qooxdoo Documentation
Release 2.0.2

qooxdoo developers

September 12, 2012

1 Introduction

1.1

1.2

1.3
1.4

2 Core
2.1

22

2.3

24

CONTENTS

1

About . . . e e e e e e 1
1.1.1 Framework e e e e e e 1
1.1.2 GUIToolkit e e e e e e e 1
.13 CommuniCationo v vt vttt e e e e e e e e e e e 1
1.1.4 More Information (online) e e e e 2
Feature OVerview e e e e e e e e e e e e e e e e e e 2
1.2.1 RUNMES o o o e 2
1.2.2 ODbject-Oorientation v v v v v v e 2
.23 Programming v i it e 2
1.2.4 Internationalization L e e e e e e e e e e 3
1.2.5 APIreference e e e e 3
12,6 Testing o o e e e e e e e e e e e e e 3
1.27 Deployment o oot e e e e e e e e e 4
1.2.8 MIGration v i i e 4
Architectural OVerview o e e e e e e e 4
Getting Started L e e e e e e e e e 5
141 gxWebsite oo e 5
142 gxDesktop e 6
1.43 gx.Mobile e e e e e e e 7
144 gx.Server e e e e e e e 8
145 Others o L o e e e e 10
11

Object Orientation v v v v it e 11
2.1.1 Introduction to Object Orientationt 11
2.1.2 Features of Object Orientation o v v v it vttt e e 12
2.1.3 0 CIaSSES . v v v e e e e e e e e e e e e e e e e e e 18
2.1.4 Interfaces e e 24
2,150 MIXINS . o o o oo e e e e e e 27
Properties e e e e e e 29
2.2.1 Introduction to Properties L. e 29
2.2.2 Propertiesinmore detailo 33
2.2.3 Initialization Behavior e e e 43
2.2.4 Property features summarized 0L o e e e e e e e e e 44
Environment e e e e e e 46
2.3.1 Environment e e e e e e e e e e e e e e 46
DataBinding L e 52
24.1 DataBinding 52

3 qx.Website 63

3.1 General e 63
3.1.1 gx.Website Overview e 63
32 Tuatorials e e e e e e 66
3.2.1 Tutorial: Building Notifications 66
33 Technical TOPICS o o i i e e e e 70
331 Plugins e e e e e e e e e e e 70
3.3.2 Referringtothe qgx.bom API 71
gx.Desktop 77
4.1 OVEIVIBW . . o vttt e e e e e e e e e e e e e e e e 77
411 WIAEELS . . o o o e e e e e e e e e e 77
4.1.2 CompoSIteSo e e e e e e e 77
413 ROOIS . . o o e e e e 78
4.1.4 Applicationsl e e e 78
4.1.5 Communication Lt e e e e e e e e e e e e e e e e 79
4.2 Widgets Introductiono e e e e e e e e e e 79
421 WIdget o e e e e e e 79
422 BasicWidgets L e 80
423 Interaction e e e e e 82
424 RESOUICES . . v v v v v i it e e e e et e e e e e e e e 85
425 Selection Handling e e e 87
426 Drag&Drop e e 90
427 Inline Widgets e 94
42.8 Custom Widgets e e e e e e e e e 97
429 FormHandling 100
42.10 MenuHandling e e e e e e e 116
4211 Window Management it e e e e e e e e e e e e e e e e 120
42.12 HTMLEdIting e e e e e 121
4213 Table Styling L e 137
4.2.14 WidgetReference e 150
43 LaYOULS . . v o et e 150
431 Layouting v v i i e e e e e e e e e e e e e e 150
44 Themes e e e e e 155
441 Theming L. e 155
442 ADPPLATANCE . . .+t i e e e e e e e e e e e e e e e 161
443 CustomThemes i e e e 167
444 Decorators v it e e e e e e e e e e e e e e 169
445 WebFonts e 172
4.4.6 Using themes of contributions in your application 174
4.5 Technical CONCepts o v v v v it e e e e e e e 175
45.1 TheEventLayer e 175
452 HTMLElementHandling. ittt 176
453 TheFocusLayer i e e e e 178
4.6 Tutorials L. e e 180
4.6.1 Tutorial Part 1: The Beginning of atwitter App 180
4.6.2 Tutorial Part 2: Finishing the UL o . . 183
4.6.3 Tutorial Part 3: Time for Communication 188
4.6.4 Tutorial Part4.1: FormHandling 192
4.6.5 Tutorial Part 4.2: Custom Widgets 196
4.6.6 Tutorial Part 4.2.1: Basic Theming 202
4.6.7 Tutorial Part 4.3: Translation L 207
4.6.8 Tutorial Part 4.4: Unit Testing i i i i e e e e e e e 211
4.6.9 Tutorial Part 4.4.1: Automated Ul Testing 216

5 qgx.Mobile

5.1

52

53

54

6 qx.Server

6.1

6.2

6.3

7 Communication

7.1
7.2

7.3

7.4

7.5

8 Development

8.1

8.2

8.3

8.4

4.6.10 Tutorial Part4.5: Virtual List e
General e e e e
ST OVEIVIEW . . . oo e e e e
5.1.2 gx.Mobile Requirements e e e e e e e
5.1.3 Getting Started with qooxdoogx.Mobile oo
Tutorials e e e e e e e e
5.2.1 Tutorial: Creating a Twitter Client with qooxdoomobile
Development e e e e e e e e e e e e e
53.1 Mobileand tablet switch o
532 Theming o e e e e e e e e
533 Debugging e e
Deployment L e e e e e
54.1 Deploymento e e e e e e e e e e
Server OVEIVIEW v v v v it i i e e e e e e e e e e e e e
6.1.1 Included Features e
6.1.2 Supported Runtimes L e e e e e e e
6.1.3 Installation
6.1.4 BasicExample e
6.1.5 Additional Scenarios oL L e e e e e e e e e e
gx.Server Requirementso e e e e
6.2.1 Runtimes
6.2.2 Installation
Require]S Support L e e e e
6.3.1 Representable interface L Lo
6.3.2 Configfile e
Low-level requests o o o o i e e e e e e e e e e
Higher-level requests L o o o e e
7.2.1 Higher-level requests 0 e e e e e e e e e e e e
722 AJAX e e
REST . . o e e
7.3.1 REST (Representational State Transfer)
Remote Procedure Calls (RPC) e
7.4.1 RPC (Remote Procedure Call) it i e
742 RPCServers. i e e
Specific Widget Communication Lo e e e
7.5.1 Usingtheremotetablemodel o oo
Application Creation o e e e e e e e e
8.1.1 Application Skeletons L e e e
Debugging e
8.2.1 Log@ing SyStem it e e e e e e e e e e e e
8.2.2 Debugging Applicationst i e e e e e e e e e e e e
Performance L e
8.3.1 Memory Managementl e
8.3.2 Profiling Applications e e e e
Testing o e e
4.1 UnitTesting o o i e e e e e e e e e e e e e e
842 TestRunner

227
227
227
230
231
231
231
240
240
243
245
246
246

249
249
249
249
250
250
250
250
251
251
251
252
252

255
255
255
255
260
262
262
265
265
271
275
275

279
279
279
282
282
284
286
286
289
290
290
290

10

8.4.3 Simulator e e e 299

8.4.4 Simulator: Locatingelements. e e e e 303
8.5 Code Organisation v v i it e e e e e e e e e e e e e e e e e 305
8.5.1 Custom Libraries o e e e e e e 305
8.6 Parts e e e e 307
8.6.1 Partsand Packages Overview oo 307
8.6.2 UsingParts e e e e e e e 308
8.6.3 Further Resources e 313
8.7 Internationalization e e e e e e e e e e e 313
8.7.1 Internationalization Lo e e e e 313
8.8 Miscellaneous e e e e e 317
8.8.1 Imageclippingand combining i e e 317
8.8.2 Writing API Documentation i i i e e e e e e e 320
8.8.3 Reporting Bugs e e e 324
8.84 AnAspect Template Class e 324
8.8.5 Internet Explorer specific settings 326
Standard Applications 329
9.1 Demo Applications e e e 329
9.1.1 DemObrowser v v v e e e e e e e e e e e e e e 329
9.1.2 Feedreader e 330
9.1.3 Playground e e e e e e e 330
9.1.4 ToDo e e 331
9.1.5 Portal 332
9.1.6 ShOoWCase i e e e e e e 332
9.1.7 Widgetbrowser e e 332
9.2 Developer ToOIS o o o i e e e e e e e e e e 333
9.2.1 APIViewer e e 333
022 TeSIUNNET v v v v v et e e et e e e e e e e e e e e e e e e e e e 334
9.23 Inspector 335
9.2.4 Simulator e e e e 341
9.2.5 Feature Configuration Editor e 346
Tooling 349
10.1 Introduction o i L e e e e e e 349
10.1.1 Introductiontothe SDK e 349
10.1.2 SDK Requirements o v i i it e et e e e e e e e e e e 350
10.1.3 HelloWorld e 352
10.1.4 SDK Structure o o i e e e e e e e e e e e 357
10.1.5 Application Structure o o it e e e e e e e e e 358
10.1.6 - Manifest.jsSon o v i i e e e e e e e e e e e e e e e e e 360
10.1.7 Code Structure ot e e e e e e e e e 360
102 Generator i e e e e e e e e e e 362
10.2.1 Generator OVEIVIEW i bt it et e e e e e e e e e e e e e e 362
10.2.2 Generator USage o vt i e e e e e e e 364
10.2.3 Generator Configuration File e 366
10.2.4 Generator Script OptimizZations« . v v v v v e e e e e e e e e e e e e e e 370
10.2.5 Generator Configuration Articles Lo e 374
10.2.6 Generator Configuration Background Information 389
10.2.7 Tutorials L e e 395
10.2.8 References e 402
103 LNt . ..o o e e e e e 402
10.3.1 Tutorials o L o e e e e e e e e e 402
10.4 Application Wizard L 403

10.4.1 Create Application o v i i v i e e e e e e e e e e e e e e e 403

10.5 Other Tools o o e e e e e e e 405

11 Migration 407
1.1 Migration Guide o oo e e e e e 407

12 References 409
121 Core . . o o e e e e e e e e e 409
12.1.1 Class Declaration Quick Ref 409

12.1.2 Interfaces Quick Ref 410

12.1.3 Mixin Quick Ref e 411

12.1.4 Properties Quick Reference L 412

12.1.5 ArrayReference e 413

12.1.6 Framework Generator Jobs L 414

122 GUIToolKit. o o o e e e e 416
12.2.1 WidgetReference L e 416

12.2.2 LayoutReference 460

123 Tooling o o i e e e e 471
12.3.1 Generator DefaultJobs e e 471

12.3.2 Generator Config Keys e e e e 478

12.3.3 Generator Config Macros o o v i e e e e e e e e e e 497

12.3.4 Syntax Diagrams L e e 499

124 Miscellaneous L e e e e e e e e e e e 499
12.4.1 Third-party Componentsottt e e e e 499

12.5 GIOSSATY . v v v o e 500
1251 GIOSSATY .« v v v o e 500

12.6 License o i e e e 502
12.6.1 qooxdoo License L e 502

Index 517

vi

CHAPTER
ONE

INTRODUCTION

1.1 About

gooxdoo (pronounced [’kuksdu:]) is a universal JavaScript framework that enables you to create applications for a
wide range of platforms. With its object-oriented programming model you build rich, interactive applications (RIAs),
native-like apps for mobile devices, traditional web applications or even applications to run outside the browser.

You leverage its integrated tool chain to develop and deploy applications of any scale, while taking advantage of a
comprehensive feature set and a state-of-the-art GUI toolkit. qooxdoo is open source under liberal licenses, run by
one of the world’s leading web hosts 1&1, with a vibrant community.

1.1.1 Framework

The core of qooxdoo is entirely class-based and tries to leverage the features of object-oriented JavaScript. It is
largely based on namespaces to allow for easy integration with other libraries and existing user code. Most modern
browsers are supported (e.g. Firefox, Internet Explorer, Opera, Safari, Chrome). It comes with a comprehensive API
reference that is auto-generated from Javadoc-like comments. The fast and complete JavaScript parser not only allows
documentation generation but is an integral part of the automatic build process that makes optimizing, compressing,
linking and deployment of custom applications very user-friendly. Internationalization and localization of applications
for various countries and languages is a core feature and easy to use. More ...

1.1.2 GUI Toolkit

Despite being a pure JavaScript framework, qooxdoo is quite on par with GUI toolkits like Qt or SWT when it comes
to advanced yet easy to implement user interfaces. It offers a full-blown set of widgets that are hardly distinguishable
from elements of native desktop applications. Full built-in support for keyboard navigation, focus and tab handling
and drag & drop is provided. Dimensions can be specified as static, auto-sizing, stretching, percentage, weighted flex
or min/max, or even as combinations of those. All widgets are based on powerful and flexible layout managers which
are a key to many of the advanced layout capabilities. Interface description is done programmatically in JavaScript for
maximum performance.

No HTML has to be used and augmented to define the interface. The qooxdoo developer does not even have to know
CSS to style the interface. Clean and easy-to-configure themes for appearance, colors, borders, fonts and icons allow
for a full-fledged styling.

1.1.3 Communication

While being a client-side and server-agnostic solution, the qooxdoo project includes different communication facilities,
and supports low-level XMLHttpRequests (XHR) as well as an RPC API. An abstract transport layer supports queues,

http://qooxdoo.org/license
http://qooxdoo.org/project/developers#initiator_and_maintainer
http://qooxdoo.org/community
http://api.qooxdoo.org
http://api.qooxdoo.org
http://qooxdoo.org/docs/general/styling_without_css_know-how

qooxdoo Documentation, Release 2.0.2

timeouts and implementations via XHR, Iframes and Scripts. Like the rest of qooxdoo it fully supports event-based
programming which greatly simplifies asynchronous communication.

1.1.4 More Information (online)

There is more information available about the project on the project’s home page.

1.2 Feature Overview

A typical qooxdoo application is created by leveraging the integrated development tools and the client-side program-
ming model based on object-oriented JavaScript. Developers can fully concentrate on creating application without
worrying about low-level cross-browser issues.

1.2.1 Runtimes

* gooxdoo supports a wide range of JavaScript environments:
— desktop browsers (Internet Explorer, Firefox, Opera, Safari, Chrome)
— mobile browsers (i0S, Android)
— browserless JS engines (node.js, Rhino, ...)

* No plugins required (neither ActiveX, Java, Flash nor Silverlight needed)

* Non-critical modifications of the native JavaScript objects to allow for easy integration with other libraries and
custom code

1.2.2 Object-orientation

* Framework is fully based on classes

e Minimal pollution by global variables due to namespacing

* Besides regular classes, it offers abstract, static or singleton classes

* Constructors and destructors

* Public, protected and private members by naming convention, that can (partly) be enforced during development
* Single inheritance, full polymorphism

* Java-like interfaces

* Ruby-esque mixins

¢ So-called dynamic properties, a very convenient and powerful way to have optimized setter and getter methods
generated from simple configuration

1.2.3 Programming

¢ Pure JavaScript
e No HTML knowledge required
* No CSS knowledge required

2 Chapter 1. Introduction

http://qooxdoo.org/project

qooxdoo Documentation, Release 2.0.2

* No DOM knowledge required
» Complete support for event-based programming

* Development of qooxdoo applications fully supported on all platforms, e.g. Windows, Linux, all Unixes, Mac
OS X

* Skeletons as pre-configured basis for full-featured custom applications

* Many sample applications and examples

* Designed for high performance

* Aid in developing memory-leak free user applications

» Extensive logging capabilities (e.g. different log appenders, Firebug support)
* Straightforward debugging (e.g. object introspection, benchmarking)

* Browser history management, i.e. browser back/forward button, bookmarks
» Cookies

* Generic JavaScript pretty printer / code formatter for unified code style

 Alternative development platforms offered by third parties

1.2.4 Internationalization

* Built-in internationalization (i18n) and localization (110n) support

» Supporting all languages and locales, at least of this planet

* Based on the comprehensive Unicode Common Locale Data Repository (CLDR)
* Well-known translation file format (.po)

* Support by professional, free translation tools (“po editors”) on all platforms

1.2.5 API reference

» Extended Javadoc-like source code comments
* Full API reference for both framework and custom application
* Online and offline API viewer application

 Search functionality

1.2.6 Testing

¢ Integrated unit testing framework Test Runner

* Integrated functional testing framework Simulator

1.2. Feature Overview 3

http://qooxdoo.org/docs/general/development_platforms
http://api.qooxdoo.org

qooxdoo Documentation, Release 2.0.2

1.2.7 Deployment

* Generation of a self-contained and easily deployable “build” version
» Complexity of the build process hidden behind user-friendly commands
* JavaScript compression (removal of whitespaces, etc.)

» Automatic dependency resolution of JavaScript classes; no need for manual “require” statements or tweaking a
custom build

* Automatic linking of JavaScript classes (“JS linker”)

» Copying of required static resources like images or other external files into a self-contained build
* String extraction

» Shortening and obfuscating local variables and/or private members

» Optional browser-specific variant generation for selected feature sets (e.g. Firefox-only build)

* Generation of build versions depending on user-defined variants, which allows for different products from the
same code base

* Removal of debug statements within the application code before deployment

1.2.8 Migration

* Support for easy migration of custom applications from one framework release to another
* As painless as technically feasible
* Fully integrated into the regular build system

 All non-ambiguous changes are done automatically for maximum convenience and to avoid manual find/replace
errors

» All ambiguous or semantic changes that require some developer decision are put into a comprehensive checklist

1.3 Architectural Overview

The following diagram tries to show the main aspects of qooxdoo and how they are organized in general. Please keep
in mind that this diagram does not inlcude all features of qooxdoo. You can see the four main areas for which qooxdoo
can be used and what layers are useful in that dedicated scenario.

4 Chapter 1. Introduction

qooxdoo Documentation, Release 2.0.2

GUI Toolkit

M L“Im =

Low-Lavel LI Moblle Ul

Seloctor Collection

1.4 Getting Started

This section provides you with resources that help you pick the qooxdoo package for your needs, set it up on your
local machine and get started with writing your own code.

1.4.1 gx.Website
gx.Website is a low-level package that you deploy as a single .js file, like you would with many other JavaScript
libraries. Its contents encompasses DOM and BOM abstractions, cross-browser event handling, a selector engine, and

a stripped-down version of the qooxdoo class system. It does not include any UI widgets. It is suitable if you basically
want to manipulate DOM elements on a page.

qx.Website Requirements

Here are the requirements for developing and deploying with qooxdoo qx.Website. You will usually include the
gx.Website library on an HTML page and then write code that utilizes its API.

Browsers

Code written against the gx.Website API will run in all major web browsers, particularly:

@ | Internet Explorer 6+
@ | Firefox 2+

o Opera 9+

@ | safari 3+

?:' Chrome 2+

1.4. Getting Started 5

qooxdoo Documentation, Release 2.0.2

Installation and Setup

Download the gx.Website component from qooxdoo’s download page and place it in a suitable URI reachable from
your development environment. Then include this URI with a <script> tag in the HTML page that you are devel-

oping.
<html>

<head>
<secript href="<uri_of_gx.Website_download>"/>

That’s it, you are ready to start working against the qx.Website API.

Getting Started with gooxdoo gx.Website

It’s easy to start using qx.Website. Create an HTML page and <script>-include the gx.Website library file, then
add code that uses its API. Here is a simple example:

<html>
<head>
<script href="<uri_to_gx.Website_file>"/>
</head>
<body>
<div>
Hello World!
</div>
<script>
alert (g("div") .getHtml ());
</script>
</body>
</html>

1.4.2 gx.Desktop

gx.Desktop contains the full scope of qooxdoo classes and infrastructure, like the class system, low-level DOM/BOM
layers, a theming system, and a rich set of UI widgets and controls. It is available through the SDK. It allows you to
create desktop-like, interactive web applications.

qx.Desktop Requirements

Here are the requirements for developing and deploying with gx.Desktop. Applications built with it run in a web
browser, so you need at least one of the supported browsers to check your work. During development time you will
also need the tools from qooxdoo’s SDK to create runnable versions of your application. But these tools are not
necessary once you have deployed it.

The cross-browser abstraction of qooxdoo not only benefits the users of your application, it allows also you as a
developer to pick your preferred development platform, i.e. combination of browser and operating system, and be
confident that the result will run on all other platforms.

gooxdoo gx.Desktop does not enforce any specific backend components, any server that is reachable through its I/O
layer should be fine. During development, loading your application from the file system should suffice, as long as your
application logic doesn’t enforce a server connection. Developers should note, though, that with some browsers, such
as Chrome and Firefox, there is a known constraint when loading reasonably complex qooxdoo applications (such as
the APIviewer or the Demobrowser) viathe £ile: // protocol. Either consult your browser’s documentation (usually

6 Chapter 1. Introduction

http://qooxdoo.org/downloads

qooxdoo Documentation, Release 2.0.2

there is a command-line option to change this), or use the HTTP protocol during development. In the latter case be
sure to read and understand this FAQ entry.

Browsers

An application comprising of the qooxdoo runtime and custom code written against its API runs across all major web
browsers, unaltered, and with identical look & feel:

€ | Internet Explorer 6+
@ Firefox 2+
Q Opera 9+
@ | safari 3+
& Chrome 2+
SDK

Working with gx.Desktop requires from you that you download and use qooxdoo’s SDK. See here for the SDK’s
requirements, and follow its Installation and Setup section. This requirement applies to the development phase only,
the final app is independent of the SDK.

Getting Started with qooxdoo qx.Desktop

The introduction to gooxdoo’s SDK covers all you have to know to get going with the gx.Desktop component.

1.4.3 gx.Mobile

gx.Mobile is used to develop applications for mobile platforms, like iOS and Android.It provides specific UI elements
and theming capabilities suitable for mobile devices. Like the gx.Desktop component it is available through the SDK.

qx.Mobile Requirements

gooxdoo gx.Mobile runs on iOS 2.0+ and Android 1.6+ devices. Working with qx.Mobile requires access to such
a mobile device, with a suitable mobile browser, or a mobile emulator for the respective platform that runs on your
desktop PC.

SDK

Working with gx.Mobile requires downloading and using qooxdoo’s SDK. See here for the SDK’s requirements, and
follow its Installation and Setup section. This requirement applies to the development phase only, the final app is
independent of the SDK.

Mobile Browsers

The following mobile browsers are supported:

1.4. Getting Started 7

http://qooxdoo.org/docs/general/snippets#running_a_source_version_from_a_web_server

qooxdoo Documentation, Release 2.0.2

Safari Mobile
Chrome for Android

9 €

i
j Android Native Browser

Other mobile browsers like Opera Mini might work, but are not officially supported.

Desktop Browsers

As qooxdoo is based on web technologies, you will need a running instance of a browser (Google Chrome, Apple
Safari or Mozilla Firefox) on your system to run and test the application. An iOS or Android device is not necessarily
required.

The following desktop browsers are supported:

Apple Safari 5

Google Chrome 10+
Mozilla Firefox 10+

@96

Getting Started with gooxdoo gx.Mobile

Working with gx.Mobile requires downloading and using qooxdoo’s SDK. See here for the SDK’s requirements, and
follow its Installation and Setup section. This requirement applies to the development phase only, the final app is
independent of the SDK.

The first step is to create a mobile skeleton, by calling the create-applicaton.py script from the command
line. Navigate to the qooxdoo folder and execute the following command:

./tool/bin/create-application.py —-type=mobile --name=helloworld --out=..
A new folder “helloworld” will be created next to the qooxdoo folder, containing the mobile skeleton application.

Right now the application is pretty useless, until we create the source version of it. Navigate to the created folder
and call the qooxdoo generator with the following command:

./generate.py source

After a few seconds the generator has analyzed all class dependencies and created a source version of the application.
You can test the application by opening the source/index.html file in your Chrome / Safari browser. You should
see a page “Page 1” with a button “Next Page”. When you click on the button, the next page “Page 2”, with a “Back”
button in the upper left corner, is displayed.

Congratulations, you have just created your first qooxdoo mobile application!

Now it is your turn. Just open source/class/helloworld/Application.js and enhance your cross-
platform mobile application.

If you need a more detailed tutorial, please have a look at our twitter tutorial:

gx.Mobile Twitter Client Tutorial
1.4.4 qx.Server
gx.Server is a library suitable for all environments that do not provide a DOM, such as Node.js and Rhino. But you

can also use it to program Webworkers. With no dependencies to external APIs (like a global window object), you get
the infrastructure of qooxdoo’s classes, mixins, properties, custom events and data binding.

8 Chapter 1. Introduction

qooxdoo Documentation, Release 2.0.2

qgx.Server Requirements

qooxdoo gx.Server is a basic component that runs in many different contexts and environments, as it has very little
dependencies to the underlying runtime. For use in command-line tools and programs you will need a corresponding
JavaScript interpreter like Node.js or Mozilla Rhino. For use in HTML5 Web Workers you will need a browser that
supports this technology.

Runtimes

The following runtimes are supported:
* Node.js
* Rhino

Installation

These are the options to get qooxdoo gx.Server.

Manual download Download the gx.Server component from qooxdoo’s download page and place it in a suitable
path on your machine. Optimized and unoptimized versions are available.

Npm If you are using Node.js, there is an alternative installation using npm, the Node package manager. If you have
this installed, issue on your system shell:

$ npm install gooxdoo

This will install the gooxdoo package into your current folder from where you can include it easily into your applica-
tions.

In both cases, to verify the installation use your runtime’s loading primitive to include it in a program, e.g. for Node:

var gx = require ('’ gooxdoo’)

SDK You can also use the SDK to work with gx.Server. It provides a dedicated skeleton which you can uti-
lize. This offers you additional features like dependency detection, optimization, API doc generation, unit test-
ing and generated loaders that work under both Node.js and Rhino. As with all types of qooxdoo skeletons,
create-application.py is used to create a new custom application:

$ gqooxdoo-2.0.2-sdk/tool/bin/create-application.py —--name=myapp --type=basic

Getting Started with qooxdoo qx.Server

On the basic level, you can just load the gx.Server module into your own program, using your runtime’s loading
primitives. Here is a simple example for Node.js:

var gx = require ('’ gooxdoo’);

gx.Class.define ("Dog", {
extend : gx.core.Object,
members : {
bark : function() {

1.4. Getting Started 9

http://nodejs.org/
http://www.mozilla.org/rhino/
http://qooxdoo.org/downloads
http://npmjs.org/

qooxdoo Documentation, Release 2.0.2

console.log ("Ruff!");
}

)i

var dog = new Dog();
dog.bark () ;

1.4.5 Others

* You can find some community made tutorial videos on vimeo.

10

Chapter 1. Introduction

http://vimeo.com/channels/qooxdoo

CHAPTER
TWO

CORE

gooxdoo Core is not a component on its own, but encompasses central features of the qooxdoo class library. The
elements described here are available in all qgooxdoo components, be it Desktop, Mobile, Website or Server. Among
these features are a dedicated class system with custom class properties, data binding and a runtime environment.

We recommend that you at least make your way through the chapters Introduction to Object Orientation, Features of
Object Orientation and Classes from the Object Orientation section, which provide the foundation for working with
gooxdoo’s class system. The other chapters can be read when the need arises, and as reference material for the other
components’ documentation.

2.1 Object Orientation

2.1.1 Introduction to Object Orientation
gooxdoo allows you to easily leverage many key concepts of object-oriented programming without bothering about
limited native support in JavaScript.
The main actors of qooxdoo OO are:
* Classes
* Interfaces
¢ Mixins

When trying to get a grip of the framework code, you should probably understand all those three concepts. As a regular
application developer you often get by with ignoring interfaces and mixins when starting and just getting familiar with
classes.

Classes

A “class” is a central concept in most object-oriented languages, and as a programmer you are certainly familiar
with it. qooxdoo supports a “closed form” of class declaration, i.e. the entire declaration is provided within a
gx.Class.define (name, config) statement, where name is the fully-qualified class name, and config
is a configuration map with various keys (or “sections”).

There are several types of classes available, which are specified by the t ype key within the config map:

* regular class: May contain class variables/methods (in a st at ics section) and instance variables/methods (in
amembers section). An instance of the class can be created using the new keyword, so a constructor needs to
be given in construct.

11

qooxdoo Documentation, Release 2.0.2

« static class: Only contains class variables and class methods. Often a helper or utility class. Use type
"static".

« abstract class: Does not allow an instance to be created. Typically classes derive from it and provide concrete
implementations. type is abstract.

* singleton: Not more than a single instance of the class may exists at any time. A static method
getInstance () returns the instance. Use type : "singleton".

Interfaces

qooxdoo’s interfaces are similar to the ones in Java. Similar to the declaration of class they are created by
gx.Interface.define (name, config). They specify an “interface” (typically a set of empty methods),
that classes must implement.

Mixins

Mixins are a very practical concept that not all programming languages provide. Unlike interfaces, which require a
class to provide concrete implementations to fulfill the interface contract, mixins do include code. This code needs to
be generic, if it is “mixed into” different existing classes. Mixins usually cover only a single aspect of functionality
and therefore tend to be small. They are declared by gx .Mixin.define (name, config).

Inheritance

Like most programming languages qooxdoo only supports single-inheritance for classes, not multiple-inheritance, i.e.
a class can only derive directly from a single super class. This is easily modeled by the extend key in the class
declaration map.

Since a class may implement/include one or many interfaces/mixins, which themselves can extend others, some ad-
vanced forms of multiple-inheritance can still be realized.

qooxdoo OO standalone

If you want to use qooxdoo OO layer standalone, take a look at the gxoo-build generator job of the framework.

2.1.2 Features of Object Orientation

Class definition

A class is defined by providing its name as a string:

gx.Class.define ("my.cool.Class");

This example only creates a trivial class my.cool.Class. A typical class declaration contains OO features like
constructor, instance members, static members, etc. This additional information is provided as a second parameter in
form of a map. Since the entire class definition is given in gx.Class.define (), it is called a “closed form” of
class declaration:

gx.Class.define ("my.cool.Class", {
// declare constructor, members,

P

A regular (non-static) class can simply be instantiated using the new keyword:

12 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

var myClass = new my.cool.Class;

Inheritance

In order to derive the current class from another class, the reference to the super class is provided by the key extend:

gx.Class.define ("my.great.SuperClass", {
// I’m the super class

1)

gx.Class.define ("my.cool.Class", {
extend : my.great.SuperClass
}) i

Constructor

The constructor of a regular class is provided as a function declaration in key construct:

gx.Class.define("my.cool.Class",

{
extend : my.great.SuperClass,
construct : function () {

Static members

Static members (often called “class” members) are also part of the class definition and declared in a map to the
statics key. Static methods are given by providing a function declaration, while all other values declare static
attributes. Typically they are given in uppercase to distinguish them from instance members:

gx.Class.define ("my.cool.Class",
{
statics
{
FOO : VALUE,
BAR : function() { ... }
}
1)

Static members, both methods and attributes, can be accessed by using the fully-qualified class name:

my.cool.Class.FOO = 3.141;
my.cool.Class.BAR();

Note: You can use static members as constants, but the value can be changed in the run time!!

Instance Members

Similar to static members, instance members are also part of the class definition. For them the members key is used:

2.1. Object Orientation 13

qooxdoo Documentation, Release 2.0.2

gx.Class.define ("my.cool.Class",

{

members:
{
foo : VALUE,
bar : function() { ... }
}
)i

The instance members can be accessed by using an actual instance of a class:

var myClassl = new my.cool.Class;
myClassl.foo = 3.141;
myClassl.bar ();

Accessing Static Members

Generic form. Requires no updates if class name changes. This code can optionally be optimized for performance in
build versions.

gx.Class.define("my.cool.Class",
{
statics : {
PI : 3.141
}I
members : |
circumference : function (radius) {
return 2 » this.self (arguments) .PI x radius;

)i

Note: For this.self to be available, the class must have as a direct or indirect base class gx.core.Object.

Note: Static members aren’t inherited. For calling a superclass static method, use this.superclass, like in this
example:

gx.Class.define ("A’", {
statics: {
f: function() {}
}
b) i

gx.Class.define ('B’"), {
extend: A,
members: {
e: function() {
this.superclass.self (arguments) .f();

}
)i

Static functions can access other static functions directly through the this keyword.

14 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Calling the Superclass Constructor

Generic form. Requires no updates if super class (name) changes. This code can optionally be optimized for perfor-
mance in build versions.

gx.Class.define("my.cool.Class",
{
extend : my.great.SuperClass,
construct : function (x) {
this.base (arguments, x);

Calling the Overridden Superclass Method

Generic form without using prot ot ype. Requires no updates if super class (name) changes. This code can optionally
be optimized for performance in build versions.

gx.Class.define("my.cool.Class",

{

extend : my.great.SuperClass,

members : |
foo : function (x) {
this.base (arguments, x);

Destructor

As a logical match to any existing constructor given by the key construct, a destructor is explicitly given by the
destruct key:

gx.Class.define("my.cool.Class",

{

extend : my.great.SuperClass,

construct : function () {
}
destruct : function () {
}

}) i

Properties

gooxdoo comes with a very powerful feature called dynamic properties. A concise declaration of an age property
may look like the following:

gx.Class.define(

properties : {
age: { init: 10, check: "Integer" }

2.1. Object Orientation 15

qooxdoo Documentation, Release 2.0.2

This declaration generates not only a corresponding accessor method getAge () and a mutator method setAge (),
but would allow for many more features.

Interfaces

A leading uppercase I is used as a naming convention for interfaces.

gx.Interface.define("my.cool.IInterface");

Mixins
Leading uppercase M as a naming convention. A mixin can have all the things a class can have, like properties,
constructor, destructor and members.

gx.Mixin.define ("my.cool .MMixin") ;

Attaching mixins to a class

The include key contains either a reference to an single mixin, or an array of multiple mixins:

gx.Class.define("my.cool.Class",

{

include : [my.cool.MMixin, my.other.cool.MMixin]

)i

Attaching mixins to an already defined class

gx.Class.include (gx.ui.core.Widget, gx.MWidgetExtensions);

Access

By the following naming convention. Goal is to be as consistent as possible. During the build process private members
can optionally be renamed to random names in order to ensure that they cannot be called from outside the class.

publicMember
_protectedMember
__privateMember

Static classes

Explicit declaration allows for useful checks during development. For example. construct or members are not
allowed for such a purely static class.

gx.Class.define("my.cool.Class", {
type : "static"
}) i

16 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Abstract classes

Declaration allows for useful checks during development and does not require explicit code.

gx.Class.define ("my.cool.Class", {
type : "abstract"
}) i

Singletons

Declaration allows for useful checks during development and does not require explicit code. A method
getInstance () is added to such a singleton class.

gx.Class.define("my.cool.Class",
{

type : "singleton",

extend : my.great.SuperClass
1)

Immediate access to previously defined members

The closed form of the class definition does not allow immediate access to other members, as they are part of the
configuration data structure themselves. While it is typically not a feature used very often, it nonetheless needs to be
supported by the new class declaration. Instead of some trailing code outside the closed form of the class declaration,
an optional de fer method is called after the other parts of the class definition have been finished. It allows access to
all previously declared statics, members and dynamic properties.

Note: If the feature of accessing previously defined members is not absolutely necessary, de fer should not be used
in the class definition. It is missing some important capabilities compared to the regular members definition and it
cannot take advantage of many crucial features of the build process (documentation, optimization, etc.).

gx.Class.define ("my.cool.Class",

{

statics:

{

driveLetter : "C"

b

defer: function(statics, members, properties)

{

statics.drive = statics.drivelLetter + ":\\";
members.whatsTheDrive = function () {
return "Drive is " + statics.drive;

}i

Browser specific methods

To maintain the closed form, browser switches on method level is done using environment settings. Since the generator
knows about environment settings it is (optionally) possible to only keep the code for each specific browser and remove
the implementation for all other browsers from the code and thus generate highly-optimized browser-specific builds.
It is possible to use an logical “or” directly inside a environment key. If none of the keys matches the variant, the
“default” key is used:

2.1. Object Orientation 17

qooxdoo Documentation, Release 2.0.2

members:

{

foo: x.core.Environment.select ("engine.name",
a g

{
"mshtml |opera": function() {
// Internet Explorer or Opera

b
"default": function () {
// All other browsers

Events

qooxdoo’s class definition has a special events key. The value of the key is a map, which maps each distinct event
name to the name of the event class whose instances are passed to the event listeners. The event system can now
(optionally) check whether an event type is supported by the class and issue a warning if an event type is unknown.
This ensures that each supported event must be listed in the event map.

gx.Class.define ("my.eventful.Class",

{

extend: gx.core.Target,

events

{
/++ Fired when the widget is clicked. #*/
"click": "gx.event.type.MouseEvent"

2.1.3 Classes

gooxdoo’s class definition is a concise and compact way to define new classes. Due to its closed form the JavaScript
code that handles the actual class definition already “knows” all parts of the class at definition time. This allows for
many useful checks during development as well as clever optimizations during the build process.

Declaration

Here is the most basic definition of a regular, non-static class gx.test .Cat. It has a constructor so that instances
can be created. It also needs to extend some existing class, here we take the root class of all qooxdoo classes:

gx.Class.define ("gx.test.Cat", {
extend: gx.core.Object,
construct : function() { /+ ... %/}
}) i

As you can see, the define () method takes two arguments, the fully-qualified name of the new class, and a config-
uration map that contains a varying number of predefined keys and their values.

An instance of this class is created and its constructor is called by the usual statement:

18 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

var kitty = new gx.test.Cat;

Members

Members of a class come in two flavors:
¢ Class members (also called “static” members) are attached to the class itself, not to individual instances

¢ Instance members are attached to each individual instance of a class

Class Members

A static member of a class can be one of the following:
* Class Variable
¢ Class Method

In the Cat class we may attach a class variable LEGS (where uppercase notation is a common coding convention) and
a class method makeSound (), bothin a statics section of the class declaration:

gx.Class.define("gx.test.Cat", {
V2 V4
statics : {
LEGS: 4,
makeSound : function() { /* ... %/}
}
}) i

Accessing those class members involves the fully-qualified class name:

var foo = gx.test.Cat.LEGS;
alert (gx.test.Cat.makeSound());

Instance Members

An instance member of a class can be one of the following:
* Instance Variable
* Instance Method
They may be defined in the members section of the class declaration:
gx.Class.define ("gx.test.Cat", {
members: {
name : "Kitty",
getName: function() { return this.name }

}
)

Accessing those members involves an instance of the class:

var kitty = new gx.test.Cat;
kitty.name = "Sweetie";
alert (kitty.getName ());

2.1. Object Orientation 19

qooxdoo Documentation, Release 2.0.2

Primitive Types vs. Reference Types There is a fundamental JavaScript language feature that could lead to prob-
lems, if not properly understood. It centers around the different behavior in the assignment of JavaScript’s two data
types (primitive types vs. reference types).

Note: Please make sure you understand the following explanation to avoid possible future coding errors.

Primitive types include Boolean, Number, String, null and the rather unusual unde fined. If such a primitive
type is assigned to an instance variable in the class declaration, it behaves as if each instance had a copy of that value.
They are never shared among instances.

Reference types include all other types, e.g. Array, Function, RegExp and the generic Object. As their
name suggests, those reference types merely point to the corresponding data value, which is represented by a more
complex data structure than the primitive types. If such a reference type is assigned to an instance variable in the class
declaration, it behaves as if each instance just pointed to the complex data structure. All instances share the same
value, unless the corresponding instance variable is assigned a different value.

Example: If an instance variable was assigned an array in the class declaration, any instance of the class could
(knowingly or unknowingly) manipulate this array in such a way that each instance would be affected by the changes.
Such a manipulation could be pushing a new item into the array or changing the value of a certain array item. All
instances would share the array.

You have to be careful when using complex data types in the class declaration, because they are shared by default:

members:

{

foo: [1, 2, 4] // all instances would start to share this data structure

}

If you do not want that instances share the same data, you should defer the actual initialization into the constructor:

construct: function ()

{

this.foo = [1, 2, 4]; // each instance would get assigned its own data structure
b
members:
{
foo: null // to be initialized in the constructor
}
Access

In many object-oriented classes a concept exists that is referred to as “access” or “visibility” of members (well, or
even classes, etc.). Based on the well-known access modifiers of Java, the following three types exist for qooxdoo
members:

e public: To be accessed from any class/instance
* protected: To be accessed only from derived classes or their instances
* private: To be accessed only from the defining class/instance

Unfortunately, JavaScript is very limited in enforcing those protection mechanisms. Therefore, the following coding
convention is to be used to declare the access type of members:

* public: members may not start with an underscore
e protected: members start with a single underscore _

* private: members start with a double underscore ___

20 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

There are some possibilities to enforce or at least check the various degrees of accessibility:
 automatic renaming of private members in the build version could trigger errors when testing the final app

* checking instance of this in protected methods

Special Types of Classes

Besides a “regular” class there is built-in support for the following special types:

Static Classes A static class is not instantiated and only contains static members. Setting its type to stat ic makes
sure only such static members, no constructor and so on are given in the class definition. Otherwise error messages
are presented to the developer:

gx.Class.define ("gx.test.Cat", {
type : "static"

)i

Abstract Classes An abstract class may not be instantiated. It merely serves as a superclass that needs to be derived
from. Concrete classes (or concrete members of such derived classes) contain the actual implementation of the abstract
members. If an abstract class is to be instantiated, an error message is presented to the developer.

gx.Class.define ("gx.test.Cat", {
type : "abstract"

)i

Singletons The singleton design pattern makes sure, only a single instance of a class may be created. Every time
an instance is requested, either the already created instance is returned or, if no instance is available yet, a new one
is created and returned. Requesting the instance of such a singleton class is done by using the get Instance ()
method.

gx.Class.define("gx.test.Cat", {
type : "singleton"

)

Inheritance

Single Inheritance

JavaScript supports the concept of single inheritance. It does not support (true) multiple inheritance like C++. Most
people agree on the fact that such a concept tends to be very complex and error-prone. There are other ways to shoot
you in the foot. qooxdoo only allows for single inheritance as well:

gx.Class.define ("gx.test.Cat", {
extend: gx.test.Animal

)i

2.1. Object Orientation 21

qooxdoo Documentation, Release 2.0.2

Multiple Inheritance

Not supported. There are more practical and less error-prone solutions that allow for typical features of multiple
inheritance: Interfaces and Mixins (see below).

Polymorphism (Overriding)

gooxdoo does, of course, allow for polymorphism, that is most easily seen in the ability to override methods in derived
classes.

Calling the Superclass Constructor It is hard to come up with an appealing syntax and efficient implementation
for calling the superclass constructor from the constructor of a derived class. You simply cannot top Java’s super ()
here. At least there is some generic way that does not involve to use the superclass name explicitly:

gx.Class.define("gx.test.Cat", {
extend: gx.test.Animal,
construct: function (x) {
this.base (arguments, x);
}
}) i

Unfortunately, to mimic a super () call the special variable argument s is needed, which in JavaScript allows a
context-independent access to the actual function. Don’t get confused by its name, you would list your own arguments
just afterwards (like the x in the example above).

this.base (arguments, x) is internally mapped to arguments.callee.base.call (this, x) (The
.base property is maintained for every method through qooxdoo’s class system). The latter form can be handled by
JavaScript natively, which means it is quite efficient. As an optimization during the build process such a rewrite is
done automatically for your deployable application.

Calling an Overridden Method Calling an overridden superclass method from within the overriding method (i.e.
both methods have the same name) is similar to calling the superclass constructor:

gx.Class.define("gx.test.Cat", {
extend: gx.test.Animal,
members: {
makeSound : function() {
this.base (arguments) ;

Calling the Superclass Method or Constructor with all parameters This variant allows to pass all the parameters
(unmodified):

gx.Class.define ("gx.test.Animal", {
members: {
makeSound : function (howManyTimes) {

)i

gx.Class.define ("gx.test.Cat", {

22 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

extend: gx.test.Animal,
members: {
makeSound : function() {
this.debug("I’'m a cat");
/+* howManyTimes or any other parameter are passed. We don’t need to know how many parameters
arguments.callee.base.apply (this, arguments);

Calling another Static Method Here is an example for calling a static member without using a fully-qualified class
name (compare to this.base (arguments) above):

gx.Class.define ("gx.test.Cat", {
extend: gx.test.Animal,
statics : {
someStaticMethod : function (x) {

}
b
members: {
makeSound : function (x) {
this.constructor.someStaticMethod (x) ;

)i

The syntax for accessing static variables simply is this.constructor.someStaticVar. Please note, for
this.constructor to be available, the class must be a derived class of gx . core .Object, which is usually the
case for regular, non-static classes.

Instead of this.constructor you can also use the alternative syntax this.self (arguments).

In purely static classes for calling a static method from another static method, you can directly use the this keyword,
e.g. this.someStaticMethod (x).

Usage of Interfaces and Mixins

Implementing an Interface

The class system supports Interfaces. The implementation is based on the feature set of Java interfaces. Most relevant
features of Java-like interfaces are supported. A class can define which interface or multiple interfaces it implements
by using the implement key:

gx.Class.define ("gx.test.Cat", {
implement : [gx.test.IPet, gx.test.IFoo]
1)

Including a Mixin

Unlike interfaces, Mixins do contain concrete implementations of methods. They borrow some ideas from Ruby and
similar scripting languages.

Features:

2.1. Object Orientation 23

qooxdoo Documentation, Release 2.0.2

¢ Add mixins to the definition of a class: All members of the mixin are added to the class definition.

* Add a mixin to a class after the class is defined. Enhances the functionality but is not allowed to overwrite
existing members.

* Patch existing classes. Change the implementation of existing methods. Should normally be avoided but, as
some projects may need to patch qooxdoo, we better define a clean way to do so.

The concrete implementations of mixins are used in a class through the key include:

gx.Class.define ("gx.test.Cat", {
include : [gx.test.MPet, gx.test.MSleep]
1)

Summary

Configuration

Key Type Description

type String Type of the class. Valid types are abstract, static and singleton. If unset it
defaults to a regular non-static class.

extend Class The super class the current class inherits from.

imple- Interface | Single interface or array of interfaces the class implements.

ment Interface[]

include | Mixin | Single mixin or array of mixins, which will be merged into the class.

Mixin[]

con- Function The constructor of the class.

struct

statics Map Map of static members of the class.

proper- | Map Map of property definitions. For a description of the format of a property definition

ties see gx.core.Property.

mem- Map Map of instance members of the class.

bers

envi- Map Map of settings for this class. For a description of the format of a setting see

ron- gx.core.Environment.

ment

events Map Map of events the class fires. The keys are the names of the events and the values are
the corresponding event type class names.

defer Function Function that is called at the end of processing the class declaration. It allows access
to the declared statics, members and properties.

destruct | Function The destructor of the class.

References

* Class Declaration Quick Ref - a quick syntax overview
¢ API Documentation for Class

2.1.4 Interfaces

gooxdoo supports Java like interfaces.

Interface definitions look very similar to normal class definitions.

24 Chapter 2. Core

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.core.Property
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.core.Environment
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.Class

qooxdoo Documentation, Release 2.0.2

Example:

gx.Interface.define ("gx.test.ISample",

{

extend: [SuperInterfaces],
properties: {"color": {}, "name": {} },
members:
{
methl: function() {},

meth2: function(a, b) {
this.assertArgumentsCount (arguments, 2, 2);
}I
meth3: function(c) {
this.assertInterface(c, gx.some.IInterface);
}
}!

statics:

{
PI : 3.14

by

events
{
keydown : "gx.event.type.KeyEvent"

Definition

Interfaces are declared using gx . Interface.define. Interface names start by convention with an I (uppercase
“1”). They can inherit from other interfaces using the ext end key. Multiple inheritance of interfaces is supported.

Properties

Properties in interfaces state that each class implementing this interface must have a property of the given name. The
property definition is not evaluated and may be empty.

Members

The member section of the interface lists all member functions which must be implemented. The function body is used
as a precondition of the implementation. By implementing an interface the qooxdoo class definition automatically
wraps all methods required by the interface. Before the actual implementation is called, the precondition of the
interface is called with the same arguments. The precondition should raise an exception if the arguments are don’t
meet the expectations. Usually the methods defined in gx.core.MAssert are used to check the incoming parameters.

Statics

Statics behave exactly like statics defined in mixins and qooxdoo classes, with the different that only constants are
allowed. They are accessible through their fully-qualified name. For example, the static varaiable PI could be used
like this:

2.1. Object Orientation 25

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.core.MAssert

qooxdoo Documentation, Release 2.0.2

var a = 2 * gx.test.ISample.PI % (r+*r);

Events

Each event defined in the interface must be declared in the implementing classes. The syntax matches the events
key of the class declaration.

Implementation

With implement key of the class declaration, a list of interfaces can be listed, which the class implements. The
class must implement all properties, members and events declared in the interfaces. Otherwise a runtime error will be
thrown.

Example:

gx.Class.define ("gx.test.Sample",

{
implement: [gx.test.ISample],

properties: {

"color": { check: "color"},
"name": { check: "String"}
br
members:
{
methl: function() { return 42; 1},
meth2: function(a, b) { return a+tb },
meth3: function(c) { c.foo() }
}
events
{
keydown : "gx.event.type.KeyEvent"
}
}) i
Validation

gx .Class contains several static methods to check, whether a class or an object implements an interface:
* gx.Class.hasInterface (): Whether a given class or any of its superclasses includes a given interface.

e gx.Class.implementsInterface (): Checks whether all methods defined in the interface are imple-
mented in the class. The class does not need to implement the interface explicitly.

It is further possible to use interfaces as property checks.

26 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Summary

Configuration

Key Type Description
extend | Interface | Single interface or array of interfaces this interface inherits from.
Interface[]
mem- | Map Map of members of the interface.
bers
statics | Map Map of statics of the interface. The statics will not get copied into the target class. This
is the same behavior as statics in mixins.
prop- Map Map of properties and their definitions.
erties
events | Map Map of event names and the corresponding event class name.
References

e Interfaces Quick Ref - a syntax quick reference for interfaces

¢ API Documentation for Interface

2.1.5 Mixins

Mixins are collections of code and variables, which can be merged into other classes. They are similar to classes but
can not be instantiated. Unlike interfaces they do contain implementation code. Typically they are made up of only a
few members that allow for a generic implementation of some very specific functionality.

Mixins are used to share functionality without using inheritance and to extend/patch the functionality of existing
classes.

Definition

Example:

gx.Mixin.define ("name",

{

include: [SuperMixins],

properties: {
"tabIndex": {check: "Number", init: -1}
b

members:

{
propl: "foo",
methl: function() {},
meth2: function() {}

2.1. Object Orientation 27

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.Interface

qooxdoo Documentation, Release 2.0.2

Usage

Here a short example to see, how to use mixins (MMixinA, MMixinB) with a class (ClassC).
The first mixin:

gx.Mixin.define ("demo.MMixinA",
{
properties: {
"propertyA":
{
check: "String",
init: "Hello, I'm property A!\n"
}
}I

members:

{
methodA: function() {
return "Hello, I’'m method A!\n";

)i

The second mixin:

gx.Mixin.define ("demo.MMixinB",
{
properties: {
"propertyB":
{
check: "String",
init: "Hello, I'm property B!\n"
}
}I

members:

{
methodB: function () {
return "Hello, I’m method B!\n";

)i

The usage in the class:

gx.Class.define ("demo.ClassC",

{

extend : gx.core.Object,
include : [demol.MMixinA, demol.MMixinB],

members
{
methodC : function() {
return this.getPropertyA() + this.methodA ()
+ this.getPropertyB() + this.methodB()
+ "Nice to meet you. Thanks for your help!";

28 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

}
)i

The result is when calling the method methodcC () of ClassC:

var classC = new demo.ClassC;
var result = classC .methodC();

/ *

* Result:
* Hello,
* Hello,
* Hello,

I’m property A!
I’m method A!
I’m property B!

* Hello, I’m method B!

* Nice to meet

Summary

Configuration

you. Thanks for your help!

Key | Type Description
in- Mixin or | Single mixin or array of mixins, which will be merged into the mixin.
clude | Mixin[]
con- | Function | An optional mixin constructor. It is called when instantiating a class that includes this mixin.
struct
de- Function | An optional mixin destructor.
struct
stat- Map Map of static members of the mixin. The statics will not get copied into the target class.
ics They remain accessible from the mixin. This is the same behaviour as for statics in interfaces
mem- | Map Map of members of the mixin.
bers
prop- | Map Map of property definitions.
erties
events | Map Map of events the mixin fires. The keys are the names of the events and the values are the
corresponding event type classes.
References

e Mixin Quick Ref - a quick syntax reference for mixins

¢ API Documentation for Mixin

2.2 Properties

2.2.1 Introduction to Properties

gooxdoo comes with its own convenient and sophisticated property management system. In order to understand its
power we will first take a look at the ordinary property handling in plain JavaScript first.

2.2. Properties

29

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.Mixin

qooxdoo Documentation, Release 2.0.2

Ordinary Property Handling

Let’s say we have a property width for an object ob .
As is a good practice in regular high-level programming languages you should not access object properties directly:

// NOT RECOMMENDED: direct access to properties
obj.width = 200; // setting a value
var w = obj.width; // getting the current value

Instead you should work with properties only through so-called accessor methods (“getters”) and mutator methods
(“setters”):

// direct access is no good practice
obj.setWidth (200); // setting a value
var w = obj.getWidth(); // getting the current value

Of course, directly accessing properties may be faster because no indirection by a function call is needed. Nonetheless,
in practice this does not outweight the disadvantages. Direct access to properties does not hide internal implementation
details and is a less maintainable solution (Well, you don’t program web applications in assembler code, do you?).

A typical implementation of the accessor and mutator methods would look like the following, where those instance
methods are declared in the members section of the class definition:

// ordinary example #1
members:
{
getWidth : function () {
return this._width;

}y

setWidth : function (width)

{
this._width = width;
return width;

Something that is very familiar to the typical programmer of Java or any other comparable language. Still, it is not
very convenient. Even this trivial implementation of only the basic feature requires a lot of keystrokes. More advanced
features like type checks, performance optimizations, firing events for value changes, etc. need to be coded by hand.
An improved version of the setter could read:

// ordinary example #2
members:
{
setWidth : function (width)
{

if (typeof width != "number") {

// Type check: Make sure it is a valid number

throw new Error ("Invalid value: Need a valid integer value: " + width);
}i
if (this._width != width)

{

// Optimization: Only set value, if different from the existing value
this._width = width;

// User code that should be run for the new value
this.setStyleProperty ("width", width+ "px");

30 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

}i
return width;
}
Large part of the code found here is for managing the validation and storage of the incoming data. The property-

specific user code is rather short.

qooxdoo Property Handling

Let’s see how the above example can be written using qooxdoo’s property implementation. The property itself is
declared in the properties section of the class definition. Only if some property-specific code needs to be run in
the setter, an additional apply method has to be given:

// gooxdoo version of ordinary example #2

properties : {

width : { check : "Number", apply : "applyWidth" }
}
members

{
applyWidth : function (value) {
this.setStyleProperty ("width", wvalue + "px");
}
}

Compare that to the lengthy code of the ordinary code example above! Much shorter and nicer, also by objective
means. And it almost only contains the “real code”.

The apply method may optionally be defined for each property you add to your class. As soon as you define a key
“apply” in your property declaration map the method gets automatically called on each property modification (but not
during initial initialization). If you do not define an apply method, the property just handles the fundamental storage
of your data and its disposal.

Despite needing much less explicit code (keep in mind, for every property), it actually contains at least as many
features as the hand-tuned code: The type of the property is checked automatically (Number in the example above).
Moreover, new values are only stored (and the optional apply method called) if different from the existing values. A
tiny but important optimization.

Change Events

gooxdoo supports full-featured event-based programming throughout the framework. So-called change events are a
good example for this powerful concept.

Each property may optionally behave as an observable. This means it can send out an event at any time the property
value changes. Such a change event (an instance of gx.event.type.Data) is declared by providing a custom
name in the event key of the property definition. While you are free to choose any event name you like, the qooxdoo
framework tries to consistently use the naming convention "change + Propertyname",e.g. "changeWidth"
for a change of property width. In order to get notified of any value changes, you simply attach an event listener to
the object instance containing the property in question.

For example, if you would like the element property of a Widget instance widget to fire an event named
"changeElement" any time the value changes.

2.2. Properties 31

qooxdoo Documentation, Release 2.0.2

properties : {
element: { event: "changeElement" }

}

If this happens, you would like to set the DOM element’s content:

widget.addEventListener ("changeElement", function (e) {
e.getValue () .innerHTML = "Hello World";
}) i

The anonymous function acts as an event handler that receives the event object as variable e. Calling the predefined
method getValue () returns the new value of property e lement.

Available Methods

gooxdoo’s dynamic properties not only make sure that all properties behave in a consistent way, but also guarantee
that the API to access and manipulate properties are identical. The user is only confronted with a single interface,
where the method names are easy to understand. Each property creates (at least) the following set of methods:

* setPropertyName (): Mutator method (“setter”) to set a new property value.
* getPropertyName (): Accessor method (“getter”) that returns the current value.

Additionally, all properties of boolean type (declared by check: "Boolean") provide the following convenience
methods:

* isPropertyName (): Identical to getPropertyName ().

* togglePropertyName (): Toggles between true and false.

Property Groups

Property groups is a layer above the property system explained in the last paragraphs. They make it possible to set
multiple values in one step using one set call. gx.ui.core.Widget supports the property group padding.
padding simply sets the paddingLeft, paddingRight, paddingTop and paddingBottom property.

widget.setPadding (10, 20, 30, 40);

The result is identical to:

widget.setPaddingTop (10);
widget.setPaddingRight (20) ;
widget.setPaddingBottom (30) ;
widget.setPaddinglLeft (40);

As you can see the property groups are a nice really convenient feature.

Shorthand support

One more thing. The property group handling also supports some CSS like magic like the shorthand mode for example.
This means that you can define only some edges in one call and the others get filled automatically:

// four arguments
widget.setPadding (top, right, bottom, left);

// three arguments
widget.setPadding (top, right+left, bottom);

32 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

// two arguments
widget.setPadding (toptbottom, right+left);

// one argument
widget.setPadding (toptright+bottom+left);

As you can see this can also reduce the code base and make it more userfriendly.
BTW: The values of a property group can also be given an array as first argument e.g. these two lines work identically:

// arguments 1ist
widget.setPadding (10, 20, 30, 40);

// first argument as array
widget.setPadding([10, 20, 30, 401);

Note: For more information regarding declaration, usage and internal functionality please see the the developer
documentation.

2.2.2 Properties in more detail

Note: Please take a look at Property features summarized first to get an compact overview of the available features.

Declaration

The following code creates a property myProperty and the corresponding functions like setMyProperty () and
getMyProperty ().

gx.Class.define(

properties : {

myProperty : { nullable : true }
}

You should define at least one of the attributes init, nullable or inheritable. Otherwise, the first call to the
getter would stop with an exception because the computed value is not (yet) defined.

Note: As an alternative to the init key you could set the init value of the property by calling an initializing function
this.initMyProperty (value) in the constructor. See below for details.

Please also have a look at the Quick Reference.

Handling changes of property values

You have multiple possibilities to react on each property change. With change the modification of a property is meant,
where the old and the new values differ from each other.

As a class developer the easiest solution with the best performance is to define an apply method. As a user of a class
(the one who creates instances) it is the best to simply attach an event listener to the instance, if such an corresponding
event is provided in the property declaration.

2.2. Properties 33

qooxdoo Documentation, Release 2.0.2

Defining an apply method

To attach an apply method you must add a key apply to your configuration which points to a name of a function
which needs to be available in your members section. As the apply method normally should not be called directly, it
is always a good idea to make the method at least protected by prefixing the name with an underscore _.

The return value of the apply method is ignored. The first argument is the actual value, the second one is the former
or old value. The last argument is the name of the property which can come very handy if you use one apply mehtod
for more than one property. The second and third arguments are optional and may be left out.

Example
properties : {
width : { apply : "_applyWidth" }
I
members

{
_applyWidth : function(value, old, name) {
// do something. ..
}
}

The applying method is only called when the value has changed.

Note: When using reference data types like Object or Array the apply method is always called, since these are
different objects and indeed different values. This is JavaScript functionality and not qooxdoo specific.

For a more technical description, take a look at the API documentation of gx.core.Property

Providing an event interface

For the users of a class it is in many cases a nice idea to also support an event to react on property changes. The event
is defined using the event key where the value is the name of the event which should be fired.

qgooxdoo fires a gx .event . type . Data which supports the methods getData () and getOldData () to allow
easy access to the new and old property value, respectively.

Note: Events are only useful for public properties. Events for protected and private properties are usually not a good
idea.

Example
properties : {
label : { event : "changeLabel" }

}

// later in your application code:

obj.addListener ("changelLabel", function(e) {
alert (e.getDatal());

1)

34 Chapter 2. Core

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.core.Property

qooxdoo Documentation, Release 2.0.2

Init values

Init values are supported by all properties. These values are stored separately by the property engine. This way it is
possible to fallback to the init value when property values are being reset.

Defining an init value

There are two ways to set an init value of a property.

Init value in declaration The preferred way for regular init values is to simply declare them by an init key
in the property configuration map. You can use this key standalone or in combination with nullable and/or
inheritable.

properties : {
myProperty : { init : "hello" }
}

Init value in constructor Alternatively, you could set the init value of the property in the constructor of the class.
This is only recommended for cases where a declaration of an init value as explained above is not sufficient.

Using an initializing function this.initMyProperty (value) in the constructor would allow you to assign
complex non-primitive types (so-called “reference types” like Array, Object) that should not be shared among
instances, but be unique on instance level.

Another scenario would be to use a localizable init value when internationalizing your application: Because
this.tr () cannot be used in the property definition, you may either use the static gx.locale.Manager.tr ()
there instead, or use this.tr () in the call of the initializing function in the constructor.

Note: You need to add a deferredInit:true to the property configuration to allow for a deferred initialization
for reference types as mentioned above.

gx.Class.define ("gx.MyClass", {
construct: function () {
this.initMyProperty ([1l, 2, 4, 81);
}I
properties : {
myProperty : { deferredInit : true}
}
bi

Applying an init value

It is possible to apply the init value using an user-defined apply method. To do this call the init method
this.initMyProperty (value) somewhere in your constructor - this “change” will than trigger calling the
apply method. Of course, this only makes sense in cases where you have at least an apply or event entry in the
property definition.

If you do not use the init method you must be sure that the instances created from the classes are in a consistent state.
The getter will return the init value even if not initialized. This may be acceptable in some cases, e.g. for properties
without apply or event. But there are other cases, where the developer needs to be carefully and call the init method
because otherwise the getter returns wrong information about the internal state (due to an inconsistency between init
and applied value).

2.2. Properties 35

qooxdoo Documentation, Release 2.0.2

Like calling the this.initMyProperty (value) method itself, you could call the setter and use the defined init
value as parameter. This will call the apply method, not like in the usual cases when setting the same value which is

aready set.

construct : function ()

{

this.base (arguments) ;

this.setColor ("black");
this.setColor ("black");

by

properties
{
color
{
init : "black",
apply : "_applyColor"
}
by
members

{

// apply will be invoked
// apply will NOT be invoked

_applyColor : function(value, old) {

// do something. ..

}

This example illustrates how the behavior differs from the default behavior of the property system due to the already
mentioned inconsistency between init and applied value.

construct : function ()

{

this.base (arguments) ;

// Initialize color with predefined value

this.initColor();

// Initialize store with empty array

this.initStore([]);
by

properties
{
color
{
init : "black",
apply : "_applyColor"
by
store : {
apply " _applyStore"
}
by
members
{
_applyColor : function(value, old) {

// do something...

36

Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

}y

_applyStore : function(value, old) {
// do something. ..
}
}

In the above example you can see the different usage possibilities regarding properties and their init values. If you
do not want to share “reference types” (like Array, Object) between instances, the init values of these have to be
declared in the constructor and not in the property definition.

Ifan init value is given in the property declaration, the init method does not accept any parameters. The init methods
always use the predefined init values. In cases where there is no init value given in the property declaration, it is
possible to call the init method with one parameter, which represents the init value. This may be useful to apply
reference types to each instance. Thus they would not be shared between instances.

Note: Please remember that init values are not for incoming user values. Please use init only for class defined
things, not for user values. Otherwise you torpedo the multi-value idea behind the dynamic properties.

Refining init values

Derived classes can refine the init value of a property defined by their super class. This is however the only modification
which is allowed through inheritance. To refine a property just define two keys inside the property (re-)definition:
init and refine. refine is a simple boolean flag which must be configured to true.

Normally properties could not be overridden. This is the reason for the refine flag . The flag informs the imple-
mentation that the developer is aware of the feature and the modification which should be applied.

properties : {
width : { refine : true, init : 100 }
}

This will change the default value at definition time. refine is a better solution than a simple set call inside the
constructor because it the initial value is stored in a separate namespace as the user value and so it is possible for the
user to fall back to the default value suggested by the developer of a class.

Checking incoming values

You can check incoming values by adding a check key to the corresponding property definition. But keep in mind
that these checks only apply in the development (source) version of the application. Due to performance optimization,
we strip these checks for the build version. If you want a property validation, take a look at the validation section.

Predefined types

You can check against one of these predefined types:
* Boolean, String, Number, Integer, Float, Double
* Object, Array, Map
e Class,Mixin, Interface, Theme

* Error, RegExp, Function, Date, Node, Element, Document, Window, Event

2.2. Properties 37

qooxdoo Documentation, Release 2.0.2

Due to the fact that JavaScript only supports the Number data type, Float and Double are handled identically to
Number. Both are still useful, though, as they are supported by the Javadoc-like comments and the API viewer.

properties : {
width : { init : 0, check: "Integer" }
}

Possible values

One can define an explicit list of possible values:

properties : {
color: { init : "black", check : ["red", "blue", "orange"] }

}

Note: Providing a list of possible values only works with primitive types (like strings and numbers), but not with
reference types (like objects, functions, etc.).

