
ICI Technical Description

Version 1.2

Tim Long

© 1992-2000 Tim Long

Regular expression portions © 1997-1999 University of Cambridge

Permission granted to reproduce provided copyright notices are preserved.

The basic execution model

The ICI interpreter's execution engine calls on the parser to read and compile a statement
from an input stream. The parser in turns calls on the lexical analyser to read tokens.
Upon return from the parser the execution engine executes the compiled statement. When
the statement has finished execution, the execution engine repeats the sequence.

The lexical analyser

The ICI lexical analyser breaks the input stream into tokens, optionally separated by
white-space (which includes comments as described below). The next token is always the
longest string of following characters which could possibly be a token. The following are
tokens:

The following are also tokens:

• The character '#' followed by any sequence of characters except a newline, then another
'#'. This token is a regular-expression.

• The character ' (single quote) followed by a single character (other than a newline) or
a single backslash character sequence (described below), followed by another single
quote. This token is a character-code. A single quote followed by other than the above
sequence will result in an error.

• The character " (double quote) followed by any sequence of characters (other than a
newline) and backslash character sequences, up to another double quote character.
This token is a string.

/ /= $ @ () { }

, ~ ~~ ~~= ~~~ [] .

* *= % %= ^ ^= + +=

++ - -= -- -> > >= >>

>>= < <= <=> << <<= = ==

! != !~ & && &= | ||

|= ; ? :
ICI Technical Description Page 1 of 88 Last Updated: March 27, 2000

A backslash character sequence is any of the following:

Consecutive string-literals, seperated only by white-space, are concatenated to form a
single strings-literal.

• Any upper or lower case letter, any digit, or '_' (underscore) followed by any number
of the same (or other characters which may be involved in a floating point number
while that is a valid interpretation). A token of this form may be one of three things:

If it can be interpreted as an integer, it is an integer-number.

Otherwise, if it can be interpreted as a floating point number, it is a floating-point-num-
ber.

Otherwise, it is an identifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, certain
identifiers are recognised as keywords by the parser as described below.

Comments (which are white-space) are started with the characters /* and continue until
the next */. Also, lines which start with a # character are ignored.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They are in
themselves typeless, depending on the type of the value currently assigned to them.

The term module in ICI refers to a collection of functions, declarations and code which
share the same variables. Typically each source file is a module, but not necessarily.

In ICI, modules may be nested in a hierarchical fashion. Within a module, variables can
be declared as either static or extern. When a variable is declared as static it is visible to
code defined in the module of its definition, and to code defined in sub-modules of that
one. This is termed the scope of the variable.

When a variable is defined as extern it is declared static in the parent module. Thus the

\n newline (ASCII 0x0A)
\t tab (ASCII 0x09)
\v vertical tab (ASCII 0x0B)
\b back space (ASCII 0x08)
\r carriage return (ASCII 0x0D)
\f form feed (ASCII 0x0C)
\a audible bell (ASCII 0x07)
\e escape (ASCII 0x1B)
\\ backslash (ASCII 0x5C)
\’ single quote (ASCII 0x27)
\” double quote (ASCII 0x22)
\? question mark (ASCII 0x3F)
\cx control-x
\xx.. the character with hex code x...
\n the character with octal code n. (1, 2 or 3 octal digits)
ICI Technical Description Page 2 of 88 Last Updated: March 27, 2000

parent module and all sub-modules of the parent module have that variable in their scope.
Variables of this type, whether originally declared extern or static, will be henceforward
referred to as static variables.

Static variables are persistent variables. That is they remain in existence even when
execution completely leaves their scope, despite not being visible to any executing code.
They are visible again when code flow again enters their scope.

The scoping of static variables is strictly governed by the nesting of the modules, not by
the flow of execution. For example. Suppose two neighbouring modules (call them
module A and module B) each define a variable called theVariable. When some code in
module A calls a function defined in module B and that function refers to theVariable; it
is referring to the version of theVariable defined in module B, not the one defined in
module A.

Variables in sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is the automatic, or auto, variable. Automatic variables
are not persistent. They last only as long as a module is being parsed or a function is being
executed. For instance, each time a function is entered a copy is made of the auto variables
which were declared in the function. This group of variables generally only persists
during the execution of the function; once the function returns they are discarded.

The parser

The parser uses the lexical analyser to read a source input stream. The parser also has
reference to the variable-scope within which this source is being parsed, so that it may
define variables.

The parser will define variables within the current scope, and, when code is parsed at the
outermost level, return it to the execution engine for execution.

For some constructs the parser will in turn call upon the execution engine to evaluate a
sub-construct within a statement.

The following sections will work through the syntax of ICI with explanations and
examples. Occasionally constructs will be used ahead of their full explanation. Their
intent should be obvious.

The following notation is used in the syntax in these sections. Note that the syntax given
in the text is not always exact, but rather designed to aid comprehension. The exact syntax
is given in a later section.

As noted previously there are no reserved words recoginsed by the lexical anaylyser, but
certain identifiers will be recognised by the parser in certain syntactic positions (as seen
below). While these identifiers are not otherwise restricted, special action may need to be

bold The bold text is literal ASCII text.
italic The italic text is a construct further described elsewhere.
[xxx] The xxx is optionally present.
xxx... The xxx may be present zero or more times.
ICI Technical Description Page 3 of 88 Last Updated: March 27, 2000

taken if they are used as simple variable names. They probably should be avoided. The
complete list is:

We now turn our attention to the syntax itself.

Firstly consider the basic statement which is the unit of operation of the parser. As stated
earlier the execution engine will call on the parser to parse one top-level statement at a
time. We split the syntax of a statement into two categories (purely for semantic clarity):

That is, a statement is either an executable-statement or a declaration. We will first
consider the executable-statement.

These are statements that, at the top-level of parsing, can be translated into code which
can be returned to the execution engine. This is by far the largest category of statements:

executable-statement expression ;
compound-statement
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression) ;
for ([expression]; [expression]; [expression]) statement
forall (expression [, expression] in expression) statement
switch (expression) compound-statement
case parser-evaluated-expression :
default ;
break ;
continue ;
return [expression] ;
try statement onerror statement
;

These are the basic executable statement types. Many of these involve expressions, so
before examining each statement in turn we will examine the expression. We will do this
by starting with the most primitive elements of expressions and working back up to the
top level.

The lowest level building block of an expressions is the factor:

factor integer-number
character-code
floating-point-number

NULL auto break case
continue default do else
extern for forall if
in onerror return static
switch try while

statement executable-statement
declaration
ICI Technical Description Page 4 of 88 Last Updated: March 27, 2000

string
regular-expression
identifier
NULL
(expression)
[array expression-list]
[set expression-list]
[struct [: expression ,] assignment-list]
[func function-body]

The constructs integer-number, character-code, floating-point-number, string, and
regular-expression are primitive lexical elements (described above). Each is converted
to its internal form and is an object of type int, int, float, string, or regexp respectively.

A factor which is an identifier is a variable reference. But its exact meaning depends upon
its context within the whole expression. Variables in expressions can either be placed so
that their value is being looked up, such as in:

a + 1

Or they can be placed so that their value is being set, such as in:

a = 1

Or they can be placed so that their value is being both looked up and set, as in:

a += 1

Only certain types of expression elements can have their value set. A variable is the
simplest example of these. Any expression element which can have its value set is termed
an lvalue because it can appear on the left hand side of an assignment (which is the
simplest expression construct which requires an lvalue). Consider the following two
expressions:

1 = 2 /* WRONG */
a = 2 /* OK */

The first is illegal because an integer is not an lvalue, the second is legal because a variable
reference is an lvalue. Certain expression elements, such as assignment, require an
operand to be an lvalue. The parser checks this.

The next factor in the list above is NULL. The keyword NULL stands for the value
NULL which is the general undefined value. It has its own type, NULL. Variables which
have no explicit initialisation have an initial value of NULL. Its other uses will become
obvious later in this document.

Next is the construct (expression). The brackets serve merely to make the expression
within the bracket act as a simple factor and are used for grouping, as in ordinary
mathematics.

Finally we have the four constructs surrounded by square brackets. These are textual
ICI Technical Description Page 5 of 88 Last Updated: March 27, 2000

descriptions of more complex data items; typically known as literals. For example the
factor:

[array 5, 6, 7]

is an array of three items, that is, the integers 5, 6 and 7. Each of these square bracketed
constructs is a textual description of a data type named by the first identifier after the
starting square bracket. A full explanation of these first requires an explanation of the
fundamental aggregate types.

An introduction to arrays, sets and structs

There are three fundamental aggregate types in ICI: arrays, sets, and structs. Certain
properties are shared by all of these (and other types as will be seen later). The most basic
property is that they are each collections of other values. The next is that they may be
"indexed" to reference values within them. For example, consider the code fragment:

a = [array 5, 6, 7];
i = a[0];

The first line assigns the variable a an array of three elements. The second line assigns
the variable i the value currently stored at the first element of the array. The suffixing of
an expression element by an expression in square brackets is the operation of "indexing",
or referring to a sub-element of an aggregate, and will be explained in more detail below.

Notice that the first element of the array has index zero. This is a fundamental property
of ICI arrays.

The next ICI aggregate we will examine is the set. Sets are unordered collections of
values. Elements "in" the set are used as indexes when working with the set, and the
values looked up and assigned are interpreted as a booleans. Consider the following code
fragment:

s = [set 200, 300, "a string"];
if (s[200])

printf("200 is in the set\n");
if (s[400])

printf("400 is in the set\n");
if (s["a string"])

printf("\"a string\" is in the set\n");
s[200] = 0;
if (s[200])

printf("200 is in the set\n");

When run, this will print:

200 is in the set
"a string" is in the set

Notice that there was no second printing of "200 is in the set" because it was removed
from the set on the third last line by assigning zero to it.
ICI Technical Description Page 6 of 88 Last Updated: March 27, 2000

Now consider structs. Structs are unordered collections of values indexed by any values.
Other properties of structs will be discussed later. The typical indexes of structs are
strings. For this reason notational shortcuts exist for indexing structures by simple strings.
Also, because each element of a struct is actually an index and value pair, the syntax of
a struct literal is slightly different from the arrays and sets seen above. Consider the
following code fragment:

s = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %d\n", s["a"]);
printf("s.a = %d\n", s.a);
printf("s.xxx = \"%s\"\n", s.xxx);

Will print:

s["a"] = 123
s.a = 123
s.xxx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that the
assignment in the struct literal did not have quotes around the a. This is part of the
notational shortcut which will be discussed further, below. Also notice the use of s.a in
place of s["a"]. This is a similar shortcut, also discussed below.

Back to expression syntax

The aggregate literals, which in summary are:

[array expression-list]
[set expression-list]
[struct [: expression ,] assignment-list]
[func function-body]

involve three further constructs, the expression-list, which is a comma separated list of
expressions; the assignment-list, which is a comma separated list of assignments; and the
function-body, which is the argument list and code body of a function. The syntax of the
first of these is:

expression-list empty
expression [,]
expression , expression-list

The expression-list is fairly simple. The construct empty is used to indicate that the whole
list may be absent. Notice the optional comma after the last expression. This is designed
to allow a more consistent formatting when the elements are line based, and simpler
output from programmatically produced code. For example:

[array
"This is the first element",
"This is the second element",
"This is the third element",

]

ICI Technical Description Page 7 of 88 Last Updated: March 27, 2000

The assignment list has similar features:

assignment-list empty
assignment [,]
assignment , assignment-list

assignment struct-key = expression

struct-key identifier
(expression)

Each assignment is either an assignment to a simple identifier or an assignment to a full
expression in brackets. The assignment to an identifier is merely a notational abbreviation
for an assignment to a string. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of a function-body is:

function-body (identifier-list) compound-statement

identifier-list empty
identifier [,]
identifier , identifier-list

That is, an identifier-list is an optional comma separated list of identifiers with an optional
trailing comma. Literal functions are rare in most programs; functions are normally
named and defined with a special declaration form which will be seen in more detail
below. The following two code fragments are equivalent; the first is the abbreviated
notation:

static fred(a, b){return a + b;}

and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will discussed in more detail below.

Aggregates in general, and literal aggregates in particular, are fully nestable:

[array
[struct a = 1, c = 2],
[set "a", 1.2, 3],
"a string",

]

Note that aggregate literals are entirely evaluated by the parser. That is, each expression
is evaluated and reduced to a particular value, these values are then used to build an object
of the required type. For example:
ICI Technical Description Page 8 of 88 Last Updated: March 27, 2000

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the result
assigned to the keys a and b in the struct being constructed. It is possible to refer to
variables which may be in existence while such a literal is being parsed

1
.

This ends our consideration of the lowest level element of an expression, the factor.

A simple factor may be adorned with a sequence of primary-operations to form a
primary-expression. That is:

primary-expression factor primary-operation...

primary-operation [expression]
. identifier
. (expression)
-> identifier
-> (expression)
(expression-list)

The first primary-operation (above) we have already seen. It is the operation of
"indexing" which can be applied to aggregate types. For example, if xxx is an array:

xxx[10]

refers to the element of xxx at index 10. The parser does not impose any type restrictions
(because typing is dynamic), although numerous type restrictions apply at execution time
(for instance, arrays may only be indexed by integers, and floating point numbers are not
able to be indexed at all).

The second form, . identifier, is a notational abbreviation of ["identifier"] , as seen
previously. Similarly the third form is again just a notational variation. Thus the
following are all equivalent:

xxx["aaa"]
xxx.aaa
xxx.("aaa")

And the following are also equivalent to each other:

xxx[1 + 2]
xxx.(1 + 2)

Note that factors may be suffixed by any number of primary-operations. The only
restriction is that the types must be right during execution. Thus:

xxx[123].aaa[10]

1.Literal aggregates are analagous to literal strings in K&R C. And likewise they have the property that
modifications to the literal are persistent. Returning to the original use of the literal after it has been
modified does not magically restore it to its original value.
ICI Technical Description Page 9 of 88 Last Updated: March 27, 2000

is legal.

The two constructs

-> identifier
-> (expression)

are again notational variations. In general, constructs of the form:

primary-expression -> identifier
primary-expression -> (expression)

are re-written as:

(* primary-expression) . identifier
(* primary-expression) . (expression)

The unary operator * used here is the indirection operator, its meaning is discussed later.

The last of the primary-operations:

(expression-list)

is the function call operation. Although, as usual, no type checking is performed by the
parser; at execution time the thing it is applied to must be a function. For example:

my_function(1, 2, "a string")

and

xxx.array_of_funcs[10]()

are both function calls. Function calls will be discussed in more detail below.

This concludes the examination of a primary-expression.

Primary-expressions are combined with prefix and postfix unary operators to make terms:

term [prefix-operator...] primary-expression [postfix-operator...]

prefix-operator Any of:
* & - + ! ~ ++ -- @ $

postfix-operator Any of:
++ --

That is, a term is a primary-expression surrounded on both sides by any number of prefix
and postfix operators. Postfix operators bind more tightly than prefix operators. Both
types bind right-to-left when concatenated together. That is: -!x is the same as -(!x). As
ICI Technical Description Page 10 of 88 Last Updated: March 27, 2000

in all expression compilation, no type checking is performed by the parser, because types
are an execution-time consideration.

Some of these operators touch on subjects not yet explained and so will be dealt with in
detail in later sections. But in summary:

Prefix operators

* Indirection; applied to a pointer, gives target of the pointer.

& Address of; applied to any lvalue, gives a pointer to it.

- Negation; gives negative of any arithmetic value.

+ Positive; no real effect.

! Logical not; applied to 0 or NULL, gives 1, else gives 0.

~ Bit-wise complement.

++ Pre-increment; increments an lvalue and gives new value.

-- Pre-decrement; decrements an lvalue and gives new value.

@ Atomic form of; gives the (unique) read-only version of any value.

$ Immediate evaluation; see below.

Postfix operators

++ Post-increment; increments an lvalue and gives old value.

-- Post-increment; decrements an lvalue and gives old value.

One of these operators, $, is only a pseudo-operator. It actually has its effect entirely at
parse time. The $ operator causes its subject expression to be evaluated immediately by
the parser and the result of that evaluation substituted in its place. This is used to speed
later execution, to protect against later scope or variable changes, and to construct
constant values which are better made with running code than literal constants. For
example, an expression involving the square root of two could be written as:

x = y + 1.414213562373095;

Or it could be written more clearly, and with less chance of error, as:

x = y + sqrt(2.0);

But this construct will call the square root function each time the expression is evaluated.
If the expression is written as:

x = y + $sqrt(2.0);

The square root function will be called just once, by the parser, and will be equivalent to
the first form.

When the parser evaluates the subject of a $ operator it recursively invokes the execution
engine to perform the evaluation. As a result there is no restriction on the activity which
can be performed by the subject expression. It may reference variables, call functions or
even read files. But it is important to remember that it is called at parse time. Any
ICI Technical Description Page 11 of 88 Last Updated: March 27, 2000

variables referenced will be immediately interrogated for their current value. Automatic
variables of any expression which is contained in a function will not be available, because
the function itself has not yet been invoked; in fact it is clearly not yet even fully parsed.

The $ operator as used above increased speed and readability. Another common use is to
avoid later re-definitions of a variable. For instance:

($printf)("Hello world\n");

Will use the printf function which was defined at the time the statement was parsed, even
if it is latter re-defined to be some other function. It is also slightly faster, but the
difference is small when only a simple variable look-up is involved. Notice the bracketing
which has been used to bind the $ to the word printf. Function calls are primary operations
so the $ would have otherwise referred to the whole function call as it did in the first
example.

