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PROGRAM SUMMARY

Title of program: 2dhf

Catalog number:

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Operating system: Unix

Programming language used: Fortran 77, Fortran 90, C

Keywords descriptive of problem and method of solution:

Restricted open-shell Hartree-Fock-(Slater) method, prolate spheroidal coordinates, 8th-order dis-

cretization, successive overrelaxation, multicolour successive overrelaxation.

Nature of the physical problem:

The program finds virtually exact solutions of the Hartree-Fock and Hartree-Fock-Slater equations

for diatomic molecules. The lowest energy eigenstates of a given irreducible representation and spin

can be obtained.

Method of solution:

Single particle two-dimensional numerical functions (orbitals) are used to construct an antisym-

metric many-electron wave function of the restricted open-shell Hartree-Fock model. The orbitals

are obtained by solving the Hartree-Fock equations which are coupled two-dimensional second-

order (elliptic) partial differential equations (PDE). The Coulomb and exchange potentials are

obtained as solutions of the corresponding Poisson equations. The PDEs are disretized by the 8th-

order central difference stencil on a two-dimensional grid (or subgrids) and the resulting large and

sparse system of linear equations is solved by the (multicolour) successive overrelaxation method

((MC)SOR). The self-consistent-field iterations are interwoven with the (MC)SOR ones and orbital

energies and normalization factors are used to monitor the convergence. The accuracy of solutions

depends mainly on the grid and the system under consideration.
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Restrictions on the complexity of the problem:

The present version of the program is restricted to 60 orbitals and 3 subgrids. The number of

subgrids and the maximum grid size are determined by the user before the executable of the

program is made.

Unusual features of the program:

The program uses two C routines for recording the date and time of the run and the CPU usage.

Several BLAS (Basic Linear Algebra System) routines are emulated by the program. When possible

they should be replaced by their library equivalents.

Typical running time: Very case dependent – from a few CPU seconds on an ordinary workstation

up to several hours on a supercomputer.

Internet address of the server holding the program and its description:

http://laaksonen.csc.fi/num2d.html

LONG WRITE-UP

1 INTRODUCTION

The modeling of the electronic structure of atoms and molecules in particular has received a great

deal of effort over the last 30 years. Today a significant part of all used cpu cycles in scientific

computing is used to model and understand the physical or chemical behaviour of molecular systems

either by solving the molecular wave function using quantum mechanics or applying statistical

mechanics.

In traditional quantum chemistry approach the molecular orbitals are expressed as linear com-

binations of basis functions. However, the truncation of this basis set expansion will always lead

to the well-known basis-set truncation error. During the last two decades there have been a few

attempts to circumvent the basis-set truncation error in molecular calculations. The first successful

attempt was the partial-wave expansion approach for diatomic molecules carried out by McCullough

et al. [1–10]. In their approach, the orbitals are represented as finite sums of products of associated
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Legendre functions in one dimension and for each associated Legendre function, the second dimen-

sion is represented as a numerical expansion. The third dimension, the azimuth angle, is treated

analytically. The partial-wave expansion method was later also implemented by Davstad [11].

In the early eighties, Becke [12–15] developed a two-dimensional numerical approach based on

splines for solution of density functional equations for diatomic molecules. He also developed a

three-dimensional numerical approach for general polyatomic molecules which is based on local

one-centre expansions inside a Voronoi polyhedra at every nucleus [16]. Kolb et al. [17–24] have

developed a finite-element method in two-dimensions for the solution of Schrödinger, Hartree-

Fock-Slater, Hartree-Fock, Dirac, and Dirac-Slater equations for diatomic molecules. Sundholm et

al. [25–27] have developed a finite-element approch for solving the Poisson equations and presented

Hartree-Fock results for diatomic molecules such as LiH and BH.

