
Safe C String Library v1.0.3 (January 30, 2005)
© Copyright 2003-2005 Matt Messier and John Viega

1. Introduction
The goal of the SafeStr library is to provide a rich string-handling library for C that has safe semantics yet
interoperates with legacy library code in a straightforward manner. Additionally, porting code that uses
standard C string handling should be straightforward. The library should work on all modern Unix-like
platforms, as well as any 32-bit Microsoft Windows OS.

The overt security goals of the library are as follows:

1) Buffer overflows should not be possible when using the API.

2) Format string problems should be impossible when using the API.

3) The API should be capable of tracking whether strings are "trusted", á la Perl's taint mode.

The API is meant to provide rich functionality and be easy to use, all the while improving security.

To achieve interoperability with legacy code where you do not have the source or are unwilling to change
it, the safestr_t type we define is completely compatible with type char *. That is, you can cast
safestr_t structures to char *, and then they will act as a char * in every way. Without the
explicit cast, the compiler will generate either a warning or an error (depending on how strict your compiler
is).

The way safestr_t works under the hood is by keeping accounting information such as the actual and
allocated length in memory directly preceding the memory referenced by the pointer. Therefore, if you cast
to a char *, then pass the result to a function that modifies the char *, you are likely to thwart
safestr_t length accounting.

The rule of thumb is that it's okay to cast to char * for read-only purposes. You should never cast for
writing, because you risk buffer overflows. If you do cast for writing, do not subsequently use the data
structure as a safestr_t, until it's time to free that structure (you cannot call free() on the pointer
directly).

For example, the following code is safe, albeit rather pointless:

char c_buffer[13];
safestr_t str;

str = safestr_create("hello, world", 0);
strcpy(c_buffer, (char *)str);

However, note that there's still no bounds checking on the strcpy() operation. When possible, you
should use SafeStr's safestr_copy() or safestr_ncopy() routines, which are analogous to
strcpy() and strncpy().

On the other hand, the following code is not safe, particularly because it modifies the contents of a
safestr_t structure outside of the Safe C String Library's API:

safestr_t str;

str = safestr_alloc(12, 0);
strcpy((char *)str, "hello, world");

Note that, if you write functions that take a safestr_t and possibly perform multiple operations on a
safestr_t, you have to do some extra magic to handle temporary strings. See below for more
information.

2. Temporary Strings
Sometimes it's convenient to use string constants as an argument to a function. For exactly that purpose the
SafeStr API provides a notion of temporary strings, which are strings designed to survive a single
invocation to a SafeStr library call so that you don't need to worry about memory management.

For example, you can do the following:

safestr_t s = safestr_replace(SAFESTR_TEMP("This is a test"),
 SAFESTR_TEMP(" "), SAFESTR_TEMP("."));

SAFESTR_TEMP() is a macro that calls safestr_create() with the SAFESTR_TEMPORARY flag
turned on. Strings created in this manner are also immutable (see below).

You may wish to label temporary strings as "trusted" (see the discussion on trust management below). For
those cases, there's a SAFESTR_TEMP_TRUSTED() macro that otherwise works identically to
SAFESTR_TEMP().

A temporary safestr_t string is deallocated automatically after a call to any Safe C String Library API
function with the exception of safestr_reference(), which will increment the safestr_t
structure's reference count. If a temporary string's reference count is incremented, it will then survive any
number of API calls until its reference count is sufficiently decremented that it will be destroyed. The API
functions safestr_release() and safestr_free() may be used interchangeably to decrement a
safestr_t structure's reference count.

For example, if you are writing a function that accepts a safestr_t structure as an argument (may be
temporary, but also may not be) and will perform multiple operations on the string, you should increment
the safestr_t structure's reference count before operating on the string, and decrement it again when
you are finished. This will ensure that the string is not prematurely destroyed if a temporary string is
passed in to your function.

void some_function(safestr_t *base, safestr_t extra)
{
 safestr_reference(extra);
 if (safestr_length(*base) + safestr_length(extra) < 17)
 safestr_append(base, extra);
 safestr_release(extra);
}

In this example, if the calls to safestr_reference() and safestr_release() were to be
omitted, and extra was a temporary string, the call to safestr_length() would cause the string to be
destroyed. As a result, the safestr_append() call would then be operating on an invalid
safestr_t if the combined length of base and extra was less than 17.

3. Immutable Strings
This library can also prevent you from accidentally using the SafeStr API to overwrite data that shouldn't
be changed. That is, the library has a notion of immutable strings. You can set the immutable flag when
initializing a string from a char *, or you may call the following at any time:

void safestr_makereadonly(safestr_t);

Note that you can still directly modify the memory. The library can only prevent writes initiated through
SafeStr functions. If you'd like to take an immutable string, and make it writable, use the following:

void safestr_makewritable(safestr_t);

You can check to see if a string is immutable with the following function:

int safestr_isreadonly(safestr_t);

4. Trust Management
The Safe C String API can help facilitate tracking what data has been checked for potentially malicious
input. Strings may be "trusted" or "untrusted". When modifying a string, the trusted property of that string
will be set to "untrusted" if any of the operands are untrusted. When creating a new string from operations
on other strings, the new string will only be marked as trusted if all the strings that might influence its value
are also trusted.

If you circumvent the Safe C String API, the trust property will not properly propagate.

The Safe C String API does not currently provide any routines that actually check the trusted flag. We
expect that this will change in future versions. However, you may explicitly check the flag yourself.

For example:

#include <stdlib.h>
#include <stdio.h>
#include "strsafe.h"

int safer_system(safestr_t cmd)
{
 if (!safestr_istrusted(cmd))
 {
 fprintf(stderr,
 "Untrusted data flowed into safer_system!\n");
 abort();
 }
 return system((char *)cmd);
}

Note that you can explicitly set or unset the trusted flag with the calls safestr_trust() and
safestr_untrust() (described below).

5. Resizable Strings
If you use the recommended API for initializing safestr_t structures, you'll get strings that will
reallocate themselves if an operation would require that string to grow in size. As a consequence, any
function that might cause a safestr_t to expand takes a pointer to a safestr_t, because, as
implemented, reallocating will always move the memory.

