug #45419)

• The method Statement.getGeneratedKeys() did not return values for UNSIGNED BIGINTS with
values greater than Long.MAX_VALUE.

Unfortunately, because the server does not tell clients what TYPE the auto increment value is, the
driver cannot consistently return BigIntegers for the result set returned from getGeneratedKeys(),
it will only return them if the value is greater than Long.MAX_VALUE. If your application needs this
consistency, it will need to check the class of the return value from .getObject() on the ResultSet
returned by Statement.getGeneratedKeys() and if it is not a BigInteger, create one based on the
java.lang.Long that is returned. (Bug #43196)

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

107

• A statement interceptor received the incorrect parameters when used with a batched statement. (Bug
#39426)

• When using Connector/J 5.1.7 to connect to MySQL Server 4.1.18 the following error message was
generated:

Thu Dec 11 17:38:21 PST 2008 WARN: Invalid value {1} for server variable named {0},
falling back to sane default of {2}

This occurred with MySQL Server version that did not support auto_increment_increment. The
error message should not have been generated. (Bug #41416)

• The RETURN_GENERATED_KEYS flag was being ignored. For example, in the following code the
RETURN_GENERATED_KEYS flag was ignored:

PreparedStatement ps = connection.prepareStatement("INSERT INTO table
 values(?,?)",PreparedStatement.RETURN_GENERATED_KEYS);

(Bug #41448)

• Using Connector/J 5.1.6 the method ResultSet.getObject returned a BYTE[] for following:

SELECT TRIM(rowid) FROM tbl

Where rowid had a type of INT(11) PRIMARY KEY AUTO_INCREMENT.

The expected return type was one of CHAR, VARCHAR, CLOB, however, a BYTE[] was returned.

Further, adding functionsNeverReturnBlobs=true to the connection string did not have any effect
on the return type. (Bug #38387)

• Connector/J generated an unhandled StringIndexOutOfBoundsException:

java.lang.StringIndexOutOfBoundsException: String index out of range: -1
at java.lang.String.substring(String.java:1938)
at com.mysql.jdbc.EscapeProcessor.processTimeToken(EscapeProcessor.java:353)
at com.mysql.jdbc.EscapeProcessor.escapeSQL(EscapeProcessor.java:257)
at com.mysql.jdbc.StatementImpl.executeUpdate(StatementImpl.java:1546)
at com.mysql.jdbc.StatementImpl.executeUpdate(StatementImpl.java:1524)

(Bug #42253)

• When using rewriteBatchedStatements=true with:

INSERT INTO table_name_values (...) VALUES (...)

Query rewriting failed because “values” at the end of the table name was mistaken for the reserved
keyword. The error generated was as follows:

testBug40439(testsuite.simple.TestBug40439)java.sql.BatchUpdateException: You have an
error in your SQL syntax; check the manual that corresponds to your MySQL server version
for the right syntax to use near 'values (2,'toto',2),(id,data, ordr) values
(3,'toto',3),(id,data, ordr) values (' at line 1
at com.mysql.jdbc.PreparedStatement.executeBatchedInserts(PreparedStatement.java:1495)
at com.mysql.jdbc.PreparedStatement.executeBatch(PreparedStatement.java:1097)
at testsuite.simple.TestBug40439.testBug40439(TestBug40439.java:42)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
at testsuite.simple.TestBug40439.main(TestBug40439.java:57)

(Bug #40439)

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

108

• Error message strings contained variable values that were not expanded. For example:

Mon Nov 17 11:43:18 JST 2008 WARN: Invalid value {1} for server variable named {0},
falling back to sane default of {2}

(Bug #40772)

• When accessing a result set column by name using ResultSetImpl.findColumn() an exception
was generated:

java.lang.NullPointerException
at com.mysql.jdbc.ResultSetImpl.findColumn(ResultSetImpl.java:1103)
at com.mysql.jdbc.ResultSetImpl.getShort(ResultSetImpl.java:5415)
at org.apache.commons.dbcp.DelegatingResultSet.getShort(DelegatingResultSet.java:219)
at com.zimbra.cs.db.DbVolume.constructVolume(DbVolume.java:297)
at com.zimbra.cs.db.DbVolume.get(DbVolume.java:197)
at com.zimbra.cs.db.DbVolume.create(DbVolume.java:95)
at com.zimbra.cs.store.Volume.create(Volume.java:227)
at com.zimbra.cs.store.Volume.create(Volume.java:189)
at com.zimbra.cs.service.admin.CreateVolume.handle(CreateVolume.java:48)
at com.zimbra.soap.SoapEngine.dispatchRequest(SoapEngine.java:428)
at com.zimbra.soap.SoapEngine.dispatch(SoapEngine.java:285)

(Bug #41484)

• If there was an apostrophe in a comment in a statement that was being sent through Connector/J, the
apostrophe was still recognized as a quote and put the state machine in EscapeTokenizer into the
inQuotes state. This led to further parse errors.

For example, consider the following statement:

String sql = "-- Customer's zip code will be fixed\n" +
 "update address set zip_code = 99999\n" +
 "where not regexp '^[0-9]{5}([[.-.]])?([0-9]{4})?$'";

When passed through Connector/J, the EscapeTokenizer did not recognize that the first apostrophe
was in a comment and thus set inQuotes to true. When that happened, the quote count was incorrect
and thus the regular expression did not appear to be in quotation marks. With the parser not detecting
that the regular expression was in quotation marks, the curly braces were recognized as escape
sequences and were removed from the regular expression, breaking it. The server thus received SQL
such as:

-- Customer's zip code will be fixed
update address set zip_code = '99999'
where not regexp '^[0-9]([[.-.]])?([0-9])?$'

(Bug #41566)

• Using useInformationSchema with DatabaseMetaData.getExportedKeys() generated the
following exception:

com.mysql.jdbc.exceptions.MySQLIntegrityConstraintViolationException: Column
'REFERENCED_TABLE_NAME' in where clause is ambiguous
...
at com.mysql.jdbc.PreparedStatement.executeInternal(PreparedStatement.java:1772)
at com.mysql.jdbc.PreparedStatement.executeQuery(PreparedStatement.java:1923)
at
com.mysql.jdbc.DatabaseMetaDataUsingInfoSchema.executeMetadataQuery(
DatabaseMetaDataUsingInfoSchema.java:50)
at
com.mysql.jdbc.DatabaseMetaDataUsingInfoSchema.getExportedKeys(
DatabaseMetaDataUsingInfoSchema.java:603)

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

109

(Bug #43714)

• The SQLError.createLinkFailureMessageBasedOnHeuristics() method created a message
text for communication link failures. When certain conditions were met, this message included both “last
packet sent” and “last packet received” information, but when those conditions were not met, only “last
packet sent” information was provided.

Information about when the last packet was successfully received should be provided in all cases. (Bug
#44587)

• When DatabaseMetaData.getProcedureColumns() was called, the value for LENGTH was always
returned as 65535, regardless of the column type (fixed or variable) or the actual length of the column.

However, if you obtained the PRECISION value, this was correct for both fixed and variable length
columns. (Bug #41269)

• The DEFERRABILITY column in database metadata result sets was expected to be of type SHORT.
However, Connector/J returned it as INTEGER.

This affected the following methods: getImportedKeys(), getExportedKeys(),
getCrossReference(). (Bug #44867)

• The result set returned by getIndexInfo() did not have the format defined in the JDBC API
specifications. The fourth column, DATA_TYPE, of the result set should be of type BOOLEAN. Connector/J
however returns CHAR. (Bug #44869)

• The result set returned by getTypeInfo() did not have the format defined in the JDBC API
specifications. The second column, DATA_TYPE, of the result set should be of type INTEGER.
Connector/J however returns SMALLINT. (Bug #44868)

• The result set returned by getColumns() did not have the format defined in the JDBC API
specifications. The fifth column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J
however returns SMALLINT. (Bug #44865)

• The result set returned by getVersionColumns() did not have the format defined in the JDBC API
specifications. The third column, DATA_TYPE, of the result set should be of type INTEGER. Connector/J
however returns SMALLINT. (Bug #44863)

• The result set returned by getBestRowIdentifier() did not have the format defined in the JDBC
API specifications. The third column, DATA_TYPE, of the result set should be of type INTEGER.
Connector/J however returns SMALLINT. (Bug #44862)

• Connector/J contains logic to generate a message text specifically for streaming result sets when there
are CommunicationsException exceptions generated. However, this code was never reached.

In the CommunicationsException code:

private boolean streamingResultSetInPlay = false;

public CommunicationsException(ConnectionImpl conn, long lastPacketSentTimeMs,
long lastPacketReceivedTimeMs, Exception underlyingException) {

this.exceptionMessage = SQLError.createLinkFailureMessageBasedOnHeuristics(conn,
 lastPacketSentTimeMs, lastPacketReceivedTimeMs, underlyingException,
 this.streamingResultSetInPlay);

streamingResultSetInPlay was always false, which in the following code in
SQLError.createLinkFailureMessageBasedOnHeuristics() never being executed:

Changes in MySQL Connector/J 5.1.8 (2009-07-16)

110

if (streamingResultSetInPlay) {
 exceptionMessageBuf.append(
 Messages.getString("CommunicationsException.ClientWasStreaming")); //$NON-NLS-1$
} else {
...

(Bug #44588)

• SQL injection was possible when using a string containing U+00A5 in a client-side prepared statement,
and the character set being used was SJIS/Windows-31J. (Bug #41730)

• Statement.getGeneratedKeys() retained result set instances until the statement was closed. This
caused memory leaks for long-lived statements, or statements used in tight loops. (Bug #44056)

• MySQL Connector/J 5.1.7 was slower than previous versions when the rewriteBatchedStatements
option was set to true.

Note

The performance regression in indexOfIgnoreCaseRespectMarker()has
been fixed. It has also been made possible for the driver to rewrite INSERT
statements with ON DUPLICATE KEY UPDATE clauses in them, as long as the
UPDATE clause contains no reference to LAST_INSERT_ID(), as that would
cause the driver to return bogus values for getGeneratedKeys() invocations.
This has resulted in improved performance over version 5.1.7.

(Bug #41532)

• LoadBalancingConnectionProxy.doPing() did not have blacklist awareness.

LoadBalancingConnectionProxy implemented doPing() to ping all underlying connections, but it
threw any exceptions it encountered during this process.

With the global blacklist enabled, it catches these exceptions, adds the host to the global blacklist, and
only throws an exception if all hosts are down. (Bug #43421)

• When connecting with traceProtocol=true, no trace data was generated for the server greeting or
login request. (Bug #43070)

• When the MySQL Server was upgraded from 4.0 to 5.0, the Connector/J application then failed to
connect to the server. This was because authentication failed when the application ran from EBCDIC
platforms such as z/OS. (Bug #43071)

• A ConcurrentModificationException was generated in LoadBalancingConnectionProxy:

java.util.ConcurrentModificationException
 at java.util.HashMap$HashIterator.nextEntry(Unknown Source)
 at java.util.HashMap$KeyIterator.next(Unknown Source)
 at
com.mysql.jdbc.LoadBalancingConnectionProxy.getGlobalBlacklist(LoadBalancingConnectionProxy.java:520)
 at com.mysql.jdbc.RandomBalanceStrategy.pickConnection(RandomBalanceStrategy.java:55)
 at
com.mysql.jdbc.LoadBalancingConnectionProxy.pickNewConnection(LoadBalancingConnectionProxy.java:414)
 at
com.mysql.jdbc.LoadBalancingConnectionProxy.invoke(LoadBalancingConnectionProxy.java:390)

(Bug #42055)

Changes in MySQL Connector/J 5.1.7 (2008-10-21)

111

• PreparedStatement.addBatch() did not check for all parameters being set, which led to
inconsistent behavior in executeBatch(), especially when rewriting batched statements into multi-
value INSERTs. (Bug #41161)

Changes in MySQL Connector/J 5.1.7 (2008-10-21)

Functionality Added or Changed

• When statements include ON DUPLICATE UPDATE, and rewriteBatchedStatements is set to true,
batched statements are not rewritten into the form INSERT INTO table VALUES (), (), (),
instead the statements are executed sequentially.

Bugs Fixed

• When using trustCertificateKeyStoreUrl or clientCertificateKeyStoreUrl, an
IllegalStateException was caused by an uninitialized TrustManagerFactoryImpl object. (Bug
#11748637, Bug #36948, Bug #38192)

• Statement.getGeneratedKeys() returned two keys when using ON DUPLICATE KEY UPDATE and
the row was updated, not inserted. (Bug #42309)

• When configuring the Java Replication Driver the last slave specified was never used. (Bug #39611)

• When using the replication driver with autoReconnect=true, Connector/J checks in
PreparedStatement.execute (also called by CallableStatement.execute) to determine if the
first character of the statement is an “S”, in an attempt to block all statements that are not read-only-safe,
for example non-SELECT statements. However, this also blocked CALLs to stored procedures, even if
the stored procedures were defined as SQL READ DATA or NO SQL. (Bug #40031)

• When the LoadBalancingConnectionProxy handles a SQLException with SQL state starting
with “08”, it calls invalidateCurrentConnection, which in turn removes that Connection from
liveConnections and the connectionsToHostsMap, but it did not add the host to the new global
blacklist, if the global blacklist was enabled.

There was also the possibility of a NullPointerException when trying to update stats, where
connectionsToHostsMap.get(this.currentConn) was called:

int hostIndex = ((Integer) this.hostsToListIndexMap.get(this.connectionsToHostsMap.get(this.currentConn))).intValue();

This could happen if a client tried to issue a rollback after catching a SQLException caused by a
connection failure. (Bug #39784)

• When using the random load balancing strategy and starting with two servers that were both unavailable,
an IndexOutOfBoundsException was generated when removing a server from the whiteList.
(Bug #38782)

• With large result sets ResultSet.findColumn became a performance bottleneck. (Bug #39962)

• Connector/J ignored the value of the MySQL Server variable auto_increment_increment. (Bug
#39956)

• When an INSERT ON DUPLICATE KEY UPDATE was performed, and the key already existed, the
affected-rows value was returned as 1 instead of 0. (Bug #39352)

• Connector/J failed to parse TIMESTAMP strings for nanos correctly. (Bug #39911)

• Connector/J threw the following exception when using a read-only connection:

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/call.html
http://dev.mysql.com/doc/refman/5.5/en/replication-options-master.html#sysvar_auto_increment_increment
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 5.1.6 (2008-03-07)

112

java.sql.SQLException: Connection is read-only. Queries leading to data
modification are not allowed.

(Bug #38747)

• Connector/J was unable to connect when using a non-latin1 password. (Bug #37570)

• The useOldAliasMetadataBehavior connection property was ignored. (Bug #35753)

• When getGeneratedKeys() was called on a statement that had not been created with
RETURN_GENERATED_KEYS, no exception was thrown, and batched executions then returned erroneous
values. (Bug #34185)

• The loadBalance bestResponseTime blacklists did not have a global state. (Bug #33861)

• Incorrect result is returned from isAfterLast() in streaming ResultSet when using
setFetchSize(Integer.MIN_VALUE). (Bug #35170)

Changes in MySQL Connector/J 5.1.6 (2008-03-07)

Functionality Added or Changed

• Multiple result sets were not supported when using streaming mode to return data. Both normal
statements and the result sets from stored procedures now return multiple results sets, with the
exception of result sets using registered OUTPUT parameters. (Bug #33678)

• Add the verifyServerCertificate property. If set to "false" the driver will not verify the server's
certificate when useSSL is set to "true"

When using this feature, the keystore parameters should be specified by the
clientCertificateKeyStore* properties, rather than system properties, as the JSSE doesn't it
straightforward to have a nonverifying trust store and the "default" key store.

• The profiler event handling has been made extensible using the profilerEventHandler connection
property.

• XAConnections and datasources have been updated to the JDBC-4.0 standard.

Bugs Fixed

• Prepared statements from pooled connections caused a NullPointerException when closed()
under JDBC-4.0. (Bug #35489)

• When useServerPrepStmts=true and slow query logging is enabled, the connector throws a
NullPointerException when it encounters a slow query. (Bug #35666)

• The JDBC driver uses a different method for evaluating column names in
resultsetmetadata.getColumnName() and when looking for a column in
resultset.getObject(columnName). This causes Hibernate to fail in queries where the two
methods yield different results, for example in queries that use alias names:

SELECT column AS aliasName from table

(Bug #35150)

• DatabaseMetaData.getColumns() returns incorrect COLUMN_SIZE value for SET column. (Bug
#36830)

Changes in MySQL Connector/J 5.1.6 (2008-03-07)

113

• When trying to read Time values like “00:00:00” with ResultSet.getTime(int) an exception is
thrown. (Bug #36051)

• When using the keyword “loadbalance” in the connection string and trying to perform load balancing
between two databases, the driver appears to hang. (Bug #35660)

• JDBC data type getter method was changed to accept only column name, whereas previously it
accepted column label. (Bug #35610)

• In calling a stored function returning a bigint, an exception is encountered beginning:

java.sql.SQLException: java.lang.NumberFormatException: For input string:

followed by the text of the stored function starting after the argument list. (Bug #35199)

• JDBC connection URL parameters is ignored when using MysqlConnectionPoolDataSource. (Bug
#35810)

• Retrieving the server version information for an active connection could return invalid information if the
default character encoding on the host was not ASCII compatible. (Bug #31192)

• MysqlConnectionPoolDataSource does not support ReplicationConnection. Notice that
we implemented com.mysql.jdbc.Connection for ReplicationConnection, however, only
accessors from ConnectionProperties are implemented (not the mutators), and they return values
from the currently active connection. All other methods from com.mysql.jdbc.Connection
are implemented, and operate on the currently active connection, with the exception of
resetServerState() and changeUser(). (Bug #34937)

• When calling isValid() on an active connection, if the timeout is nonzero then the Connection is
invalidated even if the Connection is valid. (Bug #34703)

• When retrieving the column type name of a geometry field, the driver would return UNKNOWN instead of
GEOMETRY. (Bug #34194)

• The internal class ResultSetInternalMethods referenced the nonpublic class
com.mysql.jdbc.CachedResultSetMetaData. (Bug #33823)

• ResultSet.getTimestamp() would throw a NullPointerException instead of a SQLException
when called on an empty ResultSet. (Bug #33162)

• ResultSet.getTimestamp() returns incorrect values for month/day of TIMESTAMPs when using
server-side prepared statements (not enabled by default). (Bug #34913)

• RowDataStatic doesn't always set the metadata in ResultSetRow, which can lead to failures when
unpacking DATE, TIME, DATETIME and TIMESTAMP types when using absolute, relative, and previous
result set navigation methods. (Bug #34762)

• It was not possible to truncate a BLOB using Blog.truncate() when using 0 as an argument. (Bug
#34677)

• Statements with batched values do not return correct values for getGeneratedKeys() when
rewriteBatchedStatements is set to true, and the statement has an ON DUPLICATE KEY
UPDATE clause. (Bug #34093)

• A NullPointerException could be raised when using client-side prepared statements and enabled
the prepared statement cache using the cachePrepStmts. (Bug #33734)

• When using a cursor fetch for a statement, the internal prepared statement could cause a memory leak
until the connection was closed. The internal prepared statement is now deleted when the corresponding
result set is closed. (Bug #34518)

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 5.1.6 (2008-03-07)

114

• Using server side cursors and cursor fetch, the table metadata information would return the data type
name instead of the column name. (Bug #33594)

• ResultSet returned by Statement.getGeneratedKeys() is not closed automatically when
statement that created it is closed. (Bug #30508)

• Load balancing connection using best response time would incorrectly "stick" to hosts that were down
when the connection was first created.

We solve this problem with a black list that is used during the picking of new hosts. If the black list
ends up including all configured hosts, the driver will retry for a configurable number of times (the
retriesAllDown configuration property, with a default of 120 times), sleeping 250ms between
attempts to pick a new connection.

We've also went ahead and made the balancing strategy extensible. To create a new strategy,
implement the interface com.mysql.jdbc.BalanceStrategy (which also includes our
standard "extension" interface), and tell the driver to use it by passing in the class name using the
loadBalanceStrategy configuration property. (Bug #32877)

• Using CallableStatement.setNull() on a stored function would throw an
ArrayIndexOutOfBounds exception when setting the last parameter to null. (Bug #31823)

• When using a connection from ConnectionPoolDataSource, some
Connection.prepareStatement() methods would return null instead of the prepared statement.
(Bug #32101)

• MysqlValidConnectionChecker doesn't properly handle connections created using
ReplicationConnection. (Bug #31790)

• During a Daylight Savings Time (DST) switchover, there was no way to store two timestamp/datetime
values , as the hours end up being the same when sent as the literal that MySQL requires.

Note that to get this scenario to work with MySQL (since it doesn't support per-value timezones), you
need to configure your server (or session) to be in UTC, and tell the driver not to use the legacy date/
time code by setting useLegacyDatetimeCode to "false". This will cause the driver to always convert
to/from the server and client timezone consistently.

This bug fix also fixes Bug #15604, by adding entirely new date/time handling code that can be switched
on by useLegacyDatetimeCode being set to "false" as a JDBC configuration property. For Connector/
J 5.1.x, the default is "true", in trunk and beyond it will be "false" (that is, the old date/time handling code
will be deprecated) (Bug #32577, Bug #15604)

• When unpacking rows directly, we don't hand off error message packets to the internal method which
decodes them correctly, so no exception is raised, and the driver than hangs trying to read rows that
aren't there. This tends to happen when calling stored procedures, as normal SELECTs won't have an
error in this spot in the protocol unless an I/O error occurs. (Bug #32246)

• Further fixes have been made to this bug in the event that a node is nonresponsive. Connector/J will
now try a different random node instead of waiting for the node to recover before continuing. (Bug
#31053)

• DatabaseMetadata.getColumns() doesn't return the correct column names if the connection
character isn't UTF-8. A bug in MySQL server compounded the issue, but was fixed within the MySQL
5.0 release cycle. The fix includes changes to all the sections of the code that access the server
metadata. (Bug #20491)

• Fixed ResultSetMetadata.getColumnName() for result sets returned from
Statement.getGeneratedKeys() - it was returning null instead of "GENERATED_KEY" as in 5.0.x.

Changes in MySQL Connector/J 5.1.5 (2007-10-09)

115

Changes in MySQL Connector/J 5.1.5 (2007-10-09)

New Features, Compared to the 5.0 Series of Connector/J

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

• Support for JDBC-4.0 XML processing using JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments
section of a query using SHOW PROCESSLIST on a MySQL server, or can be extended to support
custom persistence of the information using a public interface).

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

Functionality Added or Changed

• Added autoSlowLog configuration property, overrides slowQueryThreshold* properties, driver
determines slow queries by those that are slower than 5 * stddev of the mean query time (outside the
96% percentile).