In this work, a program for the numerical solution of diatomic Hartree-Fock and Hartree-Fock-

Slater equations is described. The current method, which has been developed since the early

eighties, is based on the finite-difference approach [28–47]. As in the partial-wave expansion ap-

proach, the orbitals and the potentials are now expressed in a two-dimensional elliptical coordinate

system where the third coordinate (the azimuth angle dependence), or rotation symmetry around

the symmetry axis, is treated analytically. The two-dimensional ”radial” part of the orbitals and

potentials are discretized and solved using a two-dimensional numerical approach.

The same approach has also been applied successfully for the numerical solution of the Dirac and

Dirac-Slater equations [48–51]. However, the applied methods for solution of the relativistic equa-

tions will not be discussed further in this paper. Davstad [52] has also developed a fully numerical

finite-difference approach for the solution of Hartree-Fock equations for diatomic molecules.

Finally, in this brief review, we should also mention Wästberg [53] who recently has developed

a numerical method based on the generalized multiple-scattering Xα approach, and Alexander

et al. [54] and Defranceschi et al. [55–57] who have developed numerical methods for solution of

Schrödinger equations in momentum space.
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2 GENERAL DESCRIPTION

2.1 The Restricted Open-shell Hartree-Fock Method

The energy expression for the Restricted Open-shell Hartree-Fock (RO-HF) method reads

E =
∑
a

< ψa| −
1
2
∇2 + Vn|ψa > qa +

∑
a,b

< ψa|V b
C |ψa > Aab −

∑
a,b

< ψa|V ab
x |ψb > Bab (1)

where −1
2∇

2 is the kinetic energy operator, Vn is the nuclear potential energy operator, V b
C and

V ab
x are the electron-electron Coulomb and exchange potentials, respectively. qa is the occupation

number for orbital a. Aab and Bab are the corresponding occupation-number dependent factors

for the Coulomb and exchange energy contributions. The present Fock equations can be derived

from energy expression (1) by assuming a one-Slater-determinant Ansatz for the wave function and

assuming the same two-dimensional ”radial” part for orbitals belonging to the same shell.

2.2 The coordinate system and the working equations

In the Hartree-Fock model, the many-electron wave function is constructed as an antisymmetric

combination of single-particle functions or orbitals. For diatomic molecules, the orbitals can be

expressed as

ψa(η, ξ, ϕ) = fa(η, ξ)eimaϕ (2)

where η, ξ and ϕ are the prolate spheroidal coordinates defined as

ξ = (r1 + r2)/R 1 ≤ ξ <∞

η = (r1 − r2)/R −1 ≤ η ≤ 1 (3)

ϕ = azimuth angle 0 ≤ ϕ ≤ 2π

with the centres located at z1 = −R/2 and z2 = R/2 along the z-axis, R being the internuclear

separation. The angular part (ϕ) can be treated analytically.

In order to allow for a more accurate description of orbitals and potentials in the vicinity of the

nuclei, the prolate spheroidal coordinates (η, ξ, ϕ) are transformed into the (ν, µ, ϕ) variables.

µ = cosh−1 ξ 0 ≤ µ ≤ ∞

ν = cos−1 η 0 ≤ ν ≤ π (4)
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Because of this transformation, ψa is a quadratic function of µ and ν for points in the vicinity

of the z-axis (µ = 0 corresponds to the cartesian coordinates (0, 0,−R/2 ≤ z ≤ R/2), ν = 0 to

(0, 0, z ≥ R/2)) and ν = π to (0, 0, z ≤ −R/2).

In the transformed prolate spheroidal coordinates (ν, µ, ϕ), the ”radial” part of the Laplacian

reads

4
R2(ξ2 − η2)

{
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν
−m2

a

(
1

ξ2 − 1
+

1
1− η2

)}
(5)

where η and ξ are prolate spheroidal coordinates and R is the internuclear distance. In equation

(5), ma is an integer and defines the rotation symmetry of the orbitals. The orbitals with ma =

0 are called σ orbitals, and π orbitals have ma = ±1, δ orbitals have ma = ±2 and orbitals with

ma = ±3 are called φ orbitals and so on. Orbitals of higher symmetry than φ are not relevant for

ordinary diatomic molecules at the Hartree-Fock level. The orbitals with the same ”radial” part

and with m = ±ma belong to the same shell. Since the m-value for the exchange potentials, V ab,

is |ma −mb|, the largest m-value for the exchange potentials becomes |2 ma,max|, where ma,max is

the largest orbital m-value.

