
A (very) short introduction to HDoc

Armin Größlinger
groessli@fmi.uni-passau.de

May 2002

Abstract

HDoc generates documentation in HTML format for Haskell modules.1

The generated documents are cross linked and include summaries and de-
tailed descriptions for the documented functions, data types, type classes
and instance declarations.

To put it in other words: HDoc is very much like Javadoc.

Contents

1 Running HDoc 2

2 HDoc’s input format 3
2.1 Comment format . 4
2.2 Documentation text. 4
2.3 General tags. 6

2.3.1 @doc . 6
2.3.2 @see . 6

2.4 Tags for specific Haskell objects. 7
2.4.1 Functions. 7
2.4.2 Type synonyms. 9
2.4.3 Data types. 9
2.4.4 Classes and Instances. 10
2.4.5 Modules . 10

1This document describes HDoc 0.8.2.

1

1 Running HDoc

Usage: ../../hdoc [OPTION...] file/module...
-d DIR --destdir=DIR Send output to directory DIR
-e --exports Document exported objects only

--line-numbers Output line numbers
-t TITLE --title=TITLE Set the document title
-i PATH, -I PATH Search PATH for modules

--stylesheet=FILE Set the stylesheet to use
--show-symbols Show all supported named symbols

-V --version Print HDoc’s version number
-h --help Print this (short) help

The given files are read, parsed and then the HTML documents are con-
structed (in the current directory, when no-d DESTDIR is present).

files/modules can be Haskell scripts (.hs), literate Haskell scripts
(.lhs, LATEX style or “> ...” style) or Green Card files (.gc)2. When a
file name does not contain a “.”, then it is considered to be a module name
and the corresponding module is looked for on the search path (see below).

Per default, HDoc emits documentation for all top level functions, data
types, type synonyms, classes and instances. With--exports only objects
appering in the export list of the modules are included in the output.

When HDoc runs, it will try to load modules imported from the files
given on the command line. For example, if you have a fileA.hs with con-
tents

module A where

import B

...

thenhdoc A.hs (or hdoc A) will cause HDoc to look for moduleB. It will
try to find it in the filesB.gc, B.lhs, B.hs in that order. You can use the
-I or -i switch to set the search path for modules (the current directory is
always searched), e.g.

hdoc -I /the/path/to/moduleB -I ../othermodules A.hs

Hierarchical module names are supported, i. e. the module nameX.Y.Z is
translated to the path nameX/Y/Z.{gc,lhs,hs}.

2Support for Green Card files is incomplete.

2

HDoc will not generate output for modules not listed on the command
line, but for things re-exported from these modules. In addition it will use
them to derive type signatures for instance declarations etc. HDoc knows
about the type classes defined in the standard prelude and in the standard
libraries, so the type signatures for instances of Eq, Enum etc. can be calcu-
lated by HDoc.

If you don’t set a document title with--title, HDoc will use a default
title.

The appearance of the generated documents is controlled through a stylesheet
file. Currently the following format classes are used in documents generated
by HDoc3:

TableHeadingColor
TableRowColor
FrameHeadingFont
FrameItemFont

The default stylesheet (namedhdoc.css) generated by HDoc is

body { background: #DDDDDD }
h2 { color: #000000 }

.TableHeadingColor { background: #CCCCFF }

.TableRowColor { background: #DDDDDD }

.FrameHeadingFont { font-size: normal; font-family: normal }

.FrameItemFont { font-size: normal; font-family: normal }

2 HDoc’s input format

HDoc extracts information from two sources:

• it uses HsParser4 to take type signatures, class/instance declarations,
and data type declarations from the Haskell source code.

• information which can’t be taken from the source (most importantly
the textual descriptions for the documented objects) are taken from
special comments.

3The class names are the same as in Javadoc; it should therefore be possible to use the same
stylesheet for Javadoc and HDoc.

4Please note that HsParser currently does not support languge extensions likeforeign import
etc. Therefore HDoc includes a modified version of HsParser which accepts some (but not all)
language extensions. See theKNOWN_PROBLEMS file in the distribution for details.

