
It comes in the night and sucks the essence from your

computers.

Kern Sibbald

April 26, 2005

This is the Bacula Developer’s Guide

Contents

Bacula Developer Notes . 6

General . 6

Daemon Protocol . 19

General . 19

Low Level Network Protocol 19

General Daemon Protocol . 19

Protocol Used Between the Director and the Storage Daemon 20

Protocol Used Between the Director and the File Daemon . . 21

Save Protocol Between the File Daemon and the Storage Daemon 22

Director Services Daemon . 25

File Services Daemon . 26

Commands Received from the Director for a Backup 27

Commands Received from the Director for a Restore 27

Storage Daemon Design . 28

SD Design Introduction . 28

SD Development Outline . 28

SD Connections and Sessions 29

Storage Media Output Format . 32

General . 32

1

Definitions . 32

Storage Daemon File Output Format 35

Overall Format . 35

Serialization . 36

Block Header . 36

Record Header . 36

Version BB02 Block Header 38

Version 2 Record Header . 39

Volume Label Format . 39

Session Label . 40

Overall Storage Format . 41

Unix File Attributes . 45

Old Depreciated Tape Format 47

Bacula Porting Notes . 52

Porting Requirements . 52

Steps to Take for Porting . 53

Bacula Regression Testing . 56

General . 56

Running the Regression Script 56

Writing a Regression Test . 60

. 62

Command Line Message Digest Utility 62

Download md5.zip (Zipped archive) 64

Bacula Memory Management . 66

General . 66

2

TCP/IP Network Protocol . 70

General . 70

bnet and Threads . 70

bnet open . 70

bnet send . 71

bnet fsend . 71

Additional Error information 71

bnet recv . 71

bnet sig . 72

bnet strerror . 72

bnet close . 73

Becoming a Server . 73

Higher Level Conventions . 73

Smart Memory Allocation With Orphaned Buffer Detection 75

Download smartall.zip (Zipped archive) 83

3

List of Figures

Smart Memory Allocation with Orphaned Buffer Detection 75

4

List of Tables

Message Error Code Classes . 17

File Attributes . 46

5

Bacula Developer Notes

General

This document is intended mostly for developers and describes the the gen-
eral framework of making Bacula source changes.

Contributions

Contributions from programmers are broken into two groups. The first are
contributions that are aids and not essential to Bacula. In general, these
will be scripts or will go into and examples or contributions directory.

The second class of contributions are those which will be integrated with
Bacula and become an essential part. Within this class of contributions,
there are two hurdles to surmount. One is getting your patch accepted, and
two is dealing with copyright issues. The rest of this document describes
some of the requirements for such code.

Patches

Subject to the copyright assignment described below, your patches should
be sent in diff -u format relative to the current contents of the Source
Forge CVS, which is the easiest for me to understand. If you plan on doing
significant development work over a period of time, after having your first
patch reviewed and approved, you will be eligible for having CVS access so
that you can commit your changes directly to the CVS repository. To do
so, you will need a userid on Source Forge.

Copyrights

To avoid future problems concerning changing licensing or copyrights, all
code contributions more than a hand full of lines must be in the Public
Domain or have the copyright assigned to Kern Sibbald as in the current
code. Note, prior to November 2004, the code was copyrighted by Kern
Sibbald and John Walker.

Your name should be clearly indicated as the author of the code, and
you must be extremely careful not to violate any copyrights or use other

6

people’s code without acknowledging it. The purpose of this require-
ment is to avoid future copyright, patent, or intellectual property prob-
lems. To understand on possible source of future problems, please examine
the difficulties Mozilla is (was?) having finding previous contributors at
http://www.mozilla.org/MPL/missing.html. The other important issue is
to avoid copyright, patent, or intellectual property violations as are currently
(May 2003) being claimed by SCO against IBM.

Although the copyright will be held by Kern, each developer is expected
to indicate that he wrote and/or modified a particular module (or file) and
any other sources. The copyright assignment may seem a bit unusual, but
in reality, it is not. Most large projects require this. In fact, the paperwork
associated with making contributions to the Free Software Foundation, was
for me unsurmountable.

If you have any doubts about this, please don’t hesitate to ask. Our (John
and my) track records with Autodesk are easily available; early program-
mers/founders/contributors and later employees had substantial shares of
the company, and no one founder had a controlling part of the company.
Even though Microsoft created many millionaires among early employees,
the politics of Autodesk (during our time at the helm) is in stark contrast
to Microsoft where the majority of the company is still tightly held among
a few.

Items not needing a copyright assignment are: most small changes, enhance-
ments, or bug fixes of 5-10 lines of code, and documentation.

Copyright Assignment

Since this is not a commercial enterprise, and I prefer to believe in everyone’s
good faith, developers can assign the copyright by explicitly acknowledging
that they do so in their first submission. This is sufficient if the developer is
independent, or an employee of a not-for-profit organization or a university.
Any developer that wants to contribute and is employed by a company must
get a copyright assignment from his employer. This is to avoid misunder-
standings between the employee, the company, and the Bacula project.

Corporate Assignment Statement

The following statement must be filled out by the employer, signed, and
mailed to my address (please ask me for my address and I will email it – I’d
prefer not to include it here).

7

http://www.mozilla.org/MPL/missing.html

Copyright release and transfer statement.

<On company letter head>

To: Kern Sibbald

Concerning: Copyright release and transfer

<Company, Inc> is hereby agrees that <names-of-developers> and

other employees of <Company, Inc> are authorized to develop

code for and contribute code to the Bacula project for an

undetermined period of time. The copyright as well as all

other rights to and interests in such contributed code are

hereby transferred to Kern Sibbald.

Signed in <City, Country> on <Date>:

<Name of Person>, <Position in Company, Inc>

This release/transfer statement must be sent to: Kern Sibbald Address-to-
be-given

Developing Bacula

Typically the simplest way to develop Bacula is to open one xterm window
pointing to the source directory you wish to update; a second xterm window
at the top source directory level, and a third xterm window at the bacula
directory <top>/src/bacula. After making source changes in one of the
directories, in the top source directory xterm, build the source, and start
the daemons by entering:

make and

./startit then in the enter:

./console or

./gnome-console to start the Console program. Enter any commands for
testing. For example: run kernsverify full.

Note, the instructions here to use ./startit are different from using a pro-
duction system where the administrator starts Bacula by entering ./bacula
start. This difference allows a development version of Bacula to be run
on a computer at the same time that a production system is running. The
./startit strip starts Bacula using a different set of configuration files, and
thus permits avoiding conflicts with any production system.

To make additional source changes, exit from the Console program, and in

8

the top source directory, stop the daemons by entering:

./stopit then repeat the process.

Debugging

Probably the first thing to do is to turn on debug output.

A good place to start is with a debug level of 20 as in ./startit -d20.
The startit command starts all the daemons with the same debug level.
Alternatively, you can start the appropriate daemon with the debug level
you want. If you really need more info, a debug level of 60 is not bad, and
for just about everything a level of 200.

Using a Debugger

If you have a serious problem such as a segmentation fault, it can usually
be found quickly using a good multiple thread debugger such as gdb. For
example, suppose you get a segmentation violation in bacula-dir. You
might use the following to find the problem:

<start the Storage and File daemons> cd dird gdb ./bacula-dir run -f -s -c
./dird.conf <it dies with a segmentation fault> where The -f option is spec-
ified on the run command to inhibit dird from going into the background.
You may also want to add the -s option to the run command to disable
signals which can potentially interfere with the debugging.

As an alternative to using the debugger, each Bacula daemon has a built in
back trace feature when a serious error is encountered. It calls the debugger
on itself, produces a back trace, and emails the report to the developer.
For more details on this, please see the chapter in the main Bacula manual
entitled “What To Do When Bacula Crashes (Kaboom)”.

Memory Leaks

Because Bacula runs routinely and unattended on client and server ma-
chines, it may run for a long time. As a consequence, from the very be-
ginning, Bacula uses SmartAlloc to ensure that there are no memory leaks.
To make detection of memory leaks effective, all Bacula code that dynam-
ically allocates memory MUST have a way to release it. In general when
the memory is no longer needed, it should be immediately released, but in

9

some cases, the memory will be held during the entire time that Bacula is
executing. In that case, there MUST be a routine that can be called at
termination time that releases the memory. In this way, we will be able to
detect memory leaks. Be sure to immediately correct any and all memory
leaks that are printed at the termination of the daemons.

Special Files

Kern uses files named 1, 2, ... 9 with any extension as scratch files. Thus
any files with these names are subject to being rudely deleted at any time.

When Implementing Incomplete Code

Please identify all incomplete code with a comment that contains
FIXME, where there are three asterisks (*) before and after the
word FIXME (in capitals) and no intervening spaces. This is important
as it allows new programmers to easily recognize where things are partially
implemented.

Bacula Source File Structure

The distribution generally comes as a tar file of the form bac-
ula.x.y.z.tar.gz where x, y, and z are the version, release, and update
numbers respectively.

Once you detar this file, you will have a directory structure as follows:

|

|- depkgs

|- mtx (autochanger control program + tape drive info)

|- sqlite (SQLite database program)

|- depkgs-win32

|- pthreads (Native win32 pthreads library -- dll)

|- zlib (Native win32 zlib library)

|- wx (wxWidgets source code)

|- bacula (main source directory containing configuration

| and installation files)

|- autoconf (automatic configuration files, not normally used

| by users)

|- doc (documentation directory)

|- home-page (Bacula’s home page source)

|- html-manual (html document directory)

|- techlogs (Technical development notes);

10

|- intl (programs used to translate)

|- platforms (OS specific installation files)

|- redhat (Red Hat installation)

|- solaris (Sun installation)

|- freebsd (FreeBSD installation)

|- irix (Irix installation -- not tested)

|- unknown (Default if system not identified)

|- po (translations of source strings)

|- src (source directory; contains global header files)

|- cats (SQL catalog database interface directory)

|- console (bacula user agent directory)

|- dird (Director daemon)

|- filed (Unix File daemon)

|- win32 (Win32 files to make bacula-fd be a service)

|- findlib (Unix file find library for File daemon)

|- gnome-console (GNOME version of console program)

|- lib (General Bacula library)

|- stored (Storage daemon)

|- tconsole (Tcl/tk console program -- not yet working)

|- testprogs (test programs -- normally only in Kern’s tree)

|- tools (Various tool programs)

|- win32 (Native Win32 File daemon)

|- baculafd (Visual Studio project file)

|- compat (compatibility interface library)

|- filed (links to src/filed)

|- findlib (links to src/findlib)

|- lib (links to src/lib)

|- console (beginning of native console program)

|- wx-console (wxWidget console Win32 specific parts)

|- wx-console (wxWidgets console main source program)

|- regress (Regression scripts)

|- bin (temporary directory to hold Bacula installed binaries)

|- build (temporary directory to hold Bacula source)

|- scripts (scripts and .conf files)

|- tests (test scripts)

|- tmp (temporary directory for temp files)

Header Files

Please carefully follow the scheme defined below as it permits in general only
two header file includes per C file, and thus vastly simplifies programming.
With a large complex project like Bacula, it isn’t always easy to ensure that
the right headers are invoked in the right order (there are a few kludges to
make this happen – i.e. in a few include files because of the chicken and egg
problem, certain references to typedefs had to be replaced with void).

Every file should include bacula.h. It pulls in just about everything, with
very few exceptions. If you have system dependent ifdefing, please do it in
baconfig.h. The version number and date are kept in version.h.

11

Each of the subdirectories (console, cats, dird, filed, findlib, lib, stored,
...) contains a single directory dependent include file generally the name of
the directory, which should be included just after the include of bacula.h.
This file (for example, for the dird directory, it is dird.h) contains either
definitions of things generally needed in this directory, or it includes the
appropriate header files. It always includes protos.h. See below.

Each subdirectory contains a header file named protos.h, which contains
the prototypes for subroutines exported by files in that directory. protos.h
is always included by the main directory dependent include file.

Programming Standards

For the most part, all code should be written in C unless there is a burning
reason to use C++, and then only the simplest C++ constructs will be used.
Note, Bacula is slowly evolving to use more and more C++.

Code should have some documentation – not a lot, but enough so that I can
understand it. Look at the current code, and you will see that I document
more than most, but am definitely not a fanatic.

I prefer simple linear code where possible. Gotos are strongly discouraged
except for handling an error to either bail out or to retry some code, and
such use of gotos can vastly simplify the program.

Remember this is a C program that is migrating to a tiny subset of C++,
so be conservative in your use of C++ features.

Do Not Use

• STL – it is totally incomprehensible.

Avoid if Possible

• Returning a malloc’ed buffer from a subroutine – someone will forget
to release it.

• Using reference variables – it allows subroutines to create side effects.

• Heap allocation (malloc) unless needed – it is expensive.

• Templates – they can create portability problems.

12

• Fancy or tricky C or C++ code, unless you give a good explanation
of why you used it.

• Too much inheritance – it can complicate the code, and make reading
it difficult (unless you are in love with colons)

Do Use Whenever Possible

• Locking and unlocking within a single subroutine.

• Malloc and free within a single subroutine.

• Comments and global explanations on what your code or algorithm
does.

Indenting Standards

I cannot stand code indented 8 columns at a time. This makes the code
unreadable. Even 4 at a time uses a lot of space, so I have adopted indenting
3 spaces at every level. Note, indention is the visual appearance of the source
on the page, while tabbing is replacing a series of up to 8 spaces from a tab
character.

The closest set of parameters for the Linux indent program that will pro-
duce reasonably indented code are:

-nbad -bap -bbo -nbc -br -brs -c36 -cd36 -ncdb -ce -ci3 -cli0

-cp36 -d0 -di1 -ndj -nfc1 -nfca -hnl -i3 -ip0 -l85 -lp -npcs

-nprs -npsl -saf -sai -saw -nsob -nss -nbc -ncs -nbfda

You can put the above in your .indent.pro file, and then just invoke indent
on your file. However, be warned. This does not produce perfect indenting,
and it will mess up C++ class statements pretty badly.

Braces are required in all if statements (missing in some very old code). To
avoid generating too many lines, the first brace appears on the first line (e.g.
of an if), and the closing brace is on a line by itself. E.g.

if (abc) {

some_code;

}

13

Just follow the convention in the code. Originally I indented case clauses
under a switch(), but now I prefer non-indented cases.

switch (code) {

case ’A’:

do something

break;

case ’B’:

again();

break;

default:

break;

}

Avoid using // style comments except for temporary code or turning off
debug code. Standard C comments are preferred (this also keeps the code
closer to C).

Attempt to keep all lines less than 85 characters long so that the whole line
of code is readable at one time. This is not a rigid requirement.

Always put a brief description at the top of any new file created describing
what it does and including your name and the date it was first written.
Please don’t forget any Copyrights and acknowledgments if it isn’t 100%
your code. Also, include the Bacula copyright notice that is in src/c.

In general you should have two includes at the top of the an include for the
particular directory the code is in, for includes are needed, but this should
be rare.

In general (except for self-contained packages), prototypes should all be put
in protos.h in each directory.

Always put space around assignment and comparison operators.

a = 1;

if (b >= 2) {

cleanup();

}

but your can compress things in a for statement:

for (i=0; i < del.num_ids; i++) {

...