Multiplying the Fock equation by −R2

2 (ξ2 − η2), yields the working equation for the orbital re-

laxation in the transformed prolate spheroidal coordinates.{
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν

−m2
a

(
1

ξ2 − 1
+

1
1− η2

)
+R[ξ(Z1 + Z2) + η(Z2 − Z1)]

−R
ξ

(ξ2 − η2)ṼC +
R2

2
(ξ2 − η2)Ea

}
fa(ν, µ)

+
R

ξ
(ξ2 − η2)

Ṽx
a

+
Rξ

2

∑
b6=a

Eabfb(ν, µ)

 = 0 (6)

In equation (6), the modified Coulomb ṼC and exchange potentials Ṽ a
x have been introduced.

Ṽ a
C = RξV a

C/2 ; Ṽ ab
x = RξV ab

x /2 (7)

ṼC =
∑
a

Ṽ a
C ; Ṽ a

x =
∑
b6=a

Ṽ ab
x fb(ν, µ) (8)
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The working equation for the relaxation of the Coulomb and exchange potentials are analogously

obtained from the Poisson equation in the transformed prolate spheroidal coordinates{
∂2

∂µ2
+

(
1√
ξ2 − 1

− 2
√
ξ2 − 1
ξ

)
∂

∂µ
+

∂2

∂ν2
+

η√
1− η2

∂

∂ν

−(ma −mb)2
(

1
ξ2 − 1

− 1
1− η2

)
− 2
ξ2

}
Ṽ ab

= −πR
3

2
ξ(ξ2 − η2)fa(ν, µ)fb(ν, µ) (9)

For Coulomb potentials a = b and the m-dependent term disappears. The diagonal and off-diagonal

orbital-energy parameters or Lagrange parameters Ea and Eab in equation (6) are calculated as

Ea =< ψa| −
1
2
∇2 + Vn +

2
Rξ

(ṼC − Ṽ a
x )|ψa >=< ψa|ha|ψa > (10)

E∓
ab =

qb
qb ∓ qa

(< ψb|ha|ψa > ∓ < ψa|hb|ψb >) (11)

E−
ab values are used when the denominator does not vanish, E+

ab otherwise. In equation 10, −1
2∇

2

is the kinetic energy operator and qa and qb are the occupation numbers of orbitals a and b. See

also equations (26) and (27).

2.3 General boundary conditions

The Cartesian coordinates in terms of (ν, µ, ϕ) read

x =
R

2
sinhµ sin ν cosϕ

y =
R

2
sinhµ sin ν sinϕ (12)

z =
R

2
coshµ cos ν

and the radial distances from the nuclei (r1 and r2), the distance from the geometrical centre, and

the cartesian z coordinate are given by

r1 =
R

2
(coshµ+ cos ν) =

R

2
(ξ + η)

r2 =
R

2
(coshµ− cos ν) =

R

2
(ξ − η) (13)

r =
R

2

√
cosh2 µ+ cos2 ν − 1 =

R

2

√
ξ2 + η2 − 1

cos θ =
R

2
coshµ cos ν/r = ξη/

√
ξ2 + η2 − 1
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Equations (12) reveal an interesting property of the transformation (4). If the sign of µ or ν is

reversed then the point (x, y, z) goes over into (−x,−y, z). A rotation by π leaves orbitals with

even m unchanged but reverses the sign of orbitals with odd m-values. This means that orbitals

and potentials of σ, δ, . . . symmetry are even functions of (µ, ν) and orbitals and potentials of π,

ϕ, . . . symmetry are odd ones. Thus we can write

f(ν, µ) = (−1)mf(ν,−µ)

f(ν, µ) = (−1)mf(−ν, µ) (14)

f(π + ν, µ) = (−1)mf(π − ν, µ)

These relations enable the differentiation of f near the boundary lines. Since the values of f on the

other side of the boundary lines are known through equations (14), the central difference formula

can also be used for the grid points near the boundaries. The symmetry relations can also be used

to adjust the values of f along (0, µ), (π, µ) and (ν, 0) boundary lines for σ functions. Functions of

higher than σ symmetry (|m| > 0) vanish at these boundary lines.

