The Python Language Reference
Release 2.6.2

Guido van Rossum

Fred L. Drake, Jr., editor

April 15, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Alternate Implementations. e e e e e 3
1.2 Notation o e e e e e e e e e 4
Lexical analysis 5
2.1 Linestructure e e e e e 5
2.2 Othertokens. e e 8
2.3 ldentifiersand keywords L e e 8
2.4 Literals e e e e e e 9
25 0perators e e e 12
2.6 Delimiters e e e e e 12
Data model 13
3.1 Objects,valuesandtypes e 13
3.2 Thestandard type hierarchy. e 14
3.3 New-styleandclassicclasses. e 20
3.4 Specialmethodnames. e e e 21
Execution model 35
4.1 Namingandbinding. e e 35
4.2 EXCEPLONS. . . . v v i e e e e e e e e e e 36
Expressions 39
5.1 Arithmetic CONVErsioNS e 39
5.2 AIOMS e 39
5.3 Primaries. e e e e 43
5.4 Thepower operator. o i e e e 46
5.5 Unary arithmetic and bitwise operations 46
5.6 Binary arithmeticoperations. e e 46
5.7 Shiftingoperations e e e a7
5.8 Binary bitwise operations. 47
5.9 Comparisons. e e e e e e e e e e 48
5.10 Booleanoperations. e e e e e e 49
511 Lambdas. e e e 49
5.12 Expressionlists e e e 50
5.13 Evaluationorder. e e e e 50
514 SUMMAY. . . . o o o e e e e e e e e e 50
Simple statements 53
6.1 Expressionstatements. e e e e 53
6.2 Assignmentstatements. L L e e e 53
6.3 Theassert statement. e 55
6.4 Thepass statement. L e e e 56
6.5 Thedel statement 56

6.6 Theprint statement. e e e 56
6.7 Thereturn statement. e e e e e 57
6.8 Theyield statement. e 57
6.9 Theraise statement. e e e e e e e e 58
6.10 Thebreak statement. e e e 58
6.11 Thecontinue statement e e e e 58
6.12 Theimport statement. e 59
6.13 Theglobal statement. e 61
6.14 Theexec statement. o e e e e e 61
7 Compound statements 63
7.1 Theif statement e e e e 63
7.2 Thewhile statement. e e e e e e 64
7.3 Thefor statement e e e e e 64
7.4 Thetry statement e e 65
7.5 Thewith statement. e e e e 66
7.6 Function definitions. e e e e 66
7.7 Classdefinitions. 0 e e e e e 67
8 Top-level components 69
8.1 Complete Python programs o 0 i i e e 69
8.2 Fileinput. . . . o . e e 69
8.3 Interactive input. e e e e 69
8.4 EXpressioninpul e e e e e e e 70
9 Full Grammar specification 71
A Glossary 75
B About these documents 81
B.1 Contributors to the Python Documentation., 81
C History and License 83
C.1 Historyofthesoftware e e e 83
C.2 Terms and conditions for accessing or otherwise using Python 84
C.3 Licenses and Acknowledgements for Incorporated Software. 87
D Copyright 95
Index 97

The Python Language Reference, Release 2.6.2

Release?2.6
Date April 15, 2009

This reference manual describes the syntax and “core semantics” of the language. It is terse, but attempts to be
exact and complete. The semantics of non-essential built-in object types and of the built-in functions and modules
are described ifhe Python Standard Librarm The Python Library Referentd-or an informal introduction to

the language, seehe Python Tutoria(in Python Tutoria). For C or C++ programmers, two additional manuals

exist: Extending and Embedding the Python Interprefier Extending and Embedding Pythodescribes the
high-level picture of how to write a Python extension module, andPytbon/C API Reference Manu@h The
Python/C AP) describes the interfaces available to C/C++ programmers in detail.

CONTENTS 1

The Python Language Reference, Release 2.6.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tutorial.

While I am trying to be as precise as possible, | chose to use English rather than formal specifications for everything
except syntax and lexical analysis. This should make the document more understandable to the average reader, but
will leave room for ambiguities. Consequently, if you were coming from Mars and tried to re-implement Python
from this document alone, you might have to guess things and in fact you would probably end up implementing
quite a different language. On the other hand, if you are using Python and wonder what the precise rules about a
particular area of the language are, you should definitely be able to find them here. If you would like to see a more
formal definition of the language, maybe you could volunteer your time — or invent a cloning machine :-).

It is dangerous to add too many implementation details to a language reference document — the implementation
may change, and other implementations of the same language may work differently. On the other hand, there is
currently only one Python implementation in widespread use (although alternate implementations exist), and its
particular quirks are sometimes worth being mentioned, especially where the implementation imposes additional
limitations. Therefore, you'll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These are documented in
The Python Standard Librarfin The Python Library ReferengeA few built-in modules are mentioned when
they interact in a significant way with the language definition.

1.1 Alternate Implementations

Though there is one Python implementation which is by far the most popular, there are some alternate implemen-
tations which are of particular interest to different audiences.

Known implementations include:

CPython This is the original and most-maintained implementation of Python, written in C. New language features
generally appear here first.

Jython Python implemented in Java. This implementation can be used as a scripting language for Java applica-
tions, or can be used to create applications using the Java class libraries. It is also often used to create tests
for Java libraries. More information can be foundtat Jython website

Python for .NET This implementation actually uses the CPython implementation, but is a managed .NET appli-
cation and makes .NET libraries available. It was created by Brian Lloyd. For more information, see the
Python for .NET home page

IronPython An alternate Python for .NET. Unlike Python.NET, this is a complete Python implementation that
generates IL, and compiles Python code directly to .NET assemblies. It was created by Jim Hugunin, the
original creator of Jython. For more information, ske IronPython website

PyPy An implementation of Python written in Python; even the bytecode interpreter is written in Python. This
is executed using CPython as the underlying interpreter. One of the goals of the project is to encourage
experimentation with the language itself by making it easier to modify the interpreter (since it is written in
Python). Additional information is available @he PyPy project’'s home page

http://www.jython.org/
http://pythonnet.sourceforge.net
http://www.ironpython.com/
http://codespeak.net/pypy/

The Python Language Reference, Release 2.6.2

Each of these implementations varies in some way from the language as documented in this manual, or intro-
duces specific information beyond what’s covered in the standard Python documentation. Please refer to the
implementation-specific documentation to determine what else you need to know about the specific implementa-
tion you're using.

1.2 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This uses the following
style of definition:

name Ic_letter (Ic_letter | “_")*

Ic_letter - 4

The first line says that aame is anlc_letter followed by a sequence of zero or mdee letter s and
underscores. Afic_letter in turn is any of the single charactees through’z’ . (This rule is actually
adhered to for the names defined in lexical and grammar rules in this document.)

Each rule begins with a name (which is the name defined by the rule)and A vertical bar {) is used to
separate alternatives; it is the least binding operator in this notation. A:3targans zero or more repetitions of

the preceding item; likewise, a plus)(means one or more repetitions, and a phrase enclosed in square brackets

([1) means zero or one occurrences (in other words, the enclosed phrase is optional)arite operators

bind as tightly as possible; parentheses are used for grouping. Literal strings are enclosed in quotes. White space
is only meaningful to separate tokens. Rules are normally contained on a single line; rules with many alternatives
may be formatted alternatively with each line after the first beginning with a vertical bar. In lexical definitions (as
the example above), two more conventions are used: Two literal characters separated by three dots mean a choice
of any single character in the given (inclusive) range of ASCII characters. A phrase between angular brackets
(<...>) gives an informal description of the symbol defined; e.g., this could be used to describe the notion of
‘control character’ if needed.

Even though the notation used is almost the same, there is a big difference between the meaning of lexical and
syntactic definitions: a lexical definition operates on the individual characters of the input source, while a syntax
definition operates on the stream of tokens generated by the lexical analysis. All uses of BNF in the next chapter
(“Lexical Analysis”) are lexical definitions; uses in subsequent chapters are syntactic definitions.

4 Chapter 1. Introduction

CHAPTER
TWO

LEXICAL ANALYSIS

A Python program is read byparser Input to the parser is a streamtokens generated by thiexical analyzer
This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the 7-bit ASCII character set for program text. New in version 2.3: An encoding declaration can
be used to indicate that string literals and comments use an encoding different from ASCII. For compatibility
with older versions, Python only warns if it finds 8-bit characters; those warnings should be corrected by either
declaring an explicit encoding, or using escape sequences if those bytes are binary data, instead of characters.

The run-time character set depends on the 1/0O devices connected to the program but is generally a superset of
ASCII.

Future compatibility note: It may be tempting to assume that the character set for 8-bit characters is ISO Latin-1
(an ASCII superset that covers most western languages that use the Latin alphabet), but it is possible that in the
future Unicode text editors will become common. These generally use the UTF-8 encoding, which is also an
ASCII superset, but with very different use for the characters with ordinals 128-255. While there is ho consensus
on this subject yet, it is unwise to assume either Latin-1 or UTF-8, even though the current implementation appears
to favor Latin-1. This applies both to the source character set and the run-time character set.

2.1 Line structure

A Python program is divided into a numberlobical lines

2.1.1 Logical lines

The end of a logical line is represented by the token NEWLINE. Statements cannot cross logical line boundaries
except where NEWLINE is allowed by the syntax (e.g., between statements in compound statements). A logical
line is constructed from one or mopdysical linedy following the explicit or implicitline joining rules.

2.1.2 Physical lines

A physical line is a sequence of characters terminated by an end-of-line sequence. In source files, any of the
standard platform line termination sequences can be used - the Unix form using ASCII LF (linefeed), the Windows
form using the ASCII sequence CR LF (return followed by linefeed), or the old Macintosh form using the ASCII
CR (return) character. All of these forms can be used equally, regardless of platform.

When embedding Python, source code strings should be passed to Python APIs using the standard C conventions
for newline characters (tHa character, representing ASCII LF, is the line terminator).

2.1.3 Comments

A comment starts with a hash charactg) that is not part of a string literal, and ends at the end of the physical
line. A comment signifies the end of the logical line unless the implicit line joining rules are invoked. Comments
are ignored by the syntax; they are not tokens.

The Python Language Reference, Release 2.6.2

2.1.4 Encoding declarations

If a comment in the first or second line of the Python script matches the regular expression
coding[=:]\s*([-\w.]+) , this comment is processed as an encoding declaration; the first group of this
expression names the encoding of the source code file. The recommended forms of this expression are

-*- coding: <encoding-name> -*-
which is recognized also by GNU Emacs, and
vim:fileencoding=<encoding-name>

which is recognized by Bram Moolenaar’s VIM. In addition, if the first bytes of the file are the UTF-8 byte-order
mark (\xef\xbb\xbf’), the declared file encoding is UTF-8 (this is supported, among others, by Microsoft’s
notepad).

If an encoding is declared, the encoding name must be recognized by Python. The encoding is used for all lexical
analysis, in particular to find the end of a string, and to interpret the contents of Unicode literals. String literals are

converted to Unicode for syntactical analysis, then converted back to their original encoding before interpretation
starts. The encoding declaration must appear on a line of its own.

2.1.5 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash charactees (follows: when a
physical line ends in a backslash that is not part of a string literal or comment, it is joined with the following
forming a single logical line, deleting the backslash and the following end-of-line character. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24\
and 0 <= minute < 60 and 0 <= second < 60: # Looks like a valid date
return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comment. A backslash

does not continue a token except for string literals (i.e., tokens other than string literals cannot be split across
physical lines using a backslash). A backslash is illegal elsewhere on a line outside a string literal.

2.1.6 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one physical line without
using backslashes. For example:

month_names = [’ Januari ', ' Februari ', ' Maart # These are the
" April 7, " Mei’ “Juni 7, # Dutch names
“Juli 7 " Augustus ', ' September ', # for the months
" Oktober ’, ' November’, ' December’] # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not important. Blank
continuation lines are allowed. There is no NEWLINE token between implicit continuation lines. Implicitly
continued lines can also occur within triple-quoted strings (see below); in that case they cannot carry comments.

2.1.7 Blank lines

A logical line that contains only spaces, tabs, formfeeds and possibly a comment, is ignored (i.e., no NEWLINE
token is generated). During interactive input of statements, handling of a blank line may differ depending on the
implementation of the read-eval-print loop. In the standard implementation, an entirely blank logical line (i.e. one
containing not even whitespace or a comment) terminates a multi-line statement.

6 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

2.1.8 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the indentation level of
the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of characters up to
and including the replacement is a multiple of eight (this is intended to be the same rule as used by Unix). The
total number of spaces preceding the first non-blank character then determines the line’s indentation. Indentation
cannot be split over multiple physical lines using backslashes; the whitespace up to the first backslash determines
the indentation.

Cross-platform compatibility note: because of the nature of text editors on non-UNIX platforms, it is unwise to
use a mixture of spaces and tabs for the indentation in a single source file. It should also be noted that different
platforms may explicitly limit the maximum indentation level.

A formfeed character may be present at the start of the line; it will be ignored for the indentation calculations
above. Formfeed characters occurring elsewhere in the leading whitespace have an undefined effect (for instance,
they may reset the space count to zero). The indentation levels of consecutive lines are used to generate INDENT
and DEDENT tokens, using a stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be popped off again.
The numbers pushed on the stack will always be strictly increasing from bottom to top. At the beginning of each
logical line, the line’s indentation level is compared to the top of the stack. If it is equal, nothing happens. If it is
larger, it is pushed on the stack, and one INDENT token is generated. If it is smatteistibe one of the numbers
occurring on the stack; all numbers on the stack that are larger are popped off, and for each number popped off a
DEDENT token is generated. At the end of the file, a DEDENT token is generated for each number remaining on
the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:
def perm(l):

Compute the list of all permutations of |
if len () <= 1:

return l]
r =1
for i in range (len (1)):
s = I[:i] + i +1:]
p = perm(s)
for x in p:
r. append(l[i:i +1] + X)

return r
The following example shows various indentation errors:

def perm(l): # error: first line indented
for i in range(len(l)): # error: not indented
s = L] + [[i+1:]
p = perm(I[:i] + [[i+1:]) # error: unexpected indent
for x in p:
r.append(i:i+1] + Xx)
return r # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexical analyzer — the
indentation offeturn r does not match a level popped off the stack.)

2.1.9 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, tab and formfeed can
be used interchangeably to separate tokens. Whitespace is needed between two tokens only if their concatenation
could otherwise be interpreted as a different token (e.g., ab is one token, but a b is two tokens).

2.1. Line structure 7

The Python Language Reference, Release 2.6.2

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exigntifiers keywords lit-

erals operators anddelimiters Whitespace characters (other than line terminators, discussed earlier) are not
tokens, but serve to delimit tokens. Where ambiguity exists, a token comprises the longest possible string that
forms a legal token, when read from left to right.

2.3 ldentifiers and keywords

Identifiers (also referred to amme are described by the following lexical definitions:

identifier = (letter|”_") (letter | digit | “_")*
letter = lowercase | uppercase
lowercase = a7z

uppercase = WA A

digit = ‘0”9

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved word&egwordf the language, and cannot be used as ordinary
identifiers. They must be spelled exactly as written here:

and del from not while
as elif global or with
assert else if pass yield
break except import print

class exec in raise

continue finally is return

def for lambda try

Changed in version 2./one became a constant and is now recognized by the compiler as a name for the built-in
objectNone. Although it is not a keyword, you cannot assign a different object to it. Changed in version 2.5: Both
as andwith are only recognized when thdth_statement future feature has been enabled. It will always

be enabled in Python 2.6. See secfigre with statemerfor details. Note that usings andwith as identifiers

will always issue a warning, even when théh_statement future directive is not in effect.

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These classes are identified by the patterns

of leading and trailing underscore characters:

_* Not imported byfrom module import * . The special identifier is used in the interactive interpreter
to store the result of the last evaluation; it is stored in thbuiltin__ module. When not in interactive
mode,_ has no special meaning and is not defined. See setlienmport statement

Note: The name_is often used in conjunction with internationalization; refer to the documentation for the
gettext module for more information on this convention.

__* System-defined names. These names are defined by the interpreter and its implementation (including the
standard library); applications should not expect to define additional names using this convention. The set
of names of this class defined by Python may be extended in future versions. See Spetian method
names

__* Class-private names. Names in this category, when used within the context of a class definition, are re-
written to use a mangled form to help avoid name clashes between “private” attributes of base and derived
classes. See sectitentifiers (Names)

8 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

2.4 Literals

Literals are notations for constant values of some built-in types.

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral
stringprefix
shortstring
longstring

shortstringitem
longstringitem

shortstringchar

longstringchar
escapeseq

[stringprefix](shortstring | longstring)

‘] fut | furt | R”] "UT | "UR” | fUrT |
“" shortstringitem* “” | " shortstringitem*
“ longstringitem*

| " longstringitem* "

shortstringchar | escapeseq

longstringchar | escapeseq

<any source character except “\">
“* <any ASCII character>

“UR”

<any source character except “\" or newline or the quote>

One syntactic restriction not indicated by these productions is that whitespace is not allowed between the

stringprefix

and the rest of the string literal. The source character set is defined by the encoding decla-

ration; it is ASCII if no encoding declaration is given in the source file; see seEtimoding declarations In

plain English: String literals can be enclosed in matching single qubjesr (double quotes’(). They can also

be enclosed in matching groups of three single or double quotes (these are generally refertaglesqsted

string9. The backslash\() character is used to escape characters that otherwise have a special meaning, such as
newline, backslash itself, or the quote character. String literals may optionally be prefixed with &’letter

'R’ ; such strings are callehw stringsand use different rules for interpreting backslash escape sequences. A

prefix of’'v’” or’U’

makes the string a Unicode string. Unicode strings use the Unicode character set as defined

by the Unicode Consortium and ISO 10646. Some additional escape sequences, described below, are available in
Unicode strings. The two prefix characters may be combined; in this'casenust appear before

In triple-quoted strings, unescaped newlines and quotes are allowed (and are retained), except that three unescaped
guotes in a row terminate the string. (A “quote” is the character used to open the string, i.€. @ithiey Unless

an’r or'R’ prefix is present, escape sequences in strings are interpreted according to rules similar to those
used by Standard C. The recognized escape sequences are:

Escape Sequence| Meaning Notes

\newline Ignored

\\ Backslash\()

\V Single quote’()

\" Double quote'()

\a ASCII Bell (BEL)

\b ASCII Backspace (BS)

\f ASCII Formfeed (FF)

\n ASCII Linefeed (LF)

\N{name} Character namedamein the Unicode database (Unicode only)

\r ASCII Carriage Return (CR)

\t ASCII Horizontal Tab (TAB)

\UXXXX Character with 16-bit hex valuexxx(Unicode only) (1)

AUXXXXXXXX Character with 32-bit hex valuexxxxxUnicode only) (2)

\v ASCII Vertical Tab (VT)

\ooo Character with octal valueoo (3,5)

\xhh Character with hex valuieh (4,5)
Notes:

1. Individual code units which form parts of a surrogate pair can be encoded using this escape sequence.

2. Any Unicode character can be encoded this way, but characters outside the Basic Multilingual Plane (BMP)

2.4. Literals

The Python Language Reference, Release 2.6.2

will be encoded using a surrogate pair if Python is compiled to use 16-bit code units (the default). Individual
code units which form parts of a surrogate pair can be encoded using this escape sequence.

3. Asin Standard C, up to three octal digits are accepted.
4. Unlike in Standard C, exactly two hex digits are required.

5. In a string literal, hexadecimal and octal escapes denote the byte with the given value; it is not necessary
that the byte encodes a character in the source character set. In a Unicode literal, these escapes denote a
Unicode character with the given value.

Unlike Standard C, all unrecognized escape sequences are left in the string unchangdked baekslash is left

in the string (This behavior is useful when debugging: if an escape sequence is mistyped, the resulting output
is more easily recognized as broken.) It is also important to note that the escape sequences marked as “(Unicode
only)” in the table above fall into the category of unrecognized escapes for non-Unicode string literals.

Whenanr' or’'R’ prefix is present, a character following a backslash is included in the string without change,
andall backslashes are left in the string-or example, the string litera"\n" consists of two characters: a
backslash and a lowercase . String quotes can be escaped with a backslash, but the backslash remains in the
string; for exampler"\"™" is a valid string literal consisting of two characters: a backslash and a double quote;
r\" is not a valid string literal (even a raw string cannot end in an odd number of backslashes). Specifically,
a raw string cannot end in a single backsla@ince the backslash would escape the following quote character).
Note also that a single backslash followed by a newline is interpreted as those two characters as part of the string,
notas a line continuation.

When arir or’R’ prefixis used in conjunction with’a’ or’U’ prefix, then th&uXXXX and\UXXXXXXXX
escape sequences are processed vallilgther backslashes are left in the strinor example, the string literal
ur"\u0062\n" consists of three Unicode characters: ‘LATIN SMALL LETTER B’, ‘REVERSE SOLIDUS’,

and ‘LATIN SMALL LETTER N'. Backslashes can be escaped with a preceding backslash; however, both remain
in the string. As a resulfjuXXXX escape sequences are only recognized when there are an odd number of
backslashes.

2.4.2 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting conventions, are
allowed, and their meaning is the same as their concatenation. Thel®" 'world’ is equivalent to
"helloworld" . This feature can be used to reduce the number of backslashes needed, to split long strings
conveniently across long lines, or even to add comments to parts of strings, for example:

re . compile("[A-Za-z] " # letter or underscore
" [A-Za-z0-9]* : # letter, digit or underscore

)

Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘+’ operator must
be used to concatenate string expressions at run time. Also note that literal concatenation can use different quoting
styles for each component (even mixing raw strings and triple quoted strings).

2.4.3 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers, and imaginary num-
bers. There are no complex literals (complex numbers can be formed by adding a real number and an imaginary
number).

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the unary
operator - ‘ and the literall.

10 Chapter 2. Lexical analysis

The Python Language Reference, Release 2.6.2

2.4.4 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger = integer (“I" | “L")
integer decimalinteger | octinteger | hexinteger | bininteger

decimalinteger = nonzerodigit digit* | “0”

octinteger = “0” ("o” | “O") octdigit+ | “0” octdigit+
hexinteger = 0" (X" | “X") hexdigit+

bininteger = "0" ("b" | “B") bindigit+

nonzerodigit N

octdigit = ‘0.7

bindigit = 0" |1

hexdigit = digit | “a".."f" | “A"..F”

Although both lower cas# and upper cas#®’ are allowed as suffix for long integers, it is strongly recom-
mended to always usk’ , since the letteil’ looks too much like the digitl’

Plain integer literals that are above the largest representable plain integer (e.g., 2147483647 when using 32-bit
arithmetic) are accepted as if they were long integers insteabhere is no limit for long integer literals apart
from what can be stored in available memory.

Some examples of plain integer literals (first row) and long integer literals (second and third rows):

7 2147483647 0177
3L 79228162514264337593543950336L 0377L 0x100000000L
79228162514264337593543950336 Oxdeadbeef

2.4.5 Floating point literals

Floating point literals are described by the following lexical definitions:

floathumber = pointfloat | exponentfloat
pointfloat = [intpart] fraction | intpart “.”
exponentfloat = (intpart | pointfloat) exponent
intpart = digit+

fraction = 7 digit+

exponent = (e” | "EM) [+ | "] digit+

Note that the integer and exponent parts of floating point numbers can look like octal integers, but are interpreted
using radix 10. For exampl®77e010 is legal, and denotes the same number&s10 . The allowed range of
floating point literals is implementation-dependent. Some examples of floating point literals:

3.14 10. .001 1e100 3.14e-10 0e0

Note that numeric literals do not include a sign; a phrase-likés actually an expression composed of the unary
operator- and the literall.

2.4.6 Imaginary literals

Imaginary literals are described by the following lexical definitions:
imagnumber = (floatnumber | intpart) (4" | “J")

An imaginary literal yields a complex number with a real part of 0.0. Complex numbers are represented as a
pair of floating point numbers and have the same restrictions on their range. To create a complex number with a
nonzero real part, add a floating point number to it, €3%4j) . Some examples of imaginary literals:

1 In versions of Python prior to 2.4, octal and hexadecimal literals in the range just above the largest representable plain integer but below
the largest unsigned 32-bit number (on a machine using 32-bit arithmetic), 4294967296, were taken as the negative plain integer obtained by
subtracting 4294967296 from their unsigned value.

2.4. Literals 11

The Python Language Reference, Release 2.6.2

3.14j 10 10j .001j 1e100j 3.14e-10j

2.5 Operators

The following tokens are operators:

+ - * ** / I %
<< >> & N ~
< > <= >= == 1= <>

The comparison operatots and!= are alternate spellings of the same operdtoris the preferred spelling;>
is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

(> 1t 3 e
1{-: .-: .*: /= /= 0,/0:
&= |= N= >>= <<= *h—

The period can also occur in floating-point and imaginary literals. A sequence of three periods has a special
meaning as an ellipsis in slices. The second half of the list, the augmented assignment operators, serve lexically
as delimiters, but also perform an operation.

