
article.pdf

Introduction to NanoBSD

Daniel Gerzo
Revision: f2a33a330d

Copyright © 2006 The FreeBSD Documentation Project

FreeBSD is a registered trademark of the FreeBSD Foundation.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this document, and the FreeBSD
Project was aware of the trademark claim, the designations have been followed by the “™” or
the “®” symbol.

2021-01-19 03:16:17 +0100 by Daniel Ebdrup Jensen.

Abstract
This document provides information about the NanoBSD tools, which can be used to create
FreeBSD system images for embedded applications, suitable for use on a USB key, memory
card or other mass storage media.

Table of Contents
1. Introduction to NanoBSD . 1
2. NanoBSD Howto . 2
Index . 9

1. Introduction to NanoBSD

NanoBSD is a tool developed by Poul-Henning Kamp <phk@FreeBSD.org> and now maintained by Warner Losh
<imp@FreeBSD.org>. It creates a FreeBSD system image for embedded applications, suitable for use on a USB key,
memory card or other mass storage media.

It can be used to build specialized install images, designed for easy installation and maintenance of systems com-
monly called “computer appliances”. Computer appliances have their hardware and software bundled in the prod-
uct, which means all applications are pre-installed. The appliance is plugged into an existing network and can be-
gin working (almost) immediately.

The features of NanoBSD include:

• Ports and packages work as in FreeBSD — Every single application can be installed and used in a NanoBSD image,
the same way as in FreeBSD.

• No missing functionality — If it is possible to do something with FreeBSD, it is possible to do the same thing
with NanoBSD, unless the specific feature or features were explicitly removed from the NanoBSD image when
it was created.

• Everything is read-only at run-time — It is safe to pull the power-plug. There is no necessity to run fsck(8) after
a non-graceful shutdown of the system.

• Easy to build and customize — Making use of just one shell script and one configuration le it is possible to build
reduced and customized images satisfying any arbitrary set of requirements.

https://cgit.freebsd.org/doc/commit/?id=f2a33a330d

mailto:phk@FreeBSD.org

mailto:imp@FreeBSD.org

https://www.FreeBSD.org/cgi/man.cgi?query=fsck&sektion=8&manpath=freebsd-release-ports

NanoBSD Howto

2. NanoBSD Howto
2.1. The Design of NanoBSD

Once the image is present on the medium, it is possible to boot NanoBSD. The mass storage medium is divided into
three parts by default:

• Two image partitions: code#1 and code#2 .

• The configuration le partition, which can be mounted under the /cfg directory at run time.

These partitions are normally mounted read-only.

The /etc and /var directories are md(4) (malloc) disks.

The configuration le partition persists under the /cfg directory. It contains les for /etc directory and is briey
mounted read-only right after the system boot, therefore it is required to copy modified les from /etc back to
the /cfg directory if changes are expected to persist after the system restarts.

Example 1. Making Persistent Changes to /etc/resolv.conf
vi /etc/resolv.conf
[...]
mount /cfg
cp /etc/resolv.conf /cfg
umount /cfg

Note
The partition containing /cfg should be mounted only at boot time and while overriding
the configuration les.

Keeping /cfg mounted at all times is not a good idea, especially if the NanoBSD system runs
o a mass storage medium that may be adversely affected by a large number of writes to the
partition (like when the filesystem syncer flushes data to the system disks).

2.2. Building a NanoBSD Image

A NanoBSD image is built using a simple nanobsd.sh shell script, which can be found in the /usr/src/tools/
tools/nanobsd directory. This script creates an image, which can be copied on the storage medium using the
dd(1) utility.

The necessary commands to build a NanoBSD image are:

cd /usr/src/tools/tools/nanobsd
sh nanobsd.sh
cd /usr/obj/nanobsd.full
dd if=_.disk.full of=/dev/da0 bs=64k

Change the current directory to the base directory of the NanoBSD build script.
Start the build process.
Change the current directory to the place where the built images are located.
Install NanoBSD onto the storage medium.

2

https://www.FreeBSD.org/cgi/man.cgi?query=md&sektion=4&manpath=freebsd-release-ports

https://www.FreeBSD.org/cgi/man.cgi?query=dd&sektion=1&manpath=freebsd-release-ports

Introduction to NanoBSD

2.2.1. Options When Building a NanoBSD Image

When building a NanoBSD image, several build options can be passed to nanobsd.sh on the command line. These
options can have a significant impact on the build process.

