The Python/C API
Release 2.6.2

Guido van Rossum

Fred L. Drake, Jr., editor

April 15, 2009

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Include Files. o e e 3
1.2 Objects, Typesand ReferenceCounts 4
1.3 EXCEPLiONS. o e e e e e e 7
1.4 Embedding Python 9
1.5 Debugging Builds. 9
The Very High Level Layer 11
Reference Counting 15
Exception Handling 17
4.1 Standard EXCeptions e e e e 21
4.2 Deprecation of String EXceptions L 22
Utilities 23
5.1 Operating System Utilities e e 23
5.2 System Functions. e e e 23
5.3 ProcessControl. e 24
5.4 Importing Modules e 24
5.5 Datamarshalling suppart. e 27
5.6 Parsing arguments and buildingvalues. 28
5.7 String conversionand formatting e 34
5.8 Reflection 35
Abstract Objects Layer 37
6.1 ObjectProtocol e e 37
6.2 Number Protocol A1
6.3 Sequence Protocal 44
6.4 Mapping Protocol. 46
6.5 Iterator Protocol. e 46
6.6 BufferProtocol. AT
Concrete Objects Layer 49
7.1 Fundamental Objects. e e e 49
7.2 Numeric ObJeCtS. e e e e e e 50
7.3 Sequence Objects. e e e 55
7.4 Mapping Objects e 70
75 OtherObjects e e e e e e e T3
Initialization, Finalization, and Threads 85
8.1 Thread State and the Global InterpreterLock 88
8.2 Profilingand Tracing e e 92
8.3 Advanced Debugger SUpport e e e e e 94

9 Memory Management 95
9.1 OVEIVIEW. . o o o e e e e e e 95
9.2 MemorylInterface 96
9.3 Examples. 96

10 Object Implementation Support 99
10.1 Allocating ObjectsontheHeap i e 99
10.2 Common Object StruCtures o i e e e 100
10.3 Type Objects. o e e e e 103
10.4 Number Object Structures e e 116
10.5 Mapping Object StruCtures. e e e 117
10.6 Sequence Object StrucCtures. o e e 118
10.7 Buffer Object Structures 118
10.8 Supporting Cyclic Garbage Collection 119

A Glossary 123

B About these documents 129
B.1 Contributors to the Python Documentation. 129

C History and License 131
C.1 Historyofthesoftware e 131
C.2 Terms and conditions for accessing or otherwise using Python 132
C.3 Licenses and Acknowledgements for Incorporated Software. 135

D Copyright 143

Index 145

The Python/C API, Release 2.6.2

Release?2.6
Date April 15, 2009

This manual documents the API used by C and C++ programmers who want to write extension modules or embed
Python. It is a companion textending and Embedding the Python Interpreier Extending and Embedding

Pythor), which describes the general principles of extension writing but does not document the API functions in
detail.

CONTENTS

The Python/C API, Release 2.6.2

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The Application Programmer’s Interface to Python gives C and C++ programmers access to the Python interpreter
at a variety of levels. The API is equally usable from C++, but for brevity it is generally referred to as the
Python/C API. There are two fundamentally different reasons for using the Python/C API. The first reason is to
write extension modulefor specific purposes; these are C modules that extend the Python interpreter. This is
probably the most common use. The second reason is to use Python as a component in a larger application; this
technique is generally referred to @smbeddind®ython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well.
There are several tools that automate the process to some extent. While people have embedded Python in other
applications since its early existence, the process of embedding Python is less straightforward than writing an
extension.

Many API functions are useful independent of whether you’re embedding or extending Python; moreover, most
applications that embed Python will need to provide a custom extension as well, so it's probably a good idea to
become familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headersstdio.h> | <string.h> , <errno.h> |
<limits.h> , and<stdlib.h> (if available).

Warning: Since Python may define some pre-processor definitions which affect the standard heaglers on
some systems, yamustincludePython.h before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of
the prefixedy or _Py. Names beginning withPy are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin®yitbr _Py. This confuses the reader, and jeop-
ardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. On Unix, these are located in the directories
prefix/include/pythonversion/ and exec_prefix/include/pythonversion/ , Wherepre-

fix and exec_prefixare defined by the corresponding parameters to Pythmi§igure script andversionis
sys.version[:3] . On Windows, the headers are installegrefix/include , Whereprefix is the instal-

lation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest Do
place the parent directories on the search path and thetindade <pythonX.Y/Python.h> ; this will

The Python/C API, Release 2.6.2

break on multi-platform builds since the platform independent headers prefec include the platform specific
headers fronexec_prefix

C++ users should note that though the API is defined entirely using C, the header files do properly declare the
entry points to bextern "C" , so there is no need to do anything special to use the API from C++.

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value &fyippgct* . This

type is a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types
are treated the same way by the Python language in most situations (e.g., assignments, scope rules, and argument
passing), it is only fitting that they should be represented by a single C type. Almost all Python objects live on
the heap: you never declare an automatic or static variable ofRyfiject , only pointer variables of type
PyObject* can be declared. The sole exception are the type objects; since these must never be deallocated, they
are typically static®yTypeObject objects.

