The arydshln package*

Hiroshi Nakashima
(Toyohashi Univ. of Tech.)

2003/08,/25

Abstract

This file gives ITEX’s array and tabular environments the capability to draw

horizontal /vertical dash-lines.

Contents

1 Introduction 3

2 Usage 3
2.1 Loading Package 3
2.2 BasicUsage L e 4
2.3 Style Parameters L 4
24 Fine Tuning L e 4
2.5 Finer Tuning e)
2.6 Performance Tuning 6
2.7 Compatibility with Other Packages 6

3 Known Problems 7

4 Implementation 9
4.1 Problems and Solutions 9
4.2 Another Problem and Imperfect Solutions 11
4.3 Register Declaration oo oo 12
4.4 Initialization 15
4.5 Making Preamble oL o 19
4.6 Building Columns 24
4.7 Multi-columnso e 25
48 Endof Rows e 27
4.9 Horizontal Lines 29
4.10 End of Environment Lo 31
4.11 Drawing Vertical Lines oo oo 33
4.12 Drawing Dash-lines o 38
4.13 Shorthand Activation 39
4.14 Compatibility with colortab L oo 41
4.15 Compatibility with longtable L. 42

*This file has version number v1.6, last revised 2003/08/25.

4.15.1 Imitializationo 42

4.15.2 Ending Chunks 44
4.15.3 Horizontal Lines and p-Boxes 46
4154 First Chunk o 47

4.15.5 Output Routine

1 Introduction

In January 1993, Weimin Zhang kindly posted a style hvdashln written by the author,
which draws horizontal /vertical dash-lines in IXTEX’s array and tabular environments, to
the news group comp.text.tex. The style, unfortunately, has a known problem that vertical
lines are broken when an array contains tall rows.

In March of the year, Monty Hayes complained of this problem encouraging the author
to make a new version arydshin to solve the problem. The new style also has new features,
such as allowing ‘:’ to specify vertical dash-line in preamble, and \cdashline being a
counterpart of \cline.

In March 1999, Sebastian Rahtz kindly invited the style, which had been improved
following the bug report from Takahiro Kubota, to be included in TEX CTAN and also
in the online catalogue compiled by Graham Williams. This invitation gave the style new
users including Peter Ehrbar who wished to use it with array style in Standard ETEX Tools
Bundle and had trouble because these styles were incompatible with each other. Therefore,
the style became compatible with array and now has additional new features.

In February 2000, Zsuzsanna Nagy reported that arydshin is not compatible with colortab
style to let the author work on the compatibility issue again.

In Feburary 2001, Craig Leech reported another compatibility problem with longtable.
Although the author promised that the problem would be attacked some day, the issue have
left long time' until three other complaints. Then the author attacked the problem hoping
it is the last compatible issue?.

2 Usage

2.1 Loading Package

The package is usable to both ITEX 2¢ and I#TEX-2.09 users with their standard package
loading declaration. If you use ITEX 2¢, simply do the following.

\usepackage{arydshln}
If you still love XTEX-2.09, the following is what you have to do.
\documentstylel..,arydshln,...]1{(style)}

Only one caution given to users of array (v2.3m or later) and longtable (v4.10 or later)
packages, included in Standard EXTEX Tools Bundle, and colortab package is that arydshin
has to be loaded after array, longtable and/or colortab done. That is, the following is correct
but reversing the order of \usepackage will cause some mysterious error.

\usepackage{array} % and/or
\usepackage{longtable} % and/or
\usepackage{colortab}
\usepackage{arydshln}

ITwo years and a half! Sorry Craig.
2Well, never ending, probably.

array
tabular

\hdashline
\cdashline

\firsthdashline
\lasthdashline

\dashlinedash
\dashlinegap

\hdashline
\cdashline

2.2 Basic Usage

You can simply use array or tabular (*) environments with standard preamble, such as
{rlcl11}, and standard commands \\, \hline, \cline and \multicolumn.

Drawing a vertical dash-line is quite simple. Use ‘:’ in the preamble as the separator
of columns separated by the dash-line, just like using ‘|’ to draw a vertical solid-line.
The preamble means not only that of the environment, but also the first argument of
\multicolumn.

It is also simple to draw a horizontal dash-line. Use \hdashline and \cdashline as
the counterparts of \hline and \cline.

For example;

\begin{tabular}{|1l::c:r|}\hline
A&B&C\\\hdashline

AAAEBBB&CCC\\\cdashline{1-2}
\multicolumn{2}{|1:3}{AB}&%C\\\hdashline\hdashline
\end{tabular}

will produce the following result.

Ay B, C
AAA " BBB 1 CCC
AB-YT T ¢

If you use array, the dashed version of \firsthline and \lasthline named \first
hdashline and \lasthdashline are available.

2.3 Style Parameters

You have two style parameters to control the shape of dash-lines: \dashlinedash is for the
length of each dash segment in a dash line; \dashlinegap controls the amount of each gap
between dash segments. Both parameters have a common default value, 4 pt.

2.4 Fine Tuning

Although you can control the shape of dash-lines in an array/tabular environment as
described in §2.3, you might want to draw a dash-line of a shape different from others. To
specify the shape of a vertical dash-line explicitly, you may use;

;{{dash)/{gap)}

instead of ordinary ‘:’ and will have a dash-line with dash segments of (dash) long separated
by spaces of {gap).

As for horizontal dash-lines, explicit shape specifications may be given through optional
arguments of \hdashline and \cdashline as follows.

\hdashline [{dash)/{gap)]
\cdashline{(coll)-(col2)} [{dash)/{gap)]

For example;

\begin{tabular}{|1l::c;{2pt/2pt}r|}\hline
A&B&C\\\hdashline[1pt/1pt]
AAAEBBB&CCC\\\cdashline{1-2}[.4pt/1pt]
\multicolumn{2}{|1;{2pt/2pt}}{AB}&C\\\hdashline\hdashline
\end{tabular}

\ADLnullwide
\ADLsomewide

\ADLdrawingmode

will produce the following result.

A w. B 1 C
ARAITBBE TG0
BRI 9%

The vertical solid and dashed lines are drawn as if their width is zero, as standard
TEX’s array and tabular do, if you don’t use array package. Otherwise, they have real
width of \arrayrulewidth as the authors of array prefers. However, you may explicitly
tell arydshin to follow your own preference by \ADLnullwide if you love BTEX standard, or
\ADLsomewide if you second the preference of array authors.

2.5 Finer Tuning

To draw dash-lines, we use a powerful primitive of TEX called \xleaders. It replicates a
segment that consist of a dash and gap so that a dash-line has as many segments as pos-
sible and distributes remainder space to make the spaces between adjacent dash segments
(almost) equal to each other. Therefore, you will have dash-lines with consistent steps of
gaps and spaces as the left and upper lines in Figure 1(1) are.

However, because of a bug (or buggy feature) of \xleaders, there is a small possibil-
ity that a dash segment near the right/bottom end drops as right and lower lines in (1)
of the figure shows. To cope with this problem, you may change the drawing mode by
\ADLdrawingmode{(m)} as follows.

oem=1
As shown in Figure 1(1), most beautiful in almost all cases as the left /upper lines, but
has a small possibility to produce an ugly result as right/lower lines. This is default.

o m =2
As shown in (2) of the figure, beautiful if dash-lines are not so sparse as right/lower
lines, but dash segments near the both ends may be a little bit too long as left /upper
lines.

e m=23
As shown in (3) of the figure, beautiful if dash-lines are not so sparse as right/lower
lines, but gaps near the both ends may be considerably too large as left/upper lines.

It is recommended to use default mode 1 unless you have an ugly result in the final version
of your manuscript, because the correctness of mode 1 is very sensitive to the length of
dash-lines.

ALALA ALA ATALA
BB B BB | B!B|B
cicic cicic cicic

Figure 1: Drawing mode controlled by \ADLdrawingmode

\ADLinactivate

\ADLactivate

Array
Tabular

\ADLnoshorthanded

2.6 Performance Tuning

Since drawing dash-lines is a hard job, you have to be patient with the fact that the
performance of typesetting array/tabular with dash-lines is poorer than that of ordinary
ones. In fact, according to author’s small performance evaluation with a tabular having
nine vertical and ten horizontal dash-lines, typesetting the tabular is approximately ten
times as slow as its ordinary counterpart with solid lines.

However, this is not a really bad news, unfortunately. The real one is that loading
arydshln makes typesetting array/tabular slower even if they only have solid lines which
the package treats as special ones of dash-lines. The evaluation result shows the degradation
factor is about nine. Therefore, if your document has many array/tabular with solid lines,
ETEX will run slowly even with quite few (or no) array/tabular with dash-lines,

To cope with this problem, you may inactivate dash-line functions by the command
\ADLinactivate that replaces dash-lines with solid lines drawn by a faster (i.e. ordinary)
mechanism. Although the inactivation does not completely solve the performance problem,
the degradation factor will become much smaller and acceptable, approximately 1.5 in
the author’s evaluation. For example, the draft version of your document will have the
command in its preamble, which you will remove from your final version.

Alternatively, you may do \ADLinactivate in the preamble, switch on by \ADLactivate
before you really need dash-lines, and switch off again afterword. A wiser way could be
surrounding array/tabular by \begin{ADLactivate} and \end{ADLactivate}.

If you feel it tiresome to type the long command/environment name for the activation,
you may use Array and Tabular(*) environment in which dash-line functions are always
active. Note that, however, since these environment names are too natural to keep them
from being used by authors of other packages or yourself, name conflict could occur. If
Array and/or Tabular have already been defined when arydshin is loaded, you will get a
warning to show you have to define new environments, say dlarray and dltabular, as
follows.

\newenvironment{dlarray}{\ADLactivate\begin{array}}/
{\end{array}}
\newenvironment{dltabular}{\ADLactivate\begin{tabular}}y,
{\end{tabular}?}
\newenvironment{dltabular*}{\ADLactivate\begin{tabularx*}}/,
{\end{tabularx}}

On the other hand, if they are defined after arydshin is loaded, their definitions are
silently replaced or BTEX complains of multiple definitions. The error in the latter case
will be avoided by putting \ADLnoshorthanded just after \usepackage{arydshln}.

2.7 Compatibility with Other Packages

Users of array package may use all of newly introduced preamble characters, such as ‘>’, ‘<’;
‘m’, ‘b’, and all the commands such as \extrarowheight, \firsthilne and \lasthline.
The preamble characters given by arydshin may be included in the second argument of
\newcolumntype.

Also users of colortab package may use \LCC/\ECC construct to color columns. A hori-
zontal solid/dash line may be colored by, e.g. \NAC\hdashline\ENAC. The pair of \AC and
\EAC may be used to color everything between them but, unfortunately, vertical lines are
not. There are no ways to color vertical lines in a table having dash lines. You may color
vertical lines of a ordinary table inactivating dash line functions by \ADLinactivate.

longtable
Longtable

Usage of longtable with arydshlin is quite simple. Just loading arydshln after longtable is
enough to make the longtable environment able to draw dash-lines. A shorthand activation
of dash-line functions is also available by Longtable environment. One caution to longtable
users is that the temporary results before the convergence of the column widths may be
different from those without arydshln. For example, the following is the first pass result of
the example shown in Table 3 of the longtable manual.

11213

wide multicolumn spanning 1-3 |

multicolumn 1-2 | 3 |
wide 1 | 2 | 3 |

Since LTchunksize is one in the example, columns of each row has their own widths and
thus has vertical lines drawn at the edges of the columns. On the other hand, you will have
the following as the first pass result with arydshin.

1 2

wide multicolumn spanning 1-3
multicolumn 1-2 3
wide 1 | 2 3

As you see, the vertical lines are drawn at the column edges of the last row? because arydshin
draws them when it see the last row. Anyway, you may ignore temporary results and will
have a compatible result when the column widths are converged like the following.

] 2] 3
wide multicolumn spanning 1-3
multicolumn 1-2 3
wide 1 | 2 3

3 Known Problems

There are following known problems.

1. The new preamble specifiers ‘:” and ‘;{{dash)/{gap)}’ cannot be followed or preceded
by ‘@{(text)}’, or you will have an ugly result. More specifically, a specifier to draw
a dash-line at the left edge of a column cannot be preceded by ‘@{(text)}’, while that
to draw at the right edge cannot be followed by ‘@{(text)} .

2. If you use array package, the restriction of ‘@’ shown above is also applied to ‘!’.

3. In order to make it sure that a dash-line always touches its both end, i.e. a dash-line
always begins and ends with a dash segment, the amount of a gap will slightly vary
depending on the dash-line length.

4. As described in §2.5, dash-lines drawn in the default mode 1 may lack a dash segment
near its right /bottom end.

3More precisely, drawn according to the column widths established by all the chunks preceding page
output.

5. If a dash-line is too short, you will have an ugly result without overfull message. More
specifically, in mode 1 or 3, a line will look to protrude beyond its column/row borders
if it is shorter than a half of \dashlinedash. In mode 2, the minimum length to avoid
the protrusion is 1.5 x \dashlinedash + \dashlinegap.

6. As described in §2.6, the processing speed for array and tabular environment will
become slower even if dash-lines are not included.

7. As described in §2.7, \AC and \EAC pair of colortab such as \AC&\EAC cannot color
the vertical line at & Use \ADLinactivate if you want to have a ordinary table with
colored vertical lines.

4 Implementation

4.1 Problems and Solutions

We have two different problems to solve; how to draw horizontal dash-lines and how to
draw vertical dash-lines. The former problem is relatively easy because the technique for
drawing \cline-s can be used. That is, if we know the number of columns, we can draw a
dash-line across the \multispan-ed columns by \xleaders of dash. Modifying a preamble
of array/tabular to count the number of columns is not hard. Since \cdashline is given
beginning and ending columns, its implementation is also easy.

The latter problem, however, is much harder. Remember that array/tabular draws
vertical solid lines by \vrule-s in each row without height/depth specification exploiting
TEX’s sophisticated mechanism of the rule extension in the surrounding box. Since TEX
does not have such a mechanism for \xleaders unfortunately, we at least have to know
the height and depth of a row which includes vertical dash-lines. Although the height and
depth are often same as those of \@arstrutbox, we will have an exceptionally tall and/or
deep row that makes dash-lines broken if we assume every row has the standard height and
depth.

Moreover, even if we can measure the height/depth of each row (in fact we will do as
describe later), drawing dash-lines in each row will not produce a good result. Look at the
following two examples closely.

AE AB
A's A B

In the left example, two dash-lines are individually drawn in two rows. Since the first row
is not so tall and deep (8.4 pt/3.6 pt) as to contain enough number of default dash segments
(4pt dash and 4pt gap) to keep \xleaders from inserting a large space, the dash-line in
the first row is sparse. On the other hand, the second row is enough tall and deep (16.8 pt/
7.2pt) and thus the dash-line in the row looks better. Thus the resulting dash-line is awful
because it does not have a continuous dash/gap sequence.

The right example, which we wish to produce, is much better than the left. In this
example, the dash line is draw across two rows keeping continuous steps of dashes and
gaps. In order to have this result, we have to draw the dash-line after two rows are built
because it is necessary to know the total hight and depth of two rows. In general, if we
know the total hight and depth of rows and whether a column has a dash-line, we can draw
dash-lines by adding an extra row containing dash-lines. For example, the result shown
above is obtained by the following row.

\omit\hss(dash-line of 36 pt high)&\omit\cr

Note that (dash-line of 36 pt high) have to be \smash-ed.
In addition to this basic scheme, we have to take the following points into account.

e A dash-line drawn by the preamble character ‘;’ will have non-default dash/gap spec-
ification.

e A column may have two or more dash-lines separated by spaces of \doublerulesep.
Mixed sequence of solid- and dash-lines also have to be allowed.

e The first column may have dash-lines at both ends, while those of others will appear
at right ends only. An exception of this rule is brought by \multicolumn that may
have leading sequence of solid- and/or dash-line specifiers in its preamble.

e A \multicolumn may break or add a dash-line, or may change the dash/gap specifi-
cation of a dash-line. A sequence of \h(dash)line-s also break dash-lines.

In order to cope with them, the following data structure is constructed during rows are
built.

1. The list of row information R = (ry,7a,...,7nN).
2. The i element of R, r;, is one of the following?.

(a) A triple (CL,CE h;), where CE and CF are the lists of solid- or dash-line seg-
ments drawn at the left and right edge of columns respectively, and h; is the
height plus depth of the i*" row.

(b) connect(h;) for a \h(dash)line of h; wide meaning that r; is an empty pseudo
row of h; high and dash-lines are not broken at the row.

(¢) In longtable environment, discard(h;) for a negative vertical space inserted by
\\ [{%;)] or \h(dash)line meaning r; is an empty pseudo row of h; high and
dash-lines are not broken but may be discarded by the page break at the row.

(d) disconnect(h;) for a vertical gap generated by a sequence of \h(dash)line mean-
ing that r; is an empty pseudo row of h; high and dash-lines are broken at the
row.

3. CF = (e}, €, ... eh,) where €} corresponds to the j* (leftmost is first) solid- or dash-

line segment. CF is similar but its elements are ordered in reverse, i.e. the rightmost
segment is the first element.

