
YAZ User’s Guide and Reference

Sebastian Hammer

Adam Dickmeiss

Mike Taylor



YAZ User’s Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss

by Mike Taylor

Copyright © 1995-2004 Index Data

This document is the programmer’s guide and reference to the YAZ package version 2.0.23. YAZ is a compact
toolkit that provides access to the Z39.50 and SRW/SRU protocols, as well as a set of higher-level tools for
implementing the server and client roles, respectively. The documentation can be used on its own, or as a
reference when looking at the example applications provided with the package.



Table of Contents
1. Introduction ........................................................................................................................................................1

Reading this Manual.......................................................................................................................................1
The API..........................................................................................................................................................2

2. Compilation and Installation ............................................................................................................................4

Introduction....................................................................................................................................................4
UNIX ..............................................................................................................................................................4

Compiling from source on Unix...........................................................................................................4
How to make apps using YAZ on UNIX..............................................................................................7

WIN32............................................................................................................................................................8
Compiling from Source on WIN32......................................................................................................8
How to make apps using YAZ on WIN32..........................................................................................10

3. ZOOM ...............................................................................................................................................................11

Connections..................................................................................................................................................11
Z39.50 Protocol behavior...................................................................................................................13
SRW Protocol behavior......................................................................................................................13

Queries.........................................................................................................................................................13
Protocol behavior................................................................................................................................14

Result sets.....................................................................................................................................................14
Z39.50 Protocol behavior...................................................................................................................15
SRW Protocol behavior......................................................................................................................16

Records.........................................................................................................................................................16
Z39.50 Protocol behavior...................................................................................................................17
SRW Protocol behavior......................................................................................................................18

Scan..............................................................................................................................................................18
Options.........................................................................................................................................................19
Events...........................................................................................................................................................19

4. Generic server..................................................................................................................................................21

Introduction..................................................................................................................................................21
The Database Frontend.................................................................................................................................21
The Backend API.........................................................................................................................................22
Your main() Routine.....................................................................................................................................22
The Backend Functions................................................................................................................................24

Init .......................................................................................................................................................24
Search and retrieve..............................................................................................................................25
Delete..................................................................................................................................................28
scan.....................................................................................................................................................28

Application Invocation.................................................................................................................................29

5. The YAZ client .................................................................................................................................................32

Introduction..................................................................................................................................................32
Invoking the YAZ client...............................................................................................................................32
Commands....................................................................................................................................................33
Searching......................................................................................................................................................37

6. The Z39.50 ASN.1 Module..............................................................................................................................38

Introduction..................................................................................................................................................38
Preparing PDUs............................................................................................................................................38
Object Identifiers..........................................................................................................................................39
EXTERNAL Data........................................................................................................................................40

iii



PDU Contents Table.....................................................................................................................................41

7. SOAP and SRW................................................................................................................................................47

Introduction..................................................................................................................................................47
HTTP............................................................................................................................................................47
SOAP Packages............................................................................................................................................47
SRW.............................................................................................................................................................49

8. Supporting Tools..............................................................................................................................................51

Query Syntax Parsers...................................................................................................................................51
Prefix Query Format...........................................................................................................................51

Using Proximity Operators with PQF.......................................................................................53
PQF queries...............................................................................................................................54

CCL.....................................................................................................................................................56
CCL Syntax...............................................................................................................................56
CCL Qualifiers..........................................................................................................................57

Qualifier specification......................................................................................................57
Qualifier alias...................................................................................................................59
Comments........................................................................................................................59
Directives.........................................................................................................................59

CCL API ...................................................................................................................................59
CQL ....................................................................................................................................................60

CQL parsing..............................................................................................................................60
CQL tree....................................................................................................................................61
CQL to PQF conversion............................................................................................................62
Specification of CQL to RPN mapping.....................................................................................64
CQL to XCQL conversion........................................................................................................66

Object Identifiers..........................................................................................................................................66
Nibble Memory............................................................................................................................................69
MARC ..........................................................................................................................................................70

9. The ODR Module.............................................................................................................................................72

Introduction..................................................................................................................................................72
Using ODR...................................................................................................................................................72

ODR Streams......................................................................................................................................72
Memory Management.........................................................................................................................72
Encoding and Decoding Data.............................................................................................................73
Diagnostics.........................................................................................................................................75
Summary and Synopsis.......................................................................................................................76

Programming with ODR..............................................................................................................................77
The Primitive ASN.1 Types................................................................................................................77

INTEGER..................................................................................................................................77
BOOLEAN................................................................................................................................78
REAL ........................................................................................................................................78
NULL ........................................................................................................................................78
OCTET STRING......................................................................................................................78
BIT STRING.............................................................................................................................79
OBJECT IDENTIFIER.............................................................................................................79

Tagging Primitive Types.....................................................................................................................79
Constructed Types...............................................................................................................................80
Tagging Constructed Types.................................................................................................................81

Implicit Tagging........................................................................................................................81
Explicit Tagging........................................................................................................................82

iv



SEQUENCE OF.................................................................................................................................83
CHOICE Types...................................................................................................................................83

Debugging....................................................................................................................................................86

10. The COMSTACK Module.............................................................................................................................87

Synopsis (blocking mode)............................................................................................................................87
Introduction..................................................................................................................................................87
Common Functions......................................................................................................................................88

Managing Endpoints...........................................................................................................................88
Data Exchange....................................................................................................................................89

Client Side....................................................................................................................................................90
Server Side...................................................................................................................................................90
Addresses.....................................................................................................................................................91
SSL...............................................................................................................................................................92
Diagnostics...................................................................................................................................................92
Summary and Synopsis................................................................................................................................93

11. Future Directions...........................................................................................................................................95

A. License..............................................................................................................................................................96

Index Data Copyright...................................................................................................................................96
Additional Copyright Statements.................................................................................................................96

B. About Index Data ............................................................................................................................................98

C. Credits..............................................................................................................................................................99

v



List of Tables
3-1. ZOOM Connection Options...........................................................................................................................12
3-2. ZOOM Result set Options..............................................................................................................................15
3-3. ZOOM Scan Set Options................................................................................................................................19
6-1. Default settings for PDU Initialize Request...................................................................................................42
6-2. Default settings for PDU Initialize Response.................................................................................................42
6-3. Default settings for PDU Search Request.......................................................................................................42
6-4. Default settings for PDU Search Response....................................................................................................43
6-5. Default settings for PDU Present Request......................................................................................................43
6-6. Default settings for PDU Present Response...................................................................................................43
6-7. Default settings for Delete Result Set Request...............................................................................................44
6-8. Default settings for Delete Result Set Response............................................................................................44
6-9. Default settings for Scan Request...................................................................................................................44
6-10. Default settings for Scan Response..............................................................................................................44
6-11. Default settings for Trigger Resource Control Request...............................................................................45
6-12. Default settings for Resource Control Request............................................................................................45
6-13. Default settings for Resource Control Response..........................................................................................45
6-14. Default settings for Access Control Request................................................................................................45
6-15. Default settings for Access Control Response.............................................................................................45
6-16. Default settings for Segment........................................................................................................................46
6-17. Default settings for Close.............................................................................................................................46
8-1. Common Bib-1 attributes...............................................................................................................................57
8-2. Special attribute combos.................................................................................................................................58
8-3. CCL directives................................................................................................................................................59
9-1. ODR Error codes............................................................................................................................................76

List of Figures
1-1. YAZ layers........................................................................................................................................................2

List of Examples
4-1. Running the GFS on Unix..............................................................................................................................31
4-2. Setting up Apache as SRW/SRU Frontend.....................................................................................................31
4-3. Running a server with local access only.........................................................................................................31
8-1. PQF queries using simple terms.....................................................................................................................54
8-2. PQF boolean operators...................................................................................................................................54
8-3. PQF references to result sets..........................................................................................................................54
8-4. Attributes for terms.........................................................................................................................................54
8-5. PQF Proximity queries...................................................................................................................................55
8-6. PQF specification of search term....................................................................................................................55
8-7. PQF mixed queries.........................................................................................................................................55
8-8. CCL queries....................................................................................................................................................57
8-9. CCL profile.....................................................................................................................................................58
8-10. CQL to RPN mapping file............................................................................................................................65
8-11. Display of MARC record.............................................................................................................................71
9-1. Encoding and decoding functions...................................................................................................................74
9-2. Encoding and decoding of an integer.............................................................................................................75

vi



Chapter 1. Introduction
YAZ is a C/C++ library for information retrieval applications using the Z39.50/SRW/SRU protocols for
information retrieval.

Properties of YAZ:

• Complete Z39.50 (http://www.loc.gov/z3950/agency/) version 3 support. Amendments and Z39.50-2002
revision is supported.

• Supports SRW/SRU (http://www.loc.gov/z3950/agency/zing/srw/) version 1.1 (over HTTP and HTTPS).

• Includes BER encoders/decoders for the ISO ILL (http://www.nlc-bnc.ca/iso/ill/) protocol.

• Supports the following transports: BER over TCP/IP (RFC1729 (http://www.faqs.org/rfcs/rfc1729.html)),
BER over unix local socket, and HTTP 1.1 (http://www.w3.org/Protocols/rfc2616/rfc2616.html).

• Secure Socket Layer support using OpenSSL (http://www.openssl.org/). If enabled, YAZ uses HTTPS
transport (for SOAP) or "Secure BER" (for Z39.50).

• Offers ZOOM (http://zoom.z3950.org/) C API implementing both Z39.50 and SRW.

• The YAZ library offers a set of useful utilities related to the protocols, such as MARC (ISO2709) parser, CCL
(ISO8777) parser, CQL (http://www.loc.gov/z3950/agency/zing/cql/) parser, memory management routines,
character set conversion.

• Portable code. YAZ compiles out-of-the box on most Unixes and on Windows using Microsoft Visual C++.

• Fast operation. The C based BER encoders/decoders as well as the server component of YAZ is very fast.

• Liberal license that allows for commercial use of YAZ.

Reading this Manual
Most implementors only need to read a fraction of the material in thie manual, so a quick walkthrough of the
chapters is in order.

• Chapter 2contains installation instructions for YAZ. You don’t need reading this if you expect to download
YAZ binaries. However, the chapter contains information about how to makeyour application link with YAZ.

• Chapter 3describes the ZOOM API of YAZ. This is definitely worth a read if you wish to develop a
Z39.50/SRW client.

• Chapter 4describes the generic frontend server and explains how to develop server Z39.50/SRW applications
for YAZ. Obviously worth reading if you’re to develop a server.

• Chapter 5describes how to use the YAZ Z39.50 client. If you’re developer and wish to test your server or a
server from another party, you might find this chapter useful.

• Chapter 6documents the most commonly used Z39.50 C data structures offered by the YAZ API. Client
developers using ZOOM and non-Z39.50 implementors may skip this.

• Chapter 7describes how SRW and SOAP is used in YAZ. Only if you’re developing SOAP/SRW applications
this section is a must.

• Chapter 8contains sections for the various tools offered by YAZ. Scan through the material quickly and see
what’s relevant to you! SRW/SRU implementors might find theCQL section particularly useful.

1



Chapter 1. Introduction

• Chapter 9goes through the details of the ODR module which is the work horse that encodes and decodes BER
packages. Implementors using ZOOM only, donot need reading this. Most other Z39.50 implementors only
need to read the first two sections (the Section calledIntroductionin Chapter 9andthe Section calledUsing
ODR in Chapter 9).

• Chapter 10describes the network layer module COMSTACK. Implementors using ZOOM or the generic
frontend server may skip this. Others, presumably, handling client/server communication on their own should
read this.

The API
The YAZ (http://www.indexdata.dk/yaz/) toolkit offers several different levels of access to the ISO23950/Z39.50
(http://www.loc.gov/z3950/agency/), ILL (http://www.nlc-bnc.ca/iso/ill/) and SRW
(http://www.loc.gov/z3950/agency/zing/srw/) protocols. The level that you need to use depends on your
requirements, and the role (server or client) that you want to implement. If you’re developing a client application
you should consider theZOOM API. It is, by far, the easiest way to develop clients in C. Server implementers
should consider thegeneric frontend server. None of those high-level APIs support the whole protocol, but they
do include most facilities used in existing Z39.50 applications.

If you’re using ’exotic’ functionality (meaning anything not included in the high-level APIs), developing
non-standard extensions to Z39.50 or you’re going to develop an ILL application you’ll have to learn the lower
level APIs of YAZ.

The YAZ toolkit modules is shown in figureFigure 1-1.

Figure 1-1. YAZ layers

There are four layers.

• A client or server application (or both). This layer includes ZOOM and the generic frontend server.

2



Chapter 1. Introduction

• The second layer provides a C represenation of the protocol units (packages) for Z39.50 ASN.1, ILL ASN.1,
SRW SOAP.

• The third layer encodes and decodes protocol data units to simple packages (buffer with certain length). The
ODR module encodes and decodes BER whereas the HTTP modules encodes and decodes HTTP
ruquests/responses.

• The lowest layer is COMSTACK which exchanges the encoded packages with a peer process over a network.

The Z39.50 ASN.1 module represents the ASN.1 definition of the Z39.50 protocol. It establishes a set of type
and structure definitions, with one structure for each of the top-level PDUs, and one structure or type for each of
the contained ASN.1 types. For primitive types, or other types that are defined by the ASN.1 standard itself (such
as the EXTERNAL type), the C representation is provided by the ODR (Open Data Representation) subsystem.

ODR is a basic mechanism for representing an ASN.1 type in the C programming language, and for
implementing BER encoders and decoders for values of that type. The types defined in the Z39.50 ASN.1
module generally have the prefixZ_, and a suffix corresponding to the name of the type in the ASN.1
specification of the protocol (generally Z39.50-1995). In the case of base types (those originating in the ASN.1
standard itself), the prefixOdr_ is sometimes seen. Either way, look for the actual definition in eitherz-core.h

(for the types from the protocol),odr.h (for the primitive ASN.1 types). The Z39.50 ASN.1 library also
provides functions (which are, in turn, defined using ODR primitives) for encoding and decoding data values.
Their general form is

int z_ xxx (ODR o, Z_ xxx ** p, int optional , const char * name);

(note the lower-case "z" in the function name)

Note: If you are using the premade definitions of the Z39.50 ASN.1 module, and you are not adding new
protocol of your own, the only parts of ODR that you need to worry about are documented in the Section
called Using ODR in Chapter 9.

When you have created a BER-encoded buffer, you can use the COMSTACK subsystem to transmit (or receive)
data over the network. The COMSTACK module provides simple functions for establishing a connection
(passively or actively, depending on the role of your application), and for exchanging BER-encoded PDUs over
that connection. When you create a connection endpoint, you need to specify what transport to use (TCP/IP, SSL
or UNIX sockets). For the remainder of the connection’s lifetime, you don’t have to worry about the underlying
transport protocol at all - the COMSTACK will ensure that the correct mechanism is used.

We call the combined interfaces to ODR, Z39.50 ASN.1, and COMSTACK the service level API. It’s the API
that most closely models the Z39.50 service/protocol definition, and it provides unlimited access to all fields and
facilities of the protocol definitions.

The reason that the YAZ service-level API is a conglomerate of the APIs from three different submodules is
twofold. First, we wanted to allow the user a choice of different options for each major task. For instance, if you
don’t like the protocol API provided by ODR/Z39.50 ASN.1, you can use SNACC or BERUtils instead, and still
have the benefits of the transparent transport approach of the COMSTACK module. Secondly, we realize that
you may have to fit the toolkit into an existing event-processing structure, in a way that is incompatible with the
COMSTACK interface or some other part of YAZ.

3



Chapter 2. Compilation and Installation

Introduction
The latest version of the software will generally be found at:

http://ftp.indexdata.dk/pub/yaz/ (http://ftp.indexdata.dk/pub/yaz/)

We have tried our best to keep the software portable, and on many platforms, you should be able to compile
everything with little or no changes.

The software is regularly tested on Debian GNU/Linux (http://www.debian.org/), Redhat Linux
(http://www.redhat.com/), Gentoo Linux (http://www.gentoo.org/), FreeBSD (i386) (http://www.freebsd.org/),
MAC OSX (http://www.apple.com/macosx/), SunOS 5.8 (sparc) (http://wwws.sun.com/software/solaris/),
Windows 2000 (http://www.microsoft.com/windows2000/).

Some versions have be known to work on HP/UX, DEC Unix, NetBSD (http://www.netbsd.org/), OpenBSD
(http://www.openbsd.org/), IBM AIX, Data General DG/UX (with some CFLAGS tinkering), SGI/IRIX, DDE
Supermax, Apple Macintosh (using the Codewarrior programming environment and the GUSI socket libraries),
IBM AS/400 .

If you move the software to other platforms, we’d be grateful if you’d let us know about it. If you run into
difficulties, we will try to help if we can, and if you solve the problems, we would be happy to include your fixes
in the next release. So far, we have mostly avoided#ifdefs for individual platforms, and we’d like to keep it
that way as far as it makes sense.

We maintain a mailing-list for the purpose of announcing new releases and bug-fixes, as well as general
discussion. Subscribe by sending mail to yaz-request@indexdata.dk (mailto:yaz-request@indexdata.dk) or
fill-in the form here (http://www.indexdata.dk/mailman/listinfo/yazlist). General questions and problems can be
directed at yaz-help@indexdata.dk (mailto:yaz-help@indexdata.dk), or the address given at the top of this
document.

UNIX
We provide Debian GNU/Linux (http://www.debian.org/) and Redhat (http://www.redhat.com/) packages for
YAZ. Only i386 binary packages are available. You should be able to create packages for other CPUs by building
them from the source package.

Compiling from source on Unix
Note that if your system doesn’t have a native ANSI C compiler, you may have to acquire one separately. We
recommend GCC (http://gcc.gnu.org/).

If you wish to use character set conversion facilities in YAZ or if you are compiling YAZ for use with Zebra it is
a good idea to ensure that the iconv library is installed. Some Unixes today already have it - if not, we suggest
GNU iconv (http://www.gnu.org/software/libiconv/).

The XML C library libxml2 (http://www.xmlsoft.org/) is required if YAZ is to support SRW and SRU. This
library is very portable and should compile out-of-the box on virtually all Unix platforms. It is available in
binary forms for Linux and others.

The GNU tools Autoconf (http://www.gnu.org/software/autoconf/), Automake
(http://www.gnu.org/software/automake/) and Libtool (http://www.gnu.org/software/libtool/) are used to

4



Chapter 2. Compilation and Installation

generate Makefiles and configure YAZ for the system. You donot these tools unless you’re using the CVS
version of YAZ.

The CQL parser for YAZ is built using GNU Bison (http://www.gnu.org/software/bison/). This tool is only
needed if you’re using the CVS version of YAZ.

YAZ includes a tiny ASN.1 compiler. This compiler is written in Tcl (http://www.tcl.tk/). But as for Bison you
do not need it unless you’re using CVS version of YAZ or you’re using the compiler to built own codecs for
private ASN.1.

Generally it should be sufficient to run configure without options, like this:

./configure

The configure script attempts to use use the C compiler specified by theCCenvironment variable. If not set,
GNU C will be used if it is available. TheCFLAGSenvironment variable holds options to be passed to the C
compiler. If you’re using Bourne-compatible shell you may pass something like this to use a particular C
compiler with optimization enabled:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

To customize YAZ, the configure script also accepts a set of options. The most important are:

--prefix =prefix

Specifies installation prefix for YAZ. This is only needed if you runmake install later to perform a
"system" installation. The prefix is/usr/local if not specified.

--enable-tcpd

The front end server will be built using Wietse’s TCP wrapper library
(ftp://ftp.porcupine.org/pub/security/index.html). It allows you to allow/deny clients depending on IP
number. The TCP wrapper library is often used in Linux/BSD distributions. See hosts_access(5) and
tcpd(8).

--enable-threads

YAZ will be built using POSIX threads. Specifically,_REENTRANTwill be defined during compilation.

--enable-shared

The make process will create shared libraries (also known as shared objects.so ). By default, no shared
libraries are created - equivalent to--disable-shared .

--disable-shared

The make process will not create static libraries (.a ). By default, static libraries are created - equivalent to
--enable-static .

--with-iconv [=prefix ]

Compile YAZ with iconv library in directoryprefix . By default configure will search for iconv on your
system. Use this option if it doesn’t find iconv. Alternatively you can use--without-iconv to force YAZ
not to use iconv.

5



Chapter 2. Compilation and Installation

--with-xml2 [=prefix ]

Compile YAZ with libxml2 (http://www.xmlsoft.org/) in directoryprefix . Use this option if you want
SOAP support. By default configure will search for libxml2 on your system. Use this option if it doesn’t
find libxml2. Alternatively you can use--without-xml2 to force YAZ not to use libxml2.

--with-openssl [=prefix ]

YAZ will be linked with the OpenSSL libraries and an SSL COMSTACK will be provided. Note that SSL
support is still experimental.

When configured, build the software by typing:

make

The following files are generated by the make process:

src/libyaz.la

Main YAZ library. This is no ordinary library. It’s a Libtool archive. By default, YAZ creates a static library
in lib/.libs/libyaz.a .

src/libyazthread.la

When threading is supported/enabled by configure this Libtool library is created. It includes functions that
allows YAZ to use threads.

ztest/yaz-ztest

Test Z39.50 server.

client/yaz-client

Z39.50 client for testing the protocol. See chapterYAZ client for more information.

util/yaz-config

A Bourne-shell script, generated by configure, that specifies how external applications should compile - and
link with YAZ.

util/yaz-asncomp

The ASN.1 compiler for YAZ. Requires the Tcl Shell, tclsh, inPATHto operate.

util/yaz-iconv

This program converts data in one character set to another. This command exercises the YAZ character set
conversion API.

util/yaz-marcdump

This program parses ISO2709 encoded MARC records and prints them in line-format or XML.

zoom/zoomsh

A simple shell implemented on top of theZOOM functions. The shell is a command line application that
allows you to enter simple commands to perform ZOOM operations.

6



Chapter 2. Compilation and Installation

zoom/zoomtst1 , zoom/zoomtst2 , ..

Several small applications that demonstrates the ZOOM API.

If you wish to install YAZ in system directories/usr/local/bin , /usr/local/lib .. etc, you can type:

make install

You probably need to have root access in order to perform this. You must specify the--prefix option for
configure if you wish to install YAZ in other directories than the default/usr/local/ .

If you wish to perform an un-installation of YAZ, use:

make uninstall

This will only work if you haven’t reconfigured YAZ (and therefore changed installation prefix). Note that
uninstall will not remove directories created by make install, e.g./usr/local/include/yaz .

