
The Io Programming Language

1.0
Copyright 2005 Steve Dekorte

Usage of the works is permitted provided that this
instrument is retained with the works, so that any entity

that uses the works is notified of this instrument.

DISCLAIMER: THE WORKS ARE WITHOUT WARRANTY.

Contents

Introduction
Perspective

Getting Started
Downloading
Installing
Running Scripts
Interactive Mode

Syntax
Expressions
Messages
Operators
Assignment
Numbers
Strings
Comments

Objects
Overview
Prototypes
Inheritance
Methods
Blocks
Forward
Resend
Super
Introspection

Control Flow
true, false and nil
Comparison
Conditions
Loops

Concurrency
Coroutines
Scheduler
Actors
Yield
Pause and Resume
Futures

Exceptions
Raise
Try and Catch
Pass
Custom Exceptions

Primitives
Object
Compiler
File
Directory
Message
WeakLink
Debugger

References

2

Introduction
Simplicity is the essence of happiness.
- Cedric Bledsoe

Io is a dyanmic prototype-based programming language. The ideas in Io are mostly inspired
by Smalltalk[1] (all values are objects), Self[2] (prototype-based), NewtonScript[3]
(differential inheritance), Act1[4] (actors and futures for concurrency), LISP[5] (code is a
runtime inspectable / modifiable tree) and Lua[6] (small, embeddable).

Perspective

Why Another Language?

To explore the idea that conceptual simplification leads to greater flexibility and power.

Design Goals

Io’s goal is to be a language that is:

• easy to use
• conceptually simple and consistent
• easily embedded

• useful
• multi-platform
• capable of desktop, server and embedded scripting applications

Design Guidelines

It Just Works

You don’t need to be a system administrator to install Io or need to set environment variables
to use it. Io applications don’t require installers and are not path dependent. The goal is that
much as possible, things should "just work" out of the box.

Bindings Are Good

Many language communities view code outside the language as something to be avoided. Io
embraces the idea of using C bindings for performance sensitive features (graphics, sound,
encryption, array processing, etc) while maintaining multi-platform support by encouraging
the use of platform independent or multi-platform C libraries (OpenGL, PortAudio, etc).

In order to provide a common base on which to build applications, the Io project also
maintains official bindings for networking, graphics, sound, etc. that are included in the full
distribution.

Objects are Good

When possible, bindings should provide an object oriented interface instead of mimicking
low-level C APIs. Also, concrete design is favored over the abstract. Dozens of classes should
not be required to do a simple operations.

Getting Started
Downloading
Io distributions are available at:

http://www.iolanguage.com

Installing

To build, from the top folder, run:

 make

Binaries will be placed in the binaries subfolder. To install:

 make install

and to run the unit tests:

 make test

Running Scripts

An example of running a script:

 ./binaries/io vm/_sampleCode/HelloWorld.io

There is no main() function or object that gets executed first in Io. Scripts are executed when
compiled.

Interactive Mode

Running:

 ./binaries/io

will open the Io interpreter prompt.

You can evaluate code by entering it directly. Example:

 Io> "Hello world!" println
 ==> Hello world!

Statements are evaluated in the context of the Lobby:

 Io> print
 [printout of lobby contents]

doFile and doString

A script can be run from the interactive mode using the doFile method:

4

doFile(“scriptName.io”)

The evaluation context of doFile is the receiver, which in this case would be the lobby. To
evaluate the script in the context of some other object, simply send the doFile message to it:

someObject doFile(“scriptName.io”)

The doString method can be used to evaluate a string:

Io> doString(“1+1”)
==> 2

And to evaluate a string in the context of a particular object:

someObject doString(“1 + 1”)

Command Line Arguments

Example of printing out command line arguments:

 args foreach(k, v, write("'", v, "'\n"))

launchPath

The Lobby "launchPath" slot is set to the location on the initial source file that is executed.

5

Syntax
Less is more.
- Ludwig Mies van der Rohe

Expressions

Io has no keywords or statements. Everything is an expression composed entirely of
messages, each of which is a runtime accessible object. The informal BNF description:

exp
message
arguments
symbol
terminator

::= { message | terminator }
::= symbol [arguments]
::= “(“ [exp [{ “,” exp }]] “)”
::= identifier | number | string
::= “\n” | “;”

For performance reasons, String and Number literal messages have their results cached in
their message objects.