All Python objects (even Python integers) haviygeand areference countAn object’s type determines what
kind of object it is (e.g., an integer, a list, or a user-defined function; there are many more as expldihed in
standard type hierarch§in The Python Language Referejicd-or each of the well-known types there is a macro
to check whether an object is of that type; for instarfeg,ist Check(a) is true if (and only if) the object
pointed to byais a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size;
it counts how many different places there are that have a reference to an object. Such a place could be another
object, or a global (or static) C variable, or a local variable in some C function. When an object’s reference
count becomes zero, the object is deallocated. If it contains references to other objects, their reference count
is decremented. Those other objects may be deallocated in turn, if this decrement makes their reference count
become zero, and so on. (There’s an obvious problem with objects that reference each other here; for now, the
solution is “don’'t do that.”) Reference counts are always manipulated explicitly. The normal way is to use
the macroPy INCREF to increment an object’s reference count by one, BadDECREF0 decrement it by

one. ThePy DECREFmacro is considerably more complex than the incref one, since it must check whether the
reference count becomes zero and then cause the object’s deallocator to be called. The deallocator is a function
pointer contained in the object’s type structure. The type-specific deallocator takes care of decrementing the
reference counts for other objects contained in the object if this is a compound object type, such as a list, as well
as performing any additional finalization that's needed. There’s no chance that the reference count can overflow;
at least as many bits are used to hold the reference count as there are distinct memory locations in virtual memory
(assumingsizeof(Py_ssize_t) >= sizeof(void*)). Thus, the reference count increment is a simple
operation.

It is not necessary to increment an object’s reference count for every local variable that contains a pointer to an
object. In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes
down by one when the variable goes out of scope. However, these two cancel each other out, so at the end the
reference count hasn't changed. The only real reason to use the reference count is to prevent the object from being
deallocated as long as our variable is pointing to it. If we know that there is at least one other reference to the
object that lives at least as long as our variable, there is no need to increment the reference count temporarily.
An important situation where this arises is in objects that are passed as arguments to C functions in an extension
module that are called from Python; the call mechanism guarantees to hold a reference to every argument for the
duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing
its reference count. Some other operation might conceivably remove the object from the list, decrementing its
reference count and possible deallocating it. The real danger is that innocent-looking operations may invoke
arbitrary Python code which could do this; there is a code path which allows control to flow back to the user from
aPy DECREF so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name begiRy®bject

4 Chapter 1. Introduction

The Python/C API, Release 2.6.2

PyNumber_, PySequence_ or PyMapping_). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tdPgalDECREFwvhen they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in telmmsefship of ref-

erences Ownership pertains to references, never to objects (objects are not owned: they are always shared).
“Owning a reference” means being responsible for calling Py DECREF on it when the reference is no longer
needed. Ownership can also be transferred, meaning that the code that receives ownership of the reference then
becomes responsible for eventually decref’ing it by callihg DECREFor Py_XDECREFR~hen it's no longer
needed—or passing on this responsibility (usually to its caller). When a function passes ownership of a reference
on to its caller, the caller is said to receiva@avreference. When no ownership is transferred, the caller is said to
borrowthe reference. Nothing needs to be done for a borrowed reference.

Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does n&tealing a referenceneans that when you pass a reference to a
function, that function assumes that it now owns that reference, and you are not responsible for it any longer. Few
functions steal references; the two notable exceptionBwarest Setltem andPyTuple Setltem , which

steal a reference to the item (but not to the tuple or list into which the item is put!). These functions were designed
to steal a reference because of a common idiom for populating a tuple or list with newly created objects; for
example, the code to create the tufile 2, "three") could look like this (forgetting about error handling

for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt_FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString("three "));

Here,Pyint_FromLong returns a new reference which is immediately stolefPpyuple_Setltem . When
you want to keep using an object although the reference to it will be stoler?yudelCREF to grab another
reference before calling the reference-stealing function.

Incidentally, PyTuple Setltem is the only way to set tuple items;PySequence_Setltem and
PyObject_Setltem refuse to do this since tuples are an immutable data type. You should only use
PyTuple_Setltem for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist New andPyList_Setltem

However, in practice, you will rarely use these ways of creating and populating a tuple or list. There’s a generic
function, Py BuildValue , that can create most common objects from C values, directedftnyret string

For example, the above two blocks of code could be replaced by the following (which also takes care of the error
checking):

PyObject *tuple, *list;

tuple = Py Buildvalue("(is) ", 1, 2, "three ");
list = Py Buildvalue("[is] ", 1, 2, "three ");

It is much more common to useyObject_Setltem and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour
regarding reference counts is much saner, since you don’t have to increment a reference count so you can give
a reference away (“have it be stolen”). For example, this function sets all items of a list (actually, any mutable
sequence) to a given item:

int
set_all (PyObject *target, PyObject * item)