How to make apps using YAZ on UNIX
This section describes how to compile - and link your own applications using the YAZ toolkit. If you’re used to
Makefiles this shouldn’t be hard. As for other libraries you have used before, you have to set a proper include
path for your C/C++ compiler and specify the location of YAZ libraries. You can do it by hand, but generally we
suggest you use theyaz-config that is generated byconfigure . This is especially important if you’re using
the threaded version of YAZ which require you to pass more options to your linker/compiler.

Theyaz-config script accepts command line options that makes theyaz-config script print options that you
should use in your make process. The most important ones are:--cflags , --libs which prints C compiler
flags, and linker flags respectively.

A small and completeMakefile for a C application consisting of one source file,myprog.c , may look like this:

YAZCONFIG=/usr/local/bin/yaz-config
CFLAGS=‘$(YAZCONFIG) --cflags‘
LIBS=‘$(YAZCONFIG) --libs‘
myprog: myprog.o

$(CC) $(CFLAGS) -o myprog myprog.o $(LIBS)

The CFLAGS variable consists of a C compiler directive that will set the include path to theparentdirectory of
yaz . That is, if YAZ header files were installed in/usr/local/include/yaz , then include path is set to
/usr/local/include . Therefore, in your applications you should use

#include <yaz/proto.h>

andnot

#include <proto.h>

7



Chapter 2. Compilation and Installation

For Libtool users, theyaz-config script provides a different variant of option--libs , called--lalibs that
returns the name of the Libtool acrhive(s) for YAZ rather than the ordinary ones.

For applications using the threaded version of YAZ, specifythreads after the other options. Whenthreads is
given, more flags and linker flags will be printed byyaz-config . If our previous example was using threads,
you’d have to modify the lines that setCFLAGSandLIBS as follows:

CFLAGS=‘$(YAZCONFIG) --cflags threads‘
LIBS=‘$(YAZCONFIG) --libs threads‘

There is no need specify POSIX thread libraries in your Makefile. TheLIBS variable includes that as well.

WIN32
The easiest way to install YAZ on Windows is by downloading an installer from here
(http://ftp.indexdata.dk/pub/yaz/win32). The installer comes with source too - in case you wish to compile YAZ
with different Compiler options etc.

Compiling from Source on WIN32
YAZ is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual Studio
(http://msdn.microsoft.com/vstudio/). Version 6 and .NET has been tested. We expect that YAZ compiles with
version 5 as well.

Start a command prompt and switch the sub directoryWINwhere the filemakefile is located. Customize the
installation by editing themakefile file (for example by using notepad). The following summarizes the most
important settings in that file:

DEBUG

If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded debug
DLL). If set to 0, the software is compiled with release libraries (code generation is multi-threaded DLL).

HAVE_TCL, TCL

If HAVE_TCLis set to 1, nmake will use the ASN.1 compiler (Tcl based). You must setTCL to the full path
of the Tcl interpreter.

If you do not have Tcl installed, setHAVE_TCLto 0.

HAVE_BISON, BISON

If GNU Bison is present, you might setHAVE_ICONVto 1 and specify the Bison executable inBISON. Bison
is only required if you use the CVS version of YAZ or if you modify the grammar for CQL (cql.y ).

A Windows version of GNU Bison is part of unxutils (http://unxutils.sourceforge.net/).

HAVE_ICONV, ICONV_DIR

If HAVE_ICONVis set to 1, YAZ is compiled with iconv support. In this configuration, setICONV_DIR to the
iconv source directory.

8



Chapter 2. Compilation and Installation

HAVE_LIBXML2, LIBXML2_DIR

If HAVE_LIBXML2 is set to 1, YAZ is compiled with SRW and SRU support. In this configuration, set
LIBXML2_DIR to the libxml2 (http://www.xmlsoft.org/) source directory andZLIB_DIR to the zlib
directory.

Windows versions of libxml2, zlib and iconv can be found Igor Zlatković’ site
(http://www.zlatkovic.com/libxml.en.html).

Note: YAZ is not using ZLIB. But libxml2 is.

When satisfied with the settings in the makefile, type

nmake

Note: If the nmake command is not found on your system you probably haven’t defined the environment
variables required to use that tool. To fix that, find and run the batch file vcvars32.bat . You need to run it
from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

If you wish to recompile YAZ - for example if you modify settings in themakefile you can delete object files,
etc by running.

nmake clean

The following files are generated upon successful compilation:

bin/yaz.dll

YAZ multi-threaded Dynamic Link Library.

lib/yaz.lib

Import library foryaz.dll .

bin/yaz-client.exe

YAZ Z39.50 client application. It’s a WIN32 console application. See chapterYAZ client for more
information.

bin/yaz-ztest.exe

Z39.50 multi-threaded test/example server. It’s a WIN32 console application.

bin/zoomsh.exe

Simple console application implemented on top of theZOOM functions. The application is a command line
shell that allows you to enter simple commands to perform ZOOM operations.

9



Chapter 2. Compilation and Installation

bin/zoomtst1.exe , bin/zoomtst2.exe , ..

Several small applications that demonstrates the ZOOM API.

How to make apps using YAZ on WIN32
This section will go though the process of linking your WIN32 applications with YAZ.

Some people are confused by the fact that we use the nmake tool to build YAZ. They think they have to do that
too - in order to make their WIN32 applications work with YAZ. The good news is that you don’t have to. You
can use the integrated environment of Visual Studio if desired for your own application.

When setting up a project or Makefile you have to set the following:

include path

Set it to theinclude directory of YAZ.

import libraryyaz.lib

You must link with this library. It’s located in the sub directorylib of YAZ.

dynamic link libraryyaz.dll

This DLL must be in your execution path when you invoke your application. Specifically, you should
distribute this DLL with your application.

10



Chapter 3. ZOOM
ZOOM is an acronym for ’Z39.50 Object-Orientation Model’ and is an initiative started by Mike Taylor (Mike is
from the UK, which explains the peculiar name of the model). The goal of ZOOM is to provide a common
Z39.50 client API not bound to a particular programming language or toolkit.

Note: A recent addition to YAZ is SRW support. You can now make SRW ZOOM connections by specifying
scheme http:// for the hostname for a connection.

The lack of a simple Z39.50 client API for YAZ has become more and more apparent over time. So when the
first ZOOM specification became available, an implementation for YAZ was quickly developed. For the first
time, it is now as easy (or easier!) to develop clients than servers with YAZ. This chapter describes the ZOOM C
binding. Before going further, please reconsider whether C is the right programming language for the job. There
are other language bindings available for YAZ, and still more are in active development. See the ZOOM web-site
(http://zoom.z3950.org/) for more information.

In order to fully understand this chapter you should read and try the example programszoomtst1.c ,
zoomtst2.c , .. in thezoom directory.

The C language misses features found in object oriented languages such as C++, Java, etc. For example, you’ll
have to manually, destroy all objects you create, even though you may think of them as temporary. Most objects
has a_create - and a_destroy variant. All objects are in fact pointers to internal stuff, but you don’t see that
because of typedefs. All destroy methods should gracefully ignore aNULLpointer.

In each of the sections below you’ll find a sub section called protocol behavior, that describes how the API maps
to the Z39.50 protocol.

Connections
The Connection object is a session with a target.

#include <yaz/zoom.h>

ZOOM_connection ZOOM_connection_new (const char *host, int portnum);

ZOOM_connection ZOOM_connection_create (ZOOM_options options);

void ZOOM_connection_connect(ZOOM_connection c, const char *host,
int portnum);

void ZOOM_connection_destroy (ZOOM_connection c);

Connection objects are created with either functionZOOM_connection_new or ZOOM_connection_create .
The former creates and automatically attempts to establish a network connection with the target. The latter
doesn’t establish a connection immediately, thus allowing you to specify options before establishing network
connection using the functionZOOM_connection_connect . If the port number,portnum , is zero, thehost is
consulted for a port specification. If no port is given, 210 is used. A colon denotes the beginning of a port number
in the host string. If the host string includes a slash, the following part specifies a database for the connection.

You can prefix the host with a scheme followed by colon. The default scheme istcp (Z39.50 protocol). The
schemehttp selects SRW over HTTP.

Connection objects should be destroyed using the functionZOOM_connection_destroy .

11



Chapter 3. ZOOM

void ZOOM_connection_option_set (ZOOM_connection c,
const char *key,
const char *val);

const char *ZOOM_connection_option_get (ZOOM_connection c,
const char *key);

TheZOOM_connection_option_set allows you to set an option given bykey to the valuevalue for the
connection. FunctionZOOM_connection_option_get returns the value for an option given bykey .

Table 3-1. ZOOM Connection Options

Option Description Default

implementationName Name of Your client none

user Authentication user name none

group Authentication group name none

password Authentication password. none

host Target host. This setting is "read-only". It’s
automatically set internally when connecting to a target.

none

proxy Proxy host none

async If true (1) the connection operates in asynchronous
operation which means that all calls are non-blocking
exceptZOOM_event.

0

maximumRecordSize Maximum size of single record. 1 MB

preferredMessageSize Maximum size of multiple records. 1 MB

lang Language for negotiation. none

charset Character set for negotiation. none

serverImplementationId Implementation ID of server. (The old
targetImplementationId option is also supported for the
benefit of old applications.)

none

targetImplementationName Implementation Name of server. (The old
targetImplementationName option is also supported for
the benefit of old applications.)

none

serverImplementationVersion Implementation Version of server. (the old
targetImplementationVersion option is also supported
for the benefit of old applications.)

none

databaseName One or more database names separated by character
plus (+), which to be used by subsequent search requests
on this Connection.

Default

piggyback True (1) if piggyback should be used in searches; false
(0) if not.

1

smallSetUpperBound If hits is less than or equal to this value, then target will
return all records using small element set name

0

largeSetLowerBound If hits is greater than this value, the target will return no
records.

1

12



Chapter 3. ZOOM

Option Description Default

mediumSetPresentNumber This value represents the number of records to be
returned as part of a search when when hits is less than
or equal to large set lower bound and if hits is greater
than small set upper bound.

0

smallSetElementSetName The element set name to be used for small result sets. none

mediumSetElementSetName The element set name to be for medium-sized result
sets.

none

If either optionlang or charset is set, then Character Set and Language Negotiation
(http://lcweb.loc.gov/z3950/agency/defns/charneg-3.html) is in effect.

int ZOOM_connection_error (ZOOM_connection c, const char **cp,
const char **addinfo);

int ZOOM_connection_error_x (ZOOM_connection c, const char **cp,
const char **addinfo, const char **dset);

FunctionZOOM_connection_error checks for errors for the last operation(s) performed. The function returns
zero if no errors occurred; non-zero otherwise indicating the error. Pointerscp andaddinfo holds messages
for the error and additional-info if passed as non-NULL. FunctionZOOM_connection_error_x is an extended
version ofZOOM_connection_error that is capable of returning name of diagnostic set indset .

Z39.50 Protocol behavior
The callsZOOM_connection_new andZOOM_connection_connect establishes a TCP/IP connection and
sends an Initialize Request to the target if possible. In addition, the calls waits for an Initialize Response from the
target and the result is inspected (OK or rejected).

If proxy is set then the client will establish a TCP/IP connection with the peer as specified by theproxy host
and the hostname as part of the connect calls will be set as part of the Initialize Request. The proxy server will
then "forward" the PDU’s transparently to the target behind the proxy.

For the authentication parameters, if optionuser is set and both optionsgroup andpass are unset, then Open
style authentication is used (Version 2/3) in which case the username is usually followed by a slash, then by a
password. If eithergroup or pass is set then idPass authentication (Version 3 only) is used. If none of the
options are set, no authentication parameters are set as part of the Initialize Request (obviously).

When optionasync is 1, it really means that all network operations are postponed (and queued) until the
functionZOOM_event is invoked. When doing so it doesn’t make sense to check for errors after
ZOOM_connection_new is called since that operation "connecting - and init" is still incomplete and the API
cannot tell the outcome (yet).

SRW Protocol behavior
The SRW protocol doesn’t feature an Inititialize Request, so the connection phase merely establishes a TCP/IP
connection with the SOAP service.

Most of the ZOOM connection options do not affect SRW and they are ignored. However, future versions of
YAZ might honorimplementationName and put that as part of User-Agent header for HTTP requests.

Thecharset is used in the Content-Type header of HTTP requests.

13



Chapter 3. ZOOM

Queries
Query objects represents queries.

ZOOM_query ZOOM_query_create(void);

void ZOOM_query_destroy(ZOOM_query q);

int ZOOM_query_prefix(ZOOM_query q, const char *str);

int ZOOM_query_cql(ZOOM_query s, const char *str);

int ZOOM_query_sortby(ZOOM_query q, const char *criteria);

Create query objects usingZOOM_query_create and destroy them by callingZOOM_query_destroy .
RPN-queries can be specified inPQFnotation by using the functionZOOM_query_prefix . The
ZOOM_query_cql specifies a CQL query to be sent to the server/target. More query types will be added in
future versions of YAZ, such asCCL to RPN-mapping, native CCL query, etc. In addition to a search, a sort
criteria may be set. FunctionZOOM_query_sortby specifies a sort criteria using the same string notation for
sort as offered by theYAZ client.

Protocol behavior
The query object is just an interface for the member Query in the SearchRequest. The sortby-function is an
interface to the sortSequence member of the SortRequest.

Result sets
The result set object is a container for records returned from a target.

ZOOM_resultset ZOOM_connection_search(ZOOM_connection,
ZOOM_query q);

ZOOM_resultset ZOOM_connection_search_pqf(ZOOM_connection c,
const char *q);

void ZOOM_resultset_destroy(ZOOM_resultset r);

FunctionZOOM_connection_search creates a result set given a connection and query. Destroy a result set by
calling ZOOM_resultset_destroy . Simple clients may using PQF only may use function
ZOOM_connection_search_pqf in which case creating query objects is not necessary.

void ZOOM_resultset_option_set (ZOOM_resultset r,
const char *key,
const char *val);

const char *ZOOM_resultset_option_get (ZOOM_resultset r,
const char *key);

size_t ZOOM_resultset_size (ZOOM_resultset r);

14



Chapter 3. ZOOM

FunctionsZOOM_resultset_options_set andZOOM_resultset_get sets and gets an option for a result set
similar toZOOM_connection_option_get andZOOM_connection_option_set .

The number of hits also called result-count is returned by functionZOOM_resultset_size .

Table 3-2. ZOOM Result set Options

Option Description Default

start Offset of first record to be retrieved from target. First record
has offset 0 unlike the protocol specifications where first
record has position 1.

0

count Number of records to be retrieved. 0

presentChunk The number of records to be requested from the server in
each chunk (present requst). The value 0 means to request
all the records in a single chunk. (The oldstep option is
also supported for the benefit of old applications.)

0

elementSetName Element-Set name of records. Most targets should honor
element set nameB andF for brief and full respectively.

none

preferredRecordSyntax Preferred Syntax, such asUSMARC, SUTRS, etc. none

schema Schema for retrieval, such asGils-schema , Geo-schema ,
etc.

none

setname Name of Result Set (Result Set ID). If this option isn’t set,
the ZOOM module will automatically allocate a result set
name.

default

Z39.50 Protocol behavior
The creation of a result set involves at least a SearchRequest - SearchResponse protocol handshake. Following
that, if a sort criteria was specified as part of the query, a SortRequest - SortResponse handshake takes place.
Note that it is necessary to perform sorting before any retrieval takes place, so no records will be returned from
the target as part of the SearchResponse because these would be unsorted. Hence, piggyback is disabled when
sort criteria are set. Following Search - and a possible sort - Retrieval takes place - as one or more Present
Requests/Response pairs being transferred.

The API allows for two different modes for retrieval. A high level mode which is somewhat more powerful and a
low level one. The low level is enabled when searching on a Connection object for which the settings
smallSetUpperBound , mediumSetPresentNumber andlargeSetLowerBound are set. The low level mode
thus allows you to precisely set how records are returned as part of a search response as offered by the Z39.50
protocol. Since the client may be retrieving records as part of the search response, this mode doesn’t work well if
sorting is used.

The high-level mode allows you to fetch a range of records from the result set with a given start offset. When
you use this mode the client will automatically use piggyback if that is possible with the target and perform one
or more present requests as needed. Even if the target returns fewer records as part of a present response because
of a record size limit, etc. the client will repeat sending present requests. As an example, if optionstart is 0
(default) andcount is 4, andpiggyback is 1 (default) and no sorting criteria is specified, then the client will
attempt to retrieve the 4 records as part the search response (using piggyback). On the other hand, if either
start is positive or if a sorting criteria is set, or ifpiggyback is 0, then the client will not perform piggyback
but send Present Requests instead.

If either of the optionsmediumSetElementSetName andsmallSetElementSetName are unset, the value of
optionelementSetName is used for piggyback searches. This means that for the high-level mode you only have

15



Chapter 3. ZOOM

to specify one elementSetName option rather than three.

SRW Protocol behavior
Current version of YAZ does not take advantage of a result set id returned by the SRW server. Future versions
might do, however. Since, the ZOOM driver does not save result set IDs any present (retrieval) is transformed to
a SRW SearchRetrieveRequest with same query but, possibly, different offsets.

Optionschema specifies SRW schema for retrieval. However, optionselementSetName and
preferredRecordSyntax are ignored.

Optionsstart andcount are supported by SRW. The remaining optionspiggyback , smallSetUpperBound ,
largeSetLowerBound , mediumSetPresentNumber , mediumSetElementSetName ,
smallSetElementSetName are unsupported.

SRW supports CQL queries,not PQF. If PQF is used, however, the PQF query is transferred anyway using
non-standard elementpQuery in SRW SearchRetrieveRequest.

Unfortunately, SRW does not define a database setting. Hence,databaseName is unsupported and ignored.
However, the path part in host parameter for functionsZOOM_connecton_new and
ZOOM_connection_connect acts as a database (at least for the YAZ SRW server).

Records
A record object is a retrieval record on the client side - created from result sets.

void ZOOM_resultset_records (ZOOM_resultset r,
ZOOM_record *recs,
size_t start, size_t count);

ZOOM_record ZOOM_resultset_record (ZOOM_resultset s, size_t pos);

const char *ZOOM_record_get (ZOOM_record rec, const char *type,
size_t *len);

ZOOM_record ZOOM_record_clone (ZOOM_record rec);

void ZOOM_record_destroy (ZOOM_record rec);

References to temporary records are returned by functionsZOOM_resultset_records or
ZOOM_resultset_record .

If a persistent reference to a record is desiredZOOM_record_clone should be used. It returns a record reference
that should be destroyed by a call toZOOM_record_destroy .

A single record is returned by functionZOOM_resultset_record that takes a position as argument. First
record has position zero. If no record could be obtainedNULL is returned.

FunctionZOOM_resultset_records retrieves a number of records from a result set. Parameterstart and
count specifies the range of records to be returned. Upon completion arrayrecs[0], ..recs[count-1]

holds record objects for the records. The array of recordsrecs should be allocated prior the call
ZOOM_resultset_records . Note that for those records that couldn’t be retrieved from the targetrecs[ ..]

is set toNULL.

16



Chapter 3. ZOOM

In order to extract information about a single record,ZOOM_record_get is provided. The function returns a
pointer to certain record information. The nature (type) of the pointer depends on the parameter,type .

Thetype is a string of the format:

form [; charset=from [,to ]]

whereform specifies the format of the returned record,from specifies the character set of the record in its
original form (as returned by the server),to specifies the output (returned) character set encoding. If charset is
not given, then no character set conversion takes place. Ifto is omitted UTF-8 is assumed.

In addition, for certain types, the lengthlen passed will be set to the size in bytes of the returned information.

The following are the supported values forform .

database

Database of record is returned as a C null-terminated string. Return typeconst char * .

syntax

The transfer syntax of the record is returned as a C null-terminated string containing the symbolic name of
the record syntax, e.g.Usmarc . Return type isconst char * .

render

The record is returned in a display friendly format. Upon completion buffer is returned (typeconst char

* ) and length is stored in*len .

raw

The record is returned in the internal YAZ specific format. For GRS-1, Explain, and others, the raw data is
returned as typeZ_External * which is just the type for the memberretrievalRecord in type
NamePlusRecord . For SUTRS and octet aligned record (including all MARCs) the octet buffer is returned
and the length of the buffer.

xml

The record is returned in XML if possible. SRW/SRU and Z39.50 records with transfer syntax XML are
returned verbatim. MARC records are returned in MARCXML (http://www.loc.gov/standards/marcxml/)
(converted from ISO2709 to MARCXML by YAZ). GRS-1 and OPAC records are not supported for this
form. Upon completion, the XML buffer is returned (typeconst char * ) and length is stored in*len .

opac

OPAC for record is returned in XML.

Most MARC21 (http://www.loc.gov/marc/) records uses the MARC-8
(http://www.loc.gov/marc/specifications/speccharmarc8.html) character set encoding. An application that wishes
to display in Latin-1 would use

render; charset=marc8,iso-8859-1

17



Chapter 3. ZOOM

Z39.50 Protocol behavior
The functionsZOOM_resultset_record andZOOM_resultset_records inspects the client-side record
cache. Records not found in cache are fetched using Present. The functions may block (and perform network
I/O) - even though optionasync is 1, because they return records objects. (and there’s no way to return records
objects without retrieving them!).

There is a trick, however, in the usage of functionZOOM_resultset_records that allows for delayed retrieval
(and makes it non-blocking). By using a null pointer forrecs you’re indicating you’re not interested in getting
records objectsnow.

SRW Protocol behavior
The ZOOM driver for SRW treats records returned by a SRW server as if they where Z39.50 records with
transfer syntax XML and no element set name or database name.

Scan
This section describes an interface for Scan. Scan is not an official part of the ZOOM model yet. The result of a
scan operation is theZOOM_scanset which is a set of terms returned by a target.

The Scan interface is Z39.50 only. SRW version 1.0 does not support this.