Messages

Message arguments are passed as expressions and evaluated by the receiver. Selective
evaluation of arguments can be used to implement control flow. Examples:

for(i, 1, 10, i println)
a := if(b == 0, c + 1, d)

In the above code, “for” and “if” are just normal messages, not special forms or keywords.

Likewise, dynamic evaluation can be used with enumeration without the need to wrap the
expression in a block. Examples:

people select(person, person age < 30)
names := people map(person, person name)

There is also some syntax sugar for operators (including assignment), which are handled by
an Io macro executed on the expression after it is compiled into a message tree. Some sample
source code:

Account := Object clone
Account balance := 0
Account deposit := method(amount,

 balance = balance + amount
)

account := Account clone
account deposit(10.00)
account balance println

Like Self[2], Io’s syntax does not distinguish between accessing a slot containing a method
from one containing a variable.

6

Operators
An operator is just a message whose name contains no alphanumeric characters (other than
":", "_", '"' or ".") or is one of the following words: or, and, return. Example:

1 + 2

This just gets compiled into the normal message:

1 +(2)

Which is the form you can use if you need to do grouping:

1 +(2 * 4)

Standard operators follow C's precedence order, so:

1 + 2 * 3 + 4

Is parsed as:

1 +(2 *(3)) +(4)

User defined operators (that don't have a standard operator name) are performed left to right.

Assignment

Io has two assignment messages, “:=” and “=”.

a := 1

which compiles to:

setSlot(“a”, 1)

which creates the slot in the current context. And:

a = 1

which compiles to:

updateSlot(“a”, 1)

which sets the slot if it is found in the lookup path or raises an exception otherwise. By
overloading updateSlot and forward in the Locals prototype, self is made implicit in methods.

Numbers
The following are valid number formats:

123
123.456
0.456
.456
123e-4
123e4
123.456e-7
123.456e2

7

Hex numbers are also supported (in any casing):

0x0
0x0F
0XeE

Strings
Strings can be defined surrounded by a single set of double quotes with escaped quotes (and
other escape characters) within.

s := "this is a \"test\".\nThis is only a test."

Or for strings with non-escaped characters and/or spanning many lines, triple quotes can be
used.

s := """this is a "test".
This is only a test."""

Comments
Comments of the //, /**/ and # style are supported. Examples:

a := b // add a comment to a line

/* comment out a group
a := 1
b := 2
*/

The "#" style is useful for unix scripts:

#!/usr/local/bin/io

That's it! You now know everything there is to know about Io's syntax. Control flow, objects,
methods, exceptions are expressed with the syntax and semantics described above.

8

Objects
In all other languages we've considered [Fortran, Algol60, Lisp, APL, Cobol, Pascal], a
program consists of passive data-objects on the one hand and the executable program that
manipulates these passive objects on the other. Object-oriented programs replace this
bipartite structure with a homogeneous one: they consist of a set of data systems, each of
which is capable of operating on itself. - David Gelernter and Suresh J Jag

Overview

Io’s guiding design principle is simplicity and power through conceptual unification.

concept
prototypes
messages
blocks with assignable scope

unifies
objects, classes, namespaces, locals functions,
operators, calls, assignment, variable accesses
methods, closures, functions

In Io, everything is an object (including the locals storage of a block and the namespace
itself) and all actions are messages (including assignment). Objects are composed of a list of
key/value pairs called slots, and an internal list of objects from which it inherits called protos.
A slot’s key is a symbol (a unique immutable sequence) and it’s value can be any type of
object.

Prototypes
New objects are made by cloning existing ones. A clone is an empty object that has the parent
in it’s list of protos. A new instance’s init slot will be activated which gives the object a
chance to initialize itself. Like NewtonScript[3], slots in Io are create-on-write.

me := Person clone

To add an instance variable or method, simply set it:

myDog name := "rover"
myDog sit := method("I'm sitting\n" print)

When an object is cloned, its "init" slot will be called if it has one.