1.2. Objects, Types and Reference Counts 5

The Python/C API, Release 2.6.2

{ .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return - 1;
for (i =0;i1i <n i ++){
PyObject *index = PyInt_FromLong(i);
if (!index)
return -1,
if (PyObject_Setltem(target, index, item) < 0)
return -1;
Py_DECREF(index);
}
return 0;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly,
and the reference you get is the only reference to the object. Therefore, the generic functions that return object
references, lik®yObject_Getltem andPySequence_ Getltem , always return a new reference (the caller
becomes the owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function
you call only —the plumagdthe type of the object passed as an argument to the funadmegn’t enter into

it! Thus, if you extract an item from a list usirigyList Getltem , you don’t own the reference — but if

you obtain the same item from the same list usitygequence Getltem (which happens to take exactly the

same arguments), you do own a reference to the returned object. Here is an example of how you could write a
function that computes the sum of the items in a list of integers; once Bsihgt_Getltem , and once using
PySequence_Getltem

long
sum_list (PyObject *list)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i =0;i <n;i ++){
item = PyList_Getltem(list, i); [* Can't fail */
if (! PyInt_Check(item)) continue ; /* Skip non-integers */
total += PyInt_AsLong(item);
}
return total;
}
long
sum_sequence (PyObject *sequence)
{ . .
int i, n;
long total = O;

PyObject *item;
n = PySequence_Length(sequence);

6 Chapter 1. Introduction

The Python/C API, Release 2.6.2

if (n <0)
return -1; /* Has no length */
for (i =0;1 <n;i ++){
item = PySequence_Getltem(sequence, i);
if (tem == NULD
return - 1; /* Not a sequence, or other failure */

if (PyInt_Check(item))
total += Pylnt_AsLong(item);
Py _DECREF(item); /* Discard reference ownership */

}

return total;
}
1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C types such as
int ,long ,double andchar* . Afew structure types are used to describe static tables used to list the functions
exported by a module or the data attributes of a new object type, and another is used to describe the value of a
complex number. These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled
exceptions are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the
top-level interpreter, where they are reported to the user accompanied by a stack traceback. For C programmers,
however, error checking always has to be explicit. All functions in the Python/C API can raise exceptions, unless
an explicit claim is made otherwise in a function’s documentation. In general, when a function encounters an
error, it sets an exception, discards any object references that it owns, and returns an error indicator — usually
NULL or-1 . A few functions return a Boolean true/false result, with false indicating an error. Very few functions
return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors with
PyErr_Occurred . Exception state is maintained in per-thread storage (this is equivalent to using global
storage in an unthreaded application). A thread can be in one of two states: an exception has occurred, or not. The
functionPyErr_Occurred can be used to check for this: it returns a borrowed reference to the exception type
object when an exception has occurred, Bl L otherwise. There are a number of functions to set the exception
state:PyErr_SetString is the most common (though not the most general) function to set the exception state,
andPyErr_Clear clears the exception state. The full exception state consists of three objects (all of which
can beNULL): the exception type, the corresponding exception value, and the traceback. These have the same
meanings as the Python objestgs.exc_type , sys.exc_value , andsys.exc_traceback ; however,

they are not the same: the Python objects represent the last exception being handled by yPyth@axcept

statement, while the C level exception state only exists while an exception is being passed on between C functions
until it reaches the Python bytecode interpreter’s main loop, which takes care of transferrgygieixc_type

and friends. Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from
Python code is to call the functiays.exc_info() , Which returns the per-thread exception state for Python
code. Also, the semantics of both ways to access the exception state have changed so that a function which
catches an exception will save and restore its thread’s exception state so as to preserve the exception state of its
caller. This prevents common bugs in exception handling code caused by an innocent-looking function overwriting
the exception being handled; it also reduces the often unwanted lifetime extension for objects that are referenced
by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the
called function raised an exception, and if so, pass the exception state on to its caller. It should discard any
object references that it owns, and return an error indicator, but it simotkket another exception — that would
overwrite the exception that was just raised, and lose important information about the exact cause of the error. A
simple example of detecting exceptions and passing them on is shownsnrthesequence example above.

It so happens that that example doesn’'t need to clean up any owned references when it detects an error. The

1.3. Exceptions 7

The Python/C API, Release 2.6.2

following example function shows some error cleanup. First, to remind you why you like Python, we show the
equivalent Python code:

def incr_item(dict, key)
try:
item = dict[key]
except KeyError:
item =0
dict[key] = item + 1

Here is the corresponding C code, in all its glory:

int
incr_item (PyObject *dict, PyObject * key)
{
[* Objects all initialized to NULL for Py XDECREF */
PyObject *item = NULL *const one = NULL *incremented_item = NULL
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_Getltem(dict, key);
if (tem == NULD {
/* Handle KeyError only: */
if (! PyErr_ExceptionMatches(PyExc_KeyError))
goto error,
/* Clear the error and use zero: */
PyErr_Clear();
item = PyInt_FromLong(OL);
if (tem == NULD
goto error;
}
const_one = PyInt_FromLong(1L);
if (const_ one == NULL
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL
goto error;
if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;
rv = 0; /* Success */
[* Continue with cleanup code */
error:
[* Cleanup code, shared by success and failure path */
/* Use Py XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py _XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /[* -1 for error, O for success */
}

This example represents an endorsed use of goéo statement in C! It illustrates the use of
PyErr_ExceptionMatches andPyErr_Clear to handle specific exceptions, and the usewpfXDECREF

8 Chapter 1. Introduction

The Python/C API, Release 2.6.2

to dispose of owned references that mayNidl L (note the’X’ in the namePy DECREFRwould crash when
confronted with &NULL reference). It is important that the variables used to hold owned references are initialized
to NULL for this to work; likewise, the proposed return value is initializedto(failure) and only set to success
after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have
to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality

of the interpreter can only be used after the interpreter has been initialized. = The basic initialization func-
tion is Py_Initialize . This initializes the table of loaded modules, and creates the fundamental modules
__builtin__, __main__ , sys, andexceptions . It also initializes the module search paflyg.path).