This concludes our examination of a term (remember that the full meaning of other prefix
and postfix operators will be discussed in later sections). We will now turn to the top level
of expressions where terms are combined with binary operators:

expression term
expression infix-operator expression

infix-operator Any of:

@

* / %

+ -

>> <<

< > <= >=

== != ~ !~ ~~ ~~~

&

^
|
&&
||
:
?
= += -= *= /= %= >>= <<= &= ^= |= ~~= <=>
,

That is, an expression can be a simple term, or two expressions separated by an infix-
operator. The ambiguity amongst expressions built from several binary-operator
separated expressions is resolved by assigning each operator a precedence and also
applying rules for order of binding amongst equal precedence levels

2
. The lines of binary

operators in the syntax rules above summarise their precedence. Operators on higher lines
have higher precedence than those on lower lines. Thus 1+2*3 is the same as 1+(2*3).
Operators which share a line have the same precedence. All operators except those on the
second last line group left-to-right. Those on the second last line (the assignment

2.The precedences and rules are identical to those of C.
ICI Technical Description Page 12 of 88 Last Updated: March 27, 2000

operators) group right-to-left. Thus

a * b / c

is the same as:

(a * b) / c

But:

a = b += c

is the same as:

a = (b += c)

As with unary operators, the full meaning of each will be discussed in a later section. But
in summary:

Binary operators

@ Form pointer

* Multiplication, Set intersection

/ Division

% Modulus

+ Addition, Set union

- Subtraction, Set difference

>> Right shift (shift to lower significance)

<< Left shift (shift to higher significance)