2.4 Boundary conditions for orbitals at infinity

At the practical infinity, the asymptotic limit may be used to estimate the values of the orbitals in

the last few grid points in µ direction. Consider the second-order differential equation

d2

dr2
ya = (Ea −

g1(r)
r

+
g2(r)
r2

)ya = Fa(r)ya (15)

with y(0) = 0 and y(r)→ 0 as r →∞, and Ea is the orbital energy. The asymptotic form of ya(r)

can be written as [58]

ya(r) ≈ const Fa(r)1/4 exp(−
∫ r

r0

Fa(r′)1/2dr′) (16)

By discretizing and approximating the integral by a rectangular rule, the above equation yields the

appropriate expression of the boundary condition for the orbitals at the practical infinity in the

form

ya(rm+1) ≈ ya(rm)
[
Fa(rm)
Fa(rm+1)

]1/4

exp[
√
−Fa(rm)(rm+1 − rm)] (17)
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2.5 Boundary conditions for potentials at infinity

The boundary conditions for the potentials Ṽ ab at the practical infinity are obtained from the

multipole expansion

Ṽ a
C =

Rξ

2

kmax∑
k=0

Qaa
k,0r

−k−1 Pk,0(cos θ) (18)

where Qab
k,m =< ψa|rkPk,m(cos θ)|ψb > are the multipole moments, and cos θ = z/r. r and z are

defined from the geometrical centre of the molecule. Due to the non-vanishing centrifugal term

for exchange potentials, the additional factor [(k − |∆m|)!/(k + |∆m|)!] appears. The multipole

expansion for the exchange potentials becomes

Ṽ ab
x =

Rξ

2
ei∆mϕ

kmax∑
k=0

(−1)|∆m| (k − |∆m|)!
(k + |∆m|)!

1
rk+1

Pk|∆m|(cos θ)Qab
k,∆m (19)

where ∆m = mb − ma, and Pk,∆m are the associated Legendre functions. In the program, the

moment expansion for the boundary condition of the potentials is truncated at kmax=7 and ∆m ≤ 4.

2.6 Evaluation of boundary values

The boundary values of σ functions along the (0, µ), (π, µ) and (ν, 0) boundary lines are calculated

using the Lagrange 9-point interpolation formula for an equally spaced abscissas [59]

f(x0 + ph) =
∑
k

An
k(p)fk +Rn−1 (20)

where An
k is the interpolation constant and Rn−1 is the error term. Assuming that f(−xi) = f(xi),

the rearrangement of the expression for f(x5) = f(x0 + 5h) yields

f0 =
1

126
(210f1 − 120f2 + 45f3 − 10f4 + f5) (21)

Equation (21) is used for the evaluation of the boundary values of σ functions. The functions of π,

δ, ϕ, . . . symmetry vanish along the (0, µ), (π,µ), and (ν,0) boundaries. For homonuclear molecules

the reflection symmery at (π
2 ,µ) can also be used explicitly to help the self-consistent-field process

to converge. The σg, πu, δg, ϕu, . . . functions are symmetric with respect to the reflection plane

i.e. the first derivative at the reflection plane vanishes. The σu, πg, δu, ϕg, . . . functions which are

antisymmetric with respect to the reflection vanish at the molecular centre plane.
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2.7 Evaluation of one- and two-particle integrals

The volume element in the (ν, µ, ϕ) coordinates is

dxdydz =
R3

8
sinhµ sin ν (cosh2 µ− cos2 ν)dνdµdϕ (22)

The expression for the kinetic energy can be calculated in the (ν, µ, ϕ) coordinates as