Some options are for verbosity purposes:

• -h: prints the help summary page.

• -q: makes output quieter.

• -v: makes output more verbose

Some other options can be used to restrict the building process. Sometimes it is not necessary to rebuild everything
from sources, especially if an image has already been built, and only little change is made.

• -k: do not build the kernel

• -w: do not build world

• -b: do not build either kernel and world

• -i: do not build a disk image at all. As a le will not be created, it will not be possible to dd(1) it to a storage media.

• -f: do not build a disk image of the rst partition (which is useful for upgrade purposes)

• -n: add -DNO_CLEAN to buildworld, buildkernel. Also, all the les that have already been built in a previous
run are kept.

A configuration le can be used to tweak as many elements as desired. Load it with -c

The last options are:

• -K: do not install a kernel. A disk image without a kernel will not be able to achieve a normal boot sequence.

2.2.2. The Complete Image Building Process

The complete image building process is going through a lot of steps. The exact steps taken will depend on the
chosen options when starting the script. Assuming the script is run with no particular options, this is what will
happen.

1. run_early_customize: commands that are defined in a supplied configuration le.

2. clean_build : Just cleans the build environment by deleting the previously built les.

3. make_conf_build: Assemble make.conffrom the CONF_WORLD and CONF_BUILD variables.

4. build_world : Build world.

5. build_kernel: Build the kernel les.

6. clean_world : Clean the destination directory.

7. make_conf_install: Assemble make.conf from the CONF_WORLD and CONF_INSTALL variables.

8. install_world: Install all les built during buildworld.

9. install_etc: Install the necessary les in the /etc directory, based on the make distribution command.

10.setup_nanobsd_etc: the rst configuration specific to NanoBSD takes place at this stage. The /etc/diskless
is created and the root filesystem is defined as read-only.

3

https://www.FreeBSD.org/cgi/man.cgi?query=dd&sektion=1&manpath=freebsd-release-ports

Customizing a NanoBSD Image

11.install_kernel: the kernel and modules les are installed.

12.run_customize: all the customizing routines defined by the user will be called.

13.setup_nanobsd: a special configuration directory layout is setup. The /usr/local/etc gets moved to /etc/
local and a symbolic link is created back from /etc/local to /usr/local/etc .

14.prune_usr : the empty directories from /usr are removed.

15.run_late_customize: the very last custom scripts can be run at this point.

16.fixup_before_diskimage: List all installed les in a metalog

17.create_diskimage: creates the actual disk image, based on the disk geometries provides parameters.

18.last_orders: does nothing for now.

2.3. Customizing a NanoBSD Image

This is probably the most important and most interesting feature of NanoBSD. This is also where you will be spend-
ing most of the time when developing with NanoBSD.

Invocation of the following command will force the nanobsd.sh to read its configuration from myconf.nano located
in the current directory:

sh nanobsd.sh -c myconf.nano

Customization is done in two ways:

• Configuration options

• Custom functions

2.3.1. Configuration Options

With configuration settings, it is possible to configure options passed to both the buildworld and installworld
stages of the NanoBSD build process, as well as internal options passed to the main build process of NanoBSD.
Through these options it is possible to cut the system down, so it will t on as little as 64MB. You can use the
configuration options to trim down FreeBSD even more, until it will consists of just the kernel and two or three
les in the userland.

The configuration le consists of configuration options, which override the default values. The most important
directives are:

• NANO_NAME — Name of build (used to construct the workdir names).

• NANO_SRC — Path to the source tree used to build the image.

• NANO_KERNEL — Name of kernel configuration le used to build kernel.

• CONF_BUILD — Options passed to the buildworld stage of the build.

• CONF_INSTALL — Options passed to the installworld stage of the build.

• CONF_WORLD — Options passed to both the buildworld and the installworld stage of the build.

• FlashDevice — Defines what type of media to use. Check FlashDevice.sub for more details.

There are many more configuration options that could be relevant depending upon the kind of NanoBSD that is
desired.

4

Introduction to NanoBSD

2.3.1.1. General Customization

There are three stages, by design, at which it is possible to make changes that affect the building process, just by
setting up a variable in the provided configuration le:

• run_early_customize: before anything else happens.

• run_customize: after all the standard les have been laid out

• run_late_customize: at the very end of the process, just before the actual NanoBSD image is built.