Bugs Fixed

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly
identified DML statements. (Bug #28256)

• When calling setTimestamp on a prepared statement, the timezone information stored in the calendar
object was ignored. This resulted in the incorrect DATETIME information being stored. The following
example illustrates this:

Timestamp t = new Timestamp(cal.getTimeInMillis());
ps.setTimestamp(N, t, cal);

(Bug #15604)

Changes in MySQL Connector/J 5.1.4 (Not Released)

Only released internally.

Version 5.1.4 has no changelog entries.

Changes in MySQL Connector/J 5.1.3 (2007-09-10)

New Features, Compared to the 5.0 Series of Connector/J

• JDBC-4.0 standardized unwrapping to interfaces that include vendor extensions.

• Support for JDBC-4.0 XML processing using JAXP interfaces to DOM, SAX and StAX.

• JDBC-4.0 support for setting per-connection client information (which can be viewed in the comments
section of a query using SHOW PROCESSLIST on a MySQL server, or can be extended to support
custom persistence of the information using a public interface).

• Support for JDBC-4.0 NCHAR, NVARCHAR and NCLOB types.

Functionality Added or Changed

• Connector/J now connects using an initial character set of utf-8 solely for the purpose of authentication
to permit user names or database names in any character set to be used in the JDBC connection URL.
(Bug #29853)

http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/show-processlist.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/J 5.1.3 (2007-09-10)

116

• Setting useBlobToStoreUTF8OutsideBMP to true tells the driver to treat [MEDIUM/LONG]BLOB
columns as [LONG]VARCHAR columns holding text encoded in UTF-8 that has characters outside the
BMP (4-byte encodings), which MySQL server can't handle natively.

Set utf8OutsideBmpExcludedColumnNamePattern to a regex so that column names matching
the given regex will still be treated as BLOBs The regex must follow the patterns used for the
java.util.regexpackage. The default is to exclude no columns, and include all columns.

Set utf8OutsideBmpIncludedColumnNamePattern to specify exclusion rules to
utf8OutsideBmpExcludedColumnNamePattern". The regex must follow the patterns used for the
java.util.regex package.

• New methods on com.mysql.jdbc.Statement: setLocalInfileInputStream() and
getLocalInfileInputStream():

• setLocalInfileInputStream() sets an InputStream instance that will be used to send data to
the MySQL server for a LOAD DATA LOCAL INFILE statement rather than a FileInputStream or
URLInputStream that represents the path given as an argument to the statement.

This stream will be read to completion upon execution of a LOAD DATA LOCAL INFILE statement,
and will automatically be closed by the driver, so it needs to be reset before each call to execute*()
that would cause the MySQL server to request data to fulfill the request for LOAD DATA LOCAL
INFILE.

If this value is set to NULL, the driver will revert to using a FileInputStream or URLInputStream
as required.

• getLocalInfileInputStream() returns the InputStream instance that will be used to send data
in response to a LOAD DATA LOCAL INFILE statement.

This method returns NULL if no such stream has been set using setLocalInfileInputStream().

• Errors encountered during
Statement/PreparedStatement/CallableStatement.executeBatch() when
rewriteBatchStatements has been set to true now return BatchUpdateExceptions according
to the setting of continueBatchOnError.

If continueBatchOnError is set to true, the update counts for the "chunk" that were sent as
one unit will all be set to EXECUTE_FAILED, but the driver will attempt to process the remainder of
the batch. You can determine which "chunk" failed by looking at the update counts returned in the
BatchUpdateException.

If continueBatchOnError is set to "false", the update counts returned will contain all updates up-to
and including the failed "chunk", with all counts for the failed "chunk" set to EXECUTE_FAILED.

Since MySQL doesn't return multiple error codes for multiple-statements, or for multi-value
INSERT/REPLACE, it is the application's responsibility to handle determining which item(s) in the "chunk"
actually failed.

• Statement.setQueryTimeout()s now affect the entire batch for batched statements, rather than the
individual statements that make up the batch.

• JDBC-4.0 ease-of-development features including auto-registration with the DriverManager
through the service provider mechanism, standardized Connection validity checks and categorized
SQLExceptions based on recoverability/retry-ability and class of the underlying error.

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

Changes in MySQL Connector/J 5.1.3 (2007-09-10)

117

• The driver will automatically adjust the server session variable net_write_timeout when it
determines its been asked for a "streaming" result, and resets it to the previous value when the result set
has been consumed. (The configuration property is named netTimeoutForStreamingResults, with
a unit of seconds, the value '0' means the driver will not try and adjust this value).

• Added experimental support for statement "interceptors" through the
com.mysql.jdbc.StatementInterceptor interface, examples are in com/mysql/jdbc/
interceptors. Implement this interface to be placed "in between" query execution, so that it can be
influenced (currently experimental).

• The data (and how it is stored) for ResultSet rows are now behind an interface which enables us (in
some cases) to allocate less memory per row, in that for "streaming" result sets, we re-use the packet
used to read rows, since only one row at a time is ever active.

• The driver now picks appropriate internal row representation (whole row in one buffer, or individual
byte[]s for each column value) depending on heuristics, including whether or not the row has BLOB or
TEXT types and the overall row-size. The threshold for row size that will cause the driver to use a buffer
rather than individual byte[]s is configured by the configuration property largeRowSizeThreshold,
which has a default value of 2KB.

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched
arguments to be re-written in the form "CALL (...); CALL (...); ..." to send the batch in as few client/server
round trips as possible.

• Added two configuration parameters:

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work
around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs
as Strings. Added specifically to work around dubious metadata returned by the server for GROUP BY
clauses. Defaults to false.

Bugs Fixed

• CallableStatement.executeBatch() doesn't work when connection property
noAccessToProcedureBodies has been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now
report all parameters as IN parameters but permit callers to call registerOutParameter() on them without
throwing an exception. (Bug #28689)

• NPE with null column values when padCharsWithSpace is set to true. (Bug #30851)

• setObject(int, Object, int, int) delegate in PreparedStatementWrapper delegates to wrong
method. (Bug #30892)

• Closing a load-balanced connection would cause a ClassCastException. (Bug #29852)

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of
254 for server versions older than 5.0.3, 64 for versions 5.0.3 to 5.0.5 and 65 for versions newer than
5.0.5. (Bug #28972)

• An ArithmeticException or NullPointerException would be raised when the batch had
zero members and rewriteBatchedStatements=true when addBatch() was never called, or
executeBatch() was called immediately after clearBatch(). (Bug #30550)

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html

Changes in MySQL Connector/J 5.1.2 (2007-06-29)

118

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only
works for MySQL server versions 5.0.25 and newer, since earlier versions didn't consistently return
correct metadata for functions, and thus results from subqueries and functions were indistinguishable
from each other, leading to type-related bugs. (Bug #30664)

• Connection checker for JBoss didn't use same method parameters using reflection, causing connections
to always seem "bad". (Bug #29106)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in
ResultSetMetadata. (Bug #27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug
#27182)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns.
(Bug #27915)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is
now inserted into the version information during the build. (Bug #21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause
the driver to instead send a ping to the server and return a fake result set (much lighter weight), and
when using a ReplicationConnection or a LoadBalancedConnection, will send the ping across all active
connections.

Changes in MySQL Connector/J 5.1.2 (2007-06-29)

This is a new Beta development release, fixing recently discovered bugs.

Functionality Added or Changed

• Setting the configuration property rewriteBatchedStatements to true will now cause the driver to
rewrite batched prepared statements with more than 3 parameter sets in a batch into multi-statements
(separated by ";") if they are not plain (that is, without SELECT or ON DUPLICATE KEY UPDATE
clauses) INSERT or REPLACE statements.

Changes in MySQL Connector/J 5.1.1 (2007-06-22)

This is a new Alpha development release, adding new features and fixing recently discovered bugs.

Functionality Added or Changed

• Incompatible Change: Pulled vendor-extension methods of Connection implementation out into
an interface to support java.sql.Wrapper functionality from ConnectionPoolDataSource. The
vendor extensions are javadoc'd in the com.mysql.jdbc.Connection interface.

For those looking further into the driver implementation, it is not an API that is used for pluggability
of implementations inside our driver (which is why there are still references to ConnectionImpl
throughout the code).

We've also added server and client prepareStatement() methods that cover all of the variants in the
JDBC API.

Connection.serverPrepare(String) has been re-named to
Connection.serverPrepareStatement() for consistency with
Connection.clientPrepareStatement().

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

Changes in MySQL Connector/J 5.1.0 (2007-04-11)

119

• Setting rewriteBatchedStatements to true now causes CallableStatements with batched
arguments to be re-written in the form CALL (...); CALL (...); ... to send the batch in as few
client/server round trips as possible.

• See the sources (fully javadoc'd) for com.mysql.jdbc.StatementInterceptor for more details
until we iron out the API and get it documented in the manual.

• Added experimental support for statement "interceptors" through the
com.mysql.jdbc.StatementInterceptor interface, examples are in com/mysql/jdbc/
interceptors.

Implement this interface to be placed "in between" query execution, so that you can influence it.
(currently experimental).

StatementInterceptors are "chainable" when configured by the user, the results returned by the
"current" interceptor will be passed on to the next on in the chain, from left-to-right order, as specified by
the user in the JDBC configuration property statementInterceptors.

• Driver now picks appropriate internal row representation (whole row in one buffer, or individual byte[]s for
each column value) depending on heuristics, including whether or not the row has BLOB or TEXT types
and the overall row-size. The threshold for row size that will cause the driver to use a buffer rather than
individual byte[]s is configured by the configuration property largeRowSizeThreshold, which has a
default value of 2KB.

• Similar to Connection, we pulled out vendor extensions to Statement into an interface named
com.mysql.Statement, and moved the Statement class into com.mysql.StatementImpl. The
two methods (javadoc'd in com.mysql.Statement are enableStreamingResults(), which already
existed, and disableStreamingResults() which sets the statement instance back to the fetch size
and result set type it had before enableStreamingResults() was called.

• The data (and how it is stored) for ResultSet rows are now behind an interface which enables us (in
some cases) to allocate less memory per row, in that for "streaming" result sets, we re-use the packet
used to read rows, since only one row at a time is ever active.

• Externalized the descriptions of connection properties.

• Made it possible to retrieve prepared statement parameter bindings (to be used in
StatementInterceptors, primarily).

• Row navigation now causes any streams/readers open on the result set to be closed, as in some cases
we're reading directly from a shared network packet and it will be overwritten by the "next" row.

Changes in MySQL Connector/J 5.1.0 (2007-04-11)

This is the first public alpha release of the current Connector/J 5.1 development branch, providing an
insight to upcoming features. Although some of these are still under development, this release includes the
following new features and changes (in comparison to the current Connector/J 5.0 production release):

Important change: Due to a number of issues with the use of server-side prepared statements,
Connector/J 5.0.5 has disabled their use by default. The disabling of server-side prepared statements does
not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your
connector string:

useServerPrepStmts=true

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 5.1.0 (2007-04-11)

120

The default value of this property is false (that is, Connector/J does not use server-side prepared
statements).

Note

The disabling of server-side prepared statements does not affect the operation of
the connector. However, if you use the useTimezone=true connection option and
use client-side prepared statements (instead of server-side prepared statements)
you should also set useSSPSCompatibleTimezoneShift=true.

Functionality Added or Changed

• Added support for JDBC-4.0's Wrapper interface.

• com.mysql.jdbc.java6.rtjar: Full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's client information. The backend storage of information provided using
Connection.setClientInfo() and retrieved by Connection.getClientInfo() is pluggable by
any class that implements the com.mysql.jdbc.JDBC4ClientInfoProvider interface and has a
no-args constructor.

The implementation used by the driver is configured using the clientInfoProvider configuration
property (with a default of value of com.mysql.jdbc.JDBC4CommentClientInfoProvider, an
implementation which lists the client information as a comment prepended to every query sent to the
server).

This functionality is only available when using Java-6 or newer.

• New feature—driver will automatically adjust session variable net_write_timeout when it determines
it has been asked for a "streaming" result, and resets it to the previous value when the result set has
been consumed. (configuration property is named netTimeoutForStreamingResults value and has
a unit of seconds, the value 0 means the driver will not try and adjust this value).

• Re-worked Ant buildfile to build JDBC-4.0 classes separately, as well as support building under Eclipse
(since Eclipse can't mix/match JDKs).

To build, you must set JAVA_HOME to J2SDK-1.4.2 or Java-5, and set the following properties on your
Ant command line:

• com.mysql.jdbc.java6.javac: Full path to your Java-6 javac executable

• com.mysql.jdbc.java6.rtjar: Full path to your Java-6 rt.jar file

• Added support for JDBC-4.0's SQLXML interfaces.

• com.mysql.jdbc.java6.javac: Full path to your Java-6 javac executable

• Added support for JDBC-4.0's NCLOB, and NCHAR/NVARCHAR types.

• Added support for JDBC-4.0 categorized SQLExceptions.

• Refactored CommunicationsException into a JDBC-3.0 version, and a JDBC-4.0 version (which
extends SQLRecoverableException, now that it exists).

Note

This change means that if you were catching
com.mysql.jdbc.CommunicationsException in your applications

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/J 5.0.x

121

instead of looking at the SQLState class of 08, and are moving to Java
6 (or newer), you need to change your imports to that exception to be
com.mysql.jdbc.exceptions.jdbc4.CommunicationsException, as
the old class will not be instantiated for communications link-related errors under
Java 6.

Changes in MySQL Connector/J 5.0.x

Changes in MySQL Connector/J 5.0.8 (2007-10-09)

Functionality Added or Changed

• Driver will now fall back to sane defaults for max_allowed_packet and net_buffer_length if
the server reports them incorrectly (and will log this situation at WARN level, since it is actually an error
condition).

• XAConnections now start in auto-commit mode (as per JDBC-4.0 specification clarification).

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs
as Strings. Added specifically to work around dubious metadata returned by the server for GROUP BY
clauses. Defaults to false.

• Added two configuration parameters:

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work
around dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

• functionsNeverReturnBlobs: Should the driver always treat data from functions returning BLOBs
as Strings. Added specifically to work around dubious metadata returned by the server for GROUP BY
clauses. Defaults to false.

• blobsAreStrings: Should the driver always treat BLOBs as Strings. Added specifically to work around
dubious metadata returned by the server for GROUP BY clauses. Defaults to false.

Bugs Fixed

• Connections established using URLs of the form jdbc:mysql:loadbalance:// weren't doing failover
if they tried to connect to a MySQL server that was down. The driver now attempts connections to the
next "best" (depending on the load balance strategy in use) server, and continues to attempt connecting
to the next "best" server every 250 milliseconds until one is found that is up and running or 5 minutes has
passed.

If the driver gives up, it will throw the last-received SQLException. (Bug #31053)

• CallableStatement.executeBatch() doesn't work when connection property
noAccessToProcedureBodies has been set to true.

The fix involves changing the behavior of noAccessToProcedureBodies,in that the driver will now
report all parameters as IN parameters but permit callers to call registerOutParameter() on them without
throwing an exception. (Bug #28689)

• NPE with null column values when padCharsWithSpace is set to true. (Bug #30851)

• setObject(int, Object, int, int) delegate in PreparedStatementWrapper delegates to wrong
method. (Bug #30892)

• Closing a load-balanced connection would cause a ClassCastException. (Bug #29852)

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_buffer_length

Changes in MySQL Connector/J 5.0.7 (2007-07-20)

122

• DatabaseMetaData.getTypeInfo() for the types DECIMAL and NUMERIC will return a precision of
254 for server versions older than 5.0.3, 64 for versions 5.0.3 to 5.0.5 and 65 for versions newer than
5.0.5. (Bug #28972)

• An ArithmeticException or NullPointerException would be raised when the batch had
zero members and rewriteBatchedStatements=true when addBatch() was never called, or
executeBatch() was called immediately after clearBatch(). (Bug #30550)

• Collation on VARBINARY column types would be misidentified. A fix has been added, but this fix only
works for MySQL server versions 5.0.25 and newer, since earlier versions didn't consistently return
correct metadata for functions, and thus results from subqueries and functions were indistinguishable
from each other, leading to type-related bugs. (Bug #30664)

• Connection checker for JBoss didn't use same method parameters using reflection, causing connections
to always seem "bad". (Bug #29106)

• Cached metadata with PreparedStatement.execute() throws NullPointerException. (Bug
#27412)

• UNSIGNED types not reported using DBMD.getTypeInfo(), and capitalization of type names
is not consistent between DBMD.getColumns(), RSMD.getColumnTypeName() and
DBMD.getTypeInfo().

This fix also ensures that the precision of UNSIGNED MEDIUMINT and UNSIGNED BIGINT is reported
correctly using DBMD.getColumns(). (Bug #27916)

• When a connection is in read-only mode, queries that are wrapped in parentheses were incorrectly
identified DML statements. (Bug #28256)

• Schema objects with identifiers other than the connection character aren't retrieved correctly in
ResultSetMetadata. (Bug #27867)

• Connection.getServerCharacterEncoding() doesn't work for servers with version >= 4.1. (Bug
#27182)

• DatabaseMetaData.getColumns() doesn't contain SCOPE_* or IS_AUTOINCREMENT columns.
(Bug #27915)

• The automated SVN revisions in DBMD.getDriverVersion(). The SVN revision of the directory is
now inserted into the version information during the build. (Bug #21116)

• Specifying a "validation query" in your connection pool that starts with "/* ping */" _exactly_ will cause
the driver to instead send a ping to the server and return a fake result set (much lighter weight), and
when using a ReplicationConnection or a LoadBalancedConnection, will send the ping across all active
connections.

Changes in MySQL Connector/J 5.0.7 (2007-07-20)

Functionality Added or Changed

• Added configuration property useNanosForElapsedTime - for profiling/debugging functionality that
measures elapsed time, should the driver try to use nanoseconds resolution if available (requires JDK >=
1.5)?

Note

If useNanosForElapsedTime is set to true, and this property is set to
"0" (or left default), then elapsed times will still be measured in nanoseconds (if

http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

Changes in MySQL Connector/J 5.0.7 (2007-07-20)

123

possible), but the slow query threshold will be converted from milliseconds to
nanoseconds, and thus have an upper bound of approximately 2000 milliseconds
(as that threshold is represented as an integer, not a long).

• Added new debugging functionality - Setting configuration property
includeInnodbStatusInDeadlockExceptions to true will cause the driver to append the output
of SHOW ENGINE INNODB STATUS to deadlock-related exceptions, which will enumerate the current
locks held inside InnoDB.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the documentation
for java.net.Socket.setTrafficClass() for more information.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means
use the platform default value for this property.

• Setting the configuration parameter useCursorFetch to true for MySQL-5.0+ enables the use of
cursors that enable Connector/J to save memory by fetching result set rows in chunks (where the chunk
size is set by calling setFetchSize() on a Statement or ResultSet) by using fully materialized cursors on
the server.

• Added configuration properties to enable tuning of TCP/IP socket parameters:

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default
true)?

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means
use the platform default value for this property.

• tcpSndBuf - Should the driver set SO_SND_BUF to the given value? The default value of '0', means
use the platform default value for this property.

• tcpTrafficClass - Should the driver set traffic class or type-of-service fields? See the
documentation for java.net.Socket.setTrafficClass() for more information.

• Setting useDynamicCharsetInfo to false now causes driver to use static lookups for collations
as well (makes ResultSetMetadata.isCaseSensitive() much more efficient, which leads to performance
increase for ColdFusion, which calls this method for every column on every table it sees, it appears).

• tcpRcvBuf - Should the driver set SO_RCV_BUF to the given value? The default value of '0', means
use the platform default value for this property.

• Added configuration property slowQueryThresholdNanos - if useNanosForElapsedTime is set to
true, and this property is set to a nonzero value the driver will use this threshold (in nanosecond units)
to determine if a query was slow, instead of using millisecond units.

• tcpNoDelay - Should the driver set SO_TCP_NODELAY (disabling the Nagle Algorithm, default
true)?

• Driver detects when it is running in a ColdFusion MX server (tested with version 7), and uses the
configuration bundle coldFusion, which sets useDynamicCharsetInfo to false (see previous
entry), and sets useLocalSessionState and autoReconnect to true.

• Give more information in EOFExceptions thrown out of MysqlIO (how many bytes the driver expected to
read, how many it actually read, say that communications with the server were unexpectedly lost).

• tcpKeepAlive - Should the driver set SO_KEEPALIVE (default true)?

http://dev.mysql.com/doc/refman/5.5/en/show-engine.html

Changes in MySQL Connector/J 5.0.6 (2007-05-15)

124

• The driver will now automatically set useServerPrepStmts to true when useCursorFetch has
been set to true, since the feature requires server-side prepared statements to function.

Bugs Fixed

• Parser in client-side prepared statements eats character following '/' if it is not a multi-line comment. (Bug
#28851)

• Parser in client-side prepared statements runs to end of statement, rather than end-of-line for '#'
comments. Also added support for '--' single-line comments. (Bug #28956)

• Don't send any file data in response to LOAD DATA LOCAL INFILE if the feature is disabled at the client
side. This is to prevent a malicious server or man-in-the-middle from asking the client for data that the
client is not expecting. Thanks to Jan Kneschke for discovering the exploit and Andrey "Poohie" Hristov,
Konstantin Osipov and Sergei Golubchik for discussions about implications and possible fixes. (Bug
#29605)

• PreparedStatement.getMetaData() for statements containing leading one-line comments is not returned
correctly.

As part of this fix, we also overhauled detection of DML for executeQuery() and SELECTs for
executeUpdate() in plain and prepared statements to be aware of the same types of comments. (Bug
#28469)

Changes in MySQL Connector/J 5.0.6 (2007-05-15)

Functionality Added or Changed

• More intelligent initial packet sizes for the "shared" packets are used (512 bytes, rather than 16K), and
initial packets used during handshake are now sized appropriately as to not require reallocation.

• Driver will now use INSERT INTO ... VALUES (DEFAULT)form of statement for updatable result
sets for ResultSet.insertRow(), rather than pre-populating the insert row with values from
DatabaseMetaData.getColumns()(which results in a SHOW FULL COLUMNS on the server for every
result set). If an application requires access to the default values before insertRow() has been called,
the JDBC URL should be configured with populateInsertRowWithDefaultValues set to true.

This fix specifically targets performance issues with ColdFusion and the fact that it seems to ask for
updatable result sets no matter what the application does with them.

• Fixed issue where a failed-over connection would let an application call setReadOnly(false),
when that call should be ignored until the connection is reconnected to a writable master unless
failoverReadOnly had been set to false.

• com.mysql.jdbc.[NonRegistering]Driver now understands URLs of the format
jdbc:mysql:replication:// and jdbc:mysql:loadbalance:// which will create a
ReplicationConnection (exactly like when using [NonRegistering]ReplicationDriver) and an
experimental load-balanced connection designed for use with SQL nodes in a MySQL Cluster/NDB
environment, respectively.