Don’t overuse the inline if (?:). A full if is preferred, except in a print
statement, e.g.:

14

if (ua->verbose \&& del.num_del != 0) {

bsendmsg(ua, _("Pruned %d %s on Volume %s from catalog.\n"), del.num_del,

del.num_del == 1 ? "Job" : "Jobs", mr->VolumeName);

}

Leave a certain amount of debug code (Dmsg) in code you submit, so that
future problems can be identified. This is particularly true for complicated
code likely to break. However, try to keep the debug code to a minimum to
avoid bloating the program and above all to keep the code readable.

Please keep the same style in all new code you develop. If you include code
previously written, you have the option of leaving it with the old indenting
or re-indenting it. If the old code is indented with 8 spaces, then please
re-indent it to Bacula standards.

If you are using vim, simply set your tabstop to 8 and your shiftwidth to 3.

Tabbing

Tabbing (inserting the tab character in place of spaces) is as normal on all
Unix systems – a tab is converted space up to the next column multiple of 8.
My editor converts strings of spaces to tabs automatically – this results in
significant compression of the files. Thus, you can remove tabs by replacing
them with spaces if you wish. Please don’t confuse tabbing (use of tab
characters) with indenting (visual alignment of the code).

Don’ts

Please don’t use:

strcpy()

strcat()

strncpy()

strncat();

sprintf()

snprintf()

They are system dependent and un-safe. These should be replaced by the
Bacula safe equivalents:

char *bstrncpy(char *dest, char *source, int dest_size);

char *bstrncat(char *dest, char *source, int dest_size);

15

int bsnprintf(char *buf, int32_t buf_len, const char *fmt, ...);

int bvsnprintf(char *str, int32_t size, const char *format, va_list ap);

See src/lib/bsys.c for more details on these routines.

Don’t use the %lld or the %q printf format editing types to edit 64 bit
integers – they are not portable. Instead, use %s with edit uint64(). For
example:

char buf[100];

uint64_t num = something;

char ed1[50];

bsnprintf(buf, sizeof(buf), "Num=%s\n", edit_uint64(num, ed1));

The edit buffer ed1 must be at least 27 bytes long to avoid overflow.
See src/lib/edit.c for more details. If you look at the code, don’t start
screaming that I use lld. I actually use subtle trick taught to me by John
Walker. The lld that appears in the editing routine is actually #define to
a what is needed on your OS (usually “lld” or “q”) and is defined in auto-
conf/configure.in for each OS. C string concatenation causes the appropriate
string to be concatenated to the “%”.

Also please don’t use the STL or Templates or any complicated C++ code.

Message Classes

Currently, there are four classes of messages: Debug, Error, Job, and Mem-
ory.

Debug Messages

Debug messages are designed to be turned on at a specified debug level and
are always sent to STDOUT. There are designed to only be used in the
development debug process. They are coded as:

DmsgN(level, message, arg1, ...) where the N is a number indicating how
many arguments are to be substituted into the message (i.e. it is a count of
the number arguments you have in your message – generally the number of
percent signs (%)). level is the debug level at which you wish the message
to be printed. message is the debug message to be printed, and arg1, ... are
the arguments to be substituted. Since not all compilers support #defines
with varargs, you must explicitly specify how many arguments you have.

16

When the debug message is printed, it will automatically be prefixed by the
name of the daemon which is running, the filename where the Dmsg is, and
the line number within the file.

Some actual examples are:

Dmsg2(20, “MD5len=%d MD5=%s\n”, strlen(buf), buf);

Dmsg1(9, “Created client %s record\n”, client-¿hdr.name);

Error Messages

Error messages are messages that are related to the daemon as a whole
rather than a particular job. For example, an out of memory condition my
generate an error message. They are coded as:

EmsgN(error-code, level, message, arg1, ...) As with debug messages, you
must explicitly code the of arguments to be substituted in the message.
error-code indicates the severity or class of error, and it may be one of the
following:

M ABORT Causes the daemon to immediately abort.
This should be used only in extreme cases.
It attempts to produce a traceback.

M ERROR TERM Causes the daemon to immediately terminate.
This should be used only in extreme cases. It
does not produce a traceback.

M FATAL Causes the daemon to terminate the current
job, but the daemon keeps running

M ERROR Reports the error. The daemon and the job
continue running

M WARNING Reports an warning message. The daemon
and the job continue running

M INFO Reports an informational message.

There are other error message classes, but they are in a state of being re-
designed or deprecated, so please do not use them. Some actual examples
are:

Emsg1(M ABORT, 0, “Cannot create message thread: %s\n”, str-
error(status));

Emsg3(M WARNING, 0, “Connect to File daemon %s at %s:%d failed.

17

Retrying ...\n”, client->hdr.name, client->address, client->port);

Emsg3(M FATAL, 0, “bdird<filed: bad response from Filed to %s com-
mand: %d %s\n”, cmd, n, strerror(errno));

Job Messages

Job messages are messages that pertain to a particular job such as a file
that could not be saved, or the number of files and bytes that were saved.

Memory Messages

Memory messages are messages that are edited into a memory buffer. Gen-
erally they are used in low level routines such as the low level device file
dev.c in the Storage daemon or in the low level Catalog routines. These
routines do not generally have access to the Job Control Record and so they
return error messages reformatted in a memory buffer. Mmsg() is the way
to do this.

18

Daemon Protocol

General

This document describes the protocols used between the various daemons.
As Bacula has developed, it has become quite out of date. The general idea
still holds true, but the details of the fields for each command, and indeed
the commands themselves have changed considerably.

It is intended to be a technical discussion of the general daemon protocols
and as such is not targeted at end users but rather at developers and system
administrators that want or need to know more of the working details of
Bacula.

Low Level Network Protocol

At the lowest level, the network protocol is handled by BSOCK packets
which contain a lot of information about the status of the network connec-
tion: who is at the other end, etc. Each basic Bacula network read or
write actually consists of two low level network read/writes. The first write
always sends four bytes of data in machine independent byte order. If data
is to follow, the first four bytes are a positive non-zero integer indicating
the length of the data that follow in the subsequent write. If the four byte
integer is zero or negative, it indicates a special request, a sort of network
signaling capability. In this case, no data packet will follow. The low level
BSOCK routines expect that only a single thread is accessing the socket at a
time. It is advised that multiple threads do not read/write the same socket.
If you must do this, you must provide some sort of locking mechanism. I
would not be appropriate for efficiency reasons to make every call to the
BSOCK routines lock and unlock the packet.

General Daemon Protocol

In general, all the daemons follow the following global rules. There may
be exceptions depending on the specific case. Normally, one daemon will
be sending commands to another daemon (specifically, the Director to the
Storage daemon and the Director to the File daemon).

• Commands are always ASCII commands that are upper/lower case
dependent as well as space sensitive.

19

• All binary data is converted into ASCII (either with printf statements
or using base64 encoding).

• All responses to commands sent are always prefixed with a return
numeric code where codes in the 1000’s are reserved for the Director,
the 2000’s are reserved for the File daemon, and the 3000’s are reserved
for the Storage daemon.

• Any response that is not prefixed with a numeric code is a command
(or subcommand if you like) coming from the other end. For exam-
ple, while the Director is corresponding with the Storage daemon, the
Storage daemon can request Catalog services from the Director. This
convention permits each side to send commands to the other daemon
while simultaneously responding to commands.

• Any response that is of zero length, depending on the context, either
terminates the data stream being sent or terminates command mode
prior to closing the connection.

• Any response that is of negative length is a special sign that normally
requires a response. For example, during data transfer from the File
daemon to the Storage daemon, normally the File daemon sends con-
tinuously without intervening reads. However, periodically, the File
daemon will send a packet of length -1 indicating that the current
data stream is complete and that the Storage daemon should respond
to the packet with an OK, ABORT JOB, PAUSE, etc. This permits
the File daemon to efficiently send data while at the same time oc-
casionally “polling” the Storage daemon for his status or any special
requests.

Currently, these negative lengths are specific to the daemon, but
shortly, the range 0 to -999 will be standard daemon wide signals,
while -1000 to -1999 will be for Director user, -2000 to -2999 for the
File daemon, and -3000 to -3999 for the Storage daemon.

The Protocol Used Between the Director and the Storage
Daemon

Before sending commands to the File daemon, the Director opens a Message
channel with the Storage daemon, identifies itself and presents its password.
If the password check is OK, the Storage daemon accepts the Director. The
Director then passes the Storage daemon, the JobId to be run as well as the
File daemon authorization (append, read all, or read for a specific session).
The Storage daemon will then pass back to the Director a enabling key for
this JobId that must be presented by the File daemon when opening the

20

job. Until this process is complete, the Storage daemon is not available for
use by File daemons.

SD: listens

DR: makes connection

DR: Hello <Director-name> calling <password>

SD: 3000 OK Hello

DR: JobId=nnn Allow=(append, read) Session=(*, SessionId)

(Session not implemented yet)

SD: 3000 OK Job Authorization=<password>

DR: use device=<device-name> media_type=<media-type>

pool_name=<pool-name> pool_type=<pool_type>

SD: 3000 OK use device

For the Director to be authorized, the <Director-name> and the
<password> must match the values in one of the Storage daemon’s Di-
rector resources (there may be several Directors that can access a single
Storage daemon).

The Protocol Used Between the Director and the File Daemon

A typical conversation might look like the following:

FD: listens

DR: makes connection

DR: Hello <Director-name> calling <password>

FD: 2000 OK Hello

DR: JobId=nnn Authorization=<password>

FD: 2000 OK Job

DR: storage address = <Storage daemon address> port = <port-number>

name = <DeviceName> mediatype = <MediaType>

FD: 2000 OK storage

DR: include

DR: <directory1>

DR: <directory2>

...

DR: Null packet

FD: 2000 OK include

DR: exclude

DR: <directory1>

DR: <directory2>

...

DR: Null packet

FD: 2000 OK exclude

DR: full

FD: 2000 OK full

DR: save

FD: 2000 OK save

21

FD: Attribute record for each file as sent to the

Storage daemon (described above).

FD: Null packet

FD: <append close responses from Storage daemon>

e.g.

3000 OK Volumes = <number of volumes>

3001 Volume = <volume-id> <start file> <start block>

<end file> <end block> <volume session-id>

3002 Volume data = <date/time of last write> <Number bytes written>

<number errors>

... additional Volume / Volume data pairs for volumes 2 .. n

FD: Null packet

FD: close socket

The Save Protocol Between the File Daemon and the Storage
Daemon

Once the Director has send a save command to the File daemon, the File
daemon will contact the Storage daemon to begin the save.

In what follows: FD: refers to information set via the network from the File
daemon to the Storage daemon, and SD: refers to information set from the
Storage daemon to the File daemon.

Command and Control Information

Command and control information is exchanged in human readable ASCII
commands.

FD: listens

SD: makes connection

FD: append open session = <JobId> [<password>]

SD: 3000 OK ticket = <number>

FD: append data <ticket-number>

SD: 3000 OK data address = <IPaddress> port = <port>

Data Information

The Data information consists of the file attributes and data to the Storage
daemon. For the most part, the data information is sent one way: from the
File daemon to the Storage daemon. This allows the File daemon to transfer
information as fast as possible without a lot of handshaking and network
overhead.

22

However, from time to time, the File daemon needs to do a sort of checkpoint
of the situation to ensure that everything is going well with the Storage
daemon. To do so, the File daemon sends a packet with a negative length
indicating that he wishes the Storage daemon to respond by sending a packet
of information to the File daemon. The File daemon then waits to receive
a packet from the Storage daemon before continuing.

All data sent are in binary format except for the header packet, which is
in ASCII. There are two packet types used data transfer mode: a header
packet, the contents of which are known to the Storage daemon, and a data
packet, the contents of which are never examined by the Storage daemon.

The first data packet to the Storage daemon will be an ASCII header packet
consisting of the following data.

<File-Index> <Stream-Id> <Info> where <File-Index> is a sequential
number beginning from one that increments with each file (or directory)
sent.

where <Stream-Id> will be 1 for the Attributes record and 2 for uncom-
pressed File data. 3 is reserved for the MD5 signature for the file.

where <Info> transmit information about the Stream to the Storage Dae-
mon. It is a character string field where each character has a meaning. The
only character currently defined is 0 (zero), which is simply a place holder
(a no op). In the future, there may be codes indicating compressed data,
encrypted data, etc.

Immediately following the header packet, the Storage daemon will expect
any number of data packets. The series of data packets is terminated by
a zero length packet, which indicates to the Storage daemon that the next
packet will be another header packet. As previously mentioned, a nega-
tive length packet is a request for the Storage daemon to temporarily enter
command mode and send a reply to the File daemon. Thus an actual con-
versation might contain the following exchanges:

FD: <1 1 0> (header packet)

FD: <data packet containing file-attributes>

FD: Null packet

FD: <1 2 0>

FD: <multiple data packets containing the file data>

FD: Packet length = -1

SD: 3000 OK

FD: <2 1 0>

FD: <data packet containing file-attributes>

FD: Null packet

FD: <2 2 0>

23

FD: <multiple data packets containing the file data>

FD: Null packet

FD: Null packet

FD: append end session <ticket-number>

SD: 3000 OK end

FD: append close session <ticket-number>

SD: 3000 OK Volumes = <number of volumes>

SD: 3001 Volume = <volumeid> <start file> <start block>

<end file> <end block> <volume session-id>

SD: 3002 Volume data = <date/time of last write> <Number bytes written>

<number errors>

SD: ... additional Volume / Volume data pairs for

volumes 2 .. n

FD: close socket

The information returned to the File daemon by the Storage daemon in
response to the append close session is transmit in turn to the Director.

24

Director Services Daemon

This chapter is intended to be a technical discussion of the Director services
and as such is not targeted at end users but rather at developers and system
administrators that want or need to know more of the working details of
Bacula.

The Bacula Director services consist of the program that supervises all
the backup and restore operations.

To be written ...

25

File Services Daemon

Please note, this section is somewhat out of date as the code has evolved
significantly. The basic idea has not changed though.

This chapter is intended to be a technical discussion of the File daemon
services and as such is not targeted at end users but rather at developers
and system administrators that want or need to know more of the working
details of Bacula.

The Bacula File Services consist of the programs that run on the system
to be backed up and provide the interface between the Host File system and
Bacula – in particular, the Director and the Storage services.

When time comes for a backup, the Director gets in touch with the File
daemon on the client machine and hands it a set of “marching orders” which,
if written in English, might be something like the following:

OK, File daemon, it’s time for your daily incremental backup. I want you
to get in touch with the Storage daemon on host archive.mysite.com and
perform the following save operations with the designated options. You’ll
note that I’ve attached include and exclude lists and patterns you should
apply when backing up the file system. As this is an incremental backup, you
should save only files modified since the time you started your last backup
which, as you may recall, was 2000-11-19-06:43:38. Please let me know when
you’re done and how it went. Thank you.

So, having been handed everything it needs to decide what to dump and
where to store it, the File daemon doesn’t need to have any further contact
with the Director until the backup is complete providing there are no errors.
If there are errors, the error messages will be delivered immediately to the
Director. While the backup is proceeding, the File daemon will send the file
coordinates and data for each file being backed up to the Storage daemon,
which will in turn pass the file coordinates to the Director to put in the
catalog.