4. The j" element of C} or Cf, €}, is a triple (¢!, d}, gi) where ¢} is the column number
in which the segment appears, and d; and g} are dash/gap specification of the segment.
For a solid line segment, d} = gé =0.

Then this data structure is processed to draw solid- and dash-lines at the end of the
array/tabular as follows. Let e = (c}, d}, g5) be the jt" element of C¥ of r;. The position
pl of €} in the column ¢} is defined as follows.

o= 1 ifj=1ve #c_,
J p;_1 +1 otherwise '

. ./
K 7
e N Y

The following defines whether two elements e’ and e;'-/, are connected, or €] i

J
e§~e§»2<—>i<i’/\
c;::c;'-/, /\d;'v:d;// /\g;-:g;vl/ /\pjv:p;', A
Vk(i < k < i’ — 1 = connect(hy)).
With these definitions, we can classify all eé into ordered sets S1, So,....5, as follows.
k#k « S,NSy =0

i =T _ i il
e; ~ ey« “k(ej,ej € S NS =1{...,€},¢el,...}

J 32 €
k<k oVee Sk,Ve?, € Sw((cy < cé-l,) v
(c) = cjvl/ A p? < p;’,) \Y

(ch =cb A pl :p;-/, A <i)).

4In the real implementation, the structure of r; is slightly different.

10

-/

Now we can draw a dash-line Ly = (g, 7k, Ok, Ek, Tk, Bk) corresponding to S = {e;., cee e;,}
as follows.

e Ly is 7" line in the vf" column where v, = ¢ = ... = cé-l, and mp = ph = ... = pé-l,.
e Ly has the dash size 0y = dj = ... = dél, and gap size §, = g = ... = g;/,

e The top and bottom ends of Ly are at 7, and [above the bottom of the array/

tabular, where;
N N
=Y h, B= Y
1=i I=i'+1

The row to draw Lq,..., L, is;
0']_L10‘2L2 e Lnflo'nLnO'ndFl\CI‘
where;

o1 = \omit[\hss&\omit]”"* !

\null if yp—1 =% A 1 = Tk
O1<k<n = { \hskip\doublerulesep if yx_1 =y A Th_1 7# Tk
[\hss&\omit|7s~7k-1 if Y1 # Vi

0ns1 = [\hss&\omit]’ ~7»!\hss.

Note that [z]™ means m-times iteration of x, and I" is the number of columns specified in
the preamble.

Dash-lines at the right edges of columns are similarly drawn by processing C? with the
following modifications.

(c;- = cl /\p;- >p§-/,) Vv
;,, Apj»:p;l, Ni<i))
o1 = \omit\hss[&\omit\hss]”* !

\null ifyg_1 =7 A Tp_1 =Tk
or>1 = { \hskip\doublerulesep ifyt_1 =" A Tp—1 7 Tk
[&\omit\hss]Vk~VE-1 if yio1 #

Ony1 = [&\omit\hss]/ ~7~1

4.2 Another Problem and Imperfect Solutions

In the default mode 1, we draw a dash line of dash size d and gap size g as follows. Let
W be the length of the line plus 10 sp®, which is unknown for us if horizontal but known
for TEX, and assume W > d/2 (or the line protrude to the column/row boarder.) At the
both ends of the columns, dashes of d/2 long are drawn to make the dash-line touched to

5This small amount is added by \xleaders in order to, according to the comment in tex.web, compensate
floating point rounding error.

11

\dashlinedash
\dashlinegap
\hdashlinewidth
\hdashlinegap

the ends. Then n = [(W —d — g)/(d + g)| dashes are equally distributed in the remaining
space. Thus we will have;

Do(d/2)Go(g + &)Dy(d)G1(g +€) . .. Gn1(g + &) Du(d)Gn(g + €') Dny1(d/2)

where D;(l) and G;(l) are dash and gap of [long, e = (W — (n+ 1)(d + g))/(n + 1)
(rounded), and &’ = (W — (n+ 1)(d 4+ ¢g) — (n — 1)&)/2 to compensate the rounding error
on the calculation of e. For a horizontal line, this result will be obtained by \xleaders as
follows where G7*(¢) and GI"(¢') are the spaces inserted by \xleaders.

Dy(d/2)Gh(g/2)\x1eaders\hbox{G" (9/2)D(d)G'(g/2)F\hss G (g)D,1(d/2)
= Do(d/2)Gy(9/2)Gi'(€') (Gi(9/2)D1(d)G1 (9/2)) GT'(¢)
(Gi(9/2)D2(d)G3(9/2)) G5'(e)

G 1(e) (Gho1(9/2) Dn(d)G,(9/2)) Gi(e) G, (9/2) Dy (d/2)
= Do(d/2)Go(g+ €')D1(d)G1(g+€) ... Gn_1(g+)Dyp(d)Gr (g + €)Dpi1(d/2)

The problem is that ¢’ could be negative and TEX mistakingly ignores this possibility. That
is, since TEX does not put \hbox beyond the right edge of \xleaders, the rightmost \hbox
is omitted if &’ is negative as described in §2.5.

Since it is (almost) impossible to know the length of a horizontal line, we cannot cope
with this problem by adding or subtracting its length. Thus we introduced drawing mode
to have imperfect solutions. In the mode 2, we draw a line by the following sequence.

Do (d/2)Gy(9/2)Gy (9/2) Dy (d)Gl/(g/2) (=d—g)
\xleaders\hbox{G"(g/2)D ()G'(g/2)F\hss
G(—d = 9)G7,(9/2) D (d)G1y(9/2) G, (9) Dy (d/2)
That is, n*” \hbox that could be disappeared is put twice and the first one is also overlaid
for symmetrization. Therefore the length of the first and n'* dashes is d + |¢’| and thus
could be a little bit longer than others.

On the other hand, we replace \xleaders of mode 1 with \cleaders for the drawing
in mode 3. The result will be;

Do(d/2)Go(g + R)D1(d)G1(g) - - - Gn-1(9) Dn(d)Gn(g + R) Dyi1(d/2)
where R = (W — (n+1)(d+ g¢))/2 to make the first and last gaps considerably wider than
others.

4.3 Register Declaration

Here registers and switches are declared.

First of all, two \dimen registers \dashlinedash and \dashlinegap to control the shape
of dash-lines are declared, and their default values, 4 pt for both, are assigned to them.
They have aliases, \hdashlinewidth and \hdashlinegap respectively, for the backward
compatibility.

1 %% Register Declaration
2

12

\ifadl@leftrule

\ifadl@connected

\ifadl@doublerule

\ifadl@zwvrule

\ifadl@usingarypkg

\ifadl@inactive

\ADLnullwide
\ADLsomewide

\ADLactivate
\ADLinactivate

3 \newdimen\dashlinedash \dashlinedash4pt %
4 \newdimen\dashlinegap \dashlinegap4pt 7

5 \let\hdashlinewidth\dashlinedash

6 \let\hdashlinegap\dashlinegap

7

Next, the following six switches are declared.

e \ifadl@leftrule is used in the preamble analysis macro \@mkpream and is true

during it processes leading characters for solid- and dash-lines, i.e. ‘|’, ‘:’, and *;’.

-/
7

. . . . y -/
e \ifadl@connected is used to indicate the connection et ~ el When we process €l

J
the switch is true iff Ee;'.(e;. ~ e;ﬂ,).
e \ifadl@doublerule is used to make 0. When we are to make oLy, it is true iff

Vek—1 =V N\ Tk—1 = Tk-

e \ifadl@zwvrule controls the real width of vertical lines. If it is true, lines are
drawn as if their width is zero following IWTEX’s standard. Otherwise, their width
\arrayrulewidth contribute to the width of columns as array does.

e \ifadl@usingarypkg is true iff array has been loaded prior to arydshln. This switch
shows us which definitions, by ITEX or array, we have to modified. Its value is set by
examining if \extrarowheight, which is introduced by array, is defined.

e \ifadl@inactive inactivates dash-line functions if it is true. Its default value is false.

We also use a working switch \@tempswa.

8 \newif\ifadl@leftrule

9 \newif\ifadl@connected

10 \newif\ifadl@doublerule

11 \newif\ifadl@zwvrule

12 \newif\ifadl@usingarypkg

13 \ifx\extrarowheight\undefined \adl@usingarypkgfalse

14 \else \adlQusingarypkgtrue \fi
15 \newif\ifadl@inactive \adl@inactivefalse
16

The switch \ifadl@zwvrule is turned on/off by user interface macros \ADLnullwide and
\ADLsomewide. Its initial value is the complement of \adl@usingarypkg.

The switch \ifadl@inactive is also turned on/off by user interface macros \ADL
inactivate and \ADLactivate.

17 \def\ADLnullwide{\adl@zwvruletrue}

18 \def\ADLsomewide{\adl@zwvrulefalse}

19 \ifadl@usingarypkg \ADLsomewide \else \ADLnullwide \fi
20

21 \def\ADLactivate{\adl@inactivefalse}

22 \def\ADLinactivate{\adl@inactivetrue}

23

The following \box register and three \dimen registers are used to measure the height
and depth of a row.

13

\adl@box

\adl@height
\adl@depth

\adl@heightsave
\adl@depthsave

\adl@finaldepth

\adl@columns
\adl@ncol

\adl@currentcolumn
\adl@currentcolumnsave

\adl@totalheight

e The contents of a column is packed into the \box register \ad1@box to measure its
height and depth.

e The \dimen registers \ad1@height and \adl@depth contain the height/depth of the
tallest/deepest column in a row. When a column is processed, they are compared to
the height and depth of \ad1@box and are updated if they are less.

Since we have to update these register \global-ly to pass their value across &
and we may have a column containing array/tabular, they are saved into \adl@
heightsave/\adl@depthsave at the beginning of the environment and are restored
at its end.

The other \dimen register \adl@finaldepth is set to the depth of the last row, or
zero if the last vertical item is a horizontal line. This value is used to shift array/
tabular down because we add extra two \smash-ed rows which make the depth of
array/tabular zero.

We also use working \dimen registers \@tempdima and \@tempdimb.
24 \newbox\adl@box

25 \newdimen\adl@height \newdimen\adl@heightsave

26 \newdimen\adl@depth \newdimen\adl@depthsave

27 \newdimen\adl@finaldepth

Then the following \count registers are declared. Note that some of them contain
dimensions measured by the unit sp.

e \adl@columns has the number of columns specified in the preamble of the environ-
ment. Because of a complicated reason related to the compatibility with array, we
cannot count up \adl@columns directly but increment \adl@ncol when each col-
umn of preamble is built and move its value to \adl@columns after the preamble is
constructed.

e To process \multicolumn, we have to know the column number where it appears.
Thus we have a column counter \adl@currentcolumn which is \global-ly incre-
mented when each column is built. Because of the \global assignment, the counter
has to be saved/restored into/from \adl@currentcolumnsave.

e In the real implementation, 7, and (are calculated by the following equations rather
than those shown in §4.1.

N i—1 i
H:Zhl, Tk:H_Zhlv ﬁk:Tk—Zhl.
=1 =1 =1’

\adl@totalheight contains Y ,_, h; when the it" row is built and thus its final value
is H. Since the data structure R are represented by a text, we have to pay attention
to the precision of its dimensional elements, such as h;. That is, if we append h; to
R by expanding \the\dimenn which has the height plus depth of i** row, h; will be
an approximation of \dimenn represented by a decimal fraction with pt. Although
the error of the approximation is quite small and may be negligible, the error must
be avoided because it is avoidable by simply using \number\dimenn. Therefore, h; is
an integer and thus \adl@totalheight is too.

14

\adl@totalheightsave

\adl@dash
\adl@gap

\adl@cla
\adl@clb

\adl@everyvbox

\adlQorg@arrayclassz
\adl@org@tabclassz
\adl@org@classz
\adl@org@@startpbox
\adl@org@endpbox
\adl@org@endpbox
\adl@org@cline

\adl@array
\Q@array

Because of the \global assignment to \adl@totalheight to pass its value across
rows, it has to be saved/restored into/from \adl@totalheightsave.

e In order to check eé» ~ e;',, d; and g§ are kept in the registers \ad1@dash and \adl@gap

when we process eé/,. As explained above, d} and g are integers and thus \adl@dash
and \adl@gap are \count registers.

e The coding of \cdashline is similar to that of \cline in IWTEX-2.09 which uses two
global \count registers \@cla and \@clb. These registers are omitted from ETEX 2¢
because its \cline is completely recoded. We could adopt new coding but it requires
some other macro definitions that ITEX-2.09 does not have. Thus we simply intro-
duce new global counters \adl@cla and \adl@clb for \cdashline in order to make
\cdashline work in both I¥TEX-2.09 and TEX 2¢.

We also use working \count registers \@tempcnta and \@tempcntb.
28 \newcount\adl@columns \newcount\adl@ncol

29 \newcount\adl@currentcolumn \newcount\adl@currentcolumnsave
30 \newcount\adl@totalheight \newcount\adl@totalheightsave

31 \newcount\adl@dash \newcount\adl@gap

32 \newcount\adl@cla \newcount\adl@clb

The last register declaration is for a \toks register named \adl@everyvbox. In order to
minimize the copy-and-modify of the codes in IXTEX and array, we need to use \everyvbox
in our own definition of \@array. The register is used to save the contents of \everyvbox.

33 \newtoks\adl@everyvbox
34

The other declarative stuffs are the sequence of \let to capture the original definitions
of macros that we will modify afterword. The main purpose of them is to nullify the
modification when dash-line functions are inactive, while \adl@org@cline is also referred
in its modified version.

35 \let\adl@org@arrayclassz\@arrayclassz
36 \let\adl@org@tabclassz\@tabclassz

37 \let\adl@org@classz\Q@classz

38 \let\adl@org@@startpbox\@@startpbox
39 \let\adl@org@endpbox\@@endpbox

40 \let\adl@org@endpbox\Q@endpbox

41 \let\adl@org@cline\cline

42

43 hh~L

4.4 Initialization

ETEX’s macro \@array is modified to save and initialize registers and data structures
which are \global-ly updated in order to allow nested array/tabular. This saving and
initializing are performed by \adl@arrayinit as explained below. The problem in the
modification is that the code of \@array in array is completely different from that of BTEX
original.

The main difference is that IXTEX builds \@preamble locally, while array does globally
exploiting the fact that the lifetime of \@preamble ends before another array/tabular
appears in a column. The latter implementation will work well unless the building process

15

\@@array

\adl@arrayinit
\adl@arraysave

\adl@rowsL
\adl@rowsR
\adl@rowsLsave
\adl@rowsRsave
\adl@colsL
\adl@colsR
\adl@colsLsave
\adl@colsRsave

\adl@connect
\adl@discard

in \@mkpream produces something referred after \@preamble is thrown into TEX’s stomach.
In our implementation, unfortunately, the number of columns has to be counted in \@
mkpream and will be referred by \hdashline and the vertical line drawing procedure.

Thus we have to change the column counting mechanism depending on whether or not
array is in use. The simplest way could be to copy the codes of ITEX and array and modify
them appropriately examining the value of \ifadl@usingarypkg. However this solution is
vulnerable to the modification of the original version and thus we wish to refuse it as far
as possible.

Therefore, we use a trick with \everyvbox in which \adl@arrayinit is temporarily
included to initialize registers and locally set \adl@columns to the number of columns
\global-ly counted by \adl@ncol. This trick work well so far because;

e the first \vbox, \vtop or \vcenter made by \@array is the vertical box surrounding
\halign, and;

e in \@array of array the box is opened after the preamble is constructed;

and will hopefully work in future.

Finally, if \ifadl@inactive is true, \adl@inactivate is invoked to inactivate dash-line
functions. Otherwise, \adl@activate is invoked to activate them because an inactivated
array/tabular may have active children in it.

Another stuff for the compatibility with array is to \let a control sequence \@@array be
equal to \@array because it is referred in \@tabarray in array.

44

45 %% Initialization

46

47 \let\adl@array\@array \def\Q@array{\adl@everyvbox\everyvbox

48 \everyvbox{\adl@arrayinit \the\adl@everyvbox \everyvbox\adl@everyvboxl}’
49 \ifadl@inactive \adl@inactivate \else \adl@activate \fi \adl®@array}

50 \let\@Qarray\@array

51

As described in §4.3, registers updated \global-ly, which are \adl@height, \adl@depth,
\adl@currentcolumn and \adl@totalheight, are saved in \adl@arrayinit by calling
\adl@arraysave, and also given initial values. The macro also saves the following data
structures and initializes them to empty lists.

e In the real implementation, the data structure R is split into two lists;

\adl@rowsL = RY = ((CE hy),...)
\adl@rowskR = R® = ((CF, hy),...)

and they are saved into \adl@rowsLsave and \adl@rowsRsave.

e When the i*" row is building, C¥ and Cf* are constructed in the macros \ad1@colsL
and \adl@colsR. They are saved into \adl@colsLsave and \adl@colsRsave.