Py _Initialize does not set the “script argument lissys.argv). If this variable is needed by Python code

that will be executed later, it must be set explicitly with a calPyBSys_SetArgv(argc, argv) subsequent

to the call toPy_Initialize

On most systems (in particular, on Unix and Windows, although the details are slightly different),
Py _Initialize calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python
interpreter executable. In particular, it looks for a directory naliegythonX.Y relative to the parent direc-

tory where the executable nampgthon is found on the shell command search path (the environment variable
PATH).

For instance, if the Python executable is foundusr/local/bin/python , it will assume that the libraries
are in/usr/local/lib/pythonX.Y . (In fact, this particular path is also the “fallback” location, used when
no executable file nameglython is found alongPATH.) The user can override this behavior by setting the
environment variabl®YTHONHOME , or insert additional directories in front of the standard path by setting
PYTHONPATH . The embedding application can steer the search by cangetProgramName(file)
beforecalling Py _Initialize . Note thaPYTHONHOME still overrides this an®YTHONPATH is still in-
serted in front of the standard path. An application that requires total control has to provide its own implementation
of Py_GetPath , Py GetPrefix ,Py_GetExecPrefix ,andPy_GetProgramFullPath (all defined in
Modules/getpath.c). Sometimes, it is desirable to “uninitialize” Python. For instance, the application may
want to start over (make another call Ry _Initialize) or the application is simply done with its use of
Python and wants to free memory allocated by Python. This can be accomplished by egllifigalize

The functionPy_IsInitialized returns true if Python is currently in the initialized state. More information
about these functions is given in a later chapter. NoticeRlyafinalize doesnot free all memory allocated

by the Python interpreter, e.g. memory allocated by extension modules currently cannot be released.

1.5 Debugging Builds

Python can be built with several macros to enable extra checks of the interpreter and extension modules. These
checks tend to add a large amount of overhead to the runtime so they are not enabled by default.

A full list of the various types of debugging builds is in the flisc/SpecialBuilds.txt in the Python

source distribution. Builds are available that support tracing of reference counts, debugging the memory allocator,
or low-level profiling of the main interpreter loop. Only the most frequently-used builds will be described in the
remainder of this section.

Compiling the interpreter with th®y DEBUGMmacro defined produces what is generally meant by “a debug
build” of Python. Py_DEBUGSs enabled in the Unix build by addingwith-pydebug to theconfigure
command. It is also implied by the presence of the not-Python-spe@iftBUGmMacro. WherPy DEBUGs
enabled in the Unix build, compiler optimization is disabled.

In addition to the reference count debugging described below, the following extra checks are performed:

 Extra checks are added to the object allocator.

 Extra checks are added to the parser and compiler.

1.4. Embedding Python 9

The Python/C API, Release 2.6.2

« Downcasts from wide types to narrow types are checked for loss of information.

< A number of assertions are added to the dictionary and set implementations. In addition, the set object
acquires dest_c_api() method.

« Sanity checks of the input arguments are added to frame creation.

» The storage for long ints is initialized with a known invalid pattern to catch reference to uninitialized digits.
« Low-level tracing and extra exception checking are added to the runtime virtual machine.

 Extra checks are added to the memory arena implementation.

 Extra debugging is added to the thread module.

There may be additional checks not mentioned here.

Defining Py_ TRACE_REFSenables reference tracing. When defined, a circular doubly linked list of active
objects is maintained by adding two extra fields to evépDbject . Total allocations are tracked as well.

Upon exit, all existing references are printed. (In interactive mode this happens after every statement run by the
interpreter.) Implied byy DEBUG

Please refer tMisc/SpecialBuilds.txt in the Python source distribution for more detailed information.

10 Chapter 1. Introduction

CHAPTER
TWO

THE VERY HIGH LEVEL LAYER

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not
let you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py eval_input , Py file_input , andPy_single_input . These are described following the functions
which accept them as parameters.

Note also that several of these functions tBKeE* parameters. One particular issue which needs to be handled
carefully is that thé-ILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken
thatFILE* parameters are only passed to these functions if it is certain that they were created by the same library
that the Python runtime is using.

int Py_Main (intargc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python.
Theargcandargv parameters should be prepared exactly as those which are passed to a C progiiam’s
function. It is important to note that the argument list may be modified (but the contents of the strings
pointed to by the argument list are not). The return value will be the integer passedstgsthgit()
function, 1 if the interpreter exits due to an exception,if the parameter list does not represent a valid
Python command line.