During a Verify of the catalog, the situation is different, since the File
daemon will have an exchange with the Director for each file, and will not
contact the Storage daemon.

A Restore operation will be very similar to the Backup except that during
the Restore the Storage daemon will not send storage coordinates to the
Director since the Director presumably already has them. On the other
hand, any error messages from either the Storage daemon or File daemon
will normally be sent directly to the Directory (this, of course, depends on

26

how the Message resource is defined).

Commands Received from the Director for a Backup

To be written ...

Commands Received from the Director for a Restore

To be written ...

27

Storage Daemon Design

This chapter is intended to be a technical discussion of the Storage daemon
services and as such is not targeted at end users but rather at developers
and system administrators that want or need to know more of the working
details of Bacula.

SD Design Introduction

The Bacula Storage daemon provides storage resources to a Bacula installa-
tion. An individual Storage daemon is associated with a physical permanent
storage device (for example, a tape drive, CD writer, tape changer or juke-
box, etc.), and may employ auxiliary storage resources (such as space on a
hard disk file system) to increase performance and/or optimize use of the
permanent storage medium.

Any number of storage daemons may be run on a given machine; each as-
sociated with an individual storage device connected to it, and BACULA
operations may employ storage daemons on any number of hosts connected
by a network, local or remote. The ability to employ remote storage daemons
(with appropriate security measures) permits automatic off-site backup, pos-
sibly to publicly available backup repositories.

SD Development Outline

In order to provide a high performance backup and restore solution that
scales to very large capacity devices and networks, the storage daemon must
be able to extract as much performance from the storage device and net-
work with which it interacts. In order to accomplish this, storage daemons
will eventually have to sacrifice simplicity and painless portability in favor
of techniques which improve performance. My goal in designing the storage
daemon protocol and developing the initial prototype storage daemon is to
provide for these additions in the future, while implementing an initial stor-
age daemon which is very simple and portable to almost any POSIX-like
environment. This original storage daemon (and its evolved descendants)
can serve as a portable solution for non-demanding backup requirements
(such as single servers of modest size, individual machines, or small local
networks), while serving as the starting point for development of higher
performance configurable derivatives which use techniques such as POSIX
threads, shared memory, asynchronous I/O, buffering to high-speed inter-
mediate media, and support for tape changers and jukeboxes.

28

SD Connections and Sessions

A client connects to a storage server by initiating a conventional TCP con-
nection. The storage server accepts the connection unless its maximum
number of connections has been reached or the specified host is not granted
access to the storage server. Once a connection has been opened, the client
may make any number of Query requests, and/or initiate (if permitted),
one or more Append sessions (which transmit data to be stored by the stor-
age daemon) and/or Read sessions (which retrieve data from the storage
daemon).

Most requests and replies sent across the connection are simple ASCII
strings, with status replies prefixed by a four digit status code for easier
parsing. Binary data appear in blocks stored and retrieved from the storage.
Any request may result in a single-line status reply of “3201 Notification

pending”, which indicates the client must send a “Query notification” re-
quest to retrieve one or more notifications posted to it. Once the notifica-
tions have been returned, the client may then resubmit the request which
resulted in the 3201 status.

The following descriptions omit common error codes, yet to be defined,
which can occur from most or many requests due to events like media errors,
restarting of the storage daemon, etc. These details will be filled in, along
with a comprehensive list of status codes along with which requests can
produce them in an update to this document.

SD Append Requests

append open session = <JobId> [<Password>] A data append
session is opened with the Job ID given by JobId with client password
(if required) given by Password. If the session is successfully opened,
a status of 3000 OK is returned with a “ticket = number” reply used
to identify subsequent messages in the session. If too many sessions
are open, or a conflicting session (for example, a read in progress when
simultaneous read and append sessions are not permitted), a status of
“3502 Volume busy” is returned. If no volume is mounted, or the
volume mounted cannot be appended to, a status of “3503 Volume

not mounted” is returned.

append data = <ticket-number> If the append data is accepted, a
status of 3000 OK data address = <IPaddress> port = <port>

is returned, where the IPaddress and port specify the IP address
and port number of the data channel. Error status codes are 3504

29

Invalid ticket number and 3505 Session aborted, the latter of
which indicates the entire append session has failed due to a daemon
or media error.

Once the File daemon has established the connection to the data chan-
nel opened by the Storage daemon, it will transfer a header packet
followed by any number of data packets. The header packet is of the
form:

<file-index> <stream-id> <info>

The details are specified in the Daemon Protocol section of this docu-
ment.

*append abort session = <ticket-number> The open append ses-
sion with ticket ticket-number is aborted; any blocks not yet written to
permanent media are discarded. Subsequent attempts to append data
to the session will receive an error status of 3505 Session aborted.

append end session = <ticket-number> The open append session
with ticket ticket-number is marked complete; no further blocks may
be appended. The storage daemon will give priority to saving any
buffered blocks from this session to permanent media as soon as pos-
sible.

append close session = <ticket-number> The append session with
ticket ticket is closed. This message does not receive an 3000 OK reply
until all of the content of the session are stored on permanent media,
at which time said reply is given, followed by a list of volumes, from
first to last, which contain blocks from the session, along with the first
and last file and block on each containing session data and the vol-
ume session key identifying data from that session in lines with the
following format:

Volume = <Volume-id> <start-file> <start-block>

<end-file> <end-block> <volume-session-id>where Volume-

id is the volume label, start-file and start-block are the file and block
containing the first data from that session on the volume, end-file and
end-block are the file and block with the last data from the session on
the volume and volume-session-id is the volume session ID for blocks
from the session stored on that volume.

SD Read Requests

Read open session = <JobId> <Volume-id> <start-file> <start-block> <end-file> <end-block> <volume-session-id> <password>

where Volume-id is the volume label, start-file and start-block are

30

the file and block containing the first data from that session on the
volume, end-file and end-block are the file and block with the last data
from the session on the volume and volume-session-id is the volume
session ID for blocks from the session stored on that volume.

If the session is successfully opened, a status of

3100 OK Ticket = number‘‘

is returned with a reply used to identify subsequent messages in the
session. If too many sessions are open, or a conflicting session (for
example, an append in progress when simultaneous read and append
sessions are not permitted), a status of ”3502 Volume busy“ is re-
turned. If no volume is mounted, or the volume mounted cannot be
appended to, a status of ”3503 Volume not mounted“ is returned. If
no block with the given volume session ID and the correct client ID
number appears in the given first file and block for the volume, a status
of ”3505 Session not found“ is returned.

Read data = <Ticket> > <Block> The specified Block of data from
open read session with the specified Ticket number is returned, with a
status of 3000 OK followed by a ”Length = size“ line giving the length
in bytes of the block data which immediately follows. Blocks must be
retrieved in ascending order, but blocks may be skipped. If a block
number greater than the largest stored on the volume is requested,
a status of ”3201 End of volume“ is returned. If a block number
greater than the largest in the file is requested, a status of ”3401 End

of file“ is returned.

Read close session = <Ticket> The read session with Ticket number
is closed. A read session may be closed at any time; you needn’t read
all its blocks before closing it.

by John Walker January 30th, MM

31

http://www.fourmilab.ch/

Storage Media Output Format

General

This document describes the media format written by the Storage daemon.
The Storage daemon reads and writes in units of blocks. Blocks contain
records. Each block has a block header followed by records, and each record
has a record header followed by record data.

This chapter is intended to be a technical discussion of the Media Format
and as such is not targeted at end users but rather at developers and system
administrators that want or need to know more of the working details of
Bacula.

Definitions

Block A block represents the primitive unit of information that the Storage
daemon reads and writes to a physical device. Normally, for a tape
device, it will be the same as a tape block. The Storage daemon always
reads and writes blocks. A block consists of block header information
followed by records. Clients of the Storage daemon (the File dae-
mon) normally never see blocks. However, some of the Storage tools
(bls, bscan, bextract, ...) may be use block header information. In
older Bacula tape versions, a block could contain records (see record
definition below) from multiple jobs. However, all blocks currently
written by Bacula are block level BB02, and a given block contains
records for only a single job. Different jobs simply have their own
private blocks that are intermingled with the other blocks from other
jobs on the Volume (previously the records were intermingled within
the blocks). Having only records from a single job in any give block
permitted moving the VolumeSessionId and VolumeSessionTime (see
below) from each record heading to the Block header. This has two
advantages: 1. a block can be quickly rejected based on the contents
of the header without reading all the records. 2. because there is on
the average more than one record per block, less data is written to the
Volume for each job.

Record A record consists of a Record Header, which is managed by the
Storage daemon and Record Data, which is the data received from
the Client. A record is the primitive unit of information sent to and
from the Storage daemon by the Client (File daemon) programs. The
details are described below.

32

JobId A number assigned by the Director daemon for a particular job.
This number will be unique for that particular Director (Catalog).
The daemons use this number to keep track of individual jobs. Within
the Storage daemon, the JobId may not be unique if several Directors
are accessing the Storage daemon simultaneously.

Session A Session is a concept used in the Storage daemon corresponds one
to one to a Job with the exception that each session is uniquely iden-
tified within the Storage daemon by a unique SessionId/SessionTime
pair (see below).

VolSessionId A unique number assigned by the Storage daemon to a par-
ticular session (Job) it is having with a File daemon. This number by
itself is not unique to the given Volume, but with the VolSessionTime,
it is unique.

VolSessionTime A unique number assigned by the Storage daemon to a
particular Storage daemon execution. It is actually the Unix time t
value of when the Storage daemon began execution cast to a 32 bit
unsigned integer. The combination of the VolSessionId and the
VolSessionTime for a given Storage daemon is guaranteed to be
unique for each Job (or session).

FileIndex A sequential number beginning at one assigned by the File dae-
mon to the files within a job that are sent to the Storage daemon for
backup. The Storage daemon ensures that this number is greater than
zero and sequential. Note, the Storage daemon uses negative FileIn-
dexes to flag Session Start and End Labels as well as End of Volume
Labels. Thus, the combination of VolSessionId, VolSessionTime, and
FileIndex uniquely identifies the records for a single file written to a
Volume.

Stream While writing the information for any particular file to the Volume,
there can be any number of distinct pieces of information about that
file, e.g. the attributes, the file data, ... The Stream indicates what
piece of data it is, and it is an arbitrary number assigned by the
File daemon to the parts (Unix attributes, Win32 attributes, data,
compressed data, ...) of a file that are sent to the Storage daemon.
The Storage daemon has no knowledge of the details of a Stream; it
simply represents a numbered stream of bytes. The data for a given
stream may be passed to the Storage daemon in single record, or in
multiple records.

Block Header A block header consists of a block identification (“BB02”),
a block length in bytes (typically 64,512) a checksum, and sequential
block number. Each block starts with a Block Header and is followed

33

by Records. Current block headers also contain the VolSessionId and
VolSessionTime for the records written to that block.

Record Header A record header contains the Volume Session Id, the Vol-
ume Session Time, the FileIndex, the Stream, and the size of the data
record which follows. The Record Header is always immediately fol-
lowed by a Data Record if the size given in the Header is greater than
zero. Note, for Block headers of level BB02 (version 1.27 and later),
the Record header as written to tape does not contain the Volume
Session Id and the Volume Session Time as these two fields are stored
in the BB02 Block header. The in-memory record header does have
those fields for convenience.

Data Record A data record consists of a binary stream of bytes and is
always preceded by a Record Header. The details of the meaning of
the binary stream of bytes are unknown to the Storage daemon, but
the Client programs (File daemon) defines and thus knows the details
of each record type.

Volume Label A label placed by the Storage daemon at the beginning
of each storage volume. It contains general information about the
volume. It is written in Record format. The Storage daemon manages
Volume Labels, and if the client wants, he may also read them.

Begin Session Label The Begin Session Label is a special record placed
by the Storage daemon on the storage medium as the first record of an
append session job with a File daemon. This record is useful for finding
the beginning of a particular session (Job), since no records with the
same VolSessionId and VolSessionTime will precede this record. This
record is not normally visible outside of the Storage daemon. The
Begin Session Label is similar to the Volume Label except that it
contains additional information pertaining to the Session.

End Session Label The End Session Label is a special record placed by
the Storage daemon on the storage medium as the last record of an
append session job with a File daemon. The End Session Record is
distinguished by a FileIndex with a value of minus two (-2). This
record is useful for detecting the end of a particular session since no
records with the same VolSessionId and VolSessionTime will follow
this record. This record is not normally visible outside of the Storage
daemon. The End Session Label is similar to the Volume Label except
that it contains additional information pertaining to the Session.

34

Storage Daemon File Output Format

The file storage and tape storage formats are identical except that tape
records are by default blocked into blocks of 64,512 bytes, except for the
last block, which is the actual number of bytes written rounded up to a
multiple of 1024 whereas the last record of file storage is not rounded up.
The default block size of 64,512 bytes may be overridden by the user (some
older tape drives only support block sizes of 32K). Each Session written to
tape is terminated with an End of File mark (this will be removed later).
Sessions written to file are simply appended to the end of the file.

Overall Format

A Bacula output file consists of Blocks of data. Each block contains a block
header followed by records. Each record consists of a record header followed
by the record data. The first record on a tape will always be the Volume
Label Record.

No Record Header will be split across Bacula blocks. However, Record Data
may be split across any number of Bacula blocks. Obviously this will not be
the case for the Volume Label which will always be smaller than the Bacula
Block size.

To simplify reading tapes, the Start of Session (SOS) and End of Session
(EOS) records are never split across blocks. If this is about to happen,
Bacula will write a short block before writing the session record (actually, the
SOS record should always be the first record in a block, excepting perhaps
the Volume label).

Due to hardware limitations, the last block written to the tape may not be
fully written. If your drive permits backspace record, Bacula will backup
over the last record written on the tape, re-read it and verify that it was
correctly written.

When a new tape is mounted Bacula will write the full contents of the
partially written block to the new tape ensuring that there is no loss of
data. When reading a tape, Bacula will discard any block that is not totally
written, thus ensuring that there is no duplication of data. In addition, since
Bacula blocks are sequentially numbered within a Job, it is easy to ensure
that no block is missing or duplicated.

35

Serialization

All Block Headers, Record Headers, and Label Records are written using
Bacula’s serialization routines. These routines guarantee that the data is
written to the output volume in a machine independent format.

Block Header

The format of the Block Header (version 1.27 and later) is:

uint32_t CheckSum; /* Block check sum */

uint32_t BlockSize; /* Block byte size including the header */

uint32_t BlockNumber; /* Block number */

char ID[4] = "BB02"; /* Identification and block level */

uint32_t VolSessionId; /* Session Id for Job */

uint32_t VolSessionTime; /* Session Time for Job */

The Block header is a fixed length and fixed format and is followed by
Record Headers and Record Data. The CheckSum field is a 32 bit checksum
of the block data and the block header but not including the CheckSum
field. The Block Header is always immediately followed by a Record Header.
If the tape is damaged, a Bacula utility will be able to recover as much
information as possible from the tape by recovering blocks which are valid.
The Block header is written using the Bacula serialization routines and thus
is guaranteed to be in machine independent format. See below for version 2
of the block header.

Record Header

Each binary data record is preceded by a Record Header. The Record Header
is fixed length and fixed format, whereas the binary data record is of variable
length. The Record Header is written using the Bacula serialization routines
and thus is guaranteed to be in machine independent format.