Inheritance
When an object receives a message it looks for a matching slot, if not found, the lookup
continues depth first recursively in its protos. Lookup loops are detected (at runtime) and
avoided. If the matching slot contains an activatable object, such as a Block or CFunction, it
is activated, if it contains any other type of value it returns the value. Io has no globals and
the root object in the Io namespace is called the Lobby.

Since there are no classes, there's no difference between a subclass and an instance. Here’s an
example of creating a the equivalent of a subclass:

Io> Dog := Object clone
==> Object_0x4a7c0

9

The above code sets the Lobby slot "Dog" to a clone of the Object object. Notice it only
contains a protos list contains a reference to Object. Dog is now essentially a subclass of
Object. Instance variables and methods are inherited from the proto. If a slot is set, it creates a
new slot in our object instead of changing the proto:

 Io> Dog color := "red"
 Io> Dog
 ==> Object_0x4a7c0:
 color := "red"

Multiple Inheritance

You can add any number of protos to an object's protos list. When responding to a message,
the lookup mechanism does a depth first search of the proto chain.Locals

Methods
A method is an anonymous function which, when called, creates an object to store it's locals
and sets the local’s proto pointer and it’s self slot to the target of the message. The Object
method method() can be used to create methods. Example:

method((2 + 2) print)

An example of using a method in an object:

Dog := Object clone
Dog bark := method("woof!" print)

The above code creates a new "subclass" of object named Dog and adds a bark slot
containing a block that prints "woof!". Example of calling this method:

Dog bark

The default return value of a block is the result of the last expression.

Arguments

Methods can also be defined to take arguments. Example:

add := method(a, b, a + b)

The general form is:

method(<arg name 0>, <arg name 1>, ..., <do message>)

Blocks
A block is the same as a method except it is lexically scoped. That is, variable lookups
continue in the context of where the block was created instead of the target of the message
which activated the block. A block can be created using the Object method block(). Example
of creating a block:

b := block(a, a + b)

Blocks vs. Methods

This is sometimes a source of confusion so it's worth explaining in detail. Both methods and
blocks create an object to hold their locals when they are called. The difference is what the

10

"proto" and "self" slots of that locals object are set to. In a method, those slots are set to the
target of the message. In a block, they're set to the locals object where the block was created.
So a failed variable lookup in a block's locals continue in the locals where it was created. And
a failed variable lookup in a method's locals continue in the object to which the message that
activated it was sent.

Call and Self Slots

When a locals object is created, it’s self slot is set (to the target of the message, in the case of
a method, or to the creation context, in the case of a block) and it’s call slot is set to an object
containing the following slots:

slot
sender
message
activated
slotContext
target

references
locals object of caller
message used to call this method/block
the activated method/block
context in which slot was found
current object

Variable Arguments

The “call message” slot in locals can be used to access the unevaluated argument messages.
Example of implementing if() within Io:

if := method(

 (call sender doMessage(call message argAt(0))) ifTrue(

 call sender doMessage(call message argAt(1))) ifFalse(

 call sender doMessage(call message argAt(2)))
)

myif(foo == bar, write("true\n"), write("false\n"))

The doMessage() method evaluates the argument in the context of the receiver.

A shorter way to express this is to use the evalArgAt() method on the call object:

if := method(

 call evalArgAt(0) ifTrue(

 call evalArgAt(1)) ifFalse(

 call evalArgAt(2))
)

myif(foo == bar, write("true\n"), write("false\n"))

Forward
If an object doesn't respond to a message, it will invoke its "forward" method if it has one.
Here’s an example of how to print the information related lookup that failed:

MyObject forward := method(

 write("sender = ", call sender, "\n")

 write("message name = ", call message name, "\n")

 args := call message argsEvaluatedIn(call sender)

 args foreach(i, v, write("arg", i, " = ", v, "\n"))
)

11

Resend
Sends the current message to the receiver's proto with the context of self. Example:

A := Object clone
A m := method(write("in A\n"))
B := A clone
B m := method(write("in B\n"); resend)
B m

will print:

in B
in A

For sending other messages to the receiver's proto, super is used.