6. Error Handling
Error handling is done using XXL (http://www.zork.org/xxl/), which is a library that provides both
exceptions and asset management for C and C++. SafeStr uses both features provided by XXL extensively.
Where previous releases of SafeStr would output a message to stderr and call abort(), exceptions are
now thrown instead. It is expected that the caller will handle the exceptions appropriately (XXL's default
action if there is no exception handler when an exception is thrown is to output a message to stderr and
call abort()).

Under normal circumstances, SafeStr should rarely, if ever, throw any exceptions. If an exception is
thrown, it is generally because the programmer has made some error in using the API. The API reference
that is provided in this document lists the exceptions that may be thrown by each function.

7. Notes
• Currently, this library does not handle multi-byte characters natively.

• While strings are always stored with a trailing NUL, NUL characters within the string do not
delimit the end of a string. That is, you can put arbitrary binary data into a safestr_t structure.
However, if you pass such strings to a traditional C API, they will treat the string as shorter than

its actual length. This can lead to security problems. Therefore, we recommend you avoid
putting NUL characters in safestr_t structures, unless you are exceedingly careful.

8. The API
The remaining portion of this document describes the Safe String Library API in its entirety. For each
function, its signature, a brief description of what it does, the meaning of each argument, the exceptions it
may throw, and a description of the function is provided.

8.1 safestr_alloc()

Name
safestr_alloc - Allocates a new safestr_t structure.

Synopsis
safestr_t safestr_alloc(u_int32_t length, u_int32_t flags);

Parameters
u_int32_t length This is the size of the string to allocate in bytes, and should not include a

NUL byte as with C strings.

u_int32_t flags This is a bit mask of flags that control the behavior of the string being
allocated. Any of the following flags are valid:

SAFESTR_TEMPORARY
SAFESTR_IMMUTABLE
SAFESTR_TRUSTED
SAFESTR_ASSET_PERMANENT
SAFESTR_ASSET_TEMPORARY
SAFESTR_ASSET_PROMOTE
SAFESTR_ASSET_DEMOTE

Exceptions
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_STRING_TOO_LONG

Description
A safestr_t structure is always NUL terminated as C strings are; however, all lengths as specified
to or received from the Safe C String Library API never include the NUL terminating byte. The API
automatically accounts for this special byte internally. That is, when you pass in the length parameter,
you're specifying how much space you'd initially like to be available for storing the actual string itself.

If a string is designated as temporary, the returned string will survive exactly one call to any Safe C
String Library API function. The single exception to this rule is safestr_reference(), which
will increment the string's reference count, thus allowing it to then survive any number of API calls
until its reference count is decremented by a call to either safestr_free() or
safestr_release().

If a string is designated as immutable, the API in any way cannot modify the string. This would
include appending to, inserting into, and so on.

The safestr_t structure that is returned from safestr_alloc() will have an initial length of
zero, but space is sufficient space is allocated to hold the requested length. If you know how much

space you will need for a string, it is best to allocate the space up front to reduce the need for
reallocations later.

8.2 safestr_asprintf()

Name
safestr_asprintf - Writes a formatted string in to newly allocated string.

Synopsis
u_int32_t safestr_asprintf(safestr_t *s, safestr_t fmt, ...);

Parameters
safestr_t *s This is the string into which the formatted output will be written. Do not

allocate this string first. The string will be dynamically allocated by
safestr_asprintf().

safestr_t fmt This is the format string to use.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C99 asprintf() function. The formatting
string and additional parameters are the same as with asprintf(), except that "%n" is not allowed.
Additionally, the "%s" arguments must all map to valid safestr_t structures, the result will be
written to a safestr_t structure, and the string will be dynamically allocated to hold the formatted
string. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
string.

8.3 safestr_charat()

Name
safestr_charat - Retrieves the character at a specific position within a string.

Synopsis
char safestr_charat(safestr_t s, u_int32_t pos);

Parameters
safestr_t s This is the string from which the character is to be retrieved.

u_int32_t pos This is the zero-based position from which the character is to be retrieved.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INDEX_OUT_OF_RANGE
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will return the character at the specified position in a safestr_t structure. Bounds
checking is performed on the specified index position to ensure that it is valid. If it is not valid, an
XXL exception will be thrown; otherwise, the character at the specified position will be returned.

8.4 safestr_clone()

Name
safestr_clone - Creates a new safestr_t structure that has the same contents as the specified
string.

Synopsis
safestr_t safestr_clone(safestr_t s, u_int32_t flags);

Parameters
safestr_t s This is the string that is to be cloned.

u_int32_t flags This is a bit mask of flags that control the behavior of the string being
created. Flags are not inherited on cloning, with the exception of the
SAFESTR_TRUSTED flag. Any of the following flags are valid:

SAFESTR_TEMPORARY
SAFESTR_IMMUTABLE
SAFESTR_TRUSTED
SAFESTR_ASSET_PERMANENT
SAFESTR_ASSET_TEMPORARY
SAFESTR_ASSET_PROMOTE
SAFESTR_ASSET_DEMOTE

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
If a string is designated as temporary, the returned string will survive exactly one call to any Safe C
String Library API function. The single exception to this rule is safestr_reference(), which
will increment the string's reference count, thus allowing it to then survive any number of API calls
until its reference count is decremented by a call to either safestr_free() or
safestr_release().

If a string is designated as immutable, the API in any way cannot modify the string. This would
include appending to, inserting into, and so on.

The safestr_t structure that is returned from safestr_clone() will initially have the same
contents as the cloned string, though the flags may differ.

8.5 safestr_compare()

Name
safestr_compare - Lexically compares the contents of two safestr_t structures.

Synopsis
int safestr_compare(safestr_t s1, safestr_t s2, u_int32_t flags,
 ...);

Parameters
safestr_t s1 This is the first safestr_t structure for comparison.

safestr_t s2 This is the second safestr_t structure for comparison.

u_int32_t flags This is a bit mask of flags that control the behavior of the comparison. Any
of the following flags are valid:

SAFESTR_COMPARE_NOCASE
SAFESTR_COMPARE_LIMIT

Convenience Macros
1. safestr_ncompare(safestr_t s1, safestr_t s2, u_int32_t nbytes)

Expands to:

safestr_compare(s1, s2, SAFESTR_COMPARE_LIMIT, nbytes)

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is the rough equivalent of the strcmp(), strncmp(), strcasecmp(), and
strncasecmp() functions for C strings. Strings are compared lexically without any consideration
for collation.