Instance checks

It is also possible to only allow for instances of a class. This is not an explicit class name check, but rather an
instanceof check. This means also instances of any class derived from the given class will be accepted. The class
is defined using a string, thereby to not influencing the load time dependencies of a class.

properties : {
logger : { nullable : true, check : "gx.log.Logger" }
}

Interface checks

The incoming value can be checked against an interface, i.e. the value (typically an instance of a class) must implement
the given interface. The interface is defined using a string, thereby not influencing the load time dependencies of a
class.

properties : {
application : { check : "gx.application.IApplication" }
}

Implementing custom checks

Custom checks are possible as well, using a custom function defined inside the property definition. This is useful for
all complex checks which could not be solved with the built-in possibilities documented above.

properties
{
progress
{
init : 0O,
check : function (value) {

return !isNaN(value) && value >= 0 && value <= 100;

38 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

}

This example demonstrates how to handle numeric values which only accept a given range of numbers (here O .. 100).
The possibilities for custom checks are only limited by the developer’s imagination. ;-)

Alternative solution As an alternative to the custom check function, you may also define a string which will directly
be incorporated into the setters and used in a very efficient way. The above example could be coded like this:

properties
{
progress
{
init : O,
check : "!isNaN(value) && value >= 0 && value <= 100"

}
This is more efficient, particularly for checks involving rather small tests, as it omits the function call that would be

needed in the variant above.

Transforming incoming values

You can transform incoming values before they are stored by using the transform key to the corresponding property
definition. The transform method occurs before the check and apply functions and can also throw an error if the value
passed to it is invalid. This method is useful if you wish accept different formats or value types for a property.

Example

Here we define both a check and transform method for the width property. Though the check method requires that the
property be a integer, we can use the transform method to accept a string and transform it into an integer. Note that we
can still rely on the check method to catch any other incorrect values, such as if the user mistakenly assigned a Widget
to the property.

properties
{
width
{
init : O,
transform: "_transformwidth",
check: "Integer"
}
}I
members

{
_transformWidth : function (value)
{
if (gx.lang.Type.isString(value))

{

value = parselnt (value, 10);

return value;

2.2. Properties 39

qooxdoo Documentation, Release 2.0.2

Validation of incoming values

Validation of a property can prevent the property from being set if it is not valid. In that case, a validation error should
be thrown by the validator function. Otherwise, the validator can just do nothing.

Using a predefined validator

If you use predefined validators, they will throw a validation error for you. You can find a set of predefined validators
in gx.util. Validate. The following example shows the usage of a range validator.

properties : {
application : { validate : gx.util.Validate.range (0, 100) }
}

Using a custom validator

If the predefined validators are not enough for you validation, you can specify your own validator.

properties : {
application : { validate : function (value) {
if (value > 10) {
throw new gx.core.ValidationError (
"Validation Error: ", value + " 1is greater than 10."

Validation method as member

You can define a validation method as a member of the class containing the property. If you have such a member
validator, you can just specify the method name as a sting

properties : {
application : { wvalidate : "_validateApplication" }

}

Enabling theme support

The property system supports multiple values per property as explained in the paragraph about the init values. The
theme value is another possible value that can be stored in a property. It has a lower priority than the user value and a
higher priority than the init value. The set Themed and reset Themed methods are part of qooxdoo’s theme layer
and should not be invoked by the user directly.

setter value resetter

setProperty (value) user resetProperty ()

40 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

\ \
setThemedProperty (value) Priority theme Fallback resetThemedProperty ()

\ \
initProperty([value]) | init v n.a.

To enable theme support it is sufficient to add a themeable key to the property definition and set its value to t rue.

properties : {
width : { themeable : true, init : 100, check : "Number" }
}

Note: themeable should only be enabled for truely theme-relevant properties like color and decorator, but not for
functional properties like enabled, tabIndex, etc.

Working with inheritance
Another great feature of the new property system is inheritance. This is primarily meant for widgets, but should be
usable in independent parent-children architectures, too.

Inheritance quickly becomes nothing short of vital for the property system, if you consider that it can reduce redun-
dancy dramatically. It is advantageous both in terms of coding size and storage space, because a value only needs to
be declared once for multiple objects inside an hierarchy. Beyond declaring such an inheritable property once, only
intended exceptions to the inherited values need to be given to locally override those values.

The inheritance as supported by qooxdoo’s properties is comparable to the inheritance known from CSS. This means,
for example, that all otherwise undefined values of inheritable properties automatically fall back to the corresponding
parent’s value.

Each property may also have an explicit user value of string "inherit". The inherited value, which is normally
only used as a fallback value, can thus be emphasized by setting "inherit" explicitly. The user may set a property
to "inherit" in order to enforce lookup by inheritance, and thereby ignoring init and appearance values.

To mark a property as inheritable simply add the key inheritable and setitto true:

properties : {
color : { inheritable : true, nullable : true }

}

Optionally, you can configure an init value of inherit. This is especially a good idea if the property should not be
nullable:

properties : {
color : { inheritable : true, init: "inherit" }

}

Inheritable CSS properties

To give you an idea for what kind of custom properties inheritance is particularly useful, the following list of prominent
CSS properties which support inheritance may be a good orientation:

e color
* cursor
e font, font-family,...

* line-height

2.2. Properties a

qooxdoo Documentation, Release 2.0.2

e list-style

* text-align

Note: This list of CSS properties is only meant for orientation and does not reflect any of qooxdoo widget properties.

Internal methods

The property documentation in the user manual explains the public, non-internal methods for each property. However,
there are some more, which are not meant for public use:

* this.resetProperty (value) : For properties which are inheritable. Used by the inheritance system to
transfer values from parent to child widgets.

e this.setThemedProperty (value) : For properties with appearance enabled. Used to store a sepa-
rate value for the appearance of this property. Used by the appearance layer.

* this.resetThemedProperty (value) : For properties with appearance enabled. Used to reset the
separately stored appearance value of this property. Used by the appearance layer.

Defining property groups

Property groups is a convenient feature as it automatically generates setters and resetters (but no getters) for a group
of properties. A definition of such a group reads:

properties : {
location : { group : ["left", "top"] }
}

As you can see, property groups are defined in the same map as “regular” properties. From a user perspective the API
with setters and resetters is equivalent to the API of regular properties:

obj.setLocation(50, 100);

// instead of
// obj.setLeft (50);
// obj.setTop (100);

Shorthand support

Additionaly, you may also provide a mode which modifies the incoming data before calling the setter of each group
members. Currently, the only available modifier is shorthand, which emulates the well-known CSS shorthand
support for qooxdoo properties. For more information regarding this feature, please have a look at the user manual.
The definition of such a property group reads:

properties
{
padding
{
group : ["paddingTop", "paddingRight", "paddingBottom", "paddingLeft"],
mode : "shorthand"

}

For example, this would allow to set the property in the following way:

42 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

obj.setPadding(10, 20);

// instead of

// obj.setPaddingTop (10);

// obj.setPaddingRight (20);
// obj.setPaddingBottom (10);
// obj.setPaddingLeft (20);

}

. _pages/defining_properties#when_to_use_properties:

When to use properties?

Since properties in qooxdoo support advanced features like validation, events and so on, they might not be quite as
lean and fast as an ordinarily coded property that only supports a setter and getter. If you do not need these advanced
features or the variable you want to store is extremely time critical, it might be better not to use qooxdoo’s dynamic
properties in those cases. You might instead want to create your own setters and getters (if needed) and store the value
just as a hidden private variable (e.g. ___varName) inside your object.

2.2.3 Initialization Behavior

This document summarizes some thoughts about the behavior of the initialization of properties.

The Problem

Imagine a class containing a property named a with an init value, like the following:

gx.Class.define ("A", {
extend : gx.core.Object,

properties : {
a : |
init : "b",
event : "changeA"

}
1)

As you can see, the property a has an init value, b. Now, if you access a with its getter, you get the init value in return:

var a = new A();
a.getA(); // returns "b"

If you now set something different than the initial value, you get a change event, because the content of the property
changed.

a.setA("x"); // changeA fired

As far, everything behaves as desired. But if set the init value instead of a new value, the change event will be also
fired. The following code shows the problem:

var a = new A();
a.setA(a.gethA()); // changeA fired (first set)
)

a.setA(a.getA()); // changeA NOT fired (every other set)

2.2. Properties 43

qooxdoo Documentation, Release 2.0.2

Why not just change this behaviour?

It’s always hard to change a behavior like that because there is no deprecation strategy for it. If we change it, it is
changed and every line of code relying on that behavior will fail. Even worse, the only thing we could use as a check
for the wrong used behavior is to search for all properties having an init value and either an apply function or an event.
Now you have to check if one of these properties could be set with the init value, before any other value has been
set. If it is possible that the init value is set as first value, check if the attached apply is required to run or any listener
registered to the change event of that property. A good example in the framework where we rely on the behavior is the
Spinner:

VAR
construct : function(min, value, max) {
S/
if (value !== undefined) {
this.setValue (value);
} else {
this.initValue();
}
S/
_applyValue: function(value, old)
/)
this._updateButtons () ;
YV

The example shows the constructor and the apply of the value property. The problem begins in this case with the
constructor parameter named value, which is optional. So we have three cases to consider.

1. The value argument is undefined: The initValue method is called, which invokes the apply function for the
property with the init value as value.

2. A value is given different as the init value: So the value is not undefined and the setter for the value property
will be called, which invokes the apply function.

3. A value is given and its exactly the init value: In this case, the setter will be called with the init value. The apply
method is called and invokes the _updateButtons method. This method checks the given value and enables
/ disabled the buttons for increasing / decreasing the spinner. So it is necessary that the apply method is at least
called once that the buttons have the proper states.

The problem with a possible change of this behavior is obvious. In the third case, the apply method is not called and
the buttons enabled states could be wrong without throwing an error. And they are only wrong, if the value is exactly
the init value and one of the minimum or maxiumum values is the same. Because only in that scenario, one of the
buttons need to be disabled.

When can it be changed?

Currently we don’t plan to change it because it can have some hard to track side effects as seen in the example above
and we don’t have any deprecation strategy. Maybe it can be change on a major version like 2.0 but currently there are
no plans to do so.

2.2.4 Property features summarized

Note: The chapter gives you an compact but extensive overview of the features offered by qooxdoo’s property system.
Please refer to Properties in more detail for an explanation of how to define and use properties.

44 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Value checks

* Built-in types for most common things
* Runtime checks (development version only)

* Instance checks by simply define the classname of the class to check for (always use an instanceof operation - a
real classname is not available anymore)

* Custom check method by simply attaching a function to the declaration
* Custom check defined by a string which will be compiled into the resulting setters (faster than the above variant)

* Define multiple possible (primitive) values using an array

Validation

* Validation in both development and build version
* Predefined validators for default validation

* Throws a special validation error

Advanced value handling
* Multi value support. Support to store different values for init, inheritance, style and user including a automatic
fallback mechanism between them.

* Inheritance support. Inheritance of properties defined by a parent widget e.g. inherit enabled from a groupbox
to all form elements. Uses the inheritance if the computed value would be undefined or explicitly set to
"inherit". The getter simply returns "inherit" for inheritable properties which are otherwise unset.

* Blocks unintentionally unde fined values in all setters with an exception. To reset a value one must use the
reset or unstyle method which are available too.

* Overriding of a value by setting a property explicitly to null

* Properties must be explicitly configured as "nullable" (like in .Net). The default is false which means
that incoming null values will result in an exception.

* Accessing nullable properties with unde fined values will result in a normalization to null.

Convenience

» Convenient toggle method for boolean properties

Notification

* Support for a custom apply rountine

 Event firing with a custom named event

2.2. Properties 45

qooxdoo Documentation, Release 2.0.2

Initialization

qooxdoo automatically correctly initializes properties. This is true for both, properties which have defined an init
value and also for the other properties which are nullable. This means that after you have created an instance the
properties correctly reflect the applied value. Default values assigned by init also execute the configured apply
methods and dispatch configured events to inform already added listeners.

Initialization Behavior

Performance

Automatic optimization of all setters to the optimal highly-tuned result code. Impressive tailor made high performance
setters are the result.

Please note that after the definition point of a property the setters are not yet available. Wrappers for them will be
created with the first instance and the final code will be generated with the first use of such a setter. This first use will
also automatically unwrap the property setter to directly use the generated one.

Memory managment

Automatic memory management. This means all so-configured properties which contain complex data objects get
automatically disposed with the object disposal. The affected built-in types are already auto-configured this way. Also
all properties which need an instance of a class, defined by using a classname as check are automatically handled.

Note: Note that this does not actually call dispose() on the object but just removes the property value etc i.e. derefer-
ences the object. You still need to call dispose() if necessary.

For all other properties which contain complex data the developer must add a dispose key with a value of t rue to
the property declaration. For example if there is no check defined or the check definition points to a function.

Note: This is not needed for primitive types like strings and numbers.

2.3 Environment

2.3.1 Environment

Introduction

The environment of an application is a set of values that can be queried through a well-defined interface. Values
are referenced through unique keys. You can think of this set as a global key:value store for the application. Values
are write-once, read-many, but there are also read-only values. If a value for a certain key can be set, it can be set in
various ways, e.g. by code, through build configuration, etc., usually during startup of the application, and not changed
later. Other environment values are automatically discovered when they are queried at run time, such as the name of
the current browser, or the number of allowed server connections. This way, the environment API also implements
browser feature detection, and these values cannot be arbitrarily set.

Environment settings are also used in the framework, among other things to add debug code in the form of additional
tests and logging, to provide browser-specific implementations of certain methods, asf. Certain settable environment
keys are pre-defined by qooxdoo, the values of which can be overridden by the application. Applications are also free
to define their own environment keys and query their values at run time.

46 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

So for the application developer, the environment represents a set of global values that mirrors the general parameters
under which the application runs. It can be used to both detect (e.g. browser features) as well as inject such parameters
(e.g. through build configuration). For global values that are not derived from the outside world in some way, just use
e.g. a static application class.

Motivation

Environment settings address various needs around JavaScript applications:
* Control initial settings of the framework, before the custom classes are loaded.
* Pass values from outside to the application.
* Trigger the creation of multiple build files.
* Query features of the platform at run time (browser engine, HTMLS support, etc.)
* Create builds optimized for a specific target environment, i.e. feature-based builds.

As there are a number of pre-defined settings in the framework, you can make use of them right away by querying
their values in your application code. The next section deals with that. Afterwards, you learn how to override default
values or define your own environment settings.

Querying Environment Settings

In general, there are two different kinds of settings, synchronous and asynchronous. The asynchronous settings are
especially for feature checks where the check itself is asynchronous, like checking for data: URL support. Both kinds
have two query methods at the gx.core.Environment class, .get() and select() for synchronous, and .getAsync() and
.selectAsync() for asynchronous settings.

Synchronous
Let’s first take a look at the synchronous API and the two possibilities of accessing the data:
gx.core.Environment.get ("myapp.key");

The get method is likely the most important one. It returns the value for the given key, myapp . key in this example.

gx.core.Environment.select ("myapp.key", {

"valuel" : resvaluel,
"value2" : resvalueZ2,
"default" : catchAllvalue

}

The select method is a way to select a value from a given map. This offers a convenient way to select an expression
for a given key value. It also allows you to specify the special map key “‘default”, that will be used if the current value
of the environment key does not match any of the other map keys. This is very handy when only one of the expected
values needs a special case treatment. In the example above, the resvalue (s) could be a function or any other
valid JavaScript expression.

Asynchronous

The asynchronous methods are a direct mapping of their synchronous counterparts.

2.3. Environment 47

qooxdoo Documentation, Release 2.0.2

gx.core.Environment.getAsync ("myapp.key", function (result) ({
// callback
}, context);

As the . getAsync does not return a result immediately, you have to specify a callback method which will be executed as
soon as the value for the environment key is available. Your callback will be passed this value as the single argument,
and the callback is responsible to integrate the result with your application.

This principle carries over to the corresponding select call:

gx.core.Environment.selectAsync ("myapp.key", {
"value" : function(result) {
// callback value 1
}I
"default" : function (result) {
// catch all callback
}

}, context)

In case of an asynchronous select the type of the values has to be a function, which will be called as soon as the key
value is available. Again, you can provide a “default” case. As with the callbacks used for .getAsync, the callbacks
used with .selectAsync will also get the key value as parameter, which might come handy especially in the “default”
case.

Caching

It sure happens in the live cycle of an application that some key get queried quite often, like the engine name. The
environment system caches every value to ensure the best possible performance on expensive feature tests. But in
some edge cases, it might happen that you want to redo the test. For such use cases you can invalidate the cache for a
given key, to force a re-calculation on the next query:

gx.core.Environment.invalidateCacheKey ("myapp.key"}

This example would clear a previously calculated value for myapp . key.

Removal of Code

Usually, function calls like gx.core. Environment.get() are executed at run time and return the given value of the envi-
ronment key. This is useful if such value is determined only at run time, or can change between runs. But if you want
to pre-determine the value, you can set it in the generator config. The generator can then anticipate the outcome of a
query and remove code that wouldn’t be used at run time.

For example,

function foo(a, b) {

if (gx.core.Environment.get ("gx.debug") == true) ({
if ((arguments.length != 2) || (typeof a != "string")) {
throw new Error ("Bad arguments!");

}

return 3;

}

will be reduced in the case gx.debug is false to

48 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

function foo(a, b) {
return 3;

}

In the case of a select call,

gx.core.Environment.select ("myapp.key", {
"valuel" : resvaluel,
"value2" : resvaluel2

}

will reduce if myapp.key has the value value2 to just

resvalue?2

The generator documentation has more details on optimization of gx.core. Environment calls.

Pre-defined Environment Keys

gooxdoo comes with a set of pre-defined environment settings. You can divide those into two big groups. One is a set
of feature tests which cover browser features like support for certain CSS or HTML features. The second group are
simple settings for the qooxdoo framework which drive the inner workings of the framework.

For a complete list of predefined environment keys, take a look at the API documentation of the qx.core.Environment
class.

Defining New Environment Settings

Now to actually setting new or overriding existing environment settings. The value of an environment key can take one
of two forms, as a concrete literal value, or as a function that returns a value at run time. The former can be achieve in
various ways (see further), the latter only through application code. (An environment key with its current value is also
referred to as an environment setting). We go through both ways now.

As Literal Values

As already mentioned, there are various possibilities to assign a literal value, like "foo", 3 or t rue, to an environ-
ment key. You can define the setting

* in the class map

* in method code

e through inline <script> code in the index.html
* in the generator configuration

» via URL parameter

The list is sorted in ascending precedence, i.e. if a key is defined multiple times, mechanisms further down the list
take higher precedence. Those possibilities are explained in the following sections.

In the Class Map You can define a key and its value through the environment key of the map defining a qooxdoo
class:

2.3. Environment 49

http://demo.qooxdoo.org/2.0.2/apiviewer#qx.core.Environment
http://demo.qooxdoo.org/2.0.2/apiviewer#qx.core.Environment

qooxdoo Documentation, Release 2.0.2

gx.Class.define ("myapp.ClassA",
{
[...]

environment : {
"myapp.key" : value

In Application Code You can define a key and its value in a class method using the gx.core.Environment.add
method:

gx.core.Environment.add("key", "value");

In the Loading index.html In the web page loading your qooxdoo application, and before the <script>
tag loading the initial qooxdoo file, add another <script> tag with code that assigns a map to
window.gx.$$environment, containing your environment settings.

<script>
window.gx =

{

SSenvironment : {
"myapp.key" : value
}
}
</script>

In the Generator Config You can define a key and its value in the environment key of the job with which you build
the script files of your application (e.g. source-script, build-script):

Hmyjob"
{
[...]
"environment" : {
"myapp.key" : value

}

Using the generator config adds a special meaning to the provided environment settings. Specifying a list of values for
a key triggers the creation of multiple output files by the generator. E.g. replacing value with [valuel, value2] in the
above example, the generator will create two output files. See the environment key for more information on multiple
output generation.

Via URL parameter Before using URL parameter to define environment settings, you have to specify another
environment setting in the generator configuration which is named gx.allowUrlSettings. If the application is
generated with this config setting in place, you can then use URL parameter to add further key:value pairs.

http://my.server.com/path/to/app/index.html?gxenv:myapp.key:value

The pattern in the URL parameter is easy. It has three parts separated by colons. The first part is the constant gxenv,
the second part is the key of the environment setting and the last part is the value of the setting.

Note: gx.allowUrlSettings and ‘“variants” Optimization

50 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Setting gx .allowUrlSettings to true in the configuration somewhat contradicts using the variants optimization
in builds. The variants optimization takes advantage of the values of environment settings given in the configuration, to
remove code like calls to gx . core.Environment .get () for such a setting and replace it with the corresponding
value. That means that changing the value of such a key via URL parameter later has no effect, as the call to retrieve
its value is no longer in the code. You can then only set environment values via URL parameter for those keys which
have not been given a value in the configuration.

Alternatively, you could disable variants optimization in the build, or remove the setting you want to change via
URL parameter from the config. In the latter case, you have other possibilities to set a default for this setting, by either
providing an environment key in the JavaScript class map, or a gx.core.Environment .add () call in the
class’ defer function.

If you set gx.allowUrlSettings to true and have the variants optimization enabled for a particular build,
the generator will issue a warning.

So much for setting simple key:value pairs. Now for providing a check function as the value of an environment key.

As a Check Function

As mentioned before, providing a function in place of a value can only be done in application code, so these environ-
ment settings are done at run time. The framework settings defined at run time are usually feature checks like checking
for dedicated CSS or HTML features. The check function is executed and is responsible for returning a proper value
when the environment key is queried later. These checks can be synchronous or asynchronous, and this corresponds
to how they are queried. Synchronous checks are queried with the .ge#() and .select() methods, asynchronous checks
with .getAsync() and .selectAsync() (see Querying Environment Settings).

Synchronous To add a synchronous check function, the standard .add() call is used:

gx.core.Environment.add("group.feature", function() {
return !!window.feature;

)i

This example shows the same API used for adding a key:value setting. The only difference is that you add a function
as second parameter and not a simple value. This function is responsible for determining and returning the value for
the given environment key. In this example, if window. feature is defined, the check will return t rue.

Asynchronous To add an asynchronous check, use .addAsync():

gx.core.Environment.addAsync ("group.feature", function(callback) {
window.setTimeout (function () {
callback.call (null, true);

}, 1000);

)i

This example shows how to add a asynchronous feature check. A timeout is used to get the asynchronous behavior in
this simple example. That can be more complicated of course but the timeout is good enough to showcase the APIL. As
you can see in the check function we are adding, it has one parameter called callback which is the callback passed
by .getAsync() or .selectAsync() asynchronous queries. As before, the check function is responsible for computing the
value of the environment key. But rather than just returning the value (as in the synchronous case), it calls the callback
function and passes the value. The callback function is then responsible to integrate the result value with the querying
layer. In this simple example, the check waits a second and calls the callback with the result t rue.

2.3. Environment 51

qooxdoo Documentation, Release 2.0.2

2.4 Data Binding

2.4.1 Data Binding

Data binding is a concept by which two data items are bound, so that changes to one are propagated to the second, and
vice versa. This requires the possibility to detect such changes during runtime. In qooxdoo, class properties fulfil this
requirement.

Using data binding allows you to e.g. keep two widgets automatically synchronized over the runtime of your applica-
tion, although they might be spatially separated and have wildly different visual representations (e.g. a text field and a
spinner).

Data Binding Introduction

Data binding is a functionality that allows to connect data from a source to a target. The entire topic can be divided
into a low-level part, called “single value binding”, and some higher-level concepts involving stores and controllers.

The main idea

The main idea of qooxdoo’s data binding component is best summarized by the following diagram.

T ey M e M

Backend Data Binding Wi Data Binding

As you can see data binding includes five major components, which will be described in more detail in the following
sections.

Data The data part is where the raw data is stored and can be retrieved from. This can be a plain local file, a regular
web server or even a web service. There are all sources of data possible depending on the implementation of the actual
store.

Store The store component is responsible for fetching the data from its source and for including it into a data model
of an application. For more info about the available store components see the stores section below.

Model The model is the centerpiece of data binding. It holds the data and acts as an integration point for the store
and for the controller. The stores provide a smart way to automatically the models classes during runtime. Take a look
at the models for details.

Controller The main task of the controller components is to connect the data in the model to the view components.
Details are available in the controller section. The base layer of all controllers, the Single Value Binding is explained
later.

52 Chapter 2. Core

http://en.wikipedia.org/wiki/Data_binding

qooxdoo Documentation, Release 2.0.2

View The views for data binding can be almost any widget out of qooxdoo’s rich set of widgets, depending on the
type of controller. qooxdoo’s data binding is not limited to some predefined data bound widgets. Please note that one
of the most prominent data centric widgets, the virtual Table, currently still has its own model based layer and is not
covered by the new data binding layer. The new infrastructure for virtual widgets is expected to nicely integrate the
upcoming data binding layer, though.

Demos, APl and CheatSheet

You should now have a basic idea of qooxdoo’s data binding, so to see it in action, take a look at the online de-
mos and the API reference. If you want to start programming, maybe the Cheat Sheet can help you during your
programming.

Single Value Binding

The purpose of single value binding is to connect one property to another by tying them together. The connection
is always in one direction only. If the reverse direction is needed, another binding needs to be created. The binding
will be achieved by an event handler which assigns the data given by the event to the target property. Therefore it is
necessary for the source event to fire a change event or some other kind of data event. The single value binding is
mostly a basis for the higher concepts of the data binding.

Binding a single property to another property

The simplest form of single value binding is to bind one property to another. Technically the source property needs
to fire a change event. Without that no binding is possible. But if this requirement is met, the binding itself is quite
simple. You can see this in the following code snippet, which binds two properties of the label value together:

var labell = new gx.ui.basic.Label();
var label2 = new gx.ui.basic.Label();

labell.bind("value", label2, "value");

labell is the source object to bind, with the following three arguments to that call:
1. The name of the property which should be the source of the binding.
2. The target object which has the target property.
3. The name of the property as the endpoint of the binding.

With that code every change of the value property of 1abell will automatically synchronize the value property of
label2.

Binding a data event to property

In some cases in the framework, there is only a change event and no property. For that case, you can bind a data event
to a property. One common case is the TextField widget, which does not have a property containing the value of
the TextField. It only has getter / setter and a change event for that, so it has the stuff needed for the binding but
its not implemented as a property. Therefor you can use the changeValue event and bind that to a target property
as you can see in the example snippet. The API is almost the same as in the property binding case.

var textField = new gx.uil.form.TextField();
var label = new gx.uil.basic.Label();

textField.bind ("changevValue", label, "value");

2.4. Data Binding 53

http://demo.qooxdoo.org/2.0.2/demobrowser/index.html#data
http://demo.qooxdoo.org/2.0.2/demobrowser/index.html#data
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.data

qooxdoo Documentation, Release 2.0.2

As you can see, the same method has been used. The difference is, that the first argument is a data event name and not
a property name.

Bind a property chain to another property

A more advanced feature of the single value binding is to bind a hierarchy of properties to a target property. To
understand what that means take a look at the following code. For using that code a qooxdoo class is needed which is
named Node and does have a child and a name property, both firing change events.

// create the object hierarchy

var a = new Node("a"); // set the name to ,a"
var b = new Node ("b"); // set the name to ,b"
a.setChild(b);

// bind the property to a labels value
a.bind("child.name", label, "value");

Now every change of the name of b will change the labels value. But also a change of the child property of a to
another Node with another name will change the value of the label to the new name. With that mechanism a even
deeper binding in a hierarchy is possible. Just separate every property with a dot. But always keep in mind that every
property needs to fire a change event to work with the property binding.

Bind an array to a property

The next step in binding would be the ability to bind a value of an array. That’s possible but the array needs to be a
special data array because the binding component needs to know when the array changes one of its values. Such an
array is the gx .data.Array class. It wraps the native array and adds the change event to every change in the array.
The following code example shows what a binding of an array could look like. As a precondition there is an object a
having a property of the gx . data.Array type and that array containing strings.

// bind the first array element to a label’s value
a.bind("array[0]", labelFirst, "value");

// bind the last array element to a label’s value
a.bind("array[last]", labelFirst, "value");

You can use any numeric value in the brackets or the string value 1ast which maps to length - 1. That way you
can easily map the top of a stack to something else. For binding of an array the same method will be used as for the
binding of chains. So there is also the possibility to combine these two things and use arrays in such property chains.

Options: Conversion and Validation

The method for binding introduced so far has the same set of arguments. The first three arguments are mostly the same. There

* converter: A own converter which is a function with four arguments returning the converted value. (See
the API for more details)

» onUpdate: A key in the options map under which you can add a method. This method will be called on a
validation case if the validation was successful.

 onSetFail: The counterpart to onUpdate which will be called if the validation fails.

In addition there is a built in default conversion which takes care of the default conversion cases automatically. Default
cases are, for example, string to number conversion. To get that working it is necessary to know the desired target
type. This information is taken from the check key in the property definition of the target property.

54 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Managing bindings

If you want to manage the bindings, there are some ways to get that. First aspect of managing is showing the existing
bindings. You can find all these function on the static gx.data.SingleValueBinding class or parts of it on
every object.

« getAllBindingsForObject is a function which is in the data binding class and returns all bindings for the given
object. The object needs to be the source object.

 getAllBindings returns all bindings in a special map for all objects.
Another way of managing is removing. There are three ways to remove bindings.

* removeBindingFromObject removes the given binding from the given source object. As an id you should use
exactly the id returned during the creation of the binding.

* removeAllBindingsForObject removes all binding from the source object. After that, the object is not syn-
chronized anymore.

¢ removeAllBindings removes all single value bindings in the whole application. Be careful to use that function.
Perhaps other parts of the application use the bindings and also that will be removed!

Debugging

Working with bindings is in most cases some magic and it just works. But the worse part of that magic
is, if it does not work. For that the data binding component offers two methods for debugging on the static
gx.data.SingleValueBinding class.

¢ showBindingInLog shows the given binding in the qooxdoo logger as a string. The result could look something
like this: Binding from ‘gx.ui.form.TextField[1t]’ (name) to the object ‘qx.ui.form.TextField[1y]’ (name). That
shows the source object and property and the target object and property.

* showAllBindingsInLog shows all bindings in the way the first method shows the bindings.

Tech notes

For everyone who is interested on how that whole thing works, here are some small notes on the inside of the data
binding. Every binding function maps to the event binding function. This is where the heart of the data binding lies.
In that function a listener will be added to the source object listening to the change event. The key part of the listener
is the following code part.

targetObject ["set" + gx.lang.String.firstUp (targetProperty)] (data);

In that line the listener sets the data given by the data event to the target property.

Controller
The general idea of controllers is connecting a view component to a set of data stored in a model. The kind of controller
you need depends on the view component. Currently there are four types of controller available:

¢ Object Controller

¢ List Controller

* Tree Controller

¢ Form Controller

2.4. Data Binding 55

qooxdoo Documentation, Release 2.0.2

You may miss the table controller. The currently available table will not be changed and therefore will not implement
data binding features. The new virtual table, which is currently under development, will be considered for data binding.

In the following section, the selection will be discussed because it’s a common feature of the list and tree controller.
The delegation mechanism is another common feature of those two controllers and will also be described. After that,
each of the available controllers will be discussed in detail.

Selection

Usually the selection of view components like the tree or the list handle their selection with tree folder or list items. As
a user of data binding, you don‘t want to convert the view widgets to the model widgets. Therefore, the controller does
that mapping for you. There is a selection array available on the controller containing the currently selected model
items. When using the selection of the controller, there is no need to deal with view widgets like Listltems. It is also
possible to change the array in place and add / remove something from the selection. As it is a data array, you can use
all methods defined by that array to manipulate the selection of the corresponding controller.

Delegate

The list and tree controller are responsible for creating and binding the child widgets of the views. But what if you
want to use something different in the list or bind not just the label and the icon. For that purpose, the delegation offers
the possibility to enhance the controller code without having to subclass it.

In total, there are three methods which relate to the topic of creating and binding the child view widgets.

configureltem The configureItem function is the function which you can use if you just want to modify the
created default widgets. This gives you the opportunity to set the labels to rich for example or modify anything else in
the child widget. But this is not the place where you want to change / add the binding behavior.

bindItem That place is the bindItem method. But you don’t want to use the single value binding all on your own
and bind the stuff. Therefore, the controller offers you a method called bindProperty, which takes the source path
to the data, the target property name and the options for the single value binding. The other two parameters will just
mapped through. But keep in mind that if you use this function, the default binding of the label and the icon is gone
and the properties used for those bindings do not work anymore. If you still want to have the default binding, use the
bindDefaultProperties method and pass the two given parameters through. But keep in mind that the bindings
set up with these two methods are unidirectional, from the model to the view. If you want to have b binding from the
view to the model, use the bindPropertyReverse which takes the same arguments as the bindProperty
method.

createltem The last method named createItem gives the user the chance to add something different as child
widgets to the view. In that method you just create the widget you want to see in the view and return the new item. But
keep in mind that the default bindings may not work on those widgets and the code will fail. So it is always a good
idea to also define its own bindings with the bindItem method.

The following code shows how such a delegate could look like.

var delegate = {
configureItem : function (item) {
item.setPadding(3);
}I
createItem : function() {
return new gx.ui.form.CheckBox();
}I

56 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

bindItem : function(controller, item, id) {
controller.bindProperty ("name", "label", null, item, id);
controller.bindProperty ("online", "checked", null, item, id);
}
}i

The delegate defines, that CheckBox'‘es should be used as child view items. As the
‘‘CheckBox‘‘es don’t have an icon, the ‘‘bindItem function needs to re-specify the bindings.
It binds the name and the online property of the model to the label and checked property of the CheckBox.

Object Controller

The most simple and lightweight controller is the object controller. It connects a model object with one or more
views. The data in the model can be anything a property can hold, i.e. a primitive data type like String or Number,
or a reference type like a map. With that you can for instance bind views like textfields, sliders and other widgets
visualizing primitive JavaScript types. But you can not only use views as targets. A target can be anything that has a
property with the proper type. Take a look at the following code example to see the object controller in action:

// create two sliders

var sliderl = new gx.ui.form.Slider();

var slider2 = new gx.ui.form.Slider();

// create a controller and use the first slider as a model
var controller = new gx.data.controller.Object (sliderl);
// add the second slider as a target

controller.addTarget (slider2, "value", "value");

This code snippet ensures that every value set by sliderl will automatically be set as value of slider two. As you can
see, the object controller only wraps the fundamental single-value binding, trying to make its usage a little bit easier.

List Controller

A list controller could - as the name suggests - be used for list-like widgets. The supported list-like widgets in qooxdoo
are List, SelectBox and ComboBox, all in the gx.ui.form package. The controller expects a data array as a data model,
that contains the model objects. These objects are displayed in the list and can either have some primitive type or be
real qooxdoo objects. The following code snippet shows how to bind an array of strings to a list widget:

// create the model
var model = new gx.data.Array(["a", "b", "c", "d", "e"1l);
// create a list widget

var list = new gx.ui.form.List();
// create the controller
var listController = new gx.data.controller.List (model, list);

Now every change in the model array will invoke a change in the list widget.

As a unique feature of the list controller a filtering method is included. You can assign a filter function to the controller
and the results will be filtered using your given function.

Tree Controller

Of course, also the tree does have its own controller. With that controller the Tree widget can automatically be filled
with data from qooxdoo objects containing the data. As model nodes for the tree, only qooxdoo objects are allowed
containing at least two properties, one for holding its own children in a data array and a second one holding the name
of the node which should be showed as the label of the tree folder widgets. Imagine that a model class called Node

2.4. Data Binding 57

qooxdoo Documentation, Release 2.0.2

(inheriting from gx.core.Object) is available containing the two already mentioned properties called ch for the children
and n for the name. The following code will bind a data model containing Node objects to a tree widget:

// create the model

var rootNode = new Node();
rootNode.setN ("root");

var childNode = new Node () ;
childNode.setN("child");
rootNode.getCh () .push (childNode) ;
// create the tree view

var tree = new gx.ui.tree.Tree();
// create the controller
var treeController = new gx.data.controller.Tree(rootNode, tree, "ch", "n");

After that code snippet, every change in the name or of the children will be automatically mapped into the tree view.
Selecting one of the tree folders will put the corresponding Node object into the selection array of the controller.

Form Controller

Also forms do have a special controller. The form controller uses a gx.ui.form.Form as target and a Object
controller for the bidirectional bindings. The usage equals to the usage of all other controllers. The main properties
of it are the model and target property. Given both, the controller connects the model and the target. An additional
feature of the form controller is the possibility to create the model for a given form. See the following code to get an
idea of using it.

// a form is available as ’form’

// create the controller

var formController = new gx.data.controller.Form(null, form);
// create the model

var model = formController.createModel () ;

If you nee additional information on forms, see form handling documentation. After executing this code, the controller
and the model variable do have the model available and therefore, the controller can set up the bindings.

Combining Controller

As a more advanced example we connect the selection of a tree to a list. Therefore we extend the code sample of the
tree controller section.

// create a list widget

var list = new gx.ui.form.List();

// create the controller

var listController = new gx.data.controller.List (null, list, "n");
// bind the selection of the tree to the list
treeController.bind("selection", listController, "model");

The example shows how the controller can work pretty well together with the single value binding. The trick is not
to set the model of the list controller at creation time. The model will be set by the single value binding from the tree
controllers selection. This works because the selection will be provided as data array.

Stores

The main purpose of the store components is to load data from a source and convert that data into a model. The task
of loading data and converting the data into a model has been split up. The store itself takes care of loading the data

58 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

but delegates the creation of model classes and instances to a marshaler. More information about the marsahling and
the models itself can be found in the models section.

JSON Store

The JSON store takes an URL, fetches the given data from that URL and converts the data using the JSON marshaler
to qooxdoo model instances, which will be available in the model property after loading. The state of the loading
process is mapped to a state property. For the loading of the data, a gx.i0.request . Xhr will be used in the store.

The following code shows how to use the JSON data store.

var url = "json/data.json";
var store = new gx.data.store.Json(url);

After setting the URL during the creation process, the loading will begin immediately. As soon as the data is loaded
and converted, you can access the model with the following code.

store.getModel () ;

JSONP Store

The JSONP store is based on the JSON store but uses a script tag for loading the data. Therefore, a parameter name
for the callback and an URL must be specified.

The following code shows how to use the JSONP data store.

var url = "json/data.json";
var store = new gx.data.store.Jsonp(url, null, "CallbackParamName");

After setting the URL and the callback parameter name during the creation process, the loading will begin immediately.

YQL Store

YQL is the Yahoo! Query Language. Yahoo! describes it as “[...] an expressive SQL-like language that lets you
query, filter, and join data across Web services.” Based on the JSONP store, qooxdoo offers a YQL store, where you
can specify the YQL queries and qooxdoo handles the rest.

The following code demonstrates how to fetch some twitter messages.

var query = "select x from twitter.user.timeline where id='"wittemann’";
var store = new gx.data.store.Yqgl (query);

Offline Store

The Offline store uses HTML local or session storage to store the data on the client. That can be used for offline
storage as well as for other storage purposes on the client. You should use the Environment checks to make sure that
the used storage technology is supported by the environment you want to run your code in.

The following code demonstrates how to initialize the data store.

if (gx.core.Environment.get ("html.storage.local") {
var store = new gx.data.store.Offline("my-test-key", "local");
if (store.getModel () == null) {
// initialize model

2.4. Data Binding 59

http://ajaxian.com/archives/jsonp-json-with-padding
http://developer.yahoo.com/yql/

qooxdoo Documentation, Release 2.0.2

Combining with controllers

As described in the section above, you can access the model in the property after loading. The best solution is to use
the model with a controller and then bind the the model properties with Single Value Binding together. The code for
this could look something like this.

store.bind ("model", controller, "model");

Using the Single Value Binding, the binding handles all the stuff related with the loading of the model data. That
means that the data will be available in the controller as soon as its available in the store.

Models

The model is the centerpiece of data binding. It holds the data and acts as an integration point for the sfores and for the
controller. Almost all models are plain qooxdoo classes holding the data in simple properties, which are configured
to fire events on every change. These change events are the most important part of the models and the reason, why
plain JavaScript objects are not enough as models. The same is true for native JavaScript arrays. Since they do not fire
events when items are changed as well, a complementary array is added for data binding purposes. More details about
that in the data array section.

Still, there is no need to manually write own model classes for every data source you want to work with. The marshalers
provide a smart way to automatically create these classes during runtime. Take a look at the JSON marshaler for details.

In the following sections, we first take a look at the models basics and how they work. After that, we dig into the role
of arrays and how that is solved. As a last section, we check out how the model creation is done in qooxdoo, because
you don’t need to write all the simple models yourself.

Structure

As already mentioned in the introduction of this chapter, models are plain qooxdoo objects. The main idea of such a
model is to hold all data in properties, which fire change events as soon as new data is available. Lets take a look at a
simple example in which we use JSON data to demonstrate how models look. The data in the example looks like this:

{
s: "string",
b: true,
a: []

}

A corresponding model should now be an object, which class defines three properties, named s, b and a. Lets take a
look at the following qooxdoo code, in which we assume that we have a fitting model:

var model

= new ExampleModel (); // this returns a fitting model
model.getsS (
(

)i // return the value of the property ’s’ which is "string"
model.setB(false); // will fire a change event for the property ’b’
I guess it’s clear now, how models are structured. There is not much code or magic about them, but they are the most
important part in the whole binding scenario.

60 Chapter 2. Core

qooxdoo Documentation, Release 2.0.2

Data Array

If we take a second look at the example we used above, we also added an array as value of property a. This ar-
ray should not be an plain JavaScript array, instead it should be a qooxdoo data array, which Class is located in
gx.data.Array. The reason for that should be quite obvious right now, the binding needs to get an event as soon
as some data changed to do all the necessary updates. As regular arrays can’t offer such notifications, we added our
own array implementation to the data binding layer. The data array is as close as possible to the native array but in
some core things, we needed to change the API. The major difference is the accessing of items in the array. The
following sample code, based on the sample above, shows the differences:

var array = model.getA();

array.setItem (0, "content"); // equals ’array[0] = "content"’ and fires a change event
array.getItem(0); // equals ’array[0]’ and returns "content"

array.lenght; // like the native API and returns ’1’

You see, the read and write access needs to be done with the designated methods to ensure the firing of the events. But
all the other API, like push, pop or splice is all the same and also capable of the events. Just take a look at the
API-Documentation of the array for more information.

Importance of events

The two sections above explained how models look and why. The most mentioned reason is the need for change events,
which gives them also an important role in the data binding. They are responsible for notifying every connected view
(which can be more than one) to update their representation of the data stored in the model. You can see the events as
a nervous system for your data bound app.

Disposing

Those of you familiar with qooxdoo and its objects should know, that disposing is necessary. This is also true for
model objects and data arrays. The model objects do have one special thing, the do a deep disposing, when created
with the marshaler, which we get to know in the following section.

JSON Marshaler

The marshaler takes care of converting JavaScript Objects into qooxdoo classes and instances. You can initiate each
of the two jobs with a method.

toClass This method converts a given JavaScript object into model classes. Every class will be stored and available
in the gx.data.model namespace. The name of the class will be generated automatically depending on the data
which should be stored in it. As an optional parameter you can enable the inclusion of bubbling events for every
change of a property. If a model class is already created for the given data object, no new class will be created.

toModel The method requires that the classes for the models are available. So be sure to call the t oC1lass method
before calling this method. The main purpose of this method is to create instances of the created model classes and
return the model corresponding to the given data object.

createModel (static) This method is static and can be used to invoke both methods at once. By that, you can create
models for a given JavaScript objects with one line of code:

2.4. Data Binding 61

http://demo.qooxdoo.org/current/apiviewer/#qx.data.Array

qooxdoo Documentation, Release 2.0.2

var model = gx.data.marshal.Json.createModel ({a: {b: {c: "test"}}});

How to get my own code into the model?

What if you want to to bring your own code to the generated model classes or if you even want to use your own model
classes? Thats possible by adding and implementing a delegate to the data store. You can either

* Add your code by supporting a superclass for the created model classes.
e Add your code as a mixin to the created model classes.
» Use your own class instead of the created model classes.

Take a look at the API-Documentation of the gx.data.store.IStoreDelegate to see the available methods and how to
implement them.

62 Chapter 2. Core

http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.data.store.IStoreDelegate

CHAPTER
THREE

QX.WEBSITE

You use qx.Website to build light-weight, integrated, low-level components for web sites or other browser-like envi-
ronments where you don’t want to add graphical elements with qooxdoo. It features a DOM selector engine (Sizzle),
BOM and HTML abstraction layers, and cross-browser keyboard and mouse events. As it does not contain visual
elements, it is independent of image resources and theming. Its code can be shrink-wrapped into a single JavaScript
file, and is available as an individual download. You can include it like any other JavaScript library in your projects.

This section provides tutorials and introductory material. For your daily work with qx.Website the only other thing
you need is the API reference.

3.1 General

3.1.1 qx.Website Overview

This page is an overview of qx.Website’s capabilities. It collects the existing documentation and tries to show the big
picture.

Basic Concept
The basic concept is simple. qx.Website offers one global object called g (short for query). This global object’s main
task is to query the DOM using selectors and offer convenience methods on the returned collection of elements.

g("#test") .setStyle("color", "red");

As you can see in the example above, qx.Website’s idea of API design is to have an explicit API with a clear scope
and readable names. In most cases, methods come in pairs: a getter and a setter. Another API concept is chaining:

g("#test") .setStyle("color", "red").appendTo (document.body) ;

Unless noted otherwise, methods return the collection for chaining, such as the setStyle method in the example. It
returns the collection created with g ("#test") on which the append method is called.

g also offers static utility functions. These functions are usually attached to q in their own sub object. Let’s take a look
at a sample:

q.type.get (123); // returns "Number”

The sub object (which could also be called a namespace) in the sample is t ype and contains a function get which
will determine the type of a given argument.

63

http://demo.qooxdoo.org/2.0.2/website-api

qooxdoo Documentation, Release 2.0.2

The code base of g is organized in modules, as you can see in the API viewer for qx.Desktop. Using the generator,
you can build your own library containing only the modules you need. Similarly, it is possible to include your own
modules into a single, optimized file. Take a look at the Documentation of the gx. Website skeleton to learn more.

API Documentation

The best documentation is found in the API viewer for qx.Website. It offers a detailed documentation of all available
methods, sorted into modules.

CSS Selector Support
gx.Website uses the same CSS selector engine as jQuery, which is called Sizzle. Please check the Sizzle Documenta-
tion for more details.

g("#id"); // query for id
g("div"); // query for all div’s

Plugins

gx.Website supports a plugin mechanism. All modules are written as qx.Website plugins. For further details about
how to write plugins, take a look at the plugins documentation.

Included Modules

Animation

Animations can enhance the user experience and help create appealing and user interfaces that feel natural. With
modern browsers, CSS Animations and Transforms are emerging as new way of efficiently realizing this goal. No
need to do it programmatically in JavaScript.

To use animations with gx.Website, you can use the animation module. This is a cross-browser wrapper for CSS
Animations and Transforms with the goal to conform closely to the specifications wherever possible. If no CSS Ani-
mations are supported, a JavaScript solution will work in place offering the same API and almost the same functionality
as the CSS based solution.

For further details, take a look at the Animations and Transforms documentation.

g("#test").fadelIn();

Attributes

gx.Website offers an easy and elegant way to manipulate attributes and properties of DOM elements. This also includes
setting the HTML content of an element.

// sets the HTML content

g("#test") .setHtml ("<h2>TEST</h2>");

// returns the value of the placeholder attribute
g("#test").getAttribute ("placeholder");

64 Chapter 3. qx.Website

http://demo.qooxdoo.org/2.0.2/apiviewer#qx.module
http://demo.qooxdoo.org/2.0.2/website-api
http://sizzlejs.org
https://github.com/jquery/sizzle/wiki/Sizzle-Home
https://github.com/jquery/sizzle/wiki/Sizzle-Home

qooxdoo Documentation, Release 2.0.2

CSS

Working with CSS can be easy with the help of gqx.Website. The CSS module includes many convenient helpers to set
styles, classes, or dimensions.

// cross browser opacity setting
g("#test") .setStyle("opacity", 0.5);
// checks if ’‘myClass’ is applied
g("#test") .hasClass ("myClass");

Environment

gx.Website covers most cross browser issues. Still, the environment module offers a lot of information about the
environment the app is running in. This includes simple checks like browser name as well as information about the
application itself.

// returns e.g. "webkit"

g.env.get ("engine.name");

// can be used to remove debugging code from the deployment version
g.env.get ("gx.debug");

Manipulating

The manipulating module provides helpers to change the structure of the DOM. Appending or creating elements is
also part of this module, as is manipulating the scroll position.

g("#test") .setScrollTop (100);
qg("#test") .empty(); // removes all content

Polyfill

A polyfill is best explained by a quote from an informative blog post:

A polyfill, or polyfiller, is a piece of code (or plugin) that provides the technology that you, the developer,
expect the browser to provide natively. Flattening the API landscape if you will. What is a polyfill

A list of included polyfills can be found in the API documentation of the module.

Template

Templating is a powerful tool in web development. gx.Website uses mustache.js as its templating engine. For further
information, see the mustache.js documentation.

// returns a collection containing the new element
g.template.get ("templateId", {data: "test"});

Traversing

In the traversing module, you’ll find helpers that work with the collection. A good example is the filter method, which
reduces the number of elements in the collection. Other methods of this module will find children, ancestors or siblings
of the elements in the collection.

3.1. General 65

http://remysharp.com/2010/10/08/what-is-a-polyfill/
https://github.com/janl/mustache.js/

qooxdoo Documentation, Release 2.0.2

// returns the children

g("#test").getChildren();

// returns all siblings having the class ’‘myClass’
g("#test") .getSiblings (" .myClass");

Communication

Pulling data from remote sources is another one of the most common use cases and usually the next logical step when
it comes to improving your existing JavaScript powered website / application. Of course, you expect the underlying
framework to provide you with a nice abstracted cross-browser solution that is easy to use. qx.Website offers multiple
implementations to pull data.

The first option is XHR. qx.Website comes with a wrapper around this widely used browser API which hides inconsis-
tencies and works around browser bugs. The second option is to use JSONP. This approach enables you to overcome
same orgin policy restrictions and talk to any server which offers a JSON API like e.g Twitter. qx.Website provides a
nice and powerful API with the same interface as the XHR transport to let you easily access any JSONP API out there.

g.io.xhr (url) .on("loadend", function (xhr) {});

Blocker

The blocker module offers a way to block elements. This means they won’t receive any native events until they are
unblocked.

g("#test") .block();

Cookie

A convenient way to work with cookies is implemented in the cookie module. Setting, reading and deleting cookies is
supported across browsers.

g.cookie.set ("key", "value");

Placement

Sometimes it can be necessary to place an element right beside another one. Think about a popup message or tooltip
offering some context sensitive help. The placement module offers a method to place one element relative to another
using one of several algorithms and taking available space into account.

g("#test").placeTo (target, "top-right");

3.2 Tutorials

3.2.1 Tutorial: Building Notifications
Introduction

In this tutorial we show some basic steps of using qx.Website. To do so, we build a simple notification system for
web pages. The system should expose one method which brings up a bubble on the screen containing the notification

66 Chapter 3. qx.Website

http://en.wikipedia.org/wiki/XHR
http://en.wikipedia.org/wiki/JSONP
http://en.wikipedia.org/wiki/Same_origin_policy
https://dev.twitter.com/

qooxdoo Documentation, Release 2.0.2

message. The bubble should go away after a period of time. You might be familiar with Growl for OSX which offers
similar functionality.

Basics

Let’s get started! As qx.Website is a simple JavaScript file, we first need to download the script file. After that, we’re
going to create a simple HTML file in the same directory as the downloaded script and include it:

<!DOCTYPE html>
<html>
<head>
<title>gx.Website tutorial</title>
<script type="text/javascript" src="g-2.0.2.min.Jjs"></script>
</head>
<body>
</body>
</html>

Having done that, you can load the page in your favorite browser and check if the title is there and the qx.Website
library has been loaded. For instance, simply open a JavaScript console in your browser and see if g is defined. If so,
we’ve completed the first step and can start building the application.

Next, we need a script tag to place our code into. To keep it simple, we’ll just put it in the head of the HTML page,
right below the existing script tag.

<script type="text/javascript" charset="utf-8">
// your code here...
console.log("it works");

</script>

The console. log statement in the script will show us if it works. Reloading the page should bring up the log
message in the browser’s console. Now it’s time to formulate a simple plan covering the next steps. We should first
create the popup we want to show, then we can implement the notify method and finally, we can add some demo code
to showcase our work. The following code should be placed in the script tag to replace the previous content.

// create the notification popup
var popup;

// create the notification API

var notify = function (message, delay, callback) {
// do the notifying

}

// DEMO
notify ("This is ...", 1000, function() {
notify("... a gx.Website notification demo.", 2000);

)i

As you see, we’ve defined three arguments for the not i £y method:. First, the message to display, second a delay
in milliseconds and finally a callback function, which will be executed as soon as the popup is gone. The demo
code at the bottom shows how it should be used and should trigger two messages in sequence.

Popup

Let’s take care of the popup now. This is where the gx.Website library comes in handy. The popup is going to be a
simple div which can be added to the document’s body. So we can do something like the following:

3.2. Tutorials 67

http://growl.info/
http://demo.qooxdoo.org/2.0.2/framework/q-2.0.2.min.js

qooxdoo Documentation, Release 2.0.2

var popup = g.create("<div>") .appendTo (document.body) ;

This line line of code uses two essential methods of qx.Website. First, we create a new DOM element, which is
wrapped in a collection. On that object, we call the appendTo method, which adds the newly created element to
document .body. Now, reloading the page... brings up an error!?! Sure, we added our script in the head of the
HTML document, which means document . body is not yet ready when our code gets executed. We need to wait
until the document is ready until we can start. qx.Website offers a convenient way to do that. We just wrap the code
we’ve written in a function and give that to . ready:

g.ready (function () {
VIR
1)

Reloading the page, the error is gone but nothing else happens. How can we tell if it worked? Simple enough, we’ll
just style the div using CSS and make it visible. We won’t go into any detail about the CSS here, so just copy and
paste the following CSS rule into the HTML file’s head section.

<style type="text/css" media="screen">
.popup {
position: absolute;
top: 20px;
right: 20px;
width: 150px;
background—-color: #aaa;
color: white;
padding: 10px;
font-family: "Lucida Grande", "DejaVu Sans", "Verdana", sans-serif;
font-size: 1l4px;
border: solid 1px #000000;

}
</style>

Now, the only thing missing is to set the CSS class for the popup div. That’s as easy as calling another method in our
previous code.

var popup = g.create ("<div>").appendTo (document .body) .addClass ("popup");

Now reload and you should see the popup in the upper right corner. Hm, but the styling is not done, right? A real
popup has rounded corners! But wasn’t that one of the newer CSS keys which is usually vendor prefixed? Yes! That
means, we need to add a declaration for every known browser. No, wait a second. IE and Opera don’t use the vendor

prefix which means we only need to add the unprefixed key and one additional key each for WebKit and Mozilla.

-moz-border-radius: 5px;
-webkit-border-radius: 5px;
border-radius: 5px;

That was a lot of work for something as simple as a border radius! But we could have achieved that far more easily.
Using gx.Website to set the style will take care of all the vendor prefix stuff! Just set the style on the newly created
popup and you’re done.

var popup = g.create ("<div>").appendTo (document .body) .addClass ("popup") .setStyle ("border-radius", "5

That’s about it for the popup. Looks good enough for the first prototype.

notify

Next, let’s implement the notify method. We already added the function and only need to fill in the implementation.
First, we want to set the message and show the popup. But we want to show the popup with some style and fade it in.

68 Chapter 3. qx.Website

qooxdoo Documentation, Release 2.0.2

var notify = function (message, delay, callback) {
popup.setHtml (message) ;
popup.fadeln();

bi

That was easy. The first line simply applies the message as inner HTML of the popup. The second line fades in the
popup. This simple fadeln applies a CSS animation in all browsers supporting CSS animations. If the browser doesn’t
support CSS animations, the fade in is done using JavaScript so you don’t need to worry about that either! Reload
the page and see your message in the popup fading in. As soon as the message is faded in, we should start a timer
to trigger the fade out. But when does the animation end? Specifically for that, qx.Website offers an event named
animationEnd which we can react to.

popup.fadeln () .once ("animationEnd", function() {
console.log("end");

)i

Again, we used the native console API to check if our code works. Running the code now should show the “end”
message in the console as soon as the popup is faded in. A little hint: Make sure you add the listener only once using
the once method. We don’t want to keep piling up listeners on the popup. Now we can start the timer which will be
a simple set Timeout offered by the browser. As soon as the time is over, we can fade out.

popup.fadeln () .once ("animationEnd", function() {
window.setTimeout (function () {
popup.fadeOut () ;

}, delay);
)i

Now we are almost there. The only thing missing is to execute the callback as soon as the fade out has ended.
Again, we listen to the animationEnd event and call the callback. But as this should be an optional parameter, we
should check its availability before executing.

popup.fadeln() .once ("animationkEnd", function() {
window.setTimeout (function () {
popup.fadeOut () .once ("animationkEnd", function() {

callback && callback.call();

P
}, delay);

1)

Giving it a try should show both notification messages in sequence. Well done! We have implemented a (very) simple
notification mechanism for web pages.

Summary

In this tutorial, we used a small part of the qx.Website API. First, we saw parts of the Manipulating module with
g.create and .appendTo. After that, we used the CSS module with .setStyle and .addClass and the
Attributes module with .setHtml. .fadeIn and .fadeOut are part of the Animation module and .once is
part of the Event module. There are more methods in the named modules and there are additional modules you can
experiment with.

3.2. Tutorials 69

http://demo.qooxdoo.org/2.0.2/website-api

qooxdoo Documentation, Release 2.0.2

3.3 Technical Topics

3.3.1 Plugins

The gx.Website library is built from separate modules. Each module offers a set of functionality covering a common
topic like CSS, (DOM) Traversing or Animations. You can see a listing of all modules in the overview. These modules
use the same plugin API that qx.Website offers to all developers. This developer API can be found in the API reference
as well but by default, these methods are hidden and can be displayed using the little link in the top right corner.

Common - The Prefix

Surely you’ve noticed that the plugin related methods have one thing in common: They’re all prefixed with $.

Regular Plugins
The core module offers a plugin API to write common plugins. This is the default case and can be used to extend the
static g object or the collections returned by the g function call.

Extending the static object is easily accomplished by using the SattachStat ic function, which offers a convenient
way to attach static modules with conflict detection.

// attach a new module
g.$attachStatic ({"doSomethingAwesome" : function() {}});

// use the module
g.doSomethingAwesome () ;

Extending the returned collection is more interesting but just as easy as the first sample.

// attach a new module
g.$attach ({"doSomethingAwesome" : function() {}});

// use the module
g("div") .doSomethingAwesome () ;

In the attached method, you can access the collection using the this keyword. This means that you have access to

all included methods and the items stored in the collection as well.

Event Normalization Plugins

Another kind of plugin is used to normalize events. gx.Website includes normalization for e.g. Keyboard or Mouse
events. The plugin API for that use case is included in the events module and offers one important method.

var normalizer = function (event, element) {};
g.S$registerEventNormalization(["click"], normalizer);

After adding these two lines of code, the normalizer will be called on every c1ick event, giving the plugin author the
chance to attach additional information to the event.

HowTo

Check out the gx.Website skeleton included in the SDK to get a starting point. This makes it easy to write unit tests
and documentation for your plugin.

70 Chapter 3. qx.Website

http://demo.qooxdoo.org/2.0.2/website-api
http://qooxdoo.org/downloads

qooxdoo Documentation, Release 2.0.2

3.3.2 Referring to the qx.bom API

Technical view on the low-level APIs

Note: This document describes implementation details. The user API is covered in qx.Website and the corresponding
overview documentation.

qx.bom - Browser Object Model

The classes contained in the gx . bom namespace provide a cross-browser abstraction layer for object classes of the
browser JavaScript runtime.

The BOM classes mainly consists of the following three parts:
* DOM element manipulation
» wrappers for native layers/objects
» powerful low-level helper classes

See the API reference of qx.bom for more details.

DOM element manipulation The gx.bom.element package allows you to manipulate DOM elements in almost
any way you can think of. Each class is offering several static methods that take a DOM element as their first
argument. Since those BOM classes are static, no instances need to be created in order to manipulate a DOM element
in the document.

The following manipulations are offered by the gx . bom.element package:
* Dimension and location
* Box-sizing - supports the modes content-box (W3C model) and border—-box (Microsoft model)
* Scroll and overflow
* Style querying and modification
¢ CSS class name support - supports multiple class names for each element
* Scroll elements into view
» powerful low-level decoration support
e cross-browser support for opacity - optimized for animations
¢ CSS3 transforms and animations
* Attribute/Property handling
* Background images and support for the clip property

 Cursor property

Wrapper for native layers/objects These classes offer an unique and powerful way to deal with native layers and
objects. Wrappers exist for:

e the current document

* DOM elements to be connected to qooxdoo’s event system

3.3. Technical Topics 71

http://api.qooxdoo.org/#qx.bom

qooxdoo Documentation, Release 2.0.2

* native event management

* flash embedding

* CSS font styles

¢ several native controls like i frame, form elements, label and image elements

As every object or layer is abstracted by a corresponding qooxdoo class you can use these BOM classes to interact
without worrying about the underlying browser used.

Additional classes These additional classes help in developing low-level, cross-browser applications.
Features include:

* unified XMLHttp transport implementation

o powerful client detection classes

* low-level Range and Selection API

* helper class for browser history

» wrapper for working with CSS stylesheets

* string utility class

* helper class for the client’s viewport

* helper class for VML

qgx.dom - Cross-browser DOM manipulation

The Document Object Model (DOM) is a tree model that represents the document in a browser. The classes provided
by this packages allow you to query, to manipulate (i.e. add, remove, change order or replace) and to check the nodes
contained in the DOM.

Currently the gx . dom package consists of three classes:
* Element: manages children structures, inserts, removes and replaces nodes
¢ Hierarchy: for querying nodes
* Node: basic node creation and type detection

See the API reference of gx.dom for more details.

qgx.xml - XML handling

This package is all about working with XML documents in a cross-browser way. Its three classes are:
* Document: creating an XML document
* Element: API to select, query and serialize XML elements
 String: escaping and unescaping of XML strings

See the API reference of qx.xml for more details.

72 Chapter 3. qx.Website

http://api.qooxdoo.org/#qx.dom
http://api.qooxdoo.org/#qx.xml

qooxdoo Documentation, Release 2.0.2

Client-side Storage

Note: This document is outdated and does not reflect the proposed way of working with qx.Website. The storage
module is still under development. As soon as the module is ready, this document will be updated as well.

A universal cross-browser storage API exists that offers client-side key-value pair storage. Most of the modern
browsers support the WebStorage API. There also is a fallback implementation for IEs below version 8 based on
userData. For all other runtimes, a fallback exists in the form of an in-memory storage. While the latter means you
don’t store the data in a persistent way, you still have the benefit of using the same API to access the storage.

API

The API is closely aligned with the native WebStorage API and offers some convenience on top of that. The main
class for you to use is gx . bom. St orage and comes with three different implementation classes, one for each of the
three implementations mentioned. Those implementations can be found in the gx . bom. st orage namespace.

Basic Usage To get an idea of the basic API please have a look at the API docs, the MDC page or the W3C
specification.

Convenience on top We added an forEach method, which can be used to execute a function for every stored item.

var storage = gx.bom.Storage.getLocal();
storage.forEach (function (key, value) {
// ... do whatever you want

)i

Simple example

Here is a simple example: a counter that keeps track of how often you visited the page.

// get the local storage object

var storage = gx.bom.Storage.getLocal();

// load the number and parse it

var number = parselnt (storage.getltem("my-number-name"), 10) || O;
// increment the number by one

number++;

// write back the number

storage.setItem("my—number—-name", number);

Transforms and Animations (CSS3)

One of the big pieces in the whole CSS3 world are animations and transforms with all the hype about 3D, hardware
acceleration and the combinations of both of them. But as always, the various browser vendors don’t introduce these
new features at the same time, with divergent feature sets and using different CSS keys.

In order to address that, two classes have been added, one for transfoms (API) and one for animations (API). We kept
the API close to the CSS spec, thus all those of you familiar with it will recognize it quickly. For all of you who have
no idea about all that new CSS stuff yet, when you get in touch with the qooxdoo API, you will also learn parts of the
spec!

3.3. Technical Topics 73

http://caniuse.com/#search=web%20storage
http://caniuse.com/#search=web%20storage
https://developer.mozilla.org/en/DOM/Storage
http://msdn.microsoft.com/en-us/library/ms531424(v=vs.85).aspx
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.bom.Storage
https://developer.mozilla.org/en/DOM/Storage
http://dev.w3.org/html5/webstorage/
http://dev.w3.org/html5/webstorage/
http://www.w3.org/TR/css3-animations/
http://www.w3.org/TR/css3-3d-transforms/
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.bom.element.Transform
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.bom.element.Animation

qooxdoo Documentation, Release 2.0.2

Transforms

Transforms are basically defined by their transform function and are only good for transforming elements. They are
not responsible for any dynamic movement of elements. The basic transform functions will give you an idea what is
possible with transforms: Scale, Translate, Rotate, Skew.