Note that if an otherwise unhandl&ystemError s raised, this function will not retur, but exit the
process, as long @&y _InspectFlag is not set.

int PyRun_AnyFile (FILE *fp, const char *filenampg
This is a simplified interface tByRun_AnyFileExFlags below, leavingcloseitset to0 andflagsset to
NULL.

int PyRun_AnyFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
This is a simplified interface tByRun_AnyFileExFlags below, leaving theloseitargument set to.

int PyRun_AnyFileEx (FILE *fp, const char *filename, int clos@it
This is a simplified interface t®yRun_AnyFileExFlags below, leaving theflags argument set to
NULL.

int PyRun_AnyFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
If fprefers to a file associated with an interactive device (console or terminal input or Unix pseudo-terminal),
return the value oPyRun_InteractiveLoop , otherwise return the result &fyRun_SimpleFile
If filenameis NULL, this function use8???" as the filename.

int PyRun_SimpleString (const char *command
This is a simplified interface t®yRun_SimpleStringFlags below, leaving thePyCompilerFlags*
argument set to NULL.

int PyRun_SimpleStringFlags (const char *command, PyCompilerFlags *flags
Executes the Python source code froommandn the__main__ module according to thig|agsargument.
If __main__ does not already exist, it is created. Retudnen success ol if an exception was raised.
If there was an error, there is no way to get the exception information. For the meaffiagso$ee below.

Note that if an otherwise unhandl&ystemError s raised, this function will not retursl , but exit the

11

The Python/C API, Release 2.6.2

process, as long @&y _InspectFlag is not set.

int PyRun_SimpleFile (FILE *fp, const char *filenamp
This is a simplified interface t8yRun_SimpleFileExFlags below, leavingcloseitset to0 andflags
set toNULL.

int PyRun_SimpleFileFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
This is a simplified interface tByRun_SimpleFileExFlags below, leavingcloseitset to0.

int PyRun_SimpleFileEx (FILE *fp, const char *filename, int closgit
This is a simplified interface t8yRun_SimpleFileExFlags below, leavinglagsset toNULL.

int PyRun_SimpleFileExFlags (FILE *fp, const char *filename, int closeit, PyCompilerFlags *flags
Similar to PyRun_SimpleStringFlags , but the Python source code is read frépninstead of an
in-memory string. filenameshould be the name of the file. tloseitis true, the file is closed before
PyRun_SimpleFileExFlags returns.

int PyRun_InteractiveOne (FILE *fp, const char *filenamp
This is a simplified interface tByRun_InteractiveOneFlags below, leavinglagsset toNULL.

int PyRun_InteractiveOneFlags (FILE *fp, const char *filename, PyCompilerFlags *flggs
Read and execute a single statement from a file associated with an interactive device accordifigge the
argument. Ifflenameis NULL, "???" is used instead. The user will be prompted usgg.psl and
sys.ps2 . ReturnsD when the input was executed successfully,if there was an exception, or an error
code from theerrcode.h include file distributed as part of Python if there was a parse error. (Note that
errcode.h is notincluded byPython.h , so must be included specifically if needed.)

int PyRun_InteractiveLoop (FILE *fp, const char *filenampg
This is a simplified interface tByRun_InteractiveLoopFlags below, leavinglagsset toNULL.

int PyRun_InteractiveLoopFlags (FILE *fp, const char *filename, PyCompilerFlags *flags
Read and execute statements from a file associated with an interactive device until EOF is reached. If
filenameis NULL, "???" is used instead. The user will be prompted usigg.psl andsys.ps2
Returns0 at EOF.

struct _node* PyParser_SimpleParseString (const char *str, int start
This is a simplified interface t@yParser_SimpleParseStringFlagsFilename below, leaving
filenameset toNULL andflagsset to0.

struct _node* PyParser_SimpleParseStringFlags (const char *str, int start, int flags
This is a simplified interface t®yParser_SimpleParseStringFlagsFilename below, leaving

filenameset toNULL.

struct _node* PyParser_SimpleParseStringFlagsFilename (const char *str, const char *file-

name, int start, int flags
Parse Python source code fratnusing the start tokestart according to thélagsargument. The result can

be used to create a code object which can be evaluated efficiently. This is useful if a code fragment must be
evaluated many times.

struct _node* PyParser_SimpleParseFile (FILE *fp, const char *filename, int stayt
This is a simplified interface tByParser_SimpleParseFileFlags below, leavinglagsset to0

struct _node* PyParser_SimpleParseFileFlags (FILE *fp, const char *filename, int start, int

flag9
Similar to PyParser_SimpleParseStringFlagsFilename , but the Python source code is read

from fp instead of an in-memory string.

PyObject* PyRun_String (const char *str, int start, PyObject *globals, PyObject *locpls
Return value: New reference.
This is a simplified interface tByRun_StringFlags below, leavinglagsset toNULL.

