YAZ User’'s Guide and Reference

Sebastian Hammer
Adam Dickmeiss

Mike Taylor



YAZ User's Guide and Reference
by Sebastian Hammer

by Adam Dickmeiss
by Mike Taylor

Copyright © 1995-2004 Index Data

This document is the programmer’s guide and reference to the YAZ package version 2.0.23. YAZ is a compact
toolkit that provides access to the Z39.50 and SRW/SRU protocols, as well as a set of higher-level tools for
implementing the server and client roles, respectively. The documentation can be used on its own, or as a
reference when looking at the example applications provided with the package.




Table of Contents

O [ (0T [0 T3 1 o o ISR 1
Reading thiS MaNUAL...........coiiieeee ettt b e e et b b b e e e b e e e eaesbe b s 1

LI LS TS RRRUR 2

2. Compilation and INSTAIALION .......ccoiiiii et se et s b b s 4
[T goTo 18 o3 1 o] o OO OSRRRR 4
UNIDX ottt ettt ettt e et e e b et e e be e e e s besae e beebeesseebeeaeesbesaeesbesbeeabeabeeaeeaeesheesbesbeeaseabeeaeateaaeenbesbeenbenbesaeenrenaes 4
Compiling from SOUICE ON UNIX......ciiiiieiesiicieie e st et ae s te e tesreeneesae e e ssesneensensenns 4

How to make apps uSing YAZ 0N UNDX ...ttt st nne s 7

LAY LN TSSOSO 8
Compiling from SoUrCe 0N WIN3B2........covoiiiceie ettt r et sa e e e e sre e s 8

How to make apps USING YAZ ON WIN3B2........cooeeirere et e e se s sse e sseae e sneneas 10

3. ZOOM ..ttt he et she e aeabeehe e be bt et ahe et et e ehe e bebeeae e beeheeteaheeabebeeheenreereennenreenean 11
LOT0] ] 01T 1[0 - 11
AC TS RS O oA o) (oToTo] W 011 4 T= AV, (o 13

S ATV A ad (011 Toto ]l oYY =LY/ o SR 13

L0 10 1= 4= SRR 13

(g (0] (o701 I 011 =1/ o 14

[ LT LT 1= 14
AC TS STl = o] (oToTe] M 011 4 T= AV, (o) OO 15

SRW ProtoCOI DERNAVIQL.........cceiiueiie ettt ettt teesve e s bessbeeseesbessareenneenree e 16

[ LYoo ] (o [P 16

ACTe BTl S o] (oloTe] M o<1 4 T= AV, (o) oSO 17

SRW ProtOCOI DENAVIQL.........coviieiiie ettt ettt s teesaeesbessbeereesbessareenseenbee e 18

Yo7 | o DO SO OOSERROPRRROP RO 18

(0] 01110 1SS PO 19
Y= £ £SO RO 19

A, GBINEIIC SEIVEN.....icctieiteeeteeeteeitteeiteeeteesteeseeebeesteeaseesabeeabeaasaeeaseebeeaseeasssanbeeaseesaesaabeeabeeaseesabeeabeenseesaseenbeenseesanean 21
[T foTo [¥Te3 1 o] o USROS RUSRRPSRRR 21

The Database FrONTENG ..ottt s be e ae e sbe e sareeneesbeesaneeneenbee e 21

TRE BACKENU APLL......c ettt e te et e e s he e s te e beesbeesabeeaseesbeesasesnseebeesanesnnenrenses 22

Do TN g UL T I 0TV 1] = 22

The BACKENA FUNCHIONS. ....cviiitii ettt ettt et e ste et tee s re e te e sae e steebeesbeesabeenseesbeesatesnseebeesasesseesenses 24

Ll ettt ettt et et et e e e e te e e b e b e eabeebeeheebeeheebesheeabebeehe e beaheebesheeaaebeeheenteebeentesreeneenresreens 24

SEAICH AN TEITHEBVE. ...ttt st ree st e s e b e e b e saseebesaeessesbeesbesbesbeensesbeensesresnees 25

DBIBTE.....cccee ettt sttt ettt ettt s b e he et be et heeaa e beebe et e ebeeteabeeaeeabeebeenteereeneeereanean 28

S0 | SR 28

WY o] 0] o= 4o I8 917/ Tox L1 To] o S 29

LT I TSI 7 WA od 11T o | T 32
Yoo 1003 1o o TR 32
INVOKING the YAZ CHENL...c.ecuiiiticii ettt b et b et b e reens 32
LO70]10 ] g T= 1 Lo F-3 33
TS 1ol o] T OO TPV STST 37

6. THE Z39.50 ASN.L MOUUIE........oeeeeeeteeceee ettt ettt ete e tee st eeste e st e et e eebeesbessnbeesseesbessnseeseesbessaseeseensensns 38
[T oo 18 Tox 1 o] o OO 38
PreParing PDUS........c.couiiiirietireeteseet ettt b e b e bbb b st e bbbt s bt s bt e b e s b b e e b st e enn 38

(0] 01T [0 (=T 0 11 1T £ 39
EXTERNAL DATA.......ccciiiitiiieitiiieite et eete st ete st st etesbeetsstssaeestesbesstesbessesssssbeesesaeessesbesseesseabeensesaesnsestesrenns 40



ST 02 = g T S TSRS 47
LT 0T [T 1o o PSSR a7
L ISR 47
1@ Nl - Tor 1= Vo L= OSSR a7
LT LTSS 49

LTS ] o] o o] 5 11 aTo N KoY ] A3 51
QUETY SYNTAX PAISEIS......eiitiiiiitieieree ettt ettt st s h e he e e sae et e sae s e e b e sbeeaseebeemeeseeeneesbesbeensenreenes 51

PrefiX QUENY FOIMIAL.......c.oi ettt e e r et s b e e sae e e e tesreensesneennenneannas 51
Using Proximity Operators With PQE-..........cooooiiice e s 53

L@ ] o 8T =SS 54

L O SRS 56

L1 O I 1| - GO 56

LT @ I @ 1T 11T SRS 57

(O 1= Uy o 1= Tox ) o= L1 o] o IS 57

QUANTIEE AlIAS......eccviieiecieiteeeete ettt ettt e e besbe et e ebeeaeesaeeneesbesbeenrenreenns 59

(070] 1011 01T o £ R PP ST PTUPTP USSR 59

D1 =T 1) OSSR 59

(OO I ST 59

L | RS SRRSTR 60

(10 I oF- 1 £ o o RSSO PRSP RTORTRTSR 60

L1 I 1= = PSR 61

(1@ I (o I =@ ] 7] 01V7=T =1 (o s 1SR 62
Specification of CQL t0 RPN MaPPINg......c.coerrirrirnieineiesiee et 64

(GO (010 (1@ I oTo] 0177=1 £ (o] 1SRN 66

(0] 1=Tod l [0 [T 0111 1= £ OSSOSO U U TSPV STTS 66
INTDDIE IMEIMOIY ...t bbbt b bt s bbb bbbt e bt e b e bbb e ens 69
YA LT 70

S T N L@ B 1Y/ (o To (1] LTSRS 72
L gL ol [0 Tox i o] o USSR 72
USING ODR.....ceietieiiee ettt ettt be b b e se e e e st eh e e be s A e eE e e e e e et eReeh e e besE e e ene e bt ebesbe st enbenteneenenbenbas 72

ODR STIBAMIS. ...ttt ettt b et e bt ae e et she et e s besh e et e e b e eaeeaeeeaeeaeesheeaeesbeeseensesaeeneesaeeanas 72
MEMOTIY MANAGEMEIIL.........eiiieieieiete ettt s re e b sb e e e e bt e e e saesaeesbesbe e s e sreeneesaesnnas 72
Encoding and DeCOING DALa. ..........coceriruirierierieeeieriesie et be e e e sre e 73
[0 =T | T 1] (o= R 75
SUMMATY NG SYNOPSIS. . ectiitieiiitieie it seese st e e st e e sreesee s e sseestesteesesseaseessesseestestesssesesseensessesnees 76
Programming With ODR..........cuociee et e et e e e ra e e e s reeeesreeneeseenneens 77
The Primitive ASN.L TYPES......cccecieeierieeeerie st esee s e s e te st e e sae e e sae e etesteeseetesreeaesreenaestesneensenneenes 77
INTEGER......o oottt ettt st s et b e b e e b e e b ene st e ne st eneneens 77

1@ 1@ I Y SRS 78
L SRS 78
INULL ettt ettt ettt b ettt n e 78
OCTET STRING......oitieete ettt sttt st sttt et sttt be e st st ne e 78

BIT STRING. ..ottt ettt bttt be sttt ne e 79
OBJIECT IDENTIFIER ...ttt sttt s st 79
TaQING PrMILIVE TYPES ...ttt st b et sa e se et se et st e ebeneas 79
CONSIIUCTET TYPES. ettt b e et b et b et b b s e bt e bttt b et b et bbb e s 80
Tagging CONSITUCIEA TYPES.....couiirieirieiereete ettt st sttt b et se b et et s b e sbe e 81
(Tg] ol ITeT1 u I=Te To [ To TSSO 81

oy o] [Tod1 A = To o 1 o o SOOI 82



SEQUENCE OF .voovvooeeeeeeeeeeeeeeesessssseseseeeessssssessssssssssssseessssssssssesssesssssseessssssssenssssesssessssssssseeennnnns 83

CHOICE TYPES...eeiiiitieteste ettt sttt et b bt e et h e Rt b e se e e et e b e e R e s e sn e s e et eneenennes 83

(B 1= o T8 o o 19 To FOUR TR OO P TR PRRTR 86

10. The COMSTACK MOGUIE .....coiieiiietiieiesicte ettt es s s s e s e s s e s e s s e e sesssaanessnnessenes 87
SYNOPSIS (DIOCKING MOR).......eeeeee ettt et sb et see e e e neenesae e 87

L gL 0T [0 Tox i o] o ISR 87
COMIMON FUNCLIONS. ...ttt ettt a e s bbb e et bt b e b se e e e n e e seeaeebe e bebe e e e eneebesbeen 88

Y E=Ta = To L aTo I =t Te | oTe 11 ) =TSRRI 88

(D= 1= W el g = g o = TSRS 89

(O3 17270 ST (o L= TSR PP 90

Y=t AT o (o = USRS PPN 90

F e [0 | €T U PTUTPTRSTRRUR 91

S 3 | OSSR 92
1TV |0 ] TS 92
SUMMATY ANG SYNOPSIS...e.veeeeiieeteseeeetesteete st seestesseetesteasesteaseessesseaseteaseeseaseessssseessestessenssesseesssssesees 93

I T (BT (=3 I 1T =Tt o) SO 95
N IR oT= g T RSSO STPPSTPTRTN 96
L a0 (o) = = W 0] 0 )Y/ T | R 96
Additional Copyright STAtEMENLS.........ccoiiiieereereerr et be st e ebe e 96

Y o To 10 | [T [ 0 - PSSR 98
O O =T {1 £ 99



List of Tables

3-1. ZOOM CONNECLION OPTIONS....cuiiuietirterieieiieeirierie et steste e e et eresteseeseesesee e aaessesbesbesseneesessessessessesenseneeneesesss 12
3-2. ZOOM RESUIL SEE OPLIONS......eiieieetieieiieeeeeee ettt re ettt see e e e e et e st saesbesbesee e eseebesaeseessenseneeneenesreneas 15
K A1 @1 I Tor- T g BT = @] o] i o] - USSR 19
6-1. Default settings for PDU INitialiZe REQUESL.........ccoiieere et s 42
6-2. Default settings for PDU InitialiZe RESPOMSE. ..ot 42
6-3. Default settings for PDU Search REQUEST...........ooi et 42
6-4. Default settings for PDU Search RESPONSE........ccoiuiiiriiiie et 43
6-5. Default settings for PDU PresSent REQUEST.........ccccv ettt aesne e 43
6-6. Default settings for PDU PreSent RESPONSE........cciviieiiieieie e seestesee et ee e e e sae e e sae e ensesreeaesneenees 43
6-7. Default settings for Delete ReSuUlt SEt REQUESE..........oiiiei e s 44
6-8. Default settings for Delete ReSuUlt SEt RESPONSE. ......coviieiiri e 44
6-9. Default settings fOr SCAN REQUEST........ccv et beene e e reenaesneeneas 44
6-10. Default Settings fOr SCAN RESPOINISE. .. .c.ccvriiiririrereeee e stesee et s e e resresressesenee e enesrenees 44
6-11. Default settings for Trigger Resource Control REQUESL.........ccccceeeriecesie e 45
6-12. Default settings for Resource Control REQUEST.........ccvcieiiiieiieee e 45
6-13. Default settings for Resource Control RESPONSE. .....ccccovrirereierieeeere e s e se e re s e sae e e sreses 45
6-14. Default settings for ACCess CoNtrol REQUESL.......ccccoeieririre e 45
6-15. Default settings for AcCess CONrol RESPONSE........couiiriririeirieirieeree et 45
6-16. Default SEttiNGS fOr SEOMENL.........ccoiiiiei bbb e 46
6-17. Default SEINGS TOr CIOSE.......ciiiiriiirie bbb b bt 46
8-1. CoMMON Bib-1 AttFIDULES ..o et ae e e e e e e e e eneereneen 57
8-2. Special attriDULE COMDOS........ciiiiee bbb e 58
S TR O @ I o L1 Yo 1)Y= TP 59
S T @ 10 3 4 o o0 Yo [P 76

List of Figures

O A oY= SRS 2

List of Examples

4-1. RUNNING the GFS 0N UNIX....ciitiiiiecere ettt sttt 31
4-2. Setting up Apache as SRW/SRU Frontend...........cccieireernenineneserese e 31
4-3. Running a server With [0Cal 8CCESS QNIY.......cciiiiiiiriereeree e 31
8-1. PQF queries USING SIMPIE tEIMS.......cii ittt sttt st se et sbe e e s e s e e e e eneereneas 54
8-2. PQF DOOIEAN OPEIALALS.....c.eiiiieiiitirteiie ettt b et e e et et ae b e b e bese e e e st ebesbeseessenseneeneenesbeneas 54
8-3. PQF referenNCeS t0 rESUIL SELS ... oottt st e e b e s aeeseesreeaeesbeereensesreeneesneeneas 54
8-4. AITIDULES TOI TEIMIS. ..ttt bbb e s e e e st eb e s beseese e s e e e e eneebeneas 54
8-5. PQF PrOXIMILY QUETIES . ....eiteeeieueetiete e seeee ettt sttt et ebe st s ae e e s e e se e st sbesbebese e e eseebesbeseeasenseneeneenesbeneas 55
8-6. PQF specification Of SEArCH tRIML... ... e 55
o R o @ T o 417 =To [0 U= T 55
St S T O O I o U= 4= S 57
S LS R O R o] o 1= 58
S T O O @ ] I (oI d o AV 4 =T o] o] T o 1= 65
8-11. Display Of MARC FECOIU......coieeieieceiese ettt et e et e e tesaeenaesreesaesteeseensenseeneesneenean 71
9-1. Encoding and decoding FUNCHIONS........c.civeieiie ettt et st s re st e s e e e e eneereneas 74
9-2. Encoding and decoding Of @n INEQET........c.ciii ettt s a e e e enesreneas 75

Vi



Chapter 1. Introduction

YAZ is a C/C++ library for information retrieval applications using the Z39.50/SRW/SRU protocols for
information retrieval.

Properties of YAZ:

« Complete Z239.50 (http://www.loc.gov/z3950/agency/) version 3 support. Amendments and Z239.50-2002
revision is supported.

« Supports SRW/SRU (http://www.loc.gov/z3950/agency/zing/srw/) version 1.1 (over HTTP and HTTPS).
« Includes BER encoders/decoders for the ISO ILL (http://www.nlc-bnc.ca/isolill/) protocol.

« Supports the following transports: BER over TCP/IP (RFC1729 (http://www.fags.org/rfcs/rfc1729.html)),
BER over unix local socket, and HTTP 1.1 (http://www.w3.org/Protocols/rfc2616/rfc2616.html).

« Secure Socket Layer support using OpenSSL (http://www.openssl.org/). If enabled, YAZ uses HTTPS
transport (for SOAP) or "Secure BER" (for Z39.50).

« Offers ZOOM (http://zoom.z3950.0rg/) C APl implementing both Z39.50 and SRW.

« The YAZ library offers a set of useful utilities related to the protocols, such as MARC (1ISO2709) parser, CCL
(ISO8777) parser, CQL (http://www.loc.gov/z3950/agency/zing/cql/) parser, memory management routines,
character set conversion.

- Portable code. YAZ compiles out-of-the box on most Unixes and on Windows using Microsoft Visual C++.
« Fast operation. The C based BER encoders/decoders as well as the server component of YAZ is very fast.

- Liberal license that allows for commercial use of YAZ.

Reading this Manual

Most implementors only need to read a fraction of the material in thie manual, so a quick walkthrough of the
chapters is in order.

- Chapter Zontains installation instructions for YAZ. You don'’t need reading this if you expect to download
YAZ binaries. However, the chapter contains information about how to palteapplication link with YAZ.

« Chapter Iescribes the ZOOM API of YAZ. This is definitely worth a read if you wish to develop a
Z39.50/SRW client.

« Chapter 4escribes the generic frontend server and explains how to develop server Z39.50/SRW applications
for YAZ. Obviously worth reading if you're to develop a server.

- Chapter Hescribes how to use the YAZ Z39.50 client. If you're developer and wish to test your server or a
server from another party, you might find this chapter useful.

« Chapter 6documents the most commonly used Z239.50 C data structures offered by the YAZ API. Client
developers using ZOOM and non-Z39.50 implementors may skip this.

« Chapter ™escribes how SRW and SOAP is used in YAZ. Only if you're developing SOAP/SRW applications
this section is a must.

- Chapter &ontains sections for the various tools offered by YAZ. Scan through the material quickly and see
what's relevant to you! SRW/SRU implementors might find @@L section particularly useful.



Chapter 1. Introduction

- Chapter Qoes through the details of the ODR module which is the work horse that encodes and decodes BER
packages. Implementors using ZOOM only,rdat need reading this. Most other Z39.50 implementors only
need to read the first two sectionibd Section callethtroductionin Chapter Sandthe Section calletsing
ODRin Chapter 9.

« Chapter 1alescribes the network layer module COMSTACK. Implementors using ZOOM or the generic
frontend server may skip this. Others, presumably, handling client/server communication on their own should
read this.

The API

The YAZ (http://www.indexdata.dk/yaz/) toolkit offers several different levels of access to the ISO23950/239.50
(http://www.loc.gov/z3950/agency/), ILL (http://www.nlc-bnc.ca/iso/ill/) and SRW
(http:/iwww.loc.gov/z3950/agency/zing/srw/) protocols. The level that you need to use depends on your
requirements, and the role (server or client) that you want to implement. If you're developing a client application
you should consider theaOOM API. It is, by far, the easiest way to develop clients in C. Server implementers
should consider thgeneric frontend serveNone of those high-level APIs support the whole protocol, but they

do include most facilities used in existing Z39.50 applications.

If you're using 'exotic’ functionality (meaning anything not included in the high-level APIs), developing
non-standard extensions to Z39.50 or you're going to develop an ILL application you’'ll have to learn the lower
level APIs of YAZ.

The YAZ toolkit modules is shown in figur€igure 1-1

Figure 1-1. YAZ layers

ClientfServer Application

ILL £38.50 || SRW SR
ASM.T ASMN.T SOAP | GET

ODR (BER) HTTP

COMSTACK

Sal

There are four layers.

« Aclient or server application (or both). This layer includes ZOOM and the generic frontend server.



Chapter 1. Introduction

« The second layer provides a C represenation of the protocol units (packages) for Z39.50 ASN.1, ILL ASN.1,
SRW SOAP.

« The third layer encodes and decodes protocol data units to simple packages (buffer with certain length). The
ODR module encodes and decodes BER whereas the HTTP modules encodes and decodes HTTP
ruquests/responses.

- The lowest layer is COMSTACK which exchanges the encoded packages with a peer process over a network.

The 7239.50 ASN.1 module represents the ASN.1 definition of the Z39.50 protocol. It establishes a set of type
and structure definitions, with one structure for each of the top-level PDUs, and one structure or type for each of
the contained ASN.1 types. For primitive types, or other types that are defined by the ASN.1 standard itself (such
as the EXTERNAL type), the C representation is provided by the ODR (Open Data Representation) subsystem.

ODR is a basic mechanism for representing an ASN.1 type in the C programming language, and for
implementing BER encoders and decoders for values of that type. The types defined in the Z39.50 ASN.1
module generally have the prefix, and a suffix corresponding to the name of the type in the ASN.1
specification of the protocol (generally Z39.50-1995). In the case of base types (those originating in the ASN.1
standard itself), the prefi@dr_ is sometimes seen. Either way, look for the actual definition in eitlvere.h

(for the types from the protocolpdr.h  (for the primitive ASN.1 types). The Z39.50 ASN.1 library also

provides functions (which are, in turn, defined using ODR primitives) for encoding and decoding data values.
Their general form is

int z xxx (ODR o, Z_xxx **p, int optional , const char * name);

(note the lower-case "z" in the function name)

Note: If you are using the premade definitions of the Z39.50 ASN.1 module, and you are not adding new
protocol of your own, the only parts of ODR that you need to worry about are documented in the Section
called Using ODR in Chapter 9.

When you have created a BER-encoded buffer, you can use the COMSTACK subsystem to transmit (or receive)
data over the network. The COMSTACK module provides simple functions for establishing a connection
(passively or actively, depending on the role of your application), and for exchanging BER-encoded PDUs over
that connection. When you create a connection endpoint, you need to specify what transport to use (TCP/IP, SSL
or UNIX sockets). For the remainder of the connection’s lifetime, you don't have to worry about the underlying
transport protocol at all - the COMSTACK will ensure that the correct mechanism is used.

We call the combined interfaces to ODR, Z239.50 ASN.1, and COMSTACK the service level API. It's the API
that most closely models the Z39.50 service/protocol definition, and it provides unlimited access to all fields and
facilities of the protocol definitions.

The reason that the YAZ service-level APl is a conglomerate of the APIs from three different submodules is
twofold. First, we wanted to allow the user a choice of different options for each major task. For instance, if you
don't like the protocol API provided by ODR/Z239.50 ASN.1, you can use SNACC or BERUsils instead, and still
have the benefits of the transparent transport approach of the COMSTACK module. Secondly, we realize that
you may have to fit the toolkit into an existing event-processing structure, in a way that is incompatible with the
COMSTACK interface or some other part of YAZ.



Chapter 2. Compilation and Installation

Introduction

The latest version of the software will generally be found at:
http://ftp.indexdata.dk/pub/yaz/ (http://ftp.indexdata.dk/pub/yaz/)

We have tried our best to keep the software portable, and on many platforms, you should be able to compile
everything with little or no changes.

The software is regularly tested on Debian GNU/Linux (http://www.debian.org/), Redhat Linux
(http://www.redhat.com/), Gentoo Linux (http://www.gentoo.org/), FreeBSD (i386) (http://www.freebsd.org/),
MAC OSX (http://www.apple.com/macosx/), SunOS 5.8 (sparc) (http://wwws.sun.com/software/solaris/),
Windows 2000 (http://www.microsoft.com/windows2000/).

Some versions have be known to work on HP/UX, DEC Unix, NetBSD (http://www.netbsd.org/), OpenBSD
(http://Iwww.openbsd.org/), IBM AlX, Data General DG/UX (with some CFLAGS tinkering), SGI/IRIX, DDE
Supermax, Apple Macintosh (using the Codewarrior programming environment and the GUSI socket libraries),
IBM AS/400 .