Super
Sometimes it's necessary to send a message directly to a proto. Example:

Dog := Object clone
Dog bark := method(writeln("woof!"))

fido := Dog clone
fido bark := method(

 writeln("ruf!")

 super(bark)
)

Both resend and super are implemented in Io.

Introspection
getSlot

The "getSlot" method can be used to get the value of a block in a slot without activating it:

myMethod := Dog getSlot("bark")

Above, we've set the locals object’s "myMethod" slot to the bark method. It's important to
remember that if you then want use the myMethod without activating it, you'll need to use the
getSlot method:

otherObject newMethod := getSlot("myMethod")

Here, the target of the getSlot method is the locals object.

code

The arguments and expressions of methods are open to introspection. A useful convenience
method is “code”, which returns a string representation of the source code of the method in a
normalized form.

Io> method(a, a * 2) code
==> “method(a, a *(2))”

12

13

Control Flow
true, false and nil

Io has predefined singletons for true, false and nil. true and false are used for boolean truth
values and nil is typically used to indicate an unset or missing or unavailable value.

Comparison
The standard comparison operations (==, !=, >=, <=, >, <) return either the true or false.

Io> 1 < 2
==> true

Conditions
if

The Lobby contains the condition and loop methods. A condition looks like:

if(<condition>, <do message>, <else do message>)

Example:

if(a == 10, "a is 10" print)

The else argument is optional. The condition is considered false if the condition expression
evaluates to false or nil, and is considered true otherwise.
The result of the evaluated message is returned, so:

if(y < 10, x := y, x := 0)

is the same as:

x := if(y < 10, y, 0)

Conditions can also be used in this form (though not as efficiently):

if(y < 10) then(x := y) else(x := 2)

Else-if is supported:

if(y < 10) then(x := y) elseif(y == 11) then(x := 0) else(x := 2)

As well as Smalltalk style ifTrue, ifFalse, ifNil and ifNonNil methods:

(y < 10) ifTrue(x := y) ifFalse(x := 2)

Notice that the condition expression must have parenthesis surrounding it.

14

Loops
loop

The loop method can be used for “infinite” loops:

loop(“foo” println)

while

Like conditions, loops are just messages. while() takes the arguments:

while(<condition>, <do message>)

Example:

a := 1
while(a < 10,

 a print

 a = a + 1
)

for

for() takes the arguments:

for(<counter>, <start>, <end>, <do message>)

The start and end messages are only evaluated once, when the loop starts.

Example:

for(a, 0, 10,

 a print
)

To reverse the order of the loop, just reverse the start and end values:

for(a, 10, 0, a print)

Note: the first value will be the first value of the loop variable and the last will be the last
value on the final pass through the loop. So a loop of 1 to 10 will loop 10 times and a loop of
0 to 10 will loop 11 times.

Example of using a block in a loop:

test := method(v, v print)
for(i, 1, 10, test(i))

repeat

The Number repeat method is simpler and more efficient when a counter isn’t needed.

3 repeat(“foo” print)
==> foofoofoo

15

break and continue

The flow control operations break and continue are supported in loops. For example:

for(i, 1, 10,

 if(i == 3, continue)

 if(i == 7, break)

 i print
)

Would print:

12456

return

Any part of a block can return immediately using the return method. Example:

Io> test := method(123 print; return "abc"; 456 print)
Io> test
123
==> abc

16

Concurrency
Coroutines

Io uses coroutines (user level cooperative threads), instead of preemptive OS level threads to
implement currency. This avoids the substantial costs (memory, system calls, locking,
caching issues, etc) associated with native threads and allows Io to support a very high level
of concurrency with thousands of active threads.

Scheduler

The Scheduler object is responsible for resuming coroutines that are yielding. The current
scheduling system uses a simple first-in-last-out policy with no priorities.