%,
Translate i

¥ =]
i
=
(a7}

But lets take a look at the transforms applied in the demo above.

var box = document.getElementById("scale");
gx.bom.element.Transform.scale (box, 0.8);

box = document.getElementById("translate");
gx.bom.element.Transform.translate (box, ["10px", "10px"]);

box = document.getElementById("rotate");
gx.bom.element.Transform.rotate (box, "45deg");

box = document.getElementById("skew");
gx.bom.element.Transform.skew (box, "25deg");

There is a lot of other stuff you can do with the new Transform class. A demo shows all the possibilities the native
Transform API has to offer and with that, also what is provided by the qooxdoo wrapper. For the best result, use a
webkit-based browser like Safari or Chrome to view the demo.

Animations

Only with animations does dynamic behavior come into the application. As you can expect, animations define a
change of something over a given amount of time. That’s the key feature of animations. But what can be changed and
how can we define that? The first question is easy to answer: We can change CSS properties. To answer the second
question, see the following code:

var desc = {duration: 1000, timing: "ease-out", keyFrames : {
0 : {"width" : "30px"},
70 : {"width" : "100px"},
100 : {"width": "30px"}

bYi
var box = document.getElementById ("box");
gx.bom.element.Animation.animate (box, desc);

The main part of this code is the key frames map, here with three entries. The first one defined by O specifies the
animations at the beginning of the animation. The next one defined by 70 holds the CSS properties at 70% of the
animation time. The last one specifies the animation’s state at 100% animation time. That is an easy animation which
only takes simple CSS properties into account. But you can also animate transforms, which brings both technologies
together.

74 Chapter 3. qx.Website

http://demo.qooxdoo.org/2.0.2/demobrowser/demo/bom/Transform.html

qooxdoo Documentation, Release 2.0.2

Take a look at this demo, showing a 3D rotation which you can try yourself. It shows the best results if you use a
webkit-based browser like Safari or Chrome.

Back-Button and Bookmark Support

Note: This document is outdated and does not reflect the proposed way of working with qx.Website. The history
module is still under development. As soon as the module is ready, this document will be updated as well.

Overview

Many Ajax applications break the browser back button and bookmarking support. Since the main page is never
reloaded, the URL of the application never changes and no new entries are added to the browser history.

Fortunately it is possible to restore the expected behavior with a JavaScript history manager like the one included with
gooxdoo (gx.bom.History).

Adding History support to an Application

To add history support to an application four basic steps are required:
* identify application states
* retrieve initial application state
* add event listener to history changes

* update history on application state changes

Identify Application States

The first step to add history support to an Ajax application is to identify the application states, which should be added
to the history. This state must be encoded into a string, which will be set as the fragment identifier of the URL (the
part after the ‘#’ sign).

What exactly the application state is depends on the application. It can range from coarse grained states for basic
application navigation to fine grained undo/redo steps. The API viewer uses e.g. the currently displayed class as its
state.

Retrieve Initial Application State

At application startup the initial state should be read from the history manager. This enables book-
marks to specific states of the application, since the state is encoded into the URL. The URL
http://api.qooxdoo.org#gx.bom.History would for example open the API viewer with the initial state
of gx.client.History.

This is the code to read the initial state (getState API documentation):

var state = gx.bom.History.getInstance () .getState();

3.3. Technical Topics 75

http://demo.qooxdoo.org/2.0.2/demobrowser/demo/bom/Animation.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.bom.History
http://api.qooxdoo.org/#qx.bom.History~getState

qooxdoo Documentation, Release 2.0.2

Add Event Listener to History Changes

Each time the history changes by hitting the browser’s back or forward button, the history manager dispatches a
request event. The event object holds information about the new state. The application must add an event listener
to this event and update the application state (request API documentation):

// ’this’ is a reference to your application instance
gx.bom.History.getInstance () .addListener ("request", function (e)

{

var state = e.getDatal();

// application specific state update (= application code)
this.setApplicationState (state);
}, this);

Update History on Application State Changes

Every time the application state changes, the history manager must be informed about the new state. A state change
in the API viewer would for example occur if the user selects another class (addToHistory API documentation).

gx.bom.History.getInstance () .addToHistory (state, title);

The first parameter is the state encoded as a string, which will be set as the URL fragment identifier. The second
parameter is optional and may contain a string, which is set as the title of the browser window for this state.

76 Chapter 3. qx.Website

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.bom.History~request
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.bom.History~addToHistory

CHAPTER
FOUR

QX.DESKTOP

gooxdoo Desktop is the component to build rich and interactive, desktop-like applications. Its prominent feature is
the comprehensive set of GUI widgets and controls, like buttons, sliders, tabviews, trees and tables. Layout managers
organize the elements on the screen. Unified keyboard and mouse events provide cross-browser event handling. A
dedicated theming system allows the application of styles to the graphical elements independent of the behavioral
aspects. Text element like labels can be internationalized. qooxdoo Desktop requires that you use the gooxdoo SDK
with its tool chain. See Overview for a more in-depth introduction.

4.1 Overview

4.1.1 Widgets

Widgets are the basic building blocks of graphical user interfaces (GUIs) in qooxdoo. Each GUI component, such as a
button, label or window, is a widget and can be placed within an existing user interface. Each particular type of widget
is provided by a corresponding subclass of Widget, which is itself a subclass of Layoutltem.

Widget can be subclassed with minimal effort to create custom widgets. The entire layout handling and children
handling in this class is only available as “protected”. It is possible to add some public API as needed.

Another framework class which extends Layout Item is Spacer. A spacer is an empty area, which may be used as a
temporary placeholder that is to be replaced later, or explicitly as a flexible part in certain dynamic UI designs.

To structure an interface it is common to insert widgets into each other. Each child is displayed within the screen area
occupied by its parent. The hierarchical structure is also used to hide or show specific areas. This means for instance,
that hiding a parent hides its children as well. Another example would be when a widget is being disposed, all the
child widgets it contains are automatically being disposed as well.

4.1.2 Composites

As mentioned a few sentences above the normal Widget does not have public methods to manage the children. This
is to allow the normal Widget to be used for inheritance. To allow the creation of structures in applications, the
Composite was created.

Composite extends Widget and publishes the whole children and layout management of the Widget to the pub-
lic. Typically it is used as a container for other widgets. Children can be managed through the methods add (),
remove (), etc. In application code Composites are used to structure the interface.

77

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Spacer
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.container.Composite

qooxdoo Documentation, Release 2.0.2

4.1.3 Roots

A special category of widgets are the root widgets. These basically do the connection between the classic DOM and
the qooxdoo widget system. There are different types of roots, each individually tuned for the requirements in the
covered use case.

First of all every application developer needs to decide if an application should be standalone e.g. working with a
minimal set of classic HTML or will be integrated into an maybe full-blown web page. Developers of an standalone
application normally have no problem to give the control to the toolkit (maybe even enjoy it to give away this respon-
sibility), but this would not work for integrating qooxdoo into an existing web page layout.

A standalone application normally only uses a really slimmed down set of HTML (in fact the file only functions as a
wrapper to load the application code). It normally does not include any CSS files and often comes with an empty body
element. In fact even simpler elements like headers, footers etc. are created using widgets (so they may benefit from
typical qooxdoo features like internationalisation, theming etc.).

e Application: Build full-blown application from scratch. Target audience are developers of a completely qooxdoo
based application.

» Page: Build applications as isles into existing content. Ideal for the more classic web developer. Needs to bring
in know how of HTML & CSS for non-qooxdoo content.

Both roots are attached directly to the document. The Application is automatically stretched to the full size of the
window and this way allows to position elements in relation to the right or bottom edge etc. This is not possible using
the Page root.

The instantiation of the required root widget is normally nothing the developer has to do. It is done by the application
class the developer chooses to extend. The next chapter will explain the concept behind applications in detail.

As even the Page root is attached to the document it would be still not possible to place children into a specific existing
column or box into the existing layout. However the developer of the web page may use any number of optional isles
to insert content into an existing layout (built with classic HTML markup). The isles are named Inline. They need an
existing DOM element to do their work (maybe using some type of getElementById). The reason for the overall
need, even when working with these isles, for the Page root is that all dynamically floating elements like tooltips,
menus, windows etc. are automatically placed into this root. This makes positioning of such elements a lot easier.

4.1.4 Applications

The application is the starting point of every qooxdoo application. Every qooxdoo application should also come with a
custom application class. The application is automatically initialized at the boot phase of qooxdoo (to be exact: when
all required JavaScript packages are loaded).

The first method each developer needs to get used to is the main method. It is automatically executed after the
initialization of the class. Normally the method is used to initialize the GUI and to load the data the application needs.

There are different applications which could be used as a starting point for a custom application:
» Standalone: Uses the Application root to build full blown standalone qooxdoo applications

¢ Inline: Uses the Page root to build traditional web page based application which are embedded into isles in the
classic HTML page.

» Native: This class is for applications that do not involve qooxdoo’s GUI toolkit. Typically they make only use
of the IO (“Ajax”) and BOM functionality (e.g. to manipulate the existing DOM).

78 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.root.Application
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.root.Page
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.root.Inline
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.IApplication~main
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Standalone
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Inline
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Native

qooxdoo Documentation, Release 2.0.2

4.1.5 Communication
Developing a qooxdoo application does not require a server. Its static application contents (initial html file, JavaScript
files, images, etc.) may just be loaded from your local file system.

Of course, for the actual deployment of your final app you would use a web server to deliver the (static) contents.
For developing a qooxdoo app it is not a prerequisite to setup a web server, so you can start right away on your local
computer.

Any practical qooxdoo client application will communicate with a server, for instance to retrieve and store certain
application data, to do credit card validation and so on. qooxdoo includes an advanced RPC mechanism for direct
calls to server-side methods. It allows you to write true client/server applications without having to worry about the
communication details. qgooxdoo offers such optional RPC backends for Java, PHP, Perl and Python. If you are missing
your favorite backend language, you can even create your own RPC server by following a generic server writer guide.

If you already have an existing backend that serves HTTP (or HTTPS) requests and you do not want to use those
optional RPC implementations, that’s fine. It should be easy to integrate your qooxdoo app with your existing backend
using traditional AJAX calls.

4.2 Widgets Introduction

4.2.1 Widget

This is the base class for all widgets.

Features

¢ Integration with event system
* Focus handling

e Drag and drop

* Auto sizing

e Theming

* Tool tips

» Context menus

* Visibility handling

* Sub widget management

Description

The widget is the base class for all qooxdoo widgets. It contains the widget system’s core functionality.

4.2. Widgets Introduction 79

http://qooxdoo.org/contrib/project#backend

qooxdoo Documentation, Release 2.0.2

Diagram

Decoration

A widget consists of at least three HTML elements. The container element, which is added to the parent wid-
get, has two child Elements: The “decoration” element and the “content” element. The decoration element has
a lower z-Index and contains markup to render the widget’s background and border using an implementation of
gx.ul.decoration.IDecorator. The content element is positioned inside the “container” element to respect
paddings and contains the “real” widget element.

Demos

There are no explicit widget demos since the widget is typically sub classed.

API

Here is a link to the API of the Widget:
gx.ui.core.Widget

4.2.2 Basic Widgets

Note: This chapter introduces some of the widgets found in qooxdoo. For a full list of widgets, please refer to the
Widget Reference.

Labels

Labels are one of the basic building blocks in applications. The qooxdoo Label supports two modes: One which
combines simple single line text content with the possibility to automatically render an ellipsis in cases where not
enough room is available. This is often the best choice for all types of simple labels and is the default mode in
gooxdoo. Through technical restrictions it is not possible to insert HTML in a so-configured instance. The other mode
allows rich content (HTML) and adds the option for multi-line content together with an advanced mechanism called
Height4Width which automatically re-wraps content based on the available width. This mode however cannot handle
automatic ellipsis (which makes less sense in multiline labels, but is also not technologically possible).

More details: Label

80 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.ui.core.Widget

qooxdoo Documentation, Release 2.0.2

Images

The second building block of applications. The image class in qooxdoo is quite sophisticated. PNG transparency is
available in all browsers. Image data (e.g. format and dimension) is automatically pre-cached by the build system and
distributed to the application for optional performance (avoiding page reflow during application startup for example).

This data also makes it possible to allow semi-automatic image sprites, a feature which becomes more important in
larger applications. Image sprites combine multiple images (perhaps even with multiple states) in a single image
instance. Only the relevant part is shown, all other states or images are cropped. This has positive effects on the
latency (e.g. number of HTTP requests needed) and also improves the runtime performance (switching a state in an
image sprite is much faster than replacing the source of an image instance). Image sprites can be introduced in any
application at any time without changing the application code. The original image path is automatically interpreted as
a clipped image source with the needed offsets. Please note that this feature largely depends on qooxdoo’s tool chain
which is required to generate the image data for the client.

A major restriction of this technology is that the options to resize images on the client side are crippled (the normal
image is rendered through a background-image definition and allows no stretching at all). The alternate mode renders
the image using a normal image element. This is a good alternative whenever a part of the application depends on this
scaling feature but should not be used unless necessary.

More details: Image

Atoms

Atoms have been in qooxdoo for quite some time now. Basically, this widget combines an Image with a Label
and allows some alignment options for them. Both content types are optional and toggle-able. The Atom supports
shrinking like the Label while keeping the image intact. Atoms are used by many higher level widgets like Buttons (in
Tab Views, Toolbars, ...) or List Items etc.

More details: Atom

Buttons

The Button is basically an Atom with some additional events. All relevant rendering features are already provided by
the Atom. Several variants of the Button are available: Repeat, Radio or Toggle Button.

The Button can be connected to a Command (a class to work with key bindings etc.) and fires an execute event when
clicked (or activated via the keyboard). The Repeat Button fires the execute event in an interval while being pressed.
The Toggle Button (which toggles between checked and unchecked) is an exception to this and fires a change event
on each transition of the checked property.

More details: Button

Text Fields

The Text Field is one of the most commonly used form elements. It fires two events: The input event is fired on
every keystroke or other type of text modification. This event fires “live”, i.e. whenever a modification is made. If
the application does not need this level of detailed information, it should use the change event which fires after the
modification is done, typically after the field has lost focus.

The Text Field supports basic label alignment to 1eft, center or right. Preventing user inputs is possible
through the property enabled or readOnly. Disabling a widget greys it out and makes it unresponsive for all
types of interaction while readOnly only prevents the modification of the value and normally has no special visual
indication when enabled.

More details: TextField

4.2. Widgets Introduction 81

qooxdoo Documentation, Release 2.0.2

Popups

Popups and Tooltips are comparable in some way. Both are rendered above other content (while tooltips are even
above Popups). Both widgets are automatically inserted into the application root widget (can be overridden when
needed).

Popups may be used for notification panels or a type of modal sub dialog. Basically they are just a container (with a
configurable layout) which lays above normal content.

By default, popups are automatically hidden if the user interacts with some other part of the application. This behavior
is controllable through the aut oHide property. Popups are automatically moved back inside the viewport. In fact, it
is not possible to place Popups outside the viewport (not even partly). This behavior makes sense in almost every case
and improves the usability of popups in general.

With bringToFront and sendToBack the popups’ zIndex can be controlled in relation to other visible popups.

More details: PopUp

Tooltips

Tooltips are basically Popups with an Atom in them. But Tooltips improve on many of the features of the normal
Popup. The automatic positioning support as mentioned for the Popups supports offsets as well and automatically
moves the Tooltip to the best possible side in relation to the mouse cursor’s position.

Although it’s generally not necessary, every popup can be configured with an individual timeout. This is useful when
building different type of tooltips e.g. to display system notifications etc.

More details: ToolTip

4.2.3 Interaction
Register listeners

To register listeners to a widget or other qooxdoo object just call addListener () with the given event type and
callback method on them. The method will be executed every time the event occurs. Some types of events will bubble
up the parent widget chain (such as mouse events, ...) while others are only fired on the original object (e.g. property
changes, ...). A typical registration might look like this:

obj.addListener ("changeColor", this._onChangeColor, this);

The first parameter is the name of the event. The events supported by an object are listed in the API documentation
of each class in the “Events” section. The second argument is a pointer to a function to call. The function can also be
defined inline (in a closure). The third argument defines the context in which the function is executed. This argument
is optional and defaults to the object which is listened to, e.g. a listener on a button will call a function on the button.

The method is called with the event object as the first and only argument. The event object contains all information
about the target and state of the event and also contains some other useful data: Mouse events may contain mouse
coordinates while focus events may contain the focused element. Data events typically contain the current value of the
data field listened to.

Please note that event objects are automatically pooled after their dispatch. This is mainly for performance reasons;
event objects are reused during the application runtime. That’s why keeping references to event instances is not a good
idea! If some of the data is needed later during the application runtime it is best to store the actual data and not the
event object, e.g. store the coordinates instead of the mouse event object.

82 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Event Phases

In the browser most user input events like mouse or keyboard events are propagated from the target element up to
the document root. In qooxdoo these events bubble up the widget hierarchy. This event propagation happens in two
phases, the capturing and the bubbling event phase. The last parameter of the addListener (type, listener,
context, capture) method defines whether the listener should be attached to the capturing (t rue) or bubbling
(false) phase.

In the capturing phase, the event is dispatched on the root widget first. Then it is dispatched on all widgets down
the widget tree until the event target is reached. Now the event enters the bubbling phase. In this phase the event is
dispatched in the opposite direction starting from the event target up to the root widget.

Most of the time only the bubbling phase is used but sometimes the capturing phase can be very useful. For example
a capturing listener for “mousedown” events on the root widget is guaranteed to receive every “mousedown” event
even if the target widget calls stopPropagation () on the event. Further it can be used to block events from sub
widgets.

Mouse Events

gooxdoo supports all the typical mouse events: mousedown, mouseup, click and dblclick as well as
mouseover and mouseout. For most action-related widgets execute is the better choice than click (see the
section about basic widgets). All these events behave identically in all supported browsers, even the sequence in which
they are fired is identical. All of them come with a usable target and sometimes even with a relatedTarget for
mouseover and mouseout events.

Every mouse event propagates the screen (e.g. getScreenLeft ()), document (e.g. getDocumentLeft ())
or viewport (e.g. getViewportLeft ()) coordinates through the available getters. The getWheelDelta ()
delta method provides information about the scroll amount of a mousewheel event. Some widgets like Spinners or
SelectBoxes make use of this event already.

During every mouse event it is possible to check the status of modifier keys through the methods
isCtrlPressed(), isAltPressed() or isShiftPressed (). The pressed button can be detected by call-
ing one of the methods isLeftPressed (), isMiddlePressed() or isRightPressed () on the mouse
event.

See the API documentation of the MouseEvent for a full list of all available methods.

Event Capturing

Usually only the widget underneath the mouse cursor will receive mouse events. This can be a problem in drag
operations where the mouse cursor can easily leave the dragged widget. This issue can be resolved in qooxdoo by
declaring this widget a capturing widget using the widget’s capture () method.

If a widget is a capturing widget, all mouse events will be dispatched on this widget, regardless of the mouse cursor’s
position. Mouse capturing is active until either a different widget is set to capture mouse events, the browser loses
focus or the user clicks the left mouse button. If a widget loses its capture state a 1osecapture event is dispatched
on the widget.

Internally, qooxdoo uses mouse capturing in menus, split panes or sliders for example.
Keyboard Support

DOM3-like event handling was the prototype for qooxdoo’s key event support. This means that key identifiers can be
used (instead of un-unified key codes) which is much more comfortable than what is known from most web application

4.2. Widgets Introduction 83

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event.type.Mouse

qooxdoo Documentation, Release 2.0.2

frameworks. Basically each key on the keyboard has a name like Ctrl, Shift, F3 or Enter. A complete list of all
supported keys is available in the API documentation.

All the typical key sequence events keyup, keydown and keypress support the key identifier. The keypress
event is repeated during the time the key is pressed. That’s why keypress is the best candidate for most action
related keyboard events. Only use keyup and keydown when you really depend on the status of the key.

To handle character inputs e.g. on text boxes, there is a special keyinput event which has nice unified accessors,
getChar () and getCharCode (), to detect the pressed character. This even automatically respects the effects
modifier keys have, supporting e.g. German umlauts. The API lists all available methods of the KeyInput event.

Working with Commands

Commands (API) are used to bundle a command to be used by multiple buttons. They can also be used to define a
global shortcut to be used for this action.

Creating new commands is as easy as it can be. A shortcut can simply be defined through the constructor, e.g.:

var find = new gx.event.Command ("Ctrl+F");
find.addListener ("execute", this._onFind, this);

The command can easily be attached to many types of Buttons etc. Some of them, like the MenuButtons, automat-
ically display the configured shortcut as well. As seen above, the Commands also make use of the key identifiers.

Focus Handling

Good keyboard support also means good focus support. One major feature is the seamless integration between DOM
focus handling and qooxdoo’s focus handling. Both system communicate with each other. This makes it possible to
integrate qooxdoo into normal web pages while still supporting the advanced focus features qooxdoo has to offer in
gooxdoo-powered isles.

Focus handling in qooxdoo also means sophisticated support for the Tab key. While qooxdoo can also use the
functionality provided by the browser, it adds its own layer for tab focus handling by default. This layer supports
focus roots: A focus root is basically a widget which manages its own tab sequence. This is frequently used for
many types of windows inside complex applications: Instead of leaving the window when reaching the last of its child
widgets, the focus is moved back to the first child widget. The tab handling in qooxdoo is based on coordinates of
each widget on the screen. It follows the visible structure and not the internal application (or even markup) structure.
This is often seen as a huge benefit as it improves the usability of such applications out-of-the-box. It is also possible
to define a tabIndex on widgets which should be reachable in a static hard-coded way. It is not advisable to use
this feature too much. The automatic handling works quite well out of the box without hard-wiring every widget to a
specific tab position.

To make a widget focusable just enable the property focusable (API) on it. For most widgets, this will also
means that the widget is reachable using the Tab key, but this depends on the widget’s implementation of the method
isTabable ().

Every widget can function as a focus root. To register a widget as a focus root just call the method addRoot () of
the FocusHandler like this:

gx.uil.core.FocusHandler.getInstance () .addRoot (myWidget) ;

Activation is related to focus. While focus is limited to widgets which are marked as focusable, any widget can
be activated. Usually, the activation moves around while clicking on widgets (during the mouseup event). The
focus is applied to the next focusable parent while the activation directly happens on the widget that was clicked on.
Activation is mainly used for keyboard support (key events start bubbling from the active widget). Compared to the
focus, there is no visual highlighting for this state. To change the currently focused or active widget just call focus ()
oractivate():

84 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event.type.KeySequence~getKeyIdentifier
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event.type.KeyInput
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Command
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget~focusable

qooxdoo Documentation, Release 2.0.2

myInputField. focus();

The properties keepFocus and keepActive are targeted more towards advanced users and developers of custom
widgets. Both prevent the focus or active state from moving away (from the widget that currently has it) to the
widget which has the specified property disabled. This is appropriate for complex widgets like a ComboBox where
the activation should be kept on the ComboBox itself when selecting items from the dropdown list.

4.2.4 Resources

Resources comprise images, icons, style sheets, Flash files, helper HTML files, and so forth. The framework itself
provides many icons and some other useful resources you can use right away in your application without any cus-
tomization. This article however explains how to specify and use custom resources for your application.

Technical overview

Resources live in the source/resource/<namespace> subtree of each library. You explicitly reference a re-
source in your application code by just naming the path of the corresponding file under this root (This is also referred
to as the resource id).

So if there is a resource in your “myapp” application under the path
myapp/source/resource/myapp/icons/tray.png you would refer to it in your application code
with myapp/icons/tray.png.

To find the corresponding file during a build, qooxdoo searches all those paths of all the libraries your application is
using. The first hit will be regarded as the resource you want to use. (During the generation of a build version of
your app, these resource files will be copied to the build folder, so your build version will be self-contained).

The libraries are searched in the order they are declared in your config.json file. This usually means that your own re-
source folder comes first, then the framework’s resource folder, and then the resource folders of all further libraries you
have included. This way, you can shadow resources of like names, e.g. by adding a file gx/static/blank.gif
under your source/resource folder you will shadow the file of the same resource id in the framework.

Declaring resources in the code

You have to declare the resources you wish to use in your application code in an #asset compiler hint near the top
of your source file.

J ok kAR
#asset (myapp/icons/16/folder-open.png)
*/

This is essential, since these hints are evaluated during the compile step, which searches for the corresponding files,
generates appropriate URISs to them and copies them to the build folder.

Instead of adding meta information for each individual resource, you may as well use simple (shell) wildcards to
specify a whole set of resources:

Sk ko k
#asset (myapp/icons/16/x)
*/

This is all you need to configure if your application code uses any of the icons in the given folder.

4.2. Widgets Introduction 85

qooxdoo Documentation, Release 2.0.2

Using resources with widgets

Once you’ve declared the resource in your code, you can equip any compatible widget with it.
Here’s an example:

var button = new gx.ui.form.Button ("Button B", "myapp/icons/1l6/folder-open.png");

Using qooxdoo icons with widgets

If you want to use some of the icons as resources that are part of the icon themes that come with qooxdoo, there are
the following three ways to do so:

1. Copy the icons you are interested in from the original location in the qooxdoo framework to the local resource
folder of your application. You are now independent of the qooxdoo icon theme folders and can manage these
icons as you would any other custom images.

2. Use a fully-qualified path that points to the qooxdoo resource folder. This solution would contain the icon
theme’s name explicitly.

3. Use a macro to get the icons from the current theme. This would allow for a later change of icon themes at
the config file level, without the need to adjust any resource URIs in your application code. The Generator
documentation explains how to declare these macros.

J/ *

#asset (myapp/icons/l16/utilities—-dictionary.png)

#asset (gx/icon/Oxygen/16/apps/utilities—-dictionary.png)

#asset (gx/icon/S{gx.icontheme}/16/apps/utilities—-dictionary.png)

*/
var buttonl = new gx.ui.form.Button("First Button", "myapp/icons/l6/utilities-dictionary.png");
var button2 = new gx.ui.form.Button("Second Button", "gx/icon/Oxygen/l6/apps/utilities—-dictionary.pnc

var button3 new gx.ui.form.Button("Third Button", "icon/l6/apps/utilities-dictionary.png");

When you use the third method above and you do not use the Modern theme, you must edit config. json in order
to have the meta theme’s icons and the explicitly given icon theme in sync:

{

"name " : "myapp " ,
n let n
{
"APPLICATION" : "myapp",
"OXTHEME" : "gx.theme.Classic",
"OXICONTHEME" : ["Oxygen"],
V.lééOT" : " . n

Obtaining the URL for a resource

To obtain a URL for a resource, use the ResourceManager:

86 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.util.ResourceManager

qooxdoo Documentation, Release 2.0.2

var iframe = new
gx.ul.embed.Iframe (gx.util.ResourceManager.getInstance () .toUri ("myapp/html/FAQ.htm"));

Modifying the resource or script URIs at runtime
In some usage scenarios, it can be necessary to modify the URIs used to reference code and resources after the
application was started. This can be achieved using the Library Manager:

gx.util.LibraryManager.getInstance () .set ("myapp", "resourceUri", "http://example.com/resources");
gx.util.ResourceManager.getInstance () .toUri ("myapp/html/FAQ.htm"); //returns "http://example.com/res:

4.2.5 Selection Handling

The framework contains several widgets which support selection handling. These are divided into widgets that support
Single Selection and others that support Multi Selection. A widget which supports multi selection also
supports single selection.

Here is a list of widgets which support single and/or multi selection:
e Multi Selection:
— Tree (AP])
— List (API)
* Single Selection:
SelectBox (API)
RadioGroup (API)
TabView (API)
Stack (API)

Selection Interfaces

<<interfaces=>
ISingleselection

- <<interfaces>
+changeSelection: Data ™MultiSelection
+getSelection): Widget [0..%] (;]
+satSelection{items: Widget [1..%]) +addToSelection{kem: Widget): void
+rasatSebsction(): void +ramoveFramSalection(itam: Widget): waid
+isSelected(item: Widget): boolean +selectAll(): void

+isSelechonEmpky|): boolean
+petSelectables(): Widgets [0..%]

Event

Both selections fire a changeSelection event if the selection has changed. Listeners can register with the event
to be notified about the changes. The event contains an array with the newly selected widgets. If the array is empty,
that means no widgets are selected.

4.2. Widgets Introduction 87

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.util.LibraryManager
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~Tree.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.tree.Tree
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~List.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~SelectBox.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.SelectBox
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~RadioButton.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.RadioGroup
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~TabView.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.tabview.TabView
http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~StackContainer.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.container.Stack

qooxdoo Documentation, Release 2.0.2

list.addListener ("changeSelection", function (e)

{

var selection = e.getDatal();

for (var i = 0; i < selection.lenght; i++) {
this.debug ("Selected item: " + selection[i]);
}
}, this);

Selection Methods

The ISingleSelection interface specifies the methods for single selection handling. Since the methods of the
single selection interface are re-used, the IMultiSelection only extends the interface with methods for multi
selection handling.

Re-using the methods requires a uniform handling for setting and getting the current selection. This has been achieved
by using an array for the selection handling, see setSelection and getSelection.

Single Selection

The listed single selection widgets above implement the ISingleSelection. To implement the behavior they use
the MSingleSelectionHandling mixin. This mixin offers the methods for selection handling and also initializes the
manager for selection management.

The widget itself configures the mixin to allowing an empty selection or not. Dependent on the configuration,
resetSelection clears the current selection (empty array) or selects the first selectable element.

User interactions (mouse and keyboard) are managed from the widget, which only calls the selection methods if the
user interaction has an effect on the selection. So the selection management and the user interaction handling are
separated. This is one thing that has changed with the new selection API.

Multi Selection

The multi selection implementation has hardly changed at all. The widgets supporting multi selection, also listed
above, have already used a mixin called MSelectionHandling for selection handling. Like the mixin for the single
selection, it offers the selection methods and initializes the selection manager. The mixin has only been changed to
conform to the new IMultiSelection interface.

Selection Modes

Due to the small changes the configuration for the selection mode hasn’t changed. The widgets also support the
property selectionMode with these different modes:

« single: Only one element or none at all can be selected.
* one: Exactly one item is selected if possible. The first selectable item is selected per default.

* multi: Multiple items can be selected by using the modifier keys together with mouse or keyboard actions. This
type also allows empty selections.

» adaptive: Easy Web-2.0 selection mode: multiple items can be selected without modifier keys. Empty selec-
tions are possible.

Note: Multi and Adaptive selections dealing with selection ranges, Single and One dealing with one selected item.

88 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.MSingleSelectionHandling
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.MSelectionHandling

qooxdoo Documentation, Release 2.0.2

list.setSelectionMode ("multi™);

Selection Options

These options change the way a selection is created or modified. By default, items can be selected by holding down the
mouse button and hovering them or by holding down the modifier key and pressing the arrow keys to traverse them.

¢ Quick: One item can be selected by hovering it (no need to click on it or hit keys) Only possible for the modes
single and one.

* Drag: Multiselection of items through dragging the mouse in pressed states. Only possible for the modes multi
and additive.

list.setDragSelection (true);

How to use the selection API

Single Selection

The example below shows how to use the single selection API. This example uses the SelectBox widget:

// creates the SelectBox
var selectBox = new gx.uil.form.SelectBox();
this.getRoot () .add (selectBox, {top: 20, left: 20});

// registers the listener

selectBox.addListener ("changeSelection”, function (event) ({
this.debug ("Selected (event): " + event.getData() [0].getLabel());

}, this);

// creates the items and select one of them

for (var i = 0; 1 < 10; i++)

{
var item = new gx.ui.form.ListItem("ListItem" + 1);
selectBox.add (item) ;

if (1 == 5) {
selectBox.setSelection([item]) ;

this.debug ("Selected (selectBox): " + selectBox.getSelection() [0].getLabel());

The output should be:

(1) Selected (event): ListItemO
(2) Selected (event): ListItem5
(3) Selected (selectBox): ListItemb

The SelectBox’s implementation doesn’t allow empty selections, so if the first item is added to the SelectBox it will
be selected (1). (2) occurs due to the selection and (3) from get Selection.

Multi Selection

The next example uses the List widget:

4.2. Widgets Introduction 89

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.SelectBox
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.List

qooxdoo Documentation, Release 2.0.2

// creates the List and sets the selection mode
var list = new gx.ui.form.List();
list.setSelectionMode ("multi™);
this.getRoot () .add(list, {top: 20, left: 20});

// registers the listener

list.addListener ("changeSelection", function (event) {
this.debug ("Selection (event): " + event.getDatal());

}, this);

// creates the items

for (var i = 0; 1 < 10; i++)

{
var item = new gx.ui.form.ListItem("ListItem" + 1);
list.add(item) ;

// sets selection
list.setSelection([list.getChildren() [1], list.getChildren() [4]1]);

this.debug("Selection (list): " + list.getSelection());

The output should look like this:

(1) Selection (event): gx.ui.form.ListItem[lp],gx.ui.form.ListItem([2a]
(2) Selection (list): gx.ui.form.ListItem[lp],gx.ui.form.ListItem([2a]

4.2.6 Drag & Drop

Drag & Drop is one of the essential technologies in today’s applications. An operation must have a starting point (e.g.
where the mouse was clicked), may have any number of intermediate steps (widgets that the mouse moves over during
a drag), and must either have an end point (the widget above which the mouse button was released), or be canceled.

gooxdoo comes with a powerful event-based layer which supports drag&drop with full data exchange capabilities.
Every widget can be configured to cooperate with drag&drop be it as sender (draggable), receiver (droppable) or both.
A sender (drag target) can send data to any receiver (drop target).

You may like to see an example first:

* Drag&Drop for Lists

Basics

To enable Drag & Drop the properties draggable and droppable must be enabled on the specific widgets. For list type
sources or targets it’s often enough to make the top-level widget drag- or droppable e.g. the list instead of the list
items.

var dragTarget = new gx.ui.form.List;
dragTarget.setDraggable (true) ;

var dropTarget = new gx.ui.form.List;
dropTarget.setDroppable (true) ;

The basic drag&drop should start working with these properties enabled, but it will show the no-drop cursor over all
potential targets. To fix this one needs to register actions (and optionally data types) supported by the drag target. This
can be done during the dragstart event which is fired on the drag target:

920 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~DragDrop.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget~draggable
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget~droppable

qooxdoo Documentation, Release 2.0.2

dragTarget.addListener ("dragstart", function(e) {
e.addAction ("move");

)i

The drop target can then add a listener to react for the drop event.

dropTarget.addListener ("drop", function(e) {
alert (e.getRelatedTarget ());
)i

The listener now shows an alert box which should present the identification ID (classname + hash code) of the drag
target. Theoretically this could already be used to transfer data from A to B.

Data Handling

gooxdoo also supports advanced data handling in drag&drop sessions. The basic idea is to register the supported drag
data types and then let the drop target choose which one to handle (if any at all).

To register some types write a listener for dragstart:

source.addListener ("dragstart", function (e)

{

e.addAction ("move") ;

e.addType ("gx/list—-items");
e.addType ("html/list");
1)

This is basically only the registration for the types which could theoretically be delivered to the target. The IDs used
are just strings. They have no special meaning. They could be identical to typical mime-types like text /plain but
there is no need for this.

The preparation of the data (if not directly available) is done lazily by the droprequest event which will explained
later. The next step is to let the target work with the incoming data. The following code block appends all the dropped
children to the end of the list.

target.addListener ("drop", function (e)
{
var items = e.getData("gx/list-items");
for (var i=0, l=items.length; 1i<1l; i++) {
this.add(items[i]);
}
}) i

The last step needed to get the thing to fly is to prepare the data for being dragged around. This might look like the
following example:

source.addListener ("droprequest", function (e)

{
var type = e.getCurrentType();

if (type == "gx/list-items")
{

var items = this.getSelection();

// Add data to manager
e.addData (type, items);

4.2. Widgets Introduction 91

qooxdoo Documentation, Release 2.0.2

else if (type == "html/list")
{
// TODO: support for HTML markup
}
1)

Support Multiple Actions

One thing one might consider is to add support for multiple actions. In the above example it would be imaginable to
copy or move the items around. To make this possible one could add all supported actions during the drag event.
This might look like the following:

source.addListener ("dragstart", function (e)
{
// Register supported actions
e.addAction ("copy");
e.addAction ("move");

// Register supported types
e.addType ("gx/list—items");
e.addType ("html/list");

1)

The action to use is modifiable by the user through pressing of modifier keys during the drag&drop process.
The preparation of the data is done through the droprequest as well. Here one can use the action (call
e.getCurrentAction () to get the selected action) to apply different modifications on the original data. A
modified version of the code listed above might look like the following:

source.addListener ("droprequest", function (e)
{

var action = e.getCurrentAction();

var type = e.getCurrentType();

var result;

if (type === "gx/list-items")
{

result = this.getSelection();

if (action == "copy")
{
var copy = [];
for (var i1i=0, l=result.length; i<l; i++) {
copy[i] = result[i].clone();
}
result = copy;
}
}
else if (case == "html/list")

{
// TODO: support for HTML markup

// Remove selected items on move
if (action == "move")
{
var selection = this.getSelection();
for (var i=0, l=selection.length; i<l; i++) {

92 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

this.remove (selection[i]);

}

// Add data to manager
e.addData (type, result);
}) i

As known from major operating systems, exactly three actions are supported:

® move

* copy
e alias

which could be combined in any way the developer likes. qooxdoo renders a matching cursor depending on the
currently selected action during the drag&drop sequence. The event dragchange is fired on the source widget on
every change of the currently selected action.

Runtime checks

There are a few other pleasantries. For example it is possible for droppable widgets to ignore a specific incoming
data type. This can be done by preventing the default action on the incoming dragover event:

target.addListener ("dragover", function (e)
{
if (someRunTimeCheck ()) {
e.preventDefault () ;
}
}) i

This could be used to dynamically accept or disallow specific types of drop events depending on the application status
or any other given condition. The user then gets a nodrop cursor to signal that the hovered target does not accept the
data. To query the source object for supported types or actions one would call the methods supportsAction or
supportsType on the incoming event object.

Something comparable is possible during the dragstart event:

source.addListener ("dragstart", function (e)
{
if (someRunTimeCheck ()) {
e.preventDefault ();
}
)i

This prevents the dragging of data from the source widget when some runtime condition is not solved. This is espe-
cially useful to call some external functionality to check whether a desired action is possible. In this case it might also
depend on the other properties of the source widget e.g. in a mail program it is possible to drag the selection of the
tree to another folder, with one exception: the inbox. This could easily be solved with such a feature.

Drag Session

During the drag session the drag event is fired for every move of the mouse. This event may be used to “attach” an
image or widget to the mouse cursor to indicate the type of data or object dragged around. It may also be used to render
a line during a reordering drag&drop session (see next paragraph). It supports the methods getDocumentLeft and
getDocument Top known from the mousemove event. This data may be used for the positioning of a cursor.

4.2. Widgets Introduction 93

qooxdoo Documentation, Release 2.0.2

When hovering a widget the dragover event is fired on the “interim” target. When leaving the widget the
dragleave event is fired. The dragover is cancelable and has information about the related target (the source
widget) through getRelatedTarget on the incoming event object.

Another quite useful event is the dragend event which is fired at every end of the drag session. This event is fired in
both cases, when the transaction has modified anything or not. It is fired when pressing Escape or stopping the session
any other way as well.

A typical sequence of events could look like this:
e dragstart on source (once)
* drag on source (mouse move)
* dragover on target (mouse over)
* dragchange on source (action change)
* dragleave on target (mouse out)
* drop on target (once)
* droprequest on source (normally once)

* dragend on source (once)

Reordering items

Items may also be reordered inside one widget using the drag&drop API. This action is normally not directly data
related and may be used without adding any types to the drag&drop session.

reorder.addListener ("dragstart", function(e) {
e.addAction ("move");
)i

reorder.addListener ("drop", function (e)

{
// Using the selection sorted by the original index in the 1list
var sel = this.getSortedSelection();

// This is the original target hovered
var orig = e.getOriginalTarget ();

for (var i=0, l=sel.length; i<l; i++)
{
// Insert before the marker
this.addBefore(sel[i], orig);

// Recover selection as it gets lost during child move
this.addToSelection(sel[i]);

4.2.7 Inline Widgets

This page describes how you can use qooxdoo widgets inside HTML-dominated pages. This use case is different from
creating a regular, “standalone” qooxdoo application.

94 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Target Audience

Integrating qooxdoo widgets into existing HTML pages could be interesting to all users who already have (many)
existing pages, often some kind of “portal”, and therefore don’t want to transform these into a standalone rich Internet
application (RIA).

Online Demos

Take a look at the online demos to see the use of inline widgets in action.
* Absolute positioning demo
* Page flow using Inline
* Dynamic resize for Inline

¢ Inline window

Set Up An Inline Application

An inline application is set up by using the create-application script described in the Hello World section.
You just have to add the additional option —t with the value inline and you’re done.
/opt/qooxdoo-sdk/tool/bin/create—application.py —-n myapp -t inline

Once executed you get a skeleton application which is ready-to-use to develop an inline application. The skeleton also
demostrates the different integration approaches which are described in the next section.

Ways of Integration

There are basically two ways to integrate a qooxdoo widget into an existing HTML-dominated page:
* positioning a widget with absolute coordinates (maybe overlaying existing content)
* adding the widget within the page flow by using an existing DOM node as an isle
Which way you should choose depends on what you wish to achieve. Technically both share the same foundation.

Instead of using gx.application.Standalone as a base application class you need to extend from
gx.application.Inline as a starting point. So basically your (empty) application looks like this:

gx.Class.define ("myPortal.Application",
{

extend : gx.application.Inline,

members

{

main: function ()

{

this.base (arguments) ;

// your code follows here

4.2. Widgets Introduction 95

http://demo.qooxdoo.org/2.0.2/demobrowser/demo/root/Page.html
http://demo.qooxdoo.org/2.0.2/demobrowser/demo/root/Inline.html
http://demo.qooxdoo.org/2.0.2/demobrowser/demo/root/Inline_Dynamic_Resize.html
http://demo.qooxdoo.org/2.0.2/demobrowser/demo/root/Inline_Window.html

qooxdoo Documentation, Release 2.0.2

Absolute Positioning

Adding a widget to the page without regarding the page flow is a no-brainer. Just create the desired widget and add it
to the application root. As the application root is an instance of gx.ui.layout.Basic you can only use left and top
coordinates to position your widgets.

Note: Absolute positioning requires no existing DOM node in the target document.

gx.Class.define ("myPortal.Application",
{

extend : gx.application.Inline,

members

{
main: function ()

{

this.base (arguments) ;

// add a date chooser widget
var dateChooser = new gx.ui.control.DateChooser();

// add the date chooser widget to the page
this.getRoot () .add (dateChooser, { left : 100, top : 100 });

Page Flow

However, the former solution won’t fit for e.g. a portal where the page is divided into several parts. In this case you
won’t have any absolute coordinates you could work with reliably.

To add widgets at certain locations inside the page you can create or reuse DOM nodes which act as islands where the
gooxdoo widgets live in regard to the page flow.

Note: You need to define specific DOM nodes in your document which act as islands for the qooxdoo widgets.

Additionally if you use the dynamic mode (automatic resizing) it is important that the used DOM node is not styled
using CSS rules concerning the width and height attribute. Instead style your DOM node with inline styles, otherwise
the dynamic resizing won’t work correctly.

gx.Class.define ("myPortal.Application",
{

extend : gx.application.Inline,

members
{
main: function ()

{

this.base (arguments) ;

// create the island by connecting it to the existing
// "dateChooser" DOM element of your HTML page.
// Typically this is a DIV as in <div id="dateChooser"></div>

96 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Basic

qooxdoo Documentation, Release 2.0.2

var dateChooserIsle = new gx.ui.root.Inline (document.getElementById("dateChooser"));

// create the date chooser widget and add it to the inline widget (=island)
var dateChooser = new gx.ui.control.DateChooser();
dateChooserIsle.add (dateChooser);

4.2.8 Custom Widgets

Most widgets are built using a combination of pre-existing, more basic widgets. This is also true for custom widgets
made for a specific application or as an extension to the existing feature set of qooxdoo.

Inheritance Structure

A more complex widget usually extends the base class gx .ui.core.Widget. A widget can manage children using
a set of protected methods. Extending from a richer widget often has the side effect that the final class contains APIs
which do not make sense in the derived class anymore. Also be sure not to extend from Composite or a widget based
on this class. This is mainly because it has public methods for the normally internal layout and children handling and
would propagate all the internal information to the outside when children are added or the layout is modified by the
derived class.

A good example: Most rich text editors implemented in JavaScript make use of an iframe. One could imagine using
the I frame class as a base to build such a component. The problem is that most of the methods and properties like
setSource or reload do not make a lot of sense on an editor component. It’s better to embed the needed widgets
into the outer widget to hide their functionality in the custom class.

The qooxdoo Spinner for example extends the Widget as well and adds a TextField and two RepeatButton
instances. The layout is done by a Grid layout. All the children and the chosen layout are hidden from the outside.
There are no public accessors for the layout or the children. This makes sense as no one is interested in the children of
a Spinner widget. These methods would also mean a lot of bloat added to the API of such an widget.

Setup Content

The following methods may be used to manage children:
e getChildren
e add,_addAt,_addBefore,_addAfter
* _remove,_removeAt,_removeAll

It is possible to use any layout available. To set up the layout just use _setLayout. To access it afterwards use
_getLayout.

For details refer to the API documentation of gx.ui.core.Widget.

Child Controls

gooxdoo supports a mechanism called child controls. A child control is a widget as part of another widget. Child
controls were introduced to have a common way of accessing these controls and to make it easy to refine them when a
class should be extended. Each child control is accessible using an identifier which is basically a string. By convention

4.2. Widgets Introduction 97

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget

qooxdoo Documentation, Release 2.0.2

these strings are all lower-case and use dashes to structure complex identifiers. Typical identifiers are button, icon
or arrow—up. Never slashes / as this might conflict with the appearance system.

Instances for the supported child controls are created dynamically as needed. A widget developer just needs to override
the method _createChildControlImpl, let the method work on the customized controls, and just call the super
class method when the incoming ID is not supported. For example, such a method might look like:

_createChildControlImpl : function (id)
{

var control;

switch (1id)
{
case "icon":
control = new gx.ui.basic.Image;
this._add(control);
break;
}

return control || this.base (arguments, id);

}

Each child control should directly add itself to the parent. As mentioned before child controls are automatically created
as needed. This basically means that if nobody asks for a specific child control it is never created or added. This is
an important feature for dynamic widgets as it reduces the initial memory and CPU usage. A child control is always
created when some code asks for it. This can happen through different methods:

* getChildControl (id, notcreate): Returns the child control with the given ID. May return null if
the second argument is t rue. This is basically used to check if the child control has already been created and
then apply something to it. In some more complex scenarios this makes sense, but it can be ignored for the
moment.

* _showChildControl (id): Executes show () on the child control. This method also creates the control if
that hasn’t happened yet. It also returns the control so other properties can be applied to it.

e _excludeChildControl (id): Excludes the widget using exclude (). When the control is not yet
created the function does nothing. The method has no return value.

e _isChildControlVisible (id): Returns true if the child control with the given ID is created and
visible.

* hasChildControl (id): Returns t rue if the child control with the given ID has been created.

Styling
Child controls are automatically supported by the appearance system. For every child control a selector is generated
which starts with the first widget which is not a child control itself. Typical selectors look like:

* spinner/up-button

* groupbox/legend

* tree-item/icon

As a container for child controls may be a child control for another container as well, even more complex selectors are
possible:

e list/scrollbar-x/slider

* splitbutton/button/icon

98 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

This means that even the deepest child control can be easily accessed by theme authors. Widget authors should
define the styling of a widget in the appearance theme and not in the widget itself. The widget and the
_createChildControlImpl method should only apply functional properties like zIndex or tabIndex, but
no decorations, colors or fonts for example.

As mentioned, a key always starts with the appearance of the first widget which is not itself a child control. Appearance
values of the inner widgets are ignored as long as they are used as a child control. Instead, the ID of the child control
is used. The / is used to separate the child controls. All widgets added through user code start with their own
appearance. For example, the items of the List widget have the appearance 1ist—-item. Their appearance key is
also list—-itemandnot list/item.

For details about styling please refer to the theming article.

HTML Elements

A normal qooxdoo widget consists of at least two HTML Elements (API). The first one is the container element which
is the outer frame of each widget. The inner one is the content element which is the target for children added to the
widget. The content element is also used for the iframe element of the I frame widget and the image element of the
Image widget. This means it may contain children or may be used by a native DOM element which does not allow
any children.

There might be some other elements depending on the configuration:
» shadow: Placed into the container with negative offsets to be visible behind the original widget.
* decorator: Placed into the container with the same size as the container. Used to render all kinds of decorators.

* protector: Helper to fix certain hover issues when changing decorators during event sequences, e.g. hover
effects.

For widget authors, the content element is normally the most important, followed by the container element. The other
elements are quite uninteresting. It is good to know that they are there, but one typically has little to do with them.

Both elements are instances of gx.html.Element so they come with a cross-browser fixed API to apply styles
and attributes to the DOM nodes. All of these things can be done without the DOM element needing to be created or
inserted. For details on gx .html .Element please have a look at the technical documentation.

The elements are accessible through the functions getContentElement () and getContainerElement (),
respectively. The elements are stored privately in each widget instance and are only accessible through these methods
in derived classes.

Custom Elements

qgooxdoo normally generates a bunch of styled div elements. Some widgets like iframes or images need other
elements, though. Normally the only element which is replaced is the content element. To achieve this, the
method _createContentElement needs to be overwritten. The overwritten method should create an instance
of gx.html.Element (or aderived class), configure it with some static attributes or styles, and finally return it. For
most natively supported types there exists a class which can be used already. In special cases the widget author also
needs to write a special low-level class which is derived from gx .html .Element.

Working with Events

Events can be added to the HTML elements as well as to the child controls. The names of the methods assigned should
follow the following names for convention.

¢ For the HTML elements use: _onContentXXX or _onContainerXXX

4.2. Widgets Introduction 99

http://api.qooxdoo.org/#qx.html.Element

qooxdoo Documentation, Release 2.0.2

¢ For the child controls use: _onIconXXX or _onFieldXXX etc.

Where XXX stands for the name of the event or of the change that happens. This will result in names like
_onlIframeLoador _onContentInput.

Anonymous Widgets

Anonymous widgets are ignored in the event hierarchy. This is useful for combined widgets where the internal struc-
ture does not have a custom appearance with a different styling from the enclosing element. This is especially true
for widgets like checkboxes or buttons where the text or icon are handled synchronously for state changes to the outer
widget.

A good example is the SelectBox widget where the mouseover event should affect the entire widget at once and
not the different child controls of which it consists. So setting the child controls (in this case an atom and an image
widget) to anonymous keeps these child control widgets from receiving any events and the event handling is done
completely by the parent widget (the SelectBox itself).

4.2.9 Form Handling
The gx.ui.form package contains several classes for the construction of forms. Some widgets — like Button,
List or TextField— may look familiar if you have worked with HTML before, but this package also contains more

complex widgets that you may know from your operating system and/or native desktop applications (e.g. Spinner,
Slider or DateField).

Idea

The idea of the form API is to make handling of form widgets as simple as possible, but also as generic as possible
within the entire framework. There has been a thorough discussion on what would be the best solution and how to
design a solid API. This is what we ended up with.

Demos

If you like to see some of qooxdoo’s form management in action, take a look at the following samples in the demo
browser:

Widgets

e All form widgets

* All form widgets with invalid states

Validation and Resetting

» Synchronous and asynchronous form validation

* Validation on different pages

100 Chapter 4. qx.Desktop

http://bugzilla.qooxdoo.org/show_bug.cgi?id=2099
http://demo.qooxdoo.org/2.0.2/demobrowser/#showcase~Form.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormInvalids.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormValidator.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~MultiPageForm.html

qooxdoo Documentation, Release 2.0.2

Rendering

* Single column form
* Double column form
* Single column form using placeholders

e Custom form layout

Data Binding

e Manual form binding
¢ Form Controller
Interfaces
The entire form API is defined by a couple of interfaces. These interfaces contain the most important methods and

events for the form widgets. The following listing shows the interfaces, their purpose and how you can benefit from
them.

Form

The interface gx .ui.form.IForm defines a set of methods and events for every visible form widget. It contains
the listed events and methods.

<<interfaces=
IFarm

changeEnabled : Data

setEnabled(enabled : boolean) : void
getEnabled() : boolean
setRequired(required : boolean) : void
getRequired() : boolean

set\Valid(wvalid : boolean) : void

getValid() : boolean
setInvalidMessage({message : string) : void
getInvalidMessage() : string

As you can see, the interface defines accessors for four different properties.
* The enabled property is usually inherited from the widget class and is used to deactivate a form element.

* The required property is just a boolean flag signaling that the form widget is required. This can be used by some
kind of form manager or parent widget to display the status of the widget.

» The valid property is a boolean flag containing t rue if the content of the widget is valid, but the form widgets
do not have any kind of code to set this property. It needs to be set from outside. If it is set to false, the
appearance will change automatically to properly signal the invalid state.

* The invalidMessage property should contain a message which will be shown in a tooltip if the valid flag is set
to false. If no message is given, no tooltip will appear.

4.2. Widgets Introduction 101

http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormRenderer.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormRendererDouble.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormRendererPlaceholder.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~FormRendererCustom.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#data~Form.html
http://demo.qooxdoo.org/2.0.2/demobrowser/#data~FormController.html

qooxdoo Documentation, Release 2.0.2

Executable

The gx.ui.form.IExecutable interface defines the essential components for all executable widgets. The best
example for an executable widget is a button. It defines the following events and methods.

<<interfaces=
IExecutable

execute : Data

setCommand({command : Command) : void
getCommand() : Command
execute() : void

As you can see, the interface defines accessors for only one property.

* The command property can take a gx . event . Command. The execute method executes the given command.

Range

The gx.ui.form.IRange interface defines the essential components for all widgets dealing with ranges. It defines
the following methods.

<<interfaces=
IRange

setMinimumimin : number) : void
getMinimum() @ number
setMaximum(max : number) : void
getMaximum() : number
setsingleStep(step : number) : void
getSingleStep() : number
setPageStep(step : number) @ void
getPageStep() : number

As you can see, the interface defines accessors for four properties.
* The minimum value of the range is defined by the Minimum property.
* The maximum value of the range is defined by the Maximum property.
» Each range has a single step value which is defined by the SingleStep property.

* Like the single step, there is a page step for every range which is defined by the PageStep property.

Number / String / Color / Date / Boolean

Each of the listed interfaces define the same methods and events. The only difference in the interfaces is - as the name
says - the type of the data processed by the implementing widget. With that solution, we have the same API for every
form widget but can still determinate which type of value the widget expects by checking for the different interfaces.

Interfaces

e Number : gx.ui.form.INumberForm

102 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

e String: gx.ui.form.IStringForm

e Color: gx.ui.form.IColorForm

e Date: gx.ui.form.IDateForm

e Boolean: gx.ui.form.IBooleanForm

The color interface takes a string which has to be formatted like the common colors in qooxdoo.

<<interfaces:
INumberForm

<<inferfaces=
IStringForm

changeValue : Data

changeValue : Data

getValue() : number
resetValue() : void

setValue(value : number) : void

setValue(value : string) @ void
getValue() : string
resetValue() : void

<<interface>>
IDateForm

<<inferfaces=
IColorForm

changeValue : Data

changeValue : Data

setValue(value : Date) : void
getValue() : Date
resetValue() : void

setValue(value : Color) : void
getValue() : Color
resetValue() : void

<<interface==
IBooleanForm

changeValue : Data

setValue(value : boolean) : void
getValue() : boolean
resetValue() : void

As you can see, the interface can be implemented with only one property.

» The value property takes the value of the widget. This is for example a boolean in a checkbox widget or a string
in a text field widget.

Model / ModelSelection

Most of the form items handling a selection had a value property in the old API. We replaced that with a model property
since the the value property is used for user input values. The methods for accessing the model data are defined in an
interface called gx.ui.form.IModel.

<<Interfaces=
IModel

changeModel : Data

getModel() : var
resetModel() : void

setModel(value : var) : void

The model property can be used to store additional data which is represented by the widget. The data does not need to
be a string like in the old value property. You can store references to objects, numbers, strings and so on. Accessing
the model is very easy. Every widget containing a widget implementing the gx . ui.form.IModel interface has its
own interface to access the current selected model.

4.2. Widgets Introduction

103

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.util.ColorUtil

qooxdoo Documentation, Release 2.0.2

<<lnterfaces>
IModelSelection
setModelSelection{value : var) : void
getModelSelection() : var

As you can see in the diagram, you can get the currently selected model and also set the selection using the models.

Widgets

The following listing shows the form widgets and their corresponding interfaces. To see more details about a widget,
take a look at the widgets documentation.

Sample Usage

The first example is a simple one, showing how to use two widgets implementing the ISt ringForm interface:

// create and add a textfield
var textfield = new gx.ui.form.TextField();
this.getRoot () .add (textfield, {left: 10, top: 10});

// create and add a label
var label = new gx.uil.basic.Label();
this.getRoot () .add(label, {left: 10, top: 40});

// set the text of both widgets
textfield.setValue ("Text");
label.setValue ("Text");

The second example shows how to react on a change in a widget implementing the INumberForm interface. The
value of the slider will be shown as a label:

// create and add a slider

var slider = new gx.ui.form.Slider();
slider.setWidth (200);

this.getRoot () .add(slider, {left: 10, top: 10});

// create and add a label
var label = new gx.ui.basic.Label();
this.getRoot () .add(label, {left: 220, top: 10});

// add the listener

slider.addListener ("changeValue", function(e) {
// convert the number to a string
label.setValue (e.getData() + "");

}, this);

The last example shows how to use the IForm interface and how to mark a widget as invalid:

// create and add a slider

var slider = new gx.ui.form.Slider();

slider.setWidth (200);

slider.setValue (100);

this.getRoot () .add(slider, {left: 10, top: 10});

// set the invalid message
slider.setInvalidMessage ("Please use a number above 50.");

104 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

// add the validation

slider.addListener ("changeValue", function (e)

if (e.getData() > 50) {
slider.setValid (true);
} else {
slider.setValid(false);
}
}, this);

All examples work in the Playground application.

Validation

{

Form validation is essential in most of the common use cases of forms. Thats why qooxdoo supports the application
developer with a validation component named gx.ui.form.validation.Manager. This manager is respon-
sible for managing the form items which need to be validated. We tried to keep the API as minimal as possible but
simultaneously as flexible as possible. The following class diagram shows the user API of the component.

gx.ui.form.validation.Manager

Properties
invalidMessage : String
validator : Function | AsyncValidator
Events
changeValid : gx.event.type.Data
complete : qx.event.type.Event

getinvalidMessages() : String[]
getValid() : boolean | null
isValid() : boolean | null

resel() : void

validate() : boolean | void

add(formitem : Widget, validator : Function | AsyncValidator) : void

qx.ui.form.validation.AsyncValidator

[sefvValid{valid : boolean, message : String) : void

The events, properties and methods can be divided into three groups:

* Validation
— getValid()
— isValid()
— validate()
— validator - property
— complete - event
— changeValid - event
* Form Item Management
— add(formltem, validator)
— reset()
 Invalid Messages
— getlnvalidMessages()

— invalidMessage - property

4.2. Widgets Introduction

105

qooxdoo Documentation, Release 2.0.2

The first part with which the application developer gets in contact is the add method. It takes form items and a validator.
But what are form items?

Requirements

Form items need two things. First of all, a given form item must be able to handle an invalid state and must have an
invalid message. This is guaranteed by the /Form interface already introduced. But that’s not all: The manager needs
to access the value of the form item. Therefore, the form item needs to specify a value property. This value property is
defined in the data specific form interfaces also introduced above. So all widgets implementing the IForm interface
and one of the value defining interfaces can be used by the validation. For a list of widgets and the interfaces they
implement, take a look at the widgets section in this document.

Now that we know what the manager can validate, it’s time to learn how to validate. In general, there are two different
approaches in validation. The first approach is client side validation, which is commonly synchronous. On the other
hand, server side validation is asynchronous in most cases. We will cover both possibilities in the following sections.

Synchronous

The following subsections cover some common scenarios of synchronous validation. See this code snippet as basis
for all the examples shown in the subsections.

var manager = new gx.ui.form.validation.Manager();
var textField = new gx.uil.form.TextField();
var checkBox = new gx.uil.form.CheckBox() ;

Required Form Fields One of the most obvious validations is a check for a non-empty field. This can be seen in
common forms as required fields, which are easy to define in qooxdoo. Just define the specific widget as required and
add it to the validation manager without any validator.

textField.setRequired (true);
manager.add (textField);

The validation manager will take all the necessary steps to mark the field as invalid as soon as the validate method is
invoked if the text field is empty.

Default Validator Another common use case of validation is to check for specific input types like email addresses,
URLs or similar. For those common checks, qooxdoo offers a set of predefined validators in gx.util.vValidate.
The example here shows the usage of a predefined email validator.

manager.add (textField, gx.util.Validate.email());

Custom Validator Sometimes, the predefined validators are not enough and you need to create an application-
specific validator. That’s also no problem because the synchronous validator is just a JavaScript function.
In this function, you can either return a boolean which signals the validation result or you can throw a
gx.core.ValidationError containing the message to be displayed as an invalid message. The validation
manager can handle both kinds of validators. The example here checks if the value of the text field has a length of at
least 3.

manager.add (textField, function (value) {
return value.length >= 3;

)i

106 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Validation in the context of the form All shown validation rules validate each form item in its own context. But it
might be necessary to include more than one form item in the validation. For such scenarios, the manager itself can
have a validator too. The example here demonstrates how to ensure that the text field is not empty if the checkbox is
checked.

manager.setValidator (function (items) {

if (checkBox.getValue()) {
var value = textField.getValue();
if (!value || value.length == 0) {

textField.setValid (false);
return false;

}
textField.setValid (true);
return true;

)i

Asynchronous

Imagine a scenario where you want to check if a username is already taken during a registration process or you want
to verify a credit card number. This type of validation can only be done by a server and not in the client. But you
don’t want the user to wait for the server to process your request and send the answer back. So you need some kind of
asynchronous validation.

For all asynchronous validation cases, we need a wrapper for the validator, the
gx.uil.form.validation.AsyncValidator. But that does not mean a lot work for the application
developer. Just take a look at the following example to see the AsyncValidator in action.

manager.add (textField, new gx.ui.form.validation.AsyncValidator (
function (validator, value) {
// here comes the async call
gx.event.Timer.once (function () {
// callback for the async validation
validator.setValid (false);
}, this, 1000);
}
))

The only difference to the synchronous case, at least from the application developer’s point of view, is the wrapping
of the validator function. Take a look at the following sequence diagram to get an insight on how the asynchronous
validation is handled.

4.2. Widgets Introduction 107

qooxdoo Documentation, Release 2.0.2

so:asyncWalidate
I i i '
validate() | . H
¥ 1
getValue|) ! !
- - i
1
g ual.u& U :
e — —————————— i
" " 1
walidate(l, value, Tarm, context) - i call{av, value)
']
" [
s ssssss s s o i T) .
! ! ! validationDonadvalid, mag)
i H setalidivalid, msg)
i safliemValid(l, valid)
e * :- B
setialid{valig) [
validationComplate ..;______________D
R L P mmmmmmmmm—mm - ncht — = = = m i mm - T e
¥ i 1 i
] | 1

|
ﬂ\
|
Evanl I
The asynchronous validation can not only be used for form items. Also, the manager itself can handle instances of the
AsyncValidator as validator.

Serialization

Entering data into a form is one part of the process. But usually, that entered data needs to be sent to the server. So
serialization is a major topic when it comes to forms. We decided not to integrate this in one form manager which
would be responsible for both validation and serialization.

Idea

The main idea behind this was to ensure that it cooperates nicely with features like the form widgets and the corre-
sponding data binding components. So we decided to split the problem into two different parts. The first part is storing
the data held in the view components as a model. The second part takes that model and serializes its data. Sounds like
data binding? It is data binding!

108 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

can be serialized

with qu.util. Serialize toUriParameter(model)

binding | Formitemi
e

binding,

> FarmItem?2

But you don’t have to connect all these widgets yourself. qooxdoo offers an object controller which can take care
of most of the work. But where do you get the model? Writing a specific qooxdoo class for every form sounds like
a bit of overkill. But gooxdoo has a solution for that, too. The creation of classes and model instances is already a
part of the data binding components and can also be used here. Sounds wierd? Take a look at the following common
scenarios to see how it works.

Common Scenarios

The most common scenario is to serialize a number of form items without any special additions. Just get the values of
the entire form and serialize them.

// create the ui
var name = new gx.ul.form.TextField();
var password = new gx.ui.form.PasswordField();

// create the model

var model = gx.data.marshal.Json.createModel ({name: "a", password: "b"});

// create the controller and connect the form items

var controller = new gx.data.controller.Object (model);
controller.addTarget (name, "value", "name", true);
controller.addTarget (password, "value", "password", true);

// serialize
gx.util.Serializer.toUriParameter (model) ;

The result will be name=as&password=b because the initial values of the model are a and b.

This way, the serialization is separated from the form itself. So hidden form fields are as easy as it could be. Just add
another property to the model.

var model = gx.data.marshal.Json.createModel (
{name: "a", password: "b", c: "i am hidden"}

)i

Keep in mind that you’re creating a model with that and you can access every property you created using the default
getters and setters.