< Logical test for less than, Proper subset

> Logical test for greater than, Proper superset

<= Logical test for less than or equal to, Subset

>= Logical test for greater than or equal to, Superset

== Logical test for equality

!= Logical test for inequality

~ Logical test for regular expression match

!~ Logical test for regular expression non-match

~~ Regular expression sub-string extraction

~~~ Regular expression multiple sub-string extraction

& Bit-wise and

^ Bit-wise exclusive or

| Bit-wise or

&& Logical and

|| Logical or

: Choice separator (must be right hand subject of ? operator)

? Choice (right hand expression must use : operator)
ICI Technical Description Page 13 of 88 Last Updated: March 27, 2000



= Assignment

+= Add to

-= Subtract from

*= Multiply by

/= Divide by

%= Modulus by

>>= Right shift by

<<= Left shift by

&= And by

^= Exclusive or by

|= Or by

~~= Replace by regular expression extraction

<=> Swap values

, Multiple expression separator

This concludes our consideration of expressions.  We will now move on to each of the 
executable statement types in turn.

Simple expression statements

The simple expression statement:

expression ;

Is simply an expression followed by a semicolon.  The parser translates this expression to 
its executable form.  Upon execution the expression is evaluated and the result discarded. 
Typically the expression will have some side-effect such as assignment, or make a 
function call which has a side-effect, but there is no explicit requirement that it do so.  
Typical expression statements are:

printf("Hello world.\n");
x = y + z;
++i;

Note that an expression statement which could have no side-effects other than producing 
an error may be completely discarded and have no code generated for it.

Compound statements

The compound statement has the form:

{ statement... }

That is, a compound statement is a series of any number of statements surrounded by curly 
braces. Apart from causing all the sub-statements within the compound statement to be 
treated as a syntactic unit, it has no effect.  Thus:

printf("Line 1\n");
{

ICI Technical Description Page 14 of 88 Last Updated: March 27, 2000



printf("Line 2\n");
printf("Line 3\n");

}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of a top-level 
compound statement has been parsed.  This is true in general for all other statement types. 

The if statement

The if statement has two forms:

if ( expression ) statement
if ( expression ) statement else statement

The parser converts both to an internal form.  Upon execution, the expression is evaluated.  
If the expression evaluates to anything other than 0 (integer zero) or NULL, the following 
statement is executed; otherwise it is not.  In the first form this is all that happens, in the 
second form, if the expression evaluated to 0 or NULL the statement following the else is 
executed; otherwise it is not.

The interpretation of both 0 and NULL as false, and anything else as true, is common to 
all logical operations in ICI.  There is no special boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else clauses 
is resolved by binding else clauses with their closest possible if.  Thus:

if (a) if (b) dox(); else doy();

If equivalent to:

if (a)
{

if (b)
dox();

else
doy();

}

The while statement

The while statement has the form:

while  ( expression ) statement
ICI Technical Description Page 15 of 88 Last Updated: March 27, 2000



The parser converts it to an internal form.  Upon execution a loop is established.  Within 
the loop the expression is evaluated, and if it is false (0 or NULL) the loop is terminated 
and flow of control continues after the while statement.  But if the expression evaluates to 
true (not 0 and not NULL) the statement is executed and then flow of control moves back 
to the start of the loop where the test is performed again (although other statements, as 
seen below, can be used to modify this natural flow of control).

The do-while statement

The do-while statement has the following form:

do statement while ( expression ) ;

The parser converts it to an internal form.  Upon execution a loop is established.  Within 
the loop the statement is executed.  Then the expression is evaluated and if it evaluates to 
true, flow of control resumes at the start of the loop.  Otherwise the loop is terminated and 
flow of control resumes after the do-while statement.

The for statement

The for statement has the form:

for ( [ expression ]; [ expression ]; [ expression ] ) statement

The parser converts it to an internal form.  Upon execution the first expression is evaluated 
(if present).  Then, a loop is established.  Within the loop: If the second expression is 
present, it is evaluated and if it is false the loop is terminated.  Next the statement is 
executed.  Finally, the third expression is evaluated (if present) and flow of control 
resumes at the start of the loop.  For example:

for (i = 0; i < 4; ++i)
printf("Line %d\n", i);

When run will produce:

Line 0
Line 1
Line 2
Line 3

The forall statement

The forall statement has the form:

forall ( expression [ ,expression ] in expression ) statement

The parser converts it to an internal form.  In doing so the first and second expressions are 
required to be lvalues (that is, capable of being assigned to).  Upon execution the first 
expression is evaluated and that storage location is noted.  If the second expression is 
present the same is done for it.  The third expression is then evaluated and the result noted; 
it must evaluate to an array, a set, a struct, a string, or NULL; we will call this the 
aggregate.  If this is NULL, the forall statement is finished and flow of control continues 
after the statement; otherwise, a loop is established.
ICI Technical Description Page 16 of 88 Last Updated: March 27, 2000



Within the loop, an element is selected from the noted aggregate.  The value of that 
element is assigned to the location given by the first expression.  If the second expression 
was present, it is assigned the key used to access that element.  Then  the statement is 
executed.  Finally, flow of control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate.  If 
no as yet unselected elements are left, the loop terminates.  The order of selection is 
predictable for arrays and strings, namely first to last.  But for structs and sets it is 
unpredictable.  Also, while changing the values of the structure members is acceptable, 
adding or deleting keys, or adding or deleting set elements during the loop will have an 
unpredictable effect on the progress of the loop.

As an example:

forall (colour in [array "red", "green", "blue"])
printf("%s\n", colour);

when run will produce:

red
green
blue

And:

forall (value, key in [struct a = 1, b = 2, c = 3])
printf("%s = %d\n", key, value);

when run will produce (possibly in some other order):

c = 3
a = 1
b = 2

Note in particular the interpretation of the value and key for a set.  For consistency with 
the access method and the behavior of structs and arrays, the values are all 1 and the 
elements are regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("%s = %d\n", key, value);

when run will produce:

c = 1
a = 1
b = 1

But as a special case, when the second expression is omitted, the first is set to each "key" 
in turn, that is, the elements of the set.  Thus:

forall (element in [set "a", "b", "c"])
ICI Technical Description Page 17 of 88 Last Updated: March 27, 2000



printf("%s\n", element);

when run will produce:

c
a
b

When a forall loop is applied to a string (which is not a true aggregate), the "sub-elements" 
will be successive one character sub-strings.

Note that although the sequence of choice of elements from a set or struct is at first 
examination unpredictable, it will be the same in a second forall loop applied without the 
structure or set being modified in the interim.

The switch, case, and default statements

These statements have the forms:

switch ( expression ) compound-statement
case expression :
default :

The parser converts the switch statement to an internal form.  As it is parsing the 
compound statement, it notes any case and default statements it finds at the top level of 
the compound statement.  When a case statement is parsed the expression is evaluated 
immediately by the parser.  As noted previously for parser evaluated expressions, it may 
perform arbitrary actions, but it is important to be aware that it is resolved to a particular 
value just once by the parser.  As the case and default statements are seen their position 
and the associated expressions are noted in a table.

Upon execution, the switch statement's expression is evaluated.  This value is looked up 
in the table created by the parser.  If a matching case statement is found, flow of control 
immediately moves to immediately after that case statement.  If there is a default 
statement, flow of control immediately moves to just after that.  If there is no matching 
case and no default statement, flow of control continues just after the entire switch 
statement.

For example:

switch ("a string")
{
case "another string":

printf("Not this one.\n");
case 2:

printf("Not this one either.\n");
case "a string":

printf("This one.\n");
default:

printf("And this one too.\n");
}

ICI Technical Description Page 18 of 88 Last Updated: March 27, 2000



When run will produce:

This one.
And this one too.

Note that the case and default statements, apart from the part they play in the construction 
of the look-up table, do not influence the executable code of the compound statement.  
Notice that once flow of control had transferred to the third case statement above, it 
continued through the default statement as if it had not been present.  This behavior can 
be modified by the break statement described below.

It should be noted that the "match" used to look-up the switch expression against the case 
expressions is the same as that used for structure element look-up. That is, to match, the 
switch expression must evaluate to the same object as the case expression.  The meaning 
of this will be made clear in a later section.

The break and continue statements

The break and continue statements have the form:

break ;
continue ;

The parser converts these to an internal form.  Upon execution of a break statement the 
execution engine will cause the nearest enclosing loop (a while, do, for or forall) or switch 
statement within the same scope to terminate.  Flow of control will resume immediately 
after the affected statement.  Note that a break statement without a surrounding loop or 
switch in the same function or module is illegal.

Upon execution of a continue statement the execution engine will cause the nearest 
enclosing loop to move to the next iteration.  For while and do loops this means the test.  
For for loops it means the step, then the test.  For forall loops it means the next element 
of the aggregate.

The return statement

The return statement has the form:

return [ expression ] ;

The parser converts this to an internal form.  Upon execution, the execution engine 
evaluates the expression if it is present.  If it is not, the value NULL is substituted.  Then 
the current function terminates with that value as its apparent value in any expression it is 
embedded in.  It is an error for there to be no enclosing function.

The try statement

The try statement has the form:

try  statement onerror statement

The parser converts this to an internal form.  Upon execution, the first statement is 
executed. If this statement executes normally flow continues after the try statement; the 
ICI Technical Description Page 19 of 88 Last Updated: March 27, 2000



second statement is ignored.  But if an error occurs during the execution of the first 
statement control is passed immediately to the second statement.

Note that "during the execution" applies to any depth of function calls, even to other 
modules or the parsing of sub-modules.  When an error occurs both the parser and 
execution engine unwind as necessary until an error catcher (that is, a try statement) is 
found.

Errors can occur almost anywhere and for a variety of reasons.  They can be explicitly 
generated with the fail function (described below), they can be generated as a side-effect 
of execution (such as division by zero), and they can be generated by the parser due to 
syntax or semantic errors in the parsed source.  For whatever reason an error is generated, 
a message (a string) is always associated with it.

When any otherwise uncaught error occurs during the execution of the first statement, two 
things are done:

• Firstly, the string associated with the failure is assigned to the variable error.  The as-
signment is made as if by a simple assignment statement within the scope of the try 
statement.

• Secondly, flow of control is passed to the statement following the onerror keyword.

Once the second statement finishes execution, flow of control continues as if the whole 
try statement had executed normally.

For example:

static
div(a, b)
{

try
return a / b;

onerror
return 0;

}

printf("4 / 2 = %d\n", div(4, 2));
printf("4 / 0 = %d\n", div(4, 0));

When run will print:

4 / 2 = 2
4 / 0 = 0

The handling of errors which are not caught by any try statement is implementation 
dependent.  A typical action is to prepend the file and line number on which the error 
occurred to the error string, print this, and exit.

The null statement

The null statement has the form:
ICI Technical Description Page 20 of 88 Last Updated: March 27, 2000



;

The parser may convert this to an internal form. Upon execution it will do nothing.

Declaration statements

There are two types of declaration statements:

declaration storage-class declaration-list ;
storage-class identifier function-body

storage-class extern
static
auto

The first is the general case while the second is an abbreviated form for function 
definitions.  Declaration statements are syntactically equal to any other statement, but 
their effect is made entirely at parse time.  They act as null statements to the execution 
engine.  There are no restriction on where they may occur, but their effect is a by-product 
of their parsing, not of any execution.

Declaration statements must start with one of the storage-class keywords listed above
3
.  

Considering the general case first, we next have a declaration-list.

declaration-list identifier [ = expression ]
declaration-list , identifier [ = expression ]

That is, a comma separated list of identifiers, each with an optional initialisation, 
terminated by a semicolon.  For example:

static a, b = 2, c = [array 1, 2, 3];

The storage class keyword establishes which scope the variables in the list are established 
in, as discussed earlier.  Note that declaring the same identifier at different scope levels is 
permissible and that they are different variables.

A declaration with no initialisation first checks if the variable already exists at the given 
scope.  If it does, it is left unmodified.  In particular, any value it currently has is 
undisturbed.  If it does not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and gives it 
the given value even if it already exists and even if it has some other value.

Note that initial values are parser evaluated expressions.  That is they are evaluated 
immediately by the parser, but may take arbitrary actions apart from that.  For example:

static
fibonacci(n)

3.Note that, unlike C, function definitions must be prefixed by a storage class.  As executable code may oc-

cur anywhere, this is required to distinguish them from a function call.
ICI Technical Description Page 21 of 88 Last Updated: March 27, 2000



{
if (n <= 1)

return 1;
return fibonacci(n - 1) + fibonacci(n - 2);

}

static fib10 = fibonacci(10);

The declaration of fib10 calls a function.  But that function has already been defined so 
this will work.

Note that the scope of a static variable is (normally) the entire module it is parsed in.  For 
example:

static
func()
{

static aStatic = "The value of a static.";
}

printf("%s\n", aStatic);

when run will print:

The value of a static.

That is, despite being declared within a function, the declaration of aStatic has the same 
effect as if it had been declared outside the function.  Also notice that the function has not 
been called.  The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are declared as 
static in the parent module.  The behavior of auto variables, and in particular their 
initialisation, will be discussed in a later section.

Abbreviated function declarations

As seen above there are two forms of declaration.  The second:

storage-class identifier function-body

is a shorthand for:

storage-class identifier = [ func function-body ] ;

and is the normal way to declare simple functions.  Examples of this have been seen 
above.

Functions

As with most ICI constructs there are two parts to understanding functions; how they are 
parsed and how they execute.
ICI Technical Description Page 22 of 88 Last Updated: March 27, 2000



When a function is parsed four things are noted:

• the names and positions of the formal parameters;

• the names and initialisation of auto variables;

• the static scope in which the function is declared;

• the code generated by the statements in the function.

The formal parameters (that is, the identifiers in the bracket enclosed list just before the 
compound statement) are actually implicit auto variable declarations.  Each of the 
identifiers is declared as an auto variable without an initialisation, but in addition, its name 
and position in the list is noted.

Upon execution (that is, upon a function call), the following takes place:

• The auto variables, as noted by the parser, along with any initialisations, are copied as 
a group.  This copy forms the auto variables of this invocation.

• Any actual parameters (that is, expressions provided by the caller) are matched posi-
tionally with the formal parameter names, and the value of those expressions are as-
signed to the auto variables of those names.

• If there were more actual parameters than formal parameters, and there is an auto vari-
able called vargs, the remaining argument values are formed into an array which is as-
signed to vargs.

• The variable scope is set such that the auto variables are the inner-most scope, the static 
variables noted with the function are the next outer scope etc.

• The flow of control is diverted to the code generated by parsing the function.

A return statement executed within the function will cause the function to return to the 
caller and act as though its value were the expression given in the return statement.  If no 
expression was given in the return statement, or if execution fell through the bottom of the 
function, the apparent return value is NULL.  In any event, upon return the scope is 
restored to that of the caller.  All internal references to the group of automatic variables 
are lost (although as will be seen later explicit program references may cause them to 
remain active).

Simple functions have been seen in earlier examples.  We will now consider further 
issues.

It is very important to note that the parser generates a prototype set of auto variables which 
are copied, along with their initial values, when the function is called.  The value which 
an auto variable is initialised with is a parser evaluated expression just like any other 
initialisation.  It is not evaluated on function entry.  But on function entry the value the 
parser determined is used to initialise the variable.  For example:

static myVar = 100;

static
myFunc()
{

auto anAuto = myVar;
ICI Technical Description Page 23 of 88 Last Updated: March 27, 2000



printf("%d\n", anAuto);
anAuto = 500;

}

myFunc();
myVar = 200;
myFunc();

When run will print:

100
100

Notice that the initial value of anAuto was computed just once, changing myVar before 
the second call did not affect it.  Also note that changing anAuto during the function did 
not affect its subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables.  Because of 
the behavior of variable declarations it is possible to explicitly declare an auto variable as 
well as include it in the formal parameter list.  In addition, such an explicit declaration 
may have an initialisation.  In this case, the explicit initialisation will be effective when 
there is no actual parameter to override it.  For example:

static
print(msg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%s\n", msg);
}

print("Hello world");
print("Hello world", stderr);

In the first call to the function print there is no second actual parameter.  In this case the 
explicit initialisation of the auto variable file (which is the second formal parameter) will 
have its effect unmolested.  But in the second call to print a second argument is given.  In 
this case this value will over-write the explicit initialisation given to the argument and 
cause the output to go to stderr.

As indicated above there is a mechanism to capture additional actual parameters which 
were not mentioned in the formal parameter list.  Consider the following example:

static
sum()
{

auto vargs;
auto total = 0;
auto arg;
ICI Technical Description Page 24 of 88 Last Updated: March 27, 2000



forall (arg in vargs)
total += arg;

return total;
}

printf("1+2+3 = %d\n", sum(1, 2, 3));
printf("1+2+3+4 = %d\n", sum(1, 2, 3, 4));

Which when run will produce:

1+2+3 = 6
1+2+3+4 = 10

In this example the unmatched actual parameters were formed into an array and assigned 
to the auto variable vargs, a name which is recognised specially by the function call 
mechanism.

And also consider the following example where a default initialisation to vargs is made.  
In the following example the function call is used to invoke a function with an array of 
actual parameters, the function array is used to form an array at run-time, and addition is 
used to concatenate arrays; all these features will be further explained in later sections:

static
debug(fmt)
{

auto fmt = "Reached here.\n";
auto vargs = [array];

call(fprintf, array(stderr, fmt) + vargs);
}

debug();
debug("Done that.\n");
debug("Result = %d, total = %d.\n", 123, 456);

When run will print:

Reached here.
Done that.
Result = 123, total = 456.

In the first call to debug no arguments are given and both explicit initialisations take 
effect.  In the second call the first argument is given, but the initialisation of vargs still 
takes effect.  But in the third call there are unmatched actual parameters, so these are 
formed into an array and assigned to vargs, overriding its explicit initialisation.

Method Calls

In addition to the above ICI has a simple mechanism for calling methods — functions 
contained within an object (typically a struct) that accept that object as their first 
parameter. The method call mechanism is enabled via a modification to the call operator, 
"()", to add semantics for calling a pointer object and through the addition of a new 
ICI Technical Description Page 25 of 88 Last Updated: March 27, 2000



operator, binary-@, to form a pointer object from an object and a key. ICI pointers, 
described below, consist of an object and a key. To indirect though the pointer the object 
is indexed by the key and the resulting object used as the result. This is the same operation 
used in dynamic dispatch in languages such as Smalltalk and Objective-C.

The call operator now accepts a pointer as its first operand (we may think of the call 
operator as a n-ary operator that takes a function or pointer object as its first operand the 
function parameters as the remaining operands). When a pointer is "called" the key is used 
to index the pointer’s container object and the result, which must be a function object, is 
called. In addition the container object within the pointer is passed as an implicit first 
parameter to the function (thus passing the actual object used to invoke the method to the 
method). Apart from the calling semantics the functions used to implemented methods are 
in all respects normal ICI functions.

Struct objects are typically used as the "container" for objects used with methods. The 
super mechanism provides the hierarichal search needed to allow class objects to be 
shared by multiple instances and provide a natural means of encapsulating information.

A typical way of using methods is,

/*
 * Define a "class" object representing our class and
 * containing the class methods.
 */
static MyClass = [struct

    doubleX = [func (self)
    {
        return self.x * 2;
    }]

];

...

static a;
a = struct(@MyClass);
a.x = 21;
printf("%d\n", a@doubleX());

We first define a class by using a literal struct to contain our named methods. You could 
also define class variables in this struct as it is shared by all instances of that class. In our 
class we’ve got a single method, doubleX, that doubles the value of an instance variable 
called x.

Later in the program we create an instance of a MyClass object by making a new struct 
object and setting its super struct to the class struct. The super is made atomic which 
ensures all instances share the same object and makes it read-only for them. Then we 
create an "instance variable" within the object by assigning 21 to a.x and finally invoke 
the method. We do not pass any parameters to doubleX. The call through the pointer 