The format of the Record Header (version 1.27 or later) is:

int32_t FileIndex; /* File index supplied by File daemon */

int32_t Stream; /* Stream number supplied by File daemon */

uint32_t DataSize; /* size of following data record in bytes */

This record is followed by the binary Stream data of DataSize bytes, followed

36

by another Record Header record and the binary stream data. For the
definitive definition of this record, see record.h in the src/stored directory.

Additional notes on the above:

The VolSessionId is a unique sequential number that is assigned by the
Storage Daemon to a particular Job. This number is sequential since
the start of execution of the daemon.

The VolSessionTime is the time/date that the current execution of the
Storage Daemon started. It assures that the combination of VolSes-
sionId and VolSessionTime is unique for every jobs written to the tape,
even if there was a machine crash between two writes.

The FileIndex is a sequential file number within a job. The Storage
daemon requires this index to be greater than zero and sequential.
Note, however, that the File daemon may send multiple Streams for
the same FileIndex. In addition, the Storage daemon uses negative
FileIndices to hold the Begin Session Label, the End Session Label,
and the End of Volume Label.

The Stream is defined by the File daemon and is used to identify sep-
arate parts of the data saved for each file (Unix attributes, Win32
attributes, file data, compressed file data, sparse file data, ...). The
Storage Daemon has no idea of what a Stream is or what it contains
except that the Stream is required to be a positive integer. Negative
Stream numbers are used internally by the Storage daemon to indicate
that the record is a continuation of the previous record (the previous
record would not entirely fit in the block).

For Start Session and End Session Labels (where the FileIndex is neg-
ative), the Storage daemon uses the Stream field to contain the JobId.
The current stream definitions are:

STREAM_UNIX_ATTRIBUTES 1 /* Generic Unix attributes */

STREAM_FILE_DATA 2 /* Standard uncompressed data */

STREAM_MD5_SIGNATURE 3 /* MD5 signature for the file */

STREAM_GZIP_DATA 4 /* GZip compressed file data */

STREAM_WIN32_ATTRIBUTES 5 /* Windows attributes (superset of Unix) */

STREAM_SPARSE_DATA 6 /* Sparse data stream */

STREAM_SPARSE_GZIP_DATA 7 /* Sparse data stream compressed by GZIP */

STREAM_PROGRAM_NAMES 8 /* program names for program data */

STREAM_PROGRAM_DATA 9 /* Data needing program */

STREAM_SHA1_SIGNATURE 10 /* SHA1 signature for the file */

STREAM_WIN32_DATA 11 /* Win32 BackupRead data */

STREAM_WIN32_GZIP_DATA 12 /* Gzipped Win32 BackupRead data */

37

The DataSize is the size in bytes of the binary data record that follows
the Session Record header. The Storage Daemon has no idea of the
actual contents of the binary data record. For standard Unix files, the
data record typically contains the file attributes or the file data. For a
sparse file the first 64 bits of the file data contains the storage address
for the data block.

The Record Header is never split across two blocks. If there is not enough
room in a block for the full Record Header, the block is padded to the end
with zeros and the Record Header begins in the next block. The data record,
on the other hand, may be split across multiple blocks and even multiple
physical volumes. When a data record is split, the second (and possibly
subsequent) piece of the data is preceded by a new Record Header. Thus
each piece of data is always immediately preceded by a Record Header.
When reading a record, if Bacula finds only part of the data in the first
record, it will automatically read the next record and concatenate the data
record to form a full data record.

Version BB02 Block Header

Each session or Job has its own private block. As a consequence, the Ses-
sionId and SessionTime are written once in each Block Header and not in
the Record Header. So, the second and current version of the Block Header
BB02 is:

uint32_t CheckSum; /* Block check sum */

uint32_t BlockSize; /* Block byte size including the header */

uint32_t BlockNumber; /* Block number */

char ID[4] = "BB02"; /* Identification and block level */

uint32_t VolSessionId; /* Applies to all records */

uint32_t VolSessionTime; /* contained in this block */

As with the previous version, the BB02 Block header is a fixed length and
fixed format and is followed by Record Headers and Record Data. The
CheckSum field is a 32 bit CRC checksum of the block data and the block
header but not including the CheckSum field. The Block Header is always
immediately followed by a Record Header. If the tape is damaged, a Bacula
utility will be able to recover as much information as possible from the tape
by recovering blocks which are valid. The Block header is written using
the Bacula serialization routines and thus is guaranteed to be in machine
independent format.

38

Version 2 Record Header

Version 2 Record Header is written to the medium when using Version BB02
Block Headers. The memory representation of the record is identical to the
old BB01 Record Header, but on the storage medium, the first two fields,
namely VolSessionId and VolSessionTime are not written. The Block Header
is filled with these values when the First user record is written (i.e. non label
record) so that when the block is written, it will have the current and unique
VolSessionId and VolSessionTime. On reading each record from the Block,
the VolSessionId and VolSessionTime is filled in the Record Header from the
Block Header.

Volume Label Format

Tape volume labels are created by the Storage daemon in response to a
label command given to the Console program, or alternatively by the btape
program. created. Each volume is labeled with the following information
using the Bacula serialization routines, which guarantee machine byte order
independence.

For Bacula versions 1.27 and later, the Volume Label Format is:

char Id[32]; /* Bacula 1.0 Immortal\n */

uint32_t VerNum; /* Label version number */

/* VerNum 11 and greater Bacula 1.27 and later */

btime_t label_btime; /* Time/date tape labeled */

btime_t write_btime; /* Time/date tape first written */

/* The following are 0 in VerNum 11 and greater */

float64_t write_date; /* Date this label written */

float64_t write_time; /* Time this label written */

char VolName[128]; /* Volume name */

char PrevVolName[128]; /* Previous Volume Name */

char PoolName[128]; /* Pool name */

char PoolType[128]; /* Pool type */

char MediaType[128]; /* Type of this media */

char HostName[128]; /* Host name of writing computer */

char LabelProg[32]; /* Label program name */

char ProgVersion[32]; /* Program version */

char ProgDate[32]; /* Program build date/time */

Note, the LabelType (Volume Label, Volume PreLabel, Session Start Label,
...) is stored in the record FileIndex field of the Record Header and does
not appear in the data part of the record.

39

Session Label

The Session Label is written at the beginning and end of each session as
well as the last record on the physical medium. It has the following binary
format:

char Id[32]; /* Bacula Immortal ... */

uint32_t VerNum; /* Label version number */

uint32_t JobId; /* Job id */

uint32_t VolumeIndex; /* sequence no of vol */

/* Prior to VerNum 11 */

float64_t write_date; /* Date this label written */

/* VerNum 11 and greater */

btime_t write_btime; /* time/date record written */

/* The following is zero VerNum 11 and greater */

float64_t write_time; /* Time this label written */

char PoolName[128]; /* Pool name */

char PoolType[128]; /* Pool type */

char JobName[128]; /* base Job name */

char ClientName[128];

/* Added in VerNum 10 */

char Job[128]; /* Unique Job name */

char FileSetName[128]; /* FileSet name */

uint32_t JobType;

uint32_t JobLevel;

In addition, the EOS label contains:

/* The remainder are part of EOS label only */

uint32_t JobFiles;

uint64_t JobBytes;

uint32_t start_block;

uint32_t end_block;

uint32_t start_file;

uint32_t end_file;

uint32_t JobErrors;

In addition, for VerNum greater than 10, the EOS label contains (in addition
to the above):

uint32_t JobStatus /* Job termination code */

: Note, the LabelType (Volume Label, Volume PreLabel, Session Start La-
bel, ...) is stored in the record FileIndex field and does not appear in the
data part of the record. Also, the Stream field of the Record Header con-
tains the JobId. This permits quick filtering without actually reading all
the session data in many cases.

40

Overall Storage Format

Current Bacula Tape Format

6 June 2001

Version BB02 added 28 September 2002

Version BB01 is the old deprecated format.

A Bacula tape is composed of tape Blocks. Each block

has a Block header followed by the block data. Block

Data consists of Records. Records consist of Record

Headers followed by Record Data.

:===:

| |

| Block Header (24 bytes) |

| |

|---|

| |

| Record Header (12 bytes) |

| |

|---|

| |

| Record Data |

| |

|---|

| |

| Record Header (12 bytes) |

| |

|---|

| |

| ... |

Block Header: the first item in each block. The format is

shown below.

Partial Data block: occurs if the data from a previous

block spills over to this block (the normal case except

for the first block on a tape). However, this partial

data block is always preceded by a record header.

Record Header: identifies the Volume Session, the Stream

and the following Record Data size. See below for format.

Record data: arbitrary binary data.

Block Header Format BB02

:===:

| CheckSum (uint32_t) |

|---|

| BlockSize (uint32_t) |

|---|

| BlockNumber (uint32_t) |

|---|

| "BB02" (char [4]) |

|---|

| VolSessionId (uint32_t) |

|---|

| VolSessionTime (uint32_t) |

:===:

BBO2: Serves to identify the block as a

41

Bacula block and also servers as a block format identifier

should we ever need to change the format.

BlockSize: is the size in bytes of the block. When reading

back a block, if the BlockSize does not agree with the

actual size read, Bacula discards the block.

CheckSum: a checksum for the Block.

BlockNumber: is the sequential block number on the tape.

VolSessionId: a unique sequential number that is assigned

by the Storage Daemon to a particular Job.

This number is sequential since the start

of execution of the daemon.

VolSessionTime: the time/date that the current execution

of the Storage Daemon started. It assures

that the combination of VolSessionId and

VolSessionTime is unique for all jobs

written to the tape, even if there was a

machine crash between two writes.

Record Header Format BB02

:===:

| FileIndex (int32_t) |

|---|

| Stream (int32_t) |

|---|

| DataSize (uint32_t) |

:===:

FileIndex: a sequential file number within a job. The

Storage daemon enforces this index to be

greater than zero and sequential. Note,

however, that the File daemon may send

multiple Streams for the same FileIndex.

The Storage Daemon uses negative FileIndices

to identify Session Start and End labels

as well as the End of Volume labels.

Stream: defined by the File daemon and is intended to be

used to identify separate parts of the data

saved for each file (attributes, file data,

...). The Storage Daemon has no idea of

what a Stream is or what it contains.

DataSize: the size in bytes of the binary data record

that follows the Session Record header.

The Storage Daemon has no idea of the

actual contents of the binary data record.

For standard Unix files, the data record

typically contains the file attributes or

the file data. For a sparse file

the first 64 bits of the data contains

the storage address for the data block.

Volume Label

:===:

| Id (32 bytes) |

|---|

| VerNum (uint32_t) |

|---|

| label_date (float64_t) |

42

| label_btime (btime_t VerNum 11 |

|---|

| label_time (float64_t) |

| write_btime (btime_t VerNum 11 |

|---|

| write_date (float64_t) |

| 0 (float64_t) VerNum 11 |

|---|

| write_time (float64_t) |

| 0 (float64_t) VerNum 11 |

|---|

| VolName (128 bytes) |

|---|

| PrevVolName (128 bytes) |

|---|

| PoolName (128 bytes) |

|---|

| PoolType (128 bytes) |

|---|

| MediaType (128 bytes) |

|---|

| HostName (128 bytes) |

|---|

| LabelProg (32 bytes) |

|---|

| ProgVersion (32 bytes) |

|---|

| ProgDate (32 bytes) |

|---|

:===:

Id: 32 byte Bacula identifier "Bacula 1.0 immortal\n"

(old version also recognized:)

Id: 32 byte Bacula identifier "Bacula 0.9 mortal\n"

LabelType (Saved in the FileIndex of the Header record).

PRE_LABEL -1 Volume label on unwritten tape

VOL_LABEL -2 Volume label after tape written

EOM_LABEL -3 Label at EOM (not currently implemented)

SOS_LABEL -4 Start of Session label (format given below)

EOS_LABEL -5 End of Session label (format given below)

VerNum: 11

label_date: Julian day tape labeled

label_time: Julian time tape labeled

write_date: Julian date tape first used (data written)

write_time: Julian time tape first used (data written)

VolName: "Physical" Volume name

PrevVolName: The VolName of the previous tape (if this tape is

a continuation of the previous one).

PoolName: Pool Name

PoolType: Pool Type

MediaType: Media Type

HostName: Name of host that is first writing the tape

LabelProg: Name of the program that labeled the tape

ProgVersion: Version of the label program

43

ProgDate: Date Label program built

Session Label

:===:

| Id (32 bytes) |

|---|

| VerNum (uint32_t) |

|---|

| JobId (uint32_t) |

|---|

| write_btime (btime_t) VerNum 11 |

|---|

| 0 (float64_t) VerNum 11 |

|---|

| PoolName (128 bytes) |

|---|

| PoolType (128 bytes) |

|---|

| JobName (128 bytes) |

|---|

| ClientName (128 bytes) |

|---|

| Job (128 bytes) |

|---|

| FileSetName (128 bytes) |

|---|

| JobType (uint32_t) |

|---|

| JobLevel (uint32_t) |

|---|

| FileSetMD5 (50 bytes) VerNum 11 |

|---|

Additional fields in End Of Session Label

|---|

| JobFiles (uint32_t) |

|---|

| JobBytes (uint32_t) |

|---|

| start_block (uint32_t) |

|---|

| end_block (uint32_t) |

|---|

| start_file (uint32_t) |

|---|

| end_file (uint32_t) |

|---|

| JobErrors (uint32_t) |

|---|

| JobStatus (uint32_t) VerNum 11 |

:===:

* => fields deprecated

Id: 32 byte Bacula Identifier "Bacula 1.0 immortal\n"

LabelType (in FileIndex field of Header):

EOM_LABEL -3 Label at EOM

SOS_LABEL -4 Start of Session label

44

EOS_LABEL -5 End of Session label

VerNum: 11

JobId: JobId

write_btime: Bacula time/date this tape record written

write_date: Julian date tape this record written - deprecated

write_time: Julian time tape this record written - deprecated.

PoolName: Pool Name

PoolType: Pool Type

MediaType: Media Type

ClientName: Name of File daemon or Client writing this session

Not used for EOM_LABEL.

Unix File Attributes

The Unix File Attributes packet consists of the following:

<File-Index> <Type> <Filename>@<File-Attributes>@<Link>

@<Extended-Attributes@> where

@ represents a byte containing a binary zero.

FileIndex is the sequential file index starting from one assigned by the File
daemon.

Type is one of the following:

#define FT_LNKSAVED 1 /* hard link to file already saved */

#define FT_REGE 2 /* Regular file but empty */

#define FT_REG 3 /* Regular file */

#define FT_LNK 4 /* Soft Link */

#define FT_DIR 5 /* Directory */

#define FT_SPEC 6 /* Special file -- chr, blk, fifo, sock */

#define FT_NOACCESS 7 /* Not able to access */

#define FT_NOFOLLOW 8 /* Could not follow link */

#define FT_NOSTAT 9 /* Could not stat file */

#define FT_NOCHG 10 /* Incremental option, file not changed */

#define FT_DIRNOCHG 11 /* Incremental option, directory not changed */

#define FT_ISARCH 12 /* Trying to save archive file */

#define FT_NORECURSE 13 /* No recursion into directory */

#define FT_NOFSCHG 14 /* Different file system, prohibited */

#define FT_NOOPEN 15 /* Could not open directory */

#define FT_RAW 16 /* Raw block device */

#define FT_FIFO 17 /* Raw fifo device */

Filename is the fully qualified filename.

