
Release Procedures
for SaberNet DCS 2.0

Title: SaberNet DCS Release Procedures
Author: Seth Remington <sremington@saberlogic.com>

Author: Matthew Ranostay <mranostay@saberlogic.com>

Date: 2006-08-16
Revision: 1.3
Description: Documentation for procedures to be followed when creating and distribut-

ing a release of SaberNet DCS.

Contents

Version Numbers

Updating Version Numbers

Release Procedure

Version Numbers

SaberNet DCS has a version number made up of three parts: a MAJOR, MINOR, and MACRO number.
For example:

2.0.1
| | |
| | --> MACRO
| ----> MINOR
------> MAJOR

There may be a suffix appended onto the version in the case of an Alpha or Beta release. For
example:

2.1.0b3 <--- Beta 3

The numbers should be incremented according to the following rules:

1. The MACRO number should be incremented by one for every release where the MINOR
number does not change. If the MINOR number is incremented then the MACRO number
gets reset to 0.

2. The MINOR number is the stable/development indicator and should get incremented when
a new stable version is released. Even numbers are stable trees and odd numbers are devel-
opment trees. So for example, 2.0 would be the stable tree that patches would be applied
to and 2.1 would be the development tree that would coexist with the stable tree. When
the 2.1 tree became stable it would be incremented to 2.2 and a new 2.3 development tree
would be created.

1

3. The MAJOR number should probably only be incremented for a major re-write ;)

Updating Version Numbers

The MAJOR, MINOR, and MACRO numbers are set in the sndcs common/ init .py file using vari-
ables of the same name. Since this is the “common” package containing code used by both the clients
and server, both the client and the server will share the same version number. There is a mechanism in
the client to make sure the clients are connecting to a server version high enough to support the client.
(NOTE: This is stored in sndcs client.gtk.REQUIRED SERVER VERSION)

If appending an Alpha or Beta suffix to the MACRO don’t add a space between the number and
the suffix because the tarball produced by distutils would also contain a space.

Release Procedure

When creating a new release the following procedure should be followed:

1. Make sure you have the latest sources by running “cvs update”.

2. Update the version number in sndcs common/ init .py as described in Updating Version
Numbers.

3. Add a note to the ChangeLog indicating the release

4. Add a note to NEWS (if it is an important enough release) with a summary of the big
changes since the last release.

5. Commit those changes to CVS with “cvs commit”.

6. Tag the release in CVS using the command, ’cvs tag release-name’. If this is an increment
of the MINOR number the tag should be a branch (’cvs tag -b release-name’) and a new
development release (and tag) should be made immediately as well. (See Version Numbers
for more info.)

7. Generate the docs: cd docs; ./generate docs.py (Requires python-docutils and pdflatex.)

8. Run “python setup.py sdist --formats=gztar,bztar,zip” to create the source tarball in gzip,
bzip, and zip formats. The resulting tarballs will be in the “dist” directory.

9. Run “python setup.py py2exe” to create Windows distribution, then open “sndcs.iss” with
InnoSetup (Project Link: http://www.jrsoftware.org/isinfo.php) and then click “compile”.
The resulting binary will be in the “Output” directory.

10. Run “python setup.py bdist rpm” to create a rpm package. The resulting package will be in
the “dist” directory.

11. Currently distutils doesn’t support Debian packages, so you must create a rpm package and
then run “alien” on it.

12. FTP the package(s) onto upload.sourceforge.net in the “incoming” directory.

13. Go to SourceForge’s administrative File Releases section and add a release and attach the
files.

2

http://www.jrsoftware.org/isinfo.php