If you move the software to other platforms, we'd be grateful if you'd let us know about it. If you run into
difficulties, we will try to help if we can, and if you solve the problems, we would be happy to include your fixes
in the next release. So far, we have mostly avoitietkfs  for individual platforms, and we'd like to keep it

that way as far as it makes sense.

We maintain a mailing-list for the purpose of announcing new releases and bug-fixes, as well as general
discussion. Subscribe by sending mail to yaz-request@indexdata.dk (mailto:yaz-request@indexdata.dk) or
fill-in the form here (http://www.indexdata.dk/mailman/listinfo/yazlist). General questions and problems can be
directed at yaz-help@indexdata.dk (mailto:yaz-help@indexdata.dk), or the address given at the top of this
document.

UNIX

We provide Debian GNU/Linux (http://www.debian.org/) and Redhat (http://www.redhat.com/) packages for
YAZ. Only i386 binary packages are available. You should be able to create packages for other CPUs by building
them from the source package.

Compiling from source on Unix

Note that if your system doesn't have a native ANSI C compiler, you may have to acquire one separately. We
recommend GCC (http://gcc.gnu.org/).

If you wish to use character set conversion facilities in YAZ or if you are compiling YAZ for use with Zebra it is
a good idea to ensure that the iconv library is installed. Some Unixes today already have it - if not, we suggest
GNU iconv (http://www.gnu.org/software/libiconv/).

The XML C library libxml2 (http://www.xmlsoft.org/) is required if YAZ is to support SRW and SRU. This
library is very portable and should compile out-of-the box on virtually all Unix platforms. It is available in
binary forms for Linux and others.

The GNU tools Autoconf (http://www.gnu.org/software/autoconf/), Automake
(http://www.gnu.org/software/automake/) and Libtool (http://www.gnu.org/software/libtool/) are used to



Chapter 2. Compilation and Installation

generate Makefiles and configure YAZ for the system. Yomaldhese tools unless you're using the CVS
version of YAZ.

The CQL parser for YAZ is built using GNU Bison (http://www.gnu.org/software/bison/). This tool is only
needed if you're using the CVS version of YAZ.

YAZ includes a tiny ASN.1 compiler. This compiler is written in Tcl (http://www.tcl.tk/). But as for Bison you
do not need it unless you're using CVS version of YAZ or you're using the compiler to built own codecs for
private ASN.1.

Generally it should be sufficient to run configure without options, like this:

Jconfigure

The configure script attempts to use use the C compiler specified IgCthievironment variable. If not set,
GNU C will be used if it is available. TheFLAGSenvironment variable holds options to be passed to the C
compiler. If you're using Bourne-compatible shell you may pass something like this to use a particular C
compiler with optimization enabled:

CC=/opt/ccs/bin/cc CFLAGS=-O ./configure

To customize YAZ, the configure script also accepts a set of options. The most important are:

--prefix  =prefix

Specifies installation prefix for YAZ. This is only needed if you raake install  later to perform a
"system" installation. The prefix issr/local if not specified.
--enable-tcpd

The front end server will be built using Wietse's TCP wrapper library
(ftp://ftp.porcupine.org/pub/security/index.html). It allows you to allow/deny clients depending on IP
number. The TCP wrapper library is often used in Linux/BSD distributions. See hosts_access(5) and
tcpd(8).

--enable-threads

YAZ will be built using POSIX threads. SpecificalfREENTRANWiIll be defined during compilation.

--enable-shared
The make process will create shared libraries (also known as shared odgertBy default, no shared
libraries are created - equivalent-tdisable-shared

--disable-shared

The make process will not create static librari@s)( By default, static libraries are created - equivalent to
--enable-static

--with-iconv [=prefix ]

Compile YAZ with iconv library in directoryprefix . By default configure will search for iconv on your
system. Use this option if it doesn’t find iconv. Alternatively you can-w&ghout-iconv to force YAZ
not to use iconv.



Chapter 2. Compilation and Installation

-with-xml2  [=prefix ]
Compile YAZ with libxml2 (http://www.xmlsoft.org/) in directorprefix . Use this option if you want
SOAP support. By default configure will search for libxmlI2 on your system. Use this option if it doesn’t
find libxml2. Alternatively you can usewithout-xml|2 to force YAZ not to use libxml2.

--with-openssl [=prefix ]

YAZ will be linked with the OpenSSL libraries and an SSL COMSTACK will be provided. Note that SSL
support is still experimental.

When configured, build the software by typing:

make

The following files are generated by the make process:

src/libyaz.la
Main YAZ library. This is no ordinary library. It's a Libtool archive. By default, YAZ creates a static library
in lib/.libs/libyaz.a

src/libyazthread.la
When threading is supported/enabled by configure this Libtool library is created. It includes functions that
allows YAZ to use threads.

ztestlyaz-ztest

Test Z39.50 server.

client/yaz-client

Z39.50 client for testing the protocol. See chap¥&Z client for more information.

util’yaz-config
A Bourne-shell script, generated by configure, that specifies how external applications should compile - and
link with YAZ.

util’yaz-asncomp

The ASN.1 compiler for YAZ. Requires the Tcl Shell, tclshPATHto operate.

util/yaz-iconv
This program converts data in one character set to another. This command exercises the YAZ character set
conversion API.

util/lyaz-marcdump

This program parses 1ISO2709 encoded MARC records and prints them in line-format or XML.

zoom/zoomsh

A simple shell implemented on top of t@®OM functions. The shell is a command line application that
allows you to enter simple commands to perform ZOOM operations.



Chapter 2. Compilation and Installation

zoom/zoomtstl , zoom/zoomtst2 | ..

Several small applications that demonstrates the ZOOM API.

If you wish to install YAZ in system directorigastr/local/bin , lusr/local/lib .. etc, you can type:

make install

You probably need to have root access in order to perform this. You must specifgrtfix ~ option for
configure if you wish to install YAZ in other directories than the defaust/local/

If you wish to perform an un-installation of YAZ, use:

make uninstall

This will only work if you haven't reconfigured YAZ (and therefore changed installation prefix). Note that
uninstall will not remove directories created by make install, gy/local/include/yaz

How to make apps using YAZ on UNIX

This section describes how to compile - and link your own applications using the YAZ toolkit. If you're used to
Makefiles this shouldn’t be hard. As for other libraries you have used before, you have to set a proper include
path for your C/C++ compiler and specify the location of YAZ libraries. You can do it by hand, but generally we
suggest you use thaz-config  that is generated bgonfigure . This is especially important if you're using

the threaded version of YAZ which require you to pass more options to your linker/compiler.

Theyaz-config  script accepts command line options that makey#aeconfig  script print options that you
should use in your make process. The most important oneséeftags , --libs  which prints C compiler
flags, and linker flags respectively.

A small and complet&lakefile  for a C application consisting of one source fitgjprog.c , may look like this:

YAZCONFIG=/usr/local/bin/yaz-config
CFLAGS='$(YAZCONFIG) --cflags'
LIBS="$(YAZCONFIG) --libs'

myprog: myprog.o
$(CC) $(CFLAGS) -0 myprog myprog.o $(LIBS)

The CFLAGS variable consists of a C compiler directive that will set the include path frathkatdirectory of
yaz . That is, if YAZ header files were installed lasr/local/includelyaz , then include path is set to
{usr/local/include . Therefore, in your applications you should use

#include <yaz/proto.h>

andnot

#include <proto.h>



Chapter 2. Compilation and Installation
For Libtool users, thgaz-config  script provides a different variant of optietibs , called--lalibs that
returns the name of the Libtool acrhive(s) for YAZ rather than the ordinary ones.

For applications using the threaded version of YAZ, spettifyads after the other options. Whehreads is
given, more flags and linker flags will be printed ynz-config . If our previous example was using threads,
you'd have to modify the lines that seFLAGSandLIBS as follows:

CFLAGS='$(YAZCONFIG) --cflags threads'
LIBS='$(YAZCONFIG) --libs threads'

There is no need specify POSIX thread libraries in your Makefile.LTB8 variable includes that as well.

WIN32

The easiest way to install YAZ on Windows is by downloading an installer from here
(http://ftp.indexdata.dk/publyaz/win32). The installer comes with source too - in case you wish to compile YAZ
with different Compiler options etc.

Compiling from Source on WIN32

YAZ is shipped with "makefiles" for the NMAKE tool that comes with Microsoft Visual Studio
(http://msdn.microsoft.com/vstudio/). Version 6 and .NET has been tested. We expect that YAZ compiles with
version 5 as well.

Start a command prompt and switch the sub directaywhere the filemakefile is located. Customize the
installation by editing thenakefile file (for example by using notepad). The following summarizes the most
important settings in that file:

DEBUG
If set to 1, the software is compiled with debugging libraries (code generation is multi-threaded debug
DLL). If set to 0, the software is compiled with release libraries (code generation is multi-threaded DLL).
HAVE_TCL. TCL

If HAVE_TCLis set to 1, nmake will use the ASN.1 compiler (Tcl based). You must@eto the full path
of the Tcl interpreter.

If you do not have Tcl installed, setAVE_TCLto O.

HAVE_BISON BISON

If GNU Bison is present, you might sefaVE_ICONMo 1 and specify the Bison executableBISON. Bison
is only required if you use the CVS version of YAZ or if you modify the grammar for CEILY ).

A Windows version of GNU Bison is part of unxutils (http://unxutils.sourceforge.net/).

HAVE_ICONVYICONV_DIR

If HAVE_ICONMs set to 1, YAZ is compiled with iconv support. In this configuration,ISEINV_DIR to the
iconv source directory.



Chapter 2. Compilation and Installation

HAVE_LIBXMLZ, LIBXML2_DIR

If HAVE_LIBXML2is set to 1, YAZ is compiled with SRW and SRU support. In this configuration, set
LIBXML2_DIR to the libxml2 (http://www.xmlsoft.org/) source directory andB_DIR to the zlib
directory.

Windows versions of libxml2, zlib and iconv can be found Igor Zlatkosite
(http://www.zlatkovic.com/libxml.en.html).

Note: YAZ is not using ZLIB. But libxml2 is.

When satisfied with the settings in the makefile, type

nmake

Note: If the nmake command is not found on your system you probably haven't defined the environment
variables required to use that tool. To fix that, find and run the batch file vcvars32.bat . You need to run it
from within the command prompt or set the environment variables "globally"; otherwise it doesn’t work.

If you wish to recompile YAZ - for example if you modify settings in tinakefile ~ you can delete object files,
etc by running.

nmake clean

The following files are generated upon successful compilation:

bin/yaz.dll
YAZ multi-threaded Dynamic Link Library.

liblyaz.lib
Import library foryaz.dll

bin/yaz-client.exe

YAZ 739.50 client application. It's a WIN32 console application. See chayer client for more
information.

bin/yaz-ztest.exe

Z39.50 multi-threaded test/example server. It's a WIN32 console application.

bin/zoomsh.exe

Simple console application implemented on top of ZIWOM functions. The application is a command line
shell that allows you to enter simple commands to perform ZOOM operations.



Chapter 2. Compilation and Installation

bin/zoomtstl.exe , bin/zoomtst2.exe ) e

Several small applications that demonstrates the ZOOM API.

How to make apps using YAZ on WIN32

This section will go though the process of linking your WIN32 applications with YAZ.

Some people are confused by the fact that we use the nmake tool to build YAZ. They think they have to do that
too - in order to make their WIN32 applications work with YAZ. The good news is that you don'’t have to. You
can use the integrated environment of Visual Studio if desired for your own application.

When setting up a project or Makefile you have to set the following:
include path
Set it to theinclude directory of YAZ.

import libraryyaz.lib
You must link with this library. It's located in the sub directdity of YAZ.

dynamic link libraryyaz.dil

This DLL must be in your execution path when you invoke your application. Specifically, you should
distribute this DLL with your application.

10



Chapter 3. ZOOM

ZOOM is an acronym for '’Z39.50 Object-Orientation Model’ and is an initiative started by Mike Taylor (Mike is
from the UK, which explains the peculiar name of the model). The goal of ZOOM is to provide a common
Z39.50 client API not bound to a particular programming language or toolkit.

Note: A recent addition to YAZ is SRW support. You can now make SRW ZOOM connections by specifying
scheme http://  for the hostname for a connection.

The lack of a simple Z239.50 client API for YAZ has become more and more apparent over time. So when the
first ZOOM specification became available, an implementation for YAZ was quickly developed. For the first

time, it is now as easy (or easier!) to develop clients than servers with YAZ. This chapter describes the ZOOM C
binding. Before going further, please reconsider whether C is the right programming language for the job. There
are other language bindings available for YAZ, and still more are in active development. See the ZOOM web-site
(http://zoom.z3950.0rg/) for more information.

In order to fully understand this chapter you should read and try the example pragramtstl.c
zoomtst2.c , .. in thezoom directory.

The C language misses features found in object oriented languages such as C++, Java, etc. For example, you'll
have to manually, destroy all objects you create, even though you may think of them as temporary. Most objects
has a create -and a destroy variant. All objects are in fact pointers to internal stuff, but you don't see that
because of typedefs. All destroy methods should gracefully ignbitéLa pointer.

In each of the sections below you'll find a sub section called protocol behavior, that describes how the APl maps
to the Z39.50 protocol.

Connections
The Connection object is a session with a target.

#include <yaz/zoom.h>
ZOOM_connection ZOOM_connection_new (const char *host, int portnum);
ZOOM_connection ZOOM_connection_create (ZOOM_options options);

void ZOOM_connection_connect(ZOOM_connection ¢, const char *host,
int portnum);
void ZOOM_connection_destroy (ZOOM_connection c);

Connection objects are created with either func#@®OM_connection_new or ZOOM_connection_create

The former creates and automatically attempts to establish a network connection with the target. The latter
doesn't establish a connection immediately, thus allowing you to specify options before establishing network
connection using the functicfOOM_connection_connect . If the port numberportnum , is zero, théhost is
consulted for a port specification. If no port is given, 210 is used. A colon denotes the beginning of a port number
in the host string. If the host string includes a slash, the following part specifies a database for the connection.

You can prefix the host with a scheme followed by colon. The default scheteye i&239.50 protocol). The
schementtp selects SRW over HTTP.

Connection objects should be destroyed using the funziwdM_connection_destroy

11



Chapter 3. ZOOM
void ZOOM_connection_option_set (ZOOM_connection c,
const char *key,
const char *val);
const char *ZOOM_connection_option_get (ZOOM_connection c,

const char *key);

ThezZOOM_connection_option_set allows you to set an option given Iixgy to the valuevalue for the
connection. FunctiodOOM_connection_option_get returns the value for an option given kgy .

Table 3-1. ZOOM Connection Options

Option Description Default

implementationName Name of Your client none
user Authentication user name none
group Authentication group name none
password Authentication password. none
host Target host. This setting is "read-only". It's none

automatically set internally when connecting to a target.

proxy Proxy host none

async If true (1) the connection operates in asynchronousd
operation which means that all calls are non-blocking
exceptzOOM_event.

maximumRecordSize Maximum size of single record. 1MB
preferredMessageSize Maximum size of multiple records. 1MB
lang Language for negotiation. none
charset Character set for negotiation. none
serverimplementationld Implementation ID of server. (The old none

targetimplementationld option is also supported for the
benefit of old applications.)

targetimplementationName Implementation Name of server. (The old none
targetimplementationName option is also supported for
the benefit of old applications.)

serverlmplementationVersion Implementation Version of server. (the old none
targetimplementationVersion option is also supported
for the benefit of old applications.)

databaseName One or more database names separated by chardotéault
plus &), which to be used by subsequent search requests
on this Connection.

piggyback True (1) if piggyback should be used in searches; false
(0) if not.

smallSetUpperBound If hits is less than or equal to this value, then targed will
return all records using small element set name

largeSetLowerBound If hits is greater than this value, the target will retuth no
records.

12



Chapter 3. ZOOM

Option Description Default
mediumSetPresentNumber This value represents the number of records to b@
returned as part of a search when when hits is less than
or equal to large set lower bound and if hits is greater
than small set upper bound.

smallSetElementSetName The element set name to be used for small result sets. none
mediumSetElementSetName The element set name to be for medium-sized resuie
sets.

If either optionlang orcharset is set, then Character Set and Language Negotiation
(http://lcweb.loc.gov/z3950/agency/defns/charneg-3.html) is in effect.

int ZOOM_connection_error (ZOOM_connection ¢, const char **cp,
const char **addinfo);
int ZOOM_connection_error_x (ZOOM_connection ¢, const char **cp,
const char **addinfo, const char **dset);

FunctionZOOM_connection_error  checks for errors for the last operation(s) performed. The function returns
zero if no errors occurred; non-zero otherwise indicating the error. Porpgeasidaddinfo  holds messages

for the error and additional-info if passed as naukL FunctionZOOM_connection_error_x is an extended
version ofZOOM_connection_error  that is capable of returning name of diagnostic seiseat .

Z39.50 Protocol behavior

The callszZOOM_connection_new andZOOM_connection_connect  establishes a TCP/IP connection and
sends an Initialize Request to the target if possible. In addition, the calls waits for an Initialize Response from the
target and the result is inspected (OK or rejected).

If proxy is set then the client will establish a TCP/IP connection with the peer as specified frgithe host
and the hostname as part of the connect calls will be set as part of the Initialize Request. The proxy server will
then "forward" the PDU'’s transparently to the target behind the proxy.

For the authentication parameters, if optiger is set and both optiongoup andpass are unset, then Open
style authentication is used (Version 2/3) in which case the username is usually followed by a slash, then by a
password. If eithegroup orpass is set then idPass authentication (Version 3 only) is used. If none of the
options are set, no authentication parameters are set as part of the Initialize Request (obviously).

When optionasync is 1, it really means that all network operations are postponed (and queued) until the
functionZOOM_event is invoked. When doing so it doesn’t make sense to check for errors after
ZOOM_connection_new is called since that operation "connecting - and init" is still incomplete and the API
cannot tell the outcome (yet).

SRW Protocol behavior

The SRW protocol doesn't feature an Inititialize Request, so the connection phase merely establishes a TCP/IP
connection with the SOAP service.

Most of the ZOOM connection options do not affect SRW and they are ignored. However, future versions of
YAZ might honorimplementationName  and put that as part of User-Agent header for HTTP requests.

Thecharset is used in the Content-Type header of HTTP requests.

13



Chapter 3. ZOOM

Queries

Query objects represents queries.

ZOOM_query ZOOM_query_create(void);

void ZOOM_query_destroy(ZOOM_query q);

int ZOOM_query_prefix(ZOOM_query g, const char *str);
int ZOOM_query_cql(ZOOM_query s, const char *str);

int ZOOM_query_sortby(ZOOM_query q, const char *criteria);

Create query objects usiTdOM_query _create and destroy them by callingOOM_query_destroy
RPN-queries can be specified®@Fnotation by using the functionOOM_query prefix . The
ZOOM_query_cql specifies a CQL query to be sent to the server/target. More query types will be added in
future versions of YAZ, such aCL to RPN-mapping, native CCL query, etc. In addition to a search, a sort
criteria may be set. FunctidOOM_query_sortby  specifies a sort criteria using the same string notation for
sort as offered by th¥AZ client.

Protocol behavior

The query object is just an interface for the member Query in the SearchRequest. The sortby-function is an
interface to the sortSequence member of the SortRequest.

Result sets

The result set object is a container for records returned from a target.

ZOOM_resultset ZOOM_connection_search(ZOOM_connection,
ZOOM_query q);

ZOOM_resultset ZOOM_connection_search_pgf(ZOOM_connection c,
const char *q);

void ZOOM_resultset_destroy(ZOOM_resultset r);

FunctionZOOM_connection_search  creates a result set given a connection and query. Destroy a result set by
calling ZOOM_resultset_destroy . Simple clients may using PQF only may use function
ZOOM_connection_search_pgf  in which case creating query objects is not necessary.

void ZOOM_resultset_option_set (ZOOM_resultset r,
const char *key,
const char *val);

const char *ZOOM_resultset_option_get (ZOOM_resultset r,
const char *key);

size_t ZOOM_resultset_size (ZOOM_resultset r);

14



Chapter 3. ZOOM

FunctionszZOOM_resultset_options_set andZOOM_resultset_get  sets and gets an option for a result set
similar toZOOM_connection_option_get andZOOM_connection_option_set

The number of hits also called result-count is returned by fun@@@M_resultset_size

Table 3-2. ZOOM Result set Options

Option Description Default

start Offset of first record to be retrieved from target. First recrd
has offset 0 unlike the protocol specifications where first
record has position 1.

count Number of records to be retrieved. 0

presentChunk The number of records to be requested from the served in
each chunk (present requst). The value 0 means to request
all the records in a single chunk. (The clgp option is
also supported for the benefit of old applications.)

elementSetName Element-Set name of records. Most targets should honone
element set nam@ andF for brief and full respectively.

preferredRecordSyntax Preferred Syntax, sudlSMARCSUTRS etc. none

schema Schema for retrieval, suchals-schema , Geo-schema, none
etc.

setname Name of Result Set (Result Set ID). If this option isn't s#fault
the ZOOM module will automatically allocate a result set
name.

Z39.50 Protocol behavior

The creation of a result set involves at least a SearchRequest - SearchResponse protocol handshake. Following
that, if a sort criteria was specified as part of the query, a SortRequest - SortResponse handshake takes place.
Note that it is necessary to perform sorting before any retrieval takes place, so no records will be returned from
the target as part of the SearchResponse because these would be unsorted. Hence, piggyback is disabled when
sort criteria are set. Following Search - and a possible sort - Retrieval takes place - as one or more Present
Requests/Response pairs being transferred.

The API allows for two different modes for retrieval. A high level mode which is somewhat more powerful and a
low level one. The low level is enabled when searching on a Connection object for which the settings
smallSetUpperBound , mediumSetPresentNumber andlargeSetLowerBound  are set. The low level mode

thus allows you to precisely set how records are returned as part of a search response as offered by the Z39.50
protocol. Since the client may be retrieving records as part of the search response, this mode doesn’t work well if
sorting is used.

The high-level mode allows you to fetch a range of records from the result set with a given start offset. When

you use this mode the client will automatically use piggyback if that is possible with the target and perform one

or more present requests as needed. Even if the target returns fewer records as part of a present response because
of a record size limit, etc. the client will repeat sending present requests. As an example, ikgptionis 0

(default) anctount is 4, andpiggyback is 1 (default) and no sorting criteria is specified, then the client will

attempt to retrieve the 4 records as part the search response (using piggyback). On the other hand, if either

start  is positive or if a sorting criteria is set, orgfggyback is 0, then the client will not perform piggyback

but send Present Requests instead.

If either of the optionsnediumSetElementSetName andsmallSetElementSetName  are unset, the value of
optionelementSetName is used for piggyback searches. This means that for the high-level mode you only have

15



Chapter 3. ZOOM

to specify one elementSetName option rather than three.

SRW Protocol behavior

Current version of YAZ does not take advantage of a result set id returned by the SRW server. Future versions
might do, however. Since, the ZOOM driver does not save result set IDs any present (retrieval) is transformed to
a SRW SearchRetrieveRequest with same query but, possibly, different offsets.

Optionschema specifies SRW schema for retrieval. However, optigamentSetName and
preferredRecordSyntax are ignored.

Optionsstart andcount are supported by SRW. The remaining optipitgyback , smallSetUpperBound
largeSetLowerBound , mediumSetPresentNumber , mediumSetElementSetName
smallSetElementSetName  are unsupported.