File-Attributes consists of the 13 fields of the stat() buffer in ASCII
base64 format separated by spaces. These fields and their meanings

45

are shown below. This stat() packet is in Unix format, and MUST be
provided (constructed) for ALL systems.

Link when the FT code is FT LNK or FT LNKSAVED, the item in ques-
tion is a Unix link, and this field contains the fully qualified link name.
When the FT code is not FT LNK or FT LNKSAVED, this field is
null.

Extended-Attributes The exact format of this field is operating sys-
tem dependent. It contains additional or extended attributes of
a system dependent nature. Currently, this field is used only on
WIN32 systems where it contains a ASCII base64 representation of
the WIN32 FILE ATTRIBUTE DATA structure as defined by Win-
dows. The fields in the base64 representation of this structure are like
the File-Attributes separated by spaces.

The File-attributes consist of the following:

Field No. Stat Name Unix Win98/NT MacOS

1 st dev Device number
of filesystem

Drive number vRefNum

2 st ino Inode number Always 0 fileID/dirID

3 st mode File mode File mode 777 dirs/apps; 666
docs; 444 locked docs

4 st nlink Number of
links to the file

Number of
link (only on
NTFS)

Always 1

5 st uid Owner ID Always 0 Always 0

6 st gid Group ID Always 0 Always 0

7 st rdev Device ID for
special files

Drive No. Always 0

8 st size File size in
bytes

File size in
bytes

Data fork file size in
bytes

9 st blksize Preferred block
size

Always 0 Preferred block size

10 st blocks Number of
blocks allo-
cated

Always 0 Number of blocks al-
located

11 st atime Last access
time since
epoch

Last access
time since
epoch

Last access time -66
years

46

12 st mtime Last modify
time since
epoch

Last modify
time since
epoch

Last access time -66
years

13 st ctime Inode change
time since
epoch

File create
time since
epoch

File create time -66
years

Old Depreciated Tape Format

The format of the Block Header (version 1.26 and earlier) is:

uint32_t CheckSum; /* Block check sum */

uint32_t BlockSize; /* Block byte size including the header */

uint32_t BlockNumber; /* Block number */

char ID[4] = "BB01"; /* Identification and block level */

The format of the Record Header (version 1.26 or earlier) is:

uint32_t VolSessionId; /* Unique ID for this session */

uint32_t VolSessionTime; /* Start time/date of session */

int32_t FileIndex; /* File index supplied by File daemon */

int32_t Stream; /* Stream number supplied by File daemon */

uint32_t DataSize; /* size of following data record in bytes */

Current Bacula Tape Format

6 June 2001

Version BB01 is the old deprecated format.

A Bacula tape is composed of tape Blocks. Each block

has a Block header followed by the block data. Block

Data consists of Records. Records consist of Record

Headers followed by Record Data.

:===:

| |

| Block Header |

| (16 bytes version BB01) |

|---|

| |

| Record Header |

| (20 bytes version BB01) |

|---|

| |

| Record Data |

| |

|---|

| |

47

| Record Header |

| (20 bytes version BB01) |

|---|

| |

| ... |

Block Header: the first item in each block. The format is

shown below.

Partial Data block: occurs if the data from a previous

block spills over to this block (the normal case except

for the first block on a tape). However, this partial

data block is always preceded by a record header.

Record Header: identifies the Volume Session, the Stream

and the following Record Data size. See below for format.

Record data: arbitrary binary data.

Block Header Format BB01 (deprecated)

:===:

| CheckSum (uint32_t) |

|---|

| BlockSize (uint32_t) |

|---|

| BlockNumber (uint32_t) |

|---|

| "BB01" (char [4]) |

:===:

BBO1: Serves to identify the block as a

Bacula block and also servers as a block format identifier

should we ever need to change the format.

BlockSize: is the size in bytes of the block. When reading

back a block, if the BlockSize does not agree with the

actual size read, Bacula discards the block.

CheckSum: a checksum for the Block.

BlockNumber: is the sequential block number on the tape.

VolSessionId: a unique sequential number that is assigned

by the Storage Daemon to a particular Job.

This number is sequential since the start

of execution of the daemon.

VolSessionTime: the time/date that the current execution

of the Storage Daemon started. It assures

that the combination of VolSessionId and

VolSessionTime is unique for all jobs

written to the tape, even if there was a

machine crash between two writes.

Record Header Format BB01 (deprecated)

:===:

| VolSessionId (uint32_t) |

|---|

| VolSessionTime (uint32_t) |

|---|

| FileIndex (int32_t) |

|---|

| Stream (int32_t) |

|---|

| DataSize (uint32_t) |

:===:

48

VolSessionId: a unique sequential number that is assigned

by the Storage Daemon to a particular Job.

This number is sequential since the start

of execution of the daemon.

VolSessionTime: the time/date that the current execution

of the Storage Daemon started. It assures

that the combination of VolSessionId and

VolSessionTime is unique for all jobs

written to the tape, even if there was a

machine crash between two writes.

FileIndex: a sequential file number within a job. The

Storage daemon enforces this index to be

greater than zero and sequential. Note,

however, that the File daemon may send

multiple Streams for the same FileIndex.

The Storage Daemon uses negative FileIndices

to identify Session Start and End labels

as well as the End of Volume labels.

Stream: defined by the File daemon and is intended to be

used to identify separate parts of the data

saved for each file (attributes, file data,

...). The Storage Daemon has no idea of

what a Stream is or what it contains.

DataSize: the size in bytes of the binary data record

that follows the Session Record header.

The Storage Daemon has no idea of the

actual contents of the binary data record.

For standard Unix files, the data record

typically contains the file attributes or

the file data. For a sparse file

the first 64 bits of the data contains

the storage address for the data block.

Volume Label

:===:

| Id (32 bytes) |

|---|

| VerNum (uint32_t) |

|---|

| label_date (float64_t) |

|---|

| label_time (float64_t) |

|---|

| write_date (float64_t) |

|---|

| write_time (float64_t) |

|---|

| VolName (128 bytes) |

|---|

| PrevVolName (128 bytes) |

|---|

| PoolName (128 bytes) |

|---|

| PoolType (128 bytes) |

|---|

49

| MediaType (128 bytes) |

|---|

| HostName (128 bytes) |

|---|

| LabelProg (32 bytes) |

|---|

| ProgVersion (32 bytes) |

|---|

| ProgDate (32 bytes) |

|---|

:===:

Id: 32 byte Bacula identifier "Bacula 1.0 immortal\n"

(old version also recognized:)

Id: 32 byte Bacula identifier "Bacula 0.9 mortal\n"

LabelType (Saved in the FileIndex of the Header record).

PRE_LABEL -1 Volume label on unwritten tape

VOL_LABEL -2 Volume label after tape written

EOM_LABEL -3 Label at EOM (not currently implemented)

SOS_LABEL -4 Start of Session label (format given below)

EOS_LABEL -5 End of Session label (format given below)

label_date: Julian day tape labeled

label_time: Julian time tape labeled

write_date: Julian date tape first used (data written)

write_time: Julian time tape first used (data written)

VolName: "Physical" Volume name

PrevVolName: The VolName of the previous tape (if this tape is

a continuation of the previous one).

PoolName: Pool Name

PoolType: Pool Type

MediaType: Media Type

HostName: Name of host that is first writing the tape

LabelProg: Name of the program that labeled the tape

ProgVersion: Version of the label program

ProgDate: Date Label program built

Session Label

:===:

| Id (32 bytes) |

|---|

| VerNum (uint32_t) |

|---|

| JobId (uint32_t) |

|---|

| *write_date (float64_t) VerNum 10 |

|---|

| *write_time (float64_t) VerNum 10 |

|---|

| PoolName (128 bytes) |

|---|

| PoolType (128 bytes) |

|---|

| JobName (128 bytes) |

|---|

| ClientName (128 bytes) |

50

|---|

| Job (128 bytes) |

|---|

| FileSetName (128 bytes) |

|---|

| JobType (uint32_t) |

|---|

| JobLevel (uint32_t) |

|---|

| FileSetMD5 (50 bytes) VerNum 11 |

|---|

Additional fields in End Of Session Label

|---|

| JobFiles (uint32_t) |

|---|

| JobBytes (uint32_t) |

|---|

| start_block (uint32_t) |

|---|

| end_block (uint32_t) |

|---|

| start_file (uint32_t) |

|---|

| end_file (uint32_t) |

|---|

| JobErrors (uint32_t) |

|---|

| JobStatus (uint32_t) VerNum 11 |

:===:

* => fields deprecated

Id: 32 byte Bacula Identifier "Bacula 1.0 immortal\n"

LabelType (in FileIndex field of Header):

EOM_LABEL -3 Label at EOM

SOS_LABEL -4 Start of Session label

EOS_LABEL -5 End of Session label

VerNum: 11

JobId: JobId

write_btime: Bacula time/date this tape record written

write_date: Julian date tape this record written - deprecated

write_time: Julian time tape this record written - deprecated.

PoolName: Pool Name

PoolType: Pool Type

MediaType: Media Type

ClientName: Name of File daemon or Client writing this session

Not used for EOM_LABEL.

51

Bacula Porting Notes

This document is intended mostly for developers who wish to port Bacula
to a system that is not officially supported.

It is hoped that Bacula clients will eventually run on every imaginable system
that needs backing up (perhaps even a Palm). It is also hoped that the
Bacula Directory and Storage daemons will run on every system capable of
supporting them.

Porting Requirements

In General, the following holds true:

• Bacula has been compiled and run on Linux RedHat, FreeBSD, and
Solaris systems.

• In addition, clients exist on Win32 (Cygwin), and Irix

• It requires GNU C++ to compile. You can try with other compilers,
but you are on your own. The Irix client is built with the Irix complier,
but, in general, you will need GNU.

• Your compiler must provide support for 64 bit signed and unsigned
integers.

• You will need a recent copy of the autoconf tools loaded on your sys-
tem (version 2.13 or later). The autoconf tools are used to build the
configuration program, but are not part of the Bacula source distribu-
tion.

• There are certain third party packages that Bacula needs. Except for
MySQL, they can all be found in the depkgs and depkgs1 releases.

• If you want to build the Win32 binaries, you will need the full Cygwin
1.5.5 release. Although all components build (console has some warn-
ings), only the File daemon has been tested. Please note that if you
attempt to build Bacula on any other version of Cygwin, particularly
previous versions, you will be on your own.

• Bacula requires a good implementation of pthreads to work.

• The source code has been written with portability in mind and is
mostly POSIX compatible. Thus porting to any POSIX compatible
operating system should be relatively easy.

52

Steps to Take for Porting

• The first step is to ensure that you have version 2.13 or later of the
autoconf tools loaded. You can skip this step, but making changes
to the configuration program will be difficult or impossible.

• The run a ./configure command in the main source directory and
examine the output. It should look something like the following:

Configuration on Mon Oct 28 11:42:27 CET 2002:

Host: i686-pc-linux-gnu -- redhat 7.3

Bacula version: 1.27 (26 October 2002)

Source code location: .

Install binaries: /sbin

Install config files: /etc/bacula

C Compiler: gcc

C++ Compiler: c++

Compiler flags: -g -O2

Linker flags:

Libraries: -lpthread

Statically Linked Tools: no

Database found: no

Database type: Internal

Database lib:

Job Output Email: root@localhost

Traceback Email: root@localhost

SMTP Host Address: localhost

Director Port 9101

File daemon Port 9102

Storage daemon Port 9103

Working directory /etc/bacula/working

SQL binaries Directory

Large file support: yes

readline support: yes

cweb support: yes /home/kern/bacula/depkgs/cweb

TCP Wrappers support: no

ZLIB support: yes

enable-smartalloc: yes

enable-gnome: no

gmp support: yes

The details depend on your system. The first thing to check is that it
properly identified your host on the Host: line. The first part (added
in version 1.27) is the GNU four part identification of your system.
The part after the – is your system and the system version. Generally,
if your system is not yet supported, you must correct these.

• If the ./configure does not function properly, you must determine the
cause and fix it. Generally, it will be because some required system
routine is not available on your machine.

53

• To correct problems with detection of your system type or
with routines and libraries, you must edit the file <bacula-
src>/autoconf/configure.in. This is the “source” from
which configure is built. In general, most of the changes
for your system will be made in autoconf/aclocal.m4
in the routine BA CHECK OPSYS or in the routine
BA CHECK OPSYS DISTNAME. I have already added
the necessary code for most systems, but if yours shows up as un-
known you will need to make changes. Then as mentioned above, you
will need to set a number of system dependent items in configure.in
in the case statement at approximately line 1050 (depending on the
Bacula release).

• The items to in the case statement that corresponds to your system
are the following:

– DISTVER – set to the version of your operating system. Typi-
cally some form of uname obtains it.

– TAPEDRIVE – the default tape drive. Not too important as the
user can set it as an option.

– PSCMD – set to the ps command that will provide the PID in
the first field and the program name in the second field. If this is
not set properly, the bacula stop script will most likely not be
able to stop Bacula in all cases.

– hostname – command to return the base host name (non-
qualified) of your system. This is generally the machine name.
Not too important as the user can correct this in his configuration
file.

– CFLAGS – set any special compiler flags needed. Many systems
need a special flag to make pthreads work. See cygwin for an
example.

– LDFLAGS – set any special loader flags. See cygwin for an ex-
ample.

– PTHREAD LIB – set for any special pthreads flags needed during
linking. See freebsd as an example.

– lld – set so that a “long long int” will be properly edited in a
printf() call.

– llu – set so that a “long long unsigned” will be properly edited in
a printf() call.

– PFILES – set to add any files that you may define is your platform
subdirectory. These files are used for installation of automatic
system startup of Bacula daemons.

54

• To rebuild a new version of configure from a changed auto-
conf/configure.in you enter make configure in the top level Bacula
source directory. You must have done a ./configure prior to trying to
rebuild the configure script or it will get into an infinite loop.

• If the make configure gets into an infinite loop, ctl-c it, then do
./configure (no options are necessary) and retry the make config-
ure, which should now work.

• To rebuild configure you will need to have autoconf version 2.57-
3 or higher loaded. Older versions of autoconf will complain about
unknown or bad options, and won’t work.

• After you have a working configure script, you may need to make a
few system dependent changes to the way Bacula works. Generally,
these are done in src/baconfig.h. You can find a few examples of
system dependent changes toward the end of this file. For example,
on Irix systems, there is no definition for socklen t, so it is made in
this file. If your system has structure alignment requirements, check
the definition of BALIGN in this file. Currently, all Bacula allocated
memory is aligned on a double boundary.

• If you are having problems with Bacula’s type definitions, you might
look at src/bc types.h where all the types such as uint32 t,
uint64 t, etc. that Bacula uses are defined.

55

Bacula Regression Testing

General

This document is intended mostly for developers who wish to ensure that
their changes to Bacula don’t introduce bugs in the base code.

You can find the existing regression script in the Bacula CVS on the Source-
Forge CVS in the project tree named regress.

There are two different aspects of regression testing that this document will
discuss: 1. Running the Regression Script, 2. Writing a Regression test.