ICI Technical Description Page 26 of 88 Last Updated: March 27, 2000



object formed by the binary-@ operator passes "a" implicitly

Objects

Up till now few exact statements about the nature of values and data have been made.  We 
will now examine values in more detail.  Consider the following code fragment:

static x;
static y;

x = [array 1, 2, 3, 4];
y = x;

After execution of this code the variable x refers to an array.  The assignment of x to y 
causes y to refer to the same array. Diagrammatically:

If the assignment:

y[1] = 200;

is performed, the result is:

We say that x and y refer to the same object.  Now consider the following code fragment:

static x;
static y;

x = [array 1, 2, 3, 4];
y = [array 1, 2, 3, 4];

Diagrammatically:

In this case, x and y refer to different objects, despite that fact they are equal.

Now consider one of the unary operators which was only briefly mentioned in the sections 
above.  The @ operator returns a read-only version of the sub-expression it is applied to.  
Consider the following statement:

x

y

1 2 3 4

x

y

1 200 3 4

x

y

1 2 3 4

1 2 3 4
ICI Technical Description Page 27 of 88 Last Updated: March 27, 2000



y = @y;

After this has been executed the result could be represented diagrammatically as:

The middle array now has no reference to it and the memory associated with it will be 
collected by the interpreter's standard garbage collection mechanism. Now consider the 
following statement:

x = @x;

This is similar to the previous statement, except that this time x is replaced by a read-only 
version of its old value.  But the result of this operation is:

Notice that x now refers to the same read-only array that y refers to.  This is a fundamental 
property of the @ operator. It returns the unique read-only version of its argument value. 
Such read-only objects are referred to as atomic objects.  The array which x used to refer 
to was non-atomic, but the array it refers to now is an atomic array.  Aggregate types such 
as arrays, sets and structs are generally non-atomic, but atomic versions can be obtained 
(as seen above).  But most other types, such as integers floats, strings and functions are 
intrinsically atomic.  That is, no matter how a number, say 10, is generated, it will be the 
same object as every other number 10 in the interpreter.  For-instance, consider the 
following example:

x = "ab" + "cdefg";
y = "abcde" + "fg";

After this is executed the situation can be represented diagrammatically as:

It is important to understand when objects are the same object, when they are different and 
the effects this has.

x

y

1 2 3 4

1 2 3 4

1 2 3 4
Read-only

x

y

1 2 3 4

1 2 3 4
Read-only

x

y
“abcdefg”
ICI Technical Description Page 28 of 88 Last Updated: March 27, 2000



Equality

We saw above how two apparently identical arrays were each distinct object.  But these 
two arrays were equal in the sense of the equality testing operator ==.  If two values are 
the same object they are said to be eq

4
, and there is a function of that name to test for this 

condition.  Two objects are equal (that is ==) if:

• they are the same object; or

• they are both arithmetic (int and float) and have equivalent numeric values; or

• they are aggregates of the same type and all the sub-elements are the same objects.

This definition of equality is the basis for resolving the merging of aggregates into unique 
read-only (atomic) versions.  Two aggregates will resolve to the same atomic object if 
they are equal.  That is, they must contain exactly the same objects as sub-elements, not 
just equal objects.  For example:

static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

The result could be represented diagrammatically as:

4.As in LISP.

x

y

1 4 5

1 4 5

2 3

2 3

x

y

1 4 5

1 4 5

2 3

2 3

Read-only

Read-only
ICI Technical Description Page 29 of 88 Last Updated: March 27, 2000



That is, both x and y refer to new read-only objects, but they refer to different read-only 
objects because they have an element which is not the same object.  The simple integers 
are the same objects because integers are intrinsically atomic objects.  But the two sub-
arrays are distinct objects.  Being equal was not sufficient.  The top-level arrays needed 
to have exactly the same objects as contents to make x and y end up referring to the same 
read-only array.  In contrast to this consider the following similar situation:

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

The result could be represented diagrammatically as:

In this case both x and y refer to the same read-only array because the original arrays 
where equal, that is, all their elements were the same objects.  Notice that one of the 
elements is still a writeable array.  The read-only property is only referring to the top level 
array.  The sub-array can be changed, but the reference to it from the top level array can 
not.  Thus:

x[1][0] = 200;

x

y

1 4 5

1 4 5

2 3z

x

y

2 3

1 4 5
Read-only
ICI Technical Description Page 30 of 88 Last Updated: March 27, 2000



will result in:

whereas the statement:

x[1] = 200;

will just result in an error.

Structure and set keys

Any object, not just a string, can be used as a key in a structure.  For instance:

static x = [struct];
static z = [array 10, 11];

x["abc"] = 1;
x[56] = 2;
x[z] = 3;

Could be represented diagrammatically as:

And the assignment:

x[z] = 300;

would replace the 3 in the above diagram with 300.  But the assignment:

x[[array 10, 11]] = 300;

would result in a new element being added to the structure because the array given in the 
above statement is a different object from the one which z refers to.

Similarly, elements of sets may be any objects.

Indexing structures by complex aggregates is as efficient as indexing by intrinsically 
atomic types such as strings and integers.

x

y

200 3

1 4 5
Read-only

x

10 11

1 3

5“abc” 56

2

ICI Technical Description Page 31 of 88 Last Updated: March 27, 2000



Structure super types

Up till now structures have been described as simple lookup tables which map a key, or 
index, to a value.  But a structure may have associated with it a super structure.

The function super can be used to discover the current super of a struct and to set a new 
super.  With just one argument it returns the current super of that struct, with a second 
argument it also replaces the super by that value.

When a key is being looked-up in a structure for reading, and it is not found and there is 
a super struct, the key is further looked for in the super struct, if it is found there its value 
from that struct is returned.  If it is not found it will be looked for in the next super struct 
etc.  If no structures in the super chain contain the key, the special value NULL is 
returned.

When a key is being looked up in a structure for writing, it will similarly be searched for 
in the super chain.  If it is found in a writeable structure the value in the structure in which 
it was found will be set to the new value.  If it was never found, it will be added along with 
the given value to the very first struct, that is, the structure at the base, or root, of the super 
chain.

Consider the following example:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct x = 100, y = 200];

super(theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

then if the following statements were executed:

theStruct.a = 123;
theStruct.x = 456;
theStruct.z = 789;

100 200

1 3

5“a” “b”

2

“x” “y”

“c”

theStruct
ICI Technical Description Page 32 of 88 Last Updated: March 27, 2000



the situation could be diagrammatically represented as:

If a super struct is not writeable (that is, it is atomic) values will not be written in it and 
will lodge in the base structure instead.  Thus consider what happens if we replace the 
super structure in the previous example by its read-only version:

super(theStruct, @theSuper);

The situation could now be represented diagrammatically as:

If the assignment statement:

theStruct.a += 10;

were executed, the value of the element a will first be read from the super structure, this 
value will then have ten added to it, and the result will be written back into the base 
structure; because the super structure is read-only and cannot be modified.  The finally 
situation can be represented diagrammatically as:

Note that many structs may share the same super struct.  Thus a single read-only super 
struct can be used hold initial values; saving explicit initialisations and storage space.

The function assign may be used to set a value in a struct explicitly, without reference to 

456 200

123 3

5“a” “b”

2

“x” “y”

“c”

theStruct
789

“z”

456 200

123 3

5“a” “b”

2

“x” “y”

“c”

theStruct
789

“z”

Read-only

133 456

123 3

5“a” “b”

2

“a” “x”

“c”

theStruct
200

“y”

Read-only

789

“z”
ICI Technical Description Page 33 of 88 Last Updated: March 27, 2000



any super structs; and the function fetch may be used to read a value from a struct 
explicitly, without reference to any super structs.

Within a struct-literal a colon prefixed expression after the struct identifier is used as the 
super struct.  For example, the declarations used in the previous example could be written 
as:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement about 
variables and scope can be made.

ICI variables are entries in ordinary structs.  At all times, the current scope is identified 
by a structure.  The auto variables are the entries in this base structure.  Its super is the 
struct containing the static variables.  The next super struct contains the externs, and 
successive super structs are successive outer scopes.

Auto, static and extern declarations make explicit assignments to the appropriate 
structure.

In these terms it can be said that an un-adorned identifier in an expression is an implicit 
reference to an element of the current scope structure.  The inheritance and name hiding 
of the variable scope mechanism is a product of the super chain. But there is a difference 
in the handling of undefined entries. Whereas normal lookup of undefined entries in a 
structure produces a default value of NULL or implicit creation, the implicit lookup of 
undefined variables triggers an attempt to dynamically load a library to define the variable 
(see Undefined variables and dynamic loading below), and failing that, produce an error 
(“%s undefined”).

The function scope can be used to obtain the current scope structure; and to set it (use with 
care).

Note that when there is an atomic structure in the scope chain the mechanism described 
at the end of the previous section does not operate correctly.  Writing to a variable in the 
atomic struct will give a spurious undefined error rather than lodging it in the base 
structure.  This is a deficiency which will be corrected in a later release.

Pointers

Pointers are references to storage locations.  Storage locations are the elements of 
anything which can be indexed.  That is, array elements, set elements, struct elements and 
others (which we will see below) can be pointed to.  Variables (which are just struct 
elements) can be pointed to.  In more general terms, any lvalue can be pointed to.

The & operator is used to obtain a pointer to a location.  Thus if the following were 
executed:

static x;
static y = [array 1, 2, 3];
ICI Technical Description Page 34 of 88 Last Updated: March 27, 2000



static p1 = &x;
static p2 = &y[1];

The variable p1 would be a pointer to x and the variables p2 would be a pointer to the 
second element of y.  Reference to the object a pointer points to can be obtained with the 
* operator.  Thus if the following were executed:

*p1 = 123;
*p2 = 456;
printf("x = %d, y[1] = %d\n", x, y[1]);

the output would be:

x = 123, y[1] = 456

Pointers are really a bundle of two objects, one is the object pointed into, the other is the 
key used to access the location in question.  For instance, in the example above p2 
remembers the array, and the number 1; that is, the aggregate and the index.  The 
generation of a pointer does not affect the location being pointed to.  In fact the location 
may not even exist yet.  When a pointer is referenced the same operation takes place as if 
the location was referenced explicitly.  Thus a search down the super chain of a struct may 
occur, or an array may be extended to include the index being written to, etc.

In addition to simple indirection (that is the * operator), pointers may be indexed. But the 
index values must be an integer, and the key stored as part of the pointer must also be an 
integer.  When a pointer is indexed, the index is added to the key which is stored as part 
of the pointer, the sum forms the actual index to use to when referencing the aggregate 
recorded by the pointer.  For instance, continuing the example above:

p2[1] = 789;

would set the last element of the array to 789, because the pointer currently references 
element 1, and the given index is 1, and 1 + 1 is 2 which is the last element.  The index 
arithmetic provided by pointers will work with any types, as long as the indexes are 
integers, thus:

static s = [struct (20) = 1, (30) = 2, (40) = 3];
static p = &s[30];

p[-10] = -1;
p[0] = -2;
p[10] = -3;

Would replace each of the elements in the struct s by their negative value.

This concludes the general discussion of ICI as a whole.  We will now examine the exact 
nature of each of the data types, then each of the expression operators, and finally each of 
the standard functions.

Data types

ICI supports a base set of standard data types.  Each is identified by a simple name.  In 
ICI Technical Description Page 35 of 88 Last Updated: March 27, 2000



summary these are:

array An ordered sequence of other objects.

file An open file reference.

float A double precision floating point number.

func A function.

int A signed 32 bit integer.

mem References to raw machine memory.

ptr A reference to a storage location.

regexp A compiled regular expression.

set An unordered collection of other objects.

string An ordered sequence of 8 bit characters.

struct An unordered set of pairs of objects.

A full explanation of the semantics of each type (including the semantics of indexing an 
object of that type) will be included in a future version of this document.

Operators

The following table details each of the unary and binary operators with all of the types 
they may be applied to. Within the first column the standard type names are used to stand 
for operands of that type, along with any to mean any type and num to mean an int or a 
float. In general, where an int and a float are combined in an arithmetic operation, the int 
is first converted to a float and then the operation is performed.

The following table is in precedence order.

*ptr Indirection: The result references the thing the pointer points to. 
The result is an lvalue.

&any Address of: The result is a pointer to any. If any is an lvalue the 
pointer references that storage location.  If any is not an lvalue but 
is a term other than a bracketed non-term, as described in the syn-
tax above, a one element array containing any  will be fabricated 
and a pointer to that storage location returned. For example:

p = &1;

sets p to be a pointer to the first element of an un-named array, 
which currently contains the number 1.

-num Negation: Returns the negation of num. The result is the same 
type as the argument. The result is not an lvalue.

+any Has no effect except the result is not an lvalue.

!any Logical negation: If any is 0 (integer) or NULL, 1 is returned, else 
0 is returned.
ICI Technical Description Page 36 of 88 Last Updated: March 27, 2000



~int Bit-wise complement: The bit-wise complement of int is returned.

++any Pre-increment: Equivalent to (any += 1). any must be an lvalue 
and obey the restrictions of the binary + operator.  See + below.

--any Pre-decrement: Equivalent to (any -= 1). any must be an lvalue 
and obey the restrictions of the binary - operator.  See - below.

@any Atomic form of: Returns the unique, read-only form of any.  If 
any is already atomic, it is returned immediately.  Otherwise an 
atomic form of any is found or generated and returned; this is of 
execution time order equal to the number of elements in any.  See 
the section on objects above for more explanation.

$any Immediate evaluation: Recognised by the parser.  The sub-ex-
pression any is immediately evaluated by invocation of the execu-
tion engine.  The result of the evaluation is substituted directly for 
this expression term by the parser.

any++ Post-increment: Notes the value of any, then performs the equiv-
alent of (any += 1), except any is only evaluated once, and finally 
returns the original noted value.  any must be an lvalue and obey 
the restrictions of the binary + operator.  See + below.

any-- Post-increment: Notes the value of any, then performs the equiv-
alent of (any -= 1), except any is only evaluated once, and finally 
returns the original noted value.  any must be an lvalue and obey 
the restrictions of the binary - operator.  See - below.

any1 @ any2 Form pointer: Returns a pointer object formed from its operands 
with the pointer’s aggregate being set from any1 and the pointer’s 
key from any2.

num1 * num2 Multiplication: Returns the product of the two numbers, if both 
nums are ints, the result is int, else the result is float.

set1 * set2 Set intersection: Returns a set that contains all elements that ap-
pear in both set1 and set2.

num1 / num2 Division: Returns the result of dividing num1 by num2.  If both 
numbers are ints the result is int, else the result is float.  If num2 
is zero the error division by 0 is generated, or division by 0.0 if the 
result would have been a float.

int1 % int2 Modulus: Returns the remainder of dividing int1 by int2.  If int2 
is zero the error modulus by 0 is generated.

num1 + num2 Addition: Returns the sum of num1 and num2.  If both numbers 
are ints the result is int, else the result is float.
ICI Technical Description Page 37 of 88 Last Updated: March 27, 2000



ptr + int Pointer addition: ptr must point to an element of an indexable ob-
ject whose index is an int.  Returns a new pointer which points to 
an element of the same aggregate which has the index which is the 
sum of ptr's index and int.  The arguments may be in any order.

string1 + string2 String concatenation: Returns the string which is the concatena-
tion of the characters of string1 then string2.  The execution time 
order is  proportional to the total length of the result.

array1 + array2 Array concatenation: Returns a new array which is the concatena-
tion of the elements from array1 then array2.  The execution time 
order is  proportional to the total length of the result. Note the dif-
ference between the following:

a += [array 1];
push(a, 1);

In the first case a is replaced by a newly formed array which is the 
original array with one element added.  But in the second case the 
push function (see below) appends an element to the array a refers 
to, without making a new array. The second case is much faster, 
but modifies an existing array.

struct1 + struct2 Structure concatenation: Returns a new struct which is a copy of 
struct1, with all the elements of struct2 assigned into it.  Obeys 
the semantics of copying and assignment discussed in other sec-
tions with regard to super structs..  The execution time order is  
proportional to the sum of the lengths of the two arguments.

set1 + set2 Set union: Returns a new set which contains all the elements from 
both sets.  The execution time order is  proportional to the sum of 
the lengths of the two arguments.

num1 - num2 Subtraction: Returns the result of subtracting num2 from num1.  If 
both numbers are ints the result is int, else the result is float.

set1 - set2 Set subtraction: Returns a new set which contains all the elements 
of set1, less the elements of set2. The execution time order is  pro-
portional to the sum of the lengths of the two arguments.

ptr1 - ptr2 Pointer subtraction: ptr1 and ptr2 must point to elements of index-
able objects whose indexs are ints.  Returns an int which is the the 
index of ptr1 less the index of ptr2.

int1 >> int2 Right shift: Returns the result of right shifting int1 by int2.  Equiv-
alent to division by 2**int2.  int1 is interpreted as a signed quan-
tity.

int1 << int2 Left shift: Returns the result of left shifting int1 by int2.  Equiva-
lent to multiplication by 2**int2.
ICI Technical Description Page 38 of 88 Last Updated: March 27, 2000



array << int Left shift array: Returns a new array which contains the elements 
of array from index int onwards.  Equivalent to the function call 
interval(array, int) (which is considered preferable, this operator 
may disappear in future releases).

num1 < num2 Numeric test for less than: Returns 1 if num1 is less than num2, 
else 0.

set1 < set2 Test for subset: Returns 1 if set1 contains only elements that are 
in set2, else 0.

string1 < string2 Lexical test for less than: Returns 1 if string1 is lexically less than 
string2, else 0.

ptr1 < ptr2 Pointer test for less than:  ptr1 and ptr2 must point to elements of 
indexable objects whose indexes are ints.  Returns 1 if ptr1 points 
to an element with a lesser index than ptr2, else 0.

The >, <= and >= operators work in the same fashion as <, above. For sets > tests for one 
set being a superset of the other. The <= and >= operators test for proper sub- or super-
sets. That is one set can contain only those elements contained in the other set but cannot 
be equal to the other set.

any1 == any2 Equality test: Returns 1 if any1 is equal to any2, else 0.  Two ob-
jects are equal when: they are the same object; or they are both 
arithmetic (int and float) and have equivalent numeric values; or 
they are aggregates of the same type and all the sub-elements are 
the same objects.

any1 != any2 Inequality test: Returns 1 if any1 is not equal to any2, else 0.  See 
above.

string ~ regexp Logical test for regular expression match: Returns 1 if string can 
be matched by regexp, else 0.  The arguments may be in any or-
der.

string !~ regexp Logical test for regular expression non-match: Returns 1 if string 
can not be matched by regexp, else 0.  The arguments may be in 
any order.

string ~~ regexp Regular expression sub-string extraction: Returns the sub-string 
of string which is matched by the first bracket enclosed portion of 
regexp, or NULL if there is no match or regexp does not contain 
a (...) portion. The arguments may be in any order.  For example, 
a "basename" operation can be performed with:

argv[0] ~~= #([^/]*)$#;
ICI Technical Description Page 39 of 88 Last Updated: March 27, 2000



string ~~~ regexp Regular expression multiple sub-string extraction: Returns an ar-
ray of the the sub-strings of string which are matched by the (...) 
enclosed portions of regexp, or NULL if there is no match. The 
arguments may be in any order.

int1 & int2 Bit-wise and: Returns the bit-wise and of int1 and int2.

int1 ^ int2 Bit-exclusive or: Returns the bit-wise exclusive or of int1 and 
int2.

int1 | int2 Bit-wise or: Returns the bit-wise or of int1 and int2.

any1 && any2 Logical and: Evaluates the expression which determines any1, if 
this evaluates to 0 or NULL (i.e. false), 0 is returned, else any2 is 
evaluated and returned

5
. Note that if any1 does not evaluate to a 

true value, the expression which determines any2 is never evalu-
ated.

any1 || any2 Logical or: Evaluates the expression which determines any1, if 
this evaluates to other than 0 or NULL (i.e. true), 1 is returned, 
else any2 is evaluated and returned. Note that if any1 does not 
evaluate to a false value, the expression which determines any2 is 
never evaluated.

any1 ? any2 : any3 Choice: If any1 is neither 0 or NULL (i.e. true), the expression 
which determines  any2 is evaluated and returned, else the expres-
sion which determines any3 is evaluated and returned.  Only one 
of any2 and any3 are evaluated.  The result may be an lvalue if the 
returned expression is.  Thus:

flag ? a : b = value

is a legal expression and will assign value to either a or b depend-
ing on the state of flag.

any1 = any2 Assignment: Assigns any2 to any1.  any1 must be an lvalue. The 
behavior of assignment is a consequence of aggregate access as 
discussed in earlier sections.  In short, an lvalue (in this case any1) 
can always be resolved into an aggregate and an index into the ag-
gregate.  Assignment sets the element of the aggregate identified 
by the index to any2.  The returned result of the whole assignment 
is any1, after the assignment has been performed.

The result is an lvalue, thus:

++(a = b)

will assign b to a and then increment a by 1.

5.Note that this is different from C where the result is always completely resolved to a 0 or 1. Use !! to force 
a 0/1 value from a generic true/false.
ICI Technical Description Page 40 of 88 Last Updated: March 27, 2000



Note that assignment operators (this and following ones) associ-
ate right to left, unlike all other binary operators, thus:

a = b += c -= d

Will subtract d from c, then add the result to b, then assign the fi-
nal value to a.

+= -= *= /= %= >>= <<= &= ^= |= ~~=

Compound assignments: All these operators are defined by the re-
writing rule:

any1 op= any2

is equivalent to:

any1 = any1 op any2

except that any1 is not evaluated twice. Type restrictions and the 