In an effort to simplify things, we're working on deprecating multiple drivers, and
instead specifying different core behavior based upon JDBC URL prefixes, so watch for
[NonRegistering]ReplicationDriver to eventually disappear, to be replaced with
com.mysql.jdbc[NonRegistering]Driver with the new URL prefix.

• random: The driver will pick a random host for each request. This tends to work better than round-robin,
as the randomness will somewhat account for spreading loads where requests vary in response time,

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/show-columns.html

Changes in MySQL Connector/J 5.0.6 (2007-05-15)

125

while round-robin can sometimes lead to overloaded nodes if there are variations in response times
across the workload.

• Give better error message when "streaming" result sets, and the connection gets clobbered because of
exceeding net_write_timeout on the server.

• New configuration property, enableQueryTimeouts (default true).

When enabled, query timeouts set with Statement.setQueryTimeout() use a shared
java.util.Timer instance for scheduling. Even if the timeout doesn't expire before the query
is processed, there will be memory used by the TimerTask for the given timeout which won't be
reclaimed until the time the timeout would have expired if it hadn't been cancelled by the driver. High-
load environments might want to consider disabling this functionality. (this configuration property is part
of the maxPerformance configuration bundle).

• Added configuration property useDynamicCharsetInfo. If set to false (the default), the driver will
use a per-connection cache of character set information queried from the server when necessary, or
when set to true, use a built-in static mapping that is more efficient, but isn't aware of custom character
sets or character sets implemented after the release of the JDBC driver.

Note

This only affects the padCharsWithSpace configuration property and the
ResultSetMetaData.getColumnDisplayWidth() method.

• When useLocalSessionState is set to true and connected to a MySQL-5.0 or later server, the
JDBC driver will now determine whether an actual commit or rollback statement needs to be sent to
the database when Connection.commit() or Connection.rollback() is called.

This is especially helpful for high-load situations with connection pools that always call
Connection.rollback() on connection check-in/check-out because it avoids a round-trip to the
server.

• Added configuration property padCharsWithSpace (defaults to false). If set to true, and a result set
column has the CHAR type and the value does not fill the amount of characters specified in the DDL for
the column, the driver will pad the remaining characters with space (for ANSI compliance).

• bestResponseTime: The driver will route the request to the host that had the best response time for
the previous transaction.

• Added an experimental load-balanced connection designed for use with SQL nodes in a MySQL
Cluster/NDB environment (This is not for master-slave replication. For that, we suggest you look at
ReplicationConnection or lbpool).

If the JDBC URL starts with jdbc:mysql:loadbalance://host-1,host-2,...host-n, the driver
will create an implementation of java.sql.Connection that load balances requests across a series of
MySQL JDBC connections to the given hosts, where the balancing takes place after transaction commit.

Therefore, for this to work (at all), you must use transactions, even if only reading data.

Physical connections to the given hosts will not be created until needed.

The driver will invalidate connections that it detects have had communication errors when processing a
request. A new connection to the problematic host will be attempted the next time it is selected by the
load balancing algorithm.

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_net_write_timeout
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/J 5.0.6 (2007-05-15)

126

There are two choices for load balancing algorithms, which may be specified by the
loadBalanceStrategy JDBC URL configuration property:

• random: The driver will pick a random host for each request. This tends to work better than round-
robin, as the randomness will somewhat account for spreading loads where requests vary in response
time, while round-robin can sometimes lead to overloaded nodes if there are variations in response
times across the workload.

• bestResponseTime: The driver will route the request to the host that had the best response time for
the previous transaction.

Bugs Fixed

• When the configuration property useCursorFetch was set to true, sometimes server would return
new, more exact metadata during the execution of the server-side prepared statement that enables this
functionality, which the driver ignored (using the original metadata returned during prepare()), causing
corrupt reading of data due to type mismatch when the actual rows were returned. (Bug #26173)

• Whitespace surrounding storage/size specifiers in stored procedure parameters declaration causes
NumberFormatException to be thrown when calling stored procedure on JDK-1.5 or newer, as the
Number classes in JDK-1.5+ are whitespace intolerant. (Bug #25624)

• Connection.getTransactionIsolation() uses "SHOW VARIABLES LIKE" which is very
inefficient on MySQL-5.0+ servers. (Bug #27655)

• ResultSet.get*() with a column index < 1 returns misleading error message. (Bug #27317)

• Fixed issue where calling getGeneratedKeys() on a prepared statement after calling execute()
didn't always return the generated keys (executeUpdate() worked fine however). (Bug #27655)

• BIT(> 1) is returned as java.lang.String from ResultSet.getObject() rather than byte[].
(Bug #25328)

• PreparedStatement is not closed in BlobFromLocator.getBytes(). (Bug #26592)

• Fast date/time parsing doesn't take into account 00:00:00 as a legal value. (Bug #26789)

• Client options not sent correctly when using SSL, leading to stored procedures not being able to return
results. Thanks to Don Cohen for the bug report, testcase and patch. (Bug #25545)

• More useful error messages are generated when the driver thinks a result set is not updatable. (Thanks
to Ashley Martens for the patch). (Bug #28085)

• CALL /* ... */ some_proc() doesn't work. As a side effect of this fix, you can now use /* */ and
comments when preparing statements using client-side prepared statement emulation.

If the comments happen to contain parameter markers (?), they will be treated as belonging to the
comment (that is, not recognized) rather than being a parameter of the statement.

Note

The statement when sent to the server will contain the comments as-is, they're
not stripped during the process of preparing the PreparedStatement or
CallableStatement.

(Bug #27400)

Changes in MySQL Connector/J 5.0.5 (2007-03-02)

127

• Comments in DDL of stored procedures/functions confuse procedure parser, and thus metadata about
them can not be created, leading to inability to retrieve said metadata, or execute procedures that have
certain comments in them. (Bug #26959)

• Using ResultSet.get*() with a column index less than 1 returns a misleading error message. (Bug
#27317)

• CallableStatements with OUT/INOUT parameters that are "binary" (BLOB, BIT, (VAR)BINARY,
JAVA_OBJECT) have extra 7 bytes. (Bug #25715)

• Statement.setMaxRows() is not effective on result sets materialized from cursors. (Bug #25517)

Changes in MySQL Connector/J 5.0.5 (2007-03-02)

Functionality Added or Changed

• We've added a new configuration option treatUtilDateAsTimestamp, which is false by default, as
(1) We already had specific behavior to treat java.util.Date as a java.sql.Timestamp because it is useful
to many folks, and (2) that behavior will very likely be required for drivers JDBC-post-4.0.

• Added configuration property localSocketAddress, which is the host name or IP address given to
explicitly configure the interface that the driver will bind the client side of the TCP/IP connection to when
connecting.

• Fixed logging of XA commands sent to server, it is now configurable using logXaCommands property
(defaults to false).

• Usage Advisor now detects empty results sets and does not report on columns not referenced in those
empty sets.

• Improved speed of datetime parsing for ResultSets that come from plain or nonserver-side prepared
statements. You can enable old implementation with useFastDateParsing=false as a configuration
parameter.

• Important change: Due to a number of issues with the use of server-side prepared statements,
Connector/J 5.0.5 has disabled their use by default. The disabling of server-side prepared statements
does not affect the operation of the connector in any way.

To enable server-side prepared statements, add the following configuration property to your connector
string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared
statements).

• The rewriteBatchedStatements feature can now be used with server-side prepared statements.

• Usage Advisor will now issue warnings for result sets with large numbers of rows. You can configure the
trigger value by using the resultSetSizeThreshold parameter, which has a default value of 100.

Bugs Fixed

• When using a server-side prepared statement the driver would send timestamps to the server using
nanoseconds instead of milliseconds. (Bug #21438)

• Connection property socketFactory wasn't exposed using correctly named mutator/accessor, causing
data source implementations that use JavaBean naming conventions to set properties to fail to set the
property (and in the case of SJAS, fail silently when trying to set this parameter). (Bug #26326)

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html

Changes in MySQL Connector/J 5.0.5 (2007-03-02)

128

• ParameterMetaData throws NullPointerException when prepared SQL has a syntax error.
Added generateSimpleParameterMetadata configuration property, which when set to true will
generate metadata reflecting VARCHAR for every parameter (the default is false, which will cause an
exception to be thrown if no parameter metadata for the statement is actually available). (Bug #21267)

• Connector/J now returns a better error message when server doesn't return enough information to
determine stored procedure/function parameter types. (Bug #24065)

• When using the rewriteBatchedStatements connection option with
PreparedState.executeBatch() an internal memory leak would occur. (Bug #25073)

• EscapeProcessor gets confused by multiple backslashes. We now push the responsibility of syntax
errors back on to the server for most escape sequences. (Bug #25399)

• Specifying US-ASCII as the character set in a connection to a MySQL 4.1 or newer server does not
map correctly. (Bug #24840)

• DatabaseMetaData.getSchemas() doesn't return a TABLE_CATALOG column. (Bug #23303)

• INOUT parameters in CallableStatements get doubly escaped. (Bug #25379)

• Client-side prepared statement parser gets confused by in-line comments /*...*/ and therefore
cannot rewrite batch statements or reliably detect the type of statements when they are used. (Bug
#25025)

• Results sets from UPDATE statements that are part of multi-statement queries would cause an
SQLException error, "Result is from UPDATE". (Bug #25009)

• When using server-side prepared statements and timestamp columns, value would be incorrectly
populated (with nanoseconds, not microseconds). (Bug #21438)

• Some exceptions thrown out of StandardSocketFactory were needlessly wrapped, obscuring their
true cause, especially when using socket timeouts. (Bug #21480)

• StringUtils.indexOfIgnoreCaseRespectQuotes() isn't case-insensitive on the first character
of the target. This bug also affected rewriteBatchedStatements functionality when prepared
statements did not use uppercase for the VALUES clause. (Bug #25047)

• Using DatabaseMetaData.getSQLKeywords() does not return a all of the of the reserved keywords
for the current MySQL version. Current implementation returns the list of reserved words for MySQL 5.1,
and does not distinguish between versions. (Bug #24794)

• A query execution which timed out did not always throw a MySQLTimeoutException. (Bug #25836)

• A connection error would occur when connecting to a MySQL server with certain character sets. Some
collations/character sets reported as "unknown" (specifically cias variants of existing character sets),
and inability to override the detected server character set. (Bug #23645)

• Using setFetchSize() breaks prepared SHOW and other commands. (Bug #24360)

• Fixed issue where field-level for metadata from DatabaseMetaData when using
INFORMATION_SCHEMA didn't have references to current connections, sometimes leading to Null
Pointer Exceptions (NPEs) when introspecting them using ResultSetMetaData. (Bug #25073)

• Using DATETIME columns would result in time shifts when useServerPrepStmts was
true. This occurred due to different behavior when using client-side compared to server-side
prepared statements and the useJDBCCompliantTimezoneShift option. This is now fixed
if moving from server-side prepared statements to client-side prepared statements by setting

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/update.html
http://dev.mysql.com/doc/refman/5.5/en/show.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 5.0.5 (2007-03-02)

129

useSSPSCompatibleTimezoneShift to true, as the driver can't tell if this is a new deployment that
never used server-side prepared statements, or if it is an existing deployment that is switching to client-
side prepared statements from server-side prepared statements. (Bug #24344)

• When using a JDBC connection URL that is malformed, the
NonRegisteringDriver.getPropertyInfo method will throw a Null Pointer Exception (NPE). (Bug
#22628)

• Storing a java.util.Date object in a BLOB column would not be serialized correctly during
setObject. (Bug #25787)

• Inconsistency between getSchemas and INFORMATION_SCHEMA. (Bug #23304)

• Calendars and timezones are now lazily instantiated when required. (Bug #24351)

• Timer instance used for Statement.setQueryTimeout() created per-connection, rather than per-
VM, causing memory leak. (Bug #25514)

• Calling Statement.cancel() could result in a Null Pointer Exception (NPE). (Bug #24721)

• Fixed an issue where XADataSources couldn't be bound into JNDI, as the DataSourceFactory
didn't know how to create instances of them.

Other Changes

• When using cached metadata, skip field-level metadata packets coming from the server, rather than
reading them and discarding them without creating com.mysql.jdbc.Field instances.

• Use a java.util.TreeMap to map column names to ordinal indexes for ResultSet.findColumn()
instead of a HashMap. This enables us to have case-insensitive lookups (required by the JDBC
specification) without resorting to the many transient object instances needed to support this requirement
with a normal HashMap with either case-adjusted keys, or case-insensitive keys. (In the worst case
scenario for lookups of a 1000 column result set, TreeMaps are about half as fast wall-clock time as
a HashMap, however in normal applications their use gives many orders of magnitude reduction in
transient object instance creation which pays off later for CPU usage in garbage collection).

• Fixed cases where ServerPreparedStatements weren't using cached metadata when
cacheResultSetMetadata=true was used.

• Take localSocketAddress property into account when creating instances of
CommunicationsException when the underlying exception is a java.net.BindException, so
that a friendlier error message is given with a little internal diagnostics.

• Fixed some Null Pointer Exceptions (NPEs) when cached metadata was used with
UpdatableResultSets.

• When extracting foreign key information from SHOW CREATE TABLE in DatabaseMetaData, ignore
exceptions relating to tables being missing (which could happen for cross-reference or imported-key
requests, as the list of tables is generated first, then iterated).

• Reverted back to internal character conversion routines for single-byte character sets, as the ones
internal to the JVM are using much more CPU time than our internal implementation.

• Changed cached result set metadata (when using cacheResultSetMetadata=true) to be cached
per-connection rather than per-statement as previously implemented.

• Throw exceptions encountered during timeout to thread calling Statement.execute*(), rather than
RuntimeException.

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html

Changes in MySQL Connector/J 5.0.4 (2006-10-20)

130

• Re-worked stored procedure parameter parser to be more robust. Driver no longer requires BEGIN
in stored procedure definition, but does have requirement that if a stored function begins with a label
directly after the "returns" clause, that the label is not a quoted identifier.

• Performance enhancement of initial character set configuration, driver will only send commands required
to configure connection character set session variables if the current values on the server do not match
what is required.

• Avoid static synchronized code in JVM class libraries for dealing with default timezones.

Changes in MySQL Connector/J 5.0.4 (2006-10-20)

Bugs Fixed

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to
server with server-side prepared statement). (Bug #22290)

• Newlines causing whitespace to span confuse procedure parser when getting parameter metadata for
stored procedures. (Bug #22024)

• Driver was using milliseconds for Statement.setQueryTimeout() when specification says argument is to
be in seconds. (Bug #22359)

• Added new _ci collations to CharsetMapping - utf8_unicode_ci not working. (Bug #22456)

• Workaround for server crash when calling stored procedures using a server-side prepared statement
(driver now detects prepare(stored procedure) and substitutes client-side prepared statement). (Bug
#22297)

• When using information_schema for metadata, COLUMN_SIZE for getColumns() is not clamped
to range of java.lang.Integer as is the case when not using information_schema, thus leading to a
truncation exception that isn't present when not using information_schema. (Bug #21544)

• DBMD.getColumns() does not return expected COLUMN_SIZE for the SET type, now returns length of
largest possible set disregarding whitespace or the "," delimiters to be consistent with the ODBC driver.
(Bug #22613)

• Column names don't match metadata in cases where server doesn't return original column names
(column functions) thus breaking compatibility with applications that expect 1-to-1 mappings between
findColumn() and rsmd.getColumnName(), usually manifests itself as "Can't find column ('')"
exceptions. (Bug #21379)

• Driver now supports {call sp} (without "()" if procedure has no arguments).

• DatabaseMetaData correctly reports true for supportsCatalog*() methods.

• Fixed configuration property jdbcCompliantTruncation was not being used for reads of result set
values.

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'.

Changes in MySQL Connector/J 5.0.3 (2006-07-26, beta)

Functionality Added or Changed

• Added configuration option noAccessToProcedureBodies which will cause the driver to create basic
parameter metadata for CallableStatements when the user does not have access to procedure

Changes in MySQL Connector/J 5.0.2 (2006-07-11)

131

bodies using SHOW CREATE PROCEDURE or selecting from mysql.proc instead of throwing an
exception. The default value for this option is false

Bugs Fixed

• Fixed Statement.cancel() causes NullPointerException if underlying connection has been
closed due to server failure. (Bug #20650)

• If the connection to the server has been closed due to a server failure, then the cleanup process will
call Statement.cancel(), triggering a NullPointerException, even though there is no active
connection. (Bug #20650)

Changes in MySQL Connector/J 5.0.2 (2006-07-11)

Bugs Fixed

• MysqlXaConnection.recover(int flags) now permits combinations of
XAResource.TMSTARTRSCAN and TMENDRSCAN. To simulate the “scanning” nature of the interface,
we return all prepared XIDs for TMSTARTRSCAN, and no new XIDs for calls with TMNOFLAGS, or
TMENDRSCAN when not in combination with TMSTARTRSCAN. This change was made for API compliance,
as well as integration with IBM WebSphere's transaction manager. (Bug #20242)

• Fixed MysqlValidConnectionChecker for JBoss doesn't work with MySQLXADataSources. (Bug
#20242)

• Added connection/datasource property pinGlobalTxToPhysicalConnection (defaults to false).
When set to true, when using XAConnections, the driver ensures that operations on a given XID
are always routed to the same physical connection. This enables the XAConnection to support XA
START ... JOIN after XA END has been called, and is also a workaround for transaction managers
that don't maintain thread affinity for a global transaction (most either always maintain thread affinity, or
have it as a configuration option). (Bug #20242)

• Fixed driver fails on non-ASCII platforms. The driver was assuming that the platform character set would
be a superset of MySQL's latin1 when doing the handshake for authentication, and when reading
error messages. We now use Cp1252 for all strings sent to the server during the handshake phase,
and a hard-coded mapping of the language system variable to the character set that is used for error
messages. (Bug #18086)

• Fixed can't use XAConnection for local transactions when no global transaction is in progress. (Bug
#17401)

• Better caching of character set converters (per-connection) to remove a bottleneck for multi-byte
character sets. (Bug #20242)

• Fixed ConnectionProperties (and thus some subclasses) are not serializable, even though some
J2EE containers expect them to be. (Bug #19169)

Changes in MySQL Connector/J 5.0.1 (Not Released)

Not released due to a packaging error

Version 5.0.1 has no changelog entries.

Changes in MySQL Connector/J 5.0.0 (2005-12-22)

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/show-create-procedure.html
http://dev.mysql.com/doc/refman/5.5/en/xa-statements.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_language

Changes in MySQL Connector/J 5.0.0 (2005-12-22)

132

• Added support for Connector/MXJ integration using url subprotocol jdbc:mysql:mxj://.... (Bug
#14729)

• Idle timeouts cause XAConnections to whine about rolling themselves back. (Bug #14729)

• When fix for Bug #14562 was merged from 3.1.12, added functionality for CallableStatement's
parameter metadata to return correct information for .getParameterClassName(). (Bug #14729)

• Added service-provider entry to META-INF/services/java.sql.Driver for JDBC-4.0 support. (Bug
#14729)

• Fuller synchronization of Connection to avoid deadlocks when using multithreaded frameworks that
multithread a single connection (usually not recommended, but the JDBC spec permits it anyways), part
of fix to Bug #14972). (Bug #14729)

• Moved all SQLException constructor usage to a factory in SQLError (ground-work for JDBC-4.0
SQLState-based exception classes). (Bug #14729)

• Removed Java5-specific calls to BigDecimal constructor (when result set value is '', (int)0 was
being used as an argument indirectly using method return value. This signature doesn't exist prior to
Java5.) (Bug #14729)

• Implementation of Statement.cancel() and Statement.setQueryTimeout(). Both require
MySQL-5.0.0 or newer server, require a separate connection to issue the KILL QUERY statement, and
in the case of setQueryTimeout() creates an additional thread to handle the timeout functionality.

Note: Failures to cancel the statement for setQueryTimeout() may manifest themselves as
RuntimeExceptions rather than failing silently, as there is currently no way to unblock the thread that
is executing the query being cancelled due to timeout expiration and have it throw the exception instead.
(Bug #14729)

• Return "[VAR]BINARY" for RSMD.getColumnTypeName() when that is actually the type, and it can be
distinguished (MySQL-4.1 and newer). (Bug #14729)

• Add one level of indirection of internal representation of CallableStatement parameter metadata to
avoid class not found issues on JDK-1.3 for ParameterMetadata interface (which doesn't exist prior to
JDBC-3.0).

• PreparedStatement.setString() didn't work correctly when sql_mode on server contained
NO_BACKSLASH_ESCAPES and no characters that needed escaping were present in the string.

• Setting useJDBCCompliantTimezoneShift=true (it is not the default) causes the driver to use GMT
for all TIMESTAMP/DATETIME time zones, and the current VM time zone for any other type that refers
to time zones. This feature can not be used when useTimezone=true to convert between server and
client time zones.

• Return original column name for RSMD.getColumnName() if the column was aliased, alias name for
.getColumnLabel() (if aliased), and original table name for .getTableName(). Note this only works
for MySQL-4.1 and newer, as older servers don't make this information available to clients.

• Moved -bin-g.jar file into separate debug subdirectory to avoid confusion.

• XADataSource implemented (ported from 3.2 branch which won't be released as a product). Use
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource as your datasource class name in your
application server to utilize XA transactions in MySQL-5.0.10 and newer.

• Do not permit .setAutoCommit(true), or .commit() or .rollback() on an XA-managed
connection as per the JDBC specification.

http://dev.mysql.com/doc/refman/5.5/en/kill.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode
http://dev.mysql.com/doc/refman/5.5/en/server-sql-mode.html#sqlmode_no_backslash_escapes
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 3.1.x

133

• If the connection useTimezone is set to true, then also respect time zone conversions in escape-
processed string literals (for example, "{ts ...}" and "{t ...}").

• Added unit tests for XADatasource, as well as friendlier exceptions for XA failures compared to the
"stock" XAException (which has no messages).

• Attempt detection of the MySQL type BINARY (it is an alias, so this isn't always reliable), and use the
java.sql.Types.BINARY type mapping for it.

Changes in MySQL Connector/J 3.1.x

Changes in MySQL Connector/J 3.1.15 (Not yet released)

Important change: Due to a number of issues with the use of server-side prepared statements,
Connector/J 5.0.5 has disabled their use by default. The disabling of server-side prepared statements does
not affect the operation of the connector in any way.

To enable server-side prepared statements you must add the following configuration property to your
connector string:

useServerPrepStmts=true

The default value of this property is false (that is, Connector/J does not use server-side prepared
statements).

Version 3.1.15 has no changelog entries.