Running the Regression Script

There are a number of different tests that may be run, such as: the standard
set that uses disk Volumes and runs under any userid; a small set of tests
that write to tape; another set of tests where you must be root to run them.
To date, each subset of tests runs no more than about 15 minutes.

Setting the Configuration Parameters

Once you have the regression directory loaded, you will first need to create a
custom xxx.conf file for your system. You can either edit prototype.conf
directly or copy it to a new file and edit it. To see a real example of a
configuration file, look at kern.conf. The variables you need to modify are:

Where to get the source to be tested

BACULA_SOURCE="${HOME}/bacula/k"

Where to send email !!!! Change me !!!!!!!

EMAIL=your-email@domain.com

Full path where to find sqlite

DEPKGS="${HOME}/bacula/depkgs/sqlite"

TAPE_DRIVE="/dev/nst0"

if you don’t have an autochanger set

AUTOCHANGER to /dev/null

AUTOCHANGER="/dev/sg0"

This must be the path to the autochanger

including its name

AUTOCHANGER_PATH="/bin/mtx"

56

• BACULA SOURCE should be the full path to the Bacula source
code that you wish to test.

• EMAIL should be your email addres. Please remember to change
this or I will get a flood of unwanted messages. You may or may not
want to see these emails. In my case, I don’t need them so I direct it
to the bit bucket.

• SQLITE DIR should be the full path to the sqlite package, must be
build before running a Bacula regression, if you are using SQLite. This
variable is ignored if you are using MySQL or PostgreSQL. To use Post-
greSQL, edit the Makefile and change (or add) WHICHDB?=“--with-
postgresql”. For MySQL use “WHICHDB?=”--with-mysql“.

• TAPE DRIVE is the full path to your tape drive. The base set of
regression tests do not use a tape, so this is only important if you want
to run the full tests.

• AUTOCHANGER is the name of your autochanger device. Set this
to /dev/null if you do not have one.

• AUTOCHANGER PATH is the full path including the program
name for your autochanger program (normally mtx. Leave the default
value if you do not have one.

Building the Test Bacula

Once the above variables are set, you can build Bacula by entering:

./config xxx.conf

make setup

Where xxx.conf is the name of the conf file containing your system pa-
rameters. This will build a Makefile from Makefile.in, then copy the source
code within the regression tree (in directory regress/build), configure it, and
build it. There should be no errors. If there are, please correct them before
continuing.

57

Running the Disk Only Regression

Once Bacula is built, you can run the basic disk only non-root regression
test by entering:

make test

This will run the base set of tests using disk Volumes, currently (19 Dec
2003), there are current 18 separate tests that run. If you are testing on
a non-Linux machine two of the tests will not be run. In any case, as we
add new tests, the number will vary. It will take about 5 or 10 minutes
if you have a fast (2 GHz) machine, and you don’t need to be root to run
these tests (I run under my regular userid). The result should be something
similar to:

Test results

===== Backup Bacula Test OK =====

===== Verify Volume Test OK =====

===== sparse-test OK =====

===== compressed-test OK =====

===== sparse-compressed-test OK =====

===== Weird files test OK =====

===== two-jobs-test OK =====

===== two-vol-test OK =====

===== six-vol-test OK =====

===== bscan-test OK =====

===== Weird files2 test OK =====

===== concurrent-jobs-test OK =====

===== four-concurrent-jobs-test OK =====

===== bsr-opt-test OK =====

===== bextract-test OK =====

===== recycle-test OK =====

===== span-vol-test OK =====

===== restore-by-file-test OK =====

===== restore2-by-file-test OK =====

===== four-jobs-test OK =====

===== incremental-test OK =====

and the working tape tests are:

Test results

===== Bacula tape test OK =====

===== Small File Size test OK =====

===== restore-by-file-tape test OK =====

58

===== incremental-tape test OK =====

===== four-concurrent-jobs-tape OK =====

===== four-jobs-tape OK =====

Each separate test is self contained in that it initializes to run Bacula from
scratch (i.e. newly created database). It will also kill any Bacula session
that is currently running. In addition, it uses ports 8101, 8102, and 8103 so
that it does not intefere with a production system.

Other Tests

There are a number of other tests that can be run as well. All the tests are
a simply shell script keep in the regress directory. For example the ”make
test“ simply executes ./all-non-root-tests. The other tests are:

all non-root-tests All non-tape tests not requiring root. This is the stan-
dard set of tests, that in general, backup some data, then restore it,
and finally compares the restored data with the original data.

all-root-tests All non-tape tests requiring root permission. These are a
relatively small number of tests that require running as root. The
amount of data backed up can be quite large. For example, one test
backs up /usr, another backs up /etc. One or more of these tests
reports an error – I’ll fix it one day.

all-non-root-tape-tests All tape test not requiring root. There are cur-
rently three tests, all run without being root, and backup to a tape.
The first two tests use one volume, and the third test requires an au-
tochanger, and uses two volumes. If you don’t have an autochanger,
then this script will probably produce an error.

all-tape-and-file-tests All tape and file tests not requiring root. This
includes just about everything, and I don’t run it very often.

If a Test Fails

If you one or more tests fail, the line output will be similar to:

!!!!! concurrent-jobs-test failed!!! !!!!!

If you want to determine why the test failed, you will need to modify the
script so that it prints. Do so by finding the file in regress/tests that

59

corresponds to the name printed. For example, the script for the above
error message is in: regress/tests/concurrent-jobs-test.

In order to see the output produced by Bacula, you need only change the
lines that start with @output to @tee, then rerun the test by hand. it is
very important to start the test from the regress directory.

To modify the test mentioned above so that you can see the output, change
every occurrence of @output to @tee in the file. In rare cases you might
need to remove the 2>&1 >/dev/null from the end of the bacula, bcon-
sole, or diff lines, but this is rare.

Writing a Regression Test

Any developer, who implements a major new feature, should write a regres-
sion test that exercises and validates the new feature. Each regression test
is a complete test by itself. It terminates any running Bacula, initializes the
database, starts Bacula, then runs the test by using the console program.

Running the Tests by Hand

You can run any individual test by hand by cd’ing to the regress directory
and entering:

tests/<test-name>

Directory Structure

The directory structure of the regression tests is:

regress - Makefile, scripts to start tests

|------ scripts - Scripts and conf files

|-------tests - All test scripts are here

|

|------------------ -- All directories below this point are used

| for testing, but are created from the

| above directories and are removed with

| "make distclean"

|

|------ bin - This is the install directory for

| Bacula to be used testing

|------ build - Where the Bacula source build tree is

60

|------ tmp - Most temp files go here

|------ working - Bacula working directory

|------ weird-files - Weird files used in two of the tests.

Adding a New Test

If you want to write a new regression test, it is best to start with one of the
existing test scripts, and modify it to do the new test.

When adding a new test, be extremely careful about adding anything to any
of the daemons’ configuration files. The reason is that it may change the
prompts that are sent to the console. For example, adding a Pool means
that the current scripts, which assume that Bacula automatically selects a
Pool, will now be presented with a new prompt, so the test will fail. If you
need to enhance the configuration files, consider making your own versions.

61

Bacula MD5 Algorithm

Command Line Message Digest Utility

This page describes md5, a command line utility usable on either Unix
or MS-DOS/Windows, which generates and verifies message digests (digital
signatures) using the MD5 algorithm. This program can be useful when
developing shell scripts or Perl programs for software installation, file com-
parison, and detection of file corruption and tampering.

Name

md5 - generate / check MD5 message digest

Synopsis

md5 [-csignature] [-u] [-dinput text — infile] [outfile]

Description

A message digest is a compact digital signature for an arbitrarily long stream
of binary data. An ideal message digest algorithm would never generate the
same signature for two different sets of input, but achieving such theoretical
perfection would require a message digest as long as the input file. Prac-
tical message digest algorithms compromise in favour of a digital signature
of modest size created with an algorithm designed to make preparation of
input text with a given signature computationally infeasible. Message di-
gest algorithms have much in common with techniques used in encryption,
but to a different end; verification that data have not been altered since the
signature was published.

Many older programs requiring digital signatures employed 16 or 32 bit cycli-

cal redundancy codes (CRC) originally developed to verify correct transmis-
sion in data communication protocols, but these short codes, while adequate
to detect the kind of transmission errors for which they were intended, are
insufficiently secure for applications such as electronic commerce and verifi-
cation of security related software distributions.

The most commonly used present-day message digest algorithm is
the 128 bit MD5 algorithm, developed by Ron Rivest of the MIT

62

http://web.mit.edu/

Laboratory for Computer Science and RSA Data Security, Inc. The algo-
rithm, with a reference implementation, was published as Internet RFC 1321
in April 1992, and was placed into the public domain at that time. Message
digest algorithms such as MD5 are not deemed “encryption technology” and
are not subject to the export controls some governments impose on other
data security products. (Obviously, the responsibility for obeying the laws
in the jurisdiction in which you reside is entirely your own, but many com-
mon Web and Mail utilities use MD5, and I am unaware of any restrictions
on their distribution and use.)

The MD5 algorithm has been implemented in numerous computer languages
including C, Perl, and Java; if you’re writing a program in such a language,
track down a suitable subroutine and incorporate it into your program. The
program described on this page is a command line implementation of MD5,
intended for use in shell scripts and Perl programs (it is much faster than
computing an MD5 signature directly in Perl). This md5 program was
originally developed as part of a suite of tools intended to monitor large
collections of files (for example, the contents of a Web site) to detect cor-
ruption of files and inadvertent (or perhaps malicious) changes. That task is
now best accomplished with more comprehensive packages such as Tripwire,
but the command line md5 component continues to prove useful for veri-
fying correct delivery and installation of software packages, comparing the
contents of two different systems, and checking for changes in specific files.

Options

-csignature Computes the signature of the specified infile or the string sup-
plied by the -d option and compares it against the specified signature.
If the two signatures match, the exit status will be zero, otherwise the
exit status will be 1. No signature is written to outfile or standard
output; only the exit status is set. The signature to be checked must
be specified as 32 hexadecimal digits.

-dinput text A signature is computed for the given input text (which must
be quoted if it contains white space characters) instead of input from
infile or standard input. If input is specified with the -d option, no
infile should be specified.

-u Print how-to-call information.

63

http://www.lcs.mit.edu/
http://www.rsa.com/
http://www.fourmilab.ch/md5/rfc1321.html
http://www.perl.org/
http://www.javasoft.com/
ftp://coast.cs.purdue.edu/pub/COAST/Tripwire/

Files

If no infile or -d option is specified or infile is a single “-”, md5 reads from
standard input; if no outfile is given, or outfile is a single “-”, output is
sent to standard output. Input and output are processed strictly serially;
consequently md5 may be used in pipelines.

Bugs

The mechanism used to set standard input to binary mode may be specific to
Microsoft C; if you rebuild the DOS/Windows version of the program from
source using another compiler, be sure to verify binary files work properly
when read via redirection or a pipe.

This program has not been tested on a machine on which int and/or long
are longer than 32 bits.

Download md5.zip (Zipped archive)

The program is provided as md5.zip, a Zipped archive containing an ready-
to-run Win32 command-line executable program, md5.exe (compiled using
Microsoft Visual C++ 5.0), and in source code form along with a Makefile

to build the program under Unix.

See Also

sum(1)

Exit Status

md5 returns status 0 if processing was completed without errors, 1 if the
-c option was specified and the given signature does not match that of the
input, and 2 if processing could not be performed at all due, for example,
to a nonexistent input file.

64

http://www.fourmilab.ch/md5/md5.zip
http://www.fourmilab.ch/md5/md5.zip
http://www.pkware.com/

Copying

This software is in the public domain. Permission to use, copy,
modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, without any con-
ditions or restrictions. This software is provided “as is” without
express or implied warranty.

Acknowledgements

The MD5 algorithm was developed by Ron Rivest. The public domain C
language implementation used in this program was written by Colin Plumb
in 1993. by John Walker January 6th, MIM

65

http://www.fourmilab.ch/

Bacula Memory Management

General

This document describes the memory management routines that are used in
Bacula and is meant to be a technical discussion for developers rather than
part of the user manual.

Since Bacula may be called upon to handle filenames of varying and more or
less arbitrary length, special attention needs to be used in the code to ensure
that memory buffers are sufficiently large. There are four possibilities for
memory usage within Bacula. Each will be described in turn. They are:

• Statically allocated memory.

• Dynamically allocated memory using malloc() and free().

• Non-pooled memory.

• Pooled memory.

Statically Allocated Memory

Statically allocated memory is of the form:

char buffer[MAXSTRING];

The use of this kind of memory is discouraged except when you are 100%
sure that the strings to be used will be of a fixed length. One example of
where this is appropriate is for Bacula resource names, which are currently
limited to 127 characters (MAX NAME LENGTH). Although this maxi-
mum size may change, particularly to accommodate Unicode, it will remain
a relatively small value.

Dynamically Allocated Memory

Dynamically allocated memory is obtained using the standard malloc() rou-
tines. As in:

char *buf;

buf = malloc(256);

66

This kind of memory can be released with:

free(buf);

It is recommended to use this kind of memory only when you are sure that
you know the memory size needed and the memory will be used for short pe-
riods of time – that is it would not be appropriate to use statically allocated
memory. An example might be to obtain a large memory buffer for reading
and writing files. When SmartAlloc is enabled, the memory obtained by
malloc() will automatically be checked for buffer overwrite (overflow) dur-
ing the free() call, and all malloc’ed memory that is not released prior to
termination of the program will be reported as Orphaned memory.

Pooled and Non-pooled Memory

In order to facility the handling of arbitrary length filenames and to effi-
ciently handle a high volume of dynamic memory usage, we have imple-
mented routines between the C code and the malloc routines. The first is
called “Pooled” memory, and is memory, which once allocated and then re-
leased, is not returned to the system memory pool, but rather retained in a
Bacula memory pool. The next request to acquire pooled memory will re-
turn any free memory block. In addition, each memory block has its current
size associated with the block allowing for easy checking if the buffer is of
sufficient size. This kind of memory would normally be used in high volume
situations (lots of malloc()s and free()s) where the buffer length may have
to frequently change to adapt to varying filename lengths.

The non-pooled memory is handled by routines similar to those used for
pooled memory, allowing for easy size checking. However, non-pooled mem-
ory is returned to the system rather than being saved in the Bacula pool.
This kind of memory would normally be used in low volume situations (few
malloc()s and free()s), but where the size of the buffer might have to be
adjusted frequently.

Types of Memory Pool: Currently there are three memory pool types:

• PM NOPOOL – non-pooled memory.

• PM FNAME – a filename pool.

• PM MESSAGE – a message buffer pool.

• PM EMSG – error message buffer pool.

67

Getting Memory: To get memory, one uses:

void *get_pool_memory(pool);

where pool is one of the above mentioned pool names. The size of the
memory returned will be determined by the system to be most appropriate
for the application.

If you wish non-pooled memory, you may alternatively call:

void *get_memory(size_t size);

The buffer length will be set to the size specified, and it will be assigned to
the PM NOPOOL pool (no pooling).

Releasing Memory: To free memory acquired by either of the above two
calls, use:

void free_pool_memory(void *buffer);

where buffer is the memory buffer returned when the memory was acquired.
If the memory was originally allocated as type PM NOPOOL, it will be
released to the system, otherwise, it will be placed on the appropriate Bacula
memory pool free chain to be used in a subsequent call for memory from
that pool.