To customize a NanoBSD image, at any of these steps, it is best to add a specific value to one of the corresponding
variables.

The NANO_EARLY_CUSTOMIZE variable is used at the rst step of the building process. At this point, there is no ex-
ample as to what can be done using that variable, but it may change in the future.

The NANO_CUSTOMIZE variable is used after the kernel, world and etc configuration les have been installed, and
the etc les have been setup as to be a NanoBSD installation. So it is the correct step in the building process to
tweak configuration options and add packages, like in the cust_nobeastie example.

The NANO_LATE_CUSTOMIZE variable is used just before the disk image is created, so it is the very last moment to
change anything. Remember that the setup_nanobsd routine already executed and that the etc, conf and cfgdi-
rectories and subdirectories are already modified, so it is not time to change them at this point. Rather, it is possible
to add or remove specific les.

2.3.1.2. Booting Options

There are also variables that can change the way the NanoBSD image boots. Two options are passed to boot0cfg(8)
to initialize the boot sector of the disk image:

• NANO_BOOT0CFG

• NANO_BOOTLOADER

With NANO_BOOTLOADER a bootloader le can be chosen. The most common possible options are between boot0sio
and boot0 depending on whether the appliance has a serial port or not. It is best to avoid supplying a different
bootloader, but it is possible. To do so, it is best to have checked the FreeBSD Handbook chapter on the boot process.

With NANO_BOOT0CFG , the booting process can be tweaked, like selecting on which partition the NanoBSD image
will actually boot. It is best to check the boot0cfg(8) page before changing the default value of this variable. One
option that could be interesting to change is the timeout of the booting procedure. To do so, the NANO_BOOT0CFG
variable can be changed to "-o packet -s 1 -m 3 -t 36" . That way the booting process would start after
approximately 2 seconds; because it is rare that waiting 10 seconds before actually booting is desired.

Good to know: the NANO_BOOT2CFG variable is only used in the cust_comconsole routine that can be called at the
NANO_CUSTOMIZE step if the appliance has a serial port and all console input and output has to take place through
it. Be sure to check the relevant parameters of the serial port, as setting a bad parameter value can make it useless.

2.3.1.3. Disk Image Creation

In the end of the boot process is the disk image creation. With this step, the NanoBSD script provides a le that
can simply be copied onto a disk for the appliance, and that will make it boot and start.

There are many variable that need to be set just right for the script to produce a usable disk image.

• The NANO_DRIVE variable must be set to the drive name of the media at runtime. Usually, the default value
ada0, which represents the rst IDE/ATA/SATA device on the appliance is expected to be the correct one, but a
different type of storage could also be used - like a USB key, in which case, it would rather be da0.

5

https://www.FreeBSD.org/cgi/man.cgi?query=boot0cfg&sektion=8&manpath=freebsd-release-ports

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/boot.html

https://www.FreeBSD.org/cgi/man.cgi?query=boot0cfg&sektion=8&manpath=freebsd-release-ports

Customizing a NanoBSD Image

• The NANO_MEDIASIZE variable must be set to the size (in 512 bytes sectors) of the storage media that will be
used. If you set it wrong, it is possible that the NanoBSD image will not boot at all, and a message at boot time
will be warning about incorrect disk geometry.

• The /etc, /var, and /tmp directories are allocated as md(4) (malloc) disks at boot time; so their sizes can
be tailored to suit the appliance needs. The NANO_RAM_ETCSIZE variable sets the size of the /etc; and the
NANO_RAM_TMPVARSIZE variable sets the size of both the /var and /tmp directory, as /tmp is symbolically linked
to /var/tmp . By default, both malloc disks sizes are set at 20MB each. They can always be changed, but usually
the /etc does not grow too much in size, so 20MB is a good starting point, whereas the /var and especially /
tmp can grow much larger if not careful about it. For memory constrained systems, smaller filesystem sizes may
be chosen.

• As NanoBSD is mainly designed to build a system image for an appliance, it is assumed that the storage media
used will be relatively small. For that reason, the filesystem that is laid out is configured to have a small block size
(4Kb) and a small fragment size (512b). The configuration options of the filesystem can be modified through the
NANO_NEWFS variable, but the syntax must respect the newfs(8) command format. Also, by default, the filesystem
has Soft Updates enabled. The FreeBSD Handbook can be checked about this.