In the real implementation, eé is represented by a control sequence \@elt, and connect(i) by
\adl@connect. They are made \let-equal to \relax to keep them from expansion during R
is constructed. In longtable environment, connect(i) for negative vertical space inserted
by \\[{h)] or a horizontal line has another representation \adl@discard to indicate it

16

\adl@inactivate

corresponds to a discardable item of page breaking. Since this representation, however,
is nonsense in usural array/tabular even if they are included in \longtable, we define
\adl@discard as \adl@connect so that it transforms itself into \adl@connect when it is
added to \adl@rowsL/R by \xdef. Note that \adl@discard is made \let-equal to \relax
to inhibit the transformation at the beginning of longtable environment.

Then, we set to \adl@columns to the value of \adl@ncol locally. As explained above,
this has an effect with array because \adl@arrayinit is called after the preamble is gener-
ated. Without array, on the other hand, this assignment has no effect but safe because it is
included in a group of \vbox etc.

52 \def\adl@arrayinit{}

53 \adl@arraysave

54 \globalladl@height\z@ \globalladl@depth\z@

55 \globalladl@currentcolumn\@ne \globalladl@totalheight\z@

56 \gdef\adl@rowsL{}\gdef\adl@rowsR{}\gdef\adl@colsL{}\gdef\adl@colsR{}%
57 \let\@elt\relax \let\adl@connect\relax \def\adl@discard{\adl@connect}
58 \adl@columns\adl@ncol}

59 \def\adl@arraysave{’%

60 \adl@heightsave\adl@height

61 \adl@depthsave\adl@depth

62 \adl@currentcolumnsave\adl@currentcolumn

63 \adl@totalheightsave\adl@totalheight

64 \let\adl@rowsLsave\adl@rowsL

65 \let\adl@rowsRsave\adl@rowsR

66 \let\adl@colsLsave\adl@colsL

67 \let\adl@colsRsave\adl@colsR}

68

If \ADLinactivate has effect and thus \ifadl@inactive is true, the macro \adl®@
inactivate is called from \@array®. This \let-s the following control sequences be equal
to their counterparts in WTEX and/or array package.

\@arrayclassz \@tabclassz \@classz \@@startpbox \@@endpbox
\@endpbox \adl@cr \adl@argcr \cline \adl@endarray

Note that we have to inactivate both \@@endpbox for KTEX and \@endpbox for array,
while \@startpbox for array is not necessary because it is unmodified. Also note that \@
classz has to be \let-equal to \adl@org@classz only if array is in use, because KTEX
does not define \@classz but refers it which is either \@arrayclassz or \@tabclassz.
Yet another remark is that we have to conceal \cr for \adl@cr/\adl@argcr and \crcr
for \adl@endarray by bracing them from TEX’s \halign mechanism that searches them
when an array/tabular has an nested array/tabular. This could be done by a tricky
\let-assignment such as;

\iffalse{\let\adl@cr\cr \iffalse}\fi

but we simply use \def instead of \let because of clarity.
We also \let the following be no-operation or their inactive versions.

\adl@hline \adl@ihdashline \adl@cdline \adl@@vlinelL \adl@@vlineR
\adl@vlinel. \adl@vlineR

6Before v1.53, \adl@inactivate was called from \adl@arrayinit and thus invokded after the preamble
of array is built. This was incorrect of course and made inactive version of p, m and b produce nothing.

17

\adl@activate

Note that we have to inactivate both \ad1@@vlineLl and \adl@vlineL, because the latter
is referred when array is in use while the former is referred otherwise. Their R relatives are
also inactivated by the same reason.

69 \def\adl@inactivated{%

70 \let\@arrayclassz\adl@org@arrayclassz
71 \let\@tabclassz\adl@org@tabclassz

72 \ifadl@usingarypkg \let\@classz\adl@org@classz \fi
73 \let\@@startpbox\adl@org@@startpbox
74 \let\@@endpbox\adl@org@@endpbox

75 \let\@endpbox\adl@org@endpbox

76 \def\adl@cr{\cr}’

77 \def\adl@argcr##1{\crl}/

78 \let\cline\adl@org@cline

79 \def\adl@endarray{\crcr}’%

80 \let\adl@hline\@gobbletwo

81 \let\adl@ihdashline\adl@inactivehdl
82 \let\adl@cdline\adl@inactivecdl

83 \let\adl@@vlineL\adl@inactivevl

84 \let\adl@@vlineR\adl@inactivevl

85 \let\adl@vlineL\adl@inactivevl

86 \let\adl@vlineR\adl@inactivevl}

On the other hand, if \ifadl@inactive is false, the macro \adl@activate is called from
\@array to make inactivated macros active again in order to cope with the case in which
an inactive array/tabular has active children in it”. To do that, \adl@activate makes \@
arrayclassz etc. \let-equal to their active version \adl@act@arrayclassz etc. which will
be defined (\let-equal to) as our own \@arrayclassz etc. in §4.13.

87 \def\adl@activate{’,

88 \let\Q@arrayclassz\adl@act@arrayclassz
89 \let\@tabclassz\adl@act@tabclassz

90 \ifadl@usingarypkg \let\@classz\adl@act@classz \fi
91 \let\@@startpbox\adl@act@@startpbox

92 \let\@@endpbox\adl@act@@endpbox

93 \let\@endpbox\adl@act@endpbox

94 \let\adl@cr\adl@act@cr

95 \let\adl@argcr\adl@act@argcr

96 \let\cline\adl@act@cline

97 \let\adl@endarray\adl@act@endarray

98 \let\adl@hline\adl@act@hline

99 \let\adl@ihdashline\adl@act@ihdashline
100 \let\adl@cdline\adl@act@cdline

101 \let\adl@@vlineL\adl@act@@vlineL

102 \let\adl@@vlineR\adl@act@@vlineR

103 \let\adl@vlinelL\adl@act@@vlinelL

104 \let\adl@vlineR\adl@act@@vlineR}

105

106 %4°L

The summary of the activation and inactivation is shown in Table 1.

"Before v1.54, an active array/tabular in an inactive parent was not activated.

18

Table 1: Active and Inactive Operations

command || active | inactive
lcr
with array \adl@act@classz \adl@org@classz
without array || \adl@act@tabclassz \adl@org@classz
\adl@act@arrayclassz \adl@org@arrayclassz
p m b (open)
with array \adlQ@act@classz \adl@org@classz
without array || \adl@act@@startpbox \adl@org@@startpbox
p m b (close) \adl@act@@endpbox \adl@org@@endpbox
1 /:/; \adl@act@@vlinel./R \adl@inactivevl
A\ —\adl@act@(arg)cr —\cr
\hline —\adl@act@hline —\@gobbletwo
\hdashline —\adl@act@ihdashline | —\adl@inactivehdl
\cline \adl@act@cline \adl@org@cline
\cdashline —\adl@act@cdline —\adl@inactivecdl

4.5 Making Preamble

Each preamble character is converted to a part of \halign’s preamble as follows.

\adl@colhtdp e ‘1’ ‘r’ and ‘c’ are converted to the following (Irc).
(Irc) ::= [\hfil]{put-lrc)[\hfil]
{put-lrc) ::= \setbox\adl@box\hbox{(lrc-contents)}
\adl@colhtdp \unhbox\adl@box
(lrc-contents) ::= $\relax#$ |
#\unskip
That is, the content of a column is at first packed into the \box register \adl@box,
then its height and depth are compared to \adl@height and \adl@depth by the
macro \adl@colhtdp, and finally the box is put with leading and/or trailing \hfil.
\adl@vlineL e ‘|’ .7 and ;{(dash)/(gap)} are converted to the following (vline).
\adl@vlineR

(vline) ::= [\hskip\doublerulesep|(vline-LR)
(vline-LR) ::= \adl@vlineL{{c)}{(d)/{(g)} |
\adl@vlineR{(c)}{(d)/(g)}

(d) ==0| ... for ‘|’
\dashlinedash | ... for 2’
(dash) ... for 5’
(g) ==0| S (O
\dashlinegap | ... for ¢’
(gap) ... for ¢y’

Note that (c) is the column number (leftmost is 1) where the character appears.

19

\adl@mkpream
\@mkpream

\@addamp

Additionally, each column except for the last one has;
\global\advance\adl@currentcolumn\@ne

just before & to increment \adl@currentcolumn. Other features, such as inserting spaces
of \arraycolsep/\tabcolsep, are as same as original scheme. This means that @{(text)}
and !'{(text)} of array are not handled specially although it could interfere with drawing
vertical lines. Therefore, we have the problem 1 shown in §3, which is very hard to solve.
Note that the measurement of the column of ‘p’ of IMTEX original is done by (modified)
\@@startpbox and \@@endpbox and thus the preamble for ‘p’ is not modified. In case with
array, however, the preambles for ‘p’ and its relatives ‘m” and ‘b’ are modified to set \adl@
box to the box for them.

To make the preamble shown above, \@mkpream is modified to \let control sequences
\adl@colhtpd, \adl@vlinelL and \adl@vlineR be \relax in order to keep them from
being expanded by \edef/\xdef for the preamble construction.

Giving them their own definition is done by \adl@preaminit that is called using
\afterassignment after \@preamble is made by \adl@mkpream, the original version of
\@mkpream. If array is not in use, \@mkpream is followed by an \edef of \@preamble to
add \ialign etc. and thus \adl@preaminit is properly called after this final assignment
to make \@preamble.

With array, on the other hand, calling \adl@preaminit is safe because \@mkpream is
followed by \xdef for \@preamble too, but has no effect because it is in the group for
\@mkpream. This grouping, however, gives us an easier way to give those control sequences
their own definition. That is, we simply initiate them with the definitions that will be
regained when the group is closed.

The modified \@mkpream also initializes \adl@ncol and \ifadl@leftrule, and set
\adl@columns to the value of \adl@ncol locally after the preamble is made. This has
an effect in case without array because the body of array/tabular is in the same grouping
context of \@mkpream. With array, on the other hand, this assignment has no effect but
safe because it is included in a group of \@mkpream’s own.

107

108 %% Making Preamble

109

110 \let\adl@mkpream\@mkpream

111 \def\@mkpream#1{\let\adl@colhtdp\relax

112 \let\adl@vlineL\relax \let\adl@vlineR\relax

113 \globalladl@ncol\@ne \adl@leftruletrue

114 \adl@mkpream{#1}\adl@columns\adl@ncol \afterassignment\adl@preaminit}

115

The macro \@addamp is also modified to add the code for incrementing the counter \ad1®@

currentcolumn to \@preamble with & The counter \adl@ncol is also incremented by
\@addamp so that we can refer its value as (¢) of \adl@vlineL/R. This increment is done
\global-ly in order that we locally set \ad1@columns to the counting result outside of the
group for \@mkpream of array. Therefore, whether or not array is in use, \adl@columns
will have a correct value and will be correctly referred by \hdashline to know how many
columns are specified in the preamble. Note that this \global assignment is safe because
the life time of \adl@ncol is same as that of \@preamble.

116 \def\Q@addamp{\if@firstamp\@firstampfalse \else

20

117
118
119

\@addtopreamble{\global\advance\adl@currentcolumn\@ne &1}
\globalladvance\adl@ncol\@ne \fi}

Since the implementation of \@testpach and macros for class-0 characters (i.e. 1, r and
c) is completely different between WTEX and array, we have to have two versions switched

by \adl@usingarypkg.

With array

\@testpach Although we introduced two preamble characters °
character class because we want to minimize the modification of original codes. Therefore,
‘.7 and ¢;’ is classified into class-1 together with ‘|’. Since these characters obviously have
their own appropriate operations, \@testpach is modified so that \@arrayrule, which is
invoked from \@mkpream in the case of class-1 character, is \let be the macro corresponding

to each character.

120 \ifadl@usingarypkg
121 \def\@testpach{\@chclass
122 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

\@classz In array, array and tabular share common macro for class-0 named \@classz, which also
generates the preamble for ‘p’, ‘m’ and ‘b’. Thus we modify it to measure the height and
depth of the class-0 column by the macro \adl@putlrc, and to set \adl@box to the box

\ifnum \@lastchclass=7 5 \else
\ifnum \@lastchclass=8 \tw@ \else

\ifnum \@lastchclass=9 \three@
\else \z@
\ifnum \@lastchclass = 10 \else
\edef\@nextchar{\expandafter\string\@nextcharl}y,
\@chnum
\if \@nextchar c\z@ \else

\if \@nextchar 1\@ne \else

\if \@nextchar r\tw@ \else
\z@ \@chclass
\if\@nextchar |\@ne \let\@arrayrule\adl@arrayrule \else
\if\@nextchar :\@ne \let\@arrayrule\adl@arraydashrule \else
\if\@nextchar ;\@ne \let\@arrayrule\adl@argarraydashrule \else

\if \@nextchar !6 \else

\if \@nextchar @7 \else

\if \@nextchar <8 \else
\if \@nextchar >9 \else

10
\@chnum
\if \@nextchar m\thr@@\else
\if \@nextchar p4 \else

\if \@nextchar b5 \else
\z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi \fi \fi
\fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}

for ‘p’ and its relatives.

149 \def\@classz{\@classx

150

\@tempcnta \count@

21

> and ‘;’, we did not introduce new

\adl@class@start
\adl@class@iiiorvii

\@testpach

\@arrayclassz
\@tabclassz

151 \prepnext@tok
152 \@addtopreamble{\ifcase \@chnum

153 \hfil

154 \adl@putlrc{\d@llarbegin \insert@column \d@llarend}\hfil \or

155 \hskiplsp\adl@putlrc{\d@llarbegin \insert@column \d@llarend}\hfil \or
156 \hfil\hskipisp\adl@putlrc{\d@llarbegin \insert@column \d@llarend}\or

157 $\setbox\adl@box\vcenter\@startpbox{\@nextchar}\insert@column \Q@endpbox $\or
158 \setbox\adl@box\vtop \@startpbox{\@nextchar}\insert@column \@endpbox \or

159 \setbox\adl@box\vbox \@startpbox{\@nextchar}\insert@column \@endpbox

160 \fi}\prepnext@tok}

Another stuffs for compatibility are to refer the class number of the beginning of preamble
which is different between KTEX and array, and that of ‘p’ or ‘@’ to get the argument of ‘;’
as explained later. In case with array, the former is class-4 and we use ‘@’ (class-7) for the
latter.

161 \def\adl@class@start{4}
162 \def\adl@class@iiiorvii{7}
163

Without array

The reason why and how we modify \@testpach of IXTEX is same as those of array.

164 \else

165 \def\@testpach#1{\@chclass \ifnum \@lastchclass=\tw@ 4\relax \else

166 \ifnum \@lastchclass=\thr@@ 5\relax \else

167 \z@ \if #1lc\@chnum \z@ \else

168 \if #11\@chnum \@ne \else

169 \if #ir\@chnum \tw@ \else

170 \@chclass

171 \if #1|\One \let\@arrayrule\adl@arrayrule \else

172 \if #1:\@ne \let\@arrayrule\adl@arraydashrule \else

173 \if #1;\@ne \let\Q@arrayrule\adl@argarraydashrule \else

174 \if #10\tw@ \else

175 \if #1p\thr@@ \else \z@ \Opreamerr O\fi

176 \fi \fi \fi \fi \fi \fi \fi \fi \fi}

177

Since BTEX has two macros for class-0, one for array and the other for tabular, we have
to modify both. Since the box for ‘p’ is opened by \@@startpbox, however, we may not

worry about it.

178 \def\Q@arrayclassz{\ifcase \@lastchclass \@acolampacol \or \@ampacol \or

179 \or \or \@addamp \or

180 \Qacolampacol \or \@firstampfalse \Qacol \fi
181 \edef\@preamble{\@preamble

182 \ifcase \@chnum

183 \hfilladl@putlrc{$\relax\@sharp$}\hfil
184 \or \adl@putlrc{$\relax\@sharp$}\hfil

185 \or \hfilladl@putlrc{$\relax\@sharp$}\fi}}
186 \def\@tabclassz{\ifcase \@lastchclass \Q@acolampacol \or \Q@ampacol \or
187 \or \or \@addamp \or

188 \@acolampacol \or \@firstampfalse \@acol \fi
189 \edef\@preamble{\@preamble

22

\adl@class@start
\adl@class@iiiorvii

\adl@putlrc

\adl@arrayrule
\adl@arraydashrule
\adl@argarraydashrule
\adl@xarraydashrule

\adl@classv
\adl@classvfordash

190 \ifcase \@chnum

191 \hfil\adl@putlrc{\@sharp\unskip}\hfil
192 \or \adl@putlrc{\@sharp\unskip}\hfil
193 \or \hfil\hskip\z@ \adl@putlrc{\@sharp\unskip}\fi}}

In BTEX, the beginning of preamble is class-6 and we use ‘p’ (class-3) to get the argument
of ;7.

194 \def\adl@class@start{6}
195 \def\adl@class@iiiorvii{3}
196 \fi

197

Hereafter, codes for “TEX and array are common again.

The macro \adl@putlrc is for class-0 preamble characters to set \adl@box to the contents
of a column, measure its height /depth by \adl@colhtdp and put the box by \unhbox (not
by \box) in order to make the glues in the contents effective.