SRW supports CQL queriespt PQF. If PQF is used, however, the PQF query is transferred anyway using
non-standard elemepQuery in SRW SearchRetrieveRequest.

Unfortunately, SRW does not define a database setting. HéaabaseName is unsupported and ignored.
However, the path part in host parameter for functib@®M_connecton_new and
ZOOM_connection_connect  acts as a database (at least for the YAZ SRW server).

Records

A record object is a retrieval record on the client side - created from result sets.

void ZOOM_resultset_records (ZOOM_resultset r,

ZOOM_record *recs,

size_t start, size_t count);
ZOOM_record ZOOM_resultset_record (ZOOM_resultset s, size_t pos);

const char *ZOOM_record_get (ZOOM_record rec, const char *type,
size_t *len);

ZOOM_record ZOOM_record_clone (ZOOM_record rec);

void ZOOM_record_destroy (ZOOM_record rec);

References to temporary records are returned by funcZosv_resultset_records or
ZOOM _resultset_record

If a persistent reference to a record is desiz&@®dM_record_clone should be used. It returns a record reference
that should be destroyed by a callZOOM_record_destroy

A single record is returned by functic?OOM_resultset_record that takes a position as argument. First
record has position zero. If no record could be obtaikedL is returned.

FunctionzOOM _resultset_records retrieves a number of records from a result set. Pararaeter and
count specifies the range of records to be returned. Upon completionrats§], ..recs[count-1]

holds record objects for the records. The array of recarels should be allocated prior the call

ZOOM _resultset_records . Note that for those records that couldn't be retrieved from the taegsft ..]
is set toNULL

16



Chapter 3. ZOOM
In order to extract information about a single rec&@0OM_record_get is provided. The function returns a
pointer to certain record information. The nature (type) of the pointer depends on the partypeter,
Thetype is a string of the format:
form [; charsetfrom [,to ]]

whereform specifies the format of the returned recdrdm specifies the character set of the record in its
original form (as returned by the serve), specifies the output (returned) character set encoding. If charset is
not given, then no character set conversion takes plate. i§ omitted UTF-8 is assumed.

In addition, for certain types, the lengtin passed will be set to the size in bytes of the returned information.

The following are the supported values form .

database

Database of record is returned as a C null-terminated string. Returedype char *

syntax
The transfer syntax of the record is returned as a C null-terminated string containing the symbolic name of
the record syntax, e.@dsmarc. Return type isonst char *
render
The record is returned in a display friendly format. Upon completion buffer is returnedddyse char
*) and length is stored ifien .
raw

The record is returned in the internal YAZ specific format. For GRS-1, Explain, and others, the raw data is
returned as typ&_External *  which is just the type for the membestrievalRecord in type
NamePlusRecord . For SUTRS and octet aligned record (including all MARCS) the octet buffer is returned
and the length of the buffer.

xml

The record is returned in XML if possible. SRW/SRU and Z239.50 records with transfer syntax XML are
returned verbatim. MARC records are returned in MARCXML (http://www.loc.gov/standards/marcxml/)
(converted from 1SO2709 to MARCXML by YAZ). GRS-1 and OPAC records are not supported for this
form. Upon completion, the XML buffer is returned (typenst char * ) and length is stored itlen .

opac

OPAC for record is returned in XML.

Most MARC21 (http://www.loc.gov/marc/) records uses the MARC-8
(http://www.loc.gov/marc/specifications/speccharmarc8.html) character set encoding. An application that wishes
to display in Latin-1 would use

render; charset=marc8,iso-8859-1

17



Chapter 3. ZOOM

Z39.50 Protocol behavior

The functionsZOOM_resultset_record andZOOM_resultset_records inspects the client-side record

cache. Records not found in cache are fetched using Present. The functions may block (and perform network
I/O) - even though optioasync is 1, because they return records objects. (and there’s no way to return records
objects without retrieving them!).

There is a trick, however, in the usage of funct&dOM_resultset_records that allows for delayed retrieval
(and makes it non-blocking). By using a null pointer fecs you're indicating you're not interested in getting
records objectaow.

SRW Protocol behavior

The ZOOM driver for SRW treats records returned by a SRW server as if they where 239.50 records with
transfer syntax XML and no element set name or database name.

Scan

This section describes an interface for Scan. Scan is not an official part of the ZOOM model yet. The result of a
scan operation is theOOM_scanset which is a set of terms returned by a target.

The Scan interface is Z39.50 only. SRW version 1.0 does not support this.

ZOOM_scanset ZOOM_connection_scan (ZOOM_connection c,
const char *startterm);

size_t ZOOM_scanset_size(ZOOM_scanset scan);

const char * ZOOM_scanset_term(ZOOM_scanset scan, size_t pos,
int *occ, size_t *len);

const char * ZOOM_scanset_display_term(ZOOM_scanset scan, size_t pos,
int *occ, size_t *len);

void ZOOM_scanset_destroy (ZOOM_scanset scan);

const char *ZOOM_scanset_option_get (ZOOM_scanset scan,
const char *key);

void ZOOM_scanset_option_set (ZOOM_scanset scan, const char *key,
const char *val);

The scan set is created by functib@OM_connection_scan which performs a scan operation on the

connection using the specified startterm. If the operation was successful, the size of the scan set can be retrieved
by a call tozOOM_scanset_size . Like result sets, the items are numbered 0,..size-1. To obtain information

about a particular scan term, call functib@OM_scanset_term . This function takes a scan set offpet and

returns a pointer to eaw termor NULL if non-present. If present, theec andlen are set to the number of

occurrences and the length of the actual term respect®®IgM_scanset_display_term is similar to
ZOOM_scanset_term except that it returns théisplay ternrather than the raw term. In a few cases, the term is
different from display term. Always use the display term for display and the raw term for subsequent scan
operations (to get more terms, next scan result, etc).

18



Chapter 3. ZOOM

A scan set may be freed by a call to functibt@OM_scanset_destroy . Functions
ZOOM_scanset_option_get ~ andZOOM_scanset_option_set  retrieves and sets an option respectively.

Table 3-3. ZOOM Scan Set Options

Option Description Default

number Number of Scan Terms requested in next scan. After sddn it
holds the actual number of terms returned.

position Preferred Position of term in response in next scan; actlal
position after completion of scan.

stepSize Step Size 0

scanStatus An integer indicating the Scan Status of last scan. 0

Options

Most ZOOM objects provide a way to specify options to change behavior. From an implementation point of
view a set of options is just like an associative array / hash array, etc.

ZOOM_options ZOOM_options_create (void);
ZOOM_options ZOOM_options_create_with_parent (ZOOM_options parent);

void ZOOM_options_destroy (ZOOM_options opt);

const char *ZOOM_options_get (ZOOM_options opt, const char *name);

void ZOOM_options_set (ZOOM_options opt, const char *name,
const char *v);

typedef const char *(*200M_options_callback)
(void *handle, const char *name);

ZOOM_options_callback
ZOOM_options_set_callback (ZOOM_options opt,
ZOOM_options_callback c,
void *handle);

Events
If you're developing non-blocking applications, you have to deal with events.

int ZOOM_event (int no, ZOOM_connection *cs);

ThezOOM_event executes pending events for a number of connections. Supply the number of connecions in
and an array of connectionsés (cs[0] ... cs[no-1] ). A pending event could be a sending a search,
receiving a response, etc. When an event has occurred for one of the connections, this function returns a positive

19



Chapter 3. ZOOM
integern denoting that an event occurred for connectisin-1] . When no events are pending for the

connections, a value of zero is returned. To ensure that all outstanding requests are performed call this function
repeatedly until zero is returned.

20



Chapter 4. Generic server

Introduction

If you aren’t into documentation, a good way to learn how the back end interface works is to look at the
backend.h file. Then, look at the small dummy-serverztest/ztest.c . Thebackend.h file also makes a
good reference, once you've chewed your way through the prose of this file.

If you have a database system that you would like to make available by means of Z39.50, SRW o SRU, YAZ
basically offers your two options. You can use the APIs provided by the Z39.50 ASN.1, ODR, and COMSTACK
modules to create and decode PDUs, and exchange them with a client. Using this low-level interface gives you
access to all fields and options of the protocol, and you can construct your server as close to your existing
database as you like. It is also a fairly involved process, requiring you to set up an event-handling mechanism,
protocol state machine, etc. To simplify server implementation, we have implemented a compact and simple, but
reasonably full-functioned server-frontend that will handle most of the protocol mechanics, while leaving you to
concentrate on your database interface.

Note: The backend interface was designed in anticipation of a specific integration task, while still attempting
to achieve some degree of generality. We realize fully that there are points where the interface can be
improved significantly. If you have specific functions or parameters that you think could be useful, send us a
mail (or better, sign on to the mailing list referred to in the top-level README file). We will try to fit good
suggestions into future releases, to the extent that it can be done without requiring too many structural
changes in existing applications.

Note: The YAZ server does not support XCQL.

The Database Frontend

We refer to this software as a generic database frontend. Your database systebackémel databasend the
interface between the two is called thackend APIThe backend API consists of a small number of function
handlers and structure definitions. You are required to provide#ig) routine for the server (which can be

quite simple), as well as a set of handlers to match each of the prototypes. The interface functions that you write
can use any mechanism you like to communicate with your database system: You might link the whole thing
together with your database application and access it by function calls; you might use IPC to talk to a database
server somewhere; or you might link with third-party software that handles the communication for you (like a
commercial database client library). At any rate, the handlers will perform the tasks of:

« Initialization.

+ Searching.

« Fetching records.

« Scanning the database index (optional - if you wish to implement SCAN).
- Extended Services (optional).

« Result-Set Delete (optional).

21



Chapter 4. Generic server

+ Result-Set Sort (optional).

(more functions will be added in time to support as much of Z39.50-1995 as possible).

The Backend API

The header file that you need to use the interface are iimthele/yaz  directory. It's calledbackend.h . It
will include other files from thénclude/yaz  directory, so you'll probably want to use the -l option of your
compiler to tell it where to find the files. When you rorake in the top-level YAZ directory, everything you
need to create your server is to link with titglibyaz.la library.

Your main() Routine

As mentioned, youmain() routine can be quite brief. If you want to initialize global parameters, or read global
configuration tables, this is the place to do it. At the end of the routine, you should call the function

int statserv_main(int argc, char **argv,
bend_initresult *(*bend_init)(bend_initrequest *r),
void (*bend_close)(void *handle));

The third and fourth arguments are pointers to handlers. Habhelterr init  is called whenever the server
receives an Initialize Request, so it serves as a Z39.50 session initializeérerddhelose handler is called
when the session is closed.

statserv_main  will establish listening sockets according to the parameters given. When connection requests
are received, the event handler will typicaltyk() and create a sub-process to handle a new connection.
Alternatively the server may be setup to create threads for each connection. If you do use global variables and
forking, you should be aware, then, that these cannot be shared between associations, unless you explicitly
disable forking by command line parameters.

The server provides a mechanism for controlling some of its behavior without using command-line options. The
function

statserv_options_block *statserv_getcontrol(void);

will return a pointer to atruct statserv_options_block describing the current default settings of the
server. The structure contains these elements:

int dynamic

A boolean value, which determines whether the server will fork on each incoming request (TRUE), or not
(FALSE). Default is TRUE. This flag is only read by UNIX-based servers (WIN32 based servers doesn't
fork).

int threads

A boolean value, which determines whether the server will create a thread on each incoming request
(TRUE), or not (FALSE). Default is FALSE. This flag is only read by UNIX-based servers that offer
POSIX Threads support. WIN32-based servers always operate in threaded mode.

22



Chapter 4. Generic server

int inetd

A boolean value, which determines whether the server will operates under a UNIX INET daemon (inetd).
Default is FALSE.

int loglevel

Set this by ORing the constants definedhitiude/yaz/yaz-log.h

char logfile[ODR_MAXNAME+1]

File for diagnostic output ("": stderr).

char apdufile[ODR_MAXNAME+1]
Name of file for logging incoming and outgoing APDUs (": don’t log APDUSs, ‘stderr ).

char default_listen[1024]

Same form as the command-line specification of listener address. ™: no default listener address. Default is
to listen at "tcp: @:9999". You can only specify one default listener address in this fashion.

enum oid_proto default_proto;

EitherPROTO_Z39500r PROTO_SRDefault iSPROTO_Z39 50

int idle_timeout;

Maximum session idle-time, in minutes. Zero indicates no (infinite) timeout. Default is 15 minutes.

int maxrecordsize;

Maximum permissible record (message) size. Default is 1Mb. This amount of memory will only be
allocated if a client requests a very large amount of records in one operation (or a big record). Setitto a
lower number if you are worried about resource consumption on your host system.

char configname[ODR_MAXNAME+1]

Passed to the backend when a new connection is received.

char setuid[ODR_MAXNAME+1]

Set user id to the user specified, after binding the listener addresses.

void (*bend_start)(struct statserv_options_block *p)

Pointer to function which is called after the command line options have been parsed - but before the server
starts listening. For forked UNIX servers this handler is called in the mother process; for threaded servers
this handler is called in the main thread. The default value of this pointer is NULL in which case it isn’t
invoked by the frontend server. When the server operates as an NT service this handler is called whenever
the service is started.

void (*bend_stop)(struct statserv_options_block *p)

Pointer to function which is called whenever the server has stopped listening for incoming connections.
This function pointer has a default value of NULL in which case it isn't called. When the server operates as
an NT service this handler is called whenever the service is stopped.

void *handle

User defined pointer (default value NULL). This is a per-server handle that can be used to specify
"user-data". Do not confuse this with the session-handle as returned by bend_init.

23



Chapter 4. Generic server

The pointer returned bstatserv_getcontrol points to a static area. You are allowed to change the contents
of the structure, but the changes will not take effect before you call

void statserv_setcontrol(statserv_options_block *block);

Note: that you should generally update this structure before calling statserv_main()

The Backend Functions

For each service of the protocol, the backend interface declares one or two functions. You are required to provide
implementations of the functions representing the services that you wish to implement.

Init

bend_initresult (*bend_init)(bend_initrequest *r);

This handler is called once for each new connection request, after a new process/thread has been created, and an
Initialize Request has been received from the client. The pointer tioetite init  handler is passed in the call
to statserv_start

This handler is also called when operating in SRW/SRU mode - when a connection has been made (even though
SRW/SRU does not offer this service).

Unlike previous versions of YAZ, thieend_init ~ also serves as a handler that defines the 239.50 services that
the backend wish to support. Pointersatbservice handlers, including search - and fetch must be specified here
in this handler.

The request - and result structures are defined as

typedef struct bend_initrequest

{
Z_ldAuthentication *auth;
ODR stream; /* encoding stream */
ODR print; /* printing stream */
Z Referenceld *referenceld;/* reference ID */
char *peer_name; /* dns host of peer (client) */

char *implementation_id;

char *implementation_name;

char *implementation_version;

int (*bend_sort) (void *handle, bend_sort_rr *rr);

int (*bend_search) (void *handle, bend_search_rr *rr);
int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

int (*bend_present) (void *handle, bend_present_rr *rr);
int (*bend_esrequest) (void *handle, bend_esrequest_rr *rr);
int (*bend_delete)(void *handle, bend_delete_rr *rr);

int (*bend_scan)(void *handle, bend_scan_rr *rr);

int (*bend_segment)(void *handle, bend_segment_rr *rr);

24



Chapter 4. Generic server

ODR decode; /* decoding stream */
[* character set and language negotiation - see includelyaz/z-charneg.h */
Z_CharSetandLanguageNegotiation *charneg_request;
Z_External *charneg_response;
} bend_initrequest;

typedef struct bend_initresult

{
int errcode; * 0==0K */
char *errstring;  /* system error string or NULL */
void *handle; /* private handle to the backend module */

} bend_initresult;

In general, the server frontend expects thatddred_*result  pointer that you return is valid at least until the

next call to abend_* function . This applies to all of the functions described herein. The parameter structure
passed to you in the call belongs to the server frontend, and you should not make assumptions about its contents
after the current function call has completed. In other words, if you want to retain any of the contents of a request
structure, you should copy them.

Theerrcode should be zero if the initialization of the backend went well. Any other value will be interpreted as
an error. Theerrstring isn’t used in the current version, but one option would be to stick it in the initResponse
as a VisibleString. Thaandle is the most important parameter. It should be set to some value that uniquely
identifies the current session to the backend implementation. It is used by the frontend server in any future calls
to a backend function. The typical use is to set it to point to a dynamically allocated state structure that is private
to your backend module.

Theauth member holds the authentication information part of the Z39.50 Initialize Request. Interpret this if
your serves requires authentication.

The memberpeer_name , implementation_id , implementation_name andimplementation_version
holds DNS of client, ID of implementor, name of client (Z39.50) implementation - and version.

Thebend_ - members are set to NULL wherend_init  is called. Modify the pointers by setting them to point
to backend functions.

Search and retrieve

We now describe the handlers that are required to support search - and retrieve. You must support two functions -
one for search - and one for fetch (retrieval of one record). If desirable you can provide a third handler which is
called when a present request is received which allows you to optimize retrieval of multiple-records.

int (*bend_search) (void *handle, bend_search_rr *rr);

typedef struct {

char *setname; /* name to give to this set */
int replace_set; [* replace set, if it already exists */
int num_bases; /* number of databases in list */
char **basenames; /* databases to search */
Z_Referenceld *referenceld;/* reference ID */

Z_Query *query; [* query structure */

ODR stream; /* encode stream */

ODR decode; [* decode stream */

ODR print; [* print stream */

bend_request request;

25



Chapter 4. Generic server

bend_association association;

int *fd;

int hits; [* number of hits */

int errcode; /* 0==0K */

char *errstring; /* system error string or NULL */

} bend_search_rr;

Thebend_search handler is a fairly close approximation of a protocol Z39.50 Search Request - and Response
PDUs Thesetname is the resultSetName from the protocol. You are required to establish a mapping between
the set name and whatever your backend database likes to use. Similarypldhe_set  is a boolean value
corresponding to the resultSetindicator field in the protaaoh_bases/basenames is a length of/array of

character pointers to the database names provided by the clierqu@ilye is the full query structure as defined

in the protocol ASN.1 specification. It can be either of the possible query types, and it’s up to you to determine if
you can handle the provided query type. Rather than reproduce the C interface here, we’ll refer you to the
structure definitions in the fileclude/yaz/z-core.h . If you want to look at the attributeSetld OID of the

RPN query, you can either match it against your own internal tables, or you can use tegentbyoid

function provided by YAZ.

The structure contains a number of hits, anagaocode/errstring pair. If an error occurs during the search,

or if you're unhappy with the request, you should set the errcode to a value from the BIB-1 diagnostic set. The
value will then be returned to the user in a nonsurrogate diagnostic record in the responsestifilie |, if
provided, will go in the addinfo field. Look at the protocol definition for the defined error codes, and the
suggested uses of the addinfo field.

Thebend_search handler is also called when the frontend server receives a SRW/SRU SearchRetrieveRequest.
For SRW/SRU, a CQL query is usually provided by the client. The CQL query is available as gaQusry

structure (note that CQL is nhow part of Z39.50 via an external). To support CQL in existing implementations that
only do Type-1, we refer to the CQL-to-PQF tool describede

To maintain backwards compatibility, the frontend server of yaz always assume that error codes are BIB-1
diagnostics. For SRW/SRU operation, a Bib-1 diagnostic code is mapped to SRW/SRU diagnostic.

int (*bend_fetch) (void *handle, bend_fetch_rr *rr);

typedef struct bend_fetch_rr {
char *setname; /* set name */
int number; /* record number */
Z_Referenceld *referenceld;/* reference ID */
oid_value request_format; /* One of the CLASS_RECSYN members */
int *request_format_raw; /* same as above (raw OID) */
Z_RecordComposition *comp; /* Formatting instructions */

ODR stream; /* encoding stream - memory source if req */
ODR print; [* printing stream */

char *basename; /* name of database that provided record */
int len; /* length of record or -1 if structured */
char *record; /* record */

int last_in_set; [*is it? ¥/

oid_value output_format; /* format */

int *output_format_raw; [* used instead of above if not-null */

int errcode; /* 0==success */

char *errstring; /* system error string or NULL */

int surrogate_flag; /* surrogate diagnostic */

char *schema; [* string record schema input/output */

} bend_fetch_rr;

26



Chapter 4. Generic server

The frontend server calls thend _fetch  handler when it needs database records to fulfill a Z39.50 Search
Request, a Z39.50 Present Request or a SRW SearchRetrieveRequestndie is simply the name of the

result set that holds the reference to the desired recordndrhier is the offset into the set (with 1 being the

first record in the set). Thiermat field is the record format requested by the client (BeeSection called

Object Identifiersn Chapter §. The valuevAL_NONENdicates that the client did not request a specific format.
Thestream argument is an ODR stream which should be used for allocating space for structured data records.
The stream will be reset when all records have been assembled, and the response package has been transmitted.
For unstructured data, the backend is responsible for maintaining a static or dynamic buffer for the record
between calls.

If a SRW/SRU SearchRetrieveRequest is received by the frontend servexfetieaceld  is NULL and the
request_format  (transfer syntax) is XML (OID nam&AL_TEXT_XMI. The schema for SRW/SRU is stored
in both thez_RecordComposition  structure an@gchema (simple string).

In the structure, thbasename is the name of the database that holds the redendis the length of the record
returned, in bytes, angcord is a pointer to the recordast_in_set should be nonzero only if the record
returned is the last one in the given result setode anderrstring , if given, will be interpreted as a global

error pertaining to the set, and will be returned in a non-surrogate-diagnostic. If you wish to return the error as a
surrogate-diagnostic (local error) you can do this by settingpgate_flag to 1 also.

If the len field has the value -1, thercord is assumed to point to a constructed data type.fdimeat field
will be used to determine which encoder should be used to serialize the data.

Note: If your backend generates structured records, it should use odr_malloc() on the provided stream for
allocating data: This allows the frontend server to keep track of the record sizes.
Theformat field is mapped to an object identifier in the direct reference of the resulting EXTERNAL

representation of the record.

Note: The current version of YAZ only supports the direct reference mode.

int (*bend_present) (void *handle, bend_present_rr *rr);

typedef struct {

char *setname; /* set name */

int start;

int number; /* record number */

oid_value format; /* One of the CLASS_RECSYN members */

Z_Referenceld *referenceld;/* reference ID */
Z_RecordComposition *comp; /* Formatting instructions */
ODR stream; /* encoding stream */
ODR print; /* printing stream */
bend_request request;

bend_association association;

int hits; /* number of hits */
int errcode; /* 0==0K */
char *errstring; /* system error string or NULL */

} bend_present_rr;

27



Chapter 4. Generic server

Thebend_present handler is called when the server receives a Z39.50 Present Requestirinee , start
andnumber is the name of the result set - start position - and number of records to be retrieved respectively.
format andcomp is the preferred transfer syntax and element specifications of the present request.

Note that this is handler serves as a supplemertidnd_fetch and need not to be defined in order to support
search - and retrieve.