behavior or op will follow the rules given with that binary opera-
tor above. The result will be an lvalue (as a consequence of = 
above).  There are no further restrictions.  Thus:

a = "Hello";
a += " world.\n";

will result in the variable a referring to the string:

"Hello world.\n".

any1 <=> any2 Swap: Swaps the current values of any1 and any2. Both operands 
must be lvalues. The result is any1 after the swap and is an lvalue, 
as in other assignment operators.  Also like other assignment op-
erators, associativity is right to left, thus:

a <=> b <=> c <=> d

rotates the values of a, b and c towards d and brings d's original 
value back to a.

any1 , any2 Sequential evaluation: Evaluates any1, then any2. The result is 
any2 and is an lvalue if any2 is. Note that in situations where com-
ma has meaning at the top level of parsing an  expression (such as 
in function call arguments), expression parsing precedence starts 
at one level below the comma, and a comma will not be recogn-
ised as an operator.  Surround the expression with brackets to 
avoid this if necessary.

Core language functions

The following list summarises the standard functions.  Following this is a detailed 
ICI Technical Description Page 41 of 88 Last Updated: March 27, 2000



descriptions of each of them.

float|int =abs(float|int)

float =acos(number)

mem =alloc(int [, int])

array =array(any...)

float =asin(number)

any =assign(struct, any, any)

float =atan(number)

float =atan2(number, number)

any =call(func, array)

float =ceil(number)

close(file)

any =copy(any)

float =cos(number)

file =currentfile()

del(struct, any)

int =eq(any, any)

int =eof(file)

eventloop()

exit([int|string|NULL])

float =exp(number)

array =explode(string)

fail(string)

any =fetch(struct, any)

float =float(any)

float =floor(number)

int =flush(file)

float =fmod(number, number)

file =fopen(string [, string])

flush([file])

string =getchar([file])

string =getfile([file])

string =getline([file])

string =getenv(string)

string =gettoken([file|string [,string]])

array =gettokens([file|string [,string [,string]]])

string =gsub(string, regexp, string)

string =implode(array)

struct =include(string [, struct])

int =int(any)

string|array =interval(string|array, int [, int])
ICI Technical Description Page 42 of 88 Last Updated: March 27, 2000



int =isatom(any)

array =keys(struct)

float =log(number)

float =log10(number)

mem =mem(int, int [,int])

file =mopen(string [, string])

int =nels(any)

int|float =num(string|int|float)

struct =parse(file|string [, struct])

any =pop(array)

file =popen(string [, string])

float =pow(number, number)

printf([file,] string [, any...])

any =push(array, any)

put(string)

putenv(string [, string])

int =rand([int])

reclaim()

regexp =regexp(string)

regexp =regexpi(string)

remove(string)

struct =scope([struct])

int =seek(file, int, int)

set =set(any...)

float =sin(number)

int =sizeof(any)

array =smash(string, string)

file =sopen(string [, string])

sort(array, func)

string =sprintf(string [, any...])

float =sqrt(number)

string =string(any)

struct =struct(any, any...)

string =sub(string, regexp, string)

struct =super(struct [, struct])

int =system(string)

float =tan(number)

string =tochar(int)

int =toint(string)

any =top(array [, int])

int =trace(string)

string =typeof(any)

array =vstack()

file|int|float =waitfor(file|int|float...)
ICI Technical Description Page 43 of 88 Last Updated: March 27, 2000



The following is an alphabetic listing of each of the standard functions.  

float|int = abs(float|int)

Returns the absolute value of its argument. The result is an int if the argument is an int, a 
float if it is a float.

angle = acos(x)

Returns the arc cosine of x in the range 0 to pi.

mem = alloc(nwords [, wordz])

Returns a new mem object referring to nwords (an int) of newly allocated and cleared 
memory.  Each word is either 1, 2, or 4 bytes as specified by wordz  (an int, default 1). 
Indexing of mem objects performs the obvious operations, and thus pointers work too.

array = array(any...)

Returns an array formed from all the arguments. For example:

array()

will return a new empty array; and

array(1, 2, "a string")

will return a new array with three elements, 1, 2, and "the string".

This is the run-time equivalent of the array literal. Thus the following two expressions are 
equivalent:

$array(1, 2, "a string")

[array 1, 2, "a string"]

float = asin(x)

Returns the arc sine of x  in the range -pi/2 to pi/2.

value = assign(struct, key, value)

Sets the element of struct identified by key to value, ignoring any super struct.  Returns 
value.

angle = atan(x)

Returns the arc tangent of x  in the range -pi/2 to pi/2.

angle = atan2(y, x)

Returns the angle from the origin to the rectangular coordinates x, y (floats ) in the range 
-pi to pi.
ICI Technical Description Page 44 of 88 Last Updated: March 27, 2000



return = call(func, args)

Calls the function func with arguments taken from the array args.  Returns the return value 
of the function.

This is often used to pass on an unknown argument list.  For example:

static
db()
{

auto vargs;

if (debug)
return call(printf, vargs);

}

new = copy(old)

Returns a copy of old.  If old is an intrinsically atomic type such as an int or string, the 
new will be the same object as the old.  But if old is an array, set, or struct, a copy will be 
returned.  The copy will be a new non-atomic object (even if old was atomic) which will 
contain exactly the same objects as old and will be equal to it (that is ==).  If old is a struct 
with a super struct, new will have the same super (exactly the same super, not a copy of it).

x = cos(angle)

Returns the cosine of angle (a float interpreted in radians).

file = currentfile()

Returns the file associated with the innermost parsing context, or NULL if there is no 
module being parsed.

This function can be used to include data in a program source file which is out-of-band 
with respect to the normal parse stream.  But to do this it is necessary to know up to what 
character in the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed up to 
and including the terminating semicolon, and no more.  Also, after having parsed a 
compound statement the parser will have consumed up to and including the terminating 
close brace and no more.  For example:

static help = gettokens(currentfile(), "", "!")[0]

;This is the text of the help message.
It follows exactly after the ; because
that is exactly up to where the parser
will have consumed. We are using the
gettokens() function (as described below)
to read the text.
!

static otherVariable = "etc...";
ICI Technical Description Page 45 of 88 Last Updated: March 27, 2000



This function can also be used to parse the rest of a module within an error catcher.  

For example:
try

parse(currentfile(), scope())
onerror

printf("That didn't work, but never mind.\n");

static this = that;
etc();

The functions  parse and scope are described below.

del(struct, key)

Deletes the element of struct identified by key. Any super structs are ignored.  Returns 
NULL.  For example:

static s = [struct a = 1, b = 2, c = 3];
static v, k;
forall (v, k in s)

printf("%s=%d\n", k, v);
del(s, "b");
printf("\n");
forall (v, k in s)

printf("%s=%d\n", k, v);

When run would produce (possibly in some other order):

a=1
c=3
b=2

a=1
c=3

int = eof([file])

Returns non-zero if end of file has been read on file. If file is not given the current value 
of stdin in the current scope is used.

int = eq(obj1, obj2)

Returns 1 (one) if obj1 and obj2 are the same object, else 0 (zero).

eventloop()

Enters an internal event loop and never returns (but can be broken out of with an error). 
The exact nature of the event loop is system specific. Some dynamically loaded modules 
require an event loop for their operation.

exit([string|int|NULL])

Causes the interpreter to finish execution and exit. If no parameter, the empty string or 
ICI Technical Description Page 46 of 88 Last Updated: March 27, 2000



NULL is passed the exit status is zero. If an integer is passed that is the exit status. If a 
non-empty string is passed then that string is printed to the interpreter’s standard error 
output and an exit status of one used.  This is implementation dependent and may be 
replaced by a more general exception mechanism.  Avoid.

float = exp(x)

Returns the exponential function of x.

array = explode(string)

Returns an array containing each of the integer character codes of the characters in string.

fail(string)

Causes an error to be raised with the message string associated with it.  See the section of 
error handling in the try statement above.  For example:

if (qf > 255)
fail(sprintf("Q factor %d is too large", qf));

value = fetch(struct, key)

Returns the value from struct associated with key, ignoring any super structs. Returns 
NULL is key is not an element of struct.

value = float(x)

Returns a floating point interpretation of x, or 0.0 if no reasonable interpretation exists. x 
should be an int, a float, or a string, else 0.0 will be returned.

file = fopen(name [, mode])

Opens the named file for reading or writing according to mode and returns a file object 
that may be used to perform I/O on the file. Mode is the same as in C and is passed directly 
to the C library fopen function. If mode is not specified “r” is assumed.

fprintf(file, fmt, args...)

Formats a string based on fmt and args as per sprintf (below) and outputs the result to file.  
See sprintf. Changes to ICI’s printf have made fprintf redundant and it may be 
removed in future versions of the interpreter. Avoid.

string = getchar([file])

Reads a single character from file and returns it as a string. Returns NULL upon end of 
file. If file is not given the current value of stdin in the current scope is used.

string = getfile([file])

Reads all remaining data from file and returns it as a string. Returns an empty string upon 
end of file. If file is not given the current value of stdin in the current scope is used.

string = getline([file])

Reads a line of text from file and returns it as a string. Any end-of-line marker is removed. 
ICI Technical Description Page 47 of 88 Last Updated: March 27, 2000



Returns NULL upon end of file. If file is not given the current value of stdin in the current 
scope is used.

string = gettoken([file [, seps]])

Read a token (that is, a string) from file.

Seps must be a string.  It is interpreted as a set of characters which do not from part of the 
token.  Any leading sequence of these characters is first skipped.  Then a sequence of 
characters not in seps is gathered until end of file or a character from seps is found.  This 
terminating character is not consumed.  The gathered string is returned, or NULL if end 
of file was encountered before any token was gathered.

If file is not given the current value of stdin in the current scope is used.

If seps is not given the string " \t\n" is assumed.

array = gettokens([file [, seps [, terms]]])

Read tokens (that is, strings) from file.  The tokens are character sequences separated by 
seps and terminated by terms.  Returns an array of strings, NULL on end of file.

If seps is a string, it is interpreted as a set of characters, any sequence of which will 
separate one token from the next.  In this case leading and trailing separators in the input 
stream are discarded.

If seps is an integer it is interpreted as a character code.  Tokens are taken to be sequences 
of characters separated by exactly one of that character.

Terms must be a string.  It is interpreted as a set of characters, any one of which will 
terminate the gathering of tokens.  The character which terminated the gathering will be 
consumed.

If file is not given the current value of stdin in the current scope will be used.

If seps is not given the string " \t" is assumed.

If terms is not given the string "\n" is assumed.

For example:

forall (token in gettokens(currentfile()))
printf("<%s>", token)

;   This    is my line    of data.
printf("\n");

when run will print:

<This><is><my><line><of><data.>

Whereas: 
ICI Technical Description Page 48 of 88 Last Updated: March 27, 2000



forall (token in gettokens(currentfile(), ':', "*"))
printf("<%s>", token)

;:abc::def:ghi:*
printf("\n");

when run will print:

<><abc><><def><ghi><>

string = gsub(string, string|regexp, string)

gsub performs text substitution using regular expressions. It takes the first parameter, 
matches it against the second parameter and then replaces the matched portion of the 
string with the third parameter. If the second parameter is a string it is converted to a 
regular expression as if the regexp function had been called. Gsub does the replacement 
multiple times to replace all occurrances of the pattern. It returns the new string formed 
by the replacement. If there is no match this is original string. The replacement string may 
contain the special sequence “\&” which is replaced by the string that matched the regular 
expression. Parenthesized portions of the regular expression may be matched by using \n 
where n is a decimal digit.

string = implode(array)

Returns a string formed from the concatenation of elements of array.  Integers in the array 
will be interpreted as character codes; strings in the array will be included in the 
concatenation directly.  Other types are ignored.

struct = include(string [, scope])

Parses the code contained in the file named by the string into the scope. If scope is not 
passed the current scope is used. Include always returns the scope into which the code was 
parsed. The file is opened by calling the current definition of the ICI fopen() function so 
path searching can be implemented by overriding that function.

value = int(any)

Returns an integer interpretation of x, or 0 if no reasonable interpretation exists. x should 
be an int, a float, or a string, else 0 will be returned.

subpart = interval(str_or_array, start [, length])

Returns a sub-interval of str_or_array, which may be either a string or an array.

If start (an integer) is positive the sub-interval starts at that offset (offset 0 is the first 
element).  If start is negative the sub-interval starts that many elements from the end of 
the string (offset -1 is the last element, -2 the second last etc).

If length is absent, all the elements from the start are included in the interval.  Otherwise 
that many elements are included (or till the end, whichever is smaller).

For example, the last character in a string can be accessed with:

last = interval(str, -1);
ICI Technical Description Page 49 of 88 Last Updated: March 27, 2000



And the first three elements of an array with:

first3 = interval(ary, 0, 3);

isatom(any)

Return 1 (one) if any is an atomic (read-only) object, else 0 (zero).  Note that integers, 
floats and strings are always atomic.

array = keys(struct)

Returns an array of all the keys from struct.  The order is not predictable, but is repeatable 
if no elements are added or deleted from the struct between calls and is the same order as 
taken by a forall loop.

float = log(x)

Returns the natural logarithm of x (a float).

float = log10(x)

Returns the log base 10 of x (a float).

mem = mem(start, nwords [, wordz])

Returns a memory object which refers to a particular area of memory in the ICI 
interpreter's address space.  Note that this is a highly dangerous operation.  Many 
implementations will not include this function or restrict its use.  It is designed for 
diagnostics, embedded systems and controllers.  See the alloc function above.

file = mopen(mem [, mode])

Returns a file, which when read will fetch successive bytes from the given memory object. 
The memory object must have an access size of one (see alloc and mem above). The file 
is read-only and the mode, if passed, must be one of “r” or “rb”.

int = nels(any)

Returns the number of elements in any.  The exact meaning depends on the type of any.  
If any is an:

array the length of the array is returned; if it is a

struct the number of key/value pairs is returned; if it is a

set the number of elements is returned; if it is a

string the number of characters is returned; and if it is a

mem the number of words (either 1, 2 or 4 byte quantities) is returned;

and if it is anything else, one is returned.
ICI Technical Description Page 50 of 88 Last Updated: March 27, 2000



number = num(x)

If x is an int or float, it is returned directly.  If x is a string it will be converted to an int or 
float depending on its appearance; applying octal and hex interpretations according to the 
normal ICI source parsing conventions.  (That is, if it starts with a 0x it will be interpreted 
as a hex number, else if it starts with a 0 it will be interpreted as an octal number, else it 
will be interpreted as a decimal number.)

If x can not be interpreted as a number the error %s is not a number is generated.

scope = parse(source [, scope])

Parses source in a new variable scope, or, if scope (a struct) is supplied, in that scope.  
Source may either be a file or a string, and in either case it is the source of text for the 
parse.  If the parse is successful, the variables scope structure of the sub-module is 
returned.  If an explicit scope was supplied this will be that structure.

If scope is not supplied a new struct is created for the auto variables.  This structure in turn 
is given a new structure as its super struct for the static variables.  Finally, this structure's 
super is set to the current static variables.  Thus the static variables of the current module 
form the externs of the sub-module.

If scope is supplied it is used directly as the scope for the sub-module.  Thus the base 
structure will be the struct for autos, its super will be the struct for statics etc.

For example:

static x = 123;
parse("static x = 456;", scope());
printf("x = %d\n", x);

When run will print:

x = 456

Whereas:

static x = 123;
parse("static x = 456;");
printf("x = %d\n", x);

When run will print:

x = 123

Note that while the following will work:

parse(fopen("my-module.ici"));

It is preferable in a large program to use:
ICI Technical Description Page 51 of 88 Last Updated: March 27, 2000



parse(file = fopen("my-module.ici"));
close(file);

In the first case the file will eventually be closed by garbage collection, but exactly when 
this will happen is unpredictable. The underlying system may only allow a limited number 
of simultaneous open files.  Thus if the program continues to open files in this fashion a 
system limit may be reached before the unused files are garbage collected.

any = pop(array)

Returns the last element of array and reduces the length of array by one.  If the array was 
empty to start with, NULL is returned.

file = popen(string, [flags])

Executes a new process, specified as a shell command line as for the system function, and 
returns a file that either reads or writes to the standard input or output of the process 
according to mode. If mode is “r” the reading from the file reads from the standard output 
of the process. If mode is “w” writing to the file writes to the standard input of the process. 
If mode is not speicified it defaults to “r”.

float = pow(x, y)

Returns x^y where both x and y are floats.

printf([file,] fmt, args...)

Formats a string based on fmt and args as per sprintf (below) and outputs the result to the 
file or to the current value of the stdout variable in the current scope if the first parameter 
is not a file.  The current stdout must be a file.  See sprintf.

any = push(array, any)

Appends any to array, increasing its length in the process.  Returns any.

put(string [, file])

Outputs string to file. If file is not passed the current value of stdout in the current scope 
is used.

int = rand([seed])

Returns an pseudo random integer in the range 0..0x7FFF.  If seed (an int) is supplied the 
random number generator is first seeded with that number.  The sequence is predictable 
based on a given seed.

reclaim()

Force a garbage collection to occur.

re = regexp(string [, int])

Returns a compiled regular expression derived from string  This is the method of 
generating regular expressions at run-time, as opposed to the direct lexical form. For 
example, the following three expressions are similar:
ICI Technical Description Page 52 of 88 Last Updated: March 27, 2000



str ~ #*\.c#
str ~ regexp("*\\.c");
str ~ $regexp("*\\.c");

except that the middle form computes the regular expression each time it is executed.  
Note that when a regular expression includes a # character the regexp function must be 
used, as the direct lexical form has no method of escaping a #.

The optional second parameter is a bit-set that controls various aspects of the compiled 
regular expression’s behaviour.  This value is passed directly to the PCRE package’s 
regular expression compilation function.  Presently no symbolic names are defined for the 
possible values and interested parties are directed to the PCRE documention included 
with the ICI source code.

Note that regular expressions are intrinsically atomic.  Also note that  non-equal strings 
may sometimes compile to the same regular expression. 

re = regexpi(string [, int])

Returns a compiled regular expression derived from string  that is case-insensitive. I.e., 
the regexp will match a string regardless of the case of alphabetic characters.  Literal 
regular expressions to perform case-insensitive matching may be constructed using the 
special PCRE notation for such purposes, see page 75.

remove(string)

Deletes the file whose name is given in string.

current = scope([replacement])

Returns the current scope structure.  This is a struct whose base element holds the auto 
variables, the super of that hold the statics, the super of that holds the externs etc.  Note 
that this is a real reference to the current scope structure.  Changing, adding and deleting 
elements of these structures will affect the values and presence of variables in the current 
scope.

If a replacement is given, that struct  replaces the current scope structure, with the obvious 
implications.  This should clearly be used with caution.  Replacing the current scope with 
a structure which has no reference to the standard functions also has the obvious effect.

int = seek(file, int, int)

Set the input/output position for a file and returns the new I/O position or -1 if an error 
ocurred. The arguments are the same as for the C library’s fseek function. If the file object 
does not support setting the I/O position or the seek operation fails an error is raised.

set = set(any...)

Returns a set formed from all the arguments. For example:

set()

will return a new empty set; and
ICI Technical Description Page 53 of 88 Last Updated: March 27, 2000



set(1, 2, "a string")

will return a new set with three elements, 1, 2, and "the string".

This is the run-time equivalent of the set literal. Thus the following two expressions are 
equivalent:

$set(1, 2, "a string")

[set 1, 2, "a string"]

x = sin(angle)

Returns the sine of angle (a float interpreted in radians).

file = sopen(string [, mode])

Returns a file, which when read will fetch successive characters from the given string. The 
file is read-only and the mode, if passed, must be one of “r” or “rb”.

Files are, in general, system dependent.  This is the only standard routine which opens a 
file.  But on systems that support byte stream files, the function fopen will be set to the 
most appropriate method of opening a file for general use. The interpretation of mode is 
largely system dependent, but the strings "r", "w", and "rw" should be used for read, write, 
and read-write file access respectively.

sort(array, func)

Sort the content of the array using the heap sort algorithm with func as the comparison 
function. The comparison function is called with two elements of the array as parameters, 
a and b. If a is equal to b the function should return zero. If a is less than b, -1, and if a is 
greater than b, 1.

For example,

static cmp(a, b)
{
    if (a == b)

return 0;
    if (a < b)

return -1;
    return 1;
}

static a = array(1, 3, 2);

sort(a, cmp);

string = sprintf(fmt, args...)

Return a formatted string based on fmt (a string) and args.  Most of the usual % format 
escapes of ANSI C printf are supported.  In particular; the integer format letters diouxXc 
ICI Technical Description Page 54 of 88 Last Updated: March 27, 2000



are supported, but if a float is provided it will be converted to an int.  The floating point 
format letters feEgG are supported, but if the argument is an int it will be converted to a 
float.  The string format letter, s is supported and requires a string.  Finally the % format 
to get a single % works.

The flags, precision, and field width options are supported.  The indirect field width and 
precision options with * also work and the corresponding argument must be an int.

For example:

sprintf("%08X <%4s> <%-4s>", 123, "ab", "cd")

will produce the string:

0000007B <  ab> <cd  >

and

sprintf("%0*X", 4, 123)

will produce the string:

007B

x = sqrt(float)

Returns the square root of float.

string = string(any)

Returns a short textual representation of any. If any is an int or float it is converted as if 
by a %d or %g format.  If it is a string it is returned directly.  Any other type will returns 
its type name surrounded by angle brackets, as in <struct>.