198 \def\adl@putlrc#i{\setbox\adl@box\hbox{#1}\adl@colhtdp \unhbox\adl@box}
199

The preamble parts for vertical solid- and dash-lines are constructed by the macros \adl@
arrayrule for ‘|’, \adl@arraydashrule for ‘:’, and \adl@argarraydashrule for ‘;’. The
macro;

\adl@xarraydashrule{(c’)}{(c®)}{(d)/(g)}

is invoked by them to perform common operations. It at first checks the preamble character
is the first element of the preamble (\@lastchclass = \adl@class@start) or it follows
another character for vertical line (\@lastchclass = 1). If this is not satisfied, the vertical
line is put at the right edge of a column and thus \ifadl@leftrule is set to false. Then it
adds \adl@evlineL{(c")}{(d)/(g)} if \ifadl@leftrule is true indicating the vertical line
will appear at the left edge of the column (c’), or \ad1@vlineR{(c*)}{(d)/(g)} otherwise.
Note that (cf) is always 1 for main preamble while (cf?) is the column number given by
\adl@ncol, but (c) may not be 1 for the preamble of \multicolumn as described in §4.7.

In addition, an invisible \vrule of \arrayrulewidth wide is added if both \ADLsome
wide and \ADLactivate are in effect, i.e. both \ifadl@zwrule and \ifadl@inactive are
false, to keep a space for the vertical line having real width.

The argument of ;’ is not provided by \adl@argarraydashrule but is directly passed from
the preamble text through \@nextchar. This direct passing is implemented by the following
trick. The macro \adl@argarraydashrule set \@chclass to \adl@class@iiiorvii to
pretend it is for ‘p’ if array is not in use, or ‘@ otherwise. Then it temporally changes
the definition of \@classv, which is incidentally for the argument of ‘p’ and ‘@ in case
without/with array respectively, to \adl@classvfordash to process the argument of ‘;’
rather than that of ‘p’ or ‘@’. Then \adl@classvfordash is invoked by \@mkpream and it
adds the argument to \@preamble. Finally, it restores the definition of \@classv and set
\@chclass to 1 to indicate that the last item is a vertical line specification.

200 \def\adl@arrayrule{/,

201 \adl@xarraydashrule

202 {\ene}{\adlencol}{{\z@/\z@}}}
203 \def\adl®@arraydashrule{%

23

\adl@preaminit
\adl@colhtdp
\adl@vlineL
\adl@vlineR

\ad1@@colhtdp

\adl@@vlineL
\adl@@vlineR
\adl@@ivline

204 \adl@xarraydashrule

205 {\@ne}{\adl@ncoll}%

206 {{\dashlinedash/\dashlinegap}}}

207 \def\adl@argarraydashrule{’

208 \adl@xarraydashrule

209 {\@ne}{\adl@ncol}{}%

210 \@chclass\adl@class@iiiorvii \let\@classv\adl@classvfordash}
211 \def\adl@xarraydashrule#1#2#3{%

212 \ifnum\@lastchclass=\adl@class@start\else

213 \ifnum\@lastchclass=\@ne\else

214 \adl@leftrulefalse \fi\fi

215 \ifadl@zwvrule\else \ifadl@inactive\else

216 \@addtopreamble{\vrule\@width\arrayrulewidth
217 \Gheight\z@ \@depth\z@}\fi \fi

218 \ifadl@leftrule

219 \@addtopreamble{\adl@vlineL{\number#1}#31}/,
220 \else \Q@addtopreamble{\adl@vlineR{\number#2}#3}\fi}

221 \let\adl@classv\@classv

222 \def\adl@classvfordash{\Q@addtopreamble{{\@nextchar}}\let\Qclassv\adl@classv
223 \@chclass\@ne}

224

225 %% L

4.6 Building Columns

If array is not in use, after the \@preamble is completed, the control sequences for macros in
it should regain their own definition. The macro \adl@preaminit performs this operation
for macros we introduced, \adl@colhtdp, \adl@vlineL and \adl@vlineR. For the case
with array, we will call \adl@preaminit in arydshin to initiate them with the definitions as
described later.

226

227 %% Building Columns

228

229 \def\adl@preaminit{\let\adl@colhtdp\adl@@colhtdp
230 \let\adl@vlineL\adl@@vlineL

231 \let\adl@vlineR\adl@@vlineR}

232

For the measurement of the height and depth of a row, \adl@@colhtdp compares \adl®@
height and \ad1@depth to the height and depth of \ad1@box which contains the main part
of the column to be built, and \global-ly updates the registers if they are less.

233 \def\ad1l@@colhtdp{%

234 \ifdim\adl@height<\ht\adl@box \globalladl@height\ht\adl@box \fi
235 \ifdim\adl@depth<\dp\adl@box \globalladl@depth\dp\adl@box\fi}
236

The macro \adl@@vlineL({c){(d)/(g)} adds the element e = {(c,d,g) = \@elt{({c)}{(d)}
{(g)} to the tail of the list \ad1@colsL to construct C*. The macro \add@@vlineR performs
similar operation but the element is added to the head of \adl@colsR for Cf* because it
is processed right-to-left manner. The argument (d) and (g) are extracted by the macro
\adl@ivline which converts given dimensional value of them to integers. It also set (d)

24

\adl@colhtdp
\adl@vlineL
\adl@vlineR

\adl@inactivevl

\@@startpbox
\@@endpbox
\@endpbox

\multicolumn
\adl@preamble
\adl@mcaddamp

\adl@activatepbox

and (g) to 0 (i.e. solid-line) if one of given values are not positive, in order to make it sure
that one dash segment has positive length.

237 \def\adl@@vlineL#1#2{\adl@ivline#2\@nil

238 \xdef\adl@colsL{\adl@colsL

239 \@elt{#1}{\number\@tempcntal}{\number\@tempcntb}}}

240 \def\ad1l@@vlineR#1#2{\adl@ivline#2\@nil

241 \xdef\adl@colsR{\@elt{#1}{\number\@tempcntal}{\number\@tempcntbl}’
242 \adl@colsR}}

243 \def\adl@ivline#1/#2\0nil{%

244 \@tempdima#1\relax \@tempcnta\@tempdima

245 \@tempdima#2\relax \@tempcntb\@tempdima

246 \ifnum\@tempcnta>\z@ \else \@tempcnta\z@ \Q@tempcntb\z@ \fi

247 \ifnum\@tempcntb>\z@ \else \@tempcnta\z@ \@tempcntb\z@ \fi}

After \adl@@colhtdp, \adl@@vlinelL and \adl@@vlineR are defined, we call \adl@
preaminit to \let their single @ counterparts be equal to them. Therefore, in case with ar-
ray, \ad1@colhtdp etc. are temporarily \relax when \@preamble is being generated in the
group of \@mkpream, and regain their own definition outside the group where the completed
\@preamble is referred.

248 \adl@preaminit
249

If \ADLinactivate is in effect, \adl@vlinelL/R and \adl@@vlineL/R are \let-equal to
\adl@inactivevl. This macro simply put a \vrule by \vline with/without negative
\hskip of a half of \arrayrulewidth wide depending on \ifadl@zwvrule, discarding its
arguments.

250 \def\adl@inactivevl#1#2{\ifadl@zwvrule \hskip-.5\arrayrulewidth \fi
251 \vline \ifadl@zwvrule \hskip-.5\arrayrulewidth \fi}
252

The macros to make \parbox for ‘p’ (and ‘m’ and ‘b’ of array), \@@startpbox and
\@@endpbox, are modified for height/depth measurement. The code for \@@endpbox is
based on that of BTEX 2¢ to fix the bug of \strut-ing in ITEX-2.09, but \@finalstrut is
manually expanded because it is not available in ETEX-2.09.

In array, \@@endpbox is not used but \@endpbox is. Therefore, we \let them be
equal. As for \@startpbox, however, we may not worry about it because we have modified
\@classz in §4.5 for the measurement.

253 \def\@@startpbox#1{\setbox\adl@box\vtop\bgroup \hsize#1\Q@arrayparboxrestore}
254 \def\@@endpbox{\unskip \ifhmode \nobreak

255 \vrule\@width\z@\@height\z@\@depth\dp\Qarstrutbox \fi
256 \par \egroup \adl@colhtdp \box\adl@box \hfil}

257 \let\@endpbox\@Q@endpbox

258

259 %hh"L

4.7 Multi-columns

The macro \multicolumn is modified for the followings.

25

The macros to construct the parts of \@preamble for vertical lines, \adl@arrayrule,
\adl@arraydashrule and \adl@argarraydashrule, have to perform operations
slightly different from those for main preamble. Thus they are \def-ined to multi-
column version \adl@mcarrayrule, etc. These \def-initions are enclosed in a group
so that they are not affected to array or tabular which may occur in the third argu-
ment of \multicolumn. In order to make \@preamble work well outside of the group
containing \@makepream, \adl@preamble is \global-ly \let-equal to \@preamble
just after \@makepream in the group and then reverse \let-assignment is performed
just after the group is closed. These global assignment is unnecessary with array
because \@preamlbe is constructed \global-ly, but safe.

Since this grouping nullifies the effect of \adl@preaminit called in \@mkpream, we
call \adl@preaminit again after the group closing.

In array, \@addamp to make \@preamble for \multicolumn has a different definition
from that for main one. Thus it is \let-equal to \adl@mcaddamp whose definition is
switched by \ifadl@usingarypkg.

If array is in use, \@preamble has to be \xdef-ed once again by \@addpreamble with
an \@empty argument after \@mkpreamble to expand the contents of \toks registers.
This is performed whether or not with array because it is safe.

As done in \@array, \set@typeset@protect is replaced with direct \let.

If without array, \@startpbox and \@endpbox should be \let-equal to their @@ coun-
terparts, while should not with array. Thus we define \adl@activatepbox to do or
not to do so depending on \ifadl@usingarypkg.

The counter \adl@currentcolumn is \global-ly incremented by the first argument
of \multicolumn (number of columns to be \span-ed).

Note that \ad1@columns is modified by \@mkpream, but it is not referred \adl@mcarrayrule
etc., and its value is restored before referred by \hdashline, etc.

260

261 %% Multi-Columns

262

263 \def\multicolumn#1#2#3{\multispan{#1}\begingroup \begingroup

264
265
266
267
268
269
270
271
272
273
274
275

\def\adl@arrayrule{\adl@mcarrayrule{#1}}/
\def\adl@arraydashrule{\adl@mcarraydashrule{#1}1}
\def\adl@argarraydashrule{\adl@mcargarraydashrule{#1}}/,
\let\@addamp\adl@mcaddamp
\@mkpream{#2}\@addtopreamble\@empty
\global\let\adl@preamble\@preamble \endgroup
\let\@preamble\adl@preamble
\def\@sharp{#3}\let\protect\relax
\adl@activatepbox

\adl@preaminit

\Q@arstrut \@preamble\hbox{}\endgroup
\globalladvance\adl@currentcolumn#l\ignorespaces}

276 \ifadl@usingarypkg

277 \def\adl@mcaddamp{\if@firstamp\@firstampfalse \else\@preamerror5\fi}
278 \let\adl@activatepbox\relax
279 \else

26

\adl@mcarrayrule
\adl@mcarraydashrule
\adl@mcargarraydashrule

\@xarraycr
\@xtabularcr
\@xargarraycr
\@yargarraycr

280 \let\adl@mcaddamp\@addamp

281 \def\adl@activatepbox{\let\@startpbox\@@startpbox
282 \let\@endpbox\@@endpbox}

283 \fi

284

The preamble parts for vertical lines are constructed by the macros \adl@mcarrayrule,
\adl@mcarraydashrule and \adl@mcargarraydashrule which are passed the first argu-
ment (n) of \multicolumn to know the number of columns to be \span-ed. They are similar
to their relatives for main preamble, \adl@arrayrule, etc., but the arguments (c’) and
(c®) passed to \adl@xarraydashrule are;

Cch, F=c+n-1

where ¢ = \adl@currentcolumn. This makes leading vertical lines drawn at the left edge of
the leftmost \span-ed column and trailing ones at the right edge of the rightmost column.

285 \def\adl@mcarrayrule#1{\@tempcnta#l\advance\@tempcnta\adl@currentcolumn
286 \advance\@tempcnta\m@ne

287 \adl@xarraydashrule

288 {\adlecurrentcolumn}{\@tempcnta}{{\z@/\z@}}}

289 \def\adl@mcarraydashrule#1{\@tempcnta#l\advance\@tempcnta\adl@currentcolumn
290 \advance\@tempcnta\m@ne

291 \adl@xarraydashrule

292 {\adl@currentcolumn}{\@tempcntal,

293 {{\dashlinedash/\dashlinegap}}}

294 \def\adl@mcargarraydashrule#1{\@tempcnta#i\advance\@tempcnta\adl@currentcolumn
295 \advance\@tempcnta\m@ne

296 \adl@xarraydashrule

297 {\adlecurrentcolumn}{\@tempcntal}{}%

298 \@chclass\adl@class@iiiorvii \let\@classv\adl@classvfordash}
299

300 %4"L

4.8 End of Rows

At the end of a ' row, we have to calculate h; which is the height plus depth of the
row, and add elements (CF, h;) and (CE, h;) to RL and RT. To do this, \cr-s in the
macros \@xarraycr, \@xtabularcr, \@xargarraycr are replaced with our own \adl@cr.
The macro \@yargarraycr(dimen) is also modified but its \cr is replaced with \adl@
arger(dimen) to add (negative) \dimen to h;. Note that \@xargarraycr(dimen) uses
ordinary \adl@cr because the extra vertical space of (dimen) is inserted to the last column.

Note that the implementation of \@xarraycr is slightly different between KTEX and
array, we have to have two versions and choose one.

301

302 %% End of row

303

304 \ifadl@usingarypkg

305 \def\@xarraycr{\@ifnextchar [{\Qargarraycr}{\ifnum0="°{}\fi\adl@crl}}
306 \else

307 \def\@xarraycr{\@ifnextchar [{\@argarraycr}{\ifnum0="‘{\fi}${}\adl@cr}}
308 \fi

27

\adl@cr
\adl@argcr

\adl@@cr

309 \def\@xtabularcr{\@ifnextchar [{\Q@argtabularcr}{\ifnum0=‘{\fi}\adl@cr}}
310 \def\@xargarraycr#1{\Q@tempdima#1\advance\@tempdima\dp\@arstrutbox

311 \vrule\@height\z@\@depth\Q@tempdima\Q@uwidth\z@

312 \adl@cr}

313 \def\@yargarraycr#i{\adl@argcr{#1}\noalign{\vskip #1}}

314

The macro \adl@cr and \adl@argcr perform \cr and then invoke the common macro
\adl@@cr(z). The argument (z) is the extra (negative) vertical space for \adl@argcr,
while it is 0 for \adl@cr.

The macro \adl@@cr(z) at first calculate h; as follows. The registers \adl@height = 7 and
\adl@depth = § have the maximum height and depth of the columns in the row. However,
they could be smaller than the height and/or depth of \@arstrutbox, ns and ds. If so, the
height and/or depth of the row are n; and ;. Therefore, h; is caluclated by;

h; = max(n, ns) + max(d, ds).

Additionally, if the extra space (x) is negative, a vertical space of z is inserted below
the row®. Thus the integer value of h; + z is \global-ly added to \adl@totalheight,
and the elements (CF=\adl@colsL, h;) and (CF=\ad1l@colsR, h;) are added to the tail of
R =\adl@rowsL and R® = \adl@rowsR. If x is not 0 (negative), discard(x) or connect(x)
is also added after (C’lL /B h;) according to the current environment (longtable or not). In
the real implementation, R” and R has the following format of (rows).

(rows) ::= [(row);]*

(row) ::= ((cols)/(h;))

(cols) ::= N\elt{(c)H(d)H{g)}" | ... Clor OF
\adl@connect | ... for connect(h;)
\adl@discard | ... for discard(h;)
\relax ... for disconnect(h;)

Since \adl@discard is \def-ined as \adl@connect by \adl@arrayinit, added \adl®@
discard transforms itself into \adl@connect if current envrionment is not longtable.
Otherwise, as we make \adl@discard \let-equal to \relax when a longtable environ-
ment starts, it keeps its own form.

Then, \ad1@finaldepth is set to \ad1@depth if x is zero, or to zero otherwise (negative),
in order to make the depth array/tabular equal to that of the last row. Finally, \adl@
colsL, \adl@colsR, \adl@currentcolumn, \adl@height and \adl@depth are reinitialized
to process the next row.

315 \def\adl@cr{\cr\noalign{\adl@@cr\z@}}
316 \def\adl@argcr#1{\cr\noalign{\adl@@cr{#1}}}
317 \def\adl@@cr#1{

318 \ifdim\adl@height<\ht\@arstrutbox \adl@height\ht\@arstrutbox\fi
319 \ifdim\adl@depth<\dp\@arstrutbox \adl@depth\dp\@arstrutbox\fi
320 \advance\adl@height\adl@depth

321 \globalladvance\adl@totalheight\adl@height

8Before v1.54, negative (z) shrinks the hight of the row by |z|. Although the former result may be more
appropriate if the row has vertical lines than the current because lines extrude to the next row now, new
feature is considered compatible with original array/tabular.