Changes in MySQL Connector/J 3.1.14 (2006-10-19)

Bugs Fixed

• Check and store value for continueBatchOnError property in constructor of Statements, rather than
when executing batches, so that Connections closed out from underneath statements don't cause
NullPointerExceptions when it is required to check this property. (Bug #22290)

• Fixed Updatable result set that contains a BIT column fails when server-side prepared statements are
used. (Bug #20485)

• Escape of quotation marks in client-side prepared statements parsing not respected. Patch covers more
than bug report, including NO_BACKSLASH_ESCAPES being set, and stacked quote characters forms
of escaping (that is, '' or ""). (Bug #20888)

• Driver now sends numeric 1 or 0 for client-prepared statement setBoolean() calls instead of '1' or '0'.
(Bug #22290)

• Fixed bug where driver would not advance to next host if roundRobinLoadBalance=true and the last host
in the list is down. (Bug #22290)

• Driver issues truncation on write exception when it shouldn't (due to sending big decimal incorrectly to
server with server-side prepared statement). (Bug #22290)

• ResultSet.getSomeInteger() doesn't work for BIT(>1). (Bug #21062)

• Fixed bug when calling stored functions, where parameters weren't numbered correctly (first parameter
is now the return value, subsequent parameters if specified start at index "2"). (Bug #22290)

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

Changes in MySQL Connector/J 3.1.13 (2006-05-26)

134

• Removed logger autodetection altogether, must now specify logger explicitly if you want to use a logger
other than one that logs to STDERR. (Bug #21207)

• Fixed can't pool server-side prepared statements, exception raised when re-using them. (Bug #20687)

• DDriver throws NPE when tracing prepared statements that have been closed (in asSQL()). (Bug
#21207)

• Fixed ResultSet.getShort() for UNSIGNED TINYINT returns incorrect values when using server-side
prepared statements. (Bug #20306)

• ReplicationDriver does not always round-robin load balance depending on URL used for slaves list. (Bug
#19993)

• DatabaseMetaData.getTables() or getColumns() with a bad catalog parameter threw an
exception rather than return an empty result set (as required by the specification). (Bug #18258)

• Fixed memory leak with profileSQL=true. (Bug #16987)

• Connection fails to localhost when using timeout and IPv6 is configured. (Bug #19726)

• Fixed updatable result set throws ClassCastException when there is row data and moveToInsertRow() is
called. (Bug #20479)

• Fixed calling toString() on ResultSetMetaData for driver-generated (that is, from DatabaseMetaData
method calls, or from getGeneratedKeys()) result sets would raise a NullPointerException. (Bug #19993)

• Fixed NullPointerException in MysqlDataSourceFactory due to Reference containing RefAddrs with null
content. (Bug #16791)

• ResultSet.getFloatFromString() can't retrieve values near Float.MIN/MAX_VALUE. (Bug #18880)

Changes in MySQL Connector/J 3.1.13 (2006-05-26)

Bugs Fixed

• Added performance feature, re-writing of batched executes for Statement.executeBatch() (for all
DML statements) and PreparedStatement.executeBatch() (for INSERTs with VALUE clauses
only). Enable by using "rewriteBatchedStatements=true" in your JDBC URL. (Bug #18041)

• DBMD.getColumns() returns wrong type for BIT. (Bug #15854)

• PreparedStatement.setObject() serializes BigInteger as object, rather than sending as
numeric value (and is thus not complementary to .getObject() on an UNSIGNED LONG type). (Bug
#15383)

• Fixed aliased column names where length of name > 251 are corrupted. (Bug #18554)

• Exception thrown for new decimal type when using updatable result sets. (Bug #14609)

• Improved performance of retrieving BigDecimal, Time, Timestamp and Date values from server-side
prepared statements by creating fewer short-lived instances of Strings when the native type is not an
exact match for the requested type. (Bug #18496)

• Fixed calling clearParameters() on a closed prepared statement causes NPE. (Bug #17587)

• Driver now aware of fix for BIT type metadata that went into MySQL-5.0.21 for server not reporting
length consistently . (Bug #13601)

http://dev.mysql.com/doc/refman/5.5/en/bit-type.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html

Changes in MySQL Connector/J 3.1.13 (2006-05-26)

135

• No "dos" character set in MySQL > 4.1.0. (Bug #15544)

• Map "latin1" on MySQL server to CP1252 for MySQL > 4.1.0. (Bug #17587)

• Fixed CallableStatement.registerOutParameter() not working when some parameters pre-
populated. Still waiting for feedback from JDBC experts group to determine what correct parameter
count from getMetaData() should be, however. (Bug #17898)

• Fixed ResultSet.wasNull() not always reset correctly for booleans when done using conversion for
server-side prepared statements. (Bug #17450)

• Added support for Apache Commons logging, use "com.mysql.jdbc.log.CommonsLogger" as the value
for the "logger" configuration property. (Bug #13469)

• Fixed ResultSet.wasNull() returns incorrect value when extracting native string from server-side
prepared statement generated result set. (Bug #19282)

• Fixed updatable result set doesn't return AUTO_INCREMENT values for insertRow() when multiple
column primary keys are used. (the driver was checking for the existence of single-column primary
keys and an autoincrement value > 0 instead of a straightforward isAutoIncrement() check). (Bug
#16841)

• Fixed invalid classname returned for ResultSetMetaData.getColumnClassName() for BIGINT
type. (Bug #19282)

• INOUT parameter does not store IN value. (Bug #15464)

• Fixed issue with ReplicationConnection incorrectly copying state, doesn't transfer connection
context correctly when transitioning between the same read-only states. (Bug #15570)

• Fixed case where driver wasn't reading server status correctly when fetching server-side prepared
statement rows, which in some cases could cause warning counts to be off, or multiple result sets to not
be read off the wire. (Bug #19282)

• Fixed PreparedStatement.setObject(int, Object, int) doesn't respect scale of
BigDecimals. (Bug #19615)

• Fixed driver trying to call methods that don't exist on older and newer versions of Log4j. The fix is not
trying to auto-detect presence of log4j, too many different incompatible versions out there in the wild to
do this reliably.

If you relied on autodetection before, you will need to add "logger=com.mysql.jdbc.log.Log4JLogger" to
your JDBC URL to enable Log4J usage, or alternatively use the new "CommonsLogger" class to take
care of this. (Bug #13469)

• Fixed Statement.getGeneratedKeys() throws NullPointerException when no query has been
processed. (Bug #17099)

• lib-nodist directory missing from package breaks out-of-box build. (Bug #15676)

• Added additional accessor and mutator methods on ConnectionProperties so that DataSource users can
use same naming as regular URL properties. (Bug #17587)

• LogFactory now prepends com.mysql.jdbc.log to the log class name if it cannot be found
as specified. This enables you to use “short names” for the built-in log factories, for example,
logger=CommonsLogger instead of logger=com.mysql.jdbc.log.CommonsLogger. (Bug
#13469)

Changes in MySQL Connector/J 3.1.12 (2005-11-30)

136

• Fixed data truncation and getWarnings() only returns last warning in set. (Bug #18740)

• Fixed issue where server-side prepared statements don't cause truncation exceptions to be thrown when
truncation happens. (Bug #18041)

• Fixed issue where driver was unable to initialize character set mapping tables. Removed reliance on
.properties files to hold this information, as it turns out to be too problematic to code around class
loader hierarchies that change depending on how an application is deployed. Moved information back
into the CharsetMapping class. (Bug #14938)

• ResultSet.getShort() for UNSIGNED TINYINT returned wrong values. (Bug #11874)

Changes in MySQL Connector/J 3.1.12 (2005-11-30)

Bugs Fixed

• Driver incorrectly closes streams passed as arguments to PreparedStatements. Reverts to legacy
behavior by setting the JDBC configuration property autoClosePStmtStreams to true (also included
in the 3-0-Compat configuration “bundle”). (Bug #15024)

• storesMixedCaseIdentifiers() returns false (Bug #14562)

• storesLowerCaseIdentifiers() returns true (Bug #14562)

• Deadlock while closing server-side prepared statements from multiple threads sharing one connection.
(Bug #14972)

• OpenOffice expects DBMD.supportsIntegrityEnhancementFacility() to return
true if foreign keys are supported by the datasource, even though this method also covers
support for check constraints, which MySQL doesn't have. Setting the configuration property
overrideSupportsIntegrityEnhancementFacility to true causes the driver to return true for
this method. (Bug #12975)

• storesMixedCaseQuotedIdentifiers() returns false (Bug #14562)

• storesMixedCaseQuotedIdentifiers() returns true (Bug #14562)

• maxQuerySizeToLog is not respected. Added logging of bound values for execute() phase of
server-side prepared statements when profileSQL=true as well. (Bug #13048)

• Process escape tokens in Connection.prepareStatement(...). You can disable this behavior by
setting the JDBC URL configuration property processEscapeCodesForPrepStmts to false. (Bug
#15141)

• DatabaseMetaData.getColumns() doesn't return TABLE_NAME correctly. (Bug #14815)

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

Changes in MySQL Connector/J 3.1.12 (2005-11-30)

137

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

• storesUpperCaseIdentifiers() returns false (Bug #14562)

• storesUpperCaseQuotedIdentifiers() returns true (Bug #14562)

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

• Extraneous sleep on autoReconnect. (Bug #13775)

• storesLowerCaseQuotedIdentifiers() returns true (Bug #14562)

• Fixed DatabaseMetaData.stores*Identifiers():

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

(Bug #14562)

Changes in MySQL Connector/J 3.1.11 (2005-10-07)

138

• Reconnect during middle of executeBatch() should not occur if autoReconnect is enabled. (Bug
#13255)

• storesMixedCaseIdentifiers() returns true (Bug #14562)

• Usage advisor complains about unreferenced columns, even though they've been referenced. (Bug
#15065)

• storesLowerCaseQuotedIdentifiers() returns false (Bug #14562)

• Java type conversion may be incorrect for MEDIUMINT. (Bug #14562)

• Added com.mysql.jdbc.testsuite.url.default system property to set default JDBC url for
testsuite (to speed up bug resolution when I'm working in Eclipse). (Bug #12975)

• Unable to initialize character set mapping tables (due to J2EE classloader differences). (Bug #14938)

• storesLowerCaseIdentifiers() returns false (Bug #14562)

• Escape processor replaces quote character in quoted string with string delimiter. (Bug #14909)

• Added configuration property useGmtMillisForDatetimes which when set to true causes
ResultSet.getDate(), .getTimestamp() to return correct millis-since GMT when .getTime() is
called on the return value (currently default is false for legacy behavior). (Bug #14562)

• logSlowQueries should give better info. (Bug #12230)

• Don't increase timeout for failover/reconnect. (Bug #6577)

• Fall back to platform-encoding for URLDecoder.decode() when parsing driver URL properties if the
platform doesn't have a two-argument version of this method.

• Do not permit executeBatch() for CallableStatements with registered OUT/INOUT parameters
(JDBC compliance).

• Fixed client-side prepared statement bug with embedded ? characters inside quoted identifiers (it was
recognized as a placeholder, when it was not).

Changes in MySQL Connector/J 3.1.11 (2005-10-07)

Bugs Fixed

• getExportedKeys() (Bug #12541)

• Specifying a catalog works as stated in the API docs. (Bug #12541)

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be
searched), unless you've set nullCatalogMeansCurrent=true in your JDBC URL properties. (Bug
#12541)

• Tokenizer for = in URL properties was causing sessionVariables=.... to be parameterized
incorrectly. (Bug #12753)

• getIndexInfo() (Bug #12541)

• getProcedures() (and thus indirectly getProcedureColumns()) (Bug #12541)

• getImportedKeys() (Bug #12541)

http://dev.mysql.com/doc/refman/5.5/en/integer-types.html

Changes in MySQL Connector/J 3.1.11 (2005-10-07)

139

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for
legacy users. (Bug #12541)

• getCrossReference() (Bug #12541)

• The configuration property sessionVariables now permits you to specify variables that start with the
“@” sign. (Bug #13453)

• Added Connection.isMasterConnection() for clients to be able to determine if a multi-host
master/slave connection is connected to the first host in the list. (Bug #12541)

• Workaround for Bug #13374: ResultSet.getStatement() on closed result set returns
NULL (as per JDBC 4.0 spec, but not backward-compatible). Set the connection property
retainStatementAfterResultSetClose to true to be able to retrieve a ResultSet's statement
after the ResultSet has been closed using .getStatement() (the default is false, to be JDBC-
compliant and to reduce the chance that code using JDBC leaks Statement instances). (Bug #13277)

• java.sql.Types.OTHER returned for BINARY and VARBINARY columns when using
DatabaseMetaData.getColumns(). (Bug #12970)

• URL configuration parameters do not permit “&” or “=” in their values. The JDBC driver now parses
configuration parameters as if they are encoded using the application/x-www-form-urlencoded
format as specified by java.net.URLDecoder (http://java.sun.com/j2se/1.5.0/docs/api/java/net/
URLDecoder.html).

If the “%” character is present in a configuration property, it must now be represented as %25, which is
the encoded form of “%” when using application/x-www-form-urlencoded encoding. (Bug #13453)

• getColumns() (Bug #12541)

• Handling of catalog argument in DatabaseMetaData.getIndexInfo(), which also means changes
to the following methods in DatabaseMetaData:

• getBestRowIdentifier()

• getColumns()

• getCrossReference()

• getExportedKeys()

• getImportedKeys()

• getIndexInfo()

• getPrimaryKeys()

• getProcedures() (and thus indirectly getProcedureColumns())

• getTables()

The catalog argument in all of these methods now behaves in the following way:

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will be
searched), unless you've set nullCatalogMeansCurrent=true in your JDBC URL properties.

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it is there for
legacy users.

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html

Changes in MySQL Connector/J 3.1.11 (2005-10-07)

140

• Specifying a catalog works as stated in the API docs.

• Made Connection.clientPrepare() available from “wrapped” connections in the
jdbc2.optional package (connections built by ConnectionPoolDataSource instances).

(Bug #12541)

• getBestRowIdentifier() (Bug #12541)

• Made Connection.clientPrepare() available from “wrapped” connections in the
jdbc2.optional package (connections built by ConnectionPoolDataSource instances). (Bug
#12541)

• ServerPreparedStatement.getBinding() now checks if the statement is closed before
attempting to reference the list of parameter bindings, to avoid throwing a NullPointerException.
(Bug #12970)

• ResultSetMetaData from Statement.getGeneratedKeys() caused a NullPointerException
to be thrown whenever a method that required a connection reference was called. (Bug #13277)

• cp1251 incorrectly mapped to win1251 for servers newer than 4.0.x. (Bug #12752)

• When gatherPerfMetrics is enabled for servers older than 4.1.0, a NullPointerException is
thrown from the constructor of ResultSet if the query doesn't use any tables. (Bug #13043)

• Backport of VAR[BINARY|CHAR] [BINARY] types detection from 5.0 branch. (Bug #13277)

• getTables() (Bug #12541)

• Fixed NullPointerException when converting catalog parameter in many
DatabaseMetaDataMethods to byte[]s (for the result set) when the parameter is null. (null is not
technically permitted by the JDBC specification, but we have historically permitted it). (Bug #13277)

• Backport of Field class, ResultSetMetaData.getColumnClassName(), and
ResultSet.getObject(int) changes from 5.0 branch to fix behavior surrounding VARCHAR
BINARY/VARBINARY and related types. (Bug #13277)

• Read response in MysqlIO.sendFileToServer(), even if the local file can't be opened, otherwise
next query issued will fail, because it is reading the response to the empty LOAD DATA INFILE packet
sent to the server. (Bug #13277)

• Connection.prepareCall() is database name case-sensitive (on Windows systems). (Bug #12417)

• getPrimaryKeys() (Bug #12541)

• Geometry types not handled with server-side prepared statements. (Bug #12104)

• explainSlowQueries hangs with server-side prepared statements. (Bug #12229)

• Pstmt.setObject(...., Types.BOOLEAN) throws exception. (Bug #11798)

• Reworked Field class, *Buffer, and MysqlIO to be aware of field lengths > Integer.MAX_VALUE.
(Bug #11498)

• Foreign key information that is quoted is parsed incorrectly when DatabaseMetaData methods use that
information. (Bug #11781)

• Fixed regression caused by fix for Bug #11552 that caused driver to return incorrect values for unsigned
integers when those integers where within the range of the positive signed type. (Bug #11663)

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Changes in MySQL Connector/J 3.1.10 (2005-06-23)

141

• Escape tokenizer doesn't respect stacked single quotation marks for escapes. (Bug #11797)

• Escape processor didn't honor strings demarcated with double quotation marks. (Bug #11498)

• maxPerformance.properties mis-spells “elideSetAutoCommits”. (Bug #11976)

• Moved source code to Subversion repository. (Bug #11663)

• The sendBlobChunkSize property is now clamped to max_allowed_packet with consideration
of stream buffer size and packet headers to avoid PacketTooBigExceptions when
max_allowed_packet is similar in size to the default sendBlobChunkSize which is 1M. (Bug
#11781)

• Statement.getWarnings() fails with NPE if statement has been closed. (Bug #10630)

• DBMD.storesLower/Mixed/UpperIdentifiers() reports incorrect values for servers deployed on
Windows. (Bug #11575)

• ResultSet.moveToCurrentRow() fails to work when preceded by a call to
ResultSet.moveToInsertRow(). (Bug #11190)

• VARBINARY data corrupted when using server-side prepared statements and .setBytes(). (Bug
#11115)

• Only get char[] from SQL in PreparedStatement.ParseInfo() when needed. (Bug #10630)

• Incorrect generation of testcase scripts for server-side prepared statements. (Bug #11663)

• GEOMETRY type not recognized when using server-side prepared statements. (Bug #11797)

• CallableStatement.clearParameters() now clears resources associated with INOUT/OUTPUT
parameters as well as INPUT parameters. (Bug #11781)

• StringUtils.getBytes() doesn't work when using multi-byte character encodings and a length in
characters is specified. (Bug #11614)

• Fixed statements generated for testcases missing ; for “plain” statements. (Bug #11629)

• ReplicationConnection won't switch to slave, throws “Catalog can't be null” exception. (Bug
#11879)

• Spurious ! on console when character encoding is utf8. (Bug #11629)

• Properties shared between master and slave with replication connection. (Bug #12218)

• Updated DBMD.supportsCorrelatedQueries() to return true for versions > 4.1,
supportsGroupByUnrelated() to return true and getResultSetHoldability() to return
HOLD_CURSORS_OVER_COMMIT. (Bug #11498)

• Lifted restriction of changing streaming parameters with server-side prepared statements. As long as
all streaming parameters were set before execution, .clearParameters() does not have to be
called. (due to limitation of client/server protocol, prepared statements can not reset individual stream
data on the server side). (Bug #11498)

Changes in MySQL Connector/J 3.1.10 (2005-06-23)

Bugs Fixed

• Fixed connecting without a database specified raised an exception in
MysqlIO.changeDatabaseTo().

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

Changes in MySQL Connector/J 3.1.9 (2005-06-22)

142

• Initial implemention of ParameterMetadata for PreparedStatement.getParameterMetadata().
Only works fully for CallableStatements, as current server-side prepared statements return every
parameter as a VARCHAR type.

Changes in MySQL Connector/J 3.1.9 (2005-06-22)

Bugs Fixed

• Fixed PreparedStatement.setClob() not accepting null as a parameter. (Bug #11360)

• Actually write manifest file to correct place so it ends up in the binary jar file. (Bug #10144)

• Try to handle OutOfMemoryErrors more gracefully. Although not much can be done, they will in most
cases close the connection they happened on so that further operations don't run into a connection in
some unknown state. When an OOM has happened, any further operations on the connection will fail
with a “Connection closed” exception that will also list the OOM exception as the reason for the implicit
connection close event. (Bug #10850)

• autoReconnect ping causes exception on connection startup. (Bug #11259)

• Reorganized directory layout. Sources now are in src folder. Don't pollute parent directory when
building, now output goes to ./build, distribution goes to ./dist. (Bug #10496)

• Connection.setCatalog() is now aware of the useLocalSessionState configuration property,
which when set to true will prevent the driver from sending USE ... to the server if the requested
catalog is the same as the current catalog. (Bug #11115)

• Setting cachePrepStmts=true now causes the Connection to also cache the check the driver
performs to determine if a prepared statement can be server-side or not, as well as caches server-side
prepared statements for the lifetime of a connection. As before, the prepStmtCacheSize parameter
controls the size of these caches. (Bug #10850)

• Don't send COM_RESET_STMT for each execution of a server-side prepared statement if it isn't required.
(Bug #10850)

• 3-0-Compat: Compatibility with Connector/J 3.0.x functionality (Bug #11115)

• Production package doesn't include JBoss integration classes. (Bug #11411)

• maxPerformance: Maximum performance without being reckless (Bug #11115)

• Unsigned SMALLINT treated as signed for ResultSet.getInt(), fixed all cases for UNSIGNED
integer values and server-side prepared statements, as well as ResultSet.getObject() for
UNSIGNED TINYINT. (Bug #10156)

• solarisMaxPerformance: Maximum performance for Solaris, avoids syscalls where it can (Bug
#11115)

• Added maintainTimeStats configuration property (defaults to true), which tells the driver whether or
not to keep track of the last query time and the last successful packet sent to the server's time. If set to
false, removes two syscalls per query. (Bug #11115)

• 0-length streams not sent to server when using server-side prepared statements. (Bug #10850)

• The data type returned for TINYINT(1) columns when tinyInt1isBit=true (the default)
can be switched between Types.BOOLEAN and Types.BIT using the new configuration
property transformedBitIsBoolean, which defaults to false. If set to false (the default),

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html

Changes in MySQL Connector/J 3.1.9 (2005-06-22)

143

DatabaseMetaData.getColumns() and ResultSetMetaData.getColumnType()
will return Types.BOOLEAN for TINYINT(1) columns. If true, Types.BOOLEAN will be
returned instead. Regardless of this configuration property, if tinyInt1isBit is enabled,
columns with the type TINYINT(1) will be returned as java.lang.Boolean instances from
ResultSet.getObject(...), and ResultSetMetaData.getColumnClassName() will return
java.lang.Boolean. (Bug #10485)

• VARBINARY data corrupted when using server-side prepared statements and
ResultSet.getBytes(). (Bug #11115)

• Added createDatabaseIfNotExist property (default is false), which will cause the driver to ask
the server to create the database specified in the URL if it doesn't exist. You must have the appropriate
privileges for database creation for this to work. (Bug #10144)

• SQLException thrown when retrieving YEAR(2) with ResultSet.getString(). The driver will
now always treat YEAR types as java.sql.Dates and return the correct values for getString().
Alternatively, the yearIsDateType connection property can be set to false and the values will be
treated as SHORTs. (Bug #10485)

• Connector/J dumping query into SQLException twice. (Bug #11360)

• Made ServerPreparedStatement.asSql() work correctly so auto-explain functionality would work
with server-side prepared statements. (Bug #10155)

• Double quotation marks not recognized when parsing client-side prepared statements. (Bug #10155)

• Removed nonsensical “costly type conversion” warnings when using usage advisor. (Bug #11411)

• com.mysql.jdbc.PreparedStatement.ParseInfo does unnecessary call to toCharArray().
(Bug #9064)

• Driver doesn't support {?=CALL(...)} for calling stored functions. This involved adding support for
function retrieval to DatabaseMetaData.getProcedures() and getProcedureColumns() as well.
(Bug #10310)

• Memory leak in ServerPreparedStatement if serverPrepare() fails. (Bug #10144)

• Added support/bug hunting feature that generates .sql test scripts to STDERR when
autoGenerateTestcaseScript is set to true. (Bug #10496)

• Driver detects if you're running MySQL-5.0.7 or later, and does not scan for LIMIT ?[,?] in statements
being prepared, as the server supports those types of queries now. (Bug #10850)

• SQLException is thrown when using property characterSetResults with cp932 or eucjpms. (Bug
#10496)

• Made JDBC2-compliant wrappers public to enable access to vendor extensions. (Bug #10155)

• Added the following configuration bundles, use one or many using the useConfigs configuration
property:

• maxPerformance: Maximum performance without being reckless

• solarisMaxPerformance: Maximum performance for Solaris, avoids syscalls where it can

• 3-0-Compat: Compatibility with Connector/J 3.0.x functionality

(Bug #11115)

http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/year.html

Changes in MySQL Connector/J 3.1.8 (2005-04-14)

144

• DatabaseMetaData.supportsMultipleOpenResults() now returns true. The driver has
supported this for some time, DBMD just missed that fact. (Bug #10155)

• Cleaned up logging of profiler events, moved code to dump a profiler event as a string to
com.mysql.jdbc.log.LogUtils so that third parties can use it. (Bug #10155)

• Made enableStreamingResults() visible on
com.mysql.jdbc.jdbc2.optional.StatementWrapper. (Bug #10155)

• Overhaul of character set configuration, everything now lives in a properties file.