If SAFESTR_COMPARE_NOCASE is specified as a flag, the comparison will be performed case
insensitively. The default behavior is to compare the two strings case sensitively.

If SAFESTR_COMPARE_LIMIT is specified as a flag, an additional parameter is required that
specifies the number of characters to consider in the comparison.

The return will be negative if s1 is compares lexically less than s2, positive if s1 compares lexically
greater than s2, or zero if s1 and s2 are equal.

8.6 safestr_concatenate()

Name
safestr_concatenate - Combines two safestr_t structures.

Synopsis
void safestr_concatenate(safestr_t *dst, safestr_t src,
 u_int32_t flags, ...);

Parameters
safestr_t *dst This is the first string to be combined. The second string will be appended

to this string.

safestr_t src This is the second string to be combined. This string will be appended to
the first string.

u_int32_t flags This is a bit mask of flags that control the behavior of the combination.
Any of the following flags are valid:

SAFESTR_COPY_LIMIT

Convenience Macros
1. safestr_append(safestr_t *dst, safestr_t src)

Expands to:

safestr_concatenate(dst, src, 0)

2. safestr_nappend(safestr_t *dst, safestr_t src, u_int32_t nbytes)

Expands to:

safestr_concatenate(dst, src, SAFESTR_COPY_LIMIT, nbytes)

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will combine the two specified strings together, and place the result in the first string.
The destination safestr_t structure may need to be grown, thus its address may change, hence the
requirement for a pointer to a safestr_t structure.

If SAFESTR_COPY_LIMIT is specified as a flag, an additional parameter is required that specifies
the maximum number of characters that the result can be.

8.7 safestr_convert()

Name
safestr_convert - Converts a SafeStr string to upper, lower, or title case.

Synopsis
Void safestr_convert(safestr_t str, u_int32_t flags);

Parameters
safestr_t str This is the SafeStr string to have its case converted.

u_int32_t flags This is the set of flags to use for creating each safestr_t in the resulting
array of SafeStr strings.

SAFESTR_CONVERT_UPPERCASE
SAFESTR_CONVERT_LOWERCASE
SAFESTR_CONVERT_TITLECASE

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function converts the contents of a SafeStr string to uppercase, lowercase, or titlecase. One of the
three flags (SAFESTR_CONVERT_UPPERCASE, SAFESTR_CONVERT_LOWERCASE, or
SAFESTR_CONVERT_TITLECASE) must be specified. They are mutually exclusive, and if more
than one is specified (combined via bitwise OR), uppercase will take precedence, followed by
lowercase.

The uppercase and lowercase conversions will convert all alphabetical characters to the specified case.
The titlecase conversion will capitalize the first letter of each word, and convert other letters to
lowercase. A special case for “Mc” will capitalize the letter following the “c”. Any non-alphabetic
character will behave as a word separator.

8.8 safestr_convertarray()

Name
safestr_convertarray - Converts an array of C strings into an array of SafeStr strings.

Synopsis
safestr_t *safestr_convertarray(char **arr, u_int32_t flags);

Parameters
char **arr This is the array of C strings to be converted into SafeStr strings.

u_int32_t flags This is the set of flags to use for creating each safestr_t in the resulting
array of SafeStr strings.

Exceptions
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_STRING_TOO_LONG

Description
This function converts an array of C strings into an array of SafeStr strings using
safestr_create(). For each element in the original array, safestr_create() is called with
the specified flags, and the resulting safestr_t structure is placed in the new array at the

corresponding index position. The original array must be terminated with a NULL entry, and the
resulting array will also be terminated with a NULL entry.

This function is particularly useful for converting argv or envp as received by main() into an array
of safestr_t structures. We recommend converting these using only the SAFESTR_IMMUTABLE
flag if any flags are specified at all. For example:

int main(int argc, char *argv[])
{
 safestr_t *safe_argv;

 safe_argv = safestr_convertarray(argv, SAFESTR_IMMUTABLE);
 /* ... */
}

Never set SAFESTR_TRUSTED when directly converting argv, envp, or any other external input!

8.9 safestr_create()

Name
safestr_create - Creates a safestr_t structure from a C string.

Synopsis
safestr_t safestr_create(char *s, u_int32_t flags);

Parameters
char *s The C string with which the safestr_t structure is to be populated.

u_int32_t flags This is a bit mask of flags that control the behavior of the string being
created. Any of the following flags are valid:

SAFESTR_TEMPORARY
SAFESTR_IMMUTABLE
SAFESTR_TRUSTED
SAFESTR_ASSET_PERMANENT
SAFESTR_ASSET_TEMPORARY
SAFESTR_ASSET_PROMOTE
SAFESTR_ASSET_DEMOTE

Convenience Macros
1. SAFESTR_TEMP(char *s)

Expands to:

safestr_create(s, SAFESTR_TEMPORARY | SAFESTR_IMMUTABLE)

2. SAFESTR_TEMP_TRUSTED(char *s)

Expands to:

safestr_create(s, SAFESTR_TEMPORARY | SAFESTR_IMMUTABLE |
 SAFESTR_TRUSTED)

Exceptions
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE

SAFESTR_ERROR_STRING_TOO_LONG

Description
If a string is designated as temporary, the returned string will survive exactly one call to any Safe C
String Library API function. The single exception to this rule is safestr_reference(), which
will increment the string's reference count, thus allowing it to then survive any number of API calls
until its reference count is decremented by a call to either safestr_free() or
safestr_release().

If a string is designated as immutable, the API in any way cannot modify the string. This would
include appending to, inserting into, and so on.

The safestr_t structure that is returned from safestr_create() will be initialized with the
contents of the C string.

8.10 safestr_delete()

Name
safestr_delete - Deletes characters from a safestr_t structure.