The following printing ASCII characters have special meaning as part of other tokens or are otherwise significant
to the lexical analyzer:

' " # \

The following printing ASCII characters are not used in Python. Their occurrence outside string literals and
comments is an unconditional error:

$?

12 Chapter 2. Lexical analysis

CHAPTER
THREE

DATA MODEL

3.1 Objects, values and types

Objectsare Python’s abstraction for data. All data in a Python program is represented by objects or by relations
between objects. (In a sense, and in conformance to Von Neumann’s model of a “stored program computer,” code
is also represented by objects.) Every object has an identity, a type and a value. An agattignever changes

once it has been created; you may think of it as the object’s address in memorys Tlopérator compares the
identity of two objects; théd() function returns an integer representing its identity (currently implemented as

its address). An objecttypeis also unchangeablé. An object’s type determines the operations that the object
supports (e.g., “does it have a length?”) and also defines the possible values for objects of that tixgee(The

function returns an object’s type (which is an object itself). Vakieof some objects can change. Objects whose
value can change are said to ipeitable objects whose value is unchangeable once they are created are called
immutable (The value of an immutable container object that contains a reference to a mutable object can change
when the latter’'s value is changed; however the container is still considered immutable, because the collection
of objects it contains cannot be changed. So, immutability is not strictly the same as having an unchangeable
value, it is more subtle.) An object’s mutability is determined by its type; for instance, numbers, strings and tuples
are immutable, while dictionaries and lists are mutable. Objects are never explicitly destroyed; however, when
they become unreachable they may be garbage-collected. An implementation is allowed to postpone garbage
collection or omit it altogether — it is a matter of implementation quality how garbage collection is implemented,
as long as no objects are collected that are still reachable. (Implementation note: CPython currently uses a
reference-counting scheme with (optional) delayed detection of cyclically linked garbage, which collects most
objects as soon as they become unreachable, but is not guaranteed to collect garbage containing circular references.
See the documentation of tige module for information on controlling the collection of cyclic garbage. Other
implementations act differently and CPython may change.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects alive that would nor-
mally be collectable. Also note that catching an exception wittna ‘..except * statement may keep objects
alive.

Some objects contain references to “external” resources such as open files or windows. It is understood that
these resources are freed when the object is garbage-collected, but since garbage collection is not guaranteed to
happen, such objects also provide an explicit way to release the external resource, usioakyf)a method.

Programs are strongly recommended to explicitly close such objectsirJhe finally * statement provides a
convenient way to do this. Some objects contain references to other objects; these amotdieers Examples

of containers are tuples, lists and dictionaries. The references are part of a container’s value. In most cases, when
we talk about the value of a container, we imply the values, not the identities of the contained objects; however,
when we talk about the mutability of a container, only the identities of the immediately contained objects are
implied. So, if an immutable container (like a tuple) contains a reference to a mutable object, its value changes if
that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is affected in some sense:
for immutable types, operations that compute new values may actually return a reference to any existing object
with the same type and value, while for mutable objects this is not allowed. E.g.aafterl; b = 1 ,a and

b may or may not refer to the same object with the value one, depending on the implementation, lut=after

L1t is possible in some cases to change an object's type, under certain controlled conditions. It generally isn't a good idea though, since it
can lead to some very strange behaviour if it is handled incorrectly.

13

The Python Language Reference, Release 2.6.2

[l d =[] ,candd are guaranteed to refer to two different, unique, newly created empty lists. (Note that
d =[] assignsthe same object to batlandd.)

3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules (written in C, Java, or other languages,
depending on the implementation) can define additional types. Future versions of Python may add types to the type
hierarchy (e.g., rational numbers, efficiently stored arrays of integers, etc.). Some of the type descriptions below
contain a paragraph listing ‘special attributes.” These are attributes that provide access to the implementation and
are not intended for general use. Their definition may change in the future.

None This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameNone. It is used to signify the absence of a value in many situations, e.g., it is returned from
functions that don't explicitly return anything. Its truth value is false.

Notimplemented This type has a single value. There is a single object with this value. This object is accessed
through the built-in namBlotimplemented . Numeric methods and rich comparison methods may return
this value if they do not implement the operation for the operands provided. (The interpreter will then try
the reflected operation, or some other fallback, depending on the operator.) Its truth value is true.

Ellipsis This type has a single value. There is a single object with this value. This object is accessed through the
built-in nameEllipsis . Itis used to indicate the presence of the syntax in a slice. Its truth value is
true.

numbers.Number These are created by numeric literals and returned as results by arithmetic operators and
arithmetic built-in functions. Numeric objects are immutable; once created their value never changes.
Python numbers are of course strongly related to mathematical numbers, but subject to the limitations of
numerical representation in computers.

Python distinguishes between integers, floating point numbers, and complex numbers:

numbers.Integral These represent elements from the mathematical set of integers (positive and neg-
ative).
There are three types of integers:

Plain integers These represent numbers in the range -2147483648 through 2147483647. (The range
may be larger on machines with a larger natural word size, but not smaller.) When the result of an
operation would fall outside this range, the result is normally returned as a long integer (in some
cases, the exceptiodverflowError is raised instead). For the purpose of shift and mask
operations, integers are assumed to have a binary, 2's complement notation using 32 or more bits,
and hiding no bits from the user (i.e., all 4294967296 different bit patterns correspond to different
values).

Long integers These represent numbers in an unlimited range, subject to available (virtual) memory
only. For the purpose of shift and mask operations, a binary representation is assumed, and
negative numbers are represented in a variant of 2's complement which gives the illusion of an
infinite string of sign bits extending to the left.

Booleans These represent the truth values False and True. The two objects representing the values
False and True are the only Boolean objects. The Boolean type is a subtype of plain integers, and
Boolean values behave like the values 0 and 1, respectively, in almost all contexts, the exception
being that when converted to a string, the stritfggse” or"True" are returned, respectively.

The rules for integer representation are intended to give the most meaningful interpretation of shift
and mask operations involving negative integers and the least surprises when switching between the
plain and long integer domains. Any operation, if it yields a result in the plain integer domain, will
yield the same result in the long integer domain or when using mixed operands. The switch between
domains is transparent to the programmer.

numbers.Real (float) These represent machine-level double precision floating point numbers. You
are at the mercy of the underlying machine architecture (and C or Java implementation) for the ac-
cepted range and handling of overflow. Python does not support single-precision floating point num-
bers; the savings in processor and memory usage that are usually the reason for using these is dwarfed

14 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

by the overhead of using objects in Python, so there is no reason to complicate the language with two
kinds of floating point numbers.

numbers.Complex These represent complex numbers as a pair of machine-level double precision float-
ing point numbers. The same caveats apply as for floating point numbers. The real and imaginary
parts of a complex numbercan be retrieved through the read-only attribesal andz.imag .

SequencesThese represent finite ordered sets indexed by non-negative numbers. The built-in flex@ion
returns the number of items of a sequence. When the length of a sequentieeisndex set contains the
numbers 0, 1, ..n-1. Itemi of sequencea is selected bw[i] . Sequences also support sliciragi:j]
selects all items with indelk such thai <= k < j. When used as an expression, a slice is a sequence of the
same type. This implies that the index set is renumbered so that it starts at 0. Some sequences also support
“extended slicing” with a third “step” parameteafi:j:k] selects all items of with indexx wherex =
i + n*k ,n>=0andi<=x<]j.
Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is created. (If the
object contains references to other objects, these other objects may be mutable and may be changed;
however, the collection of objects directly referenced by an immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; a character is repre-
sented by a string of one item. Characters represent (at least) 8-bit bytes. The built-in functions
chr() andord() convert between characters and nonnegative integers representing the byte
values. Bytes with the values 0-127 usually represent the corresponding ASCII values, but the
interpretation of values is up to the program. The string data type is also used to represent ar-
rays of bytes, e.g., to hold data read from a file. (On systems whose native character set is not
ASCII, strings may use EBCDIC in their internal representation, provided the funatfo(s
andord() implement a mapping between ASCIl and EBCDIC, and string comparison preserves
the ASCII order. Or perhaps someone can propose a better rule?)

Unicode The items of a Unicode object are Unicode code units. A Unicode code unitis represented by
a Unicode object of one item and can hold either a 16-bit or 32-bit value representing a Unicode
ordinal (the maximum value for the ordinal is giversiys.maxunicode , and depends on how
Python is configured at compile time). Surrogate pairs may be present in the Unicode object, and
will be reported as two separate items. The built-in functiongehr() andord() convert
between code units and nonnegative integers representing the Unicode ordinals as defined in the
Unicode Standard 3.0. Conversion from and to other encodings are possible through the Unicode
methodencode() and the built-in functiorunicode()

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more items are formed by
comma-separated lists of expressions. A tuple of one item (a ‘singleton’) can be formed by affix-
ing a comma to an expression (an expression by itself does not create a tuple, since parentheses
must be usable for grouping of expressions). An empty tuple can be formed by an empty pair of
parentheses.

Mutable sequencesMutable sequences can be changed after they are created. The subscription and slicing
notations can be used as the target of assignmeni@nddelete) statements.
There is currently a single intrinsic mutable sequence type:
Lists The items of a list are arbitrary Python objects. Lists are formed by placing a comma-separated
list of expressions in square brackets. (Note that there are no special cases needed to form lists of
lengthOor1.)

The extension modularray provides an additional example of a mutable sequence type.

Set types These represent unordered, finite sets of unique, immutable objects. As such, they cannot be indexed
by any subscript. However, they can be iterated over, and the built-in furdetidn returns the number
of items in a set. Common uses for sets are fast membership testing, removing duplicates from a sequence,
and computing mathematical operations such as intersection, union, difference, and symmetric difference.

For set elements, the same immutability rules apply as for dictionary keys. Note that numeric types obey the
normal rules for numeric comparison: if two numbers compare equal {eand1.0), only one of them
can be contained in a set.

There are currently two intrinsic set types:

3.2. The standard type hierarchy 15

The Python Language Reference, Release 2.6.2

Sets These represent a mutable set. They are created by the begitf)n constructor and can be modified
afterwards by several methods, suctadd() .

Frozen sets These represent an immutable set. They are created by the bindzenset() construc-
tor. As a frozenset is immutable ahdshableit can be used again as an element of another set, or as
a dictionary key.

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript rajkdtion
selects the item indexed Wy from the mappinga; this can be used in expressions and as the target of
assignments atel statements. The built-in functidan() returns the number of items in a mapping.

There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity, the reason being that the efficient implementation
of dictionaries requires a key’s hash value to remain constant. Numeric types used for keys obey the
normal rules for numeric comparison: if two numbers compare equal {eagpg1.0) then they can
be used interchangeably to index the same dictionary entry.

Dictionaries are mutable; they can be created by{.tile notation (see sectidnictionary display$.
The extension moduletbm, gdbm, andbsddb provide additional examples of mapping types.

Callable types These are the types to which the function call operation (see séctiids) can be applied:

User-defined functions A user-defined function object is created by a function definition (see section
Function definitions It should be called with an argument list containing the same number of items
as the function’s formal parameter list.

Special attributes:

Attribute Meaning

func_doc The function’s documentation string, Nione if unavailable Writabl
__doc__ Another way of spellindunc_doc Writabl
func_name | The function’s name Writabl
__name__ | Another way of spellindunc_name Writabl
__module__| The name of the module the function was defined iMjone if unavailable. Writabl
func_defaultsA tuple containing default argument values for those arguments that have defaults\oitabl

None if no arguments have a default value

func_code | The code object representing the compiled function body. Writabl
func_globals A reference to the dictionary that holds the function’s global variables — the glohaRead-
namespace of the module in which the function was defined. only
func_dict The namespace supporting arbitrary function attributes. Writabl
func_closure None or a tuple of cells that contain bindings for the function’s free variables. Read-
only

D D®D®DD D

Most of the attributes labelled “Writable” check the type of the assigned value. Changed in version 2.4:
func_name is now writable. Function objects also support getting and setting arbitrary attributes,
which can be used, for example, to attach metadata to functions. Regular attribute dot-notation is used
to get and set such attributelote that the current implementation only supports function attributes

on user-defined functions. Function attributes on built-in functions may be supported in the future.

Additional information about a function’s definition can be retrieved from its code object; see the
description of internal types below.

User-defined methodsA user-defined method object combines a class, a class instaréer{ey and any
callable object (normally a user-defined function).
Special read-only attributedm_self is the class instance objedét_func is the function ob-
ject;im_class is the class ofm_self for bound methods or the class that asked for the method
for unbound methods; doc__ is the method’s documentation (sameims func.__doc__);
__name___is the method name (sameias func.__name__); __module__ is the name of the
module the method was defined in,one if unavailable. Changed in version 2.2n_self used
to refer to the class that defined the method.Changed in version 2.6: For 3.0 forward-compatibility,
im_func is also available as func__ , andim_self as__self . Methods also support ac-
cessing (but not setting) the arbitrary function attributes on the underlying function object.

16 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

User-defined method objects may be created when getting an attribute of a class (perhaps via an in-
stance of that class), if that attribute is a user-defined function object, an unbound user-defined method
object, or a class method object. When the attribute is a user-defined method object, a new method
object is only created if the class from which it is being retrieved is the same as, or a derived class of,
the class stored in the original method object; otherwise, the original method object is used as it is.
When a user-defined method object is created by retrieving a user-defined function object from a class,
itsim_self attribute isNone and the method object is said to be unbound. When one is created by
retrieving a user-defined function object from a class via one of its instancis, gelf attribute is

the instance, and the method object is said to be bound. In either case, the new methold'ss

attribute is the class from which the retrieval takes place, anichitfunc attribute is the original
function object. When a user-defined method object is created by retrieving another method object
from a class or instance, the behaviour is the same as for a function object, except tmatftime

attribute of the new instance is not the original method object bumitfunc attribute. When a
user-defined method object is created by retrieving a class method object from a class or instance,
its im_self attribute is the class itself (the same as itmeclass attribute), and itsm_func

attribute is the function object underlying the class method.

When an unbound user-defined method object is called, the underlying furiatidiuiic) is called,

with the restriction that the first argument must be an instance of the properiotastass) or of

a derived class thereof.

When a bound user-defined method object is called, the underlying funatiofugc) is called,
inserting the class instancien(_self) in front of the argument list. For instance, wh€rs a class

which contains a definition for a functidf) , andx is an instance ot, callingx.f(1) is equivalent

to callingC.f(x, 1)

When a user-defined method object is derived from a class method object, the “class instance” stored
inim_self will actually be the class itself, so that calling eithef(1) or C.f(1) is equivalent

to callingf(C,1) wheref is the underlying function.

Note that the transformation from function object to (unbound or bound) method object happens each
time the attribute is retrieved from the class or instance. In some cases, a fruitful optimization is to
assign the attribute to a local variable and call that local variable. Also notice that this transforma-
tion only happens for user-defined functions; other callable objects (and all non-callable objects) are
retrieved without transformation. It is also important to note that user-defined functions which are
attributes of a class instance are not converted to bound methodsniylsappens when the function

is an attribute of the class.

Generator functions A function or method which uses theéeld statement (see sectidine yield state-
men) is called agenerator function Such a function, when called, always returns an iterator object
which can be used to execute the body of the function: calling the iteratex) method will
cause the function to execute until it provides a value usingitild statement. When the function
executes aeturn statement or falls off the end, $toplteration exception is raised and the
iterator will have reached the end of the set of values to be returned.

Built-in functions A built-in function object is a wrapper around a C function. Examples of built-in func-
tionsarden() andmath.sin() (math is a standard built-in module). The number and type of the
arguments are determined by the C function. Special read-only attributdsc__ is the function’s
documentation string, ddone if unavailable;_ _name__ is the function’s name; self _ is set
to None (but see the next item); module__ is the name of the module the function was defined in
or None if unavailable.

Built-in methods This is really a different disguise of a built-in function, this time containing an ob-
ject passed to the C function as an implicit extra argument. An example of a built-in method is
alist.append() , assumingalist is a list object. In this case, the special read-only attribute
__self s setto the object denoted bgt.

Class TypesClass types, or “new-style classes,” are callable. These objects normally act as factories for
new instances of themselves, but variations are possible for class types that overide () .
The arguments of the call are passed tmew () and, in the typical case, to init_ () to
initialize the new instance.

Classic ClassesClass objects are described below. When a class object is called, a new class instance (also
described below) is created and returned. This implies a call to the classis () method if
it has one. Any arguments are passed on to thaeit () method. If there isno_init_ ()
method, the class must be called without arguments.

3.2. The standard type hierarchy 17

The Python Language Reference, Release 2.6.2

Class instancesClass instances are described below. Class instances are callable only when the class has
a_ cal () method;x(arguments) is a shorthand fox.__call__(arguments)

Modules Modules are imported by thenport statement (see sectidre import statemeht A module object

has a hamespace implemented by a dictionary object (this is the dictionary referenced by the func_globals
attribute of functions defined in the module). Attribute references are translated to lookups in this dictionary,
e.g.,m.x is equivalent tan.__ dict__ ["X"] . A module object does not contain the code object used to
initialize the module (since it isn't needed once the initialization is done).

Attribute assignment updates the module’s namespace dictionary, re.g.,= 1 is equivalent to
m.__dict_ ['x] = 1 . Special read-only attribute: dict__ is the module’s namespace as a
dictionary object. Predefined (writable) attributes:name___is the module’s name;_doc__ is the
module’s documentation string, blone if unavailable;_ file_ is the pathname of the file from which

the module was loaded, if it was loaded from a file. Thdile_ attribute is not present for C mod-

ules that are statically linked into the interpreter; for extension modules loaded dynamically from a shared
library, it is the pathname of the shared library file.

ClassesBoth class types (new-style classes) and class objects (old-style/classic classes) are typically created

by class definitions (see secti@Hiass definitions A class has a nhamespace implemented by a dictio-
nary object. Class attribute references are translated to lookups in this dictionaryC.g.gis trans-

lated toC.__ dict__ ["X"] (although for new-style classes in particular there are a number of hooks
which allow for other means of locating attributes). When the attribute name is not found there, the at-
tribute search continues in the base classes. For old-style classes, the search is depth-first, left-to-right
in the order of occurrence in the base class list. New-style classes use the more complex C3 method
resolution order which behaves correctly even in the presence of ‘diamond’ inheritance structures where
there are multiple inheritance paths leading back to a common ancestor. Additional details on the C3
MRO used by new-style classes can be found in the documentation accompanying the 2.3 release at
http://www.python.org/download/releases/2.3/mro/When a class attribute reference (for cl&ssay)

would yield a user-defined function object or an unbound user-defined method object whose associated
class is eitheC or one of its base classes, it is transformed into an unbound user-defined method object
whoseim_class attribute isC. When it would yield a class method object, it is transformed into a bound
user-defined method object whase class andim_self attributes are botl€. When it would yield

a static method object, it is transformed into the object wrapped by the static method object. See section
Implementing Descriptorfor another way in which attributes retrieved from a class may differ from those
actually contained in its_dict__ (note that only new-style classes support descriptors). Class attribute
assignments update the class’s dictionary, never the dictionary of a base class. A class object can be
called (see above) to yield a class instance (see below). Special attributesne___ is the class name;
__module__ is the module name in which the class was definedtict _ is the dictionary containing

the class’s namespace;bases _ is a tuple (possibly empty or a singleton) containing the base classes,

in the order of their occurrence in the base class listioc__ is the class’s documentation string, or None

if undefined.

Class instancesA class instance is created by calling a class object (see above). A class instance has a namespace

implemented as a dictionary which is the first place in which attribute references are searched. When an
attribute is not found there, and the instance’s class has an attribute by that name, the search continues
with the class attributes. If a class attribute is found that is a user-defined function object or an unbound
user-defined method object whose associated class is the class @abfithe instance for which the
attribute reference was initiated or one of its bases, it is transformed into a bound user-defined method
object whosam_class attribute isC and whosém_self attribute is the instance. Static method and

class method objects are also transformed, as if they had been retrieved frort;ctessabove under
“Classes”. See sectidmplementing Descriptorfor another way in which attributes of a class retrieved via

its instances may differ from the objects actually stored in the clasglect . If no class attribute is

found, and the object’s class has ggetattr__ () method, that is called to satisfy the lookup. Attribute
assignments and deletions update the instance’s dictionary, never a class’s dictionary. If the class has a
__setattr__() or__delattr_ () method, this is called instead of updating the instance dictionary
directly. Class instances can pretend to be numbers, sequences, or mappings if they have methods with
certain special names. See secti#pecial method namesSpecial attributes: dict__ is the attribute
dictionary; __class__ s the instance’s class.

Files A file object represents an open file. File objects are created bggbe() built-in function, and also

by os.popen() , os.fdopen() , and themakefile() method of socket objects (and perhaps by

18

Chapter 3. Data model

http://www.python.org/download/releases/2.3/mro/

The Python Language Reference, Release 2.6.2

other functions or methods provided by extension modules). The olggststdin , sys.stdout
andsys.stderr are initialized to file objects corresponding to the interpreter's standard input, output
and error streams. Sé@e Objects(in The Python Library Referengéor complete documentation of file
objects.

Internal types A few types used internally by the interpreter are exposed to the user. Their definitions may
change with future versions of the interpreter, but they are mentioned here for completeness.

Code objects Code objects represehyte-compilecexecutable Python code, bytecode The difference
between a code object and a function object is that the function object contains an explicit reference to
the function’s globals (the module in which it was defined), while a code object contains no context;
also the default argument values are stored in the function object, not in the code object (because
they represent values calculated at run-time). Unlike function objects, code objects are immutable and
contain no references (directly or indirectly) to mutable objects.

Special read-only attributezo_name gives the function name;o_argcount is the number of
positional arguments (including arguments with default valugs)nlocals is the number of local
variables used by the function (including arguments);varnames is a tuple containing the names

of the local variables (starting with the argument names);cellvars is a tuple containing the
names of local variables that are referenced by nested functionBgevars is a tuple containing

the names of free variablesp_code is a string representing the sequence of bytecode instructions;
co_consts is a tuple containing the literals used by the bytecadenames is a tuple containing

the names used by the bytecode; filename s the flename from which the code was compiled;
co_firstlineno is the first line number of the functiorto_Inotab is a string encoding the
mapping from bytecode offsets to line numbers (for details see the source code of the interpreter);
co_stacksize s the required stack size (including local variables); flags is an integer en-
coding a number of flags for the interpreter. The following flag bits are definetbfdtags : bit

0x04 is set if the function uses thiarguments syntax to accept an arbitrary number of positional
arguments; bidx08 is set if the function uses thekeywords syntax to accept arbitrary keyword
arguments; bi0x20 is set if the function is a generator.

Future feature declarationsfrgm _ future_ import division) also use bits in
co_flags to indicate whether a code object was compiled with a particular feature enabled: bit
0x2000 is set if the function was compiled with future division enabled; b40 and0x1000

were used in earlier versions of Python.

Other bits inco_flags are reserved for internal use. If a code object represents a function, the first
item inco_consts is the documentation string of the function,Mone if undefined.

Frame objects Frame objects represent execution frames. They may occur in traceback objects (see be-
low). Special read-only attributed: back is to the previous stack frame (towards the caller),
or None if this is the bottom stack framé; code is the code object being executed in this frame;
f locals isthe dictionary used to look up local variablégglobals is used for global variables;
f_builtins is used for built-in (intrinsic) names; restricted is a flag indicating whether the
function is executing in restricted execution modelasti gives the precise instruction (this is
an index into the bytecode string of the code object). Special writable attribliteace |, if
not None, is a function called at the start of each source code line (this is used by the debugger);
f exc_type ,f exc value ,f _exc_traceback represent the last exception raised in the par-
ent frame provided another exception was ever raised in the current frame (in all other cases they
are None)f_lineno is the current line number of the frame — writing to this from within a trace
function jumps to the given line (only for the bottom-most frame). A debugger can implement a Jump
command (aka Set Next Statement) by writing to f_lineno.

Traceback objects Traceback objects represent a stack trace of an exception. A traceback object is cre-
ated when an exception occurs. When the search for an exception handler unwinds the execution
stack, at each unwound level a traceback object is inserted in front of the current traceback. When
an exception handler is entered, the stack trace is made available to the program. (Seé kection
try statemen) It is accessible asys.exc_traceback , and also as the third item of the tuple re-
turned bysys.exc_info() . The latter is the preferred interface, since it works correctly when the
program is using multiple threads. When the program contains no suitable handler, the stack trace is
written (nicely formatted) to the standard error stream; if the interpreter is interactive, it is also made
available to the user asgys.last_traceback . Special read-only attributesb_next is the
next level in the stack trace (towards the frame where the exception occurréneiif there is no

3.2. The standard type hierarchy 19

The Python Language Reference, Release 2.6.2

next level;tb_frame points to the execution frame of the current lewbl;lineno gives the line
number where the exception occurréd; lasti indicates the precise instruction. The line number
and last instruction in the traceback may differ from the line number of its frame object if the exception
occurred in a@ry statement with no matching except clause or with a finally clause.