You might be asking yourself “What if i want to convert the values for serialization? My server needs some different
values...”. That brings us to the topic of conversion. But as we have seen before, the mapping from the view to
the model is handled by the data binding layer which already includes conversion. Take a look at the data binding

documentation for more information on conversion.

4.2. Widgets Introduction 109

qooxdoo Documentation, Release 2.0.2

Need something special? In some cases, you might want to have something really special like serializing one value
only if another value has a special value or something similar. In that case, you can write your own serializer which
handles serialization the way you need it.

Resetting
A third useful feature of a form besides validation and serialization is resetting the entire form with one call. Doesn’t
sound complicated enough that a separate class is needed. But we decided to do it anyway for good reasons:

» The validation manager is not the right place for resetting because it handles only the validation.

* The form widget, responsible for layouting forms, is a good place, but we don’t want to force developers to use
it if they just want the reset feature.

So we decided to create a standalone implementation for resetting called gx.ui.form.Resetter.

qx.ui.form.Resetter
add(item : qx.ui.form.IForm) : void
reset() : void

Like the task of resetting itself, the API is not too complicated. We have one method for adding items, and another
one for resetting all added items.

How It Works

Technically, it’s not really a challenge thanks to the new form API. You can add any items either having a value
property defined by one of the data specific form interfaces or implementimg the selection API of qooxdoo. On every
addition, the resetter grabs the current value and stores it. On a reset all stored values are set.

Sample Usage

The following sample shows how to use the resetter with three input fields: A textfield, a checkbox and a list.

// create a textfield
var textField = new gx.ui.form.TextField("acb");
this.getRoot () .add (textField, {left: 10, top: 10});

// create a checkbox
var checkBox = new gx.ui.form.CheckBox ("box");
this.getRoot () .add (checkBox, {left: 10, top: 40});

// create a list

var list = new gx.ui.form.List();

list.add(new gx.ui.form.ListItem("a"));
list.add (new gx.ui.form.ListItem("b"));
list.setSelection([list.getSelectables () [0]11]);
this.getRoot () .add(list, {left: 10, top: 70});

// create the resetter

var resetter = new gx.ui.form.Resetter();
// add the form items

resetter.add (textField);

resetter.add (checkBox) ;

resetter.add (list);

110 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

// add a reset button

var resetButton = new gx.ui.form.Button("Reset");

resetButton.addListener ("execute", function() {
resetter.reset ();

}) i
this.getRoot () .add (resetButton, {left: 120, top: 10});

Form Object

We’ve already covered most parts of form handling. But one thing we’ve left out completely until now is layouting
the form items. Thats where the gx . ui . form.Form widget comes into play.

What is it?

The qooxdoo form is an object which includes three main parts.
e Validation using the gx .ui.form.validation.Manager class
* Resetting using the gx .ui.form.Resetter class
* Handling the layout of the form
As we have already talked about the first two items, I'll cover the last item in a more detailed way.

In most cases, a form’s layout is specific to the application. It depends on the space available in the application
and many other factors. Thats why qooxdoo has this flexible form layouting tool, which includes a set of de-
fault options to layout a form. On of the main requirements of the solution was extensibility so that anyone could
have the layout their application requires. To achieve this, we applied a pattern used widely across the qoox-
doo framework, which moves all UI related code to renderer classes. These renderers are as lightweight as pos-
sible to make it easy for developers to write their own custom renderer, as you can see in this UML diagram:

_ . _____gr.uiform.Form - S .
add(item : gx.ui.coma. Widgeat, label : String, validator : Function Il AsyncValidator, name : String) : woid
addBution{bution : gx.ui.form. Button) : void
adgGroupHoader(ite © String) : void L
validate() : boolean Il null
getValidationManager() : gpt.ul.form.validation. Manager
reset() : void
createView(randener ;o uilorm.renderer. |FormBendaror) © gx.uitorm. renderer.] FormBandarer

;

<<nterfacess
qu.ul.torm.renderer. FormAenderer
additems{iiems © qx.ul.core. Widget[], names :{-'slnngj], fitle : Slnng] - vipid
adaBution{bution : gx.ultorm Button) : vokd

Optional

qee.ul.form.renderer Single
additems{items : qx.ui.core.VWidget]], names :String[], titke : String) : void
addBution{bunon | .uliorm.Buttan) @ vk

qx.ul.form. renderer. Double
' additems(itens : qx.ul.core.Widgat]], names : String{), titie : String) : woid
&ddBu:lor.lbulmn - (. ull. form. Buthan) : woid

gx.ul.form.renderer. Double |
- === ===« addterns{iems : gx.ul.cora.Widget{], names : String(], titie : String) : void
addBution{bution : q.ui.form. Bution) : void

4.2. Widgets Introduction 111

qooxdoo Documentation, Release 2.0.2

Renderer

As the diagram shows, qooxdoo provides an interface for FormRenderer, the IFormRenderer interface. It defines
two methods, one for adding a group of form items and one for adding buttons.

¢ addItems(items : gx.ui.form.IForm[], names : String[], title : String) : void
* addButton(button : gx.ui.form.Button) : void

Surely you’ve recognized the difference to the API of the form itself. Widgets are added to the form individually, but
the renderer always gets a group of widgets at once. This gives the renderer additional information which it may need
to render the form based on the number of groups rather then on the number of widgets.

You may ask yourself why we didn’t use the layouts we usually use in such scenarios if we ant to render widgets on
the screen. It may be necessary for a renderer to contain even more than one widget. Imagine a wizard or a form
spread out over multiple tabs. That wouldn’t be possible using layouts instead of renderer widgets.

The following sections show the renderers included in qooxdoo, which can be used out of the box.

Default (Single Column) If you don’t specify a renderer, the default is used, which is a single column renderer.

Registration

Name * : | |

Password * : | |

Save?: [J

Personal Information

Age | 0 E||
Country : | |
Gender : | male = |

Bio :

As you can see in the picture, the renderer adds an asterisk to every required field, adds a colon at the end of every
label and defines the vertical layout.

Double Column The double column renderer has the same features as the previously introduced single column
renderer but renders the fields in two columns, as you can see in the following picture.

112 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Registration

Name * : l: Password * : | |

Save?: [

Personal Information

Age : Country : | |

Gender : (2 Male Bio :
O Female

Single Column with Placeholer This renderer is more a of demo showing how easy it can be to implement your
own renderer. It has a limitation in that it can only render input fields which have the placeholder property. But the
result is pretty nice:

Registration

Personal Information

Sample Usage

After we’ve seen how it should look, here come some examples showing how it works. In this example, we want to
create a form for an address management tool. So we divide our input fields into two groups. The first group contains
two text fields, one for the first name and one for the last name. The second group contains some contact data like
email, phone number and company name. Finally, we want to add two buttons to the form, one for saving the data if
it is valid and another for resetting the form. So here we go...

First, we need a form object.

// create the form
var form = new gx.ui.form.Form();

After that, we can create the first two input fields. As these two fields are required, we should mark them as such.

// create the first two input fields

var firstname = new gx.ui.form.TextField();
firstname.setRequired (true);
var lastname = new gx.ui.form.TextField();

lastname.setRequired (true);

As you can see, the input fields are text fields as described above. Next, we can add those input fields to the form.

4.2. Widgets Introduction 113

qooxdoo Documentation, Release 2.0.2

// add the first group
form.addGroupHeader ("Name") ;
form.add (firstname, "Firstname");
form.add (lastname, "Lastname");

First, we added a group header to create a headline above the two input fields. After that, we added them with a name
but without a validator. The required flag we set earlier is enough. We need to add another group of input fields for
the contact data.

// add the second group

form.addGroupHeader ("Contact");

form.add (new gx.ui.form.TextField(), "Email", gx.util.Validate.email());
form.add (new gx.ui.form.TextField(), "Phone");

After adding the second group header, you’ll see the text field for the email address, which uses a predefined email
validator from the framework. The phone number does not get any validator at all. The last missing thing are the
buttons. First, add the save button.

// add a save button

var savebutton = new gx.ui.form.Button("Save");
savebutton.addListener ("execute", function() {
if (form.validate()) {
alert ("You can save now...");

}
)i

form.addButton (savebutton) ;
The save button gets an execute listener which first validates the form and, if the form is valid, alerts the user. The
reset button is analogous.

// add a reset button

var resetbutton = new gx.ui.form.Button ("Reset");

resetbutton.addListener ("execute", function() {
form.reset ();

)i
form.addButton (resetbutton);

Now the form is complete and we can use the default renderer to render the form and add it to the document.

// create the view and add it
this.getRoot () .add (new gx.ui.form.renderer.Single (form), {left: 10, top: 10});

Running this code will create a form as described above which will look like this:

Mame

Contact

If you want to get a different look and feel, you can create a different renderer.

114 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

// create the view and add it

this.getRoot () .add(
new gx.ui.form.renderer.SinglePlaceholder (form),
{left: 10, top: 10}

)i

Just give it a try in the playground.

Form Controller
Data binding for a form certainly is a handy feature. Using a model to access data in the form brings form handling to
another level of abstraction. That’s exactly what the form controller offers.

The form controller is fully covered in the data binding documentation.

Sample Usage

The following example shows how to use the controller with a simple form, which contains three text fields: One for
salutation, one for first name and one for last name.

First, we create the form:

// create the form
var form = new gx.ui.form.Form();

In a second step we add the three text fields. The important thing here is that if no name is given - as in the first two
cases - each label will also be used as a name. For that, all spaces in the label are removed.

// add the first TextField ("Salutation" will be the property name)
form.add (new gx.ui.form.TextField(), "Salutation");

// add the second TextField ("FirstName" will be the property name)
form.add (new gx.ui.form.TextField(), "First Name");

// add the third TextField ("last" will be the property name)
form.add (new gx.ui.form.TextField(), "Last Name", null, "last");

After we add the text fields, we can add the view to the application root.

// add the form to the root
this.getRoot () .add (new gx.ui.form.renderer.Single (form));

Now that the form has been created, we can take care of the data binding controller. We simply supply the form
instance as an argument to the constructor. But we don’t have a model yet, so we just pass null for the model.

// create the controller with the form
var controller = new gx.data.controller.Form(null, form);

The final step for data binding is to create the actual model.

// create the model
var model = controller.createModel () ;

Take a look at the following sequence diagram to see how it works internally.

4.2. Widgets Introduction 115

http://demo.qooxdoo.org/2.0.2/playground/#%7B%22code%22%3A%20%22%252F%252F%2520create%2520the%2520form%250Avar%2520form%2520%253D%2520new%2520qx.ui.form.Form()%253B%250A%250A%252F%252F%2520create%2520the%2520first%2520two%2520input%2520fields%250Avar%2520firstname%2520%253D%2520new%2520qx.ui.form.TextField()%253B%250Afirstname.setRequired(true)%253B%250Avar%2520lastname%2520%253D%2520new%2520qx.ui.form.TextField()%253B%250Alastname.setRequired(true)%253B%250A%250A%252F%252F%2520add%2520the%2520first%2520group%250Aform.addGroupHeader(%2522Name%2522)%253B%250Aform.add(firstname%252C%2520%2522Firstname%2522)%253B%250Aform.add(lastname%252C%2520%2522Lastname%2522)%253B%250A%250A%252F%252F%2520add%2520the%2520second%2520group%250Aform.addGroupHeader(%2522Contact%2522)%253B%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Email%2522%252C%2520qx.util.Validate.email())%253B%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Phone%2522)%253B%250A%250A%252F%252F%2520add%2520a%2520save%2520button%250Avar%2520savebutton%2520%253D%2520new%2520qx.ui.form.Button(%2522Save%2522)%253B%250Asavebutton.addListener(%2522execute%2522%252C%2520function()%2520%257B%250A%2520%2520if%2520(form.validate())%2520%257B%250A%2520%2520%2520%2520alert(%2522You%2520can%2520save%2520now...%2522)%253B%250A%2520%2520%257D%250A%257D)%253B%250Aform.addButton(savebutton)%253B%250A%250A%252F%252F%2520add%2520a%2520reset%2520button%250Avar%2520resetbutton%2520%253D%2520new%2520qx.ui.form.Button(%2522Reset%2522)%253B%250Aresetbutton.addListener(%2522execute%2522%252C%2520function()%2520%257B%250A%2520%2520form.reset()%253B%250A%257D)%253B%250Aform.addButton(resetbutton)%253B%250A%250A%252F%252F%2520create%2520the%2520view%2520and%2520add%2520it%250Athis.getRoot().add(new%2520qx.ui.form.renderer.Single(form)%252C%2520%257Bleft%253A%252010%252C%2520top%253A%252010%257D)%253B%22%7D

qooxdoo Documentation, Release 2.0.2

sd createModel]

<<creaes ¢ ax.data. form : qx.ul,
PR form Form e
== ======--------d :
selargetfform) | i
o @ |
I 1
createModel() | getliems() :

vardata = {}

Ioop [var name

in tems]

C_ datajname] = tem.getVaiue(): _—_)

= 1 ‘Will sat up the
- mmmmmmmmmmmno s p= - i bingings.

Now we have managed to set up a form and a model connected by bidirectional bindings. So we can simply use the
model to set values in the form.

// set some values 1in the form
model.setSalutation ("Mr.");
model.setFirstName ("Martin");
model.setLast ("Wittemann") ;

As you can see here, the properties (and therefore setters) are defined according to the names we gave the text fields
when adding them.

See the code in action in the playground.
Still to come...

* A way to create a form out from a JSON definition

4.2.10 Menu Handling

Menus are well-established user interface elements in GUIs. They are popup-like controls that provide simple or
cascading lists of buttons. Typical uses show menus opening off from buttons in tool bars, or popping up as context
menus on mouse right-clicks e.g. on a tree element.

Here are a few examples:

116 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/playground/#%7B%22code%22%3A%20%22%252F%252F%2520create%2520the%2520form%250Avar%2520form%2520%253D%2520new%2520qx.ui.form.Form()%253B%250A%250A%252F%252F%2520add%2520the%2520first%2520TextField%2520(Salutation%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Salutation%2522)%253B%250A%252F%252F%2520add%2520the%2520second%2520TextField%2520(FirstName%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522First%2520Name%2522)%253B%250A%252F%252F%2520add%2520the%2520third%2520TextField%2520(last%2520will%2520be%2520the%2520property%2520name)%250Aform.add(new%2520qx.ui.form.TextField()%252C%2520%2522Last%2520Name%2522%252C%2520null%252C%2520%2522last%2522)%253B%250A%250A%252F%252F%2520add%2520the%2520form%2520to%2520the%2520root%250Athis.getRoot().add(new%2520qx.ui.form.renderer.Single(form))%253B%250A%250A%252F%252F%2520create%2520the%2520controller%2520with%2520the%2520form%250Avar%2520controller%2520%253D%2520new%2520qx.data.controller.Form(null%252C%2520form)%253B%250A%252F%252F%2520create%2520the%2520model%250Avar%2520model%2520%253D%2520controller.createModel()%253B%250A%250A%252F%252F%2520set%2520some%2520values%2520in%2520the%2520form%250Amodel.setSalutation(%2522Mr.%2522)%253B%250Amodel.setFirstName(%2522Martin%2522)%253B%250Amodel.setLast(%2522Wittemann%2522)%253B%250A%22%7D
http://bugzilla.qooxdoo.org/show_bug.cgi?id=2685

qooxdoo Documentation, Release 2.0.2

! File = Edit* Search+ WView = Format~

New Ctrl+N
L Open Ctrl+0
Close
2% Save Ctrl+5

__ Sawve as...

Format Help

¥ Show status bar
Syntax F| v Show tabs
Show ruler Show tree
Show line numbers ¥ Show macros
ASCIl table Show tags
Show console

(4]
B

on Cut

Ctri+X

ltermn
| Copy Ctrl+C

ltem
Paste Ctrl+P

ltermn

Harm ©
The Demobrowser provides further examples.

Menus can be constructed in a qooxdoo application using widgets from the gx.ui.menu name space. The main class
from this package is Menu. Other classes allow you to tailor the appearance and the behaviour of the menu you create.
You can even use checkboxes and radiobuttons inside your menus.

Simple Example

Here is a simple menu example:

// Create the menu
var menu = new gx.ui.menu.Menu();

// Creates the command
var command = new gx.event.Command ("Control+0O");

command.addListener ("execute", function() {
this.debug ("Open action");
},this);

// Add some content
var openButton = new gx.ui.menu.Button ("Open", "icon/l6/actions/document-open.png", command) ;
var closeButton = new gx.ui.menu.Button("Close");

menu.add (openButton) ;

4.2. Widgets Introduction 117

http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~Menu.html
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.menu

qooxdoo Documentation, Release 2.0.2

menu.add (closeButton) ;

// Add behaviour

closeButton.addListener ("execute", function() {
this.debug ("Close action");
}, this);

// Create a button that will hold the menu
var button = new gx.ui.form.MenuButton ("Menu", null, menu);

There are a couple of things to note here:
e The main widget is the menu of type gx.ui.menu.Menu.
* Menu buttons are of type gx .ui.menu.Button and are created individually.
* They are then added to the menu. The buttons will appear in the menu in the order they are added.

e The closeButton is created with the minimal set of parameters, namely just the string for the button label.
For a more advanced solution, see the openButton: you can optionally specify a button icon, and a command
gx .event .Command that is invoked if the button or the shortcut is pressed/selected.

* You can supply missing or updated features after the widget’s creation; e.g. the callback function for the
closeButton is provided in a separate method call to addListener ().

¢ The canonical event for the selection of a menu button is the execute event. (This is in line with other button
flavors throughout the qooxdoo framework, e.g. the regular gx . ui.form.Button).

Complex Menu Sample

This example should show how to create a menu structure with submenu and how to handle with groups.

Qooxdoo has some widgets that need a menu to handle user interaction. For this sample we will chose the
gx.uil.toolbar.ToolBar to create the menu structure. To see a overview, witch widgets uses a menu, take
a look in the Menu.

This code snippet show how to create a “ToolBar” with to menu items “File” and “View”:

// Create the toolbar and add to the DOM
var toolBar = new gx.uil.toolbar.ToolBar();
this.getRoot () .add (toolBar, {

left: 20,
top: 20,

right: 20
1)

// Create "File" menu
var fileButton = new gx.ui.toolbar.MenuButton("File");
toolBar.add (fileButton);

var fileMenu = new gx.uil.menu.Menu();

fileMenu.add (new gx.ui.menu.Button ("New", null, null, this.__getNewMenu()));
fileMenu.add (new gx.ui.menu.Button ("Open...", "icon/l6/actions/document—open.png"));
fileMenu.add (new gx.ui.menu.Separator());

fileMenu.add (new gx.ui.menu.Button("Save", "icon/l6/actions/document-save.png"));
fileMenu.add (new gx.ui.menu.Button("Save As...", "icon/l6/actions/document-save-as.png"));
fileMenu.add (new gx.ui.menu.Separator());

fileMenu.add (new gx.ui.menu.Button("Exit", "icon/l6/actions/application-exit.png"));

fileButton.setMenu (fileMenu) ;

118 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

// Create "View" menu

var viewButton = new gx.ui.toolbar.MenuButton ("View");

toolBar.add (viewButton) ;

var viewMenu = new gx.ui.menu.Menu();

viewMenu.add (new gx.ui.menu.Button ("Panes", null, null, this.__getPanesMenu()));
viewMenu.add (new gx.ui.menu.Button("Syntax", null, null, this.__getSyntaxMenu()));
viewMenu.add (new gx.uil.menu.Separator()); // First kind to add a separator
viewMenu.add (new gx.ui.menu.CheckBox ("Show ruler"));

viewMenu.add (new gx.ui.menu.CheckBox ("Show line numbers"));
viewMenu.addSeparator(); // A other kind to add a separator

viewMenu.add (new gx.ui.menu.Button ("ASCII table..."));

viewButton.setMenu (viewMenu) ;

There are a couple of things to note here:
e The gx.ui.menu.Menu could get some different children (Button, Seperator, CheckBox, ...)
* The fourth parameter in gx .ui.menu.Button is also a menu. So it is possible to create submenus.

» There are tow kinds to add a separator to a menu. The first kind is to create a Separator instance and
add this to the menu. Or the other kind is to call the addSeparator method from the Menu instance.

The next code snipped should explain how to create a menu, which contain RadioButtons, but only one could be
selected:

__getSyntaxMenu : function/()

{

var syntaxMenu = new gx.ui.menu.Menu();

var cDialectMenu = new gx.ui.menu.Menu();
cDialectMenu.add (new gx.ui.menu.RadioButton("C"));
cDialectMenu.add (new gx.ui.menu.RadioButton ("C Sharp"));
cDialectMenu.add (new gx.ui.menu.RadioButton ("C Plus Plus"));

var htmlButton = new gx.ui.menu.RadioButton ("HTML");

var JjsButton = new gx.uil.menu.RadioButton ("JavaScript");

var cdialectButton = new gx.ui.menu.Button("C Dialect", null, null, cDialectMenu);
var pythonButton = new gx.ui.menu.RadioButton ("Python");

htmlButton);
jsButton) ;
cdialectButton) ;
pythonButton) ;

syntaxMenu.add
syntaxMenu.add
syntaxMenu.add
syntaxMenu.add

// Configure and fill radio group

var langGroup = new gx.ui.form.RadioGroup () ;

langGroup.add (htmlButton, JjsButton, pythonButton);

langGroup.add.apply (langGroup, cdialectButton.getMenu () .getChildren());

return syntaxMenu;

You can see, that the menu contains RadioButton and all RadioButton should grouped in one RadioGroup,
but the RadioButton in the submenu “C Dialect” should also be considered in the RadioGroup.

To add a RadioButton to the RadioGroup call the add () method from the RadioGroup. The param-
eter from add () is a variable number of items which should be added. You can see that the code calls a
langGroup.add.apply () method to add the RadioButton from the “C Dialect” submenu. This is no qoox-
doo construction, the apply () method is a construction from JavaScript and it is not important to know how thus the
method works.

4.2. Widgets Introduction 119

qooxdoo Documentation, Release 2.0.2

Additional Menu Topics

Menu positioning

Qooxdoo will go a long way to position a menu sensibly and with regard to the enclosing container, so that menu
buttons are always fully visible if the menu is opened.

The Placement demo shows how the menus are positioned.

4.2.11 Window Management

Window is a widget used to show dialogs or to realize a MDI (Multiple Document Interface) applications.
Windows can only be added to gx.ui.window.Desktop widgets, or to widgets which implement the
gx.ui.window.IDesktop interface.

Each Desktop widget must have a gx.ui.window.Manager. If none is provided, the default window manager
(gx.ui.window.Window#DEFAULT_MANAGER_CLASS) is used. The desktop uses the manager to handle the
contained windows.

The manager takes care of windows z-index order. Windows can be normal (default), always on top or modal. Always
on top windows stay on top of normal windows and modal windows appear in front of all other windows. If there are
a bunch of windows open and we close one, the manager will activate the window that is higher in the z-index order
stack.

Let’s see this in action. We’ll create a tabview with one page, create a desktop widget for the page, and add different
types of windows. You can see how the opened windows stack on each other and when you close one, the highest
z-index order window will get activated.

var root = this.getRoot ();
var tabView = new gx.uil.tabview.TabView();

var page = new gx.ui.tabview.Page ("Desktop");

var windowManager = new gx.ui.window.Manager () ;

var desktop = new gx.ui.window.Desktop (windowManager) ;
var aWindow = null;

page.setlLayout (new gx.ui.layout.Grow());

page.add (desktop) ;
tabView.add (page);
root.add (tabView, {edge: 0});

//create 3 normal windows and add them to the page’s desktop
for (var i=0; i<3; i++)
{

aWindow = new gx.uil.window.Window ("Normal Window #" +i).set ({

width:300

b

desktop.add (aWindow) ;

aWindow.open () ;

//create 3 alwaysOnTop windows and add them to the page’s desktop
for (var i=0; 1<3; i++)
{
aWindow = new gx.ui.window.Window ("AlwaysOnTop Window #" +i).set ({
width:300
1)
aWindow.setAlwaysOnTop (true);

120 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/demobrowser/#ui~Placement.html

qooxdoo Documentation, Release 2.0.2

desktop.add (aWindow) ;
aWindow.open () ;

}

//create a modal window and add it to the page’s desktop
aWindow = new gx.uil.window.Window ("Modal Window #" +1).set ({
width:300

)i
aWindow.setModal (true) ;
desktop.add (aWindow) ;
aWindow.open () ;

Like I said, windows can be added to widgets which implement the IDesktop interface. This interface is implemented
by gx.ui.window.MDesktop mixin. You can use this mixin to make a custom widget behave like a Desktop.
This is exactly what the superclass of all root widgets (gx.ui.root.Abstract) does. This is why we can add
windows to a root widget.

var win = new gx.ui.window.Window ("First Window");
var root = this.getRoot ();

root.add (win) ;

win.open () ;

Related documentation

Window widget

Demos and API

To find out more, you can check the desktop demo and the API reference.

4.2.12 HTML Editing

HtmlArea is a html editing widget which is part of the framework. This widget is available as low-level and Ul-
level implementation. The first targets traditional webpages / single-page applications and the latter Rich Internet
Applications (RIA) as preferred usecase.

Here you can find some interesting technical info.

Note: Please keep in mind that the HtmlArea component provides basic HTML editing functionality. It is not a
full-blown HTML editor and will not be developed towards it.

4.2. Widgets Introduction 121

http://manual.qooxdoo.org/2.0.2/pages/widget/window.html
http://demo.qooxdoo.org/2.0.2/demobrowser/index.html#widget~Desktop.html
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.ui.window
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.bom.htmlarea.HtmlArea
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.embed.HtmlArea
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.embed.HtmlArea

qooxdoo Documentation, Release 2.0.2

Demo

BOUE &« EBEEBE M TR I HEE R 4 5 (EE D@
About

qooxdoo (pronounced [ku:ksdu:]) is a comprehensive and innovative Ajax application framework.
L ging object-oriented JavaScript allows developers to build impressive cross-browser applications.
No HTML CSS nor DOM knowledge is needed aooxdoo |ncludes a platform |ndependent development

L/EPL dual license.

Open Source under an LC

Setup

One important step is necessary to get the HtmlArea up and running.

Note: If you setup the component without handing the source parameter you have to place a blank.html file next to
your applications index.html.

This is necessary due the Same-Origin Policy implemented by most browsers.

Features

Feature List

This page aims to describe the features of the HtmlArea component. Aims because there are for sure features which
are missing or considered as must-have to not enter the feature list as own entry.

This page should get you a good overview of what you can expect from this HTML editing component.

End-User Features

Text Formatting
* Bold
e [talic
* Underline

* Strikethrough

122 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/demobrowser/#widget~HtmlArea.html
http://en.wikipedia.org/wiki/Same_origin_policy

qooxdoo Documentation, Release 2.0.2

¢ Text Color
» Background Color
* Font Size

 Font Family

Alignment
o Left
* Center
* Right
* Justify

Lists
¢ Unordered lists

¢ Ordered lists

Inserting
* Tables
* Images
* Horizontal rulers
» Hyperlink
e HTML code

Document Wide Formatting
* Background Image

* Background Color

Additional Features
* Removing format
* Select the whole content
* Indent / Outdent
* Undo /Redo

Developer Features

4.2. Widgets Introduction

123

qooxdoo Documentation, Release 2.0.2

Events
* Load / LoadingError and Ready
* Current cursor context
* Contextmenu

¢ Focus / Focus out

Content Manipulation
* Content as HTML output
* Post-process HTML output
¢ Current selected HTML
* Reset content

* Context Information of current focused node (e.g. to update a toolbar widget)

Advanced Paragraph-Handling
* Keeps formatting across multiple paragraphs
* Type of line-break adjustable (new paragraph or new line)

* Support for Shift+Enter and Ctrl+Enter to insert single line-break

Additional Features
* Hotkey Support
» Set own CSS for content at startup
* Access to content document and content body

¢ Access to editable iframe element

Technical Feature List

In comparison to the Feature List of the HtmlArea this page describes some technical insights of the component. If
you plan to get to know some details of how to develop a WYSIWYG component and want to learn the pitfalls of the
different browser implementations this is good place to start.

Startup The HtmlArea relies on a editable iframe. To take control over this iframe the component has to ensure that
the iframe’s document is fully loaded and accessible. For every browser the 1oad event of the iframe object is used.
Only for IE it is necessary to poll the document if it’s not immediately available after the 1oad event. The result of
the startup phase is the ready event which informs the application developer that the startup was successful.

Content Wrapping Since the application developer only sets the content of the HtmlArea and not the whole doc-
ument the component needs to setup the rest of the content (DOCTYPE, HTML and BODY elements). The difficult
exercise here is to set the right style attribute at the right element for each browser.

The toughest thing is to get the right behaviour for native scrollbars. In IE for example the overflow handling with
overflow-x and overflow-y does not work correctly. When both style attributes are set IE does mix them up
by overwriting one with the others value.

124 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Anyway, the correct content wrap is important for
* document is taking the whole space of the iframe
* no margins and paddings are set

* scrollbars are only shown if the user enters more content than space is available

Editable Document Another pitfall is how to set the document of the iframe object editable. There are two properties
which can be be applied for an editable document: designMode and editable.

The designMode property is applied for all browsers and works at the document node of the iframe.

Setting the editable property is only needed for gecko browsers. And only if the HtmlArea was hidden and shown
again. The editable property is applied to the body element.

Internet Explorer For IE it is important to set the document design mode before the content is rendered. Once the
document is editable it does not loose this status even if the whole component is hidden and shown again.

Gecko, Webkit and Opera All three need to have rendered content to set the document design mode correctly.

Focus Management At least IE has problems whenever a native command (execCommand method) does manipulate
the content of the editable iframe and the iframe document does not have the focus. If an application developer want
to use a toolbar to offer the user an interface to manipulate the content he has to make sure that each of these buttons
need a special setup. Otherwise the button would steal the focus from the editing component whenever clicked.

Luckily gooxdoo does offer this customization out-of-the-box. The application developer only has to set the properties
keepFocus to true and focusable to false.

button.set ({
focusable: false,
keepFocus: true

)i

Advanced Key Events One major feature is to track the user input. To use the powerful key event handler in
qgooxdoo the HtmlArea does listen to all key events at the body element and handles various actions depending on the
user’s input. This way it is possible to work with a keyIdentifier instead of the keyCode or charCode.

Integration Guide

Integrate the HtmlArea into your application

Note: This explanations mainly do address the 0. 8+ based HtmlArea component.

This page does explain what you should consider when integrating the HtmlArea component in your application.
However, it does not explain how to setup the component itself, it’s rather an integration guide to avoid pitfalls.

Use Public API This one should be self-explaining. Do not use any internal API to get things done even it’s the easy
way to go. If it’s hidden from the application developer then by purpose, but if you need access to specific parts of the
component which is not offered don’t hesitate to file a bug report.

4.2. Widgets Introduction 125

qooxdoo Documentation, Release 2.0.2

Use Events The component does offer various events to work with e.g. the ready event to get informed of the
finished loading.

The bottom line is the same as for the public API: use these events to interact with the component. If an event is
missing feel free to file a bug report.

Lazy Initialization The HtmlArea widget is using a low-level editing component to offer a WYSIWYG editor
solution. The widget does initialize this editing component after the first appear of the widget. So if you use e.g. a
stack container which hides the HtmlArea keep in mind that the widget is only fully usable after it is shown.

Toolbar Details The HtmlArea does only offer the plain editing widget so if you do not use the HtmIEditor contri-
bution and instead create your own toolbar you have to consider some specialities concerning the focus management
of qooxdoo.

Since the HtmlArea relies on that the focus is not lost to another widget (e.g. a toolbar button) during the execution
of a command you have to set two focus-specific properties on each widget which runs commands at the HtmlArea
component.

The two properties keepFocus and focusable have to be used together to get the correct behaviour. The more
important property is keepFocus which certainly ensures that the given widget never get the focus - even if this
widget is clicked. This will leave the focus at the HtmlArea component solving many focus-related issues successfully
(especially for IE browsers).

Example code snippet

button = new gx.ui.toolbar.Button(null, iconURL);
button.set ({ focusable : false, keepFocus : true });

No Own Focus Management As already mentioned the focus management is important for HTML editing widgets
and there are special solutions necessary for the component already. Implementing an own focus management on
top in your application code can cause problems for your users. So if you encounter any issues that the component
e.g. does not perform a certain command even a button is clicked it’s probably a focus-related issue. As always: the
component is far from perfect, don’t hesitate to file a bug report for issues you encounter.

Keyboard Shortcuts Since you can use keyboard shortcuts to manipulate the content you should not implement
shortcuts with the same key bindings. A possibility to disable the shortcuts completely will soon be available. See
Bug #1193 for details.

Available Keyboard Shortcuts

The result of using the shortcuts Control + Enter and Shift + Enter are explained at the Paragraph Han-
dling page.

The following keyboard shortcuts are implemented at the moment:
e Ctrl + A - Selectthe whole content
e Ctrl + B -Toggle the current selection to Bold / Normal text
e Ctrl + IandCtrl + K - Toggle the current selection to Italic / Normal text
e Ctrl + U - Toggle the current selection to Underline / Normal text
If the Undo / Redo functionality is enabled the following shortcuts are additionally available:

e Ctrl + Z-Undo the last change

126 Chapter 4. qx.Desktop

http://qooxdoo.org/contrib/project#htmleditor
http://bugzilla.qooxdoo.org/show_bug.cgi?id=1193

qooxdoo Documentation, Release 2.0.2

e Ctrl + Y -Redo the last undo step

e Ctrl + Shift + Z-Redo the last undo step

Recommendations

This page should help developers using the HtmlArea to stick with some recommendations to avoid known issues or
to call attention how to use a specific feature.

Common Font Families Since the HtmlArea “only” is a editing component it does not offer a complete toolbar or
other features which an full-blown Html Editor might offer. So if you setup an own toolbar and decide to offer the
user a possibility to change the default font family you should be careful not to use a font family which is not widely
available. If the client computer does not has the listed font family installed it will certainly fall back to the systems
default. The user will be irritated by different choices which end up with the same result if he applies them to his
written content.

To avoid this problem you should play safe and offer the following font families:
e Arial
* Arial Black
* Verdana
* Courier New
* Courier
* Georgia
e Impact
* Comic Sans MS
e Tahoma
* Lucida Console

A nice list of the most common font families is listed at CodeStyle.org

InsertHtml Command This command lets you insert you HTML code directly into the component’s document. It
is powerful and can be an easy way to accomplish your goals, but you should keep in mind that this method should
only be used if there is no other possibility offered.

If you e.g. want to insert an image into the document use the dedicated insert Image command instead of putting
your HTML code together.

Avoid DIV elements with fixed width or height The problem with DIV elements which have width or height set
with CSS styles is that IE offers for those DIV elements resize/move handles. This is in the most cases not desired. So
better use margin, padding or toplleft|right\bottom to position your DIV element.

Additionally if you set a width of 600px to a DIV element users with a small resolution (like 800 x 600) might end
up with horizontal scrollbars.

4.2. Widgets Introduction 127

http://www.codestyle.org/css/font-family/sampler-CombinedResults.shtml

qooxdoo Documentation, Release 2.0.2

Technical Background

HTML Editing In General

External Information

General infos

e Rich HTML editing - Part 1

Browsers

Mozilla (“Midas”)
* Midas specification
* Demo
* Migrationguide IE -> Gecko
* Documentation

* DOM Client Object Cross-Reference

IE (“HTML Edit”)
e MSDN Overview and tutorials
e Documentation
e Overview of Command Identifiers

* A Note about the DHTML Editing Control in IE7+

Opera
* Opera Browser Wiki

Safari
* WebKit: HTML Editing
* Quietly, Safari Finally Gains WYSIWYG Editing Powers

¢ execCommand list

Compatibility
* The Mozile project contains code which adapts Internet Explorer’s Selection object to an interface like Mozilla’s.
 Converting your app from IE to Midas

» execCommand compatibility

128 Chapter 4. qx.Desktop

http://dev.opera.com/articles/view/rich-html-editing-in-the-browser-part-1/
http://www.mozilla.org/editor/midas-spec.html
http://www.mozilla.org/editor/midasdemo/
http://www.mozilla.org/editor/ie2midas.html
http://www-archive.mozilla.org/editor/midas-spec.html
http://developer.mozilla.org/en/docs/DOM_Client_Object_Cross-Reference
http://msdn2.microsoft.com/en-us/library/aa770039(VS.85).aspx
http://www.asp.net/ajaxLibrary/AjaxControlToolkitSampleSite/HtmlEditorExtender/HTMLEditorExtender.aspx
http://msdn.microsoft.com/en-us/library/ms533049(v=vs.85).aspx
http://blogs.msdn.com/ie/archive/2006/06/27/648850.aspx
http://operawiki.info/TextAreaEditor/
http://webkit.org/projects/editing/index.html
http://www.musingsfrommars.org/2007/03/quietly-safaris-rendering-engine-gains-wysiwyg-editing-powers.html
http://lists.apple.com/archives/Webcore-dev/2005/May/msg00013.html
http://mozile.mozdev.org/0.8/doc/jsdoc/
http://www.mozilla.org/editor/ie2midas.html
http://www.quirksmode.org/dom/execCommand.html

qooxdoo Documentation, Release 2.0.2

General

¢ htmlarea.com

e cmsreview.com

* geniisoft.com

* Web-Based Rich Text Editors Compared

Overview of existing WYSIWYG editors Here is an overview table:

Editor | License Pro/Con
YUI BSD Pro: works with all well-known browsers (IE / Gecko / Opera / Safari / Konquerer);
RTE Con: Still in Beta (although the final release version should be out soon).
Xinha HTMLArea
(BSD based)
RTE Creative
Commons
RTEF MIT Pro: works with all well-known browsers (IE / Gecko / Opera / Safari / Konquerer);
Con: no user-feedback e.g. which font or size is currently used.
WYMEd{ MIT/GPL Pro: produces XHTML, uses CSS; Con: currently only available for IE and Gecko.
1tor
dojo BSD
TinyMCHE LGPL
FCKEdit| GPL, LGPL
and MPL
Solme- | GPL
tra
FreeRTE| Creative
Commons
CM- AGPL
Simple
XStan- | Freeware
dard
lite
Loki GPL
Whizzy-
wig

command Mozilla | IE | Opera Safari
Bold X X X X
Italic X X X X
Underline X X X X
Strikethrough X X X X
Color
BackColor X X X X
ForeColor X X X X
HiliteColor X X
Font Handling

Continued on next page

4.2. Widgets Introduction

129

http://www.htmlarea.com
http://www.cmsreview.com/WYSIWYG/OpenSource/directory.html
http://www.geniisoft.com/showcase.nsf/WebEditors
http://bulletproofbox.com/web-based-rich-text-editors-compared
http://developer.yahoo.com/yui/editor/
http://developer.yahoo.com/yui/editor/
http://xinha.org/
http://www.kevinroth.com/rte/
http://www.rtef.info/
http://www.wymeditor.org/en/
http://www.wymeditor.org/en/
http://dojotoolkit.org/reference-guide/dijit/Editor.html
http://tinymce.moxiecode.com/
http://www.fckeditor.net/demo/default.html
http://www.solmetra.com/en/
http://www.solmetra.com/en/
http://www.freerichtexteditor.com/
http://www.cmsimple.dk/
http://www.cmsimple.dk/
http://www.xstandard.com
http://www.xstandard.com
http://www.xstandard.com
http://apps.carleton.edu/opensource/loki/
http://www.unverse.net/
http://www.unverse.net/

qooxdoo Documentation, Release 2.0.2

Table 4.1 — continued from previous page

command

Mozilla

IE

Opera

Safari

FontName

X

FontSize

X

IncreaseFontSize

DecreaseFontSize

Subscript

Superscript

P R R e

P R e

Formatting and CSS

ContentReadOnly

StyleWidthCSS

UseCSS

RemoveFormat

P | M

User actions

Copy

Paste

Cut

Delete

P | K

Undo

Redo

P | K

Print

il R R R R R A e

SaveAs

R R R e R R K R R e

Alignment

JustifyLeft

bl

JustifyCenter

JustifyRight

JustifyFull

PR <

Indent

Outdent

R R R R R R R

PP > | e

Hyperlinks

CreateLink

>

bl

Unlink

Lists

InsertOrderedList

InsertUnorderedList

>

Basic (formatting) elements

FormatBlock

Heading

InsertParagraph

InsertImage

P R M

InsertButton

InsertFieldset

InsertHorizontalRule

PP |

InsertHTML

InsertIFrame

X

Continued on next page

130

Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Table 4.1 — continued from previous page
command Mozilla | IE | Opera Safari

Form elements
InsertInputButton
InsertInputCheckbox
InsertInputFileUpload
InsertInputHidden
InsertInputlmage
InsertInputPassword
InsertInputRadio
InsertInputReset
InsertInputSubmit
InsertInputText
InsertSelectDropdown
InsertSelectListbox
InsertTextArea
InsertMarquee

R R R R B R R R e B R Ko R R R Rl R R KR e

Bookmarking
CreateBookmark
UnBookmark

>

>

Selection and status handling
SelectAll X
Unselect
MultipleSelection
Overwrite
Refresh

P] R e

Misc
2D-Position
AbsolutePosition X
LiveResize X
gethtml
contentReadOnly
insertBrOnReturn
enableObjectResizing
enablelnlineTableEditing

»

A] R e

Browser-specific overview of ‘“‘execCommand”

Copy and Paste

For a HTML editor component it is important to get along with external content which is inserted with a Copy and
Paste operation. This is especially important if any filter for the external content should be applied before the content
is actually inserted in the editor.

However it is quite difficult to implement this across all major browsers. This short article should give a short overview
about the existing events in the different browsers.

To get the detailed overview on this topic check out the section at quirksmode.org

4.2. Widgets Introduction 131

http://www.quirksmode.org/dom/events/cutcopypaste.html

qooxdoo Documentation, Release 2.0.2

IE This browser offers the most events. Besides onpaste and oncopy there are also events like beforepaste,
beforecopy and beforecut. Additionally all events are stoppable and are bubbling up the DOM hierarchy.

Safari Follows almost the implementation of IE and goes partly beyond it. Safari offers a wide range of events to
detect a Copy and Paste operation, but has currently no implementation at image elements.

Gecko In Firefox 2 there is no support for any event to detect a Copy and Paste operation directly. One can
detect the pressed shortcuts, but if the user paste some text via the menu/contextmenu there is possibility to catch
that. With the upcoming release of Firefox 3 this situation will improve. This version will have some support for such
events like onpaste or oncopy

Opera Same situation as Firefox 2: no working implementation for copy or paste events.

Text align

The text align of a selction can be modified using the following exec commands: JustifyLeft, JustifyCenter,
JustifyRight and JustifyFull.

Browsers
 IE: Text align is applied on the paragraph which contains the selection.

¢ Gecko and Opera: Text align is applied on selection only. The selection gets surrounded by a <div> tag
containing a text—align style attribute.

* Webkit: Applies text—align style attribute on every <div> element that is (partly) selected.

Problems

* If
 tags are used for line breaks, the textalign will be applied on the <p> tag in IE, even if only a part of
this <p> has been selected!

* If <p> tags are used for line breaks, all style settings set will be “lost” after entering an other <p> tag in FF. It
is necessary to “save” these settings manually and apply them on the new paragraph.

Browser Bugs

Gecko

¢ Gecko 1.8 needs a
 tag inside an element with contenteditable="true", even if the ele-
ment is empty! If no such element existes, Gecko automatically adds it. These elements can be recog-
nized by the proprietary attribute _moz_editor_bogus_node: <br _moz_editor_bogus_node="TRUE"
_moz_dirty=""/>

* Gecko 1.9 will always insert this
 tag, if contenteditable="true" is set. Even if the el-
ement contains content! This
 tag is removed, as soon as any input is entered by the user:
https://bugzilla.mozilla.org/attachment.cgi?id=119342

* Undo/Redo : it could happen that 2 content changes occuring right after another leading Gecko to remove both
of these 2 changes in one undo step. This is especially important for the undo/redo stacks of the HtmlArea.

132 Chapter 4. qx.Desktop

http://developer.mozilla.org/en/docs/DOM:element.onpaste
http://developer.mozilla.org/en/docs/DOM:element.oncopy
https://bugzilla.mozilla.org/attachment.cgi?id=119342

qooxdoo Documentation, Release 2.0.2

Internet Explorer

* If you want to use the pasteHTML () function, you have to select the textrange first using select ().

Webkit/Safari

* Setting a background color for text on collapsed selection is not working like in Gecko or IE. Instead of setting
the background color and allowing the user to type ahead in the new background color (like in Gecko/IE)
nothing happens. The current solution in the HtmlArea is to select the word currently under the caret and to set
the background color on this selection. Working on a user-selection works as expected.

* Deleting a block element (e.g. an <p> tag) can cause an element to contain fwo text nodes:
¥ <htm| xmlns="http:/ /weww.w3.org/199%xhtml"
¥xml:lang="en" lang="en">
» <head:>
¥ <body marginwidth ="0" marginheight="0">
<D
<basefont size="2" face="Verdana">
¥
hdf] skjfdsl 5]
‘fdsfdsfds®
p» <blockquote class ="guote” style="font-size:
12px;" face="Verdana” type="cite">
< /font>
</ body>

</ html>

This wrong behavior can cause problems with selections.

Default Paragraph Handling

This section describes how browsers and other applications react on different keys to enter line breaks or paragraphs.
P = paragraph (<p> tag)
LB = line break (
 tag)

Firefox | MSIE Opera | Webkit
<enter> LB P LB <div>
<shift> + <enter> | LB LB LB <div>
<strg> + <enter> — — — —

Browsers

MS Word 0O Writer | Outlook Thunderbird
- <enter> P P P LB
Word processors / E-mail clients <shifs £ <enter> | 1B B IB B
<strg> + <enter> | Page break | P — LB

Implementation Details

Undo and Redo

Limitations The implementation of undo/redo in the HtmlArea has some limitations you should be aware of. It is
possible to undo all of your steps but redo is only possible when no other action occured between the undo and the
redo action. If you undo several steps and e.g. enter some text you can not execute redo anymore.

4.2. Widgets Introduction 133

qooxdoo Documentation, Release 2.0.2

Note: If you use the Undo/Redo functionality you have to make sure you are not manipulating the content of the
HtmlArea by using the innerHTML property of an element.

This will break Undo/Redo functionality!

Implementation: Description on a high-level The implementation is split up into two different approaches.

For Internet Explorer the execCommand approach can’t be used anymore. The internal undo / redo stack gets broken
on every DOM manipulation. So, if any qooxdoo decorator is used this approach is a dead end. Instead an own
implementation using i nnerHTML is used for IE browsers.

For all other browsers the base of the Undo/Redo functionality is to use the execCommand method to manipulate
the content whenever possible. Each change which is performed with a call of execCommand is easy to undo/redo.
For any manipulation which cannot be achieved using the built-in execCommand a special implementation for each
browser is necessary (e.g. changing the background color of the whole document).

Using the Decorator Pattern To easily integrate the undo/redo management with the commands of the HtmlArea
the UndoManager class is a decorator of the CommandManager class. It takes the method calls from the HtmlArea
class, collects the info for undo the action and calls the decorated commandManager class to actually perform the
requested action. This keeps both implementations clean and separated.

Tracking changes using stacks Two stacks keep track of the changes which are done to the content: an undo stack
and the corresponding redo stack. Currently each stack holds four different types of changes:

e Command

* Content-block
e Custom

* Internal

Each entry in the stacks is represented by an object which holds additional info (the type above is among this info).

Command Every change which is performed with the execCommand method is equipped with this type. These
changes are the easiest to track and to undo/redo.

Content-block Each keypress event is observed to determine changes in the content and to mark a set of content
changes as an own block which is capable for an undo/redo step. For example IE and Gecko do both recognize text
changes as a content block if the text changes occured between two calls of execCommand.

Custom These changes are the ones which cannot be handled with the built-in exe cCommand method. For example
changing the background color of the whole document is a custom undo/redo step which needs to be handled in a
special way by each browser.

Internal These steps are included to keep the stacks intact if the user e.g. resizes an images with the handles provided
by the browsers. It is possible to undo/redo these internal changes with the common execCommand method. The
primary task here is to record these changes and add them to the stack(s).

134 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Paragraph Handling

The aim of the component is to facade all the browser differences concerning the behaviour when the user hits the
Enter, the Shift+Enter or the Control+Enter combination. And this is by far not an easy task since the
differences between the browsers are enormous.

Formatting across multiple paragraphs Every formatting infos like underline, bold, text color, text size etc. are
transferred to the new paragraph. It is likely that the user expects to write on with the same configuration/modifications
he applied to the former paragraph.

Alignment A paragraph in always aligned completely - the way a word processor also work. This can be irritating
at the first time of use if e.g. a paragraph contains multiple lines of text each separated by normal line-breaks, but
concerning alignment the paragraph is treated only as whole. So every line of the paragraph (=the whole paragraph)
is aligned and not only the line the cursor is currently located.

Customization The HtmlArea offers you two properties to customize the paragraph handling globally and thus
customize the behaviour of the component.

insertParagraphOnLinebreak The default value of this property is t rue. It controls whether a new paragraph or
a normal line-break is inserted when hitting the Enter key. Since the default behaviour of all word processors is to
insert a new paragraph it is recommended to leave this property value with its default.

Note: Asevery word processor the HtmlArea also supports inserting a normal line-break by using the key combination
Shift+Enter

insertLinebreakOnCtrlEnter This property also has a default value of t rue. Since some users are familiar with
the key combination Control+Enter to insert a normal line-break the HtmlArea component does support this. So
in the default setup Control+Enter and Shift+Enter will end up with the same result.

Technical Background

Paragraph-Handling in Firefox

Browser control Currently the HtmlArea does only take control and manage the paragraphs on its own if
» SHIFT and CTRL keys are not pressed
e caret is not within a word
* focus node is not an element (current line is not empty)

¢ the focus is inside a list

HtmlArea control If the HtmlArea with its paragraph handling takes control, the following actions are taken.

4.2. Widgets Introduction 135

qooxdoo Documentation, Release 2.0.2

Phase 1: Collecting styles
» computed styles of the focus node are collected

* these styles are grouped in the correct order (e.g. special handling for text-decoration because the text-decoration
is linked to the elements color value)

Phase 2: Style string creation

* a style attribute based on the computed styles is generated for the paragraph element -> only margin,
padding and text-align can be applied at paragraph-level. All other styles need to be applied at span
elements (=child elements)

* a string with nested span / font element string is created. This element string is applied to the paragraph
element. The nested structure is necessary because some styles need to be applied in the right order

Phase 3: Nodes creation The following string is applied with the “insertHtm]” command
* an empty span element with an ID
* ap element with the paragraph style

¢ the nested span / font string to reflect the formatting which can’t be applied at paragraph level

Phase 4: Cleanup

* Gecko inserts a p element on his own even if we intercept. This element gets removed afterwards by selecting
this paragragph and inserting an empty DIV element at the selection

* the ID of the empty span is removed (Gecko will remove an empty span then automatically)

« if an empty paragraph is detected it will be removed to avoid rendering problems

Reasons for own paragraph handling
* support to keep formatting across multiple paragraphs or lists
* keep the caret always inside a p element
* keep control of the kind of line-breaking which is inserted
¢ normalize line-breaking

e act like MS Word

Issues
* DOM manipulations can break Undo/Redo since Gecko is expecting a DOM node which does not exist anymore
* edge cases can occur which are not targeted yet
* future browser implementation can change and mess up the current implementation

* MS Word behaviour can not be achieved in a browser, yet

136 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

List Handling

The component offers ordered and unordered lists to group content.

If the user inserts a new list

* Enter on anon-empty item: inserts a new list item

e Enter on an empty item: stops the editing of list

e Shift+Enter: inserts a new line within the current list item

These actions/key bindings are reflecting the default behaviour of word processors.

4.2.13 Table Styling

Ever wanted to style the table widget and missed an overview what can by styled exactly? If so, then read on and learn
how to style the different parts of the table widget and which steps can be applied to customize the appearance of this
widget.

By default (talking about the Modern theme) the table looks like this:

D | A number | 5, A date | Boolean |m
] 525908 82810 = P
1 279694 G111 r =
3 B36L52 4211l T
4 322109 BGM0 7
& 632514 1T F
3 91179 42111 r
7 B,085.15 42311 7
B 517972 9M1110 r
3 BB483Z 12210 r
10 542209 &1711 r
11 945156 22011 r
12 649984 &10A1 r
13 371886 10BL10 7
14 16467 1USA0 r
15 94644 5211 7
16 424138 112110 7
17 990188 @1 =7
18 730651 Tr2anl r
19 36054 SEANL - =

1 od 1000 rows

This tutorial takes a look at the several visible parts of the table such as

Table widget itself
Header

Header cells

Column visibility button
Pane

Row and column styling
Cell styling

Selection

Focus Indicator

Statusbar

4.2. Widgets Introduction

137

qooxdoo Documentation, Release 2.0.2

¢ Scrollbar
¢ Editable Cells (controls like Textfield, SelectBox and ComboBox)

This tutorial assumes you’re implementing all styling changes of the table widget in your own application theme
classes. If you’re new to the theming layer of qooxdoo it’s a good idea to recap the manual section for the theming
layer.

If you’re familiar with the theming layer we can dive right into the first topic.

Note: Some of the examples are using CSS3 features, so they’re not applicable to all browsers. If you need to
achieve a styling which is almost completely identical (a pixel-perfect result is impossible) you have to use graphic
files whenver CSS3 features are not present.

Table Widget

Since this widget is the container of all sub-components the styling possibilities are naturally limited. However, limited
possibilites does not result in low importance. You can e.g. change the border of the widget which can have a great
visual impact. Since the border is a decorator you can use all possibilities like different kind of borders, shadows and
the like.

Sample of a table widget using a decorator with shadow:

ID | Anumber

T Adate | Boolean
596101 | 9/7/11
280129 711
35513 | 820111
319808 4/15/11
7.064.82 B/23(11
472439 1023110

S =] (T =
[|bﬁ

R S R R]

To achieve this you can re-define the table decorator in your application theme as following:

"table"
{
// the decorator ’MBoxShadow’ 1is only supported by modern browsers
// Firefox 3.5+, IE9+, Safari 3.0+, Opera 10.5+ and Chrome 4.0+
decorator: [
gx.uil.decoration.MSingleBorder,
gx.ui.decoration.MBoxShadow

1,

style

{
width : 1,
color : "table-border-main",
shadowBlurRadius : 5,

shadowLength : 4,
// color is "#999999”
shadowColor : "table-shadow"

}y

138 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Note: To get this example working you additionally have to define the colors table-border-main and
table-shadow in your color theme. It’s considered as best practice to define all colors as named color in your
color theme. This way you can use these named colors all over your application.

Header

Header styling

The header widget is a simple widget containing the header cells and the column visibility button. However, if you
want to change the e.g. the background of the whole header you’re here in the right place, since the container does the
styling of the background and not the header cells themselves.

// change the whole background of the header by changing the decorator
"table-scroller—header—-css"
{
decorator : [
gx.ul.decoration.MSingleBorder,
gx.ul.decoration.MBackgroundColor

1,

style
{
// color is ’#00AA00’
backgroundColor: "table-header-background",

widthBottom : 1,
colorBottom : "border-main"

Note: Make sure the color table-header—-background is part of your color theme.

This code snippet will result in the following:

2,189.86 9310
21883 12710

ol el
[]

212696 2/6/11

0
1
2 9,961.056 9610
3
A T AARIT | WITMA

1 =l

Additionally you can change the height of the whole header by using the headerCellHeight property. Changing
this property might make sense if you also want to customize the appearance of the header cells (e.g. using a larger
font).

Removing the header

You want to get rid off the whole header? That’s also possible by setting two additional themeable properties. So you
only have to drop those two line in your appearance theme and you’re done:

"table"
{

alias : "widget",

4.2. Widgets Introduction 139

qooxdoo Documentation, Release 2.0.2

style
{
return {

decorator

headerCellsVisible
columnVisibilityButtonVisible

}i
}
bo

function (states)

"table",
false,
false

to get the following result

7,356.02
5,841.52
9,650.05
5,811.75
5,101.12
5,111.42
6,229.77
4,831.71
9,243.19
7,2562.26

2 anc o

S mom o o®m o R WK S

Header Cells

Customizing the appearance of the header cells can be divided into the following parts:

a0
127210
82411
B1411
a1
W2310
221
1l
1611
2111

vmama

| i |p

el el e

g 37

¢ Decorator for hover effects

* Padding

* Alignment

 Using a different sort icon

 Using a custom font

Beside the settings for alignment and paddings all other appearance customizations are directly applied to the header
cell appearance. If you want to e.g. change the hover effect for the header cell you can easily change the decorator
(and the padding if necessary) to get an custom styling. Exchanging the sort icon is also supported. The sort icons are
shown whenever the user does click at one header cell the very first time.

The default appearance for each header cell looks like this:

"table-header-cell"

{

"decoration/table/descending

alias "atom",
style function (states)
{
return {
minWidth 13,
minHeight 20,
padding states.hovered 2 [3, 4, 2, 4] [3, 417,
decorator states.hovered ? "table-header-cell-hovered" "table-header-cell",
sortIcon states.sorted ?
(states.sortedAscending ? "decoration/table/ascending.png"
undefined
}i
}
} 14
140 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

The default decorator for the hover effect does show a 1 pixel border at the bottom of the hovered header cell. If you
only want to change this color you can go ahead and add the table—header-hovered color in the color theme of
your application

"table-header-hovered" : "orange",

to get a result like this

D Anumber | 5 Adate Boolean =
0 194925 10/30/10 7 [+]
1 351522 101310 r
2 177197 913111 v =
3 56208 9/25/10 r
4 2,866.99 | 9/311 r —
5 196548 4/6/11 v
B 472574 | 7113/11 v

A bigger change of the header cells might be to change the background color at hovering. To do so you can simply
modify the existing table-header—-cell-hovered decorator like

"table-header-cell-hovered"

{

decorator : gx.ui.decoration.Background,
style
{

backgroundColor : "orange"

}
s

and you’re done!

ID |Anumber |\ & Adate Boolean
1,345.65 | 8/29/10
571533 52611
374305 /210
6,656.13 9/B/11
B,16471 4/12/11
6,507.21 4/14/11
262522 12/14/10

o

G

O jEN & g

LR R R ey e

A

Additionally, you can change the styling of the different child controls (label, icon and sort icon) of the header cells.
So if you want to change the font you can simply customize the label child control of the header cell to change the
alignment, existing padding and the like.

The default appearance of the child controls are defined as

"table—-header—cell/label"
{
style : function (states)
{
return {
minWidth : O,
alignY : "middle",
paddingRight : 5,
paddingLeft: 5,

// change of the default font setting
font : "bold"

4.2. Widgets Introduction 141

qooxdoo Documentation, Release 2.0.2

}i
}
bo

"table-header-cell/sort—-icon"

{

style : function(states)
{
return {
alignY : "middle",
alignX : "right"

}i
}
br

"table-header-cell/icon"

{

style : function(states)
{
return {
minWidth : O,
alignY : "middle",

paddingRight : 5
}i
}
}I

With the minor change above to the decorator and a font setting of the label you can achieve the following:

D Anumber % Adate Boolean B
0 3,129.54 | 10/11/10 = [«]
1 2,639.57 112210 el
2 4437.36 111310 = =
3 720085 6411 el
4 667.3 22511 = —
5 391517 61211 -
6 7,853.35 | 7/24/11 =

Pane

Pane Background

The pane itself is only styled using a background color and it is recommended to only change the background color in
order to harmonize the color with the used row colors. The pane widget gets only visible if there is more open space
left than occupied by the rows to show or at the very end of the table pane whenever scrollbars are necessary.

One picture says more than thousand words :) The pane with red background color to demonstrate:

142 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

|n] A number 5. A date Boolean 2]
0 742754 B/19/11 o
1 6,843.98 2411 =
2 81093 11/10/10 o
3 4,803.556 5211 =
4 4,074.1% 710011 I
5 874068 627/11 =
[} 82724 12311 I
7 7472556 51011 i
8 7356761 12/23/10 o
il 38212 81911 =

10 rows

The corresponding code in the color theme of your application is a simple one-liner:

"table-pane" : "red",

Row And Column Styling

Removing The Grid Lines If you take a second look at the picture above you can already recognize a customization
of the row and column styling: the removal of the row and column lines.

Basically you can choose between two solutions:
* Setting the colors for the row and column line
* Writing your own cellrenderer and rowrenderer

The first solution path is the quick one which is done by customize color of the color theme and no
additional coding. = However, you have also limited possibilities to customize. The second solution is
the coding one. Start right away and extend the classes gx.ui.table.rowrenderer.Default and
gx.ul.table.cellrenderer.Abstract, implement the necessary interfaces and create your very own ap-
perance by putting together the necessary CSS styles.

Since the latter solution is a more complex one, I’ll only explain the first solution which helps you in styling the table
rows and columns in a quick way.

// these two lines have to inserted in your application color theme
// to remove the grid lines

"table-row-line" : "transparent",

"table-column-line" : "transparent",

Okay, we’re cheating here a bit by hiding and not removing them, but anyway the goal is achieved and this in a very
quick manner, right?

4.2. Widgets Introduction 143

qooxdoo Documentation, Release 2.0.2

Note: The use of transparent as a named color is not working for the IE6. If you want to support this browser
you have to write your own cellrenderer.

Text And Background Colors What about changing more than the grid lines of the cells? Like changing the colors
of the row background and so. I'm glad you ask this :)

Customizing these colors is as easy as hiding the grid lines. You can adapt the styling of the rows and columns by just
setting different colors. These colors are available and can be overwritten in your application color theme:

* table-pane - background color of the pane when less entries are used than avaialable space
* table-row - text color of the cells

* table-row-background-even - background color of even rows

e table-row-background-odd - background color of odd rows

By changing one or more of these colors you can e.g. achieve this:

||
[|
||

<] B<B <] § |

by defining these colors:

"table-row-background-even" : "#CD661D",
"table-row-background-odd" : "#EEADOE",
"table-row" : "#EEE9E9",

"table-row-line" : "transparent",
"table-column-line" : "transparent",

Selection If you customized the colors like above this is only the first part of it. Now the colors for the selection join
the game. If you don’t adapt these colors the result will for sure not satisfy you. So let’s dive into this topic.

* table-row-selected - text color for cells are selected but not focused

e table-row-background-selected - cells are selected but not focused

* table-row-background-focused-selected - cells are selected and focused
e table-row-background-focused - cells are focused but not selected

To better visualize this the following example does use colors which are easy to distinguish:

"table-row-selected" : "blue",
"table-row-background-selected" : "orange",
"table-row-background-focused-selected" : "green",
"table-row-background-focused" : "red",

144 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

This shows an active selection:

10 9,151.39 2/28/11 2

Cell Styling This section is rather for the sake of completness. If you want to have full control over the cell styling
you can create your own cellrenderer classes and apply them for each column of your table. This topic is more a
programmatic one and it does not fit in this scope of this article. However, a short introduction and a beginners guide
will fit in here :)

A list of existing cell renderer is available at the API Viewer. If one of these is suitable for you all you have to do to
use it is

var tcm = table.getTableColumnModel () ;

// Display a checkbox in column 3
tcm.setDataCellRenderer (3, new gx.ui.table.cellrenderer.Boolean());

to e.g. display a checkbox for the fourth column. This assumes the cell renderer fits with the provided data.

If that’s still no a solution for you, because you really need some extras for the cell rendering the solution has to be an
own cell renderer. To get into it it’s recommended to take a look at the existing cell renderers and the base class. So
basically you should study the implementation of the gx.ui.table.cellrenderer.Abstract class and as
first start the implementation of gx .ui.table.cellrenderer.Default to give a good overview of this topic.
Depending on your needs you can start right away by copying the default renderer and play around a bit to get a
impression of how to customize it.

Focus Indicator

This widget in default visible whenever a selection is present. There are two ways of customzing this widget:

4.2. Widgets Introduction 145

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.table.cellrenderer

qooxdoo Documentation, Release 2.0.2

* change the decorator and the colors of this widget
* hide this indicator completely

The first possibility is the fast way for customization if you decided to keep the focus indicator visible. The available
decorator is a simple 2 pixel border one and the color table-focus—indicator is defining this border color of
the decorator. So either replacing the decorator by an own one or just changing the color has a direct effect. So let’s
look at an example where the decorator is changed:

"table-scroller—-focus—-indicator"

{

decorator : gx.ui.decoration.Double,
style
{

style : "dashed",

// color value is ’orange’

color : "table-focus—-indicator",
width: 2,
innerColor : "yellow",

innerWidth : 2

}y

D | A number

T, A date | Boolean |
88383 | 7/5/11
869426 TILTILL

1

< <] =]
1 |}EH

3 862155 1411 g
4 6,153.19 11/14/10 v -
5 6,814.68 2/26/11 =
] 2,943.76 111510 v
7 653.92 6/26/11 v
8 7.801.5 | 1124/10 =

Look’s really weird, but for demonstration purpose is quite good enough :)

Note: It’s better to stick with decorators which are only affecting the border for the focus indicator. A background-
related decorator won’t have any impact because of the background color stying of the cells.