Synopsis
void safestr_delete(safestr_t *s, u_int32_t pos, u_int32_t count);

Parameters
safestr_t *s This is the string from which characters are to be deleted.

u_int32_t pos This is the zero-based position from which characters are to be deleted.

u_int32_t count This is the number of character to be deleted.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will delete the specified number of characters beginning at the specified index from the
specified safestr_t structure. If more characters to be deleted are specified than exist in the string
from the starting position, the string will be truncated.

8.11 safestr_duplicate()

Name
safestr_duplicate - Copies the contents of one string into another.

Synopsis
void safestr_duplicate(string *dst, safestr_t src, u_int32_t flags,
 ...);

Parameters
safestr_t *dst This is the string that will receive the contents of the string to be copied.

safestr_t src This is the string that will be copied into the destination string.

u_int32_t flags This is a bit mask of flags that control the behavior of the copy operation.
Any of the following flags are valid:

SAFESTR_COPY_LIMIT

Convenience Macros
1. safestr_copy(safestr_t *dst, safestr_t src)

Expands to:

safestr_duplicate(dst, src, 0)

2. safestr_ncopy(safestr_t *dst, safestr_t src, u_int32_t nbytes)

Expands to:

safestr_ncopy(dst, src, SAFESTR_COPY_LIMIT, nbytes)

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will copy the contents of one safestr_t structure into another. If the destination
string is not large enough to hold the source string, it will be grown to the required size.

If SAFESTR_COPY_LIMIT is specified as a flag, an additional parameter is required to specify the
number of characters from the source string to be copied into the destination string, which is equivalent
to the maximum length of the resulting destination string.

8.12 safestr_endswith()

Name
safestr_endswith – Checks if a string ends with another string.

Synopsis
int safestr_endswith(safestr_t str, safestr_t substr);

Parameters
safestr_t str The string to be checked.

safestr_t substr The string to be checked for.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS

SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function checks to see if the ending of one string is the same as the entirety of a second string. If
so, the return value will be non-zero; otherwise, it will be zero. The string comparison is precise,
meaning that it is case-sensitive. This function is the opposite of safestr_startswith().

8.13 safestr_equal()

Name
safestr_equal - Lexically compares two safestr_t structures for equality.

Synopsis
int safestr_equal(safestr_t s1, safestr_t s2, u_int32_t flags, ...);

Parameters
safestr_t s1 This is the first safestr_t structure for comparison.

safestr_t s2 This is the second safestr_t structure for comparison.

u_int32_t flags This is a bit mask of flags that control the behavior of the comparison. Any
of the following flags are valid:

SAFESTR_COMPARE_NOCASE
SAFESTR_COMPARE_LIMIT

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially a convenience version of safestr_compare(). It operates in the same
manner, performing a lexical comparison of the two strings that are specified according to the rules
specified in the flags. A non-zero value will be returned if the two strings are equal; otherwise, a zero
return value indicates that they differ in some way.

If SAFESTR_COMPARE_NOCASE is specified as a flag, the comparison will be performed case
insensitively. The default behavior is to compare the two strings case sensitively.

If SAFESTR_COMPARE_LIMIT is specified as a flag, an additional parameter is required that
specifies the maximum number of characters to consider in the comparison.

8.14 safestr_fprintf()

Name
safestr_fprintf - Writes a formatted string to a stream.

Synopsis
u_int32_t safestr_fprintf(FILE *stream, safestr_t fmt, ...);

Parameters
FILE *stream This is the stream to which the formatted output will be written.

safestr_t fmt This is the format string to use.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C fprintf() function. The formatting string
and additional parameters are the same as with fprintf(), except that "%n" is not allowed.
Additionally, the "%s" arguments must all map to valid safestr_t structures, and the result will be
written to the specified stream. This version also does sanity checking of format strings that may not
happen in some underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
stream.

8.15 safestr_free()

Name
safestr_free - Decrements the reference count of a safestr_t structure.

Synopsis
void safestr_free(safestr_t s);

Parameters
safestr_t s This is the string that will have its reference count decremented.

Convenience Macros
0. safestr_release(safestr_t s)

Expands to:

safestr_free(s)

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will decrement the reference count of the specified string by one. If the string's reference
count reaches zero, the memory allocated for the string will be freed.

8.16 safestr_freelist()

Name
safestr_freelist – Frees a list of safestr_t structures allocated by either
safestr_convertarray() or safestr_split().

Synopsis
void safestr_freelist(safestr_t *s);

Parameters
safestr_t *s This is list of strings that is to be freed.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will decrement the reference count of all of the strings contained in the specified list via
safestr_free() before finally freeing the memory allocated for the list itself using the appropriate
memory freeing function. The function used to free the list itself will be the current function set via
safestr_setmemfns(). No information is retained in the list when it’s created to determine
which free function should be called, so if the memory free function is changed between the time that
the list is allocated and safestr_freelist() is called for it, the wrong free function will be used!

Iteration of the list of strings will stop at the first entry in the list that is NULL. The NULL pointer is
used as a sentinel to delimit the end of the list; so NULL entries should not be present anywhere in the
list except at its end.

8.17 safestr_getpassword()

Name
safestr_getpassword – Interactively obtain a password without echo from the terminal.

Synopsis
safestr_t safestr_getpassword(FILE *term, safestr_t prompt);

Parameters
FILE *term This is the stream from which the password will be read. It may be

specified as NULL, in which case _PATH_TTY (usually /dev/tty on
Unix or CONIN$ on Windows) will be used.

safestr_t prompt This is a string containing a prompt to display before reading the password.

Exceptions
errno
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG

SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will interactively read a password from the terminal. Before reading the password, the
specified prompt will be displayed, and echo will be disabled. The password that was read will be
returned in a new SafeStr string.

This function is essentially a wrapper around the Unix getpass() function.

8.18 safestr_insert()

Name
safestr_insert - Inserts one string into another.

Synopsis
void safestr_insert(safestr_t *dst, u_int32_t pos, safestr_t src);

Parameters
safestr_t *dst This is the string that will have the other string inserted into it.

u_int32_t pos This is the zero-based position in the destination string to insert the source
string.

safestr_t src This is the string to be inserted into the destination string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INDEX_OUT_OF_RANGE
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will insert one string into another at the specified zero-based position. The destination
string is a pointer to the safestr_t structure to be inserted into because it may need to be resized,
which may potentially cause its address to change.