• Driver now correctly uses CP932 if available on the server for Windows-31J, CP932 and MS932
java encoding names, otherwise it resorts to SJIS, which is only a close approximation. Currently
only MySQL-5.0.3 and newer (and MySQL-4.1.12 or .13, depending on when the character set gets
backported) can reliably support any variant of CP932.

Changes in MySQL Connector/J 3.1.8 (2005-04-14)

Bugs Fixed

• Added finalizers to ResultSet and Statement implementations to be JDBC spec-compliant, which
requires that if not explicitly closed, these resources should be closed upon garbage collection. (Bug
#9319)

• Should accept null for name patterns in DBMD (meaning “%”), even though it isn't JDBC compliant, for
legacy's sake. Disable by setting connection property nullNamePatternMatchesAll to false (which
will be the default value in C/J 3.2.x). (Bug #9769)

• Check for empty strings ('') when converting CHAR/VARCHAR column data to numbers, throw exception
if emptyStringsConvertToZero configuration property is set to false (for backward-compatibility
with 3.0, it is now set to true by default, but will most likely default to false in 3.2). (Bug #8803)

• The performance metrics feature now gathers information about number of tables referenced in a
SELECT. (Bug #9704)

• Fixed driver not returning true for -1 when ResultSet.getBoolean() was called on result sets
returned from server-side prepared statements. (Bug #9778)

• ServerPreparedStatements now correctly “stream” BLOB/CLOB data to the server. You can
configure the threshold chunk size using the JDBC URL property blobSendChunkSize (the default is
1MB). (Bug #8868)

• The logging system is now automatically configured. If the value has been set by the user, using the
URL property logger or the system property com.mysql.jdbc.logger, then use that, otherwise,
autodetect it using the following steps:

1. Log4j, if it is available,

2. Then JDK1.4 logging,

3. Then fallback to our STDERR logging.

(Bug #9704)

• Added a Manifest.MF file with implementation information to the .jar file. (Bug #9778)

• Should accept null for catalog (meaning use current) in DBMD methods, even though it is not JDBC-
compliant for legacy's sake. Disable by setting connection property nullCatalogMeansCurrent to
false (which will be the default value in C/J 3.2.x). (Bug #9917)

http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 3.1.8 (2005-04-14)

145

• More tests in Field.isOpaqueBinary() to distinguish opaque binary (that is, fields with type
CHAR(n) and CHARACTER SET BINARY) from output of various scalar and aggregate functions that
return strings. (Bug #9778)

• DBMD.getTables() shouldn't return tables if views are asked for, even if the database version doesn't
support views. (Bug #9778)

• Added support for the c3p0 connection pool's (http://c3p0.sf.net/) validation/connection
checker interface which uses the lightweight COM_PING call to the server if available. To use
it, configure your c3p0 connection pool's connectionTesterClassName property to use
com.mysql.jdbc.integration.c3p0.MysqlConnectionTester. (Bug #9320)

• DATA_TYPE column from DBMD.getBestRowIdentifier() causes
ArrayIndexOutOfBoundsException when accessed (and in fact, didn't return any value). (Bug
#8803)

• DATE_FORMAT() queries returned as BLOBs from getObject(). (Bug #8868)

• A continuation of Bug #8868, where functions used in queries that should return nonstring types when
resolved by temporary tables suddenly become opaque binary strings (work-around for server limitation).
Also fixed fields with type of CHAR(n) CHARACTER SET BINARY to return correct/matching classes for
RSMD.getColumnClassName() and ResultSet.getObject(). (Bug #9236)

• PreparedStatement.getMetaData() inserts blank row in database under certain conditions when
not using server-side prepared statements. (Bug #9320)

• Better detection of LIMIT inside/outside of quoted strings so that the driver can more correctly
determine whether a prepared statement can be prepared on the server or not. (Bug #9320)

• Stored procedures with DECIMAL parameters with storage specifications that contained “,” in them
would fail. (Bug #9682)

• Server-side session variables can be preset at connection time by passing them as a comma-delimited
list for the connection property sessionVariables. (Bug #8868)

• Connection.canHandleAsPreparedStatement() now makes “best effort” to distinguish LIMIT
clauses with placeholders in them from ones without to have fewer false positives when generating work-
arounds for statements the server cannot currently handle as server-side prepared statements. (Bug
#9320)

• BlobFromLocator now uses correct identifier quoting when generating prepared statements. (Bug
#8868)

• Statement.getMoreResults() could throw NPE when existing result set was .close()d. (Bug
#9704)

• PreparedStatement.addBatch() doesn't work with server-side prepared statements and streaming
BINARY data. (Bug #9040)

• Fixed build.xml to not compile log4j logging if log4j not available. (Bug #9320)

• Cannot use UTF-8 for characterSetResults configuration property. (Bug #9206)

• PreparedStatement.setObject(int, Object, int type, int scale) now uses scale value
for BigDecimal instances. (Bug #9682)

• DBMD.supportsResultSetConcurrency() not returning true for forward-only/read-only result sets
(we obviously support this). (Bug #8792)

http://c3p0.sf.net/
http://dev.mysql.com/doc/refman/5.5/en/date-and-time-functions.html#function_date-format
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html

Changes in MySQL Connector/J 3.1.7 (2005-02-18)

146

• Fixed regression in ping() for users using autoReconnect=true. (Bug #8868)

• Stored procedures with same name in different databases confuse the driver when it tries to determine
parameter counts/types. (Bug #9319)

• DBMD.supportsMixedCase*Identifiers() returns wrong value on servers running on case-
sensitive file systems. (Bug #8800)

• Fixed DatabaseMetaData.getTables() returning views when they were not asked for as one of the
requested table types.

• Added support for new precision-math DECIMAL type in MySQL 5.0.3 and up.

• Made Connection.ping() a public method.

• Fixed ResultSet.getTime() on a NULL value for server-side prepared statements throws NPE.

Changes in MySQL Connector/J 3.1.7 (2005-02-18)

Bugs Fixed

• Infinite recursion when “falling back” to master in failover configuration. (Bug #7952)

• Disable multi-statements (if enabled) for MySQL-4.1 versions prior to version 4.1.10 if the query cache is
enabled, as the server returns wrong results in this configuration. (Bug #7952)

• Added support for BIT type in MySQL-5.0.3. The driver will treat BIT(1-8) as the JDBC standard BIT
type (which maps to java.lang.Boolean), as the server does not currently send enough information
to determine the size of a bitfield when < 9 bits are declared. BIT(>9) will be treated as VARBINARY,
and will return byte[] when getObject() is called. (Bug #8424)

• Added useLocalSessionState configuration property, when set to true the JDBC driver trusts
that the application is well-behaved and only sets autocommit and transaction isolation levels using the
methods provided on java.sql.Connection, and therefore can manipulate these values in many
cases without incurring round-trips to the database server. (Bug #8424)

• Fixed synchronization issue with ServerPreparedStatement.serverPrepare() that could cause
deadlocks/crashes if connection was shared between threads. (Bug #8096)

• Added holdResultsOpenOverStatementClose property (default is false), that keeps result sets
open over statement.close() or new execution on same statement (suggested by Kevin Burton). (Bug
#7715)

• Removed dontUnpackBinaryResults functionality, the driver now always stores results from server-
side prepared statements as is from the server and unpacks them on demand. (Bug #7952)

• Detect new sql_mode variable in string form (it used to be integer) and adjust quoting method for strings
appropriately. (Bug #7715)

• Choose correct “direction” to apply time adjustments when both client and server are in GMT time zone
when using ResultSet.get(..., cal) and PreparedStatement.set(...., cal). (Bug
#4718)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true
from working properly. (Bug #7952)

• Remove _binary introducer from parameters used as in/out parameters in CallableStatement.
(Bug #4718)

http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_sql_mode

Changes in MySQL Connector/J 3.1.6 (2004-12-23)

147

• Always return byte[]s for output parameters registered as *BINARY. (Bug #4718)

• Timestamps converted incorrectly to strings with server-side prepared statements and updatable result
sets. (Bug #7715)

• By default, the driver now scans SQL you are preparing using all variants of
Connection.prepareStatement() to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated
prepared statement. You can disable this by passing emulateUnsupportedPstmts=false in your
JDBC URL. (Bug #4718)

• Emulated locators corrupt binary data when using server-side prepared statements. (Bug #8096)

• Added enableStreamingResults() to Statement for connection pool implementations
that check Statement.setFetchSize() for specification-compliant values. Call
Statement.setFetchSize(>=0) to disable the streaming results for that statement. (Bug #8424)

• Added dontTrackOpenResources option (default is false, to be JDBC compliant), which helps with
memory use for nonwell-behaved apps (that is, applications that don't close Statement objects when
they should). (Bug #4718)

• Fixed NPE in ResultSet.realClose() when using usage advisor and result set was already closed.
(Bug #8428)

• ResultSet.getBigDecimal() throws exception when rounding would need to occur to set scale.
The driver now chooses a rounding mode of “half up” if nonrounding BigDecimal.setScale() fails.
(Bug #8424)

• Send correct value for “boolean” true to server for PreparedStatement.setObject(n, "true",
Types.BIT). (Bug #4718)

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow().
(Bug #7686)

• PreparedStatements not creating streaming result sets. (Bug #8487)

• ResultSet.getString() doesn't maintain format stored on server, bug fix only enabled when
noDatetimeStringSync property is set to true (the default is false). (Bug #8428)

• Fixed bug with Connection not caching statements from prepareStatement() when the statement
wasn't a server-side prepared statement. (Bug #4718)

• Don't pass NULL to String.valueOf() in ResultSet.getNativeConvertToString(), as it
stringifies it (that is, returns null), which is not correct for the method in question. (Bug #8487)

Changes in MySQL Connector/J 3.1.6 (2004-12-23)

Bugs Fixed

• DBMD.getProcedures() doesn't respect catalog parameter. (Bug #7026)

• Fixed hang on SocketInputStream.read() with Statement.setMaxRows() and multiple result
sets when driver has to truncate result set directly, rather than tacking a LIMIT n on the end of it.

Changes in MySQL Connector/J 3.1.5 (2004-12-02)

Bugs Fixed

Changes in MySQL Connector/J 3.1.5 (2004-12-02)

148

• Removed unwanted new Throwable() in ResultSet constructor due to bad merge (caused a new
object instance that was never used for every result set created). Found while profiling for Bug #6359.
(Bug #6225)

• Use 1MB packet for sending file for LOAD DATA LOCAL INFILE if that is < max_allowed_packet on
server. (Bug #6537)

• Use our own implementation of buffered input streams to get around blocking behavior of
java.io.BufferedInputStream. Disable this with useReadAheadInput=false. (Bug #6399)

• Added experimental configuration property dontUnpackBinaryResults, which delays unpacking
binary result set values until they're asked for, and only creates object instances for nonnumeric values
(it is set to false by default). For some usecase/jvm combinations, this is friendlier on the garbage
collector. (Bug #5706)

• Fixed batched updates with server prepared statements weren't looking if the types had changed for a
given batched set of parameters compared to the previous set, causing the server to return the error
“Wrong arguments to mysql_stmt_execute()”. (Bug #5235)

• Make auto-deserialization of java.lang.Objects stored in BLOB columns configurable using
autoDeserialize property (defaults to false). (Bug #6399)

• Don't throw exceptions for Connection.releaseSavepoint(). (Bug #5706)

• ServerSidePreparedStatement allocating short-lived objects unnecessarily. (Bug #6225)

• Inefficient detection of pre-existing string instances in ResultSet.getNativeString(). (Bug #5706)

• UNSIGNED BIGINT unpacked incorrectly from server-side prepared statement result sets. (Bug #5729)

• Use null-safe-equals for key comparisons in updatable result sets. (Bug #6225)

• Failing to connect to the server when one of the addresses for the given host name is IPV6 (which the
server does not yet bind on). The driver now loops through all IP addresses for a given host, and stops
on the first one that accepts() a socket.connect(). (Bug #6348)

• ResultSetMetaData.getColumnDisplaySize() returns incorrect values for multi-byte charsets.
(Bug #6399)

• SUM() on DECIMAL with server-side prepared statement ignores scale if zero-padding is needed (this
ends up being due to conversion to DOUBLE by server, which when converted to a string to parse into
BigDecimal, loses all “padding” zeros). (Bug #6537)

• Use a per-session Calendar instance by default when decoding dates from
ServerPreparedStatements (set to old, less performant behavior by setting property
dynamicCalendars=true). (Bug #5706)

• Handle case when string representation of timestamp contains trailing “.” with no numbers following it.
(Bug #5235)

• Use DatabaseMetaData.getIdentifierQuoteString() when building DBMD queries. (Bug
#6537)

• Re-work Field.isOpaqueBinary() to detect CHAR(n) CHARACTER SET BINARY to support fixed-
length binary fields for ResultSet.getObject(). (Bug #6399)

• Server-side prepared statements did not honor zeroDateTimeBehavior property, and would cause
class-cast exceptions when using ResultSet.getObject(), as the all-zero string was always
returned. (Bug #5235)

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html

Changes in MySQL Connector/J 3.1.4 (2004-09-04)

149

• Fixed too-early creation of StringBuffer in EscapeProcessor.escapeSQL(), also return String
when escaping not needed (to avoid unnecessary object allocations). Found while profiling for Bug
#6359. (Bug #6225)

• Fix comparisons made between string constants and dynamic strings that are converted with
either toUpperCase() or toLowerCase() to use Locale.ENGLISH, as some locales
“override” case rules for English. Also use StringUtils.indexOfIgnoreCase() instead of
.toUpperCase().indexOf(), avoids creating a very short-lived transient String instance.

Changes in MySQL Connector/J 3.1.4 (2004-09-04)

Bugs Fixed

• Fixed ServerPreparedStatement to read prepared statement metadata off the wire, even though it is
currently a placeholder instead of using MysqlIO.clearInputStream() which didn't work at various
times because data wasn't available to read from the server yet. This fixes sporadic errors users were
having with ServerPreparedStatements throwing ArrayIndexOutOfBoundExceptions. (Bug
#5032)

• Optimized integer number parsing, enable “old” slower integer parsing using JDK classes using
useFastIntParsing=false property. (Bug #4642)

• Track packet sequence numbers if enablePacketDebug=true, and throw an exception if packets
received out-of-order. (Bug #4689)

• ResultSet.wasNull() does not work for primitives if a previous null was returned. (Bug #4689)

• Added three ways to deal with all-zero datetimes when reading them from a ResultSet: exception
(the default), which throws an SQLException with an SQLState of S1009; convertToNull, which
returns NULL instead of the date; and round, which rounds the date to the nearest closest value which
is '0001-01-01'. (Bug #5032)

• Added useOnlyServerErrorMessages property, which causes message text in exceptions generated
by the server to only contain the text sent by the server (as opposed to the SQLState's “standard”
description, followed by the server's error message). This property is set to true by default. (Bug #4642)

• The driver is more strict about truncation of numerics on ResultSet.get*(), and will
throw an SQLException when truncation is detected. You can disable this by setting
jdbcCompliantTruncation to false (it is enabled by default, as this functionality is required for
JDBC compliance). (Bug #5032)

• ResultSet.getObject() returns wrong type for strings when using prepared statements. (Bug
#4482)

• ServerPreparedStatements dealing with return of DECIMAL type don't work. (Bug #5012)

• Calling MysqlPooledConnection.close() twice (even though an application error), caused NPE.
Fixed. (Bug #4482)

• Connector/J 3.1.3 beta does not handle integers correctly (caused by changes to support unsigned
reads in Buffer.readInt() -> Buffer.readShort()). (Bug #4510)

• You can now use URLs in LOAD DATA LOCAL INFILE statements, and the driver will use Java's built-
in handlers for retrieving the data and sending it to the server. This feature is not enabled by default, you
must set the allowUrlInLocalInfile connection property to true. (Bug #5032)

• Added support in DatabaseMetaData.getTables() and getTableTypes() for views, which are
now available in MySQL server 5.0.x. (Bug #4510)

http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/load-data.html

Changes in MySQL Connector/J 3.1.3 (2004-07-07)

150

• ServerPreparedStatement.execute*() sometimes threw
ArrayIndexOutOfBoundsException when unpacking field metadata. (Bug #4642)

• ResultSet.getObject() doesn't return type Boolean for pseudo-bit types from prepared statements
on 4.1.x (shortcut for avoiding extra type conversion when using binary-encoded result sets obscured
test in getObject() for “pseudo” bit type). (Bug #5032)

• Use com.mysql.jdbc.Message's classloader when loading resource bundle, should fix sporadic
issues when the caller's classloader can't locate the resource bundle. (Bug #5032)

Changes in MySQL Connector/J 3.1.3 (2004-07-07)

Bugs Fixed

• Externalized more messages (on-going effort). (Bug #4119)

• Support new time zone variables in MySQL-4.1.3 when useTimezone=true. (Bug #4311)

• Null bitmask sent for server-side prepared statements was incorrect. (Bug #4119)

• Added constants for MySQL error numbers (publicly accessible, see
com.mysql.jdbc.MysqlErrorNumbers), and the ability to generate the mappings of vendor error
codes to SQLStates that the driver uses (for documentation purposes). (Bug #4119)

• Added packet debugging code (see the enablePacketDebug property documentation). (Bug #4119)

• Error in retrieval of mediumint column with prepared statements and binary protocol. (Bug #4311)

• Use SQL Standard SQL states by default, unless useSqlStateCodes property is set to false. (Bug
#4119)

• Support for unsigned numerics as return types from prepared statements. This also causes a change
in ResultSet.getObject() for the bigint unsigned type, which used to return BigDecimal
instances, it now returns instances of java.lang.BigInteger. (Bug #4311)

• Added support for INOUT parameters in CallableStatements.

• Mangle output parameter names for CallableStatements so they will not clash with user variable
names.

Changes in MySQL Connector/J 3.1.2 (2004-06-09)

Bugs Fixed

• Fixed DatabaseMetaData.getProcedures() when run on MySQL-5.0.0 (output of SHOW
PROCEDURE STATUS changed between 5.0.0 and 5.0.1. (Bug #3520)

• Fixed case when no output parameters specified for a stored procedure caused a bogus query to be
issued to retrieve out parameters, leading to a syntax error from the server.

• Correctly map output parameters to position given in prepareCall() versus. order implied during
registerOutParameter(). (Bug #3146)

• Added connectionCollation property to cause driver to issue set collation_connection=...
query on connection init if default collation for given charset is not appropriate. (Bug #3520)

• ServerPreparedStatements weren't actually de-allocating server-side resources when .close()
was called.

http://dev.mysql.com/doc/refman/5.5/en/show-procedure-status.html
http://dev.mysql.com/doc/refman/5.5/en/show-procedure-status.html

Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha)

151

• Don't enable server-side prepared statements for server version 5.0.0 or 5.0.1, as they aren't compatible
with the '4.1.2+' style that the driver uses (the driver expects information to come back that isn't there, so
it hangs). (Bug #3804)

• getProcedures() does not return any procedures in result set. (Bug #3539)

• Fixed stored procedure parameter parsing info when size was specified for a parameter (for example,
char(), varchar()).

• Removed wrapping of exceptions in MysqlIO.changeUser().

• getWarnings() returns SQLWarning instead of DataTruncation. (Bug #3804)

• Cleaned up detection of server properties. (Bug #3146)

• Correctly detect initial character set for servers >= 4.1.0. (Bug #3146)

• Support placeholder for parameter metadata for server >= 4.1.2. (Bug #3146)

• Added logSlowQueries property, along with slowQueriesThresholdMillis property to control
when a query should be considered “slow.”

• Added .toString() functionality to ServerPreparedStatement, which should help if you're trying
to debug a query that is a prepared statement (it shows SQL as the server would process).

• Fixed sending of split packets for large queries, enabled nio ability to send large packets as well.

• Enabled callable statement caching using cacheCallableStmts property.

• Fixed case when no parameters could cause a NullPointerException in
CallableStatement.setOutputParameters().

• Added gatherPerformanceMetrics property, along with properties to control when/where this info
gets logged (see docs for more info).

• DBMD.getSQLStateType() returns incorrect value. (Bug #3520)

• getProcedureColumns() doesn't work with wildcards for procedure name. (Bug #3540)

Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha)

Bugs Fixed

• Fixed charset conversion issue in getTables(). (Bug #2502)

• Fixed ConnectionProperties that weren't properly exposed through accessors, cleaned up
ConnectionProperties code. (Bug #2623)

• Prepared Statements will be re-prepared on auto-reconnect. Any errors encountered are postponed
until first attempt to re-execute the re-prepared statement.

• Reduced number of methods called in average query to be more efficient.

• Refactored how connection properties are set and exposed as DriverPropertyInfo as well as
Connection and DataSource properties.

• Fixed stack overflow in Connection.prepareCall() (bad merge).