PyObject* PyRun_StringFlags (const char *str, int start, PyObject *globals, PyObject *locals, Py-
CompilerFlags *flagy
Return value: New reference.
Execute Python source code fratn in the context specified by the dictionarigiebalsandlocalswith the
compiler flags specified bffags The parametestart specifies the start token that should be used to parse

12 Chapter 2. The Very High Level Layer

The Python/C API, Release 2.6.2

the source code.
Returns the result of executing the code as a Python objelt bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface t®yRun_FileExFlags below, leavingcloseitset to0 andflagsset to
NULL.

PyObject* PyRun_FileEx (FILE *fp, const char *filename, int start, PyObject *globals, PyObject *locals,

int closei
Return value: New reference.

This is a simplified interface t8yRun_FileExFlags below, leavindglagsset toNULL.

PyObject* PyRun_FileFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, PyCompilerFlags *flags
Return value: New reference.
This is a simplified interface tByRun_FileExFlags below, leavingcloseitset to0.

PyObject* PyRun_FileExFlags (FILE *fp, const char *filename, int start, PyObject *globals, PyObject
*locals, int closeit, PyCompilerFlags *flags
Return value: New reference.

Similar to PyRun_StringFlags , but the Python source code is read frdminstead of an in-
memory string. flenameshould be the name of the file. Hloseitis true, the file is closed before
PyRun_FileExFlags returns.

PyObject* Py _CompileString (const char *str, const char *filename, int start
Return value: New reference.
This is a simplified interface t8y_CompileStringFlags below, leavinglagsset toNULL.

PyObject* Py_CompileStringFlags (const char *str, const char *filename, int start, PyCompilerFlags
*flags

Return value: New reference. 9
Parse and compile the Python source codsrirreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shdald beal input
Py _file_input , or Py_single_input . The filename specified Hijlenameis used to construct the
code object and may appear in tracebackSymtaxError exception messages. This retuMdLL if
the code cannot be parsed or compiled.

PyObject* PyEval_EvalCode (PyCodeObject *co, PyObject *globals, PyObject *logals
Return value: New reference.
This is a simplified interface t8yEval _EvalCodeEx , with just the code object, and the dictionaries of
global and local variables. The other arguments are 9¢ttol.

PyObject* PyEval EvalCodeEx (PyCodeObject *co, PyObject *globals, PyObject *locals, PyObject
**args, int argcount, PyObject **kws, int kwcount, PyObject **defs,
int defcount, PyObject *closuye
Evaluate a precompiled code object, given a particular environment for its evaluation. This environment

consists of dictionaries of global and local variables, arrays of arguments, keywords and defaults, and a
closure tuple of cells.

PyObject* PyEval EvalFrame (PyFrameObject *}
Evaluate an execution frame. This is a simplified interface to PyEval_EvalFrameEx, for backward compat-
ibility.

PyObject* PyEval_EvalFrameEx (PyFrameObject *f, int throwflag
This is the main, unvarnished function of Python interpretation. It is literally 2000 lines long. The code ob-
ject associated with the execution frafnis executed, interpreting bytecode and executing calls as needed.
The additionathrowflagparameter can mostly be ignored - if true, then it causes an exception to immedi-
ately be thrown; this is used for thierow() = methods of generator objects.

int PyEval_MergeCompilerFlags (PyCompilerFlags *cj

This function changes the flags of the current evaluation frame, and returns true on success, false on failure.
int Py_eval_input

The start symbol from the Python grammar for isolated expressions; for us@witbompileString

13

The Python/C API, Release 2.6.2

int

int

Py file_input
The start symbol from the Python grammar for sequences of statements as read from a file or other source;
for use withPy_CompileString . This is the symbol to use when compiling arbitrarily long Python

source code.

Py_single_input
The start symbol from the Python grammar for a single statement; for usePwitompileString
This is the symbol used for the interactive interpreter loop.

PyCompilerFlags

This is the structure used to hold compiler flags. In cases where code is only being compiled, it is passed as
int flags , and in cases where code is being executed, it is pasdegGampilerFlags *flags

In this casefrom __ future__ import can modifyflags
WhenevePyCompilerFlags *flags is NULL, cf_flags s treated as equal @, and any modifi-
cation due tdrom __future__ import is discarded.

struct PyCompilerFlags {

int cf_flags;
}
int CO_FUTURE_DIVISION
This bit can be set iflagsto cause division operatérto be interpreted as “true division” accordingR&P
238
14 Chapter 2. The Very High Level Layer

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

CHAPTER
THREE

REFERENCE COUNTING

The macros in this section are used for managing reference counts of Python objects.

void Py _INCREF(PyObject *g
Increment the reference count for object The object must not bBIULL; if you aren’t sure that it isn’t
NULL, usePy XINCREF.

void Py XINCREH PyObiject *9

Increment the reference count for objeciThe object may bBIULL, in which case the macro has no effect.
void Py_DECREF PyObject *q

Decrement the reference count for objectThe object must not bRULL; if you aren’t sure that it isn’t

NULL, usePy XDECREFIf the reference count reaches zero, the object’s type’s deallocation function
(which must not béNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when & class
instancewitha_del__() method is deallocated). While exceptions in such code are not propadated,
the executed code has free access to all Python global variables. This means that any objedt that is
reachable from a global variable should be in a consistent state HejoleECREHSs invoked. For
example, code to delete an object from a list should copy a reference to the deleted object in a tempporary
variable, update the list data structure, and thenrRalDECRERor the temporary variable.

void Py XDECREFPyObject *9
Decrement the reference count for objectThe object may b&lULL, in which case the macro has no
effect; otherwise the effect is the same asHgr DECREF and the same warning applies.

void Py CLEAR PyObject *g
Decrement the reference count for objectThe object may b&lULL, in which case the macro has no
effect; otherwise the effect is the same asFgr DECREF except that the argument is also setNtdLL.
The warning forPy DECREFdoes not apply with respect to the object passed because the macro carefully
uses a temporary variable and sets the argumedttio. before decrementing its reference count.