• The different partition sizes can be set through the use of NANO_CODESIZE , NANO_CONFSIZE, and NANO_DATASIZE
as a multiple of 512 bytes sectors. NANO_CODESIZE defines the size of the rst two image partitions: code#1 and
code#2 . They have to be big enough to hold all the les that will be produced as a result of the buildworld and
buildkernel processes. NANO_CONFSIZE defines the size of the configuration le partition, so it does not need
to be very big; but do not make it so small that it will not hold all configuration les. Finally, NANO_DATASIZE
defines the size of an optional partition, that can be used on the appliance. The last partition can be used, for
example, to keep les created on the y on disk.

2.3.2. Custom Functions

It is possible to ne-tune NanoBSD using shell functions in the configuration le. The following example illustrates
the basic model of custom functions:

cust_foo () (
 echo "bar=baz" > \
 ${NANO_WORLDDIR}/etc/foo
)
customize_cmd cust_foo

A more useful example of a customization function is the following, which changes the default size of the /etc
directory from 5MB to 30MB:

cust_etc_size () (
 cd ${NANO_WORLDDIR}/conf
 echo 30000 > default/etc/md_size
)
customize_cmd cust_etc_size

There are a few default pre-defined customization functions ready for use:

• cust_comconsole — Disables getty(8) on the VGA devices (the /dev/ttyv* device nodes) and enables the use of
the COM1 serial port as the system console.

• cust_allow_ssh_root — Allow root to login via sshd(8).

• cust_install_files — Installs les from the nanobsd/Files directory, which contains some useful scripts for
system administration.

2.3.3. Adding Packages

Packages can be added to a NanoBSD image, to provide specific functionalities on the appliance. To do so, either:

• Add the cust_pkgng to the NANO_CUSTOMIZE variable, or

6

https://www.FreeBSD.org/cgi/man.cgi?query=md&sektion=4&manpath=freebsd-release-ports

https://www.FreeBSD.org/cgi/man.cgi?query=newfs&sektion=8&manpath=freebsd-release-ports

https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook

https://www.FreeBSD.org/cgi/man.cgi?query=getty&sektion=8&manpath=freebsd-release-ports

https://www.FreeBSD.org/cgi/man.cgi?query=sshd&sektion=8&manpath=freebsd-release-ports

Introduction to NanoBSD

• Add a 'customize_cmd cust_pkgng' command in a customized configuration le.

Both methods achieve the same result: launching the cust_pkgng routine. This routine will go through NANO_PACK-
AGE_DIR directory to nd either all packages or just the list of packages in the NANO_PACKAGE_LIST variable.

It is common, when installing applications through pkg on a standard FreeBSD environment, that the install
process puts configuration les, in the usr/local/etc directory, and startup scripts in the /usr/local/etc/rc.d
directory. So, after the required packages have been installed, they need to be configured in order for them to
start right out of the box. To do so, the necessary configuration les have to be installed in the correct directories.
This can be achieved by writing dedicated routines or the generic cust_install_files routine can be used to lay
out les properly from the /usr/src/tools/tools/nanobsd/Files directory. Usually a statement, sometimes
multiple statements, in the /etc/rc.conf also needs to be added for each package.

2.3.4. Configuration File Example

A complete example of a configuration le for building a custom NanoBSD image can be:

NANO_NAME=custom
NANO_SRC=/usr/src
NANO_KERNEL=MYKERNEL
NANO_IMAGES=2

CONF_BUILD='
WITHOUT_KLDLOAD=YES
WITHOUT_NETGRAPH=YES
WITHOUT_PAM=YES
'

CONF_INSTALL='
WITHOUT_ACPI=YES
WITHOUT_BLUETOOTH=YES
WITHOUT_FORTRAN=YES
WITHOUT_HTML=YES
WITHOUT_LPR=YES
WITHOUT_MAN=YES
WITHOUT_SENDMAIL=YES
WITHOUT_SHAREDOCS=YES
WITHOUT_EXAMPLES=YES
WITHOUT_INSTALLLIB=YES
WITHOUT_CALENDAR=YES
WITHOUT_MISC=YES
WITHOUT_SHARE=YES
'

CONF_WORLD='
WITHOUT_BIND=YES
WITHOUT_MODULES=YES
WITHOUT_KERBEROS=YES
WITHOUT_GAMES=YES
WITHOUT_RESCUE=YES
WITHOUT_LOCALES=YES
WITHOUT_SYSCONS=YES
WITHOUT_INFO=YES
'