28

322 \@tempdima#1\relax \globalladvance\adl@totalheight\@tempdima

323 \xdef\adl@rowsL{\adl@rowsL

324 (\adl@colsL/\number\adl@height) ;%

325 \ifdim#1=\z0\else (\adl@discard/\number\@tempdima) ;\fil}%
326 \xdef\adl@rowsR{\adl@rowsR

327 (\adl@colsR/\number\adl@height) ;%

328 \ifdim#1=\z0\else (\adl@discard/\number\@tempdima) ;\fil}%
329 \gdef\adl@colsL{}\gdef\adl@colsR{}

330 \globalladl@currentcolumn\@ne

331 \ifdim#1=\z@ \globalladl@finaldepth\adl@depth

332 \else \globalladl@finaldepth\z@\fi

333 \global\adl@height\z@ \globall\adl@depth\z@}

334

335 hh"L

4.9 Horizontal Lines

\hline The macro \hline is modified to add the element connect(w) = (\adl@connect/\number
\cline \arrayrulewidth) to the end of R and R® by \adl@hline, to set \adl@finaldepth to
zero for the case that the last vertical item is \hline, and to check if it is followed by not
only \hline but also \hdashline by \adl@xhline.
The macro \cline is also modified to set \adl@finaldepth to zero.

336

337 %/ Horizontal Lines

338

339 \def\hline{\noalign{\ifnumO=‘}\fi \hrule\@height\arrayrulewidth
340 \adl@hline\adl@connect\arrayrulewidth

341 \global\adl@finaldepth\z@

342 \futurelet\@tempa\adl@xhline}

343 \def\cline{\noalign{\global\adl@finaldepth\z@}\adl@org@cline}
344

\hdashline The macro \hdashline calls \adl@hdashline to open the \noalign construct by the
\adl@hdashline well-known trick {\ifnumO=‘}\fi and then to invoke \adl@ihdashline checking the ex-
\adl@ihdashline istence of its optional argument [{(dash)/{gap)]. Then the macro \adl@ihdashline adds
connect(w) to the end of RY and R, and closes the \noalign by \ifnum0=‘{\fi} to start
the pseudo row for the horizontal dash-line. Before the dash-line is drawn by \ad1@hcline
which is also used for \cdashline, all the columns are \span-ed by giving \ad1@columns to
\multispan. Finally, the \noalign is opened again and \adl@xhline is invoked to check

whether \h(dash)1line is followed.

\adl@inactivehdl If \ADLinactivate isin effect, \adl@ihdashline is \let-equal to \adl@inactivehdl. This
macro simply puts a \hrule discarding its arguments.

345 \def\hdashline{\adl@hdashline\adl@ihdashline}
346 \def\adl@hdashline#1{\noalign{\ifnumO=‘}\fi

347 \@ifnextchar[]

348 {#1}%

349 {#1[\dashlinedash/\dashlinegap] }}

350 \def\adl@ihdashline [#1/#2]{\adl@hline\adl@connect\arrayrulewidth
351 \ifnumO=‘{\£fi}}

352 \multispan{\adl@columns}\unskip \adl@hcline\z@[#1/#2]7%

29

\adl@xhline

\adl@hline

\cdashline
\adl@cdline
\adl@cdlinea
\adl@cdlineb

\adl@inactivecdl

353 \noalign{\ifnum0="‘}\fi

354 \futurelet\@tempa\adl@xhline}

355 \def\adl@inactivehdl [#1/#2] {\hrule\@height\arrayrulewidth
356 \futurelet\@tempa\adl@xhline}

357

The macro \adl@xhline is the counterpart of the original \@xhline. This is intro-
duced to check the mixed sequence of \hline and \hdashline, and to add the element
disconnect(s) = (\relax/\doublerulesep) to the end of R* and R by \adl@hline if a
pair of \h(dash)line is found.

358 \def\adl@xhline{\ifx\@tempa\hline \adl@ixhline\fi

359 \ifx\@tempa\hdashline \adl@ixhline\fi

360 \ifnumO=‘{\fi}}

361 \def\adl@ixhline{\vskip\doublerulesep \adl@hline\relax\doublerulesep}
362

The macro \adl@hline(cs)(dimen) \global-ly adds the integer value of (dimen) to
\adl@totalheight and adds the element ({cs)/\number(dimen)) to the tail of RY and
RE. The arguments (cs)(dimen) are \adl@connect\arrayrulewidth for connect(w) or
\relax\doublerulesep for disconnect(s).

363 \def\adl@hline#1#2{\@tempcnta#2

364 \globalladvance\adl@totalheight\@tempcnta
365 \xdef\adl@rowsL{\adl@rowsL

366 (#1/\number\@tempcnta) ; }%

367 \xdef\adl@rowsR{\adl@rowsR

368 (#1/\number\@tempcnta) ; }}

369

The macro \cdashline at first opens \noalign and then invokes \adl@cdline checking
the existence of its optional argument [(dash)/{gap)]. The code of the macro \ad1l@cdline
is based on that of \@cline in KTEX-2.09 because ETEX 2¢’s version will not work with
TEX-2.09. The main job is done by \adl@hcline after the target columns are \span-ed
by \adl@cdlinea or \adl@cdlineb.

If \ADLinactivate is in effect, \adl@cdline is \let-equal to \adl@inactivecdl. This
macro simply calls \ad1@org@cline, original version of \cline, after closing the \noalign
opened by \cdashline.

370 \def\cdashline#1{\noalign{\ifnum0=‘}\fi

371 \@ifnextchar [%]

372 {\adl@cdline [#1]1}¥

373 {\adl@cdline[#1] [\dashlinedash/\dashlinegap]}}
374 \def\adl@cdline [#1-#2]{\global\adl@cla#l\relax

375 \globalladvance\adl@cla\m@ne

376 \ifnum\adl@cla>\z@ \global\let\@gtempa\adl@cdlinea

377 \else \global\let\@gtempa\adl@cdlineb\fi

378 \globalladl@clb#2\relax

379 \globalladvance\adl@clb-\adl@cla \ifnumO=‘{\fi}

380 \@gtempa{-\arrayrulewidth}}

381 \def\adl@cdlinea{\multispan\adl@cla &\multispan\adl@clb \unskip \adl@hcline}
382 \def\adl@cdlineb{\multispan\adl@clb \unskip \adl@hcline}
383

30

\adl@hcline

\firsthdashline
\lasthdashline

\adl@defflhdl
\adl@idefflhdl
\adl@firsthdashline
\adl@lasthdashline

\endarray
\endtabular
\endtabular*

384 \def\adl@inactivecdl [#1-#2] [#3] {\ifnumO=‘{\fi}\adl@org@cline{#1-#2}}
385

The macro \adl@hcline(w)[(d)/(g)] draws a horizontal dash-line of dash size d and gap
size g for \hdashline and \cdashline in the \span-ed columns by \adl@draw. As we
will discussed in §4.12, the macro requires d and g are passed through \@tempdima and
\@tempdimb, and control sequences (rule), (skip) and (boz) are passed through its argu-
ments to make it usable for both horizontal and vertical lines. Then the vertical space of
w, —\arrayrulewidth for \cdashline, is inserted if it is not 0 (for \hdashline).

386 \def\adl@hcline#1 [#2/#3]{\Q@tempdima#2\relax \Q@tempdimb#3\relax

387 \adl@draw\adl@vrule\hskip\hbox \cr
388 \noalign{\global\adl@finaldepth\z@ \ifdim#1=\z@\else \vskip#1\fil}}
389

If array is in use, we wish to have dashed counterparts of \first/lasthline named \first/
lasthdashline, which simply call \ad1@hdashline with an argument to call \adl@first/
lasthdashline after closing \noalign opened by \adl@hdashline.

The macros \adl@first/lasthdashline, however, are defined in a tricky manner to replace
\hline in \first/lasthline with;

\adl@hdashline\adl@ihdashline [{dash)/{gap)]

in order to avoid copy-and-replace. To do that, we define \adl@defflhdl and \adl®@
idefflhdl in which the body of \first/lasthline is expanded by \exapndafter and
the parts preceding and following \hline are extracted. Then the preceding part (p), the
calling sequence of \adl@hdashline, and the following part (f) are connected to be the
body of \adl@first/lasthdashline. Thus we define \adl@firsthdashline as follows.

\def\adl@firsthdashline [#1/#2]{%

(p)

\adl@hdashline\adl@ihdashline [#1/#2]

()3

390 \ifadl@usingarypkg

391 \def\firsthdashline{\adl@hdashline{\ifnumO=°‘{\fi}\adl@firsthdashlinel}}
392 \def\lasthdashline{\adl@hdashline{\ifnumO=‘{\fi}\adl@lasthdashline}}
393

394 \def\adl@defflhd1#1{\def\C@tempa{#1}

395 \expandafter\adl@ideff1lhdl}
396 \def\adl@ideff1hd1#1\hline#2\@nil{%
397 \@namedef\@tempa [##1/##2] {#1\adl@hdashline\adl@ihdashline [##1/##2]#2}}

398 \adl@defflhdl{adl@firsthdashline}\firsthline\@nil
399 \adl@defflhdl{adl@lasthdashline}\lasthline\@nil
400 \fi

401

402 %%"L

4.10 End of Environment

The macros to close the array/tabular environment, \endarray and \endtabular (),
are modified so that they invoke \adl@endarray to draw vertical lines just before clos-
ing \halign, and \adl@arrayrestore to restore registers and data structures \global-ly
modified in the environment.

31

\adl@endarray
\adl@rows
\adl@addvl
\adl@vlrowL
\adl@vlrowR
\adl@vlrow

403

404 %% End of Environment

405

406 \def\endarray{\adl@endarray \egroup \adlQ@arrayrestore \egroup}

407 \def\endtabular{\adl@endarray \egroup \adl@arrayrestore \egroup $\egroup}
408 \expandafter\let\csname endtabular*\endcsname\endtabular

409

The macro \adl@endarray at first closes the last row by \crcr. If this \crcr has real

effect, we have to invoke \ad1@@cr to perfrom our own end-of-row operations. We assume

that the \crcr is effective if either \ad1@height or \adl@depth has a non-zero value®.
Then the rows to draw vertical lines L1, ..., Ly;

o1LiosLs ... Ly 10, L0041

are created in \adl@vlrowL and \adl@vlrowR by \adl@makevlrL and \adl@makevlrR. In
the real implementation, Ly = (v, 7k, Ok, &k, Tk, Ok) 1S represented as;

\adlevl{Fy e — Bp 3o &}

Thus \adl@vl is made \let-equal to \relax when the rows are constructed and to
\adl@@vl when the rows are put.

Since \adl@makevlrL and \adl@makevlrR shares common macros, they conceptually
have the following interface.

\adl@vlrow = \adl@makevlrL/R(\adl@rows: (R or R®),
\adl@currentcolumn: (start column),
\adl@addvl : (macro to add an element))

Thus they are invoked as;

\adl@vlrowL = \adl@makevrL(\adl@rowsL, 1, \adl@addvlL)
\adl@vlrowR = \adl@makevrR(\adl@rowsR, \adl@columns, \adl@addvlR)

Finally, after constructed rows for vertical lines are put by \adl@drawvl, a vertical skip
of —\adl@finaldepth is inserted to move back to the last baseline, and then an invisible
\vrule of \adl@finaldepth deep is put to make array/tabular has the depth of the last
real row or zero if it ends with a horizontal line.

410 \def\adl@endarray{\crcr \noalign{

411 \ifdim\adl@height=\z0@

412 \ifdim\adl@depth=\z@ \else \adl@@cr\z@ \fi

413 \else \adl@@cr\z@ \fi

414 \let\adl@vl\relax

415 \def\adl@vlrow{}\adl@currentcolumn\@ne

416 \let\adl@rows\adl@rowsL

417 \let\adl@addvl\adl@addvlL

418 \adl@makevlrL \globall\let\adl@vlrowL\adl@vlrow
419 \def\adl@vlrow{}\adl@currentcolumn\adl@columns

420 \let\adl@rows\adl@rowsR

421 \let\adl@addvl\adl@addvlR

422 \adl@makevlrR \globalllet\adl@vlrowR\adl@vlrow

9The author confesses that this rule is not strict and the introduction of a switch could improve the
strictness.

32

\adl@arrayrestore

\adl@makevlrL
\adl@makevlrR

423 \global\let\adl@v1l\adl@@vl}y

424 \adl@drawvl

425 \noalign{\vskip-\adl@finaldepthl}%

426 \omit\vrule\@width\z@\@height\z@\@depth\adl@finaldepth\cr}
427

The macro \adl®@arrayrestore restores the values of registers and data structures,
\adl@height, \adl@depth, \adl@currentcolumn, \adl@totalheight, \adl@rowsL, \adl®@
rowsR, \adl@colsL and \adl@colsR, saved by \adl@arrayinit.

428 \def\adl@arrayrestore{,

429 \globalladl@height\adl@heightsave

430 \globalladl@depth\adl@depthsave

431 \globalladl@currentcolumn\adl@currentcolumnsave
432 \globalladl@totalheight\adl@totalheightsave

433 \global\let\adl@rowsL\adl@rowsLsave

434 \global\let\adl@rowsR\adl@rowsRsave

435 \globalllet\adl@colsL\adl@colsLsave

436 \globalllet\adl@colsR\adl@colsRsave}

437

438 hh"L

4.11 Drawing Vertical Lines

Figure 2 shows the conceptual code of \adl@makevlrL. The correspondance of variables in
the code and control sequences in the real implementation is as follows.

RY :\adl@rowsL R :\adl@rows R’ : \@tempb A :\adl@vlrowL
I' : \adl@columns + :\adl@currentcolumn
7 : \@tempcnta 6 : \@tempcntb 6 : \adl@dash £ :\adl@gap
H : \adl@totalheight
conn : \ifadl@connected double : \ifadl@doublerule

The macro \adl@makevlrL corresponds to the line (2) and (30)—(36). Its right-edge coun-
terpart \adl@makevlrR has the same correspondance but the lines (1)—(2) are;

(1) A= R— RNy T,
(2) while v > 0 do begin

and (30)—(35) are;

(30) if double then A < (\hskip\doublerulesep, A);
(31) else begin
(32) Yy =1
(33) if y =0 then A« (\hss,A);
(34) else A — (&\omit\hss, A);
(35) end;

439

440 %% Drawing Vertical Lines

441

442 \def\adl@makevlrL{\adl@makevlr

443 \ifadl@doublerule

33

B W W W W W W W W W WNNDNDNDNNDNDNNDNRFE H R 2R R R N N N N N~~~
S © 00 O Ut b W N = O © 00 O Ut b W N O © 0 N O U i Wi+~ O © 0 3 O U i W N -

—
N NN NG END N NG NSNS NN N NG END N NS NN N NI N N NG N S AN NG NN NN N N N NN N NI

e e e e e e i e e i i e e e e e e e e e e e e e e e e N N e

W~
S

A—(); R—RY <1
while v < I' do begin
T H; B H;6— —1;§« —1;
conn « false; double — false;; R’ — ()
while R # () do begin
<T7 R) « R;
(C,h) — 1
if C' = () then
add(r, ,5,€);
elseif C # (connect) begin
<67 Cl> =C; <C’ d, g> =6
if ¢ = v then begin
ifd=6 A g =& then begin
if ~conn then begin
T «— [3; conn < true;
end;
end;
else begin
0 —d; & — g; T — [B; conn +— true;
end;
if ¢' = ((,7,7),7) then double — true;
C — C
end;
else add(r,(,9,¢);
end;
B—pB—h; R — (R, (C,h))
end;
add(t,5,6,€); R — R/;
if double then A «— (A, \hskip\doublerulesep);
else begin

e+ 1L

if v > I' then A« (A,\hfil);

else A — (A, \hfil&\omit);
end;

end;

procedure add(T,(3,9,¢) begin
if conn then begin
A — (A (B, T —0,0,£)); conn «— false;
end;
end;

Figure 2: Conceptual Code of \adl@makevlrL

34

\adl@makevlr

\adl@imakevlr
\adl@iimakevlr
\adl@endmakevlr

\adl@iiimakevlr
\adl@ivmakevlr
\adl@vmakevlr
\adl@endmakevlrcut
\adl@endmakevlrconn
\adl@@connect

444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

\edef\adl@vlrow{\adl@vlrow \hskip\doublerulesepl}/
\let\next\adl@makevlrL
\else
\advance\adl@currentcolumn\@ne
\ifnum\adl@currentcolumn>\adl@columns \let\next\relax
\edef\adl@vlrow{\adl@vlrow \hss}
\else \let\next\adl@makevlrL
\edef\adl@vlrow{\adl@vlrow \hss &\omit}}
\fi\fi\next}
\def\adl@makevlrR{\adl@makevlr
\ifadl@doublerule
\edef\adl@vlrow{\hskip\doublerulesep \adl@vlrowl}
\let\next\adl@makevlrR
\else
\advance\adl@currentcolumn\m@ne
\ifnum\adl@currentcolumn=\z@ \let\next\relax
\edef\adl@vlrow{\hss \adl@vlrow},
\else \let\next\adl@makevlrR
\edef\adl@vlrow{&\omit \hss \adl@vlrowl}J,
\fi\fi\next}

The macro \adl@makevlr corresponds to the lines (3)—(4) and (29).