8.19 safestr_join()

Name
safestr_join - Combines an array of strings into a single string.

Synopsis
safestr_t safestr_join(safestr_t *s, safestr_t joiner);

Parameters
safestr_t *s This is the array of strings to be joined together.

safestr_t joiner This is the string to combine into the resulting string between each element
in the array of strings.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will combine an array of strings into a single string, separating each element from the
array with another string. The array of strings must contain safestr_t structures that may or may
not be temporary. The last element of the array should be a NULL pointer.

The return from this function will be a new mutable string that is trusted if and only if all strings
involved in the combination are also trusted.

8.20 safestr_length()

Name
safestr_length - Returns the number of characters in a string.

Synopsis
u_int32_t safestr_length(safestr_t s);

Parameters
safestr_t s The string from which the length is to be obtained.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will return the number of characters contained in the specified safestr_t structure.
Note that this is not the same as the amount of space allocated to the safestr_t structure, which
won't necessarily be the same.

8.21 safestr_memzero()

Name
safestr_memzero - Securely fill memory with zero bytes.

Synopsis
void safestr_memzero(volatile void *str, u_int32_t len);

Parameters
volatile void *str This is a pointer to the memory to be filled with zero bytes.

u_int32_t len This is the number of zero bytes with which the buffer shall be filled.

Description
This function will zero out memory in a secure manner, which essentially means to avoid compiler
dead code elimination optimizations that can happen when using memset().

8.22 safestr_printf()

Name
safestr_printf - Writes a formatted string to stdout.

Synopsis
u_int32_t safestr_printf(safestr_t fmt, ...);

Parameters
safestr_t fmt This is the format string to use.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C printf() function. The formatting string and
additional parameters are the same as with printf(), except that "%n" is not allowed. Additionally,
the "%s" arguments must all map to valid safestr_t structures, and the result will be written to
stdout. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to stdout.

8.23 safestr_readline()

Name
safestr_readline - Read a line from a stream into a SafeStr string.

Synopsis
safestr_t safestr_readline(FILE *stream);

Parameters
FILE *stream The stream from which the line is to be read.

Exceptions
errno
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will read a line from a stream into a SafeStr string. Data will be read from the specified
stream and stored in a newly allocated SafeStr string until end-of-file (EOF) is reached or a newline
character is read, whichever comes first. If a newline is read, it will not be included in the returned
string. If the line ends in a carriage return/line feed sequence, the carriage return will also be removed
from the returned string.

This function is essentially a wrapper around the fgets() function.

8.24 safestr_reference()

Name
safestr_reference - Increments the reference count of a string.

Synopsis
safestr_t safestr_reference(safestr_t s);

Parameters
safestr_t s The safestr_t structure to have its reference count incremented.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will increment the reference count of the specified string. The maximum value of a
reference count is 4294967295. Incrementing a string's reference count any higher will result in a
SAFESTR_ERROR_TOO_MANY_REFERENCES exception being thrown. This does not seem an
unreasonable limitation. Note that strings having a reference count greater than one are forced to be
immutable by SafeStr.

As a convenience, the return from this function will be string passed as its only argument.

8.25 safestr_replace()

Name
safestr_replace - Replaces all occurrences of a pattern in one string with another.

Synopsis
void safestr_replace(safestr_t *s, safestr_t old, safestr_t new);

Parameters
safestr_t *s This is the string that will have occurrences of the specified pattern

replaced.

safestr_t old This is the pattern to be replaced.

safestr_t new This is the string that will be used to replace all occurrences of the specified
pattern.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will replace all occurrences of a specified pattern in a string with another string. The
replacement is done in place.

This function is equivalent to splitting the original string using the old pattern, and rejoining the result
with the new pattern. Using safestr_replace() is recommended, however, because it is faster.

8.26 safestr_search()

Name
safestr_search - Finds occurrences of one string inside of another.

Synopsis
u_int32_t safestr_search(safestr_t s, safestr_t sub,
 u_int32_t flags, ...);

Parameters
safestr_t s The string to be searched for occurrences of the sub-string.

safestr_t sub The string to be searched for in the primary string.

u_int32_t flags This is a bit mask of flags that control the behavior of the search operation.
Any of the following flags are valid:

SAFESTR_FIND_REVERSE
SAFESTR_FIND_FROMCHAR
SAFESTR_FIND_FROMNTH
SAFESTR_FIND_NTH
SAFESTR_FIND_NOMATCHCASE
SAFESTR_FIND_CHARACTER

Convenience Macros
1. safestr_find(safestr_t s, safestr_t sub)

Expands to:

safestr_search(s, sub, 0)

2. safestr_findchar(safestr_t s, unsigned char sub)

Expands to:

safestr_search(s, NULL, SAFESTR_FIND_CHARACTER, sub)

3. safestr_rfind(safestr_t, safestr_t sub)

Expands to:

safestr_search(s, sub, SAFESTR_FIND_REVERSE)

4. safestr_rfindchar(safestr_t, unsigned char sub)

Expands to:

safestr_search(s, NULL, SAFESTR_FIND_REVERSE |
 SAFESTR_FIND_CHARACTER, sub)

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will search a string for occurrences of a substring. The return will be the zero-based
index of the occurrence, or it will be SAFESTR_ERROR_NOTFOUND if the substring was not found to
be present in the primary string according to the behavioral controls.

If SAFESTR_FIND_REVERSE is specified, the search begins at the end of the string. It may be
combined with any of the other flags. The default is to search forward if this flag is not specified.

If SAFESTR_FROMCHAR is specified, an additional parameter is required that specifies the zero-based
starting position from the search. If SAFESTR_FIND_REVERSE is also specified, the position is
from the end of the string. If not specified, the default is zero.

If SAFESTR_FIND_FROMNTH is specified, an additional parameter is required that specifies the
number of prior occurrences less one to be ignored. If this flag is not specified, the default is zero.
This flag acts as a delta for the next flag, which has much the same meaning as this one except that it is
absolute.