If you want to hide the focus indicator itself this is a one-liner

table.setShowCellFocusIndicator (false);

Resize Line

This is a minor topic, since it only can be customized by its color. You may ask: what is the resize line all about? Point
your mouse cursor to a column border and start the resizing of the column by clicking at the border. The vertical line
which gets visible is the resize line. So a table with a green resize line would like this:

"table-scroller/resize—-line"

{

style : function(states)

{

146 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

return {
backgroundColor : "green',
width : 2
}i
}
by
D 4. number 5. Adate Bookan F3
0 38258 | 91211 O [«]
1 484574 620011 i
2 8,459.19 71011 o E
3 837251 72411 i
4 - & m
5 5649.83 7200111 i
[4666.15 | 111110 o
7 5247.24 5/A11 i
8 1.989.35 | Y23/10 —

Statusbar

You might guessed it already: yes, the statusbar can also be hidden or customized by changing a decorator in your
decorator theme of your application. This kind of repetition is quite nice, because if you do understand those basic
things you can take a look at the Modern appearance or decorator theme and you quickly know what to include in
your own theme in order to change the styling of a component.

Hiding the statusbar is again an one-liner:

table.setStatusBarVisible (false);

And the default implementation of the corresponding decorator looks like

"table-statusbar"

{

decorator : gx.ui.decoration.Single,

style
{
widthTop : 1,
colorTop : "border-main",
style : "solid"
}
}l

As you can see there is no additional background and no other fancy stuff. If you like to change this e.g. setting an
own background gradient you can use the following

"table-statusbar"
{
decorator : [
gx.uil.decoration.MLinearBackgroundGradient,
gx.ul.decoration.MSingleBorder

1,

style

{
widthTop : 1,
colorTop : "orange",

4.2. Widgets Introduction 147

qooxdoo Documentation, Release 2.0.2

style : "solid",

gradientStart : ["orange", 10],
gradientEnd : ["red", 80]

by

The result of this little demo looks like:

a W | e A

3

15 7,604,609 12/2/110 3
16 3,797.57 | 3Tl r
17 1306.87 9710 [F
18 2,611.75 | 8/&/11 2
19 9,605.21 2/6/11 [F

Editable Cells

The table widget (respectively the cell renderer) do support inline editing of values. These widgets which are displayed

for the inline editing can also be cutomized using the theming layer of qooxdoo. The following appearances are pre-
defined:

¢ table-editor-textfield
e table-editor-selectbox
e table-editor-combobox

Basically those appearances do include the corresponding widget appearance and only modify single properties. In
the Modern appearance theme this looks like this:

"table-editor-textfield"
{

include : "textfield",

style : function(states)
{
return
decorator : undefined,
padding : [2, 2 1,
backgroundColor : "background-light"
}i
}
}I

"table-editor-selectbox"
{
include : "selectbox",
alias : "selectbox",

style : function(states)
{

return {
padding : [0, 2 1,
backgroundColor : "background-light"

}i

148 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

by

"table-editor—combobox"

{
include : "combobox",
alias : "combobox",

style : function (states)
{
return {
decorator : undefined,
backgroundColor : "background-light"
}i
}

As you can see: only minor changes to the existing appearances. And that’s also the hint for your customizations: start
with the existing appearances and only modify single properties by overwriting or adding them.

Here’s a litte example with an editable textfield with orange background color:

ID | A number 5 A date | Boolean =
0 2122.43 | 5/26/11 = [+]
1 411262 8AV1L -
2 377113 2/25/11 - :
3 756037 114/11 v
4 39331 818111 - =
5 143875 8/24/11 v
7 12/4/10 -
8 92510 -

Scrollbars

Each widget which uses the scrolling capabilities (as the table pane scroller does) can use themed scrollbars. By using
them you can also style them, since they are rendered by decorators which are now quite common to you, right? So
this section won’t dive too deep into styling scrollbars and just gives hints at which appearance you have to get your
hands on. The default appearance of the scrollbars for the table is

"table-scroller/scrollbar—-x": "scrollbar",
"table-scroller/scrollbar-y": "scrollbar",

so the scrollbars of the table—-scroller widget integrates the scrollbars as child controls and does use the
same decorators as the default scrollbars. If you want to theme those scrollbars you should take a look at the
scrollbar appearance and all other child controls of this widget. As first step you can copy this definitions
and modify it to suit your needs. Instead of using the default scrollbars for the table you have to point the
table-scroller/scrollbar—-x and table-scroller/scrollbar—y to your own appearance entries
and you’re done.

Here’s a quick reminder how the table does look like with themed scrollbars:

4.2. Widgets Introduction 149

qooxdoo Documentation, Release 2.0.2

Chart Pos. | I Tite Artist 5 ear /1 Explicit B
1 Lowve The Way You Lie featuring R Eminem 2010 r B

2 OMG [/ Willi.am) will.i.am 2010 I

3 | Telephone f/ Beyonce Lady Gaga, Beyoncé 2009 r

4 California Gurls (¥ Snoop Dogg) — Katy Perry, Snoop Dog 2010 =

5 | Your Love |s My Drug KeSha 2010 r

& Imma Be The Black Eyed Peas 2009 =

7 Airplanes [feat. Hayley Wiliams of B.o.B. 2010 r

B Alejandro Lady Gaga 2009 =

9 | Tik Tok KeSha 2010 r

10 Baby f/ Ludacris Ludacris 2010 =

11 | Gotta Feelling The Black Eyed Peas 2009 r

12 Bad Romance Lady Gaga 2009 =
13 | Boom Boom Pow The Black Eyed Peas 2009 r D

14 Bilah Blah Blah KeSha 2010 I

15 | Fireflies Owl City 2009 r

16 Paparazzi Lady Gaga 2008 =

17 | Just Dance Lady Gaga, Colby O'D 2008 r
18 Meet Me Halfway The Black Eyed Peas 2009 = E

25 rows

4.2.14 Widget Reference

» Widget reference

4.3 Layouts

4.3.1 Layouting
Introduction

A Layout manager defines the strategy of how to position the child widgets of a parent widget. They compute the
position and size of each child by taking the size hints and layout properties of the children and the size hint of the
parent into account.

Whenever the size of one widget changes, the layout engine will ask the layout manager of each affected widget to
recompute its children’s positions and sizes. Layout managers are only visible through the effects they have on the
widgets they are responsible for.

It is possible to place and size all children directly to static positions using setUserBounds as well, but this is quite
uncommon and only used in very special cases. It is almost always better to position children using a layout manager.

The layout manager can be configured on any widget, but most classes only have the protected methods to control the
layout. In fact it doesn’t make sense to control the layout manager of a Spinner, ComboBox, etc. from outside. So
this scenario is quite common. Some widgets however publish the layout API. One of them is the above mentioned
Composite widget. It exposes the layout system and the whole children API.

The nature of layout managers is that each one has specialized options for its children. For example, one layout allows
specifying a left position of a child in the canvas while another one works with rows and cells instead. Given this fact,
the best place to handle these options is the layout itself. Every Layout Item has the methods setLayoutProperties
and getLayoutProperties. Through this API the layout properties can be configured independendly from the layout.

150 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~setUserBounds
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~setLayoutProperties
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~getLayoutProperties

qooxdoo Documentation, Release 2.0.2

The validation of properties is lazy (compared to the classic qooxdoo properties). At the moment where a child with
layout properties is inserted into a parent widget with a layout, these properties are checked against the rules of the
layout. This validation is not possible earlier, e.g. at the definition of the wrong property, as at this moment the child
may not have a parent yet.

To make layout properties available in a convenient fashion each add() has an optional second parameter: A map with
all layout properties to configure. A basic example:

var canvas = new gx.ul.container.Composite (new gx.ui.layout.Canvas);
canvas.add (new gx.ui.form.Button("Say Hello"), {
left : 20,

top: 20
1)

This example places a button at the position 20x20 of the composite created. As you can see, the Composite widget
has a convenient way — using the constructor — to define the layout it uses.

Panes

Some widgets extend the Composite widget above. Typical examples here are:
* TabView Page
* Popup

These have the same API like the composite. A slightly other type are so-called composite-like widgets. These widgets
offer the same type of children management and layout management to the outside, but they redirect these properties
to an inner pane.

Typical widgets in this category are:
* Window
* GroupBox

Sensible defaults

By default, widgets are intelligently auto-sized. This means that most of the time you can create a widget and it will
look nice. If you need greater control, you can override the defaults. Every property defined initially is also recon-
figurable during the runtime of an application. When using layout managers any computed sizes are automatically
refreshed and the arrangement of children is updated.

Every automatically detected size can be overridden. Common settings of a widget (or spacers) are configured through
the widget itself. This for example includes properties like width or height. All these sizes are pixel values. Percent
and other complex values are only supported by a few layout managers so these are implemented as layout properties
(explained in detail later).

Automatic size detection means, that limits are detected as well. Any widget in qooxdoo knows how much it can
shrink and how much it can grow without interfering the functionality. The application developer can override these
min/max sizes as well. This is no problem as long as the new value is tougher than the automatically detected values
(e.g. lower limit of maximum width). When overriding the automatic sizes to reduce the limits layout problems may
occur. It is highly suggested to keep an eye on this to omit such scenarios.

One thing to keep in mind is that the width cannot override the minWidth or the maxWidth. Limitation properties
may be overridden by the property itself, but not by the normal size property. The minWidth can override the
minimal automatically detected size, but the width cannot. This decision makes the layout system more stable as
unintended overrides of the limitations are omitted in most cases.

4.3. Layouts 151

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.container.Composite~add
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.tabview.Page
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.popup.Popup
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.window.Window
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.groupbox.GroupBox
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~width
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~height

qooxdoo Documentation, Release 2.0.2

Often width and height are described as preferred sizes as the given size may not have an influence on the actual
rendered size of the widget. Even if the width is configured by the user, this does not mean that the widget always
get the desired width.

Growing & Shrinking

Dynamic GUIs often must work equally well in cases where not enough (or too much) room is available to render
the GUI in the way meant by the developer. This may include simple cases where the size of tabs is reduced in order
to handle the display of all open tabs without scrolling. More advanced cases are text which wraps to multiple lines
depending on the available width (and this way influences the position of following children).

In the first case we often see that an application reduces the size of the label and uses an ellipsis symbol to show
that the label was too long. This feature is built-in into both commonly used widgets: Label and Atom. When the
underlaying layout ask to reduce the width (or the developer using the width property) the widget tries to solve the
requirement dynamically. This certainly works for the height as well.

var label = new gx.ui.basic.Label () .set ({
value: "A long label text which has not enough room.",
width: 60

)i

The second case is handled by the height for width support. Longly name but basically a really strong feature which is
required quite often. It means that the height may depend on the actual width available. This especially makes sense
for multi-line text where the wrapping may be influenced by the available width. The Label widget includes support
for this feature when using the rich output mode (HTML content).

var label = new gx.ui.basic.Label () .set ({
value: "A long label text with auto-wrapping. This also may
contain <b style=’color:red’>rich HTML markup.",
rich : true,
width: 120
1)

Finally this means that every widget can grow and shrink depending on the limitations given for the respective axis.
Two easy accessors which disable growing or shrinking respectively are allowGrowX and allowShrinkX. When the
growing is disabled the configured or automatically detected maximum size is ignored and configured to the preferred
size. When the shrinking is disabled the configured or automatically detected minimum size is ignored and configured
to the preferred size. Two convenient methods to controlling these features without knowing of the exact dimensions.

Overflow Handling

This leads to the next question: how to handle scenarios where the content needs more room than provided by the
parent but should not shrink. This is a common case for data widgets like Lists or Trees. Both extend the Ab-
stractScrollArea to provide scrollbars to handle overflowing content.

The ScrollArea itself renders scrollbars in a custom way. It does not use the native scrollbars nor the native
overflowing capabilities of the browser. Benefits of this decision are:

* Scroll bars can be themed.
» Optimal integration into layout system.
¢ Own implementation overrides browser quirks

The scrollbars are controlable in a way that is comparable to CSS. It is possible to have both scrollbars marked as
auto to automatically detect the needs of the content. Or any other combination where a scrollbar may be statically
hidden or visible. Each bar can be controlled separately. It is possible to enable one scrollbar statically and make the
other one auto-displayed and vice-versa.

152 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Atom
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~_getHeightForWidth
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Label~rich
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~allowGrowX
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~allowShrinkX
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.tree.Tree
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.scroll.AbstractScrollArea
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.scroll.AbstractScrollArea
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollbarX

qooxdoo Documentation, Release 2.0.2

var big = new gx.ui.form.TextArea;
big.setWidth (600);
big.setHeight (600);

var area = new gx.ui.container.Scroll;
area.setWidth (200);

area.setHeight (200);

area.add (big);

The ScrollArea provides all typically needed methods like scrollToX to scroll to an absolute position or scrollByX
to scroll by the given amount. The widget also supports the scrolling of any child into the viewport. This feature is
provided through the method scrollltemIntoView. It just needs any child of the widget (at any depth).

var list = new gx.ui.form.List();

var item;

for (var i=0; 1i<20; i++)

{
item = new gx.ui.form.ListItem("Item #" + 1i);
list.add(item);

if (1 == 12) {
list.select (item);

}

One really interesting aspect of these scrolling features is, that they work all the time, even if the widget is not yet
rendered. It is possible to scroll any ScrollArea before even rendered. It is even possible to scroll any child into
view without the whole parent being visible. This is quite useful for selection handling (selected items should be
visible). Selections of a list for example can be modified during the normal application runtime and are automatically
applied and scrolled correctly after the first appearance on the screen.

Layout Properties

While there are a few core layout features which are normally respected by most layouts like the margin and alignment
properties (have a look to the Layoutltem for these), there are layout specific properties which only makes sense in
conjunction with the specified layout as well. These properties are called layout properties in qooxdoo.

These properties are normally defined with the addition to the parent widget. The children handling normally allows a
second optional parameter opt ions. The layout properties are given through a simple map e.g.

parent.add(child, {left:20, top: 100});
This is still good readble and directly defines the properties where the children is added to the parent (and the parent’s
layout). While this is the common use pattern of layout properties in qooxdoo applications, it is still possible to define

layout properties afterwards using setLayoutProperties. The first parameter is like the second parameter in add and
accepts a map of layout properties.

Units of Layout Properties

Pixel

Usually all position and size values are defined as pixel values. For example the 1eft and top layout properties of
the Basic layout are defined as pixel values.

4.3. Layouts 153

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollToX
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.scroll.AbstractScrollArea~scrollByX
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget~scrollChildIntoView
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.MChildrenHandling
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem~setLayoutProperties

qooxdoo Documentation, Release 2.0.2

Flex

The flex value indicates the flexibility of the item, which implies how an item’s container distributes remaining empty
space amonyg its children. Flexible elements grow and shrink to fit their given space. Elements with larger flex values
will be sized larger than elements with lower flex values, at the ratio determined by the two elements. The actual
flex value is not relevant unless there are other flexible elements within the same container. Once the default sizes of
elements in a box are calculated, the remaining space in the box is divided among the flexible elements, according to
their flex ratios. Specifying a flex value of 0 has the same effect as leaving the flex attribute out entirely.

The easiest use case is to make exactly one child consuming the remaining space. This is often seen in modern
application. For example the location field in common browsers are automatically configured to behave like this. To
do this add a flex value of 1 to the child. In order to make more children behave like this, one could make them flexible
the same way. The available space is automatically allocated between all of them. As £lex allows integer values it
is also possible to define weighted values. A flex value of 2 means double importance over 1. The result is that from
100 pixel remaining space and two flexible children the one with 2 gets about 66 pixel and the other one 33 pixel.

Please note that in shrinking mode flex has an analogous effect. As a flex value of 2 means doubled importance
compared to 1 the child with 2 is shrunken less than the child with 1.

In contrast to qooxdoo 0.7 £1ex values are supplemental to the normal size values of a widget. First all children are
positioned using their regular size hints. If after this step the combined size of the children is larger or smaller than the
available size the £ 1ex value defines by how much each widget is stretched or shrunken.

The f1lex property is supported by both Box Layouts, the Dock Layout and the Grid (for columns and rows).

In some way the SplitPane supports flex as well, but it behaves a bit different there as it is regarded as an alternative to
the preferred size.

Percent

With the above mentioned f1lex feature the use of percents is quite uncommon in most qooxdoo applications. Still,
there are some cases where it might be interesting to define percent locations or dimensions.

The Canvas Layout for example allows a child’s position to contain a percent value (e.g. the layout property left
could be configured to 20%). When there are 1000 pixel available the so-configured child is placed at a left coordinate
of 200 pixel. The final coordinate is automatically updated when the outer dimensions are modified.

The Layoutltem‘s dimension properties only support integer values. To use percentage dimensions some qooxdoo
layout managers allow to define width and height using layout properties. This dimensions are then higher priori-
tized than the width and height configured in the child using the normal properties. The limitations defined through
minWidth etc. are still respected by the layout manager. Percentage dimensions are useful to allocate a specific part
of the available space to a given widget without being dependent on the configuration of the other children.

It is possible to combine f1ex with percent dimensions. This is good because it allows to define approximations like
3 times 33% instead of being forced to fill the 100% completely. With flex enabled the layout manager automatically
arranges the children to fill the remaining pixels.

The effects of percentage dimensions in box layouts are comparable to the result of flex in a SplitPane. The resulting
size is computed from the available space less all statically configured gaps like spacings or margins. Layout managers
with support for percentage dimensions are the already mentioned Box Layouts, but also the Canvas Layout as well as
the Dock Layout.

Pre-configured Widgets

There are a few containers in qooxdoo which use a predefined immutable layout for rendering their children. Currently
these containers are included:

154 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.HBox
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Dock
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Grid
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.splitpane
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Canvas
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.LayoutItem
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.splitpane
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.VBox
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Canvas
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Dock

qooxdoo Documentation, Release 2.0.2

* Scroll: Provides auto-matic scrollbars for larger content. Does not influence the size of the content which is
rendered at the preferred size. Allows scrolling of the content. Supports advanced features like offset calculation
and scroll into view.

e Stack: Scales every widget to the available space and put one over another. Allows selection of which child
should be visible. Used internally by TabView etc.

e SlideBar: Comparable to the Scroll Container but only provides automatic forward and backward arrows. Sup-
ports only one axis per instance: horizontal or vertical. Buttons are automatically displayed as needed. Supports
automatic shrinking of the children (other than the Scroll Container).

 SplitPane: Divides the available space into two areas and provides a possibility to resize the panes for the user.
Automatically respects the limitations of each child.

Visibility Handling

Every widget can be hidden and shown at any time during the application runtime. In qooxdoo each widget’s visibility
might have three values: visible, hidden or excluded. While hidden and excluded both makes a widget
invisible there is still a difference: excluded ignores the widget in during the layout process while hidden simply
hides the widget and keeps the room for the widget during the layout process.

The visibility property is not commonly used in qooxdoo applications.There are a few nice accessor methods
for each widget:

* To check the status of a widget: isVisible (), isHidden () and isExcluded ()
* To modify the visibility: show (), hide () and exclude ()

Please note that for performance reasons invisible widgets are not rendered or updated to the DOM which means that
especially initially invisible parts could improve the startup of a qooxdoo application e.g. alternate Tab Pages, closed
Window instances, Menus, etc.

To work with multiple layers like in a Tab View it is suggested to use a Stack Container instead of doing the visibility
management on the own.

4.4 Themes

4.4.1 Theming

gooxdoo includes three themes:
* Modern - a graphically rich theme, showcasing many UI capabilities of qooxdoo 2.0.2
* Classic - MS Windows oriented theme
* Simple - alightweight theme, which looks more like a website.
* Indigo - a theme, based on simple but offers the style of the qooxdoo.org website.

Here some screenshots:

4.4. Themes 155

qooxdoo Documentation, Release 2.0.2

5. First Window N 4

_, Welcame ko waur First awn Window,
3.~ Have Fun!

GroupBox

CheckBox 1
O CheckBox 2

Dremo loaded

a0 - D X

w1 Welcome to yaur First own Windaw,
=" Have fun!

Page 1 |Pag82 | Page 3 |

GroupBo

CheckBox 1
O CheckBox 2

Demo loaded

51, First Window -Ox

—- 5 Welcome to your first own Window.
E_f Have fun!

Demo |loaded

156 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

£ First Window -Ox

Welcome to your first own Window.
[=]

3 Have fun!

Page 1 Page 2 Page 3

Demo loaded

While those four themes run out-of-the-box, it is easy to create your own themes. Those custom themes can either be
created by extending existing ones or they can be created from scratch.

A complete theme (a so-called meta theme) consists of several special themes, each designed to play a dedicated role
and to setup the different parts of the whole theming. These special themes are described at the subsequent sections
followed by a description of how to create own themes.

Meta Theme

A meta theme describes the whole theme itself by defining the specific parts. Each meta theme consists of five keys
* appearance
* color
* decoration
* font
* icon

each of them referencing to a specialized theme. So you can think of a meta theme as of collection whose parts can
easily be changed.

Sample of a meta theme:

gx.Theme.define ("gx.theme.Modern",

{

meta

{
color : gx.theme.modern.Color,
decoration : gx.theme.modern.Decoration,
font : gx.theme.modern.Font,
appearance : gx.theme.modern.Appearance,
icon : gx.theme.icon.Tango

}

This section describes the different types of themes which are used for theming a whole application.

Color Theme

A color theme defines all colors used by the framework. Each color is defined by an unique name and a value which
can be written as hex, rgb or named color. This defined name is usable throughout the whole framework and your

4.4. Themes 157

qooxdoo Documentation, Release 2.0.2

application.

Note: The best way to organize your color names is to use semantic ones like background, text-input or
text-disabled. This way it is easier to use one color for multiple widgets.

Part of a sample color theme:

J ko
* sample color theme
*/
gx.Theme.define ("myApplication.theme.sample.Color",

{

colors

// color as hex value
"background-application" : "#DFDFDF",

// color as rgb array
"background-pane" : [128, 128, 128 1,

// color as named color
"background-light" : "gray",
}
}) i

Following names are recognized as named colors: black, white, silver, gray, maroon, red, purple,
fuchsia, green, lime, olive, yellow, navy, blue, teal, aqua, orange, brown.

The color values are set in the class gx.util.ColorUtil
Decoration Theme
Each widget can be equipped with an independent decoration which can be used to set a background-color or -

image, define a border, add a shadow and much more. In a decoration theme you can use several different decorators
depending on the results you wish to achieve. Please take a look at the decorator article to get more information.

Note: It is recommend to define the decorations inside the theme instead of creating manually decorator instances
inside your application code. This way the created decorators can be used by multiple widgets.

What a decoration theme can look like:
/* LR b b b b b b b b b g b b b b b b b b b b b b b b b b b b b I g b b b i g g
#asset (sample/decoration/myDecorationTheme/)

**/

VS
* sample decoration theme.

*/

158 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.util.ColorUtil

qooxdoo Documentation, Release 2.0.2

gx.Theme.define ("myApplication.theme.sample.Decoration",

{
aliases : {
decoration : "myApplication/decoration/sample"

s

decorations
{
"single"
{

decorator: gx.ui.decoration.Single,

style
{
width : 1,

color : "red",
colorLeft : "black",
colorRight : "white",

style : "solid"
}
}y

"g’]fid"
{

decorator : gx.ui.decoration.Grid,

style
{

baseImage : "decoration/pane/grid.png"

by

"combined"
{
decorator : [
gx.uil.decoration.MBackgroundColor,
gx.ul.decoration.MBorderRadius

]l

style

{
backgroundColor : "button",
radius : 3

)i

Noted the #asset at the top and the aliases key inside the theme declaration? This is needed to for the images
used within the theme. A description of how to work with resources is available /ere.

Note: The aliases key is especially important when defining an own decorator theme. This entry does add
a new alias at the AliasManager class and verifies that your images for the decoration theme are found by the
ResourceManager which is working with the resolve URLs of the AliasManager class.

4.4. Themes 159

qooxdoo Documentation, Release 2.0.2

Font Theme

This theme is all about the information of the fonts used throughout your application. As the number of types/variants
of fonts used with application isn’t that big the font theme is normally a compact one. Web fonts are also defined here.
See the article on web fonts for details.

Note: It is always a good idea to limit the number of types or variants of fonts to create a homogenous look.

To demonstrate how compact and powerful a font theme can look like, take a look at the example font theme:

J ok k
* The modern font theme.
*/
gx.Theme.define ("gx.theme.modern.Font",

{

fonts

{
"default"

{
size : 11,
lineHeight : 1.4,
family : ["Tahoma", "Liberation Sans", "Arial"]

by

"bold"
{

size : 12,

lineHeight : 1.4,

family : ["Lucida Grande"],
bold : true

)i

It is important to note that you can only specify values available as property on gx.bom.Font or
gx.bom.webfonts. WebFont.

Ilcon Theme

This theme is to define which icon set is used and normally consists only of 2 main keys (title and aliases).

The important one is the aliases key which points the generator to the location of the icon set. The icon alias,
which is used to reference icons in qooxdoo applications, is set to the value of this key. As qooxdoo uses the free
available Tango and Oxygen icon sets it is not necessary to extend these.

Complete code for the tango icon theme:

J ok k
* Tango icons
*/
gx.Theme.define ("gx.theme.icon.Tango",
{
aliases : {
"icon" : "gx/icon/Tango"

160 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.bom.Font
http://demo.qooxdoo.org/current/apiviewer/#qx.bom.webfonts.WebFont
http://tango.freedesktop.org/Tango_Desktop_Project
http://www.oxygen-icons.org

qooxdoo Documentation, Release 2.0.2

Appearance Theme

The appearance theme is by far the biggest theme. Its task is to describe every themable widget and their child controls.
Since the widgets are styled using decorators, colors, fonts and icons the appearance theme uses the definitions of all
the other themes namely the decoration, color, font and icon theme. You can think of the appearance theme as the
central meeting point where the other themes (decorator, color, font and icon) get together.

To discover the power of the appearance theme please take a look at the corresponding article which should let you
get an idea of the whole picture.

Applying Themes

Typically, your application will have a certain, pre-defined theme known at build-time. The best way to associate such
a default outlook with your application is to use the config.json variable QXTHEME inside the “let” section. Setting
this variable to a fully-qualified meta theme class lets the build process handle the proper inclusion and linkage of the
theme classes automatically. E.g.:

QXTHEME : my.theme.Cool,

It is also possible to set a certain appearance at runtime:

gx.theme.manager.Meta.getInstance () .setTheme (my.theme.Cool);

For appearance, color, border, icon and widget themes, you can use similar classes in the gx.theme.manager package.

4.4.2 Appearance
What is it?

An appearance theme is the main part of the theme. It contains all appearance definitions which are responsible for
holding all styling informations for the wigets. Usually the apperance theme is the biggest theme and uses all other
theme classes like the Decorator- or Font-theme.

Theme Structure

A theme normally consists of a set of entries. Each entry has a key which is basically some kind of selector which
matches to a specific widget. Missing selectors are presented as a warning when developing with debug code enabled.

gx.Theme.define ("gx.theme.modern.Appearance",

{

appearances

{

selector : entry,

Selectors

In the most basic form each selector is identical to an appearance ID. This appearance ID is the value stored in the
appearance property (API) of each widget.

4.4. Themes 161

http://demo.qooxdoo.org/current/apiviewer/#qx.theme.manager
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.core.Widget~appearance

qooxdoo Documentation, Release 2.0.2

The child control system ignores this appearance entry for widgets which function as a child control of another widget.
In these cases the selector is the combination of the appearance ID of the parent widget plus the ID of the child control.

In a classic But t on there is a child control icon for example. The appearance selector for the image element which
represents the icon is button/icon. As you can see the divider between the appearance ID and the child control is
a simple slash (/).

It is also possible that a widget, which is a child control itself, uses another child control. Generally the mechanism
prepends the ID of each parent which is also a child control to the front of the selector. For example:

- pane
- levell
- level2
- level3

the generated selector would be pane/levell/level2/level3. For pane which is not a child control of any
other widget the appearance ID is used. For all others the child control ID is used. Again pane is not managed by any
other widget so it is basically added by the developer of the application to another widget while 1evell to level3
are managed by some type of combined widget and are added to each other without the work of the application
developer.

A classic example for this is the Spinner widget. A Spinner is basically a Grid layout with a TextField and
two RepeatButtons. The three internal widgets are available under the sub control IDs text field, upbutton
and downbutton. The selectors for these kind of child controls are then:

* spinner/textfield
* spinner/upbutton
* spinner/downbutton

Each of these selectors must be defined by the selected appearance. Otherwise a warning about missing selectors is
displayed.

Aliases

A entry can be defined with two different values, a string or a map. The first option is named “alias”, it is basically a
string, redirecting to another selector. In the Spinner example from above we may just want to use aliases for the
buttons. See the example:

gx.Theme.define ("gx.theme.modern.Appearance",

{

appearances

{
[...1,
"spinner/upbutton" : "button",
"spinner/downbutton" : "button",

[...]
)i

So we have mastered one essential part for appearance themes. It is basically the easiest part, but seen quite often.
Compared to CSS you always have a full control about the styling of such an child control. There is no type of implicit
inheritance. This may also be seen negatively, but most developers tend to like it more.

Such an alias also redirects all child controls of the left hand selector to the right hand selector. This means that the
icon inside the button is automatically redirected as well. Internally this mapping looks like this:

162 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

"spinner/upbutton" => "button"
"spinner/upbutton/icon" => "button/icon"
"spinner/upbutton/label" => "button/label"

This is super convenient for simple cases and additionally it is still possible to selectively override definitions for
specific child controls.

gx.Theme.define ("gx.theme.modern.Appearance",

{

appearances

{
... 1,
"myimage" : [...],
"spinner/upbutton" : "button",
"spinner/upbutton/icon" : "myimage",

)i

Internally the above results into the following remapping:

"spinner/upbutton" => "button"
"spinner/upbutton/icon" => "myimage"
"spinner/upbutton/label" => "button/label"

Entries

The more complex full entry is a map with several sub entries where all are optional:

gx.Theme.define ("gx.theme.modern.Appearance",
{
appearances
{
[...1,

"spinner/textfield"
{
base : true/false,
include : String,
alias : String,

style : function(states, styles)
{
return {
property : states.hovered ? valuel : value2,
[...]
bi

4.4. Themes 163

qooxdoo Documentation, Release 2.0.2

Style Method

Let’s start with the sty 1e sub entry. The value under this key should be a function which returns a set of properties to
apply to the target widget. The first parameter of the function is named states. This is a map containing keys with
boolean values which signalize which states are switched on. The data could be used to react on specific states like
hovered, focused, selected, etc. The second parameter styles is only avaliable if a include key is given.
If so, the st yles parameter contains the styles of the included appearance. This may be very handy if you just want
to add some padding and don’t want to change it completely. In any case, you don’t need to return the given styles.
The returned styles and the styles argument will be merged by the appearance manager with a higher priority for
the local (returned) styles.

It is required that all properties applied in one state are applied in all other states. Something like this is seen as bad
style and may result in wrong styling:

style : function (states)

{

var result = {};

if (states.hovered) {
result.backgroundColor = "red";

}

// BAD: backgroundColor missing when widget isn’t hovered!

return result;

}

Instead, you should always define the else case:

style : function (states)

{

var result = {};

if (states.hovered) {
result.backgroundColor = "red";

} else {
// GOOD: there should be a setting for all possible states
result.backgroundColor = undefined;

return result;

Note: The undefined value means that no value should be applied. When qooxdoo runs through the returned map
it calls the reset method for properties with a value of undefined. In most cases it would be also perfectly valid
to use null instead of undefined, but keep in mind that nul1l is stored using the setter (explicit null) and this way
it overrides values given through the inheritance or through the init values. In short this means that undefined is
the better choice in almost all cases.

One thing we have also seen in the example is that it is perfectly possible to create the return map using standard
JavaScript and fill in keys during the runtime of the st yle method. This allows to use more complex statements to
solve the requirements of today’s themes were a lot of states or dependencies between states can have great impact on
the result map.

164 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Includes

Includes are used to reuse the result of another key and merge it with the local data. Includes may also used standalone
without the st y1e key but this is merly the same like an alias. An alias is the faster and better choice in this case.

The results of the include block are merged with lower priority than the local data so it just gets added to the map.
To remove a key from the included map just define the key locally as well (using the st y1le method) and set it to
undefined.

Includes do nothing to child controls. They just include exactly the given selector into the current selector.

Child Control Aliases

Child control aliases are compared to the normal aliases mentioned above, just define aliases for the child controls.
They do not redirect the local selector to the selector defined by the alias. An example to make this more clear:

gx.Theme.define ("gx.theme.modern.Appearance",

{

appearances
{
[...1,

"spinner/upbutton"

{

alias : "button",
style : function(states) {
return {
padding : 2,
icon : "decoration/arrows/up.gif"

)i

The result mapping would look like the following:

"spinner/upbutton" => "spinner/upbutton"
"spinner/upbutton/icon" => "button/image"
"spinner/upbutton/label" => "button/label"

As you can see the spinner/upbutton is kept in its original state. This allows one to just refine a specific outer
part of a complex widget instead of the whole widget. It is also possible to include the orignal part of the butt on into
the spinner/upbutton as well. This is useful to just override a few properties like seen in the following example:

gx.Theme.define ("gx.theme.modern.Appearance",
{
appearances
{
[...1,

"spinner/upbutton"

{
alias : "button",
include : "button",

4.4. Themes 165

qooxdoo Documentation, Release 2.0.2

style : function(states)
{
return ({
padding : 2,
icon : "decoration/arrows/up.gif"

When alias and include are identically pointing to the same selector the result is identical to the real alias

Base Calls

When extending themes the so-named base flag can be enabled to include the result of this selector of the derived
theme into the local selector. This is quite comparable to the this.base (arguments, ...) call in member
functions of typical qooxdoo classes. It does all the things the super class has done plus the local things. Please note
that all local defintions have higher priority than the inheritance. See next paragraph for details.

Priorities

Priority is quite an important topic when dealing with so many sources to fill a selector with styles. Logically the
definitions of the style function are the ones with the highest priority followed by the include block. The least
priority has the base flag for enabling the base calls in inherited themes.

States

A state is used for every visual state a widget may have. Every state has flag character. It could only be enabled or
disabled via the APl addState or removeState.

Performance

gooxdoo has a lot of impressive caching ideas behind the whole appearance handling. As one could easily imagine all
these features are quite expensive when they are made on every widget instance and more important, each time a state
is modified.

Appearance Queue

First of all we have the appearance queue. Widgets which are visible and inserted into a visible parent are automatically
processed by this queue when changes happen or on the initial display of the widget. Otherwise the change is delayed
until the widget gets visible (again).

The queue also minimizes the effect of multiple state changes when they happen at once. All changes are combined
into one lookup to the theme e.g. changing hovered and focused directly after each other would only result into
one update instead of two. In a modern GUI typically each click influence a few widgets at once and in these widgets
a few states at once so this optimization really pays of.

166 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Selector Caching

Each widget comes with an appearance or was created as a child control of another widget. Because the detection of
the selector is quite complex with iterations up to the parent chain, the resulting selector of each widget is cached. The
system benefits from the idea that child controls are never moved outside the parent they belong to. So a child controls
which is cached once keeps the selector for lifetime. The only thing which could invalidate the selectors of a widget
and all of its child controls is the change of the property appearance in the parent of the child control.

Alias Caching

The support for aliases is resolved once per application load. So after a while all aliases are resolved to their final
destination. This process is lazy and fills the redirection map with selector usage. This means that the relatively
complex process of resolving all aliases is only done once.

The list of resolved aliases can be seen when printing out the map under
gx.theme.manager.Appearance.getInstance () .__aliasMap to the log console. It just contains the
fully resolved alias (aliases may redirect to each other as well).

Result Caching

Further the result of each selector for a specific set of states is cached as well. This is maybe the most massive source
of performance tweaks in the system. With the first usage, qooxdoo caches for example the result of but t on with the
states hovered and focused. The result is used for any further request for such an appearance with the identical
set of states. This caching is by the way the most evident reason why the appearance has no access to the individual
widget. This would torpedate the caching in some way.

This last caching also reduces the overhead of include and base statements which are quite intensive tasks because
of the map merge character with which they have been implemented.

4.4.3 Custom Themes

There are certain circumstances when the built-in themes are no more sufficient for your application and your needs.
You need to create a custom theme because you have either self-written widgets you wish to style or you like to change
the theming of your application overall.

Basically you have two choices to create a custom theme depending on your needs and the amount you want to change.
The next two sections describe both briefly.

Extending Themes

If you want to stick with an existing theme and only like to add or modify some appearances, change colors or fonts
the best way to go is to extend a theme and to create an own meta theme which sets your extended theme.

For example you like to add some appearances (of your own widgets) to the Modern theme you can simply extend the
appearance theme of the Modern theme.

gx.Theme.define ("myApplication.theme.Appearance”,

{
extend : gx.theme.modern.Appearance,
title : "my appearance theme",

appearances

{

4.4. Themes 167

qooxdoo Documentation, Release 2.0.2

"my-widget"
{

alias : "atom",

style : function(states)

{
return ({
width : 250,
decorator : "main"

bi

)i

To enable your own appearance theme you also have to extend the Meta theme and set your appearance theme.

agx.Theme.define ("myApplication.theme.Theme",
{

title : "my meta theme",

meta
{
color : gx.theme.modern.Color,
decoration : gx.theme.modern.Decoration,
font : gx.theme.modern.Font,
icon : gx.theme.icon.Tango,
appearance : myApplication.theme.Appearance
}
1)

At last you have to tell the generator to actually use your meta theme. Therefore you have to edit your config. json
file and add/edit the key QXTHEME in the 1et block.

"let"
{
"APPLICATION" : "myApplication",
"OXTHEME" : "myApplication.theme.Theme"

}y

After editing your config. json the very last step is to generate your application sources and you’re done. Now
you can adjust and extend your appearance theme to suit your needs.

Note: These steps are also applicable for the other themes.

Define Custom Themes

A custom theme is an own meta theme and the corresponding themes build from scratch. The main part of this work
is mainly the appearance theme and the content of the other themes is mostly defined by the appearance theme, since
this theme is the one who uses fonts, icons, decorators and colors.

Creating the meta theme is a no-brainer and when creating the several themes you only have to consider some rules:

* every theme has its own root key which also defines its type. colors for a color theme, appearances for
an appearance theme and so on

168 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

* every widget has to be equipped with an appearance, otherwise you’ll get a warning at application startup

* every used color, decorator or font has to be defined, otherwise you’ll get an error at application startup. So be
sure to define all used colors, fonts and decorators and to test your application always in the source version to
get the error messages

* be sure to include every image you use in your appearance theme by defining corresponding #asset directives.

* Be sure to check all build in widgets with all states. A Widget may have a different looks and feel when disabled
or invalid.

« Its a good idea to copy a existing appearance theme and edit all the stuff you need. That way, you can be sure
that you have all the appearance keys included the framework needs.

4.4.4 Decorators

Introduction

Decorations are used to style widgets. The idea is to have an independent layer around the widget content that can
be freely styled. This way you can have separate decorators that define all kinds of decoration (colors, background
image, corners, ...), and apply them to existing widgets, without interfering with the widget code itself.

Decorations are used for both, the shadow and the decorator property. They could be applied separately or
together. There is no dependency between them.

Using Decorators

Generally all decorators used should be part of the selected decorator theme. The convention is that each decorator
instance is stored under a semantic name. To use names which describe the appearance of the decorator is bad because
it may make themes less compatible to each other.

It is also regarded as bad style to make use of so-named inline decorators which are created by hand as part of a
function call. The reason for this is that generally decorators defined by the theme may be used in multiple places.
This means that widgets and application code should not directly deal with decorator instances.

Decoration Theme

As mentioned above, it is common to define the decorators in a decorator theme. This is really easy because you have
to specify only a few details about the decorator.

"main"
{

decorator: gx.ui.decoration.Uniform,

style
{
width : 1,
color : "background-selected"

}
s

The first thing you see is the name of the decorator, in this case, main. The specified decorator is available using
that name in the whole application code, especially in the appearance theme. The next thing you see in the map is
the decorator key, that defines the decorator to use. The last thing is the styles map which contains values for the
properties of the given decorator.

4.4. Themes 169

qooxdoo Documentation, Release 2.0.2

This is the way using prebuild decorators. You can also use the decorator mixins in the theme:

"scroll-knob"
{
decorator : [
gx.ul.decoration.MBorderRadius,
gx.ui.decoration.MSingleBorder,
gx.ul.decoration.MBackgroundColor
]I

style
{
radius : 3,
width : 1,
color : "button-border",
backgroundColor : "scrollbar-bright"

}
}y

The main difference here is that not a reference to a prebuild decorator is given. Instead, an array containing mixins
implementing single features are used. The theming system combines those mixins in a decorator. The styles map
should now containg values for properties defined by the mixins.

Sometimes it is very handy to change change only little details about the decorator. Imagine a special decorator for
hovered buttons. Inheritance comes in very handy in such a case.

"scroll-knob-pressed"

{

include : "scroll-knob",
style
{
backgroundColor : "scrollbar—-dark"

}
}y

As you can see here, we include the previously defined decorator and override the backgroundColor property. Thats
all you need to do!

Custom Decorators

Custom decorators are created by extending the decorator theme and adding new ones or overwriting existing ones.
Each decorator class comes with a set of properties for configuration of the instance. Following a short description of
the available decorators:

* Background: Renders a background image or color

¢ Uniform: Like Background, but adds support for a uniform border which is identical for all edges.
* Single: Like Background, but adds support for separate borders for each edge.

* Double: Like Single but with the option to add two separate border to each edge.

* Beveled: Pseudo (lightweight) rounded border with support for inner glow. May contain a background image /
gradient.

* HBox: Uses three images in a row with a center image which is stretched horizontally. Useful for widgets with
a fixed height, which can be stretched horizontally.

* VBox: Uses three images in a column with a center image which is stretched vertically. Useful for widgets with
a fixed width, which can be stretched vertically.

170 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

¢ Grid: Complex decorator based on nine images. Allows very customized styles (rounded borders, alpha trans-
parency, gradients, ...). Optionally make use of image sprites to reduce image number.

Each entry of the theme is automatically made available using the setDecorator/set Shadow functions of the
widget class. The instances needed are automatically created when required initially. This mechanism keeps instance
numbers down and basically ignores decorators which are defined but never used.

Additionall to these explicit decorators, qooxdoo supplies a set of Mixins which supply separate features for decorators.
These mixins can be used to build a decorator on runtime by the theming system. All feature mixins can be used in
combination to get an individual decorator. The mixins also include some features not available in the standalone
decorators.

* MBackgroundColor: for drawing a background color

* MBackgroundImage: for drawing a background image

* MDoubleBorder: for drawing two borders around a widget

* MSingleBorder: for drawing a single border

* MBorderRadius: for adding a CSS radius to the corners

¢ MBoxShadow: for adding a CSS box shado to the widget (does not use the shadow property)
* MLinearBackgroundGradient: for drawing a linear gradient in the background

As you may have guessed, the last three mixins do not work cross browser due to the fact that they rely on CSS
propertes not available in all browsers. If you want more details, take a look at the API documentations of the mixins.

Writing Decorators

It is easily possible to write custom decorators. The interface is quite trivial to implement. There are only five methods
which needs to be implemented:

* getInsets: Returns a map of insets (space the decorator needs) e.g. the border width

* getMarkup: Returns the initial markup needed to build the decorator. This is executed by each widget using
the decorator. This method may not be used by some decorators and this way is defined as an empty method.

e init: Normally used to initialize the given element using getMarkup. Only executed once per element (read
per widget).

* resize: Resizes the given element to the given dimensions. Directly works on the DOM to manipulate the
content of the element.

e tint: Applies the given background color or resets it to the (optionally) locally defined background color. This
method may not be used by some decorators and this way is defined as an empty method.

One thing to additionally respect is that resize and t int should be as fast as possible. They should be as minimal
as possible as they are executed on every switch to the decorator (e.g. hover effects). All things which are possible to
do once, in getMarkup or init methods, should be done there for performance reasons. Decorators are regarded
as imutable. Once they are used somewhere there is no need to be able to change them anymore.

Each decorator configuration means exactly one decorator instance (created with the first usage). Even when dozens
of widgets use the decorator only one instance is used. To cache the markup is a good way to improve the initial time
to create new element instances. These configured elements are reused e.g. a hover effect which moves from “Button
1” to “Button 2” uses the same DOM element when reaching “Button 2” as it has used in “Button 1”. This way the
number of DOM elements needed is reduced dramatically. Generally each decorator instance may be used to create
dozens of these elements, but after some time enough elements may have been created to fulfill all further needs for
the same styling.

4.4. Themes 171

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.decoration
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.decoration.IDecorator

qooxdoo Documentation, Release 2.0.2

Writing Decorator Mixins

If you want to use your custom decorator with some build in decorator mixins, you can write you decorator as mixin
and use it in combination with all the other mixins. Its comparable to writing a standalone decorator. You are able to
implement the following methods:

e _style<yourName>: This method has a styles map as parameter which should be manipulated directly. That
way, you can just append your styles and thats it.

* _resize<yourName>: The resize method is a bit differnet than the resize of the standalone decorators. It
should return a map containing the desired position and dimension after the resize. The theme system then
calculates the new position for the combination of the mixins and appies it to the element.

e _tint<yourName>: The tint method is an easy one which will be called if available. It could be the same as
in the standalone case.

e _getDefaultInsetsFor<yourName>: This method should return the desired insets for this feaure.
Again, the system takes care of calculating the propper insets for the combination of the mixins.

* _generateMarkup: Is used to crate the markup as HTML string.

As you can see, every mixin can define its own methods for getMarkup, resize, tint and the insets. The
theme system combines all the methods given by the separate widgets to one big working method. A single special cas
is the _generateMarkup method, which can only be there once for the whole decorator. For example, the double
border Mixin already implements that because it needs to handle the generation itself.

4.4.5 Web Fonts

gooxdoo’s web fonts implementation is based on the @font-face CSS syntax. It attempts to abstract away cross-
browser issues as far as possible, but due to the browser differences in web font support, it’s up to the application
developer to provide fonts in the appropriate formats. Tools like FontForge or services like FontSquirrel’s font-face
generator can be used to convert fonts.

Theme Definition

Like any font that should be used in a qooxdoo application, web fonts are defined in the Font theme. They simply use
an additional sources key:

/* IFAKAAAAAA AR A

#asset (custom/fonts/ *)

LR g b b b b b b b g g b b b g b b b b g b b b b g b b b g g b b b b g b b b g b b b b g b b b b g b b b b b b b b g b b b 2 g b b b b g g g */

gx.Theme.define ("custom.theme.Font",

{

fonts
{
"fancy"
{
size : 11,
lineHeight : 1.4,
family : ["Tahoma", "Liberation Sans", "Arial" 1],
sources:

[

family : "YanoneKaffeesatzRegular",
source:

[

172 Chapter 4. qx.Desktop

http://webfonts.info/wiki/index.php?title=%40font-face_browser_support
http://www.fontsquirrel.com/fontface/generator
http://www.fontsquirrel.com/fontface/generator

qooxdoo Documentation, Release 2.0.2

"custom/fonts/yanonekaffeesatz-regular-webfont.eot",
"custom/fonts/yanonekaffeesatz-regular-webfont.ttf",
"custom/fonts/yanonekaffeesatz-regular-webfont.woff",
"custom/fonts/yanonekaffeesatz-regular-webfont.svg#YanoneKaffeesatzRegular"

There are a few things to note here:

* The value of sources is an Array. As with regular CSS font-family definitions, the first font in the list that is
available at runtime (meaning in this case it has been successfully downloaded) will be applied to widgets using
the “fancy” font.

* The value of the family key will also be added to the font-family style property of the widget’s content element
so there is a defined fallback path even if no web font at all could be loaded.

* Between one and four different formats of the same font can be provided depending on which browsers should
be supported. For SVG, it is necessary to add the font’s ID. This can be found by looking for the path
svg/defs/font/@id in the XML definition, or copied from the CSS template created by the FontSquirrel gen-
erator.

» Each source entry can be either a URI or a gooxdoo resource ID. The latter is generally preferable since font
files will then be copied to the output directory for the build version just like any other application resource.
Also, this prevents issues in Firefox which applies Same-Origin Policy restrictions to web fonts.

Once configured, web fonts are applied like any other font, either by referencing them in the Appearance theme, e.g.:

"window/title"

{

style : function (states)
{
return {
cursor : "default",
font : "fancy",

marginRight : 20,
align¥Y: "middle"

}

or by calling a widget instance’s setFont method:

var label = new gx.ui.basic.Label ("A web font label");
label.setFont ("fancy");

Asynchronous loading considerations

As web fonts are loaded over HTTP, there can be a noticeable delay between adding the CSS rule to the document and
the font style being applied to DOM elements. This means text will be rendered in the first available fallback font, then
once the web font has finished downloading, affected widgets will recalculate their content size and trigger a layout
update, which can cause a visible “jump” in the GUI. While this effect is far less pronounced (if at all noticeable)
once the fonts are cached, it is still advisable to use web fonts sparingly. Of course, using no more than two or three
font-faces in an application is also good advice from a design point of view.

4.4. Themes 173

mailto:svg/defs/font/@id

qooxdoo Documentation, Release 2.0.2

4.4.6 Using themes of contributions in your application

Note: This tutorial assumes you are using the latest GUI skeleton template which contains pre-defined theme classes.

Contributions are a powerful and easy way to enhance your application with e.g. widgets that had not (yet) found the
way into the qooxdoo core framework. Nevertheless it is a no-brainer to use them in your application.

But if a contribution is providing its own theme (in most cases its own appearance theme) you have to manage this
manually.

Note: A bug report to make this step superfluous is already filed (see #1591), but in the meantime you can stick with
this little tutorial to get things done.

For an easiser understanding this tutorial explains the necessary setup at the example of the TileView widget.

Adjust your configuration
The interesting part of the config. json looks like this:

"jObS"
{

"libraries"

{

"library"
[
{

"manifest" : "contrib://TileView/trunk/Manifest.json"

s
// as the tileView uses internally the FlowLayout you have
// to add this to set it up correctly

{

"manifest" : "contrib://FlowLayout/trunk/Manifest. json"

Include appearance theme

If you use the latest GUI skeleton template you will get an own appearance theme class (among all other theme classes)
already setup for you. All you need to do is to include the appearance class provided by the TileView widget into
your own appearance class.

Include the TileView appearance:

gx.Theme.define ("yourApp.theme.Appearance",

{

extend : gx.theme.modern.Appearance,

// this include key does the magic
include : tileview.theme.Appearance,

// overwrite the appearances to customize the look of the modern theme

174 Chapter 4. qx.Desktop

http://bugzilla.qooxdoo.org/show_bug.cgi?id=1591
http://qooxdoo.org/contrib/project#tileview

qooxdoo Documentation, Release 2.0.2

// usually not needed
appearances

{
)i

So all you need to add is this little include key with the corresponding appearance class to include it into your
application.

Known issues

The following code which could reside in your Application class won’t work:
gx.Theme.include (gx.theme.modern.Appearance, tileview.theme.Appearance);

The reason is that this include above will be resolved at runtime which does not work anymore. The first solution is
resolved at loading time, so the include is already performed at startup. This issue is already filed under #1604.

4.5 Technical Concepts

4.5.1 The Event Layer

The class gx.event.Manager provides a per-document wrapper for cross-browser DOM event handling. The imple-
mentation of the event layer is inside the gx.event namespace.

The following features work in all supported browsers:
* Canceling events: stopPropagation ()
* Skipping the browser’s default behavior: preventDefault ()
* Unified event objects matching the W3C DOM 2 event interface
* Cross-browser event bubbling and capturing phase, even in Internet Explorer
* Mouse event capturing

* Port of the unified qooxdoo 0.7 key event handler to the 1.2 low-level layer. For a full list of available key
identifiers see the getKeyldentifier() method documentation of the gx . event . type .KeySequence class.

¢ Unified mouse events

— Normalized double click event sequence mousedown -> mouseup -> click -> mousedown ->
mouseup -> click -> doubleclick in Internet Explorer

— Normalized right click sequence mousedown ->mouseup -> contextmenu in Safari 3 and Opera.

— Always fire click events if the mouseup happens on a different target than the corresponding
mousedown event. Natively only Internet Explorer behaves like that.

4.5. Technical Concepts 175

http://bugzilla.qooxdoo.org/show_bug.cgi?id=1604
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event.Manager
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-interface
http://msdn2.microsoft.com/en-us/library/ms537630.aspx
http://attic.qooxdoo.org/documentation/0.7/keyboard_events
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.event.type.KeySequence~getKeyIdentifier

qooxdoo Documentation, Release 2.0.2

UML Class Diagram

Manager
addListener(element, type, listener, self, useCapture)

removelistener(element, type, listener, useCapture)
dispatchEvent{event)
1 1
<<Abstract>> =zInterfaces>
AbstractEventHandler o IEventDispatcher A

canHandleEvent(element, type) canbispatchEvent(event)
registerEvent(element, type) dispatchEvent(event)
unregisterEvent(element, type)
removeAllListeners()

£
[|
FocusHandler DocumentEventHandler BubblingDispatch InlineDispatch MouseCaptureDispatch

| |

MouseEventHandler InlineEventHandler

KeyEventHandler
——

ObjectEventHandler

4.5.2 HTML Element Handling

This document describes the ideas and concepts behind the classes in the gx . htm1 namespace (API). qooxdoo also
comes with a basic low-level abstraction API for DOM manipulation. For details about this API please have a look at
the corresponding documentation.

Idea

The classes in gx.html are wrapper for native DOM elements, which basically were created to solve one major
issue:

Automatically keeping care of DOM manipulation and creation while dealing with large number of elements.
In details this means:

* Automatic performance: Programmatically constructing DOM hierarchies is hard to get fast because the order
in which elements are nested can heavily influence the runtime performance. What gx . html .Element does
is trying to keep the number of element instances to the minimum actually needed (DOM nodes are expensive,
both performance and memory aside) and to insert the DOM nodes in an efficient manner. Further all changes
to the DOM are cached and applied in batch mode, which improves the performance even more.

* Normalized API: Working with HTML DOM elements usually involves many browser switches. Especially
when it comes to reading and setting of attributes or styles. For each style one has to remember whether a
normalization method should be called or if the value can be set directly. gx.html .Element does this kind
of normalization transparently. The browser normalization is based on the existing low-level APIs.

176 Chapter 4. qx.Desktop

http://api.qooxdoo.org/#qx.html

qooxdoo Documentation, Release 2.0.2

* Convenience methods: These elements have additional convenience API, which is not available on pure
DOM elements. They have e.g. the functionality to manage children with methods like addBefore () or
moveAfter ().

Typical Use Cases

* Building a widget system on top
* Massively building DOM elements from data structures

It may be used for smaller things as well, but brings in quite some overhead. The size of the API, additional to a
basic low-level package of qooxdoo is about 20 KB (5 KB gzipped). Also it consumes a bit more memory when all
underlying DOM elements are created. Keep in mind that the instances are around all the time. Even when all jobs for
a instance are done at the moment.

Features

* Automatic DOM insertion and element management

¢ Full cross-browser support through usage of low-level APIs e.g. setStyle (), getAttribute (), ...
* Advanced children handling with a lot of convenience methods e.g. addAfter (), ...

» Reuse existing markup as a base of any element via useMarkup ()

* Reuse an existing DOM node via useElement ()

» Powerful visibility handling to include () or exclude () specific sub trees

* Support for scrolling and scroll into view (scrollTo (), scrollIntoView (), ...)

¢ Integration of text selection APIs (setSelection (), getSelection(),...)

e Automatic interaction with event managers (addListener (), removeListener (), ...)

¢ Connection to focus/activation handler

Specific HTML Elements

Roots

A root is one essential element type when dealing with the APIL. Every user of gx.html.Element needs at least
one instance of gx . html.Root to insert children to it. The root is always marked as being visible and is typically
the body DOM element or any other directly inserted element. This element can be assigned to be used by the root
using the method useElement ().

Labels

Used for all types of text content. Supports text or HTML content togglable using the setRich () method. When
using the text mode ellipsis is supports in all browsers to show an indication when the text is larger than the available
space. Highly depends on the API of qx.bom.Label.

4.5. Technical Concepts 177

http://api.qooxdoo.org#qx.bom.Label

qooxdoo Documentation, Release 2.0.2

Images

An element pre-configured as a IMG tag. Supports scaled and unscaled images. Supports image clipping (without
scaling) to more efficiently deal with a lot of images. Depends on the API brought in by gqx.bom.element.Decoration.

Input

This element is used for all types of input fields. The type can be given using a constructor parameter. It allows
configuration of the value and the text wrapping (requires type textarea). Depends on the API brought in by
gx.bom.Input.

Iframe

This element is used to create iframes to embed content from other sources to the DOM. It wraps the features of
gx.bom.Iframe. Supports to configure the source of the iframe as well as its name. Comes with accessors to the
document or window object of the iframe.

Canvas

Renders a HTMLS5 Canvas to the DOM. Has methods to access the render context as well to configure the dimensions
of the Canvas.

The Queue

Internally most actions applied to the instances of gx.html.Element are applied lazily to the DOM. All style or
attribute changes are queued for example to set them at once. This is especially useful to allow to bump out changes
at once to the browser even when these happens in multi places and more important on more than one element.

Even things like focus handling or scrolling may be queued. It depends on if the element is currently visibible etc.
whether these are queued. focus makes often more sense when it is directly executed as the following code may
make assumptions that the changes are applied already. Generally qooxdoo allows it to apply most changes without
the queue as well using a direct flag which is part of most setters offered by gx .html.Element.

4.5.3 The Focus Layer

History

This document is meant to talk about some internals of the focus system in qooxdoo since 1.2. This is a technol-
ogy documentation targeted to interested developers. There is no need to understand these details as a user of the
framework.

In previous versions of the focus handling we forced the application to our own implementation instead of working
together with the browser. This was quite straightforward because the topic itself is quite complex and the differ-
ences between the browsers are huge. So just ignoring all these differences and implementing an own layer is highly
attractive.

However this came with quite some costs. For example it’s quite hard to catch all the edge cases when a input field
loses the focus nor is it possible to recover the focus correctly when the browser does something after switching the
window (send back/bring to front etc.). To listen on the browser might improve some types of out-of-sync problems
in the previous versions. We caught most things correctly though, but it is quite hard to get 100% accuracy.

178 Chapter 4. qx.Desktop

http://api.qooxdoo.org#qx.bom.element.Decoration
http://api.qooxdoo.org#qx.bom.Input
http://api.qooxdoo.org#qx.bom.Iframe
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

qooxdoo Documentation, Release 2.0.2

Focus Support

With 1.2 the focus system was reimplemented using the new low level event stack. Compared to the old focus system
this basically means that the whole focus support is implemented low-level without any dependencies on the widget
system. It directly uses the new event infrastructure and integrates fine with the other event handlers.

The new system tries to connect with all available native events which could help with detecting were the browser’s
focus is moving to. The implementation makes use of native events like activate or focusin where available.
It uses a lot of browser behavior which is not explicitly documented or valid when reading the specifications, just to
solve the issue of detecting where the focus currently is or is moved to.

It supports the events focusin, focus, focusout and blur on DOM nodes. It also supports focus and blur
events on the window. There is support for act ivate and deactivate events on DOM nodes to track keyboard
activation. It has the properties focus and act ive to ask for the currently focused or activated DOM node.

Activation Support

The activation, as part of the focus system, is also done by this manager. The keyboard handler for example asks
the focus system which DOM element is the active one to start the bubble sequences for all keyboard events on this
element. As the keyboard layer sits on top of the DOM and implements the event phases on its own there is no need
to inform the browser about the active DOM node as it is simply not relevant when using this layer. It is also quite
important as in every browser tested the methods to activate a DOM node (if available at all) might also influence the
focus which creates some problems.

Window Focus/Blur

The handler also manages the focus state of the top-level window. It fires the blur and focus events on the window
object one can listen to. Natively, these events are fired all over just by clicking somewhere in the document. The issue
is to detect the real focus/blur events. This is implemented through some type of internal state representation.

Text Selection

Focus handling in qooxdoo also solves a lot of related issues. For example the whole support for unelectable text is
done with the focus handler as well. Normally all text content on a page is selectable (with some exceptions like native
form buttons etc.). In a typical GUI or during drag&drop sessions it is highly needed to stop the user from being able
to select any text.

The only thing needed for the focus handler here is to add an attribute gxSelectable with the value off to the
node which should not be selectable. I don’t know about a way which is easier to solve this need.

Behind the scenes qooxdoo dynamically applies styles like user—select or attributes like unselectable. There
are a lot of bugs in the browser when keeping these attributes or styles statically applied to the nodes so they are applied
as needed dynamically which works surprisingly well. In Internet Explorer the handler stops the event selectstart
for the affected elements.

Prevent Defaults

One thing we needed especially for the widget system, which is built on top, was support for preventing a widget or
in this case a DOM node from being able to get the focus. This sounds simpler at first than it is. The major issue is to
also keep the focus where it is while clicking somewhere else.

This is especially interesting when working with a text selection. Unfortunately in a browser the selection could only
be where the focus is. This is a major issue when trying to apply any change to the currently selected text like needed
for most kinds of editors (like a rich text editor used by a mail application for example). The type of fix we apply

4.5. Technical Concepts 179

qooxdoo Documentation, Release 2.0.2

in qooxdoo is not to allow the browser to focus a specific DOM node e.g. the “Bold” button of the text editor. This
makes it easy to add listeners to the button which work with the still existing selection of the editor field. The feature
could be applied easily to a DOM node like such a button just through an attribute gxKeepFocus with the value on.
It affects all children of the element as well, as long as these do not define anything else.

A similar goal is to keep the activation where it is when the user clicks at a specific section of the document. This is
mainly used to keep the keyboard processing where it is e.g. when clicking the opened list of a SelectBox widget.
This feature could be used for other scenarios like this as well. Like in the previous block it can be enabled simply by
setting the attribute gxKeepActive to on for the relevant DOM node. Internally, to stop the activation also means
to stop the focus. It was not solvable in another way because the browser otherwise sends activation events to the
focused DOM node which is contra productive in this case.

Another unwanted side effect of some browsers is the possibility to drag around specific types of content. There is
some type of native drag&drop support in most of today’s browsers, but this is quite useless with the current quality
of implementation. Still, the major issue remains: It is possible to drag around images for example which is often not
wanted in a GUI toolkit. These native features compromise the behavior implemented by the application developer on
top of them. To stop this, qooxdoo applies styles like user—drag on browsers that support it, or prevents the native
draggesture event where available.

Other then this, most of these prevention is implemented internally through a preventDefault call on the global
mousedown event when a specific target is detected. This has some side effects though. When preventing such a core
event it means that most browsers also stop any type of selection happening through the mouse. This also stops them
from focusing the DOM node natively. The qooxdoo code uses some explicit focus calls on the DOM nodes to fix
this.

Please note that some settings may have side effects on other things. For example, to make a text region selectable
but not activate able is not possible with the current implementation. This has not really a relevance in real-world
applications, but may be still interesting to know about.

Finally

Finally, the whole implementation differs nearly completely for the supported browsers. Hopefully you get an impres-
sion of the complexity of the topic. May the browser with you.

4.6 Tutorials

4.6.1 Tutorial Part 1: The Beginning of a twitter App
The Missing Manual

We have heard it a couple of times: Users are missing a tutorial a bit more complex than the simple “Hello World”
tutorial we already have. Today, we want to close that gap between the first tutorial and the demo applications included
in the framework like the Feedreader.

As you sure have read in the headline, we are building a simple twitter application. twitter is a well known service
for posting public short messages and has a good API for accessing data. The following mockup shows you how the
application should look like at the end.

180 Chapter 4. qx.Desktop

http://demo.qooxdoo.org
http://demo.qooxdoo.org/2.0.2/feedreader
http://twitter.com
http://apiwiki.twitter.com

qooxdoo Documentation, Release 2.0.2

twitter

<A X [1 &)

twitter
Reload

January 29, 2010 10:44 pm I

Some Important news

from me!

January 29, 2010 9:57 pm
L& Just arived at home.

January 28, 2010 3:15 pm
Buy a lot of useless crap
at hitp://xyz.com

Joruary 28, 2010 1:42 pm
@ Aliens just landed on

planet earth!

This is my tweet... N
Post

#|

created with Balsamiq Mockups - www.balsamig.com

If you take a closer look at the mockup, you see a window containing a foolbar, a list, a text area and a button to post
messages. This should cover some common scenarios of a typical qooxdoo application.

In the first part you’ll learn how to create a new application and how to build a part of the main UI. But before we get
started, be sure you looked at the “Hello World” tutorial. We rely on some of the fundamentals explained there.

Getting started

The first step is to get a working qooxdoo application where we can start our development. You should already
have the qooxdoo SDK and know how to use create—application.py, so we just create an application called
twitter.

create—application.py ——name=twitter

After that, we should check if everything works as expected. Change the directory to twitter and
run ./generate.py. Now the skeleton application is ready to run and you can open the in-
dex file located in the source directory. After that, open the Application.js file located in
source/class/twitter/Application. js with your favorite editor and we are set up for development!

You should see the unchanged skeleton code of the application containing the creation of a button. We don’t need that
anymore so you can delete it including all the listener stuff.

The first part is to create a Window. As the Window contains all the UI controls, we should extend from the qooxdoo
Window and add the controls within that class. Adding a new class is as easy as creating a new file. Just create a file
parallel to the Application. js file named MainWindow. js. Now it is time to add some code to that file. We

4.6. Tutorials 181

qooxdoo Documentation, Release 2.0.2

want to create a class so we use the qooxdoo function gx.Class.define for that. Add the following lines to your
newly created file.

gx.Class.define ("twitter.MainWindow",

{

extend : gx.ui.window.Window,

construct : function ()

{

this.base (arguments, "twitter");

)i

We have created our own class extending the qooxdoo Window. In the constructor, we already set the caption
of the window, which is the first constructor parameter of the qooxdoo window. So you already have guessed it,
this.base (arguments) calls the overridden method of the superclass, in this case the constructor. To test the
window, we need to create an instance of it in the main application. Add these two lines of code in the Application.js
file to create and open the window. Make sure to add it at the end of the main function in the application class.

var main = new twitter.MainWindow () ;
main.open();

Now its time to test the whole thing in the browser. But before we can do that, we need to run the generator once more
because we added the window class as new dependency. So run . /generate.py and open the page in the browser.
You should see a window in the top left corner having the name “twitter”.