Determining the Memory Size: To determine the memory buffer size,
use:

size_t sizeof_pool_memory(void *buffer);

Resizing Pool Memory: To resize pool memory, use:

void *realloc_pool_memory(void *buffer);

The buffer will be reallocated, and the contents of the original buffer will be
preserved, but the address of the buffer may change.

68

Automatic Size Adjustment: To have the system check and if necessary
adjust the size of your pooled memory buffer, use:

void *check_pool_memory_size(void *buffer, size_t new-size);

where new-size is the buffer length needed. Note, if the buffer is already
equal to or larger than new-size no buffer size change will occur. However,
if a buffer size change is needed, the original contents of the buffer will be
preserved, but the buffer address may change. Many of the low level Bacula
subroutines expect to be passed a pool memory buffer and use this call to
ensure the buffer they use is sufficiently large.

Releasing All Pooled Memory: In order to avoid orphaned buffer error
messages when terminating the program, use:

void close_memory_pool();

to free all unused memory retained in the Bacula memory pool. Note, any
memory not returned to the pool via free pool memory() will not be released
by this call.

Pooled Memory Statistics: For debugging purposes and performance
tuning, the following call will print the current memory pool statistics:

void print_memory_pool_stats();

an example output is:

Pool Maxsize Maxused Inuse

0 256 0 0

1 256 1 0

2 256 1 0

69

TCP/IP Network Protocol

General

This document describes the TCP/IP protocol used by Bacula to com-
municate between the various daemons and services. The definitive defi-
nition of the protocol can be found in src/lib/bsock.h, src/lib/bnet.c and
src/lib/bnet server.c.

Bacula’s network protocol is basically a “packet oriented” protocol built on
a standard TCP/IP streams. At the lowest level all packet transfers are done
with read() and write() requests on system sockets. Pipes are not used as
they are considered unreliable for large serial data transfers between various
hosts.

Using the routines described below (bnet open, bnet write, bnet recv, and
bnet close) guarantees that the number of bytes you write into the socket will
be received as a single record on the other end regardless of how many low
level write() and read() calls are needed. All data transferred are considered
to be binary data.

bnet and Threads

These bnet routines work fine in a threaded environment. However, they
assume that there is only one reader or writer on the socket at any time. It
is highly recommended that only a single thread access any BSOCK packet.
The exception to this rule is when the socket is first opened and it is waiting
for a job to start. The wait in the Storage daemon is done in one thread
and then passed to another thread for subsequent handling.

If you envision having two threads using the same BSOCK, think twice, then
you must implement some locking mechanism. However, it probably would
not be appropriate to put locks inside the bnet subroutines for efficiency
reasons.

bnet open

To establish a connection to a server, use the subroutine:

BSOCK *bnet open(void *jcr, char *host, char *service, int port, int *fatal)
bnet open(), if successful, returns the Bacula sock descriptor pointer to be
used in subsequent bnet send() and bnet read() requests. If not successful,

70

bnet open() returns a NULL. If fatal is set on return, it means that a fatal
error occurred and that you should not repeatedly call bnet open(). Any
error message will generally be sent to the JCR.

bnet send

To send a packet, one uses the subroutine:

int bnet send(BSOCK *sock) This routine is equivalent to a write() except
that it handles the low level details. The data to be sent is expected to be
in sock->msg and be sock->msglen bytes. To send a packet, bnet send()
first writes four bytes in network byte order than indicate the size of the
following data packet. It returns:

Returns 0 on failure

Returns 1 on success

In the case of a failure, an error message will be sent to the JCR contained
within the bsock packet.

bnet fsend

This form uses:

int bnet fsend(BSOCK *sock, char *format, ...) and it allows you to send a
formatted messages somewhat like fprintf(). The return status is the same
as bnet send.

Additional Error information

Fro additional error information, you can call is bnet error(BSOCK
*bsock) which will return 0 if there is no error or non-zero if there is an
error on the last transmission. The is bnet stop(BSOCK *bsock) func-
tion will return 0 if there no errors and you can continue sending. It will
return non-zero if there are errors or the line is closed (no more transmissions
should be sent).

bnet recv

To read a packet, one uses the subroutine:

71

int bnet recv(BSOCK *sock) This routine is similar to a read() except that
it handles the low level details. bnet read() first reads packet length that
follows as four bytes in network byte order. The data is read into sock-
>msg and is sock->msglen bytes. If the sock->msg is not large enough,
bnet recv() realloc() the buffer. It will return an error (-2) if maxbytes is
less than the record size sent. It returns:

* Returns number of bytes read

* Returns 0 on end of file

* Returns -1 on hard end of file (i.e. network connection close)

* Returns -2 on error

It should be noted that bnet recv() is a blocking read.

bnet sig

To send a “signal” from one daemon to another, one uses the subroutine:

int bnet sig(BSOCK *sock, SIGNAL) where SIGNAL is one of the following:

1. BNET EOF - deprecated use BNET EOD

2. BNET EOD - End of data stream, new data may follow

3. BNET EOD POLL - End of data and poll all in one

4. BNET STATUS - Request full status

5. BNET TERMINATE - Conversation terminated, doing close()

6. BNET POLL - Poll request, I’m hanging on a read

7. BNET HEARTBEAT - Heartbeat Response requested

8. BNET HB RESPONSE - Only response permitted to HB

9. BNET PROMPT - Prompt for UA

bnet strerror

Returns a formated string corresponding to the last error that occurred.

72

bnet close

The connection with the server remains open until closed by the subroutine:

void bnet close(BSOCK *sock)

Becoming a Server

The bnet open() and bnet close() routines described above are used on the
client side to establish a connection and terminate a connection with the
server. To become a server (i.e. wait for a connection from a client), use the
routine bnet thread server. The calling sequence is a bit complicated,
please refer to the code in bnet server.c and the code at the beginning of
each daemon as examples of how to call it.

Higher Level Conventions

Within Bacula, we have established the convention that any time a single
record is passed, it is sent with bnet send() and read with bnet recv(). Thus
the normal exchange between the server (S) and the client (C) are:

S: wait for connection C: attempt connection

S: accept connection C: bnet_send() send request

S: bnet_recv() wait for request

S: act on request

S: bnet_send() send ack C: bnet_recv() wait for ack

Thus a single command is sent, acted upon by the server, and then acknowl-
edged.

In certain cases, such as the transfer of the data for a file, all the information
or data cannot be sent in a single packet. In this case, the convention is that
the client will send a command to the server, who knows that more than
one packet will be returned. In this case, the server will enter a loop:

while ((n=bnet_recv(bsock)) > 0) {

act on request

}

if (n < 0)

error

The client will perform the following:

73

bnet_send(bsock);

bnet_send(bsock);

...

bnet_sig(bsock, BNET_EOD);

Thus the client will send multiple packets and signal to the server when all
the packets have been sent by sending a zero length record.

74

Smart Memory Allocation With Orphaned Buffer
Detection

Few things are as embarrassing as a program that leaks, yet few errors
are so easy to commit or as difficult to track down in a large, complicated
program as failure to release allocated memory. SMARTALLOC replaces
the standard C library memory allocation functions with versions which keep
track of buffer allocations and releases and report all orphaned buffers at
the end of program execution. By including this package in your program
during development and testing, you can identify code that loses buffers
right when it’s added and most easily fixed, rather than as part of a crisis
debugging push when the problem is identified much later in the testing
cycle (or even worse, when the code is in the hands of a customer). When
program testing is complete, simply recompiling with different flags removes
SMARTALLOC from your program, permitting it to run without speed or
storage penalties.

In addition to detecting orphaned buffers, SMARTALLOC also helps to find
other common problems in management of dynamic storage including stor-
ing before the start or beyond the end of an allocated buffer, referencing
data through a pointer to a previously released buffer, attempting to re-
lease a buffer twice or releasing storage not obtained from the allocator, and
assuming the initial contents of storage allocated by functions that do not
guarantee a known value. SMARTALLOC’s checking does not usually add
a large amount of overhead to a program (except for programs which use
realloc() extensively; see below). SMARTALLOC focuses on proper stor-
age management rather than internal consistency of the heap as checked by
the malloc debug facility available on some systems. SMARTALLOC does
not conflict with malloc debug and both may be used together, if you wish.
SMARTALLOC makes no assumptions regarding the internal structure of
the heap and thus should be compatible with any C language implementa-
tion of the standard memory allocation functions.

75

Installing SMARTALLOC

SMARTALLOC is provided as a Zipped archive, smartall.zip; see the down-
load instructions below.

To install SMARTALLOC in your program, simply add the statement:

to every C program file which calls any of the memory allocation functions
(malloc, calloc, free, etc.). SMARTALLOC must be used for all memory
allocation with a program, so include file for your entire program, if you have
such a thing. Next, define the symbol SMARTALLOC in the compilation
before the inclusion of smartall.h. I usually do this by having my Makefile
add the “-DSMARTALLOC” option to the C compiler for non-production builds.
You can define the symbol manually, if you prefer, by adding the statement:

#define SMARTALLOC

At the point where your program is all done and ready to relinquish control
to the operating system, add the call:

sm dump(datadump);

where datadump specifies whether the contents of orphaned buffers are to be
dumped in addition printing to their size and place of allocation. The data
are dumped only if datadump is nonzero, so most programs will normally
use “sm dump(0);”. If a mysterious orphaned buffer appears that can’t be
identified from the information this prints about it, replace the statement
with “sm dump(1);”. Usually the dump of the buffer’s data will furnish the
additional clues you need to excavate and extirpate the elusive error that
left the buffer allocated.

Finally, add the files “smartall.h” and “smartall.c” from this release to your
source directory, make dependencies, and linker input. You needn’t make
inclusion of smartall.c in your link optional; if compiled with SMARTALLOC
not defined it generates no code, so you may always include it knowing it will
waste no storage in production builds. Now when you run your program, if it
leaves any buffers around when it’s done, each will be reported by sm dump()

on stderr as follows:

Orphaned buffer: 120 bytes allocated at line 50 of gutshot.c

76

http://www.fourmilab.ch/smartall/smartall.zip

Squelching a SMARTALLOC

Usually, when you first install SMARTALLOC in an existing program you’ll
find it nattering about lots of orphaned buffers. Some of these turn out
to be legitimate errors, but some are storage allocated during program ini-
tialisation that, while dynamically allocated, is logically static storage not
intended to be released. Of course, you can get rid of the complaints about
these buffers by adding code to release them, but by doing so you’re adding
unnecessary complexity and code size to your program just to silence the
nattering of a SMARTALLOC, so an escape hatch is provided to eliminate
the need to release these buffers.

Normally all storage allocated with the functions malloc(), calloc(), and
realloc() is monitored by SMARTALLOC. If you make the function call:

sm_static(1);

you declare that subsequent storage allocated by malloc(), calloc(), and
realloc() should not be considered orphaned if found to be allocated when
sm dump() is called. I use a call on “sm static(1);” before I allocate things
like program configuration tables so I don’t have to add code to release them
at end of program time. After allocating unmonitored data this way, be sure
to add a call to:

sm_static(0);

to resume normal monitoring of buffer allocations. Buffers allocated while
sm static(1) is in effect are not checked for having been orphaned but all
the other safeguards provided by SMARTALLOC remain in effect. You may
release such buffers, if you like; but you don’t have to.

Living with Libraries

Some library functions for which source code is unavailable may gratuitously
allocate and return buffers that contain their results, or require you to pass
them buffers which they subsequently release. If you have source code for the
library, by far the best approach is to simply install SMARTALLOC in it,
particularly since this kind of ill-structured dynamic storage management is
the source of so many storage leaks. Without source code, however, there’s
no option but to provide a way to bypass SMARTALLOC for the buffers
the library allocates and/or releases with the standard system functions.

77

For each function xxx redefined by SMARTALLOC, a corresponding rou-
tine named “actuallyxxx” is furnished which provides direct access to the
underlying system function, as follows:

Standard function Direct access function
malloc(size) actuallymalloc(size)

calloc(nelem, elsize) actuallycalloc(nelem, elsize)

realloc(ptr, size) actuallyrealloc(ptr, size)

free(ptr) actuallyfree(ptr)

For example, suppose there exists a system library function named
“getimage()” which reads a raster image file and returns the address of
a buffer containing it. Since the library routine allocates the image directly
with malloc(), you can’t use SMARTALLOC’s free(), as that call ex-
pects information placed in the buffer by SMARTALLOC’s special version
of malloc(), and hence would report an error. To release the buffer you
should call actuallyfree(), as in this code fragment:

struct image *ibuf = getimage("ratpack.img");

display_on_screen(ibuf);

actuallyfree(ibuf);

Conversely, suppose we are to call a library function, “putimage()”, which
writes an image buffer into a file and then releases the buffer with free().
Since the system free() is being called, we can’t pass a buffer allocated
by SMARTALLOC’s allocation routines, as it contains special information
that the system free() doesn’t expect to be there. The following code uses
actuallymalloc() to obtain the buffer passed to such a routine.

struct image *obuf =

(struct image *) actuallymalloc(sizeof(struct image));

dump_screen_to_image(obuf);

putimage("scrdump.img", obuf); /* putimage() releases obuf */

It’s unlikely you’ll need any of the “actually” calls except under very odd cir-
cumstances (in four products and three years, I’ve only needed them once),
but they’re there for the rare occasions that demand them. Don’t use them
to subvert the error checking of SMARTALLOC; if you want to disable or-
phaned buffer detection, use the sm static(1) mechanism described above.
That way you don’t forfeit all the other advantages of SMARTALLOC as
you do when using actuallymalloc() and actuallyfree().

78

SMARTALLOC Details

When you include “smartall.h” and define SMARTALLOC, the following
standard system library functions are redefined with the #define mechanism
to call corresponding functions within smartall.c instead. (For details of the
redefinitions, please refer to smartall.h.)

void *malloc(size_t size)

void *calloc(size_t nelem, size_t elsize)

void *realloc(void *ptr, size_t size)

void free(void *ptr)

void cfree(void *ptr)

cfree() is a historical artifact identical to free().

In addition to allocating storage in the same way as the standard library
functions, the SMARTALLOC versions expand the buffers they allocate to
include information that identifies where each buffer was allocated and to
chain all allocated buffers together. When a buffer is released, it is removed
from the allocated buffer chain. A call on sm dump() is able, by scanning
the chain of allocated buffers, to find all orphaned buffers. Buffers allocated
while sm static(1) is in effect are specially flagged so that, despite appear-
ing on the allocated buffer chain, sm dump() will not deem them orphans.

When a buffer is allocated by malloc() or expanded with realloc(), all
bytes of newly allocated storage are set to the hexadecimal value 0x55 (alter-
nating one and zero bits). Note that for realloc() this applies only to the
bytes added at the end of buffer; the original contents of the buffer are not
modified. Initializing allocated storage to a distinctive nonzero pattern is
intended to catch code that erroneously assumes newly allocated buffers are
cleared to zero; in fact their contents are random. The calloc() function,
defined as returning a buffer cleared to zero, continues to zero its buffers
under SMARTALLOC.