Delete
For back-ends that supports delete of a result set only one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef struct bend_delete_rr {
int function;
int num_setnames;
char **setnames;
Z Referenceld *referenceld;

int delete_status; [* status for the whole operation */

int *statuses; [* status each set - indexed as sethames */
ODR stream;

ODR print;

} bend_delete_rr;

Note: The delete set function definition is rather primitive, mostly because we have had no practical need for
it as of yet. If someone wants to provide a full delete service, we'd be happy to add the extra parameters that
are required. Are there clients out there that will actually delete sets they no longer need?

scan

For servers that wish to offer the scan service one handler must be defined.

int (*bend_delete)(void *handle, bend_delete_rr *rr);

typedef enum {

BEND_SCAN_SUCCESS, /* ok */

BEND_SCAN_PARTIAL /* not all entries could be found */
} bend_scan_status;

typedef struct bend_scan_rr {
int num_bases; /* number of elements in database list */
char **basenames; [* databases to search */
oid_value attributeset;
Z_Referenceld *referenceld; /* reference ID */
Z_AttributesPlusTerm *term;

ODR stream; /* encoding stream - memory source if required */
ODR print; /* printing stream */

int *step_size; [* step size */

int term_position; /* desired index of term in result list/returned */

int num_entries; /* number of entries requested/returned */

28



Chapter 4. Generic server

struct scan_entry *entries;
bend_scan_status status;
int errcode;
char *errstring;

} bend_scan_trr;

Application Invocation

The finished application has the following invocation syntax (by wastaiberv_main() ):

appname [-install ] [-installa  ][-remove ][-a file ][-v level ][-I file ][-u uid ][-c
config ][-t minutes ]
[k kilobytes ][-d daemon][-w dir ][-p pidfile ][-ziDST1 ] [listener-spec...]

The options are:

-a file

Specify a file for dumping PDUs (for diagnostic purposes). The special ngjaesh) sends output to

stderr

-S
Don't fork or make threads on connection requests. This is good for debugging, but not recommended for
real operation: Although the server is asynchronous and non-blocking, it can be nice to keep a software
malfunction (okay then, a crash) from affecting all current users.

-1
Like -S but after one session the server exits. This mode is for debuggiypg

T
Operate the server in threaded mode. The server creates a thread for each connection rather than a fork a
process. Only available on UNIX systems that offers POSIX threads.

-S
Use the SR protocol (obsolete).

-Z
Use the 239.50 protocol (default). This option aadcomplement each other. You can use both multiple
times on the same command line, between listener-specifications (see below). This way, you can set up the
server to listen for connections in both protocols concurrently, on different local ports.

-1 file
The lodfile.

-c config

A user option that serves as a specifier for some sort of configuration, usually a filename. The argument to
this option is transferred to membamfigname of thestatserv_options_block

29



Chapter 4. Generic server

-C fname

Sets SSL certificate file name for server (PEM).

v level

The log level. Use a comma-separated list of members of the set {fatal,debug,warn,log,malloc,all,none}.

-u  uid
Set user ID. Sets the real UID of the server process to that of the given user. It's useful if you aren’t
comfortable with having the server run as root, but you need to start it as such to bind a privileged port.

-w dir
The server changes to this directory during before listening on incoming connections. This option is useful
when the server is operating from the inetd daemon {s¢e

-p pidfile

Specifies that the server should write its Process ID to file givepidfijle . A typical location would be
/var/run/yaz-ztest.pid

Use this to make the the server run from the inetd server (UNIX only).

Use this to make the server put itself in the background and run as a daemon. If AeitieerD is given,
the server starts in the foreground.

-install
Use this to install the server as an NT service (Windows NT/2000/XP only). Control the server by going to
the Services in the Control Panel.

-installa
Use this to install and activate the server as an NT service (Windows NT/2000/XP only). Control the server
by going to the Services in the Control Panel.

-remove

Use this to remove the server from the NT services (Windows NT/2000/XP only).

-t minutes

Idle session timeout, in minutes.

-k size

Maximum record size/message size, in kilobytes.

-d daemon

Set name of daemon to be used in hosts access file. See hosts_access(5) and tcpd(8).

A listener specification consists of a transport mode followed by a colon (:) followed by a listener address. The
transport mode is eitheep , unix: orssl .

For TCP and SSL, an address has the form

30



Chapter 4. Generic server

hostname | IP-number [ portnumber]

The port number defaults to 210 (standard 239.50 port).
For UNIX, the address is the filename of socket.

For TCP/IP and SSL, the special hostna@(@at sign) is mapped to the addresSaDDR_ANY which causes the
server to listen on any local interface.

Example 4-1. Running the GFS on Unix

Assuming the server applicati@ppname is started as root, the following will make it listen on port 210. The
server will change identity toobody and write its log tovar/log/app.log

appname -l /var/log/app.log -u nobody tcp:@:210

The server will accept 239.50 requests and offer SRW/SRU service on port 210.

Example 4-2. Setting up Apache as SRW/SRU Frontend

If you use Apache (http://httpd.apache.org/) as your public web server and want to offer HTTP port 80 access to
the YAZ server on 210, you can use tireoxyPass

(http://httpd.apache.org/docs/mod/mod_proxy.html#proxypass) directive. If you have virtual host

srw.mydomain you can use the following directives in Apache’s httpd.conf:

<VirtualHost *>

ErrorLog /home/srw/logs/error_log
TransferLog /home/srw/logs/access_log
ProxyPass / http://srw.mydomain:210/
</VirualHost>

The above for the Apache 1.3 series.

Example 4-3. Running a server with local access only

Servers that is only being accessed from the local host should listen on UNIX file socket rather than a Internet
socket. To listen oftmp/mysocket  start the server as follows:

appname tcp:/tmp/mysocket

31



Chapter 5. The YAZ client

Introduction

yaz-client is a line-mode Z239.50/SRW client. It supports a fair amount of the functionality of the Z39.50v3

standard. Its primary purpose is to exercise the package, and verify that the protocol works OK. For the same
reason some commands offers more functionality than others. Commands that exercises common Z39.50
services such as search and present have more features than less common supported services, such as Extended
Services (ItemOrder, ItemUpdate,..).

Invoking the YAZ client

It can be started by typing

yaz-client [-m fname ] [-a fname ] [-c fnrame ] [-q fname ] [-v level ][-p target ][-u auth ][-k
size ] [zurl]

in a UNIX shell / WIN32 console. Theurl , specifies a Z39.50/SRW host and, if specified, the client first tries
to establish connection with the Z39.50/SRW target.
Options are prefixed by followed by a particular letter.

The following options are supported:

-m fname
All retrieved transfer records are appended toffieme . All records as returned by a target(s) in Search
Responses and Present Responses are appended verbatim to the file.

-a fname
Pretty-print log of APDUs sent and received is appended to thénfilme . If fname is- (minus) the
APDU log is written tostderr

-c fname
Sets the filename for CCL fields fname . If this option is not given the YAZ client reads CCL fields from
file default.bib

-q fname
Sets the filename for CQL fields foame . If this option is not given the YAZ client reads CQL fields from
file /usr/local/sharelyaz/etc/pgf.properties

-v level
Sets the LOG level ttevel . Level is a sequence of tokens separated by comma. Each token is a integer or
a named LOG item - one ddital , debug, warn, log , malloc , all , none.

-p target

Specifies proxy address. When set YAZ client will connect to a proxy on the address and port given. The
actual target will be specified as part of the InitRequest to inform the proxy about actual target.

32



Chapter 5. The YAZ client

-u auth
Specifies authentication. Usually the fouser /password is used. This option does the same thing as
theauth command.

-k size

Specifies the maximum messages size in kilobytes. The default maximum message size for the YAZ client
is 1024 (1 MB).

In order to connect to Index Data’s test Z39.50 servebayel.indexdata.dk , port 210 and with the
database nammearc, one could type

yaz-client bagel.indexdata.dk:210/marc

The same server is also a SOAP SRW service. Connect to it via HTTP as follows:

yaz-client http://bagel.indexdata.dk:210/marc

In order to enable APDU log and connect to localhost, port 210 (default) and database Default (default) you'd
write:

yaz-client -a - localhost

The following command connects to a local server via UNIX sottkgi/lyaz and sets maximum message size
to 5 MB.

yaz-client -k 5120 unix:/tmplyaz

Commands

When the YAZ client has read options and connected to a target, if given, it will digplapd await your
command. Commands are executed by hitting the return key. You can always issue the cantonseel the list
of available commands.

The commands are (the letters in parenthesis are short names for the commands):

open zurl

Opens a connection to a server. The syntaxfot is the same as described above for connecting from
the command line.

Syntax:
[(tcp|ssl|unix|http)”’ Jhost [:port ][/base]

33



Chapter 5. The YAZ client

quit
Quits YAZ client

f query

Sends a Search Request usingdbery given.

delete setname

Deletes result set with nansetname on the server.

base basel base2
Sets the name(s) of the database(s) to search. One or more databases may be specified separated by blanks.
This commands overrides the database giveruih .

show [start [+number]]

Fetches records by sending a Present Request from the start position gstantby a number of records
given bynumber . If start  is not given, then the client will fetch from position of the last retrieved record
plus 1. Ifnumber is not given, then one record will be fetched at a time.

scan term

Scans database index for a term. The syntax resembles the syntia® fodf you want to scan for the
wordwater you could write

scan water

but if you want to scan only in, say the title field, you would write

scan @attr 1=4 water

sort sortspecs

Sorts a result set. The sort command takes a sequence of sort specifications. A sort specification holds a
field (sort criteria) and is followed by flags. If the sort criteria includesis assumed that the sort SortKey

is of type sortAttributes using Bib-1. The integer beferis the attribute type and the integer followiagds

the attribute value. If ne is in the SortKey it is treated as a sortfield-type of type InternationalString. Flags
observed ares for case sensitive, for case insensitives for sort ascending arelfor sort descending.

sort+

Same asort but stores the sorted result set in a new result set.

authentication openauth

Sets up a authentication string if a server requires authentication (v2 OpensStyle). The authentication string
is first sent to the server when thpen command is issued and the Z39.50 Initialize Request is sent, so this
command must be used befangen in order to be effective. A common convention for gngthopen

string is that the username - and password is separated by a slashyesgname/mysecret

Islb n

Sets the limit for when no records should be returned together with the search result. See the 239.50
standard (http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

34



Chapter 5. The YAZ client

ssub n
Sets the limit for when all records should be returned with the search result. See the Z39.50 standard
(http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

mspn N

Sets the number of records should be returned if the number of records in the result set is between the
values ofislb  andssub . See the Z39.50 standard
(http://lcweb.loc.gov/z3950/agency/markup/04.html#3.2.2.1.6) for more details.

status

Displays the values dflb , ssub andmspn.

setname

Switches named result sets on and off. Default is on.

cancel

Sends a Trigger Resource Control Request to the target.

format oid
Sets the preferred transfer syntax for retrieved records. yaz-client supports all the record syntaxes that
currently are registered. See Z39.50 Standard (http://lcweb.loc.gov/z3950/agency/defns/oids.html#5) for
more details. Commonly used records syntaxes include usmarc, sutrs, grs1 and xml.

elements e
Sets the element set name for the records. Many targets support element sets are B (for brief) and F (for
full).

close

Sends a Z239.50 Close APDU and closes connection with the peer

querytype type
Sets the query type as used by commémtl . The following is supportedbrefix  for Prefix Query
Notation(Type-1 Query)rcl for CCL search (Type-2 Querydgl for CQL (Type-104 search with CQL
OID), ccl2zrpn  for CCL to RPN conversion (Type-1 Queryxl2rpn  for CQL to RPN conversion
(Type-1 Query).

attributeset set

Sets attribute set OID for prefix queries (RPN, Type-1).
refid id
Sets reference ID for Z39.50 Request(s).

itemorder  type no

Sends an Item Order Request using the ILL Extertygle is either 1 or 2 which corresponds to
ILL-Profile 1 and 2 respectively. Thao is the Result Set position of the record to be ordered.

35



Chapter 5. The YAZ client

update

Sends Item Update Request. This command sends a "minimal” PDU Update to the target supplying the last
received record from the target. If no record has been received from the target this command is ignored and
nothing is sent to the target.

. filename

Executes list of commands from fiflename , just like source on most UNIX shells.

I args

Executes commanakgs in subshell using theystem call.

push_commande command

The push_command takes another command as its argument. That command is then added to the history
information (so you can retrieve it later). The command itself is not executed. This command only works if
you have GNU readline/history enabled.

set_apdufile filename

Sets that APDU should be logged to filename . This command does the thing as optian

set_marcdump filename
Specifies that all retrieved records should be appended ditdilmme . This command does the thing as
option-m.

schema schemaid

Specifies schema for retrieval. Schema may be specified as an OID for Z39.50. For SRW, schema is a
simple string URI.

charset negotiationcharset [outputcharset ]

Specifies character set (encoding) for Z39.50 negotiation / SRW encoding and/or character set for output
(terminal).

negotiationcharset is the name of the character set to be negotiated by the server. The special name
- for negotiationcharset specifiemno character set to be negotiated.

If outputcharset is given, it specifies name of the character set of the output (on the terminal on which
YAZ client is running). To disable conversion of characters to the output encoding, the special name
(dash) can be used. If the special naamt is given, YAZ client will convert strings to the encoding of the
terminal as returned byl_langinfo call.

Note: Since character set negotation takes effect in the Z39.50 Initialize Request you should issue this
command before command open is used.

Note: MARC records are not covered by Z39.50 character set negotiation. See marccharset

36



Chapter 5. The YAZ client

marccharset charset

Specifies character set for retrieved MARC records so that YAZ client can display them in a character
suitable for your display. Sesharset command. lfauto is given, YAZ will assume that
MARC21/USMARC is using MARCS8/UTF8 and 1SO-8859-1 for all other MARC variants.

set_cclfields filename

Specifies that CCL fields should be read from file filename . This command does the thing as option
-C.

set_cqlfields filename

Specifies that CQL fields should be read from file filename . This command does the thing as option
_q .

register_oid name class OID

This command allows you to register your own object identifier - so that instead of entering a long
dot-notation you can use a short name instead.néme is your name for the Ollglass is the class,
andOID is the raw OID in dot notation. Class is oagpctx , absyn , attet , transyn , diagset
recsyn ,resform , accform ,extserv ,userinfo ,elemspec ,varset ,schema,tagset ,general . If
you're in doubt use thgeneral class.

Searching

The simplest example of a Prefix Query would be something like

f knuth

or

f "donald knuth"

In those queries no attributes was specified. This leaves it up to the server what fields to search but most servers
will search in all fields. Some servers does not support this feature though, and require that some attributes are
defined. To add one attribute you could do:

f @attr 1=4 computer
where we search in the title field, since the use(1) is title(4). If we want to search in the authanfiéfcthe
title field, and in the title field using right truncation it could look something like this:

f @and @attr 1=1003 knuth @attr 1=4 @attr 5=1 computer

Finally using a mix of Bib-1 and GILS attributes could look something like this:

f @attrset Bib-1 @and @attr GILS 1=2008 Washington @attr 1=21 weather

For the full specification of the Prefix Query see the sedBoefix Query Format

37



Chapter 6. The Z39.50 ASN.1 Module

Introduction

The Z239.50 ASN.1 module provides you with a set of C struct definitions for the various PDUs of the Z39.50
protocol, as well as for the complex types appearing within the PDUs. For the primitive data types, the C
representation often takes the form of an ordinary C language type, sinth.aSor ASN.1 constructs that have
no direct representation in C, such as general octet strings and bit strings, the ODR module (se€&tsection
ODR Modulg provides auxiliary definitions.

The Z239.50 ASN.1 module is located in sub directz®9.50 . There you'll find C files that implements
encoders and decoders for the Z39.50 types. You'll also find the protocol definitBas€v3.asn
esupdate.asn , and others.

Preparing PDUs

A structure representing a complex ASN.1 type doesn't in itself contain the members of that type. Instead, the
structure containpointersto the members of the type. This is necessary, in part, to allow a mechanism for
specifying which of the optional structure (SEQUENCE) members are present, and which are not. It follows that
you will need to somehow provide space for the individual members of the structure, and set the pointers to refer
to the members.

The conversion routines don't care how you allocate and maintain your C structures - they just follow the
pointers that you provide. Depending on the complexity of your application, and your personal taste, there are at
least three different approaches that you may take when you allocate the structures.

You can use static or automatic local variables in the function that prepares the PDU. This is a simple approach,
and it provides the most efficient form of memory management. While it works well for flat PDUs like the
InitReqgest, it will generally not be sufficient for say, the generation of an arbitrarily complex RPN query
structure.

You can individually create the structure and its members usingéfiec(2)  function. If you want to ensure
that the data is freed when it is no longer needed, you will have to define a function that individually releases
each member of a structure before freeing the structure itself.

You can use thedr_malloc() ~ function (seghe Section calletlsing ODRin Chapter Jor details). When you
useodr_malloc() , you can release all of the allocated data in a single operation, independent of any pointers
and relations between the datar_malloc()  is based on a "nibble-memory" scheme, in which large portions
of memory are allocated, and then gradually handed out with each eall tmalloc() . The next time you

call odr_reset() , all of the memory allocated since the last call is recycled for future use (actually, it is placed
on a free-list).

You can combine all of the methods described here. This will often be the most practical approach. For instance,
you might useodr_malloc()  to allocate an entire structure and some of its elements, while you leave other
elements pointing to global or per-session default variables.

The Z239.50 ASN.1 module provides an important aid in creating new PDUs. For each of the PDU types (say,
Z_InitRequest ), a function is provided that allocates and initializes an instance of that PDU type for you. In
the case of the InitRequest, the function is simply naawed InitRequest() , and it sets up reasonable

default value for all of the mandatory members. The optional members are generally initialized to null pointers.
This last aspect is very important: it ensures that if the PDU definitions are extended after you finish your
implementation (to accommodate new versions of the protocol, say), you won't get into trouble with

38



Chapter 6. The 239.50 ASN.1 Module

uninitialized pointers in your structures. The functions ode malloc()  to allocate the PDUs and its
members, so you can free everything again with a single callitaeset() . We strongly recommend that you
use thezget_* functions whenever you are preparing a PDU (in a C++ APlztiee functions would
probably be promoted to constructors for the individual types).

The prototype for the individual PDU types generally look like this:

Z_<type> *zget_<type>(ODR 0);

eg.:

Z_InitRequest *zget_InitRequest(ODR 0);

The ODR handle should generally be your encoding stream, but it needn’t be.

As well as the individual PDU functions, a functiaget APDU() is provided, which allocates a top-level
Z-APDU of the type requested:

Z_APDU *zget APDU(ODR o, int which);

Thewhich parameter is (of course) the discriminator belonging tazth&PDU CHOICRype. All of the interface
described here is provided by the Z39.50 ASN.1 module, and you access it throgghtétte header file.

Object Identifiers

When you refer to object identifiers in your application, you need to be aware that SR and Z39.50 use two
different set of OIDs to refer to the same objects. To handle this easily, YAZ provides a utility module to Z39.50
ASN.1 which provides an internal representation of the OIDs used in both protocols. Each oid is described by a
structure:

typedef struct oident
{

enum oid_proto proto;
enum oid_class class;
enum oid_value value;
int oidsuffix[OID_SIZE];
char *desc;

} oident;

Theproto field can be set to eith&@lROTO_SRr PROTO_Z3950 Theclass might be, sayCLASS_RECSYN
and thevalue might bevVAL_USMARd®or the USMARC record format. Functions

int *oid_ent_to_oid(struct oident *ent, int *dst);
struct oident *oid_getentbyoid(int *o);

are provided to map between object identifiers and database entries. If you store a membeid opitbte

type in your association state information, it's a simple matter, at runtime, to generate the correct OID when you
need it. For decoding, you can simply ignore the proto field, or if you're strict, you can verify that your peer is
using the OID family from the correct protocol. THesc field is a short, human-readable name for the PDU,
useful mainly for diagnostic output.

39



Chapter 6. The 239.50 ASN.1 Module

Note: The old function oid_getoidbyent still exists but is not thread safe. Use oid_ent_to_oid instead and
pass an array of size OID_SIZE .

Note: Plans are underway to merge the two protocols into a single definition, with one set of object identifiers.
When this happens, the oid module will no longer be required to support protocol independence, but it
should still be useful as a simple OID database.

EXTERNAL Data

In order to achieve extensibility and adaptability to different application domains, the new version of the protocol
defines many structures outside of the main ASN.1 specification, referencing them through ASN.1 EXTERNAL

constructs. To simplify the construction and access to the externally referenced data, the Z39.50 ASN.1 module
defines a specialized version of the EXTERNAL construct, callegkternal .1t is defined thus:

typedef struct Z_External
{
Odr_oid *direct_reference;
int *indirect_reference;
char *descriptor;
enum
{
/* Generic types */
Z_External_single = 0,
Z_External_octet,
Z_External_arbitrary,

[* Specific types */

Z External_SUTRS,
Z_External_explainRecord,
Z_External_resourceReportl,
Z_External_resourceReport2

} which;

union

{
/* Generic types */
Odr_any *single_ASN1_type;
Odr_oct *octet_aligned,;
Odr_bitmask *arbitrary;

[* Specific types */

Z SUTRS *sutrs;

Z_ExplainRecord *explainRecord;
Z_ResourceReportl *resourceReportl;
Z_ResourceReport2 *resourceReport2;

40



Chapter 6. The 239.50 ASN.1 Module

} Z_External;

When decoding, the 239.50 ASN.1 module will attempt to determine which syntax describes the data by looking
at the reference fields (currently only the direct-reference). For ASN.1 structured data, you need only consult the
which field to determine the type of data. You can the access the data directly through the union. When
constructing data for encoding, you set the union pointer to point to the data, andwsbicthefield accordingly.
Remember also to set the direct (or indirect) reference to the correct OID for the data type. For non-ASN.1 data
such as MARC records, use thetet_aligned arm of the union.

Some servers return ASN.1 structured data values (eg. database records) as BER-encoded records placed in the
octet-aligned branch of the EXTERNAL CHOICE. The ASN-module wilbt automatically decode these
records. To help you decode the records in the application, the function

Z_ext_typeent *z_ext_gettypebyref(oid_value ref);

Can be used to retrieve information about the known, external data types. The function return a pointer to a static
area, or NULL, if no match for the given direct reference is found. Zhext_typeent is defined as:

typedef struct Z_ext_typeent

{
oid_value dref; /* the direct-reference OID value. */
int what; /* discriminator value for the external CHOICE */
Odr_fun fun; /* decoder function */

} Z_ext_typeent;

Thewhat member contains the External  union discriminator value for the given type: For the SUTRS
record syntax, the value would EeExternal_sutrs . Thefun member contains a pointer to the function
which encodes/decodes the given type. Again, for the SUTRS record syntax, the Valuevaduld be
z_SUTRS(a function pointer).

If you receive an EXTERNAL which contains an octet-string value that you suspect of being an
ASN.1-structured data value, you can usext_gettypebyref to look for the provided direct-reference. If
the return value is different from NULL, you can use the provided function to decode the BER stririge{see
Section calledJsing ODRin Chapter 9.

If you want tosendEXTERNALS containing ASN.1-structured values in the occtet-aligned branch of the
CHOICE, this is possible too. However, on the encoding phase, it requires a somewhat involved juggling around
of the various buffers involved.

If you need to add new, externally defined data types, you must update the struct above, in the source file
prt-ext.h  , as well as the encoder/decoder in thefifeext.c . When changing the latter, remember to
update both tharm arrary and the listype_table , which drives the CHOICE biasing that is necessary to tell
the different, structured types apart on decoding.

Note: Eventually, the EXTERNAL processing will most likely automatically insert the correct OIDs or
indirect-refs. First, however, we need to determine how application-context management (specifically the
presentation-context-list) should fit into the various modules.

41



PDU Contents Table

Chapter 6. The 239.50 ASN.1 Module

We include, for reference, a listing of the fields of each top-level PDU, as well as their default settings.