Programming as Configuring

The last task of this tutorial part is to configure the window. Opening the window in the left corner does not look so
good, so we should move the window a bit away from the edges of the viewport. To do this add the following line to
your application file:

main.moveTo (50, 30);

Another thing we should configure are the buttons of the window. The user should not be able to close, minimize nor
maximize the window. So we add the following lines of code in our windows constructor.

// hide the window buttons
this.setShowClose (false) ;
this.setShowMaximize (false);
this.setShowMinimize (false);

The last thing we could change is the size of the window on startup. Of course the user can resize the window but we
should take care of a good looking startup of the application. Changing the size is as easy as hiding the buttons, just
tell the window in its constructor:

// adjust size
this.setWidth (250);
this.setHeight (300);

At this point, your application should look like this.

182 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.window.Window

qooxdoo Documentation, Release 2.0.2

L NeNé) twitter

4 | p» + _"ﬁle:Hstersfmwac—cumentsjworkspaceftwittm & P Qr Google

Thats it for the first part. If you want to have the code from the tutorial, take a look at the project on github and just
fork the project. The next part of the tutorial will contain the building of the rest of the UL If you have feedback or
want to see something special in further tutorials, just let us know!

4.6.2 Tutorial Part 2: Finishing the Ul

In the first part of the tutorial, we built a basic window for our target application, a twitter client. In the second part of
the tutorial, we want to finish the UI of the application. So lets get started, we got a lot to do!

I hope you remember the layout of the application we are trying to build. If not, here is a little reminder.

4.6. Tutorials 183

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step1

qooxdoo Documentation, Release 2.0.2

twitter

<:] E> X {;} [filte:// ...] @)

twitter
Reload

January 29, 2010 10:44 pm I

Some Important news

from me!

January 29, 2010 9:57 pm
& Just arived at home.

January 28, 2010 3:15 pm
Buy a lot of useless crap
at hitp://xyz.com

Joruary 28, 2010 1:42 pm
@ Aliens just landed on

planet earth!

This Is my tweet... N
Post

#|

created with Balsamiq Mockups - www.balsamiq.com

The first thing we need to do is to set a layout for our window. You can see that the text area and the button are
side by side while all the other elements are ordered vertically. But all elements are aligned in a grid so we should
choose a grid layout for that. We can add the grid layout in our own window class. Just add these lines of code in
MainWindow. js:

// add the layout
var layout = new gx.ui.layout.Grid(0, O0);
this.setLayout (layout) ;

But a layout without any content is boring so we should add some content to see if it’s working. Lets add the first two
elements to the window, the roolbar and the list view.

Layout and Toolbar

First, we need to create the toolbar before we can add it. Creating the toolbar and adding it is straight forward.

// toolbar
var toolbar = new gx.ui.toolbar.ToolBar();
this.add(toolbar, {row: 0, column: 0});

This will add the toolbar to the grid layout of our main window. The only thing you should take care of is the second
parameter of .add(). It contains a map with layout properties. You can see the available layout properties in the API of
the layout, in this case of the grid layout. Here, we use only the row and column property to tell the layout that this is
the element in the first row and column (rows and columns start at index 0, you guessed it).

184 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Grid
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Grid

qooxdoo Documentation, Release 2.0.2

List and Layout, again

Adding the list should look familiar now.

// 1list
var list = new gx.ui.form.List();
this.add(list, {row: 1, column: 0});

Now its time to see our work in the browser. But again, we have added new class dependencies so we need to invoke
the generator with . /generate.py. After that, we can see the result in the browser. I guess it’s not the way we like
it to be. You cannot see any toolbar, the list has too much padding against the window border and doesn’t fit the whole
window. That’s something we should take care of now.

First, get rid of that padding we don’t need. The window object has a default content padding which we just to set to
0

this.setContentPadding(0);

Put that line in your windows constructor and the padding is gone.

Next, we take care of the size of the list. The layout does not know which column(s) or row(s) it should stretch. So we
need to tell the layout which one it should use:

layout.setRowFlex (1, 1);
layout.setColumnFlex (0, 1);

The first line tells the layout to keep the second row (the row for the list) flexible. The second row does the same for
the first column.

The last thing we need to fix was the invisible toolbar. If you know the reason why it’s not visible, you sure know how
to fix it. It contains not a single element so it won’t be visible. Fixing it means adding an element, in our case we just
add the reload button. We already know how to create and add widgets so just add the following lines of code.

// reload button
var reloadButton = new gx.ui.toolbar.Button("Reload");
toolbar.add(reloadButton) ;

Now its time to see if all the fixes work. But be sure to run the generator before you reload the browser page because
we added (again) another class (the button). Now everything should look the way we want it to be.

Text Area and Button

After that success, we can got to the next task, adding the text area and “Post” button. This is also straight forward
like we have seen in all the other adding scenarios.

// textarea
var textarea = new gx.ui.form.TextAreal();
this.add (textarea, {row: 2, column: 0});

// post button
var postButton = new gx.ui.form.Button("Post");
this.add (postButton, {row: 2, column: 1});

This time, we have to add the button in the second column to get the button and the text area aligned horizontally. Its
time to test this... again generate and reload.

Like the last time, the result is not quite what we want it to be. The list and toolbar do not fill the whole window. But
that’s a home-made problem because we extended our grid to two columns by adding the post button. The list and the

4.6. Tutorials 185

qooxdoo Documentation, Release 2.0.2

toolbar need to span both available columns to have the result we want. But that’s easy too, add colSpan: 2 to
the layout properties used by adding the list and the toolbar. Your code should look like this:

this.add(toolbar, {row: 0, column: 0, colSpan: 2});
/S
this.add(list, {row: 1, column: 0, colSpan: 2});

This time, we did not add a new class dependency so we can just reload the index file and see the result.

Breathing Life into the Ul

The UI now looks like the one we have seen in the mockup. But how does the Ul communicate with the application
logic? It’s a good idea to decouple the UI from the logic and use events for notifying the behaviour. If you take a look
we only have two actions where the UI needs to notify the rest of the application: reloading the tweets and posting a
tweet.

These two events we add to our window. Adding events is a two step process. First, we need to declare what kind of
event we want to fire. Therefore, we add an events section alongside to the constructor section of the window class
definition:

events

{
"reload" : "gx.event.type.Event",
"post" : "gx.event.type.Data"

}I

As you can see in the snippet here, it ends with a comma. It always depends on what position you copy the section
if the comma is necessary. Just take care the the class definition is a valid JavaScript object. But now back to the
events. The reload event is a plain event which only notifies the receiver to reload. The post event is a data event which
contains the data to post to twitter. That’s why there are two different types of events used.

Declaring the events is the first step of the process. The second part is firing the events! Let’s take a look at the reload
event. It needs to be fired when the reload button was triggered (or “was executed” in qooxdoo parlance). The button
itself fires an event on execution so we could use this event to fire our own reload event.

reloadButton.addListener ("execute", function () {
this.fireEvent ("reload");
}, this);

Here we see two things: First, how to add an event listener and second, that firing an event is as easy as a method call.
The only parameter to .fireEvent() is the name of the event we have declared in the class definition. Another interesting
thing here is the third parameter of the addListener call, this. It sets the context of the callback function to our
window instance, so the this in this.fireEvent() is resolved correctly.

The next case is a bit different but also easy.

postButton.addListener ("execute", function() {
this.fireDataEvent ("post", textarea.getValue());
}, this);

This time, we call the fireDataEvent method to get a data event fired. The second parameter is the data to embed
in the event. We simply use the value of the text area. That’s it for adding the events. To test both events we add a
debug listener for each event in our application code, in the main() method of Application.js:

main.addListener ("reload", function() ({
this.debug ("reload");
}, this);

main.addListener ("post", function(e) {

186 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

this.debug ("post: " + e.getDatal());
}, this);

You can see in the event listener functions that we use the qooxdoo debugging function debug. Now it’s time to test
the whole UL Open the index file in a browser you like and see the UL If you want to see the debugging messages you
have to open either a the debugging tool of your chosen browser or use the qooxdoo debugging console. Press F7 to
get the qooxdoo console visible.

Finishing Touches

As a last task, we can give the Ul some finishing touches. Wouldn’t it be nice if the text area had a placeholder text
saying you should enter your message here and Tool1Tips showing some more info to the user? Easy task!

reloadButton.setToolTipText ("Reload the tweets.");

/.

textarea.setPlaceholder ("Enter your message here...");

/.

postButton.setToolTipText ("Post this message on twitter.");

Another nice tweak could be a twitter logo in the windows caption bar. Just download this logo from twitter and save
it in the source/resource/twitter folder of your application. Adding the logo is easy because the window
has also a property for an icon, which can be set in the constructor. Adding the reference to the icon in the base call
should do the job.

this.base (arguments, "twitter", "twitter/t_small-c.png");

This time, we added a new reference to an image. Like with class dependencies, we need to run the generator once
more. After that, the image should be in the windows caption bar.

Two more minor things are left to finish. First, the button does not look very good. Why don’t we just give it a fixed
width to fit its height.

postButton.setWidth (60) ;

The last task is a bit more complicated than the other tweaks before. As you probably know, twitter messages have a
maximum length of 140 characters. So disabling the post button if the entered message has more the 140 characters
could help us out in the communication layer. A twitter message with no text at all is also useless and we can disable
the post button in that case. To get that we need to know when the text was changed in the text area. Fortunately, the
text area has a data event for text changes we can listen to:

textarea.addListener ("input", function(e) {

var value = e.getData();

postButton.setEnabled(value.length < 140 && value.length > 0);
}, this);

The event handler has only two rows. The first gets the changed text of the text area from the data event. The second
row sets the enabled property of the post button if the length of the message is lower than 140 characters and not 0.
Some of you might have a bad feeling about this code because the listener is called every time the user adds a character.
But that’s not a problem because the qooxdoo property system takes care of that. If the value passed into the setter is
the same as the existing value, it is ignored and no event is fired.

The last thing we should consider is the startup of the application. The text area is empty but the button is enabled.
Disabling the button on startup is the way to go here.

postButton.setEnabled (false);

Now go back to the browser and test your new tweaks. It should look like this.

4.6. Tutorials 187

http://twitter-badges.s3.amazonaws.com/t_small-c.png

qooxdoo Documentation, Release 2.0.2

L NeNé) twitter

4 | p» + || file:///Users/mw/Documents/workspace/twitter/source/index.htm & | [Qr Coogle

Reload

Post

That’s it for building the UI. Again, if you want to take a look at the code, fork the project on github. Next time we
take care of getting the data. If you have feedback on this post, just let us know!

4.6.3 Tutorial Part 3: Time for Communication

After we created the application and the main window in the first tutorial part and finished the Ul in the second, we
will build the communication layer today. With that part the application should be ready to use.

Pre-Evaluation
First, we need to specify what’s the data we need to transfer. For that, we need to take a look what tasks our application
can handle:

1. Show the public twitter timeline.

2. Post a tweet.

So it’s clear that we need to fetch the public timeline (that’s how it is called by twitter), and we need to post a message
to twitter. It’s time to take a look at the twitter API so that we know what we need to do to communicate with the
service. But keep in mind that we are still on a website so we can’t just send some POST or GET requests due to

188 Chapter 4. qx.Desktop

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step2
https://dev.twitter.com/

qooxdoo Documentation, Release 2.0.2

cross-site scripting restrictions. The one thing we can and should do is take advantage of JSONP. If you have never
heard of JSONP, take some time to read the article on ajaxian to get further details.

Creating the Data Access Class

Now, that we know how we want to communicate, we can tackle the first task, fetching the public timeline. twitter
offers a JSONP service for that which we can use. Luckily, there is no login process on the server side so we don’t
need to bother with that in the client. The following URL returns the public timeline wrapped in a JavaScript method
call (that’s what JSONP is about):

http://api.twitter.com/1/statuses/public_timeline. json?callback=methodName

Now we know how to get the data from twitter. Its time for us to go back to the qooxdoo code. It is, like in the
case of the Ul, a good idea to create a separate class for the communication layer. Therefore, we create a class
named TwitterService. We don’t want to inherit from any advanced qooxdoo class so we extend straight from
gx.core.Object. The code for that class should looks like this:

gx.Class.define ("twitter.TwitterService",

{
extend : gx.core.Object,
members

Fetching the Data
As you can see, we omitted the constructor because we don’t need it currently. But we already added a members block
because we want to add amethod named fetchTweets:

fetchTweets : function () {

}

Now it’s time to get this method working. But how do we load the data in qooxdoo? As it is a JSONP service, we can
use the JSONP data store contained in the data binding layer of qooxdoo. But we only want to create it once and not
every time the method is called. Thats why we save the store as a private instance member and check for the existence
of it before we create the store. Just take a look at the method implementation to see how it works.

if (this.__store == null) {
var url = "http://api.twitter.com/1l/statuses/public_timeline.json";
this.___store = new gx.data.store.Jsonp(url, null, "callback");
// more to do
} else {
this.__ store.reload();

}

We already added the code in case the store exists. In that case, we can just invoke a reload. I also mentioned that the
instance member should be private. The two underscores (__) mark the member as private in gooxdoo. The creation
of the store or the reload method call starts the fetching of the data.

But where does the data go? The store has a property called model where the data is available as qooxdoo objects
after it finished loading. This is pretty handy because all the data is already wrapped into gooxdoo objects! Wait, hold
a second, what are gooxdoo properties? Properties are a way to store data. You only need to write a definition for a
property and qooxdoo will generate the mutator and accessor methods for that property. You will see that in just a few
moments.

4.6. Tutorials 189

http://ajaxian.com/archives/jsonp-json-with-padding
http://dev.twitter.com/doc/get/statuses/public_timeline

qooxdoo Documentation, Release 2.0.2

We want the data to be available as a property on our own service object. First, we need to add a property definition
to the TwitterService. js file. As with the events specification, the property definition goes alongside with the
members section:

properties : {
tweets : |
nullable: true,
event: "changeTweets"
}
}I

We named our property tweets and added two configuration keys for it:
* nullable describes that the property can be null
* event takes the name of the event fired on a change of the property

The real advantage here is the event key which tells the qooxdoo property system to fire an event every time the
property value changes. This event is mandatory for the whole data binding we want to use later. But that’s it for
setting up a property. You can find all possible property keys in the documentation.

Now we need to connect the property of the store with the property of the twitter service. That’s an easy task with the
single value binding included in the qooxdoo data binding. Just add the following line after the creation of the data
store:

this._ store.bind("model", this, "tweets");

This line takes care of synchronizing the two properties, the model property of the store and the tweets property of
our service object. That means as soon as data is available in the store, the data will also be set as tweets in the twitter
service. Thats all we need to do in the twitter service class for fetching the data. Now its time to bring the data to the
UL

Bring the tweets to the Ul

For that task we need to go back to our Application. js file and create an instance of the new service:

var service = new twitter.TwitterService();

You remember the debug listener we added in the last tutorial? Now we change the reload listener to fetch the tweets:

// reload handling

main.addListener ("reload", function () ({
service.fetchTweets () ;

}, this);

Thats the first step of getting the data connected with the UI. We talk the whole time of data in general without even
knowing how the data really looks like. Adding the following lines shows a dump of the fetched data in your debugging
console.

service.addListener ("changeTweets", function(e) {
this.debug (gx.dev.Debug.debugProperties (e.getData()));
}, this);

Now it’s time for a test. We added a new classes so we need to invoke the generator and load the index file of the
application. Hit the reload button of the browser and see the data in your debugging console. The important thing you
should see is that the data is an array containing objects holding the items we want to access: the twitter message as
text and "user.profile_image_url" for the users profile picture. After evaluating what we want to use, we
can delete the debugging listener.

190 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

But how do we connect the available data to the UI? qooxdoo offers controllers for connecting data to a list widget.
Thats the right thing we need in that case. But we currently can’t access the list of the UL Thats something we need to
change.

Switch to the MainWindow. js file which implements the view and search for the line where you created the list.
We need to implement an accessor for it so its a good idea to store the list as a private instance member:

this.__list = new gx.ui.form.List();

Of course, we need to change every occurance of the old identifier 1ist to the new this.__1ist. Next, we add
an accessor method for the list in the members section:

getList : function() {
return this._ list;

Data Binding Magic

That was an easy one! Now back to the application code in Application. js. We need to set up the already
mentioned controller. Creating the controller is also straight forward:

// create the controller
var controller = new gx.data.controller.List (null, main.getList ());

The first parameter takes a model we don’t have right now so we just set it to null. The second parameter takes the
target, the list. Next, we need to specify what the controller should use as label, and what to use as icon:

controller.setLabelPath ("text");
controller.setIconPath ("user.profile_image_url");

The last thing we need to do is to connect the data to the controller. For that, we use the already introduced bind
method, which every qooxdoo object has:

service.bind("tweets", controller, "model");

As soon as the tweets are available the controller will know about it and show the data in the list. How about a test of
the whole thing right now? You need (again) to tell the generator to build the source version of the application.

After the application has been loaded in the browser, I guess you see nothing until you hit the reload button of the Ul
That’s one thing we have to fix: Load the tweets at startup. Two other things are not quite the way we want them to
be: The tweets get cut off at the end of the list, and the icons can be delivered by twitter in different sizes. So let’s fix
those three problems.

The first thing is quite easy. We just add a fetch at the end of our application code and that will initiate the whole
process of getting the data to the UL

// start the loading on startup
service.fetchTweets () ;

The other two problems have to be configured when creating the items for the list. But wait, we don’t create the
list items ourselves. Something in the data binding layer is doing that for us and that something is the controller we
created. So we need to tell it how to configure the Ul elements it is creating. For exactly such scenarios the controller
has a way to handle code from the user, a delegate. You can implement the delegate method configureItem to
manipulate the list item the controller creates:

controller.setDelegate ({
configureItem : function(item) {
item.getChildControl ("icon") .setWidth (48);
item.getChildControl ("icon") .setHeight (48);

4.6. Tutorials 191

http://en.wikipedia.org/wiki/Delegation_pattern

qooxdoo Documentation, Release 2.0.2

item.getChildControl ("icon") .setScale (true);
item.setRich (true);
}
)i

You see that the method has one parameter which is the current UI element which needs to be configured. This item is
a list item which stores its icon as a child control you can access with the getChildControl method. After that,
you can set the width, height and the scaling of the icon. The last line in the configurator set the item to rich, which
allows the text to be wrapped. Save your file and give it a try!

Reload

a @ Good shit! Mobile dev & the [4]

& «

X % Q: iPhone RT @ppk: New blog

l y post: The iPhone obsession
http: / ftinyurl.com jyhtzhym

RT @deaxon: Pretty cool prism
e effect made with CS5
hay Y http:/ fdxn.cm/1p

RT @zorrobiwan: [Shared] Top
E 18 des dessins sur café (latte E|

Post

Now it should be the way we like it to be. Sure it’s not perfect because it has no error handling but that should be good
enough for the tutorial.

Posting tweets

As you have seen in the last paragraphs, creating the data access layer is not that hard using qooxdoo’s data binding.
That is why we want you to implement the rest of the application: Posting of tweets. But I will give you some hints so
it does not take that much time for you.

* twitter does only offer an OAuth authentification. Don’t make your self too much work by implementing the
whole OAuth thing.

e Tweets can be set to twitters web view by just giving a decoded parameter to the URL:
http://twitter.com/?status=123

That should be possible for you right now! If you need to take a look at an implementation, you can always take a
look at the code on github or fork the project.

That’s it for the third part of the tutorial. With this tutorial, the application should be ready and we can continue our
next tutorial lines based on this state of the application. As always, if you have any feedback, please let us know!

4.6.4 Tutorial Part 4.1: Form Handling

Note: This tutorial is outdated! twitter changed its API and does not allow basic authentication anymore. Still, the
qooxdoo part is valid and worth trying even if you can not access your friends timeline anymore.

192 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.ListItem
http://twitter.com/?status=123
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step3

qooxdoo

Documentation, Release 2.0.2

In the previous steps of this tutorial, we laid the groundwork for a Twitter client application, gave it a neat Ul and
implemented a communication layer. One thing this application still lacks is a nice way for users to input their Twitter
user name and password in order to post a status update. Fortunately, qooxdoo comes with a forms API that takes the

pain out of creating form elements and handling user input.

Before we get started, make sure you’re working on the version of the Twitter tutorial application tagged with “Step 37
in the GitHub repository. This includes the posting part of the communication layer that we’ll be using in this tutorial.

The plan

We want to create a new window with user name and password fields that pops up

The values will be used to retrieve the user’s list of Tweets. Seems simple enough,

Creating the login window

when the Twitter application starts.
so let’s get right down to business.

We start by creating a new class called twitter.LoginWindow that inherits from gx.ui.window.Window, similar to the

MainWindow class from the first part of this tutorial:

gx.Class.define ("twitter.LoginWindow",
{
extend : gx.ui.window.Window,
construct : function ()
{
this.base (arguments, "Login", "twitter/t_small-c.png");
}
}) i

The Login window will only contain the form, which takes care of its own layout. So for the window itself, a Basic

layout will suffice. We’ll also make the window modal:

var layout = new gx.ui.layout.Basic();
this.setLayout (layout) ;
this.setModal (true);

Adding the Form

Now it’s time to add a form and populate it with a pair of fields:

var form = new gx.ui.form.Form();

var username = new gx.uil.form.TextField();
username.setRequired (true) ;
form.add (username, "Username", null, "username");

var password = new gx.ul.form.PasswordField();
password.setRequired (true) ;
form.add (password, "Password", null, "password");

Note how the fields are marked as required. This is a simple kind of validation and in this case it’s all we need, which

is why the third argument for form. add is null instead of a validation function
with an asterisk (*) next to their label.

The next step is to add a dash of data binding awesomeness:

var controller = new gx.data.controller.Form(null, form);
var model = controller.createModel () ;

. Required fields will be displayed

4.6. Tutorials

193

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step3
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step3
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.ui.window.Window

qooxdoo Documentation, Release 2.0.2

Just like in the previous tutorial, we create a controller without a model. Then, we ask the controller to create a model
from the form’s elements. This model will be used to serialize the form data.

The form still needs a “submit” button, so we’ll add one, plus a “cancel” button to close the window:

var loginbutton = new gx.ui.form.Button("Login");
form.addButton (loginbutton) ;

var cancelbutton = new gx.ui.form.Button("Cancel");

form.addButton (cancelbutton) ;

cancelbutton.addListener ("execute", function() {
this.close();

}, this);

That’s all the elements we need, let’s get them displayed. We’ll let one of qooxdoo’s built-in form renderer classes
worry about the form’s layout:

var renderer = new gx.ul.form.renderer.Single (form);
this.add (renderer) ;

The renderer is a widget, so we can just add it to the window. In addition to the standard renderers, it’s fairly simple
to create a cusstom renderer by subclassing qx.ui.form.renderer. AbstractRenderer, though that’s outside the scope of
this tutorial.

Accessing the form values

Similar to MainWindow, we’ll use an event to notify the other parts of our application of changes to the form. As
you’ll remember, the “event” section is on the same level as the constructor in the class declaration:

events : {
"changeLoginData" : "gx.event.type.Data"

s

Then we add a listener to the submit button that retrieves the values from the model object and attaches them to a data
event, making sure the form validates, i.e. both fields aren’t empty.

loginbutton.addListener ("execute", function() {
if (form.validate()) {
var loginData = {
username : controller.getModel () .getUsername (),
password : controller.getModel () .getPassword()

}i
this.fireDataEvent ("changelLoginData", loginData);
this.close();

}
}, this);

Tying it all together

Now to integrate the login window with the other parts of the application. Twitter’s friends timeline uses .htaccess for
authentication so we can add the login details to the request sent by TwitterService.fetchTweets ():

fetchTweets : function (username, password) {
if (this._ store == null) {
var login = "";
if (username != null) ({
login = username + ":" + password + "@";

194 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.data.controller.Form
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.ui.form.renderer
http://demo.qooxdoo.org/2.0.2/apiviewer/index.html#qx.ui.form.renderer.AbstractRenderer

qooxdoo Documentation, Release 2.0.2

}

var url = "http://" + login + "twitter.com/statuses/friends_timeline.json";
this.___store = new gx.data.store.Jsonp(url, null, "callback");
this._ store.bind("model", this, "tweets");
} else {
this.__ store.reload();

}
s

All that’s left is to show the login window when the application is started and call fet chTweet s with the information
from the changeLoginData event. In the main application class, we’ll create an instance of twitter.LoginWindow,
position it next to the MainWindow and open it:

this.__ _loginWindow = new twitter.LoginWindow () ;
this.___loginWindow.moveTo (320, 30);
this.___loginWindow.open () ;

And finally, we’ll attach a listener to changeLoginData:

this.__ _loginWindow.addListener ("changeLoginData", function (ev) {
var loginData = ev.getDatal();
service.fetchTweets (loginData.username, loginData.password);

)i

Note how all the other calls to service.fetchTweets can remain unchanged: By making the login window
modal, we’ve made sure the first call, which creates the store, contains the login data. Any subsequent calls (i.e. after
reloading or posting an update) will use the same store so they won’t need the login details.

OK, time to run generate . py and load the application in a browser to make sure everything works like it’s supposed
to.

Post

Twitter client application with login window

And that’s it for the form handling chapter. As usual, you’ll find the tutorial code on GitHub. Watch out for the next
chapter, which will focus on developing your own custom widgets.

4.6. Tutorials 195

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.1

qooxdoo Documentation, Release 2.0.2

4.6.5 Tutorial Part 4.2: Custom Widgets

In this tutorial we will deal with how to create a custom widget for our Twitter application. It is necessary that you
finished the tutorials part 1 through part 3 to work with this tutorial, but previous knowledge from tutorial 4.1 is not
needed.

Do you remember the mockup from tutorial part 1?

twitter

<IC> X O 1 & D

twitter
Reload

January 29, 2010 10:44 pm I

Some important news

from mel

January 29, 2010 9:57 pm
& Just arived at home.

January 28, 2010 3:15 pm
Buy a lot of useless crap
at hitp://xyz.com

Jaruary 28, 2010 1:42 pm
@ Aliens just landed on

planet earth!

This is my tweet... h
Post

#|

created with Balsamig Mockups - www.balsamig.com

You can see that one tweet consists of a photo, a text and a creation date, but at the moment the Twitter application
doesn’t show the creation date of a tweet. This is because we use the default ListIltem to show a tweet and a Listltem
can only show an image and/or label. To achieve our goal, we have to create a custom widget which we can use instead
of the Listltem.

Note: The code in this tutorial should also work when you haven’t completed the 4.1 tutorial because it doesn’t
depend on the code changes from tutorial 4.1. But if you have any problems to run the tutorial, you can also checkout
the code from tutorial 4.1 on github.

The plan

First of all we have to create a custom widget which fulfills our requirements from the mockup. We will achieve this
by combining a widget with two labels and one image. Afterwards we have to configure the controller so that it uses
our custom widget for the tweets.

196 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.ListItem
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.1

qooxdoo Documentation, Release 2.0.2

Create the custom widget class

You should know how to create a class from the previous tutorials. So please create a class for
twitter.TweetView, butin our case we need to extend from gx.ui.core. Widget.

gx.Class.define ("twitter.TweetView",
{
extend : gx.ui.core.Widget,
include : [gx.ui.form.MModelProperty],

construct : function () {
this.base (arguments) ;
}
}) i

The attentive reader noticed that we use the include key for the first time. include is used to include a mixin
in a class. This is necessary in our case to support Data Binding. Our Twitter application uses it and therefore it is
expected that the new widget implements the gx.ui.form.IModel interface. Otherwise the widget can’t be used with
Data Binding. But fortunately the mixin gx.ui.form.MModelProperty already implements it, SO we can reuse
the implementation.

Define the needed properties

Our widget should show a Tweet as shown in the mockup. To achieve this, we need properties to save the data for a
Tweet. Add this definition to the TweetView class:

properties
{
appearance
{
refine : true,
init : "listitem"
}I
icon
{
check : "String",
apply : "_applyIcon",

nullable : true
I

time
{
check : "Date",
apply : " _applyTime",

nullable : true

b

post

{
check : "String",
apply : "_applyPost",

nullable : true
}
b

The properties icon, time and post contain the data from a tweet. In this definition you’ll also find a property
appearance. This property is needed for the theming, it tells the appearance system that the TweetView should

4.6. Tutorials 197

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.IModel

qooxdoo Documentation, Release 2.0.2

be styled like the Li st ITtem. We could also use a new appearance id, but than we’d have to define an appearance for
it and that’s not part of this tutorial.

How to define properties was explained in tutorial part 3, so we don’t repeat it. But we use some unfamiliar keys for
definition and I will explain them:

¢ check: check ensures that the incoming value is of this type. But be careful, the check is only done in the source
version.

 apply: here you can define which method should be called when the value changes.
* refine: this is needed when an already defined property should be overridden.

* init: defines the initialized value of a property.

Using Child Control

gooxdoo has a special system to realize combined widgets like in our case. This system is called child controls and
you can find a detailed documentation in our manual.

Okay, back to our problem. To achieve the requirements we need an Image for the photo, a Label for the post and
another Label for the creation time. So three widgets, also called sub widgets, are needed for our custom widget. And
last but not least the familiar Grid layout for layouting, but that’s not created in the child control implementation. We
just need to keep it in mind when adding the child control with _add.

members

{
// overridden
_createChildControlImpl : function (id)
{

var control;

switch (id)
{
case "icon":
control = new gx.ui.basic.Image(this.getIcon());
control.setAnonymous (true) ;
this._add(control, {row: 0, column: 0O, rowSpan: 2});
break;

case "time":
control = new gx.ui.basic.Label (this.getTime());
control.setAnonymous (true) ;
this._add(control, {row: 0, column: 1});
break;

case "post":
control = new gx.ui.basic.Label (this.getPost());
control.setAnonymous (true) ;
control.setRich (true);
this._add(control, {row: 1, column: 1});

break;
}
return control || this.base (arguments, id);
}
by
The child control system has a special method to create sub widgets. The method is called

198 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Image
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.basic.Label
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.layout.Grid

qooxdoo Documentation, Release 2.0.2

_createChildControlImpl and we override it to create our sub widgets. This method is called from the child
control system when it notices that a sub widget is needed but not already created.

In our case:
* icon: for the photo
* time: for the creation time
* post: for the text from the tweet

Dependent on the passed id we create the correct sub widget, configure it and add it to the Grid layout at the right
position. If an unknown id is passed, we delegate it to the superclass.

Finishing the constructor

Now i’ts time to finish the constructor.

// create a date format like "June 18, 2010 9:31 AM"

this._dateFormat = new gx.util.format.DateFormat (
gx.locale.Date.getDateFormat ("long") + " " +
gx.locale.Date.getTimeFormat ("short")

)i

The property for the date saves only a date object and our requirement from the mockup describes a spacial format
and a simple toSt ring usage is not enough. Therefore we need a special transformation which we can achieve by
using DateFormat.

// initialize the layout and allow wrap for "post"
var layout = new gx.ui.layout.Grid (4, 2);
layout.setColumnFlex (1, 1);

this._setLayout (layout);

Now we create a layout for our custom widget. This should be known from tutorial part 2.

// create the widgets

this._createChildControl ("icon");
this._createChildControl ("time");
this._createChildControl ("post");

Time for our child control implementation. With these lines we trigger the subwidget creation which we implemented
before.

Adding the apply methods

We have already defined the properties, but we haven’t implemented the needed apply methods for them. So, time to
add the missing apply method for the properties to the members section.

// property apply

_applyIcon : function(value, old) {
var icon = this.getChildControl ("icon");
icon.setSource (value) ;

s

_applyPost : function(value, old) {
var post = this.getChildControl ("post");
post.setValue (value) ;

I

4.6. Tutorials 199

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.util.format.DateFormat

qooxdoo Documentation, Release 2.0.2

// property apply

_applyTime : function (value, old) {
var time = this.getChildControl ("time");
time.setValue (this._dateFormat.format (value));

}

The apply methods for icon and post are trivial, we have to ensure that we delegate the value change to the correct

widget. To get the correct widget instance we can use the getChildControl method and afterw
the value on the widget.

ards we can set

The date, however, needs some extra love. We have to use the DateFormat instance to format the date before we set

the value.

Finishing the custom widget

At the end we have to add the attribute _dateFormat to the members section and a destructor
created DateFormat instance.

Just add this line at the beginning of the members section:

_dateFormat : null,

And the destructor after the members section:

destruct : function() {
this._dateFormat.dispose();
this._dateFormat = null;

}

Great, now we have finished the custom widget.

Configure the List Controller

to clean up the

At the moment the controller doesn’t know that it should use our TweetView class. Therefore we have to change the

old controller configuration. Search for these lines of code in the Application. js file:

// create the controller
var controller = new gx.data.controller.List (null, main.getList ());
controller.setLabelPath ("text");
controller.setIconPath ("user.profile_image_url");
controller.setDelegate ({
configureItem : function(item) {
item.getChildControl ("icon") .setWidth (48);
item.getChildControl ("icon") .setHeight (48);
item.getChildControl ("icon") .setScale (true);
item.setRich (true);
}
}) i

First of all, remove these two lines:

controller.setLabelPath ("text");
controller.setIconPath ("user.profile_image_url");

Now to the delegate, just replace the current delegate with this one:

200 Chapter 4

. gx.Desktop

qooxdoo Documentation, Release 2.0.2

controller.setDelegate ({
createItem : function() {
return new twitter.TweetView();
b

bindItem : function(controller, item, id) {

controller.bindProperty ("text", "post", null, item, id);
controller.bindProperty ("user.profile_image_url", "icon", null, item, id);
controller.bindProperty ("created_at", "time", {

converter: function (data) {

if (gx.core.Environment.get ("browser.name") == "ie") {

data = Date.parse (data.replace(/(\+)/, " UTCS1"));
}

return new Date (data);

}
}, item, id);
by

configureItem : function (item) {
item.getChildControl ("icon") .setWidth (48);
item.getChildControl ("icon") .setHeight (48);
item.getChildControl ("icon") .setScale (true);
item.setMinHeight (52);
}
)i

The concept of a delegate should be known from tutorial part 3, 1 will only explain the modifications.

You can see that we added a createItem method: With this method we can configure the controller to use our
TweetView for item creation. The method bindItem is used to configure the controller to keep the properties
of the model and the widget synchronized. In our case it is important to keep the photo, post and creation date
synchronous.

controller.bindProperty ("text", "post", null, item, id);

Let us have a look at the above example. The bindProperty method is responsible for the binding between model and
widget. The first parameter is the path from the model, the second is the name of the property in the widget, the third
parameter is an options map to do e. g. a conversion, the fourth parameter is the widget and the last is the index.

In our case the photo and the post need no conversion because the source data and target data are of the same type. But
the creation time needs a conversion because the model contains a String with the UTC time while the widget expects
a date object. So we have to convert the data:

converter: function (data) {
if (gx.core.Environment.get ("engine.name")) {
data = Date.parse (data.replace(/(\+)/, " UTCS1"));
}

return new Date (data);

}

The converter method creates a date object from the given String. Don’t be confused by the if statement. The Twitter
model has a format which is not standard UTC format in JavaScript and Internet Explorer has problems parsing the
String, therefore a short conversion is needed before the date object can be created.

The configureItem method should be known from rutorial part 3, there are only some improvements to keep the
same behavior as before.

Great, now we’ve got it! Run generate. py to create the application.

4.6. Tutorials 201

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.data.controller.List~bindProperty
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.data.SingleValueBinding~bind

qooxdoo Documentation, Release 2.0.2

Reload

June 24, 2010 10:35 AM E
RT @dalmaer: Very nice example D
of Fluid design that morphs w)f

Screen size

http:fihicksdesign. co, ukyjournal
Ifinally-a-fluid-hicksdesign

June 24, 2010 10:02 AM
RT @kangax: Full E35 suppork in
IEpre 3 —

bbb il ammase aibbob o E

Posk

Again, if you want to take a look at the code, fork the project on github.

4.6.6 Tutorial Part 4.2.1: Basic Theming

This time, we continue with a very exciting topic for the tutorials: Theming. As you might already know, the theming
system in qooxdoo is not based on CSS which means you, as an application developer, don’t have to bother with cross
browser CSS. The qooxdoo framework takes care of all that for you. As a base for theming an app, we use the already
known twitter client we built in the former tutorials. On the left is a picture how it should look to get you started. The
the code of the tutorial on GitHub.

Reload

June 24, 2010 10:35 AM B
RT @dalmaer: Yery nice example D
of Fluid design that morphs wf

SCrEEn size

http: i hicksdesign. co.ukfjournal
IFinally-a-Fluid-hicksdesign

June 24, 2010 10:02 AM
RT @kangax: Full ESS suppart in
IEpre 3 —

bbtre il annay aithoh com E

Posk

The plan

Giving the whole application a new look is too much detail and work for such a short tutorial. We concentrate on
some basic key aspects which are important to get you an idea how to use the theming system and get you started. So
I picked three basic tasks we could do to make the app look different.

202 Chapter 4. qx.Desktop

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.2
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.2.1

qooxdoo Documentation, Release 2.0.2

* Style the widget we created for showing tweets.
* Change the default theme.
* Change the look of a built-in widget

Lets get started with the first one:

Style the widget we created for showing tweets

In Tutorial 4.2, we created a custom widget for showing the tweets icons, content and date. As you can see on the
screenshot above, the time and the content have the same text color which might be irritating. That’s why we want to
change the time’s color to a lighter gray. So how should we do that?

First, we need to get some knowledge about the theming system itself. Every widget has a so called appearance,
which is used to identify the styling of a widget. In our case, we used the 1istitem appearance in the former
tutorial, which is defined in qooxdoo’s default theme, the Modern theme. But now we want to change that so we need
to edit the TweetView class and change the appearance property’s init value from 1istitem to a custom name we
choose, lets say tweet-view. The new code should look like this:

appearance
{
refine : true,
init : "tweet-view"

}l

Now, we have defined a custom appearance key for our own widget but the appearance definition is still missing. But
where should we put that definition?

The twitter application is based on a default GUI skeleton which has already a predefined custom theme. This can be
found in the theme namespace of the applications source code (source/class/twitter/theme/). Taking a
look at the namespace shows you five files in total:

e Appearance. js holds all appearance definitions
e Color. js holds all color definitions

e Decoration. js holds all decorator definitions

* Font. js holds all font definitions

¢ Theme. js meta theme which combines all others

Except the meta file, all other files are only a skeleton for adding custom theme definitions. So I guess you have
already seen the file we should modify now: Appearance. js. The basic outline of such an appearance definition
can be compared to a class definition. You can find a name, an extend key and something where the content should go
called appearances. Thats where we put our new appearance definition. First, we define a appearance definition
for the tweet—view key we defined. That definition can be empty because we only want to style the label showing
the date and time for the tweet. The code looks like this:

gx.Theme.define ("twitter.theme.Appearance",

{

extend : gx.theme.modern.Appearance,

appearances

{

"tweet-view" : {}

4.6. Tutorials 203

qooxdoo Documentation, Release 2.0.2

The last missing piece of our first task is to style the label. But how do we access it in the appearance theme if we
haven’t assigned a separate appearance key for it?

Luckily, we defined the label as child control named t ime (take a look at the custom widget tutorial for more details).
That way, we can assign a separate appearance key using that hierarchy:

"tweet-view/time" : {
style : function() {
return {
textColor: "#EOEOEQO"

}

You can see a complete definition for the time label in the code above. The important part is the map, which is returned
by the style function. It contains a set of themeable properties for the widget which will be assigned. In our case, we
are styling a simple label, which has the property textColor. You can find all themeable properties in the API
viewer (Hint: themeable properties are marked with a little icon). Now we are done and can give the application a try,
which should result into something like this:

Now we have everything the way we want it to be but one little thing is still missing. We defined the color’s value
inline which is considered bad style because in case you want to use the same color somewhere else, you have to write
the value again which results in hard-to-maintain code. That’s where the color theme could help. We have already
seen a file called Color. js which is responsible for holding color definitions. As in the appearance file, we have
one main section but this time its called colors. Here we add a color definition for the color we want to use:

colors

{
"tweet-time" : "#EOEOEOQO"

}

Now, we have defined a color alias for our color which can be used in the whole application, no matter if it’s in a
theme or in some application class. As a final step, we change the explicit color definition from "#EOEOEO" to
"tweet-time" in the custom appearance file.

204 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.core.Widget~textColor
http://demo.qooxdoo.org/current/apiviewer/#qx.ui.core.Widget~textColor

qooxdoo Documentation, Release 2.0.2

Reload

(=)
Oye @TonkaTP, eres la mujer |:|
mads bella que he visto en mi
vida, claro, después de mi mama
¥ mi hermana.

Cood RT @detiksport Hulk Ingin
GCabung Chelsea
http://t.co/IQFnbMgg

- -

Post

Change the default theme

As a next step, we want to change the default theme, which is the Modern theme, to the new Simple theme we
recently shipped with the 1.4 release. For that, we have to take another look at the files in the theme folder. You
might have already realized that all these files do have an “extend” key which extends from the Modern theme’s files.
Thats what we are going to change now. Just open all the files in the theme folder and change the extend key from
gx.theme.modern.xyz to gx.theme.simple.xyz with xyz as a placeholder for the name of the file you are
editing. There is only one file you don’t have to change which is the meta theme named Theme . js. It does not refer
to the framework theme so there is nothing to change. With that change, we included new dependencies to classes
and resources which means, we have to rebuild our application. Run . /generate.py in the root folder of your
application to rebuild the development version of the twitter application. After the process is done, we can reload the
application and see a dramatically changed application using the Simple theme.

4.6. Tutorials 205

http://news.qooxdoo.org/qooxdoo-1-4-and-1-3-1-released

qooxdoo Documentation, Release 2.0.2

oy
* t} HekoTopbx nogeil Hy»HO
oTnyckaTe, bnarogapa 3a
TOMTO OHK X0TH Bkl BbinK B
TEOEW HU3IHW.

9 Q Awn

P =

Change the look of a built in widget

As a last and final step, I like to show you how to change the styling of a built in qooxdoo widget. As you can see on
the screenshot of the last step, the toolbar has the same background color as the windows caption bar. It might be nice
if the toolbar had the same color as the window’s inner border. So what we need to do is to override the appearance
of the toolbar. For that, we need to find out how the appearance key for the toolbar is named. You can find that in the
API viewer in the appearance property of toolbar. The init value is used for the styling, in this case, its toolbar.
If we now use that key in our custom appearance file, we can set our own keys for styling the toolbar.

"toolbar" : {
style : function() {
return
backgroundColor : "window-border—inner"

}
}

Like in the former appearance we added, we define one property. In this case, we use the backgroundColor
property to set the background color of the toolbar. But what color is "window-border—inner"? This is a named
color which comes from the frameworks Simple theme. You can find all the colors of the theme in the framework
in the namespace gx.theme or gx.theme.simple for the Simple theme. A little hint: Before overriding an
appearance, check out the original appearance definition in the theme you are using. There might be some edge cases
considered you want to consider writing your own appearance. The final result should look like this:

206 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.ui.toolbar.ToolBar~appearance

qooxdoo Documentation, Release 2.0.2

kata cowo "aku suka kamu
karna kamu natural " *jiga
cai wae atuh natural :D

- -"wa udah, kalian

berdua deh ! Jgn lupa traktir
saya yah 1)) RT
@SilvestreAnggi: -

Job done
With the last step, we have finally managed to change the three basic things we wanted to change. If you are interessted

in more details about the theming possibilities in qooxdoo, check out the manual for more information. As always, the
code of the tutorial is on GitHub.

4.6.7 Tutorial Part 4.3: Translation
We’ve already covered quite a few of qooxdoo’s features to get to this point. In this tutorial, we want to internationalize

the twitter client. Additionally, we want to add a preferences dialog allowing users to change the language during
runtime. Adding a window containing a form should be familiar to you if you’ve read the form handling tutorial

The plan
The first step is to make the application aware of localization. We need to identify all the strings which need to change

on a language change. After that, we need to create translations for our initial string set. After that is done, we can add
a window containing a radio group with all available language options.

Identifying strings to translate

Now we can benefit from the good design of our application. We put all the view code in our main window which
means that’s the spot we need to look for strings. Here we can identify the following strings:

4.6. Tutorials 207

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.2.1

qooxdoo Documentation, Release 2.0.2

var reloadButton = new gx.ui.toolbar.Button ("Reload");

VY2

reloadButton.setToolTipText ("Reload the tweets.");

/S

this.__textarea.setPlaceholder ("Enter your message here...");
VYA

var postButton = new gx.ui.form.Button("Post");

V2R

postButton.setToolTipText ("Post this message on twitter.");

qgooxdoo offers a handy way to tell both the JavaScript code and the generator which strings need to be translated.
Wrapping the strings with this.tr () will mark them as translatable strings. That should be an easy task:

var reloadButton = new gx.ui.toolbar.Button(this.tr ("Reload"));

VAR

reloadButton.setToolTipText (this.tr ("Reload the tweets."));

S/

this.__textarea.setPlaceholder (this.tr ("Enter your message here...");)
/).

var postButton = new gx.ui.form.Button(this.tr ("Post"));

VAR

postButton.setToolTipText (this.tr ("Post this message on twitter."));

Generating the translation files

For the next step, we need to tell the generator what languages we want to support. But why does the generator or the
tool chain in general care about that? The tool chain will help us by generating the files necessary for the translation.
So we need to edit the config.json file located at the root folder of our application, which is the configuration file for
the tool chain. As you can see, this is a plain JSON file which holds some predefined configuration data for the tool
chain. You will find a 1et section holding a LOCALES key. This key has an array as value holding exactly one locale
named en, right? In this example, I want to add a translation set for German so I need to add de to this array.

"TOCALES" : ["en" , "de"],

Now we are set up to generate our translation files. For that, just invoke the generator with its translation job.

./generate.py translation

This will go through all the steps necessary to generate the translation files. But what are translation files anyway?
Take a look at the folder source/translation. There you’ll find the created files which as you’ll see end with
.po. You may be familiar with that file format from GNU gettext which is quite popular.

You should see two files, one for the default language, English (en . po), and one for the language you added, in my
case German (de . po). For now, we just need the file for our alternative language because English is already used in
the application so this should work right out of the box. Opening the second file, you’ll notice some details about it at
the top of the document. The important part starts with the following text.

#: twitter/MainWindow. js:30
msgid "Reload"
msgstr ""

The first line is a comment, which is a hint containing the class file and line number where the string is used. The
second line holds the identifier we used in our application. The third line currently holds an empty string. This is the
place where the translation should go for that specific string.

You may have already realized that the rest of the file is a list of blocks similar to this one. Now you should translate
all strings and add them in the right spots.

208 Chapter 4. qx.Desktop

http://en.wikipedia.org/wiki/GNU_gettext

qooxdoo Documentation, Release 2.0.2

Giveitatry

After adding these translations, we should rebuild the application using . /generate.py and load it in any browser.
If your browser uses the locale you added by default, you should already see the application in the new language. If
not, just tell qooxdoo’s locale manager to switch the locale using e.g. the Firebug console.

gx.locale.Manager.getInstance () .setLocale("de"); // or the locale you added
If you added a language like German in which most words are longer than in English, you may recognize that we
made a mistake in our main window. postButton.setWidth (60); may cut off the text in the button because

we set the width explicitly. Changing that to postButton.setMinWidth (60) ; will keep the layout flexible for
different content sizes.

Adding the preferences window
As you should already be familiar with creating new classes and subclassing a window from the form handling tutorial,
we won’t go into any detail about that again. Just add a new class, subclass the window and override the constructor.

gx.Class.define ("twitter.SettingsWindow",

{

extend : gx.uil.window.Window,

construct : function ()

{
this.base (arguments, this.tr ("Preferences"));
// ... more to come

}
)i

As you can see here, we added another string: The window’s caption, which should be translated as well. Keep in
mind that you have to use this.tr () on every string you add and want to have in your translation file.

For the next step, we need to fill the window with controls. As in the form example, we use a basic layout, a form and
some form elements. Add the following line to your constructor.

this.setlLayout (new gx.ui.layout.Basic());

var form = new gx.ui.form.Form();

var radioGroup = new gx.uil.form.RadioButtonGroup () ;
form.add (radioGroup, this.tr ("Language"));

// TODO: create a radio button for every available locale

var renderer = new gx.uil.form.renderer.Single (form);
this.add (renderer) ;

This code should be familiar to you except for the RadioButtonGroup, which is a container for radio buttons. It
also makes sure that only one of the buttons is selected at any time. So we don’t need to take care of that ourselves.
Again, we use a translated string as the label for the radio buttons.

The next step is to access all available locales and the currently set locale. For that, qooxdoo offers a locale manager,
as you’ll see in the following code part.

var localeManager = gx.locale.Manager.getInstance();
var locales = localeManager.getAvailableLocales();
var currentLocale = localeManager.getLocale();

It is pretty easy to get this kind of information. You surely know how to continue from here, but before that, I’'ll show
you a little trick. We want to keep the name of the selectable language in the translation file itself. That’s a good place

4.6. Tutorials 209

qooxdoo Documentation, Release 2.0.2

to keep that string because otherwise, we would need a mapping from the locale (e.g. en) to its human readable name
(e.g. English). Instead we’ll, add a special translation key to our application.

// mark this for translation (should hold the langauge name)
this.marktr ("$$languagename") ;

We will use this key as the label for our radio buttons and then go on, as you would have expected, with a loop for all
available locales.

// create a radio button for every available locale

for (var i = 0; i < locales.length; i++) {
var locale = locales[i];
var languageName = localeManager.translate ("$$languagename", [], locale);
var localeButton = new gx.ui.form.RadioButton (languageName.toString());

// save the locale as model
localeButton.setModel (locale);
radioGroup.add (localeButton);

// preselect the current locale
if (currentlLocale == locale) {
localeButton.setValue (true);
}
bi

This code contains the rest of the trick. But let’s take a detailed look at what we’re doing here. The first line of the
loop just stores the current locale we want to process. Keep in mind that this is the exact value we need to change the
locale later. The second line tells the locale manager to translate the special id we set for the language name using the
current locale. This will return a LocalizedString which is important to know because these strings update their
content on locale switch. But that’s not what we want because otherwise, every language will have the same name.
Thats why we use the toString () method to get the plain string of the current translated value as the label for the
new radio button. With that, we exclude the labels for the radio buttons from being translated. The next two tasks are
pretty easy: 1) we store the locale as the model of the radio button and 2) we add the radio button to the radio group.
Preselecting the currently set locale is really easy as well.

The last thing missing in the window is changing the locale if the user selects a new radio button. For that, we stored
the locales in the model property. We can now use the modelSelection of the radio button group to react on
changes.

// get the model selection and listen to its change

radioGroup.getModelSelection () .addListener ("change", function(e) {
// selection is the first item of the data array
var newLocale = radioGroup.getModelSelection() .getItem(0);
localeManager.setLocale (newLocale);

}, this);

First, we get the model selection array, which is a data array and has a change event for every change in the array.
The new locale is always the first element of the selection array itself, as you can see in the second line. You might
have noticed that we need to access the item with a special method instead of the bracket notation normally used with
arrays. That’s a special method you have to use for data arrays. The third line simply hands the new locale to the
manager, which will take care of all the necessary changes.

Accessing the preferences

With that, we are done with the preferences window, but we can’t access it yet. We should add a button to the main
window’s toolbar. Add this code right after where you added the reload button.

210 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

// spacer
toolbar.addSpacer();

// settings button

var settingsWindow = null;

var settingsButton = new gx.ui.toolbar.Button(this.tr ("Preferences"));
toolbar.add(settingsButton) ;

settingsButton.setToolTipText (this.tr ("Change the applications settings."));
settingsButton.addListener ("execute", function() {
if (!settingsWindow) {

settingsWindow = new twitter.SettingsWindow () ;
settingsWindow.moveTo (320, 30) ;
}

settingsWindow.open () ;
}, this);

The first thing we do is to add a spacer to attach the preferences button to the right side of the toolbar. This should be
the only new thing you haven’t seen before, so we won’t go into details here.

Final steps

Now we have created some new code containing new strings to translate. Obviously, we need to add translations for
these as well. Just run the generator again and let it add the new strings to your po files.

./generate.py translation

Now you can edit the po files again and add the new translations. Don’t forget to add the translation for the special
$$languagename key in the english po file as well.

After generating the source version of the application again you should be set up for testing and all should run as
expected.

I hope you enjoyed this little exercise and gained an idea how easy it is to internationalize an application using
gooxdoo’s help. As always, you can find the entire code on GitHub. With that said, I want to encourage you to send
me pull requests containing alternative translations we could add. It would be interesting to have the twitter app in
many different languages. Really looking forward to your feedback and pull requests!

4.6.8 Tutorial Part 4.4: Unit Testing

In this tutorial, we’ll be taking a closer look at qooxdoo’s integrated unit testing framework. Armed with this new
knowledge, we’ll then define a few unit tests for the twitter application created in previous tutorials, generate the test
runner application, and watch the tests in action. As usual, the code can be found on GitHub.

Background

gooxdoo’s unit testing framework is similar to JSUnit but self-contained, so no external libraries are necessary. It
consists of two main components:

The classes in the gx.dev.unit namespace provide the interface against which tests are written and the infrastructure
needed to run them. The Testrunner component (located in the qooxdoo SDK’s component/testrunner directory)
provides a GUI to select and run tests and visualize the results.

4.6. Tutorials 211

https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.3
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.4
http://www.jsunit.net/
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit

qooxdoo Documentation, Release 2.0.2

Test class structure

The actual test code is contained in classes living within the namespace of the tested application, located in the
source/class/<$APPLICATION>/test directory by default. A fresh qooxdoo application skeleton (GUI,
Inline or Native flavor) contains a simple test class named DemoTest:

gx.Class.define("twitter.test.DemoTest",

{

extend : gx.dev.unit.TestCase,

J ok k

* Here are some simple tests
*/

testSimple : function|()

{

this.assertEquals (4, 3+1, "This should never faill");

this.assertFalse (false, "Can false be true?!");
b
J ok k
* Here are some more advanced tests
*/

testAdvanced: function ()
{
var a = 3;
var b = a;
this.assertIdentical(a, b, "A rose by any other name is still a rose");
this.assertInRange (3, 1, 10, "You must be kidding, 3 can never be outside [1,10]!");

1)

All test classes share the same basic structure:
¢ They must inherit from qx.dev.unit.TestCase

¢ Individual tests must be defined as member functions with names beginning with test. Apart from that, they
can contain other member functions, properties and so on. Usually, test functions instantiate classes of the tested
application, invoke their methods and compare the results with expected values.

» Exceptions are used to communicate the test results back to the Testrunner. No exception means the test went
fine, throwing any exception from the test method signals a failure. Return values from the test methods are not
evaluated.

gx.dev.unit.TestCase includes the assertion functions from gx.core.Assert. These can be used to check values, e.g.
by comparing a tested method’s return value to an expected value. If the assertion fails, a gx.core.AssertionError is
thrown.

212 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert
http://demo.qooxdoo.org/current/apiviewer/#qx.core.AssertionError

qooxdoo Documentation, Release 2.0.2

Building and running the test application

In the top-level directory of the twitter tutorial application, run generate.py test. This command builds both a
stand-alone application containing the test classes (the AUT, or “application under test”) and the Testrunner GUI which
loads the AUT in an Iframe and visualizes the results. Load the Testrunner by opening the file test/index.html
in your favorite browser and click the “Run Tests” button.

Note: Some browsers, such as Google Chrome, severely restrict scripts from loading resources from the file system.
In this case, the Testrunner should be loaded from a web server.

testrunner

= C | ® localhost/gx/trunk/qooxdoo/framework/test/ O A
Test Runner gooxdoo 1.5
[¥= Run Tests! =% Reload | | htmiitests. htmi?testclass=gx.test | <5 Auto Reload
Tests Test Results Show Stack Trace Application under test
® v e]
v B test Queved: | 0| Fales: [0] Succeedes: Skipped:
: g g pped: 2
- E bom
qgx.test.bom. storage. Session: testStorageEvent
L E S gx.test.bom.storage.Session: testLength
» Ba media gx.test.bom.storage.Session: testIterate
» 3 request gx.test.bom.storage.Session: testItem
v B storage i gx.test.bom.storage.Session: testGetKey
Log " Log Level
3 G Local gx.test.bom. storage.Session: testClear —
» G Session gx.test.bom. storage.Local : testStorageEvent 000583 qx.core.Init: Load runtime: 589ms
—— . - — - 000636 qx.core.Init: Main runtime: 47ms
agx.test.bon. storage.Local: testleng
» £ webfonts 000640 qx.core.Init: Finalize runtime: 4ms
» @ Attribute gx.test.bom.storage.Local: testIterate
. gx.test.bom. storage.Local: testItem
» (& Basic
gx.test.bom. storage.Local : testGetEey
» (& Blocker
gx.test.bom.storage.Local: testClear
Selected Test: | gx.test.bom.storage Number of Tests: 12 | System Status: Test suite finished.

Creating a new test class

Now that we’ve got the basics covered, let’s create some more meaningful tests for our Twitter application, start-
ing with the twitter. TweetView class. As you’ll remember from the previous tutorials, it’s responsible for display-
ing a single Tweet along with the user’s icon. To this end, it has a property named icon with an apply method
that sets the source property on the TweetView’s icon child control. Our test will check if the icon property
value is correctly applied to the icon widget. First of all, create a corresponding class twitter.test. TweetView in the
source/class/twitter/test directory. (We won’t be needing the DemoTest class any more, so feel free to
delete it.)

/* R b b b b b b b b b g b b b b b b b b g b b b g g b b b g b b b b b b b b g b b b b g b b b b g b b b b b b b g b b b g b b b b g i g g
#asset (twitter/test.png)

ER i b b b b b b b b b b b b b b g b b b b b b b b b g b b b b b b e b b b b b g b b b b b b b b b g b b g b b b i */
gx.Class.define ("twitter.test.TweetView",

{

extend : gx.dev.unit.TestCase,

4.6. Tutorials 213

qooxdoo Documentation, Release 2.0.2

members
{
setUp : function|()
{
this._ tweetView = new twitter.TweetView();
}I

tearDown : function ()

{
this.__tweetView.dispose () ;
this._ tweetView = null;

o

testSetIcon : function/()

{
var expectedSource = gx.util.ResourceManager.getInstance () .toUri("test.png");
this.__tweetView.setIcon (expectedSource);
var foundSource = this.__tweetView.getChildControl ("icon") .getSource();

this.assertEquals (expectedSource, foundSource, "Icon source was not set correctly!™);

Setting up and tearing down

Note the setUp and tearDown methods. Each test class can contain either or both (or none). setUp is called before
each individual test function and is used to perform common initializations. Similarly, tearDown is called after each
test method (even if the test failed), e.g. to dispose objects created by setUp or the test itself. Together, they can be
used to make sure each test method runs in a “clean” environment: In this case, we create a new instance of the tested
class for each test and dispose it afterwards, which is a very common pattern in unit testing.

The tearDown logic is actually quite an important part of developing unit tests since tests that don’t clean up after
themselves can lead to nasty dependencies where test B will pass when run individually but fail when run after test
A. Singletons are particularly vulnerable since their state carries over between tests. So if, for example, test A checks
how a class reacts to a locale change by calling gx.locale.Manager.getInstance () .setLocale while
test B relies on the locale still being the application’s default, B would fail whenever A ran first.

For cases where the generic class-wide tearDown isn’t enough, methods using the naming convention
tearDown<TestName> can be defined. A method named e.g. tearDownTestFoo would be called after
testFoo and the generic tearDown of the class were executed.

The test function

We need the URI of a valid image for this test, so we add an #asset hint to the class header that will cause the
Generator to add the file source/class/twitter/resource/test.png to the AUT’s resources. In the test
function, we first ask qooxdoo’s resource manager to resolve the resource ID into a valid URI. This is the expected
value for the icon child control’s source property. Next, we apply this value to the TweetView’s i con property, then
get the child control’s source property and compare the two values using assertEquals.

OK, time to build the AUT again. This time, run generate.py test-source instead of test. As you might
expect, this will generate a source version of the AUT, which, like the source version of the actual application, is far
better suited for development. Open the file test/index-source.html to load the Testrunner with the source
tests.

214 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert~assertEquals

qooxdoo Documentation, Release 2.0.2

Asynchronous Tests

As with many GUI applications, the various components of the twitter app use events to communicate. The
twitter.TweetService class, for example, has a method fet chTweet s that causes a changeTweets event
to fire once the data store has finished (re)loading. We can’t know in advance just how long this takes, so we need
some way to instruct the test to wait until the event fires. This is where asynchronous testing comes in.

Once again, create a new test class named twitter.test. TwitterService. The setUp and tearDown methods are
mostly identical to the ones from twitter.test. TweetView, except of course they initialize/destroy an instance of twit-
ter. TwitterService instead. Here’s the actual test function:

testFetchTweets : function ()
{

this.__twitterService.addListener ("changeTweets", function ()

{

this.resume () ;
}, this);

this._twitterService.fetchTweets () ;

this.wait (5000);
}

First, we register a listener for the changeTweet s event. The callback function invokes the resume method, which
informs the Testrunner that the asynchronous test has finished. We could pass a function parameter to resume if, for
example, we wanted to check the data associated with the changeTweet s event, but for now we just want to verify
that it fires at all.

Next, we invoke the fet chTweet s method which should cause the event to fire.

Finally, the wait method informs the Testrunner that it should wait for a re sume call. The first argument is the amount
of time to wait (in milliseconds) before the test is marked as failed. Note that wait must always be the last call in an
asynchronous test function. Any code that follows it will never be executed.

Now, if you run this test a couple times in quick succession, there’s a good chance it will at some point fail with
the error message “Error in asynchronous test: resume() called before wait()”. This is because due to the browser
caching the result of the Twitter API request sent by TweetService, the changeTweet s listener callback is executed
immediately after calling fetchTweets. This is a common problem in asynchronous tests, encountered whenever the
tested code’s behavior can be synchronous or asynchronous depending on external factors. Luckily, there’s a simple
fix for it: We just wrap the problematic method call in a timeout to make sure it’s executed after wait ():

gx.event.Timer.once (function () {
this._twitterService.fetchTweets();
}, this, 100);

While we could use a simple window . set Timeout for this, it’s preferable to use Timer.once since it uses qooxdoo’s
global error handling to catch and log any exceptions that might be thrown in the callback code. Otherwise, these would
just land on the browser console.

Requirements

Finally, let’s take a quick look at test requirements. This is a way to define preconditions that must be satisfied before
a test can be run. If a requirement isn’t met, the test will be skipped (and marked as such in the Testrunner GUI).
Common requirements are:

* The test checks browser-specific behavior, so it should only be run in selected browsers

 The tested class performs secure backend communication, so the test should only execute if the AUT was loaded
over HTTPS

4.6. Tutorials 215

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase~resume
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.TestCase~wait
http://demo.qooxdoo.org/current/apiviewer/#qx.event.Timer~once

qooxdoo Documentation, Release 2.0.2

In order to use requirements, you need to include the Mixin gx.dev.unit. MRequirements in your test class. Require-
ments are defined by calling the require method with an array of requirement ID strings as the only parameter. Usually,
this will be the first call in either a test function or the set Up method. Requirement IDs are evaluated by looking for
a method name beginning with “has” followed by the requirement ID (starting with a capital letter) on the current test
class and its ancestors. The method is called and its return value is checked: t rue means the requirement is met and
the test can proceed, false means the test won’t be executed and the Testrunner GUI will list it as “skipped”.

While gx.dev.unit. MRequirements contains a number of “has” methods for common scenarios, requirements are often
application-specific and so test developers will implement their own checks in the test class itself, a common base
class or a mixin.

Test Runner
L C' | @ localhost/~dwagner/workspace/qooxdoo-tutorial/test/index-source.html
Test Runner gooxdoo 1.5
| | RunTestst ¥ Reoad | | source.htmi? itter test | | {ifs Auto Reload
Tests Test Results Show Stack Trace Application under test
@ e T —
v i test Queued: 0| Failed: 0| Succeeded: 2 | Skipped: 0
» & DemoTest
i twitter.test.DemoTest:testSimple
L= L] twitter.test.DemoTest: testAdvanced
@ testSimple
Log :' Log Level
001626 gx.core.Init: Load runtime: 1625ms
001645 gx.core. Init: Main runtime: 18ms
001655 gx.core.Init: Finalize runtime: 10ms
Selected Test: | twitter.test. DemoTest | Mumber of Tests: 2 | System Status: Test suite finished.

And that’s it for a first look at unit testing for qooxdoo applications. Note that qooxdoo comes with a wrapper for the
powerful Sinon.js testing framework, which offers spies, stubs and mock objects that allow testing the very internals
of a class, such as if and how many times a specific method was invoked. But that’s a topic for a separate tutorial.

4.6.9 Tutorial Part 4.4.1: Automated Ul Testing

Having previously covered unit testing, it’s time to take a look at qooxdoo’s built-in facilities for automated Ul testing.
Over the course of this tutorial, we’ll set up the required infrastructure and develop a test case that interacts with the
Twitter application from the previous tutorials.