Slice objects Slice objects are used to represent slices wddanded slice syntag used. This is a slice

using two colons, or multiple slices or ellipses separated by commasajgjestep] , a[izj,

kiA] ,oral..., iij] . They are also created by the builtgfice() function. Special read-

only attributes:start is the lower boundstop is the upper boundstep is the step value; each is

None if omitted. These attributes can have any type.

Slice objects support one method:

indices (self, length
This method takes a single integer argumengthand computes information about the extended
slice that the slice object would describe if applied to a sequeneagthitems. It returns a tuple
of three integers; respectively these aregtat andstopindices and thetepor stride length of
the slice. Missing or out-of-bounds indices are handled in a manner consistent with regular slices.
New in version 2.3.

Static method objects Static method objects provide a way of defeating the transformation of function
objects to method objects described above. A static method object is a wrapper around any other
object, usually a user-defined method object. When a static method object is retrieved from a class
or a class instance, the object actually returned is the wrapped object, which is not subject to any
further transformation. Static method objects are not themselves callable, although the objects they
wrap usually are. Static method objects are created by the bugtaiitmethod() constructor.

Class method objectsA class method object, like a static method object, is a wrapper around another ob-
ject that alters the way in which that object is retrieved from classes and class instances. The behaviour
of class method objects upon such retrieval is described above, under “User-defined methods”. Class
method objects are created by the builciassmethod() constructor.

3.3 New-style and classic classes

Classes and instances come in two flavors: old-style (or classic) and new-style.

Up to Python 2.1, old-style classes were the only flavour available to the user. The concept of (old-style) class
is unrelated to the concept of type:xfis an instance of an old-style class, then class _ designates the

class ofx, buttype(x) is always<type ’instance’> . This reflects the fact that all old-style instances,
independently of their class, are implemented with a single built-in type, dakitahce

New-style classes were introduced in Python 2.2 to unify classes and types. A new-style class is neither more
nor less than a user-defined type.xlfs an instance of a new-style class, thgpe(x) s typically the same
asx.__class__ (although this is not guaranteed - a new-style class instance is permitted to override the value
returned forx.__class__).

The major motivation for introducing new-style classes is to provide a unified object model with a full meta-
model. It also has a number of practical benefits, like the ability to subclass most built-in types, or the introduction
of “descriptors”, which enable computed properties.

For compatibility reasons, classes are still old-style by default. New-style classes are created by specifying another
new-style class (i.e. a type) as a parent class, or the “top-level tlgett if no other parent is needed. The
behaviour of new-style classes differs from that of old-style classes in a number of important details in addition
to whattype() returns. Some of these changes are fundamental to the new object model, like the way special
methods are invoked. Others are “fixes” that could not be implemented before for compatibility concerns, like the
method resolution order in case of multiple inheritance.

While this manual aims to provide comprehensive coverage of Python’s class mechanics, it may still be lacking
in some areas when it comes to its coverage of new-style classes. Plebgp geevw.python.org/doc/newstyle/

for sources of additional information. Old-style classes are removed in Python 3.0, leaving only the semantics of
new-style classes.

20 Chapter 3. Data model

http://www.python.org/doc/newstyle/

The Python Language Reference, Release 2.6.2

3.4 Special method names

A class can implement certain operations that are invoked by special syntax (such as arithmetic operations or
subscripting and slicing) by defining methods with special names. This is Python’s apprazmérator over-

loading, allowing classes to define their own behavior with respect to language operators. For instance, if a class
defines a method namedgetitem__ () , andx is an instance of this class, thgfi] is roughly equivalent to
X.__getitem__ (i) for old-style classes angpe(x).__getitem__ (X, i) for new-style classes. Ex-

cept where mentioned, attempts to execute an operation raise an exception when no appropriate method is defined
(typically AttributeError or TypeError).

When implementing a class that emulates any built-in type, it is important that the emulation only be implemented
to the degree that it makes sense for the object being modelled. For example, some sequences may work well with
retrieval of individual elements, but extracting a slice may not make sense. (One example of thisodehest

interface in the W3C’s Document Object Model.)

3.4.1 Basic customization

__new__(cls, [...]D
Called to create a new instance of clats _ new_ () is a static method (special-cased so you need
not declare it as such) that takes the class of which an instance was requested as its first argument. The
remaining arguments are those passed to the object constructor expression (the call to the class). The return
value of _new_ () should be the new object instance (usually an instancéspf

Typical implementations create a new instance of the class by invoking the superclassis ()
method usingsuper(currentclass, cls).__new__(cls[, ...]) with appropriate argu-
ments and then modifying the newly-created instance as necessary before returning it.

If __new_ () returns an instance als, then the new instance’s init_ () method will be invoked
like __init__ (selff, ...]) , Whereself is the new instance and the remaining arguments are the
same as were passed tonew__ () .

If __new () does notreturn an instance a§, then the new instance’s init_ () method will not
be invoked.

__new__ () isintended mainly to allow subclasses of immutable types (like int, str, or tuple) to customize
instance creation. Itis also commonly overridden in custom metaclasses in order to customize class creation.

_init__ (self,[...])
Called when the instance is created. The arguments are those passed to the class constructor expres-
sion. If a base class has aninit_ () method, the derived class’s init_ () method, if any,
must explicitly call it to ensure proper initialization of the base class part of the instance; for example:
BaseClass.__init__ (self, [args...]) . As a special constraint on constructors, no value may
be returned; doing so will causelgpeError to be raised at runtime.

__del__ (self
Called when the instance is about to be destroyed. This is also called a destructor. If a base class has
a_del_() method, the derived class’'s del__ () method, if any, must explicitly call it to ensure
proper deletion of the base class part of the instance. Note that it is possible (though not recommended!)
forthe del () method to postpone destruction of the instance by creating a new reference to it. It
may then be called at a later time when this new reference is deleted. It is not guaranteed¢hat()
methods are called for objects that still exist when the interpreter exits.

Note: del x doesn'tdirectly calk. _del () — the former decrements the reference counkfoy

one, and the latter is only called whrfs reference count reaches zero. Some common situations that may
prevent the reference count of an object from going to zero include: circular references between objects (e.qg.,
a doubly-linked list or a tree data structure with parent and child pointers); a reference to the object on the
stack frame of a function that caught an exception (the traceback stosgd.exc_traceback keeps

the stack frame alive); or a reference to the object on the stack frame that raised an unhandled exception in
interactive mode (the traceback storedys.last_traceback keeps the stack frame alive). The first
situation can only be remedied by explicitly breaking the cycles; the latter two situations can be resolved
by storingNone in sys.exc_traceback or sys.last_traceback . Circular references which are
garbage are detected when the option cycle detector is enabled (it's on by default), but can only be cleaned up

3.4. Special method names 21

The Python Language Reference, Release 2.6.2

if there are no Python-level del () methods involved. Refer to the documentation forghemodule
for more information about how del () methods are handled by the cycle detector, particularly the
description of theggarbage value.

Warning: Due to the precarious circumstances under whiattel () methods are invoked, excef
tions that occur during their execution are ignored, and a warning is printgdtstderr instead.
Also, when__del__() is invoked in response to a module being deleted (e.g., when executipn of
the program is done), other globals referenced by théel () method may already have begn
deleted or in the process of being torn down (e.g. the import machinery shutting down). For this rpason,
__del__() methods should do the absolute minimum needed to maintain external invariants. |Start-
ing with version 1.5, Python guarantees that globals whose name begins with a single undersgore are
deleted from their module before other globals are deleted; if no other references to such globals exist,
this may help in assuring that imported modules are still available at the time whendeé ()
method is called.

__repr__ (self)
Called by theepr() built-in function and by string conversions (reverse quotes) to compute the “official”
string representation of an object. If at all possible, this should look like a valid Python expression that could
be used to recreate an object with the same value (given an appropriate environment). If this is not possible,
a string of the form<...some useful description...> should be returned. The return value
must be a string object. If a class definesepr () butnot str () ,then_ repr_ () isalso
used when an “informal” string representation of instances of that class is required. This is typically used
for debugging, so it is important that the representation is information-rich and unambiguous.

__str__ (self)

Called by thestr() built-in function and by theprint statement to compute the “informal” string
representation of an object. This differs fromrepr__ () in that it does not have to be a valid Python
expression: a more convenient or concise representation may be used instead. The return value must be a
string object.

_ It (self, othey

__le__ (self, othey

__eq__ (self, othey

__ne__ (self, othej

gt (self, othey

__ge__ (self, othey
New in version 2.1. These are the so-called “rich comparison” methods, and are called for comparison
operators in preferencetocmp__ () below. The correspondence between operator symbols and method
names is as followsx<y callsx.__It_ (y) ,X<=y callsx.__le_ (y) ,x==y callsx.__eq__(y) ,
xl=y andx<>y callx._ne_(y) ,x>y callsx.__ gt _(y) ,andx>=y callsx.__ge_(y)

A rich comparison method may return the singleddotimplemented if it does not implement the op-

eration for a given pair of arguments. By conventibalse andTrue are returned for a successful com-
parison. However, these methods can return any value, so if the comparison operator is used in a Boolean
context (e.g., in the condition of ah statement), Python will calbool() on the value to determine if

the result is true or false.

There are no implied relationships among the comparison operators. The trxtiryfdoes not imply
thatx!=y is false. Accordingly, when defining eq_ () , one should also define ne_ () so that

the operators will behave as expected. See the paragrapht@sh () for some important notes on
creatinghashableobjects which support custom comparison operations and are usable as dictionary keys.

There are no swapped-argument versions of these methods (to be used when the left argument does not
support the operation but the right argument does); rathét, () and gt () are each other's
reflection, le () and_ge () are each other’s reflection, andeq () and _ne () are

their own reflection.

Arguments to rich comparison methods are never coerced.

__cmp__(self, othe}
Called by comparison operations if rich comparison (see above) is not defined. Should return a nega-
tive integer ifself < other , zeroifself == other , a positive integer ielf > other . If no
~cmp_ (O, _eq () or_ne () operationisdefined, classinstances are compared by object iden-

22 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

tity (“address”). See also the description ofhash () for some important notes on creatihgshable
objects which support custom comparison operations and are usable as dictionary keys. (Note: the restric-
tion that exceptions are not propagated bgmp__ () has been removed since Python 1.5.)

__rcmp__ (self, othej
Changed in version 2.1: No longer supported.

__hash__ (self)
Called by built-in functiorhash() and for operations on members of hashed collections inclusbhg
frozenset ,anddict . hash_ () shouldreturnaninteger. The only required property is that objects

which compare equal have the same hash value; it is advised to somehow mix together (e.g. using exclusive
or) the hash values for the components of the object that also play a part in comparison of objects.

If a class does notdefineacmp () or__eq_ () method it should not define a hash () opera-

tion either; ifitdefines_cmp__ () or__eq_ () butnot_hash_ () ,itsinstances will not be usable

in hashed collections. If a class defines mutable objects and implementsta () or __eq_ ()
method, it should not implement hash__ () , since hashable collection implementations require that a
object’s hash value is immutable (if the object’s hash value changes, it will be in the wrong hash bucket).

User-defined classes havecmp () and__hash__ () methods by default; with them, all objects
compare unequal (except with themselves)andhash__ () returnsid(x)

Classes which inherita hash__ () method from a parent class but change the meaningofp_ ()

or __eq_ () such that the hash value returned is no longer appropriate (e.g. by switching to a value-
based concept of equality instead of the default identity based equality) can explicitly flag themselves as
being unhashable by setting hash__ = None in the class definition. Doing so means that not only

will instances of the class raise an appropri@igeError when a program attempts to retrieve their
hash value, but they will also be correctly identified as unhashable when chésikisignce(obj,
collections.Hashable) (unlike classes which define their own hash () to explicitly raise
TypeError). Changed in version 2.5: hash__() may now also return a long integer object; the 32-

bit integer is then derived from the hash of that object.Changed in version Zhéish__ may now be set

to None to explicitly flag instances of a class as unhashable.

__nonzero__ (self)
Called to implement truth value testing and the built-in operatiool() ; should returrFalse or True ,
or their integer equivalent8 or 1. When this method is not defined, len_ () is called, if it is de-
fined, and the object is considered true if its result is nonzero. If a class defines neither () nor
__nonzero__ () , allits instances are considered true.

__unicode__ (self)
Called to implementinicode() builtin; should return a Unicode object. When this method is not defined,
string conversion is attempted, and the result of string conversion is converted to Unicode using the system
default encoding.

3.4.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, assignment to, or
deletion ofx.name) for class instances.

__getattr (' self, namg
Called when an attribute lookup has not found the attribute in the usual places (i.e. it is not an instance
attribute nor is it found in the class tree feelf). name is the attribute name. This method should
return the (computed) attribute value or raisefdmibuteError exception. Note that if the attribute is
found through the normal mechanism,getattr () is not called. (This is an intentional asymmetry
between getattr () and _setattr () .) This is done both for efficiency reasons and because
otherwise__getattr__ () would have no way to access other attributes of the instance. Note that at
least for instance variables, you can fake total control by not inserting any values in the instance attribute
dictionary (but instead inserting them in another object). See thetattribute () method below
for a way to actually get total control in new-style classes.

__setattr (self, name, value
Called when an attribute assignment is attempted. This is called instead of the normal mechanism (i.e. store
the value in the instance dictionaryflameis the attribute nameyalueis the value to be assigned to it.

3.4. Special method names 23

The Python Language Reference, Release 2.6.2

If setattr () wants to assign to an instance attribute, it should not simply exselt@ame
= value — this would cause a recursive call to itself. Instead, it should insert the value in the dictio-
nary of instance attributes, e.gelf.__dict__[name] = value . For new-style classes, rather than

accessing the instance dictionary, it should call the base class method with the same name, for example,
object.__setattr__ (self, name, value)

__delattr (' self, namg
Like setattr () but for attribute deletion instead of assignment. This should only be implemented
if del obj.name is meaningful for the object.

More attribute access for new-style classes

The following methods only apply to new-style classes.

__Qgetattribute___ (self, namg
Called unconditionally to implement attribute accesses for instances of the class. If the class also defines
__getattr__() , the latter will not be called unless getattribute () either calls it explicitly
or raises anttributeError . This method should return the (computed) attribute value or raise an
AttributeError exception. In order to avoid infinite recursion in this method, its implementation
should always call the base class method with the same name to access any attributes it needs, for example,
object.__getattribute__ (self, name)

Note: This method may still be bypassed when looking up special methods as the result of implicit invo-
cation via language syntax or builtin functions. S&e=cial method lookup for new-style classes

Implementing Descriptors

The following methods only apply when an instance of the class containing the method (a saieatiggtor
class) appears in the class dictionary of another new-style class, known awrkeclass. In the examples
below, “the attribute” refers to the attribute whose name is the key of the property in the owner cldiss’
Descriptors can only be implemented as new-style classes themselves.

__get__ (self, instance, ownégr
Called to get the attribute of the owner class (class attribute access) or of an instance of that class (instance
attribute access)owneris always the owner class, whilastanceis the instance that the attribute was
accessed through, dlone when the attribute is accessed throughdivmer. This method should return the
(computed) attribute value or raise AttributeError exception.

__set__ (self, instance, valye
Called to set the attribute on an instamestanceof the owner class to a new valualue

__delete__(self, instance
Called to delete the attribute on an instantstanceof the owner class.

Invoking Descriptors

In general, a descriptor is an object attribute with “binding behavior”, one whose attribute access has been over-
ridden by methods in the descriptor protocoliget () , set () ,and_delete_ () . Ifanyofthose
methods are defined for an object, it is said to be a descriptor.

The default behavior for attribute access is to get, set, or delete the attribute from an object’s dictionary. For
instancea.x has a lookup chain starting with__ dict__['x] , thentype(a).__dict__ ['X] ,and
continuing through the base classesypfe(a) excluding metaclasses.

However, if the looked-up value is an object defining one of the descriptor methods, then Python may override the
default behavior and invoke the descriptor method instead. Where this occurs in the precedence chain depends on
which descriptor methods were defined and how they were called. Note that descriptors are only invoked for new
style objects or classes (ones that subotdgsct() ortype()).

The starting point for descriptor invocation is a bindiags . How the arguments are assembled depends on

24 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

Direct Call The simplest and least common call is when user code directly invokes a descriptor method:
X.__get (a)

Instance Binding If binding to a new-style object instancea.x is transformed into the call:
type(a).__dict_ ['X'].__get (a, type(a))

Class Binding If binding to a new-style class, Ax is transformed into the call
A.__dict_ ['X].__get (None, A)

Super Binding If a is an instance ofsuper , then the binding super(B, obj).m() searches
obj. _class . mro__ for the base clas& immediately preceding and then invokes the descrip-
tor with the call:A.__dict__ ['m’].__get__ (obj, A)

For instance bindings, the precedence of descriptor invocation depends on the which descriptor methods are de-
fined. Normally, data descriptors define bottget () and__set () , while non-data descriptors have just

the_ _get () method. Data descriptors always override a redefinition in an instance dictionary. In contrast,
non-data descriptors can be overridden by instarfces.

Python methods (includingtaticmethod() andclassmethod()) are implemented as non-data descrip-
tors. Accordingly, instances can redefine and override methods. This allows individual instances to acquire
behaviors that differ from other instances of the same class.

The property() function is implemented as a data descriptor. Accordingly, instances cannot override the
behavior of a property.

__slots__

By default, instances of both old and new-style classes have a dictionary for attribute storage. This wastes space
for objects having very few instance variables. The space consumption can become acute when creating large
numbers of instances.

The default can be overridden by definingslots__in a new-style class definition. The slots__declaration
takes a sequence of instance variables and reserves just enough space in each instance to hold a value for each
variable. Space is saved becauséict__is not created for each instance.

__slots__
This class variable can be assigned a string, iterable, or sequence of strings with variable names used by
instances. If defined in a new-style classslots__reserves space for the declared variables and prevents
the automatic creation of dict and__weakref for each instance. New in version 2.2.

Notes on using_slots___

« When inheriting from a class without slots_, the dict__attribute of that class will always be accessible,

so a__slots__definition in the subclass is meaningless.

< Without a__dict__variable, instances cannot be assigned new variables not listed in shas__defini-
tion. Attempts to assign to an unlisted variable name rafdeuteError . If dynamic assignment
of new variables is desired, then adddict__’ to the sequence of strings in theslots__declaration.
Changed in version 2.3: Previously, addingdict__’ to the__slots__declaration would not enable
the assignment of new attributes not specifically listed in the sequence of instance variable names.

« Withouta__weakref variable for each instance, classes defininglots__do not support weak references
to its instances. If weak reference support is needed, theh adeakref ' to the sequence of strings
inthe__slots__declaration. Changed in version 2.3: Previously, addingreakref ' tothe _slots
declaration would not enable support for weak references.

« _slots__are implemented at the class level by creating descriptorglé menting Descriptojgor each
variable name. As a result, class attributes cannot be used to set default values for instance variables defined
by slots_; otherwise, the class attribute would overwrite the descriptor assignment.

2 A descriptor can define any combination ofget_ () , _set () and__delete () . If it does not define_get_ ()
then accessing the attribute even on an instance will return the descriptor object itself. If the descriptor_defines() and/or
__delete_ () ,itis a data descriptor; if it defines neither, it is a non-data descriptor.

3.4. Special method names 25

The Python Language Reference, Release 2.6.2

If a class defines a slot also defined in a base class, the instance variable defined by the base class slot is
inaccessible (except by retrieving its descriptor directly from the base class). This renders the meaning of
the program undefined. In the future, a check may be added to prevent this.

* The action of a__slots__declaration is limited to the class where it is defined. As a result, subclasses will
have a__dict__unless they also define slots_.

* Nonempty _slots__does not work for classes derived from “variable-length” built-in types sudbras ,
str andtuple

« Any non-string iterable may be assigned tcslots_. Mappings may also be used; however, in the future,
special meaning may be assigned to the values corresponding to each key.

e _class__assignment works only if both classes have the sanstots_. Changed in version 2.6: Previ-
ously, class__assignment raised an error if either new or old class hadots .

3.4.3 Customizing class creation

By default, new-style classes are constructed usipg() . A class definition is read into a separate namespace
and the value of class name is bound to the resulypd(name, bases, dict)
When the class definition is read, if metaclass_is defined then the callable assigned to it will be called instead
of type() . This allows classes or functions to be written which monitor or alter the class creation process:

« Modifying the class dictionary prior to the class being created.

« Returning an instance of another class — essentially performing the role of a factory function.
These steps will have to be performed in the metaclassiew__ () method type._ _new__ () canthen be

called from this method to create a class with different properties. This example adds a new element to the class
dictionary before creating the class:

class metacls (type):

def _ new__ (mcs, name, bases, dict):
dict ['foo’] = 'metacls was here
return type .__new__(mcs, name, bases, dict)

You can of course also override other class methods (or add new methods); for example defining a custom
cal(method in the metaclass allows custom behavior when the class is called, e.g. not always cre-
ating a new instance.

__metaclass__
This variable can be any callable accepting argumentadare, bases , anddict . Upon class creation,
the callable is used instead of the builttype() . New in version 2.2.

The appropriate metaclass is determined by the following precedence rules:

If dict[__metaclass__ '] exists, itis used.

« Otherwise, if there is at least one base class, its metaclass is used (this looks &bass__attribute first
and if not found, uses its type).

Otherwise, if a global variable named __metaclass__ exists, it is used.

Otherwise, the old-style, classic metaclass (types.ClassType) is used.

The potential uses for metaclasses are boundless. Some ideas that have been explored including logging, inter-
face checking, automatic delegation, automatic property creation, proxies, frameworks, and automatic resource
locking/synchronization.

26 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

3.4.4 Emulating callable objects

_call__ (self,[args..))
Called when the instance is “called” as a function; if this method is defi(@dgl, arg2, ...) is
a shorthand for.__call__(argl, arg2, ..)

3.4.5 Emulating container types

The following methods can be defined to implement container objects. Containers usually are sequences (such
as lists or tuples) or mappings (like dictionaries), but can represent other containers as well. The first set of
methods is used either to emulate a sequence or to emulate a mapping; the difference is that for a sequence,
the allowable keys should be the integkrfor whichO <= k < N whereN is the length of the sequence, or

slice objects, which define a range of items. (For backwards compatibility, the methedslice () (see

below) can also be defined to handle simple, but not extended slices.) It is also recommended that mappings
provide the methodkeys() , values() ,items() , has_key() , get() , clear() , setdefault() ,

iterkeys() , itervalues() , iteritems() ,pop() , popitem() ,copy() ,andupdate() behaving
similar to those for Python’s standard dictionary objects. UkerDict module provides ®ictMixin class

to help create those methods from a base set gietitem () , _ setitem_ () , _ delitem_ () ,
andkeys() . Mutable sequences should provide methagpend() , count() , index() , extend() |,
insert() ,pop() ,remove() ,reverse() andsort() ,like Python standard list objects. Finally, sequence
types should implement addition (meaning concatenation) and multiplication (meaning repetition) by defining
the methods add () , radd () , jadd () , mul_ (O ,_ rmul_(and__imul_() de-

scribed below; they should not definecoerce () or other numerical operators. Itis recommended that both
mappings and sequences implement theontains__ () method to allow efficient use of the operator; for
mappings,in should be equivalent dias_key() ; for sequences, it should search through the values. It is
further recommended that both mappings and sequences implementtthe () method to allow efficient
iteration through the container; for mappingsjter () should be the same @srkeys() ; for sequences,

it should iterate through the values.

_len__ (self)
Called to implement the built-in functiden() . Should return the length of the object, an integerO.
Also, an object that doesn’t define anonzero_ () method and whose len_ () method returns
zero is considered to be false in a Boolean context.

__getitem___ (self, key
Called to implement evaluation stlffkey] . For sequence types, the accepted keys should be integers
and slice objects. Note that the special interpretation of negative indexes (if the class wishes to emulate a
sequence type) is up to the getitem__ () method. Ifkeyis of an inappropriate typelypeError
may be raised; if of a value outside the set of indexes for the sequence (after any special interpretation of
negative values)ndexError should be raised. For mapping typeskefis missing (not in the container),
KeyError should be raised.

Note: for loops expect that amdexError will be raised for illegal indexes to allow proper detection
of the end of the sequence.

__setitem__ (self, key, valug
Called to implement assignmentgelffkey] . Same note as for _getitem__ () . This should only
be implemented for mappings if the objects support changes to the values for keys, or if new keys can be
added, or for sequences if elements can be replaced. The same exceptions should be raised fokagproper
values as for the getitem__ () method.

__delitem__ (self, key
Called to implement deletion dcfelflkey] . Same note as for_getitem__() . This should only
be implemented for mappings if the objects support removal of keys, or for sequences if elements can
be removed from the sequence. The same exceptions should be raised for inkpso@dues as for the
__getitem__() method.