465
466
467
468
469
470
471

\def\adl@makevlr{\@tempcnta\adl@totalheight \@tempcntb\adl@totalheight
\adl@dash\m@ne \adl@gap\m@ne
\adl@connectedfalse \adl@doublerulefalse \def\@tempb{}/
\expandafter\adl@imakevlr\adl@rows\@nil;?
\adl@addvl
\edef\adl@rows{\Q@tempbl}}

The macro \adl@imakevlr(r); corresponds to the lines (5)—(6), and the macro \adl@
iimakevlr ({C)/(h)) to (7) and (27).

472
473
474
475
476
477
478
479
480

\def\adl@imakevlr#l;{\def\@tempa{#1}\ifx\@tempa\@nnil \let\next\relax
\else \adl@iimakevlr#1\let\next\adl@imakevlr \fi \next}
\def\adl@iimakevlr (#1/#2){\let\@elt\adl@iiimakevlr
\let\adl@connect\adl@@connect
\let\adl@endmakevlr\adl@endmakevlrcut
#1\adl@endmakevlr
\let\@elt\relax \let\adl@connect\relax
\advance\@tempcntb-#2\edef \@tempb{\@tempb (\@tempc/#2) ;}}

The correspondance of the lines (8)—(29) is a little bit complicated. As shown above, \ad1@
iimakevlr expands C' attaching the sentinel \adl@endmakevlr.

1. If C' # () and C # (connect), C has at least one \@elt{c)(d)(g) which is made \let-
equal to \adl@iiimakevlr by \adl@iimakevlr. Thus the lines (10)—(21) and (25)
are performed by \adl@iiimakevlr.

Then;

(a) if ¢ = v, \@elt becomes \let-equal to \adl@ivmakevlr which corresponds to
(22) in the case of C’ # (). Then \adl@vmakevlr is invoked for (23) and to

35

eat the sentinel \adl@endmakevlr. If C' = (), \adl@endmakevlrconn is in-
voked, because the sentinel \adl@endmakevlr is made \let-equal to it by \adl@
iiimakevlr, for (23) (i.e. C — ()).

(b) if ¢ # «y, \adl@vmakevlr is invoked to perform implicit C' « C operation and to
eat the sentinel.

2. If C = {connect), i.e. it has only one element \adl@connect, the macro \adl@@
connect is invoked because it is \1let-equal to \adl@connect. The macro do nothing
but implict C < C' (= {connect)) and eating the sentinel.

3. If C = (), \adl@endmakevlrcut that is \let-equal to the sentinel \adl@endmakevlr
is invoked to perform (8)—(9) and implicit C' — C (= ()).

481 \def\adl@iiimakevlr#1#2#3{\1let\@elt\adl@ivmakevlr \let\next\relax

482 \ifnum#i=\adl@currentcolumn\relax

483 \let\adl@endmakevlr\adl@endmakevlrconn

484 \@tempswafalse

485 \ifnum#2=\adl@dash\relax

486 \ifnum#3=\adl@gap\relax

487 \@tempswatrue

488 \fi\fi

489 \if@tempswa

490 \ifadl@connected\else

491 \@tempcnta\@tempcntb \adl@connectedtrue \fi
492 \else

493 \adl@addvl

494 \adl@dash#2\relax \adl@gap#3\relax
495 \@tempcnta\@tempcntb \adl@connectedtrue
496 \fi

497 \else

498 \adl@addvl

499 \def\next{\adl@vmakevlr\@elt{#1}{#2}{#3}}%
500 \fi\next}

501 \def\adl@ivmakevlr#1#2#3{J

502 \ifnum#i1=\adl@currentcolumn \adl@doubleruletrue \fi
503 \adl@vmakevlr\@elt{#1}{#2}{#3}}

504 \def\adl@vmakevlr#l\adl@endmakevlr{\def\Q@tempc{#1}}

505 \def\adl@endmakevlrcut{\adl@addvl \def\@tempc{l}}

506 \def\adl@endmakevlrconn{\def\@tempc{}}

507 \def\adl@@connect\adl@endmakevlr{\def\@tempc{\adl@connect}}
508

\adl@addvlL The macro \adl@addvlL corresonds to the lines (38)—(42), i.e. the procedure add. The
\adl@addvlR macro \adl@addvlR performs simlar operations, but its conceptual code is the following.

(38) procedure add(T,[3,0,£) begin

(39) if conn then begin

(40) A— (B, 7= B,0,§), A); conn — false;
(41) end;

(42) end;

509 \def\adl@addvlL{\ifadl@connected
510 \advance\@tempcnta-\@tempcntb

36

511 \edef\adl@vlrow{\adl@vlrow

512 \adlevl{\number\@tempcntb}{\number\@tempcntal}’

513 {\number\adl@dash}{\number\adl@gapl}}%

514 \adl@connectedfalse \fi}

515 \def\adl@addvlR{\ifadl@connected

516 \advance\@tempcnta-\@tempcntb

517 \edef\adl@vlrow{\adl@vl{\number\@tempcntb}{\number\Q@tempcntaly,

518 {\number\adl@dash}{\number\adl@gap}\adl@vlrowl}’,
519 \adl@connectedfalse \fi}

520

\adl@drawvl After the the macros \adl@vlrowL and \adl@vlrowR are constructed, they are expanded to

\adleevl draw vertical lines by \adl@drawvl. Prior to the expansion, the macro \adl@drawvl glob-

\adl@vl@leftskip ally defines \adl@vl@leftskip and \adl@vl@rightskip, which are the amount of negative
\adl@vl@rightskip spaces inserted to the left/right of a vertical line, as follows.

\arrayrulewidth/2 if \ifadl@zwrule

\adl@vl@leftskip = ¢ 0 else if leftside
\arrayrulewidth otherwise
\arrayrulewidth/2 if \ifadl@zwrule
\adl@vl@rightskip = ¢ 0 else if rightside
\arrayrulewidth otherwise

That is, if \ADLnulwide is in effect, a vertical line is surrounded by horizontal spaces of
—\arrayrulewidth/2 to adjust the center of the line to the left or right edge of its column.
Otherwise, a horizontal space —\arrayrulewidth is inserted after (before) the line is drawn
to adjust its left (right) edge to the left (right) edge of the column!®.

Then the macros \adl@vlrowL and \adl@vlrowR are expanded. These macros will have
\adl@vl, which is made \let-equal to \ad1@@v1l prior to the expansion, to draw a vertical
line. The macro \adl@@v1({3)(A)(v)(d) draws a sloid line if v = 0 or a dash-line otherwise
in a \vbox of A = 7 — 3 high and \raise-s it by 8. The method to draw a dash line in the
\vbox is analogous to that for holizontal line shown in §4.9, except that a line is surrounded
by horizontal spaces of \adl@vl@leftskip and \adl@vl@rightskip.

521 \def\adl@drawvl{’

522 \omit \relax \ifadl@zwvrule

523 \gdef\adl@vl@leftskip{.5\arrayrulewidthl}y,
524 \globalllet\adl@vl@rightskip\adl@vl@leftskip
525 \else \globalllet\adl@vl@leftskip\z@

526 \global\let\adl@vl@rightskip\arrayrulewidth
527 \fi \adl@vlrowL \cr

528 \omit \relax \ifadl@zwvrule

529 \gdef\adl@vl@leftskip{.5\arrayrulewidthl}y,
530 \globalllet\adl@vl@rightskip\adl@vl@leftskip
531 \else \globalllet\adl@vl@leftskip\arrayrulewidth
532 \global\let\adl@v1@rightskip\z@

533 \fi \adl@vlrowR \cr}

534

535 \def\adl@Qv1#1#2#3#4{\vbox to\z@{\vss\hbox{’

536 \hskip-\adl@vl@leftskip

10Before v1.54, the horizontal spaces was not inserted if \ADLsomewide and thus disconnected lines were
not aligned vertically.

37

\adl@vrule
\adl@hrule

\adl@drawi
\adl@drawii
\adl@drawiii
\adl@draw

537 \raise#1sp\vbox to#2sp{

538 \ifnum#3=\z@

539 \hrule height#2sp depth\z@ width\arrayrulewidth
540 \else \@tempdima#3sp \Q@tempdimb#4sp

541 \adl@draw\adl@hrule\vskip\vbox

542 \fi}%

543 \hskip-\adl@vl@rightskip}}}

544

545 %% L

4.12 Drawing Dash-lines

As explained later, horizontal and vertical lines are drawn by a common macro \adl@draw
to which the length of a dash segment, d, is passed through \@tempdima. The macro also
has an argument that is either \adl@vrule to draw a dash for horizontal lines or \adl@
hrule for vertical. These two macros commonly have one argument (f) to draw a dash of
f x dlong and of \arrayrulewidth wide.

546

547 %% Draw Dash Lines (\adl@vrule/\adl@hrule, \hskip/\vskip, \hbox/\vbox)
548

549 \def\adl@vrule#1{\vrule\@width#1\Q@tempdima\@height\arrayrulewidth\relax}
550 \def\adl@hrule#1{\hrule\Gheight#1\Q@tempdima\@width\arrayrulewidth\relax}

The macro \adl@draw is to draw a horizontal or vertical line. It is \let-equal to one
of \adl@drawi, \adl@drawii and \adl@drawiii according to the drawing mode speci-
fied by \ADLdrawingmode. These three macros have common interface, \@tempdima and
\@tempdimb for the length of dash and gap, d and g, and three arguments (rule), (skip)
and (box) with which \adl@draw is called in the following manner.

\adl@draw\adl@vrule\hskip\hbox ... horizontal
\adl@draw\adl@hrule\vskip\vbox ... vertical

The drawing methods in three modes have been explained in §4.2. More specifically, \ad1@
drawi for mode 1, to which \adl@draw is \let-equal by default, conceptually performs the
following operations.

(rule){1/2} (skip)(g/2)
\xlearders(boz){(skip)(g/2) (rule){1} (skip)(g/2)}
(skip)(0 plus 1£fil minus 1fil)

(skip)(g/2) (rule){1/2}

The conceptual operations of \adl@drawii for mode 2 are as follows.

(rule){1/2} (skip)(g/2)

(box){(skip)(g/2) (rule){1} (skip)(g/2)} (skip)(—d — g)

\xlearders({boz){(skip)(g/2) (rule){1} (skip)(g/2)}
(skip)(0 plus 1£fil minus 1£il)

(skip)(—d — g) (box){(skip)(g/2) (rule){1} (skip)(g/2)}

(skip)(g/2) {(rule){1/2}

The macro \adl@drawiii for mode 3 is quite similar to \adl@drawi except that \xleaders
is replaced by \cleaders. This replacement is done by temporarily \let-ing \xleaders
be equal to \cleaders.

38

\ADLdrawingmode

\adl@Array
\adl@Tabular
\adl@Tabularstar
\adl@Longtable

\@notdefinable
\adl@notdefinable

551 \def\adl@drawi#1#2#3{%

552 #1{.5}#2.5\@tempdimb

553 \xleaders#3{#2.5\0tempdimb #1{1}#2.5\@tempdimb}%

554 #2\z0@ plusifil minusifill\relax

555 #2.5\0tempdimb #1{.5}}

556 \def\adl@drawii#1#2#3{,

557 \setbox\adl@box#3{#2.5\0tempdimb #1{1}#2.5\Q@tempdimbl}y
558 #1{.5}#2.5\@tempdimb

559 \copy\adl@box #2-\@tempdima #2-\Q@tempdimb

560 \xleaders\copy\adl@box#2\z@ plusifil minusifill\relax
561 #2-\Qtempdima #2-\Otempdimb \copy\adl@box

562 #2.5\0@tempdimb #1{.5}}

563 \def\adl@drawiii#1#2#3{{\1let\xleaders\cleaders \adl@drawi#1#2#3}}
564 \let\adl@draw\adl@drawi
565

The macro \ADLdrawingmode{(m)} defines the drawing mode by \let-ing \adl@draw be
equal to \adl@drawi if m = 1, and so on. If (m) is neither 1, 2 nor 3, it is assumed as 1.

566 \def\ADLdrawingmode#1{\ifcase #1/

567 \let\adl@draw\adl@drawi \or

568 \let\adl@draw\adl@drawi \or

569 \let\adl@draw\adl@drawii \or
570 \let\adl@draw\adl@drawiii \else
571 \let\adl@draw\adl@drawi \fi}
572

573 %h"L

4.13 Shorthand Activation

The macros\adl@Array, \adl@Tabular, \adl@Tabular* and \adl@Longtable start en-
vironments array, tabular, tabular* and longtable respectively, turning \ifadl®@
inactive false to activate dash-line functions. We will \let macros \Array etc. be equal
to them for shorthand activation.

574

575 %% Shorthand Activation

576

577 \def\adl@Array{\adl@inactivefalse \array}

578 \def\adl@Tabular{\adl@inactivefalse \tabular}

579 \def\adl@Tabularstar{\adl@inactivefalse \@nameuse{tabular*}}
580 \def\adl@Longtable{\adl@inactivefalse \longtable}

581

Before making \Array etc. \let-equal to \adl@Array etc., we have to check if these macros
having too natural names have already used. This check is done by \@ifdefinable that
will call \@notdefinable for the complaint if undefinable. Since we want to complain
with our own warning message, \@notdefinable is temporarily \def-ined so that it simply
\def-ines a macro \adl@uotdefinable as empty. Therefore, \adl@notdefinebale will
have some definition if one of \Array, \Tabular, \Tabular* and \Longtable (if longtable
is loaded) cannot be defined, while it will stay undefined otherwise.

582 \begingroup
583 \def\@notdefinable{\gdef\adl@notdefinable{}}

39

\Array
\Tabular
\Tabular*
\Longtable
\endArray
\endTabular
\endTabularx*
\endLongtable

\ADLnoshorthanded

584 \@ifdefinable\Array\relax

585 \@ifdefinable\Tabular\relax

586 \expandafter\@ifdefinable\csname Tabular*\endcsname\relax

587 \ifx\longtable\undefined\else \@ifdefinable\Longtable\relax \fi
588 \endgroup

589

If \adl@notdefinable is \undefined indicating that all \Array etc. are definable, we \1let
them be equal to \adl@Array etc. We also \let ending macros \endArray etc. be equal to
\endarray etc. Note that \Longtable and \endLongtable are defined only when longtable
is loaded, and \endLongtable is \def-ined as (not being \let-equal to) \endlongtable
because its definition of our own is not given yet.

Otherwise, we complain with a warning message put by \PackageWarning if it is defined
(i.e. WTEX 2¢) or \@warning otherwise (i.e. HWTEX-2.09).

590 \ifx\adl@notdefinable\undefined

591 \let\Array\adl@Array

592 \let\Tabular\adl@Tabular

593 \expandafter\let\csname Tabular*\endcsname\adl@Tabularstar
594 \let\endArray\endarray

595 \let\endTabular\endtabular

596 \expandafter\let\csname endTabularx*\endcsname\endtabular
597 \ifx\longtable\undefined\else

598 \let\Longtable\adl@Longtable

599 \def\endLongtable{\endlongtable}

600 \fi

601 \else

602 \begingroup

603 \ifx\longtable\undefined

604 \def\@tempa{Array and Tabular are not defined because one of them\MessageBreak
605 has been defined}

606 \else

607 \def\@tempa{Array/Tabular/Longtable are not defined because \MessageBreak
608 one of them has been defined}
609 \fi

610 \ifx\PackageWarning\undefined

611 \def\MessageBreak{"~~J}

612 \@warning\@tempa

613 \else

614 \let\on@line\empty

615 \PackageWarning{arydshln}\@tempa
616 \fi

617 \endgroup

618 \fi

619

If a user wishes to define an environment named Array or Tabular(*) (or Longtable if
longtable is in use) by him/herself or by loading other packages after arydshin is loaded,
\newenvironment for Array etc. will fail because they have already been undefinable. The
macro \ADLnoshorthanded makes them definable again by \let-ing them and their ending
counterparts be equal to \relax.

620 \def\ADLnoshorthanded{%
621 \let\Array\relax

40

\adl@act@arrayclassz
\adl@act@tabclassz
\adl@act@classz
\adl@act@@startpbox
\adl®@act@@endpbox
\adl@act@endpbox
\adl@act@cr
\adl@act@argcr
\adl@act@cline
\adl®@act@endarray
\adl@act@hline
\adl@act@ihdashline
\adl@act@cdline
\adl@act@@vlineL
\adl@act@@vlineR

\adlecce
\Cce

622 \let\Tabular\relax

623 \expandafter\let\csname Tabularx\endcsname\relax
624 \let\endArray\relax

625 \let\endTabular\relax

626 \expandafter\let\csname endTabular*\endcsname\relax
627 \ifx\longtable\undefined\else

628 \let\Longtable\relax

629 \let\endLongtable\relax \fi}

630

Finally here we define active version of \@arrayclassz named \adl@act@arrayclassz
etc. for \adl@activate (see §4.4). The definitions are simply done by \let-ing \adl@act®@
arrayclassz equal to \@arrayclassz etc'!.