ZOOM_scanset ZOOM_connection_scan (ZOOM_connection c,
const char *startterm);

size_t ZOOM_scanset_size(ZOOM_scanset scan);

const char * ZOOM_scanset_term(ZOOM_scanset scan, size_t pos,
int *occ, size_t *len);

const char * ZOOM_scanset_display_term(ZOOM_scanset scan, size_t pos,
int *occ, size_t *len);

void ZOOM_scanset_destroy (ZOOM_scanset scan);

const char *ZOOM_scanset_option_get (ZOOM_scanset scan,
const char *key);

void ZOOM_scanset_option_set (ZOOM_scanset scan, const char *key,
const char *val);

The scan set is created by functionZOOM_connection_scan which performs a scan operation on the
connection using the specified startterm. If the operation was successful, the size of the scan set can be retrieved
by a call toZOOM_scanset_size . Like result sets, the items are numbered 0,..size-1. To obtain information
about a particular scan term, call functionZOOM_scanset_term . This function takes a scan set offsetpos and
returns a pointer to araw termor NULL if non-present. If present, theocc andlen are set to the number of
occurrences and the length of the actual term respectively.ZOOM_scanset_display_term is similar to
ZOOM_scanset_term except that it returns thedisplay termrather than the raw term. In a few cases, the term is
different from display term. Always use the display term for display and the raw term for subsequent scan
operations (to get more terms, next scan result, etc).

18



Chapter 3. ZOOM

A scan set may be freed by a call to functionZOOM_scanset_destroy . Functions
ZOOM_scanset_option_get andZOOM_scanset_option_set retrieves and sets an option respectively.

Table 3-3. ZOOM Scan Set Options

Option Description Default

number Number of Scan Terms requested in next scan. After scan it
holds the actual number of terms returned.

10

position Preferred Position of term in response in next scan; actual
position after completion of scan.

1

stepSize Step Size 0

scanStatus An integer indicating the Scan Status of last scan. 0

Options
Most ZOOM objects provide a way to specify options to change behavior. From an implementation point of
view a set of options is just like an associative array / hash array, etc.

ZOOM_options ZOOM_options_create (void);

ZOOM_options ZOOM_options_create_with_parent (ZOOM_options parent);

void ZOOM_options_destroy (ZOOM_options opt);

const char *ZOOM_options_get (ZOOM_options opt, const char *name);

void ZOOM_options_set (ZOOM_options opt, const char *name,
const char *v);

typedef const char *(*ZOOM_options_callback)
(void *handle, const char *name);

ZOOM_options_callback
ZOOM_options_set_callback (ZOOM_options opt,

ZOOM_options_callback c,
void *handle);

Events
If you’re developing non-blocking applications, you have to deal with events.

int ZOOM_event (int no, ZOOM_connection *cs);

TheZOOM_event executes pending events for a number of connections. Supply the number of connections inno

and an array of connections incs (cs[0] ... cs[no-1] ). A pending event could be a sending a search,
receiving a response, etc. When an event has occurred for one of the connections, this function returns a positive

19



Chapter 3. ZOOM

integern denoting that an event occurred for connectioncs[n-1] . When no events are pending for the
connections, a value of zero is returned. To ensure that all outstanding requests are performed call this function
repeatedly until zero is returned.

20



Chapter 4. Generic server

Introduction
If you aren’t into documentation, a good way to learn how the back end interface works is to look at the
backend.h file. Then, look at the small dummy-server inztest/ztest.c . Thebackend.h file also makes a
good reference, once you’ve chewed your way through the prose of this file.

If you have a database system that you would like to make available by means of Z39.50, SRW o SRU, YAZ
basically offers your two options. You can use the APIs provided by the Z39.50 ASN.1, ODR, and COMSTACK
modules to create and decode PDUs, and exchange them with a client. Using this low-level interface gives you
access to all fields and options of the protocol, and you can construct your server as close to your existing
database as you like. It is also a fairly involved process, requiring you to set up an event-handling mechanism,
protocol state machine, etc. To simplify server implementation, we have implemented a compact and simple, but
reasonably full-functioned server-frontend that will handle most of the protocol mechanics, while leaving you to
concentrate on your database interface.

Note: The backend interface was designed in anticipation of a specific integration task, while still attempting
to achieve some degree of generality. We realize fully that there are points where the interface can be
improved significantly. If you have specific functions or parameters that you think could be useful, send us a
mail (or better, sign on to the mailing list referred to in the top-level README file). We will try to fit good
suggestions into future releases, to the extent that it can be done without requiring too many structural
changes in existing applications.

Note: The YAZ server does not support XCQL.

The Database Frontend
We refer to this software as a generic database frontend. Your database system is thebackend database, and the
interface between the two is called thebackend API. The backend API consists of a small number of function
handlers and structure definitions. You are required to provide themain() routine for the server (which can be
quite simple), as well as a set of handlers to match each of the prototypes. The interface functions that you write
can use any mechanism you like to communicate with your database system: You might link the whole thing
together with your database application and access it by function calls; you might use IPC to talk to a database
server somewhere; or you might link with third-party software that handles the communication for you (like a
commercial database client library). At any rate, the handlers will perform the tasks of:

• Initialization.

• Searching.

• Fetching records.

• Scanning the database index (optional - if you wish to implement SCAN).

• Extended Services (optional).

• Result-Set Delete (optional).

21



Chapter 4. Generic server

• Result-Set Sort (optional).

(more functions will be added in time to support as much of Z39.50-1995 as possible).

The Backend API
The header file that you need to use the interface are in theinclude/yaz directory. It’s calledbackend.h . It
will include other files from theinclude/yaz directory, so you’ll probably want to use the -I option of your
compiler to tell it where to find the files. When you runmake in the top-level YAZ directory, everything you
need to create your server is to link with thelib/libyaz.la library.

Your main() Routine
As mentioned, yourmain() routine can be quite brief. If you want to initialize global parameters, or read global
configuration tables, this is the place to do it. At the end of the routine, you should call the function

int statserv_main(int argc, char **argv,
bend_initresult *(*bend_init)(bend_initrequest *r),
void (*bend_close)(void *handle));

The third and fourth arguments are pointers to handlers. Handlerbend_init is called whenever the server
receives an Initialize Request, so it serves as a Z39.50 session initializer. Thebend_close handler is called
when the session is closed.

statserv_main will establish listening sockets according to the parameters given. When connection requests
are received, the event handler will typicallyfork() and create a sub-process to handle a new connection.
Alternatively the server may be setup to create threads for each connection. If you do use global variables and
forking, you should be aware, then, that these cannot be shared between associations, unless you explicitly
disable forking by command line parameters.

The server provides a mechanism for controlling some of its behavior without using command-line options. The
function

statserv_options_block *statserv_getcontrol(void);

will return a pointer to astruct statserv_options_block describing the current default settings of the
server. The structure contains these elements:

int dynamic

A boolean value, which determines whether the server will fork on each incoming request (TRUE), or not
(FALSE). Default is TRUE. This flag is only read by UNIX-based servers (WIN32 based servers doesn’t
fork).

int threads

A boolean value, which determines whether the server will create a thread on each incoming request
(TRUE), or not (FALSE). Default is FALSE. This flag is only read by UNIX-based servers that offer
POSIX Threads support. WIN32-based servers always operate in threaded mode.

22



Chapter 4. Generic server

int inetd

A boolean value, which determines whether the server will operates under a UNIX INET daemon (inetd).
Default is FALSE.

int loglevel

Set this by ORing the constants defined ininclude/yaz/yaz-log.h .

char logfile[ODR_MAXNAME+1]

File for diagnostic output ("": stderr).

char apdufile[ODR_MAXNAME+1]

Name of file for logging incoming and outgoing APDUs ("": don’t log APDUs, "-":stderr ).

char default_listen[1024]

Same form as the command-line specification of listener address. "": no default listener address. Default is
to listen at "tcp:@:9999". You can only specify one default listener address in this fashion.

enum oid_proto default_proto;

EitherPROTO_Z3950or PROTO_SR. Default isPROTO_Z39_50.

int idle_timeout;

Maximum session idle-time, in minutes. Zero indicates no (infinite) timeout. Default is 15 minutes.

int maxrecordsize;

Maximum permissible record (message) size. Default is 1Mb. This amount of memory will only be
allocated if a client requests a very large amount of records in one operation (or a big record). Set it to a
lower number if you are worried about resource consumption on your host system.

char configname[ODR_MAXNAME+1]

Passed to the backend when a new connection is received.

char setuid[ODR_MAXNAME+1]

Set user id to the user specified, after binding the listener addresses.

void (*bend_start)(struct statserv_options_block *p)

Pointer to function which is called after the command line options have been parsed - but before the server
starts listening. For forked UNIX servers this handler is called in the mother process; for threaded servers
this handler is called in the main thread. The default value of this pointer is NULL in which case it isn’t
invoked by the frontend server. When the server operates as an NT service this handler is called whenever
the service is started.

void (*bend_stop)(struct statserv_options_block *p)

Pointer to function which is called whenever the server has stopped listening for incoming connections.
This function pointer has a default value of NULL in which case it isn’t called. When the server operates as
an NT service this handler is called whenever the service is stopped.

void *handle

User defined pointer (default value NULL). This is a per-server handle that can be used to specify
"user-data". Do not confuse this with the session-handle as returned by bend_init.

23



Chapter 4. Generic server

The pointer returned bystatserv_getcontrol points to a static area. You are allowed to change the contents
of the structure, but the changes will not take effect before you call

void statserv_setcontrol(statserv_options_block *block);

Note: that you should generally update this structure before calling statserv_main() .

The Backend Functions
For each service of the protocol, the backend interface declares one or two functions. You are required to provide
implementations of the functions representing the services that you wish to implement.

Init

bend_initresult (*bend_init)(bend_initrequest *r);

This handler is called once for each new connection request, after a new process/thread has been created, and an
Initialize Request has been received from the client. The pointer to thebend_init handler is passed in the call
to statserv_start .

This handler is also called when operating in SRW/SRU mode - when a connection has been made (even though
SRW/SRU does not offer this service).

Unlike previous versions of YAZ, thebend_init also serves as a handler that defines the Z39.50 services that
the backend wish to support. Pointers toall service handlers, including search - and fetch must be specified here
in this handler.

The request - and result structures are defined as

typedef struct bend_initrequest
{

Z_IdAuthentication *auth;
ODR stream; /* encoding stream */
ODR print; /* printing stream */
Z_ReferenceId *referenceId;/* reference ID */
char *peer_name; /* dns host of peer (client) */

char *implementation_id;
char *implementation_name;
char *implementation_version;
int (*bend_sort) (void *handle, bend_sort_rr *rr);
int (*bend_search) (void *handle, bend_search_rr *rr);
int (*bend_fetch) (void *handle, bend_fetch_rr *rr);
int (*bend_present) (void *handle, bend_present_rr *rr);
int (*bend_esrequest) (void *handle, bend_esrequest_rr *rr);
int (*bend_delete)(void *handle, bend_delete_rr *rr);
int (*bend_scan)(void *handle, bend_scan_rr *rr);
int (*bend_segment)(void *handle, bend_segment_rr *rr);

24



Chapter 4. Generic server

ODR decode; /* decoding stream */
/* character set and language negotiation - see include/yaz/z-charneg.h */
Z_CharSetandLanguageNegotiation *charneg_request;
Z_External *charneg_response;

} bend_initrequest;

typedef struct bend_initresult
{

int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */
void *handle; /* private handle to the backend module */

} bend_initresult;

In general, the server frontend expects that thebend_*result pointer that you return is valid at least until the
next call to abend_* function . This applies to all of the functions described herein. The parameter structure
passed to you in the call belongs to the server frontend, and you should not make assumptions about its contents
after the current function call has completed. In other words, if you want to retain any of the contents of a request
structure, you should copy them.

Theerrcode should be zero if the initialization of the backend went well. Any other value will be interpreted as
an error. Theerrstring isn’t used in the current version, but one option would be to stick it in the initResponse
as a VisibleString. Thehandle is the most important parameter. It should be set to some value that uniquely
identifies the current session to the backend implementation. It is used by the frontend server in any future calls
to a backend function. The typical use is to set it to point to a dynamically allocated state structure that is private
to your backend module.

Theauth member holds the authentication information part of the Z39.50 Initialize Request. Interpret this if
your serves requires authentication.

The memberspeer_name , implementation_id , implementation_name andimplementation_version

holds DNS of client, ID of implementor, name of client (Z39.50) implementation - and version.

Thebend_ - members are set to NULL whenbend_init is called. Modify the pointers by setting them to point
to backend functions.

Search and retrieve
We now describe the handlers that are required to support search - and retrieve. You must support two functions -
one for search - and one for fetch (retrieval of one record). If desirable you can provide a third handler which is
called when a present request is received which allows you to optimize retrieval of multiple-records.

int (*bend_search) (void *handle, bend_search_rr *rr);

typedef struct {
char *setname; /* name to give to this set */
int replace_set; /* replace set, if it already exists */
int num_bases; /* number of databases in list */
char **basenames; /* databases to search */
Z_ReferenceId *referenceId;/* reference ID */
Z_Query *query; /* query structure */
ODR stream; /* encode stream */
ODR decode; /* decode stream */
ODR print; /* print stream */

bend_request request;

25



Chapter 4. Generic server

bend_association association;
int *fd;
int hits; /* number of hits */
int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */

} bend_search_rr;

Thebend_search handler is a fairly close approximation of a protocol Z39.50 Search Request - and Response
PDUs Thesetname is the resultSetName from the protocol. You are required to establish a mapping between
the set name and whatever your backend database likes to use. Similarly, thereplace_set is a boolean value
corresponding to the resultSetIndicator field in the protocol.num_bases/basenames is a length of/array of
character pointers to the database names provided by the client. Thequery is the full query structure as defined
in the protocol ASN.1 specification. It can be either of the possible query types, and it’s up to you to determine if
you can handle the provided query type. Rather than reproduce the C interface here, we’ll refer you to the
structure definitions in the fileinclude/yaz/z-core.h . If you want to look at the attributeSetId OID of the
RPN query, you can either match it against your own internal tables, or you can use theoid_getentbyoid

function provided by YAZ.

The structure contains a number of hits, and anerrcode/errstring pair. If an error occurs during the search,
or if you’re unhappy with the request, you should set the errcode to a value from the BIB-1 diagnostic set. The
value will then be returned to the user in a nonsurrogate diagnostic record in the response. Theerrstring , if
provided, will go in the addinfo field. Look at the protocol definition for the defined error codes, and the
suggested uses of the addinfo field.

Thebend_search handler is also called when the frontend server receives a SRW/SRU SearchRetrieveRequest.
For SRW/SRU, a CQL query is usually provided by the client. The CQL query is available as part ofZ_Query

structure (note that CQL is now part of Z39.50 via an external). To support CQL in existing implementations that
only do Type-1, we refer to the CQL-to-PQF tool describedhere.

To maintain backwards compatibility, the frontend server of yaz always assume that error codes are BIB-1
diagnostics. For SRW/SRU operation, a Bib-1 diagnostic code is mapped to SRW/SRU diagnostic.

int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

typedef struct bend_fetch_rr {
char *setname; /* set name */
int number; /* record number */
Z_ReferenceId *referenceId;/* reference ID */
oid_value request_format; /* One of the CLASS_RECSYN members */
int *request_format_raw; /* same as above (raw OID) */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; /* encoding stream - memory source if req */
ODR print; /* printing stream */

char *basename; /* name of database that provided record */
int len; /* length of record or -1 if structured */
char *record; /* record */
int last_in_set; /* is it? */
oid_value output_format; /* format */
int *output_format_raw; /* used instead of above if not-null */
int errcode; /* 0==success */
char *errstring; /* system error string or NULL */
int surrogate_flag; /* surrogate diagnostic */
char *schema; /* string record schema input/output */

} bend_fetch_rr;

26



Chapter 4. Generic server

The frontend server calls thebend_fetch handler when it needs database records to fulfill a Z39.50 Search
Request, a Z39.50 Present Request or a SRW SearchRetrieveRequest. Thesetname is simply the name of the
result set that holds the reference to the desired record. Thenumber is the offset into the set (with 1 being the
first record in the set). Theformat field is the record format requested by the client (Seethe Section called
Object Identifiersin Chapter 6). The valueVAL_NONEindicates that the client did not request a specific format.
Thestream argument is an ODR stream which should be used for allocating space for structured data records.
The stream will be reset when all records have been assembled, and the response package has been transmitted.
For unstructured data, the backend is responsible for maintaining a static or dynamic buffer for the record
between calls.

If a SRW/SRU SearchRetrieveRequest is received by the frontend server, thereferenceId is NULL and the
request_format (transfer syntax) is XML (OID nameVAL_TEXT_XML). The schema for SRW/SRU is stored
in both theZ_RecordComposition structure andschema (simple string).

In the structure, thebasename is the name of the database that holds the record.len is the length of the record
returned, in bytes, andrecord is a pointer to the record.last_in_set should be nonzero only if the record
returned is the last one in the given result set.errcode anderrstring , if given, will be interpreted as a global
error pertaining to the set, and will be returned in a non-surrogate-diagnostic. If you wish to return the error as a
surrogate-diagnostic (local error) you can do this by settingsurrogate_flag to 1 also.

If the len field has the value -1, thenrecord is assumed to point to a constructed data type. Theformat field
will be used to determine which encoder should be used to serialize the data.

Note: If your backend generates structured records, it should use odr_malloc() on the provided stream for
allocating data: This allows the frontend server to keep track of the record sizes.

The format field is mapped to an object identifier in the direct reference of the resulting EXTERNAL
representation of the record.

Note: The current version of YAZ only supports the direct reference mode.

int (*bend_present) (void *handle, bend_present_rr *rr);

typedef struct {
char *setname; /* set name */
int start;
int number; /* record number */
oid_value format; /* One of the CLASS_RECSYN members */
Z_ReferenceId *referenceId;/* reference ID */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; /* encoding stream */
ODR print; /* printing stream */
bend_request request;
bend_association association;

int hits; /* number of hits */
int errcode; /* 0==OK */
char *errstring; /* system error string or NULL */

} bend_present_rr;

27



Chapter 4. Generic server

Thebend_present handler is called when the server receives a Z39.50 Present Request. Thesetname , start

andnumber is the name of the result set - start position - and number of records to be retrieved respectively.
format andcomp is the preferred transfer syntax and element specifications of the present request.

Note that this is handler serves as a supplement forbend_fetch and need not to be defined in order to support
search - and retrieve.

Delete
For back-ends that supports delete of a result set only one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef struct bend_delete_rr {
int function;
int num_setnames;
char **setnames;
Z_ReferenceId *referenceId;
int delete_status; /* status for the whole operation */
int *statuses; /* status each set - indexed as setnames */
ODR stream;
ODR print;

} bend_delete_rr;

Note: The delete set function definition is rather primitive, mostly because we have had no practical need for
it as of yet. If someone wants to provide a full delete service, we’d be happy to add the extra parameters that
are required. Are there clients out there that will actually delete sets they no longer need?

scan
For servers that wish to offer the scan service one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef enum {
BEND_SCAN_SUCCESS, /* ok */
BEND_SCAN_PARTIAL /* not all entries could be found */

} bend_scan_status;

typedef struct bend_scan_rr {
int num_bases; /* number of elements in database list */
char **basenames; /* databases to search */
oid_value attributeset;
Z_ReferenceId *referenceId; /* reference ID */
Z_AttributesPlusTerm *term;
ODR stream; /* encoding stream - memory source if required */
ODR print; /* printing stream */

int *step_size; /* step size */
int term_position; /* desired index of term in result list/returned */
int num_entries; /* number of entries requested/returned */

28



Chapter 4. Generic server

struct scan_entry *entries;
bend_scan_status status;
int errcode;
char *errstring;

} bend_scan_rr;

Application Invocation
The finished application has the following invocation syntax (by way ofstatserv_main() ):

appname [-install ] [ -installa ] [ -remove ] [ -a file ] [ -v level ] [ -l file ] [ -u uid ] [ -c

config ] [ -t minutes ]
[-k kilobytes ] [ -d daemon] [ -w dir ] [ -p pidfile ] [ -ziDST1 ] [listener-spec...]

The options are:

-a file

Specify a file for dumping PDUs (for diagnostic purposes). The special name- (dash) sends output to
stderr .

-S

Don’t fork or make threads on connection requests. This is good for debugging, but not recommended for
real operation: Although the server is asynchronous and non-blocking, it can be nice to keep a software
malfunction (okay then, a crash) from affecting all current users.

-1

Like -S but after one session the server exits. This mode is for debuggingonly.

-T

Operate the server in threaded mode. The server creates a thread for each connection rather than a fork a
process. Only available on UNIX systems that offers POSIX threads.

-s

Use the SR protocol (obsolete).

-z

Use the Z39.50 protocol (default). This option and-s complement each other. You can use both multiple
times on the same command line, between listener-specifications (see below). This way, you can set up the
server to listen for connections in both protocols concurrently, on different local ports.

-l file

The logfile.

-c config

A user option that serves as a specifier for some sort of configuration, usually a filename. The argument to
this option is transferred to memberconfigname of thestatserv_options_block .

29



Chapter 4. Generic server

-C fname

Sets SSL certificate file name for server (PEM).

-v level

The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,malloc,all,none}.

-u uid

Set user ID. Sets the real UID of the server process to that of the given user. It’s useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged port.

-w dir

The server changes to this directory during before listening on incoming connections. This option is useful
when the server is operating from the inetd daemon (see-i ).

-p pidfile

Specifies that the server should write its Process ID to file given bypidfile . A typical location would be
/var/run/yaz-ztest.pid .

-i

Use this to make the the server run from the inetd server (UNIX only).

-D

Use this to make the server put itself in the background and run as a daemon. If neither-i nor -D is given,
the server starts in the foreground.

-install

Use this to install the server as an NT service (Windows NT/2000/XP only). Control the server by going to
the Services in the Control Panel.

-installa

Use this to install and activate the server as an NT service (Windows NT/2000/XP only). Control the server
by going to the Services in the Control Panel.

-remove

Use this to remove the server from the NT services (Windows NT/2000/XP only).

-t minutes

Idle session timeout, in minutes.

-k size

Maximum record size/message size, in kilobytes.

-d daemon

Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

A listener specification consists of a transport mode followed by a colon (:) followed by a listener address. The
transport mode is eithertcp , unix: or ssl .

For TCP and SSL, an address has the form

30



Chapter 4. Generic server

hostname | IP-number [: portnumber]

The port number defaults to 210 (standard Z39.50 port).

For UNIX, the address is the filename of socket.

For TCP/IP and SSL, the special hostname@(at sign) is mapped to the addressINADDR_ANY, which causes the
server to listen on any local interface.

Example 4-1. Running the GFS on Unix

Assuming the server applicationappname is started as root, the following will make it listen on port 210. The
server will change identity tonobody and write its log to/var/log/app.log .

appname -l /var/log/app.log -u nobody tcp:@:210

The server will accept Z39.50 requests and offer SRW/SRU service on port 210.