It is a good idea to use this macro whenever decrementing the value of a variable that might be traversed
during garbage collection. New in version 2.4.

The following functions are for runtime dynamic embedding of Pythdty IncRef(PyObject *0) ,

Py _DecRef(PyObject *0) . They are simply exported function versions &fy XINCREF and
Py_XDECREFrespectively.

The following functions or macros are only for use within the interpreter corePy Dealloc
_Py ForgetReference , Py NewReference , as well as the global variabld®y RefTotal

15

The Python/C API, Release 2.6.2

16 Chapter 3. Reference Counting

CHAPTER
FOUR

EXCEPTION HANDLING

The functions described in this chapter will let you handle and raise Python exceptions. It is important to under-
stand some of the basics of Python exception handling. It works somewhat like therhrox variable: there is

a global indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will
set it to indicate the cause of the error on failure. Most functions also return an error indicator, tkulallyf

they are supposed to return a pointer; brif they return an integer (exception: tRyArg_* functions returriL

for success and@ for failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. Itis responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); ihehoaitnue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways. The error indicator consists of three Python objects
corresponding to the Python variables.exc_type , sys.exc_value andsys.exc_traceback . API
functions exist to interact with the error indicator in various ways. There is a separate error indicator for each
thread.

void PyErr_PrintEx (intset_sys_last_vars
Print a standard traceback ¢gs.stderr and clear the error indicator. Call this function only when the
error indicator is set. (Otherwise it will cause a fatal error!)

If set sys last varsis nonzero, the variablessys.last type , sys.last value and
sys.last_traceback will be set to the type, value and traceback of the printed exception, re-
spectively.

void PyErr_Print ()
Alias for PyErr_PrintEx(1)

PyObject* PyErr_Occurred ()
Return value: Borrowed reference.
Test whether the error indicator is set. If set, return the excepgjpe(the first argument to the last call to
one of thePyErr_Set* functions or toPyErr_Restore). If not set, returrNULL. You do not own a
reference to the return value, so you do not negeytoDECREFt.

Note: Do not compare the return value to a specific exception;Ryder ExceptionMatches in-
stead, shown below. (The comparison could easily fail since the exception may be an instance instead of a
class, in the case of a class exception, or it may the a subclass of the expected exception.)

int PyErr_ExceptionMatches (PyObject *exg

Equivalent toPyErr_GivenExceptionMatches(PyErr_Occurred(), exc) . This should only
be called when an exception is actually set; a memory access violation will occur if no exception has been
raised.

int PyErr_GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptionerc If excis a class object, this also returns
true whengivenis an instance of a subclass.eifcis a tuple, all exceptions in the tuple (and recursively in
subtuples) are searched for a match.

void PyErr_NormalizeException (PyObject**exc, PyObject**val, PyObject**{b

17

The Python/C API, Release 2.6.2

void

void

void

void

void

Under certain circumstances, the values returneedyr Fetch below can be “unnormalized”, mean-

ing that*exc is a class object butval is not an instance of the same class. This function can be used

to instantiate the class in that case. If the values are already normalized, nothing happens. The delayed
normalization is implemented to improve performance.

PyErr_Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

PyErr_Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set,
set all three variables tdULL. If it is set, it will be cleared and you own a reference to each object retrieved.
The value and traceback object mayNgLL even when the type object is not.

Note: This function is normally only used by code that needs to handle exceptions or by code that needs
to save and restore the error indicator temporarily.

PyErr_Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the
objects aréNULL, the error indicator is cleared. Do not pags$@LL type and norNULL value or traceback.
The exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules
will cause subtle problems later.) This call takes away a reference to each object: you must own a reference
to each object before the call and after the call you no longer own these references. (If you don’t understand
this, don’t use this function. | warned you.)

Note: This function is normally only used by code that needs to save and restore the error indicator
temporarily; usé’yErr_Fetch to save the current exception state.

PyErr_SetString (PyObject *type, const char *messgge
This is the most common way to set the error indicator. The first argument specifies the exception type;
it is normally one of the standard exceptions, e2gExc_RuntimeError . You need not increment its
reference count. The second argument is an error message; it is converted to a string object.

PyErr_SetObject (PyObject *type, PyObiject *val)e
This function is similar toPyErr_SetString but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr_Format (PyObject *exception, const char *format)...