If SAFESTR_FIND_NTH is specified, an additional parameter is required that specifies the number of
prior occurrences less one to be ignored. If this flag is not specified, the default is one. This flag is an
absolute count that may be modified by SAFESTR_FIND_FROMNTH, which has much the same
meaning as this flag except that it is a delta.

If SAFESTR_FIND_NOMATCHCASE is specified, the search is performed case insensitively. The
default is to search case sensitively.

If SAFESTR_FIND_CHARACTER is specified, the sub argument is completely ignored (it should be
specified as NULL), and the character to search for is obtained from the variable argument list in the
appropriate position as described below.

If more than one flag is specified that requires an additional parameter, the parameters should be
specified in the order that the flags are listed here in this document: SAFESTR_FIND_FROMCHAR
first, followed by SAFESTR_FIND_FROMNTH second, SAFESTR_FIND_NTH third, and
SAFESTR_FIND_CHARACTER last.

8.27 safestr_setcharat()

Name
safestr_setcharat - Sets the character at a specific position within a string.

Synopsis
void safestr_setcharat(safestr_t s, u_int32_t pos, char c,
 int trust);

Parameters
safestr_t s This is the string from which the character is to be retrieved.

u_int32_t pos This is the zero-based position from which the character is to be retrieved.

char c This is the character to set.

int trust This is a boolean flag indicating whether the character being set is trusted or
not.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INDEX_OUT_OF_RANGE
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will set the character at the specified position in a safestr_t structure. Bounds
checking is performed on the specified index position to ensure that it is valid. If it is not valid, an
XXL exception will be thrown; otherwise, the character at the specified position will be set to the
specified character. The trust flag of the string will be updated if necessary to reflect the trust setting
of the character being set.

Note that safestr_setcharat() will not ever try to grow a string. It is only intended to replace
an existing character.

8.28 safestr_setmemfns()

Name
safestr_setmemfns - Sets the functions to use for memory management.

Synopsis
void safestr_setmemfns(safestr_malloc_t malloc_fn,
 safestr_realloc_t realloc_fn,
 safestr_free_t free_fn);

Parameters
safestr_malloc_t malloc_fn This is a pointer to the function to call to allocate

memory. The default is
safestr_default_malloc().

safestr_realloc_t realloc_fn This is a pointer to the function to call to reallocate
memory. The default is
safestr_default_realloc().

safestr_free_t free_fn This is a pointer to the function to call to free memory.
The default is safestr_default_ree().

Description
By default, the Safe C String Library will use safestr_default_malloc(),
safestr_default_realloc(), and safestr_default_free() to perform memory
management, but this function will allow you to roll your own functions to replace them. Specifying
NULL for any of the three function pointers will cause the default for that function to be used. The
three default functions are simply wrappers around malloc(), realloc(), and free().

The function pointers for memory allocation, reallocation, and freeing are the same as for malloc(),
realloc(), and free() with the addition of two arguments to pass the filename and line number
from where the calls to them are made. The default functions throw this information away, but
alternative memory management APIs can use this information to tracking memory leaks, usage, etc.
The signature for each of these functions is as follows:

void *safestr_default_malloc(size_t nbytes, const char *filename,
 unsigned int lineno);

void *safestr_default_realloc(void *ptr, size_t nbytes,
 const char *filename,
 unsigned int lineno);

void safestr_default_free(void *ptr, const char *filename,
 unsigned int lineno);

8.29 safestr_slice()

Name
safestr_slice - Creates a new string that is a substring of a string.

Synopsis
safestr_t safestr_slice(safestr_t s, u_int32_t pos, u_int32_t end);

Parameters
safestr_t s This is the string that a substring is to be extracted from.

u_int32_t pos This is the zero-based starting position to extract characters from.

u_int32_t end This is the one-based ending position to extract characters from.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will create a new mutable string that will be trusted only if the original string is trusted.
The new string will contain the specified portion of the original string. The starting position to extract
from is zero-based, and the ending position is essentially one-based.

For example, to extract from the 17th character to the end of the source string, the following call would
be used:

slice = safestr_slice(source, 16, safestr_length(source));

8.30 safestr_split()

Name
safestr_split - Splits a string into an array of strings.

Synopsis
safestr_t *safestr_split(safestr_t s, safestr_t sub);

Parameters
safestr_t s The string to be split into an array of strings.

safestr_t sub The string to be used as a delimiter for breaking the primary string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_PRNG_FAILURE
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will create an array of safestr_t structures from a single string. For each occurrence
of the delimiting string, a new safestr_t non-resizable, permanent safestr_t structure will be
created that contains the characters between the previous occurrence of the delimiting string and the
current one.

The array that is returned will have one additional element that is the NULL pointer to mark the end of
the array. The delimiting string will be omitted from the returned array. If the delimiting string is the
empty string (it has a length of zero), an array containing safestr_t structures for each character in
the source string will be returned.

The resulting array and delimiter can be passed to safestr_join() to obtain the original string:

safestr_t *array, delimiter, rebuilt, source;

array = safestr_split(source, delimiter);
rebuilt = safestr_join(array, delimiter);
safestr_equal(source, rebuilt) ==> 1

Examples
1. safestr_split(SAFESTR_TEMP("abc"), SAFESTR_TEMP(""))

Yields:

 "a"
 "b"
 "c"
 NULL

2. safestr_split(SAFESTR_TEMP("/usr/local/etc"), SAFESTR_TEMP("/"))

Yields:

 ""
 "usr"
 "local"
 "etc"
 NULL

8.31 safestr_sprintf()

Name
safestr_sprintf - Writes a formatted string into another string.

Synopsis
u_int32_t safestr_sprintf(safestr_t *s, safestr_t fmt, ...);

Parameters
safestr_t *s This is the string into which the formatted output will be written.

safestr_t fmt This is the format string to use.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C sprintf() function. The formatting string
and additional parameters are the same as with sprintf(), except that "%n" is not allowed.
Additionally, the "%s" arguments must all map to valid safestr_t structures, the result will be
written to a safestr_t structure, and the string will be resized as needed to hold the formatted
string. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
string.