Example 4-2. Setting up Apache as SRW/SRU Frontend

If you use Apache (http://httpd.apache.org/) as your public web server and want to offer HTTP port 80 access to
the YAZ server on 210, you can use theProxyPass

(http://httpd.apache.org/docs/mod/mod_proxy.html#proxypass) directive. If you have virtual host
srw.mydomain you can use the following directives in Apache’s httpd.conf:

<VirtualHost *>
ErrorLog /home/srw/logs/error_log
TransferLog /home/srw/logs/access_log
ProxyPass / http://srw.mydomain:210/

</VirualHost>

The above for the Apache 1.3 series.

Example 4-3. Running a server with local access only

Servers that is only being accessed from the local host should listen on UNIX file socket rather than a Internet
socket. To listen on/tmp/mysocket start the server as follows:

appname tcp:/tmp/mysocket

31



Chapter 5. The YAZ client

Introduction
yaz-client is a line-mode Z39.50/SRW client. It supports a fair amount of the functionality of the Z39.50v3
standard. Its primary purpose is to exercise the package, and verify that the protocol works OK. For the same
reason some commands offers more functionality than others. Commands that exercises common Z39.50
services such as search and present have more features than less common supported services, such as Extended
Services (ItemOrder, ItemUpdate,..).

Invoking the YAZ client
It can be started by typing

yaz-client [-m fname ] [-a fname ] [-c fname ] [-q fname ] [-v level ] [-p target ] [-u auth ] [-k
size ] [zurl]

in a UNIX shell / WIN32 console. Thezurl , specifies a Z39.50/SRW host and, if specified, the client first tries
to establish connection with the Z39.50/SRW target.

Options are prefixed by- followed by a particular letter.

The following options are supported:

-m fname

All retrieved transfer records are appended to filefname . All records as returned by a target(s) in Search
Responses and Present Responses are appended verbatim to the file.

-a fname

Pretty-print log of APDUs sent and received is appended to the filefname . If fname is - (minus) the
APDU log is written tostderr .

-c fname

Sets the filename for CCL fields tofname . If this option is not given the YAZ client reads CCL fields from
file default.bib .

-q fname

Sets the filename for CQL fields tofname . If this option is not given the YAZ client reads CQL fields from
file /usr/local/share/yaz/etc/pqf.properties .

-v level

Sets the LOG level tolevel . Level is a sequence of tokens separated by comma. Each token is a integer or
a named LOG item - one offatal , debug , warn , log , malloc , all , none .

-p target

Specifies proxy address. When set YAZ client will connect to a proxy on the address and port given. The
actual target will be specified as part of the InitRequest to inform the proxy about actual target.

32



Chapter 5. The YAZ client

-u auth

Specifies authentication. Usually the formuser /password is used. This option does the same thing as
theauth command.

-k size

Specifies the maximum messages size in kilobytes. The default maximum message size for the YAZ client
is 1024 (1 MB).

In order to connect to Index Data’s test Z39.50 server onbagel.indexdata.dk , port 210 and with the
database namemarc , one could type

yaz-client bagel.indexdata.dk:210/marc

The same server is also a SOAP SRW service. Connect to it via HTTP as follows:

yaz-client http://bagel.indexdata.dk:210/marc

In order to enable APDU log and connect to localhost, port 210 (default) and database Default (default) you’d
write:

yaz-client -a - localhost

The following command connects to a local server via UNIX socket/tmp/yaz and sets maximum message size
to 5 MB.

yaz-client -k 5120 unix:/tmp/yaz

Commands
When the YAZ client has read options and connected to a target, if given, it will displayZ> and await your
command. Commands are executed by hitting the return key. You can always issue the command? to see the list
of available commands.

The commands are (the letters in parenthesis are short names for the commands):

open zurl

Opens a connection to a server. The syntax forzurl is the same as described above for connecting from
the command line.

Syntax:

[(tcp|ssl|unix|http)’:’ ]host [:port ][/base ]

33



Chapter 5. The YAZ client

quit

Quits YAZ client

f query

Sends a Search Request using thequery given.

delete setname

Deletes result set with namesetname on the server.

base base1 base2 ...

Sets the name(s) of the database(s) to search. One or more databases may be specified separated by blanks.
This commands overrides the database given inzurl .

show [start [+number ]]

Fetches records by sending a Present Request from the start position given bystart a number of records
given bynumber . If start is not given, then the client will fetch from position of the last retrieved record
plus 1. Ifnumber is not given, then one record will be fetched at a time.

scan term

Scans database index for a term. The syntax resembles the syntax forfind . If you want to scan for the
word water you could write

scan water

but if you want to scan only in, say the title field, you would write

scan @attr 1=4 water

sort sortspecs

Sorts a result set. The sort command takes a sequence of sort specifications. A sort specification holds a
field (sort criteria) and is followed by flags. If the sort criteria includes= it is assumed that the sort SortKey
is of type sortAttributes using Bib-1. The integer before= is the attribute type and the integer following= is
the attribute value. If no= is in the SortKey it is treated as a sortfield-type of type InternationalString. Flags
observed are:s for case sensitive,i for case insensitive,< for sort ascending and> for sort descending.

sort+

Same assort but stores the sorted result set in a new result set.

authentication openauth

Sets up a authentication string if a server requires authentication (v2 OpenStyle). The authentication string
is first sent to the server when theopen command is issued and the Z39.50 Initialize Request is sent, so this
command must be used beforeopen in order to be effective. A common convention for theauthopen
string is that the username - and password is separated by a slash, e.g.myusername/mysecret .

lslb n

Sets the limit for when no records should be returned together with the search result. See the Z39.50
standard (http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

34



Chapter 5. The YAZ client

ssub n

Sets the limit for when all records should be returned with the search result. See the Z39.50 standard
(http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

mspn n

Sets the number of records should be returned if the number of records in the result set is between the
values oflslb andssub . See the Z39.50 standard
(http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

status

Displays the values oflslb , ssub andmspn.

setname

Switches named result sets on and off. Default is on.

cancel

Sends a Trigger Resource Control Request to the target.

format oid

Sets the preferred transfer syntax for retrieved records. yaz-client supports all the record syntaxes that
currently are registered. See Z39.50 Standard (http://lcweb.loc.gov/z3950/agency/defns/oids.html#5) for
more details. Commonly used records syntaxes include usmarc, sutrs, grs1 and xml.

elements e

Sets the element set name for the records. Many targets support element sets are B (for brief) and F (for
full).

close

Sends a Z39.50 Close APDU and closes connection with the peer

querytype type

Sets the query type as used by commandfind . The following is supported:prefix for Prefix Query
Notation(Type-1 Query);ccl for CCL search (Type-2 Query),cql for CQL (Type-104 search with CQL
OID), ccl2rpn for CCL to RPN conversion (Type-1 Query).cql2rpn for CQL to RPN conversion
(Type-1 Query).

attributeset set

Sets attribute set OID for prefix queries (RPN, Type-1).

refid id

Sets reference ID for Z39.50 Request(s).

itemorder type no

Sends an Item Order Request using the ILL External.type is either 1 or 2 which corresponds to
ILL-Profile 1 and 2 respectively. Theno is the Result Set position of the record to be ordered.

35



Chapter 5. The YAZ client

update

Sends Item Update Request. This command sends a "minimal" PDU Update to the target supplying the last
received record from the target. If no record has been received from the target this command is ignored and
nothing is sent to the target.

. filename

Executes list of commands from filefilename , just like source on most UNIX shells.

! args

Executes commandargs in subshell using thesystem call.

push_commande command

The push_command takes another command as its argument. That command is then added to the history
information (so you can retrieve it later). The command itself is not executed. This command only works if
you have GNU readline/history enabled.

set_apdufile filename

Sets that APDU should be logged to filefilename . This command does the thing as option-a .

set_marcdump filename

Specifies that all retrieved records should be appended ot filefilename . This command does the thing as
option-m.

schema schemaid

Specifies schema for retrieval. Schema may be specified as an OID for Z39.50. For SRW, schema is a
simple string URI.

charset negotiationcharset [outputcharset ]

Specifies character set (encoding) for Z39.50 negotiation / SRW encoding and/or character set for output
(terminal).

negotiationcharset is the name of the character set to be negotiated by the server. The special name
- for negotiationcharset specifiesnocharacter set to be negotiated.

If outputcharset is given, it specifies name of the character set of the output (on the terminal on which
YAZ client is running). To disable conversion of characters to the output encoding, the special name-

(dash) can be used. If the special nameauto is given, YAZ client will convert strings to the encoding of the
terminal as returned bynl_langinfo call.

Note: Since character set negotation takes effect in the Z39.50 Initialize Request you should issue this
command before command open is used.

Note: MARC records are not covered by Z39.50 character set negotiation. See marccharset .

36



Chapter 5. The YAZ client

marccharset charset

Specifies character set for retrieved MARC records so that YAZ client can display them in a character
suitable for your display. Seecharset command. Ifauto is given, YAZ will assume that
MARC21/USMARC is using MARC8/UTF8 and ISO-8859-1 for all other MARC variants.

set_cclfields filename

Specifies that CCL fields should be read from file filefilename . This command does the thing as option
-c .

set_cqlfields filename

Specifies that CQL fields should be read from file filefilename . This command does the thing as option
-q .

register_oid name class OID

This command allows you to register your own object identifier - so that instead of entering a long
dot-notation you can use a short name instead. Thename is your name for the OID,class is the class,
andOID is the raw OID in dot notation. Class is oneappctx , absyn , attet , transyn , diagset ,
recsyn , resform , accform , extserv , userinfo , elemspec , varset , schema , tagset , general . If
you’re in doubt use thegeneral class.

Searching
The simplest example of a Prefix Query would be something like

f knuth

or

f "donald knuth"

In those queries no attributes was specified. This leaves it up to the server what fields to search but most servers
will search in all fields. Some servers does not support this feature though, and require that some attributes are
defined. To add one attribute you could do:

f @attr 1=4 computer

where we search in the title field, since the use(1) is title(4). If we want to search in the author fieldand in the
title field, and in the title field using right truncation it could look something like this:

f @and @attr 1=1003 knuth @attr 1=4 @attr 5=1 computer

Finally using a mix of Bib-1 and GILS attributes could look something like this:

f @attrset Bib-1 @and @attr GILS 1=2008 Washington @attr 1=21 weather

For the full specification of the Prefix Query see the sectionPrefix Query Format.

37



Chapter 6. The Z39.50 ASN.1 Module

Introduction
The Z39.50 ASN.1 module provides you with a set of C struct definitions for the various PDUs of the Z39.50
protocol, as well as for the complex types appearing within the PDUs. For the primitive data types, the C
representation often takes the form of an ordinary C language type, such asint . For ASN.1 constructs that have
no direct representation in C, such as general octet strings and bit strings, the ODR module (see sectionThe
ODR Module) provides auxiliary definitions.

The Z39.50 ASN.1 module is located in sub directoryz39.50 . There you’ll find C files that implements
encoders and decoders for the Z39.50 types. You’ll also find the protocol definitions:z3950v3.asn ,
esupdate.asn , and others.

Preparing PDUs
A structure representing a complex ASN.1 type doesn’t in itself contain the members of that type. Instead, the
structure containspointersto the members of the type. This is necessary, in part, to allow a mechanism for
specifying which of the optional structure (SEQUENCE) members are present, and which are not. It follows that
you will need to somehow provide space for the individual members of the structure, and set the pointers to refer
to the members.

The conversion routines don’t care how you allocate and maintain your C structures - they just follow the
pointers that you provide. Depending on the complexity of your application, and your personal taste, there are at
least three different approaches that you may take when you allocate the structures.

You can use static or automatic local variables in the function that prepares the PDU. This is a simple approach,
and it provides the most efficient form of memory management. While it works well for flat PDUs like the
InitReqest, it will generally not be sufficient for say, the generation of an arbitrarily complex RPN query
structure.

You can individually create the structure and its members using themalloc(2) function. If you want to ensure
that the data is freed when it is no longer needed, you will have to define a function that individually releases
each member of a structure before freeing the structure itself.

You can use theodr_malloc() function (seethe Section calledUsing ODRin Chapter 9for details). When you
useodr_malloc() , you can release all of the allocated data in a single operation, independent of any pointers
and relations between the data.odr_malloc() is based on a "nibble-memory" scheme, in which large portions
of memory are allocated, and then gradually handed out with each call toodr_malloc() . The next time you
call odr_reset() , all of the memory allocated since the last call is recycled for future use (actually, it is placed
on a free-list).

You can combine all of the methods described here. This will often be the most practical approach. For instance,
you might useodr_malloc() to allocate an entire structure and some of its elements, while you leave other
elements pointing to global or per-session default variables.

The Z39.50 ASN.1 module provides an important aid in creating new PDUs. For each of the PDU types (say,
Z_InitRequest ), a function is provided that allocates and initializes an instance of that PDU type for you. In
the case of the InitRequest, the function is simply namedzget_InitRequest() , and it sets up reasonable
default value for all of the mandatory members. The optional members are generally initialized to null pointers.
This last aspect is very important: it ensures that if the PDU definitions are extended after you finish your
implementation (to accommodate new versions of the protocol, say), you won’t get into trouble with

38



Chapter 6. The Z39.50 ASN.1 Module

uninitialized pointers in your structures. The functions useodr_malloc() to allocate the PDUs and its
members, so you can free everything again with a single call toodr_reset() . We strongly recommend that you
use thezget_* functions whenever you are preparing a PDU (in a C++ API, thezget_ functions would
probably be promoted to constructors for the individual types).

The prototype for the individual PDU types generally look like this:

Z_<type> *zget_<type>(ODR o);

eg.:

Z_InitRequest *zget_InitRequest(ODR o);

The ODR handle should generally be your encoding stream, but it needn’t be.

As well as the individual PDU functions, a functionzget_APDU() is provided, which allocates a top-level
Z-APDU of the type requested:

Z_APDU *zget_APDU(ODR o, int which);

Thewhich parameter is (of course) the discriminator belonging to theZ_APDU CHOICEtype. All of the interface
described here is provided by the Z39.50 ASN.1 module, and you access it through theproto.h header file.

Object Identifiers
When you refer to object identifiers in your application, you need to be aware that SR and Z39.50 use two
different set of OIDs to refer to the same objects. To handle this easily, YAZ provides a utility module to Z39.50
ASN.1 which provides an internal representation of the OIDs used in both protocols. Each oid is described by a
structure:

typedef struct oident
{

enum oid_proto proto;
enum oid_class class;
enum oid_value value;
int oidsuffix[OID_SIZE];
char *desc;

} oident;

Theproto field can be set to eitherPROTO_SRor PROTO_Z3950. Theclass might be, say,CLASS_RECSYN,
and thevalue might beVAL_USMARCfor the USMARC record format. Functions

int *oid_ent_to_oid(struct oident *ent, int *dst);
struct oident *oid_getentbyoid(int *o);

are provided to map between object identifiers and database entries. If you store a member of theoid_proto

type in your association state information, it’s a simple matter, at runtime, to generate the correct OID when you
need it. For decoding, you can simply ignore the proto field, or if you’re strict, you can verify that your peer is
using the OID family from the correct protocol. Thedesc field is a short, human-readable name for the PDU,
useful mainly for diagnostic output.

39



Chapter 6. The Z39.50 ASN.1 Module

Note: The old function oid_getoidbyent still exists but is not thread safe. Use oid_ent_to_oid instead and
pass an array of size OID_SIZE .

Note: Plans are underway to merge the two protocols into a single definition, with one set of object identifiers.
When this happens, the oid module will no longer be required to support protocol independence, but it
should still be useful as a simple OID database.

EXTERNAL Data
In order to achieve extensibility and adaptability to different application domains, the new version of the protocol
defines many structures outside of the main ASN.1 specification, referencing them through ASN.1 EXTERNAL
constructs. To simplify the construction and access to the externally referenced data, the Z39.50 ASN.1 module
defines a specialized version of the EXTERNAL construct, calledZ_External .It is defined thus:

typedef struct Z_External
{

Odr_oid *direct_reference;
int *indirect_reference;
char *descriptor;
enum
{

/* Generic types */
Z_External_single = 0,
Z_External_octet,
Z_External_arbitrary,

/* Specific types */
Z_External_SUTRS,
Z_External_explainRecord,
Z_External_resourceReport1,
Z_External_resourceReport2

...

} which;
union
{

/* Generic types */
Odr_any *single_ASN1_type;
Odr_oct *octet_aligned;
Odr_bitmask *arbitrary;

/* Specific types */
Z_SUTRS *sutrs;
Z_ExplainRecord *explainRecord;
Z_ResourceReport1 *resourceReport1;
Z_ResourceReport2 *resourceReport2;

...

} u;

40



Chapter 6. The Z39.50 ASN.1 Module

} Z_External;

When decoding, the Z39.50 ASN.1 module will attempt to determine which syntax describes the data by looking
at the reference fields (currently only the direct-reference). For ASN.1 structured data, you need only consult the
which field to determine the type of data. You can the access the data directly through the union. When
constructing data for encoding, you set the union pointer to point to the data, and set thewhich field accordingly.
Remember also to set the direct (or indirect) reference to the correct OID for the data type. For non-ASN.1 data
such as MARC records, use theoctet_aligned arm of the union.

Some servers return ASN.1 structured data values (eg. database records) as BER-encoded records placed in the
octet-aligned branch of the EXTERNAL CHOICE. The ASN-module willnot automatically decode these
records. To help you decode the records in the application, the function

Z_ext_typeent *z_ext_gettypebyref(oid_value ref);

Can be used to retrieve information about the known, external data types. The function return a pointer to a static
area, or NULL, if no match for the given direct reference is found. TheZ_ext_typeent is defined as:

typedef struct Z_ext_typeent
{

oid_value dref; /* the direct-reference OID value. */
int what; /* discriminator value for the external CHOICE */
Odr_fun fun; /* decoder function */

} Z_ext_typeent;

Thewhat member contains theZ_External union discriminator value for the given type: For the SUTRS
record syntax, the value would beZ_External_sutrs . Thefun member contains a pointer to the function
which encodes/decodes the given type. Again, for the SUTRS record syntax, the value offun would be
z_SUTRS(a function pointer).

If you receive an EXTERNAL which contains an octet-string value that you suspect of being an
ASN.1-structured data value, you can usez_ext_gettypebyref to look for the provided direct-reference. If
the return value is different from NULL, you can use the provided function to decode the BER string (seethe
Section calledUsing ODRin Chapter 9).

If you want tosendEXTERNALs containing ASN.1-structured values in the occtet-aligned branch of the
CHOICE, this is possible too. However, on the encoding phase, it requires a somewhat involved juggling around
of the various buffers involved.

If you need to add new, externally defined data types, you must update the struct above, in the source file
prt-ext.h , as well as the encoder/decoder in the fileprt-ext.c . When changing the latter, remember to
update both thearm arrary and the listtype_table , which drives the CHOICE biasing that is necessary to tell
the different, structured types apart on decoding.

Note: Eventually, the EXTERNAL processing will most likely automatically insert the correct OIDs or
indirect-refs. First, however, we need to determine how application-context management (specifically the
presentation-context-list) should fit into the various modules.

41



Chapter 6. The Z39.50 ASN.1 Module

PDU Contents Table
We include, for reference, a listing of the fields of each top-level PDU, as well as their default settings.