_ iter__ (self)
This method is called when an iterator is required for a container. This method should return a new iterator
object that can iterate over all the objects in the container. For mappings, it should iterate over the keys of
the container, and should also be made available as the migthioslys()

3.4. Special method names 27

The Python Language Reference, Release 2.6.2

Iterator objects also need to implement this method; they are required to return themselves. For more
information on iterator objects, séterator Typegin The Python Library Referente

__reversed__ (self)
Called (if present) by theeversed() builtin to implement reverse iteration. It should return a new
iterator object that iterates over all the objects in the container in reverse order.

If the reversed () method is not provided, theeversed() builtin will fall back to using

the sequence protocol (len_ () and__getitem ()). Objects should normally only provide
__reversed_ () if they do not support the sequence protocol and an efficient implementation of re-
verse iteration is possible. New in version 2.6.

The membership test operatons (andnot in) are normally implemented as an iteration through a sequence.
However, container objects can supply the following special method with a more efficient implementation, which
also does not require the object be a sequence.

__contains__ (self, iten)
Called to implement membership test operators. Should return titeariis in self, false otherwise. For
mapping objects, this should consider the keys of the mapping rather than the values or the key-item pairs.

3.4.6 Additional methods for emulation of sequence types

The following optional methods can be defined to further emulate sequence objects. Immutable sequences meth-
ods should at most only define getslice_ () ; mutable sequences might define all three methods.

__getslice__ (self,i,)
Deprecated since version 2.0: Support slice objects as parameters tathgem_ () method. (How-
ever, built-in types in CPython currently still implement getslice_ () . Therefore, you have to
override it in derived classes when implementing slicing.) Called to implement evaluaseif[af]
The returned object should be of the same typseds Note that missing or j in the slice expression
are replaced by zero @ys.maxint , respectively. If negative indexes are used in the slice, the length
of the sequence is added to that index. If the instance does not implementl#me () method, an

AttributeError is raised. No guarantee is made that indexes adjusted this way are not still negative.
Indexes which are greater than the length of the sequence are not modified. lfeslice () is
found, a slice object is created instead, and passeddetitem__ () instead.

__setslice_ (self,i,], sequenge
Called to implement assignmentgelffi:j] . Same notes farandj as for__getslice_ ()
This method is deprecated. If no setslice_ () is found, or for extended slicing of the form
selffi:j:k] , aslice object is created, and passed teetitem__ () ,instead of _setslice_ ()
being called.

__delslice_ (self,i,)
Called to implement deletion oelffi:j] . Same notes for andj as for __ getslice_ ()
This method is deprecated. If no delslice_ () is found, or for extended slicing of the form
selffi:j:k] , aslice objectis created, and passed tdelitem_ () ,instead of delslice ()
being called.

Notice that these methods are only invoked when a single slice with a single colon is used, and the slice
method is available. For slice operations involving extended slice notation, or in absence of the slice methods,
__getitem__() ,__setitem__() or__delitem__ () is called with a slice object as argument.

The following example demonstrate how to make your program or module compatible with earlier versions of
Python (assuming that methodsgetitem__ () , _ setitem__() and _ delitem_ () support slice
objects as arguments):

class MyClass :
def _ getitem__ (self , index):

def _ setitem__ (self , index, value):

28 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

def _ delitem__ (self , index):

if sys . version_info < (2, O)
They won’t be defined if version is at least 2.0 final

def _ getslice (self , i, j):

return self [max(0, i): max(0, j)]
def _ setslice_ (self , i, j, seq):

self [max(0, i): max(0, j)] = seq
def _ delslice_ (self , i,)):

del self [max(0, i); max(0, j)]

Note the calls tomax() ; these are necessary because of the handling of negative indices before the
__*slice_ () methods are called. When negative indexes are used, theem__ () methods receive

them as provided, but the *slice_ () methods get a “cooked” form of the index values. For each negative

index value, the length of the sequence is added to the index before calling the method (which may still result

in a negative index); this is the customary handling of negative indexes by the built-in sequence types, and the
__*item__() methods are expected to do this as well. However, since they should already be doing that, neg-
ative indexes cannot be passed in; they must be constrained to the bounds of the sequence before being passed to
the_ *item__ () methods. Callingnax(0, i) conveniently returns the proper value.

3.4.7 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to operations that are
not supported by the particular kind of number implemented (e.g., bitwise operations for non-integral numbers)
should be left undefined.

__add__ (self, othe}

__sub__ (self, othe}

__mul__ (self, othe}

__floordiv__ (self, othe)

__mod__ (self, othe}

__divmod___ (self, othe}

__pow__ (self, other, [modulo)

__Ishift__ (' self, othe}

_ rshift__ (' self, othe}

__and__ (self, othe}

__xor__ (self, othe}

__or__ (self, othey
These methods are called to implement the binary arithmetic operations ¢, // , % divmod() |,
pow() , **, <<, >>, & ", |). For instance, to evaluate the expressiont y, wherex is an in-
stance of a class that has anadd__ () method,x.__add__(y) is called. The divmod__ ()
method should be the equivalent to usingloordiv__ () and__mod__ () ; it should not be related
to truediv_ () (described below). Note that pow () should be defined to accept an optional
third argument if the ternary version of the builtpow() function is to be supported.

If one of those methods does not support the operation with the supplied arguments, it should return
Notimplemented

__div__ (self, othe}

__truediv__ (self, othe}
The division operator/() is implemented by these methods. Theruediv__ () method is used when
__future__.division is in effect, otherwise div__ () is used. If only one of these two methods

is defined, the object will not support division in the alternate confexpeError will be raised instead.

__radd__ (self, othe}
__rsub__ (self, othe}
__rmul__ (self, othe}

3.4. Special method names 29

The Python Language Reference, Release 2.6.2

__rdiv__ (self, othej

__rtruediv__ (self, othe}

__rfloordiv__ (self, othe}

__rmod___ (self, othe}

__rdivmod__ (self, othe}

__rpow___ (self, othej

__rishift__ (' self, othej

__rrshift_ (self, othe}

__rand___ (self, othe}

__rxor__ (self, othe}

__ror__ (self, othe}
These methods are called to implement the binary arithmetic operatipns®(,/ , % divmod() , pow() ,
<<, >> & N, |) with reflected (swapped) operands. These functions are only called if the left operand
does not support the corresponding operation and the operands are of different tyf@s. instance,
to evaluate the expression - y , wherey is an instance of a class that has anrsub__ () method,
y.__rsub_ (x) is called ifx.__sub__(y) returnsNotimplemented Note that ternarpow() will
not try calling__rpow__ () (the coercion rules would become too complicated).

Note: If the right operand’s type is a subclass of the left operand’s type and that subclass provides the
reflected method for the operation, this method will be called before the left operand’s non-reflected method.
This behavior allows subclasses to override their ancestors’ operations.

__iadd__ (self, othe}

__isub__ (self, othe}

__imul__ (self, othej

__idiv__ (self, othe}

__itruediv__ (self, othe)

__ifloordiv__ (self, othe}

__imod___ (self, othe}

__ipow___ (self, other, [modulg]

__ilshift__ (self, othej

__irshift__ (self, othe}

__iand__ (self, othe}

__ixor__ (self, othe}

__ior__ (self, othe}
These methods are called to implement the augmented arithmetic assignments,(*=, /=, /= |, %5
= <<=, >>= &=, "=, |=). These methods should attempt to do the operation in-place (mod#ggifig
and return the result (which could be, but does not have tedi), If a specific method is not defined, the
augmented assignment falls back to the normal methods. For instance, to execute the sxatement
wherex is an instance of a class that has aiadd () methodx. __iadd__ (y) is called. Ifxis an
instance of a class that does not define aadd () methodx.__add_(y) andy. radd_ (x)
are considered, as with the evaluatiorxofr vy .

__neg__ (self)
__pos__ (self)
__abs__ (self
__invert__ (self)

Called to implement the unary arithmetic operationst, abs() and~).

__complex__ (self)

_int__ (self)

__long__ (self)

__float__ (' self)
Called to implement the built-in functiormomplex() ,int() ,long() ,andfloat() . Should return
a value of the appropriate type.

__oct__ (self

__hex__ (self)

Called to implement the built-in functiormt() andhex() . Should return a string value.

3 For operands of the same type, it is assumed that if the non-reflected method (sueklés ()) fails the operation is not supported,
which is why the reflected method is not called.

30 Chapter 3. Data model

The Python Language Reference, Release 2.6.2

__index__ (self)
Called to implemenbperator.index() . Also called whenever Python needs an integer object (such
as in slicing). Must return an integer (int or long). New in version 2.5.

__coerce__ (self, othej
Called to implement “mixed-mode” numeric arithmetic. Should either return a 2-tuple contaislirend
otherconverted to a common numeric type,None if conversion is impossible. When the common type
would be the type obther , it is sufficient to returrNone, since the interpreter will also ask the other
object to attempt a coercion (but sometimes, if the implementation of the other type cannot be changed, it
is useful to do the conversion to the other type here). A return validotmplemented is equivalent
to returningNone.

3.4.8 Coercion rules

This section used to document the rules for coercion. As the language has evolved, the coercion rules have become
hard to document precisely; documenting what one version of one particular implementation does is undesirable.
Instead, here are some informal guidelines regarding coercion. In Python 3.0, coercion will not be supported.

If the left operand of a % operator is a string or Unicode object, no coercion takes place and the string
formatting operation is invoked instead.

It is no longer recommended to define a coercion operation. Mixed-mode operations on types that don't
define coercion pass the original arguments to the operation.

New-style classes (those derived fraject) never invoke the coerce () method in response to
a binary operator; the only time coerce_ () is invoked is when the built-in functionoerce() is
called.

For most intents and purposes, an operator that reNiotisnplemented is treated the same as one that
is not implemented at all.

Below, _op_ () and__rop_ () are used to signify the generic method names corresponding to an
operator;__iop__ () is used for the corresponding in-place operator. For example, for the operator
‘+' add () and__radd () are used for the left and right variant of the binary operator, and
__jadd__ () for the in-place variant.

For objectxandy, firstx.__op__(y) istried. If this is notimplemented or returhtimplemented
y._ rop__(x) is tried. If this is also not implemented or retumdstimplemented , a TypeError
exception is raised. But see the following exception:

Exception to the previous item: if the left operand is an instance of a built-in type or a new-style class,
and the right operand is an instance of a proper subclass of that type or class and overrides the base’s
__rop__() method,therightoperand'srop_ () methodis triedeforethe leftoperand’s_op__ ()

method.

This is done so that a subclass can completely override binary operators. Otherwise, the left operand’s
__op__() method would always accept the right operand: when an instance of a given class is expected,
an instance of a subclass of that class is always acceptable.

When either operand type defines a coercion, this coercion is called before that typp’s () or
_rop__() method is called, but no sooner. If the coercion returns an object of a different type for
the operand whose coercion is invoked, part of the process is redone using the new object.

When an in-place operator (like-=") is used, if the left operand implementsiop__ () , it is invoked
without any coercion. When the operation falls back top__ () and/or__rop__ () ,the normal coer-
cion rules apply.

Inx + vy, if xis a sequence that implements sequence concatenation, sequence concatenation is invoked.

Inx * y , if one operator is a sequence that implements sequence repetition, and the other is an integer
(int orlong), sequence repetition is invoked.

3.4. Special method names 31

The Python Language Reference, Release 2.6.2

» Rich comparisons (implemented by methodeq () and so on) never use coercion. Three-way compar-
ison (implemented by cmp__ ()) does use coercion under the same conditions as other binary operations
use it.

« In the current implementation, the built-in numeric tyjets , long andfloat do not use coercion; the
type complex however does use coercion for binary operators and rich comparisons, despite the above
rules. The difference can become apparent when subclassing these types. Over time, cbenplpe
may be fixed to avoid coercion. All these types implement acerce_ () method, for use by the
built-in coerce() function.

3.4.9 With Statement Context Managers

New in version 2.5. Acontext manageris an object that defines the runtime context to be established when
executing avith statement. The context manager handles the entry into, and the exit from, the desired runtime
context for the execution of the block of code. Context managers are normally invoked usimighthstatement
(described in sectiomhe with statemejtbut can also be used by directly invoking their methods. Typical uses

of context managers include saving and restoring various kinds of global state, locking and unlocking resources,
closing opened files, etc.

For more information on context managers, €eatext Manager Typg@ The Python Library Referenge

__enter__ (self)
Enter the runtime context related to this object. Then statement will bind this method’s return value to
the target(s) specified in ttees clause of the statement, if any.

__exit__ (self, exc_type, exc_value, tracebpack
Exit the runtime context related to this object. The parameters describe the exception that caused the context
to be exited. If the context was exited without an exception, all three arguments \Wbe.

If an exception is supplied, and the method wishes to suppress the exception (i.e., prevent it from being
propagated), it should return a true value. Otherwise, the exception will be processed normally upon exit
from this method.

Note that _exit () methods should not reraise the passed-in exception; this is the caller’s responsibil-
ity.
See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pyithibn statement.

3.4.10 Special method lookup for old-style classes

For old-style classes, special methods are always looked up in exactly the same way as any other method
or attribute. This is the case regardless of whether the method is being looked up explicitly as in
X.__getitem__(i) or implicitly as inx([i]

This behaviour means that special methods may exhibit different behaviour for different instances of a single
old-style class if the appropriate special attributes are set differently:

>>> class C.

pass
>>> ¢l = C()
>>> ¢2 = C()
>>> cl._len__ = lambda: 5
>>> ¢2.__len__ = lambda: 9

>>> len (cl)

>>> len (c2)

32 Chapter 3. Data model

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

3.4.11 Special method lookup for new-style classes
For new-style classes, implicit invocations of special methods are only guaranteed to work correctly if defined on

an object’s type, not in the object’s instance dictionary. That behaviour is the reason why the following code raises
an exception (unlike the equivalent example with old-style classes):

>>> class C(object):

pass
>>> ¢ = C()
>>> c¢._len__ = lambda: 5
>>> len (c)
Traceback (most recent call last):
File "<stdin>" , line 1, in <module>

TypeError : object of type 'C' has no len()

The rationale behind this behaviour lies with a number of special methods suchhash () and
__repr__() thatareimplemented by all objects, including type objects. If the implicit lookup of these methods
used the conventional lookup process, they would fail when invoked on the type object itself:

>>> 1 .__hash_ () == hash(1)
True
>>> int . _hash__ () == hash(int)
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in <module>

TypeError : descriptor '__hash__’' of ’int’ object needs an argument
Incorrectly attempting to invoke an unbound method of a class in this way is sometimes referred to as ‘metaclass
confusion’, and is avoided by bypassing the instance when looking up special methods:

>>> type (1).__hash_ (1) == hash(1)

True

>>> type (int). __hash_(int) == hash(int)
True

In addition to bypassing any instance attributes in the interest of correctness, implicit special method lookup
generally also bypasses thegetattribute () method even of the object’s metaclass:

>>> class Meta(type):

def __ getattribute_ (*args):
print " Metaclass getattribute invoked !
return type . _ getattribute_ (*args)

>>> class C(object):

__metaclass__ = Meta

def __len__ (self):
return 10

def _ getattribute (*args):
print " Class getattribute invoked !
return object . __ getattribute_ (*args)

>>> c = C()

>>> c¢.__len_ () # Explicit lookup via instance
Class getattribute invoked

10

>>> type (c) .__len__(c) # Explicit lookup via type

Metaclass getattribute invoked

3.4. Special method names 33

The Python Language Reference, Release 2.6.2

10

>>> len (c) # Implicit lookup

10

Bypassing the getattribute__ () machinery in this fashion provides significant scope for speed optimi-

sations within the interpreter, at the cost of some flexibility in the handling of special methods (the special method
mustbe set on the class object itself in order to be consistently invoked by the interpreter).

34 Chapter 3. Data model

CHAPTER
FOUR

EXECUTION MODEL

4.1 Naming and binding

Namesrefer to objects. Names are introduced by name binding operations. Each occurrence of a name in the
program text refers to theinding of that name established in the innermost function block containing the use.

A block is a piece of Python program text that is executed as a unit. The following are blocks: a module, a
function body, and a class definition. Each command typed interactively is a block. A script file (a file given as
standard input to the interpreter or specified on the interpreter command line the first argument) is a code block.
A script command (a command specified on the interpreter command line witkctlogtion) is a code block.

The file read by the built-in functioexecfile() is a code block. The string argument passed to the built-in
functioneval() and to theexec statement is a code block. The expression read and evaluated by the built-in
functioninput() is a code block. A code block is executed inetecution frame A frame contains some
administrative information (used for debugging) and determines where and how execution continues after the code
block’s execution has completed. gsopedefines the visibility of a name within a block. If a local variable is
defined in a block, its scope includes that block. If the definition occurs in a function block, the scope extends
to any blocks contained within the defining one, unless a contained block introduces a different binding for the
name. The scope of names defined in a class block is limited to the class block; it does not extend to the code
blocks of methods — this includes generator expressions since they are implemented using a function scope. This
means that the following will fail:

class A
a = 42
b =list (@ +i for i in range (10))

When a name is used in a code block, it is resolved using the nearest enclosing scope. The set of all such scopes
visible to a code block is called the bloclésivironment If a name is bound in a block, it is a local variable of

that block. If a name is bound at the module level, it is a global variable. (The variables of the module code block
are local and global.) If a variable is used in a code block but not defined there, fiteis ®ariable When a

name is not found at all, ldameError exception is raised. If the name refers to a local variable that has not been
bound, aUnboundLocalError exception is raisedUnboundLocalError is a subclass dNameError .

The following constructs bind names: formal parameters to functiomsort statements, class and function
definitions (these bind the class or function name in the defining block), and targets that are identifiers if occurring
in an assignmenfor loop header, in the second position of @xcept clause header or afteis in awith
statement. Thenport statement of the forfrom ... import * binds all names defined in the imported
module, except those beginning with an underscore. This form may only be used at the module level.

A target occurring in alel statement is also considered bound for this purpose (though the actual semantics are
to unbind the name). It is illegal to unbind a name that is referenced by an enclosing scope; the compiler will
report aSyntaxgerror

Each assignment or import statement occurs within a block defined by a class or function definition or at the
module level (the top-level code block).

If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated
as references to the current block. This can lead to errors when a name is used within a block before it is bound.
This rule is subtle. Python lacks declarations and allows name binding operations to occur anywhere within a code

35

The Python Language Reference, Release 2.6.2

block. The local variables of a code block can be determined by scanning the entire text of the block for name
binding operations.

If the global statement occurs within a block, all uses of the name specified in the statement refer to the binding

of that name in the top-level namespace. Names are resolved in the top-level namespace by searching the global
namespace, i.e. the namespace of the module containing the code block, and the builtin namespace, the namespace
of the module__builtin__ . The global namespace is searched first. If the name is not found there, the
builtin namespace is searched. The global statement must precede all uses of the name. The built-in namespace
associated with the execution of a code block is actually found by looking up the nadoodtins__ in its

global namespace; this should be a dictionary or a module (in the latter case the module’s dictionary is used). By
default, when inthe _main__ module,__ builtins__ is the built-in module__builtin__ (note: no 's’);

when in any other module, builtins__ is an alias for the dictionary of the builtin__ module itself.
__builtins__ can be set to a user-created dictionary to create a weak form of restricted execution.

Note: Users should not touch builtins__ ; itis strictly an implementation detail. Users wanting to override
values in the built-in namespace shouttbort the builtin__ (no ‘s’) module and modify its attributes
appropriately. The namespace for a module is automatically created the first time a module is imported. The
main module for a script is always calledmain__ .

The global statement has the same scope as a name binding operation in the same block. If the nearest enclosing
scope for a free variable contains a global statement, the free variable is treated as a global.

A class definition is an executable statement that may use and define names. These references follow the normal
rules for name resolution. The namespace of the class definition becomes the attribute dictionary of the class.
Names defined at the class scope are not visible in methods.

4.1.1 Interaction with dynamic features

There are several cases where Python statements are illegal when used in conjunction with nested scopes that
contain free variables.

If a variable is referenced in an enclosing scope, it is illegal to delete the name. An error will be reported at
compile time.

If the wild card form of import —import * — is used in a function and the function contains or is a nested
block with free variables, the compiler will raiseSyntaxError

If exec is used in a function and the function contains or is a nested block with free variables, the compiler will
raise aSyntaxError unless the exec explicitly specifies the local namespace fogxthe . (In other words,
exec obj would be illegal, buexec obj in ns would be legal.)

Theeval() , execfile() , andinput() functions and thesxec statement do not have access to the full
environment for resolving names. Names may be resolved in the local and global namespaces of the caller.
Free variables are not resolved in the nearest enclosing namespace, but in the global nameShaesec
statement and theval() andexecfile() functions have optional arguments to override the global and local
namespace. If only one namespace is specified, it is used for both.

4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order to handle errors or
other exceptional conditions. An exceptiorragsedat the point where the error is detected; it mayhbadledby

the surrounding code block or by any code block that directly or indirectly invoked the code block where the error
occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division by zero). A Python
program can also explicitly raise an exception with thise statement. Exception handlers are specified with
thetry ... except statement. Thénally clause of such a statement can be used to specify cleanup code
which does not handle the exception, but is executed whether an exception occurred or not in the preceding code.
Python uses the “termination” model of error handling: an exception handler can find out what happened and

1 This limitation occurs because the code that is executed by these operations is not available at the time the module is compiled.

36 Chapter 4. Execution model

The Python Language Reference, Release 2.6.2

continue execution at an outer level, but it cannot repair the cause of the error and retry the failing operation
(except by re-entering the offending piece of code from the top). When an exception is not handled at all, the
interpreter terminates execution of the program, or returns to its interactive main loop. In either case, it prints a
stack backtrace, except when the exceptioByistemExit

Exceptions are identified by class instances. &heept clause is selected depending on the class of the instance:
it must reference the class of the instance or a base class thereof. The instance can be received by the handler and
can carry additional information about the exceptional condition.

Exceptions can also be identified by strings, in which casetisept clause is selected by object identity. An
arbitrary value can be raised along with the identifying string which can be passed to the handler.

Warning: Messages to exceptions are not part of the Python API. Their contents may change frgm one
version of Python to the next without warning and should not be relied on by code which will run ¢ginder
multiple versions of the interpreter.

See also the description of the statement in sectiofhe try statemeraéndraise statement in sectiofhe
raise statement

4.2. Exceptions 37

The Python Language Reference, Release 2.6.2

38 Chapter 4. Execution model

CHAPTER
FIVE

EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Py8yotax Notes: In this and the
following chapters, extended BNF notation will be used to describe syntax, not lexical analysis. When (one
alternative of) a syntax rule has the form

name = othername

and no semantics are given, the semantics of this fornanfe are the same as fathername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments are converted to a
common type,” the arguments are coerced using the coercion rules listed@ion rules If both arguments are
standard numeric types, the following coercions are applied:

If either argument is a complex number, the other is converted to complex;

otherwise, if either argument is a floating point number, the other is converted to floating point;

otherwise, if either argument is a long integer, the other is converted to long integer;

otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g., a string left argument to the ‘%’ operator). Extensions can
define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or literals. Forms enclosed
in reverse quotes or in parentheses, brackets or braces are also categorized syntactically as atoms. The syntax for
atoms is:

atom R identifier | literal | enclosure
enclosure n= parenth_form | list_display
| generator_expression | dict_display
| string_conversion | yield_atom

5.2.1 ldentifiers (Names)

An identifier occurring as an atom is a name. See sediientifiers and keyword®r lexical definition and section
Naming and bindindor documentation of naming and binding. When the name is bound to an object, evaluation
of the atom yields that object. When a name is not bound, an attempt to evaluate it fésasBrror exception.
Private name mangling: When an identifier that textually occurs in a class definition begins with two or more
underscore characters and does not end in two or more underscores, it is consftératt amameof that class.

39

The Python Language Reference, Release 2.6.2

Private names are transformed to a longer form before code is generated for them. The transformation inserts
the class name in front of the name, with leading underscores removed, and a single underscore inserted in front
of the class name. For example, the identifiespam occurring in a class namadamwill be transformed to
_Ham__spam This transformation is independent of the syntactical context in which the identifier is used. If the
transformed name is extremely long (longer than 255 characters), implementation defined truncation may happen.
If the class name consists only of underscores, no transformation is done.

5.2.2 Literals

Python supports string literals and various numeric literals:

literal n= stringliteral | integer | longinteger
| floathumber | imagnumber

Evaluation of a literal yields an object of the given type (string, integer, long integer, floating point number,
complex number) with the given value. The value may be approximated in the case of floating point and imaginary
(complex) literals. See sectidrnterals for details. All literals correspond to immutable data types, and hence the
object’s identity is less important than its value. Multiple evaluations of literals with the same value (either the
same occurrence in the program text or a different occurrence) may obtain the same object or a different object
with the same value.