Ea
T =

∫ ∫ ∫
dxdydzψ∗a(−

1
2
∇2)ψa

= −πR
2

∫ ∫ √
(ξ2 − 1)(1− η2)fa(ν, µ)T (ν, µ)fa(ν, µ)dνdµ (23)

where

T (ν, µ) =
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ
+

∂2

∂ν2
+

η

1− η2

∂

∂ν

− m2
a

(
1

ξ2 − 1
+

1
1− η2

)
(24)

The nuclear potential energy is analogously evaluated as

Ea
n = −πR

2

∫ ∫ √
(ξ2 − 1)(1− η2)R[ξ(Z1 + Z2) + η(Z2 − Z1)]f2

adνdµ (25)

The two-electron Coulomb- and exchange-energy contributions to the total energy are obtained as

Eab
C =

∫ ∫ ∫
dxdydzψa

2
Rξ

Ṽ b
Cψa

=
πR2

2

∫ ∫ 1
ξ

√
(ξ2 − 1)(1− η2)fa(ν, µ)Ṽ b

Cfa(ν, µ)dνdµ (26)

Eab
x =

∫ ∫ ∫
dxdydzψa

2
Rξ

Ṽ ab
x ψb

= −πR
2

2

∫ ∫ 1
ξ

√
(ξ2 − 1)(1− η2)fa(ν, µ)Ṽ ab

x fb(ν, µ)dνdµ (27)

3 METHOD OF SOLUTION

3.1 Formulae of numerical differentiation and integration

The first and second derivatives of the Laplacian (equation (5)) are approximated by finite difference

expressions derived from the Stirling central difference formula [60]. The 9-point central difference
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formulae for the first and second derivatives are

df

dx
(x0) =

1
840h

[3f−4 − 32f−3 + 168f−2 − 672f−1

+ 672f+1 − 168f+2 + 32f+3 − 3f+4] +O(h8) (28)
d2f

dx2
(x0) =

1
5040h2

[−9f−4 + 128f−3 − 1008f−2 + 8064f−1 − 14350f0

+ 8064f+1 − 1008f+2 + 128f+3 − 9f+4] +O(h8) (29)

where fn denotes f(x0+nh) and h is the step length. Since the symmetry properties of the functions

are used, these expressions can also be used close to the boundary lines.

The integrals are evaluated using a 2-dimensional generalization of 7-point one-dimensional

integration formulae∫ x7

x1

dxf(x) =
h

140
(41f1 + 216f2 + 27f3 + 273f4 + 27f5 + 216f6 + 41f7) +O(h9) (30)

The 2-dimensional integration weights are obtained as an outer product of the integration weights

listed in equation (30). The order of the integration formula determines the number of grid points

in both directions. In the case of the 7-point integration formula the number of grid points in ν

and µ-directions have to be of the form 6n+ 1.

3.2 Numerical integration

The discretized orbitals and potentials can be represented as 2-dimensional arrays f such that

fij = f(νi, µj), i = 1, . . . , nν , j = 1, . . . , nµ, νi = (i − 1)hν and µj = (j − 1)hµ. Employing the

two-dimensional integration formula that can be derived from equation (30) we can write

∫ π

0
dν

∫ µ∞

0
dµJ(ν, µ)f(ν, µ) =

nν∑
i=1

nµ∑
j=1

cicjf(νi, µj)J(νi, µj) (31)

=
nνnµ∑
i,j=1

c̃ijfij =
nνnµ∑
k=1

c̃kfk, k = (j − 1)nν + i (32)

where c̃ is a one-dimensional array of the integration weights merged with the Jacobian and f is a

two-dimensional array of f(νi, µj) values treated as a one-dimensional array. Thus the integral can

be evaluated as a dot product of the two vectors c̃ and f̃ .
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3.3 Numerical differentiation

Since the differentiation operator in µ and ν directions are independent, the differentiation over ν

and µ variables can be performed separately. The differential operator in the µ-direction reads

D(µ)f(ν, µ) =

(
∂2

∂µ2
+

ξ√
ξ2 − 1

∂

∂µ

)
f(ν, µ) =

(
∂2

∂µ2
+ ξ̃(µ)