Table 6-1. Default settings for PDU Initialize Request

Field Type Default Value
referenceld Z_Referenceld NULL
protocolVersion Odr_bitmask Empty bitmask
options Odr_bitmask Empty bitmask
preferredMessageSize int 30*1024
maximumRecordSize int 30*1024
idAuthentication Z_|dAuthentication NULL
implementationid char* "81"
implementationName char* "YAZ"
implementationVersion char* YAZ_VERSION
userinformationField Z_Userlnformation NULL
otherinfo Z_OtherInformation NULL

Table 6-2. Default settings for PDU Initialize Response

Field

Type

Default Value

referenceld
protocolVersion
options
preferredMessageSize
maximumRecordSize
result
implementationld
implementationName
implementationVersion
userinformationField
otherinfo

Z_Referenceld
Odr_bitmask
Odr_bitmask

int

int
bool_t

char*

char*

char*

Z_UserInformation
Z_Otherinformation

Table 6-3. Default settings for PDU Search Request

NULL
Empty bitmask
Empty bitmask
30*1024
30*1024
TRUE
"id)”
"YAZ"
YAZ_VERSION
NULL
NULL

Field

Type

Default Value

referenceld
smallSetUpperBound
largeSetLowerBound
mediumSetPresentNumber
replacelndicator
resultSetName
num_databaseNames
databaseNames

Z_Referenceld
int
int
int
bool t
char *
int
char **

NULL
0
1
0
TRUE
"default"
0
NULL

42



Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
smallSetElementSetNames Z_ElementSetNames NULL
mediumSetElementSetNames Z_ElementSetNames NULL
preferredRecordSyntax Odr_oid NULL
query Z_Query NULL
additionalSearchinfo Z_Otherinformation NULL
otherinfo Z_OtherInformation NULL

Table 6-4. Default settings for PDU Search Response

Field Type Default Value
referenceld Z_Referenceld NULL
resultCount int 0
numberOfRecordsReturned int 0
nextResultSetPosition int 0
searchStatus bool_t TRUE
resultSetStatus int NULL
presentStatus int NULL
records Z Records NULL
additionalSearchinfo Z_Otherinformation NULL
otherinfo Z_Otherinformation NULL

Table 6-5. Default settings for PDU Present Request

Field Type Default Value
referenceld Z_Referenceld NULL
resultSetld char* "default"
resultSetStartPoint int 1
numberOfRecordsRequested int 10
num_ranges int 0
additionalRanges Z_Range NULL
recordComposition Z_RecordComposition NULL
preferredRecordSyntax Odr_oid NULL
maxSegmentCount int NULL
maxRecordSize int NULL
maxSegmentSize int NULL
otherinfo Z_Otherinformation NULL

Table 6-6. Default settings for PDU Present Response

Field Type Default Value

referenceld Z_Referenceld NULL
numberOfRecordsReturned int 0

nextResultSetPosition int 0

presentStatus int Z_PresentStatus_success

43



Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
records Z_Records NULL
otherinfo Z_OtherInformation NULL

Table 6-7. Default settings for Delete Result Set Request

Field Type Default Value

referenceld Z_Referenceld NULL

deleteFunction int Z_DeleteResultSetRequest_list
num_ids int 0

resultSetList char** NULL

otherinfo Z_OtherInformation NULL

Table 6-8. Default settings for Delete Result Set Response

Field Type Default Value
referenceld Z_Referenceld NULL
deleteOperationStatus int Z_DeleteStatus_success
num_statuses int 0
deleteListStatuses Z_ListStatus** NULL
numberNotDeleted int NULL
num_bulkStatuses int 0
bulkStatuses Z_ListStatus NUL L
deleteMessage char* NULL
otherinfo Z_Otherinformation NULL

Table 6-9. Default settings for Scan Request

Field Type Default Value
referenceld Z_Referenceld NULL
num_databaseNames int 0
databaseNames char** NULL
attributeSet Odr_oid NULL
termListAndStartPoint Z_AttributesPlus... NULL
stepSize int NULL
numberOfTermsRequested int 20
preferredPositioninResponse int NULL
otherinfo Z_Otherinformation NULL

Table 6-10. Default settings for Scan Response

Field Type Default Value
referenceld Z_Referenceld NULL
stepSize int NULL
scanStatus

int

Z_Scan_success

44



Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value
numberOfEntriesReturned int 0
positionOfTerm int NULL
entries Z_ListEntris NULL
attributeSet Odr_oid NULL
otherinfo Z_Otherinformation NULL

Table 6-11. Default settings for Trigger Resource Control Request

Field Type Default Value

referenceld Z_Referenceld NULL

requestedAction int Z_TriggerResourceCtrl_resou..
prefResourceReportFormat Odr_oid NULL

resultSetWanted bool_t NULL

otherinfo Z_Otherinformation NULL

Table 6-12. Default settings for Resource Control Request

Default Value

Field Type

referenceld Z Referenceld
suspendedFlag bool_t
resourceReport Z_External
partialResultsAvailable int
responseRequired bool_t
triggeredRequestFlag bool_t

otherinfo Z_Otherinformation

Table 6-13. Default settings for Resource Control Response

NULL
NULL
NULL
NULL
FALSE
NULL
NULL

Default Value

Field Type

referenceld Z_Referenceld
continueFlag bool_t
resultSetWanted bool_t

otherinfo Z_Otherinformation

Table 6-14. Default settings for Access Control Request

NULL
TRUE

NULL
NULL

Field Type Default Value

referenceld Z Referenceld NULL

which enum Z_AccessRequest_simpleForm;
u union NULL

otherinfo Z_Otherinformation NULL

Table 6-15. Default settings for Access Control Response

45



Chapter 6. The 239.50 ASN.1 Module

Field Type Default Value

referenceld Z Referenceld NULL

which enum Z_AccessResponse_simpleForm
u union NULL

diagnostic Z DiagRec NULL

otherinfo Z_Otherinformation NULL

Table 6-16. Default settings for Segment

Field

Type

Default Value

referenceld

numberOfRecordsReturned

num_segmentRecords
segmentRecords
otherinfo

Table 6-17. Default settings for Close

Z Referenceld
int
int
Z_NamePlusRecord
Z_Otherinformation

NULL
value=0
0
NULL
NULL

Field

Type

Default Value

referenceld
closeReason
diagnosticinformation
resourceReportFormat
resourceFormat
otherinfo

Z_Referenceld
int
char*
Odr_oid
Z_External
Z_OtherInformation

NULL
Z_ Close_finished
NULL

NULL

NULL
NULL

46



Chapter 7. SOAP and SRW

Introduction

YAZ uses a very simple implementation of SOAP (http://www.w3.0rg/TR/SOAP/) that only, currenly, supports
what is sufficient to offer SRW functionality. The implementation uses the tree API
(http:/lwww.xmlsoft.org/html/libxml-tree.html) of libxml2 to encode and decode SOAP packages.

Like the Z39.50 ASN.1 module, the YAZ SRW implementation uses simple C structs to represent SOAP
packages as well as HTTP packages.

HTTP

YAZ only offers HTTP as transport carrier for SOAP, but it is relatively easy to change that.
The following definition ofz_GDU(Generic Data Unit) allows for both HTTP and Z39.50 in one packet.

#include <yaz/zgdu.h>

#define Z_GDU_Z3950 1
#define Z_GDU_HTTP_Request 2
#define Z_GDU_HTTP_Response 3
typedef struct {
int which;
union {
Z_APDU *z3950;
Z_HTTP_Request *HTTP_Request;
Z_HTTP_Response *HTTP_Response;
by
} 2 GDU ;

The corresponding Z_GDU encoder/decoder iISDU Thez3950 is any of the known BER encoded Z239.50
APDUSs.HTTP_Request andHTTP_Response is the HTTP Request and Response respectively.

SOAP Packages

Every SOAP package in YAZ is represented as follows:
#include <yaz/soap.h>

typedef struct {
char *fault_code;
char *fault_string;
char *details;

} Z_SOAP_Fault;

typedef struct {
int no;
char *ns;
void *p;

47



Chapter 7. SOAP and SRW
} Z_SOAP_Generic;

#define Z_SOAP_fault 1
#define Z_SOAP_generic 2
#define Z_SOAP_error 3
typedef struct {
int which;
union {
Z SOAP_Fault  *fault;
Z_SOAP_Generic *generic;
Z_SOAP_Fault  *soap_error;
}ou;
const char *ns;
} Z_SOAP;

Thefault andsoap_error arms represent both a SOAP fault - stracSOAP_Fault . Any other generic
(valid) package is represented bySOAP_Generic .

Thens as part ofZ_SOAPis the namespace for SOAP itself and reflects the SOAP version. For version 1.1 it is
http://schemas.xmlsoap.org/soap/envelope/ , forversion 1.2 it is
http://www.w3.0rg/2001/06/soap-envelope

int z_soap_codec(ODR o0, Z_SOAP **pp,
char **content_buf, int *content_len,
Z_SOAP_Handler *handlers);

Thecontent_buf  andcontent_len  is XML buffer and length of buffer respectively.

Thehandlers is a list of SOAP codec handlers - one handler for each service namespace. For SRW, the
namespace would betp://www.loc.gov/zing/srw/v1.0/

When decoding, the_soap_codec inspects the XML content and tries to match one of the services
namespaces of the supplied handlers. If there is a match a handler function is invoked which decodes that
particular SOAP package. If successful, the returhegloAPpackage will be of typ& SOAP_Generic .
Membermno is set the offset of handler that matchesd;is set to namespace of matching handler; the void
pointerp is set to the C data structure assocatiated with the handler.

When a NULL namespace is met (memherbwlow), that specifies end-of-list.

Each handler is defined as follows:

typedef struct {
char *ns;
void *client_data;
Z_SOAP_fun f;
} Z_SOAP_Handler;

Thens is namespace of service associated with harfdlelient_data  is user-defined data which is passed to
handler.

The prototype for a SOAP service handler is:

int handler(ODR o, void * ptr, void **handler_data,
void *client_data, const char *ns);

48



Chapter 7. SOAP and SRW

Theo specifies the mode (decode/encode) as usual. The second argpimerig a libxml2 tree node pointer
(xmINodePtr ) and is a pointer to thBody element of the SOAP package. Thandler_data is an opaque
pointer to a C definitions associated with the SOAP serdlient_data is the pointer which was set as part
of theZ_SOAP_handler . Finally, ns the service namespace.

SRW

SRW is just one implementation of a SOAP handler as described in the previous section. The encoder/decoder
handler for SRW is defined as follows:

#include <yaz/srw.h>

int yaz_srw_codec(ODR o, void * pptr,
Z_SRW_GDU **handler_data,
void *client_data, const char *ns);

Here,Z SRW_GDIis either searchRetrieveRequest or a searchRetrieveResponse.

Note: The xQuery and xSortKeys are not handled yet by the SRW implementation of YAZ. Explain is also
missing. Future versions of YAZ will include these features.

The definition of searchRetrieveRequest is:

typedef struct {

#define Z_SRW_query_type cql 1
#define Z_SRW_query_type_xcql 2
#define Z_SRW_query_type_pqgf 3
int query_type;
union {
char *cql;
char *xcql;
char *pqf;
} query;

#define Z_SRW_sort_type_none 1
#define Z_SRW_sort_type_sort 2
#define Z_SRW_sort_type_xSort 3
int sort_type;
union {
char *none;
char *sortKeys;
char *xSortKeys;
} sort;
int *startRecord;
int *maximumRecords;
char *recordSchema;
char *recordPacking;
char *database;
} Z_SRW_searchRetrieveRequest;

49



Chapter 7. SOAP and SRW

Please observe that data of type xsd:string is represented as a char pa#rter {. A null pointer means that
the element is absent. Data of type xsd:integer is representd as a pointer tar&n*inf)( Again, a null pointer
us used for absent elements.

The SearchRetrieveResponse has the following definition.

typedef struct {
int * numberOfRecords;
char * resultSetld;
int * resultSetldleTime;

Z SRW _record *records;
int num_records;

Z_SRW_diagnostic *diagnostics;
int num_diagnostics;
int *nextRecordPosition;

} Z_SRW_searchRetrieveResponse;

Thenum_records andnum_diagnostics  is humber of returned records and diagnostics respectively and also
correspond to the "size of" arragscords  anddiagnostics

A retrieval record is defined as follows:

typedef struct {
char *recordSchema;
char *recordData_buf;
int recordData_len;
int *recordPosition;

} Z_SRW_record,;

The record data is defined as a buffer of some length so that data can be of any type. SRW 1.0 currenly doesn’t
allow for this (only XML), but future versions might do.

And, a diagnostic as:
typedef struct {

int  *code;

char *details;
} Z_SRW_diagnostic;

50



Chapter 8. Supporting Tools

In support of the service API - primarily the ASN module, which provides the pro-grammatic interface to the
Z39.50 APDUs, YAZ contains a collection of tools that support the development of applications.

Query Syntax Parsers

Since the type-1 (RPN) query structure has no direct, useful string representation, every origin application needs
to provide some form of mapping from a local query notation or representation to a Z_RPNQuery structure.
Some programmers will prefer to construct the query manually, perhapsatsingalloc()  to simplify

memory management. The YAZ distribution includes three separate, query-generating tools that may be of use to
you.

Prefix Query Format

Since RPN or reverse polish notation is really just a fancy way of describing a suffix notation format (operator
follows operands), it would seem that the confusion is total when we now introduce a prefix notation for RPN.
The reason is one of simple laziness - it's somewhat simpler to interpret a prefix format, and this utility was
designed for maximum simplicity, to provide a baseline representation for use in simple test applications and
scripting environments (like Tcl). The demonstration client included with YAZ uses the PQF.

Note: The PQF have been adopted by other parties developing 239.50 software. It is often referred to as
Prefix Query Notation - PQN.

The PQF is defined by the pquery module in the YAZ library. There are two sets of function that have similar
behavior. First set operates on a PQF parser handle, second set doesn't. First set set of functions are more flexible
than the second set. Second set is obsolete and is only provided to ensure backwards compatibility.

First set of functions all operate on a PQF parser handle:
#include <yaz/pquery.h>
YAZ_PQF_Parser yaz_pqf_create (void);
void yaz_pqf_destroy (YAZ_PQF_Parser p);
Z RPNQuery *yaz_pqf parse (YAZ_PQF_Parser p, ODR o, const char *gbuf);
Z_AttributesPlusTerm *yaz_pqgf_scan (YAZ_PQF_Parser p, ODR o,
Odr_oid **attributeSetld, const char *qbuf);

int yaz_pgf_error (YAZ_PQF_Parser p, const char **msg, size_t *off);

A PQF parser is created and destructed by functyanspgf_create  andyaz_pqf destroy  respectively.
Functionyaz_pqf_parse parses query given by stringpuf . If parsing was successful, a Z39.50 RPN Query is
returned which is created using ODR streanif parsing failed, a NULL pointer is returned. Function
yaz_pgf_scan takes a scan query tbuf . If parsing was successful, the function returns attributes plus term
pointer and modifieattributeSetld to hold attribute set for the scan request - both allocated using ODR
streamo. If parsing failed, yaz_pqf_scan returns a NULL pointer. Error information for bad queries can be

51



Chapter 8. Supporting Tools

obtained by a call tgaz_pqgf_error  which returns an error code and modiffessg to point to an error
description, and modifiesff to the offset within last query were parsing failed.

The second set of functions are declared as follows:

#include <yaz/pquery.h>
Z_RPNQuery *p_query_rpn (ODR o, oid_proto proto, const char *gbuf);

Z_AttributesPlusTerm *p_query_scan (ODR o, oid_proto proto,
Odr_oid **attributeSetP, const char *qbuf);

int p_query_attset (const char *arg);

The functionp_query_rpn()  takes as arguments an ODR stream (see settierDDR Modulg to provide a
memory source (the structure created is released on the next cdfl teset() ~ on the stream), a protocol
identifier (one of the constants PROTO_Z3950 and PROTO_SR), an attribute set reference, and finally a
null-terminated string holding the query string.

If the parse went wellp_query rpn()  returns a pointer to Z RPNQuery structure which can be placed
directly into az_SearchRequest . If parsing failed, due to syntax error, a NULL pointer is returned.

Thep_query_attset  specifies which attribute set to use if the query doesn’t specify one h@ #ueset
operator. Thep_query_attset returns 0 if the argument is a valid attribute set specifier; otherwise the function
returns -1.

The grammar of the PQF is as follows:
query ::= top-set query-struct.
top-set ::= [ '@attrset’ string ]
query-struct ::= attr-spec | simple | complex | '@term’ term-type query
attr-spec ::='@attr’ [ string ] string query-struct
complex ::= operator query-struct query-struct.
operator ::="@and’ | '@or’ | '@not’ | '@prox’ proximity.
simple ::= result-set | term.
result-set ::='@set’ string.
term ::= string.
proximity ::= exclusion distance ordered relation which-code unit-code.
exclusion ::="1"|’0" | 'void’.
distance ::= integer.
ordered ::='1"|'0'.

relation ::= integer.

52



Chapter 8. Supporting Tools

which-code ::="known’ | 'private’ | integer.
unit-code ::= integer.

term-type ::='general’ | 'numeric’ | 'string’ | 'oid’ | 'datetime’ | 'null’.

You will note that the syntax above is a fairly faithful representation of RPN, except for the Attribute, which has
been moved a step away from the term, allowing you to associate one or more attributes with an entire query
structure. The parser will automatically apply the given attributes to each term as required.

The @attr operator is followed by an attribute specificatin-6pec  above). The specification consists of an
optional attribute set, an attribute type-value pair and a sub-query. The attribute type-value pair is packed in one
string: an attribute type, an equals sign, and an attribute value, like@his: 1=1003 . The type is always an

integer but the value may be either an integer or a string (if it doesn’t start with a digit character). A string
attribute-value is encoded as a Type-1 “complex” attribute with the list of values containing the single string
specified, and including no semantic indicators.

Version 3 of the Z39.50 specification defines various encoding of terms@itsgen type string , Where
type is one ofgeneral , numeric orstring  (for InternationalString). If no term type has been given, the
general form is used. This is the only encoding allowed in both versions 2 and 3 of the Z39.50 standard.

Using Proximity Operators with PQF

Note: This is an advanced topic, describing how to construct queries that make very specific requirements on
the relative location of their operands. You may wish to skip this section and go straight to the example PQF
queries.

Warning

Most Z39.50 servers do not support proximity searching, or support only a small subset of
the full functionality that can be expressed using the PQF proximity operator. Be aware that
the ability to express a query in PQF is no guarantee that any given server will be able to
execute it.

The proximity operato@prox is a special and more restrictive version of the conjunction ope@sod Its
semantics are described in section 3.7.2 (Proximity) of Z39.50 the standard itself, which can be read on-line at
http://lcweb.loc.gov/z3950/agency/markup/09.html

In PQF, the proximity operation is represented by a sequence of the form

@prox exclusion distance ordered relation which-code unit-code

in which the meanings of the parameters are as described in in the standard, and they can take the following
values:

« exclusion.0 = false (i.e. the proximity condition specified by the remaining parameters must be satisfied) or 1
= true (the proximity condition specified by the remaining parameters naiie satisifed).

53



Chapter 8. Supporting Tools
. distance.An integer specifying the difference between the locations of the operands: e.g. two adjacent words
would have distance=1 since their locations differ by one unit.

. ordered. 1 = ordered (the operands must occur in the order the query specifies them) or 0 = unordered (they
may appear in either order).

- relation. Recognised values are 1 (lessThan), 2 (lessThanOrEqual), 3 (equal), 4 (greaterThanOrEqual), 5
(greaterThan) and 6 (notEqual).

« which-code.known ork (the unit-code parameter is taken from the well-known list of alternatives described
in below) orprivate  or p (the unit-code paramater has semantics specific to an out-of-band agreement such
as a profile).

- unit-code. If the which-code parameter kmown then the recognised values are 1 (character), 2 (word), 3
(sentence), 4 (paragraph), 5 (section), 6 (chapter), 7 (document), 8 (element), 9 (subelement), 10
(elementType) and 11 (byte). If which-codepidvate  then the acceptable values are determined by the
profile.

(The numeric values of the relation and well-known unit-code parameters are taken straight from the ASN.1
(http://lcweb.loc.gov/z3950/agency/asnl.html#ProximityOperator) of the proximity structure in the standard.)
PQF queries

Example 8-1. PQF queries using simple terms

dylan
"bob dylan”

Example 8-2. PQF boolean operators

@or "dylan" "zimmerman"
@and @or dylan zimmerman when
@and when @or dylan zimmerman

Example 8-3. PQF references to result sets

@set Result-1
@and @set seta setb

Example 8-4. Attributes for terms

@attr 1=4 computer

@attr 1=4 @attr 4=1 "self portrait"
@attrset expl @attr 1=1 CategoryList
@attr gils 1=2008 Copenhagen

54



Chapter 8. Supporting Tools

@attr 1=/book/title computer

Example 8-5. PQF Proximity queries

@prox 0 3 1 2 k 2 dylan zimmerman

Note: Here the parameters 0, 3, 1, 2, k and 2 represent exclusion, distance, ordered, relation, which-code
and unit-code, in that order. So:

« exclusion = 0: the proximity condition must hold

- distance = 3: the terms must be three units apart

» ordered = 1: they must occur in the order they are specified
« relation = 2: lessThanOrEqual (to the distance of 3 units)

« which-code is “known”, so the standard unit-codes are used
- unit-code = 2: word.

So the whole proximity query means that the words dylan and zimmerman must both occur in the record, in
that order, differing in position by three or fewer words (i.e. with two or fewer words between them.) The
query would find “Bob Dylan, aka. Robert Zimmerman”, but not “Bob Dylan, born as Robert Zimmerman”
since the distance in this case is four.

Example 8-6. PQF specification of search term

@term string "a UTF-8 string, maybe?"

Example 8-7. PQF mixed queries

@or @and bob dylan @set Result-1
@attr 4=1 @and @attr 1=1 "bob dylan" @attr 1=4 "slow train coming"

@and @attr 2=4 @attr gils 1=2038 -114 @attr 2=2 @attr gils 1=2039 -109

Note: The last of these examples is a spatial search: in the GILS attribute set
(http:/iwww.gils.net/prof_v2.html#sec_7_4), access point 2038 indicates West Bounding Coordinate and
2030 indicates East Bounding Coordinate, so the query is for areas extending from -114 degrees to no more
than -109 degrees.

55



Chapter 8. Supporting Tools

CCL

Not all users enjoy typing in prefix query structures and numerical attribute values, even in a minimalistic test
client. In the library world, the more intuitive Common Command Language - CCL (ISO 8777) has enjoyed
some popularity - especially before the widespread availability of graphical interfaces. It is still useful in
applications where you for some reason or other need to provide a symbolic language for expressing boolean
query structures.

The EUROPAGATE research project working under the Libraries programme of the European Commission’s
DG Xlll has, amongst other useful tools, implemented a general-purpose CCL parser which produces an output
structure that can be trivially converted to the internal RPN representation of YAZZTRNQuery structure).

Since the CCL utility - along with the rest of the software produced by EUROPAGATE - is made freely available
on a liberal license, itis included as a supplement to YAZ.

CCL Syntax

The CCL parser obeys the following grammar for the FIND argument. The syntax is annotated by in the lines
prefixed by-- .

CCL-Find ::= CCL-Find Op Elements
| Elements.

Op = "and" | "or" | "not"
-- The above means that Elements are separated by boolean operators.

Elements ::= '(" CCL-Find ')
| Set
| Terms
| Qualifiers Relation Terms
| Qualifiers Relation ' CCL-Find ')
| Qualifiers '=" string - string
-- Elements is either a recursive definition, a result set reference, a
-- list of terms, qualifiers followed by terms, qualifiers followed
-- by a recursive definition or qualifiers in a range (lower - upper).