631 \let\adl@act@arrayclassz\Qarrayclassz
632 \let\adl@act@tabclassz\@tabclassz

633 \ifadl@usingarypkg \let\adl@act@classz\@classz \fi
634 \let\adl@act@@startpbox\@@startpbox
635 \let\adl@act@Qendpbox\@@endpbox

636 \let\adl@act@endpbox\@endpbox

637 \let\adl@act@cr\adl@cr

638 \let\adl@act@argcr\adl@argcr

639 \let\adl@act@cline\cline

640 \let\adl@act@endarray\adl@endarray

641 \let\adl@act@hline\adl@hline

642 \let\adl@act@ihdashline\adl@ihdashline
643 \let\adl@act@cdline\adl@cdline

644 \let\adl@act@@vlinelL\ad1@@vlineL

645 \let\adl@act@@vlineR\adl@@vlineR

646

647 %% L

4.14 Compatibility with colortab
The package colortab has a macro;
\LCC{colorspec)\\(rows)\ECC

to color (rows) referring (colorspec). The macro \CC@, the heart of the coloring function,
first makes a box with (rows) using \@preamble to measure the height of (rows), then
makes a row putting a heavy rule of the height in each column with a color command for
the column specified by (colorspec), and finally puts (rows) overlaying them on the colored
rule. Therefore (rows) is processed twice by \CC@ to update \global registers/structures
incorrectly.

Thus we modify \CC@, if the package colortab is provided, to save \global stuffs by
\adl@arraysave before the height measurement and restore them by \adl@arrayrestore
after that.

648
649 %% Compatibility with colortab
650

M Alternatively, we may define \adl@act@arrayclassz in place of \@arrayclassz but the author chose
this way to minimize the possiblity of enbug.

41

\ifadl@LTfirstpage

\adl@LTpagetotal

651 \def\adl@CCe#1#2#3{%
652 \ifcolortab

653 \noalign{/

654 \adl@arraysave

655 \setbox\CT@box=\vbox{#1#3\crcr\egroup}’%
656 \adl@arrayrestore

657 \CT@dim=\ht\CT@box

658 \globalladvance\CT@dim by \dp\CT@box
659 \def\CT@next{}%

660 \futurelet\next\CT@columncolor#2&\@nil}y,
661 \CT@next\cr

662 \noalign{\vskip-\CT@dim}%

663 \fi

664 #3%}

665 \ifx\ColortabLoaded\undefined\else
666 \1et\CC@\ad1l@CCQ

667 \fi

668

669 %%"L

4.15 Compatibility with longtable

Making arydshin compatible with longtable is a hard job because a longtable consists of
multiple chunks and each chunk is a distinct \halign. We could draw vertical lines in each
chunks as we do with ordinary array/table. However this straightforward solution should
break dash-lines at invisible borders of chunks and produce awful results.

Therefore, this implementation draws dash-lines in \output routine in which we have
all the rows to be put in a page. The hard part is to know which rows are being put in
\output. This problem is solved by extracting the leading part of R” (\adl@rowsL) and
R (\adl@rowsR) by the height/depth of the table fraction to be put and removing the
part from RE/E,

4.15.1 Initialization

First of all, we skip everything if longtable is not in use, or we have undefined-error when
we refer the definitions in it.

670

671 %% Compatibility with longtable: initialization

672

673 \ifx\longtable\undefined \let\next\endinput \else\let\next\relax \fi

674 \next

675

Next, the following switch and \dimen register are declared.

e \ifadl@LTfirstpage is tested in \output routine to examine if the page being put
has the first fraction of a longtable.

e \adl@LTpagetotal is set to \pagetotal just before the first portion of a longtable is
added to the main vertical list. Since the \box255 has items preceding the \longtable
and its first fraction, we can obtain the height of the first fraction by subtracting \ad1@
LTpagetotal from the height plus depth of \box255.

42

\adl@LT@array
\LT@array
\adl@discard

\adl@LTinactivate

\adl@org@LT@make@row
\LT@make®@row

676 \newif\ifadl@LTfirstpage
677 \newdimen\adl@LTpagetotal
678

Then we redefine the macro \LT@array, which is the heart of \longtable, saving its orig-
inal definition in \adl@LT@array. The modified \LT@array first calls \adl@arrayinit
to initialize the global data structures, and sets \ifadl@LTfirstpage to true. Then
\adl@idashline and \adl@discard are made \let-equal to its longtable version \adl@
LTidashline and \relax (to inhibit expansion) respectively. Then the macro calls \adl@
LTinactivate if \adl@inactive is true, and finally calls its original version \adl@LT®
array. Note that since longtable cannot be nested;

e \adl@arraysave in \adl@arrayinit is unnecessary but safe, and thus its invocation
timing is not so sensitive; and

e activator is not required.

Also note that the assignment \adl@ncol to \ad1@columns in \adl@arrayinit is void and
thus we will do it afterward.

The macro \adl@LTinactivate first calls \adl@inactivate to do basic inactivation and
then \let-s the following control sequences be equal to their counterparts in longtable.

\endlongtable \LT@make@row \LT@echunk \LT@end@hd@ft \LT@kill
\LTQoutput

It also make \adl@idashline \let-equal to its inactive version because we need the macro
to find mixed \hline and \hdasnline sequence.

679 \let\adl@LT@array\LT@array
680 \def\LT@array{\adl@arrayinit \adl@LTfirstpagetrue

681 \let\adl@discard\relax \let\adl@ihdashline\adl@LTihdashline
682 \ifadl@inactive \adl@LTinactivate \fi
683 \adl@LT@array}

684 \def\adl@LTinactivate{\adl@inactivate

685 \let\endlongtable\adl@org@endlongtable
686 \let\LT@make@row\adl@org@LTOmake@row
687 \let\LT@echunk\adl@org@LT@echunk

688 \let\LT@end@hd@ft\ad1l@org@LT@end@hd@ft
689 \let\LT@kill\adl@org@LT@kill

690 \let\LT@output\adl@org@LT@output

691 \let\adl@ihdashline\adl@LTinactivehdl}
692

The macro \LT@make®@row is redefined for additional initialization which must be done after
the original \LT@array performs its own initialization. First, \LT@make®@row itself is reset
to its original version \ad1@org@LT®@make®@row to initialize stuffs only once, since \LT@make®
row is called repeatedly at each chunk. Next \adl@ncol is assigned to \adl@columns to
give its value calculated in \@mkpream. Then macros to begin/end p-boxes are made \let-
equal to our own version because the original \LT@array has done it with its own version.
Note that \@@startpbox and \@statpbox are \let-equal to our own \adl@LTstartpbox if
array is not in use because with array opening a p-box is not done by \@startpbox but is
embedded in \@preamble. Finally, the original version \ad1@org@LT@make®@row is called.

43

Table 2: Active and Inactive longtable Operations

’ command H active | inactive
p m b (open)
with array \adl@act@classz \adl@org@classz
—\LT@startpbox —\LT@startpbox
without array || \adl@LTstartpbox \LT@startpbox
p m b (close) \adl@LTendpbox \LT@endpbox
\hline —\adl@act@hline —\@gobbletwo
\hdashline —\adl@LTihdashline | —\adl@LTinactivehdl
—\adl@act@hline —\@gobbletwo
\endlongtable modified version \adl@org@endlongtable
\LT@make@row \adl@org@LT@make@row
\LT@echunk \adl@org@LT@echunk
\LT@end@hdeft \ad1@org@LT@end@hd@ft
\LT@kill \adl@org@LTekill
\LT@output \adl@org@LT@output

693 \let\adl@org@LTOmake@row\LTOmake@row
694 \def\LTOmake@row{\let\LT@make@row\adl@org@LT@make@row

695 \adl@columns\adl@ncol

696 \ifadl@usingarypkg\else

697 \let\@0@startpbox\adl@LTstartpbox
698 \let\@startpbox\adl@LTstartpbox \fi
699 \let\@@endpbox\adl@LTendpbox

700 \let\@endpbox\adl@LTendpbox

701 \ad1l@org@LT@make@row}

702

703 %% L

The summary of the activation and inactivation specific to longtable is shown in Table 2.

4.15.2 Ending Chunks

\adl@org@endlongtable When a chunk is closed with \crcr, we have to add the information of the last row to
\endlongtable RL/E — \adl@rowsL/R if the row is not finished by an explicit \\. This is done by
\adl@org@LT@echunk \adl@LTlastrow as we did at the first job of \adl@endarray. Two chunk closing macros,
\LT@echunk \endlongtable and \LT@echunk, are modified to call \adl@LTlastrow before its origi-
\adl@LTlastrow nal job done by \adl@org@endlongtable and \adl@org@LT@echunk respectively. Note
that \adl@LTlastrow only has \crcr and \noalign and thus another \crcr in origi-
nal \endlongtable and \LT@echunk is no-operation as desired. Also note that \adl@
LTlastrow is called twice from \endlongtable, once from \LT@echunk in the original ver-
sion, but it is safe because the first call makes \ad1@height and \adl@depth zero and thus

the second become no-operation.

704

705 %/ Compatibility with longtable: end chunk

706

707 \let\adl@org@endlongtable\endlongtable

708 \def\endlongtable{\adl@LTlastrow \adl@org@endlongtable}
709

44

\ad1@org@LT@end@hdOft
\LT@end@hd@ft
\adl@LThfsave

\adl@LTth
\\adl@LTth\LT@firsthead
\\adl@LTth\LT@head
\\adl@LTth\LT@lastfoot
\\adl@LTth\LT@foot
\\adl@rowsL\LT@firsthead
\\adl@rowsL\LT@head
\\adl@rowsL\LT@lastfoot
\\adl@rowsL\LT@foot
\\adl@rowsR\LT@firsthead
\\adl@rowsR\LT@head
\\adl@rowsR\LT@lastfoot
\\adl@rowsR\LT@foot

\adl@org@LT@kill
\LT@kill
\adl1@LTkill
\ad1@LTkillend

710 \let\adl@org@LT@echunk\LT@echunk
711 \def\LT@echunk{\adl@LTlastrow \adl@org@LT@echunk}

712

713 \def\adl@LTlastrow{\crcr \noalign{

714 \ifdim\adl@height=\z@

715 \ifdim\adl@depth=\z@ \else \adl@@cr\z@ \fi
716 \else \adl@@cr\z@ \fi}}
717

Another chunk ending macro is \LT@end@hd@ft(boz) to close a header/footer called by
\endfirsthead, \endhead, \endlastfoot and \endfoot with an argument (boz) being
\LT@firsthead, \LT@head, \LT@lastfoot and \LT@foot respectively. In order to maintain
the information of rows RY/f = \adl@rowsL/R of headers/footers separately from the main
one, the modified \LT@end@hd@ft saves them together with \adl@totalheight to weirdly
named macros;

\\ad1@LTth(boz)
\\adl@rowsL(bozx)
\\adl@rowsR(boz)

after closing the last row by \ad1@LTlastrow. The \string representation of the macros
looks like;

\\adl@LTth\LT@firsthead

and so on. The saving operation is done by the macro \adl@LThfsave(boz)(info) and is
equivalent to;

\global\let\(info)(box)={info)

After the saving, three global variables are reinitialized. Calling \ad1@LTlastrow twice,
once from the original version through \LT@echunk is safe as described above.

718 \let\adl@org@LT@endChd@ft\LT@end@hdeft
719 \def\LT@end@hd@ft#1{\adl@LTlastrow

720 \noalign{\edef\adl@LTth{\number\adl@totalheight}y,

721 \adl@LThfsave#1\adl@LTth \globalladl@totalheight\z@
722 \ad1l@LThfsave#1\adl@rowsL\gdef\adl@rowsL{}/,

723 \adl@LThfsave#1\adl@rowsR\gdef\adl@rowsR{}}

724 \ad1lQorg@LT@end@hd@ft#1}

725 \def\adl@LThfsave#1#2{\expandafter\global\expandafter\let

726 \csname\string#2\string#1\endcsname#2}

727

The additional job for yet another chunk closer \LT@kill to kill a template row is a little
bit harder. Since the row information might have been added by an explicit \\ preceding
\kill, we have to remove it from the tail of \adl@rowsL/R, and subtract its h; from \adl@
totalheight because \kill-ed row may be in header/footer definition. To do that, mod-
ified \LT@kill first ensures the information addition by \adl@LTlastrow, then traverses
\adl@rowsL/R adding its non-last elements to \@tempb by the loop of \ad1@LTkill, and
assigns \@tempb to \adl@rowsL/R globally by \ad1@LTkillend when \ad1@LTkill find the
tail. The macro \ad1@LTkillend also sets the h; of the last element to \@tempcnta, which
is subtracted from \adl@totalheight globally. Finally, the original version \ad1@org@LT®@
kill is called.

45

\LT@hline
\adl@LTihdashline
\adl@LTinactivehdl
\adl@LThdlrow

\adl@LThdline
\adl@LTxhline
\adl@LTixhline

728 \let\ad1l@org@LT@kil1\LT@kill
729 \def\LT@kill{\adl@LTlastrow \noalign{

730 \def\@tempb{}\expandafter\adl@LTkill\adl@rowsL\@nil\adl@rowsL
731 \def\@tempb{}\expandafter\adl@LTkill\ad1l@rowsR\@nil\adl@rowsR
732 \globalladvance\adl@totalheight-\@tempcntal’,

733 \adl@org@LT@kill}

734 \def\adl@LTkill#1;#2{\def\@tempa{#2}/

735 \ifx\@tempa\@nnil\def\next{\ad1@LTkillend#1}/

736 \else\edef\@tempb{\@tempb#1;}\def\next{\adlOLTkill#2}\fi

737 \next}

738 \def\ad1@LTkillend (#1/#2)#3{\global\let#3\Q@tempb \@tempcnta#2\relax}
739
740 %% L

4.15.3 Horizontal Lines and p-Boxes

The macro \LT@hline, longtable version of \hline, is redefined to add pseudo row in-
formation to RY/® and to check mixed sequence of \hline and \hdashline'?. We also
define the macro \adl@LTihdashline [(dash)/(gap)] and its inactive counterpart \adl@
LTinactivehdl as the longtable version of \adl@ihdashline and \adl@inactivehdl.
These two macros, the main part of \hdashline, are redefined to make it possible that
\hdashline can be broken into two part by TEX’s page breaker.

These three macros call a common routine \ad1@LThdline after defining \ad1@LThd1lrow
which makes a row of horizontal (dash) line drawn by \multispan and \leaders\hrule or
\adl@hcline[(dash)/{gap)].

741

742 %/ Compatibility with longtable: horizontal lines and p-boxes
743

744 \def\LT@hline{\noalign{\ifnumO0=‘}\fi

745 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip

746 \leaders\hrule\@height\arrayrulewidth\hfill\cr}/
747 \adl@LThdline}

748 \def\adl@LTihdashline [#1/#2]{J,

749 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip

750 \adl@hcline\z@[#1/#2]1}),

751 \adl@LThdline}

752 \def\adl@LTinactivehdl [#1/#2]1{%

753 \gdef\adl@LThdlrow{\multispan{\LT@cols}\unskip

754 \leaders\hrule\@height\arrayrulewidth\hfill\cr}’
755 \adl@LThdline}

756

The macro \adl@LThdline called by above three macros first add the pseudo row in-
formation connect(\arrayrulewidth) to RY/F by \adl@hline'® and insert a vertical
penalty 10000 to inhibit page break between the horizontal line and preceding row. Then
draw a horizontal (dash) line by \adl@LThdlrow and checks if the following control se-
quence is \hline or \hdashline by \futurelet and \adl@LTxhline. If \hline or
\hdashline is the next token, \adl@LTixhline is called to insert a vertical penalty of
—\@medpenalty and a vertical space of \doublerulesep. The macro \adl@LTixhline

121n the original longtable, a sequence of three \hline-s are not recognized. This buggy feature is fixed
in this implementation.
130r do noting if inactive and thus it is \let-equal to \@gobbletwo.

46

\adl@LTstartpbox
\ad1@LTendpbox

\LT@start

also adds disconnect(\doublerulesep) to RY/® and makes \ad1@LThdlrow void. Other-
wise, \ad1@LThdline inserts a vertical penalty of —\@lowpanalty and a vertical space of
—\arrayrulewidth and draws the horizontal (dash) line again by \ad1@LThdlrow. Thus a
page can be broken between two overlaid horizontal (dash) lines. Two pseudo row informa-
tion, discard(—\arrayrulewidth) for the negative vertical space which may be discarded
and connect(\arrayrulewidth) for the second horizontal line, are also added to R*/%.