216 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MRequirements
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MRequirements~require
http://demo.qooxdoo.org/current/apiviewer/#qx.dev.unit.MMock
http://sinonjs.org/

qooxdoo Documentation, Release 2.0.2

S=lE W EN

ki ik Gl | 6L
#laplam Fur<ibons Testing for wel dpps
s S or Frern T @awin sl Biob
S v Mede

basc4c SRET T T A Dcddad el 5 28 51 3

Simulator: Selenium support for qgooxdoo

The Simulator component provides the infrastructure necessary to write GUI tests for qooxdoo applications and exe-
cute them in a real web browser by way of a Selenium server. The Simulator is based on those parts of the Selenium
project that were formerly known as “Selenium RC” and are now referred to as “Selenium 1”. While this tutorial
doesn’t require in-depth Selenium knowledge, you should at least familiarize yourself with its basic concepts and
capabilities before reading on.

The testing API: QxSelenium

Simulator Test cases are defined as qooxdoo classes inheriting from simulator.unit.TestCase. Similar to
unit tests, they live in the namespace of the application they’re testing and support the setUp/testSomething/tearDown
pattern. Test methods interact with an application by using the QxSelenium API. This consists of the DefaultSelenium
API plus several qooxdoo-specific additions. You can get an API reference for these by running generate.py api
in the qooxdoo SDK’s component /simulator directory and then opening /component/simulator/api/
in your browser.

Setting up the infrastructure

For the purposes of this tutorial, we’ll assume that you’re using a working directory named workspace which
contains the Twitter tutorial application in a subdirectory named qooxdoo-tutorial. Replace these paths with
your own as appropriate.

The test browser will load the application under test (AUT) over HTTP, so make sure you’re running a web server
and qooxdoo-tutorial is accessible. If you don’t want to install a full-blown HTTP server like Apache, you can use
Python’s built-in web server module. To do so, open a new shell in your work space directory and run this command:

4.6. Tutorials 217

http://seleniumhq.org/
http://www.jarvana.com/jarvana/view/org/seleniumhq/selenium/selenium/2.0a2/selenium-2.0a2-javadoc.jar!/com/thoughtworks/selenium/DefaultSelenium.html

qooxdoo Documentation, Release 2.0.2

python -m SimpleHTTPServer

You should now be able to open the tutorial application by browsing
http://localhost:8000/gooxdoo-tutorial/build/index.html.

Also, a regular Java Runtime Environment (JRE) is necessary on your machine to run Selenium.

Required Libraries

The Simulator depends on these external libraries:
* Mozilla Rhino: Download the ZIP archive, extract the ZIP and place js. jar in your workspace

» Selenium Server: Place selenium-server-standalone-2.5.0. jar in workspace

to

 Selenium Java Client Driver: Extract selenium-java-2.5.0. jar and the 1ibs directory and place them

in workspace.

Starting the Selenium Server

In a real testing environment, the Selenium server will probably run on a separate machine - in fact, the same client
might use different servers to run tests e.g. in Internet Explorer on Windows, Safari on OS X and Firefox on Linux.
To keep this tutorial straightforward, however, we’ll run the server on the same machine as the AUT. Wherever
selenium-server.jar is located, in order to test qooxdoo-based applications it needs to use the qooxdoo user exten-
sions for Selenium. They’re located in the Simulator component within the qooxdoo SDK, so start the server with the

-userExtensions option set accordingly by running this command in a new shell window:

java -Jar selenium-server-standalone-2.5.0.jar —-userExtensions <QOOXDOO_PATH>/component/simulator/toc

The server should now be listening on the default port, 4444.

Test Configuration Settings

The Simulator needs several configuration settings in order to run:
* The paths for the Rhino and Selenium Client Driver JARs
¢ the host name and port of the Selenium server
* the browser to be used for the test

* and the URI for the application under test

 All these settings are defined by overriding the simulation—run job in config.json (don’t forget to uncom-

ment the “jobs” section if necessary):

"simulation-run"
{

"let™

{

"SIMULATOR_CLASSPATH" : [
"../selenium-java-2.5.0.jar",
"../libs/x",

"../3s.Jar"]
},

"environment"

218 Chapter 4. qx.Desktop

http://www.mozilla.org/rhino/download.html
http://selenium.googlecode.com/files/selenium-server-standalone-2.5.0.jar
http://selenium.googlecode.com/files/selenium-java-2.5.0.zip

qooxdoo Documentation, Release 2.0.2

"simulator.selServer" : "localhost™",

"simulator.selPort" 4444,

"simulator.testBrowser" : "xfirefox",

"simulator.autHost" : "http://localhost:8000",
"simulator.autPath" : "/gooxdoo-tutorial/build/index.html"

}

The simulator.testBrowser key is particularly noteworthy. The value must be one of the browser launcher
strings supported by Selenium. x firefox (for Firefox 3+) and rgooglechrome should work fine on any platform
provided you’re using Selenium 2.x as described in this tutorial. *safari usually only works on OS X. Internet
Explorer requires some additional configuration but generally works fine for what it is. Whichever browser you
choose, it must be installed on the machine that runs the Selenium Server.

The simulator.autHost and simulator.autPath settings are combined to form the URI of the tested appli-
cation. Adjust these depending on your web server configuration. Also note that you can test either the source or build
version of the application - just make sure it’s generated before launching the test suite by running generate.py
buildorgenerate.py source.

Making the jobs available

The Twitter tutorial application was created before the simulation—+ generator jobs existed, so if you downloaded
the tutorial code from Github, you’ll get a “No such job” error if you try to run them. To fix this, you need to add both
simulation-build and simulation-run to the “export” list at the top of the application’s config.json file.
This is not necessary for application skeletons created by more recent qooxdoo SDKs (1.3 and later).

Defining a test case

Now that we’ve got our infrastructure set up, we can finally start writing tests. First, navigate to the subfolder named
simulation in gooxdoo-tutorial/source/class/twitter. This is the default location for Simulator
tests. In this folder, delete the predefined DemoSimulation. js and create a new file named Settings. js. This
will be our test case that is going to interact with the Twitter application’s settings dialog. For now, just add a test
method stub that will cause the test to fail:

gx.Class.define ("twitter.simulation.Settings", {
extend : simulator.unit.TestCase,

members

{

testChangelLanguage : function()

{
this.fail ("Test not implemented!");

Building and running the test suite

Time to see the Simulator in action. In the Twitter application’s directory, run generate.py
simulation-build to create the test application. Note that there is no simulation-source job (yet) so you must
run simulation-build every time you modify your test classes.

4.6. Tutorials 219

qooxdoo Documentation, Release 2.0.2

Once the build job is finished, run generate.py simulation-run. Assuming everything’s set up correctly, two Firefox
windows should (very briefly) open up and you should see the result of the failing test right on the shell:

>>> Processing configuration
- Warning: ! Shadowing job "simulation-run" with local one

Executing: simulation-run
>>> Running Simulation...
>>> Load runtime: 87ms
>>> Loading tests...
>>> 1 tests ready
>>> Simulator run on Thu, 08 Sep 2011 14:22:29 GMT
>>> Application under test: http://localhost:8000/qooxdoo-tutorial/build/index.html
>>> Platform: Linux
>>> User agent: Mozilla/5.0 (X11l; Linux 1686; rv:6.0.2) Gecko/20100101 Firefox/6.0.2
>>> Running tests...
>>> Main runtime: 8887ms
>>> Finalize runtime: Oms
>>> Assertion error! Test not implemented!: Called fail().
>>> Stack trace:

>>> ERROR twitter.simulation.Settings:testChangelanguage
>>> Test not implemented!: Called fail().

>>> Test suite finished.

>>> (0 passed, 1 failed, 0 skipped.

>>> Simulator run finished in: 0 minutes 15 seconds.
>>> Done (0ml17.20)

You’ll notice a warning about the “simulation-run” job being shadowed. Since we’re doing that on purpose, we can
silence this warning by adding the top-level key “config-warnings” to config.json:

"config-warnings"
{
"jJjob-shadowing" : ["simulation—-run"]

}y

Test development

Let’s replace that stub with something useful now: We want Selenium to use the Twitter application’s preferences
window to change the language. But first, we should set Selenium’s execution speed (the delay after each command
is excuted) to a value that will allow us to actually see what’s going on, say one second. To do so, replace the
this.fail line:

testChangelanguage : function()

{
this.getQxSelenium() .setSpeed (1000);

The first real action of the test will be to click the “Preferences” button. This leads us to one of the main challenges
when developing Selenium tests: How to locate the right element.

220 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Locator strategies

Elements can be located using several different strategies, generic as well as as qooxdoo-specific ones. See the manual
for an overview:

Simulator: Locating elements

In this tutorial, we’ll focus on the gxhv locator. Just like gxh, it traverses the application’s widget hierarchy, using a
syntax similar to XPath to match the widgets it finds to criteria defined by the user.

Note: The Selenium IDE Firefox add-on and the gooxdoo Inspector can be very helpful tools for finding locators and
debugging Selenium tests.

The gxhv locator allows us to find any widget with a given “label” property value:

gxhv=+*/[@label=Preferences]

A word about locales

As you’ll be aware if you’ve completed the Translation tutorial, the Twitter application is localized and will au-
tomatically switch the display language if the locale of the browser it’s opened in matches one of the supported
languages (German, English, French and Romanian). This means that depending on the locale of the browser
you’re using to run the test suite, you may have to adjust the target value of the Preferences label locator step, e.g.
gxhv=+/[@label=Einstellungen] for a German language browser.

Executing commands

To simulate a user clicking on the target identified by the locator, we need to combine it with the gxC1ick command:

// Click the Preferences button
var preferencesButtonLocator = "gxhv=+/[@label=Preferences]";

this.getQxSelenium() .gxClick (preferencesButtonLocator) ;

This should open the Preferences window. To make sure the command worked, we can employ the
isElementPresent command, then use an assertion so the test will fail if the window didn’t open:

// Check if the Preferences window opened

var settingsWindowLocator = "gxhv=[(@classname=twitter.SettingsWindow]";

var settingsWindowPresent = this.getQxSelenium() .isElementPresent (settingsWindowLocator);
this.assertTrue (settingsWindowPresent) ;

If the settings window was a gx.ui.window.Window, we could simply use the class name as the loca-
tor step. But that only works with classes from the gx.* name space. For a custom widget class like
twitter.SettingsWindow, we need to search by classname, a plain JavaScript attribute supported by all
gooxdoo objects. The @propertyName=value locator step covers these as well.

All right, time to execute the test again (don’t forget to run simulation-build again first). Assuming all
went well and the test passed, the next step is to select one of the language options from the Preferences window.
gx.ui.form.RadioButton also has a 1abel property (inherited from gx.ui.basic.Atom), so we’ll use
that:

// Click the radio button for Romanian
var romanianLabellocator = "gxhv=[@classname=twitter.SettingsWindow]/*/[@label=Romanian]";
this.getQxSelenium() .gxClick (romanianLabelLocator);

4.6. Tutorials 221

http://demo.qooxdoo.org/current/apiviewer/#qx.core.Assert

qooxdoo Documentation, Release 2.0.2

Obviously, if your browser’s locale is Romanian, this option will already be selected so you should choose a different
one.

Following that, we want to close the Preferences window. The close button doesn’t have a label, but we can find it by
looking for the file name of its icon:

// Click the window’s close button
var windowCloseButtonLocator = "gxhv=[@classname=twitter.SettingsWindow]/gx.ui.container.Composite/ [l
this.getQxSelenium() .gxClick (windowCloseButtonLocator) ;

We don’t need to use the full resource ID of the icon since the [@property=value] step treats the value as a
regular expression.

Again, we’ll use 1sElementPresent to check the result:

// Check 1if the window was closed
settingsWindowPresent = this.getQxSelenium() .isElementPresent (settingsWindowLocator) ;
this.assertFalse (settingsWindowPresent) ;

This would be a good time to re-generate and run the test to make sure everything works as expected.

Verifying the language change

For the final step of this tutorial, we’ll check if the language change was correctly applied to the twitter application.
The first approach might be to use isElementPresent to check for the Preferences button with the translated
label value (e.g. “Preferinte” for Romanian). That won’t work, however, since the value of the “label” property is a
gx.locale.LocalizedString object, so the [@property=value] locator step will try to call toString on it. This
will return the original, untranslated label so the check will fail. To get the visible, translated string, we need to call the
LocalizedString’s translate () method. That’s where QxSelenium.getRunInContext comes in: It takes a
locator and a snippet of JavaScript code which it uses as the body of a new function. This function will then be called in
the context of the widget identified by the locator, i.e. “this” will reference the widget instance. The function’s return
value is then serialized as JSON and returned by getRunInContext. We can use this to compare the translated
label value to what we’re expecting:

// Get the translated string for the Preferences button label

var translatedLabel = this.getQxSelenium() .getRunInContext (preferencesButtonLocator,
"return this.getLabel () .translate () .toString()");

// Check if the label was translated

this.assertEquals ("Preferinte", translatedLabel);

And that’s it for this introduction to the Simulator. If you have further questions or encounter any problems getting the
tutorial code to run, please contact us on the qooxdoo-devel mailing list.

4.6.10 Tutorial Part 4.5: Virtual List

This time we will have a look at the virtual widget stuff. The plan is to remove the normal List and use the virtual List.
Using the virtual list has a big advantage when we have to render a huge count of items. The virtual list only creates
widgets for visible items. This saves memory and execution time. As a base we use the already known twitter client
we built in the former tutorials.

222 Chapter 4. qx.Desktop

http://demo.qooxdoo.org/current/apiviewer/#qx.locale.LocalizedString
http://qooxdoo.org/community/mailing_lists/
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.form.List
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.list.List

qooxdoo Documentation, Release 2.0.2

Reload

a8 Good shit! Mobile dev & the [4]
s

@ ¥ iPhone RT @ppk: Mew blog
Q‘*\ post: The iPhone obsession
http: / ftinyurl.com jyhtzhym

RT @deaxon: Pretty cool prism
| & effect made with CS5
hay Y http:/ fdxn.cm/1p
RT @zorrobiwan: [Shared] Top
E 18 des dessins sur café (latte E|

Post

Change the instantiation

First, we have to use the virtual List instead. Open the twitter.MainWindow class and search for the list instan-
tiation:

// 1list
this.__list = new gx.ui.form.List();
this.add(this.__list, {row: 1, column: 0, colSpan: 2});

And create a virtual List instead:

// 1list
this.__list = new gx.ui.list.List();
this.add(this.__list, {row: 1, column: 0, colSpan: 2});

Now we use the virtual List instead of the non virtual List. But before we can use the twitter application with the
virtual List we have to configure the usage with a delegate.

Configure the virtual List

The current implementation uses the list controller to bind the tweets with the list. This makes it easy to reuse the del-
egation implementation, because the delegation interface from the virtual List has the same methods for bindItem,
createItem, configureItemand filter. We only need to remove the controller stuff and use the virtual list
instead. The controller is not needed anymore, because the virtual list has its own controller implementation. Open
the twitter.Application and search for the controller instantiation:

// create the controller
var controller = new gx.data.controller.List (null, main.getList ());
controller.setLabelPath ("text");
controller.setIconPath ("user.profile_image_url");
controller.setDelegate ({
configureItem : function(item) {
item.getChildControl ("icon") .setWidth (48);
item.getChildControl ("icon") .setHeight (48);
item.getChildControl ("icon") .setScale (true);
item.setRich (true);

4.6. Tutorials 223

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.list.core.IListDelegate

qooxdoo Documentation, Release 2.0.2

}
)i

Instead of the controller use the virtual List:

// setup list binding
var list = main.getList();
list.setItemHeight (68);
list.setLabelPath ("text");
list.setIconPath("user.profile_image_url");
list.setDelegate ({
configureItem : function (item) {
item.getChildControl ("icon") .setWidth (48);
item.getChildControl ("icon") .setHeight (48);
item.getChildControl ("icon") .setScale (true);
item.setRich (true);
}
}) i

Now we have replaced the controller with the virtual List and reused the delegate implementation. We have only added
one line to configure the default item hight. This is necessary, because the virtual List has no auto sizing for the item
height. This is due to the huge count of model items.

Update list binding
Finally, we have to adapt the binding between the twitter service and the virtual list. The virtual list always needs a
model instance so we need to adapt the current binding:

service.bind("tweets", controller, "model");

We only use a converter which returns an empty model when the service returns null:

service.bind("tweets", list, "model", {
converter : function (value) {
return value || new gx.data.Arravy();
}
)i

Now we only need to run the generator to resolve the new dependencies:

224 Chapter 4. qx.Desktop

qooxdoo Documentation, Release 2.0.2

Reload

“mdemiensing: BT E]
@xkaboutertjeee |:|
“mdemiensing: In
leeuwarden®/ fwat doe je daat "

Las nifias de 5to grado de mi
liceo dan burda de risa, me
brindaban las empanadas y
wainas y en Facebook son un

drum roll It's the
h BT R | S B E]

Post

The virtual List supports some more features like grouping, for additional details have a look at the virtual demos. As

always, the code of the tutorial is on github.

4.6. Tutorials

225

http://demo.qooxdoo.org/2.0.2/demobrowser/#virtual~List.html
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/twitter/step4.5/

qooxdoo Documentation, Release 2.0.2

226 Chapter 4. gx.Desktop

CHAPTER
FIVE

QX.MOBILE

gx.Mobile is qooxdoo’s mobile framework. It provides specific Ul classes for touch devices, handling of mobile events
like swiping, and specific styling. It is suitable for various mobile web browsers on iOS and Android platforms.

5.1 General

5.1.1 Overview

This is an introduction into qooxdoo’s mobile framework. qooxdoo mobile provides a optimized widget set to build
applications for mobile devices.

Supported Mobile Operating Systems

gooxdoo mobile was tested with the native browsers of the following operating systems:
* i0S
* Android 1.6+
* BlackBerry 10 OS (on BlackBerry PlayBook)

Supported Desktop Browsers

gooxdoo mobile was tested with the following desktop browsers:
¢ Safari 5
e Chrome 10+

¢ Firefox 10 (Experimental)

Features

* Mobile widget set

* Theming via CSS and LESS
* i0S theme

¢ Android theme

¢ Touch events: touchstart, touchmove, touchend, touchcancel

227

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile

qooxdoo Documentation, Release 2.0.2

* Gesture events: swipe, tap
* Animations between pages

* Touch event emulation for debugging in desktop browsers

Fixed toolbars and momentum scrolling via iScroll

* Basic PhoneGap support

API Documentation

 gx.application.Mobile: The mobile application.

 gx.ui.mobile: This package contains all mobile widgets. See the API documentation for more information.

Create a Mobile Application

To create a mobile application mobileapp in your home directory with your shell, change to your home directory

(just cd). With a gooxdoo SDK available at /opt /qooxdoo-2.0.2-sdk, call the script as follows:
/opt/qooxdoo—-2.0.2-sdk/tool/bin/create-application.py -—-type=mobile --name=mobileapp --out=.
Have a look into the API documentation of gx.ui.mobile.page.Page to understand the basic concepts of qooxdoo
mobile.

To learn how to develop a basic mobile application, you should try the mobile Twitter client tutorial.

If you are new to qooxdoo, make sure you have read the gerting started tutorial to understand the basics of qooxdoo.

Debugging

If you want to debug your qooxdoo mobile application on a mobile device, we propose using a web remote debugger
called “weinre’:

weinre. Web Inspector Remote

Remote debugging allows a developer to use the browsers developer tools from a desktop computer while inspecting
and manipulating the website on the mobile device.

Here are some hints for enabling remote debugging on your qooxdoo mobile application with weinre:

¢ Install weinre according to the weinre manual. Create a server.properties file, and change the port number to
8081 or similar.

* Add the following script tag to the index.html in your qooxdoo mobile application:
<script src="http://[ENTER_YOUR_HOST_IP_HERE]:8081/target/target-script-min.js"></scri
* Replace ip placeholder with your desktop computer ip on your “index.html”.
* Start weinre.
* Call your qooxdoo mobile application from your mobile device.

Important: Please make sure, not having the character “#”, behind the “index.html” on your url. Weinre uses debug
ids, which are appended after the target url, just like ”..qooxdoo/foo/../index.html#anonymous”. On mac computers
“anonymous” is the default debug id. Any other debug id, results in a disconnect of target mobile device.

Unfortunately, there is a clash with qooxdoo mobile navigation logic. Qooxdoo navigation manager uses also the
number sign, for navigating through pages:

228 Chapter 5. gx.Mobile

http://cubiq.org/iscroll
http://www.phonegap.com/
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Mobile
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile.page.Page
http://phonegap.github.com/weinre/

qooxdoo Documentation, Release 2.0.2

”../mobileshowcase/source/index.html#/form”

So, if you navigate to a subpage with qooxdoo, and reload the page, weinre interprets “#/form” as the debug id “/form”.
On mac computers, only “anonymous” is allowed, so the target device disconnects from debug server.

This means, debugging with weinre works fine, as long as you do not reload a subpage of your qooxdoo mobile page.
Your starting point for remote debugging should always be the “index.html” without any strings attached.

Environment Keys

The following environment keys are available:

e gx.mobile.emulatetouch: true|false - Enables desktop browser touch emulation. Enable this
option if you want to debug the application in your desktop browser.

e gx.mobile.nativescroll: true|false - Whether to use native scrolling or iScroll for scrolling.

Differences between Desktop Widgets

The qooxdoo mobile widget set is optimized for the use on mobile devices. In fact, the qooxdoo mobile widget set is
up to six times faster than the desktop widget set on mobile devices. We have tried to keep the differences of the API
as low as possible, so that a qooxdoo developer will have his first qgooxdoo mobile application running within minutes.
Of course, respecting the speed advantage, not all features of the desktop widget set could be retained. There are some
differences, listed below:

e Theming: The theming is done via CSS files. Have a look into the existing themes, to see how the styling is done.
You can find the themes under framework/source/resource/gx/mobile/css/. To change the
theme, just change the included CSS file in the index . htm1 and change the loaded assets in your mobile appli-
cation. There is a index . html file for the build version as well. You can find it in the source/resource/
folder of your application.

* No layout item: Only a few, essential, styles are provided by a widget. You should set all other styles of a widget
via CSS, using the addCssClass method of a widget.

* No queues: Elements are created directly. There is no element, layout, display queue. Keep this in mind when
you create and add widgets.

* Layouts: Layouts are done vis CSS(3). HBox / VBox layouts are implemented using the flexible box layout

* gx.ui.mobile.page.Page: A page is a widget which provides a screen with which users can interact in order to do
something. Most times a page provides a single task or a group of related tasks. A qooxdoo mobile application
is usually composed of one or more loosely bound pages. Typically there is one page that presents the “main”
view.

Demo Applications
To see qooxdoo mobile applications in action or to see how to implement an application, you can have a look on the
following demo applications:

* Mobile Showcase - see all mobile widgets in action

* Mobile Feedreader - the feedreader as a mobile app. Using the same logic and models as the feedreader for
desktop browsers does.

All applications can be found in the application folder of your qooxdoo checkout.

5.1. General 229

http://cubiq.org/iscroll
http://www.w3.org/TR/css3-flexbox/
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile.page.Page
http://demo.qooxdoo.org/2.0.2/mobileshowcase
http://demo.qooxdoo.org/2.0.2/feedreader-mobile

qooxdoo Documentation, Release 2.0.2

How to contribute?

You can contribute in different ways:
¢ Testing: Test qooxdoo mobile on your mobile device and give us feedback.
* Theming: You can optimize the current CSS files or even create your own theme.
* Widgets: Widget / Feature missing? Create an widget an post it back to us.

* Bugs: If you have found a bug, or when you have fixed it already, please open a bug report in the qooxdoo
Bugzilla with the core-mobile component.

* Devices: If you have an old smartphone (Android, iPhone, Blackberry, Windows Phone, WebOS, etc.) that you
don’t need anymore, you could donate it to qooxdoo. We would be happy to test gooxdoo mobile on it.

* Discussion/Feedback: Please post questions to our mailing list.

5.1.2 qx.Mobile Requirements

qgooxdoo gx.Mobile runs on iOS 2.0+ and Android 1.6+ devices. Working with qx.Mobile requires access to such
a mobile device, with a suitable mobile browser, or a mobile emulator for the respective platform that runs on your
desktop PC.

SDK

Working with gx.Mobile requires downloading and using qooxdoo’s SDK. See here for the SDK’s requirements, and
follow its Installation and Setup section. This requirement applies to the development phase only, the final app is
independent of the SDK.

Mobile Browsers

The following mobile browsers are supported:

& Safari Mobile
@ Chrome for Android

A
L&) Android Native Browser

Other mobile browsers like Opera Mini might work, but are not officially supported.

Desktop Browsers

As qooxdoo is based on web technologies, you will need a running instance of a browser (Google Chrome, Apple
Safari or Mozilla Firefox) on your system to run and test the application. An iOS or Android device is not necessarily
required.

The following desktop browsers are supported:

Apple Safari 5

Google Chrome 10+
Mozilla Firefox 10+

e 9@

230 Chapter 5. gx.Mobile

http://bugzilla.qooxdoo.org/
http://lists.sourceforge.net/lists/listinfo/qooxdoo-devel

qooxdoo Documentation, Release 2.0.2

5.1.3 Getting Started with gooxdoo qx.Mobile

Working with gx.Mobile requires downloading and using qooxdoo’s SDK. See here for the SDK’s requirements, and
follow its Installation and Setup section. This requirement applies to the development phase only, the final app is
independent of the SDK.

The first step is to create a mobile skeleton, by calling the create—applicaton.py script from the command
line. Navigate to the qooxdoo folder and execute the following command:

./tool/bin/create-application.py --type=mobile —--name=helloworld --out=..

A new folder “helloworld” will be created next to the qooxdoo folder, containing the mobile skeleton application.
Right now the application is pretty useless, until we create the source version of it. Navigate to the created folder
and call the qooxdoo generator with the following command:

./generate.py source

After a few seconds the generator has analyzed all class dependencies and created a source version of the application.
You can test the application by opening the source/index.html file in your Chrome / Safari browser. You should
see a page “Page 1” with a button “Next Page”. When you click on the button, the next page “Page 2”, with a “Back”
button in the upper left corner, is displayed.

Congratulations, you have just created your first qooxdoo mobile application!

Now it is your turn. Just open source/class/helloworld/Application.js and enhance your cross-
platform mobile application.

If you need a more detailed tutorial, please have a look at our twitter tutorial:

gx.Mobile Twitter Client Tutorial

5.2 Tutorials

5.2.1 Tutorial: Creating a Twitter Client with qooxdoo mobile

In this tutorial you will learn how to create a simple Twitter client with the new qooxdoo mobile widgets. The client
should display all tweets of a certain user. When a tweet is selected, the details of the tweet should be shown. You can
find the tutorial code here.

Requirements + Getting Started
Please visit the getting started section, and follow the introduction, which describes how to create a gx.Mobile Appli-
cation.

gx.Mobile Getting Started

Creating your first Page

In this section we will create two pages, one page for entering the username whose tweets should be shown and another
page for displaying the tweets.

But first of all we have to define what a page is:

A page is a widget which provides a screen with which users can interact in order to do something. Most
times a page provides a single task or a group of related tasks. A gqooxdoo mobile application is usually
composed of one or more loosely bound pages. Typically there is one page that presents the “main” view.

5.2. Tutorials 231

http://twitter.com/
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile
https://github.com/qooxdoo/qooxdoo/tree/release_2_0_2/component/tutorials/mobiletweets

qooxdoo Documentation, Release 2.0.2

Open the “mobiletweets” folder in your favorite IDE, so that you can edit all the files. Navigate to the
“source/class/mobiletweets” folder, were all of the application class files are located. Now you are ready to create
the application.

First we have to create a new page class. In order to do so, create a new folder “page” under
“source/class/mobiletweets”, representing a new ‘“namespace” mobiletweets.page. In this folder create a new
JavaScript file named “Input.js”. This file will contain the “mobiletweets.page.Input” class. Define the class like this:

gx.Class.define ("mobiletweets.page.Input",

{

extend : gx.ui.mobile.page.NavigationPage,

construct : function() {
this.base (arguments) ;
this.setTitle ("Twitter Client");
}
)i

The “Input” class inherits from gx .ui.mobile.page.NavigationPage, a specialized page that consists of a
gx.ui.mobile.navigationbar.NavigationBar including a title, back and action buttons, and a scrollable
content area. In the constructor of the class we set the title of the page to “Twitter Client”.

To show the “Input” page, we have to create an instance of the class and a page manager. The manager does the
layouting and displays our page on screen. Additionally the manager gives us the possibility to use our application in
a mobile or tablet device context. For our example, we just want to work in a mobile device context. That is why, we
construct the manager with false.

After creation of manager, we have to add the “Input” page into the manager. Then we call show method of “Input”
page, to display this page on start.

Open the “source/class/mobiletweets/Application.js” class file. You will find a comment in the ma in method “Below
is your actual application code...” with example code below. As we don’t need this example code, we can safely
replace it with the following lines of code:

var manager = new gx.ul.mobile.page.Manager (false);

var inputPage = new mobiletweets.page.Input ();
manager.addDetail (inputPage) ;

inputPage.show () ;

As we have changed the dependencies of our application, recreate the source version by calling the generator “source”
target as above.

Refresh the index.html in your browser. You will see a page with a navigation bar and a title “Twitter Client”. That is
all you have to do when you want to display a page.

Navigation between Pages

gooxdoo mobile comes with different animations for page transitions. Showing a second page is as easy as showing
one page. Just call the show method of the second page and qooxdoo will do the rest. To navigate back to the first
page you have to call, you have guessed it, the show method of the first page again. To play the animation of the page
transition “reversed”, call the show method with an object literal { reverse:true} as an argument. To change an
animation, just add an animation key to the passed object literal, e.g. {animation:fade}:

page.show(); // show the page; "slide" is the default animation
//or

page.show ({reverse:true}); // show the page and reverse the animation of the transition

232 Chapter 5. gx.Mobile

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile.page.manager.Animation

qooxdoo Documentation, Release 2.0.2

//or

page.show ({animation : "cube", reverse:true}); // show the page and reverse the "cube" animation

Page Lifecycle: A page has predefined lifecycle methods that get called by the page manager when a page gets shown.
Each time another page is requested to be shown the currently shown page is stopped. The other page, if shown
for the first time, will be initialized and started afterwards. For all called lifecylce methods an event is fired.

Calling the “show” method triggers the following lifecycle methods:
e initialize: Initializes the page to show
e start: Starts the page that should be shown
e stop: Stops the current shown page

IMPORTANT: Define all child widgets of a page when the “initialize” lifecycle method is called, either by listening
to the “initialize” event or overriding the _initialize method. This is because a page can be instantiated during
application startup and would then decrease performance if the widgets would be added during constructor call. The
initialize event and the _initialize lifecycle method are only called when the page is shown for the first time.

Lets try it! Create another page class “Tweets” in the “source/class/mobiletweets/page” folder:

gx.Class.define ("mobiletweets.page.Tweets",

{

extend : gx.ui.mobile.page.NavigationPage,

construct : function () {
this.base (arguments) ;
this.set ({
title : """, // will be replaced by username
showBackButton : true,
backButtonText : "Back"

In the constructor we show the back button and set the text to “Back™ . The title will be replaced later by the given
username.

Now we need a button on the “Input” page, so that we can navigate between the two pages. Create a new instance of a
gx.ul.mobile. form.Button in the “Input” class and add it to the content of the page. By listening to the tap
event of the button, the application can handle when the user taps on the button. Add a new member section to the
class definition and override the protected lifecycle method _initialize to do that:

members : {

// overridden
_initialize : function() {
this.base (arguments) ;
// Create a new button instance and set the title of the button to "Show"
var button = new gx.ui.mobile.form.Button ("Show");
// Add the "tap" listener to the button
button.addListener ("tap", this._onTap, this);
// Add the button the content of the page
this.getContent () .add (button) ;

}

As you can see, the tap listener has the _onTap method as a handler. This method has to be implemented in the
member section as well:

5.2. Tutorials 233

qooxdoo Documentation, Release 2.0.2

_onTap : function (evt)

{

this.fireDataEvent ("requestTweet", null); // Fire a data event. Later we will send the entered "u.

}

In the _onTap method we fire a data event “requestTweet”. The empty data will be replaced later with the username.
The only thing which is missing now is to define the event itself. Add a new events section to the “Input” class:

events : {
"requestTweet" : "gx.event.type.Data" // Define the event

}

In the “Application” class add the following code below the code we have just added:

// New instance of the Tweets page
var tweetsPage = new mobiletweets.page.Tweets();

// Add page to manager
manager.addDetail (tweetsPage) ;

// Show the tweets page, when the button is pressed

inputPage.addListener ("requestTweet", function (evt) {
tweetsPage.show () ;

}, this);

// Return to the Input page when the back button is pressed

tweetsPage.addListener ("back", function (evt) {
inputPage.show ({reverse:true});

}, this);

After creating a new instance of our new “Tweets” class we listen to the request Tweet event of the “Input” page
instance. In the event handler we call the show method of the tweet sPage page object to display the page. In the
back event handler of the tweet sPage, the “Input” page will be shown with a reversed animation.

New classes mean new dependencies which means we have to generate the source code again. Refresh the application
in the browser and navigate between the pages by clicking on the “Show” and on the “Back” button. Nice!

We need Data, lots of Data!

Ok, here we are. You have learned how to create two pages and to wire them by reacting on defined events. That is
pretty cool, but without data to display our app is worthless. To display the tweets of a user we will use the public
Tweet service of Twitter. Data binding is a powerful concept of qooxdoo which you can leverage off in your mobile
applications as well. Extend the members section of the “Application” class by the following code:

_ loadTweets : function() {
// Public Twitter Tweets API
var url = "http://twitter.com/statuses/user_timeline/" + this.getUsername() + ".json";

// Create a new JSONP store instance with the given url
var store = new gx.data.store.Jsonp(url);
// Use data binding to bind the "model" property of the store to the "tweets" property
store.bind ("model", this, "tweets");
store.addListener ("error", function (evt) {
// you can add error handling here, e.g. display a dialog or navigate back to the input page
}, this);
}

In the ___loadTweets method we create a new JSONP store which will automatically retrieve the data from the
given URL. By binding the model property to the tweets property, the tweets property will be automatically

234 Chapter 5. gx.Mobile

http://manual.qooxdoo.org/2.0.2/pages/core.html#data-binding
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.data.store.Jsonp

qooxdoo Documentation, Release 2.0.2

updated whenever the mode 1 property of the store is updated.

As you might have noticed the __1oadTweet s method uses two properties, username and tweets, that are not
defined yet. We will define those properties now. Define a new section properties in the “Application” class and
add the following two properties:

properties
{
tweets
{
check : "gx.data.Array",
nullable : true,
init : null,

event : "changeTweets",

apply : "_applyTweets" // just for logging the data
}y
username
{

check : "String",

nullable : false,

init : null,

event : "changeUsername",
apply

n

_applyUsername" // this method is called when the username property 1is set

In the apply method _applyUsername of the username property we will call the __1oadTweets method. So
every time the username is set the tweets for this username are loaded. To see which data is set for the tweets
property, we will print the data in the debugging console. To do so, we call this.debug with the stringified value
in the apply method _applyTweets. Add the following code to the member section of the “Application” class:

// property apply

_applyUsername : function (value, old) {
this.__loadTweets();

I

_applyTweets : function(value, old) {
// print the loaded data in the console
this.debug ("Tweets: ", gx.lang.Json.stringify(value));

Now the username has to be retrieved from the user input. To do so, we have to create an input form. The usage of the
form classes should be familiar to you if you have used the RIA widget set before. Open the “Input” class again and
place the following code, before the button instance in the _initialize method:

var title = new gx.ui.mobile.form.Title("Please enter a Twitter username");
this.getContent () .add(title);

var form = this.__ form = new gx.ui.mobile.form.Form();

var input = this.__ _input = new gx.ui.mobile.form.TextField();
input.setPlaceholder ("Username");

input.setRequired (true);

form.add (input, "Username");

// Add the form to the content of the page, using the SinglePlaceholder to render
// the form.
this.getContent () .add (new gx.ui.mobile.form.renderer.SinglePlaceholder (form));

5.2. Tutorials 235

qooxdoo Documentation, Release 2.0.2

First we add an instance of gx.ui.mobile.form.Title to the content of the page. To an instance of
gx.ui.mobile.form.Form,agx.ui.mobile.form.TextFieldinstance input is added. Both instances
are assigned to member variables as well, for further reuse. A text is set for the placeholder property of the
textfield. By setting the property required to true we indicate that the textfield requires an input. Finally we add the
form instance to the page content, by using a ‘* gx.ui.mobile.form.renderer.SinglePlaceholder** renderer. The renderer
is responsible for the look and feel of the form. In this case only the input fields with their placeholders are displayed.

In the _onTap method we have to retrieve now the value of the input field. Replace the code in the function body by
the following code:

// validate the form

if (this._ form.validate()) {
var username = this.__input.getValue();
this.fireDataEvent ("requestTweet", username);

}

After successfully validating the form, we retrieve the value of the textfield from the member variable and pass it as
the data to the event.

As you surely remember we listen to the requestTweet event in the “Application” class. Open the Application
class and add the following line to the event listener:

this.setUsername (evt.getData());

We’ve come full circle. By setting the username the data will be loaded and we can proceed to display the data.
Rebuild the application and refresh it in the browser. Type in a valid twitter username (e.g. “qooxdoo”) and click the
“Show” button. Press the F'7 key to display the qooxdoo logging window or use the console of the browser developer
tools. You will see the loaded tweets of the user.

Please enter a Twittar username

Displaying the tweets

Now that we have the tweets for a certain user, it’s gonna be pretty easy to display them. All we need for that is a
gx.uil.mobile.list.List and to set up some data binding. Lets proceed with the tutorial.

First we have to add the following _initialize method to the members section of the “Tweets” page.

members : {
__list : null,

_initialize : function() {
this.base (arguments) ;

236 Chapter 5. gx.Mobile

qooxdoo Documentation, Release 2.0.2

// Create a new list instance

var list = this.__list = new gx.ui.mobile.list.List();
var dateFormat = new gx.util.format.DateFormat () ;

// Use a delegate to configure each single list item
list.setDelegate ({

configureItem : function(item, wvalue, row) {
// set the data of the model
item.setTitle (value.getText ());
// we use the dataFormat instance to format the data value of the twitter API
item.setSubtitle (value.getUser () .getName() + ", " + dateFormat.format (new Date (value.getCreat

item.setImage (value.getUser () .getProfile_image_url());
// we have more data to display, show an arrow
item.setShowArrow (true) ;

}

1)
// bind the "tweets" property to the "model" property of the list instance

this.bind("tweets", list, "model");
// add the list to the content of the page
this.getContent () .add (list);

The created list instance (we store it in a member variable for further usage) will use a delegate to configure each
single list item. The delegate is set by the setDelegate method as a literal object. The configureItem method
is responsible for configuring the list items. It has three parameters:

* item: The list item renderer instance. Use this parameter to set the title, subtitle or icon of the list item.
e value: The value of the row. Entry of the model for the current row index.
e row: The row index.

In this case the list item renderer is the gx.ui.mobile.list.renderer.Default. This renderer has a
title, subtitle and a image property, which can be set individually per row. In addition to those proper-
ties, the showArrow property shows an arrow on the left corner of the row, indicating that we have more data to
display.

Finally the model of the list instance is bound to the tweet s property, which we will add to the “Tweets” class right
above the member section:

properties : {
tweets : {
check : "gx.data.Array",
nullable : true,
init : null,
event : "changeTweets"

There are only two tasks left:
1. Bind the tweet s property from the “Application” to the tweet s property of the “Tweets” page instance.
2. Bind the username property form the “Application” to the t it 1e property of the “Tweets” page instance.

Open the “Application” class file and add under the instantiation of the “Tweets” page tweet sPage the following
code:

this.bind ("tweets", tweetsPage, "tweets");
this.bind ("username", tweetsPage, "title");

5.2. Tutorials 237

qooxdoo Documentation, Release 2.0.2

Generate the source code again and refresh you browser tab. Try the username “qooxdoo” and push the “Show’ button.
It is magic!

)x[@ graticule_am All applies to 1.3.x...

th Mew tutorial online:htip:lt.coMm..

:)x[@ graticule_am Great, thanks you ...

th @graticule_am Nice idea - create ...

)x[Universal JavaScript framework ...
th qooxdoo 1.4 and 1.3.1 released, ye...

:)x[Seams there are problems with ouw...

Details of a tweet

Great, you have made it so far! In the last section we will display a tweet on a new page when the user selects a certain
tweet. Sometimes it can happen that a tweet is too long for a list entry. Ellipses are then shown at the end of the tweet.
That is why we want to give the user a chance to display the whole tweet. Lets create a simple “Tweet” page that only
shows a gx.ui.mobile.basic.Label with the selected tweet text. To do so, we bind the text property of the
tweet to the label value property. Create the page, like you have done before, in the “source/class/mobiletweets/page”
folder. The code of the page shouldn’t be something new for you:

gx.Class.define ("mobiletweets.page.Tweet",

{

extend : gx.ui.mobile.page.NavigationPage,

construct : function() {
this.base (arguments) ;
this.set ({
title : "Details",
showBackButton : true,
backButtonText : "Back"
1)
}I
properties:
{
tweet
{
check : "Object",

nullable : true,
init : null,

event : "changeTweet"
}
by
members
{
_initialize : function|()

{

238 Chapter 5. gx.Mobile

qooxdoo Documentation, Release 2.0.2

this.base (arguments) ;

// Create a new label instance

var label = new gx.ui.mobile.basic.Label();
this.getContent () .add (label);

// bind the "tweet.getText" property to the "value" of the label
this.bind ("tweet.text", label, "value");

)i

Now create the instance of the “Tweet” page in the Application main method and return to the “Tweets” page, when
the back listener is called.

var tweetPage = new mobiletweets.page.Tweet ();

// Add page to manager
manager.addDetail (tweetPage) ;

// Return to the Tweets Page

tweetPage.addListener ("back", function (evt) {
tweetsPage.show ({reverse:true});

}, this);

Until now we will never see the “Tweet” page as its show method is never called. First we have to react in the
“Tweets” page on a selection change event of the list, by registering the changeSelection event on the list in the
_initialize method:

list.addListener ("changeSelection", this.__onChangeSelection, this);

The __onChangeSelection method looks like this:

__onChangeSelection : function (evt)

{
// retrieve the index of the selected row
var index = evt.getDatal();
this.fireDataEvent ("showTweet", index);

As you can see, a showTweet data event is fired here. This data event has to be defined in the events section of
the “Tweets” class:

events : {
showTweet : "gx.event.type.Data"

All we need to do now is to listen to the showTweet event in the “Application” class main method, retrieve the index
from the data event and to get the corresponding tweet from the data. Finally we show our “Tweet” page.

// Show the selected tweet

tweetsPage.addListener ("showTweet", function (evt) {
var index = evt.getDatal();
tweetPage.setTweet (this.getTweets () .getItem(index));
tweetPage.show () ;

}, this);

Rebuild the source code (or the . /generate.py build version), refresh the application in your browser and
enjoy your application! We are done here.

5.2. Tutorials 239

qooxdoo Documentation, Release 2.0.2

ial anknehp:.caMm2hW3| qooxdoo and unk

Now you are ready to develop your own applications...

After you have finished this tutorial, you have learned the basics of qooxdoo mobile. You have seen how easy it is to
develop qooxdoo mobile applications when you are familiar with qooxdoo. There are only some new concepts (e.g.
Pages) to learn and you are good to go. All qooxdoo mobile applications work on Android and iOS devices.

gx.Mobile Deployment with Apache Cordova

5.3 Development

5.3.1 Mobile and tablet switch

Tablet support out of the box
On tablet devices you have a bigger screen size and more layout space than on mobile devices. An application in a
tablet device context may even provide additional/other functions than on mobile device context.

gx.Mobile provides mobile and tablet distinction out of the box. It provides a detection of device type the application
runs on.

Based upon this distinction, you can tell our page manager whether it should layout its navigation pages optimized for
device class mobile (intended for mobile, 7” tablets) or device class tablet (tablets or desktop).

How to get device type

The device type is accessible by the environment variable device.type. It is able to detect 3 classes: mobile,
tablet and desktop.

var deviceType = (gx.core.Environment.get ("device.type");

Device type mapping table :

The device type is detected by resolving user agent strings. Device class mapping is done by searching a specific
hardware class, an operation system or a browser type.

Tablets (returns tablet)

240 Chapter 5. gx.Mobile

qooxdoo Documentation, Release 2.0.2

Android Tablet
* iPad
Blackberry Playbook

* Amazon Kindle
* Silk
* Sony PSP
Mobile (returns mobile)
* Android mobile phones
* iPhone
¢ iPod
e Bada
* Maemo
* Symbian
* Windows Phone
* Opera Mobile
e Fennec
Desktop (returns desktop)

¢ All other devices

How to enable device-based layouting

The device-based layouting is handled by gx . ui .mobile.page.Manager. In our examples at mobile playground
and the tutorial, we always make usage of this manager to create a qx.Mobile application.

var isTablet = false;

var manager = new gx.uil.mobile.page.Manager (isTablet);
var page = new gx.uil.mobile.page.NavigationPage();
manager.addDetail (page);

page.show () ;

The manager has an optional constructor parameter isTablet. It indicates whether the page manager uses the
mobile or the tablet layouting mode. In this examples, we deactivated tablet layout mode with i sTablet=false.

If parameter isTablet is not defined at constructor, the page manager always calls environment variable
device.type to determine the layout mode. Tablet layout mode is active by default, if environment variable is
desktoportablet.

How page manager arrange pages
The class gx . ui.mobile.page.Manager works with instances of gx . ui .mobile.page.NavigationPage.
The manager arranges the pages on screen, based on flag i sTablet and device orientation.

An device/window orientation change is detected by qx.Mobile and fires an orientationchange event, which is
handled by page manager.

5.3. Development 241

qooxdoo Documentation, Release 2.0.2

MasterPages and DetailPages

When page manager is on tablet mode, it arranges the NavigationPages in a different order than on mobile mode. For
this arrangement it needs to know, whether a NavigationPage is important for application flow, and which are not.

For this arrangement logic the instances of gx.ui.mobile.page.NavigationPage needs to be added as a
MasterPage or a DetailPage.

MasterPages are usually used as navigation. They control the appearance of several DetailPages. A MasterPage should
always be visible for controlling the application flow.

DetailPages do contain the content, or more precise: they show a detail information. It is not necessary for application
flow, that a DetailPage is always visible.

When no tablet support is necessary, every page can be added as a detailPage.

Page manager layout modes
There are 3 different layouting modes, used by gx.ui.mobile.page.Manager.
Mobile Layout

Used when isTablet of page manageris false.

All MasterPages and DetailsPages are added to DetailContainer.

Tablet Landscape Layout

Used when isTablet of page manager is t rue and orientation is portrait.

MasterPages are added to masterContainer. DetailPages are added to detailContainer.

Tablet Portrait Layout

Used when isTablet of page manager is t rue and orientation is landscape.

MasterPages are added to a PortraitMasterContainer. This container is hidden after orientation change.
Visibility of this container can be controlled by MasterButton. The caption of the MasterButton and the title of
PortraitMasterContainer are bound to shown MasterPage’s title.

242 Chapter 5. qx.Mobile

qooxdoo Documentation, Release 2.0.2

Example for a qx.Mobile application with tablet support
Now, that you gained this knowledge about qx.Mobile tablet support, you surely want to create an application using
this feature.

var manager = new gx.uil.mobile.page.Manager ();

var masterPage = new gx.ui.mobile.page.NavigationPage () ;
var detailPagel = new gx.ui.mobile.page.NavigationPage () ;
var detailPage2 = new gx.uil.mobile.page.NavigationPage () ;

manager.addMaster (masterPage) ;
manager.addDetail ([detailPagel, detailPage2]) ;

masterPage.show () ;
detailPagel.show () ;

In the example above, we first create a page manager. To this manager we add masterPage. You could even add
multiple MasterPages.

This MasterPage could be used as a menu or overview page to control visibility of DetailPages. The DetailPages can
be added as an array, for convenience.

At last step you have to define which pages are visible at startup.

Page manager does not manage startup visibility, because this give you full control about application flow.

5.3.2 Theming

CSS and LESS

Theming in qooxdoo mobile is done with LESS and CSS. LESS is an extension for CSS to enable style sheets to be
more dynamic. In LESS you can you use variables, reuse CSS statement inside of CSS file, import CSS files and
create mixins.

If you want to extend or change the qooxdoo mobile themes, you always should modify LESS files (*.less) in folder
“framework/source/resource/qx/mobile/less”. After you modified LESS files, they have to be parsed into CSS.

The target CSS artefacts can be found in folder “framework/source/resource/qx/mobile/css”. Please notice: You should
not change these files.

Example usage of LESS in qooxdoo mobile

When you inspect LESS files of qooxdoo mobile, you will see that there are two main files (android and ios.less).
These two files consists out of several parts, which are imported with command:

@import "_base";

The files _android.less and _ios.less both import _base.less, which contains _mixins.less. The _mixins.less is a im-
portant part, because it contains most important mixins used in any LESS file. For example the LESS mixin for
border-radius:

.border-radius () {
-webkit-border-radius: @arguments;
-moz-border-radius: @arguments;
border-radius: @arguments;

5.3. Development 243

http://www.lesscss.org/

qooxdoo Documentation, Release 2.0.2

This mixin helps you creating border-radius for most browsers, just by writing something like:

.border-radius (4px) ;

Another mixin example for buttons can be found in file _android.less. In this case, mixins are used like inheritance
classes. There is a class with typical look and feel for Android buttons, called .standard-button.

.standard-button {
@button-color: #f4f4df4;
@height: 20px;

.border-radius (4px) ;
cursor: pointer;
width: auto;

height: 20px;

color: #222222;
text-align: center;

// Less "darken method" helps to make use of android-button easier.
// It takes button-color and darkens it. No second gradient color
// 1is needed.

#gradient > .vertical (@button-color, darken (@button-color, 20%));
border: 1px solid #555555;

line-height: Q@height;

font-size:12px;

}

The toolbar button extends this standard button, and adds some special values.

.toolbar-button {
.standard-button () ;
height: 50px;
font-size: 17px;

}

So you are able to use inheritance directly in LESS file, which might give you a better overview than applying multiple
CSS classes to one DOM element.

Parsing LESS files

There are different ways for parsing LESS files into CSS.

e LESS js: If you are working on source variant of qooxdoo mobile, you can include less.js and link LESS in the
application index.html file directly. Just uncomment the following lines in the index.html file:

<!-- Uncomment the following block to use less.js —-—>

<!——= <link rel="stylesheet/less" type="text/css" media="screen" href="../../../framework/source/reson
<link rel="stylesheet/less" type="text/css" media="screen" href="resource/mobileshowcase/css/styles.
<script type="text/javascript" src="https://raw.github.com/cloudhead/less.js/master/dist/less-1.1.6.1

* Guard-LESS: A guard extension that compiles .less files to .css files when changed. It listens on folders or a set
of LESS files for changes, and triggers re-compiling of CSS files automatically. This should be your choice, if
you are familar to guard.

e Simpless: Similar to functionality of Guard-LESS, but with more easier configuration and usage, because of a
graphical user interface. It also compiles LESS to CSS files automatically on file change. Simpless is available
for every platform (Windows, Mac OS, Linux).

244 Chapter 5. qx.Mobile

http://www.lesscss.org/
https://github.com/guard/guard-less
http://wearekiss.com/simpless

qooxdoo Documentation, Release 2.0.2

5.3.3 Debugging

Debugging with desktop browsers

You can easily debug your qooxdoo mobile applications on your machine, by using desktop browsers like Safari,
Chrome or Mozilla Firefox. In case of webkit browser you have to open the pre-installed developer tools. In Firefox
you must have installed the add-on “Firebug”.

Remote debugging with weinre
Sometimes there are errors, that only occur on the mobile device. Debugging CSS or runtime-specific JS code can be
challenging, if the application is running in the mobile browser or is deployed as a native app via PhoneGap.

If you want to debug your qooxdoo mobile application on a mobile device, we propose using a web remote debugger
called “weinre”:

weinre - Web Inspector Remote

weinre - Web Inspector Remote /

ENN- 3

Resources Network Timeline Console

e (S
| <;

Elements

Remote

» Computed Style [Show inheritg
¥ Styles L+
element.style {

overflow-y: hidden;

¥ <html>
» <heads..</head>
v<body id="gqx_id_@" class="root" style=
“overflow-y: hidden; ">
v<div id="gx_id_1" class="page vbox" style=
"height: 356px; ">
vediv id="gx_id_12" class="navigationbar
hbox boxAlignCenter"s

localhost/workspace/gx/ & -
]

Overview

Matched CS5 Rules
.root {
» background: urlChttp://localhost/workspa..

p<div id="gx_id_13" class=
"navigationbar-backbutton" data-
activatable="true" style="visibility:
hidden; "s.</div>
<hl id="gx_id_18" class="label no-wrap
boxFlexl" style="pointer-events: none;
">0verview</hl>
p<div id="gx_id_19" class=
"navigationbar-button" data-activatable=
"true" style="visibility: hidden;
"s.<fdive
</div>
p<div id="gx_id_24" claoss="scroll vbox
boxFlexl" style="overflow-x: hidden;
overflow-y: hidden; "».</divs>
</dive
</body>
</html>

>z | @ | him COyADRalOR

color: M#666;
font-size: @.8em;
}
.root {
font-family: Helwetica;
font-weight: 400;
}
.root {
-webkit-text-size-adjust: none;
-webkit-user-select: none;
height: 100%;
overflow-x: hidden;
}
html, body {
}

Basic Widgets
Atoms, Buttons, Labels, Images

Dialog Widgets
Dialogs, Popups, Confirm Dialogs...

Form Elements >
TextField, TextArea. ToggleButton, Bu...

List
A large list

Tab Bar
Usings tabs to switch views

*{
-webkit-tap-highlight-color:
» margin: @px;
» padding: @px;
T

transpare..

Debugger Server Console |Server Home Page|

v

Remote debugging allows a developer to use the browsers developer tools from a desktop computer while inspecting
and manipulating the website on the mobile device.

Here are some hints for enabling remote debugging on your qooxdoo mobile application with weinre:

¢ Install weinre according to the weinre manual. Create a server.properties file, and change the port number to

8081 or similar.

* Add the following script tag to the index.html in your qooxdoo mobile application:

<script src="http://[ENTER_YOUR_HOST_IP_HERE]:8081/target/target-script-min.js"></scri

* Replace ip placeholder with your desktop computer ip on your “index.html”.

5.3. Development

245

http://phonegap.github.com/weinre/

qooxdoo Documentation, Release 2.0.2

e Start weinre.
* Call your gooxdoo mobile application from your mobile device.

Important: Please make sure, not having the character “#”, behind the “index.html” on your url. Weinre uses debug
ids, which are appended after the target url, just like ”..qooxdoo/foo/../index.html#anonymous”. On mac computers
“anonymous” is the default debug id. Any other debug id, results in a disconnect of target mobile device.

Unfortunately, there is a clash with qooxdoo mobile navigation logic. Qooxdoo navigation manager uses also the
number sign, for navigating through pages:

”../mobileshowcase/source/index.html#/form”

So, if you navigate to a subpage with qooxdoo, and reload the page, weinre interprets “#/form” as the debug id
“/form”. On mac computers, only “anonymous” is allowed, so the target device disconnects from debug server.

This means, debugging with weinre works fine, as long as you do not reload a subpage of your gooxdoo mobile page.
Your starting point for remote debugging should always be the “index.html” without any strings attached.

Using browser instead of weinre client

Instead of using the weinre debug client, you can also use your webkit desktop browser (Safari or Chrome) for remote
debugging.

The newest versions of webkit browsers and their debuggers might have more functions than the weinre debug client.
Just open the weinre debugging client with following URL:

http://localhost:8081/client/

5.4 Deployment

5.4.1 Deployment

Deploy your qx.Mobile application

You developed a great gx.Mobile application, and want to use or test it on your mobile device.
For this purpose, we propose using Apache Cordova.

It gives you the possibility to deploy native applications, that run the qooxdoo mobile JavaScript code in an wrapped
native browser, in the App Stores or directly on your mobile device. A free distribution of Cordova is also available, it
is called “PhoneGap”.

On Cordova website you find detailed tutorials available which describe the deployment on different mobile platforms:

Cordova Getting Started Tutorial

Configure Cordova for deploying your qx.Mobile application

After you installed cordova, and followed the introductions of Cordova Getting Started Tutorial, you are able to deploy
your gx.Mobile application on your mobile device.

Follow these steps:

1. Build your application with generate.py build.

246 Chapter 5. gx.Mobile

http://incubator.apache.org/cordova/
http://docs.phonegap.com/en/1.6.1/guide_getting-started_index.md.html#Getting%20Started%20Guides
http://docs.phonegap.com/en/1.6.1/guide_getting-started_index.md.html#Getting%20Started%20Guides

qooxdoo Documentation, Release 2.0.2

2. Duplicate content of your qx.Mobile build folder, into Cordova deploy folder assets/www including the
index.html.

3. Paste the following line in head part of assets/www/index.html:
<script type="text/javascript" charset="utf-8" src="cordova-1.6.0.js"></script>
4. Cross-check the version of the “cordova.js” in script tag, against the version you use.

That should do the trick. Now Cordova can deploy your gx.Mobile application on the connected Mobile Device. For
executing the deployment, have a look on Cordova Getting Started Tutorial.

Update application on your mobile device

If you want to update your gx.Mobile application, you just have to copy the folders resource and script into
Cordova’s deploy folder assets/www/. An update of the assets/www/index.html is not necessary.

5.4. Deployment 247

http://docs.phonegap.com/en/1.6.1/guide_getting-started_index.md.html#Getting%20Started%20Guides

qooxdoo Documentation, Release 2.0.2

248 Chapter 5. gx.Mobile

CHAPTER
SIX

QX.SERVER

gooxdoo gx.Server is a basic component that runs in many different contexts and environments, with very little de-
pendencies to the underlying runtime. It is suitable for development endeavors in environments that provide no DOM,
like Node.js and Rhino, but also HTMLS5 Webworkers. It offers the basic infrastructure of gooxdoo Core, so you can
e.g. create classes, interfaces and mixins, use properties and data binding.

6.1 Server Overview

This page is an overview of qooxdoo’s server capabilities. It shows which parts of qooxdoo can be used in a server
environment or comparable scenario. It also serves as an introduction to all interested in using qooxdoo on a JavaScript
server environment.

6.1.1 Included Features

This listing shows the core features of the gooxdoo gx.Server package. If you build your own package with the skeleton
way of using qooxdoo, the feature set might be extended depending on your application code.

¢ Object Orientation

Classes

Mixins

Interfaces

Properties
* Events
e Single Value Binding

Most of the features can be found in qooxdoo’s core layer and should be familiar to qooxdoo developers.

6.1.2 Supported Runtimes

We currently support two types of runtimes:
* node.js

¢ Rhino

249

http://nodejs.org/
http://www.mozilla.org/rhino/

qooxdoo Documentation, Release 2.0.2

6.1.3 Installation

See Requirements for details on how to obtain and install qooxdoo gx.Server.

6.1.4 Basic Example

The following example shows how to use the gooxdoo gx.Server package in a node environment, having installed the
package via npm.

var gx = require (' gooxdoo’);

// create anmial class
gx.Class.define ("my.Animal", {
extend : gx.core.Object,
properties : {
legs : {init: 4}
}
}) i

// create dog class
gx.Class.define ("my.Dog", {
extend : my.Animal,
members : {
bark : function() {
console.log ("ARF! I have " + this.getlLegs() + " legs!");

)i

var dog = new my.Dog();
dog.bark () ;

Only two lines in this example are specific to the server environment: The first one, where you include the qooxdoo
package and the implementation of the bark function, which uses node’s console object. To run the example in
Rhino, simply change the first line to something like this:

load(["path/to/gx-00-2.0.2.73s"]);

and replace console.log with print.

The rest of the code is plain qooxdoo-style JavaScript which can be run in a browser, too. For more information on
that topic, take a look at the documentation about Object Orientation.

6.1.5 Additional Scenarios

The gooxdoo gx.Server package does not contain any server-dependent code so it can also be used in a browser e.g. to
have the features described above without the need to use the rest of qooxdoo. Another interesting scenario might be
to use the package in a web worker, which is also a DOM-less environment.

6.2 qx.Server Requirements

gooxdoo gx.Server is a basic component that runs in many different contexts and environments, as it has very little
dependencies to the underlying runtime. For use in command-line tools and programs you will need a corresponding

250 Chapter 6. qx.Server

https://developer.mozilla.org/en/Using_web_workers

qooxdoo Documentation, Release 2.0.2

JavaScript interpreter like Node.js or Mozilla Rhino. For use in HTML5 Web Workers you will need a browser that
supports this technology.

6.2.1 Runtimes

The following runtimes are supported:
* Node.js
* Rhino

6.2.2 Installation

These are the options to get qooxdoo gx.Server.

Manual download

Download the gx.Server component from qooxdoo’s download page and place it in a suitable path on your machine.
Optimized and unoptimized versions are available.

Npm
If you are using Node.js, there is an alternative installation using npm, the Node package manager. If you have this
installed, issue on your system shell:

S npm install gooxdoo

This will install the qooxdoo package into your current folder from where you can include it easily into your applica-
tions.

In both cases, to verify the installation use your runtime’s loading primitive to include it in a program, e.g. for Node:

var gx = require (' gooxdoo’)

SDK

You can also use the SDK to work with gx.Server. It provides a dedicated skeleton which you can utilize. This offers
you additional features like dependency detection, optimization, API doc generation, unit testing and generated loaders
that work under both Node.js and Rhino. As with all types of qooxdoo skeletons, create—application.py is
used to create a new custom application:

S gooxdoo-2.0.2-sdk/tool/bin/create-application.py —--name=myapp --type=basic

6.3 RequiredS Support

Note: experimental

It is possible to use the generator to build a Require]S compatible library using qooxdoo. Here is the description of
Require]S taken from the project’s website:

6.3. RequiredS Support 251

http://nodejs.org/
http://www.mozilla.org/rhino/
http://qooxdoo.org/downloads
http://npmjs.org/
http://requirejs.org/

qooxdoo Documentation, Release 2.0.2

“Require]S is a JavaScript file and module loader. It is optimized for in-browser use, but it can be used in
other JavaScript environments, like Rhino and Node. Using a modular script loader like Require]S will
improve the speed and quality of your code.”

—http://requirejs.org/
A couple of steps are necessary to accomplish this:
* You need a class which represents the common interface you want to offer as a require.js module

* and a customized generator config file to build your library.

6.3.1 Representable interface

Let’s assume you’ve implemented a class like the following:

gx.Bootstrap.define ("my.super.Dog", {
extend : Object,
members : {
bark : function () {
alert ("BARK!"™);
}

)i

You want to export this class as a module usable with RequireJS. Usage could look something like this:

require ("dog.js", function (dog) {
dog.bark () ;
1)

That’s all you need to take care of on the JavaScript side.

6.3.2 Config file

There is some more work to be done on the config side (this might change at some point). Here is a sample config:

{
"let"
{
"APPLICATION" : "library",
"OOOXDOO_PATH" : "../..",
by

"build"
{
"library" : [{
"manifest" : "${QOOXDOO_PATH}/framework/Manifest. json"
Pl

"include" : [
"my.super.Dog"

]l

"environment" : {
"gx.export" : {"dog" : "my.super.Dog"}
}y

252 Chapter 6. qx.Server

http://requirejs.org/

qooxdoo Documentation, Release 2.0.2

"compile-options"
{
"pathS"

{
"file" : "dog.js",

"app-root" : Yy
"loader—-template" : "${QOOXDOO_PATH}/tool/data/generator/require.loader.tmpl. js"

s

"uris"

{
"script" : R
"resource"

by
"code"

{
"format" : true,
"optimize" : ["variants", "base", "string", "privates", "variables"],
"except" : 1]
}
b

"compile" : { "type" : "build" }

}

We won’t go much into detail here because most of this is covered by the Generator Config Keys page and others.
But there are two things you should be aware of. First, a new loader template is set for the compile step. There’s a
special loader template for RequireJS which uses the other important thing: The gx.export environment key. It
holds a map specifying which class should be exported as a module. Running the build job will then generate a
RequireJS-compatible file named dog . js which exposes the dog class as a module.

6.3. RequiredS Support 253

qooxdoo Documentation, Release 2.0.2

254 Chapter 6. qx.Server

CHAPTER
SEVEN

COMMUNICATION

Sending HTTP requests and receiving responses is an important feature of almost every application running in the
browser. Most commonly, the technique used is termed Ajax. qooxdoo’s communication stack offers many ways to
facilitate HTTP communication at different levels of abstraction.

7.1 Low-level requests

At the very core, HTTP requests from the browser are made by interfacing with the HTTP client API or by
adding a script tag to the document. Classes dealing with those low-level transport methods can be found in the
gx.bom.request namespace. Usually they are not instantiated directly by the user.

Xhr is a wrapper of the HTTP client API offered by the browser. It’s purpose is to hide inconsistencies and to work
around bugs found in popular implementations. The interface of gx . bom. request . Xhr is similar to XMLHttpRe-
quest, the HTTP client API specified by the W3C.

Script isascript loader. Internally, the class deals with adding and removing script tags to the document and keeping
track of the load status. Just like gx .bom. request . Xhr, the interface is modeled based on XMLHttpRequest.