Actors
An actor is an object with it's own thread (in our case, it’s own coroutine) which it uses to
process it's queue of asynchronous messages. Any object in Io can be sent an asynchronous
message by placing a @ or @@ before the message name. (think of the "a" in @ as standing
for "asynchronous")

Example:

 result := self foo

// synchronous message

 futureResult := self @foo // async message, immediately return
a Future

 self @@foo // async message, immediately return nil

When an object receives an asynchronous message it puts the message in its queue and, if it
doesn't already have one, starts a coroutine to process the messages in its queue. Queued
messages are processed sequentially in a first-in-first-out order. Control can be yielded to
other coroutines by calling "yield". Example:

 obj1 := Object clone
 obj1 test := method(for(n, 1, 3, n print; yield))
 obj2 := obj1 clone
 obj1 @@test; obj2 @@test
 while(Scheduler activeActorCount > 1, yield)

This would print "112233".

Here's a more real world example:

 HttpServer handleRequest := method(aSocket,
 HttpRequestHandler clone @@handleRequest(aSocket)
)

17

Yield
An object will automatically yield between processing each of its asynchronous messages.
The yield method only needs to be called if a yield is required during an asynchronous
message execution.

Pause and Resume
It's also possible to pause and resume an object. See the concurrency methods of the Object
primitive for details and related methods.

Futures
Io's futures are transparent. That is, when the result is ready, they become the result. If a
message is sent to a future (besides the two methods it implements), it waits until it turns into
the result before processing the message. Transparent futures are powerful because they allow
programs minimize blocking while also freeing the programmer from managing the fine
details of synchronization.

Auto Deadlock Detection

An advantage of using futures is that when a future requires a wait, it will check to see if
pausing to wait for the result would cause a deadlock and if so, avoid the deadlock and raise
an exception. It performs this check by traversing the list of connected futures.

The @ and @@ Operators

The @ or @@ before an asynchronous message is just a normal operator message. So:

 self @test

Gets parsed as(and can be written as):

 self @(test)

18

Exceptions
Raise
An exception can be raised by calling raise() on an exception proto.

exceptionProto raise(<description>)

There are three predefined children of the Exception proto: Error, Warning and Notification.
Examples:

Exception raise("generic foo exception")
Warning raise("No defaults found, creating them")
Error raise("Not enough memory")

Try and Catch
To catch an exception, the try() method of the Object proto is used. try() will catch any
exceptions that occur within it and return the caught exception or nil if no exception is
caught.

e := try(<doMessage>)

To catch a particular exception, the Exception catch() method can be used. Example:

e := try(
 // ...
)

e catch(Exception,
 writeln(e coroutine backtraceString)
)

The first argument to catch indicates which types of exceptions will be caught. catch() returns
the exception if it doesn't match and nil if it does.

Pass
To re-raise an exception caught by try(), use the pass method. This is useful to pass the
exception up to the next outer exception handler, usually after all catches failed to match the
type of the current exception:

e := try(

 // ...
)

e catch(Error,

 // ...
) catch(Exception,

 // ...
) pass

19

Custom Exceptions
Custom exception types can be implemented by simply cloning an existing Exception type:

 MyErrorType := Error clone

Primitives
This document is not meant as a reference manual, but an overview of the base primitives and
an bindings is provided here to give the user a feel for what is available and where to look in
the reference documentation for further details.

Primitives

Primitives are objects built into Io whose methods are implemented in C and (except for the
Object primitive) store some hidden data in their instances. For example, the Number
primitive has a double precision floating point number as it's hidden data. All Io primitives
inherit from the Object prototype and are mutable. That is, their methods can be changed. The
reference docs contain more info on primitives.

Object

The ? Operator

Sometimes it's desirable to conditionally call a method only if it exists (to avoid raising an
exception). Example:

if(obj getSlot("foo"), obj foo)

Putting a "?" before a message has the same effect:

obj ?foo

Compiler

File

Directory

Message

WeakLink

Debugger

20

21

References

1

2

3

4

5

6

Goldberg, A et al.
Smalltalk-80: The Language and Its Implementation
Addison-Wesley, 1983

Ungar, D and Smith,
RB. Self: The Power of Simplicity
OOPSLA, 1987

Smith, W.
Class-based NewtonScript Programming
PIE Developers magazine, Jan 1994

Lieberman
H. Concurrent Object-Oriented Programming in Act 1
MIT AI Lab, 1987

McCarthy, J et al.
LISP I programmer's manual
MIT Press, 1960

Ierusalimschy, R, et al.

Lua: an extensible extension language
John Wiley & Sons, 1996

22