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:
parenth_form m= (" [expression_list] “)”

A parenthesized expression list yields whatever that expression list yields: if the list contains at least one comma,
it yields a tuple; otherwise, it yields the single expression that makes up the expression list. An empty pair
of parentheses yields an empty tuple object. Since tuples are immutable, the rules for literals apply (i.e., two
occurrences of the empty tuple may or may not yield the same object). Note that tuples are not formed by the
parentheses, but rather by use of the comma operator. The exception is the empty tuple, for which passatheses
required — allowing unparenthesized “nothing” in expressions would cause ambiguities and allow common typos
to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display m= “[" [expression_list | list_comprehension] “]"
list_comprehension expression list_for

list_for = “for” target_list “in” old_expression_list [list_iter]
old_expression_list n= old_expression [(“,” old_expression)+ [*,]]
list_iter = list for | list_if

list_if = “if" old_expression [list_iter]

A list display yields a new list object. Its contents are specified by providing either a list of expressions or a list
comprehension. When a comma-separated list of expressions is supplied, its elements are evaluated from left to
right and placed into the list object in that order. When a list comprehension is supplied, it consists of a single
expression followed by at least ofie clause and zero or mofer orif clauses. In this case, the elements of

the new list are those that would be produced by considering each fufrther if clauses a block, nesting from

left to right, and evaluating the expression to produce a list element each time the innermost block is'reached

5.2.5 Generator expressions

A generator expression is a compact generator notation in parentheses:

1In Python 2.3 and later releases, a list comprehension “leaks” the control variables dbeaithcontains into the containing scope.
However, this behavior is deprecated, and relying on it will not work in Python 3.0

40 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

generator_expression = “(" expression genexpr_for “)”
genexpr_for n= “for” target_list “in” or_test [genexpr_iter]
genexpr_iter = genexpr_for | genexpr_if

genexpr_if = “if" old_expression [genexpr_iter]

A generator expression yields a new generator object. It consists of a single expression followed by at least one
for clause and zero or mofer orif clauses. The iterating values of the new generator are those that would
be produced by considering each of the orif clauses a block, nesting from left to right, and evaluating the
expression to yield a value that is reached the innermost block for each iteration.

Variables used in the generator expression are evaluated lazily in a separate scope wbka&t(themethod is

called for the generator object (in the same fashion as for normal generators). However, éRpression of

the leftmostior clause is immediately evaluated in the current scope so that an error produced by it can be seen
before any other possible error in the code that handles the generator expression. Subseqaedtf clauses

cannot be evaluated immediately since they may depend on the préwviousop. For example(x*y for x

in range(10) for y in bar(x))

The parentheses can be omitted on calls with only one argument. See s&dtifior the detail.

5.2.6 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display m= " [key_datum_list] “}”
key_datum_list = key datum (“,” key_datum)* [",]
key datum ;= expression " expression

A dictionary display yields a new dictionary object.

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: each key object is used

as a key into the dictionary to store the corresponding datum. Restrictions on the types of the key values are listed
earlier in sectiomhe standard type hierarchyTo summarize, the key type should h&shable which excludes

all mutable objects.) Clashes between duplicate keys are not detected; the last datum (textually rightmost in the
display) stored for a given key value prevails.

5.2.7 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion n= expression_list

A string conversion evaluates the contained expression list and converts the resulting object into a string according
to rules specific to its type.

If the object is a string, a numbeXone, or a tuple, list or dictionary containing only objects whose type is one
of these, the resulting string is a valid Python expression which can be passed to the built-in fewalfpn to
yield an expression with the same value (or an approximation, if floating point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to escape sequences that
are safe to print.) Recursive objects (for example, lists or dictionaries that contain a reference to themselves,
directly or indirectly) use.. to indicate a recursive reference, and the result cannot be passealfo to get

an equal valueSyntaxError will be raised instead). The built-in functioepr() performs exactly the same
conversion in its argument as enclosing it in parentheses and reverse quotes does. The built-indiijction
performs a similar but more user-friendly conversion.

5.2.8 Yield expressions

yield_atom
yield_expression

“(” yield_expression *)”
“yield” [expression_list]

New in version 2.5. Thgield expression is only used when defining a generator function, and can only be used

5.2. Atoms 41

The Python Language Reference, Release 2.6.2

in the body of a function definition. Usingyaeld expression in a function definition is sufficient to cause that
definition to create a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator. That generator then controls the
execution of a generator function. The execution starts when one of the generator’s methods is called. At that
time, the execution proceeds to the fiygtld expression, where it is suspended again, returning the value of
expression_list to generator’s caller. By suspended we mean that all local state is retained, including the
current bindings of local variables, the instruction pointer, and the internal evaluation stack. When the execution
is resumed by calling one of the generator’'s methods, the function can proceed exactly glfitheexpression

was just another external call. The value of tiield expression after resuming depends on the method which
resumed the execution. All of this makes generator functions quite similar to coroutines; they yield multiple times,
they have more than one entry point and their execution can be suspended. The only difference is that a generator
function cannot control where should the execution continue after it yields; the control is always transfered to
the generator’s caller. The following generator’s methods can be used to control the execution of a generator
function:

next ()
Starts the execution of a generator function or resumes it at the last exgalted expression. When a
generator function is resumed witmaxt() method, the currentield expression always evaluates to
None. The execution then continues to the ngrid expression, where the generator is suspended again,

and the value of thexpression_list is returned tanext() ‘s caller. If the generator exits without
yielding another value, toplteration exception is raised.
send (valug

Resumes the execution and “sends” a value into the generator functionvalttee argument becomes
the result of the currentield expression. Theend() method returns the next value yielded by the
generator, or raisestoplteration if the generator exits without yielding another value. Whend()

is called to start the generator, it must be called Withhe as the argument, because there isymebd
expression that could receive the value.

throw (type, [value, [traceback]]
Raises an exception of typgpe at the point where generator was paused, and returns the next
value yielded by the generator function. If the generator exits without yielding another value, a
Stoplteration exception is raised. If the generator function does not catch the passed-in exception,
or raises a different exception, then that exception propagates to the caller.

close ()
Raises d&eneratorExit at the point where the generator function was paused. If the generator function
then raisesStoplteration (by exiting normally, or due to already being closed)G@neratorExit

(by not catching the exception), close returns to its caller. If the generator yields a vRutjiimeError
is raised. If the generator raises any other exception, it is propagated to theaiaef) does nothing
if the generator has already exited due to an exception or normal exit.

Here is a simple example that demonstrates the behavior of generators and generator functions:

>>> def echo (value =None):

print " Execution starts when "next() ' is called for the first time.
try :
while True :
try :
value = (yield value)
except Exception , e:
value = e
finally
print " Don’'t forget to clean up when "close() ' is called. !
>>> generator = echo(1)

>>> print generator . next()

Execution starts when ’'next()’ is called for the first time.
1

>>> print generator . next()

42 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

None

>>> print generator . send(2)

2

>>> generator . throw(TypeError , "spam")

TypeError('spam’,)
>>> generator . close()
Don't forget to clean up when ’close()’ is called.

See Also:

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal to enhance the APl and syntax of generators,
making them usable as simple coroutines.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary = atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref @= primary “.” identifier

The primary must evaluate to an object of a type that supports attribute references, e.g., a module, list, or an
instance. This object is then asked to produce the attribute whose name is the identifier. If this attribute is not
available, the exceptioAttributeError is raised. Otherwise, the type and value of the object produced is
determined by the object. Multiple evaluations of the same attribute reference may yield different objects.

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) object:
subscription n= primary “[" expression_list “]”
The primary must evaluate to an object of a sequence or mapping type.
If the primary is a mapping, the expression list must evaluate to an object whose value is one of the keys of the

mapping, and the subscription selects the value in the mapping that corresponds to that key. (The expression list
is a tuple except if it has exactly one item.)

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value is negative, the
length of the sequence is added to it (so that, &[¢l] selects the last item of.) The resulting value must be

a nonnegative integer less than the number of items in the sequence, and the subscription selects the item whose
index is that value (counting from zero). A string’s items are characters. A character is not a separate data type
but a string of exactly one character.

5.3.3 Slicings

A slicing selects a range of items in a sequence object (e.g., a string, tuple or list). Slicings may be used as
expressions or as targets in assignmerttedr statements. The syntax for a slicing:

5.3. Primaries 43

http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

slicing = simple_slicing | extended_slicing
simple_slicing = primary “[" short_slice “]”
extended_slicing primary “[" slice_list “]”

slice_list = slice_item (%, slice_item)* [","]
slice_item ;= expression | proper_slice | ellipsis
proper_slice := short_slice | long_slice

short_slice = [lower_bound] “” [upper_bound]
long_slice ;= short_slice “:” [stride]
lower_bound = expression

upper_bound = expression

stride = expression

ellipsis =

There is ambiguity in the formal syntax here: anything that looks like an expression list also looks like a slice
list, so any subscription can be interpreted as a slicing. Rather than further complicating the syntax, this is
disambiguated by defining that in this case the interpretation as a subscription takes priority over the interpretation
as a slicing (this is the case if the slice list contains no proper slice nor ellipses). Similarly, when the slice list has
exactly one short slice and no trailing comma, the interpretation as a simple slicing takes priority over that as an
extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence object. The lower
and upper bound expressions, if present, must evaluate to plain integers; defaults are zersymohthént
respectively. If either bound is negative, the sequence’s length is added to it. The slicing now selects all items
with indexk such thatt <= k < j wherei andj are the specified lower and upper bounds. This may be an
empty sequence. It is not an erroriibr j lie outside the range of valid indexes (such items don't exist so they
aren't selected). The semantics for an extended slicing are as follows. The primary must evaluate to a mapping
object, and it is indexed with a key that is constructed from the slice list, as follows. If the slice list contains at
least one comma, the key is a tuple containing the conversion of the slice items; otherwise, the conversion of the
lone slice item is the key. The conversion of a slice item that is an expression is that expression. The conversion
of an ellipsis slice item is the built-ikllipsis object. The conversion of a proper slice is a slice object (see
sectionThe standard type hierarchywhosestart , stop andstep attributes are the values of the expressions
given as lower bound, upper bound and stride, respectively, substiNiing for missing expressions.

5.3.4 Calls

A call calls a callable object (e.g., a function) with a possibly empty series of arguments:

call = primary “(" [argument_list [","]
| expression genexpr_for] “)”
argument_list = positional_arguments [",” keyword_arguments]

[')" “*" expression] [",” keyword_arguments]

[, “**" expression]

| keyword_arguments [",” “*" expression]

[’)" “**" expression]

| “*" expression [",” “*" expression] [",)” “**" expression]
| “**" expression

positional_arguments = expression (“," expression)*
keyword_arguments = keyword_item (“,” keyword_item)*
keyword_item n= identifier “=" expression

A trailing comma may be present after the positional and keyword arguments but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, methods of built-in
objects, class objects, methods of class instances, and certain class instances themselves are callable; extensions
may define additional callable object types). All argument expressions are evaluated before the call is attempted.
Please refer to sectidgrunction definitiongor the syntax of formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows. First, a list of
unfilled slots is created for the formal parameters. If there are N positional arguments, they are placed in the
first N slots. Next, for each keyword argument, the identifier is used to determine the corresponding slot (if the

44 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

identifier is the same as the first formal parameter name, the first slot is used, and so on). If the slot is already
filled, aTypeError exception is raised. Otherwise, the value of the argument is placed in the slot, filling it (even

if the expression idlone, it fills the slot). When all arguments have been processed, the slots that are still unfilled
are filled with the corresponding default value from the function definition. (Default values are calculated, once,
when the function is defined; thus, a mutable object such as a list or dictionary used as default value will be shared
by all calls that don't specify an argument value for the corresponding slot; this should usually be avoided.) If
there are any unfilled slots for which no default value is specifi@meError exception is raised. Otherwise,

the list of filled slots is used as the argument list for the call.

Note: An implementation may provide builtin functions whose positional parameters do not have names, even
if they are ‘named’ for the purpose of documentation, and which therefore cannot be supplied by keyword. In
CPython, this is the case for functions implemented in C thaPy#eg_ParseTuple to parse their arguments.

If there are more positional arguments than there are formal parameter Slgiearror exception is raised,
unless a formal parameter using the syrfidentifier is present; in this case, that formal parameter receives
a tuple containing the excess positional arguments (or an empty tuple if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter ndiygeRrror exception is raised, un-

less a formal parameter using the syritéigentifier is present; in this case, that formal parameter receives

a dictionary containing the excess keyword arguments (using the keywords as keys and the argument values as
corresponding values), or a (new) empty dictionary if there were no excess keyword arguments.

If the syntax*expression appears in the function cakbxpression must evaluate to a sequence. Elements

from this sequence are treated as if they were additional positional arguments; if there are positional arguments
x1,...,xN, andexpression evaluates to a sequeng® ..., yM, this is equivalent to a call with M+N positional
argumentxl, ...,xN, y1, ...,yM.

A consequence of this is that although tlegpression syntax may appeafter some keyword arguments, it
is processetieforethe keyword arguments (and tiexpression argument, if any — see below). So:

>>> def f(a, b):
print a, b

>>> f(b =1, *(2,)
21
>>> fa =1, *(2)
Traceback (most recent call last):
File ‘"<stdin>" , line 1, in?
TypeError : f() got multiple values for keyword argument ’a’
>>> (1, *(2)
12

It is unusual for both keyword arguments and thgpression syntax to be used in the same call, so in practice
this confusion does not arise.

If the syntax**expression appears in the function calexpression must evaluate to a mapping, the
contents of which are treated as additional keyword arguments. In the case of a keyword appearing in both
expression and as an explicit keyword argumentTgpeError exception is raised.

Formal parameters using the syntédentifier or **identifier cannot be used as positional argument

slots or as keyword argument names. Formal parameters using the @uiibst) cannot be used as keyword
argument names; the outermost sublist corresponds to a single unnamed argument slot, and the argument value is
assigned to the sublist using the usual tuple assignment rules after all other parameter processing is done.

A call always returns some value, possidpne, unless it raises an exception. How this value is computed
depends on the type of the callable object.

Ifitis—

a user-defined function: The code block for the function is executed, passing it the argument list. The first
thing the code block will do is bind the formal parameters to the arguments; this is described in section
Function definitionsWhen the code block executesedurn statement, this specifies the return value of
the function call.

5.3. Primaries 45

The Python Language Reference, Release 2.6.2

a built-in function or method: The result is up to the interpreter; s@ailt-in Functions(in The Python Library
Referencgfor the descriptions of built-in functions and methods.

a class object: A new instance of that class is returned.

a class instance method:The corresponding user-defined function is called, with an argument list that is one
longer than the argument list of the call: the instance becomes the first argument.

a class instance:The class must define a call__ () method; the effect is then the same as if that method
was called.

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than unary operators
on its right. The syntax is:

power = primary [™*" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evaluated from right to left
(this does not constrain the evaluation order for the operantfs results in-1 .

The power operator has the same semantics as the bpittvi§) function, when called with two arguments: it
yields its left argument raised to the power of its right argument. The numeric arguments are first converted to a
common type. The result type is that of the arguments after coercion.

With mixed operand types, the coercion rules for binary arithmetic operators apply. For int and long int operands,
the result has the same type as the operands (after coercion) unless the second argument is negative; in that case,
all arguments are converted to float and a float result is delivered. For exd@i2, returns100, but10**-2

returns0.01 . (This last feature was added in Python 2.2. In Python 2.1 and before, if both arguments were of
integer types and the second argument was negative, an exception was raised).

Raising0.0 to a negative power results inZeroDivisionError . Raising a negative number to a fractional
power results in &alueError

5.5 Unary arithmetic and bitwise operations

All unary arithmetic and bitwise operations have the same priority:
u_expr n= power | “-" u_expr | “+” u_expr | “~" u_expr

The unary- (minus) operator yields the negation of its numeric argument. The un@pjus) operator yields
its numeric argument unchanged. The unarfinvert) operator yields the bitwise inversion of its plain or long
integer argument. The bitwise inversionyofs defined as(x+1) . It only applies to integral numbers. In all
three cases, if the argument does not have the proper typmekrror exception is raised.

5.6 Binary arithmetic operations

The binary arithmetic operations have the conventional priority levels. Note that some of these operations also
apply to certain non-numeric types. Apart from the power operator, there are only two levels, one for multiplicative
operators and one for additive operators:

m_expr = u_expr | m_expr “*" u_expr | m_expr “//" u_expr | m_expr “/" u_expr
| m_expr “%” u_expr
m_expr | a_expr “+" m_expr | a_expr “-" m_expr

a_expr

The* (multiplication) operator yields the product of its arguments. The arguments must either both be numbers, or
one argument must be an integer (plain or long) and the other must be a sequence. In the former case, the numbers
are converted to a common type and then multiplied together. In the latter case, sequence repetition is performed;
a negative repetition factor yields an empty sequence. /T{dvision) and// (floor division) operators yield

46 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

the quotient of their arguments. The numeric arguments are first converted to a common type. Plain or long
integer division yields an integer of the same type; the result is that of mathematical division with the ‘floor’
function applied to the result. Division by zero raises BezoDivisionError exception. Thé&s(modulo)

operator yields the remainder from the division of the first argument by the second. The numeric arguments are
first converted to a common type. A zero right argument raise&#nmeDivisionError exception. The
arguments may be floating point numbers, 8dl4%0.7 equals€0.34 (since3.14 equalsA*0.7 + 0.34)

The modulo operator always yields a result with the same sign as its second operand (or zero); the absolute value
of the result is strictly smaller than the absolute value of the second opérand

The integer division and modulo operators are connected by the following identity: (x/y)*y + (x%y)

Integer division and modulo are also connected with the built-in funaiemod() : divmod(x, y) ==

(xly, x%y) . These identities don’t hold for floating point numbers; there similar identities hold approximately
wherex/ly is replaced byloor(x/y) orfloor(xty) - 1 3,

In addition to performing the modulo operation on numbers, %h@perator is also overloaded by string and
unicode objects to perform string formatting (also known as interpolation). The syntax for string formatting is de-
scribed in the Python Library Reference, secttring Formatting Operationén The Python Library Referenge
Deprecated since version 2.3: The floor division operator, the modulo operator, atidrtioel() function are

no longer defined for complex numbers. Instead, convert to a floating point number usaigsthe function

if appropriate. Thet (addition) operator yields the sum of its arguments. The arguments must either both be
numbers or both sequences of the same type. In the former case, the numbers are converted to a common type and
then added together. In the latter case, the sequences are concatenatedsulteaction) operator yields the
difference of its arguments. The numeric arguments are first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:
shift_expr m= a_expr | shift_expr (“<<” | “>>") a_expr

These operators accept plain or long integers as arguments. The arguments are converted to a common type. They
shift the first argument to the left or right by the number of bits given by the second argument. A right ghift by

bits is defined as division bgow(2, n) . A left shift by n bits is defined as multiplication withow(2, n)

Negative shift counts raise\galueError exception.

5.8 Binary bitwise operations

Each of the three bitwise operations has a different priority level:
and_expr = shift_expr | and_expr “&” shift_expr
Xor_expr and_expr | xor_expr “" and_expr
or_expr Xor_expr | or_expr “|"” xor_expr

The & operator yields the bitwise AND of its arguments, which must be plain or long integers. The arguments
are converted to a common type. Theperator yields the bitwise XOR (exclusive OR) of its arguments, which
must be plain or long integers. The arguments are converted to a common typg.opérator yields the bitwise
(inclusive) OR of its arguments, which must be plain or long integers. The arguments are converted to a common

type.

2 While abs(x%y) < abs(y) is true mathematically, for floats it may not be true numerically due to roundoff. For example, and
assuming a platform on which a Python float is an IEEE 754 double-precision number, in orddeti®0 % 1el00 have the same
sign asle100, the computed result ide-100 + 1e100 , which is numerically exactly equal tke100 . Functionfmod() in themath
module returns a result whose sign matches the sign of the first argument instead, and seletli®ds in this case. Which approach is
more appropriate depends on the application.

3 If x is very close to an exact integer multiple of y, it's possiblefiopr(x/y) to be one larger thafx-x%y)/y due to rounding. In
such cases, Python returns the latter result, in order to presenaivtiratd(x,y)[0] * v + X % y be very close tx.

5.7. Shifting operations 47

The Python Language Reference, Release 2.6.2

5.9 Comparisons

Unlike C, all comparison operations in Python have the same priority, which is lower than that of any arithmetic,
shifting or bitwise operation. Also unlike C, expressions bke< b < ¢ have the interpretation that is conven-
tional in mathematics:

comparison
comp_operator

or_expr (comp_operator or_expr)*
H<H | H>H | H::H | H>:H | H<:H | “<>” | H!:”
| “iS” ["notﬂ] | ["notﬂ] “in”

Comparisons yield boolean valuekue or False . Comparisons can be chained arbitrarily, exgs y <=
Zisequivalenttx < y and y <= z , exceptthay is evaluated only once (butin both cagds not evaluated
at all whenx < vy is found to be false).

Formally, ifa, b, c, ...,y, zare expressions amapl, op2, ...,opN are comparison operators, thenopl b op2
C .. yopN z isequivalenttea opl b and b op2 c and ... y opN z , except that each ex-
pression is evaluated at most once.

Note thata opl b op2 c doesn’timply any kind of comparison betweamndc, so that,e.gx <y > z
is perfectly legal (though perhaps not pretty).

The forms<> and!=are equivalent; for consistency with Z, is preferred; wheré= is mentioned below> is
also accepted. The> spelling is considered obsolescent.

The operators;, >, ==, >=, <=, and!= compare the values of two objects. The objects need not have the same
type. If both are numbers, they are converted to a common type. Otherwise, objects of differeraiwaes
compare unequal, and are ordered consistently but arbitrarily. You can control comparison behavior of objects of
non-builtin types by defining a cmp__ method or rich comparison methods likegt _ , described in section
Special method names

(This unusual definition of comparison was used to simplify the definition of operations like sorting and the
andnot in operators. In the future, the comparison rules for objects of different types are likely to change.)

Comparison of objects of the same type depends on the type:

* Numbers are compared arithmetically.

 Strings are compared lexicographically using the numeric equivalents (the result of the built-in function
ord()) of their characters. Unicode and 8-bit strings are fully interoperable in this behavior.

» Tuples and lists are compared lexicographically using comparison of corresponding elements. This means
that to compare equal, each element must compare equal and the two sequences must be of the same type
and have the same length.

If not equal, the sequences are ordered the same as their first differing elements. For example,
cmp([1,2,x], [1,2,y]) returns the same asmp(x,y) . If the corresponding element does not
exist, the shorter sequence is ordered first (for exanibl2] < [1,2,3]).

« Mappings (dictionaries) compare equal if and only if their sorted (key, value) lists compare &dDat-
comes other than equality are resolved consistently, but are not otherwise défined.

« Most other objects of builtin types compare unequal unless they are the same object; the choice whether
one object is considered smaller or larger than another one is made arbitrarily but consistently within one
execution of a program.

The operatorén andnot in test for collection membership. in s evaluates to true ik is a member of the
collections, and false otherwisex not in s returns the negation of in s . The collection membership test
has traditionally been bound to sequences; an object is a member of a collection if the collection is a sequence

4 While comparisons between unicode strings make sense at the byte level, they may be counter-intuitive to users. For example, the strings
u"\u00C7" andu™\u0043\u0327" compare differently, even though they both represent the same unicode character (LATIN CAPTITAL
LETTER C WITH CEDILLA). To compare strings in a human recognizable way, compare usiogdedata.normalize()

5 The implementation computes this efficiently, without constructing lists or sorting.

6 Earlier versions of Python used lexicographic comparison of the sorted (key, value) lists, but this was very expensive for the common
case of comparing for equality. An even earlier version of Python compared dictionaries by identity only, but this caused surprises because
people expected to be able to test a dictionary for emptiness by comparidg it to

48 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

and contains an element equal to that object. However, it make sense for many other object types to support
membership tests without being a sequence. In particular, dictionaries (for keys) and sets support membership
testing.

For the list and tuple typeg, in y istrue if and only if there exists an indésuch thakk == y[i] is true.

For the Unicode and string types, in y is true if and only ifx is a substring ofy. An equivalent test is
y.find(x) = -1 . Note,x andy need not be the same type; consequenthb’ in ’'abc’ will return
True . Empty strings are always considered to be a substring of any other stritig,iso"abc" will return
True . Changed in version 2.3: Previousk/was required to be a string of length For user-defined classes
which define the contains__ () methodx in y istrueifandonlyify. contains__ (x) is true.