Jsonp builds on the script loader and adds functionality needed to receive JSONP responses. JSONP stands for
JSON with padding and is a technique to safely receive remote data. It’s main advantage compared to to Xhr is that
cross-origin requests are supported in all browsers.

7.2 Higher-level requests

Classes found in gx.io.request build on the groundwork laid by gx .bom. request. Properties allow to con-
veniently setup a request and fine-grained events facilitate handling changes of the request’s status or response.

7.2.1 Higher-level requests
Choosing an appropriate transport

qgooxdoo ships with two transport methods, interfaced by gx.io.request .Xhr and gx.io.request.Jsonp.

* Choose Xhr whenever you can. Xhr offers true HTTP client functionality and exposes metadata associated
with HTTP requests. It is agnostic of the data interchange format and does not make any specific demands on
the backend.

255

http://www.w3.org/TR/XMLHttpRequest2/
http://www.w3.org/TR/XMLHttpRequest2/

qooxdoo Documentation, Release 2.0.2

e If you are making cross-origin requests and need to support all popular browsers and/or the target server is
not configured to accept cross-origin request (Access-Control-Allow-Origin header), you will need
to use Jsonp. Only JSON is supported as data interchange format and the server needs to to wrap responses in
a JavaScript function call.

Xhr and Jsonp share a common interface. AbstractRequest defines the lowest common denominator of both
transport methods.

Basic Setup
Before a request can be send, it must be configured. Configuration is accomplished by setting properties. The most
commonly used properties include:
e url: The HTTP resource to request
* method: The HTTP method, sometimes also referred to as HTTP verb. Script only accepts the GET method.
* requestData: Data to be send as part of the request.
* requestHeaders: Headers to send with the request
For a complete list of properties, please refer to the API Documentation of gx.io.request:

// Instantiate request
var req = new gx.io.request.Xhr();

// Set URL (mandatory)
req.setUrl ("/books");

// Set method (defaults to GET)
req.setMethod ("POST") ;

// Alternative notation
// var req = new gx.io.request.Xhr ("/books", "POST");

// Set request data. Accepts String, Map
// or gooxdoo Object.
req.setRequestData ({"title": "The title"});

// Send request
reg.send() ;

256 Chapter 7. Communication

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.io.request

qooxdoo Documentation, Release 2.0.2

Events and states

o {=]

Communication
send()
Networking
SUPCESS
send(}< | —=| opened loading load success
/ loadEnd
[quration = [lisSuccess()]
send(} fimeout]
timeout, fail abort, fail error, fail statusError, fail
Failure

timeout abort error statusError

—

[isSent()]
loadEnd

Once a request is sent using the send () method, it traverses various states. There are two ways to query the current
state of the request.

» getReadyState(): An integer (0-4) representing UNSENT, OPENED, HEADERS_RECEIVED, LOADING and
DONE.

» getPhase(): Symbolic state mapping to deterministic events (success, abort, timeout, statusError) and interme-
diate readyStates.

Events are fired when the request is progressing from one state to the other. The most important events in the lifecycle
of a request include:

¢ load: Request completed successfully.

* success: Request completed successfully (like 10ad) and the response can be expected to contain the kind of
data requested. For Xhr this means the HTTP status of the response indicates success (e.g. 200). For Jsonp,
the script received executed the expected callback.

« statusError: Request completed successfully (like 1oad) but the additional requirements for success are
not met. For Xhr this event is typically fired when the server reports that an erroneous or unknown resource
was requested (e.g. 500 or 404). For Jsonp, this event is associated with an invalid response for whatever
reasons.

« fail: Any kind of error occurred. Catches distinct events error, statusError and t imeout.
For a complete list of events, please refer to the API Documentation of gx.io.request:

req.addListener ("success", function(e) {
var req = e.getTarget ();
var response = req.getResponse();
this.doSomething (response) ;

7.2. Higher-level requests 257

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.io.request

qooxdoo Documentation, Release 2.0.2

}, this);

// Send request
reqg.send() ;

Response

Once the request completed, a range of getters return details about the response.

» getResponse(): Response processed according to parser settings or content type (Xhr). Always JSON for
(Jsonp).

« getStatus(): The numerical status of the response. For Xhr the status is the HTTP status. Jsonp only knows
200 (when callback was executed) and 500 (when it was not).

Authentication

There are two ways to handle authentication. The lower-level approach is to manually set the adequate request headers.
The high-level, recommended way is to assign the authent icat ion property an instance of a class that implements
the ITAuthentication interface. This class defines the necessary request headers and can handle the authentication
logic. Basic implements the most basic kind of authentication (HTTP Basic) and serves as an example for more
advanced authentication methods.

Data binding
The request’s response can be bound to a widget, model or any other object using data binding. This feature is provided
by the changeResponse event, fired on change of the (parsed) response.

// Bind response to value of a label

//

// req is an instance of gx.io.request. %,
// label an instance of gx.ui.basic.Label
req.bind("response", label, "value");

Debugging
If you encounter odd behavior, it might help to enable debugging of the IO classes. Debugging is controlled with the

gx .debug. io setting. Provided you have allowed URL settings (allowUrlSetting), you can simply append
?gxenv:gx.debug.io:true to the URL of your application.

Specific to XHR

Features specific to Xhr.

Parsing

By default, response is populated with the response parsed according to the response content type. For the built-in
parsers, parsing always results in a JavaScript object.

The content type is read from Content-Type response header. If the response content type is unrecognized, no
parsing is done and response equals responseText. Parsers associated to a content type are:

258 Chapter 7. Communication

qooxdoo Documentation, Release 2.0.2

* JSON: application/json
* XML: application/xml

The parser can be explicitly set with setParser (). This can be useful if the content type returned from the server
is wrong or the response needs special parsing. The setter accepts either a symbolic string (" json" or "xml1") or a
function. If a function is given, this function is called once the request completes. It receives the raw response as first
argument. The return value determines the response.

Response

» getResponseText(): Raw, unprocessed response
+ getResponseHeader(header)
¢ getAllResponseHeaders()

Accepting

Some servers send distinct representations of the same resource depending on the content type accepted. For instance,
a server may respond with either a JSON, XML or a HTML representation while requesting the same URL. By default,
requests accept every content type. In effect, the server will respond with it’s default representation. If the server has
no default representation, it may respond with the status code 406 (Not Acceptable).

In order to choose a representation, set the accepted response content type with setAccept (). Itis a good practice
to always set the preferred representation to guard against possible changes of the server’s default behavior.

For more details, see Accept header in the HTTP 1.1 specification.

Caching

Usually, one or more caches sit between the browser sending the request and the server answering the request. The
most important cache is arguably the browser cache, which is enabled by default in all modern browsers. Other caches
include various kinds of proxy servers. Understanding caches is vital to reduce latency and save bandwidth. However,
a detailed introduction of HTTP caching is beyond the scope of this section. For more information, refer to the Caching
tutorial.

To control the behavior of caches on the client-side, a number of HTTP Cache-Control directives can be sent as part
of the request by setting the cache property. To circumvent caching, a common trick is to add a random string to the
URL’s query part. This is accomplished by setting cache to false.

Specific to JSON

Features specific to Jsonp.

Callback

Callback handling is done behind the scenes but can be customized. If the service only accepts a special callback
parameter to read the desired callback function name from, this parameter can be set with setCallbackParam().
Some services do not allow custom callback names at all. In this case, setCallbackName () wires the request to
the fixed callback name.

7.2. Higher-level requests 259

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.1
http://www.mnot.net/cache_docs/
http://www.mnot.net/cache_docs/

qooxdoo Documentation, Release 2.0.2

Caching

No Cache-Control directives can be set, but caching can be disabled by setting cache to false. Works by adding a
random string to the URL’s query part.

Note that historically, qooxdoo comes with two transport layers. The old transport layer is described below.

7.2.2 AJAX

Note: gx.io.remote.Request will be deprecated in a future release. Use gx.io.request. Xhr instead.

This system is (as everything else in qooxdoo) completely event based. It currently supports communication by
XMLHttp, Iframes or Script. The system wraps most of the differences between the implementations and unifies
them for the user/developer.

For all your communication needs you need to create a new instance of Request:

var req = new gx.io.remote.Request (url, "GET", "text/plain");

Constructor arguments of Request:
1. URL: Any valid http/https/file URL
2. Method: You can choose between POST and GET.

3. Response mimetype: What mimetype do you await as response

Mimetypes supported

* application/xml
* text/plain

¢ text/html

* text/javascript

* application/json

Note: text/javascript and application/json will be directly evaluated. As content you will get the
return value.

If you use the iframe transport implementation the functionality of the type is more dependent on the server side
response than for the XMLHttp case. For example the text/html mimetypes really need the response in HTML and
can’t convert it. This also depends greatly on the mimetype sent out by the server.

Request data

* setRequestHeader (key, wvalue): Setup a request header to send.

* getRequestHeader (key) : Returns the configured value of the request header.
e setParameter (key, value): Add a parameter to send with your request.

* getParameter (key): Returns the value of the given parameter.

* setData (value): Sets the data which should be sent with the request (only useful for POST)

260 Chapter 7. Communication

qooxdoo Documentation, Release 2.0.2

e getData () : Returns the data currently set for the request

Note: Parameters are always sent as part of the URL, even if you select POST. If you select POST, use the setData
method to set the data for the request body.

Request configuration (properties)
e asynchronous: Should the request be asynchronous? This is t rue by default. Otherwise it will stop the
script execution until the response was received.

* data: Data to send with the request. Only used for POST requests. This is the actual post data. Generally this
is a string of url-encoded key-value pairs.

e username: The user name to authorize for the server. Configure this to enable authentication.
* password: The password to authenticate for the server.

e timeout: Configure the timeout in milliseconds of each request. After this timeout the request will be auto-
matically canceled.

e prohibitCaching: Add a random numeric key-value pair to the url to securely prohibit caching in IE.
Enabled by default.

e crossDomain: Enable/disable cross-domain transfers. This is false by default. If you need to acquire data
from a server of a different domain you would need to setup this as true. (Caution: this would switch to
“script” transport, which is a security risk as you evaluate code from an external source. Please understand the
security issues involved.)

e fileUpload: Indicate that the request will be used for a file upload. The request will be used for
a file upload. This switches the concrete implementation that is used for sending the request from
gx.io.remote.transport.XmlHttp to gx.io.remote.IFrameTransport, because only the
latter can handle file uploads.

Available events

* sending: Request was configured and is sending data to the server.
* receiving: The client receives the response of the server.

e completed: The request was executed successfully.

* failed: The request failed through some reason.

e timeout: The request has got a timeout event.

* aborted: The request was aborted.

The last four events give you a gx.event .type.Data as the first parameter of the event handler. As always for
gx.event .type.Data you can access the stored data using getData (). The return value of this function is an
instance of gx.io.remote.Response.

Response object
The response object gx.1o0.remote.Response stores all the returning data of a gx.1io.remote.Request.
This object comes with the following methods:

* getContent: Returns the content data of the response. This should be the type of content you acquired using
the request.

7.2. Higher-level requests 261

qooxdoo Documentation, Release 2.0.2

* getResponseHeader: Returns the content of the given header entry.

* getResponseHeaders: Return all available response headers. This is a hash-map using typical key-values
pairs.

* getStatusCode: Returns the HTTP status code.

Note: Response headers and status code information are not supported for iframe based communication!

Simple example

// get text from the server

req = new gx.io.remote.Request (val.getLabel (), "GET", "text/plain");

// request a javascript file from the server

// reqg = new gx.lio.remote.Request (val.getLabel (), "GET", "text/javascript");

// Switching to POST
// req.setMethod ("POST") ;
// req.setRequestHeader ("Content—-Type", "application/x-www—form-urlencoded");

// Adding parameters — will be added to the URL
// req.setParameter ("testl", "valuel");

// req.setParameter ("test2", "valuel");

// Adding data to the request body
// reqg.setData ("foobar");

// Force to testing iframe implementation
// reqg.setCrossDomain (true);

reg.addListener ("completed", function(e) {

alert (e.getContent ());

// use the following for gooxdoo versions <= 0.6.7:
// alert (e.getData () .getContent ());
}) i

// Sending
reg.send() ;

Please post questions to our mailinglist.

7.3 REST

gx.1lo.rest.Resource is a client-side wrapper of a REST resource.

7.3.1 REST (Representational State Transfer)

Note: This is an experimental feature.

gx.io.rest.Resource allows to encapsulate the specifics of a REST interface. Rather than requesting URLSs
with a specific HTTP method manually, a resource representing the remote resource is instantiated and actions are
invoked on this resource. A resource with its actions can be configured declaratively or programatically.

262 Chapter 7. Communication

http://lists.sourceforge.net/lists/listinfo/qooxdoo-devel

qooxdoo Documentation, Release 2.0.2

Configuring actions

Given a REST-like interface with URLs that comply to the following pattern.

GET /photo/{id}
PUT /photo/ {id}
DELETE /photo/{id}

GET /photos
POST /photos

Note {id} stands for a placeholder.
This interface comprises of two resources: photo and photos.

To declare the specifics of the REST interface declaratively, pass a description to the constructor.

// Singular resource

var photo = new gx.io.rest.Resource ({
// Retrieve photo
get: {

method: "GET",
url: "/photo/{id}"
by

// Update photo
put: {
method: "POST",
url: "/photo/{id}"
I

// Delete photo
del: {
method: "DELETE",
url: "/photo/{id}"
}
}) i

// Plural resource

var photos = new gx.io.rest.Resource ({
// Retrieve list of photos
get: {

method: "GET",
url: "/photos"
by

// Create photo
post: |
method: "POST",
url: "/photos"
}
}) i

Or programmatically, for each action.

var photo = new gx.io.rest.Resource();
photo.map ("get", "GET", "/photo/{id}");

7.3. REST 263

qooxdoo Documentation, Release 2.0.2

Invoking actions
Once configured, actions can be invoked. They are invoked by calling a method that is dynamically added to the
resource on configuration of the action.

photo.get ({id: 1});
// Alternatively: photo.invoke ("get", {id: 1});
// —--> GET /photo/1

photos.get () ;
// Alternatively: photos.invoke ("get");
// —-—-> GET /photos

When an action is invoked, an appropriate request is configured and send automatically.

Parameters
If the URL contains parameters, the position where the parameters should be inserted can be specified by using URI
templates. Parameters are optional unless a check is defined. A default value can be provided.

var photo = new gx.io.rest.Resource();
photo.map ("get", "GET", "/photo/{id}/{size=medium}", {id: gx.io.rest.Resource.REQUIRED});

photo.get ({id: 1, size: "large"});
// ——> GET /photo/1/large

photo.get ({id: 11});
// —-=> GET /photo/1/medium

photo.get () ;
// —=> Error: Missing parameter ’id’

Data

Data that should be included in the request’s body can be given as second parameter. All types accepted by
gx.io.request.AbstractRequest#requestData are supported.

photo.put ({id: 1}, {title: "Monkey"}); // URL encoded
photo.put ({id: 1}, "title=monkey"); // Raw
photo.put ({id: 1}, [1);

Note that the behavior changes when the request body content type is switched to application/json.

photos.configureRequest (function (req) {
req.setRequestHeader ("Content-Type", "application/json");

)i

photos.map ("post", "POST", "/photos/{id}");
photos.post ({id: 1}, {location: "Karlsruhe"}); // JSON.stringify

Events
Events are fired by the resource when the request was successful or any kind of error occurred. There are general

resource events and action specific events. Handlers receive a gx.event .type.Rest event that, among other
properties, includes the response.

264 Chapter 7. Communication

http://tools.ietf.org/html/draft-gregorio-uritemplate-07
http://tools.ietf.org/html/draft-gregorio-uritemplate-07
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.io.request.AbstractRequest~requestData

qooxdoo Documentation, Release 2.0.2

photo.get ({id: 1});
photo.put ({id: 1});

// "success" is fired when any request associated to resource receives a response
photos.addListener ("success", function(e) {

e.getAction();

// —=> "get" or "put"
1)

// "getSuccess" is fired when the request associated to the get action receives a response
photos.addListener ("getSuccess", function(e) {

e.getAction();

// —=> "get"
1)

If the same action should be invoked multiple times and the events fired for each request be handled differently, it is
possible to remember the id of the action’s invocation. The Rest event includes this id.

var getPhotoId = photo.get ({id: 1});
var getLargePhotoId = photo.get ({id: 1, size: "large"});
photo.addListener ("getSuccess", function(e) {
if (e.getId() === getLargePhotoId) {
// Handle large photo

Helpers

Helpers make it easy to accomplish common tasks when working with requests.
* refresh(action) Resend request associated to action. Uses parameters given before.
* poll(action, params) Periodically invoke action.

* longPoll(action) Use Ajax long-polling to update whenever new data is available.

Data binding

A gx.data.store.Rest store can be attached to an action. Whenever a response is received, the model property
of the store is updated with the marshaled response.

var store = new gx.data.store.Rest (photos, "get");

var list = new gx.uil.form.List();

var controller = new gx.data.controller.List (null, list);
store.bind ("model", controller, "model");

photos.longPoll ("get");

7.4 Remote Procedure Calls (RPC)

7.4.1 RPC (Remote Procedure Call)

qooxdoo includes an advanced RPC mechanism for direct calls to server-side methods. It allows you to write
true client/server applications without having to worry about the communication details.

7.4. Remote Procedure Calls (RPC) 265

qooxdoo Documentation, Release 2.0.2

The qooxdoo RPC is based on JSON-RPC as the serialization and method call protocol, and qooxdoo provides server
backends for Java, PHP, and Perl projects. A Python backend library is also provided by a third party. All parameters
and return values are automatically converted between JavaScript and the server-side language.

JSON-RPC Protocol

According to JSON-RPC (Wikipedia) “[JSON-RPC] is a very simple protocol (and very similar to XML-RPC), defin-
ing only a handful of data types and commands. In contrast to XML-RPC or SOAP, it allows for bidirectional com-
munication between the service and the client, treating each more like peers and allowing peers to call one another
or send notifications to one another. It also allows multiple calls to be sent to a peer which may be answered out of
order.” The current servers do not yet support bi-directional communication.

Setup

To make use of the RPC, you need to set up a server backend first.
Configuration of each server backend needs slightly different treatment. Please see the backend relevant to you.

Your favorite language is missing? Feel free to write your own qooxdoo RPC server, consult the RPC Server Writer
Guide for details.

Making remote calls

Basic call syntax

To make remote calls, you need to create an instance of the Rpc class:

var rpc = new gx.io.remote.Rpc (
"http://localhost:8080/gooxdoo/.gxrpc",
"qooxdoo.test"

)i

The first parameter is the URL of the backend (in this example a Java backend on localhost). The second is the name
of the service you’d like to call. In Java, this is the fully qualified name of a class. (The Java backend includes the
gooxdoo . test service used in the example. The class name is lowercase to keep it in sync with the PHP examples
- in Java-only projects, you would of course use standard Java naming conventions.)

When you have the Rpc instance, you can make synchronous and asynchronous calls:

// synchronous call

try {
var result = rpc.callSync("echo", "Test");
alert ("Result of sync call: " + result);

} catch (exc) {
alert ("Exception during sync call: " + exc);

}

// asynchronous call

var handler = function(result, exc) {
if (exc == null) {
alert ("Result of async call: " + result);
} else {
alert ("Exception during async call: " + exc);

}i
rpc.callAsync (handler, "echo", "Test");

266 Chapter 7. Communication

http://json-rpc.org/
http://en.wikipedia.org/wiki/JSON-RPC
http://qooxdoo.org/contrib/project#backend

qooxdoo Documentation, Release 2.0.2

For synchronous calls, the first parameter is the method name. After that, one or more parameters for this method may
follow (in this case, a single string). Please note that synchronous calls typically block the browser Ul until the result
arrives, so they should only be used sparingly (if at all)!

Asynchronous calls work similarly. The only difference is an additional first parameter that specifies a handler func-
tion. This function is called when the result of the method call is available or when an exception occurred.

You can also use qooxdoo event listeners for asynchronous calls - just use callAsyncListeners instead of
callAsync. More details can be found in the API documentation.

One difference between the qooxdoo RPC and other RPC implementations are client stubs. These are small wrapper
classes that provide the same methods as the corresponding server classes, so they can be called like ordinary JavaScript
methods. In qooxdoo, there are no such stubs by default, so you have to provide the method name as a string. The
advantage is that there’s no additional build step for generating stubs, and it’s also not necessary to “register” your
server classes at runtime (which would be a prerequisite for dynamic stub generation). If you really want or need client
stubs, you currently have to write the stubs (or a generator for them) yourself. Future qooxdoo versions may include
such a generator.

Parameter and result conversion

All method parameters and result values are automatically converted to and from the backend language. Using the Java
backend, you can even have overloaded methods, and the correct one will be picked based on the provided parameters.

The following table lists the data types supported by the Java backend and the corresponding JavaScript types:

Java type JavaScript type
int, long, double, Integer, Long, Double | number

boolean, Boolean boolean

String String
java.util.Date Date

Array (of any of the supported types) Array
java.util.Map Object

JavaBean Object

The first few cases are quite simple, but the last two need some more explanation. If a Java method expects a
java.util.Map, you can send any JavaScript object to it. All properties of the object are converted to Java and
become members of the Java Map. When a Map is used as a return value, it’s converted to a JavaScript object in a
similar way: A new object is created, and then all key/value pairs in the map are converted themselves and then added
as properties to this object. (Please note that “properties” is used here in the native JavaScript sense, not in the sense
of gooxdoo properties.)

JavaBeans are converted in a similar way. The properties of the JavaBean become JavaScript properties and vice versa.
If a JavaScript object contains properties for which no corresponding setters exist in the JavaBean, they are ignored.

For performance reasons, recursive conversion of JavaBeans and Maps is performed without checking for cycles! If
there’s a reference cycle somewhere, you end up with a StackOverflowException. The same is true when you try to
send a JavaScript object to the server: If it (indirectly) references itself, you get a recursion error in the browser.

Besides the fully-automatic conversions, there’s also a class hinting mechanism. You can use it in case you need to
send a specific sub-class to the server (see below for details). However, it can’t be used to instantiate classes without a
default constructor yet. Future qooxdoo versions may provide more extensive class hinting support.

Aborting a call

You can abort an asynchronous call while it’s still being performed:

7.4. Remote Procedure Calls (RPC) 267

http://api.qooxdoo.org/#qx.io.remote.Rpc

qooxdoo Documentation, Release 2.0.2

// Rpc instantiation and handler function left out for brevity
var callref = rpc.callAsync (handler, "echo", "Test");
//

rpc.abort (callref);
// the handler will be called with an abort exception

Error handling

When you make a synchronous call, you can catch an exception to handle errors. In its rpcdetails property, the
exception contains an object that describes the error in more detail. The same details are also available in the second
parameter in an asynchronous handler function, as well as in the events fired by callAsyncListeners.

The following example shows how errors can be handled:

// creation of the Rpc instance left out for brevity

var showDetails = function (details) {
alert (
"origin: " + details.origin +
"; code: " + details.code +
"; message: " + details.message

)i
}i

// error handling for sync calls
try {

var result = rpc.callSync("echo", "Test");
} catch (exc) {

showDetails (exc.rpcdetails);

// error handling for async calls
var handler = function(result, exc) {
if (exc !'= null) {
showDetails (exc) ;

}i
rpc.callAsync (handler, "echo", "Test");

The following origin‘s are defined:

Constant Meaning

gx.io.remote.Rpc.origifilsesreor occurred on the server (e.g. when a non-existing method is called).
gx.io.remote.Rpc.origifltappticatomeurred inside the server application (i.e. during a method call in non-qooxdoo
code).

gx.io.remote.Rpc.origifheaasporoccurred in the communication layer (e.g. when the Rpc instance was constructed
with an URL where no backend is deployed, resulting in an HTTP 404 error).
gx.io.remote.Rpc.origiffleeator occurred locally (when the call timed out or when it was aborted).

The code depends on the origin. For the server and application origins, the possible codes are defined by the backend
implementation. For transport errors, it’s the HTTP status code. For local errors, the following codes are defined:

268 Chapter 7. Communication

qooxdoo Documentation, Release 2.0.2

Constant Meaning
gx.io.remote.Rpc.localError.timeout | A timeout occurred.
gx.io.remote.Rpc.localError.abort The call was aborted.

Cross-domain calls

Using the qooxdoo RPC implementation, you can also make calls across domain boundaries. On the client side, all
you have to do is specify the correct destination URL in the Rpc constructor and set the crossDomain property to
true:

var rpc = new gx.io.remote.Rpc ("http://targetdomain.com/appname/.qgxrpc");
rpc.setCrossDomain (true) ;

On the server side, you need to configure the backend to accept cross-domain calls (see the documentation comments
in the various backend implementations).

Writing your own services

Java

Writing your own remotely callable methods is very easy. Just create a class like this:

package my.package;

import net.sf.gooxdoo.rpc.RemoteService;
import net.sf.gooxdoo.rpc.RemoteServiceException;

public class MyService implements RemoteService {

public int add(int a, int b) throws RemoteServiceException ({
return a + b;

}

All you need to do is include this class in your webapp (together with the qooxdoo backend classes), and it will be
available for calls from JavaScript! You don’t need to write or modify any configuration files, and you don’t need to
register this class anywhere. The only requirements are:

1. The class has to implement the RemoteService interface. This is a so-called tagging interface, i.e. it has no
methods.

2. All methods that should be remotely available must be declared to throw a RemoteServiceException.

Both requirements are there to protect arbitrary Java code from being called.

Accessing the session There is one instance of a service class per session. To get access to the current session, you
can provide an injection method called setQooxdooEnvironment:

package my.package;
import javax.servlet.http.HttpSession;
import net.sf.gooxdoo.rpc.Environment;

import net.sf.gooxdoo.rpc.RemoteService;
import net.sf.gooxdoo.rpc.RemoteServiceException;

7.4. Remote Procedure Calls (RPC) 269

qooxdoo Documentation, Release 2.0.2

public class MyService implements RemoteService {
private Environment _env;
public void setQooxdooEnvironment (Environment env) {
_env = env;
}
public void someRemoteMethod () throws RemoteServiceException {
HttpSession session = _env.getRequest () .getSession();
}
}
The environment provides access to the current request (via getRequest) and the RpcServlet instance that is han-

dling the current call (via getRpcServlet).

Debugging Backends

In order to debug your service methods on the backend independently of the client application, use the RpcConsole
contribution.

Creating mockup data
The RpcConsole also contains a mixin class for gx.io.remote.Rpc which allows to prepare code relying on a json-
rpc backend to work with static mockup data independently of the server. This allows to develop client and server

independently and to create static demos. For more information, see the documentation of the RpcConsole (project)
contribution.

qooxdoo JSON-RPC specification

In order to qualify as a qooxdoo json-rpc backend, a server must comply with the qooxdoo JSON-RPC server specifi-
cations. See the RPC Server Writer Guide for more details.

Adding to the standard

If you think that the standard is missing a feature that should be implemented in all backends, please add it as a bug,
marking it as a “core feature request”.

Extending the standard

If a server extends the standard with a certain optional behavior, please add a detailed description to it on the JSON-
RPC Extensions page, with information which server implements this behavior. Please also add a bug, marked as a
“extension” so that other server maintainers can discuss the pros and cons of adding the extension to their own servers.

270 Chapter 7. Communication

http://qooxdoo.org/contrib/project#rpcconsole
http://qooxdoo.org/contrib/project/rpcconsole
http://bugzilla.qooxdoo.org/enter_bug.cgi?product=contrib&component=RpcExample
http://qooxdoo.org/docs/general/rpc/jsonrpc_extensions
http://qooxdoo.org/docs/general/rpc/jsonrpc_extensions
http://bugzilla.qooxdoo.org/enter_bug.cgi?product=contrib&component=RpcExample

qooxdoo Documentation, Release 2.0.2

7.4.2 RPC Servers

RPC Server Writer Guide

Writing a new JSON-RPC server for use with qooxdoo is fairly easy. If you follow these rules, you should end up with
a conformant implementation. See also the other available qooxdoo RPC servers.

JSON

With the exception of the formatting of Javascript Date objects, all communication between client and server is
formated as JSON, as described and documented at http://json.org.

Date Objects Date objects are a problem in standard JSON encoding, because there is no “literal” syntax for a date
in Javascript. In Javascript, nearly everthing can be represented in literal form: objects by { ... }; arrays by [

1; etc. The only native type which can not be represented as a literal is a Date. For this reason, a format for
passing Dates in JSON is defined here so that all conforming servers can parse the data received from clients.

Date objects are sent as the following ‘tokens’.
e The string new Date (Date.UTC (
* The year, integer, e.g. 2006
* A comma
* The month, O-relative integer, e.g. 5 is June
* A comma
* The day of the month, integer, range: 1-31
* A comma
e The hour of the day on a 24-hour clock, integer, range: 0—-23
* A comma
¢ The minute of the hour, integer, range: 0-59
* A comma
* The second within the minute, integer, range: 0-59
* A comma
¢ The milliseconds within the second, integer, range: 0-999
* The string))
A resulting Date representation might therefore be:

new Date (Date.UTC(2006,5,20,22,18,42,223))

Whitespace

* when generating these date strings, implementations SHOULD NOT add white space before/after/between any
of the fields within the date string

* when parsing these date strings, implementations SHOULD allow white space before/after/between any of the
fields within the date string

7.4. Remote Procedure Calls (RPC) 271

http://qooxdoo.org/contrib/project#backend
http://json.org

qooxdoo Documentation, Release 2.0.2

Numbers

* when generating these date strings, implementations MUST NOT add leading zeros to the numeric values in the
date string. Doing so will cause them to be parsed as octal values. Numbers MUST be passed in decimal (base
10) notation without leading zeros.

* when parsing these date strings, implementations MUST take the integer value of numeric portions of the string
as base 10 values, even if leading zeros appear in the string representation of the numbers..

Within the JSON protocol and in JSON messages between peers, Date objects are always passed as UTC.

RPC

Remote procedure calls are issued using JSON seralization. The basis for the objects used to send requests and re-
sponses are described and defined at http://json-rpc.org, specifically http://json-rpc.org/wiki/specification. This docu-
ment introduces a number of differences to that specification, based on real-life implementation discoveries and needs.
This portion of this document is an edited version of the JSON-RPC specification.

request (method invocation) A remote method is invoked by sending a request to a remote service. The request is
a single object serialized using JSON.

It has four properties:

e service - A String containing the name of the service. The server may use this to locate a set of related
methods, all contained within the specified service. The format of the supported service strings is up to the
server implementation.

* method - A String containing the name of the method to be invoked. The method must exist within the specified
service. The format of the method string is up to the server implementation.

* params - An Array of objects to pass as arguments to the method.

* id - The request id. This can be of any type. It is used to match the response with the request that it is replying
to. (qooxdoo always sends an integer value for id.)

response When the method invocation completes, the service must reply with a response. The response is a single
object serialized using JSON.

It has three properties:

e result - The Object that was returned by the invoked method. This must be null in case there was an error
invoking the method.

e error - An Error Object if there was an error invoking the method. It must be null if there was no error.
Note that determination of whether an error occurred is based on this property being nul1l, not on result being
null. It is perfectly legal for both to be null, indicating a valid result with value null.

e id - This must be the same id as the request it is responding to.

The Error Object

An error object contains two properties, origin and code:

272 Chapter 7. Communication

http://json-rpc.org
http://json-rpc.org/wiki/specification

qooxdoo Documentation, Release 2.0.2

origin origin - An error can be originated in four locations, during the process of initiating and processing a
remote procedure call. Each possible origin is assigned an integer value, assigned to this property, as follows:

¢ 1 = the server can return errors to the client

* 2 = methods invoked by the server can return errors

e 3 =Transport (e.g. HTTP) errors can occur

e 4 =the client determined that an error occurred, e.g. timeout

A conforming server implementation MUST send value 1 or 2 and MAY NOT send any other value, for origin. A
client may detect Transport or locally-ascertained errors, but a server will never return those.

code code - Aninteger error code. The value of code is hierarchically linked to origin; e.g. the same code represents
different errors depending on the value of origin.

One of these values of code SHALL be sent if origin = 1, i.e. if the server detected the error.

¢ Error code, value 1: Illegal Service The service name contains illegal characters or is otherwise deemed unac-
ceptable to the JSON-RPC server.

* Error code, value 2: Service Not Found The requested service does not exist at the JSON-RPC server.

* Error code, value 3: Class Not Found If the JSON-RPC server divides service methods into subsets (classes),
this indicates that the specified class was not found. This is slightly more detailed than “Method Not Found”,
but that error would always also be legal (and true) whenever this one is returned.

* Error code, value 4: Method Not Found The method specified in the request is not found in the requested
service.

¢ Error code, value 5: Parameter Mismatch If a method discovers that the parameters (arguments) provided to it
do not match the requisite types for the method’s parameters, it should return this error code to indicate so to the
caller.

* Error code, value 6: Permission Denied A JSON-RPC service provider can require authentication, and that
authentication can be implemented such the method takes authentication parameters, or such that a method or
class of methods requires prior authentication. If the caller has not properly authenticated to use the requested
method, this error code is returned.

If origin = 2, i.e. the application (invoked method) detected the error, the value of the code property is entirely by
agreement between the invoking client and the and invoked method.

message message - A free-form textual message describing the error.

Other Errors

Errors detected by the server which indicate that the received data is not a JSON-RPC request SHOULD be simple text
strings returned to the invoker, describing the error. A web browser user who accidentally hits the URL of a JSON-
RPC server should receive a textual, not Error Object, response, indicating that the server is expecting a JSON-RPC
request.

Transport

There are exactly two standard transport facilities potentially used by qooxdoo’s gx.io.remote.Rpc class:

7.4. Remote Procedure Calls (RPC) 273

qooxdoo Documentation, Release 2.0.2

e XmIHTTPRequest : The parameters of the remote procedure call are passed to the server using XmIHTTPRe-
quest. The request will be issued using the POST method with Content Type: application/Jjson.
The data provided by the client will be the JSON-serialized request object. The JSON-serialized result object
MUST be returned with Content Type: application/json. This transport will be used unless the
request is issued as cross-domain.

e Secript : If the client application invokes a cross-domain request, the request will be issued by URL-encoding the
request object and wrapping it in a <script> tag. The request uses the GET method with Content Type:
text/Jjavascript. The response to a request received via this method MUST be a call to the static method
gx.lio.remote.transport.Script._requestFinished with parameters of the script id (a copy of
the value of the incoming parameter _ScriptTransport_id) and the JSON-serialized result object.

A server SHOULD issue an Other Error (textual reply) if it detects a method / content type pair other than the
two supported ones.

Testing A New Server

To validate that your new server is operating properly, the following test methods may be created at your server:

¢ echo - Echo the one and only parameter back to the client, in the form: Client said: [<parameter>
] where all text is literal except for <parameter>.

e sink - Sink all data and never return. (“Never” is a long time, so it may be simulated by sleeping for 240
seconds.

* sleep - Sleep for the number of seconds provided as the first parameter, and then return that parameter.
e getInteger - Return the integer value 1

* getFloat - Return the floating point value 1/3

* getString - Return the string "Hello world"

* getArrayInteger - Return an array containing the four integers [1, 2, 3, 4] in that order.

* getArrayString - Return an array containing the four strings ["one", "two", "three",
"four"] in that order

* getObject - Return some arbitrary object

e getTrue - Return the binary value t rue

* getFalse - Return the binary value false

e getNull - Return the value null

* isInteger - Return t rue if the first parameter is an integer; false otherwise
e isFloat - Return t rue if the first parameter is a float; false otherwise

* isString - Return t rue if the first parameter is a string; false otherwise

* isBoolean - Return true if the first parameter is either one of the boolean values t rue or false; return
false otherwise.

e isArray - Return t rue if the first parameter is an array; false otherwise

* isObject - Return t rue if the first parameter is an object; false otherwise

* isNull - Return true if the first parameter is the value null; false otherwise.
* getParams - Echo all parameters back to the client, in received order

* getParam - Echo the first parameter back to the client. This is a synonym for the echo method.

274 Chapter 7. Communication

qooxdoo Documentation, Release 2.0.2

* getCurrentTimestamp - Return an object which has two properties:

— now: An integer representing the current time in a native format, e.g. as a number of seconds or millisec-
onds since midnight on 1 Jan 1970.

— Jjson: A Date object representing that same point in time

A test of all of the primitive RPC operations is available in the qooxdoo-contrib project RpcExample. The third tab
provides a test of the operations using synchronous requests, and the fourth tab tests the operations using asyncronous
requests. Note that the results are displayed in the debug log (in Firebug or in the debug console enabled by pressing
F7). You can look for t rue as a result of each request.

A future test will validate that all returned values are as expected, and display a single “passed/fail” indication.

7.5 Specific Widget Communication

7.5.1 Using the remote table model

The remote table should be used whenever you want to display a large amount of data in a performant way.

As this table model loads its data on-demand from a backend, only those rows are loaded that are near the area the
user is currently viewing. If the user scrolls, the rows that will be displayed soon are loaded asynchronously in the
background. All loaded data is managed in a cache that automatically removes the last recently used rows when it gets
full.

To get this model up and running you have to implement the actual loading of the row data by yourself in a subclass.

Implement your subclass

To correctly implement the remote table model you have to define/overwrite two methods _loadRowCount and
_loadRowData. Both are automatically called by the table widget.

gx.Class.define ("myApplication.table.RemoteDataModel",
{

extend : gx.ui.table.model.Remote,

members
{
// overloaded - called whenever the table requests the row count
_loadRowCount : function ()

{
// Call the backend service (example) - using XmlHttp
var url = "http://localhost/services/getTableCount.php";
var req = new Jgx.lio.remote.Request (url, "GET", "application/json");

// Add listener
reqg.addListener ("completed", this._onRowCountCompleted, this);

// send request
reqg.send();
b

// Listener for request of "_loadRowCount" method
_onRowCountCompleted : function (response)
{

var result = response.getContent ();

7.5. Specific Widget Communication 275

qooxdoo Documentation, Release 2.0.2

if (result != null)

{
// Apply it to the model - the method "_onRowCountLoaded" has to be called
this._onRowCountLoaded (result) ;

b

// overloaded — called whenever the table requests new data
_loadRowData : function (firstRow, lastRow)
{

// Call the backend service (example) - using XmlHttp

var baseUrl = "http://localhost/services/getTableRowData.php";
var parameters = "?from=" + firstRow + "&to=" + lastRow;

var url = baseUrl + parameters;

var req = new gx.lo.remote.Request (url, "GET", "application/Json");

// Add listener
req.addListener ("completed", this._onLoadRowDataCompleted, this);

// send request
reg.send() ;
b

// Listener for request of "_loadRowData" method
_onLoadRowDataCompleted : function (response)

{
var result = response.getContent();
if (result != null)
{
// Apply it to the model - the method "_onRowDataLoaded" has to be called
this._onRowDatalLoaded (result) ;

Using your remote model

Now that you’ve set up the remote table model the table component can use it.

var remoteTableModelInstance = new myApplication.table.RemoteDataModel () ;
yourTableInstance.setTableModel (remoteTableModelInstance) ;

That’s all you need to ensure your table is using your remote model.

Sorting your data

The table component offers sortable columns to let users sort the data the way they like. You can enable this sorting
ability for each column. Since you have to pull the data into the table yourself you have to update the table data
once the user changes the sorting criteria. You have to enhance the _1 oadRowData method with this information to
inform your backend how to sort the data.

// "_loadRowData" with sorting support
_loadRowData : function(firstRow, lastRow)

{

276 Chapter 7. Communication

qooxdoo Documentation, Release 2.0.2

// Call the backend service (example) — using XmlHttp
var baseUrl = "http://localhost/services/getTableRowData.php";
var parameters = "?from=" + firstRow + "&to=" + lastRow;

// get the column index to sort and the order
var sortIndex = this.getSortColumnIndex();

var sortOrder = this.isSortAscending() ? "asc" : "desc";
// setting the sort parameters - assuming the backend knows these
parameters += "&sortOrder=" + sortOrder + "&sortIndex=" + sortIndex;

var url = baseUrl + parameters;
var req = new gx.io.remote.Request (url, "GET", "application/Jjson");

// Add listener
req.addListener ("completed", this._onLoadRowDataCompleted, this);

// send request
reg.send () ;

Backend

The backend has to deliver the requested data in a JSON data structure in order to display the data correctly. The data
structure has to use the same IDs as the remote table model instance at the client-side.
For example

var remoteModel = new myApplication.table.RemoteDataModel () ;

// first param: displayed names, second param: IDs
remoteModel.setColumns(["First name", "Last name"], ["first", "last"™]);

Then the data delivered by the backend should have the following structure:

result = {[
{ "first" : "John", "last" : "Doe" 1,
{ "first" : "Homer", "last" : "Simpson" Y,
{ "first" : "Charlie", "last" : "Brown" },
IRy
Moreover, the backend has to deliver the row count, i. e. the number of rows the ta-
ble contains. This is what the _loadRowCount function of your subclass expects to get.

Please make sure that the URLs http://localhost/services/getTableCount.php and
http://localhost/services/getTableRowData.php of your subclass point to the right location.

Summary

This short and very basic example is far from complete and in your application you will have to implement some more
features like error-handling, but it should give you a short overview of how to implement the remote table model in
gooxdoo.

Another basic implementation which uses the PHP RPC backend is available in qooxdoo-contrib. Take a look at the
RPCExample and setup the necessary RPC PHP backend.

7.5. Specific Widget Communication 277

http://qooxdoo.org/contrib/project#rpcexample
http://qooxdoo.org/contrib/project#rpcphp

qooxdoo Documentation, Release 2.0.2

278 Chapter 7. Communication

CHAPTER
EIGHT

DEVELOPMENT

This section touches on various aspects and tools related to development activities with qooxdoo. Topics range from the
various qooxdoo application types, over discussions of performance, unit testing and debugging, to internationalization
and parts, a specific means to partition and lazily load application components.

8.1 Application Creation

8.1.1 Application Skeletons
gooxdoo comes with several different application templates or skeletons. Each is meant for a specific usage scenario
and includes a different subset of the qooxdoo framework (see the architecture diagram for reference).

When creating a new application using create-application.py, the -t or —type parameter specifies the type of skeleton
to be used, e.g.

qooxdoo—-2.0.2-sdk/tool/bin/create-application.py —-—name=custom --type=mobile

The following skeletons are available (The application types are in fact all lower-case, but are capitalized in the
following headings for better readability):

Desktop
For a GUI application that looks & feels like a native desktop application (often called “RIA” — Rich Internet Appli-
cation).

Such a stand-alone application typically creates and updates all content dynamically. Often it is called a “single-page
application”, since the document itself is never reloaded or changed.

This is the default choice if the —fype parameter is not specified.

Inherits from gx.application.Standalone

Included layers

e Core
¢ Runtime Abstraction
e Low-Level

GUI Toolkit

279

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Standalone

qooxdoo Documentation, Release 2.0.2

Inline

For a GUI application on a traditional, HTML-dominated web page.

The ideal environment for typical portal sites which use just a few qooxdoo widgets, embedded into the page’s existing
HTML content.

Inherits from gx.application.Inline

Included layers

e Core
¢ Runtime Abstraction

e Low-Level

GUI Toolit

Mobile

For a mobile application running in a WebKit-based browser on iOS or Android (and also on desktop machines).
Supports the mobile widget set.

Inherits from gx.application.Mobile

Included layers

e Core
¢ Runtime Abstraction

* Mobile UI
Native
For applications using custom HTML/CSS-based GUIs instead of qooxdoo’s widget layer.

Inherits from gx.application.Native

Included layers

e Core
¢ Runtime Abstraction

e Low-Level

Website

This is an alternative to working with the Website library directly, which is a single-file download containing all the
gx.Website APIL. If you deploy the download you use its API in your own code in a way that suits you, e.g. by adding
custom code in an HTML page that also loads the library.

280 Chapter 8. Development

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Inline
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.ui.mobile
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Mobile
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Native

qooxdoo Documentation, Release 2.0.2

Getting started

The ‘website’ skeleton provides you with the same development model, with additional options. It contains a pre-
built version of the Website library. You can just open the contained index.html file in a browser and see the default
application running (If this is not the case and you just get an “Application needs generation...” message, just run
generate.py on the shell). Then you start extending it, either in the index.html file directly or by creating other
JavaScript files that use it, and include those in the HTML file.

Both approaches (download or skeleton) pretty much match up, with the skeleton giving you a little head start. In both
cases you are using a static library file, and take care of organizing your application code yourself. Beyond that the
‘website’ skeleton provides you with some additional jobs:

* build-min: You can re-create the library file (located in script/), by running the generate.py
[build-min] job. This is interesting if you e.g. upgrade to a new qooxdoo SDK and want to make sure
you are working against the latest code.

* build: You can create a non-optimized version of the library, if you want to debug into its code. This is achieved
by running the generate.py build job. Mind, though, that you then need to include ¢-2.0.2.js in your
HTML code (rather than g-2.0.2.min.js which is the minified version).

* test, test-source: You can write unit tests for your custom code, and generate a local version of the Portable
Testrunner using generate.py test or generate.py test-source (The linked description of the
Portable Testrunner refers partly to the ready-built download version, hence it says “no compile step”). In order
to sensibly test your code, you should put it in its own .js file, rather than inline it in the index.html. This way,
you can load it both in the application index.html as well as in test/index.html where the unit tests are applied.

* api, api-data: These jobs re-create the qx.Website Apiviewer (or just the API data, respectively) in the skeleton.
This is useful if you want to have the API documentation close-by.

Included layers

* See the gx. Website documentation.

Server

For applications running in “browserless” or server-side environments such as node.js and Rhino. The skeleton follows
the normal qooxdoo development model, so you have a source/ folder with classes and resources, and can create source
and build versions of your app. It also supports other development jobs like “test”, “api” or “lint”. The special job

“library” allows you to re-create the gx.Server library locally.

Inherits from qx.application.Basic.

Getting started

This skeleton depends on a generated Server library, located in script/. If this was not delivered with your SDK you
can create it locally, by running generate.py library. (If you intend to create multiple ‘server’ skeletons, you
might want to change to $/QOOXDOO_PATH }/component/standalone/server and invoke generate.py build.
This will generate the library for further ‘server’ skeletons).

The library will be used together with the application code to make up the final application. You need to gen-
erate the application first, e.g. by running generate.py source. The generated source file is saved under
source/script/<custom>.js, the build file (with generate.py build) under build/script/<custom>.js. Those files
can then be executed.

8.1. Application Creation 281

http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.application.Basic

qooxdoo Documentation, Release 2.0.2

Invoking the application

After you have created the source or build version of a basic application, you can run it through either Node or
Rhino. But as they have different loading primitives, Node allows you to run the app from a remote directory, while
Rhino needs to run the application from the current working directory. So e.g. after creating the source version of an
application foo, you can invoke it like this for Node:

$ node source/script/foo.js

or like this for Rhino:

$ cd source/script
S Jjava —cp path/to/js.jar org.mozilla.javascript.tools.shell.Main foo.]s

Included layers

* See the gx.Server documentation.

Contribution

For a qooxdoo-contrib application, component or library. Enables integration with the Contribution Demo Browser.

8.2 Debugging

8.2.1 Logging System

The logging API allows for a definition of what is logged and where it is logged, while trying to keep usage as simple
as possible.

Writing Log Messages

Every qooxdoo object has four logging methods debug (), info (), warn () and error (). Each method takes
an arbitrary number of parameters which can be of any JavaScript data type: The logging system will create text
representations of non-string parameters.

The name of the method defines the log level your log message will get. If you want to log a message that is interesting
for debugging, then use debug () . If you want to log some general information, use info (). If you want to log a
warning, use warn () . Errors should be logged with error ().

So to write a log message just call:

this.debug("Hello world");

All of gx.core.Object log methods delegates to qx.log.Logger. If you want to get into more details, you can check their
APIL.

Now that we know how to log a message, let’s see where it’s written.

282 Chapter 8. Development

http://qooxdoo.org/contrib/
http://demo.qooxdoo.org/contrib/demobrowser/
http://demo.qooxdoo.org/current/apiviewer/#qx.core.Object
http://demo.qooxdoo.org/current/apiviewer/#qx.log.Logger

qooxdoo Documentation, Release 2.0.2

Log Appenders
Log appenders tells the logging system where to write log messages. When you create a brand new qooxdoo applica-
tion, you may stumble upon this piece of code in Application.js file.

// Enable logging in debug variant

if (gx.core.Environment.get ("gx.debug")) {
agx.log.appender.Native;
gx.log.appender.Console;

}

By default, every qooxdoo application comes with 2 activated log appenders, Native and Console.

The Native appender logs messages to the browser’s console. For Firefox, that native console might be Firebug
Console, while for Chrome or Safari is the Developer Tools’ Console. The Console appender is a cross-browser
solution, logging messages to a top-left absolute positioned window that can be opened by pressing F7.

Here’s the complete list of appenders that qooxdoo provides by default:
* gx.log.appender.Native
* gx.og.appender.Console
* gx.log.appender.Element
* gx.log.appender.PhoneGap
* gx.og.appender.RhinoConsole

if none of the default appenders are right for you, you can also create a custom log appender.

Writing Custom Log Appenders

Writing your own appenders is easy. Here’s a blueprint to get you started.

gx.Class.define ("gx.log.appender.MyCustomAppender", {
statics : {
init : function() {
// register to log engine
gx.log.Logger.register (this);
}I

process : function (entry) {
//handle the entry map
}

)

As you can see, an appender is just a static class that implements a “process”” method, and register itself to the logging
system.

The process method will be called by the logger with an “entry” map as the only parameter. Log appenders that need
only a text representation of the logged item(s) can pass this map to gx.log.appender.Util.toText. For
other use cases, this is what an entry map consists of:

Log Entry Map

* items Array of maps containing information about the logged items, see below

* time When the message was logged appender is a static class with at (JavaScript Date)

8.2. Debugging 283

http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Native
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Console
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.Element
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.PhoneGap
http://demo.qooxdoo.org/current/apiviewer/#qx.log.appender.RhinoConsole

qooxdoo Documentation, Release 2.0.2

level The level of the log message
object gx object registry hash of the object the log method was called on
win The application’s DOM window (necessary for cross-frame logging)

offset Time in milliseconds since application startup

Logged Item Map

text Text representation of the logged item. If the logged item is an array, the value of text is an array containing
text representations of each of the logged array’s entries. For maps, the value is an array of maps with the
following fields:

key The map key’s name
text Representation of the corresponding value

trace Stack trace (if the logged item is an Error object)

EEINNT3 CLRNNT3 ELINNT3 9 CLINNT3 9

type One of “undefined”, “null”, “boolean”, “number”, “string”, “function”, “array”, “error”’, “map”, “class”,

“instance”, “node”, “stringify”, “unknown” “stringify”

9 <

8.2.2 Debugging Applications

You have several options at hand when it comes to debugging a qooxdoo application.

Introspection

* gx.lo.Json.stringify ()

* gx.dev.Debug ()

Included in the latter is gx.dev.Debug.debugObject() which will print out a complete recursive hierarchy (or up to
some max level) of an object.

This is taken from a firebug interactive session:

>>> var myTest = {a:1, b:[2,3], c:4}
>>> gx.dev.Debug.debugObject (myTest)
1665905: Object, count=3:

Memory leaks

* Setting gx .debug.dispose.level

284

Chapter 8. Development

qooxdoo Documentation, Release 2.0.2

AJAX

* Setting gx.debug.io.remote

¢ Setting gx.debug.io.remote.data

Debugging Tools

Some browser-specific tools allow for a powerful and often convenient way of debugging applications.

Code Instrumentation Idioms

These are helpful idioms you might want to include in your code, i.e. you use them at programming time.

this.debug()

With this.debug () you can print out any string you want to see in the console during execution of your application.
Of course you might want to interpolate variable values in the output. If you pass an entire object reference, the whole
object will by stringyfied and printed. So beware: for big objects you get the entire instantiation in code printed out!

Example:

this.debug ("I found this value for myVar: "+myVar);

console.log()

In contrast to this.debug(), if you pass an object reference to console. log () Firebug will provide you with a nice
hyperlink to the live object which you can follow to inspect the object in a structured way. This is much easier to
navigate than to skim through pages of source output.

var b = new gx.ui.form.Button();
console.log(b);

this.trace()

Will log the current stack trace using the defined logger. This can be useful to inspect from which method the current
function was called.

this.trace ()

Getting at your Objects

This section shows you how to access objects of your application at run time, i.e. while it executes. Access to those
objects is possible through JavaScript, either in the form of another piece of JavaScript code, or - especially interesting
for debugging - from an interactive shell, like Firebug or Venkman, that allows for interactive input and execution of
JavaScript commands.

8.2. Debugging 285

http://qooxdoo.org/docs/general/debugging_tools

qooxdoo Documentation, Release 2.0.2

qgx.core.Init.getApplication()

In your running app, the singlton Init object provides you with the getApplication () method, to access the
root object of your application. All members and sub-members that you have attached to your application class in
your code are accessible this way.

gx.core.Init.getApplication();

Firebug Usage Idioms

“Inspect”

Getting at your application objects fast is a common requirement when debugging. A useful idiom (or usage pattern)
with Firebug is to press the “Inspect” button and select the visible page element you are interested in. This will take
Firebug to its HTML tab in a split-pane view. The left side holds the HTML code underlying your selection (which
is probably not very enlightening). The right side though has a “DOM” tab, among others. Selecting this will show a
display of the underlying DOM node, which features a gx_Widget attribute. This attribute is added to the outermost
HTML tag representing a qooxdoo widget. For complex widgets that are made up of nested HTML elements, make
sure to select the outermost container node that actually has this attribute gx_Widget. It takes you straight to the
gooxdoo object associated with the selected DOM node.

Inspect -> Web page element -> HTML tab -> right side —-> DOM tab -> gx_Widget link

8.3 Performance

8.3.1 Memory Management
Introduction

Generally, qooxdoo’s runtime will take care of most of the issues around object disposal, so you don’t have to be too
anxious if you get those ‘missing destruct declaration” messages from a verbose disposer run.

To destruct existing objects at the end of your application is an important feature in the ever growing area of web
applications. Widgets and models are normally handling a few storage fields on each instance. These fields need the
dispose process to work without memory leaks.

Normally, JavaScript automatically cleans up. There is a built-in garbage collector in all engines. But these engines are
more or less buggy. One problematic issue is that browsers differentiate between DOM and JavaScript and use different
garbage collection systems for each (This does not affect all browsers, though). Problems arise when objects create
links between the two systems. Another issue are circular references which could not be easily resolved, especially by
engines which rely on a reference counter.

To help the buggy engines to collect the memory correctly it is helpful to dereference complex objects from each other,
e.g. instances from maps, arrays and other instances. You don’t need to delete primitive types like strings, booleans
and numbers.

gooxdoo has solved this issue from the beginning using the included “dispose” methods which could be overridden
and extended by each class. qooxdoo 0.7 introduced a new class declaration. This class declaration supports real
“destructors” as known from other languages. These destructors are part of the class declaration. The new style makes
it easier to write custom destructor/disposer methods because there are many new helper methods and the whole
process has been streamlined to a great extend.

286 Chapter 8. Development

http://attic.qooxdoo.org/documentation/0.7/class_declaration

qooxdoo Documentation, Release 2.0.2

Disposing an application

You can dispose any qooxdoo based application by simply calling gx.core.ObjectRegistry.shutdown ().
The simplest possibility is to use the command line included in Firebug. Another possibility is to add a HTML link or
a button to your application which executes this command.

You can look at the dispose behaviour of your app if you set the disposer into a verbose mode and then invoke it
deliberately while your app is running. This will usually render your app unusable, but you will get all those messages
hinting you at object properties that might need to be looked after. How-To instructions can be found /ere. But mind
that the disposer output contains only hints, that still need human interpretation.

Example destructor

destruct : function ()

{
this._data = this._moreData = null;
this._disposeObjects ("_buttonOk", " buttonCancel");
this._disposeArray ("_children");
this._disposeMap ("_registry");

e _disposeObjects: Supports multiple arguments. Dispose the objects (qooxdoo objects) under each key
and finally delete the key from the instance.

* _disposeArray: Disposes the array under the given key, but disposes all entries in this array first. It must
contain instances of gx.core.Object only.

e _disposeMap: Disposes the map under the given key, but disposes all entries in this map first. It must contain
instances of gx.core.Object only.

How to test the destructor

The destructor code allows you an in-depth analysis of the destructors and finds fields which may leak etc. The DOM
tree gets also queried for back-references to qooxdoo instances. These checks are not enabled by default because of
the time they need on each unload of a typical qooxdoo based application.

To enable these checks you need to select a variant and configure a setting.

The environment setting gx . debug must be t rue. The setting gx . debug.dispose.level must be at least at
1 to show not disposed qooxdoo objects if they need to be deleted. A setting of 2 will additionally show non qooxdoo
objects. Higher values mean more output. Don’t be alarmed if some qooxdoo internal showing up. Usually there is
no need to delete all references. Garbage collection can do much for you here. For a general analysis 1 should be
enough, a value of 2 should be used to be sure you did not miss anything. You can use the following code to adapt
your config. json:

{
"jobs"
{
// existing jobs
"source-disposerDebug"

{

"desc" : "source version with ’gx.debug.dispose.level’ for destruct support",
"extend" : ["source"],
"environment"

{

8.3. Performance 287

http://bugzilla.qooxdoo.org/show_bug.cgi?id=3411#c2

qooxdoo Documentation, Release 2.0.2

"gx.debug.dispose.level" : "2"

}

This snippet is also available at the Support for finding potential memory leaks .
Log output from these settings could look something like this:

35443 DEBUG: testgui.Report[1004]: Disposing: [object testgui.Report]FireBug.js (line 75)

Missing destruct definition for ’'_scroller’ in gx.ui.table.pane.FocusIndicator[1111]: [object gx.ui.f
Missing destruct definition for ’_ lastMouseDownCell’ in gx.ui.table.pane.Scroller[1083]: [object Obje
036394 DEBUG: testgui.Form[3306]: Disposing: [object testgui.Form]FireBug.]js (line 75)

Missing destruct definition for ’'_dateFormat’ in gx.uil.component.DateChooserButton[3579]: [object gx
Missing destruct definition for ' dateFormat’ in gx.ui.component.DateChooserButton[3666]: [object gx

The nice thing here is that the log messages already indicate which dispose method to use: Every “Missing destruct...”
line contains a hint to the type of member that is not being disposed properly, in the “fobject ...]” part of the line. As
a rule of thumb

* native Javascript types (Number, String, Object, ...) usualy don’t need to be disposed.
* for qooxdoo objects (e.g. gx.util.format.DateFormat, testgui.Report, ...) use _disposeObjects
» for arrays or maps of qooxdoo objects use _disposeArray or _disposeMap.

* be sure to cut all references to the DOM because garbage collection can not dispose object still connected to the
DOM. This is also true for event listeners for example.

Finding memory leaks

gooxdoo contains a built-in dispose profiling feature that finds undisposed objects. This is useful mainly for applica-
tions that create and destroy objects as needed during their lifetime (instead of creating them once and re-using them).
It cannot be used to find undisposed objects left over after the application was shut down.

Dispose profiling works by disabling a feature in qooxdoo’s Object Registry where the hash codes used to identify
objects are reused. That way, it is possible to iterate over all objects created between two specified points in the
application’s lifecycle and check if they’re disposed. Since hash reusing is a performance feature, dispose profiling
should only be activated for the development version of an application. It is activated by enabling the qx.debug.dispose
environment setting for a compile job, e.g. source-script:

"source-script"

{

"environment"

{

"gx.debug.dispose" : true

}

After building the application, the dispose debugging workflow is as follows:

e Call gx.dev.Debug.startDisposeProfiling before the code you wish to debug is executed. This effectively sets a
marker saying “ignore any objects created before this point in time”.

» Execute the code to be debugged, e.g. create a view component, then destroy it.

e Call gx.dev.Debug.stopDisposeProfiling. It will return a list of maps containing references to the undisposed
objects as well as stack traces taken at the time the objects were registered, which makes it easy to find where in

288 Chapter 8. Development

http://qooxdoo.org/docs/general/snippets#support_for_finding_potential_memory_leaks
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.dev.Debug~startDisposeProfiling
http://demo.qooxdoo.org/2.0.2/apiviewer/#qx.dev.Debug~stopDisposeProfiling

qooxdoo Documentation, Release 2.0.2

the code they were instantiated. Go through the list and add dest roy and/or dispose calls to the application
as needed.

8.3.2 Profiling Applications

gooxdoo has built-in a cross-browser, pure JavaScript profiler. If the profiler is enabled, each call of a method defined
by qooxdoo’s class declaration can be measured. The profiler is able to compute both the total own time and the call
count of any method.

Since the profiler is implemented in pure JavaScript, it is totally cross-browser and works on any supported browser.

How to enable the Profiler

Basically set the environment setting gx . aspects to t rue and be sure to include the class gx.dev.Profile. The class
should be included before other classes. The easiest way to achieve that is to extend the profiling helper job in a
job that creates your application. For example, to enable profiling in the source version of your app, go to the " jobs"
section of your config.json, and add

"source-script" : {
"extend" : ["profiling"]

}

How to use the Profiler
The profiler can be controlled either hard-wired in the application code, or interactively using a JavaScript shell like
FireBug for Firefox or DebugBar for IE.
Profiling a certain action:
* Open the application in your browser

* At the JavaScript console type gx.dev.Profile.stop () toclear the current profiling data gathered during
startup

e Start profiling using gx .dev.Profile.start ()
* Perform the action you want to profile
* Stop profiling using gx.dev.Profile.stop ()

* Open the profiler output window: gx.dev.Profile.showResults (50). The parameter speci-
fies how many items to display. Default value is set to 100. The output will be sorted by the to-
tal own time of each method. Alternatively you can work with the raw profiling data returned by
gx.dev.Profile.getProfileDatal().

Limitations

In order to interpret the results correctly it is important to know the limitations of this profiling approach. The most
significant limitation is due to the fact that the profiler itself is written in JavaScript and runs in the same context as
the application:

* The profiler adds some overhead to each function call. The profiler takes this overhead into account in the
calculation of the own time but there can still be a small inaccuracy.

e The result of new Date (), which is used for timing, has a granularity of about 10ms on many patforms, so it
is hard to measure especially small functions accurately.

8.3. Performance 289

http://api.qooxdoo.org/#qx.dev.Profile

qooxdoo Documentation, Release 2.0.2

* The application is slowed down because profiling is done by wrapping each function. Profiling should always
be turned off in production code before deployment.

Summary

The output of the profiler can be of great value to find hot spots and time-consuming code. The timing data should be
interpreted rather qualitatively than quantitatively, though, due to constraints of this approach.

Note: The application is slowed down because profiling is done by wrapping each function. Profiling should always
be turned off in production code before deployment.

8.4 Testing

8.4.1 Unit Testing

gooxdoo comes with its own, nicely integrated unit testing environment and the corresponding application called
Testrunner. While being similar to JSUnit, the solution that ships with the qooxdoo SDK does not require any addi-
tional software.

If you look at the component section of a qooxdoo distribution, you will find the Test Runner tailored to test the
functionality of the qooxdoo framework. It provides a convenient interface to test classes that have been written to that
end. You can run single tests, or a whole suite of them at once.

But the Test Runner framework can be deployed for your own application. It provides a GUI, a layer of infrastructure
and a certain interface for arbitrary test classes. You can write your own test classes and take advantage of the Test
Runner environment.

» Test Tools — an overview over test tools and approaches

* Test Runner — how to deploy the Testrunner component for your own application

8.4.2 Test Runner

“Test Runner” is a unit testing framework that fully supports testing qooxdoo classes. It is similar to but does not
require JSUnit or any other JavaScript unit testing framework. If you look at the component section of a qooxdoo
distribution under component /testrunner/, you will find the Test Runner sources, together with a mockup test
class. In the framework/ section you can create a Test Runner instance with all test classes from the qooxdoo
framework by running:

./generate.py test

Test Runner provides a convenient interface to test classes that have been written to that end. You can run single tests,
or run a whole suite of them at once.

290 Chapter 8. Development

http://demo.qooxdoo.org/2.0.2/testrunner
http://qooxdoo.org/docs/general/test_tools
http://en.wikipedia.org/wiki/Unit_test

qooxdoo Documentation, Release 2.0.2

= et | dipeiiy il MR il e il ’ ; i i 4 . =
= Run Tesiy B 131 imlfisss paigla =igw, i _._.i...r.ki..;u.'l Ll Matrwe Pralikng
Teald Tedl Resulld Shiwy Srark Trade gelicalian unded Ledn
&
He)
= Cigged Ih . Failled- O Supreaded- i Skipped
H =am
i B core
= T
i B gy
H o
i M eem
mimi
"B .
H g
d B cale
g
a = st fp
F renderer
Lizqg Ol £ Log Ll =
H g
B Eeoichais
4 .
= pyos
o i
|
A i Trere—
i {9 Erewier
@ Cune
i i3 D
H @ paiHuiance

Note: See the Test Runner in action in the online demo.

The Test Runner framework can also be deployed for your own application. It provides a GUI, a layer of infrastructure
and a certain interface for arbitrary test classes. So now you can write your own test classes and take advantage of the
Test Runner environment.

How to deploy Test Runner for your own development

This section assumes that your qooxdoo application bears on the structure of the qooxdoo skeleton application. Then
this is what you have to do:

Writing Test Classes

* You have to code test classes that perform the individual tests. These test classes have to comply to the following
constraints:

They have to be within the name space of your application.

They have to be derived from gx.dev.unit .TestCase.

They have to define member functions with names starting with test x. These methods will be available
as individual tests.

Apart from th