struct = struct([super,] key, value...)

Returns a new structure.  This is the run-time equivalent of the struct literal.  If there are 
an odd number of arguments the first is used as the super of the new struct; it must be a 
struct.  The remaining pairs of arguments are treated as key and value pairs to initialise 
the structure with; they may be of any type.  For example:

struct()

returns a new empty struct;

struct(anotherStruct)

returns a new empty struct which has anotherStruct as its super;

struct("a", 1, "b", 2)

returns a new struct which has two entries a and b with the values 1 and 2; and
ICI Technical Description Page 55 of 88 Last Updated: March 27, 2000



struct(anotherStruct, "a", 1, "b", 2)

returns a new struct which has two entries a and b with the values 1 and 2 and a super of 
anotherStruct.

Note that the super of the new struct is set after the assignments of the new elements have 
been made. Thus the initial elements given as arguments will not affect values in any 
super struct.

The following two expressions are equivalent:

$struct(anotherStruct, "a", 1, "b", 2)

[struct:anotherStruct, a = 1, b = 2]

string = sub(string, string|regexp, string)

Sub performs text substitution using regular expressions. It takes the first parameter, 
matches it against the second parameter and then replaces the matched portion of the 
string with the third parameter. If the second parameter is a string it is converted to a 
regular expression as if the regexp function had been called. Sub does the replacement 
once (unlike gsub). It returns the new string formed by the replacement. If there is no 
match this is original string. The replacement string may contain the special sequence 
“\&” which is replaced by the string that matched the regular expression. Parenthesized 
portions of the regular expression may be matched by using \n where n is a decimal digit.

current = super(struct [, replacement])

Returns the current super struct of struct, and, if replacement is supplied, sets it to a new 
value.  If replacement is NULL any current super struct reference is cleared (that is, after 
this struct will have no super).

x = tan(angle)

Returns the tangent of angle (a float interpreted in radians).

foat = now()

Returns the current time expressed as a signed float time in seconds since 0:00, 1st Jan 
2000 UTC.

float|struct = calendar(struct|float)

Converts between calendar time and arithmetic time. An arithmetic time is expressed as 
a signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is 
expressed as a structure with fields revealing the local (including current daylight saving 
adjustment) calendar date and time. Fields in the calendar structure are:

second The float number of seconds after the minute.

minute The int number of minutes after the hour.

hour The int number of hours since midnight.
ICI Technical Description Page 56 of 88 Last Updated: March 27, 2000



day The day of the month (1..31).

month The int month number, Jan is 0.

year The int year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.

When converting from a local calendar time to an arithmetic time, the fields sec, min, 
hour, mday, mon, year are used. They need not be restricted to their nomal ranges.

string = tochar(int)

Returns a one character string made from the character code specified by int.

int = toint(string)

Returns the character code of the first character of string.

string = typeof(any)

Returns the type name (a string) of any.  See the section on types above for the possible 
type names.

array = vstack()

Returns a representation of the call stack of the current program at the time of the call. It 
can be used to perform stack tracebacks and related debugging operations. The result is 
an array of structures, each of which is a variable scope (see scope) structure of 
succesively deeper nestings of the current function nesting.

event = waitfor(event...)

Blocks (waits) until an event indicated by any of its arguments occurs, then returns that 
argument.  The interpretation of an event depends on the nature of each argument.  A file 
argument is triggered when input is available on the file. A float argument waits for that 
many seconds to expire, an int for that many millisecond (they then return 0, not the 
argument given). Other interpretations are implementation dependent. Where several 
events occur simultaneously, the first as listed in the arguments will be returned.

Note that in some implementations some file types may always appear ready for input, 
despite the fact that they are not.

Command Line Arguments

Versions of ICI on systems that support passing parameters from the command line 
provide two predefined variables, argv and argc, for accessing these arguments.

On Win32 platforms ICI performs wildcard expansion in the traditional MS-DOS fashion. 
Arguments containing wildcard meta-characters, ‘?’ and ‘*’, may be protected by 
enclosing them in single or double quotes.
ICI Technical Description Page 57 of 88 Last Updated: March 27, 2000



argv

An array of strings containing the command line arguments. The first element is the name 
of the ICI program and subsequent elements are the arguments passed to that program.

argc

The count of the number of elements in argv. Initially equal to nels(argv).

Unix System Calls

Most Unix implementation of ICI provide access to many of the Unix system calls and 
other useful C library functions. Note that not all system calls are supported and those that 
are may be incompletely supported (e.g., signal). Most system call functions return 
integers, zero if the call succeeded. Errors are reported using ICI’s error handling and 
“system calls” will never return the -1 error return value. If an error is raised by a system 
call the value of “error” in the error handler will be the error message (as printed by the 
perror(3) function or returned by the ANSI C strerror() function).

To assist in the use of system calls ICI pre-defines variables to hold the various flags and 
other values used when calling the system calls. These variables are equivalent to the 
macros used in C. Not all systems support all these variables. If the C header files do not 
define a value then ICI will not pre-define the variable.

Win32 Support

The version of ICI for Microsoft’s 32-bit Windows platforms (Win32)  supports many of 
these functions. Functions supported on Win32 platforms (Windows 95 and Windows 
NT) are marked with WIN32. In addition some functions are only available on Win32 
platforms and are marked as so.

The following list summarises the Unix system call interface pre-defined variables. See 
the documentation for the C macros for information as to their use.

Values for open’s flags parameter,

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_TRUNC

O_EXCL

O_SYNC

O_NDELAY

O_NONBLOCK

O_BINARY (WIN32 only)

Values for spawn’s mode parameter,
ICI Technical Description Page 58 of 88 Last Updated: March 27, 2000



_P_WAIT (WIN32 only)

_P_NOWAIT (WIN32 only)

Values for access’s mode parameter,

R_OK

W_OK

X_OK

F_OK

Values for lseek’s whence parameter,

SEEK_SET

SEEK_CUR

SEEK_END

The following list summarises the system interface functions. Following this is a detailed 
descriptions of each of them.

int = access(string [, int])

int = creat(string, int)

array = dir([string,] [string,] [regexp])

int = dup(int [, int])

exec(string, array)

exec(string, string...)

int = lseek(int, int [, int])

int = open(string, int [, int])

array = pipe()

struct = stat(string|int|file)

int = wait()

string = ctime(int)

int = time()

file = fdopen(int)

string = getcwd()

alarm(int)

acct(string)

chdir(string)

chmod(string, int)

chown(string, int, int)

chroot(string)

_close(int)
ICI Technical Description Page 59 of 88 Last Updated: March 27, 2000



_exit(int)

int = fork()

int = getpid()

int = getpgrp()

int = getppid()

int = getuid()

int = geteuid()

int = getgid()

int = getegid()

kill(int, int)

link(string, string)

mkdir(string, int)

mknod(string, int, int)

nice(int)

pause()

rmdir(string)

setpgrp()

setuid(int)

setgid(int)

signal(int, int)

sync()

ulimit(int, int)

umask(int)

unlink(string)

clock()

system(string)

lockf(int, int, int)

sleep(int)

int = spawn([int, ] string, string...)

int = spawn([int, ] string, array)

rename(string, string)

struct = passwd(int|string)

array = passwd()
int = access(string [, int])

Call the access(2) function to determine the accessibility of a file. The first parameter is 
the pathname of the file system object to be tested. The second, optional, parameter is the 
mode (a bitwise combination of R_OK, W_OK and X_OK or the special value, F_OK). 
If mode is not passed F_OK is assumed. Access returns 0 if the file system object is 
accessible. Also supported on WIN32 platforms.

int = creat(string, int)

Create a new ordinary file with the given pathname and mode (permissions etc...) and 
return the file descriptor, open for writing, for the file. Also supported on WIN32 
ICI Technical Description Page 60 of 88 Last Updated: March 27, 2000



platforms.

array = dir([string,] [string,] [regexp])

The dir() function is used to read the contents of directories. It returns an array of strings 
being the names found in the directory. The first string parameter names a directory to 
read and defaults to “.” — the current directory. The second string parameter controls 
which names are returned. It may be one of “f” — return only the names of files, “d” — 
return the names of sub-directories, or “a” — return the names of all objects in the 
directory. The regexp parameter, if passed, is used to filter the returned names. Only 
names that match the regexp are returned. Note that when using dir() to traverse directory 
hierarchies that the “.” and “..” names are returned when listing the names of sub-
directories, these will need to be avoided when traversing.

int = dup(int [, int])

Duplicate a file descriptor by calling dup(2) or dup2(2) and return a new descriptor. If 
only a single parameter is passed dup(2) is called otherwise dup2(2) is called. Also 
supported on WIN32 platforms.

exec(string, array)

exec(string, string...)

Execute a new program in the current process. The first parameter to exec is the pathname 
of an executable file (the program). The remaining parameters are either; an array of 
strings defining the parameters to be passed to the program, or, a variable number of 
strings that are passed, in order, to the program as its parameters. The first form is similar 
to C’s execv function and the second form to C’s execl functions. Note that no searching 
of the user’s path is performed and the environment passed to the program is that of the 
current process (i.e., both are implemented by calls to execv(2)). This function is available 
on Win32 platforms

int = lseek(int, int [, int])

Set the read/write position for an open file. The first parameter is the file descriptor 
associated with the file system object, the second parameter the offset. The third is the 
whence value which determines how the new file position is calculated. The whence value 
may be one of SEEK_SET, SEEK_CUR or SEEK_END and defaults to SEEK_SET if not 
specified. Also supported on WIN32 platforms.

int = open(string, int [, int])

Open the named file for reading or writing depending upon the value of the second 
parameter, flags, and return a file descriptor. The second parameter is a bitwise 
combination of the various O_ values (see above) and if this set includes the O_CREAT 
flag a third parameter, mode, must also be supplied. Also supported on WIN32 platforms.

array = pipe()

Create a pipe and return an array containing two, integer, file descriptors used to refer to 
the input and output endpoints of the pipe.
ICI Technical Description Page 61 of 88 Last Updated: March 27, 2000



struct = stat(string|int|file)

Obtain information on the named file system object, file descriptor or file underlying an 
ICI file object and return a struct containing that information. If the parameter is a file 
object that file object must refer to a file opened with ICI’s fopen function. The returned 
struct contains the following keys (which have the same names as the fields of the Unix 
statbuf structure with the leading “st_” prefix removed),

dev
ino
mode
nlink
uid
gid
rdev
size
atime
mtime
ctime
blksize
blocks

All values are integers. Also supported on WIN32 platforms.

int = wait()

Wait until a signal is received or a child process terminates or stops due to tracing and 
return the status returned by system call.

string = ctime(int)

Convert a time value (see time, below) to a string of the form “Sun Sep 16 01:03:52 
1973\n” and return that string. This is primarily of use when converting the time values 
returned by stat. Also supported on WIN32 platforms.

int = time()

Return the time since 00:00:00 GMT,  Jan.  1,  1970, measured in seconds.  Also supported 
on WIN32 platforms.

file = fdopen(int [, mode])

Returns a file object that can be used to perform I/O on the specified file descriptor. The 
file is opened for reading or writing according to mode (see fopen). If mode is specified 
“r” (reading) is assumed.

string = getcwd()

Returns the name of the current working directory. Also supported on WIN32 platforms.

alarm(int)

Schedule a SIGALRM signal to be posted to the current process in the specified number 
of seconds. If the parameter is zero any alarm is cancelled.
ICI Technical Description Page 62 of 88 Last Updated: March 27, 2000



acct(string)

Enable accounting on the specified file.

chdir(string)

Change the process’s current working directory to the specified path. Also supported on 
WIN32 platforms.

chmod(string, int)

Change the mode of a file system object.

chown(string, int, int)

Change the owner and group identifiers for a file system object.

chroot(string)

Change root directory for process.

_close(int)

Close a file descriptor. Also supported on WIN32 platforms.

_exit(int)

Exit the current process returning an integer exit status to the parent. Also supported on 
WIN32 platforms.

int = fork()

Create a new process. In the parent this returns the process identifier for the newly created 
process. In the newly created process it returns zero.

int = getpid()

Get the process identifier for the current process.

int = getpgrp()

Get the current process group identifier.

int = getppid()

Get the parent process identifier.

int = getuid()

Get the real user identifier of the owner of the current process.

int = geteuid()

Get the effective user identifier for the owner of the current process.

int = getgid()

Get the real group identifier for the current process.
ICI Technical Description Page 63 of 88 Last Updated: March 27, 2000



int = getegid()

Get the effective group identifier for the current process.

kill(int, int)

Post a signal to a process.

link(string, string)

Create a link to an existing file.

mkdir(string, int)

Create a directory with the specified mode. Also supported on WIN32 platforms.

mknod(string, int, int)

Create a special file.

nice(int)

Change the nice value of a process.

pause()

Wait until a signal is delivered to the process.

rmdir(string)

Remove a directory. Also supported on WIN32 platforms.

setpgrp()

Set the process group.

setuid(int)

Set the real and effective user identifier for the current process.

setgid(int)

Set the real and effective group identifier for the current process.

signal(int, int)

Control signal handling in the process. Note at present handlers cannot be installed so 
signals are of limited use in ICI programs.

sync()

Schedule in-memory file data to be written to disk.

ulimit(int, int)

Get and set user limits.
ICI Technical Description Page 64 of 88 Last Updated: March 27, 2000



umask(int)

Set file creation mask.

unlink(string)

Remove a file. Also supported on WIN32 platforms.

system(string)

Execute a system command and return its exit status. Also supported on WIN32 platforms 
however using the system’s command interpreter.

sleep(int)

Suspend the process for the specified number of seconds.

int = spawn([mode,] string, string...)

int = spawn([mode, ] string, array)

int = spawnp([mode,] string, string...)

int = spawnp([mode, ] string, array)

Spawn a sub-process. The parameters, other than mode, are as for exec - the string is the 
name of the executable and the remaining parameters form the command line arguments 
passed to the executable.

The mode parameter controls whether or not the parent process waits for the spawned 
process to termiante. If mode is _P_WAIT the call to spawn returns when the process 
terminates and the result of spawn is the process exit status. If mode is not passed or is 
_P_NOWAIT the call to spawn returns prior to the process terminating and the result is 
the Win32 process handle for the new process.

The spawnp variant will search the directories listed in the PATH environment variable 
for the executable program. In all other respects it is indentical to spawn.

This function is only available on Win32 platforms.

rename(string, string)

Change the name of a file. The first parameter is the name of an existing file and the 
second is the new name that it is to be given.

struct = passwd(int | string)

array = passwd()

The passwd() function accesses the Unix password file (which may or may not be an 
actual file according to the local system configuration). With no parameters passwd() 
returns an array of all password file entries, each entry is a struct. With a parameter 
passwd() returns the entry for the specific user id., int parameter, or user name, string 
parameter. A password file entry is a struct with the following keys and values,

name The user’s login name, a string.
passwd The user’s encrypted password, a string. 
ICI Technical Description Page 65 of 88 Last Updated: March 27, 2000



Note that some systems protect this (shadow 
password files) and this field may not be an 
actual encrypted password.

uid The user id., an int.
gid The user’s default group, an int.
gecos The so-called gecos field, a string.
dir The user’s home directory, a string.
shell The user’s shell (initial program), a 

string.

Sockets Interface

The sockets extension is available on systems that provide BSD-compatible sockets calls 
and for Win32 platforms. The extension allows ICI programs to access network functions. 
The sockets extension is generally compatible with the C sockets functions but uses types 
and calling semantics more akin to the ICI environment.

The sockets extension introduces a new type, socket, to hold socket objects. The new 
intrinsic function, socket, returns a socket object.

Network Addresses

The sockets interfaces specifies IP network addresses using strings. Network addresses 
are of the form port@ host where the @host part is optional. The port may be specified 
as an integer number or a string which is looked up in the services database. If the port is 
a service name it may be in the form name/protocol with protocol being either tcp or udp. 
The host portion of the address may be a domain name, an IP address in dotted decimal 
notation or one of the special addresses local (“.” - dot), any (“?”) or all (“*”). If the host 
portion is omitted the default host depends on the context. See the descriptions of the 
connect and bind functions below.

The following list summarises the sockets interface functions. Following this is a detailed 
descriptions of each of them.

skt = socket(string)

skt = listen(skt)

skt = accept(skt)

skt = connect(skt, string)

skt = bind(skt, string)

struct = select([int,] set [, set [, set]])

int = getsockopt(skt, string)

setsockopt(skt, string, int)

string = domainname()

string = hostname()

string = username([int])

string = getpeername(skt)

string = getsockname(skt)

sendto(skt, string, string)

struct = recvfrom(skt, int)
ICI Technical Description Page 66 of 88 Last Updated: March 27, 2000



send(skt, string)

string = recv(skt, int)

int = getportno(skt)

string = gethostbyname(string)

int = sktno(skt)

file = sktopen(skt [, mode])

array = socketpair()

skt = socket(string)

Create and return a new socket object of the specified protocol. The string, the protocol, 
may be one of tcp or udp. For example,

skt = socket(“tcp”);

skt = accept(skt)

Accept a connection to a TCP socket and return a new socket for that connection.

skt = listen(skt)

Allow connections to a TCP socket. Returns the socket passed.

skt = connect(skt, address)

Establish a TCP connection to the specified address or associate the address with as the 
destination for messages on a UDP socket. If the host portion of the address is not 
specified “.” (dot) is used to connect to the local host. The original socket is returned.

skt = bind(skt [, address|int])

Associate a local address for the socket (TCP or UDP). If the address is not specified the 
system selects an unused local port number for the socket. If the host portion of the 
address is not specified “?” (any) is used. If the address is passed as an integer it specifies 
the port number to be bound, the host portion is “?”. Bind returns the socket parameter.

struct = select([int,] set|NULL [, set|NULL [, set|NULL]])

Check sockets for I/O readiness with optional timeout. Select may be passed up to three 
sets of sockets that are checked for readiness to perform I/O. The first set holds the sockets 
to test for input pending, the second set the sockets to test for output able and the third set 
the sockets to test for exceptional states. NULL may be passed in place of a set parameter 
to avoid passing empty sets. An integer may also appear in the parameter list. This integer 
specifies the number of milliseconds to wait for the sockets to become ready. If a zero 
timeout is passed the sockets are polled to test their state. If no timeout is passed the call 
blocks until at least one of the sockets is ready for I/O.

The result of select is a struct containing three sets, of sockets, identified by the keys 
read, write and except.

int = getsockopt(skt, string, int)

Retrieve the value of a socket option. A socket may have various attributes associated 
ICI Technical Description Page 67 of 88 Last Updated: March 27, 2000



with it. These are accessed via the getsockopt and setsockopt functions. The attributes are 
identified using string keys from the following list,

debug
reuseaddr
keepalive
dontroute
useloopback
linger
broadcast
oobinline
sndbuf
rcvbuf
type
error

setsockopt(skt, string, int)

Set a socket option (see getsockopt for option names) to the integer value.

string = domainname()

Return the domain name of the current host.

string = hostname()

Return the name of the current host.

string = username([int])

Return the name of the owner of the current process or if an integer, user number, is 
passed, of that user.

string = getpeername(skt)

Return the address of the peer of a TCP socket.

string = getsockname(skt)

Return the local address of a socket.

sendto(skt, string, string)

Send the data in the second parameter to the specified address.

array = socketpair()

Returns an array containing a pair of connected sockets.

struct = recvfrom(skt, int)

Receive a message on a socket and return a struct containing the data of the message, in 
string, and the source address of the data. The int parameter gives the maximum number 
of bytes to receive. The result is a struct with the keys msg and addr used to access the 
returned information.
ICI Technical Description Page 68 of 88 Last Updated: March 27, 2000



send(skt, string)

Send the content of the string on a socket.

string = recv(skt, int)

Receive data from a socket and return it as a string. The int parameter fives the maximum 
size of message that will be received.

int = getportno(skt)

Return the local port number assigned to a TCP or UDP socket.

string = gethostbyname(string)

Match a network address against the hosts database and return a hostname.

int = sktno(skt)

Return the file descriptor associated with a socket.

file = sktopen(skt [, mode])

Open a socket as a file, for input or output according to mode (see fopen). This function 
is not available on WIN32 platforms.

Regular Expression Syntax

ICI uses Philip Hazel’s PCRE (Perl-compatible regular expressions) package.  The 
following is extracted from the file pcre.3.txt included with the PCRE distribution.  
This document is intended to be used with the PCRE C functions and makes reference to 
a number of constants that may be used as option specifiers to the C functions (all such 
constants are prefixed with the string “PCRE_”).  These constants are not available in the 
ICI interface at time of writing although the regexp() function does allow a numeric 
option specific to be passed.

The syntax and semantics of the regular expressions supported by PCRE are described be-
low. Regular expressions are also described in the Perl documentation and in a number of 
other books, some of which have copious examples. Jeffrey Friedl’s “Mastering Regular 
Expressions”, published by O’Reilly (ISBN 1-56592-257-3), covers them in great detail.  
The description here is intended as reference documentation.

A regular expression is a pattern that is matched against a subject string from left to right. 
Most characters stand for themselves in a pattern, and match the corresponding characters 
in the subject. As a trivial example, the pattern