Set = ’'set’ = string
-- Reference to a result set

Terms ::= Terms Prox Term
| Term
-- Proximity of terms.

Term = Term string
| string
-- This basically means that a term may include a blank
Qualifiers ::= Qualifiers ’,’ string
| string

-- Qualifiers is a list of strings separated by comma

Relation = '=" | >=" | '<=' | '<>' | > | <

56



Chapter 8. Supporting Tools

-- Relational operators. This really doesn’t follow the 1SO8777
-- standard.

Prox == "% |
-- Proximity operator

Example 8-8. CCL queries

The following queries are all valid:
dylan

"bob dylan"
dylan or zimmerman
set=1

(dylan and bob) or set=1

Assuming that the qualifiets , au anddate are defined we may use:

ti=self portrait
au=(bob dylan and slow train coming)

date>1980 and (ti=((self portrait)))

CCL Qualifiers

Qualifiers are used to direct the search to a particular searchable index, such as title (ti) and author indexes (au).
The CCL standard itself doesn’t specify a particular set of qualifiers, but it does suggest a few short-hand
notations. You can customize the CCL parser to support a particular set of qualifiers to reflect the current target
profile. Traditionally, a qualifier would map to a particular use-attribute within the BIB-1 attribute set. It is also
possible to set other attributes, such as the structure attribute.

A CCL prodfile is a set of predefined CCL qualifiers that may be read from a file or set in the CCL API. The YAZ
client reads its CCL qualifiers from a file nameefault.bib . There are four types of lines in a CCL profile:
qualifier specification, qualifier alias, comments and directives.

Qualifier specification
A qualifier specification is of the form:
qualifier-name [attributeset , Jtype =val [attributeset , ]type =val

wherequalifier-name is the name of the qualifier to be used (&g), type is attribute type in the attribute
set (Bib-1 is used if no attribute set is given) arad is attribute value. Thegype can be specified as an integer
or as it be specified either as a single-lettefor use,r for relationp for position,s for structure, for truncation
or ¢ for completeness. The attributes for the special qualifier tame are used when no CCL qualifier is
given in a query.

57



Chapter 8. Supporting Tools

Table 8-1. Common Bib-1 attributes

Type Description

u=value Use attribute. Common use attributes are 1 Personal-name, 4 Title, 7 ISBN, 8 ISSN, 30
Date, 62 Subject, 1003 Author), 1016 Any. Specify value as an integer.

r= value Relation attribute. Common values are 1 <, 2 <=, 3=, 4 >=, 5>, 6 <>, 100 phonetic, 101
stem, 102 relevance, 103 always matches.

p=value Position attribute. Values: 1 first in field, 2 first in any subfield, 3 any position in field.

s=value Structure attribute. Values: 1 phrase, 2 word, 3 key, 4 year, 5 date, 6 word list, 100 date

(un), 101 name (norm), 102 name (un), 103 structure, 104 urx, 105 free-form-text, 106
document-text, 107 local-number, 108 string, 109 numeric string.

t= value Truncation attribute. Values: 1 right, 2 left, 3 left& right, 100 none, 101 process #, 102
regular-1, 103 regular-2, 104 CCL.

c=value Completeness attribute. Values: 1 incomplete subfield, 2 complete subfield, 3 complete
field.

The complete list of Bib-1 attributes can be found here (http://lcweb.loc.gov/z3950/agency/defns/bibl.html).

It is also possible to specify non-numeric attribute values, which are used in combination with certain types. The
special combinations are:

Table 8-2. Special attribute combos

Name Description

s=pw The structure is set to either word or phrase depending on the number of tokens in g term
(phrase-word).

s=al Each token in the term is ANDed. (and-list). This does not set the structure at all.

s=ol Each token in the term is ORed. (or-list). This does not set the structure at all.

r=o Allows operators greather-than, less-than, ... equals and sets relation attribute accordingly
(relation ordered).

t=I Allows term to be left-truncated. If term is of the formw, the resulting Type-1 term is
and truncation is left.

t=r Allows term to be right-truncated. If term is of the fomm, the resulting Type-1 term is
and truncation is right.

t=n If term is does not include, the truncation attribute is set to none (100).

t=b Allows term to be both left&right truncated. If term is of the for? , the resulting term |s
x and trunctation is set to both left&right.

Example 8-9. CCL profile

Consider the following definition:

ti u=4 s=1
au u=1l s=1
term s=105
ranked r=102
date u=30 r=o0

58



Chapter 8. Supporting Tools

Four qualifiers are definedi- , au, ranked anddate .

ti andau both set structure attribute to phrase (s#il)sets the use-attribute to du sets the use-attribute to 1.
When no qualifiers are used in the query the structure-attribute is set to free-form-text (105) (tere fprThe
date sets the relation attribute to the relation used in the CCL query and sets the use attribute to 30 (Bib-1 Date).

You can combine attributes. To Search for "ranked title" you can do

ti,ranked=knuth computer
which will set relation=ranked, use=title, structure=phrase.

Query

year > 1980

is a valid query, while
ti > 1980

is invalid.

Qualifier alias
A qualifier alias is of the form:

gqgqlqgz2 ..

which declareg to be an alias fogl, g2... such that the CCL query=x is equivalent tajl=x or ¢g2=x
or ..

Comments

Lines with white space or lines that begin with charag¢tere treated as comments.

Directives
Directive specifications takes the form

@lirective value

Table 8-3. CCL directives

Name Description Default
truncation Truncation character ?
field Specifies how multiple fields are to be combined. There are two modes:  merge

multiple qualifier fields are ORedherge : attributes for the qualifier fields are
merged and assigned to one term.

case Specificies if CCL operatores and qualifiers should be compared with case |0
sensitivity or not. Specify 0 for case sensitive; 1 for case insensitive.

and Specifies token for CCL operator AND. and

or Specifies token for CCL operator OR. or

not Specifies token for CCL operator NOT. not

set Specifies token for CCL operator SET. set

59



Chapter 8. Supporting Tools

CCL API

All public definitions can be found in the header fild.h . A profile identifier is of typeCCL_bibset . A profile
must be created with the call to the functiath_qual_mk  which returns a profile handle of tygeCL_bibset .

To read a file containing qualifier definitions the functimmh qual_file may be convenient. This function
takes an already open€&tLE handle pointer as argument along witik@L_bibset handle.

To parse a simple string with a FIND query use the function

struct ccl_rpn_node *ccl_find_str (CCL_bibset bibset, const char *str,
int *error, int *pos);

which takes the CCL profileb(bset ) and query $tr ) as input. Upon successful completion the RPN tree is
returned. If an error occur, such as a syntax error, the integer pointeceteoby holds the error code anibs
holds the offset inside query string in which the parsing failed.

An English representation of the error may be obtained by callingdherr_ msg function. The error codes
are listed inccl.h

To convert the CCL RPN tree (typ#ruct ccl_rpn_node * ) to the Z_RPNQuery of YAZ the function
ccl_rpn_query  must be used. This function which is part of YAZ is implementeganccl.c . After calling
this function the CCL RPN tree is probably no longer needed.cEhepn_delete destroys the CCL RPN
tree.

A CCL profile may be destroyed by calling thel_qual_rm  function.

The token names for the CCL operators may be changed by setting the globals (aldype)
ccl_token_and ,ccl_token_or ,ccl _token_not  andccl token_set . An operator may have aliases, i.e.
there may be more than one name for the operator. To do this, separate each alias with a space character.

CQL

CQL (http://www.loc.gov/z3950/agency/zing/cql/) - Common Query Language - was defined for the SRW
(http://www.loc.gov/z3950/agency/zing/srw/) protocol. In many ways CQL has a similar syntax to CCL. The
objective of CQL is different. Where CCL aims to be an end-user language, Cié& psotocol query language
for SRW.

Tip: If you are new to CQL, read the Gentle Introduction (http://zing.z3950.org/cql/intro.html).

The CQL parser in YAZ provides the following:

. It parses and validates a CQL query.
- It generates a C structure that allows you to convert a CQL query to some other query language, such as SQL.

- The parser converts a valid CQL query to PQF, thus providing a way to use CQL for both SRW/SRU servers
and Z39.50 targets at the same time.

« The parser converts CQL to XCQL (http://www.loc.gov/z3950/agency/zing/cql/xcqgl.html). XCQL is an XML
representation of CQL. XCQL is part of the SRW specification. However, since SRU supports CQL only, we
don’'t expect XCQL to be widely used. Furthermore, CQL has the advantage over XCQL that it is easy to read.

60



Chapter 8. Supporting Tools

CQL parsing

A CQL parser is represented by ta@L_parser handle. Its contents should be considered YAZ internal
(private).

#include <yaz/cql.h>
typedef struct cql_parser *CQL_parser;
CQL_parser cql_parser_create(void);

void cql_parser_destroy(CQL_parser cp);

A parser is created byqgl_parser_create and is destroyed byygl_parser_destroy

To parse a CQL query string, the following function is provided:

int cql_parser_string(CQL_parser cp, const char *str);

A CQL query is parsed by thegl_parser_string which takes a quersgtr . If the query was valid (no
syntax errors), then zero is returned; otherwise -1 is returned to indicate a syntax error.

int cqgl_parser_stream(CQL_parser cp,
int (*getbyte)(void *client_data),
void (*ungetbyte)(int b, void *client_data),
void *client_data);

int cql_parser_stdio(CQL_parser cp, FILE *f);

The functionsql_parser_stream andcqgl_parser_stdio parses a CQL query - just like
cql_parser_string . The only difference is that the CQL query can be fed to the parser in different ways. The
cgl_parser_stream uses a generic byte stream as input. tleparser_stdio uses &ILE handle which

is opened for reading.

CQL tree

The the query string is valid, the CQL parser generates a tree representing the structure of the CQL query.

struct cqgl_node *cql_parser_result(CQL_parser cp);

cql_parser_result returns the a pointer to the root node of the resulting tree.

Each node in a CQL tree is represented byract cql_node . Itis defined as follows:

#define CQL_NODE_ST 1
#define CQL_NODE_BOOL 2
#define CQL_NODE_MOD 3
struct cqgl_node {
int which;
union {
struct {
char *index;
char *term;
char *relation;

61



Chapter 8. Supporting Tools

struct cgl_node *modifiers;
struct cqgl_node *prefixes;
} st
struct {
char *value;
struct cqgl_node *left;
struct cqgl_node *right;
struct cgl_node *modifiers;
struct cqgl_node *prefixes;
} boolean;
struct {
char *name;
char *value;
struct cgl_node *next;
} mod;

There are three kinds of nodes, search term (ST), boolean (BOOL), and modifier (MOD).

The search term node has five members:

- index :index for search term. If an index is unspecified for a search tiedex will be NULL.
- term : the search term itself.
- relation : relation for search term.

- modifiers  : relation modifiers for search term. Thedifiers  is a simple linked list (NULL for last entry).
Each relation modifier node is of typOD

- prefixes :index prefixes for search term. Theefixes  is a simple linked list (NULL for last entry). Each
prefix node is of typé1OD

The boolean node represents batid, or , not as well as proximity.

- left andright :left-and right operand respectively.
- modifiers  : proximity arguments.

- prefixes :index prefixes. Therefixes is a simple linked list (NULL for last entry). Each prefix node is of
typeMOD

The modifier node is a "utility" node used for name-value pairs, such as prefixes, proximity arguements, etc.

- name name of mod node.
- value value of mod node.

+ next : pointer to next node which is always a mod node (NULL for last entry).

62



Chapter 8. Supporting Tools

CQL to PQF conversion

Conversion to PQF (and Z39.50 RPN) is tricky by the fact that the resulting RPN depends on the Z39.50 target
capabilities (combinations of supported attributes). In addition, the CQL and SRW operates on index prefixes
(URI or strings), whereas the RPN uses Object Identifiers for attribute sets.

The CQL library of YAZ defines aq|_transform_t type. It represents a particular mapping between CQL
and RPN. This handle is created and destroyed by the functions:

cql_transform_t cql_transform_open_FILE (FILE *f);
cql_transform_t cql_transform_open_fname(const char *fname);
void cql_transform_close(cql_transform_t ct);

The first two functions create a tranformation handle from either an already open FILE or from a filename
respectively.

The handle is destroyed legl_transform_close in which case no further reference of the handle is allowed.

When acql_transform_t handle has been created you can convert to RPN.

int cql_transform_buf(cql_transform_t ct,
struct cgl_node *cn, char *out, int max);

This function converts the CQL trem using handlet . For the resulting PQF, you supply a buftert which
must be able to hold at at leastix characters.

If conversion failedeql_transform_buf returns a non-zero SRW error code; otherwise zero is returned
(conversion successful). The meanings of the numeric error codes are listed in the SRW specifications at
http://www.loc.gov/srw/diagnostic-list.ntml

If conversion fails, more information can be obtained by calling

int cql_transform_error(cql_transform_t ct, char **addinfop);

This function returns the most recently returned numeric error-code and sets the string-poimtéineatp  to

point to a string containing additional information about the error that occurred: for example, if the error code is
15 (“lllegal or unsupported context set”), the additional information is the name of the requested context set that
was not recognised.

The SRW error-codes may be translated into brief human-readable error messages using

const char *cql_strerror(int code);

If you wish to be able to produce a PQF result in a different way, there are two alternatives.

void cql_transform_pr(cql_transform_t ct,
struct cgl_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

int cql_transform_FILE(cql_transform_t ct,
struct cqgl_node *cn, FILE *f);

63



Chapter 8. Supporting Tools

The former function produces output to a user-defined output stream. The latter writes the result to an already
OpenFILE .

Specification of CQL to RPN mapping

The file supplied to functionsgl_transform_open_FILE , cql_transform_open_fname follows a
structure found in many Unix utilities. It consists of mapping specifications - one per line. Lines starting with
are ignored (comments).

Each line is of the form

CQL pattern = RPN equivalent

An RPN pattern is a simple attribute list. Each attribute pair takes the form:

[set ] type =value

The attributeset is optional. Theype is the attribute typeyalue the attribute value.

The following CQL patterns are recognized:

index. set . name

This pattern is invoked when a CQL index, such as dc.title is convesggddandname are the context set
and index name respectively. Typically, the RPN specifies an equivalent use attribute.

For terms not bound by an index the pattemfex.cql.serverChoice is used. Here, the prefogl is
defined asttp://www.loc.gov/zing/cql/cql-indexes/v1.0/ . If this pattern is not defined, the
mapping will fail.

qualifier. set . name (DEPRECATED)

For backwards compatibility, this is recognised as a synonyimdek. set . name

relation. relation

This pattern specifies how a CQL relation is mapped to Riiitern  is name of relation operator. Since
= is used as separator between CQL pattern and RPN, CQL relations includémmot be used directly. To
avoid a conflict, the nameg, eq, le , must be used for CQL operators, greater-than-or-equal, equal,
less-than-or-equal respectively. The RPN pattern is supposed to include a relation attribute.

For terms not bound by a relation, the pattesiation.scr is used. If the pattern is not defined, the
mapping will fail.
The special pattermelation.* is used when no other relation pattern is matched.

relationModifier. mod

This pattern specifies how a CQL relation modifier is mapped to RPN. The RPN pattern is usually a relation
attribute.

64



Chapter 8. Supporting Tools

structure. type

This pattern specifies how a CQL structure is mapped to RPN. Note that this CQL pattern is somewhat to
similar to CQL patternelation . Thetype is a CQL relation.

The patternstructure.* is used when no other structure pattern is matched. Usually, the RPN equivalent
specifies a structure attribute.

position.  type

This pattern specifies how the anchor (position) of CQL is mapped to RPNypke is one offirst
any, last , firstAndLast

The patternposition.* is used when no other position pattern is matched.

set. prefix

This specification defines a CQL context set for a given prefix. The value on the right hand side is the URI
for the set not RPN. All prefixes used in index patterns must be defined this way.

Example 8-10. CQL to RPN mapping file

This simple file defines two context sets, three indexes and three relations, a position pattern and a default
structure.

set.cql = http://www.loc.gov/zing/cgl/context-sets/cql/v1.1/
set.dc = http://lwww.loc.gov/zing/cgl/dc-indexes/v1.0/

index.cql.serverChoice = 1=1016

index.dc.title = 1=4
index.dc.subject = 1=21
relation.< = 2=1
relation.eq = 2=3
relation.scr = 2=
position.any = 3=3 6=1
structure.* = 4=1

With the mappings above, the CQL query
computer

is converted to the PQF:
@attr 1=1016 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "computer"

by rulesindex.cql.serverChoice , relation.scr , Structure.* , position.any
CQL query

computer®
is rejected, sinceosition.right is undefined.

65



Chapter 8. Supporting Tools

CQL query
>my = "http://www.loc.gov/zing/cgl/dc-indexes/v1.0/" my.title = x

is converted to
@attr 1=4 @attr 2=3 @attr 4=1 @attr 3=3 @attr 6=1 "Xx"

CQL to XCQL conversion
Conversion from CQL to XCQL is trivial and does not require a mapping to be defined. There three functions to

choose from depending on the way you wish to store the resulting output (XML buffer containing XCQL).

int cql_to_xml_buf(struct cql_node *cn, char *out, int max);

void cql_to_xml(struct cgl_node *cn,
void (*pr)(const char *buf, void *client_data),
void *client_data);

void cql_to_xml_stdio(struct cql_node *cn, FILE *f);

Functioncgl_to_xml_buf  converts to XCQL and stores result in a user supplied buffer of a given max size.

cql_to_xml  writes the result in a user defined output streegh.to_xml_stdio writes to a afile.

Object Identifiers

The basic YAZ representation of an OID is an array of integers, terminated with the value -1. The ODR module
provides two utility-functions to create and copy this type of data elements:

Odr_oid *odr_getoidbystr(ODR o, char *str);

Creates an OID based on a string-based representation using dots (.) to separate elements in the OID.

Odr_oid *odr_oiddup(ODR odr, Odr_oid *0);

Creates a copy of the OID referenced by thgarameter. Both functions take an ODR stream as parameter. This
stream is used to allocate memory for the data elements, which is released on a subsequenir cabén()
on that stream.

The OID module provides a higher-level representation of the family of object identifiers which describe the
Z739.50 protocol and its related objects. The definition of the module interface is givendil the file.

The interface is mainly based on thident structure. The definition of this structure looks like this:

typedef struct oident

{
oid_proto proto;
oid_class oclass;
oid_value value;
int oidsuffix[OID_SIZE];

66



Chapter 8. Supporting Tools

char *desc;
} oident;

The proto field takes one of the values

PROTO_Z3950
PROTO_GENERAL

UsePROTO_z3950for Z39.50 Object IdentiferROTO_GENERADTr other types (such as those associated with
ILL).

The oclass field takes one of the values

CLASS_APPCTX
CLASS_ABSYN
CLASS_ATTSET
CLASS_TRANSYN
CLASS_DIAGSET
CLASS_RECSYN
CLASS_RESFORM
CLASS_ACCFORM
CLASS_EXTSERV
CLASS_USERINFO
CLASS_ELEMSPEC
CLASS_VARSET
CLASS_SCHEMA
CLASS_TAGSET
CLASS_GENERAL

corresponding to the OID classes defined by the Z39.50 standard. Finally, the value field takes one of the values

VAL_APDU
VAL_BER
VAL_BASIC_CTX
VAL_BIB1
VAL_EXP1
VAL_EXT1
VAL_CCL1
VAL_GILS
VAL_WAIS
VAL_STAS
VAL_DIAG1
VAL_ISO2709
VAL_UNIMARC
VAL_INTERMARC
VAL_CCF
VAL_USMARC
VAL_UKMARC
VAL_NORMARC
VAL_LIBRISMARC
VAL_DANMARC
VAL_FINMARC
VAL_MAB
VAL_CANMARC
VAL_SBN

67



Chapter 8. Supporting Tools

VAL_PICAMARC
VAL_AUSMARC
VAL_IBERMARC
VAL_EXPLAIN
VAL_SUTRS
VAL_OPAC
VAL_SUMMARY
VAL_GRS0
VAL_GRS1
VAL_EXTENDED
VAL_RESOURCE1
VAL_RESOURCE2
VAL_PROMPT1
VAL_DES1
VAL_KRB1
VAL_PRESSET
VAL_PQUERY
VAL_PCQUERY
VAL_ITEMORDER
VAL_DBUPDATE
VAL_EXPORTSPEC
VAL_EXPORTINV
VAL_NONE
VAL_SETM
VAL_SETG
VAL_VAR1
VAL_ESPEC1

again, corresponding to the specific OIDs defined by the standard. Refer to the Registry of Z39.50 Object
Identifiers (http://lcweb.loc.gov/z3950/agency/defns/oids.html) for the whole list.

The desc field contains a brief, mnemonic name for the OID in question.

The function

struct oident *oid_getentbyoid(int *0);

takes as argument an OID, and returns a pointer to a static area containidgran structure. You typically
use this function when you receive a PDU containing an OID, and you wish to branch out depending on the
specific OID value.

The function

int *oid_ent_to_oid(struct oident *ent, int *dst);

Takes as argument afdent  structure - in which theroto , oclass /, andvalue fields are assumed to be set
correctly - and returns a pointer to a the buffer as givedday containing the base representation of the
corresponding OID. The function returns NULL and the array dst is unchanged if a mapping couldn't place. The
arraydst should be at least of sizelD_SIZE .

Theoid_ent_to_oid() function can be used whenever you need to prepare a PDU containing one or more
OIDs. The separation of th@otocol  element from the remainder of the OID-description makes it simple to
write applications that can communicate with either Z39.50 or OSI SR-based applications.

The function

68



Chapter 8. Supporting Tools

oid_value oid_getvalbyname(const char *name);

takes as argument a mnemonic OID name, and returnsdive field of the first entry in the database that
contains the given name in ittesc field.

Three utility functions are provided for translating OIDs’ symbolic names (ésmgarc into OID structures (int
arrays) and strings containing the OID in dotted notation (e23840.10003.9.5.1 ). They are:

int *oid_name_to_oid(oid_class oclass, const char *name, int *oid);
char *oid_to_dotstring(const int *oid, char *oidbuf);
char *oid_name_to_dotstring(oid_class oclass, const char *name, char *oidbuf);

oid_name_to_oid() translates the specified symbatigame, interpreted as being of classlass . (The class

must be specified as many symbolic names exist within multiple classes - for exathpte,is the symbolic

name of an attribute set, a schema and a tag-set.) The sequence of integers representing the OID is written into
the areavid provided by the caller; it is the caller’s responsibility to ensure that this area is large enough to
contain the translated OID. As a convenience, the address of the buffer (i.e. the veilig isfreturned.

oid_to_dotstring() Translates the int-arragid into a dotted string which is written into the areidbuf
supplied by the caller; it is the caller’s responsibility to ensure that this area is large enough. The address of the
buffer is returned.

oid_name_to_dotstring() combines the previous two functions to derive a dotted string representing the
OID specified byoclass andname, writing it into the buffer passed asdbuf and returning its address.

Finally, the module provides the following utility functions, whose meaning should be obvious:

void oid_oidcpy(int *t, int *s);
void oid_oidcat(int *t, int *s);
int oid_oidcmp(int *ol1, int *02);
int oid_oidlen(int *o0);

Note: The OID module has been criticized - and perhaps rightly so - for needlessly abstracting the
representation of OIDs. Other toolkits use a simple string-representation of OIDs with good results. In
practice, we have found the interface comfortable and quick to work with, and it is a simple matter (for what
it's worth) to create applications compatible with both ISO SR and Z39.50. Finally, the use of the /oident
database is by no means mandatory. You can easily create your own system for representing OIDs, as long
as it is compatible with the low-level integer-array representation of the ODR module.