∂

∂µ

)
f(ν, µ). (33)

Let
df

dµ
(νi, µj) =

4∑
k=−4

d
(1µ)
k f(νi, µj+k) (34)

d2f

dµ2
(νi, µj) =

4∑
k=−4

d
(2µ)
k f(νi, µj+k) (35)

where d(1µ)
k and d(2µ)

k are defined by equations (28) and (29), respectively. To define D(µj)f(νi, µj)

we write

D(µj)f(νi, µj) =
4∑

k=−4

[d(2µ)
k + ξ̃(µj)d

(1µ)
k ]f(νi, µj+k) =

4∑
k=−4

f(νi, µj+k)d̃k
µ
(µj)

= (fµj d̃µj )i, µj+k = µj + khµ. (36)

where fµj matrix is (virtually) built from the 9 consecutive columns of f beginning with the (j−4)th

column and d̃µj is the jth column of the array d̃µ, i.e. (d̃µ)kj = d̃k
µ
(µj). Thus evaluation of

D(µj)(νi, µj) for all ν values (i = 1, 2, . . . , nν) can be performed via a single matrix times vector

multiplication (cf. routine DIFMI).

The differentiation in ν-direction is performed analogously and the differential operator in the

ν-direction reads

D(ν)f(ν, µ) =

(
∂2

∂ν2
+

η√
1− η2

∂

∂ν

)
f(ν, µ) =

(
∂2

∂ν2
+ η̃(ν)

∂

∂ν

)
f(ν, µ). (37)

In the finite difference matrix representation it becomes

D(νi)f(νi, µj) =
4∑

k=−4

f(νi+k, µj)d̃k
ν
(νi) = (fνid̃νi)j , νi+k = νi + khν (38)

where fνi matrix is build from the 9 consequitive columns of fT (the transposed f matrix) beginning

with the column i− 4 (cf. routine DIFNI).
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3.4 Solving a Poisson-type equation

Solutions of the equations (6) and (9) for molecular orbitals and potentials are sought on a rectan-

gular region

[−1, 1]× [1, ξ∞] = [0, π]× [0, µ∞]

where ξ∞ = 2r∞/R with the suitably chosen value of r∞ defining the practical infinity (r1, r2 ≤ r∞).

r∞ must be big enough to guarantee that the boundary conditions derived from the asymptotic

form of these equations can be applied.

In the (ν, µ) coordinates the grid points are distributed uniformly according to

µi+1 = µi + hµ, i = 1, 2, ..., nµ, µ1 = 0 (39)

with a step given by hµ = µ∞/(nµ − 1) and

νj+1 = νj + hν , j = 1, 2, ..., nν , ν1 = 0 (40)

with a step given by hν = π/(nν − 1) where nν is the number of points.

The distribution of points in µ direction need not be uniform and in the present version of the

program up to three rectangular subgrids can be defined employing different density of the grid

points for different ranges of µ values:

µ
(1)
i = µ

(1)
i−1 + h(1)

µ , i = 1, 2, ..., n(1)
µ , µ

(1)
0 = 0

µ
(2)
i = µ

(2)
i−1 + h(2)

µ , i = nµ1 + 1, nµ1 + 2, ..., nµ1 + nµ2 , µ(2)
nµ1

= µ(1)
nµ1

µ
(3)
i = µ

(3)
i−1 + h(3)

µ , i = nµ1 + 1, nµ2 + 2, ..., nµ1 + nµ2 + nµ3 , µ
(3)
nµ1+nµ2

= µ
(2)
nµ1+nµ2

where nµs , s = 1, 2, 3 denote the number of points on each of the subgrid. The distribution of the

points in the ν variable is given by equation (40).

In the case of multiple grids the problem of interpolating function values along the intergrid

boundaries arises if a single discretization stencil is to be used for a given region. The usage of a

single stencil for all grid points in one region greatly simplifies the logic of the (MC)SOR scheme

and results in much better performance of the corresponding routines. This problem is solved

by explicitely constructing a set of Lagrange interpolation polynomials for a particular choice of

subgrids. A careful coding (in the form of matrix time vector operations) of the interpolation to
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transfer boundary conditions between the subgrids resulted in no loss of efficiency: the CPU time

needed to relax (in a (MC)SOR cycle) a single point does not depend on the number of subgrids

used [46].