  The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expres-
sions comes from the ability to include alternatives and repetitions in the pattern.  These are 
encoded in the pattern by the use of meta-characters, which do not stand for themselves but 
instead are interpreted in some special way.

There are two different sets of meta-characters: those  that are  recognized anywhere in the 
pattern except within square brackets, and those that are recognized in square  brackets. 
Outside square brackets, the meta-characters are as follows:
ICI Technical Description Page 69 of 88 Last Updated: March 27, 2000



  \      general escape character with several uses

  ^      assert start of  subject  (or  line,  in  multiline mode)

  $      assert end of subject (or line, in multiline mode)

  .      match any character except newline (by default)

  [      start character class definition

  |      start of alternative branch

  (      start subpattern

  )      end subpattern

  ?      extends the meaning of (

          also 0 or 1 quantifier

          also quantifier minimizer

  *      0 or more quantifier

  +      1 or more quantifier

  {      start min/max quantifier

Part of a pattern that is in square brackets is called a “character class”.  In a character class 
the only meta-characters are:

  \      general escape character

  ^      negate the class, but only if the first character

  -      indicates character range

  ]      terminates the character class

The following sections describe  the  use  of  each  of  the meta-characters.

BACKSLASH

The backslash character has several uses. Firstly, if it  is followed  by  a  non-alphameric 
character, it takes away any special  meaning  that  character  may  have.  This  use  of back-
slash  as  an  escape  character applies both inside and outside character classes.

For example, if you want to match a “*” character, you write “\*” in the pattern. This applies 
whether or not the following character would otherwise be interpreted as a meta-character, 
so it is always safe to precede a non-alphameric with “\” to specify that it stands for itself.  
In particular, if you want to match a backslash, you write “\\”.

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (oth-
er than in a character class) and characters between a “#” outside a character class and the 
next newline character are ignored. An escaping backslash can be used to include a 
ICI Technical Description Page 70 of 88 Last Updated: March 27, 2000



whitespace or “#” character as part of the pattern.

A second use of backslash provides a way of encoding non-printing characters in patterns 
in a visible manner. There is no restriction on the appearance of non-printing characters, 
apart from the binary zero that terminates a pattern, but when a pattern is being prepared by 
text editing, it is usually easier to use one of the following escape sequences than the binary 
character it represents:

  \a     alarm, that is, the BEL character (hex 07)

  \cx    “control-x”, where x is any character

  \e     escape (hex 1B)

  \f     formfeed (hex 0C)

  \n     newline (hex 0A)

  \r     carriage return (hex 0D)

  \t     tab (hex 09)

  \xhh   character with hex code hh

  \ddd   character with octal code ddd, or backreference

The precise effect of “\cx” is as follows: if “x” is a lower case  letter,  it  is converted to 
upper case. Then bit 6 of the character (hex 40) is inverted.  Thus “\cz” becomes  hex 1A, 
but “\c{“ becomes hex 3B, while “\c;” becomes hex 7B.

After “\x”, up to two hexadecimal digits are  read  (letters can be in upper or lower case).

After “\0” up to two further octal digits are read. In  both cases,  if  there are fewer than two 
digits, just those that are present are used. Thus the sequence “\0\x\07”  specifies two binary 
zeros followed by a BEL character.  Make sure you supply two digits after the initial zero  
if  the  character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is  complicated.   Outside  a 
character class, PCRE reads it and any following digits as a decimal number. If the  number 
is  less  than  10, or if there have been at least that many previous capturing left parentheses 
in the  expression,  the entire  sequence is taken as a back reference. A description of how 
this works is given later, following  the  discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been 
that many capturing subpatterns, PCRE re-reads up to three octal digits following the back-
slash, and generates a single byte from the least significant 8 bits of the value. Any subse-
quent digits stand for themselves.  For example:

  \040   is another way of writing a space

  \40    is the same, provided there are fewer than 40             previous capturing subpatterns

  \7     is always a back reference

  \11    might be a back reference, or another way of             writing a tab
ICI Technical Description Page 71 of 88 Last Updated: March 27, 2000



  \011   is always a tab

  \0113  is a tab followed by the character “3”

  \113   is the character with octal code 113 (since there             can be no more than 99 back 
references)

  \377   is a byte consisting entirely of 1 bits

  \81    is either a back reference, or a binary zero followed by the two characters “8” and “1”

Note that octal values of 100 or greater must not be introduced by a leading zero, because 
no more than three octal digits are ever read.

All the sequences that define a single  byte  value  can  be used both inside and outside char-
acter classes. In addition, inside a character class, the sequence “\b”  is  interpreted as  the  
backspace  character  (hex 08). Outside a character class it has a different meaning (see be-
low).

The third use of backslash is for specifying generic character types:

  \d     any decimal digit

  \D     any character that is not a decimal digit any whitespace character

  \S     any character that is not a whitespace character

  \w     any “word” character

  \W     any “non-word” character

Each pair of escape sequences partitions the complete set of characters  into  two  disjoint  
sets.  Any  given character matches one, and only one, of each pair.

A “word” character is any letter or digit or the underscore character, that is, any character 
which can be part of a Perl “word”. The definition of letters and digits is controlled by 
PCRE’s character tables, and may vary if locale-specific matching is taking place (see “Lo-
cale support” above). For example, in the “fr” (French) locale, some character codes greater 
than 128 are used for accented letters, and these are matched by \w.

These character type sequences can appear  both  inside  and outside  character classes. 
They each match one character of the appropriate type. If the current matching  point  is  at 
the end of the subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a condi-
tion that has to be met at a particular point in a match, without consuming any characters 
from the subject string. The use of subpatterns for more complicated assertions is described 
below.  The backslashed assertions are

  \b     word boundary

  \B     not a word boundary

  \A     start of subject (independent of multiline mode)
ICI Technical Description Page 72 of 88 Last Updated: March 27, 2000



  \Z     end of subject or newline at  end  (independent  of multiline mode)

  \z     end of subject (independent of multiline mode)

These assertions may not appear in  character  classes  (but note that “\b” has a different 
meaning, namely the backspace character, inside a character class).

A word boundary is a position in the  subject  string  where the current character and the 
previous character do not both match \w or \W (i.e. one matches \w and  the  other  matches 
\W),  or the start or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described be-
low) in that they only ever match at the very start and end of the subject string, whatever 
options are set.  They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options. 
If the startoffset argument of pcre_exec() is non-zero, \A can never match. The difference 
between \Z and \z is that \Z matches before a newline that is the last character of the string 
as well as at the end of the string, whereas \z matches only at the end.

CIRCUMFLEX AND DOLLAR

Outside a character class, in the default matching mode, the circumflex character is an as-
sertion which is true only if the current matching point is at the start of the subject string.  
If the startoffset argument of pcre_exec() is non-zero, circumflex can never match. Inside a 
character class, circumflex has an entirely different meaning (see below).

Circumflex need not be the first character of the pattern if a number of alternatives are in-
volved, but it should be the first thing in each alternative in which it appears if the pattern 
is ever to match that branch. If all possible alternatives start with a circumflex, that is, if the 
pattern is constrained to match only at the start of the subject, it is said to be an “anchored” 
pattern. (There are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current  matching point is at the 
end of the subject string, or immediately before a newline character that is  the  last charac-
ter in the string (by default). Dollar need not be the last character of the pattern if a  number  
of  alternatives are  involved,  but it should be the last item in any branch in which it appears.  
Dollar has no  special  meaning  in  a character class.

The meaning of dollar can be changed so that it matches only at   the   very   end   of   the   
string,  by  setting  the PCRE_DOLLAR_ENDONLY option at compile or matching time. 
This does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the 
PCRE_MULTILINE option is set. When this is the case, they match immediately after and 
immediately before an internal “\n” character, respectively, in addition to matching at the 
start and end of the subject string.  For example, the pattern /^abc$/ matches the subject 
string “def\nabc” in multiline mode, but not otherwise.  Consequently, patterns that are an-
chored in single line mode because all branches start with “^” are not anchored in multiline 
mode, and a match for circumflex is possible when the startoffset argument of pcre_exec() 
is non-zero.  The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE 
is set.

Note that the sequences \A, \Z, and \z can be used to  match the  start  and end of the subject 
in both modes, and if all branches of a pattern start with \A is it  always  anchored, whether 
ICI Technical Description Page 73 of 88 Last Updated: March 27, 2000



PCRE_MULTILINE is set or not.

FULL STOP (PERIOD, DOT)

Outside a character class, a dot in the pattern matches any one character in the subject, in-
cluding a non-printing character, but not (by default) newline.  If the PCRE_DOTALL op-
tion is set, then dots match newlines as well. The handling of dot is entirely independent of 
the handling of circumflex and dollar, the only relationship being that they both involve 
newline characters.  Dot has no special meaning in a character class.

SQUARE BRACKETS

An opening square bracket introduces a character class, terminated by a closing square 
bracket.  A closing square bracket on its own is not special.  If a closing square bracket is 
required as a member of the class, it should be the first data character in the class (after an 
initial circumflex, if present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the set 
of characters defined by the class, unless the first character in the class is a circumflex, in 
which case the subject character must not be in the set defined by the class. If a circumflex 
is actually required as a member of the class, ensure it is not the first character, or escape it 
with a backslash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] 
matches any character that is not a lower case vowel. Note that a circumflex is just a con-
venient notation for specifying the characters which are in the class by enumerating those 
that are not. It is not an assertion: it still consumes a character from the subject string, and 
fails if the current pointer is at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and low-
er case versions, so for example, a caseless [aeiou] matches “A” as well as “a”, and a case-
less [^aeiou] does not match “A”, whereas a caseful version would.

The newline character is never treated in any special way in character  classes,  whatever 
the setting of the PCRE_DOTALL or PCRE_MULTILINE options is. A  class  such  as  
[^a]  will always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character 
class.  For example, [d-m] matches any letter between d and m, inclusive.  If a minus char-
acter is required in a class, it must be escaped with a backslash or appear in a position where 
it cannot be interpreted as indicating a range, typically as the first or last character in the 
class.

It is not possible to have the literal character “]” as the end character of a range.  A pattern 
such as [W-]46] is interpreted as a class of two characters (“W” and “-”) followed by a lit-
eral string “46]”, so it would match “W46]” or “-46]”. However, if the “]” is escaped with 
a backslash it is interpreted as the end of range, so [W-\]46] is interpreted as a single class 
containing a range followed by two separate characters. The octal or hexadecimal represen-
tation of “]” can also be used to end a range.

Ranges operate in ASCII collating sequence. They can also be used  for  characters  speci-
ICI Technical Description Page 74 of 88 Last Updated: March 27, 2000



fied  numerically,  for  example [\000-\037]. If a range that includes letters is  used  when 
caseless  matching  is set, it matches the letters in either case. For example, [W-c] is equiv-
alent  to  [][\^_`wxyzabc], matched  caselessly,  and  if  character tables for the “fr” locale 
are in use, [\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and add 
the characters that they match to the class. For example, [\dABCDEF] matches any hexa-
decimal digit.  A circumflex can conveniently be used with the upper case character types 
to specify a more restricted set of characters than the matching lower case type.  For exam-
ple, the class [^\W_] matches any letter or digit, but not underscore.

All non-alphameric characters other than \,  -,  ^  (at  the start)  and  the  terminating ] are 
non-special in character classes, but it does no harm if they are escaped.

VERTICAL BAR

Vertical bar characters are  used  to  separate  alternative patterns. For example, the pattern

  gilbert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternatives may appear, and an emp-
ty alternative is permitted (matching the empty string).  The matching process tries each al-
ternative in turn, from left to right, and the first one that succeeds is used. If the alternatives 
are within a subpattern (defined below), “succeeds” means matching the rest of the main 
pattern as well as the alternative in the subpattern.

INTERNAL OPTION SETTING

The settings of PCRE_CASELESS, PCRE_MULTILINE,  PCRE_DOTALL, and  
PCRE_EXTENDED can be changed from within the pattern by a sequence of Perl option 
letters enclosed between “(?”  and “)”. The option letters are

  i  for PCRE_CASELESS

  m  for PCRE_MULTILINE

  s  for PCRE_DOTALL

  x  for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It  is also possible to unset these op-
tions by preceding the letter with a hyphen, and a combined setting and unsetting such  as 
(?im-sx),  which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting 
PCRE_DOTALL and PCRE_EXTENDED, is also  permitted. If  a  letter  appears both be-
fore and after the hyphen, the option is unset.

The scope of these option changes depends on  where  in  the pattern  the  setting  occurs. 
For settings that are outside any subpattern (defined below), the effect is the same as if the  
options were set or unset at the start of matching. The following patterns all behave in ex-
actly the same way:
ICI Technical Description Page 75 of 88 Last Updated: March 27, 2000



  (?i)abc   a(?i)bc   ab(?i)c   abc(?i)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set.  In other 
words, such “top level” settings apply to the whole pattern (unless there are other changes 
inside subpatterns). If there is more than one setting of the same option at top level, the 
rightmost setting is used.

If an option change occurs inside a subpattern,  the  effect is  different.  This is a change of 
behaviour in Perl 5.005. An option change inside a subpattern affects only that  part of the 
subpattern that follows it, so

  (a(?i)b)c

matches  abc  and  aBc  and  no  other   strings   (assuming PCRE_CASELESS  is  not used).  
By this means, options can be made to have different settings in different  parts  of  the pat-
tern.  Any  changes  made  in one alternative do carry on into subsequent branches within  
the  same  subpattern.  For example,

  (a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when  matching “C” the first branch is aban-
doned before the option setting. This is because the effects of  option  settings  happen  at 
compile  time. There would be some very weird behaviour otherwise.

The PCRE-specific options PCRE_UNGREEDY and  PCRE_EXTRA  can be changed in 
the same way as the Perl-compatible options by using the characters U and X  respectively.  
The  (?X)  flag setting  is  special in that it must always occur earlier in the pattern than any 
of the additional features it turns on, even when it is at top level. It is best put at the start.

SUBPATTERNS

Subpatterns are delimited by parentheses (round brackets), which can be nested.  Marking 
part of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

  cat(aract|erpillar|)

matches one of the words “cat”, “cataract”, or “caterpillar”.  Without the parentheses, it 
would match “cataract”, “erpillar” or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above).  When the whole 
pattern matches, that portion of the subject string that matched the subpattern is passed back 
to the caller via the ovector argument of pcre_exec(). Opening parentheses are counted from 
left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matched against the pattern

  the ((red|white) (king|queen))

the captured substrings are “red king”, “red”,  and  “king”, and are numbered 1, 2, and 3.

The fact that plain parentheses fulfil two functions is not always helpful.  There are often 
ICI Technical Description Page 76 of 88 Last Updated: March 27, 2000



times when a grouping subpattern is required without a capturing requirement.  If an open-
ing parenthesis is followed by “?:”, the subpattern does not do any capturing, and is not 
counted when computing the number of any subsequent capturing subpatterns. For exam-
ple, if the string “the white queen” is matched against the pattern

  the ((?:red|white) (king|queen))

the captured substrings are “white queen” and “queen”, and are numbered 1 and 2. The 
maximum number of captured substrings is 99, and the maximum number of all subpat-
terns, both capturing and non-capturing, is 200.

As a  convenient  shorthand,  if  any  option  settings  are required  at  the  start  of a non-
capturing subpattern, the option letters may appear between the “?” and the “:”.  Thus the 
two patterns

  (?i:saturday|sunday)

  (?:(?i)saturday|sunday)

match exactly the same set of strings.  Because  alternative branches  are  tried from left to 
right, and options are not reset until the end of the subpattern is reached, an  option setting  
in  one  branch does affect subsequent branches, so the above patterns match “SUNDAY” 
as well as “Saturday”.

REPETITION

Repetition is specified by quantifiers, which can follow any of the following items:

  a single character, possibly escaped

  the . metacharacter

  a character class

  a back reference (see next section)

  a parenthesized subpattern (unless it is  an  assertion - see below)

The general repetition quantifier specifies  a  minimum  and maximum  number  of  permit-
ted  matches,  by  giving the two numbers in curly brackets (braces), separated  by  a  com-
ma. The  numbers  must be less than 65536, and the first must be less than or equal to the 
second. For example:

  z{2,4}

matches “zz”, “zzz”, or “zzzz”. A closing brace on  its  own is not a special character. If the 
second number is omitted, but the comma is present, there is no upper  limit;  if  the second 
number and the comma are both omitted, the quantifier specifies an exact number of re-
quired matches. Thus

  [aeiou]{3,}

matches at least 3 successive vowels,  but  may  match  many more, while
ICI Technical Description Page 77 of 88 Last Updated: March 27, 2000



  \d{8}

matches exactly 8 digits.  An opening curly bracket that appears in a position where a quan-
tifier is not allowed, or one that does not match the syntax of a quantifier, is taken as a literal 
character. For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the  expression  to behave  as  if the previous item 
and the quantifier were not present.

For convenience (and  historical  compatibility)  the  three most common quantifiers have 
single-character abbreviations:

  *    is equivalent to {0,}

  +    is equivalent to {1,}

  ?    is equivalent to {0,1}

It is possible to construct infinite loops  by  following  a subpattern  that  can  match no 
characters with a quantifier that has no upper limit, for example:

  (a?)*

Earlier versions of Perl and PCRE used to give an  error  at compile  time  for such patterns. 
However, because there are cases where this  can  be  useful,  such  patterns  are  now ac-
cepted,  but  if  any repetition of the subpattern does in fact match no characters, the loop is 
forcibly broken.

By default, the quantifiers are “greedy”, that is, they match as much as possible (up to the 
maximum number of permitted times), without causing the rest of the pattern to fail. The 
classic example of where this gives problems is in trying to match comments in C programs. 
These appear between the sequences /* and */ and within the sequence, individual * and / 
characters may appear. An attempt to match C comments by applying the pattern

  /\*.*\*/

to the string

  /* first command */  not comment  /* second comment */

fails, because it matches  the  entire  string  due  to  the greediness of the .*  item.

However, if a quantifier is followed  by  a  question  mark, then it ceases to be greedy, and 
instead matches the minimum number of times possible, so the pattern

  /\*.*?\*/

does the right thing with the C comments. The meaning of the various quantifiers is not oth-
erwise changed, just the preferred number of matches.  Do not confuse this use of question 
mark with its use as a quantifier in its own right.  Because it has two uses, it can sometimes 
appear doubled, as in

  \d??\d

which matches one digit by preference, but can match two  if that is the only way the rest 
ICI Technical Description Page 78 of 88 Last Updated: March 27, 2000



of the pattern matches.

If the PCRE_UNGREEDY option is set (an option which  is  not available  in  Perl)  then 
the quantifiers are not greedy by default, but individual ones can be made greedy by follow-
ing them  with  a  question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater 
than 1 or with a limited maximum, more store is required for the compiled pattern, in pro-
portion to the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl’s /s) 
is set, thus allowing the .  to match newlines, then the pattern is implicitly anchored, because 
whatever follows will be tried against every character position in the subject string, so there 
is no point in retrying the overall match at any position after the first.  PCRE treats such a 
pattern as though it were preceded by \A.  In cases where it is known that the subject string 
contains no newlines, it is worth setting PCRE_DOTALL when the pattern begins with .* 
in order to obtain this optimization, or alternatively using ^ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value  captured is  the  substring  that  matched  
the  final iteration. For example, after

  (tweedle[dume]{3}\s*)+

has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee”.  
However, if there are nested capturing subpatterns, the corresponding captured values may 
have been set in previous iterations. For example, after

  /(a|(b))+/

matches “aba” the value of the second captured substring  is “b”.

BACK REFERENCES

Outside a character class, a backslash followed by  a  digit greater  than  0  (and  possibly  
further  digits) is a back reference to a capturing subpattern  earlier  (i.e.  to  its left)  in  the  
pattern,  provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken 
as a back reference, and causes an error only if there are not that many capturing left paren-
theses in the entire pattern. In other words, the parentheses that are referenced need not be 
to the left of the reference for numbers less than 10. See the section entitled “Backslash” 
above for further details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current 
subject string, rather than anything matching the subpattern itself. So the pattern

  (sens|respons)e and \1ibility

matches “sense and sensibility” and “response and responsibility”, but not “sense and re-
sponsibility”. If caseful matching is in force at the time of the back reference, then the case 