For user-defined classes which do not defineontains__ () and do define_getitem__ () ,x iny is
true if and only if there is a non-negative integer indexich thaix == y[i] , and all lower integer indices do
not raiselndexError exception. (If any other exception is raised, it is agif raised that exception). The
operatomot in is defined to have the inverse true valuérof The operatorss andis not test for object
identity: x is y is true if and only ifx andy are the same object. is not y yields the inverse truth value.
7

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression = conditional_expression | lambda_form
old_expression = or_test | old_lambda_form
conditional_expression n= or_test ["if" or_test “else” expression]
or_test = and_test | or_test “or" and_test
and_test = not_test | and_test “and” not_test
not_test = comparison | “not” not_test

In the context of Boolean operations, and also when expressions are used by control flow statements, the follow-
ing values are interpreted as faldealse , None, numeric zero of all types, and empty strings and containers
(including strings, tuples, lists, dictionaries, sets and frozensets). All other values are interpreted as true. (See the
__nonzero__() special method for a way to change this.) The openator yields True if its argument is
false,False otherwise.

The expressiox if C else y first evaluate€ (not X; if C is true,x is evaluated and its value is returned;
otherwisey is evaluated and its value is returned. New in version 2.5. The expressiod y first evaluates

x; if xis false, its value is returned; otherwisds evaluated and the resulting value is returned. The expression
x or y first evaluatex; if x is true, its value is returned; otherwiseis evaluated and the resulting value is
returned.

(Note that neitheand noror restrict the value and type they returnRalse andTrue , but rather return the
last evaluated argument. This is sometimes useful, e.g.isifa string that should be replaced by a default value
if it is empty, the expressios or 'foo’ yields the desired value. Becaus& has to invent a value anyway,

it does not bother to return a value of the same type as its argument, swoe.¢Qo’ yieldsFalse , not”.)

5.11 Lambdas

lambda_form
old_lambda_form

“lambda” [parameter_list]: expression
“lambda” [parameter_list]: old_expression

Lambda forms (lambda expressions) have the same syntactic position as expressions. They are a shorthand to
create anonymous functions; the express&onbda arguments: expression yields a function object.
The unnamed object behaves like a function object defined with

7 Due to automatic garbage-collection, free lists, and the dynamic nature of descriptors, you may notice seemingly unusual behaviour in
certain uses of thes operator, like those involving comparisons between instance methods, or constants. Check their documentation for more
info.

5.10. Boolean operations 49

The Python Language Reference, Release 2.6.2

def name(arguments):
return expression

See sectiorunction definitiondor the syntax of parameter lists. Note that functions created with lambda forms
cannot contain statements.

5.12 Expression lists

expression_list = expression (“,” expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the number of expres-
sions in the list. The expressions are evaluated from left to right. The trailing comma is required only to create
a single tuple (a.k.a. singleton); it is optional in all other cases. A single expression without a trailing comma
doesn’t create a tuple, but rather yields the value of that expression. (To create an empty tuple, use an empty pair
of parenthesey) .)

5.13 Evaluation order

Python evaluates expressions from left to right. Notice that while evaluating an assignment, the right-hand side is
evaluated before the left-hand side.

In the following lines, expressions will be evaluated in the arithmetic order of their suffixes:

exprl, expr2, expr3, exprd

(exprl, expr2, expr3, exprd)

{exprl: expr2, expr3: expr4}

exprl + expr2 * (expr3 - exprd)
exprl(expr2, expr3, *exprd, **exprb)
expr3, exprd = exprl, expr2

5.14 Summary

The following table summarizes the operator precedences in Python, from lowest precedence (least binding) to
highest precedence (most binding). Operators in the same box have the same precedence. Unless the syntax
is explicitly given, operators are binary. Operators in the same box group left to right (except for comparisons,
including tests, which all have the same precedence and chain from left to right — see Sectiparisons—

and exponentiation, which groups from right to left).

50 Chapter 5. Expressions

The Python Language Reference, Release 2.6.2

Operator Description
lambda Lambda expression
or Boolean OR

and Boolean AND

not X Boolean NOT

in ,not in ,is ,is not ,<, <=, >, >,
<>, I= , ==

AN

&

<<, >>

+, -

* %

+X, -X , ~X

x[index] , x[index:index] ,
x(arguments...) , X.attribute
(expressions...) ,
[expressions...] .
{key:datum...} ,
‘expressions..."

Comparisons, including membership tests and identity tests

Bitwise OR

Bitwise XOR

Bitwise AND

Shifts

Addition and subtraction

Multiplication, division, remainder

Positive, negative, bitwise NOT
Exponentiatior?

Subscription, slicing, call, attribute reference

Binding or tuple display, list display, dictionary display, strin
conversion

[(=]

8The power operator* binds less tightly than an arithmetic or bitwise unary operator on its right, th2ttid, is0.5 .

5.14. Summary

51

The Python Language Reference, Release 2.6.2

52 Chapter 5. Expressions

CHAPTER
SIX

SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may occur on a single line
separated by semicolons. The syntax for simple statements is:

simple_stmt = expression_stmt
assert_stmt
assignment_stmt
augmented_assignment_stmt
pass_stmt
del_stmt
print_stmt
return_stmt
yield_stmt
raise_stmt

break stmt
continue_stmt
import_stmt
global_stmt
exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a proce-

dure (a function that returns no meaningful result; in Python, procedures return theNvalag Other uses of

expression statements are allowed and occasionally useful. The syntax for an expression statement is:
expression_stmt = expression_list

An expression statement evaluates the expression list (which may be a single expression). In interactive mode,
if the value is nofNone, it is converted to a string using the builtdiepr() function and the resulting string is
written to standard output (see sectidne print statemeton a line by itself. (Expression statements yielding
None are not written, so that procedure calls do not cause any output.)

6.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

53

The Python Language Reference, Release 2.6.2

assignment_stmt (target_list “=")+ (expression_list | yield_expression)
target_list target ()" target)* [",7]
target = identifier
| “(" target_list “)”
“I target_list “7”
attributeref
subscription
slicing

(See sectiorrrimariesfor the syntax definitions for the last three symbols.) An assignment statement evaluates
the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a
tuple) and assigns the single resulting object to each of the target lists, from left to right. Assignment is defined
recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute
reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about
its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and
the exceptions raised are given with the definition of the object types (see s€cticriandard type hierarchy
Assignment of an object to a target list is recursively defined as follows.

If the target list is a single target: The object is assigned to that target.

If the target list is a comma-separated list of targets: The object must be an iterable with the same number of
items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding
targets. (This rule is relaxed as of Python 1.5; in earlier versions, the object had to be a tuple. Since strings
are sequences, an assignment ikeb = "xy" is now legal as long as the string has the right length.)

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

— If the name does not occur inggobal statement in the current code block: the name is bound to the
object in the current local namespace.

— Otherwise: the name is bound to the object in the current global namespace.

The name is rebound if it was already bound. This may cause the reference count for the object previously
bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be
called.

If the target is a target list enclosed in parentheses or in square brackets: The object must be an iterable with
the same number of items as there are targets in the target list, and its items are assigned, from left to right,
to the corresponding targets.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield
an object with assignable attributes; if this is not the cagpeError s raised. That object is then asked

to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception
(usually but not necessariBttributeError).

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either

a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript
expression is evaluated. If the primary is a mutable sequence object (such as a list), the subscript must
yield a plain integer. If it is negative, the sequence’s length is added to it. The resulting value must be a
nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object
to its item with that index. If the index is out of randadexError s raised (assignment to a subscripted
sequence cannot add new items to a list). If the primary is a mapping object (such as a dictionary),
the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to
create a key/datum pair which maps the subscript to the assigned object. This can either replace an existing
key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

54

Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

« If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable
sequence object (such as a list). The assigned object should be a sequence object of the same type. Next,
the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the
sequence’s length. The bounds should evaluate to (small) integers. If either bound is negative, the sequence’s
length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length,
inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence.
The length of the slice may be different from the length of the assigned sequence, thus changing the length
of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax
is rejected during the code generation phase, causing less detailed error messages.)

WARNING: Although the definition of assignment implies that overlaps between the left-hand side and the right-
hand side are ‘safe’ (forexampde b = b, a swaps two variables), overlapsthin the collection of assigned-
to variables are not safe! For instance, the following program pint2]

6.2.1 Augmented assignment statements

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment state-
ment:

augmented_assignment_stmt = augtarget augop (expression_list | yield_expression)
augtarget = identifier | attributeref | subscription | slicing
augop e i = B B = B /i B = ke

| “>>= | <<= | &= | = |

(See sectiorimariesfor the syntax definitions for the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpack-
ing) and the expression list, performs the binary operation specific to the type of assignment on the two operands,
and assigns the result to the original target. The target is only evaluated once.

An augmented assignment expression kke= 1 can be rewrittenas = x + 1 to achieve a similar, but not
exactly equal effect. In the augmented versiors only evaluated once. Also, when possible, the actual operation

is performedn-place meaning that rather than creating a new object and assigning that to the target, the old object
is modified instead.

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by
augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception
of the possibldan-place behavior, the binary operation performed by augmented assignment is the same as the
normal binary operations.

For targets which are attribute references, the initial value is retrieved vgétatr() and the result is as-
signed with asetattr() . Notice that the two methods do not necessarily refer to the same variable. When
getattr() refers to a class variablsetattr() still writes to an instance variable. For example:

class A:
X =3 # class variable
a = A
a.x +=1 # writes a.x as 4 leaving Ax as 3

6.3 The assert statement

Assert statements are a convenient way to insert debugging assertions into a program:

6.3. The assert statement 55

The Python Language Reference, Release 2.6.2

assert_stmt n= “assert” expression [",” expression]

The simple formassert expression , IS equivalent to
if _ debug__:

if not expression: raise AssertionError
The extended formgssert expressionl, expression2 , IS equivalent to
if _ debug__:

if not expressionl: raise AssertionError , expression2
These equivalences assume thatlebug_ andAssertionError refer to the built-in variables with those

names. In the current implementation, the built-in variabldebug__ is True under normal circumstances,

False when optimization is requested (command line option -O). The current code generator emits no code for
an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the
source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to__debug__ are illegal. The value for the built-in variable is determined when the interpreter
starts.

6.4 The pass statement

pass_stmt = “pass”

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement
is required syntactically, but no code needs to be executed, for example:

def f (arg): pass # a function that does nothing (yet)

class C. pass # a class with no methods (yet)

6.5 The del statement

del_stmt n= “del” target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spelling it out in full
details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right. Deletion of a name removes the binding
of that name from the local or global namespace, depending on whether the name ocglichal a statement

in the same code block. If the name is unbountiaaneError exception will be raised. Itis illegal to delete a

name from the local namespace if it occurs as a free variable in a nested block. Deletion of attribute references,
subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to
assignment of an empty slice of the right type (but even this is determined by the sliced object).

6.6 The print statement

print_stmt = “print” ([expression (“,” expression)* [",]

| “>>" expression [(“,” expression)+ [",]])

print evaluates each expression in turn and writes the resulting object to standard output (see below). If an
object is not a string, it is first converted to a string using the rules for string conversions. The (resulting or
original) string is then written. A space is written before each object is (converted and) written, unless the output
system believes it is positioned at the beginning of a line. This is the case (1) when no characters have yet been

56 Chapter 6. Simple statements

The Python Language Reference, Release 2.6.2

written to standard output, (2) when the last character written to standard outpit is or (3) when the last
write operation on standard output was ngirant statement. (In some cases it may be functional to write an
empty string to standard output for this reason.)

Note: Objects which act like file objects but which are not the built-in file objects often do not properly emulate
this aspect of the file object’s behavior, so it is best not to rely on this. \n'’A character is written at the

end, unless therint statement ends with a comma. This is the only action if the statement contains just the
keywordprint . Standard output is defined as the file object nastddut in the built-in modulesys . If

no such object exists, or if it does not haveridate() method, a&RuntimeError exception is raisedorint

also has an extended form, defined by the second portion of the syntax described above. This form is sometimes
referred to asgrint chevron.” In this form, the first expression after tile must evaluate to a “file-like” object,
specifically an object that hasvaite() = method as described above. With this extended form, the subsequent
expressions are printed to this file object. If the first expression evaluatiemim, thensys.stdout is used as

the file for output.

6.7 The return statement

return_stmt m= “return” [expression_list]
return may only occur syntactically nested in a function definition, not within a nested class definition.
If an expression list is present, it is evaluated, &lsae is substituted.

return leaves the current function call with the expression listNone) as return value. Whereturn
passes control out of fay statement with dinally clause, thafinally clause is executed before really
leaving the function.

In a generator function, theturn statement is not allowed to include expression_list . In that context,
a barereturn indicates that the generator is done and will cabmplteration to be raised.

6.8 The yield statement

yield_stmt = vyield_expression

Theyield statement is only used when defining a generator function, and is only used in the body of the
generator function. Usingydeld statement in a function definition is sufficient to cause that definition to create
a generator function instead of a normal function.

When a generator function is called, it returns an iterator known as a generator iterator, or more commonly, a
generator. The body of the generator function is executed by calling the genenatdfls method repeatedly
until it raises an exception.

When ayield statement is executed, the state of the generator is frozen and the vaekmedsion_list

is returned tonext() ‘s caller. By “frozen” we mean that all local state is retained, including the current bindings

of local variables, the instruction pointer, and the internal evaluation stack: enough information is saved so that
the next timenext() is invoked, the function can proceed exactly as ifyledd statement were just another
external call.

As of Python version 2.5, thgeld statementis now allowed inthey clause of ary ... finally construct.

If the generator is not resumed before it is finalized (by reaching a zero reference count or by being garbage
collected), the generator-iteratockse() = method will be called, allowing any pendirigally clauses to
execute.

Note: In Python 2.2, thgrield statement was only allowed when thenerators feature has been enabled.

This__future__ import statement was used to enable the feature:
from _ future import generators
See Also:

6.7. The return statement 57

The Python Language Reference, Release 2.6.2

PEP 0255- Simple Generators The proposal for adding generators andytieéd statement to Python.

PEP 0342- Coroutines via Enhanced GeneratorsThe proposal that, among other generator enhancements,
proposed allowingield to appear inside ity ... finally block.

6.9 The raise statement

" " N

raise_stmt = ‘“raise” [expression [",” expression [",” expression]]]

If no expressions are presemise re-raises the last exception that was active in the current scope. If no
exception is active in the current scopeTygpeError exception is raised indicating that this is an error (if
running under IDLE, &ueue.Empty exception is raised instead).

Otherwisejaise evaluates the expressions to get three objects, Nmg as the value of omitted expressions.
The first two objects are used to determinetypeandvalueof the exception.

If the first object is an instance, the type of the exception is the class of the instance, the instance itself is the value,
and the second object must Hene.

If the first object is a class, it becomes the type of the exception. The second object is used to determine the
exception value: Ifitis an instance of the class, the instance becomes the exception value. If the second object is a
tuple, it is used as the argument list for the class constructor; iNbige, an empty argument list is used, and any

other object is treated as a single argument to the constructor. The instance so created by calling the constructor is
used as the exception value. If a third object is present andoiog, it must be a traceback object (see section

The standard type hierarchyand it is substituted instead of the current location as the place where the exception
occurred. If the third object is present and not a traceback objétbioe, aTypeError exception is raised. The
three-expression form ohise is useful to re-raise an exception transparently in an except clauseibeit

with no expressions should be preferred if the exception to be re-raised was the most recently active exception in
the current scope.

Additional information on exceptions can be found in sectioiweptionsand information about handling excep-
tions is in sectiorThe try statement

6.10 The break statement

break stmt m= ‘“break”

break may only occur syntactically nested ifica orwhile loop, but not nested in a function or class definition
within that loop. It terminates the nearest enclosing loop, skipping the optitswal clause if the loop has one.

If a for loop is terminated byreak , the loop control target keeps its current value. Whemak passes
control out of atry statement with dinally clause, thafinally clause is executed before really leaving
the loop.

6.11 The continue statement

continue_stmt n= “continue”

continue may only occur syntactically nested if@ or while loop, but not nested in a function or class
definition orfinally clause within that loop. It continues with the next cycle of the nearest enclosing loop.

Whencontinue passes control out oftay statement with dinally clause, thafinally clause is exe-
cuted before really starting the next loop cycle.

58 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0342

The Python Language Reference, Release 2.6.2

6.12 The import statement

import_stmt »= “import” module ["as” name] (“,” module ['as” name])*
| “from” relative_module “import” identifier ["as” name]
(“" identifier ["as” name])*
| “from” relative_module “import” “(" identifier ["as” name]
(“ identifier ["as” name])* [",)]] 9)”

| “from” module “import” “*”

module ;= (identifier “.")* identifier
relative_module = “* module | “+
name = identifier

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2) define a name
or names in the local namespace (of the scope whererthert statement occurs). The statement comes in
two forms differing on whether it uses tlfiem keyword. The first form (withoutrom) repeats these steps for
each identifier in the list. The form witilom performs step (1) once, and then performs step (2) repeatedly. To
understand how step (1) occurs, one must first understand how Python handles hierarchical naming of modules.
To help organize modules and provide a hierarchy in naming, Python has a concept of packages. A package can
contain other packages and modules while modules cannot contain other modules or packages. From a file system
perspective, packages are directories and modules are files. The asjginélcation for packagésstill available
to read, although minor details have changed since the writing of that document. Once the name of the module is
known (unless otherwise specified, the term “module” will refer to both packages and modules), searching for the
module or package can begin. The first place checksgssnodules |, the cache of all modules that have been
imported previously. If the module is found there then it is used in step (2) of import. If the module is not found in
the cache, thesys.meta_path is searched (the specification &ys.meta_path can be found ifPEP 3032).
The object is a list ofinder objects which are queried in order as to whether they know how to load the module

by calling theirfind_module() method with the name of the module. If the module happens to be contained
within a package (as denoted by the existence of a dot in the name), then a second argfintemhtalule()

is given as the value of the path__ attribute from the parent package (everything up to the last dot in the name
of the module being imported). If a finder can find the module it retuins@er (discussed later) or returidone.

If none of the finders osys.meta_path are able to find the module then some implicitly defined finders are
gueried. Implementations of Python vary in what implicit meta path finders are defined. The one they all do
define, though, is one that hand®s.path_hooks , sys.path_importer_cache , andsys.path

The implicit finder searches for the requested module in the “paths” specified in one of two places (“paths” do not
have to be file system paths). If the module being imported is supposed to be contained within a package then the
second argument passeditcd_module() ,___path__ onthe parent package, is used as the source of paths.

If the module is not contained in a package tsga.path is used as the source of paths.

Once the source of paths is chosen it is iterated over to find a finder that can handle that path. The dict at
sys.path_importer_cache caches finders for paths and is checked for a finder. If the path does not
have a finder cached thesys.path_hooks is searched by calling each object in the list with a single ar-
gument of the path, returning a finder or raigegortError . If a finder is returned then it is cached in
sys.path_importer_cache and then used for that path entry. If no finder can be found but the path exists
then a value ofNone is stored insys.path_importer_cache to signify that an implicit, file-based finder

that handles modules stored as individual files should be used for that path. If the path does not exist then a
finder which always returnblone is placed in the cache for the path. If no finder can find the module then
ImportError is raised. Otherwise some finder returned a loader whazsk module() method is called

with the name of the module to load (seeP 302for the original definition of loaders). A loader has several re-
sponsibilities to perform on a module it loads. First, if the module already exisisimodules (a possibility

if the loader is called outside of the import machinery) then it is to use that module for initialization and not a new
module. But if the module does not existdps.modules thenitis to be added to that dict before initialization
begins. If an error occurs during loading of the module and it was addggstmodules it is to be removed

from the dict. If an error occurs but the module was alreadsysimodules it is left in the dict. The loader

must set several attributes on the modulename___is to be set to the name of the module.file_ isto
be the “path” to the file unless the module is built-in (and thus listesiymbuiltin_module_names) in
which case the attribute is not set. If what is being imported is a package thpath__ is to be set to a list

of paths to be searched when looking for modules and packages contained within the package being imported.

6.12. The import statement 59

http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

__package__ is optional but should be set to the name of package that contains the module or package (the
empty string is used for module not contained in a packagdpader _ is also optional but should be set to the

loader object that is loading the module. If an error occurs during loading then the loadetmgiset&Error

if some other exception is not already being propagated. Otherwise the loader returns the module that was loaded
and initialized.

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport statement binds the module name in the local namespace to the module object, and then
goes on to import the next identifier, if any. If the module name is followeddythe name followingas is used

as the local name for the module. Thiem form does not bind the module name: it goes through the list of
identifiers, looks each one of them up in the module found in step (1), and binds the name in the local namespace
to the object thus found. As with the first formiofiport , an alternate local name can be supplied by specifying

“as localname”. If a name is not founétnportError is raised. If the list of identifiers is replaced by a star

(*"), all public names defined in the module are bound in the local namespaceiofithe statement.. The

public namedlefined by a module are determined by checking the module’s namespace for a variable named
_all__ ;if defined, it must be a sequence of strings which are names defined or imported by that module. The
names given in_all__ are all considered public and are required to exist. lall__ is not defined, the
set of public names includes all names found in the module’s namespace which do not begin with an underscore
character’(’). __all__ should contain the entire public API. It is intended to avoid accidentally exporting
items that are not part of the API (such as library modules which were imported and used within the module).

Thefrom form with * may only occur in a module scope. If the wild card form of importimport * —

is used in a function and the function contains or is a nested block with free variables, the compiler will raise
a SyntaxError . When specifying what module to import you do not have to specify the absolute name of
the module. When a module or package is contained within another package it is possible to make a relative
import within the same top package without having to mention the package name. By using leading dots in the
specified module or package affeom you can specify how high to traverse up the current package hierarchy
without specifying exact names. One leading dot means the current package where the module making the import
exists. Two dots means up one package level. Three dots is up two levels, etc. So if you &omsute

import mod from a module in theokg package then you will end up importingkg.mod . If you execute

from ..subpkg2 imprt mod from within pkg.subpkgl you will import pkg.subpkg2.mod . The
specification for relative imports is contained witliEP 328 The built-in function _import__ () is provided

to support applications that determine which modules need to be loaded dynamically; &dét-to Functions

(in The Python Library Referengéor additional information.

6.12.1 Future statements

A future statemenis a directive to the compiler that a particular module should be compiled using syntax or
semantics that will be available in a specified future release of Python. The future statement is intended to ease
migration to future versions of Python that introduce incompatible changes to the language. It allows use of the
new features on a per-module basis before the release in which the feature becomes standard.

future_statement = “from” “_ future__ " “import” feature ["as” name]
(“,” feature ['as” name])*
| “from” “_ future_ " “import” “(" feature ["as” name]
()" feature ["as” name])* [*)])"

feature = identifier

name = identifier

A future statement must appear near the top of the module. The only lines that can appear before a future statement
are:

« the module docstring (if any),

e comments,

blank lines, and

other future statements.

60 Chapter 6. Simple statements

http://www.python.org/dev/peps/pep-0328

The Python Language Reference, Release 2.6.2

The features recognized by Python 2.6 anecode_literals , print_function , absolute_import ,
division , generators , nested_scopes and with_statement . generators
with_statement , nested_scopes are redundant in Python version 2.6 and above because they are

always enabled.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs
are often implemented by generating different code. It may even be the case that a new feature introduces new
incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module
differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error
if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard nioduéee
described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:
import __ future__ [as name]

That is not a future statement; it's an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by aaxec statement or calls to the builtin functionempile() andexecfile() that occur

in a moduleMcontaining a future statement will, by default, use the new syntax or semantics associated with the
future statement. This can, starting with Python 2.2 be controlled by optional argumeotapide() — see

the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session.
If an interpreter is started with thé option, is passed a script name to execute, and the script includes a future
statement, it will be in effect in the interactive session started after the script is executed.

6.13 The global statement

global_stmt @= “global” identifier (*,” identifier)*

Theglobal statement is a declaration which holds for the entire current code block. It means that the listed
identifiers are to be interpreted as globals. It would be impossible to assign to a global variable withaut ,
although free variables may refer to globals without being declared global.

Names listed in @lobal statement must not be used in the same code block textually precedirgtiait
statement.

Names listed in global statement must not be defined as formal parameters ofdn doop control target,
class definition, function definition, omport statement.

(The current implementation does not enforce the latter two restrictions, but programs should not abuse this free-
dom, as future implementations may enforce them or silently change the meaning of the prodteogram-

mer’s note: theglobal is a directive to the parser. It applies only to code parsed at the same timeyasithie
statement. In particular,@obal statement contained in axec statement does not affect the code blook-

taining the exec statement, and code contained inearec statement is unaffected lgjobal statements in

the code containing thexec statement. The same applies to thal() , execfile() and compile()

functions.