3

2.1 Comment format

The special comments recognized by HDoc exist in two versions:
The new format uses blocks of end-of-line comments which are intro-

duced by--- for general comments or--’ for constructor documentation.
Examples:

-- Here is some documentation. The
-- first comments must consist of three dashes,
-- the following lines start with double dashes.
-- Empty lines or code fragments left of the
-- comments are not allowed (i.e. they
-- signal end-of-documentation).

--’ This would be documentation for a data type
-- constructor, which can also expand over some lines.

Comments in the old format start with{--- and finish with-}. This corre-
sponds to---. There is no corresponding old format for--’.

You probably want to have a look into theexamples/ directory of the
HDoc distribution to get an impression of what comments for HDoc look
like and how they are used.

Comments recognized by HDoc consist of three parts:

• Documentation text written in a HTML subset (see section2.2)

• Tags for specifying more precisely what the comment documents (see
sections2.3and2.4)

• Arguments to (some of) the tags, like parameter names or references
to other objects

Tags are introduced by a@ sign. Some of the tags (“general tags”, section
2.3) are allowed in every comment, others (section2.4) are only allowed in
comments for specific objects.

2.2 Documentation text

The documentation text is written in a resticted HTML.
Supported Tags:

4

<a href=“. . . ” . . . reference

<p> . . . </p> paragraph (note that </p> is required)
 . . . emphasis
 . . . stronger emphasis

<code> . . . </code> font suitable for source code
<pre> . . . </pre> preformated text

 line break

 . . . bold
<i> . . . </i> italics
<tt> . . . </tt> typewriter font

The paragraph tag can have a class=“. . . ” attribute to change the appearance
of the paragraph.
Supported named symbols (like “"”): runhdoc --show-symbols to
get a list of recognized named symbols and special characters.

Below we’ll use the following symbols:

DESCRIPTION HTML text like described above. For functions, data types,
type synonyms, classes, and instances the first sentence (the part up to
and including the first ".") is used in the short summaries.

SHORTDESCRIPTION is like DESCRIPTION, but should be short, one sen-
tence or less.

NAME is the name of a Haskell identifier, i.e. it must be one word.

TYPE denotes a Haskell type or something syntatically similar.

TYPED is similar toTYPE, but with names (and some types). This allows
types and names to be given at the same time. Examples:
value :: Integer
(name, age) :: (String, Int)
(name :: String, age :: Int)
(name, age :: Int) :: (String, Int)
Maybe (result :: Double)
list :: [Complex Float]

The following special symbols are used in the descriptions below:
[...] optional
(...)* repeat as often as needed
(... | ...) alternatives

5

2.3 General tags

2.3.1 @doc

Comments can appear directly in front of the thing to be documented (ap-
plies to{---... -} and--- style comments) or, for--’ comments, di-
rectly after the constructor(s). Alternatively,{---... -} and--- comments
can start with@doc object and the comment is associated with the source
code not by its position, but by the name “object” given in the comment.
“object” can refer to a toplevel function, a function inside a class declara-
tion, a type synonym, a data type or a class. It is currently not possible to
name a module, an instance, or a function inside an instance declaration this
way (ambiguities would arise).

data List a = Nil | Cons a (List a)

f :: [a] -> List a

--- @doc f
-- documentation for f.

--- @doc List
-- documentation for the list data type.

2.3.2 @see

--- and{---... -} style comments can have (as their last entries)@see
tags to refer to other objects, like

--
-- @see f
-- @see M.D
-- @see (M.+)

Targets of@see tags can be toplevel functions, functions in class declara-
tions, type synonyms, data types, and classes. The target can be qualified or
unqualified and may be put in parenthesis (as in(M.+)).

6

2.4 Tags for specific Haskell objects

2.4.1 Functions

-- DESCRIPTION
-- (@param TYPED [- SHORTDESCRIPTION])*
--
-- (@return | @monadic) [TYPED] [- SHORTDESCRIPTION]
f [:: TYPE]

This generates documentation for a functionf. The type signature is au-
tomatically derived iff belongs to an instance declaration and HDoc can
find the module where the corresponding class is defined. In all other cases
the type signature must be explicitly given so that HDoc can show it in the
output. In contrast to Javadoc the names of the parameters can be chosen
arbitrarily, i.e. they need not match the formal parameters of the function
definition (this is so because when pattern matching is used then the names
for the formal parameters need not be unique, which is not the case for Java).