• Enabled streaming of result sets from server-side prepared statements. (Bug #2606)

Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha)

152

• Allow contents of PreparedStatement.setBlob() to be retained between calls to .execute*().

• Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue (for JDK <
1.4).

• Default result set type changed to TYPE_FORWARD_ONLY (JDBC compliance).

• Fixed bug with UpdatableResultSets not using client-side prepared statements.

• Class-cast exception when using scrolling result sets and server-side prepared statements. (Bug #2623)

• Display where/why a connection was implicitly closed (to aid debugging). (Bug #1673)

• DatabaseMetaData.getColumns() is not returning correct column ordinal info for non-'%' column
name patterns. (Bug #1673)

• Centralized setting of result set type and concurrency.

• Implemented Connection.prepareCall(), and DatabaseMetaData. getProcedures() and
getProcedureColumns(). (Bug #2359)

• Implemented multiple result sets returned from a statement or stored procedure. (Bug #2502)

• Fixed NullPointerException in ServerPreparedStatement.setTimestamp(), as well as year
and month discrepencies in ServerPreparedStatement.setTimestamp(), setDate(). (Bug
#1673)

• Fixed character encoding issues when converting bytes to ASCII when MySQL doesn't provide the
character set, and the JVM is set to a multi-byte encoding (usually affecting retrieval of numeric values).

• Support “old” profileSql capitalization in ConnectionProperties. This property is deprecated, you
should use profileSQL if possible.

• Added ability to have multiple database/JVM targets for compliance and regression/unit tests in
build.xml. (Bug #1673)

• Support for transaction savepoints (MySQL >= 4.0.14 or 4.1.1).

• Check for closed connection on delete/update/insert row operations in UpdatableResultSet.

• Support for NIO. Use useNIO=true on platforms that support NIO.

• Fixed sending of queries larger than 16M. (Bug #1673)

• Use DocBook version of docs for shipped versions of drivers. (Bug #2671)

• Merged fix of data type mapping from MySQL type FLOAT to java.sql.Types.REAL from 3.0 branch.
(Bug #1673)

• Merged prepared statement caching, and .getMetaData() support from 3.0 branch. (Bug #2359)

• Fixed NPE and year/month bad conversions when accessing some datetime functionality in
ServerPreparedStatements and their resultant result sets. (Bug #1673)

• Removed useFastDates connection property.

• Added named and indexed input/output parameter support to CallableStatement. MySQL-5.0.x or
newer. (Bug #1673)

http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html

Changes in MySQL Connector/J 3.1.0 (2003-02-18, alpha)

153

• Fixed off-by-1900 error in some cases for years in TimeUtil.fastDate/TimeCreate() when
unpacking results from server-side prepared statements. (Bug #2359)

• Support for mysql_change_user(). See the changeUser() method in
com.mysql.jdbc.Connection.

• DatabaseMetaData now reports supportsStoredProcedures() for MySQL versions >= 5.0.0

• Deal with 0-length tokens in EscapeProcessor (caused by callable statement escape syntax).

• Reset long binary parameters in ServerPreparedStatement when clearParameters() is
called, by sending COM_RESET_STMT to the server. (Bug #2359)

• Server-side prepared statements were not returning data type YEAR correctly. (Bug #2606)

• NULL fields were not being encoded correctly in all cases in server-side prepared statements. (Bug
#2671)

• Implemented long data (Blobs, Clobs, InputStreams, Readers) for server prepared statements.

• Correctly initialize datasource properties from JNDI Refs, including explicitly specified URLs.

• Ensure that warnings are cleared before executing queries on prepared statements, as-per JDBC spec
(now that we support warnings).

• Implemented Statement.getWarnings() for MySQL-4.1 and newer (using SHOW WARNINGS).

• Unpack “unknown” data types from server prepared statements as Strings.

• NULL values for numeric types in binary encoded result sets causing NullPointerExceptions. (Bug
#2359)

• CommunicationsException implemented, that tries to determine why communications was lost with a
server, and displays possible reasons when .getMessage() is called. (Bug #1673)

• Fixed rare buffer underflow when writing numbers into buffers for sending prepared statement execution
requests. (Bug #2671)

• Fix support for table aliases when checking for all primary keys in UpdatableResultSet.

• Optimized Buffer.readLenByteArray() to return shared empty byte array when length is 0.

• Detect collation of column for RSMD.isCaseSensitive(). (Bug #1673)

• Merged unbuffered input code from 3.0. (Bug #2623)

Changes in MySQL Connector/J 3.1.0 (2003-02-18, alpha)

Bugs Fixed

• Track open Statements, close all when Connection.close() is called (JDBC compliance).

• Added requireSSL property.

• Added useServerPrepStmts property (default false). The driver will use server-side prepared
statements when the server version supports them (4.1 and newer) when this property is set to true. It
is currently set to false by default until all bind/fetch functionality has been implemented. Currently only
DML prepared statements are implemented for 4.1 server-side prepared statements.

http://dev.mysql.com/doc/refman/5.5/en/mysql-change-user.html
http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/show-warnings.html

Changes in MySQL Connector/J 3.0.x

154

Changes in MySQL Connector/J 3.0.x

Changes in MySQL Connector/J 3.0.17 (2005-06-23)

Bugs Fixed

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by
MySQL server. (Bug #7061)

• Workaround for server Bug #9098: Default values of CURRENT_* for DATE, TIME,
DATETIME, and TIMESTAMP columns can't be distinguished from string values, so
UpdatableResultSet.moveToInsertRow() generates bad SQL for inserting default values. (Bug
#8812)

• Handle streaming result sets with more than 2 billion rows properly by fixing wraparound of row number
counter. (Bug #7601)

• Fixed duplicated code in configureClientCharset() that prevented useOldUTF8Behavior=true
from working properly. (Bug #7952)

• Statements created from a pooled connection were returning physical connection instead of logical
connection when getConnection() was called. (Bug #7316)

• MS932, SHIFT_JIS, and Windows_31J not recognized as aliases for sjis. (Bug #7607)

• EUCKR charset is sent as SET NAMES euc_kr which MySQL-4.1 and newer doesn't understand. (Bug
#8629)

• Support new protocol type MYSQL_TYPE_VARCHAR. (Bug #7081)

• Connections starting up failed-over (due to down master) never retry master. (Bug #6966)

• PreparedStatements don't encode Big5 (and other multi-byte) character sets correctly in static SQL
strings. (Bug #7033)

• PreparedStatement.fixDecimalExponent() adding extra +, making number unparseable by
MySQL server. (Bug #7601)

• Backported SQLState codes mapping from Connector/J 3.1, enable with useSqlStateCodes=true as
a connection property, it defaults to false in this release, so that we don't break legacy applications (it
defaults to true starting with Connector/J 3.1). (Bug #7686)

• Added useOldUTF8Behavior' configuration property, which causes JDBC driver to act like it did with
MySQL-4.0.x and earlier when the character encoding is utf-8 when connected to MySQL-4.1 or
newer. (Bug #7081)

• Escape sequence {fn convert(..., type)} now supports ODBC-style types that are prepended by SQL_.
(Bug #7601)

• Added support for the EUC_JP_Solaris character encoding, which maps to a MySQL encoding of
eucjpms (backported from 3.1 branch). This only works on servers that support eucjpms, namely 5.0.3
or later. (Bug #8629)

• NON_UNIQUE column from DBMD.getIndexInfo() returned inverted value. (Bug #8812)

• Use hex escapes for PreparedStatement.setBytes() for double-byte charsets including “aliases”
Windows-31J, CP934, MS932. (Bug #8629)

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 3.0.16 (2004-11-15)

155

• Timestamp key column data needed _binary stripped for UpdatableResultSet.refreshRow().
(Bug #7686)

• DatabaseMetaData.getIndexInfo() ignored unique parameter. (Bug #7081)

• DatabaseMetaData.supportsSelectForUpdate() returns correct value based on server version.
(Bug #8629)

• Which requires hex escaping of binary data when using multi-byte charsets with prepared statements.
(Bug #8064)

• Timestamp/Time conversion goes in the wrong “direction” when useTimeZone=true and server time
zone differs from client time zone. (Bug #5874)

• Adding CP943 to aliases for sjis. (Bug #6549, Bug #7607)

Changes in MySQL Connector/J 3.0.16 (2004-11-15)

Bugs Fixed

• Made TINYINT(1) -> BIT/Boolean conversion configurable using tinyInt1isBit property (default
true to be JDBC compliant out of the box). (Bug #5664)

• Off-by-one bug in Buffer.readString(string). (Bug #5664)

• ResultSet.updateByte() when on insert row throws ArrayOutOfBoundsException. (Bug
#5664)

• Fixed regression where useUnbufferedInput was defaulting to false. (Bug #5664)

• ResultSet.getTimestamp() on a column with TIME in it fails. (Bug #5664)

• Fixed DatabaseMetaData.getTypes() returning incorrect (this is, nonnegative) scale for the
NUMERIC type. (Bug #5664)

• Only set character_set_results during connection establishment if server version >= 4.1.1. (Bug
#5664)

• Re-issue character set configuration commands when re-using pooled connections or
Connection.changeUser() when connected to MySQL-4.1 or newer.

• Fixed ResultSetMetaData.isReadOnly() to detect nonwritable columns when connected to
MySQL-4.1 or newer, based on existence of “original” table and column names.

Changes in MySQL Connector/J 3.0.15 (2004-09-04)

Bugs Fixed

• Calling .close() twice on a PooledConnection causes NPE. (Bug #4808)

• “Production” is now “GA” (General Availability) in naming scheme of distributions. (Bug #4860, Bug
#4138)

• DOUBLE mapped twice in DBMD.getTypeInfo(). (Bug #4742)

• Removed redundant calls to checkRowPos() in ResultSet. (Bug #4334)

• DBMD.getColumns() returns incorrect JDBC type for unsigned columns. This affects type mappings
for all numeric types in the RSMD.getColumnType() and RSMD.getColumnTypeNames()

http://dev.mysql.com/doc/refman/5.5/en/bit-type.html
http://dev.mysql.com/doc/refman/5.5/en/time.html
http://dev.mysql.com/doc/refman/5.5/en/fixed-point-types.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html

Changes in MySQL Connector/J 3.0.14 (2004-05-28)

156

methods as well, to ensure that “like” types from DBMD.getColumns() match up with what
RSMD.getColumnType() and getColumnTypeNames() return. (Bug #4860, Bug #4138)

• ResultSet.getMetaData() should not return incorrectly initialized metadata if the result set
has been closed, but should instead throw an SQLException. Also fixed for getRow() and
getWarnings() and traversal methods by calling checkClosed() before operating on instance-level
fields that are nullified during .close(). (Bug #5069)

• RSMD.getPrecision() returning 0 for nonnumeric types (should return max length in
chars for nonbinary types, max length in bytes for binary types). This fix also fixes mapping of
RSMD.getColumnType() and RSMD.getColumnTypeName() for the BLOB types based on the
length sent from the server (the server doesn't distinguish between TINYBLOB, BLOB, MEDIUMBLOB or
LONGBLOB at the network protocol level). (Bug #4880)

• Added FLOSS license exemption. (Bug #4742)

• ResultSet should release Field[] instance in .close(). (Bug #5022)

• Failover for autoReconnect not using port numbers for any hosts, and not retrying all hosts.

Warning

This required a change to the SocketFactory connect() method signature,
which is now public Socket connect(String host, int portNumber,
Properties props); therefore, any third-party socket factories will have to be
changed to support this signature.

(Bug #4334)

• Use _binary introducer for PreparedStatement.setBytes() and set*Stream() when
connected to MySQL-4.1.x or newer to avoid misinterpretation during character conversion. (Bug #5069)

• Logical connections created by MysqlConnectionPoolDataSource will now issue a rollback()
when they are closed and sent back to the pool. If your application server/connection pool already does
this for you, you can set the rollbackOnPooledClose property to false to avoid the overhead of an
extra rollback(). (Bug #4334)

• Parse new time zone variables from 4.1.x servers. (Bug #5069)

• StringUtils.escapeEasternUnicodeByteStream was still broken for GBK. (Bug #4010)

Changes in MySQL Connector/J 3.0.14 (2004-05-28)

Bugs Fixed

• Fixed URL parsing error.

Changes in MySQL Connector/J 3.0.13 (2004-05-27)

Bugs Fixed

• Using a MySQLDatasource without server name fails. (Bug #3848)

• PreparedStatement.getGeneratedKeys() method returns only 1 result for batched insertions.
(Bug #3873)

• No Database Selected when using MysqlConnectionPoolDataSource. (Bug #3920)

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 3.0.12 (2004-05-18)

157

Changes in MySQL Connector/J 3.0.12 (2004-05-18)

Bugs Fixed

• Backported “change user” and “reset server state” functionality from 3.1 branch, to enable clients
of MysqlConnectionPoolDataSource to reset server state on getConnection() on a pooled
connection.

• Made StringRegressionTest 4.1-unicode aware. (Bug #3520)

• Use SET character_set_results during initialization to enable any charset to be returned to the
driver for result sets. (Bug #2670)

• Fixed regression in PreparedStatement.setString() and eastern character encodings. (Bug
#3520)

• Don't truncate BLOB or CLOB values when using setBytes() and setBinary/CharacterStream().
(Bug #2670)

• Map duplicate key and foreign key errors to SQLState of 23000.

• Allow java.util.Date to be sent in as parameter to PreparedStatement.setObject(),
converting it to a Timestamp to maintain full precision. . (Bug #103)

• Add unsigned attribute to DatabaseMetaData.getColumns() output in the TYPE_NAME column.

• Not specifying database in URL caused MalformedURL exception. (Bug #3554)

• Added failOverReadOnly property, to enable the user to configure the state of the connection (read-
only/writable) when failed over.

• Dynamically configure character set mappings for field-level character sets on MySQL-4.1.0 and newer
using SHOW COLLATION when connecting. (Bug #2670)

• Map binary character set to US-ASCII to support DATETIME charset recognition for servers >= 4.1.2.
(Bug #2670)

• Inconsistent reporting of data type. The server still doesn't return all types for *BLOBs *TEXT correctly,
so the driver won't return those correctly. (Bug #3570)

• Auto-convert MySQL encoding names to Java encoding names if used for characterEncoding
property. (Bug #3554)

• Backport documentation tooling from 3.1 branch.

• Use junit.textui.TestRunner for all unit tests (to enable them to be run from the command line
outside of Ant or Eclipse). (Bug #3554)

• Renamed StringUtils.escapeSJISByteStream() to more appropriate
escapeEasternUnicodeByteStream(). (Bug #3511)

• Use charsetnr returned during connect to encode queries before issuing SET NAMES on MySQL >=
4.1.0. (Bug #2670)

• StringUtils.escapeSJISByteStream() not covering all eastern double-byte charsets correctly.
(Bug #3511)

• DBMD.getSQLStateType() returns incorrect value. (Bug #3520)

http://dev.mysql.com/doc/refman/5.5/en/show-collation.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 3.0.11 (2004-02-19)

158

• Add helper methods to ResultSetMetaData (getColumnCharacterEncoding() and
getColumnCharacterSet()) to permit end users to see what charset the driver thinks it should be
using for the column. (Bug #2670)

• Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

• Added encoding names that are recognized on some JVMs to fix case where they were reverse-mapped
to MySQL encoding names incorrectly. (Bug #3554)

• Only set character_set_results for MySQL >= 4.1.0. (Bug #2670)

• Return creating statement for ResultSets created by getGeneratedKeys(). (Bug #2957)

• UpdatableResultSet not picking up default values for moveToInsertRow(). (Bug #3557)

• Allow url parameter for MysqlDataSource and MysqlConnectionPool DataSource so that
passing of other properties is possible from inside appservers.

Changes in MySQL Connector/J 3.0.11 (2004-02-19)

Bugs Fixed

• Return java.lang.Integer for TINYINT and SMALLINT types from
ResultSetMetaData.getColumnClassName(). (Bug #2852)

• Return java.lang.Double for FLOAT type from ResultSetMetaData.getColumnClassName().
(Bug #2855)

• Added useUnbufferedInput parameter, and now use it by default (due to JVM issue http://
developer.java.sun.com/developer/bugParade/bugs/4401235.html) (Bug #2578)

• AutoReconnect time was growing faster than exponentially. (Bug #2447)

• Fixed failover always going to last host in list. (Bug #2578)

• Detect on/off or 1, 2, 3 form of lower_case_table_names value on server. (Bug #2578)

• Return [B instead of java.lang.Object for BINARY, VARBINARY and LONGVARBINARY types from
ResultSetMetaData.getColumnClassName() (JDBC compliance). (Bug #2855)

• Issue connection events on all instances created from a ConnectionPoolDataSource. (Bug #2855)

• Trigger a SET NAMES utf8 when encoding is forced to utf8 or utf-8 using the
characterEncoding property. Previously, only the Java-style encoding name of utf-8 would trigger
this.

Changes in MySQL Connector/J 3.0.10 (2004-01-13)

Bugs Fixed

• Fixed regression of Statement.getGeneratedKeys() and REPLACE statements. (Bug #1576)

• Implement ResultSet.updateClob(). (Bug #1913)

• Enable caching of the parsing stage of prepared statements using the cachePrepStmts,
prepStmtCacheSize, and prepStmtCacheSqlLimit properties (disabled by default). (Bug #2006)

• Foreign Keys column sequence is not consistent in DatabaseMetaData.getImported/Exported/
CrossReference(). (Bug #1731)

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_character_set_results
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/floating-point-types.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/binary-varbinary.html
http://dev.mysql.com/doc/refman/5.5/en/replace.html

Changes in MySQL Connector/J 3.0.10 (2004-01-13)

159

• Subsequent call to ResultSet.updateFoo() causes NPE if result set is not updatable. (Bug #1630)

• Backported fix for aliased tables and UpdatableResultSets in checkUpdatability() method
from 3.1 branch. (Bug #1534)

• Fixed security exception when used in Applets (applets can't read the system property file.encoding
which is needed for LOAD DATA LOCAL INFILE). (Bug #2006)

• Speed up parsing of PreparedStatements, try to use one-pass whenever possible. (Bug #2006)

• Support escape sequence {fn convert ... }. (Bug #1914)

• Autoreconnect code didn't set catalog upon reconnect if it had been changed. (Bug #1913)

• Fixed exception Unknown character set 'danish' on connect with JDK-1.4.0 (Bug #2006)

• Fixed mappings in SQLError to report deadlocks with SQLStates of 41000. (Bug #2006)

• ResultSet.getObject() on TINYINT and SMALLINT columns should return Java type Integer.
(Bug #1913)

• ArrayIndexOutOfBounds when parameter number == number of parameters + 1. (Bug #1958)

• Added more descriptive error message Server Configuration Denies Access to
DataSource, as well as retrieval of message from server. (Bug #1913)

• “Friendlier” exception message for PacketTooLargeException. (Bug #1534)

• Don't count quoted IDs when inside a 'string' in PreparedStatement parsing. (Bug #1511)

• Removed static synchronization bottleneck from instance factory method of
SingleByteCharsetConverter. (Bug #2006)

• Removed static synchronization bottleneck from PreparedStatement.setTimestamp(). (Bug
#2006)

• ResultSet.findColumn() should use first matching column name when there are duplicate column
names in SELECT query (JDBC-compliance). (Bug #2006)

• maxRows property would affect internal statements, so check it for all statement creation internal to the
driver, and set to 0 when it is not. (Bug #2006)

• Barge blobs and split packets not being read correctly. (Bug #1576)

• ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR columns. (Bug
#1913)

• DatabaseMetaData.getSystemFunction() returning bad function VResultsSion. (Bug #1775)

• Use constants for SQLStates. (Bug #2006)

• Fix for 4.1.1-style authentication with no password. (Bug #1630)

• Cross-database updatable result sets are not checked for updatability correctly. (Bug #1592)

• Statements being created too many times in DBMD.extractForeignKeyFromCreateTable(). (Bug
#1925)

• Map charset ko18_ru to ko18r when connected to MySQL-4.1.0 or newer. (Bug #2006)

http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/char.html
http://dev.mysql.com/doc/refman/5.5/en/char.html

Changes in MySQL Connector/J 3.0.9 (2003-10-07)

160

• Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows(). (Bug #1695)

• Connection property maxRows not honored. (Bug #1933)

• Added alwaysClearStream connection property, which causes the driver to always empty any
remaining data on the input stream before each query. (Bug #1913)

• DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for MySQL LONGTEXT
type. (Bug #1592)

• Ensure that Buffer.writeString() saves room for the \0. (Bug #2006)

Changes in MySQL Connector/J 3.0.9 (2003-10-07)

Bugs Fixed

• Issue exception on ResultSet.getXXX() on empty result set (wasn't caught in some cases). (Bug
#848)

• Made databaseName, portNumber, and serverName optional parameters for
MysqlDataSourceFactory. (Bug #1246)

• ResultSet.get/setString mashing char 127. (Bug #1247)

• Double-escaping of '\' when charset is SJIS or GBK and '\' appears in nonescaped input. (Bug
#879)

• Don't hide messages from exceptions thrown in I/O layers. (Bug #848)

• Support InnoDB constraint names when extracting foreign key information in DatabaseMetaData
(implementing ideas from Parwinder Sekhon). (Bug #664, Bug #517)

• Fixed CLOB.truncate(). (Bug #1130)

• Fixed ResultSet.previous() behavior to move current position to before result set when on first row
of result set. (Bug #496)

• Backported 4.1 protocol changes from 3.1 branch (server-side SQL states, new field information, larger
client capability flags, connect-with-database, and so forth). (Bug #664, Bug #517)

• Fixed Statement and PreparedStatement issuing bogus queries when setMaxRows() had been
used and a LIMIT clause was present in the query. (Bug #496)

• Added property to “clobber” streaming results, by setting the clobberStreamingResults property to
true (the default is false). This will cause a “streaming” ResultSet to be automatically closed, and
any outstanding data still streaming from the server to be discarded if another query is executed before
all the data has been read from the server. (Bug #1247)

• When emptying input stream of unused rows for “streaming” result sets, have the current thread
yield() every 100 rows to not monopolize CPU time. (Bug #879)

• Fixed deadlock issue with Statement.setMaxRows(). (Bug #1099)

• Don't wrap SQLExceptions in RowDataDynamic. (Bug #688)

• Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases for bug reports. (Bug
#1247)

http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 3.0.8 (2003-05-23)

161

• Clip +/- INF (to smallest and largest representative values for the type in MySQL) and NaN (to 0) for
setDouble/setFloat(), and issue a warning on the statement when the server does not support +/-
INF or NaN. (Bug #884)

• Don't try and reset isolation level on reconnect if MySQL doesn't support them. (Bug #688)

• DatabaseMetaData.getColumns() getting confused about the keyword “set” in character columns.
(Bug #1099)

• Fixed regression in large split-packet handling. (Bug #848)

• Fixed test for end of buffer in Buffer.readString().