6.14 The exec statement

exec_stmt n= “exec” or_expr ["in” expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to either a string,
an open file object, or a code object. If it is a string, the string is parsed as a suite of Python statements which is

6.13. The global statement 61

The Python Language Reference, Release 2.6.2

then executed (unless a syntax error occutdlf.it is an open file, the file is parsed until EOF and executed. If

it is a code object, it is simply executed. In all cases, the code that's executed is expected to be valid as file input
(see sectioririle input). Be aware that thesturn andyield statements may not be used outside of function
definitions even within the context of code passed tostkexc statement.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the first expression
afterin is specified, it should be a dictionary, which will be used for both the global and the local variables. If
two expressions are given, they are used for the global and local variables, respectively. If plocaledan be

any mapping object. Changed in version 2.4: Forméolyals was required to be a dictionary. As a side effect,

an implementation may insert additional keys into the dictionaries given besides those corresponding to variable
names set by the executed code. For example, the current implementation may add a reference to the dictionary
of the built-in module__builtin__ under the key builtins__ (. Programmer’s hints: dynamic
evaluation of expressions is supported by the built-in funotiesl() . The built-in functiongylobals() and

locals() return the current global and local dictionary, respectively, which may be useful to pass around for
use byexec .

1 Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use universal
newline mode to convert Windows or Mac-style newlines.

62 Chapter 6. Simple statements

CHAPTER
SEVEN

COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execution of those other
statements in some way. In general, compound statements span multiple lines, although in simple incarnations a
whole compound statement may be contained in one line.

Theif , while andfor statements implement traditional control flow constructs. specifies exception
handlers and/or cleanup code for a group of statements. Function and class definitions are also syntactically
compound statements. Compound statements consist of one or more ‘clauses.” A clause consists of a header
and a ‘suite.” The clause headers of a particular compound statement are all at the same indentation level. Each
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a group of statements
controlled by a clause. A suite can be one or more semicolon-separated simple statements on the same line as the
header, following the header’s colon, or it can be one or more indented statements on subsequent lines. Only the
latter form of suite can contain nested compound statements; the following is illegal, mostly because it wouldn’t
be clear to whichf clause a followingelse clause would belong:

if testl: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the following example, either
all or none of theorint statements are executed:

if x <y <z print x5 print vy, print z

Summarizing:

compound_stmt if_stmt
while_stmt
for_stmt
try_stmt
with_stmt
funcdef
classdef
| decorated
suite n= stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement m= stmt_list NEWLINE | compound_stmt
stmt_list = simple_stmt (*;” simple_stmt)* [";7]

Note that statements always end iNEWLINEpossibly followed by eEDEDENT Also note that optional con-
tinuation clauses always begin with a keyword that cannot start a statement, thus there are no ambiguities (the
‘danglingelse ‘ problem is solved in Python by requiring nestéd statements to be indented).

The formatting of the grammar rules in the following sections places each clause on a separate line for clarity.

7.1 The if statement

Theif statement is used for conditional execution:

63

The Python Language Reference, Release 2.6.2

if_stmt m= “if” expression “" suite
(“elif” expression “” suite)*
['else” “" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is found to be true (see
sectionBoolean operationfor the definition of true and false); then that suite is executed (and no other part of
theif statement is executed or evaluated). If all expressions are false, the suiteelsfthelause, if present, is
executed.

7.2 The while statement

Thewhile statement is used for repeated execution as long as an expression is true:

while_stmt = “while” expression “” suite
['else” “" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false (which may
be the first time it is tested) the suite of thlee clause, if present, is executed and the loop terminatesreAk

statement executed in the first suite terminates the loop without executirtstheclause’s suite. Aontinue

statement executed in the first suite skips the rest of the suite and goes back to testing the expression.

7.3 The for statement

Thefor statementis used to iterate over the elements of a sequence (such as a string, tuple or list) or other iterable
object:

for_stmt n= “for” target list “in” expression_list “" suite
['else” “" suite]

The expression list is evaluated once; it should yield an iterable object. An iterator is created for the result of
the expression_list . The suite is then executed once for each item provided by the iterator, in the order of
ascending indices. Each item in turn is assigned to the target list using the standard rules for assignments, and
then the suite is executed. When the items are exhausted (which is immediately when the sequence is empty), the
suite in theelse clause, if present, is executed, and the loop terminateshreAk statement executed in the

first suite terminates the loop without executing #ie clause’s suite. Aontinue statement executed in the

first suite skips the rest of the suite and continues with the next item, or witiidhe clause if there was no next

item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned to it. The
target list is not deleted when the loop is finished, but if the sequence is empty, it will not have been assigned to at
all by the loop. Hint: the built-in functionange() returns a sequence of integers suitable to emulate the effect

of Pascal'dor i := a to b do ;e.g.,range(3) returns the lisf0, 1, 2]

Warning: There is a subtlety when the sequence is being modified by the loop (this can only ocqur for
mutable sequences, i.e. lists). An internal counter is used to keep track of which item is used next, and this is
incremented on each iteration. When this counter has reached the length of the sequence the loop tefminates.
This means that if the suite deletes the current (or a previous) item from the sequence, the next item will be
skipped (since it gets the index of the current item which has already been treated). Likewise, if the suite
inserts an item in the sequence before the current item, the current item will be treated again the ngxt time
through the loop. This can lead to nasty bugs that can be avoided by making a temporary copy using g slice of
the whole sequence, e.g.,

for x in a[]:
if x < 0: a.remove(x)

64 Chapter 7. Compound statements

The Python Language Reference, Release 2.6.2

7.4 The try statement

Thetry statement specifies exception handlers and/or cleanup code for a group of statements:

try_stmt n= tryl_stmt | try2_stmt
tryl_stmt n= Mtry” " suite
(“except” [expression [(“as” | “,") target]] “" suite)+
['else” “" suite]
['finally” *“” suite]
try2_stmt = try" " suite
“finally” “:” suite

Changed in version 2.5: In previous versions of Pytlion,...except ..finally did not work.try ...except

had to be nested iy ..finally . Theexcept clause(s) specify one or more exception handlers. When no
exception occurs in thigy clause, no exception handler is executed. When an exception occurdrin thsiite,

a search for an exception handler is started. This search inspects the except clauses in turn until one is found that
matches the exception. An expression-less except clause, if present, must be last; it matches any exception. For an
except clause with an expression, that expression is evaluated, and the clause matches the exception if the resulting
object is “compatible” with the exception. An object is compatible with an exception if it is the class or a base
class of the exception object, a tuple containing an item compatible with the exception, or, in the (deprecated) case
of string exceptions, is the raised string itself (note that the object identities must match, i.e. it must be the same
string object, not just a string with the same value).

If no except clause matches the exception, the search for an exception handler continues in the surrounding code
and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the original search for a
handler is canceled and a search starts for the new exception in the surrounding code and on the call stack (it is
treated as if the entirey statement raised the exception).

When a matching except clause is found, the exception is assigned to the target specified in that except clause,
if present, and the except clause’s suite is executed. All except clauses must have an executable block. When
the end of this block is reached, execution continues normally after the entire try statement. (This means that if
two nested handlers exist for the same exception, and the exception occurs in the try clause of the inner handler,
the outer handler will not handle the exception.) Before an except clause’s suite is executed, details about the
exception are assigned to three variables irsifee module:sys.exc_type receives the object identifying the
exception;sys.exc_value receives the exception’s parametgys.exc_traceback receives a traceback

object (see sectionhe standard type hierarchidentifying the point in the program where the exception occurred.
These details are also available throughdiie.exc_info() function, which returns a tuplgexc_type,

exc_value, exc_traceback) . Use of the corresponding variables is deprecated in favor of this function,
since their use is unsafe in a threaded program. As of Python 1.5, the variables are restored to their previous values
(before the call) when returning from a function that handled an exception. The optleaalclause is executed

if and when control flows off the end of thiey clause.? Exceptions in theelse clause are not handled by the
precedingexcept clauses. Ifinally is present, it specifies a ‘cleanup’ handler. The clause is executed,
including anyexcept andelse clauses. If an exception occurs in any of the clauses and is not handled, the
exception is temporarily saved. Tfieally clause is executed. If there is a saved exception, it is re-raised at the
end of thefinally clause. If thefinally clause raises another exception or executeian or break

statement, the saved exception is lost. The exception information is not available to the program during execution
of thefinally clause. When aturn , break orcontinue statement is executed in the suite of a

try ..finally statement, thénally clause is also executed ‘on the way out.’cAntinue statement is

illegal in thefinally clause. (The reason is a problem with the current implementation — this restriction may

be lifted in the future).

Additional information on exceptions can be found in sectioeptionsand information on using theiise
statement to generate exceptions may be found in setliemaise statement

1 The exception is propagated to the invocation stack only if there igaty clause that negates the exception.
2 Currently, control “flows off the end” except in the case of an exception or the executioeofia , continue , orbreak statement.

7.4. The try statement 65

The Python Language Reference, Release 2.6.2

7.5 The with statement

New in version 2.5. Thevith statementis used to wrap the execution of a block with methods defined by a context
manager (see sectidkith Statement Context Managgr¥his allows commonry ...except ..finally usage
patterns to be encapsulated for convenient reuse.

with_stmt = “with” expression ['as” target] “” suite

The execution of thevith statement proceeds as follows:

1. The context expression is evaluated to obtain a context manager.
2. The context manager's enter () method is invoked.

3. If atarget was included in theith statement, the return value fromenter__ () is assigned to it.

Note: Thewith statement guarantees that if theenter () method returns without an error, then
exit () willalways be called. Thus, if an error occurs during the assignment to the target list, it will
be treated the same as an error occurring within the suite would be. See step 5 below.

4. The suite is executed.

5. The context manager’s exit () method is invoked. If an exception caused the suite to be exited, its
type, value, and traceback are passed as argumentsetat () . Otherwise, threé&lone arguments
are supplied.

If the suite was exited due to an exception, and the return value from tivét () method was false,
the exception is reraised. If the return value was true, the exception is suppressed, and execution continues
with the statement following theith statement.

If the suite was exited for any reason other than an exception, the return value fraxi () is
ignored, and execution proceeds at the normal location for the kind of exit that was taken.

Note: In Python 2.5, thevith statementis only allowed when théth_statement ~ feature has been enabled.
It is always enabled in Python 2.6.
See Also:

PEP 0343- The “with” statement The specification, background, and examples for the Pyithibn statement.

7.6 Function definitions

A function definition defines a user-defined function object (see settierstandard type hierarchry

decorated = decorators (classdef | funcdef)

decorators := decorator+

decorator = “@" dotted_name ['(" [argument_list [*,"]] “)"] NEWLINE
funcdef = “def” funcname “(" [parameter_list] “)” “” suite

dotted_name
parameter_list

identifier (*.” identifier)*
(defparameter “,")*
(“*" identifier [, “**" identifier]

| “**" identifier

| defparameter [",”])
defparameter = parameter ['=" expression]
sublist = parameter (“,” parameter)* [”,"]
parameter ;= identifier | “(" sublist “)”
funcname = identifier

A function definition is an executable statement. Its execution binds the function name in the current local names-
pace to a function object (a wrapper around the executable code for the function). This function object contains a
reference to the current global namespace as the global namespace to be used when the function is called.

66 Chapter 7. Compound statements

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

The function definition does not execute the function body; this gets executed only when the function is called.
A function definition may be wrapped by one or moezoratorexpressions. Decorator expressions are evaluated
when the function is defined, in the scope that contains the function definition. The result must be a callable,
which is invoked with the function object as the only argument. The returned value is bound to the function name
instead of the function object. Multiple decorators are applied in nested fashion. For example, the following code:

@f1(arg)
@f2

def func (): pass
is equivalent to:

def func (): pass
func = fl(arg)(f2(func))

When one or more top-level parameters have the feirameter= expressionthe function is said to have “default
parameter values.” For a parameter with a default value, the corresponding argument may be omitted from a call, in
which case the parameter’s default value is substituted. If a parameter has a default value, all following parameters
must also have a default value — this is a syntactic restriction that is not expressed by the grammar.

Default parameter values are evaluated when the function definition is executedhis means that the expres-

sion is evaluated once, when the function is defined, and that that same “pre-computed” value is used for each
call. This is especially important to understand when a default parameter is a mutable object, such as a list or a
dictionary: if the function modifies the object (e.g. by appending an item to a list), the default value is in effect
modified. This is generally not what was intended. A way around this is tblagse as the default, and explicitly

test for it in the body of the function, e.qg.:

def whats_on_the_telly (penguin =None):
if penguin is None:
penguin = []
penguin . append(" property of the zoo ")
return penguin

Function call semantics are described in more detail in se€is. A function call always assigns values to

all parameters mentioned in the parameter list, either from position arguments, from keyword arguments, or from
default values. If the form*identifier " is present, it is initialized to a tuple receiving any excess positional
parameters, defaulting to the empty tuple. If the forffidentifier " is present, it is initialized to a new
dictionary receiving any excess keyword arguments, defaulting to a new empty dictionary. It is also possible to
create anonymous functions (functions not bound to a name), forimmediate use in expressions. This uses lambda
forms, described in sectiobBxpression lists Note that the lambda form is merely a shorthand for a simplified
function definition; a function defined in aléf ” statement can be passed around or assigned to another name
just like a function defined by a lambda form. Theef ” form is actually more powerful since it allows the
execution of multiple statements.

Programmer’s note: Functions are first-class objects. 8¢f " form executed inside a function definition defines
a local function that can be returned or passed around. Free variables used in the nested function can access the
local variables of the function containing the def. See sedtiaming and bindindor details.

7.7 Class definitions

A class definition defines a class object (see sedttenstandard type hierarchry

classdef w= “class” classname [inheritance] “” suite
inheritance = (" [expression_list] “)”
classname = identifier

3 A string literal appearing as the first statement in the function body is transformed into the functidos _ attribute and therefore
the function’sdocstring

7.7. Class definitions 67

The Python Language Reference, Release 2.6.2

A class definition is an executable statement. It first evaluates the inheritance list, if present. Each item in the
inheritance list should evaluate to a class object or class type which allows subclassing. The class’s suite is then
executed in a new execution frame (see secliaming and bindinj using a newly created local hamespace

and the original global namespace. (Usually, the suite contains only function definitions.) When the class’s suite
finishes execution, its execution frame is discarded but its local namespace is $agedlass object is then

created using the inheritance list for the base classes and the saved local namespace for the attribute dictionary.
The class name is bound to this class object in the original local namespace.

Programmer’s note: Variables defined in the class definition are class variables; they are shared by all instances.

To create instance variables, they can be set in a methodselithame = value . Both class and instance
variables are accessible through the notatislf:name “, and an instance variable hides a class variable with

the same name when accessed in this way. Class variables can be used as defaults for instance variables, but
using mutable values there can lead to unexpected resultsekostyle class, descriptors can be used to create
instance variables with different implementation details.

Class definitions, like function definitions, may be wrapped by one or mhereratorexpressions. The evaluation
rules for the decorator expressions are the same as for functions. The result must be a class object, which is then
bound to the class name.

4 A string literal appearing as the first statement in the class body is transformed into the namesp#me’s item and therefore the
class’sdocstring

68 Chapter 7. Compound statements

CHAPTER
EIGHT

TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it as standard input or
as program argument, typed in interactively, from a module source file, etc. This chapter gives the syntax used in
these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is useful to have
a notion of a complete Python program. A complete Python program is executed in a minimally initialized
environment: all built-in and standard modules are available, but none have been initialized, exssgt for
(various system services), builtin___ (built-in functions, exceptions arfdone) and__main__ . The latter

is used to provide the local and global namespace for execution of the complete program.

The syntax for a complete Python program is that for file input, described in the next section. The interpreter may
also be invoked in interactive mode; in this case, it does not read and execute a complete program but reads and
executes one statement (possibly compound) at a time. The initial environment is identical to that of a complete
program; each statement is executed in the namespacentdin__ . Under Unix, a complete program can

be passed to the interpreter in three forms: with-thestring command line option, as a file passed as the first
command line argument, or as standard input. If the file or standard input is a tty device, the interpreter enters
interactive mode; otherwise, it executes the file as a complete program.

8.2 File input

All'input read from non-interactive files has the same form:
file_input = (NEWLINE | statement)*

This syntax is used in the following situations:

« when parsing a complete Python program (from a file or from a string);
« when parsing a module;

« when parsing a string passed to theesc statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:
interactive_input n= [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mode; this is needed
to help the parser detect the end of the input.

69

The Python Language Reference, Release 2.6.2

8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string arguesad{}to must
have the following form:

eval_input = expression_list NEWLINE*
The input line read bynput() must have the following form:
input_input = expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in funatéom_input() or the
readline() method of file objects.

70 Chapter 8. Top-level components

CHAPTER
NINE

FULL GRAMMAR SPECIFICATION

This is the full Python grammar, as it is read by the parser generator and used to parse Python source files:

Grammar for Python

Note: Changing the grammar specified in this file will most likely
require corresponding changes in the parser module
(../Modules/parsermodule.c). If you can't make the changes to
that module yourself, please co-ordinate the required changes
with someone who can; ask around on python-dev for help. Fred
Drake <fdrake@acm.org> will probably be listening there.

H o H R H

NOTE WELL: You should also follow all the steps listed in PEP 306,
"How to Change Python's Grammar"

Commands for Kees Blom’s railroad program
#diagram:token NAME

#diagram:token NUMBER

#diagram:token STRING

#diagram:token NEWLINE

#diagram:token ENDMARKER

#diagram:token INDENT

#diagram:output\input python.bla

#diagram:token DEDENT
#diagram:output\textwidth 20.04cm\oddsidemargin 0.0cm\evensidemargin 0.0cm
#diagram:rules

Start symbols for the grammar:

single_input is a single interactive statement;
file_input is a module or sequence of commands read from an input file;
eval_input is the input for the eval() and input() functions.

NB: compound_stmt in single_input is followed by extra NEWLINE!
single_input: NEWLINE | simple_stmt | compound_stmt NEWLINE
file_input: (NEWLINE | stmt)* ENDMARKER

eval_input: testlist NEWLINE* ENDMARKER

decorator: '@’ dotted_name [(' [arglist] ')’] NEWLINE
decorators: decorator+
decorated: decorators (classdef | funcdef)
funcdef: 'def’ NAME parameters '’ suite
parameters: ‘(" [varargslist])’
varargslist: ((fpdef [=" test] ',)*
(*" NAME [, "** NAME] | ** NAME) |
fpdef ['=' test] (', fpdef ['=" test])* [,'])
fpdef: NAME | '(fplist ')

71

The Python Language Reference, Release 2.6.2

fplist: fpdef (. fpdef)* [',]

stmt: simple_stmt | compound_stmt
simple_stmt: small_stmt (;’ small_stmt)* [';’] NEWLINE
small_stmt: (expr_stmt | print_stmt | del_stmt | pass_stmt | flow_stmt |

import_stmt | global_stmt | exec_stmt | assert_stmt)
expr_stmt: testlist (augassign (yield_expr]testlist) |

'=" (yield_expr|testlist))*)

augassign: (+=' | =" | *=' | =] %= | &=l | |

<<=’ | >>=' | Thk=? | ="
For normal assignments, additional restrictions enforced by the interpreter
print_stmt: ’print’ ([test (', test)* [[]] |

'>>" test [() test)+ [V]1])
del_stmt: ’'del’ exprlist
pass_stmt: ’'pass’
flow_stmt: break_stmt | continue_stmt | return_stmt | raise_stmt | yield_stmt
break stmt: ’'break’
continue_stmt: ’'continue’
return_stmt: ‘return’ [testlist]
yield_stmt: yield_expr
raise_stmt: ’raise’ [test [, test [, test]]]
import_stmt: import_name | import_from
import_name: ‘import’ dotted_as _names
import_from: (from’ (.’* dotted_name | '.'+)
'import’” ('*" | ’(import_as_names ')’ | import_as_names))

import_as_name: NAME [as’ NAME]
dotted_as_name: dotted_name [‘as’ NAME]
import_as_names: import_as_name (',’ import_as_name)* [,’]
dotted_as_names: dotted_as name (’,;’ dotted_as_name)*
dotted_name: NAME (. NAME)*
global_stmt: 'global’ NAME ('’ NAME)*
exec_stmt: 'exec’ expr [in’ test [, test]]
assert_stmt: 'assert’ test [, test]

compound_stmt: if_stmt | while_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated
if_stmt: 'if test '’ suite (elif test '’ suite)* [else’ '’ suite]
while_stmt: 'while’ test " suite [else’ '’ suite]
for_stmt: for’ exprlist 'in’ testlist ;' suite [‘else’ "’ suite]
try_stmt: (try’ ' suite
((except_clause '’ suite)+
[else’ ' suite]
[finally’ ' suite] |
finally’ ’" suite))
with_stmt: 'with’ test [with_var] "’ suite
with_var: ’'as’ expr
NB compile.c makes sure that the default except clause is last
except_clause: ’'except’ [test [(as’ | ')) test]]
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT

Backward compatibility cruft to support:

[x for x in lambda: True, lambda: False if x()]
even while also allowing:

lambda x: 5 if x else 2

(But not a mix of the two)

testlist_safe: old_test [(,;’ old_test)+ [,]]

old_test: or_test | old_lambdef

old_lambdef: 'lambda’ [varargslist] " old_test

72 Chapter 9. Full Grammar specification

The Python Language Reference, Release 2.6.2

test: or_test ['if or_test ’'else’ test] | lambdef
or_test: and test (or' and_test)*
and_test: not_test (‘and’ not_test)*
not_test: 'not’ not_test | comparison
comparison: expr (comp_op expr)*
comp_op: <|'>'=="'>="'<="|'<>"|"'="|'in’|'not’ ’in’['is’'is’ 'not’
expr: xor_expr (|' xor_expr)*
xor_expr: and_expr ("~ and_expr)*
and_expr: shift_expr (& shift_expr)*
shift_expr: arith_expr (('<<'|'>>") arith_expr)*
arith_expr: term ((+'|-") term)*
term: factor (("™'|'/'|'%’|'ll") factor)*
factor: ('+'|-'|'~") factor | power
power: atom trailer* [**' factor]
atom: (([yield_expr|testlist_gexp] ’) |

T [listmaker] T |

{" [dictmaker] '} |

' testlistl |

NAME | NUMBER | STRING+)
listmaker: test (list_for | (, test)* [',])
testlist_gexp: test (gen_for | (', test)* [')])
lambdef: ’lambda’ [varargslist] "’ test

trailer: '(" [arglist] ’)’ | [subscriptlist " | '." NAME
subscriptlist: subscript (',’ subscript)* [',']
subscript: . . | test | [test] 7 [test] [sliceop]

sliceop: '’ [test]

exprlist: expr (,” expr)* [',]

testlist: test () test)* [',]

dictmaker: test ' test (’,’ test "’ test)* [')]

classdef: ’'class’ NAME ['(' [testlist])] ' suite

arglist: (argument ',)* (argument [',]
|'*" test (,;) argument)* [',” "**' test]
|'**" test)

argument: test [gen_for] | test '=" test # Really [keyword '='] test

list_iter: list_for | list_if
list_for: 'for’ exprlist 'in’ testlist_safe [list iter]
list_if: 'if old_test [list_iter]

gen_iter: gen_for | gen_if
gen_for: ’'for’ exprlist 'in’ or_test [gen_iter]
gen_if: 'iff old_test [gen_iter]

testlistl: test (,’ test)*

not used in grammar, but may appear in "node" passed from Parser to Compiler

encoding_decl: NAME

yield_expr: 'yield' [testlist]

73

The Python Language Reference, Release 2.6.2

74 Chapter 9. Full Grammar specification

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #b2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{@gm The Python Library
Referencp

abstract base classAbstract Base Classes (abbreviated ABCs) complemienit-typingby providing a way to
define interfaces when other techniques Iiasattr() would be clumsy. Python comes with many
builtin ABCs for data structures (in thellections module), numbers (in theumbers module), and
streams (in thé@ module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengtraccepts or passes (if in the function definition or call)
several positional arguments in a list, white does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attribute it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froobject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with th@erce builtin function; thus,3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) and results inoperator.add(3.0, 4.5) . Without co-
ercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .

75

http://www.python.org/~{}guido/

The Python Language Reference, Release 2.6.2

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics oj in engineering. Python has builtin support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwath statement by defining
enter () and__exit_ () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsdassmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = staticmethod (f)

@staticmethod
def f(...):

Seethe documentation for function definitiéor more about decorators.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object namiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptors

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ oftlosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into tdec___ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgiredg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of many andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There

76 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python Language Reference, Release 2.6.2

are alsostatemerg which cannot be used as expressions, sugbrias or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

_future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expres$iiod currently evaluates ta. If the module
in which it is executed had enabléde divisionby executing:

from _ future import division

the expressioil/4 would evaluate t@.75 . By importing the__future__ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> jmport _ future_

>>> future__ . division

_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i *i for i in range (10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeSrytthen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needsan () or __cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)

77

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekiién currently
evaluates t@ in contrast to th@.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfesat), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; botméderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fitheh with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchles , str , andtuple) and some non-sequence types liket andfile and
objects of any classes you define with anter_ () or __getitem__ () method. Iterables can be
used in &or loop and in many other places where a sequence is neeill (, map() , ...). When an
iterable object is passed as an argument to the builtin funiteof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter() or deal with iterator objects yourself. THher statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itera¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have anter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it titéh@ function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found itterator Typegin The Python Library Referenge
keyword argument Arguments which are preceded withvariable_name= in the call. The variable name

designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Sesjument

lambda An anonymous inline function consisting of a singbeoressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolammbda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of marsgatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

78 Appendix A. Glossary

The Python Language Reference, Release 2.6.2

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlebause is optional. If
omitted, all elements ilange(256) are processed.

loader An object that loads a module. It must define a method ndoesti module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creation

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fissument(which is usually calledelf). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep td€ir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using nhamed attributes (for ex-
ample time.localtime() returns a tuple-like object where tlgearis accessible either with an index
such ag[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such t@®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a
self-documenting representation likenployee(name="jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrémelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features bka&s ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classes

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§esent

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3K”.