Table 6-1. Default settings for PDU Initialize Request

Field Type Default Value

referenceId Z_ReferenceId NULL

protocolVersion Odr_bitmask Empty bitmask

options Odr_bitmask Empty bitmask

preferredMessageSize int 30*1024

maximumRecordSize int 30*1024

idAuthentication Z_IdAuthentication NULL

implementationId char* "81"

implementationName char* "YAZ"

implementationVersion char* YAZ_VERSION

userInformationField Z_UserInformation NULL

otherInfo Z_OtherInformation NULL

Table 6-2. Default settings for PDU Initialize Response

Field Type Default Value

referenceId Z_ReferenceId NULL

protocolVersion Odr_bitmask Empty bitmask

options Odr_bitmask Empty bitmask

preferredMessageSize int 30*1024

maximumRecordSize int 30*1024

result bool_t TRUE

implementationId char* "id)"

implementationName char* "YAZ"

implementationVersion char* YAZ_VERSION

userInformationField Z_UserInformation NULL

otherInfo Z_OtherInformation NULL

Table 6-3. Default settings for PDU Search Request

Field Type Default Value

referenceId Z_ReferenceId NULL

smallSetUpperBound int 0

largeSetLowerBound int 1

mediumSetPresentNumber int 0

replaceIndicator bool_t TRUE

resultSetName char * "default"

num_databaseNames int 0

databaseNames char ** NULL

42



Chapter 6. The Z39.50 ASN.1 Module

Field Type Default Value

smallSetElementSetNames Z_ElementSetNames NULL

mediumSetElementSetNames Z_ElementSetNames NULL

preferredRecordSyntax Odr_oid NULL

query Z_Query NULL

additionalSearchInfo Z_OtherInformation NULL

otherInfo Z_OtherInformation NULL

Table 6-4. Default settings for PDU Search Response

Field Type Default Value

referenceId Z_ReferenceId NULL

resultCount int 0

numberOfRecordsReturned int 0

nextResultSetPosition int 0

searchStatus bool_t TRUE

resultSetStatus int NULL

presentStatus int NULL

records Z_Records NULL

additionalSearchInfo Z_OtherInformation NULL

otherInfo Z_OtherInformation NULL

Table 6-5. Default settings for PDU Present Request

Field Type Default Value

referenceId Z_ReferenceId NULL

resultSetId char* "default"

resultSetStartPoint int 1

numberOfRecordsRequested int 10

num_ranges int 0

additionalRanges Z_Range NULL

recordComposition Z_RecordComposition NULL

preferredRecordSyntax Odr_oid NULL

maxSegmentCount int NULL

maxRecordSize int NULL

maxSegmentSize int NULL

otherInfo Z_OtherInformation NULL

Table 6-6. Default settings for PDU Present Response

Field Type Default Value

referenceId Z_ReferenceId NULL

numberOfRecordsReturned int 0

nextResultSetPosition int 0

presentStatus int Z_PresentStatus_success

43



Chapter 6. The Z39.50 ASN.1 Module

Field Type Default Value

records Z_Records NULL

otherInfo Z_OtherInformation NULL

Table 6-7. Default settings for Delete Result Set Request

Field Type Default Value

referenceId Z_ReferenceId NULL

deleteFunction int Z_DeleteResultSetRequest_list

num_ids int 0

resultSetList char** NULL

otherInfo Z_OtherInformation NULL

Table 6-8. Default settings for Delete Result Set Response

Field Type Default Value

referenceId Z_ReferenceId NULL

deleteOperationStatus int Z_DeleteStatus_success

num_statuses int 0

deleteListStatuses Z_ListStatus** NULL

numberNotDeleted int NULL

num_bulkStatuses int 0

bulkStatuses Z_ListStatus NUL L

deleteMessage char* NULL

otherInfo Z_OtherInformation NULL

Table 6-9. Default settings for Scan Request

Field Type Default Value

referenceId Z_ReferenceId NULL

num_databaseNames int 0

databaseNames char** NULL

attributeSet Odr_oid NULL

termListAndStartPoint Z_AttributesPlus... NULL

stepSize int NULL

numberOfTermsRequested int 20

preferredPositionInResponse int NULL

otherInfo Z_OtherInformation NULL

Table 6-10. Default settings for Scan Response

Field Type Default Value

referenceId Z_ReferenceId NULL

stepSize int NULL

scanStatus int Z_Scan_success

44



Chapter 6. The Z39.50 ASN.1 Module

Field Type Default Value

numberOfEntriesReturned int 0

positionOfTerm int NULL

entries Z_ListEntris NULL

attributeSet Odr_oid NULL

otherInfo Z_OtherInformation NULL

Table 6-11. Default settings for Trigger Resource Control Request

Field Type Default Value

referenceId Z_ReferenceId NULL

requestedAction int Z_TriggerResourceCtrl_resou..

prefResourceReportFormat Odr_oid NULL

resultSetWanted bool_t NULL

otherInfo Z_OtherInformation NULL

Table 6-12. Default settings for Resource Control Request

Field Type Default Value

referenceId Z_ReferenceId NULL

suspendedFlag bool_t NULL

resourceReport Z_External NULL

partialResultsAvailable int NULL

responseRequired bool_t FALSE

triggeredRequestFlag bool_t NULL

otherInfo Z_OtherInformation NULL

Table 6-13. Default settings for Resource Control Response

Field Type Default Value

referenceId Z_ReferenceId NULL

continueFlag bool_t TRUE

resultSetWanted bool_t NULL

otherInfo Z_OtherInformation NULL

Table 6-14. Default settings for Access Control Request

Field Type Default Value

referenceId Z_ReferenceId NULL

which enum Z_AccessRequest_simpleForm;

u union NULL

otherInfo Z_OtherInformation NULL

Table 6-15. Default settings for Access Control Response

45



Chapter 6. The Z39.50 ASN.1 Module

Field Type Default Value

referenceId Z_ReferenceId NULL

which enum Z_AccessResponse_simpleForm

u union NULL

diagnostic Z_DiagRec NULL

otherInfo Z_OtherInformation NULL

Table 6-16. Default settings for Segment

Field Type Default Value

referenceId Z_ReferenceId NULL

numberOfRecordsReturned int value=0

num_segmentRecords int 0

segmentRecords Z_NamePlusRecord NULL

otherInfo Z_OtherInformation NULL

Table 6-17. Default settings for Close

Field Type Default Value

referenceId Z_ReferenceId NULL

closeReason int Z_Close_finished

diagnosticInformation char* NULL

resourceReportFormat Odr_oid NULL

resourceFormat Z_External NULL

otherInfo Z_OtherInformation NULL

46



Chapter 7. SOAP and SRW

Introduction
YAZ uses a very simple implementation of SOAP (http://www.w3.org/TR/SOAP/) that only, currenly, supports
what is sufficient to offer SRW functionality. The implementation uses the tree API
(http://www.xmlsoft.org/html/libxml-tree.html) of libxml2 to encode and decode SOAP packages.

Like the Z39.50 ASN.1 module, the YAZ SRW implementation uses simple C structs to represent SOAP
packages as well as HTTP packages.

HTTP
YAZ only offers HTTP as transport carrier for SOAP, but it is relatively easy to change that.

The following definition ofZ_GDU(Generic Data Unit) allows for both HTTP and Z39.50 in one packet.

#include <yaz/zgdu.h>

#define Z_GDU_Z3950 1
#define Z_GDU_HTTP_Request 2
#define Z_GDU_HTTP_Response 3
typedef struct {

int which;
union {

Z_APDU *z3950;
Z_HTTP_Request *HTTP_Request;
Z_HTTP_Response *HTTP_Response;

} u;
} Z_GDU ;

The corresponding Z_GDU encoder/decoder isz_GDU. Thez3950 is any of the known BER encoded Z39.50
APDUs.HTTP_Request andHTTP_Response is the HTTP Request and Response respectively.

SOAP Packages
Every SOAP package in YAZ is represented as follows:

#include <yaz/soap.h>

typedef struct {
char *fault_code;
char *fault_string;
char *details;

} Z_SOAP_Fault;

typedef struct {
int no;
char *ns;
void *p;

47



Chapter 7. SOAP and SRW

} Z_SOAP_Generic;

#define Z_SOAP_fault 1
#define Z_SOAP_generic 2
#define Z_SOAP_error 3
typedef struct {

int which;
union {

Z_SOAP_Fault *fault;
Z_SOAP_Generic *generic;
Z_SOAP_Fault *soap_error;

} u;
const char *ns;

} Z_SOAP;

The fault andsoap_error arms represent both a SOAP fault - structZ_SOAP_Fault . Any other generic
(valid) package is represented byZ_SOAP_Generic .

Thens as part ofZ_SOAPis the namespace for SOAP itself and reflects the SOAP version. For version 1.1 it is
http://schemas.xmlsoap.org/soap/envelope/ , for version 1.2 it is
http://www.w3.org/2001/06/soap-envelope .

int z_soap_codec(ODR o, Z_SOAP **pp,
char **content_buf, int *content_len,
Z_SOAP_Handler *handlers);

Thecontent_buf andcontent_len is XML buffer and length of buffer respectively.

Thehandlers is a list of SOAP codec handlers - one handler for each service namespace. For SRW, the
namespace would behttp://www.loc.gov/zing/srw/v1.0/ .

When decoding, thez_soap_codec inspects the XML content and tries to match one of the services
namespaces of the supplied handlers. If there is a match a handler function is invoked which decodes that
particular SOAP package. If successful, the returnedZ_SOAPpackage will be of typeZ_SOAP_Generic .
Memberno is set the offset of handler that matched;ns is set to namespace of matching handler; the void
pointerp is set to the C data structure assocatiated with the handler.

When a NULL namespace is met (memberns bwlow), that specifies end-of-list.

Each handler is defined as follows:

typedef struct {
char *ns;
void *client_data;
Z_SOAP_fun f;

} Z_SOAP_Handler;

Thens is namespace of service associated with handlerf . client_data is user-defined data which is passed to
handler.

The prototype for a SOAP service handler is:

int handler(ODR o, void * ptr, void **handler_data,
void *client_data, const char *ns);

48



Chapter 7. SOAP and SRW

Theo specifies the mode (decode/encode) as usual. The second argument,ptr , is a libxml2 tree node pointer
(xmlNodePtr ) and is a pointer to theBody element of the SOAP package. Thehandler_data is an opaque
pointer to a C definitions associated with the SOAP service.client_data is the pointer which was set as part
of theZ_SOAP_handler . Finally,ns the service namespace.

SRW
SRW is just one implementation of a SOAP handler as described in the previous section. The encoder/decoder
handler for SRW is defined as follows:

#include <yaz/srw.h>

int yaz_srw_codec(ODR o, void * pptr,
Z_SRW_GDU **handler_data,
void *client_data, const char *ns);

Here,Z_SRW_GDUis either searchRetrieveRequest or a searchRetrieveResponse.

Note: The xQuery and xSortKeys are not handled yet by the SRW implementation of YAZ. Explain is also
missing. Future versions of YAZ will include these features.

The definition of searchRetrieveRequest is:

typedef struct {

#define Z_SRW_query_type_cql 1
#define Z_SRW_query_type_xcql 2
#define Z_SRW_query_type_pqf 3

int query_type;
union {

char *cql;
char *xcql;
char *pqf;

} query;

#define Z_SRW_sort_type_none 1
#define Z_SRW_sort_type_sort 2
#define Z_SRW_sort_type_xSort 3

int sort_type;
union {

char *none;
char *sortKeys;
char *xSortKeys;

} sort;
int *startRecord;
int *maximumRecords;
char *recordSchema;
char *recordPacking;
char *database;

} Z_SRW_searchRetrieveRequest;

49



Chapter 7. SOAP and SRW

Please observe that data of type xsd:string is represented as a char pointer (char * ). A null pointer means that
the element is absent. Data of type xsd:integer is representd as a pointer to an int (int * ). Again, a null pointer
us used for absent elements.

The SearchRetrieveResponse has the following definition.

typedef struct {
int * numberOfRecords;
char * resultSetId;
int * resultSetIdleTime;

Z_SRW_record *records;
int num_records;

Z_SRW_diagnostic *diagnostics;
int num_diagnostics;
int *nextRecordPosition;

} Z_SRW_searchRetrieveResponse;

Thenum_records andnum_diagnostics is number of returned records and diagnostics respectively and also
correspond to the "size of" arraysrecords anddiagnostics .

A retrieval record is defined as follows:

typedef struct {
char *recordSchema;
char *recordData_buf;
int recordData_len;
int *recordPosition;

} Z_SRW_record;

The record data is defined as a buffer of some length so that data can be of any type. SRW 1.0 currenly doesn’t
allow for this (only XML), but future versions might do.

And, a diagnostic as:

typedef struct {
int *code;
char *details;

} Z_SRW_diagnostic;

50



Chapter 8. Supporting Tools
In support of the service API - primarily the ASN module, which provides the pro-grammatic interface to the
Z39.50 APDUs, YAZ contains a collection of tools that support the development of applications.

Query Syntax Parsers
Since the type-1 (RPN) query structure has no direct, useful string representation, every origin application needs
to provide some form of mapping from a local query notation or representation to a Z_RPNQuery structure.
Some programmers will prefer to construct the query manually, perhaps usingodr_malloc() to simplify
memory management. The YAZ distribution includes three separate, query-generating tools that may be of use to
you.

Prefix Query Format
Since RPN or reverse polish notation is really just a fancy way of describing a suffix notation format (operator
follows operands), it would seem that the confusion is total when we now introduce a prefix notation for RPN.
The reason is one of simple laziness - it’s somewhat simpler to interpret a prefix format, and this utility was
designed for maximum simplicity, to provide a baseline representation for use in simple test applications and
scripting environments (like Tcl). The demonstration client included with YAZ uses the PQF.

Note: The PQF have been adopted by other parties developing Z39.50 software. It is often referred to as
Prefix Query Notation - PQN.

The PQF is defined by the pquery module in the YAZ library. There are two sets of function that have similar
behavior. First set operates on a PQF parser handle, second set doesn’t. First set set of functions are more flexible
than the second set. Second set is obsolete and is only provided to ensure backwards compatibility.

First set of functions all operate on a PQF parser handle:

#include <yaz/pquery.h>

YAZ_PQF_Parser yaz_pqf_create (void);

void yaz_pqf_destroy (YAZ_PQF_Parser p);

Z_RPNQuery *yaz_pqf_parse (YAZ_PQF_Parser p, ODR o, const char *qbuf);

Z_AttributesPlusTerm *yaz_pqf_scan (YAZ_PQF_Parser p, ODR o,
Odr_oid **attributeSetId, const char *qbuf);

int yaz_pqf_error (YAZ_PQF_Parser p, const char **msg, size_t *off);

A PQF parser is created and destructed by functionsyaz_pqf_create andyaz_pqf_destroy respectively.
Functionyaz_pqf_parse parses query given by stringqbuf . If parsing was successful, a Z39.50 RPN Query is
returned which is created using ODR streamo. If parsing failed, a NULL pointer is returned. Function
yaz_pqf_scan takes a scan query inqbuf . If parsing was successful, the function returns attributes plus term
pointer and modifiesattributeSetId to hold attribute set for the scan request - both allocated using ODR
streamo. If parsing failed, yaz_pqf_scan returns a NULL pointer. Error information for bad queries can be

51



Chapter 8. Supporting Tools

obtained by a call toyaz_pqf_error which returns an error code and modifies*msg to point to an error
description, and modifies*off to the offset within last query were parsing failed.

The second set of functions are declared as follows:

#include <yaz/pquery.h>

Z_RPNQuery *p_query_rpn (ODR o, oid_proto proto, const char *qbuf);

Z_AttributesPlusTerm *p_query_scan (ODR o, oid_proto proto,
Odr_oid **attributeSetP, const char *qbuf);

int p_query_attset (const char *arg);

The functionp_query_rpn() takes as arguments an ODR stream (see sectionThe ODR Module) to provide a
memory source (the structure created is released on the next call toodr_reset() on the stream), a protocol
identifier (one of the constants PROTO_Z3950 and PROTO_SR), an attribute set reference, and finally a
null-terminated string holding the query string.

If the parse went well,p_query_rpn() returns a pointer to aZ_RPNQuery structure which can be placed
directly into aZ_SearchRequest . If parsing failed, due to syntax error, a NULL pointer is returned.

Thep_query_attset specifies which attribute set to use if the query doesn’t specify one by the@attrset

operator. Thep_query_attset returns 0 if the argument is a valid attribute set specifier; otherwise the function
returns -1.

The grammar of the PQF is as follows:

query ::= top-set query-struct.

top-set ::= [ ’@attrset’ string ]

query-struct ::= attr-spec | simple | complex | ’@term’ term-type query

attr-spec ::= ’@attr’ [ string ] string query-struct

complex ::= operator query-struct query-struct.

operator ::= ’@and’ | ’@or’ | ’@not’ | ’@prox’ proximity.

simple ::= result-set | term.

result-set ::= ’@set’ string.

term ::= string.

proximity ::= exclusion distance ordered relation which-code unit-code.

exclusion ::= ’1’ | ’0’ | ’void’.

distance ::= integer.

ordered ::= ’1’ | ’0’.

relation ::= integer.

52



Chapter 8. Supporting Tools

which-code ::= ’known’ | ’private’ | integer.

unit-code ::= integer.

term-type ::= ’general’ | ’numeric’ | ’string’ | ’oid’ | ’datetime’ | ’null’.

You will note that the syntax above is a fairly faithful representation of RPN, except for the Attribute, which has
been moved a step away from the term, allowing you to associate one or more attributes with an entire query
structure. The parser will automatically apply the given attributes to each term as required.

The @attr operator is followed by an attribute specification (attr-spec above). The specification consists of an
optional attribute set, an attribute type-value pair and a sub-query. The attribute type-value pair is packed in one
string: an attribute type, an equals sign, and an attribute value, like this:@attr 1=1003 . The type is always an
integer but the value may be either an integer or a string (if it doesn’t start with a digit character). A string
attribute-value is encoded as a Type-1 “complex” attribute with the list of values containing the single string
specified, and including no semantic indicators.

Version 3 of the Z39.50 specification defines various encoding of terms. Use@term type string , where
type is one of:general , numeric or string (for InternationalString). If no term type has been given, the
general form is used. This is the only encoding allowed in both versions 2 and 3 of the Z39.50 standard.

Using Proximity Operators with PQF

Note: This is an advanced topic, describing how to construct queries that make very specific requirements on
the relative location of their operands. You may wish to skip this section and go straight to the example PQF
queries.

Warning
Most Z39.50 servers do not support proximity searching, or support only a small subset of
the full functionality that can be expressed using the PQF proximity operator. Be aware that
the ability to express a query in PQF is no guarantee that any given server will be able to
execute it.

The proximity operator@prox is a special and more restrictive version of the conjunction operator@and. Its
semantics are described in section 3.7.2 (Proximity) of Z39.50 the standard itself, which can be read on-line at
http://lcweb.loc.gov/z3950/agency/markup/09.html

In PQF, the proximity operation is represented by a sequence of the form

@prox exclusion distance ordered relation which-code unit-code

in which the meanings of the parameters are as described in in the standard, and they can take the following
values:

• exclusion.0 = false (i.e. the proximity condition specified by the remaining parameters must be satisfied) or 1
= true (the proximity condition specified by the remaining parameters mustnot be satisifed).

53



Chapter 8. Supporting Tools

• distance.An integer specifying the difference between the locations of the operands: e.g. two adjacent words
would have distance=1 since their locations differ by one unit.

• ordered. 1 = ordered (the operands must occur in the order the query specifies them) or 0 = unordered (they
may appear in either order).

• relation. Recognised values are 1 (lessThan), 2 (lessThanOrEqual), 3 (equal), 4 (greaterThanOrEqual), 5
(greaterThan) and 6 (notEqual).

• which-code.known or k (the unit-code parameter is taken from the well-known list of alternatives described
in below) orprivate or p (the unit-code paramater has semantics specific to an out-of-band agreement such
as a profile).

• unit-code. If the which-code parameter isknown then the recognised values are 1 (character), 2 (word), 3
(sentence), 4 (paragraph), 5 (section), 6 (chapter), 7 (document), 8 (element), 9 (subelement), 10
(elementType) and 11 (byte). If which-code isprivate then the acceptable values are determined by the
profile.

(The numeric values of the relation and well-known unit-code parameters are taken straight from the ASN.1
(http://lcweb.loc.gov/z3950/agency/asn1.html#ProximityOperator) of the proximity structure in the standard.)

PQF queries

Example 8-1. PQF queries using simple terms

dylan
"bob dylan"

Example 8-2. PQF boolean operators

@or "dylan" "zimmerman"
@and @or dylan zimmerman when
@and when @or dylan zimmerman

Example 8-3. PQF references to result sets

@set Result-1
@and @set seta setb

Example 8-4. Attributes for terms

@attr 1=4 computer
@attr 1=4 @attr 4=1 "self portrait"
@attrset exp1 @attr 1=1 CategoryList
@attr gils 1=2008 Copenhagen

54



Chapter 8. Supporting Tools

@attr 1=/book/title computer

Example 8-5. PQF Proximity queries

@prox 0 3 1 2 k 2 dylan zimmerman

Note: Here the parameters 0, 3, 1, 2, k and 2 represent exclusion, distance, ordered, relation, which-code
and unit-code, in that order. So:

• exclusion = 0: the proximity condition must hold

• distance = 3: the terms must be three units apart

• ordered = 1: they must occur in the order they are specified

• relation = 2: lessThanOrEqual (to the distance of 3 units)

• which-code is “known”, so the standard unit-codes are used

• unit-code = 2: word.

So the whole proximity query means that the words dylan and zimmerman must both occur in the record, in
that order, differing in position by three or fewer words (i.e. with two or fewer words between them.) The
query would find “Bob Dylan, aka. Robert Zimmerman”, but not “Bob Dylan, born as Robert Zimmerman”
since the distance in this case is four.

Example 8-6. PQF specification of search term

@term string "a UTF-8 string, maybe?"

Example 8-7. PQF mixed queries

@or @and bob dylan @set Result-1

@attr 4=1 @and @attr 1=1 "bob dylan" @attr 1=4 "slow train coming"

@and @attr 2=4 @attr gils 1=2038 -114 @attr 2=2 @attr gils 1=2039 -109

Note: The last of these examples is a spatial search: in the GILS attribute set
(http://www.gils.net/prof_v2.html#sec_7_4), access point 2038 indicates West Bounding Coordinate and
2030 indicates East Bounding Coordinate, so the query is for areas extending from -114 degrees to no more
than -109 degrees.

55



Chapter 8. Supporting Tools

CCL
Not all users enjoy typing in prefix query structures and numerical attribute values, even in a minimalistic test
client. In the library world, the more intuitive Common Command Language - CCL (ISO 8777) has enjoyed
some popularity - especially before the widespread availability of graphical interfaces. It is still useful in
applications where you for some reason or other need to provide a symbolic language for expressing boolean
query structures.

The EUROPAGATE research project working under the Libraries programme of the European Commission’s
DG XIII has, amongst other useful tools, implemented a general-purpose CCL parser which produces an output
structure that can be trivially converted to the internal RPN representation of YAZ (TheZ_RPNQuery structure).
Since the CCL utility - along with the rest of the software produced by EUROPAGATE - is made freely available
on a liberal license, it is included as a supplement to YAZ.

CCL Syntax

The CCL parser obeys the following grammar for the FIND argument. The syntax is annotated by in the lines
prefixed by-- .

CCL-Find ::= CCL-Find Op Elements
| Elements.

Op ::= "and" | "or" | "not"
-- The above means that Elements are separated by boolean operators.

Elements ::= ’(’ CCL-Find ’)’
| Set
| Terms
| Qualifiers Relation Terms
| Qualifiers Relation ’(’ CCL-Find ’)’
| Qualifiers ’=’ string ’-’ string

-- Elements is either a recursive definition, a result set reference, a
-- list of terms, qualifiers followed by terms, qualifiers followed
-- by a recursive definition or qualifiers in a range (lower - upper).

Set ::= ’set’ = string
-- Reference to a result set

Terms ::= Terms Prox Term
| Term

-- Proximity of terms.

Term ::= Term string
| string

-- This basically means that a term may include a blank

Qualifiers ::= Qualifiers ’,’ string
| string

-- Qualifiers is a list of strings separated by comma

Relation ::= ’=’ | ’>=’ | ’<=’ | ’<>’ | ’>’ | ’<’

56



Chapter 8. Supporting Tools

-- Relational operators. This really doesn’t follow the ISO8777
-- standard.

Prox ::= ’%’ | ’!’
-- Proximity operator

Example 8-8. CCL queries

The following queries are all valid:

dylan

"bob dylan"

dylan or zimmerman

set=1

(dylan and bob) or set=1

Assuming that the qualifiersti , au anddate are defined we may use:

ti=self portrait

au=(bob dylan and slow train coming)

date>1980 and (ti=((self portrait)))

CCL Qualifiers

Qualifiers are used to direct the search to a particular searchable index, such as title (ti) and author indexes (au).
The CCL standard itself doesn’t specify a particular set of qualifiers, but it does suggest a few short-hand
notations. You can customize the CCL parser to support a particular set of qualifiers to reflect the current target
profile. Traditionally, a qualifier would map to a particular use-attribute within the BIB-1 attribute set. It is also
possible to set other attributes, such as the structure attribute.

A CCL profile is a set of predefined CCL qualifiers that may be read from a file or set in the CCL API. The YAZ
client reads its CCL qualifiers from a file nameddefault.bib . There are four types of lines in a CCL profile:
qualifier specification, qualifier alias, comments and directives.