• The insertRow in an UpdatableResultSet is now loaded with the default column values when
moveToInsertRow() is called. (Bug #688)

• Better diagnostic error messages in exceptions for “streaming” result sets. (Bug #848)

• Backported authentication changes for 4.1.1 and newer from 3.1 branch. (Bug #1247)

• DatabaseMetaData.getColumns() wasn't returning NULL for default values that are specified as
NULL. (Bug #688)

• Don't change timestamp TZ twice if useTimezone==true. (Bug #774)

• refreshRow didn't work when primary key values contained values that needed to be escaped (they
ended up being doubly escaped). (Bug #661)

• Fix UpdatableResultSet to return values for getXXX() when on insert row. (Bug #675)

• Don't fire connection closed events when closing pooled connections, or on
PooledConnection.getConnection() with already open connections. (Bug #884)

• Change default statement type/concurrency to TYPE_FORWARD_ONLY and CONCUR_READ_ONLY (spec
compliance). (Bug #688)

• Faster date handling code in ResultSet and PreparedStatement (no longer uses Date methods
that synchronize on static calendars).

• Optimized CLOB.setChracterStream(). (Bug #1131)

Changes in MySQL Connector/J 3.0.8 (2003-05-23)

Bugs Fixed

• Fixed SJIS encoding bug, thanks to Naoto Sato. (Bug #378)

• Allow bogus URLs in Driver.getPropertyInfo().

• Fix problem detecting server character set in some cases. (Bug #378)

• Allow multiple calls to Statement.close(). (Bug #378)

• Return correct number of generated keys when using REPLACE statements. (Bug #378)

• Unicode character 0xFFFF in a string would cause the driver to throw an
ArrayOutOfBoundsException. . (Bug #378)

• Return list of generated keys when using multi-value INSERTS with
Statement.getGeneratedKeys().

http://dev.mysql.com/doc/refman/5.5/en/replace.html

Changes in MySQL Connector/J 3.0.7 (2003-04-08)

162

• Fixed result set not getting set for Statement.executeUpdate(), which affected
getGeneratedKeys() and getUpdateCount() in some cases.

• Changed Ant target compile-core to compile-driver, and made testsuite compilation a separate
target.

• Fix infinite loop with Connection.cleanup().

• Fix row data decoding error when using very large packets. (Bug #378)

• Optimized row data decoding. (Bug #378)

• Use JVM charset with file names and LOAD DATA [LOCAL] INFILE.

• Issue exception when operating on an already closed prepared statement. (Bug #378)

• Optimized usage of EscapeProcessor. (Bug #378)

Changes in MySQL Connector/J 3.0.7 (2003-04-08)

Bugs Fixed

• Throw SQLExceptions when trying to do operations on a forcefully closed Connection (that is, when
a communication link failure occurs).

• Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

• Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

• Don't reset Connection.isReadOnly() when autoReconnecting.

• Ensure that packet size from alignPacketSize() does not exceed max_allowed_packet (JVM
bug)

• Don't pick up indexes that start with pri as primary keys for DBMD.getPrimaryKeys().

• Fixed LOAD DATA LOCAL INFILE bug when file > max_allowed_packet.

• Updatable ResultSets can now be created for aliased tables/columns when connected to MySQL-4.1
or newer.

• Fixed missing conversion for YEAR type in ResultSetMetaData.getColumnTypeName().

• Remove synchronization from Driver.connect() and Driver.acceptsUrl().

• IOExceptions during a transaction now cause the Connection to be closed.

• Fixed StringIndexOutOfBoundsException in PreparedStatement.setClob().

• Fixed MysqlPooledConnection.close() calling wrong event type.

• 4.1 Column Metadata fixes.

• You can now toggle profiling on/off using Connection.setProfileSql(boolean).

• Fixed charset issues with database metadata (charset was not getting set correctly).

Changes in MySQL Connector/J 3.0.6 (2003-02-18)

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/load-data.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet
http://dev.mysql.com/doc/refman/5.5/en/year.html

Changes in MySQL Connector/J 3.0.5 (2003-01-22)

163

• Add “window” of different NULL sorting behavior to DBMD.nullsAreSortedAtStart (4.0.2 to 4.0.10,
true; otherwise, no).

• Implemented Blob.setBytes(). You still need to pass the resultant Blob back into an updatable
ResultSet or PreparedStatement to persist the changes, because MySQL does not support
“locators”.

• More checks added in ResultSet traversal method to catch when in closed state.

• Fixed ResultSetMetaData.isWritable() to return correct value.

• Clean up Statement query/method mismatch tests (that is, INSERT not permitted with
.executeQuery()).

• Allow ignoring of warning for “non transactional tables” during rollback (compliance/usability) by setting
ignoreNonTxTables property to true.

• Fixed ResultSetMetaData to return "" when catalog not known. Fixes NullPointerExceptions
with Sun's CachedRowSet.

• Fixed SQLExceptions getting swallowed on initial connect.

• Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning different value for precision in TEXT
and BLOB types.

• Fixed Statement.setMaxRows() to stop sending LIMIT type queries when not needed
(performance).

• Backported 4.1 charset field info changes from Connector/J 3.1.

Changes in MySQL Connector/J 3.0.5 (2003-01-22)

Bugs Fixed

• Greatly reduce memory required for setBinaryStream() in PreparedStatements.

• Retrieve TX_ISOLATION from database for Connection.getTransactionIsolation() when the
MySQL version supports it, instead of an instance variable.

• Quote table names in DatabaseMetaData.getColumns(), getPrimaryKeys(),
getIndexInfo(), getBestRowIdentifier().

• Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds exceptions with some
queries when unpacking fields.

• Added update options for foreign key metadata.

• Implemented an empty TypeMap for Connection.getTypeMap() so that some third-party apps work
with MySQL (IBM WebSphere 5.0 Connection pool).

• Added missing LONGTEXT type to DBMD.getColumns().

• Fixed ResultSet.isBeforeFirst() for empty result sets.

Changes in MySQL Connector/J 3.0.4 (2003-01-06)

Bugs Fixed

• Added support for quoted identifiers in PreparedStatement parser.

http://dev.mysql.com/doc/refman/5.5/en/insert.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 3.0.3 (2002-12-17)

164

• Added strictUpdates property to enable control of amount of checking for “correctness” of updatable
result sets. Set this to false if you want faster updatable result sets and you know that you create them
from SELECT statements on tables with primary keys and that you have selected all primary keys in your
query.

• Reduce memory footprint of PreparedStatements by sharing outbound packet with MysqlIO.

• Added support for 4.0.8-style large packets.

• Added quoted identifiers to database names for Connection.setCatalog.

• Fixed PreparedStatement.executeBatch() parameter overwriting.

• Streamlined character conversion and byte[] handling in PreparedStatements for setByte().

Changes in MySQL Connector/J 3.0.3 (2002-12-17)

Bugs Fixed

• Changed SingleByteCharConverter to use lazy initialization of each converter.

• Fixed ResultSetMetaData.getPrecision() returning incorrect values for some floating-point
types.

• Check for connection closed in more Connection methods (createStatement,
prepareStatement, setTransactionIsolation, setAutoCommit).

• Some MySQL-4.1 protocol support (extended field info from selects).

• More robust implementation of updatable result sets. Checks that all primary keys of the table have been
selected.

• DBMD.getImported/ExportedKeys() now handles multiple foreign keys per table.

• Honor lower_case_table_names when enabled in the server when doing table name comparisons in
DatabaseMetaData methods.

• Added CLIENT_LONG_FLAG to be able to get more column flags (isAutoIncrement() being the most
important).

• Substitute '?' for unknown character conversions in single-byte character sets instead of '\0'.

• Because of above, implemented ResultSetMetaData.isAutoIncrement() to use
Field.isAutoIncrement().

• Fixed charset handling in Fields.java.

• Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for TEXT and TEXT for BLOB
types.

• Implemented Connection.nativeSQL().

• LOAD DATA LOCAL INFILE ... now works, if your server is configured to permit it. Can be turned off
with the allowLoadLocalInfile property (see the README).

• Use nonaliased table/column names and database names to fully qualify tables and columns in
UpdatableResultSet (requires MySQL-4.1 or newer).

• Changed charsToByte in SingleByteCharConverter to be nonstatic.

http://dev.mysql.com/doc/refman/5.5/en/select.html
http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_lower_case_table_names
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 3.0.2 (2002-11-08)

165

• NamedPipeSocketFactory now works (only intended for Windows), see README for instructions.

• Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

• More robust escape tokenizer: Recognize -- comments, and permit nested escape sequences (see
testsuite.EscapeProcessingTest).

• Allow user to alter behavior of Statement/ PreparedStatement.executeBatch() using
continueBatchOnError property (defaults to true).

Changes in MySQL Connector/J 3.0.2 (2002-11-08)

Bugs Fixed

• Implemented Clob.truncate().

• Properly restore connection properties when autoReconnecting or failing-over, including autoCommit
state, and isolation level.

• Fixed issue when calling Statement.setFetchSize() when using arbitrary values.

• Added queriesBeforeRetryMaster property that specifies how many queries to issue when failed
over before attempting to reconnect to the master (defaults to 50).

• Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN).

• Added driver property useHostsInPrivileges. Defaults to true. Affects whether or not @hostname
will be used in DBMD.getColumn/TablePrivileges.

• Fixed ResultSet.isLast() for empty result sets (should return false).

• Fixed various non-ASCII character encoding issues.

• Added connectTimeout parameter that enables users of JDK-1.4 and newer to specify a maximum
time to wait to establish a connection.

• Fixed start position off-by-1 error in Clob.getSubString().

• Fixed issue with updatable result sets and PreparedStatements not working.

• PreparedStatement now honors stream lengths in setBinary/Ascii/Character Stream() unless you set
the connection property useStreamLengthsInPrepStmts to false.

• Escape 0x5c character in strings for the SJIS charset.

• Removed some not-needed temporary object creation by smarter use of Strings in
EscapeProcessor, Connection and DatabaseMetaData classes.

• Implemented ResultSet.updateBlob().

• Fixed incorrect conversion in ResultSet.getLong().

• Fixed UnsupportedEncodingException thrown when “forcing” a character encoding using
properties.

• Removed duplicate code from UpdatableResultSet (it can be inherited from ResultSet, the extra
code for each method to handle updatability I thought might someday be necessary has not been
needed).

Changes in MySQL Connector/J 3.0.1 (2002-09-21)

166

• Implemented Clob.setAsciiStream().

• Fixed DBMD.supportsResultSetConcurrency() so that it returns true for
ResultSet.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or
ResultSet.CONCUR_UPDATABLE.

• Failover and autoReconnect work only when the connection is in an autoCommit(false) state, to
stay transaction-safe.

• Implemented Clob.setCharacterStream().

• Use SHOW CREATE TABLE when possible for determining foreign key information for
DatabaseMetaData. Also enables cascade options for DELETE information to be returned.

• All DBMD result set columns describing schemas now return NULL to be more compliant with the behavior
of other JDBC drivers for other database systems (MySQL does not support schemas).

• Added SSL support. See README for information on how to use it.

• Added com.mysql.jdbc.MiniAdmin class, which enables you to send shutdown command to
MySQL server. This is intended to be used when “embedding” Java and MySQL server together in an
end-user application.

• Implemented Clob.setString().

Changes in MySQL Connector/J 3.0.1 (2002-09-21)

Bugs Fixed

• Added paranoid parameter, which sanitizes error messages by removing “sensitive” information from
them (such as host names, ports, or user names), as well as clearing “sensitive” data structures when
possible.

• Added LOCAL TEMPORARY to table types in DatabaseMetaData.getTableTypes().

• Added socketTimeout parameter to URL.

• Connection.close() issues rollback() when getAutoCommit() is false.

• Connection.isClosed() no longer “pings” the server.

• Added limited Clob functionality (ResultSet.getClob(), PreparedStatement.setClob(),
PreparedStatement.setObject(Clob).

• Implemented ResultSet.getCharacterStream().

• Massive code clean-up to follow Java coding conventions (the time had come).

• Fixed ResultSet.getRow() off-by-one bug.

• Fixed RowDataStatic.getAt() off-by-one bug.

• Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

• Charsets now automatically detected. Optimized code for single-byte character set conversion.

Changes in MySQL Connector/J 3.0.0 (2002-07-31)

Bugs Fixed

http://dev.mysql.com/doc/refman/5.5/en/show-create-table.html
http://dev.mysql.com/doc/refman/5.5/en/delete.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html

Changes in MySQL Connector/J 2.0.x

167

• Performance enhancements: Driver is now 50–100% faster in most situations, and creates fewer
temporary objects.

• !!! LICENSE CHANGE !!! The driver is now GPL.

• Overall speed improvements using controlling transient object creation in MysqlIO class when reading
packets.

• JDBC-3.0 functionality including Statement/PreparedStatement.getGeneratedKeys() and
ResultSet.getURL().

• Performance improvements in string handling and field metadata creation (lazily instantiated) contributed
by Alex Twisleton-Wykeham-Fiennes.

• Better checking for closed connections in Statement and PreparedStatement.

• Support for large packets (new addition to MySQL-4.0 protocol), see README for more information.

• Repackaging: New driver name is com.mysql.jdbc.Driver, old name still works, though (the driver
is now provided by MySQL-AB).

• Added multi-host failover support (see README).

• ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid values that have been set
to all zeros by MySQL (SF bug 586058).

• JDBC Compliance: Passes all tests besides stored procedure tests.

• Testsuite now uses Junit (which you can get from http://www.junit.org.

• Support for streaming (row-by-row) result sets (see README) Thanks to Doron.

• Float types now reported as java.sql.Types.FLOAT (SF bug 579573).

• ResultSet.getTimestamp() now works for DATE types (SF bug 559134).

• Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086).

• The driver now only works with JDK-1.2 or newer.

• General source-code cleanup.

Changes in MySQL Connector/J 2.0.x

Changes in MySQL Connector/J 2.0.14 (2002-05-16)

Bugs Fixed

• Quoted identifiers not used if server version does not support them. Also, if server started with --ansi
or --sql-mode=ANSI_QUOTES, “"” will be used as an identifier quote character, otherwise “'” will be
used.

• More code cleanup.

• PreparedStatement now releases resources on .close(). (SF bug 553268)

• Added SQL profiling (to STDERR). Set profileSql=true in your JDBC URL. See README for more
information.

http://www.junit.org
http://dev.mysql.com/doc/refman/5.5/en/datetime.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_ansi
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_sql-mode

Changes in MySQL Connector/J 2.0.13 (2002-04-24)

168

• LogicalHandle.isClosed() calls through to physical connection.

• Fixed typo for relaxAutoCommit parameter.

• ResultSet.getDouble() now uses code built into JDK to be more precise (but slower).

Changes in MySQL Connector/J 2.0.13 (2002-04-24)

Bugs Fixed

• ResultSetMetaData.getColumnClassName() now implemented.

• DBMetaData.getIndexInfo() - bad PAGES fixed. (SF BUG 542201)

• Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0 now implemented (you
need to be using JDK-1.4 for this to work, I believe).

• More code cleanup.

• PreparedStatement.toString() fixed. (SF bug 534026)

• Added set/getPortNumber() to DataSource(s). (SF bug 548167)

• Added setURL() to MySQLXADataSource. (SF bug 546019)

• Faster blob escaping for PrepStmt.

• Fixed unicode chars being read incorrectly. (SF bug 541088)

Changes in MySQL Connector/J 2.0.12 (2002-04-07)

Bugs Fixed

• General code cleanup.

• Fixed getRow() bug (527165) in ResultSet.

• ResultSet.refreshRow() implemented.

• Added getIdleFor() method to Connection and MysqlLogicalHandle.

• Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

• ResultSet: Fixed updatability (values being set to null if not updated).

• Fixes for ResultSet updatability in PreparedStatement.

• Added support for YEAR type (533556).

• DataSources - fixed setUrl bug (511614, 525565), wrong datasource class name (532816, 528767).

• Relaxed synchronization in all classes, should fix 520615 and 520393.

• ResultSet.insertRow() should now detect auto_increment fields in most cases and use that
value in the new row. This detection will not work in multi-valued keys, however, due to the fact that the
MySQL protocol does not return this information.

• Added support for BIT types (51870) to PreparedStatement.

• Added identifier quoting to all DatabaseMetaData methods that need them (should fix 518108).

http://dev.mysql.com/doc/refman/5.5/en/year.html
http://dev.mysql.com/doc/refman/5.5/en/bit-type.html

Changes in MySQL Connector/J 2.0.11 (2002-01-27)

169

• Fixed time zone off-by-1-hour bug in PreparedStatement (538286, 528785).

• Added new types to getTypeInfo(), fixed existing types thanks to Al Davis and Kid Kalanon.

• Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

Changes in MySQL Connector/J 2.0.11 (2002-01-27)

Bugs Fixed

• More changes to fix Unexpected end of input stream errors when reading BLOB values. This
should be the last fix.

• Fixed missing DELETE_RULE value in DBMD.getImported/ExportedKeys() and
getCrossReference().

• Full synchronization of Statement.java.

Changes in MySQL Connector/J 2.0.10 (2002-01-24)

Bugs Fixed

• Fixed spurious Unexpected end of input stream errors in MysqlIO (bug 507456).

• Fixed null-pointer-exceptions when using MysqlConnectionPoolDataSource with Websphere 4 (bug
505839).

Changes in MySQL Connector/J 2.0.9 (2002-01-13)

Bugs Fixed

• Full synchronization on methods modifying instance and class-shared references, driver should be
entirely thread-safe now (please let me know if you have problems).

• Fixed off-by-one-hour error in PreparedStatement.setTimestamp() (bug 491577).

• Implementation of DatabaseMetaData.getExported/ImportedKeys() and
getCrossReference().

• Report batch update support through DatabaseMetaData (bug 495101).

• Ant build was corrupting included jar files, fixed (bug 487669).

• Removed concatenation support from driver (the || operator), as older versions of VisualAge seem to
be the only thing that use it, and it conflicts with the logical || operator. You will need to start mysqld
with the --ansi flag to use the || operator as concatenation (bug 491680).

• Fixed quoting error with escape processor (bug 486265).

• DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional package, and (initial)
implementations of PooledConnectionDataSource and XADataSource are in place (thanks to Todd
Wolff for the implementation and testing of PooledConnectionDataSource with IBM WebSphere 4).

• Fixed casting bug in PreparedStatement (bug 488663).

• Added detection of network connection being closed when reading packets (thanks to Todd Lizambri).

• Fixed extra memory allocation in MysqlIO.readPacket() (bug 488663).

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/server-options.html#option_mysqld_ansi

Changes in MySQL Connector/J 2.0.8 (2001-11-25)

170

Changes in MySQL Connector/J 2.0.8 (2001-11-25)

Bugs Fixed

• PreparedStatement.setAnyNumericType() now handles positive exponents correctly (adds + so
MySQL can understand it).

• Batch updates now supported (thanks to some inspiration from Daniel Rall).

• DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier() are now more robust
in identifying primary keys (matches regardless of case or abbreviation/full spelling of Primary Key in
Key_type column).

• XADataSource/ConnectionPoolDataSource code (experimental)

Changes in MySQL Connector/J 2.0.7 (2001-10-24)

Bugs Fixed

• Fixed ResultSet.isAfterLast() always returning false.

• PreparedStatement.setBoolean() will use 1/0 for values if your MySQL version is 3.21.23 or higher.

• Updatable result sets now correctly handle NULL values in fields.

• Fixed DatabaseMetaData.supportsTransactions(), and
supportsTransactionIsolationLevel() and getTypeInfo() SQL_DATETIME_SUB and
SQL_DATA_TYPE fields not being readable.

• PreparedStatement.setDouble() now uses full-precision doubles (reverting a fix made earlier to truncate
them).

• Fixed time zone issue in PreparedStatement.setTimestamp(). (thanks to Erik Olofsson)

• Fixed dangling socket problem when in high availability (autoReconnect=true) mode, and finalizer for
Connection will close any dangling sockets on GC.

• Fixed ResultSetMetaData.getPrecision() returning one less than actual on newer versions of
MySQL.

• ResultSet.getBlob() now returns null if column value was null.

• Capitalize type names when capitalizeTypeNames=true is passed in URL or properties (for
WebObjects. (thanks to Anjo Krank)

• PreparedStatement.setCharacterStream() now implemented

• Fixed PreparedStatement generating SQL that would end up with syntax errors for some queries.

• Initial transaction isolation level read from database (if available). (thanks to Dmitry Vereshchagin)

• Character sets read from database if useUnicode=true and characterEncoding is not set. (thanks
to Dmitry Vereshchagin)

Changes in MySQL Connector/J 2.0.6 (2001-06-16)

Bugs Fixed

Changes in MySQL Connector/J 2.0.5 (2001-06-13)

171

• Fixed case-sensitive column names in ResultSet.java.

• Fixed PreparedStatement parameter checking.

Changes in MySQL Connector/J 2.0.5 (2001-06-13)

Bugs Fixed

• Fixed ResultSet.getBlob() ArrayIndex out-of-bounds.

• Fixed NPE on PreparedStatement.executeUpdate() when all columns have not been set.

• Fixed ArrayIndexOutOfBounds when sending large BLOB queries. (Max size packet was not being
set)

• Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB.

• getObject() on ResultSet correctly does TINYINT->Byte and SMALLINT->Short.

• ResultSet has +/-Inf/inf support.

• ResultSet.getBoolean() now recognizes -1 as true.

• DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB.

• Added ISOLATION level support to Connection.setIsolationLevel()

• Fixed data parsing of TIMESTAMP values with 2-digit years.

• Added Byte to PreparedStatement.setObject().

• ResultSet.insertRow() works now, even if not all columns are set (they will be set to NULL).

Changes in MySQL Connector/J 2.0.3 (2000-12-03)

Bugs Fixed

• Implemented getBigDecimal() without scale component for JDBC2.

• Added ultraDevHack URL parameter, set to true to enable (broken) Macromedia UltraDev to use the
driver.

• Added detection of -/+INF for doubles.

• Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending large blobs should work now.

• Fixed off-by-one error in java.sql.Blob implementation code.

• Faster ASCII string operations.

• Fixed composite key problem with updatable result sets.

Changes in MySQL Connector/J 2.0.1 (2000-04-06)

Bugs Fixed

• Fixed some issues with updatability support in ResultSet when using multiple primary keys.

• No escape processing is done on PreparedStatements anymore per JDBC spec.

http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/blob.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/integer-types.html
http://dev.mysql.com/doc/refman/5.5/en/datetime.html

Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)

172

• Fixed many JDBC-2.0 traversal, positioning bugs, especially with respect to empty result sets. Thanks to
Ron Smits, Nick Brook, Cessar Garcia and Carlos Martinez.