The partial differential equations (Fock and Poisson equations) are discretized using an 8th

order central difference expression yielding in two dimensions 17-point cross-like formulae. The

resulting sparse system of linear equations for the values of orbitals and potentials at the grid

points are solved using the successive overrelaxation method (SOR) and its multicolour variant

(MCSOR) which is better suited for vector and parallel computers [35, 43, 61]. The use of the

high-order formulae lowers the density of grid points, necessary to obtain a solution of a given

accuracy. The (MC)SOR algorithm has proven to be both stable and efficient [42–46]. The MCSOR

routine (see below) contains Cray and Convex compiler directives forcing the vectorization of the

successive overrelaxation loop. On a Cray YMP computer the MCSOR routine is about 5 times

faster than the SOR one. Likewise the parallelization of the loop can be enforced on a shared

memory multi-processor systems like Cray YMP and SGI Power Challenge (a five-fold increase

in the performance of the multicolour successive overrelaxation scheme has been recorded on a 8

processor Power Challenge system).

4 DESCRIPTION OF THE CODE

4.1 Structure of the code

The large scale structure of the program is shown in Fig.1. The rectangles representing the func-

tional units of the program are linked by dashed lines with the first and second level routines

performing the corresponding tasks. Fig.2 is a flow chart of the self-consistent-field part of the

program with references to the most relevant routines.

In order to help the understanding of how the program works, a short description of all its most

important routines follows.

ASYMORB determines asymptotic values of a given orbital at the practical infinity.

ASYMPOT determines asymptotic (boundary) values of Coulomb and exchange potentials from

the multipole expansion.
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COULMOM determines the coefficients of the multipole expansion for all Coulomb potentials.

EXCHMOM determines the coefficients of the multipole expansion for all exchange potentials.

INIADDR determines the division of large working arrays that are either statically or dynamically

allocated in the main routine into various smaller arrays (e.g. those containing separate

orbitals or potentials) and initializes address arrays accordingly.

INIAORB initializes an array which is used by the ASYMORB routine to calculate boundary

values of a given orbital at the practical infinity.

INIFUN initializes orbitals and potentials (see INIHYD, PREPG94, INIGAUSS, RFDISK).

INIGAUSS molecular orbitals are initialized through the discretization of GAUSSIAN94 orbitals

reconstructed from the GAUSSIAN94 output (see PREPG94 for the details); Coulomb and

exchange potentials are initialized as in INIHYD.

INIHYD initializes molecular orbitals as linear combinations of hydrogenic functions on centres

A and B; in the case of HF or HFS calculations the Coulomb and exchange potentials are

approximated as a linear combination of Thomas-Fermi potentials at the two centres; if

method OED is chosen the potential functions are set to zero.

INISUPPL initializes a few supplementary arrays (see PREPFIX, PREPVAR, PREPDIFF, PREP-

MESH).

LAGRA calculates the off-diagonal Lagrange multipliers.

MCSOR performs one iteration of the multicolour successive overrelaxation scheme.

MOMEN determines the coefficients of the multipole expansion for Coulomb and exchange po-

tentials (see COULMOM and EXCHMOM).

NORM performs normalization of a given orbital.

ORBTAILS for each orbital this routine evaluates percentage of orbital values less than a given

threshold (its default value is 10−16), contained in circular segments of constant width of

R∞/10, centred at the bond centre.
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ORTHO performs the Schmidt orthonormalization of a given orbital.

OSHELL calculates the weights of the two-electron contributions to the restricted open shell

Hartree-Fock total energy expression.

PREPDIFF initializes arrays used for calculating first and second derivatives over µ and ν vari-

ables.

PREPFIX checks and adjusts the dimensions of the grid and initializes the common block arrays

with grid, orbital- and Fock-equation data.