Qualifier specification

A qualifier specification is of the form:

qualifier-name [attributeset , ]type =val [attributeset , ]type =val ...

wherequalifier-name is the name of the qualifier to be used (eg.ti ), type is attribute type in the attribute
set (Bib-1 is used if no attribute set is given) andval is attribute value. Thetype can be specified as an integer
or as it be specified either as a single-letter:u for use,r for relation,p for position,s for structure,t for truncation
or c for completeness. The attributes for the special qualifier nameterm are used when no CCL qualifier is
given in a query.

57



Chapter 8. Supporting Tools

Table 8-1. Common Bib-1 attributes

Type Description

u=value Use attribute. Common use attributes are 1 Personal-name, 4 Title, 7 ISBN, 8 ISSN, 30
Date, 62 Subject, 1003 Author), 1016 Any. Specify value as an integer.

r= value Relation attribute. Common values are 1 <, 2 <=, 3 =, 4 >=, 5 >, 6 <>, 100 phonetic, 101
stem, 102 relevance, 103 always matches.

p=value Position attribute. Values: 1 first in field, 2 first in any subfield, 3 any position in field.

s=value Structure attribute. Values: 1 phrase, 2 word, 3 key, 4 year, 5 date, 6 word list, 100 date
(un), 101 name (norm), 102 name (un), 103 structure, 104 urx, 105 free-form-text, 106
document-text, 107 local-number, 108 string, 109 numeric string.

t= value Truncation attribute. Values: 1 right, 2 left, 3 left& right, 100 none, 101 process #, 102
regular-1, 103 regular-2, 104 CCL.

c=value Completeness attribute. Values: 1 incomplete subfield, 2 complete subfield, 3 complete
field.

The complete list of Bib-1 attributes can be found here (http://lcweb.loc.gov/z3950/agency/defns/bib1.html).

It is also possible to specify non-numeric attribute values, which are used in combination with certain types. The
special combinations are:

Table 8-2. Special attribute combos

Name Description

s=pw The structure is set to either word or phrase depending on the number of tokens in a term
(phrase-word).

s=al Each token in the term is ANDed. (and-list). This does not set the structure at all.

s=ol Each token in the term is ORed. (or-list). This does not set the structure at all.

r=o Allows operators greather-than, less-than, ... equals and sets relation attribute accordingly
(relation ordered).

t=l Allows term to be left-truncated. If term is of the form?x , the resulting Type-1 term isx
and truncation is left.

t=r Allows term to be right-truncated. If term is of the formx? , the resulting Type-1 term isx
and truncation is right.

t=n If term is does not include?, the truncation attribute is set to none (100).

t=b Allows term to be both left&right truncated. If term is of the form?x? , the resulting term is
x and trunctation is set to both left&right.

Example 8-9. CCL profile

Consider the following definition:

ti u=4 s=1
au u=1 s=1
term s=105
ranked r=102
date u=30 r=o

58



Chapter 8. Supporting Tools

Four qualifiers are defined -ti , au, ranked anddate .

ti andau both set structure attribute to phrase (s=1).ti sets the use-attribute to 4.au sets the use-attribute to 1.
When no qualifiers are used in the query the structure-attribute is set to free-form-text (105) (rule forterm ). The
date sets the relation attribute to the relation used in the CCL query and sets the use attribute to 30 (Bib-1 Date).

You can combine attributes. To Search for "ranked title" you can do

ti,ranked=knuth computer

which will set relation=ranked, use=title, structure=phrase.

Query

year > 1980

is a valid query, while
ti > 1980

is invalid.

Qualifier alias

A qualifier alias is of the form:

q q1 q2 ..

which declaresq to be an alias forq1 , q2 ... such that the CCL queryq=x is equivalent toq1=x or q2=x
or ... .

Comments

Lines with white space or lines that begin with character# are treated as comments.

Directives

Directive specifications takes the form

@directive value

Table 8-3. CCL directives

Name Description Default

truncation Truncation character ?

field Specifies how multiple fields are to be combined. There are two modes:or :
multiple qualifier fields are ORed,merge : attributes for the qualifier fields are
merged and assigned to one term.

merge

case Specificies if CCL operatores and qualifiers should be compared with case
sensitivity or not. Specify 0 for case sensitive; 1 for case insensitive.

0

and Specifies token for CCL operator AND. and

or Specifies token for CCL operator OR. or

not Specifies token for CCL operator NOT. not

set Specifies token for CCL operator SET. set

59



Chapter 8. Supporting Tools

CCL API

All public definitions can be found in the header fileccl.h . A profile identifier is of typeCCL_bibset . A profile
must be created with the call to the functionccl_qual_mk which returns a profile handle of typeCCL_bibset .

To read a file containing qualifier definitions the functionccl_qual_file may be convenient. This function
takes an already openedFILE handle pointer as argument along with aCCL_bibset handle.

To parse a simple string with a FIND query use the function

struct ccl_rpn_node *ccl_find_str (CCL_bibset bibset, const char *str,
int *error, int *pos);

which takes the CCL profile (bibset ) and query (str ) as input. Upon successful completion the RPN tree is
returned. If an error occur, such as a syntax error, the integer pointed to byerror holds the error code andpos

holds the offset inside query string in which the parsing failed.

An English representation of the error may be obtained by calling theccl_err_msg function. The error codes
are listed inccl.h .

To convert the CCL RPN tree (typestruct ccl_rpn_node * ) to the Z_RPNQuery of YAZ the function
ccl_rpn_query must be used. This function which is part of YAZ is implemented inyaz-ccl.c . After calling
this function the CCL RPN tree is probably no longer needed. Theccl_rpn_delete destroys the CCL RPN
tree.

A CCL profile may be destroyed by calling theccl_qual_rm function.

The token names for the CCL operators may be changed by setting the globals (all typechar * )
ccl_token_and , ccl_token_or , ccl_token_not andccl_token_set . An operator may have aliases, i.e.
there may be more than one name for the operator. To do this, separate each alias with a space character.

CQL
CQL (http://www.loc.gov/z3950/agency/zing/cql/) - Common Query Language - was defined for the SRW
(http://www.loc.gov/z3950/agency/zing/srw/) protocol. In many ways CQL has a similar syntax to CCL. The
objective of CQL is different. Where CCL aims to be an end-user language, CQL istheprotocol query language
for SRW.

Tip: If you are new to CQL, read the Gentle Introduction (http://zing.z3950.org/cql/intro.html).

The CQL parser in YAZ provides the following:

• It parses and validates a CQL query.

• It generates a C structure that allows you to convert a CQL query to some other query language, such as SQL.

• The parser converts a valid CQL query to PQF, thus providing a way to use CQL for both SRW/SRU servers
and Z39.50 targets at the same time.

• The parser converts CQL to XCQL (http://www.loc.gov/z3950/agency/zing/cql/xcql.html). XCQL is an XML
representation of CQL. XCQL is part of the SRW specification. However, since SRU supports CQL only, we
don’t expect XCQL to be widely used. Furthermore, CQL has the advantage over XCQL that it is easy to read.

60



Chapter 8. Supporting Tools

CQL parsing

A CQL parser is represented by theCQL_parser handle. Its contents should be considered YAZ internal
(private).

#include <yaz/cql.h>

typedef struct cql_parser *CQL_parser;

CQL_parser cql_parser_create(void);
void cql_parser_destroy(CQL_parser cp);

A parser is created bycql_parser_create and is destroyed bycql_parser_destroy .

To parse a CQL query string, the following function is provided:

int cql_parser_string(CQL_parser cp, const char *str);

A CQL query is parsed by thecql_parser_string which takes a querystr . If the query was valid (no
syntax errors), then zero is returned; otherwise -1 is returned to indicate a syntax error.

int cql_parser_stream(CQL_parser cp,
int (*getbyte)(void *client_data),
void (*ungetbyte)(int b, void *client_data),
void *client_data);

int cql_parser_stdio(CQL_parser cp, FILE *f);

The functionscql_parser_stream andcql_parser_stdio parses a CQL query - just like
cql_parser_string . The only difference is that the CQL query can be fed to the parser in different ways. The
cql_parser_stream uses a generic byte stream as input. Thecql_parser_stdio uses aFILE handle which
is opened for reading.

CQL tree

The the query string is valid, the CQL parser generates a tree representing the structure of the CQL query.

struct cql_node *cql_parser_result(CQL_parser cp);

cql_parser_result returns the a pointer to the root node of the resulting tree.

Each node in a CQL tree is represented by astruct cql_node . It is defined as follows:

#define CQL_NODE_ST 1
#define CQL_NODE_BOOL 2
#define CQL_NODE_MOD 3
struct cql_node {

int which;
union {

struct {
char *index;
char *term;
char *relation;

61



Chapter 8. Supporting Tools

struct cql_node *modifiers;
struct cql_node *prefixes;

} st;
struct {

char *value;
struct cql_node *left;
struct cql_node *right;
struct cql_node *modifiers;
struct cql_node *prefixes;

} boolean;
struct {

char *name;
char *value;
struct cql_node *next;

} mod;
} u;

};

There are three kinds of nodes, search term (ST), boolean (BOOL), and modifier (MOD).

The search term node has five members:

• index : index for search term. If an index is unspecified for a search term,index will be NULL.

• term : the search term itself.

• relation : relation for search term.

• modifiers : relation modifiers for search term. Themodifiers is a simple linked list (NULL for last entry).
Each relation modifier node is of typeMOD.

• prefixes : index prefixes for search term. Theprefixes is a simple linked list (NULL for last entry). Each
prefix node is of typeMOD.

The boolean node represents bothand , or , not as well as proximity.

• left andright : left - and right operand respectively.

• modifiers : proximity arguments.

• prefixes : index prefixes. Theprefixes is a simple linked list (NULL for last entry). Each prefix node is of
typeMOD.

The modifier node is a "utility" node used for name-value pairs, such as prefixes, proximity arguements, etc.

• name name of mod node.

• value value of mod node.

• next : pointer to next node which is always a mod node (NULL for last entry).

62



Chapter 8. Supporting Tools

CQL to PQF conversion

Conversion to PQF (and Z39.50 RPN) is tricky by the fact that the resulting RPN depends on the Z39.50 target
capabilities (combinations of supported attributes). In addition, the CQL and SRW operates on index prefixes
(URI or strings), whereas the RPN uses Object Identifiers for attribute sets.

The CQL library of YAZ defines acql_transform_t type. It represents a particular mapping between CQL
and RPN. This handle is created and destroyed by the functions:

cql_transform_t cql_transform_open_FILE (FILE *f);
cql_transform_t cql_transform_open_fname(const char *fname);
void cql_transform_close(cql_transform_t ct);

The first two functions create a tranformation handle from either an already open FILE or from a filename
respectively.

The handle is destroyed bycql_transform_close in which case no further reference of the handle is allowed.

When acql_transform_t handle has been created you can convert to RPN.

int cql_transform_buf(cql_transform_t ct,
struct cql_node *cn, char *out, int max);

This function converts the CQL treecn using handlect . For the resulting PQF, you supply a bufferout which
must be able to hold at at leastmax characters.

If conversion failed,cql_transform_buf returns a non-zero SRW error code; otherwise zero is returned
(conversion successful). The meanings of the numeric error codes are listed in the SRW specifications at
http://www.loc.gov/srw/diagnostic-list.html

If conversion fails, more information can be obtained by calling

int cql_transform_error(cql_transform_t ct, char **addinfop);

This function returns the most recently returned numeric error-code and sets the string-pointer at*addinfop to
point to a string containing additional information about the error that occurred: for example, if the error code is
15 (“Illegal or unsupported context set”), the additional information is the name of the requested context set that
was not recognised.

The SRW error-codes may be translated into brief human-readable error messages using

const char *cql_strerror(int code);

If you wish to be able to produce a PQF result in a different way, there are two alternatives.

void cql_transform_pr(cql_transform_t ct,
struct cql_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

int cql_transform_FILE(cql_transform_t ct,
struct cql_node *cn, FILE *f);

63



Chapter 8. Supporting Tools

The former function produces output to a user-defined output stream. The latter writes the result to an already
openFILE .

Specification of CQL to RPN mapping

The file supplied to functionscql_transform_open_FILE , cql_transform_open_fname follows a
structure found in many Unix utilities. It consists of mapping specifications - one per line. Lines starting with#

are ignored (comments).

Each line is of the form

CQL pattern = RPN equivalent

An RPN pattern is a simple attribute list. Each attribute pair takes the form:

[set ] type =value

The attributeset is optional. Thetype is the attribute type,value the attribute value.

The following CQL patterns are recognized:

index. set . name

This pattern is invoked when a CQL index, such as dc.title is converted.set andname are the context set
and index name respectively. Typically, the RPN specifies an equivalent use attribute.

For terms not bound by an index the patternindex.cql.serverChoice is used. Here, the prefixcql is
defined ashttp://www.loc.gov/zing/cql/cql-indexes/v1.0/ . If this pattern is not defined, the
mapping will fail.

qualifier. set . name (DEPRECATED)

For backwards compatibility, this is recognised as a synonym ofindex. set . name

relation. relation

This pattern specifies how a CQL relation is mapped to RPN.pattern is name of relation operator. Since
= is used as separator between CQL pattern and RPN, CQL relations including= cannot be used directly. To
avoid a conflict, the namesge, eq, le , must be used for CQL operators, greater-than-or-equal, equal,
less-than-or-equal respectively. The RPN pattern is supposed to include a relation attribute.

For terms not bound by a relation, the patternrelation.scr is used. If the pattern is not defined, the
mapping will fail.

The special pattern,relation.* is used when no other relation pattern is matched.

relationModifier. mod

This pattern specifies how a CQL relation modifier is mapped to RPN. The RPN pattern is usually a relation
attribute.

64



Chapter 8. Supporting Tools

structure. type

This pattern specifies how a CQL structure is mapped to RPN. Note that this CQL pattern is somewhat to
similar to CQL patternrelation . Thetype is a CQL relation.

The pattern,structure.* is used when no other structure pattern is matched. Usually, the RPN equivalent
specifies a structure attribute.

position. type

This pattern specifies how the anchor (position) of CQL is mapped to RPN. Thetype is one offirst ,
any , last , firstAndLast .

The pattern,position.* is used when no other position pattern is matched.

set. prefix

This specification defines a CQL context set for a given prefix. The value on the right hand side is the URI
for the set -not RPN. All prefixes used in index patterns must be defined this way.

Example 8-10. CQL to RPN mapping file

This simple file defines two context sets, three indexes and three relations, a position pattern and a default
structure.

set.cql = http://www.loc.gov/zing/cql/context-sets/cql/v1.1/
set.dc = http://www.loc.gov/zing/cql/dc-indexes/v1.0/

index.cql.serverChoice = 1=1016
index.dc.title = 1=4
index.dc.subject = 1=21

relation.< = 2=1
relation.eq = 2=3
relation.scr = 2=3

position.any = 3=3 6=1

structure.* = 4=1

With the mappings above, the CQL query
computer

is converted to the PQF:
@attr 1=1016 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "computer"

by rulesindex.cql.serverChoice , relation.scr , structure.* , position.any .

CQL query

computer^

is rejected, sinceposition.right is undefined.

65



Chapter 8. Supporting Tools

CQL query

>my = "http://www.loc.gov/zing/cql/dc-indexes/v1.0/" my.title = x

is converted to
@attr 1=4 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "x"

CQL to XCQL conversion

Conversion from CQL to XCQL is trivial and does not require a mapping to be defined. There three functions to
choose from depending on the way you wish to store the resulting output (XML buffer containing XCQL).

int cql_to_xml_buf(struct cql_node *cn, char *out, int max);
void cql_to_xml(struct cql_node *cn,

void (*pr)(const char *buf, void *client_data),
void *client_data);

void cql_to_xml_stdio(struct cql_node *cn, FILE *f);

Functioncql_to_xml_buf converts to XCQL and stores result in a user supplied buffer of a given max size.

cql_to_xml writes the result in a user defined output stream.cql_to_xml_stdio writes to a a file.

Object Identifiers
The basic YAZ representation of an OID is an array of integers, terminated with the value -1. The ODR module
provides two utility-functions to create and copy this type of data elements:

Odr_oid *odr_getoidbystr(ODR o, char *str);

Creates an OID based on a string-based representation using dots (.) to separate elements in the OID.

Odr_oid *odr_oiddup(ODR odr, Odr_oid *o);

Creates a copy of the OID referenced by theo parameter. Both functions take an ODR stream as parameter. This
stream is used to allocate memory for the data elements, which is released on a subsequent call toodr_reset()

on that stream.

The OID module provides a higher-level representation of the family of object identifiers which describe the
Z39.50 protocol and its related objects. The definition of the module interface is given in theoid.h file.

The interface is mainly based on theoident structure. The definition of this structure looks like this:

typedef struct oident
{

oid_proto proto;
oid_class oclass;
oid_value value;
int oidsuffix[OID_SIZE];

66



Chapter 8. Supporting Tools

char *desc;
} oident;

The proto field takes one of the values

PROTO_Z3950
PROTO_GENERAL

UsePROTO_Z3950for Z39.50 Object Identifers,PROTO_GENERALfor other types (such as those associated with
ILL).

The oclass field takes one of the values

CLASS_APPCTX
CLASS_ABSYN
CLASS_ATTSET
CLASS_TRANSYN
CLASS_DIAGSET
CLASS_RECSYN
CLASS_RESFORM
CLASS_ACCFORM
CLASS_EXTSERV
CLASS_USERINFO
CLASS_ELEMSPEC
CLASS_VARSET
CLASS_SCHEMA
CLASS_TAGSET
CLASS_GENERAL

corresponding to the OID classes defined by the Z39.50 standard. Finally, the value field takes one of the values

VAL_APDU
VAL_BER
VAL_BASIC_CTX
VAL_BIB1
VAL_EXP1
VAL_EXT1
VAL_CCL1
VAL_GILS
VAL_WAIS
VAL_STAS
VAL_DIAG1
VAL_ISO2709
VAL_UNIMARC
VAL_INTERMARC
VAL_CCF
VAL_USMARC
VAL_UKMARC
VAL_NORMARC
VAL_LIBRISMARC
VAL_DANMARC
VAL_FINMARC
VAL_MAB
VAL_CANMARC
VAL_SBN

67



Chapter 8. Supporting Tools

VAL_PICAMARC
VAL_AUSMARC
VAL_IBERMARC
VAL_EXPLAIN
VAL_SUTRS
VAL_OPAC
VAL_SUMMARY
VAL_GRS0
VAL_GRS1
VAL_EXTENDED
VAL_RESOURCE1
VAL_RESOURCE2
VAL_PROMPT1
VAL_DES1
VAL_KRB1
VAL_PRESSET
VAL_PQUERY
VAL_PCQUERY
VAL_ITEMORDER
VAL_DBUPDATE
VAL_EXPORTSPEC
VAL_EXPORTINV
VAL_NONE
VAL_SETM
VAL_SETG
VAL_VAR1
VAL_ESPEC1

again, corresponding to the specific OIDs defined by the standard. Refer to the Registry of Z39.50 Object
Identifiers (http://lcweb.loc.gov/z3950/agency/defns/oids.html) for the whole list.

The desc field contains a brief, mnemonic name for the OID in question.

The function

struct oident *oid_getentbyoid(int *o);

takes as argument an OID, and returns a pointer to a static area containing anoident structure. You typically
use this function when you receive a PDU containing an OID, and you wish to branch out depending on the
specific OID value.

The function

int *oid_ent_to_oid(struct oident *ent, int *dst);

Takes as argument anoident structure - in which theproto , oclass /, andvalue fields are assumed to be set
correctly - and returns a pointer to a the buffer as given bydst containing the base representation of the
corresponding OID. The function returns NULL and the array dst is unchanged if a mapping couldn’t place. The
arraydst should be at least of sizeOID_SIZE .

Theoid_ent_to_oid() function can be used whenever you need to prepare a PDU containing one or more
OIDs. The separation of theprotocol element from the remainder of the OID-description makes it simple to
write applications that can communicate with either Z39.50 or OSI SR-based applications.

The function

68



Chapter 8. Supporting Tools

oid_value oid_getvalbyname(const char *name);

takes as argument a mnemonic OID name, and returns the/value field of the first entry in the database that
contains the given name in itsdesc field.

Three utility functions are provided for translating OIDs’ symbolic names (e.g.Usmarc into OID structures (int
arrays) and strings containing the OID in dotted notation (e.g.1.2.840.10003.9.5.1 ). They are:

int *oid_name_to_oid(oid_class oclass, const char *name, int *oid);
char *oid_to_dotstring(const int *oid, char *oidbuf);
char *oid_name_to_dotstring(oid_class oclass, const char *name, char *oidbuf);

oid_name_to_oid() translates the specified symbolicname, interpreted as being of classoclass . (The class
must be specified as many symbolic names exist within multiple classes - for example,Zthes is the symbolic
name of an attribute set, a schema and a tag-set.) The sequence of integers representing the OID is written into
the areaoid provided by the caller; it is the caller’s responsibility to ensure that this area is large enough to
contain the translated OID. As a convenience, the address of the buffer (i.e. the value ofoid ) is returned.

oid_to_dotstring() Translates the int-arrayoid into a dotted string which is written into the areaoidbuf

supplied by the caller; it is the caller’s responsibility to ensure that this area is large enough. The address of the
buffer is returned.

oid_name_to_dotstring() combines the previous two functions to derive a dotted string representing the
OID specified byoclass andname, writing it into the buffer passed asoidbuf and returning its address.

Finally, the module provides the following utility functions, whose meaning should be obvious:

void oid_oidcpy(int *t, int *s);
void oid_oidcat(int *t, int *s);
int oid_oidcmp(int *o1, int *o2);
int oid_oidlen(int *o);

Note: The OID module has been criticized - and perhaps rightly so - for needlessly abstracting the
representation of OIDs. Other toolkits use a simple string-representation of OIDs with good results. In
practice, we have found the interface comfortable and quick to work with, and it is a simple matter (for what
it’s worth) to create applications compatible with both ISO SR and Z39.50. Finally, the use of the /oident

database is by no means mandatory. You can easily create your own system for representing OIDs, as long
as it is compatible with the low-level integer-array representation of the ODR module.

Nibble Memory
Sometimes when you need to allocate and construct a large, interconnected complex of structures, it can be a bit
of a pain to release the associated memory again. For the structures describing the Z39.50 PDUs and related
structures, it is convenient to use the memory-management system of the ODR subsystem (seethe Section called
Using ODRin Chapter 9). However, in some circumstances where you might otherwise benefit from using a
simple nibble memory management system, it may be impractical to useodr_malloc() andodr_reset() .
For this purpose, the memory manager which also supports the ODR streams is made available in the NMEM
module. The external interface to this module is given in thenmem.h file.