of letters is relevant. For example,

  ((?i)rah)\s+\1
ICI Technical Description Page 79 of 88 Last Updated: March 27, 2000



matches “rah rah” and “RAH RAH”, but  not  “RAH  rah”,  even though  the  original  cap-
turing subpattern is matched caselessly.

There may be more than one back reference to the same subpattern.  If a subpattern has not 
actually been used in a particular match, then any back references to it always fail. For ex-
ample, the pattern

  (a|(bc))\2

always fails if it starts to match  “a”  rather  than  “bc”. Because  there  may  be up to 99 
back references, all digits following the backslash are taken as  part  of  a  potential back 
reference number. If the pattern continues with a digit character, then some delimiter must 
be used to terminate the back reference. If the PCRE_EXTENDED option is set, this can 
be whitespace.  Otherwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it  refers  fails when the sub-
pattern is first used, so, for example, (a\1) never matches.  However, such references  can 
be useful inside repeated subpatterns. For example, the pattern

  (a|b\1)+

matches any number of “a”s and also “aba”, “ababaa” etc.  At each iteration of the subpat-
tern, the back reference matches the character string corresponding to the previous iteration.  
In order for this to work, the pattern must be such that the first iteration does not need to 
match the back reference.  This can be done using alternation, as in the example above, or 
by a quantifier with a minimum of zero.

ASSERTIONS

An assertion is a test on the characters following or preceding the current matching point 
that does not actually consume any characters. The simple assertions coded as \b, \B, \A, 
\Z, \z, ^ and $ are described above. More complicated assertions are coded as subpatterns.  
There are two kinds: those that look ahead of the current position in the subject string, and 
those that look behind it.

An assertion subpattern is matched in the normal way, except that  it  does not cause the 
current matching position to be changed. Lookahead assertions start with  (?=  for  positive 
assertions and (?! for negative assertions. For example,

  \w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in the match, 
and

  foo(?!bar)

matches any occurrence of “foo”  that  is  not  followed  by “bar”. Note that the apparently 
similar pattern

  (?!foo)bar

does not find an occurrence of “bar”  that  is  preceded  by something other than “foo”; it 
finds any occurrence of “bar” whatsoever, because the assertion  (?!foo)  is  always  true 
ICI Technical Description Page 80 of 88 Last Updated: March 27, 2000



when  the  next  three  characters  are  “bar”. A lookbehind assertion is needed to achieve 
this effect.

Look-behind assertions start with (?<= for positive assertions and (?<! for negative asser-
tions. For example,

  (?<!foo)bar

does find an occurrence of “bar” that  is  not  preceded  by “foo”. The contents of a lookbe-
hind assertion are restricted such that all the strings  it  matches  must  have  a  fixed length.  
However, if there are several alternatives, they do not all have to have the same fixed length. 
Thus

  (?<=bullock|donkey)

is permitted, but

  (?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted 
only at the top level of a lookbehind assertion. This is an extension compared with Perl 
5.005, which requires all branches to match the same length of string. An assertion such as

  (?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it 
is acceptable if rewritten to use two top-level branches:

  (?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move 
the current position back by the fixed width and then try to match.  If there are insufficient 
characters before the current position, the match is deemed to fail.  Lookbehinds in conjunc-
tion with once-only subpatterns can be particularly useful for matching at the ends of 
strings; an example is given at the end of the section on once-only subpatterns.

Several assertions (of any sort) may  occur  in  succession. For example,

  (?<=\d{3})(?<!999)foo

matches “foo” preceded by three digits that are  not  “999”. Notice  that each of the asser-
tions is applied independently at the same point in the subject string. First  there  is  a check  
that  the  previous  three characters are all digits, then there is a check that the same three 
characters are not “999”.   This  pattern  does not match “foo” preceded by six characters, 
the first of which are digits and the last three of  which  are  not  “999”.  For  example,  it 
doesn’t match “123abcfoo”. A pattern to do that is

  (?<=\d{3}...)(?<!999)foo

This time the first assertion looks  at  the  preceding  six characters,  checking  that  the first 
three are digits, and then the second assertion checks that  the  preceding  three characters 
are not “999”.

Assertions can be nested in any combination. For example,
ICI Technical Description Page 81 of 88 Last Updated: March 27, 2000



  (?<=(?<!foo)bar)baz

matches an occurrence of “baz” that  is  preceded  by  “bar” which in turn is not preceded 
by “foo”, while

  (?<=\d{3}(?!999)...)foo

is another pattern which matches  “foo”  preceded  by  three digits and any three characters 
that are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not  be  repeated,  because  it 
makes no sense to assert the same thing several times. If any kind of assertion  contains cap-
turing  subpatterns  within it, these are counted for the purposes of numbering the capturing 
subpatterns in the whole pattern.   However,  substring capturing is carried out only for pos-
itive assertions, because it does not make sense  for negative assertions.

Assertions count towards the maximum  of  200  parenthesized subpatterns.

ONCE-ONLY SUBPATTERNS

With both maximizing and minimizing repetition, failure of what follows normally causes 
the repeated item to be re-evaluated to see if a different number of repeats allows the rest 
of the pattern to match. Sometimes it is useful to prevent this, either to change the nature of 
the match, or to cause it fail earlier than it otherwise might, when the author of the pattern 
knows there is no point in carrying on.

Consider, for example, the pattern \d+foo  when  applied  to the subject line

  123456bar

After matching all 6 digits and then failing to match “foo”, the normal action of the matcher 
is to try again with only 5 digits matching the \d+ item, and then with 4,  and  so  on, before 
ultimately failing. Once-only subpatterns provide the means for specifying that once a por-
tion of the pattern  has matched,  it  is  not to be re-evaluated in this way, so the matcher 
would give up immediately on failing to match  “foo” the  first  time.  The  notation  is an-
other kind of special parenthesis, starting with (?> as in this example:

  (?>\d+)bar

This kind of parenthesis “locks up” the part of the pattern it contains once it has matched, 
and a failure further into the pattern is prevented from backtracking into it.  Backtracking 
past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters 
that an identical standalone pattern would match, if anchored at the current point in the sub-
ject string.

Once-only subpatterns are not capturing subpatterns.  Simple cases such as the above ex-
ample can be thought of as a maximizing repeat that must swallow everything it can.  So, 
while both \d+ and \d+? are prepared to adjust the number of digits they match in order to 
make the rest of the pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be 
ICI Technical Description Page 82 of 88 Last Updated: March 27, 2000



nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to specify ef-
ficient matching at the end of the subject string. Consider a simple pattern such as

  abcd$

when applied to a long  string  which  does  not  match  it. Because matching proceeds from 
left to right, PCRE will look for each “a” in the subject and then  see  if  what  follows 
matches the rest of the pattern. If the pattern is specified as

  ^.*abcd$

then the initial .* matches the entire string at first, but when this fails, it backtracks to match 
all but the last character, then all but the last two characters, and so on.  Once again the 
search for “a” covers the entire string, from right to left, so we are no better off. However, 
if the pattern is written as

  ^(?>.*)(?<=abcd)

then there can be no backtracking for the .*  item;  it  can match  only  the  entire  string.  
The subsequent lookbehind assertion does a single test on the last four characters. If it  fails,  
the  match  fails immediately. For long strings, this approach makes a significant difference 
to the processing time.

CONDITIONAL SUBPATTERNS

It is possible to cause the matching process to obey a subpattern conditionally or to choose 
between two alternative subpatterns, depending on the result of an assertion, or whether a 
previous capturing subpattern matched or not. The two possible forms of conditional sub-
pattern are

  (?(condition)yes-pattern)

  (?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is 
used. If there are more than two alternatives in the subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence 
of digits, then the condition is satisfied if the capturing subpattern of that number has pre-
viously matched. Consider the following pattern, which contains non-significant white 
space to make it more readable (assume the PCRE_EXTENDED option) and to divide it 
into three parts for ease of discussion:

  ( \( )?    [^()]+    (?(1) \) )

The first part matches an optional opening parenthesis,  and if  that character is present, sets 
it as the first captured substring. The second part matches one  or  more  characters that  are  
not  parentheses. The third part is a conditional subpattern that tests whether the first set  of  
parentheses matched  or  not.  If  they did, that is, if subject started with an opening paren-
thesis, the condition is true,  and  so the  yes-pattern  is  executed  and a closing parenthesis 
is required. Otherwise, since no-pattern is  not  present,  the subpattern  matches  nothing.  
ICI Technical Description Page 83 of 88 Last Updated: March 27, 2000



In  other words, this pattern matches a sequence of non-parentheses,  optionally  enclosed 
in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive 
or negative lookahead or lookbehind assertion. Consider this pattern, again containing non-
significant white space, and with the two alternatives on the second line:

  (?(?=[^a-z]*[a-z])

  \d{2}[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

The condition is a positive lookahead assertion that matches an optional sequence of non-
letters followed by a letter. In other words, it tests for  the  presence  of  at  least  one letter  
in the subject. If a letter is found, the subject is matched against  the  first  alternative;  oth-
erwise  it  is matched  against the second. This pattern matches strings in one of the two 
forms dd-aaa-dd or dd-dd-dd,  where  aaa  are letters and dd are digits.

COMMENTS

The sequence (?# marks the start of a comment which continues up to the next closing pa-
renthesis. Nested parentheses are not permitted. The characters that make up a comment 
play no part in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class 
introduces a comment that continues up to the next newline character in the pattern.

PERFORMANCE

Certain items that may appear in patterns are more efficient than  others.  It is more efficient 
to use a character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In  general,  
the  simplest  construction  that provides the required behaviour is usually the  most  effi-
cient.  Jeffrey Friedl’s  book contains a lot of discussion about optimizing regular expres-
sions for efficient performance.

When a pattern begins with .* and the PCRE_DOTALL option  is set,  the  pattern  is im-
plicitly anchored by PCRE, since it can match only at the start of a subject string. However, 
if PCRE_DOTALL  is not set, PCRE cannot make this optimization, because the . meta-
character does not then match  a  newline, and if the subject string contains newlines, the 
pattern may match from the character immediately following one  of  them instead of from 
the very start. For example, the pattern

  (.*) second

matches the subject “first\nand second” (where \n stands for a newline character) with the 
first captured substring being “and”. In order to do this, PCRE  has  to  retry  the  match 
starting after every newline in the subject.

If you are using such a pattern with subject strings that do not  contain  newlines,  the best 
performance is obtained by setting PCRE_DOTALL, or starting the  pattern  with  ^.*  to 
indicate  explicit anchoring. That saves PCRE from having to scan along the subject looking 
for a newline to restart at.
ICI Technical Description Page 84 of 88 Last Updated: March 27, 2000



Beware of patterns that contain nested  indefinite  repeats. These  can  take a long time to 
run when applied to a string that does not match. Consider the pattern fragment

  (a+)*

This can match “aaaa” in 33 different ways, and this number increases very rapidly as the 
string gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases 
other than 0, the + repeats can match different numbers of times.) When the remainder of 
the pattern is such that the entire match is going to fail, PCRE has in principle to try every 
possible variation, and this can take an extremely long time.

An optimization catches some of the more simple  cases  such as

  (a+)*b

where a literal character follows. Before embarking  on  the standard matching procedure, 
PCRE checks that there is a “b” later in the subject string, and if there is not,  it  fails the  
match  immediately. However, when there is no following literal this optimization cannot 
be used. You  can  see  the difference by comparing the behaviour of

  (a+)*\d

with the pattern above. The former gives  a  failure  almost instantly  when  applied  to a 
whole line of “a” characters, whereas the latter takes an appreciable  time  with  strings long-
er than about 20 characters.

AUTHOR

Philip Hazel <ph10@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714
Last updated: 29 July 1999
Copyright (c) 1997-1999 University of Cambridge.

Undefined variables and dynamic loading

During execution, should the ICI execution engine fail to find a variable within the current 
scope, it will attempt to load a library based on the name of that variable. Such a library 
may be a host specific dynamically loaded native machine code library, an ICI module, or 
both.

In attempting to load an ICI module, a file name of the form:

icivar.ici

is considered, where var is the as yet undefined variable name. This file is searched for on 
the current host specific search path. If found, a new extern, static and auto scope is 
established and the new extern scope struct is assigned to var in the outermost writable 
scope available. That outermost writable scope also forms the super of the new extern 
scope. The module is then parsed with the given scope, after which the variable lookup is 
repeated. In normal practice this will mean that the loaded module has an outer scope 
holding all the normal ICI primitives and a new empty extern scope. The intent of this 
ICI Technical Description Page 85 of 88 Last Updated: March 27, 2000



mechanism is that the loaded module should define all its published functions in its extern 
scope. References by an invoking program to functions and other objects of the loaded 
module would always be made explicitly through the var which references the module. 
For example, a program might contain the fragment:

query = cgi.decode_query();
cgi.start_page(“Query results”);

where “cgi” is undefined, but the file icicgi.ici exists on the search path and includes 
function definitions such as:

extern
decode_query()
{

...
}

extern
start_page(title)
{

...
}

Upon first encountering the variable cgi in the code fragment the module icicgi.ici will be 
parsed and its extern scope assigned to the new variable cgi in the outermost scope of the 
program (that is, the most global scope). The lookup of the variable cgi is then repeated, 
this time finding the structure which contains the function decode_query. The second, and 
all subsequent, use of the variable cgi will be satisfied immediately from the already 
loaded module.

In attempting to load a host specific dynamically loaded native machine code library, a 
file name of the form:

icivar.ext

is considered, where var is the as yet undefined variable name and ext is the normal host 
extension for such libraries. This file is searched for on the current host specific search 
path. If found the file is loaded into the ICI interpreter’s address space using the local 
host’s dynamic library loading mechanism. An initialisation function in the loaded library 
may return an ICI object (see below). Should an object be returned, it is assigned to var 
in the outermost writable scope available. Further, should the returned variable be a 
structure, additional loading of an ICI module of the same name is allowed (as described 
above) and the returned struct forms the structure for externs in that load.

The basics of writing dynamic loading native machine code modules

This description is bare-bones and assumes a knowledge of ICI’s internals.

The loaded library must contain a function of the following name and declaration:

object_t *
ici_var_library_init()
ICI Technical Description Page 86 of 88 Last Updated: March 27, 2000



{
...

}

where var is the as yet undefined variable name. This is the initialisation function which 
is called when the library is loaded. This function should return an ICI object, or NULL 
on error, in which case the ICI error variable must be set. The returned object will be 
assigned to var as described above.

Modules of the dynamically loaded library which include ICI header files must have the 
directory holding the ICI header files on their include search path and have two 
preprocessor definitions established before any of the ICI headers are included (they are 
typically defined in the makefile or project settings). These are:

CONFIG_FILE Which must be defined to be the name of the ICI configuration 
file which is specific to this installation. The defined value should 
include double quotes around the name. For example:

“conf-w32.h”

is the file used by Windows, and this would be defined on the 
command line or in the project settings with:

/DCONFIG_FILE=\”conf-w32.h\”

 ICI_DLL Which must simply be defined. This causes certain changes in the 
nature of data declarations in the ICI header files which are re-
quired on some systems (such as Windows) to allow imported 
data references.

The following sample module, mbox.c, illistrates a typical form for a simple dynamically 
loaded ICI module.  

#include <windows.h>
#include "func.h"
#include "struct.h"

/*
 * mbox_msg => mbox.msg(string) from ICI
 *
 * Pops up a modal message box with the given string in it and waits for the
 * use to hit OK. Returns NULL.
 */
int
mbox_msg()
{
    char    *msg;

    if (typecheck("s", &msg))
return 1;

    MessageBox(NULL, msg, (LPCTSTR)"ICI", MB_OK | MB_SETFOREGROUND);
    return null_ret();
}

/*
 * Object stubs for our intrinsic functions.
 */
cfunc_tmbox_cfuncs[] =
{

ICI Technical Description Page 87 of 88 Last Updated: March 27, 2000



    {CF_OBJ,"msg",mbox_msg},
    {CF_OBJ}
};

/*
 * ici_mbox_library_init
 *
 * Initialisation routine called on load of this module into the ICI
 * interpreters address space. Creates and returns a struct which will
 * be assigned to "mbox". This struct contains references to our
 * intrinsic functions.
 */
object_t *
ici_mbox_library_init()
{
    struct_t*s;

    if ((s = new_struct()) == NULL)
return NULL;

    if (ici_assign_cfuncs(s, mbox_cfuncs))
return NULL;

    return objof(s);
}

The following simple Makefile illustrates forms suitable for compiling this module into a 
DLL under Windows. Note in particular the defines in the CFLAGS and the use of /export 
in the link line to make the function ici_mbox_library_init externally visible.

CFLAGS= -I.. /DCONFIG_FILE=\"conf-w32.h\" /DICI_DLL

OBJS = mbox.obj
LIBS = ../ici.lib user32.lib

icimbox.dll: $(OBJS)
link /dll /out:$@ $(OBJS) /export:ici_mbox_library_init $(LIBS)

Note that there is no direct supprt for the /export option in the MS Developer Studio link 
settings panel, but it can be entered directly in the Project Options text box.

The following Makefile achieves an equivalent result under Solaris:

CC = gcc -pipe -g
CFLAGS= -fpic -I.. -DCONFIG_FILE='"conf-sun.h"' -DICI_DLL

OBJS = mbox.o

icimbox.so : $(OBJS)
ld -o $@ -dc -dp $(OBJS)
ICI Technical Description Page 88 of 88 Last Updated: March 27, 2000


	ICI Technical Description
	The basic execution model
	The lexical analyser
	An introduction to variables, modules and scope
	The parser
	An introduction to arrays, sets and structs
	Back to expression syntax
	Prefix operators
	Postfix operators
	Binary operators
	Simple expression statements
	Compound statements
	The if statement
	The while statement
	The do-while statement
	The for statement
	The forall statement
	The switch, case, and default statements
	The break and continue statements
	The return statement
	The try statement
	The null statement
	Declaration statements
	Abbreviated function declarations
	Functions
	Method Calls
	Objects
	Equality
	Structure and set keys
	Structure super types
	An aside on variables and scope
	Pointers
	Data types
	Operators
	Core language functions
	float|int = abs(float|int)
	angle = acos(x)
	mem = alloc(nwords [, wordz])
	array = array(any...)
	float = asin(x)
	value = assign(struct, key, value)
	angle = atan(x)
	angle = atan2(y, x)
	return = call(func, args)
	new = copy(old)
	x = cos(angle)
	file = currentfile()
	del(struct, key)
	int = eof([file])
	int = eq(obj1, obj2)
	eventloop()
	exit([string|int|NULL])
	float = exp(x)
	array = explode(string)
	fail(string)
	value = fetch(struct, key)
	value = float(x)
	file = fopen(name [, mode])
	fprintf(file, fmt, args...)
	string = getchar([file])
	string = getfile([file])
	string = getline([file])
	string = gettoken([file [, seps]])
	array = gettokens([file [, seps [, terms]]])
	string = gsub(string, string|regexp, string)
	string = implode(array)
	struct = include(string [, scope])
	value = int(any)
	subpart = interval(str_or_array, start [, length])
	isatom(any)
	array = keys(struct)
	float = log(x)
	float = log10(x)
	mem = mem(start, nwords [, wordz])
	file = mopen(mem [, mode])
	int = nels(any)
	number = num(x)
	scope = parse(source [, scope])
	any = pop(array)
	file = popen(string, [flags])
	float = pow(x, y)
	printf([file,] fmt, args...)
	any = push(array, any)
	put(string [, file])
	int = rand([seed])
	reclaim()
	re = regexp(string [, int])
	re = regexpi(string [, int])
	remove(string)
	current = scope([replacement])
	int = seek(file, int, int)
	set = set(any...)
	x = sin(angle)
	file = sopen(string [, mode])
	sort(array, func)
	string = sprintf(fmt, args...)
	x = sqrt(float)
	string = string(any)
	struct = struct([super,] key, value...)
	string = sub(string, string|regexp, string)
	current = super(struct [, replacement])
	x = tan(angle)
	foat = now()
	float|struct = calendar(struct|float)
	string = tochar(int)
	int = toint(string)
	string = typeof(any)
	array = vstack()
	event = waitfor(event...)
	Command Line Arguments
	argv
	argc
	Unix System Calls
	Win32 Support
	int = access(string [, int])
	int = creat(string, int)
	array = dir([string,] [string,] [regexp])
	int = dup(int [, int])
	exec(string, array)
	exec(string, string...)
	int = lseek(int, int [, int])
	int = open(string, int [, int])
	array = pipe()
	struct = stat(string|int|file)
	int = wait()
	string = ctime(int)
	int = time()
	file = fdopen(int [, mode])
	string = getcwd()
	alarm(int)
	acct(string)
	chdir(string)
	chmod(string, int)
	chown(string, int, int)
	chroot(string)
	_close(int)
	_exit(int)
	int = fork()
	int = getpid()
	int = getpgrp()
	int = getppid()
	int = getuid()
	int = geteuid()
	int = getgid()
	int = getegid()
	kill(int, int)
	link(string, string)
	mkdir(string, int)
	mknod(string, int, int)
	nice(int)
	pause()
	rmdir(string)
	setpgrp()
	setuid(int)
	setgid(int)
	signal(int, int)
	sync()
	ulimit(int, int)
	umask(int)
	unlink(string)
	system(string)
	sleep(int)
	int = spawn([mode,] string, string...)
	int = spawn([mode, ] string, array)
	int = spawnp([mode,] string, string...)
	int = spawnp([mode, ] string, array)
	rename(string, string)
	struct = passwd(int | string)
	array = passwd()
	Sockets Interface
	Network Addresses
	skt = socket(string)
	skt = accept(skt)
	skt = listen(skt)
	skt = connect(skt, address)
	skt = bind(skt [, address|int])
	struct = select([int,] set|NULL [, set|NULL [, set|NULL]])
	int = getsockopt(skt, string, int)
	setsockopt(skt, string, int)
	string = domainname()
	string = hostname()
	string = username([int])
	string = getpeername(skt)
	string = getsockname(skt)
	sendto(skt, string, string)
	array = socketpair()
	struct = recvfrom(skt, int)
	send(skt, string)
	string = recv(skt, int)
	int = getportno(skt)
	string = gethostbyname(string)
	int = sktno(skt)
	file = sktopen(skt [, mode])
	Regular Expression Syntax
	Undefined variables and dynamic loading
	The basics of writing dynamic loading native machine code modules