8.32 safestr_startswith()

Name
safestr_startswith – Checks if a string starts with another string.

Synopsis
int safestr_startswith(safestr_t str, safestr_t substr);

Parameters
safestr_t str The string to be checked.

safestr_t substr The string to be checked for.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function checks to see if the beginning of one string is the same as the entirety of a second string.
If so, the return value will be non-zero; otherwise, it will be zero. The string comparison is precise,
meaning that it is case-sensitive. This function is the opposite of safestr_endswith().

8.33 safestr_strdup()

Name
safestr_strdup - Duplicates a C string.

Synopsis
char *safestr_strdup(char *s);

Parameters
char *s The C string to be duplicated.

Exceptions
SAFESTR_ERROR_OUT_OF_MEMORY

Description
This function performs the same operation as the standard C strdup() function, except that it uses
the memory allocation routines specified using safestr_setmemfns(). The function will always
return a pointer to a new copy of the C string. If an error occurs while trying to create the copy, an
appropriate exception will be thrown, and the function will not return normally.

8.34 safestr_todouble()

Name
safestr_todouble - Convert a string to a double floating point number.

Synopsis
double safestr_todouble(safestr_t str);

Parameters
safestr_t str This is the string to be converted to a double floating point number.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_FORMAT
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will convert a string representation of a floating point number to a double. It is
currently implemented as simply a wrapper around the strtod() function.

8.35 safestr_toint32()

Name
safestr_toint32 - Convert a string to a signed 32-bit integer.

Synopsis
int32_t safestr_toint64(safestr_t str, u_int32_t base);

Parameters
safestr_t str This is the string to be converted to an integer.

u_int32_t base This is the base to use (usually 0, 8, 10, or 16). If 0 is specified, an attempt
will be made to guess the proper base.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_FORMAT
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will convert a string representation of a number to a signed 32-bit integer. If no base is
specified, the function will attempt to determine the base that the number is encoded in by looking for
“0b” or “0B” for base 2, “0x” or “0X” for base 16, or a leading “0” for base 8. If none of these are
matched, base 10 is assumed. If a base is specified, valid bases are 2 through 36.

Leading whitespace (ASCII 127 or less than or equal to 32) is ignored. After that, once parsing has
begun any invalid character will cause a SAFESTR_ERROR_INVALID_FORMAT exception to be
thrown. The only exception is a whitespace character, which will cause parsing to terminate as if the
end of the string was reached.

This function is essentially a wrapper around the strtol() function.

8.36 safestr_toint64()

Name
safestr_toint64 - Convert a string to a signed 64-bit integer.

Synopsis
int64_t safestr_toint64(safestr_t str, u_int32_t base);

Parameters
safestr_t str This is the string to be converted to an integer.

u_int32_t base This is the base to use (usually 0, 8, 10, or 16). If 0 is specified, an attempt
will be made to guess the proper base.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_FORMAT
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will convert a string representation of a number to a signed 64-bit integer. If no base is
specified, the function will attempt to determine the base that the number is encoded in by looking for
“0b” or “0B” for base 2, “0x” or “0X” for base 16, or a leading “0” for base 8. If none of these are
matched, base 10 is assumed. If a base is specified, valid bases are 2 through 36.

Leading whitespace (ASCII 127 or less than or equal to 32) is ignored. After that, once parsing has
begun any invalid character will cause a SAFESTR_ERROR_INVALID_FORMAT exception to be
thrown. The only exception is a whitespace character, which will cause parsing to terminate as if the
end of the string was reached.

This function is essentially a wrapper around the strtoll() function.

8.37 safestr_touint32()

Name
safestr_touint32 - Convert a string to an unsigned 32-bit integer.

Synopsis
u_int32_t safestr_touint64(safestr_t str, u_int32_t base);

Parameters
safestr_t str This is the string to be converted to an integer.

u_int32_t base This is the base to use (usually 0, 8, 10, or 16). If 0 is specified, an attempt
will be made to guess the proper base.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_FORMAT

SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will convert a string representation of a number to an unsigned 32-bit integer. If no base
is specified, the function will attempt to determine the base that the number is encoded in by looking
for “0b” or “0B” for base 2, “0x” or “0X” for base 16, or a leading “0” for base 8. If none of these are
matched, base 10 is assumed. If a base is specified, valid bases are 2 through 36.

Leading whitespace (ASCII 127 or less than or equal to 32) is ignored. After that, once parsing has
begun any invalid character will cause a SAFESTR_ERROR_INVALID_FORMAT exception to be
thrown. The only exception is a whitespace character, which will cause parsing to terminate as if the
end of the string was reached.

This function is essentially a wrapper around the strtol() function.

8.38 safestr_touint64()

Name
safestr_touint64 - Convert a string to an unsigned 64-bit integer.

Synopsis
u_int64_t safestr_touint64(safestr_t str, u_int32_t base);

Parameters
safestr_t str This is the string to be converted to an integer.

u_int32_t base This is the base to use (usually 0, 8, 10, or 16). If 0 is specified, an attempt
will be made to guess the proper base.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_FORMAT
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will convert a string representation of a number to an unsigned 64-bit integer. If no base
is specified, the function will attempt to determine the base that the number is encoded in by looking
for “0b” or “0B” for base 2, “0x” or “0X” for base 16, or a leading “0” for base 8. If none of these are
matched, base 10 is assumed. If a base is specified, valid bases are 2 through 36.

Leading whitespace (ASCII 127 or less than or equal to 32) is ignored. After that, once parsing has
begun any invalid character will cause a SAFESTR_ERROR_INVALID_FORMAT exception to be
thrown. The only exception is a whitespace character, which will cause parsing to terminate as if the
end of the string was reached.

This function is essentially a wrapper around the strtoll() function.

8.39 safestr_trim()

Name
safestr_trim - Trim whitespace from a string.

Synopsis
void safestr_trim(safestr_t str, u_int32_t flags);

Parameters
safestr_t str This is the string to be trimmed.

u_int32_t flags This is a set of flags that determine how the string is to be trimmed.