PREPMESH establishes meshes for each (sub)grid and determines the coefficients of the interpo-

lation polynomials used by FILLi routines to secure transfer of the boundary values between

grids of different densities in the µ variable.

PREPSCF prepares the scf process (orthonormalization of orbitals, evaluation of Lagrange mul-

tipliers and multipole moment expansion coefficients).

PREPVAR initializes various arrays used to construct Poisson and Fock equations, initializes

arrays of the integration weights and the Jacobians for one- and two-electron integrals, ini-

tializes the array containing coefficients of the finite difference extrapolation formula used in

the SOR and MCSOR routines.

PRINTALL prints out the banner of the program and the information about the case under con-

sideration based on the input data (molecular system, internuclear separation, configuration,

grid, memory requirements, etc.).

RAYL computes the eigenvalues of the Fock equations as expectation values:

Ea =< ψa| − 1
2∇

2 + Vn + VC − V a
x |ψa >.

RELCOULi prepares the right-hand side of the Poisson equation for a given Coulomb potential

and performs a few SOR (if i = 1) or MCSOR (if i = 2) iterations.

RELEXCHi prepares the right-hand side of the Poisson equation for a given exchange potential

and performs a few SOR (if i = 1) or MCSOR (if i = 2) iterations.
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RELORBi evaluates the Fock potential for a given orbital, sets up the right-hand side of the

Poisson equation for a given orbital and performs a few SOR (if i = 1) or MCSOR (if i = 2)

iterations.

RFDISK reads in molecular orbitals, Coulomb and exchange potentials together with some other

data such as Lagrange multipliers, multipole moment expansion coefficients etc. from disk

(binary) files.

RINPUTD reads in and echoes input data.

SOR performs one iteration of the successive overrelaxation scheme.

SUMMARY saves the results of the calculations, evaluates and prints the final total energy; it

also prints out orbital energies, normalization factors and reports on spatial behaviour of the

tails of orbitals.

TOTEN evaluates the total energy.

WTDISK writes molecular orbitals, Coulomb and exchange potentials together with some other

data such as Lagrange multiplies, multipole moment expansion coefficients etc. in binary

format to disk files.

4.2 Language, unusual features and limitations of the program

Except for two routines the program has been written in Fortran 77. Fortran 90 can also be

used for the compilation but no specific features of this language are used except for the dynamic

memory allocation routine (see make sources.2dhf and main 2dhf.f files for more details). The main

memory can also be dynamically allocated using a C routine. The program uses two C routines

for recording the time and date of run (GETDATETIME) and CPU usage (GETUSEDCPU)

which are called by the PRINTALL and TTIME routines, respectively. Several BLAS (Basic Linear

Algebra System) routines are emulated by the program. If possible they should be replaced by their

optimized equivalents (the makefile file contains hints how to make the program with the desired

references). Double precision arithmetics is used throughout the program. real*16 variables are

only needed in a few routines collected in the separate file quadp.f.
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The present version of the program is restricted to 60 orbitals. The maximum number of

subgrids (≤ 3) and the maximum grid size are determined by the user before the executable of the

program is made.

4.3 Command and data file structure

The command and data file structure is described in a separate document (User’s Guide) where

examples of sample data cards are also included. The latest release of the program together with

its description, User’s Guide, detailed inputs and outputs are available through the WWW server

at the Center for Scientific Computing (CSC) using the internet WWW address http://staff.csc.fi/-

˜laaksone/Num2d.html.
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[26] D. Sundholm, J. Olsen, P.-Å. Malmqvist, and B.O. Roos, in Numerical Determination of the

Electronic Structure of Atoms, Diatomic and Polyatomic Molecules, edited by M. Defranceschi

and J. Delhalle, NATO ASI Series C271 (1989) p. 329.

[27] D. Sundholm and J. Olsen, in Proc. 13th. IMACS World Congress on Computation and Applied

Mathematics, edited by R. Vichnevetsky and J.J.H. Miller, Criterion, Dublin, (1991) 861.
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