Nibble Memory

Sometimes when you need to allocate and construct a large, interconnected complex of structures, it can be a bit
of a pain to release the associated memory again. For the structures describing the Z39.50 PDUs and related
structures, it is convenient to use the memory-management system of the ODR subsystem$setion called

Using ODRin Chapter 9. However, in some circumstances where you might otherwise benefit from using a
simple nibble memory management system, it may be impractical todus@alloc()  andodr_reset()

For this purpose, the memory manager which also supports the ODR streams is made available in the NMEM
module. The external interface to this module is given inrtthem.h file.

The following prototypes are given:

69



Chapter 8. Supporting Tools

NMEM nmem_create(void);

void nmem_destroy(NMEM n);

void *nmem_malloc(NMEM n, int size);
void nmem_reset(NMEM n);

int nmem_totaNMEM n);

void nmem_init(void);

void nmem_exit(void);

Thenmem_create() function returns a pointer to a memory control handle, which can be released again by
nmem_destroy() when no longer needed. The functiomem_malloc() allocates a block of memory of the
requested size. A call tamem_reset() ornmem_destroy()  will release all memory allocated on the handle
since it was created (or since the last calhtieem_reset() . The functionrnmem_total()  returns the number

of bytes currently allocated on the handle.

The nibble memory pool is shared amongst threads. POSIX mutex’es and WIN32 Critical sections are
introduced to keep the module thread safe. Functioem_init()  initializes the nibble memory library and it is
called automatically the first time thédz.DLL is loaded. YAZ uses functiobliMain  to achieve this. You
shouldnot call nmem_init or nmem_exit unless you're absolute sure what you're doing. Note that in previous
YAZ versions you'd have to calmem_init yourself.

MARC

YAZ provides a fast utility that decodes MARC records and encodes to a varity of output formats. The MARC
records must be encoded in 1ISO2709.

#include <yaz/marcdisp.h>

[* create handler */

yaz_marc_t yaz_marc_create(void);

[* destroy */

void yaz_marc_destroy(yaz_marc_t mt);

[* set XML mode YAZ_MARC_LINE, YAZ MARC_SIMPLEXML, ... */
void yaz_marc_xml(yaz_marc_t mt, int xmimode);

#define YAZ_MARC_LINE 0

#define YAZ_MARC_SIMPLEXML 1

#define YAZ_MARC_OAIMARC 2

#define YAZ_MARC_MARCXML 3

#define YAZ_MARC_ISO2709 4

[* supply iconv handle for character set conversion .. */
void yaz_marc_iconv(yaz_marc_t mt, yaz_iconv_t cd);

[* set debug level, O=none, 1=more, 2=even more, .. */
void yaz_marc_debug(yaz_marc_t mt, int level);

[* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.
On success, result in *result with size *rsize. */
int yaz_marc_decode_buf (yaz_marc_t mt, const char *buf, int bsize,

char **result, int *rsize);

/* decode MARC in buf of size bsize. Returns >0 on success; <=0 on failure.

On success, result in WRBUF */
int yaz_marc_decode_wrbuf (yaz_marc_t mt, const char *buf,

70



Chapter 8. Supporting Tools

int bsize, WRBUF wrbuf);

A MARC conversion handle must be created by usiag marc_create  and destroyed by calling
yaz_marc_destroy

All other function operate onyaz_marc_t handle. The output is specified by a calyte_marc_xml . The
xmimode must be one of

YAZ_MARC_LINE

A simple line-by-line format suitable for display but not recommend for further (machine) processing.

YAZ_MARC_MARXML
The resulting record is converted to MARCXML.

YAZ_MARC_ISO2709
The resulting record is converted to ISO2709 (MARC).

The actual conversion functions ar&z_marc_decode_buf andyaz_marc_decode_wrbuf  which decodes
and encodes a MARC record. The former function operates on simple buffers, the stores the resulting record in a
WRBUF handle (WRBUF is a simple string type).

Example 8-11. Display of MARC record

The followint program snippet illustrates how the MARC API may be used to convert a MARC record to the
line-by-line format:

void print_marc(const char *marc_buf, int marc_buf_size)
{
char *result; [* for result buf */
int result_len; [* for size of result */
yaz_marc_t mt = yaz_marc_create();
yaz_marc_xml(mt, YAZ_MARC_LINE);
yaz_marc_decode_buf(mt, marc_buf, marc_buf_size,
&result, &result_len);
fwrite(result, result_len, 1, stdout);
yaz_marc_destroy(mt); /* note that result is now freed... */

71



Chapter 9. The ODR Module

Introduction

ODR is the BER-encoding/decoding subsystem of YAZ. Care as been taken to isolate ODR from the rest of the
package - specifically from the transport interface. ODR may be used in any context where basic ASN.1/BER
representations are used.

If you are only interested in writing a Z39.50 implementation based on the PDUs that are already provided with
YAZ, you only need to concern yourself with the section on managing ODR streaenSéction calletsing

ODR). Only if you need to implement ASN.1 beyond that which has been provided, should you worry about the
second half of the documentatiaing¢ Section calle@rogramming with ODR If you use one of the higher-level
interfaces, you can skip this section entirely.

This is important, so we'll repeat it for emphas¥&u do not need to reatie Section called Programming with
ODRto implement 239.50 with YAZ.

If you need a part of the protocol that isn’t already in YAZ, you should contact the authors before going to work
on it yourself: We might already be working on it. Conversely, if you implement a useful part of the protocol
before us, we'd be happy to include it in a future release.

Using ODR

ODR Streams

Conceptually, the ODR stream is the source of encoded data in the decoding mode; when encoding, it is the
receptacle for the encoded data. Before you can use an ODR stream it must be allocated. This is done with the
function

ODR odr_createmem(int direction);

Theodr_createmem()  function takes as argument one of three manifest constabR: ENCODE

ODR_DECOD®Br ODR_PRINT An ODR stream can be in only one mode - it is not possible to change its mode
once it's selected. Typically, your program will allocate at least two ODR streams - one for decoding, and one for
encoding.

When you're done with the stream, you can use

void odr_destroy(ODR 0);

to release the resources allocated for the stream.

Memory Management

Two forms of memory management take place in the ODR system. The first one, which has to do with allocating
little bits of memory (sometimes quite large bits of memory, actually) when a protocol package is decoded, and
turned into a complex of interlinked structures. This section deals with this system, and how you can use it for

72



Chapter 9. The ODR Module
your own purposes. The next section deals with the memory management which is required when encoding data
- to make sure that a large enough buffer is available to hold the fully encoded PDU.

The ODR module has its own memory management system, which is used whenever memory is required.
Specifically, it is used to allocate space for data when decoding incoming PDUs. You can use the memory
system for your own purposes, by using the function

void *odr_malloc(ODR o, int size);

You can't use the normdtee(2) routine to free memory allocated by this function, and ODR doesn’t provide
a parallel function. Instead, you can call

void odr_reset(ODR o, int size);

when you are done with the memory: Everything allocated since the last calll_t@set()  is released. The
odr_reset() call is also required to clear up an error condition on a stream.

The function

int odr_total(ODR 0);

returns the number of bytes allocated on the stream since the last aai] teset()

The memory subsystem of ODR is fairly efficient at allocating and releasing little bits of memory. Rather than
managing the individual, small bits of space, the system maintains a free-list of larger chunks of memory, which
are handed out in small bits. This scheme is generally knowméshée memongystem. It is very useful for
maintaining short-lived constructions such as protocol PDUs.

If you want to retain a bit of memory beyond the next calbtb_reset() , you can use the function

ODR_MEM odr_extract._ mem(ODR 0);

This function will give you control of the memory recently allocated on the ODR stream. The memory will live
(past calls tadr_reset() ), until you call the function

void odr_release_mem(ODR_MEM p);

The opaque®DR_MEMandle has no other purpose than referencing the memory block for you until you want to
release it.

You can usedr_extract_mem() repeatedly between allocating data, to retain individual control of separate
chunks of data.

Encoding and Decoding Data

When encoding data, the ODR stream will write the encoded octet string in an internal buffer. To retrieve the
data, use the function

char *odr_getbuf(ODR o, int *len, int *size);

The integer pointed to by len is set to the length of the encoded data, and a pointer to that data is retzgned.
is set to the size of the buffer (unlesige is null, signaling that you are not interested in the size). The next call

73



Chapter 9. The ODR Module

to a primitive function using the same ODR stream will overwrite the data, unless a different buffer has been
supplied using the call

void odr_setbuf(ODR o, char *buf, int len, int can_grow);

which sets the encoding (or decoding) buffer use@ by buf , using the lengtten . Before a call to an

encoding function, you can user_setbuf() to provide the stream with an encoding buffer of sufficient size
(length). Thecan_grow parameter tells the encoding ODR stream whether it is allowed teeabec(2) to
increase the size of the buffer when necessary. The default condition of a new encoding stream is equivalent to
the results of calling

odr_setbuf(stream, 0, 0, 1);

In this case, the stream will allocate and reallocate memory as necessary. The stream reallocates memory by
repeatedly doubling the size of the buffer - the result is that the buffer will typically reach its maximum, working
size with only a small number of reallocation operations. The memory is freed by the stream when the latter is
destroyed, unless it was assigned by the user witlsdhegrow parameter set to zero (in this case, you are
expected to retain control of the memory yourself).

To assume full control of an encoded buffer, you must firstaall getbuf() to fetch the buffer and its length.

Next, you should calbdr_setbuf() to provide a different buffer (or a null pointer) to the stream. In the

simplest case, you will reuse the same buffer over and over again, and you will just needtd eglibuf()

after each encoding operation to get the length and address of the buffer. Note that the stream may reallocate the
buffer during an encoding operation, so it is necessary to retrieve the correct address after each encoding
operation.

It is important to realize that the ODR stream will not release this memory when yoedcakkset() It will

merely update its internal pointers to prepare for the encoding of a new data value. When the stream is released
by theodr_destroy() function, the memory given to it bydr_setbuf  will be releasednlyif the can_grow
parameter t@dr_setbuf() was nonzero. Thean_grow parameter, in other words, is a way of signaling who

is to own the buffer, you or the ODR stream. If you never odl setbuf() on your encoding stream, which

is typically the case, the buffer allocated by the stream will belong to the stream by default.

When you wish to decode data, you should first odll setbuf() , to tell the decoding stream where to find
the encoded data, and how long the buffer is tioe grow parameter is ignored by a decoding stream). After
this, you can call the function corresponding to the data you wish to decodsdteteger() odr

z_APDU() ).

Example 9-1. Encoding and decoding functions
int odr_integer(ODR o, int **p, int optional, const char *name);

int z APDU(ODR o, Z_APDU **p, int optional, const char *name);

If the data is absent (or doesn’t match the tag corresponding to the type), the return value will be either 0 or 1
depending on theptional ~ flag. If optional  is 0 and the data is absent, an error flag will be raised in the
stream, and you'll need to caltir_reset() before you can use the stream agairptional  is honzero, the
pointerpointedto/ by p will be set to the null value, and the function will return 1. Tdeene argument is used to
pretty-print the tag in question. It may be seNOLL if pretty-printing is not desired.

If the data value is found where it's expected, the poiptented toby thep argument will be set to point to the
decoded type. The space for the type will be allocated and owned by the ODR stream, and it will live until you
call odr_reset() on the stream. You cannot uee(2) to release the memory. You can decode several data

74



Chapter 9. The ODR Module

elements (by repeated callsdar_setbuf() and your decoding function), and new memory will be allocated
each time. When you do caltir_reset() , everything decoded since the last calbtv_reset()  will be
released.

Example 9-2. Encoding and decoding of an integer

The use of the double indirection can be a little confusing at first (its purpose will become clear later on,
hopefully), so an example is in order. We’'ll encode an integer value, and immediately decode it again using a
different stream. A useless, but informative operation.

void do_nothing_useful(int value)
{

ODR encode, decode;

int *valp, *resvalp;

char *bufferp;

int len;

[* allocate streams */

if ((encode = odr_createmem(ODR_ENCODE)))
return;

if (!(decode = odr_createmem(ODR_DECODE)))
return;

valp = &amp;value;
if (odr_integer(encode, &amp;valp, 0, 0) == 0)
{
printf("encoding went bad\n");
return;
}
bufferp = odr_getbuf(encode, &amp;len);
printf("length of encoded data is &percnt;d\n”, len);

/* now let's decode the thing again */
odr_setbuf(decode, bufferp, len);
if (odr_integer(decode, &amp;resvalp, 0, 0) == 0)

{
printf("decoding went bad\n");

return;

}

printf("the value is &percnt;d\n", *resvalp);

[* clean up */
odr_destroy(encode);
odr_destroy(decode);

This looks like a lot of work, offhand. In practice, the ODR streams will typically be allocated once, in the
beginning of your program (or at the beginning of a new network session), and the encoding and decoding will
only take place in a few, isolated places in your program, so the overhead is quite manageable.

75



Chapter 9. The ODR Module

Diagnostics

The encoding/decoding functions all return O when an error occurs. Until youdzatkeset() , you cannot
use the stream again, and any function called will immediately return O.

To provide information to the programmer or administrator, the function

void odr_perror(ODR o, char *message);

is provided, which prints thmessage argument tastderr  along with an error message from the stream.

You can also use the function

int odr_geterror(ODR 0);

to get the current error number from the screen. The number will be one of these constants:

Table 9-1. ODR Error codes

code Description
OMEMORY Memory allocation failed.
OSYSERR A system- or library call has failed. The standard

diagnostic variablerrno  should be examined to
determine the actual error.

OSPACE No more space for encoding. This will only occur when
the user has explicitly provided a buffer for an encoding
stream without allowing the system to allocate more

space.
OREQUIRED This is a common protocol error; A required data
element was missing during encoding or decoding.
OUNEXPECTED An unexpected data element was found during
decoding.
OOTHER Other error. This is typically an indication of misuse of

the ODR system by the programmer, and also that the
diagnostic system isn't as good as it should be, yet.

The character string array

char *odr_errlist]]

can be indexed by the error code to obtain a human-readable representation of the problem.

Summary and Synopsis

#include <odr.h>
ODR odr_createmem(int direction);
void odr_destroy(ODR o0);

void odr_reset(ODR 0);

76



Chapter 9. The ODR Module

char *odr_getbuf(ODR o, int *len);

void odr_setbuf(ODR o, char *buf, int len);
void *odr_malloc(ODR o, int size);
ODR_MEM odr_extract_mem(ODR 0);

void odr_release_mem(ODR_MEM r);

int odr_geterror(ODR 0);

void odr_perror(char *message);

extern char *odr_errlist[];

Programming with ODR

The API of ODR is designed to reflect the structure of ASN.1, rather than BER itself. Future releases may be
able to represent data in other external forms.

Tip: There is an ASN.1 tutorial available at this site (http://asnl.elibel.tm.fr/en/introduction/). This site also
has standards for ASN.1 (X.680) and BER (X.690) online (http://asnl.elibel.tm.fr/en/standards/).

The ODR interface is based loosely on that of the Sun Microsystems XDR routines. Specifically, each function
which corresponds to an ASN.1 primitive type has a dual function. Depending on the settings of the ODR stream
which is supplied as a parameter, the function may be used either to encode or decode data. The functions that
can be built using these primitive functions, to represent more complex data types, share this quality. The result
is that you only have to enter the definition for a type once - and you have the functionality of encoding,
decoding (and pretty-printing) all in one unit. The resulting C source code is quite compact, and is a pretty
straightforward representation of the source ASN.1 specification.

In many cases, the model of the XDR functions works quite well in this role. In others, it is less elegant. Most of
the hassle comes from the optional SEQUENCE members which don't exist in XDR.

The Primitive ASN.1 Types

ASN.1 defines a number of primitive types (many of which correspond roughly to primitive types in structured
programming languages, such as C).

INTEGER
The ODR function for encoding or decoding (or printing) the ASN.1 INTEGER type looks like this:

int odr_integer(ODR o, int **p, int optional, const char *name);

(we don't allow values that can’t be contained in a C integer.)

77



Chapter 9. The ODR Module

This form is typical of the primitive ODR functions. They are named after the type of data that they encode or
decode. They take an ODR stream, an indirect reference to the type in question,cptidraah  flag
(corresponding to the OPTIONAL keyword of ASN.1) as parameters. They all return an integer value of either
one or zero. When you use the primitive functions to construct encoders for complex types of your own, you
should follow this model as well. This ensures that your new types can be reused as elements in yet more
complex types.

Theo parameter should obviously refer to a properly initialized ODR stream of the right type
(encoding/decoding/printing) for the operation that you wish to perform.

When encoding or printing, the function first lookstap . If * p (the pointer pointed to by) is a null pointer,

this is taken to mean that the data element is absent. Htt@al parameter is nonzero, the function will
return one (signifying success) without any further processing. lopktienal  is zero, an internal error flag is
set in the ODR stream, and the function will return 0. No further operations can be carried out on the stream
without a call to the functiondr_reset()

If *p is not a null pointer, it is expected to point to an instance of the data type. The data will be subjected to the
encoding rules, and the result will be placed in the buffer held by the ODR stream.

The other ASN.1 primitives have similar functions that operate in similar manners:

BOOLEAN

int odr_bool(ODR o, bool_t **p, int optional, const char *name);

REAL
Not defined.

NULL

int odr_null(ODR o, bool_t **p, int optional, const char *name);

In this case, the value of **p is not important.*ff is different from the null pointer, the null value is present,
otherwise it's absent.

OCTET STRING

typedef struct odr_oct

{
unsigned char *buf;
int len;
int size;

} Odr_oct;

int odr_octetstring(ODR o0, Odr_oct **p, int optional,
const char *name);

78



Chapter 9. The ODR Module

Thebuf field should point to the character array that holds the octetstringlehhd&eld holds the actual length,
while thesize field gives the size of the allocated array (not of interest to you, in most cases). The character
array need not be null terminated.

To make things a little easier, an alternative is given for string types that are not expected to contain embedded
NULL characters (eg. VisibleString):

int odr_cstring(ODR o, char **p, int optional, const char *name);

Which encoded or decodes between OCTETSTRING representations and null-terminates C strings.

Functions are provided for the derived string types, eg:

int odr_visiblestring(ODR o, char **p, int optional,
const char *name);

BIT STRING

int odr_bitstring(ODR o, Odr_bitmask **p, int optional,
const char *name);

The opaque typ@dr_bitmask is only suitable for holding relatively brief bit strings, eg. for options fields, etc.
The constanODR_BITMASK_SIZEmultiplied by 8 gives the maximum possible number of bits.

A set of macros are provided for manipulating thér_bitmask type:

void ODR_MASK_ZERO(Odr_bitmask *b);

void ODR_MASK_SET(Odr_bitmask *b, int bitno);
void ODR_MASK_CLEAR(Odr_bitmask *b, int bitno);
int ODR_MASK_GET(Odr_bitmask *b, int bitno);

The functions are modeled after the manipulation functions that accompafuy ¢ke type used by the
select(2)  call. ODR_MASK_ZERshould always be called first on a new bitmask, to initialize the bits to zero.

OBJECT IDENTIFIER

int odr_oid(ODR o, Odr_oid **p, int optional, const char *name);

The C OID representation is simply an array of integers, terminated by the value Qdfthed type is
synonymous with thaat type). We suggest that you use the OID database moduleéhis&zction called
Object Identifiersn Chapter ¢ to handle object identifiers in your application.

79



Chapter 9. The ODR Module
Tagging Primitive Types
The simplest way of tagging a type is to use tke_implicit_tag() or odr_explicit_tag() macros:

int odr_implicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

int odr_explicit_tag(ODR o, Odr_fun fun, int class, int tag,
int optional, const char *name);

To create a type derived from the integer type by implicit tagging, you might write:

Mylnt = [210] IMPLICIT INTEGER

In the ODR system, this would be written like:

int myInt(ODR o, int **p, int optional, const char *name)

{
return odr_implicit_tag(o, odr_integer, p,
ODR_CONTEXT, 210, optional, name);

The functionmyint() can then be used like any of the primitive functions provided by ODR. Note that the
behavior ofodr_explicit_tag() andodr_implicit_tag() macros act exactly the same as the functions
they are applied to - they respond to error conditions, etc, in the same manner - they simply have three extra
parameters. The class parameter may take one of the vaiDBs:.CONTEXTDR_PRIVATE ODR_UNIVERSAL

or /ODR_APPLICATION.

Constructed Types

Constructed types are created by combining primitive types. The ODR system only implements the SEQUENCE
and SEQUENCE OF constructions (although adding the rest of the container types should be simple enough, if
the need arises).

For implementing SEQUENCEs, the functions

int odr_sequence_begin(ODR o, void *p, int size, const char *name);
int odr_sequence_end(ODR 0);

are provided.

Theodr_sequence_begin() function should be called in the beginning of a function that implements a
SEQUENCE type. Its parameters are the ODR stream, a pointer (to a pointer to the type you're implementing),
and thesize of the type (typically a C structure). On encoding, it returns*L if is a null pointer. Theize

parameter is ignored. On decoding, it returns 1 if the type is found in the data stieambytes of memory are
allocated, andp is set to point to this spacedr_sequence_end() is called at the end of the complex

function. Assume that a type is defined like this:

MySequence ::= SEQUENCE {

intval INTEGER,
boolval BOOLEAN OPTIONAL

80



Chapter 9. The ODR Module

The corresponding ODR encoder/decoder function and the associated data structures could be written like this:

typedef struct MySequence
{

int *intval,

bool_t *boolval;
} MySequence;

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{
if (odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(0);
return
odr_integer(o, &(*p)->intval, 0, "intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval’) &&
odr_sequence_end(0);
}

Note the 1 in the call todr_bool() , to mark that the sequence member is optional. If either of the member
types had been tagged, the maards implicit_tag() or odr_explicit_tag() could have been used.

The new function can be used exactly like the standard functions provided with ODR. It will encode, decode or
pretty-print a data value of theySequence type. We like to name types with an initial capital, as done in

ASN.1 definitions, and to hame the corresponding function with the first character of the name in lower case.
You could, of course, name your structures, types, and functions any way you please - as long as you're
consistent, and your code is easily readatie. ok is just that - a predicate that returns the state of the stream.

It is used to ensure that the behavior of the new type is compatible with the interface of the primitive types.

Tagging Constructed Types

Note: See the Section called Tagging Primitive Types for information on how to tag the primitive types, as
well as types that are already defined.

Implicit Tagging
Assume the type above had been defined as

MySequence := [10] IMPLICIT SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

You would implement this in ODR by calling the function
int odr_implicit_settag(ODR o, int class, int tag);

which overrides the tag of the type immediately following it. The maeho implicit_tag() works by
calling odr_implicit_settag() immediately before calling the function pointer argument. Your type
function could look like this:

81



Chapter 9. The ODR Module

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{

if (odr_implicit_settag(o, ODR_CONTEXT, 10) == 0 ||
odr_sequence_begin(o, p, sizeof(**p), name) == 0)
return optional && odr_ok(o);

return
odr_integer(o, &(*p)->intval, 0, “intval") &&
odr_bool(o, &(*p)->boolval, 1, "boolval') &&
odr_sequence_end(0);

The definition of the structurdlySequence would be the same.

Explicit Tagging

Explicit tagging of constructed types is a little more complicated, since you are in effect adding a level of
construction to the data.