• DatabaseMetaData.getPrimaryKeys() now works correctly with respect to key_seq. Thanks to
Brian Slesinsky.

• Fixed RSMD.isWritable() returning wrong value. Thanks to Moritz Maass.

• Cleaned up exception handling when driver connects.

• Columns that are of type TEXT now return as Strings when you use getObject().

Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)

• Fixed Bad Handshake problem.

Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)

• Fixes to ResultSet for insertRow() - Thanks to Cesar Garcia

• Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0 class, instead of relying on JDK version
numbers. Thanks to John Baker.

• Fixed ResultSet to return correct row numbers

• Statement.getUpdateCount() now returns rows matched, instead of rows actually updated, which is more
SQL-92 like.

10-29-99

• Statement/PreparedStatement.getMoreResults() bug fixed. Thanks to Noel J. Bergman.

• Added Short as a type to PreparedStatement.setObject(). Thanks to Jeff Crowder

• Driver now automagically configures maximum/preferred packet sizes by querying server.

• Autoreconnect code uses fast ping command if server supports it.

• Fixed various bugs with respect to packet sizing when reading from the server and when alloc'ing to
write to the server.

Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

• Now compiles under JDK-1.2. The driver supports both JDK-1.1 and JDK-1.2 at the same time through a
core set of classes. The driver will load the appropriate interface classes at runtime by figuring out which
JVM version you are using.

• Fixes for result sets with all nulls in the first row. (Pointed out by Tim Endres)

• Fixes to column numbers in SQLExceptions in ResultSet (Thanks to Blas Rodriguez Somoza)

• The database no longer needs to specified to connect. (Thanks to Christian Motschke)

Changes in MySQL Connector/J 1.2.x and lower

Changes in MySQL Connector/J 1.2b (04 July 1999)

• Better Documentation (in progress), in doc/mm.doc/book1.html

http://dev.mysql.com/doc/refman/5.5/en/blob.html

Changes in MySQL Connector/J 1.2a (14 April 1999)

173

• DBMD now permits null for a column name pattern (not in spec), which it changes to '%'.

• DBMD now has correct types/lengths for getXXX().

• ResultSet.getDate(), getTime(), and getTimestamp() fixes. (contributed by Alan Wilken)

• EscapeProcessor now handles \{ \} and { or } inside quotation marks correctly. (thanks to Alik for some
ideas on how to fix it)

• Fixes to properties handling in Connection. (contributed by Juho Tikkala)

• ResultSet.getObject() now returns null for NULL columns in the table, rather than bombing out. (thanks
to Ben Grosman)

• ResultSet.getObject() now returns Strings for types from MySQL that it doesn't know about. (Suggested
by Chris Perdue)

• Removed DataInput/Output streams, not needed, 1/2 number of method calls per IO operation.

• Use default character encoding if one is not specified. This is a work-around for broken JVMs, because
according to spec, EVERY JVM must support "ISO8859_1", but they do not.

• Fixed Connection to use the platform character encoding instead of "ISO8859_1" if one isn't explicitly
set. This fixes problems people were having loading the character- converter classes that didn't always
exist (JVM bug). (thanks to Fritz Elfert for pointing out this problem)

• Changed MysqlIO to re-use packets where possible to reduce memory usage.

• Fixed escape-processor bugs pertaining to {} inside quotation marks.

Changes in MySQL Connector/J 1.2a (14 April 1999)

• Fixed character-set support for non-Javasoft JVMs (thanks to many people for pointing it out)

• Fixed ResultSet.getBoolean() to recognize 'y' & 'n' as well as '1' & '0' as boolean flags. (thanks to Tim
Pizey)

• Fixed ResultSet.getTimestamp() to give better performance. (thanks to Richard Swift)

• Fixed getByte() for numeric types. (thanks to Ray Bellis)

• Fixed DatabaseMetaData.getTypeInfo() for DATE type. (thanks to Paul Johnston)

• Fixed EscapeProcessor for "fn" calls. (thanks to Piyush Shah at locomotive.org)

• Fixed EscapeProcessor to not do extraneous work if there are no escape codes. (thanks to Ryan
Gustafson)

• Fixed Driver to parse URLs of the form "jdbc:mysql://host:port" (thanks to Richard Lobb)

Changes in MySQL Connector/J 1.1i (24 March 1999)

• Fixed Timestamps for PreparedStatements

• Fixed null pointer exceptions in RSMD and RS

• Re-compiled with jikes for valid class files (thanks ms!)

Changes in MySQL Connector/J 1.1h (08 March 1999)

174

Changes in MySQL Connector/J 1.1h (08 March 1999)

• Fixed escape processor to deal with unmatched { and } (thanks to Craig Coles)

• Fixed escape processor to create more portable (between DATETIME and TIMESTAMP types)
representations so that it will work with BETWEEN clauses. (thanks to Craig Longman)

• MysqlIO.quit() now closes the socket connection. Before, after many failed connections some OS's
would run out of file descriptors. (thanks to Michael Brinkman)

• Fixed NullPointerException in Driver.getPropertyInfo. (thanks to Dave Potts)

• Fixes to MysqlDefs to allow all *text fields to be retrieved as Strings. (thanks to Chris at Leverage)

• Fixed setDouble in PreparedStatement for large numbers to avoid sending scientific notation to the
database. (thanks to J.S. Ferguson)

• Fixed getScale() and getPrecision() in RSMD. (contrib'd by James Klicman)

• Fixed getObject() when field was DECIMAL or NUMERIC (thanks to Bert Hobbs)

• DBMD.getTables() bombed when passed a null table-name pattern. Fixed. (thanks to Richard Lobb)

• Added check for "client not authorized" errors during connect. (thanks to Hannes Wallnoefer)

Changes in MySQL Connector/J 1.1g (19 February 1999)

• Result set rows are now byte arrays. Blobs and Unicode work bidirectonally now. The useUnicode and
encoding options are implemented now.

• Fixes to PreparedStatement to send binary set by setXXXStream to be sent untouched to the MySQL
server.

• Fixes to getDriverPropertyInfo().

Changes in MySQL Connector/J 1.1f (31 December 1998)

• Changed all ResultSet fields to Strings, this should allow Unicode to work, but your JVM must be able to
convert between the character sets. This should also make reading data from the server be a bit quicker,
because there is now no conversion from StringBuffer to String.

• Changed PreparedStatement.streamToString() to be more efficient (code from Uwe Schaefer).

• URL parsing is more robust (throws SQL exceptions on errors rather than NullPointerExceptions)

• PreparedStatement now can convert Strings to Time/Date values using setObject() (code from Robert
Currey).

• IO no longer hangs in Buffer.readInt(), that bug was introduced in 1.1d when changing to all byte-arrays
for result sets. (Pointed out by Samo Login)

Changes in MySQL Connector/J 1.1b (03 November 1998)

• Fixes to DatabaseMetaData to allow both IBM VA and J-Builder to work. Let me know how it goes.
(thanks to Jac Kersing)

• Fix to ResultSet.getBoolean() for NULL strings (thanks to Barry Lagerweij)

Changes in MySQL Connector/J 1.1 (02 September 1998)

175

• Beginning of code cleanup, and formatting. Getting ready to branch this off to a parallel JDBC-2.0 source
tree.

• Added "final" modifier to critical sections in MysqlIO and Buffer to allow compiler to inline methods for
speed.

9-29-98

• If object references passed to setXXX() in PreparedStatement are null, setNull() is automatically called
for you. (Thanks for the suggestion goes to Erik Ostrom)

• setObject() in PreparedStatement will now attempt to write a serialized representation of the object to the
database for objects of Types.OTHER and objects of unknown type.

• Util now has a static method readObject() which given a ResultSet and a column index will re-instantiate
an object serialized in the above manner.

Changes in MySQL Connector/J 1.1 (02 September 1998)

• Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than catch an exception, Buffer.isLastDataPacket()
was fixed.

• Connection.getCatalog() and Connection.setCatalog() should work now.

• Statement.setMaxRows() works, as well as setting by property maxRows. Statement.setMaxRows()
overrides maxRows set using properties or url parameters.

• Automatic re-connection is available. Because it has to "ping" the database before each query, it is
turned off by default. To use it, pass in "autoReconnect=true" in the connection URL. You may also
change the number of reconnect tries, and the initial timeout value using "maxReconnects=n" (default
3) and "initialTimeout=n" (seconds, default 2) parameters. The timeout is an exponential backoff type of
timeout; for example, if you have initial timeout of 2 seconds, and maxReconnects of 3, then the driver
will timeout 2 seconds, 4 seconds, then 16 seconds between each re-connection attempt.

Changes in MySQL Connector/J 1.0 (24 August 1998)

• Fixed handling of blob data in Buffer.java

• Fixed bug with authentication packet being sized too small.

• The JDBC Driver is now under the LGPL

8-14-98

• Fixed Buffer.readLenString() to correctly read data for BLOBS.

• Fixed PreparedStatement.stringToStream to correctly read data for BLOBS.

• Fixed PreparedStatement.setDate() to not add a day. (above fixes thanks to Vincent Partington)

• Added URL parameter parsing (?user=... and so forth).

Changes in MySQL Connector/J 0.9d (04 August 1998)

• Big news! New package name. Tim Endres from ICE Engineering is starting a new source tree for GNU
GPL'd Java software. He's graciously given me the org.gjt.mm package directory to use, so now the

Changes in MySQL Connector/J 0.9 (28 July 1998)

176

driver is in the org.gjt.mm.mysql package scheme. I'm "legal" now. Look for more information on Tim's
project soon.

• Now using dynamically sized packets to reduce memory usage when sending commands to the DB.

• Small fixes to getTypeInfo() for parameters, and so forth.

• DatabaseMetaData is now fully implemented. Let me know if these drivers work with the various IDEs
out there. I've heard that they're working with JBuilder right now.

• Added JavaDoc documentation to the package.

• Package now available in .zip or .tar.gz.

Changes in MySQL Connector/J 0.9 (28 July 1998)

• Implemented getTypeInfo(). Connection.rollback() now throws an SQLException per the JDBC spec.

• Added PreparedStatement that supports all JDBC API methods for PreparedStatement including
InputStreams. Please check this out and let me know if anything is broken.

• Fixed a bug in ResultSet that would break some queries that only returned 1 row.

• Fixed bugs in DatabaseMetaData.getTables(), DatabaseMetaData.getColumns() and
DatabaseMetaData.getCatalogs().

• Added functionality to Statement that enables executeUpdate() to store values for IDs that are
automatically generated for AUTO_INCREMENT fields. Basically, after an executeUpdate(), look
at the SQLWarnings for warnings like "LAST_INSERTED_ID = 'some number', COMMAND = 'your
SQL query'". If you are using AUTO_INCREMENT fields in your tables and are executing a lot of
executeUpdate()s on one Statement, be sure to clearWarnings() every so often to save memory.

Changes in MySQL Connector/J 0.8 (06 July 1998)

• Split MysqlIO and Buffer to separate classes. Some ClassLoaders gave an IllegalAccess error for some
fields in those two classes. Now mm.mysql works in applets and all classloaders. Thanks to Joe Ennis
<jce@mail.boone.com> for pointing out the problem and working on a fix with me.

Changes in MySQL Connector/J 0.7 (01 July 1998)

• Fixed DatabaseMetadata problems in getColumns() and bug in switch statement in the Field constructor.
Thanks to Costin Manolache <costin@tdiinc.com> for pointing these out.

Changes in MySQL Connector/J 0.6 (21 May 1998)

• Incorporated efficiency changes from Richard Swift <Richard.Swift@kanatek.ca> in MysqlIO.java and
ResultSet.java:

• We're now 15% faster than gwe's driver.

• Started working on DatabaseMetaData.

• The following methods are implemented:

• getTables()

• getTableTypes()

Changes in MySQL Connector/J 0.6 (21 May 1998)

177

• getColumns()

• getCatalogs()

178

179

Appendix B. Licenses for Third-Party Components

Table of Contents
Ant-Contrib License .. 179
Simple Logging Facade for Java (SLF4J) License ... 180

MySQL Connector/J

• Ant-Contrib License

• Simple Logging Facade for Java (SLF4J) License

Ant-Contrib License

The following software may be included in this product: Ant-Contrib

Ant-Contrib
Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.
Licensed under the Apache 1.1 License Agreement, a copy of which is reproduced below.

The Apache Software License, Version 1.1

Copyright (c) 2001-2003 Ant-Contrib project. All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:

 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in
 the documentation and/or other materials provided with the
 distribution.

 3. The end-user documentation included with the redistribution, if
 any, must include the following acknowlegement:
 "This product includes software developed by the
 Ant-Contrib project (http://sourceforge.net/projects/ant-contrib)."
 Alternately, this acknowlegement may appear in the software itself,
 if and wherever such third-party acknowlegements normally appear.

 4. The name Ant-Contrib must not be used to endorse or promote
 products derived from this software without prior written
 permission. For written permission, please contact
 ant-contrib-developers@lists.sourceforge.net.

 5. Products derived from this software may not be called "Ant-Contrib"
 nor may "Ant-Contrib" appear in their names without prior written
 permission of the Ant-Contrib project.

 THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE ANT-CONTRIB PROJECT OR ITS
 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF

Simple Logging Facade for Java (SLF4J) License

180

 USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

Simple Logging Facade for Java (SLF4J) License

The following software may be included in this product:

Simple Logging Facade for Java (SLF4J)

Copyright (c) 2004-2008 QOS.ch
All rights reserved.

Permission is hereby granted, free of charge,
to any person obtaining a copy of this software
and associated documentation files (the "Software"),
to deal in the Software without restriction, including
without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

	MySQL Connector/J
	Table of Contents
	Preface and Legal Notices
	Chapter 1. MySQL Connector/J
	Chapter 2. Connector/J Versions
	Java Versions Supported

	Chapter 3. Connector/J Installation
	Installing Connector/J from a Binary Distribution
	Installing the Driver and Configuring the CLASSPATH
	Upgrading from an Older Version
	Upgrading to MySQL Connector/J 5.1.x
	JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer
	Upgrading from MySQL Connector/J 3.0 to 3.1

	Installing from the Development Source Tree

	Chapter 4. Connector/J Examples
	Chapter 5. Connector/J (JDBC) Reference
	Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	Properties Files for the useConfigs Option

	JDBC API Implementation Notes
	Java, JDBC and MySQL Types
	Using Character Sets and Unicode
	Connecting Securely Using SSL
	Connecting Using PAM Authentication
	Using Master/Slave Replication with ReplicationConnection
	Mapping MySQL Error Numbers to JDBC SQLState Codes

	Chapter 6. JDBC Concepts
	Connecting to MySQL Using the JDBC DriverManager Interface
	Using JDBC Statement Objects to Execute SQL
	Using JDBC CallableStatements to Execute Stored Procedures
	Retrieving AUTO_INCREMENT Column Values through JDBC

	Chapter 7. Connection Pooling with Connector/J
	Chapter 8. Load Balancing with Connector/J
	Chapter 9. Failover with Connector/J
	Chapter 10. Using the Connector/J Interceptor Classes
	Chapter 11. Using Connector/J with Tomcat
	Chapter 12. Using Connector/J with JBoss
	Chapter 13. Using Connector/J with Spring
	Using JdbcTemplate
	Transactional JDBC Access
	Connection Pooling with Spring

	Chapter 14. Using Connector/J with GlassFish
	A Simple JSP Application with Glassfish, Connector/J and MySQL
	A Simple Servlet with Glassfish, Connector/J and MySQL

	Chapter 15. Troubleshooting Connector/J Applications
	Chapter 16. Connector/J Support
	Connector/J Community Support
	How to Report Connector/J Bugs or Problems
	Connector/J Change History

	Appendix A. MySQL Connector/J Change History
	Changes in MySQL Connector/J 5.1.x
	Changes in MySQL Connector/J 5.1.22 (Not yet released)
	Changes in MySQL Connector/J 5.1.21 (2012-07-03)
	Changes in MySQL Connector/J 5.1.20 (2012-05-01)
	Changes in MySQL Connector/J 5.1.19 (April 2012)
	Changes in MySQL Connector/J 5.1.18 (2011-10-04)
	Changes in MySQL Connector/J 5.1.17 (2011-07-07)
	Changes in MySQL Connector/J 5.1.16 (Not released)
	Changes in MySQL Connector/J 5.1.15 (2011-02-09)
	Changes in MySQL Connector/J 5.1.14 (6th December 2010)
	Changes in MySQL Connector/J 5.1.13 (2010-06-24)
	Changes in MySQL Connector/J 5.1.12 (2010-02-18)
	Changes in MySQL Connector/J 5.1.11 (2010-01-21)
	Changes in MySQL Connector/J 5.1.10 (2009-09-23)
	Changes in MySQL Connector/J 5.1.9 (2009-09-21)
	Changes in MySQL Connector/J 5.1.8 (2009-07-16)
	Changes in MySQL Connector/J 5.1.7 (2008-10-21)
	Changes in MySQL Connector/J 5.1.6 (2008-03-07)
	Changes in MySQL Connector/J 5.1.5 (2007-10-09)
	Changes in MySQL Connector/J 5.1.4 (Not Released)
	Changes in MySQL Connector/J 5.1.3 (2007-09-10)
	Changes in MySQL Connector/J 5.1.2 (2007-06-29)
	Changes in MySQL Connector/J 5.1.1 (2007-06-22)
	Changes in MySQL Connector/J 5.1.0 (2007-04-11)

	Changes in MySQL Connector/J 5.0.x
	Changes in MySQL Connector/J 5.0.8 (2007-10-09)
	Changes in MySQL Connector/J 5.0.7 (2007-07-20)
	Changes in MySQL Connector/J 5.0.6 (2007-05-15)
	Changes in MySQL Connector/J 5.0.5 (2007-03-02)
	Changes in MySQL Connector/J 5.0.4 (2006-10-20)
	Changes in MySQL Connector/J 5.0.3 (2006-07-26, beta)
	Changes in MySQL Connector/J 5.0.2 (2006-07-11)
	Changes in MySQL Connector/J 5.0.1 (Not Released)
	Changes in MySQL Connector/J 5.0.0 (2005-12-22)

	Changes in MySQL Connector/J 3.1.x
	Changes in MySQL Connector/J 3.1.15 (Not yet released)
	Changes in MySQL Connector/J 3.1.14 (2006-10-19)
	Changes in MySQL Connector/J 3.1.13 (2006-05-26)
	Changes in MySQL Connector/J 3.1.12 (2005-11-30)
	Changes in MySQL Connector/J 3.1.11 (2005-10-07)
	Changes in MySQL Connector/J 3.1.10 (2005-06-23)
	Changes in MySQL Connector/J 3.1.9 (2005-06-22)
	Changes in MySQL Connector/J 3.1.8 (2005-04-14)
	Changes in MySQL Connector/J 3.1.7 (2005-02-18)
	Changes in MySQL Connector/J 3.1.6 (2004-12-23)
	Changes in MySQL Connector/J 3.1.5 (2004-12-02)
	Changes in MySQL Connector/J 3.1.4 (2004-09-04)
	Changes in MySQL Connector/J 3.1.3 (2004-07-07)
	Changes in MySQL Connector/J 3.1.2 (2004-06-09)
	Changes in MySQL Connector/J 3.1.1 (2004-02-14, alpha)
	Changes in MySQL Connector/J 3.1.0 (2003-02-18, alpha)

	Changes in MySQL Connector/J 3.0.x
	Changes in MySQL Connector/J 3.0.17 (2005-06-23)
	Changes in MySQL Connector/J 3.0.16 (2004-11-15)
	Changes in MySQL Connector/J 3.0.15 (2004-09-04)
	Changes in MySQL Connector/J 3.0.14 (2004-05-28)
	Changes in MySQL Connector/J 3.0.13 (2004-05-27)
	Changes in MySQL Connector/J 3.0.12 (2004-05-18)
	Changes in MySQL Connector/J 3.0.11 (2004-02-19)
	Changes in MySQL Connector/J 3.0.10 (2004-01-13)
	Changes in MySQL Connector/J 3.0.9 (2003-10-07)
	Changes in MySQL Connector/J 3.0.8 (2003-05-23)
	Changes in MySQL Connector/J 3.0.7 (2003-04-08)
	Changes in MySQL Connector/J 3.0.6 (2003-02-18)
	Changes in MySQL Connector/J 3.0.5 (2003-01-22)
	Changes in MySQL Connector/J 3.0.4 (2003-01-06)
	Changes in MySQL Connector/J 3.0.3 (2002-12-17)
	Changes in MySQL Connector/J 3.0.2 (2002-11-08)
	Changes in MySQL Connector/J 3.0.1 (2002-09-21)
	Changes in MySQL Connector/J 3.0.0 (2002-07-31)

	Changes in MySQL Connector/J 2.0.x
	Changes in MySQL Connector/J 2.0.14 (2002-05-16)
	Changes in MySQL Connector/J 2.0.13 (2002-04-24)
	Changes in MySQL Connector/J 2.0.12 (2002-04-07)
	Changes in MySQL Connector/J 2.0.11 (2002-01-27)
	Changes in MySQL Connector/J 2.0.10 (2002-01-24)
	Changes in MySQL Connector/J 2.0.9 (2002-01-13)
	Changes in MySQL Connector/J 2.0.8 (2001-11-25)
	Changes in MySQL Connector/J 2.0.7 (2001-10-24)
	Changes in MySQL Connector/J 2.0.6 (2001-06-16)
	Changes in MySQL Connector/J 2.0.5 (2001-06-13)
	Changes in MySQL Connector/J 2.0.3 (2000-12-03)
	Changes in MySQL Connector/J 2.0.1 (2000-04-06)
	Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
	Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
	Changes in MySQL Connector/J 2.0.0pre (17 August 1999)

	Changes in MySQL Connector/J 1.2.x and lower
	Changes in MySQL Connector/J 1.2b (04 July 1999)
	Changes in MySQL Connector/J 1.2a (14 April 1999)
	Changes in MySQL Connector/J 1.1i (24 March 1999)
	Changes in MySQL Connector/J 1.1h (08 March 1999)
	Changes in MySQL Connector/J 1.1g (19 February 1999)
	Changes in MySQL Connector/J 1.1f (31 December 1998)
	Changes in MySQL Connector/J 1.1b (03 November 1998)
	Changes in MySQL Connector/J 1.1 (02 September 1998)
	Changes in MySQL Connector/J 1.0 (24 August 1998)
	Changes in MySQL Connector/J 0.9d (04 August 1998)
	Changes in MySQL Connector/J 0.9 (28 July 1998)
	Changes in MySQL Connector/J 0.8 (06 July 1998)
	Changes in MySQL Connector/J 0.7 (01 July 1998)
	Changes in MySQL Connector/J 0.6 (21 May 1998)

	Appendix B. Licenses for Third-Party Components
	Ant-Contrib License
	Simple Logging Facade for Java (SLF4J) License