Buffers obtained with the SMARTALLOC functions contain a special sen-
tinel byte at the end of the user data area. This byte is set to a special key
value based upon the buffer’s memory address. When the buffer is released,
the key is tested and if it has been overwritten an assertion in the free

function will fail. This catches incorrect program code that stores beyond
the storage allocated for the buffer. At free() time the queue links are also
validated and an assertion failure will occur if the program has destroyed
them by storing before the start of the allocated storage.

In addition, when a buffer is released with free(), its contents are imme-
diately destroyed by overwriting them with the hexadecimal pattern 0xAA

79

(alternating bits, the one’s complement of the initial value pattern). This
will usually trip up code that keeps a pointer to a buffer that’s been freed
and later attempts to reference data within the released buffer. Incredibly,
this is legal in the standard Unix memory allocation package, which permits
programs to free() buffers, then raise them from the grave with realloc().
Such program “logic” should be fixed, not accommodated, and SMARTAL-
LOC brooks no such Lazarus buffer“ nonsense.

Some C libraries allow a zero size argument in calls to malloc(). Since this
is far more likely to indicate a program error than a defensible programming
stratagem, SMARTALLOC disallows it with an assertion.

When the standard library realloc() function is called to expand a buffer,
it attempts to expand the buffer in place if possible, moving it only if nec-
essary. Because SMARTALLOC must place its own private storage in the
buffer and also to aid in error detection, its version of realloc() always
moves and copies the buffer except in the trivial case where the size of the
buffer is not being changed. By forcing the buffer to move on every call and
destroying the contents of the old buffer when it is released, SMARTALLOC
traps programs which keep pointers into a buffer across a call on realloc()

which may move it. This strategy may prove very costly to programs which
make extensive use of realloc(). If this proves to be a problem, such
programs may wish to use actuallymalloc(), actuallyrealloc(), and
actuallyfree() for such frequently-adjusted buffers, trading error detec-
tion for performance. Although not specified in the System V Interface
Definition, many C library implementations of realloc() permit an old
buffer argument of NULL, causing realloc() to allocate a new buffer. The
SMARTALLOC version permits this.

When SMARTALLOC is Disabled

When SMARTALLOC is disabled by compiling a program with the symbol
SMARTALLOC not defined, calls on the functions otherwise redefined by
SMARTALLOC go directly to the system functions. In addition, compile-
time definitions translate calls on the ”actually...()“ functions into the
corresponding library calls; ”actuallymalloc(100)“, for example, compiles
into ”malloc(100)“. The two special SMARTALLOC functions, sm dump()

and sm static(), are defined to generate no code (hence the null statement).
Finally, if SMARTALLOC is not defined, compilation of the file smartall.c
generates no code or data at all, effectively removing it from the program
even if named in the link instructions.

Thus, except for unusual circumstances, a program that works with SMAR-

80

TALLOC defined for testing should require no changes when built without
it for production release.

The alloc() Function

Many programs I’ve worked on use very few direct calls to malloc(), us-
ing the identically declared alloc() function instead. Alloc detects out-of-
memory conditions and aborts, removing the need for error checking on every
call of malloc() (and the temptation to skip checking for out-of-memory).

As a convenience, SMARTALLOC supplies a compatible version of alloc()
in the file alloc.c, with its definition in the file alloc.h. This version of
alloc() is sensitive to the definition of SMARTALLOC and cooperates with
SMARTALLOC’s orphaned buffer detection. In addition, when SMARTAL-
LOC is defined and alloc() detects an out of memory condition, it takes
advantage of the SMARTALLOC diagnostic information to identify the file
and line number of the call on alloc() that failed.

Overlays and Underhandedness

String constants in the C language are considered to be static arrays of
characters accessed through a pointer constant. The arrays are potentially
writable even though their pointer is a constant. SMARTALLOC uses the
compile-time definition ./smartall.wml to obtain the name of the file in
which a call on buffer allocation was performed. Rather than reserve space in
a buffer to save this information, SMARTALLOC simply stores the pointer
to the compiled-in text of the file name. This works fine as long as the
program does not overlay its data among modules. If data are overlayed,
the area of memory which contained the file name at the time it was saved in
the buffer may contain something else entirely when sm dump() gets around
to using the pointer to edit the file name which allocated the buffer.

If you want to use SMARTALLOC in a program with overlayed data, you’ll
have to modify smartall.c to either copy the file name to a fixed-length field
added to the abufhead structure, or else allocate storage with malloc(),
copy the file name there, and set the abfname pointer to that buffer, then
remember to release the buffer in sm free. Either of these approaches are
wasteful of storage and time, and should be considered only if there is no
alternative. Since most initial debugging is done in non-overlayed environ-
ments, the restrictions on SMARTALLOC with data overlaying may never
prove a problem. Note that conventional overlaying of code, by far the most
common form of overlaying, poses no problems for SMARTALLOC; you

81

need only be concerned if you’re using exotic tools for data overlaying on
MS-DOS or other address-space-challenged systems.

Since a C language ”constant“ string can actually be written into, most C
compilers generate a unique copy of each string used in a module, even if the
same constant string appears many times. In modules that contain many
calls on allocation functions, this results in substantial wasted storage for
the strings that identify the file name. If your compiler permits optimization
of multiple occurrences of constant strings, enabling this mode will eliminate
the overhead for these strings. Of course, it’s up to you to make sure choosing
this compiler mode won’t wreak havoc on some other part of your program.

Test and Demonstration Program

A test and demonstration program, smtest.c, is supplied with SMARTAL-
LOC. You can build this program with the Makefile included. Please refer to
the comments in smtest.c and the Makefile for information on this program.
If you’re attempting to use SMARTALLOC on a new machine or with a
new compiler or operating system, it’s a wise first step to check it out with
smtest first.

Invitation to the Hack

SMARTALLOC is not intended to be a panacea for storage management
problems, nor is it universally applicable or effective; it’s another weapon in
the arsenal of the defensive professional programmer attempting to create
reliable products. It represents the current state of evolution of expedient
debug code which has been used in several commercial software products
which have, collectively, sold more than third of a million copies in the
retail market, and can be expected to continue to develop through time as
it is applied to ever more demanding projects.

The version of SMARTALLOC here has been tested on a Sun SPARCSta-
tion, Silicon Graphics Indigo2, and on MS-DOS using both Borland and
Microsoft C. Moving from compiler to compiler requires the usual small
changes to resolve disputes about prototyping of functions, whether the
type returned by buffer allocation is char * or void *, and so forth, but
following those changes it works in a variety of environments. I hope you’ll
find SMARTALLOC as useful for your projects as I’ve found it in mine.

82

Download smartall.zip (Zipped archive)

SMARTALLOC is provided as smartall.zip, a Zipped archive containing
source code, documentation, and a Makefile to build the software under
Unix.

Copying

SMARTALLOC is in the public domain. Permission to use, copy,
modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, without any con-
ditions or restrictions. This software is provided ”as is“ without
express or implied warranty.

by John Walker October 30th, 1998

83

http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip
http://www.fourmilab.ch/smartall/smartall.zip
http://www.pkware.com/
http://www.fourmilab.ch

Index

-csignature , 63
-dinput text , 63

Download smartall.zip (Zipped
archive) , 83

Acknowledgements , 65
Adding a New Test , 61
Additional Error information , 71
all-non-root-tape-tests , 59
all-root-tests , 59
all-tape-and-file-tests , 59
all non-root-tests , 59
Alloc() Function , 81
ALSO

SEE , 64
Archive

Download smartall.zip Zipped
, 83

Download md5.zip Zipped , 64
Assignment

Copyright , 7
Attributes

Unix File , 45
Avoid if Possible , 12

Backup
Commands Received from the

Director for a , 27
Bacula

Building the Test , 57
Developing , 8

Bacula Developer Notes , 6
Bacula Memory Management , 66
Bacula Porting Notes , 52
Bacula Regression Testing , 56
Bacula Source File Structure , 10

Becoming a Server , 73
Begin Session Label , 34
Block , 32
Block Header , 33, 36
Bnet and Threads , 70
Bnet close , 73
Bnet fsend , 71
Bnet open , 70
Bnet recv , 71
Bnet send , 71
Bnet sig , 72
Bnet strerror , 72
Bugs , 64
Building the Test Bacula , 57

Classes
Message , 16

Code
When Implementing Incom-

plete , 10
Command and Control Informa-

tion , 22
Command Line Message Digest

Utility , 62
Commands Received from the Di-

rector for a Backup , 27
Commands Received from the Di-

rector for a Restore , 27
Contributions , 6
Conventions

Higher Level , 73
Copying , 65, 83
Copyright Assignment , 7
Copyrights , 6
Corporate Assignment Statement

, 7

84

Daemon
Director Services , 25
File Services , 26
Protocol Used Between the

Director and the File , 21
Protocol Used Between the

Director and the Storage
, 20

Save Protocol Between the
File Daemon and the
Storage , 22

Daemon Protocol , 19
Data Information , 22
Data Record , 34
DataSize , 38
Debug Messages , 16
Debugger

Using a , 9
Debugging , 9
Definitions , 32
Description , 62
Design

Storage Daemon , 28
Details

SMARTALLOC , 79
Detection

Smart Memory Allocation
With Orphaned Buffer ,
75

Developing Bacula , 8
Director Services Daemon , 25
Directory Structure , 60
Disabled

When SMARTALLOC is , 80
Do Not Use , 12
Do Use Whenever Possible , 13
Don’ts , 15
Download md5.zip (Zipped

archive) , 64
Dynamically Allocated Memory ,

66

End Session Label , 34
Error Messages , 17

Exit Status , 64
Extended-Attributes , 46

Fails
If a Test , 59

File Services Daemon , 26
File-Attributes , 45
FileIndex , 33, 37, 45
Filename , 45
Files

Header , 11
Special , 10

Files , 64
Format

Old Depreciated Tape , 47
Overall , 35
Overall Storage , 41
Storage Daemon File Output

, 35
Storage Media Output , 32
Volume Label , 39

Function
alloc , 81

General , 6, 19, 32, 56, 66, 70
General Daemon Protocol , 19

Hack
Invitation to the , 82

Hand
Running the Tests by , 60

Header
Block , 36
Record , 36
Version 2 Record , 39
Version BB02 Block , 38

Header Files , 11
Higher Level Conventions , 73

If a Test Fails , 59
Indenting Standards , 13
Information

Additional Error , 71
Command and Control , 22
Data , 22

85

Installing SMARTALLOC , 76
Introduction

SD Design , 28
Invitation to the Hack , 82

Job Messages , 18
JobId , 33

Label
Session , 40

Leaks
Memory , 9

Libraries
Living with , 77

Link , 46
Living with Libraries , 77
Low Level Network Protocol , 19

Management
Bacula Memory , 66

Memory
Dynamically Allocated , 66
Pooled and Non-pooled , 67
Statically Allocated , 66

Memory Leaks , 9
Memory Messages , 18
Message Classes , 16
Messages

Debug , 16
Error , 17
Job , 18
Memory , 18

Name, 62
Notes

Bacula Developer , 6
Bacula Porting , 52

Old Depreciated Tape Format , 47
Options , 63
Other Tests , 59
Outline

SD Development , 28
Overall Format , 35
Overall Storage Format , 41

Overlays and Underhandedness ,
81

Parameters
Setting the Configuration , 56

Patches , 6
Pooled and Non-pooled Memory ,

67
Porting

Steps to Take for , 53
Porting Requirements , 52
Possible

Avoid if , 12
Do Use Whenever , 13

Program
Test and Demonstration , 82

Programming Standards , 12
Protocol

Daemon , 19
General Daemon , 19
Low Level Network , 19
TCP/IP Network , 70

Protocol Used Between the Direc-
tor and the File Daemon
, 21

Protocol Used Between the Direc-
tor and the Storage Dae-
mon , 20

Record , 32
Record Header , 34, 36
Regression

Running the Disk Only , 58
Requests

SD Append , 29
SD Read , 30

Requirements
Porting , 52

Restore
Commands Received from the

Director for a , 27
Running the Disk Only Regression

, 58
Running the Regression Script , 56

86

Running the Tests by Hand , 60

Save Protocol Between the File
Daemon and the Storage
Daemon , 22

Script
Running the Regression , 56

SD Append Requests , 29
SD Connections and Sessions , 29
SD Design Introduction , 28
SD Development Outline , 28
SD Read Requests , 30
See Also , 64
Serialization , 36
Server

Becoming a , 73
Session , 33
Session Label , 40
Sessions

SD Connections and , 29
Setting the Configuration Param-

eters , 56
Smart Memory Allocation With

Orphaned Buffer Detec-
tion , 75

SMARTALLOC
Installing , 76
Squelching a , 77

SMARTALLOC Details , 79
SPAN class , 29–31
Special Files , 10
Squelching a SMARTALLOC , 77
Standards

Indenting , 13
Programming , 12

Statement
Corporate Assignment , 7

Statically Allocated Memory , 66
Status

Exit , 64
Steps to Take for Porting , 53
Storage Daemon Design , 28
Storage Daemon File Output For-

mat , 35

Storage Media Output Format , 32
Stream , 33, 37
Structure

Bacula Source File , 10
Directory , 60

Synopsis , 62

Tabbing , 15
TCP/IP Network Protocol , 70
Test

Adding a New , 61
Writing a Regression , 60

Test and Demonstration Program
, 82

Testing
Bacula Regression , 56

Tests
Other , 59

Threads
bnet and , 70

Type , 45

Underhandedness
Overlays and , 81

Unix File Attributes , 45
Use

Do Not , 12
Using a Debugger , 9
Utility

Command Line Message Di-
gest , 62

Version 2 Record Header , 39
Version BB02 Block Header , 38
VolSessionId , 33, 37
VolSessionTime , 33, 37
Volume Label , 34
Volume Label Format , 39

When Implementing Incomplete
Code , 10

When SMARTALLOC is Disabled
, 80

Writing a Regression Test , 60

87

	Bacula Developer Notes
	General

	Daemon Protocol
	General
	Low Level Network Protocol
	General Daemon Protocol
	Protocol Used Between the Director and the Storage Daemon
	Protocol Used Between the Director and the File Daemon
	Save Protocol Between the File Daemon and the Storage Daemon

	Director Services Daemon
	File Services Daemon
	Commands Received from the Director for a Backup
	Commands Received from the Director for a Restore

	Storage Daemon Design
	SD Design Introduction
	SD Development Outline
	SD Connections and Sessions

	Storage Media Output Format
	General
	Definitions
	Storage Daemon File Output Format
	Overall Format
	Serialization
	Block Header
	Record Header
	Version BB02 Block Header
	Version 2 Record Header
	Volume Label Format
	Session Label
	Overall Storage Format
	Unix File Attributes
	Old Depreciated Tape Format

	Bacula Porting Notes
	Porting Requirements
	Steps to Take for Porting

	Bacula Regression Testing
	General
	Running the Regression Script
	Writing a Regression Test

	
	Command Line Message Digest Utility
	Download md5.zip (Zipped archive)

	Bacula Memory Management
	General

	TCP/IP Network Protocol
	General
	bnet and Threads
	bnet_open
	bnet_send
	bnet_fsend
	Additional Error information
	bnet_recv
	bnet_sig
	bnet_strerror
	bnet_close
	Becoming a Server
	Higher Level Conventions

	Smart Memory Allocation With Orphaned Buffer Detection
	 Download smartall.zip (Zipped archive)