The following prototypes are given:

69



Chapter 8. Supporting Tools

NMEM nmem_create(void);
void nmem_destroy(NMEM n);
void *nmem_malloc(NMEM n, int size);
void nmem_reset(NMEM n);
int nmem_total(NMEM n);
void nmem_init(void);
void nmem_exit(void);

Thenmem_create() function returns a pointer to a memory control handle, which can be released again by
nmem_destroy() when no longer needed. The functionnmem_malloc() allocates a block of memory of the
requested size. A call tonmem_reset() or nmem_destroy() will release all memory allocated on the handle
since it was created (or since the last call tonmem_reset() . The functionnmem_total() returns the number
of bytes currently allocated on the handle.

The nibble memory pool is shared amongst threads. POSIX mutex’es and WIN32 Critical sections are
introduced to keep the module thread safe. Functionnmem_init() initializes the nibble memory library and it is
called automatically the first time theYAZ.DLL is loaded. YAZ uses functionDllMain to achieve this. You
shouldnot call nmem_init or nmem_exit unless you’re absolute sure what you’re doing. Note that in previous
YAZ versions you’d have to callnmem_init yourself.

MARC
YAZ provides a fast utility that decodes MARC records and encodes to a varity of output formats. The MARC
records must be encoded in ISO2709.

#include <yaz/marcdisp.h>

/* create handler */
yaz_marc_t yaz_marc_create(void);
/* destroy */
void yaz_marc_destroy(yaz_marc_t mt);

/* set XML mode YAZ_MARC_LINE, YAZ_MARC_SIMPLEXML, ... */
void yaz_marc_xml(yaz_marc_t mt, int xmlmode);
#define YAZ_MARC_LINE 0
#define YAZ_MARC_SIMPLEXML 1
#define YAZ_MARC_OAIMARC 2
#define YAZ_MARC_MARCXML 3
#define YAZ_MARC_ISO2709 4

/* supply iconv handle for character set conversion .. */
void yaz_marc_iconv(yaz_marc_t mt, yaz_iconv_t cd);

/* set debug level, 0=none, 1=more, 2=even more, .. */
void yaz_marc_debug(yaz_marc_t mt, int level);

/* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.
On success, result in *result with size *rsize. */
int yaz_marc_decode_buf (yaz_marc_t mt, const char *buf, int bsize,

char **result, int *rsize);

/* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.
On success, result in WRBUF */

int yaz_marc_decode_wrbuf (yaz_marc_t mt, const char *buf,

70



Chapter 8. Supporting Tools

int bsize, WRBUF wrbuf);

A MARC conversion handle must be created by usingyaz_marc_create and destroyed by calling
yaz_marc_destroy .

All other function operate on ayaz_marc_t handle. The output is specified by a call toyaz_marc_xml . The
xmlmode must be one of

YAZ_MARC_LINE

A simple line-by-line format suitable for display but not recommend for further (machine) processing.

YAZ_MARC_MARXML

The resulting record is converted to MARCXML.

YAZ_MARC_ISO2709

The resulting record is converted to ISO2709 (MARC).

The actual conversion functions areyaz_marc_decode_buf andyaz_marc_decode_wrbuf which decodes
and encodes a MARC record. The former function operates on simple buffers, the stores the resulting record in a
WRBUF handle (WRBUF is a simple string type).

Example 8-11. Display of MARC record

The followint program snippet illustrates how the MARC API may be used to convert a MARC record to the
line-by-line format:

void print_marc(const char *marc_buf, int marc_buf_size)
{

char *result; /* for result buf */
int result_len; /* for size of result */
yaz_marc_t mt = yaz_marc_create();
yaz_marc_xml(mt, YAZ_MARC_LINE);
yaz_marc_decode_buf(mt, marc_buf, marc_buf_size,

&result, &result_len);
fwrite(result, result_len, 1, stdout);
yaz_marc_destroy(mt); /* note that result is now freed... */

}

71



Chapter 9. The ODR Module

Introduction
ODR is the BER-encoding/decoding subsystem of YAZ. Care as been taken to isolate ODR from the rest of the
package - specifically from the transport interface. ODR may be used in any context where basic ASN.1/BER
representations are used.

If you are only interested in writing a Z39.50 implementation based on the PDUs that are already provided with
YAZ, you only need to concern yourself with the section on managing ODR streams (the Section calledUsing
ODR). Only if you need to implement ASN.1 beyond that which has been provided, should you worry about the
second half of the documentation (the Section calledProgramming with ODR). If you use one of the higher-level
interfaces, you can skip this section entirely.

This is important, so we’ll repeat it for emphasis:You do not need to readthe Section called Programming with
ODRto implement Z39.50 with YAZ.

If you need a part of the protocol that isn’t already in YAZ, you should contact the authors before going to work
on it yourself: We might already be working on it. Conversely, if you implement a useful part of the protocol
before us, we’d be happy to include it in a future release.

Using ODR

ODR Streams
Conceptually, the ODR stream is the source of encoded data in the decoding mode; when encoding, it is the
receptacle for the encoded data. Before you can use an ODR stream it must be allocated. This is done with the
function

ODR odr_createmem(int direction);

Theodr_createmem() function takes as argument one of three manifest constants:ODR_ENCODE,
ODR_DECODE, or ODR_PRINT. An ODR stream can be in only one mode - it is not possible to change its mode
once it’s selected. Typically, your program will allocate at least two ODR streams - one for decoding, and one for
encoding.

When you’re done with the stream, you can use

void odr_destroy(ODR o);

to release the resources allocated for the stream.

Memory Management
Two forms of memory management take place in the ODR system. The first one, which has to do with allocating
little bits of memory (sometimes quite large bits of memory, actually) when a protocol package is decoded, and
turned into a complex of interlinked structures. This section deals with this system, and how you can use it for

72



Chapter 9. The ODR Module

your own purposes. The next section deals with the memory management which is required when encoding data
- to make sure that a large enough buffer is available to hold the fully encoded PDU.

The ODR module has its own memory management system, which is used whenever memory is required.
Specifically, it is used to allocate space for data when decoding incoming PDUs. You can use the memory
system for your own purposes, by using the function

void *odr_malloc(ODR o, int size);

You can’t use the normalfree(2) routine to free memory allocated by this function, and ODR doesn’t provide
a parallel function. Instead, you can call

void odr_reset(ODR o, int size);

when you are done with the memory: Everything allocated since the last call toodr_reset() is released. The
odr_reset() call is also required to clear up an error condition on a stream.

The function

int odr_total(ODR o);

returns the number of bytes allocated on the stream since the last call toodr_reset() .

The memory subsystem of ODR is fairly efficient at allocating and releasing little bits of memory. Rather than
managing the individual, small bits of space, the system maintains a free-list of larger chunks of memory, which
are handed out in small bits. This scheme is generally known as anibble memorysystem. It is very useful for
maintaining short-lived constructions such as protocol PDUs.

If you want to retain a bit of memory beyond the next call toodr_reset() , you can use the function

ODR_MEM odr_extract_mem(ODR o);

This function will give you control of the memory recently allocated on the ODR stream. The memory will live
(past calls toodr_reset() ), until you call the function

void odr_release_mem(ODR_MEM p);

The opaqueODR_MEMhandle has no other purpose than referencing the memory block for you until you want to
release it.

You can useodr_extract_mem() repeatedly between allocating data, to retain individual control of separate
chunks of data.

Encoding and Decoding Data
When encoding data, the ODR stream will write the encoded octet string in an internal buffer. To retrieve the
data, use the function

char *odr_getbuf(ODR o, int *len, int *size);

The integer pointed to by len is set to the length of the encoded data, and a pointer to that data is returned.*size

is set to the size of the buffer (unlesssize is null, signaling that you are not interested in the size). The next call

73



Chapter 9. The ODR Module

to a primitive function using the same ODR stream will overwrite the data, unless a different buffer has been
supplied using the call

void odr_setbuf(ODR o, char *buf, int len, int can_grow);

which sets the encoding (or decoding) buffer used byo to buf , using the lengthlen . Before a call to an
encoding function, you can useodr_setbuf() to provide the stream with an encoding buffer of sufficient size
(length). Thecan_grow parameter tells the encoding ODR stream whether it is allowed to userealloc(2) to
increase the size of the buffer when necessary. The default condition of a new encoding stream is equivalent to
the results of calling

odr_setbuf(stream, 0, 0, 1);

In this case, the stream will allocate and reallocate memory as necessary. The stream reallocates memory by
repeatedly doubling the size of the buffer - the result is that the buffer will typically reach its maximum, working
size with only a small number of reallocation operations. The memory is freed by the stream when the latter is
destroyed, unless it was assigned by the user with thecan_grow parameter set to zero (in this case, you are
expected to retain control of the memory yourself).

To assume full control of an encoded buffer, you must first callodr_getbuf() to fetch the buffer and its length.
Next, you should callodr_setbuf() to provide a different buffer (or a null pointer) to the stream. In the
simplest case, you will reuse the same buffer over and over again, and you will just need to callodr_getbuf()

after each encoding operation to get the length and address of the buffer. Note that the stream may reallocate the
buffer during an encoding operation, so it is necessary to retrieve the correct address after each encoding
operation.

It is important to realize that the ODR stream will not release this memory when you callodr_reset() : It will
merely update its internal pointers to prepare for the encoding of a new data value. When the stream is released
by theodr_destroy() function, the memory given to it byodr_setbuf will be releasedonly if the can_grow

parameter toodr_setbuf() was nonzero. Thecan_grow parameter, in other words, is a way of signaling who
is to own the buffer, you or the ODR stream. If you never callodr_setbuf() on your encoding stream, which
is typically the case, the buffer allocated by the stream will belong to the stream by default.

When you wish to decode data, you should first callodr_setbuf() , to tell the decoding stream where to find
the encoded data, and how long the buffer is (thecan_grow parameter is ignored by a decoding stream). After
this, you can call the function corresponding to the data you wish to decode (eg,odr_integer() odr
z_APDU() ).

Example 9-1. Encoding and decoding functions

int odr_integer(ODR o, int **p, int optional, const char *name);

int z_APDU(ODR o, Z_APDU **p, int optional, const char *name);

If the data is absent (or doesn’t match the tag corresponding to the type), the return value will be either 0 or 1
depending on theoptional flag. If optional is 0 and the data is absent, an error flag will be raised in the
stream, and you’ll need to callodr_reset() before you can use the stream again. Ifoptional is nonzero, the
pointerpointedto/ by p will be set to the null value, and the function will return 1. Thename argument is used to
pretty-print the tag in question. It may be set toNULL if pretty-printing is not desired.

If the data value is found where it’s expected, the pointerpointed toby thep argument will be set to point to the
decoded type. The space for the type will be allocated and owned by the ODR stream, and it will live until you
call odr_reset() on the stream. You cannot usefree(2) to release the memory. You can decode several data

74



Chapter 9. The ODR Module

elements (by repeated calls toodr_setbuf() and your decoding function), and new memory will be allocated
each time. When you do callodr_reset() , everything decoded since the last call toodr_reset() will be
released.

Example 9-2. Encoding and decoding of an integer

The use of the double indirection can be a little confusing at first (its purpose will become clear later on,
hopefully), so an example is in order. We’ll encode an integer value, and immediately decode it again using a
different stream. A useless, but informative operation.

void do_nothing_useful(int value)
{

ODR encode, decode;
int *valp, *resvalp;
char *bufferp;
int len;

/* allocate streams */
if (!(encode = odr_createmem(ODR_ENCODE)))

return;
if (!(decode = odr_createmem(ODR_DECODE)))

return;

valp = &amp;value;
if (odr_integer(encode, &amp;valp, 0, 0) == 0)
{

printf("encoding went bad\n");
return;

}
bufferp = odr_getbuf(encode, &amp;len);
printf("length of encoded data is &percnt;d\n", len);

/* now let’s decode the thing again */
odr_setbuf(decode, bufferp, len);
if (odr_integer(decode, &amp;resvalp, 0, 0) == 0)
{

printf("decoding went bad\n");
return;

}
printf("the value is &percnt;d\n", *resvalp);

/* clean up */
odr_destroy(encode);
odr_destroy(decode);

}

This looks like a lot of work, offhand. In practice, the ODR streams will typically be allocated once, in the
beginning of your program (or at the beginning of a new network session), and the encoding and decoding will
only take place in a few, isolated places in your program, so the overhead is quite manageable.

75



Chapter 9. The ODR Module

Diagnostics
The encoding/decoding functions all return 0 when an error occurs. Until you callodr_reset() , you cannot
use the stream again, and any function called will immediately return 0.

To provide information to the programmer or administrator, the function

void odr_perror(ODR o, char *message);

is provided, which prints themessage argument tostderr along with an error message from the stream.

You can also use the function

int odr_geterror(ODR o);

to get the current error number from the screen. The number will be one of these constants:

Table 9-1. ODR Error codes

code Description

OMEMORY Memory allocation failed.

OSYSERR A system- or library call has failed. The standard
diagnostic variableerrno should be examined to
determine the actual error.

OSPACE No more space for encoding. This will only occur when
the user has explicitly provided a buffer for an encoding
stream without allowing the system to allocate more
space.

OREQUIRED This is a common protocol error; A required data
element was missing during encoding or decoding.

OUNEXPECTED An unexpected data element was found during
decoding.

OOTHER Other error. This is typically an indication of misuse of
the ODR system by the programmer, and also that the
diagnostic system isn’t as good as it should be, yet.

The character string array

char *odr_errlist[]

can be indexed by the error code to obtain a human-readable representation of the problem.

Summary and Synopsis

#include <odr.h>

ODR odr_createmem(int direction);

void odr_destroy(ODR o);

void odr_reset(ODR o);

76



Chapter 9. The ODR Module

char *odr_getbuf(ODR o, int *len);

void odr_setbuf(ODR o, char *buf, int len);

void *odr_malloc(ODR o, int size);

ODR_MEM odr_extract_mem(ODR o);

void odr_release_mem(ODR_MEM r);

int odr_geterror(ODR o);

void odr_perror(char *message);

extern char *odr_errlist[];

Programming with ODR
The API of ODR is designed to reflect the structure of ASN.1, rather than BER itself. Future releases may be
able to represent data in other external forms.

Tip: There is an ASN.1 tutorial available at this site (http://asn1.elibel.tm.fr/en/introduction/). This site also
has standards for ASN.1 (X.680) and BER (X.690) online (http://asn1.elibel.tm.fr/en/standards/).

The ODR interface is based loosely on that of the Sun Microsystems XDR routines. Specifically, each function
which corresponds to an ASN.1 primitive type has a dual function. Depending on the settings of the ODR stream
which is supplied as a parameter, the function may be used either to encode or decode data. The functions that
can be built using these primitive functions, to represent more complex data types, share this quality. The result
is that you only have to enter the definition for a type once - and you have the functionality of encoding,
decoding (and pretty-printing) all in one unit. The resulting C source code is quite compact, and is a pretty
straightforward representation of the source ASN.1 specification.

In many cases, the model of the XDR functions works quite well in this role. In others, it is less elegant. Most of
the hassle comes from the optional SEQUENCE members which don’t exist in XDR.

The Primitive ASN.1 Types
ASN.1 defines a number of primitive types (many of which correspond roughly to primitive types in structured
programming languages, such as C).

INTEGER

The ODR function for encoding or decoding (or printing) the ASN.1 INTEGER type looks like this:

int odr_integer(ODR o, int **p, int optional, const char *name);

(we don’t allow values that can’t be contained in a C integer.)

77



Chapter 9. The ODR Module

This form is typical of the primitive ODR functions. They are named after the type of data that they encode or
decode. They take an ODR stream, an indirect reference to the type in question, and anoptional flag
(corresponding to the OPTIONAL keyword of ASN.1) as parameters. They all return an integer value of either
one or zero. When you use the primitive functions to construct encoders for complex types of your own, you
should follow this model as well. This ensures that your new types can be reused as elements in yet more
complex types.

Theo parameter should obviously refer to a properly initialized ODR stream of the right type
(encoding/decoding/printing) for the operation that you wish to perform.

When encoding or printing, the function first looks at* p . If * p (the pointer pointed to byp) is a null pointer,
this is taken to mean that the data element is absent. If theoptional parameter is nonzero, the function will
return one (signifying success) without any further processing. If theoptional is zero, an internal error flag is
set in the ODR stream, and the function will return 0. No further operations can be carried out on the stream
without a call to the functionodr_reset() .

If *p is not a null pointer, it is expected to point to an instance of the data type. The data will be subjected to the
encoding rules, and the result will be placed in the buffer held by the ODR stream.

The other ASN.1 primitives have similar functions that operate in similar manners:

BOOLEAN

int odr_bool(ODR o, bool_t **p, int optional, const char *name);

REAL

Not defined.

NULL

int odr_null(ODR o, bool_t **p, int optional, const char *name);

In this case, the value of **p is not important. If*p is different from the null pointer, the null value is present,
otherwise it’s absent.

OCTET STRING

typedef struct odr_oct
{

unsigned char *buf;
int len;
int size;

} Odr_oct;

int odr_octetstring(ODR o, Odr_oct **p, int optional,
const char *name);

78



Chapter 9. The ODR Module

Thebuf field should point to the character array that holds the octetstring. Thelen field holds the actual length,
while thesize field gives the size of the allocated array (not of interest to you, in most cases). The character
array need not be null terminated.

To make things a little easier, an alternative is given for string types that are not expected to contain embedded
NULL characters (eg. VisibleString):

int odr_cstring(ODR o, char **p, int optional, const char *name);

Which encoded or decodes between OCTETSTRING representations and null-terminates C strings.

Functions are provided for the derived string types, eg:

int odr_visiblestring(ODR o, char **p, int optional,
const char *name);

BIT STRING

int odr_bitstring(ODR o, Odr_bitmask **p, int optional,
const char *name);

The opaque typeOdr_bitmask is only suitable for holding relatively brief bit strings, eg. for options fields, etc.
The constantODR_BITMASK_SIZEmultiplied by 8 gives the maximum possible number of bits.

A set of macros are provided for manipulating theOdr_bitmask type:

void ODR_MASK_ZERO(Odr_bitmask *b);

void ODR_MASK_SET(Odr_bitmask *b, int bitno);

void ODR_MASK_CLEAR(Odr_bitmask *b, int bitno);

int ODR_MASK_GET(Odr_bitmask *b, int bitno);

The functions are modeled after the manipulation functions that accompany thefd_set type used by the
select(2) call. ODR_MASK_ZEROshould always be called first on a new bitmask, to initialize the bits to zero.

OBJECT IDENTIFIER

int odr_oid(ODR o, Odr_oid **p, int optional, const char *name);

The C OID representation is simply an array of integers, terminated by the value -1 (theOdr_oid type is
synonymous with theint type). We suggest that you use the OID database module (seethe Section called
Object Identifiersin Chapter 6) to handle object identifiers in your application.

79



Chapter 9. The ODR Module

Tagging Primitive Types
The simplest way of tagging a type is to use theodr_implicit_tag() or odr_explicit_tag() macros:

int odr_implicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

int odr_explicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

To create a type derived from the integer type by implicit tagging, you might write:

MyInt ::= [210] IMPLICIT INTEGER

In the ODR system, this would be written like:

int myInt(ODR o, int **p, int optional, const char *name)
{

return odr_implicit_tag(o, odr_integer, p,
ODR_CONTEXT, 210, optional, name);

}

The functionmyInt() can then be used like any of the primitive functions provided by ODR. Note that the
behavior ofodr_explicit_tag() andodr_implicit_tag() macros act exactly the same as the functions
they are applied to - they respond to error conditions, etc, in the same manner - they simply have three extra
parameters. The class parameter may take one of the values:ODR_CONTEXT, ODR_PRIVATE, ODR_UNIVERSAL,
or /ODR_APPLICATION.

Constructed Types
Constructed types are created by combining primitive types. The ODR system only implements the SEQUENCE
and SEQUENCE OF constructions (although adding the rest of the container types should be simple enough, if
the need arises).

For implementing SEQUENCEs, the functions

int odr_sequence_begin(ODR o, void *p, int size, const char *name);
int odr_sequence_end(ODR o);

are provided.

Theodr_sequence_begin() function should be called in the beginning of a function that implements a
SEQUENCE type. Its parameters are the ODR stream, a pointer (to a pointer to the type you’re implementing),
and thesize of the type (typically a C structure). On encoding, it returns 1 if* p is a null pointer. Thesize

parameter is ignored. On decoding, it returns 1 if the type is found in the data stream.size bytes of memory are
allocated, and*p is set to point to this space.odr_sequence_end() is called at the end of the complex
function. Assume that a type is defined like this:

MySequence ::= SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

}

80



Chapter 9. The ODR Module

The corresponding ODR encoder/decoder function and the associated data structures could be written like this:

typedef struct MySequence
{

int *intval;
bool_t *boolval;

} MySequence;

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o);

}

Note the 1 in the call toodr_bool() , to mark that the sequence member is optional. If either of the member
types had been tagged, the macrosodr_implicit_tag() or odr_explicit_tag() could have been used.
The new function can be used exactly like the standard functions provided with ODR. It will encode, decode or
pretty-print a data value of theMySequence type. We like to name types with an initial capital, as done in
ASN.1 definitions, and to name the corresponding function with the first character of the name in lower case.
You could, of course, name your structures, types, and functions any way you please - as long as you’re
consistent, and your code is easily readable.odr_ok is just that - a predicate that returns the state of the stream.
It is used to ensure that the behavior of the new type is compatible with the interface of the primitive types.

Tagging Constructed Types

Note: See the Section called Tagging Primitive Types for information on how to tag the primitive types, as
well as types that are already defined.

Implicit Tagging

Assume the type above had been defined as

MySequence ::= [10] IMPLICIT SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

}

You would implement this in ODR by calling the function

int odr_implicit_settag(ODR o, int class, int tag);

which overrides the tag of the type immediately following it. The macroodr_implicit_tag() works by
calling odr_implicit_settag() immediately before calling the function pointer argument. Your type
function could look like this:

81



Chapter 9. The ODR Module

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_implicit_settag(o, ODR_CONTEXT, 10) == 0 ||
odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o);

}

The definition of the structureMySequence would be the same.

Explicit Tagging

Explicit tagging of constructed types is a little more complicated, since you are in effect adding a level of
construction to the data.