FlashDevice SanDisk 1G

cust_nobeastie() (
 touch ${NANO_WORLDDIR}/boot/loader.conf
 echo "beastie_disable=\"YES\"" >> ${NANO_WORLDDIR}/boot/loader.conf
)

customize_cmd cust_comconsole
customize_cmd cust_install_files
customize_cmd cust_allow_ssh_root

7

Updating NanoBSD

customize_cmd cust_nobeastie

All the build and install compilation options can be found in the src.conf(5) man page, but not all options can or
should be used when building a NanoBSD image. The build and install options should be defined according to the
needs of the image being built.

For example, the ftp client and server might not be needed. Adding WITHOUT_FTP=TRUE to a configuration le in the
CONF_BUILD section will avoid having them built. Also, if the NanoBSD appliance will not be used to build programs
then it is possible to add the WITHOUT_BINUTILS=TRUE in the CONF_INSTALL section; but not in the CONF_BUILD
section as they will be used to build the NanoBSD image.

Not building a particular set of programs — through a compilation option — shortens the overall building time
and lowers the required size for the disk image, whereas not installing the same specific set of programs does not
lower the overall building time.

2.4. Updating NanoBSD

The update process of NanoBSD is relatively simple:

1. Build a new NanoBSD image, as usual.

2. Upload the new image into an unused partition of a running NanoBSD appliance.

The most important difference of this step from the initial NanoBSD installation is that now instead of using
_.disk.full (which contains an image of the entire disk), the _.disk.image image is installed (which con-
tains an image of a single system partition).

3. Reboot, and start the system from the newly installed partition.

4. If all goes well, the upgrade is finished.

5. If anything goes wrong, reboot back into the previous partition (which contains the old, working image), to
restore system functionality as fast as possible. Fix any problems of the new build, and repeat the process.

To install new image onto the running NanoBSD system, it is possible to use either the updatep1 or updatep2 script
located in the /root directory, depending from which partition is running the current system.

According to which services are available on host serving new NanoBSD image and what type of transfer is pre-
ferred, it is possible to examine one of these three ways:

2.4.1. Using ftp(1)

If the transfer speed is in rst place, use this example:

ftp myhost
get _.disk.image "| sh updatep1"

2.4.2. Using ssh(1)

If a secure transfer is preferred, consider using this example:

ssh myhost cat _.disk.image.gz | zcat | sh updatep1

2.4.3. Using nc(1)

Try this example if the remote host is not running neither ftpd(8) or sshd(8) service:

1. At rst, open a TCP listener on host serving the image and make it send the image to client:

myhost# nc -l 2222 < _.disk.image

8

https://www.FreeBSD.org/cgi/man.cgi?query=src.conf&sektion=5&manpath=freebsd-release-ports

https://www.FreeBSD.org/cgi/man.cgi?query=ftp&sektion=1

https://www.FreeBSD.org/cgi/man.cgi?query=ssh&sektion=1

https://www.FreeBSD.org/cgi/man.cgi?query=nc&sektion=1

https://www.FreeBSD.org/cgi/man.cgi?query=ftpd&sektion=8&manpath=freebsd-release-ports

https://www.FreeBSD.org/cgi/man.cgi?query=sshd&sektion=8&manpath=freebsd-release-ports

Introduction to NanoBSD

Note
Make sure that the used port is not blocked to receive incoming connections from
NanoBSD host by firewall.

2. Connect to the host serving new image and execute updatep1 script:

nc myhost 2222 | sh updatep1

Index
N
NanoBSD, 1

9

		Introduction to NanoBSD

		Table of Contents

		1. Introduction to NanoBSD

		2. NanoBSD Howto

		2.1. The Design of NanoBSD

		2.2. Building a NanoBSD Image

		2.2.1. Options When Building a NanoBSD Image

		2.2.2. The Complete Image Building Process

		2.3. Customizing a NanoBSD Image

		2.3.1. Configuration Options

		2.3.1.1. General Customization

		2.3.1.2. Booting Options

		2.3.1.3. Disk Image Creation

		2.3.2. Custom Functions

		2.3.3. Adding Packages

		2.3.4. Configuration File Example

		2.4. Updating NanoBSD

		2.4.1. Using ftp(1)

		2.4.2. Using ssh(1)

		2.4.3. Using nc(1)

		Index