79

http://www.python.org/dev/peps/pep-0302

The Python Language Reference, Release 2.6.2

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range (len (food)):
print food][i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
guence types arégst |, str , tuple , andunicode . Note thatdict also supports getitem__ ()
and_len_ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[with colons between numbers when several are given, such\agiable_name[1:3:5] . The
bracket (subscript) notation usskce objects internally (or in older versions, getslice () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irSpecial method names

statement A statement is part of a suite (a “block” of code). A statement is eithexaressioror a one of several
constructs with a keyword, such @és, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved withipe(obj)

virtual machine A computer defined entirely in software. Python’s virtual machine executésytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

80 Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated fref@tructured Texsources bysphinx a document processor specifically writ-
ten for the Python documentation.

In the online version of these documents, you can submit comments and suggest changes directly on the docu-
mentation pages.

Development of the documentation and its toolchain takes place odatt®@python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;

« Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Herndn Martinez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Haring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Léwis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Macintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,

81

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python Language Reference, Release 2.6.2

Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse I, Mark Russell, Nick Russo, Chris
Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

82 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)! In 2001, the Python Software Foundation (PSF,teg&//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

83

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python Language Reference, Release 2.6.2

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2| n/a 1991-1995| CWI yes
1.3thrul.5.2| 1.2 1995-1999| CNRI yes
1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com| no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 23.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 233 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 24.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
244 243 2006 PSF yes
2.5 24 2006 PSF yes
251 25 2007 PSF yes
252 251 2008 PSF yes
2.5.3 252 2008 PSF yes
2.6 25 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.2 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.2 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.2 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.2 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.2.

84 Appendix C. History and License

The Python Language Reference, Release 2.6.2

4. PSF is making Python 2.6.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.2, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.6.2, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

C.2. Terms and conditions for accessing or otherwise using Python 85

http://www.pythonlabs.com/logos.html

The Python Language Reference, Release 2.6.2

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

86 Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python Language Reference, Release 2.6.2

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3. Licenses and Acknowledgements for Incorporated Software 87

http://www.math.keio.ac.jp/

The Python Language Reference, Release 2.6.2

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projedtitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for [
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |
This software was prepared as an account of work sponsored by an |

agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |

88 Appendix C. History and License

http://www.wide.ad.jp/

The Python Language Reference, Release 2.6.2

ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://lwww.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

C.3. Licenses and Acknowledgements for Incorporated Software 89

The Python Language Reference, Release 2.6.2

1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

90 Appendix C. History and License

The Python Language Reference, Release 2.6.2

C.3.7 Profiling
Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software 91

The Python Language Reference, Release 2.6.2

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmirpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

92 Appendix C. History and License

The Python Language Reference, Release 2.6.2

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 93

The Python Language Reference, Release 2.6.2

94 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licenséor complete license and permissions information.

95

The Python Language Reference, Release 2.6.2

96 Appendix D. Copyright

INDEX

Symbols __get_ () (object method}4
* __getattr__ () (object method)3
statement67 __getattribute__ () (object metho@y
*k __getitem__ () (mapping object method},
statement67 __getitem__() (object method)/
o 75 __getslice__ () (object method)3
__abs__() (object methodj(__gt_ () (object methodp,2
__add__() (object method)9 __hash__() (object method)3
__all__ (optional module attributep __hex__() (object method}0
__and__() (object method)9 __iadd__() (object method}0
__bases__ (class attribute} __iand__() (object method}0
builtin __idiv__ () (object method}30
o modﬁe,GZ, 69 __ifloordiv__ () (object methodB0
builtins 62 __ilshift__() (object method30
__call__() (object method},7, 46 __imod__() (object method}0
__class__ (instance attributég __Import__
__cmp__() (object method}? built-in function,60
__coerce__() (object method] __imul__() (object method}0
__complex__() (object methodjp __index__() (object method},L
__contains__() (object metho®3 __init__() (object method),7, 21
__debug_ 56 __int__() (object methodB0
__del__() (object method},1 __invert__() (object method}0
__delattr__() (object method)4 __lor__() (object method}30
__delete__ () (object method)4 __ipow__() (object methodR0O
__delitem__() (object method}7 __irshift__() (object method0
__delslice__() (object method)8 __isub__() (object method}0
__dict__(class attribute).8 __iter__() (object methodp7
__dict__ (function attribute)6 __litruediv__() (object method}0
__dict__(instance attribute)8, 24 __ixor__() (object method}30
__dict__ (module attribute),8 __le__() (object method},2
__div__() (object methodp9 __len__() (mapping object methodj3
__divmod__ () (object method}9 __len__() (object method}7
__doc__ (class attribute)8 __loader__59
__doc__ (function attribute),6 __long__() (object method}0
__doc__ (method attribute)s __Ishift__() (object methodp9
__doc__ (module attribute)8 __It_ () (object methodp2
__enter__ () (object methodj2 —_mamn__
__eq__() (object method}? module,36, 69
__exit__() (object method}2 __metaclass___ (built-in variable)6
file 59 __mod__ () (object method?9
__file__ (module attribute},8 __module__ (class attribute)3
__float__ () (object method}0 __module__ (function attribute}
__floordiv__() (object methodp9 __module__ (method attribute)6
future 77 __mul__() (object method®9
__ge__ () (object method}? __hame__59

__hame__ (class attribute)3

97

The Python Language Reference, Release 2.6.2

__name___(function attribute)f
__name__ (method attribute)p
__nhame__ (module attribute)3
__ne__ () (object method}2
__neg__ () (object method}pD
__new__ () (object method},1
__nonzero__ () (object method)3, 27
__oct__ () (object method}0
__or__() (object methodp9
__package_ 59

__path__ 59

__pos__ () (object method}pD
__pow__ () (object method}.9
__radd__ () (object method)9
__rand__ () (object method)9
__rcmp__ () (object method?3
__rdiv__() (object method}9
__rdivmod__ () (object method}9
__repr__() (object method}2
__reversed__ () (object metho@g
__rfloordiv__ () (object method}9
__rishift__ () (object methodR9
__rmod__ () (object method}9
__rmul__ () (object methodp9
__ror__() (object method}9
__rpow__ () (object method}9
__rrshift__() (object method?9
__rshift__ () (object method}9
__rsub__ () (object method)}9
__rtruediv__ () (object method}9
__rxor__() (object method®9
__set_ () (object method}4
__setattr__ () (object method)3
__setitem__ () (object method)7
__setslice__ () (object method®3
__slots__80

__slots__ (built-in variableR5
__str__ () (object method}2
__sub__ () (object method)9
__truediv__ () (object method?9
__unicode__ () (object method®3
__xor__() (object method}9
>>> 75

2t03,75

A

abs
built-in function,30
abstract base class5
addition,47
and
bitwise, 47
operator49
anonymous
function, 49
argument,/5
function, 16
arithmetic

conversion39
operation, binary6
operation, unaryl6
array
module,15
ASCII, 4,9, 12,15
assert
statement55
AssertionError
exception56
assertions
debuggings5
assignment
attribute,53, 54
augmented55
class attribute] 8
class instance attribut&3
slicing, 54
statement}5, 53
subscription54
target list,54
atom,39
attribute,14, 75
assignment;3, 54
assignment, claség
assignment, class instande,
class,18
class instancel,8
deletion,56
generic speciall 4
reference43
special,14
AttributeError
exception43
augmented
assignments5

B

back-quotes?2, 41
backslash charactes,
backward
quotes22, 41
BDFL, 75
binary
arithmetic operation46
bitwise operation47
binary literal, 10
binding
global namef1
name,35, 53, 59, 60, 66, 67
bitwise
and,47
operation, binary7
operation, unary}6
or,47
xor, 47
blank line,6
block, 35

98

Index

The Python Language Reference, Release 2.6.2

code,35
BNF, 4, 39
Boolean
object,14
operation49
break
statement58, 64, 65
bsddb
module,16
built-in
method,17
built-in function
__import__ 60
abs,30
call, 46
chr, 15
cmp,22
compile,61
complex,30
divmod, 29, 30
eval,61, 62, 70
execfile,61
float, 30
globals,62
hash,23
hex,30
id, 13
input, 70
int, 30
len, 15, 16, 27
locals,62
long, 30
object,17, 46
oct, 30
open,18
ord, 15
pow, 29, 30
range 64
raw_input,70
repr,22, 41, 53
slice, 20
str,22, 41
type, 13
unichr,15
unicode,15, 23
built-in method
call, 46
object,17, 46
byte, 15
bytecode,19, 75

C

C,9
language 4, 17, 48
call, 44
built-in function,46
built-in method 46
class instancel6

class object]7, 18, 46

function, 16, 45, 46

instance27, 46

method 46

procedure53

user-defined function}5
callable

object,16, 44
chaining

comparisons48
characterl5, 43
character setl5
chr

built-in function, 15
class,’75

attribute,18

attribute assignment,8

classic,20

constructor2l

definition,57, 67

instance18

name,67

new-style,20

object,17, 18, 46, 67

old-style,20

statement67
class instance

attribute,18

attribute assignment,8

call, 46

object,17, 18, 46
class object

call, 17, 18, 46
classic class/5
clausep3
close() (generator method)?2
cmp

built-in function, 22
co_argcount (code object attributé}
co_cellvars (code object attributd))
co_code (code object attributdl
co_consts (code object attributé})
co_filename (code object attributép
co_firstlineno (code object attribute)
co_flags (code object attribute)
co_freevars (code object attributé}
co_lInotab (code object attribute)9
co_name (code object attributép
co_names (code object attributé}
co_nlocals (code object attribute®
co_stacksize (code object attribut&y,
co_varnames (code object attribut&),
code

block, 35

object,19
coercion,’5
comma40

trailing, 50, 57

Index

99

The Python Language Reference, Release 2.6.2

command lineg9
comment5
comparison48

string, 15
comparisons22

chaining,48
compile

built-in function,61
complex

built-in function, 30

literal, 10

number,15

object,15
complex number75
compound

statement63
comprehensions

list, 40
Conditional

expression49
constant9
constructor

class21
container13, 18
context manageB2, 76
continue

statement58, 64, 65
conversion

arithmetic,39

string, 22, 41, 53
coroutine 42
CPython,76

D

dangling

else,63
data,13

type, 14

type, immutable40
datum,41
dbm

module,16
debugging

assertionss5
decimal literal, 10
decorator,/6
DEDENT token,7, 63
def

statement66
default

parameter valueg7
definition

class 57, 67

function,57, 66
del

statementl5, 21, 56
delete,15
deletion

attribute,56

target,56

target list,56
delimiters,12
descriptor,76
destructor?1, 54
dictionary,76

display,41

object,16, 18, 23,41, 43, 54
display

dictionary,41

list, 40

tuple,40
division, 46
divmod

built-in function, 29, 30
docstring,67, 76
documentation string,9
duck-typing,76

E

EAFP,76
EBCDIC, 15
elif
keyword,63
Ellipsis
object,14
else
dangling,63
keyword,58, 63-65
empty
list, 40
tuple, 15, 40
encodingsf
environment35
error handling;36
errors,36
escape sequence,
eval
built-in function,61, 62, 70
evaluation
order,50
exc_info (in module sys),9

exc_traceback (in module syg)), 65

exc_type (in module sys$5
exc_value (in module sys)5
except
keyword,65
exception36, 58
AssertionErrorb6
AttributeError,43
GeneratorExit42
handler,19
ImportError,59, 60
NameError39
raising,58
RuntimeError57
Stoplteration42, 57

100

Index

The Python Language Reference, Release 2.6.2

TypeError,46

ValueError, 47

ZeroDivisionError46
exception handle;6
exclusive

or,47
exec

statementfl
execfile

built-in function,61
execution

frame,35, 67

restricted 36

stack,19
execution model35
expression39, 76

Conditional,49

generator40

lambda 49

list, 50, 53, 54

statement53

yield, 41
extended

slicing, 44
extended print statemerity
extended slicingl5
extension

module,14
extension module]7

F

f back (frame attribute),9
f_builtins (frame attribute)]19
f_code (frame attribute),9
f_exc_traceback (frame attributé€))
f_exc_type (frame attribute),9
f_exc_value (frame attribute)9
f_globals (frame attribute),9
f_lasti (frame attribute)19
f_lineno (frame attribute)]9
f locals (frame attribute) 9
f restricted (frame attribute),9
f_trace (frame attribute),9
False,14
file

object,18, 70
finally

keyword,57, 58, 65
find_module

finder,59
finder,59, 77

find_module59
float

built-in function, 30
floating point

number,14

object,14
floating point literal,10

for
statement58, 64
form
lambda 49, 67
frame
execution35, 67
object,19
free
variable,35, 56
from
keyword,59
statement35
frozenset
object,16
func_closure (function attribute).,6
func_code (function attribute),6
func_defaults (function attribute) 6
func_dict (function attribute)1 6
func_doc (function attribute),6
func_globals (function attribute),6
function, 77
anonymous49
argument,L6
call, 16, 45, 46
call, user-defined}5
definition,57, 66
generatordl, 57
name,66
object,16, 17, 45, 46, 66
user-defined] 6
future
statement60

G

garbage collection,3, 77
gdbm
module,16
generatory7
expression40
function,17, 41, 57
iterator,17, 57
object,19, 41, 42
generator expression/
GeneratorExit
exception42
generic
special attribute] 4
GIL, 77
global
name bindingp1
namespacel,6
statement54, 56, 61
global interpreter locky7
globals
built-in function, 62
grammars
grouping,”

Index

101

The Python Language Reference, Release 2.6.2

H int
handle an exceptior6 . built-in function,30
handler integer,15

exception,19
hash

built-in function, 23
hash characteh

object,14

representatior,4
integer division,78
integer literal, 10

hashable77 interactive,’8
hex interactive mode§9
built-in function, 30 internal type,19
hexadecimal literal].0 !nterpreted,7 8
hierarchy interpreter69
type,14 inversion,46
invocation,16
I is
id . operator49
built-in function, 13 Is not
identifier,8, 39 o operatorA9
|dentt|2;t,49 sequence43
identity of an object]13 . string,43
IDLE. 77 item selection]l5
i iterable,78
statement63 iterator,78
im_class (method attribute)/ J
im_func (method attribute),6, 17
im_self (method attribute),6, 17 Java
imaginary literal, 10 language 4
immutable,78 K
data type40
object,15, 40, 41 key, 41
immutable object]3 key/datum pair41
immutable sequence keyword,8
object,15 elif, 63
immutable types else,58, 6365
subclassing?1 except,65

import

statement] 8, 59
importer,78
ImportError

exceptions9, 60
in

keyword,64

operator49
inclusive

or, 47

INDENT token,7
indentation,’
index operationl15
indices() (slice method}0
inheritancef7
input, 70
built-in function, 70
raw, 70
instance
call, 27, 46
class,18
object,17, 18, 46

finally, 57, 58, 65

from, 59

in, 64

yield, 41
keyword argument/8

L

lambda,78
expression49
form, 49, 67

language
C,14,17,48
Java,14
Pascalp4

last_traceback (in module syg))

LBYL, 78
leading whitespace,
len

built-in function, 15, 16, 27

lexical analysisb
lexical definitions4
line continuations

102

The Python Language Reference, Release 2.6.2

line joining, 5, 6
line structureb
list, 78
assignment, targeb4
comprehensiongl0
deletion target56
display,40
empty,40
expression50, 53, 54
object,15, 40, 43, 54
target,54, 64
list comprehension]8
literal, 9, 40
load_module
loader,59
loader,59, 79
load_module59
locals
built-in function, 62
logical line,5
long
built-in function, 30
long integer
object,14
long integer literal 10
loop
over mutable sequencé4
statement58, 64
loop control
target,58

M

makefile() (socket method}3
mangling
name,39
mapping,79
object,16, 18, 43, 54
membership
test,49
metaclass/9
method,79
built-in, 17
call, 46
object,16, 17, 46
user-defined]1 6
minus,46
module
__builtin__,62, 69
__main__ 36,69
array,15
bsddb,16
dbm,16
extension14
gdbm,16
importing,59
namespace,8
object,18, 43
sys,57, 65, 69

modulo,47
multiplication, 46
mutable,79
object,15, 53, 54
mutable object]3
mutable sequence
loop over,64
object,15

N

name,8, 35, 39
binding, 35, 53, 59, 60, 66, 67
binding, global61
class67
function, 66
mangling,39
rebinding,53
unbinding,56

named tuple79

NameError
exception39

NamekError (built-in exception5

names
private,39

namespace}5, 79
global, 16
module,18

negation46

nested scop€,9

new-style class{9

newline
suppression;7

NEWLINE token,5, 63

next() (generator method}2

None
object,14, 53

not
operator49

not in
operator49

notation,4

Notimplemented
object,14

null
operation56

number,10
complex,15
floating point,14

numeric
object,14, 18
numeric literal,10

O

object,13, 79
Boolean,14
built-in function, 17, 46
built-in method,17, 46
callable,16, 44

Index

103

The Python Language Reference, Release 2.6.2

class,17, 18, 46, 67
class instancel,7, 18, 46
code,19
complex,15
dictionary,16, 18, 23, 41, 43,54
Ellipsis, 14
file, 18, 70
floating point,14
frame,19
frozenset,16
function, 16, 17, 45, 46, 66
generatorl9, 41, 42
immutable,15, 40, 41
immutable sequencépb
instancel7, 18, 46
integer,14
list, 15, 40, 43, 54
long integer14
mapping,16, 18, 43, 54
method,16, 17, 46
module,18, 43
mutable,15, 53, 54
mutable sequencéb
None,14, 53
Notlmplementedl14
numeric,14, 18
plain integer14
recursive4l
sequencel’5, 18, 43, 49, 54, 64
set,16
set type 15
slice,27
string, 15, 43
traceback(l9, 58, 65
tuple, 15, 43, 50
unicode,15
user-defined functiori,6, 45, 66
user-defined method g
oct
built-in function,30
octal literal,10
open
built-in function, 18
operation
binary arithmetic46
binary bitwise 47
Boolean49
null, 56
shifting, 47
unary arithmetic46
unary bitwise 46

or,49
overloading21
precedence;0
operators12
or
bitwise, 47
exclusive 47
inclusive,47
operator49
ord
built-in function,15
order
evaluation50
output,53, 57
standard53, 57
OverflowError (built-in exception)14
overloading
operator21

P

package59
parameter

value, defaults7
parenthesized fornd0
parserp
Pascal

languagef4
pass

statement56
physical line 5, 6, 9
plain integer

object,14
plain integer literal 10
plus,46
popen() (in module os),8
positional argumenf/9
pow

built-in function, 29, 30
precedence

operators0
primary,43
print

statement?2, 56
private

names39
procedure

call, 53
program,69
Python 300079
Python Enhancement Proposals

PEP 025558

operator PEP 034243, 58
_and,49 PEP 034332, 66
in, 49 PEP 30259, 77, 79
is, 49 PEP 32860
is not,49 PEP 343,/6
not, 49 Pythonic,79
not in, 49
104 Index

The Python Language Reference, Release 2.6.2

Q

guotes
backward22, 41
reverse2?, 41

R

raise

statement58
raise an exceptiorg6
raising

exception58
range

built-in function, 64
raw input,70
raw string,9
raw_input

built-in function, 70
readline() (file method)70
rebinding

name;53
recursive

object,41
reference

attribute, 43
reference coung0
reference counting,3
relative

import, 60
repr

built-in function,22, 41, 53
representation

integer,14
reserved word3
restricted

execution 36
return

statement57, 65
reverse

quotes22, 41
RuntimeError

exception57

S

scope35
send() (generator method)?
sequenceg0
item, 43
object,15, 18, 43, 49, 54, 64
set
object,16
set type
object,15
shifting
operation47
simple
statement53
singleton
tuple,15

slice,43, 80
built-in function,20
object,27
slicing, 15, 43
assignmentb4
extended44
source character set,
space,/
special
attribute,14
attribute, genericl4
special method30
stack
execution,19
trace,19
standard
output,53, 57
Standard C9
standard inputt9
start (slice object attribute?0, 44
statement67, 80
* 67
**, 67
assertp5
assignment]5, 53
assignment, augmentesh
break,58, 64, 65
class67
compoundf3
continue,58, 64, 65
def, 66
del, 15, 21, 56
exec,61
expression53
for, 58, 64
from, 35
future, 60
global,54, 56, 61
if, 63
import, 18, 59
loop, 58, 64
passph6
print, 22, 56
raise,58
return,57, 65
simple,53
try, 19, 65
while, 58, 64
with, 32, 66
yield, 57
statement grouping,
stderr (in module sys).8
stdin (in module sys)18
stdio, 18
stdout (in module sys),8, 57
step (slice object attribute}, 44
stop (slice object attribute0, 44
Stoplteration

Index

105

The Python Language Reference, Release 2.6.2

exception42, 57
str
built-in function,22, 41
string
comparisonl5
conversion22, 41, 53
item, 43
object,15, 43
Unicode,9
string literal,9
subclassing
immutable types21
subscription,15, 16, 43
assignments4
subtraction47
suite,63
suppression
newline,57
syntax,4, 39
sys
module,57, 65, 69
sys.exc_infol9
sys.exc_traceback9
sys.last_traceback9
sys.meta_patt9
sys.modules;9
sys.pathp9
sys.path_hook$9
sys.path_importer_cach&9
sys.stderrl8
sys.stdin18
sys.stdout]18
SystemEXxit (built-in exceptiong7

T

tab,7
target,54
deletion,56
list, 54, 64
list assignment>4
list, deletion,56
loop control,58
tb_frame (traceback attribute)9
tb_lasti (traceback attribute)9
tb_lineno (traceback attribute)9
tb_next (traceback attribute)9
termination model36
test
identity, 49
membership49
throw() (generator method}2
token,5
trace
stack,19
traceback
object,19, 58, 65
trailing
commas0, 57

triple-quoted string9, 80
True,14
try
statement]9, 65
tuple
display,40
empty,15, 40
object,15, 43, 50
singleton,15
type, 14, 80
built-in function, 13
data,14
hierarchy,14
immutable data40
type of an object]l3
TypeError
exception46
types, internall9

U

unary
arithmetic operation46
bitwise operation46
unbinding
name;56
UnboundLocalError35
unichr
built-in function, 15
Unicode,15
unicode
built-in function, 15, 23
object,15
Unicode Consortiun®
UNIX, 69
unreachable object,3
unrecognized escape sequerice,
user-defined
function, 16
function call, 45
method,16
user-defined function
object,16, 45, 66
user-defined method
object,16

Vv

value

default parametef7
value of an object] 3
ValueError

exception47
values

writing, 53, 57
variable

free,35, 56
virtual machineg80

106

Index

The Python Language Reference, Release 2.6.2

W

while

statement58, 64
whitespace?
with

statement32, 66
writing

values 53, 57

X

xor
bitwise,47

Y

yield
expression41
keyword,41
statement57

Z

Zen of Python80
ZeroDivisionError
exception46

Index 107

	Introduction
	Alternate Implementations
	Notation

	Lexical analysis
	Line structure
	Other tokens
	Identifiers and keywords
	Literals
	Operators
	Delimiters

	Data model
	Objects, values and types
	The standard type hierarchy
	New-style and classic classes
	Special method names

	Execution model
	Naming and binding
	Exceptions

	Expressions
	Arithmetic conversions
	Atoms
	Primaries
	The power operator
	Unary arithmetic and bitwise operations
	Binary arithmetic operations
	Shifting operations
	Binary bitwise operations
	Comparisons
	Boolean operations
	Lambdas
	Expression lists
	Evaluation order
	Summary

	Simple statements
	Expression statements
	Assignment statements
	The assert statement
	The pass statement
	The del statement
	The print statement
	The return statement
	The yield statement
	The raise statement
	The break statement
	The continue statement
	The import statement
	The global statement
	The exec statement

	Compound statements
	The if statement
	The while statement
	The for statement
	The try statement
	The with statement
	Function definitions
	Class definitions

	Top-level components
	Complete Python programs
	File input
	Interactive input
	Expression input

	Full Grammar specification
	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