Assume the definition:

MySequence ::= [10] IMPLICIT SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

}

Since the new type has an extra level of construction, two new functions are needed to encapsulate the base type:

int odr_constructed_begin(ODR o, void *p, int class, int tag,
const char *name);

int odr_constructed_end(ODR o);

Assume that the IMPLICIT in the type definition above were replaced with EXPLICIT (or that the IMPLICIT
keyword were simply deleted, which would be equivalent). The structure definition would look the same, but the
function would look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)
{

if (odr_constructed_begin(o, p, ODR_CONTEXT, 10, name) == 0)
return optional && odr_ok(o);

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));

if (odr_sequence_begin(o, p, sizeof(**p), 0) == 0)
{

*p = 0; /* this is almost certainly a protocol error */
return 0;

}
return

odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval") &&
odr_sequence_end(o) &&
odr_constructed_end(o);

}

82



Chapter 9. The ODR Module

Notice that the interface here gets kind of nasty. The reason is simple: Explicitly tagged, constructed types are
fairly rare in the protocols that we care about, so the esthetic annoyance (not to mention the dangers of a
cluttered interface) is less than the time that would be required to develop a better interface. Nevertheless, it is far
from satisfying, and it’s a point that will be worked on in the future. One option for you would be to simply
apply theodr_explicit_tag() macro to the first function, and not have to worry about
odr_constructed_* yourself. Incidentally, as you might have guessed, theodr_sequence_ functions are
themselves implemented using the/odr_constructed_ functions.

SEQUENCE OF
To handle sequences (arrays) of a specific type, the function

int odr_sequence_of(ODR o, int (*fun)(ODR o, void *p, int optional),
void *p, int *num, const char *name);

The fun parameter is a pointer to the decoder/encoder function of the type.p is a pointer to an array of pointers
to your type.num is the number of elements in the array.

Assume a type

MyArray ::= SEQUENCE OF INTEGER

The C representation might be

typedef struct MyArray
{

int num_elements;
int **elements;

} MyArray;

And the function might look like

int myArray(ODR o, MyArray **p, int optional, const char *name)
{

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));

if (odr_sequence_of(o, odr_integer, &(*p)->elements,
&(*p)->num_elements, name))
return 1;

*p = 0;
return optional && odr_ok(o);

}

CHOICE Types
The choice type is used fairly often in some ASN.1 definitions, so some work has gone into streamlining its
interface.

CHOICE types are handled by the function:

83



Chapter 9. The ODR Module

int odr_choice(ODR o, Odr_arm arm[], void *p, void *whichp,
const char *name);

Thearm array is used to describe each of the possible types that the CHOICE type may assume. Internally in
your application, the CHOICE type is represented as a discriminated union. That is, a C union accompanied by
an integer (or enum) identifying the active ’arm’ of the union.whichp is a pointer to the union discriminator.
When encoding, it is examined to determine the current type. When decoding, it is set to reference the type that
was found in the input stream.

The Odr_arm type is defined thus:

typedef struct odr_arm
{

int tagmode;
int class;
int tag;
int which;
Odr_fun fun;
char *name;

} Odr_arm;

The interpretation of the fields are:

tagmode

EitherODR_IMPLICIT , ODR_EXPLICIT, or ODR_NONE(-1) to mark no tagging.

which

The value of the discriminator that corresponds to this CHOICE element. Typically, it will be a #defined
constant, or an enum member.

fun

A pointer to a function that implements the type of the CHOICE member. It may be either a standard ODR
type or a type defined by yourself.

name

Name of tag.

A handy way to prepare the array for use by theodr_choice() function is to define it as a static, initialized
array in the beginning of your decoding/encoding function. Assume the type definition:

MyChoice ::= CHOICE {
untagged INTEGER,
tagged [99] IMPLICIT INTEGER,
other BOOLEAN

}

Your C type might look like

typedef struct MyChoice
{

enum
{

84



Chapter 9. The ODR Module

MyChoice_untagged,
MyChoice_tagged,
MyChoice_other

} which;
union
{

int *untagged;
int *tagged;
bool_t *other;

} u;
};

And your function could look like this:

int myChoice(ODR o, MyChoice **p, int optional, const char *name)
{

static Odr_arm arm[] =
{

{-1, -1, -1, MyChoice_untagged, odr_integer, "untagged"},
{ODR_IMPLICIT, ODR_CONTEXT, 99, MyChoice_tagged, odr_integer,
"tagged"},
{-1, -1, -1, MyChoice_other, odr_boolean, "other"},
{-1, -1, -1, -1, 0}

};

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p);

else if (!*p)
return optional && odr_ok(o);

if (odr_choice(o, arm, &(*p)->u, &(*p)->which), name)
return 1;

*p = 0;
return optional && odr_ok(o);

}

In some cases (say, a non-optional choice which is a member of a sequence), you can "embed" the union and its
discriminator in the structure belonging to the enclosing type, and you won’t need to fiddle with memory
allocation to create a separate structure to wrap the discriminator and union.

The corresponding function is somewhat nicer in the Sun XDR interface. Most of the complexity of this
interface comes from the possibility of declaring sequence elements (including CHOICEs) optional.

The ASN.1 specifications naturally requires that each member of a CHOICE have a distinct tag, so they can be
told apart on decoding. Sometimes it can be useful to define a CHOICE that has multiple types that share the
same tag. You’ll need some other mechanism, perhaps keyed to the context of the CHOICE type. In effect, we
would like to introduce a level of context-sensitiveness to our ASN.1 specification. When encoding an internal
representation, we have no problem, as long as each CHOICE member has a distinct discriminator value. For
decoding, we need a way to tell the choice function to look for a specific arm of the table. The function

void odr_choice_bias(ODR o, int what);

provides this functionality. When called, it leaves a notice for the next call toodr_choice() to be called on the
decoding streamo that only thearm entry with awhich field equal towhat should be tried.

85



Chapter 9. The ODR Module

The most important application (perhaps the only one, really) is in the definition of application-specific
EXTERNAL encoders/decoders which will automatically decode an ANY member given the direct or indirect
reference.

Debugging
The protocol modules are suffering somewhat from a lack of diagnostic tools at the moment. Specifically ways to
pretty-print PDUs that aren’t recognized by the system. We’ll include something to this end in a not-too-distant
release. In the meantime, what we do when we get packages we don’t understand is to compile the ODR module
with ODR_DEBUGdefined. This causes the module to dump tracing information as it processes data units. With
this output and the protocol specification (Z39.50), it is generally fairly easy to see what goes wrong.

86



Chapter 10. The COMSTACK Module

Synopsis (blocking mode)

COMSTACK stack;
char *buf = 0;
int size = 0, length_incoming;
char *protocol_package;
int protocol_package_length;
char server_address_str[] = "myserver.com:2100";
void *server_address_ip;
int status;

stack = cs_create(tcpip_type, 1, PROTO_Z3950);
if (!stack) {

perror("cs_create"); /* use perror() here since we have no stack yet */
exit(1);

}

server_address_ip = cs_addrstr (stack, server_address_str);

status = cs_connect(stack, server_address_ip);
if (status != 0) {

cs_perror(stack, "cs_connect");
exit(1);

}

status = cs_put(stack, protocol_package, protocol_package_length);
if (status) {

cs_perror(stack, "cs_put");
exit(1);

}

/* Now get a response */

length_incoming = cs_get(stack, &buf, &size);
if (!length_incoming) {

fprintf(stderr, "Connection closed\n");
exit(1);

} else if (length_incoming < 0) {
cs_perror(stack, "cs_get");
exit(1);

}

/* Do stuff with buf here */

/* clean up */
cs_close(stack);
if (buf)

free(buf);

87



Chapter 10. The COMSTACK Module

Introduction
The COMSTACK subsystem provides a transparent interface to different types of transport stacks for the
exchange of BER-encoded data and HTTP packets. At present, the RFC1729 method (BER over TCP/IP), local
UNIX socket and an experimental SSL stack are supported, but others may be added in time. The philosophy of
the module is to provide a simple interface by hiding unused options and facilities of the underlying libraries.
This is always done at the risk of losing generality, and it may prove that the interface will need extension later
on.

Note: There hasn’t been interest in the XTImOSI stack for some years. Therefore, it is no longer supported.

The interface is implemented in such a fashion that only the sub-layers constructed to the transport methods that
you wish to use in your application are linked in.

You will note that even though simplicity was a goal in the design, the interface is still orders of magnitudes
more complex than the transport systems found in many other packages. One reason is that the interface needs to
support the somewhat different requirements of the different lower-layer communications stacks; another
important reason is that the interface seeks to provide a more or less industrial-strength approach to
asynchronous event-handling. When no function is allowed to block, things get more complex - particularly on
the server side. We urge you to have a look at the demonstration client and server provided with the package.
They are meant to be easily readable and instructive, while still being at least moderately useful.

Common Functions

Managing Endpoints

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

Creates an instance of the protocol stack - a communications endpoint. Thetype parameter determines the
mode of communication. At present the following values are supported:

tcpip_type

TCP/IP (BER over TCP/IP or HTTP over TCP/IP)

ssl_type

Secure Socket Layer (SSL). This COMSTACK is experimental and is not fully implemented. If HTTP is
used, this effectively is HTTPS.

unix_type

Unix socket (unix only). Local Transfer via file socket. See unix(7).

Thecs_create function returns a null-pointer if a system error occurs. Theblocking parameter should be one
if you wish the association to operate in blocking mode, zero otherwise. Theprotocol field should be
PROTO_Z3950or PROTO_HTTP. ProtocolPROTO_SRis no longer supported.

int cs_close(COMSTACK handle);

88



Chapter 10. The COMSTACK Module

Closes the connection (as elegantly as the lower layers will permit), and releases the resources pointed to by the
handle parameter. Thehandle should not be referenced again after this call.

Note: We really need a soft disconnect, don’t we?

Data Exchange

int cs_put(COMSTACK handle, char *buf, int len);

Sendsbuf down the wire. In blocking mode, this function will return only when a full buffer has been written, or
an error has occurred. In nonblocking mode, it’s possible that the function will be unable to send the full buffer
at once, which will be indicated by a return value of 1. The function will keep track of the number of octets
already written; you should call it repeatedly with the same values ofbuf andlen , until the buffer has been
transmitted. When a full buffer has been sent, the function will return 0 for success. -1 indicates an error
condition (see below).

int cs_get(COMSTACK handle, char **buf, int *size);

Receives a PDU or HTTP Response from the peer. Returns the number of bytes read. In nonblocking mode, it is
possible that not all of the packet can be read at once. In this case, the function returns 1. To simplify the
interface, the function is responsible for managing the size of the buffer. It will be reallocated if necessary to
contain large packages, and will sometimes be moved around internally by the subsystem when partial packages
are read. Before callingcs_get for the fist time, the buffer can be initialized to the null pointer, and the length
should also be set to 0 - cs_get will perform amalloc(2) on the buffer for you. When a full buffer has been
read, the size of the package is returned (which will always be greater than 1). -1 indicates an error condition.

See also thecs_more() function below.

int cs_more(COMSTACK handle);

Thecs_more() function should be used in conjunction withcs_get andselect(2) . Thecs_get() function
will sometimes (notably in the TCP/IP mode) read more than a single protocol package off the network. When
this happens, the extra package is stored by the subsystem. After callingcs_get() , and before waiting for more
input, You should always callcs_more() to check if there’s a full protocol package already read. Ifcs_more()

returns 1,cs_get() can be used to immediately fetch the new package. For the mOSI subsystem, the function
should always return 0, but if you want your stuff to be protocol independent, you should use it.

Note: The cs_more() function is required because the RFC1729-method does not provide a way of
separating individual PDUs, short of partially decoding the BER. Some other implementations will carefully
nibble at the packet by calling read(2) several times. This was felt to be too inefficient (or at least clumsy) -
hence the call for this extra function.

int cs_look(COMSTACK handle);

This function is useful when you’re operating in nonblocking mode. Call it whenselect(2) tells you there’s
something happening on the line. It returns one of the following values:

89



Chapter 10. The COMSTACK Module

CS_NONE

No event is pending. The data found on the line was not a complete package.

CS_CONNECT

A response to your connect request has been received. Callcs_rcvconnect to process the event and to
finalize the connection establishment.

CS_DISCON

The other side has closed the connection (or maybe sent a disconnect request - but do we care? Maybe
later). Callcs_close to close your end of the association as well.

CS_LISTEN

A connect request has been received. Callcs_listen to process the event.

CS_DATA

There’s data to be found on the line. Callcs_get to get it.

Note: You should be aware that even if cs_look() tells you that there’s an event event pending, the
corresponding function may still return and tell you there was nothing to be found. This means that only part
of a package was available for reading. The same event will show up again, when more data has arrived.

int cs_fileno(COMSTACK h);

Returns the file descriptor of the association. Use this when file-level operations on the endpoint are required
(select(2) operations, specifically).

Client Side
int cs_connect(COMSTACK handle, void *address);

Initiate a connection with the target ataddress (more on addresses below). The function will return 0 on
success, and 1 if the operation does not complete immediately (this will only happen on a nonblocking
endpoint). In this case, usecs_rcvconnect to complete the operation, whenselect(2) or poll(2) reports
input pending on the association.

int cs_rcvconnect(COMSTACK handle);

Complete a connect operation initiated bycs_connect() . It will return 0 on success; 1 if the operation has not
yet completed (in this case, call the function again later); -1 if an error has occurred.

Server Side
To establish a server under the inetd server, you can use

90



Chapter 10. The COMSTACK Module

COMSTACK cs_createbysocket(int socket, CS_TYPE type, int blocking,
int protocol);

Thesocket parameter is an established socket (when your application is invoked from inetd, the socket will
typically be 0. The following parameters are identical to the ones forcs_create .

int cs_bind(COMSTACK handle, void *address, int mode)

Binds a local address to the endpoint. Read about addresses below. Themode parameter should be either
CS_CLIENT or CS_SERVER.

int cs_listen(COMSTACK handle, char *addr, int *addrlen);

Call this to process incoming events on an endpoint that has been bound in listening mode. It will return 0 to
indicate that the connect request has been received, 1 to signal a partial reception, and -1 to indicate an error
condition.

COMSTACK cs_accept(COMSTACK handle);

This finalizes the server-side association establishment, after cs_listen has completed successfully. It returns a
new connection endpoint, which represents the new association. The application will typically wish to fork off a
process to handle the association at this point, and continue listen for new connections on the oldhandle .

You can use the call

char *cs_addrstr(COMSTACK);

on an established connection to retrieve the host-name of the remote host.

Note: You may need to use this function with some care if your name server service is slow or unreliable

Addresses
The low-level format of the addresses are different depending on the mode of communication you have chosen.
A function is provided by each of the lower layers to map a user-friendly string-form address to the binary form
required by the lower layers.

void *cs_straddr(COMSTACK handle, const char *str);

The format for TCP/IP and SSL addresses is:

<host> [ ’:’ <portnum> ]

Thehostname can be either a domain name or an IP address. The port number, if omitted, defaults to 210.

For TCP/IP and SSL transport modes, the special hostname "@" is mapped to any local address (the manifest
constantINADDR_ANY). It is used to establish local listening endpoints in the server role.

91



Chapter 10. The COMSTACK Module

For UNIX sockets, the format of an address is the socket filename.

When a connection has been established, you can use

char *cs_addrstr(COMSTACK h);

to retrieve the host name of the peer system. The function returns a pointer to a static area, which is overwritten
on the next call to the function.

A fairly recent addition to the COMSTACK module is the utility function

COMSTACK cs_create_host (const char *str, int blocking, void **vp);

which is just a wrapper forcs_create andcs_straddr . Thestr is similar to that described forcs_straddr

but with a prefix denoting the COMSTACK type. Prefixes supported aretcp: , unix: andssl: for TCP/IP,
UNIX and SSL respectively. If no prefix is given, then TCP/IP is used. Theblocking is passed to function
cs_create . The third parametervp is a pointer to COMSTACK stack type specific values. For SSL (ssl_type)
vp is an already create OpenSSL CTX. For TCP/IP and UNIXvp is unused (can be set toNULL.

SSL

void *cs_get_ssl(COMSTACK cs);

Returns the SSL handle,SSL * for comstack. If comstack is not of type SSL, NULL is returned.

int cs_set_ssl_ctx(COMSTACK cs, void *ctx);

Sets SSL context for comstack. The parameter is expected to be of typeSSL_CTX *. This function should be
called just after comstack has been created (before connect, bind, etc). This function returns 1 for success; 0 for
failure.

int cs_set_ssl_certificate_file(COMSTACK cs, const char *fname);

Sets SSL certificate for comstack as a PEM file. This function returns 1 for success; 0 for failure.

int cs_get_ssl_peer_certificate_x509(COMSTACK cs, char **buf, int *len);

This function returns the peer certificate. If successful,*buf and*len holds X509 buffer and length
respectively. Buffer should be freed withxfree . This function returns 1 for success; 0 for failure.

Diagnostics
All functions return -1 if an error occurs. Typically, the functions will return 0 on success, but the data exchange
functions (cs_get , cs_put , cs_more ) follow special rules. Consult their descriptions.

92



Chapter 10. The COMSTACK Module

When a function (including the data exchange functions) reports an error condition, use the function
cs_errno() to determine the cause of the problem. The function

void cs_perror(COMSTACK handle char *message);

works likeperror(2) and prints themessage argument, along with a system message, tostderr . Use the
character array

extern const char *cs_errlist[];

to get hold of the message, if you want to process it differently. The function

const char *cs_stackerr(COMSTACK handle);

Returns an error message from the lower layer, if one has been provided.

Summary and Synopsis
#include <yaz/comstack.h>

#include <yaz/tcpip.h> /* this is for TCP/IP and SSL support */
#include <yaz/unix.h> /* this is for UNIX sockeL support */

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

COMSTACK cs_createbysocket(int s, CS_TYPE type, int blocking,
int protocol);

COMSTACK cs_create_host (const char *str, int blocking,
void **vp);

int cs_bind(COMSTACK handle, int mode);

int cs_connect(COMSTACK handle, void *address);

int cs_rcvconnect(COMSTACK handle);

int cs_listen(COMSTACK handle);

COMSTACK cs_accept(COMSTACK handle);

int cs_put(COMSTACK handle, char *buf, int len);

int cs_get(COMSTACK handle, char **buf, int *size);

int cs_more(COMSTACK handle);

int cs_close(COMSTACK handle);

int cs_look(COMSTACK handle);

void *cs_straddr(COMSTACK handle, const char *str);

93



Chapter 10. The COMSTACK Module

char *cs_addrstr(COMSTACK h);

extern int cs_errno;

void cs_perror(COMSTACK handle char *message);

const char *cs_stackerr(COMSTACK handle);

extern const char *cs_errlist[];

94



Chapter 11. Future Directions
We have a new and better version of the front-end server on the drawing board. Resources and external
commitments will govern when we’ll be able to do something real with it. Features should include greater
flexibility, greater support for access/resource control, and easy support for Explain (possibly with Zebra as an
extra database engine).

YAZ is a BER toolkit and as such should support all protocols out there based on that. We’d like to see running
ILL applications. It shouldn’t be that hard. Another thing that would be interesting is LDAP. Maybe a generic
framework for doing IR using both LDAP and Z39.50 transparently.

The SOAP implementation is incomplete. In the future we hope to add more features to it. Perhaps make a
WSDL/XML Schema compiler. The authors of libxml2 are already working on XML Schema / RelaxNG
compilers so this may not be too hard.

It would be neat to have a proper module mechanism for the Generic Frontend Server so that backend would be
dynamically loaded (as shared objects / DLLs).

Other than that, YAZ generally moves in the directions which appear to make the most people happy (including
ourselves, as prime users of the software). If there’s something you’d like to see in here, then drop us a note and
let’s see what we can come up with.

95



Appendix A. License

Index Data Copyright
Copyright © 1995-2004 Index Data ApS.

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in part, for
any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation. Notices of
copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of Index Data or the individual authors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL INDEX
DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY
OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Additional Copyright Statements
The optional CCL query language interpreter is covered by the following license:

Copyright © 1995, the EUROPAGATE consortium (see below).

The EUROPAGATE consortium members are:
University College Dublin
Danmarks Teknologiske Videnscenter
An Chomhairle Leabharlanna
Consejo Superior de Investigaciones Cientificas

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in part, for
any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation. Notices of
copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of EUROPAGATE or the project partners may not be used to endorse or promote products derived
from this software without specific prior written permission.

3. Users of this software (implementors and gateway operators) agree to inform the EUROPAGATE consortium
of their use of the software. This information will be used to evaluate the EUROPAGATE project and the
software, and to plan further developments. The consortium may use the information in later publications.

4. Users of this software agree to make their best efforts, when documenting their use of the software, to
acknowledge the EUROPAGATE consortium, and the role played by the software in their work.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

96



Appendix A. License

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE
EUROPAGATE CONSORTIUM OR ITS MEMBERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

97



Appendix B. About Index Data
Index Data is a consulting and software-development enterprise that specializes in library and information
management systems. Our interests and expertise span a broad range of related fields, and one of our primary,
long-term objectives is the development of a powerful information management system with open network
interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the networking
community, and to further the development of quality software for open network communication.

We’ll be happy to answer questions about the software, and about ourselves in general.

Index Data ApS
Købmagergade 43 2.
1150 Copenhagen K
Denmark
Phone +45 3341 0100
Fax +45 3341 0101
Email <info@indexdata.dk >

The Hacker’s Jargon File has the following to say about the use of the prefix "YA" in the name of a software
product.

[ Yet Another. adj. 1. Of your own work: A humorous allusion often used in titles to acknowledge that the topic
is not original, though the content is. As in "Yet Another AI Group" or "Yet Another Simulated Annealing
Algorithm". 2. Of others’ work: Describes something of which there are already far too many. ]

98



Appendix C. Credits
This appendix lists individuals that have contributed in the development of YAZ. Some have contributed with
code, while others have provided bug fixes or suggestions. If we’re missing somebody, of if you, for whatever
reason, don’t like to be listed here, let us know.

• Dimitrios Andreadis

• Morten Bøgeskov

• Rocco Carbone

• Matthew Carey

• Irina Dijour

• Hans van Dalen

• Hans van den Dool

• Franck Falcoz

• Kevin Gamiel

• Morten Garkier Hendriksen

• Morten Holmqvist

• Ian Ibbotson

• Shigeru Ishida

• David Johnson

• Oleg Kolobov

• Kang-Jin Lee

• Pieter Van Lierop

• Stefan Lohrum

• Ronald van der Meer

• Thomas W. Place

• Peter Popovics

• Jacob Chr. Poulsen

• Ko van der Sloot

• Mike Taylor

• Rustam T. Usmanov

• Charles Woodfield

• Tom André Øverland

99