SAFESTR_TRIM_LEADING
SAFESTR_TRIM_TRAILING
SAFESTR_TRIM_BOTH

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will trim whitespace from the specified string. If no flags are specified,
SAFESTR_TRIM_BOTH is assumed, which is equivalent to combining both
SAFESTR_TRIM_LEADING and SAFESTR_TRIM_TRAILING. Any character with an ASCII
value of 127 or less than or equal to 32 is considered whitespace.

8.40 safestr_truncate()

Name
safestr_truncate - Truncates a string.

Synopsis
void safestr_truncate(safestr_t *s, u_int32_t length);

Parameters
safestr_t *s This is the string to be truncated.

u_int32_t length This is the length to which the string is to be truncated.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_OUT_OF_MEMORY
SAFESTR_ERROR_STRING_TOO_LONG
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function will truncate the specified string to the specified length. If the string is not as long as the
specified length, it will be grown to the necessary length and filled with space characters.

8.41 safestr_vasprintf()

Name
safestr_vasprintf - Writes a formatted string into a newly allocated string.

Synopsis
u_int32_t safestr_vasprintf(safestr_t *s, safestr_t fmt,
 va_list ap);

Parameters
safestr_t *s This is the string into which the formatted output will be written. Do not

allocate this string first. The string will be dynamically allocated by
safestr_vasprintf().

safestr_t fmt This is the format string to use.

va_list ap This is the pointer to the variable arguments for substitution into the
formatted string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C99 vasprintf() function. The formatting
string and additional parameters are the same as with vasprintf(), except that "%n" is not
allowed. Additionally, the "%s" arguments must all map to valid safestr_t structures, the result
will be written to a safestr_t structure, and the string will be dynamically allocated to hold the
formatted string. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
string.

8.42 safestr_vfprintf()

Name
safestr_vprintf - Writes a formatted string to a stream.

Synopsis
u_int32_t safestr_vfprintf(FILE *stream, safestr_t fmt, va_list ap);

Parameters
FILE *stream This is the stream to which the formatted output will be written.

safestr_t fmt This is the format string to use.

va_list ap This is the pointer to the variable arguments for substitution into the
formatted string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C fprintf() function. The formatting string
and additional parameters are the same as with fprintf(), except that "%n" is not allowed.
Additionally, the "%s" arguments must all map to valid safestr_t structures, and the result will be
written to the specified stream. This version also does sanity checking of format strings that may not
happen in some underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
stream.

8.43 safestr_vprintf()

Name
safestr_vprintf - Writes a formatted string to stdout.

Synopsis
u_int32_t safestr_vprintf(safestr_t fmt, va_list ap);

Parameters
safestr_t fmt This is the format string to use.

va_list ap This is the pointer to the variable arguments for substitution into the
formatted string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C printf() function. The formatting string and
additional parameters are the same as with printf(), except that "%n" is not allowed. Additionally,

the "%s" arguments must all map to valid safestr_t structures, and the result will be written to
stdout. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to stdout.

8.44 safestr_vsprintf()

Name
safestr_vsprintf - Writes a formatted string into another string.

Synopsis
u_int32_t safestr_vsprintf(safestr_t *s, safestr_t fmt, va_list ap);

Parameters
safestr_t *s This is the string into which the formatted output will be written.

safestr_t fmt This is the format string to use.

va_list ap This is the pointer to the variable arguments for substitution into the
formatted string.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_ILLEGAL_PERCENT_N
SAFESTR_ERROR_IMMUTABLE_STRING
SAFESTR_ERROR_INVALID_FORMAT_ARG
SAFESTR_ERROR_INVALID_FORMAT_STRING
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_FORMAT_ARGS
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
This function is essentially the same as the standard C vsprintf() function. The formatting string
and additional parameters are the same as with vsprintf(), except that "%n" is not allowed.
Additionally, the "%s" arguments must all map to valid safestr_t structures, the result will be
written to a safestr_t structure, and the string will be resized as needed to hold the formatted
string. This version also does sanity checking of format strings that may not happen in some
underlying implementations. When an inconsistency is found, an exception is thrown.

The return value from the function will be the number of characters that were written to the destination
string.

8.45 safestr_trust(), safestr_untrust(), safestr_istrusted()

Name
safestr_trust - Set the SAFESTR_TRUSTED flag on a SafeStr string.
safestr_untrust - Clear the SAFESTR_TRUSTED flag on a SafeStr string.
safestr_istrusted - Test the SAFESTR_TRUSTED flag on a SafeStr string.

Synopsis
void safestr_trust(safestr_t s);

void safestr_untrust(safestr_t s);
int safestr_istrusted(safestr_t s);

Parameters
safestr_t s The string for which the SAFESTR_TRUSTED flag is to be manipulated.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
These functions manipulate the SAFESTR_TRUSTED flag on a string. The function
safestr_trust() will set the flag, and safestr_untrust() will clear it. Whether the
SAFESTR_TRUSTED flag is set on a string can be determined by calling safestr_istrusted(),
which will return zero if it is not set; otherwise, it will return non-zero.

8.46 safestr_makereadonly(), safestr_makewritable(),
safestr_isreadonly()

Name
safestr_makereadonly - Set the SAFESTR_IMMUTABLE flag on a SafeStr string.
safestr_makewritable - Clear the SAFESTR_IMMUTABLE flag on a SafeStr string.
safestr_isreadonly - Test the SAFESTR_IMMUTABLE flag on a SafeStr string.

Synopsis
void safestr_makereadonly(safestr_t s);
void safestr_makewritable(safestr_t s);
int safestr_isreadonly(safestr_t s);

Parameters
safestr_t s The string for which the SAFESTR_IMMUTABLE flag is to be manipulated.

Exceptions
SAFESTR_ERROR_BAD_ADDRESS
SAFESTR_ERROR_INVALID_PARAMETER
SAFESTR_ERROR_TOO_MANY_REFERENCES

Description
These functions manipulate the SAFESTR_IMMUTABLE flag on a string. The function
safestr_makereadonly() will set the flag, and safestr_makewritable() will clear it.
Whether the SAFESTR_IMMUTABLE flag is set on a string can be determined by calling
safestr_isreadonly(), which will return zero if it is not set; otherwise, it will return non-zero.