Assume the definition:

MySequence ::= [10] IMPLICIT SEQUENCE {
intval INTEGER,
boolval BOOLEAN OPTIONAL

Since the new type has an extra level of construction, two new functions are needed to encapsulate the base type:

int odr_constructed_begin(ODR o, void *p, int class, int tag,
const char *name);

int odr_constructed_end(ODR 0);

Assume that the IMPLICIT in the type definition above were replaced with EXPLICIT (or that the IMPLICIT
keyword were simply deleted, which would be equivalent). The structure definition would look the same, but the
function would look like this:

int mySequence(ODR o, MySequence **p, int optional, const char *name)

{
if (odr_constructed_begin(o, p, ODR_CONTEXT, 10, name) == 0)
return optional && odr_ok(o);
if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));
if (odr_sequence_begin(o, p, sizeof(**p), 0) == 0)
{
*p = 0; /* this is almost certainly a protocol error */
return O;
}
return
odr_integer(o, &(*p)->intval, 0, "intval') &&
odr_bool(o, &(*p)->boolval, 1, "boolval’) &&
odr_sequence_end(0) &&
odr_constructed_end(0);
}

82



Chapter 9. The ODR Module

Notice that the interface here gets kind of hasty. The reason is simple: Explicitly tagged, constructed types are
fairly rare in the protocols that we care about, so the esthetic annoyance (not to mention the dangers of a
cluttered interface) is less than the time that would be required to develop a better interface. Nevertheless, it is far
from satisfying, and it's a point that will be worked on in the future. One option for you would be to simply

apply theodr_explicit_tag() macro to the first function, and not have to worry about

odr_constructed_* yourself. Incidentally, as you might have guessed otlresequence_  functions are
themselves implemented using thdr_constructed_ functions.

SEQUENCE OF
To handle sequences (arrays) of a specific type, the function

int odr_sequence_of(ODR o, int (*fun)(ODR o, void *p, int optional),
void *p, int *num, const char *name);

Thefun parameter is a pointer to the decoder/encoder function of thepyipe pointer to an array of pointers
to your type.numis the number of elements in the array.

Assume a type

MyArray ::= SEQUENCE OF INTEGER

The C representation might be

typedef struct MyArray

{
int num_elements;
int **elements;

} MyArray;

And the function might look like

int myArray(ODR o, MyArray **p, int optional, const char *name)

{
if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p));
if (odr_sequence_of(o, odr_integer, &(*p)->elements,
&(*p)->num_elements, name))
return 1,
*p - 0;
return optional && odr_ok(o);
}

CHOICE Types

The choice type is used fairly often in some ASN.1 definitions, so some work has gone into streamlining its
interface.

CHOICE types are handled by the function:

83



Chapter 9. The ODR Module

int odr_choice(ODR o, Odr_arm arm[], void *p, void *whichp,
const char *name);

Thearm array is used to describe each of the possible types that the CHOICE type may assume. Internally in
your application, the CHOICE type is represented as a discriminated union. That is, a C union accompanied by
an integer (or enum) identifying the active 'arm’ of the uniasichp is a pointer to the union discriminator.

When encoding, it is examined to determine the current type. When decoding, it is set to reference the type that
was found in the input stream.

The Odr_arm type is defined thus:

typedef struct odr_arm

{
int tagmode;
int class;
int tag;
int which;
Odr_fun fun;
char *name;
} Odr_arm;

The interpretation of the fields are:

tagmode
EitherODR_IMPLICIT , ODR_EXPLICIT, or ODR_NONE1) to mark no tagging.

which
The value of the discriminator that corresponds to this CHOICE element. Typically, it will be a #defined
constant, or an enum member.

fun
A pointer to a function that implements the type of the CHOICE member. It may be either a standard ODR
type or a type defined by yourself.

name
Name of tag.

A handy way to prepare the array for use by tkie choice()  function is to define it as a static, initialized

array in the beginning of your decoding/encoding function. Assume the type definition:

MyChoice ::= CHOICE {
untagged INTEGER,
tagged [99] IMPLICIT INTEGER,
other BOOLEAN

Your C type might look like

typedef struct MyChoice
{

enum

{

84



Chapter 9. The ODR Module

MyChoice_untagged,
MyChoice_tagged,
MyChoice_other

} which;

union

{
int *untagged,;
int *tagged,;
bool_t *other;

Py

And your function could look like this:

int myChoice(ODR o, MyChoice **p, int optional, const char *name)

{

static Odr_arm arm[] =

{
{-1, -1, -1, MyChoice_untagged, odr_integer, "untagged"},
{ODR_IMPLICIT, ODR_CONTEXT, 99, MyChoice_tagged, odr_integer,
“tagged"},

{-1, -1, -1, MyChoice_other, odr_boolean, "other"},
{-1, -1, -1, -1, O}
3

if (o->direction == ODR_DECODE)
*p = odr_malloc(o, sizeof(**p);
else if (*p)
return optional && odr_ok(o);

if (odr_choice(o, arm, &(*p)->u, &(*p)->which), name)
return 1;

*p = 0,
return optional && odr_ok(o);

In some cases (say, a hon-optional choice which is a member of a sequence), you can "embed" the union and its
discriminator in the structure belonging to the enclosing type, and you won't need to fiddle with memory
allocation to create a separate structure to wrap the discriminator and union.

The corresponding function is somewhat nicer in the Sun XDR interface. Most of the complexity of this
interface comes from the possibility of declaring sequence elements (including CHOICES) optional.

The ASN.1 specifications naturally requires that each member of a CHOICE have a distinct tag, so they can be
told apart on decoding. Sometimes it can be useful to define a CHOICE that has multiple types that share the
same tag. You'll need some other mechanism, perhaps keyed to the context of the CHOICE type. In effect, we
would like to introduce a level of context-sensitiveness to our ASN.1 specification. When encoding an internal
representation, we have no problem, as long as each CHOICE member has a distinct discriminator value. For
decoding, we need a way to tell the choice function to look for a specific arm of the table. The function

void odr_choice_bias(ODR o, int what);

provides this functionality. When called, it leaves a notice for the next caliitachoice()  to be called on the
decoding stream that only thearm entry with awhich field equal towhat should be tried.

85



Chapter 9. The ODR Module

The most important application (perhaps the only one, really) is in the definition of application-specific
EXTERNAL encoders/decoders which will automatically decode an ANY member given the direct or indirect

reference.

Debugging

The protocol modules are suffering somewhat from a lack of diagnostic tools at the moment. Specifically ways to
pretty-print PDUs that aren’t recognized by the system. We'll include something to this end in a not-too-distant
release. In the meantime, what we do when we get packages we don’t understand is to compile the ODR module
with ODR_DEBUG@efined. This causes the module to dump tracing information as it processes data units. With
this output and the protocol specification (239.50), it is generally fairly easy to see what goes wrong.

86



Chapter 10. The COMSTACK Module

Synopsis (blocking mode)

COMSTACK stack;

char *buf = 0;

int size = 0, length_incoming;

char *protocol_package;

int protocol_package_length;

char server_address_str[] = "myserver.com:2100";
void *server_address_ip;

int status;

stack = cs_create(tcpip_type, 1, PROTO_Z3950);

if (Istack) {
perror(“cs_create"); /* use perror() here since we have no stack yet */
exit(1);

}

server_address_ip = cs_addrstr (stack, server_address_str);

status = cs_connect(stack, server_address_ip);
if (status != 0) {

cs_perror(stack, "cs_connect");

exit(1);
}

status = cs_put(stack, protocol_package, protocol_package_length);
if (status) {

cs_perror(stack, "cs_put");

exit(1);
}

/* Now get a response */

length_incoming = cs_get(stack, &buf, &size);
if (!length_incoming) {
fprintf(stderr, "Connection closed\n");
exit(1);
} else if (length_incoming < 0) {
cs_perror(stack, "cs_get");
exit(1);
}

/* Do stuff with buf here */

/* clean up */

cs_close(stack);

if (buf)
free(buf);

87



Chapter 10. The COMSTACK Module

Introduction

The COMSTACK subsystem provides a transparent interface to different types of transport stacks for the
exchange of BER-encoded data and HTTP packets. At present, the RFC1729 method (BER over TCP/IP), local
UNIX socket and an experimental SSL stack are supported, but others may be added in time. The philosophy of
the module is to provide a simple interface by hiding unused options and facilities of the underlying libraries.
This is always done at the risk of losing generality, and it may prove that the interface will need extension later
on.

Note: There hasn't been interest in the XTImOSI stack for some years. Therefore, it is no longer supported.

The interface is implemented in such a fashion that only the sub-layers constructed to the transport methods that
you wish to use in your application are linked in.

You will note that even though simplicity was a goal in the design, the interface is still orders of magnitudes

more complex than the transport systems found in many other packages. One reason is that the interface needs to
support the somewhat different requirements of the different lower-layer communications stacks; another
important reason is that the interface seeks to provide a more or less industrial-strength approach to
asynchronous event-handling. When no function is allowed to block, things get more complex - particularly on

the server side. We urge you to have a look at the demonstration client and server provided with the package.
They are meant to be easily readable and instructive, while still being at least moderately useful.

Common Functions

Managing Endpoints

COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);

Creates an instance of the protocol stack - a communications endpoinyp&h@arameter determines the
mode of communication. At present the following values are supported:

tcpip_type
TCP/IP (BER over TCP/IP or HTTP over TCP/IP)

ssl_type
Secure Socket Layer (SSL). This COMSTACK is experimental and is not fully implemented. If HTTP is
used, this effectively is HTTPS.

unix_type
Unix socket (unix only). Local Transfer via file socket. See unix(7).

Thecs_create function returns a null-pointer if a system error occurs. bleeking parameter should be one
if you wish the association to operate in blocking mode, zero otherwiseprbteeol  field should be
PROTO_z39500r PROTO_HTTPProtocolPROTO_SRs no longer supported.

int cs_close(COMSTACK handle);

88



Chapter 10. The COMSTACK Module

Closes the connection (as elegantly as the lower layers will permit), and releases the resources pointed to by the
handle parameter. Theandle should not be referenced again after this call.

Note: We really need a soft disconnect, don't we?

Data Exchange

int cs_put(COMSTACK handle, char *buf, int len);

Sendsuf down the wire. In blocking mode, this function will return only when a full buffer has been written, or
an error has occurred. In nonblocking mode, it's possible that the function will be unable to send the full buffer
at once, which will be indicated by a return value of 1. The function will keep track of the number of octets
already written; you should call it repeatedly with the same valuésfofandlen , until the buffer has been
transmitted. When a full buffer has been sent, the function will return O for success. -1 indicates an error
condition (see below).

int cs_get(COMSTACK handle, char **buf, int *size);

Receives a PDU or HTTP Response from the peer. Returns the number of bytes read. In nonblocking mode, it is
possible that not all of the packet can be read at once. In this case, the function returns 1. To simplify the
interface, the function is responsible for managing the size of the buffer. It will be reallocated if necessary to
contain large packages, and will sometimes be moved around internally by the subsystem when partial packages
are read. Before callings_get for the fist time, the buffer can be initialized to the null pointer, and the length
should also be setto 0 - cs_get will perforrmalloc(2)  on the buffer for you. When a full buffer has been

read, the size of the package is returned (which will always be greater than 1). -1 indicates an error condition.

See also thes_more() function below.

int cs_more(COMSTACK handle);

Thecs_more() function should be used in conjunction with get andselect(2?) . Thecs_get() function

will sometimes (notably in the TCP/IP mode) read more than a single protocol package off the network. When
this happens, the extra package is stored by the subsystem. After callyey() , and before waiting for more
input, You should always catls_more() to check if there’s a full protocol package already readslimore()

returns 1cs_get() can be used to immediately fetch the new package. For the mOSI subsystem, the function
should always return 0, but if you want your stuff to be protocol independent, you should use it.

Note: The cs_more() function is required because the RFC1729-method does not provide a way of
separating individual PDUs, short of partially decoding the BER. Some other implementations will carefully
nibble at the packet by calling read(2) several times. This was felt to be too inefficient (or at least clumsy) -
hence the call for this extra function.

int cs_look(COMSTACK handle);

This function is useful when you're operating in nonblocking mode. Call it wdedstt(2)  tells you there’s
something happening on the line. It returns one of the following values:

89



Chapter 10. The COMSTACK Module

CS_NONE

No event is pending. The data found on the line was not a complete package.

CS_CONNECT

A response to your connect request has been receivedc<Calliconnect  to process the event and to
finalize the connection establishment.

CS_DISCON

The other side has closed the connection (or maybe sent a disconnect request - but do we care? Maybe
later). Callcs_close to close your end of the association as well.

CS_LISTEN

A connect request has been received. Callisten  to process the event.
CS_DATA

There’s data to be found on the line. Call get to get it.

Note: You should be aware that even if cs_look()  tells you that there’s an event event pending, the
corresponding function may still return and tell you there was nothing to be found. This means that only part
of a package was available for reading. The same event will show up again, when more data has arrived.

int cs_fileno(COMSTACK h);

Returns the file descriptor of the association. Use this when file-level operations on the endpoint are required
(select(2)  operations, specifically).

Client Side

int ¢s_connect(COMSTACK handle, void *address);

Initiate a connection with the targetaddress (more on addresses below). The function will return 0 on
success, and 1 if the operation does not complete immediately (this will only happen on a nonblocking
endpoint). In this case, uss_rcvconnect  to complete the operation, whealect(2)  orpoll(2)  reports
input pending on the association.

int cs_rcvconnect(COMSTACK handle);

Complete a connect operation initiateddsy connect() . It will return 0 on success; 1 if the operation has not
yet completed (in this case, call the function again later); -1 if an error has occurred.

Server Side

To establish a server under the inetd server, you can use

90



Chapter 10. The COMSTACK Module

COMSTACK cs_createbysocket(int socket, CS_TYPE type, int blocking,
int protocol);

Thesocket parameter is an established socket (when your application is invoked from inetd, the socket will
typically be 0. The following parameters are identical to the onesdotreate

int cs_bind(COMSTACK handle, void *address, int mode)

Binds a local address to the endpoint. Read about addresses belawoddiparameter should be either
CS_CLIENT or CS_SERVER

int cs_listen(COMSTACK handle, char *addr, int *addrlen);

Call this to process incoming events on an endpoint that has been bound in listening mode. It will return 0 to
indicate that the connect request has been received, 1 to signal a partial reception, and -1 to indicate an error
condition.

COMSTACK cs_accept(COMSTACK handle);

This finalizes the server-side association establishment, after cs_listen has completed successfully. It returns a
new connection endpoint, which represents the new association. The application will typically wish to fork off a
process to handle the association at this point, and continue listen for new connections ornéineleld

You can use the call

char *cs_addrstr(COMSTACK);

on an established connection to retrieve the host-name of the remote host.

Note: You may need to use this function with some care if your name server service is slow or unreliable

Addresses

The low-level format of the addresses are different depending on the mode of communication you have chosen.
A function is provided by each of the lower layers to map a user-friendly string-form address to the binary form
required by the lower layers.

void *cs_straddr(COMSTACK handle, const char *str);

The format for TCP/IP and SSL addresses is:

<host> [ "’ <portnum> ]

Thehostname can be either a domain name or an IP address. The port number, if omitted, defaults to 210.

For TCP/IP and SSL transport modes, the special hosthname "@" is mapped to any local address (the manifest
constaniNADDR_ANY. It is used to establish local listening endpoints in the server role.

91



Chapter 10. The COMSTACK Module

For UNIX sockets, the format of an address is the socket filename.

When a connection has been established, you can use

char *cs_addrstr(COMSTACK h);

to retrieve the host name of the peer system. The function returns a pointer to a static area, which is overwritten
on the next call to the function.

A fairly recent addition to the COMSTACK modaule is the utility function

COMSTACK cs_create_host (const char *str, int blocking, void **vp);

which is just a wrapper fats_create  andcs_straddr . Thestr is similar to that described fass_straddr

but with a prefix denoting the COMSTACK type. Prefixes supportedcate, unix: andssl:  for TCP/IP,

UNIX and SSL respectively. If no prefix is given, then TCP/IP is used.flbeking is passed to function
cs_create . The third parameterp is a pointer to COMSTACK stack type specific values. For SSL (ssl_type)
vp is an already create OpenSSL CTX. For TCP/IP and UMbXis unused (can be set kULL

SSL

void *cs_get_ssI(COMSTACK cs);

Returns the SSL handIssL * for comstack. If comstack is not of type SSL, NULL is returned.

int cs_set_ssl_ctx(COMSTACK cs, void *ctx);

Sets SSL context for comstack. The parameter is expected to be Bsyp€TX *. This function should be
called just after comstack has been created (before connect, bind, etc). This function returns 1 for success; 0 for
failure.

int cs_set_ssl_certificate_file(COMSTACK c¢s, const char *fname);

Sets SSL certificate for comstack as a PEM file. This function returns 1 for success; 0 for failure.

int cs_get_ssl_peer_certificate_x509(COMSTACK cs, char **buf, int *len);

This function returns the peer certificate. If successtulf and*len holds X509 buffer and length
respectively. Buffer should be freed witfree . This function returns 1 for success; 0 for failure.

Diagnostics

All functions return -1 if an error occurs. Typically, the functions will return O on success, but the data exchange
functions €s_get , cs_put , cs_more ) follow special rules. Consult their descriptions.

92



Chapter 10. The COMSTACK Module

When a function (including the data exchange functions) reports an error condition, use the function
cs_ermo()  to determine the cause of the problem. The function

void cs_perror(COMSTACK handle char *message);

works likeperror(2)  and prints thenessage argument, along with a system messagetderr . Use the
character array

extern const char *cs_errlist[];

to get hold of the message, if you want to process it differently. The function

const char *cs_stackerr(COMSTACK handle);

Returns an error message from the lower layer, if one has been provided.

Summary and Synopsis

#include <yaz/comstack.h>
#include <yaz/tcpip.h> /* this is for TCP/IP and SSL support */
#include <yaz/unix.h> /* this is for UNIX sockelL support */
COMSTACK cs_create(CS_TYPE type, int blocking, int protocol);
COMSTACK cs_createbysocket(int s, CS_TYPE type, int blocking,
int protocol);
COMSTACK cs_create_host (const char *str, int blocking,
void **vp);
int ¢cs_bind(COMSTACK handle, int mode);
int ¢cs_connect(COMSTACK handle, void *address);
int ¢cs_rcvconnect(COMSTACK handle);
int cs_listen(COMSTACK handle);
COMSTACK cs_accept(COMSTACK handle);
int cs_put(COMSTACK handle, char *buf, int len);
int cs_get(COMSTACK handle, char **buf, int *size);
int cs_more(COMSTACK handle);
int cs_close(COMSTACK handle);

int ¢cs_look(COMSTACK handle);

void *cs_straddr(COMSTACK handle, const char *str);

93



Chapter 10. The COMSTACK Module

char *cs_addrstr(COMSTACK h);

extern int cs_errno;

void cs_perror(COMSTACK handle char *message);
const char *cs_stackerr(COMSTACK handle);

extern const char *cs_errlist[];

94



Chapter 11. Future Directions

We have a new and better version of the front-end server on the drawing board. Resources and external
commitments will govern when we’ll be able to do something real with it. Features should include greater
flexibility, greater support for access/resource control, and easy support for Explain (possibly with Zebra as an
extra database engine).

YAZ is a BER toolkit and as such should support all protocols out there based on that. We'd like to see running
ILL applications. It shouldn’t be that hard. Another thing that would be interesting is LDAP. Maybe a generic
framework for doing IR using both LDAP and Z39.50 transparently.

The SOAP implementation is incomplete. In the future we hope to add more features to it. Perhaps make a
WSDL/XML Schema compiler. The authors of libxmI2 are already working on XML Schema / RelaxNG
compilers so this may not be too hard.

It would be neat to have a proper module mechanism for the Generic Frontend Server so that backend would be
dynamically loaded (as shared objects / DLLS).

Other than that, YAZ generally moves in the directions which appear to make the most people happy (including
ourselves, as prime users of the software). If there’s something you'd like to see in here, then drop us a note and
let's see what we can come up with.

95



Appendix A. License

Index Data Copyright

Copyright © 1995-2004 Index Data ApS.

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in part, for
any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation. Notices of
copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of Index Data or the individual authors may not be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL INDEX
DATA BE LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES

OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY
OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

Additional Copyright Statements

The optional CCL query language interpreter is covered by the following license:
Copyright © 1995, the EUROPAGATE consortium (see below).

The EUROPAGATE consortium members are:
University College Dublin

Danmarks Teknologiske Videnscenter

An Chombhairle Leabharlanna

Consejo Superior de Investigaciones Cientificas

Permission to use, copy, modify, distribute, and sell this software and its documentation, in whole or in part, for
any purpose, is hereby granted, provided that:

1. This copyright and permission notice appear in all copies of the software and its documentation. Notices of
copyright or attribution which appear at the beginning of any file must remain unchanged.

2. The names of EUROPAGATE or the project partners may not be used to endorse or promote products derived
from this software without specific prior written permission.

3. Users of this software (implementors and gateway operators) agree to inform the EUROPAGATE consortium
of their use of the software. This information will be used to evaluate the EUROPAGATE project and the
software, and to plan further developments. The consortium may use the information in later publications.

4. Users of this software agree to make their best efforts, when documenting their use of the software, to
acknowledge the EUROPAGATE consortium, and the role played by the software in their work.

THIS SOFTWARE IS PROVIDED "AS I1S" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS,
IMPLIED, OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

96



Appendix A. License

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE
EUROPAGATE CONSORTIUM OR ITS MEMBERS BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE
POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

97



Appendix B. About Index Data

Index Data is a consulting and software-development enterprise that specializes in library and information
management systems. Our interests and expertise span a broad range of related fields, and one of our primary,
long-term objectives is the development of a powerful information management system with open network
interfaces and hyper-media capabilities.

We make this software available free of charge, on a fairly unrestrictive license; as a service to the networking
community, and to further the development of quality software for open network communication.

We'll be happy to answer questions about the software, and about ourselves in general.

Index Data ApS
Kgbmagergade 43 2.

1150 Copenhagen K
Denmark

Phone +45 3341 0100

Fax +45 3341 0101

Email <nfo@indexdata.dk =~ >

The Hacker’s Jargon File has the following to say about the use of the prefix "YA" in the name of a software
product.
[ Yet Another. adj. 1. Of your own work: A humorous allusion often used in titles to acknowledge that the topic

is not original, though the content is. As in "Yet Another Al Group" or "Yet Another Simulated Annealing
Algorithm". 2. Of others’ work: Describes something of which there are already far too many. ]

98



Appendix C. Credits

This appendix lists individuals that have contributed in the development of YAZ. Some have contributed with
code, while others have provided bug fixes or suggestions. If we're missing somebody, of if you, for whatever
reason, don't like to be listed here, let us know.

 Dimitrios Andreadis
« Morten Bggeskov

+ Rocco Carbone

« Matthew Carey

« Irina Dijour

+ Hans van Dalen

« Hans van den Dool

+ Franck Falcoz

+ Kevin Gamiel

+ Morten Garkier Hendriksen
« Morten Holmgvist

« lan Ibbotson

« Shigeru Ishida

- David Johnson

« Oleg Kolobov

« Kang-Jin Lee

- Pieter Van Lierop

« Stefan Lohrum

+ Ronald van der Meer
+ Thomas W. Place

- Peter Popovics

+ Jacob Chr. Poulsen
« Ko van der Sloot

« Mike Taylor

+ Rustam T. Usmanov
+ Charles Woodfield

- Tom André @verland

99