When no HDoc comment is present, simply the type signature is taken
(or calculated in case of an instance) and no further description is produced
in the output.

When a@param or @return / @monadic clause does not include a type
for the parameter (as forf andresult in the example formap below), then
HDoc will calculate the type from the type signature.

The difference between @return and @monadic is that

-- @param x
-- @return y
f :: Integer -> IO String

will produce

(y :: IO String) = f (x :: Integer)

whereas

-- @param x
-- @monadic y
f :: Integer -> IO String

will produce

7

(y :: String) <- f (x :: Integer)

Note that with@monadic HDoc emits<- instead of= and the type construc-
tor (IO in this case) is dropped from the type given for the result. Examples:

-- Applies a function to every element of a list.
-- @param f - the function to map
-- over the list.
-- @param list :: [a] - the list of values to apply
-- <code>f</code> to.
-- @return result - the list with <code>f</code>
-- applied to its values.
map :: (a -> b) -> [a] -> [b]
map f xs = ...

class X a where

-- A function in a class.
-- @param x - the argument.
-- @return y - the result.
f :: a -> a

instance X Int where

-- Implementation of <code>f</code> for
-- <code>Int</code>s.
-- @param i - the given integer.
-- @return d - the integer doubled.
f = (*2)

These examples will generate documentation for the functions

map :: (a -> b) -> [a] -> [b]
f :: X a => a -> a
f :: Int -> Int

(and for the classX a and its instanceX Int).

8

2.4.2 Type synonyms

-- DESCRIPTION
type TYPE = TYPE

No special tags are available for type synonyms currently.

2.4.3 Data types

-- DESCRIPTION
--
-- (@cons TYPED [- SHORTDESCRIPTION]
-- | @cons NAME { [TYPED,]* TYPED } [- SHORTDESCRIPTION])*
data TYPE = ...

or

-- DESCRIPTION
data TYPE = ... --’ SHORTDESCRIPTION

(| ... --’ SHORTDESCRIPTION)*

or the same withnewtype instead ofdata.
Each@cons ... documents a constructor; the second variant is for

labelled fields. The special comment--’ can be used to document one or
more constructor(s) after its/their declaration, i.e. in

data X = A --’ d1
| B
| C --’ d2
| D --’ d3
| E

d1 is the documentation forA, d2 is used forB andC, d3 documentsD, and
E does not have any documentation.

You can mix@cons with --’, but--’ has precedence over@cons.
Examples:

-- Versatile representation for 2D and 3D points.
-- @cons Point2D x y - a 2D point with coordinates (x,y).

9

-- @cons Point3D { x :: a, y :: a, z :: a } -
-- represents a 3D point with coordinates (x,y,z).
--
data Point a = Point2D a a

| Point3D { x :: a, y :: a, z :: a }

-- Arithmetic expressions.
--
data Expr = Number Double --’ a real number

| Variable String --’ a variable
| Expr :+: Expr
| Expr :-: Expr
| Expr :*: Expr
| Expr :/: Expr --’ arithmetic operations

2.4.4 Classes and Instances

-- DESCRIPTION
class TYPE where

or

-- DESCRIPTION
instance TYPE where

This outputs documentation for a class or instance with or without some
description. Example:

-- A class for all kinds of tea.
class Tea a where

drink :: a -> IO ()
brew :: IO a

2.4.5 Modules

-- DESCRIPTION
-- [@author SHORTDESCRIPTION]

10

-- [@version SHORTDESCRIPTION]
module NAME [EXPORTLIST] where

or

module NAME [EXPORTLIST] where

Documents a module, of course. Example:

-- The main module of program XY.
-- Loads the options, sets up the GUI, makes tea etc.
-- @author Jim Hacker
-- @version 1.0.nearly.perfect
module Main where

import GUI
import MakeTea

11

	Running HDoc
	HDoc's input format
	Comment format
	Documentation text
	General tags
	@doc
	@see

	Tags for specific Haskell objects
	Functions
	Type synonyms
	Data types
	Classes and Instances
	Modules