757 \def\ad1@LThdline{\adl@hline\adl@connect\arrayrulewidth \penalty\@M
758 \ifnumO=‘{\£fi}},

759 \ad1@LThdlrow

760 \noalign{\ifnum0="‘}\fi

761 \futurelet\@tempa\adl@LTxhline}

762 \def\ad1@LTxhline{\ifx\@tempa\hline \adl@LTixhline

763 \else\ifx\@tempa\hdashline \adl@LTixhline

764 \else \penalty-\Q@lowpenalty \vskip-\arrayrulewidth
765 \adl@hline\adl@discard{-\arrayrulewidth}/

766 \adl@hline\adl@connect\arrayrulewidth

767 \£i\fi \ifnumO=‘{\fi}}

768 \adl@LThdlrow \noalign{\penalty\@M}}

769 \def\ad1l@LTixhline{\penalty-\@medpenalty \vskip\doublerulesep
770 \adl@hline\relax\doublerulesep \global\let\adl@LThdlrow\@emptyl}
771

Macros for opening/closing p-boxes are fairly simple. The macros \ad1@LTstartpbox{{w)}
and \adl@LTendpbox are \let-assigned to \@@startpbox and \@Q@endpbox by \LT@make®
row. The former opens a p-box of w wide by our own \adl@act@@startpbox and performs
a footnote related operation introduced by longtable. The latter closes the p-box by our
own \adl@act@@endpbox and also performs the footnote stuffs. Note that if array is in
use, a p-box is opened by codes embedded in \@preamble and its initialization is done by
\@startpbox = \LT@startpbox.

772 \def\adl@LTstartpbox#1{},

773 \adl@act@@startpbox{#1}\let\@footnotetext\LT@p@ftntext}

774 \def\ad1l@LTendpbox{\adl@act@@endpbox \the\LTO@p@ftn \global\LT@p@ftn{l}}
775

776 hih "L

4.15.4 First Chunk

The macro \LT@start which puts (first) head and controls the page break of the first page
is modified for the followings.

e After it inserts a vertical skip \LTpre, \endgraf is performed so that the skip con-
tributes to \pagetotall?.

e When the \box2 is \vsplit to get first item of the first chunk, \vbadness is saved into
\@tempcnta, set to 10000 to avoid unnecessary underfull message'®, and restored
from \@tempcnta.

e The \dimen register \ad1@LTpagetotal is set to \pagetotal to know the total height
of the items preceding longtable. Since the assignment is performed after the in-
serted \endgraf and the intentional page break, it should have real total height.

14This modification is necessary for the original longtable, or it underestimates the room of the first page
and leaves head and foot only.
15This is also necessary for the original version.

47

\adl@org@LT@output
\LTQoutput

e The box \LT@firsthead is put by \copy rather than \box because it is referred in
the \output routine.

This macro does not have inactive counterpart because the modification shown above is
desirable (first two) or not-harmful'® (last two) to the original version.

T

778 %% Compatibility with longtable: first chunk

779

780 \def\LT@start{%

781 \let\LT@start\endgraf

782 \endgraf \penalty\z@ \vskip\LTpre \endgraf

783 \dimen@\pagetotal

784 \advance\dimen@ \ht\ifvoid\LT@firsthead\LT@head\else\LT@firsthead\fi
785 \advance\dimen@ \dp\ifvoid\LT@firsthead\LT@head\else\LT@firsthead\fi
786 \advance\dimen@ \ht\LT@foot

787 \dimen@ii\vfuzz \@tempcnta\vbadness

788 \vfuzz\maxdimen \vbadness\@M

789 \setbox\tw@\copy\z@

790 \setbox\tw@\vsplit\tw@ to \ht\@arstrutbox

791 \setbox\tw@\vbox{\unvbox\tw}},

792 \vfuzz\dimen@ii \vbadness\@tempcnta

793 \advance\dimen®@\ht

794 \ifdim\ht\Qarstrutbox>\ht\twe@\Q@arstrutbox\else\twe\fi
795 \advance\dimen®@\dp

796 \ifdim\dp\@arstrutbox>\dp\tw@\@arstrutbox\else\twO\fi
797 \advance\dimen@ -\pagegoal

798 \ifdim \dimen@>\z@\vfil\break \fi

799 \globalladl@LTpagetotal\pagetotal

800 \global\@colroom\@colht

801 \ifvoid\LT@foot\else

802 \advance\vsize-\ht\LT@foot

803 \global\advance\@colroom-\ht\LT@foot

804 \dimen@\pagegoal\advance\dimen@-\ht\LT@foot\pagegoal\dimen@
805 \maxdepth\z@

806 \fi

807 \copy\ifvoid\LT@firsthead \LT@head \else \LT@firsthead \fi
808 \output{\LT@output}}

809

810 %% L

4.15.5 Output Routine

The output routine is the heart of the longtable compatible implementation. The macro
\LT@output which is set to \output by \LT@start is modified from its original (and thus
inactive) version \adl@org@LT@output as follows.

e Three fractions of the original version to compile the final output image of the table
portion into \box255 or the main vertical list are modified to set the image into
\box255 unconditionally and to call \ad1@LTdraw(foot)(tail) which is the real heart
of the compatible implementation. The argument (foot) is \LT@foot or \LT@lastfoot
according to the portion of the longtable to be output. The argument (tail) is \vss

16Logically, at least.

48

\adl@LTdraw
\adl@LTinit
\adl@LTheadL
\adl@LTheadR
\adl@LTfootL
\adl@LTfootR

if the last item is it which is not included in \box255 yet, or \@empty otherwise. Since
\adl@LTdraw builds final output image drawing vertical (dash) lines in \box255, it is
put to the main vertical list if the longtable portion is the last one.

e Since the boxes \LT@head, \LT@foot and \LT@lastfoot are referred in \ad1l@LTdraw,
they are put by \copy rather than \box.

811

812 %% Compatibility with longtable: output routine
813

814 \let\adl@org@LTQoutput\LTQoutput

815 \def\LT@output{/,

816 \ifnum\outputpenalty <-\@Mi

817 \ifnum\outputpenalty > -\LT@end@pen

818 \LT@err{floats and marginpars not allowed in a longtable}\@ehc
819 \else

820 \setbox\z@\vbox{\unvbox\@cclvl}y,

821 \ifdim \ht\LT@lastfoot>\ht\LT@foot

822 \dimen®@\pagegoal

823 \advance\dimen@-\ht\LT@lastfoot

824 \ifdim\dimen@<\ht\z@

825 \setbox\@cclv\vbox{\unvbox\z@\copy\LT@foot1}/
826 \adl@LTdraw\LT@foot\vss

827 \@makecol

828 \@outputpage

829 \setbox\z@\vbox{\copy\LTC@head}

830 \fi

831 \fi

832 \global\@colroom\@colht

833 \global\vsize\@colht

834 \setbox\@cclv\vbox{\unvbox\z@

835 \copy\ifvoid\LT@lastfoot\LT@foot\else\LT@lastfoot\fil}}
836 \adl@LTdraw\LT@lastfoot\Q@empty \box\@cclv
837 \fi

838 \else

839 \setbox\@cclv\vbox{\unvbox\@cclv\copy\LT@foot},
840 \adl@LTdraw\LT@foot\vss

841 \@makecol

842 \@outputpage

843 \global\vsize\@colroom

844 \copy\LTG@head

845 \fi}

846

The macro \ad1@LTdraw(foot)(tail) draws vertical (dash) lines onto the image in \box255.
First it measures the total height H (\adl@totalheight) of longtable rows in \box255
and the total height H, (\@tempdima) of its body which consists of the rows without the
header and footer, as follows where Hoss, Hy, and H; are the height plus depth of \box255
and the effective header and footer of the page respectively.

T — { \adl@LTpagetotal if \ifadl@LTfirstpage
0 otherwise
\topskip glue if longtable is the first item of the page
t= { (~(\ifadlefirstpage A T>0))
0 otherwise

49

H =:1¥255——t-—ff
Hy,=H—-H, - H,;

The hard part is to measure ¢ because it is not \topskip but that minus the first box of
\box255. Thus we do not measure ¢ but remove it from the box by the following tricky
way. First we copy \box255 items into \box0 adding a \hrule of 1sp high as its first item.
Then \boxO0 is \vsplit to 1sp setting \splittopskip to 0. Since the \topskip glue is the
first item of \box255 and the \vsplit discards it at the breakpoint, \box0 must have all
the items in \box255 lead by 0 (\splittopskip) glue rather than \topskip glue. Thus
the height of \box0 is Has5 — t.

Subtraction of Hj, and H; is done by the macro \ad1@LTinit{(hf)}(bozx), where (hf)
is head or foot and (boz) is one of \LT@firsthead, \LT@head and (foot) (\LT@lastfoot
or \LT@foot). This macro also copies the contents of weirdly named structure such as
\\adl@rowsL\LT@head into \adl@LTheadL and so on!” if (bor) is not void. Otherwise,
\adl@LTheadL etc. is kept to their initial value, \@empty.

Next, we make rows for vertical lines by \adl@makevlrL/R after extracting the leading

part of RE/f corresponding to the body by the macro \adl@LTsplit(RL/RMRﬁ/R) <RJI?/R>,

where Rﬁ/ R and Rf/ R are \ad1l@LTheadL and so on. Since the macro defines \adl@rows

given to \adl@makevlL /R to the sequence of Rs/R, the extracted part of RL/E and RJIZ/R,

the rows for vertical lines for all the rows including header and footer are build in \adl@
vlirowL and \adl@vlrowR as in the ordinary case without longtable.

Then the rows are put into \box0 by calling \LT@bchunk with \adl@drawvl (line draw-
ing) and \LT@save@row (column widths adjustment), saving/restoring counters \LT@rows
and \c@LT@chunks which \LT@bchunk globally updates. Since we refer potentially imma-
ture \LT@save®@row here, some weird looking vertical lines could be drawn but the result
after convergence should be correct. Finally, the contents of \box255 followed by the ver-
tical lines in \box0 are put back into \box255 keeping its original depth and adding (tail)
(\vss or nothing) to its end.

847 \def\adl@LTdraw#1#2{/

848 \@tempswatrue

849 \ifadl@LTfirstpage\ifdim\adl@LTpagetotal>\z@\@tempswafalse \fi\fi
850 \if@tempswa

851 \setbox\z@\vbox{\hrule heightlsp\unvcopy\@cclv}
852 \splittopskip\z@

853 \setbox\@ne\vsplit\z@ tolsp\relax

854 \@tempdima\ht\z@

855 \else \Q@tempdima\ht\@cclv \fi

856 \advance\@tempdima\dp\@cclv

857 \adl@totalheight\@tempdima

858 \let\ad1@LTheadL\@empty \let\adl@LTheadR\@empty

859 \let\adl@LTfootL\@empty \let\adl@LTfootR\Qempty

860 \ifadl@LTfirstpage

861 \globalladl@LTfirstpagefalse

862 \advance\@tempdima-\adl@LTpagetotal

863 \adl@totalheight\@tempdima

864 \ifvoid\LT@firsthead

865 \adl@LTinit{head}\LT@head

866 \else \adl@LTinit{head}\LT@firsthead

17Copying by \edef can be replaced by \let with many \expandafter but it is not comprehensible.

50

\adl@LTsplit
\adl@LTxsplit
\adl@LTrowrelax
\adl@LTrowdiscard
\adl@LTysplit
\adl@LTisplit
\adl@LTiisplit
\adl@LTsplitend

867 \fi

868 \else \adl@LTinit{head}\LT@head \fi

869 \ifvoid#1y

870 \adl@LTinit{foot}\LT@foot

871 \else \adl@LTinit{footl}#1\fi

872 \let\adl@vl\relax \def\adl@discard{\adl@connectl}y,

873 \def\adl@vlrow{}\adl@currentcolumn\@ne

874 \adl@LTsplit\adl@rowsL\ad1@LTheadL\adl@LTfootL

875 \let\adl@addvl\adl@addvlL

876 \adl@makevlrL \let\adl@vlrowL\adl@vlrow

877 \def\adl@vlrow{}\adl@currentcolumn\adl@columns

878 \adl@LTsplit\adl@rowsR\adl@LTheadR\adl@LTfootR

879 \let\adl@addvl\adl@addvlR

880 \adl@makevlrR \let\adl@vlrowR\adl@vlrow

881 \let\adl@vl\adl@@vl

882 \@tempcnta\LT@rows

883 \LT@bchunk \adl@drawvl

884 \LT@save@row\cr \egroup \setbox\@ne\lastbox \unskip \egroup
885 \global\advance\c@LT@chunks\m@ne

886 \global\LT@rows\@tempcnta

887 \@tempdima\dp\@cclv

888 \setbox\@cclv\vbox{\unvbox\@cclv \box\z@ \vskip-\Q@tempdima
889 \hrule\@width\z@\Gheight\z@\@depth\Q@tempdima#2}}
890 \def\adl@LTinit#1#2{\ifvoid#2\else

891 \advance\@tempdima-\csname\string\adl@LTth\string#2\endcsname sp
892 \expandafter\edef\csname adl@LT#1L\endcsname{’

893 \csname\string\adl@rowsL\string#2\endcsnamely,

894 \expandafter\edef\csname adlOLT#1R\endcsname{Y%

895 \csname\string\adl@rowsR\string#2\endcsname}\fi}
896

The macro \adl@LTsplit(RL/RMRf/R)(Rﬁ/R> moves leading elements in RX/% into R’
(\adl@rows) until total heights of the elements summed in h (\@tempdimb) reaches to Hj
(\@tempdima)'® by a straight forward loop with the macros \ad1@LTisplit to fetch the
i-th element and \adl@LTiisplit to get h;. Before moving, however, we have to remove
discardable item(s)'? from the top of RY/%. Since an element for a discardable item is
disconnect (\relax) or discard (\adl@discard), we check the first part of the element by
\ifx-comparison with \ad1@LTrowrelax and \adl@LTrowdiscard whose bodies are \relax
and \adl@discard if the longtable portion does not have a header (R,f/R is \@empty).
Otherwise, the discardable item was not discarded because the first item of the page is not
it but the header.

Note that since moving from R%/% to R’ is done by \edef and \adl@discard is \def-
ined as \adl@connect in \adl@LTdraw, non-discarded discard transforms into connect in
R’. Also note that since the remaining part of RY/% is \def-ined as the body of \@tempb
which is globally \let-assigned to RY/% again, \adl@discard survives in the new RL/%.

897 \def\adlOLTsplit#1#2#3{\def\adl@rows{}\@tempdimb\z0

898 \expandafter\adl@LTxsplit#1\@nil;J
899 \edef\adl@rows{#2\ad1l@rows#3}/,
900 \global\let#1\@tempb}

18 Although h must become H, exactly in usual case, we stop the loop when h > Hj to avoid accidental
overrun in unusual cases.
19Must be only one but the implementation allows two or more.

51

901 \def\ad1@LTxsplit#1;{\def\Otempa{#1}Y

902 \ifx\@tempa\@nnil \def\@tempb{}\let\next\relax

903 \else\ifx\ad1l@LTheadL\@empty \def\next{\adl@LTysplit#1}},
904 \else \def\next{\adl@LTisplit#1;}\fi \fi

905 \next}

906 \def\adl@LTrowrelax{\relax}
907 \def\adl@LTrowdiscard{\adl@discard}
908 \def\ad1l@LTysplit (#1/#2){\def\@tempa{#11}}

909 \ifx\@tempa\adl@LTrowrelax \let\next\adl@LTxsplit
910 \else\ifx\@tempa\adl@LTrowdiscard \let\next\adl@LTxsplit
911 \else \def\next{\adlOLTisplit (#1/#2);}\fi \fi

912 \next}

913 \def\ad1@LTisplit#1;{\def\Qtempa{#1}Y

914 \ifx\@tempa\@nnil \def\@tempb{}\let\next\relax

915 \else\ifdim\@tempdimb<\@tempdima

916 \adl@LTiisplit#1\let\next\adl@LTisplit

917 \else \def\next{\adl@LTsplitend#1;}\fi \fi

918 \next}

919 \def\adlOLTiisplit (#1/#2){\edef\adl@rows{\adl@rows (#1/#2);1}/
920 \advance\@tempdimb#2sp}

921 \def\adl@LTsplitend#1;\@nil;{\def\Q@tempb{#1;}}

Acknowledgments

The author thanks to Monty Hayes who gave the author the opportunity to make this
style, and Weimin Zhang and Takahiro Kubota who pointed out bugs in early versions.
He also thanks to the following people; Sebastian Rahtz and Graham Williams who kindly
invited the style to TEX CTAN and online catalogue compiled by Graham; Peter Ehrbar
who showed the style was incompatible with array and kindly accepted the offer to be an
alpha-user of v1.4 alone; Zsuzsanna Nagy who reported another incompatibility problem
with colortab; Ralf Heydenreich who reported the bug causing that glues in a column have
no effect; Yaxin Liu who reported the incompatibility bug of array and \ADLinactivate;
and Craig Leech who reported the incompatibility problem, which was also reported by
Uwe Jehmlich, Torge Thielemann and Florian Weig, and have waited for two years and a
half (1) for the solution.

The base implementation of array and tabular environments, part of which the author
gives new definitions referring original ones, are written by Leslie Lamport as a part of
BTEX-2.09 and BTEX 2¢ (1997/12/01) to which Johannes Braams and other authors also
contributed. The author also refers array package (v2.3m) written by Frank Mittelbach and
David Carlisle; colortab package (v0.9) written by Timothy van Zandt; and longtable package
(v4.10) written by David Carlisle; to make the style compatible with those packages.

52