Return value: Always NULL.
This function sets the error indicator and retuMidLL. exceptionshould be a Python exception (class,

not an instance). format should be a string, containing format codes, similarpintf . The
width.precision before a format code is parsed, but the width part is ignored.
Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent t@rintf("%u")
signed
int
%Id long Exactly equivalent tgrintf("%ld")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py _ssize Bxactly equivalent tgrintf("%zd")
%zu size_t | Exactly equivalent tgrintf("%zu")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* | A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemriotf("%p") except
that it is guaranteed to start with the litef regardless of what the platform’s
printf yields.

18

Chapter 4. Exception Handling

The Python/C API, Release 2.6.2

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

void PyErr_SetNone (PyObject *typg
This is a shorthand fdPyErr_SetObject(type, Py_None)

int PyErr_BadArgument ()
This is a shorthand fdPyErr_SetString(PyExc_TypeError, message) , wheremessagéndi-
cates that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr_NoMemory ()
Return value: Always NULL.
This is a shorthand fdPyErr_SetNone(PyExc_MemoryError) ; it returnsNULL so an object allo-
cation function can writeeturn PyErr_NoMemory(); when it runs out of memory.

PyObject* PyErr_SetFromErrno (PyObject *typé
Return value: Always NULL.
This is a convenience function to raise an exception when a C library function has returned an error
and set the C variablerrno . It constructs a tuple object whose first item is the integreno value
and whose second item is the corresponding error message (gottersthemmor), and then calls
PyErr_SetObject(type, object) . On Unix, when theerrno value isEINTR, indicating an
interrupted system call, this calls/Err_CheckSignals , and if that set the error indicator, leaves it set
to that. The function always returdJLL, so a wrapper function around a system call can watarn
PyErr_SetFromErrno(type); when the system call returns an error.

PyObject* PyErr_SetFromErrnoWithFilename (PyObiject *type, const char *filenarpe
Return value: Always NULL.
Similar toPyErr_SetFromErrno , with the additional behavior thatfilenames notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@Bsor andOSError ,
this is used to define tHdename attribute of the exception instance.

PyObject* PyErr_SetFromWindowsErr (intierr)
Return value: Always NULL.
This is a convenience function to raigéindowsError . If called withierr of O, the error code returned
by a call toGetLastError is used instead. It calls the Win32 functiGiormatMessage to retrieve
the Windows description of error code givenieyr or GetLastError |, then it constructs a tuple object
whose first item is théerr value and whose second item is the corresponding error message (gotten from
FormatMessage), and then call®PyErr_SetObject(PyExc_WindowsError, object) . This
function always returnBlULL. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErr (PyObject *type, int iery
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr , with an additional parameter specifying the exception type to
be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr_SetFromWindowsErrWithFilename (intierr, const char *filenamg
Return value: Always NULL.
Similar toPyErr_SetFromWindowsErr , with the additional behavior that fllenameis notNULL, it
is passed to the constructorWindowsError as a third parameter. Availability: Windows.

PyObject* PyErr_SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *file-

name
Return value: Always NULL.

Similar toPyErr_SetFromWindowsErrWithFilename , with an additional parameter specifying the
exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr_BadInternalCall 0
This is a shorthand faPyErr_SetString(PyExc_TypeError, message) , Wheremessagéndi-
cates that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is
mostly for internal use.

int PyErr_WarnEx (PyObject *category, char *message, int stacklgvel
Issue a warning message. T¢etegoryargument is a warning category (see belowNalL L; themessage
argument is a message strirggacklevels a positive number giving a number of stack frames; the warning

19

The Python/C API, Release 2.6.2

int

int

int

int

void

int

will be issued from the currently executing line of code in that stack frams&agklevebf 1 is the function
calling PyErr_WarnEx , 2 is the function above that, and so forth.

This function normally prints a warning messagesys.stdery however, it is also possible that the user

has specified that warnings are to be turned into errors, and in that case this will raise an exception. It
is also possible that the function raises an exception because of a problem with the warning machinery
(the implementation imports th@arnings module to do the heavy lifting). The return valueQisf no
exception is raised, ol if an exception is raised. (It is not possible to determine whether a warning
message is actually printed, nor what the reason is for the exception; this is intentional.) If an exception is
raised, the caller should do its normal exception handling (for exarRgle)ECREFowned references and

return an error value).

Warning categories must be subclasse#/afning ; the default warning category RuntimeWarning
The standard Python warning categories are available as global variables whose namgExare
followed by the Python exception name. These have the By@bject* ; they are all class ob-
jects. Their names ar®yExc_Warning , PyExc_UserWarning , PyExc_UnicodeWarning
PyExc_DeprecationWarning , PyExc_SyntaxWarning , PyExc_RuntimeWarning , and
PyExc_FutureWarning . PyExc_Warning is a subclass oPyExc_Exception ; the other warn-
ing categories are subclassefyExc_Warning .

For information about warning control, see the documentation fowtiraings module and thew option
in the command line documentation. There is no C API for warning control.

PyErr_Warn (PyObiject *category, char *message

Issue a warning message. T¢etegoryargument is a warning category (see belowNalLL; themessage
argument is a message string. The warning will appear to be issued from the functionrgltimg\Warn ,
equivalent to callind®’yErr_WarnEx with astacklevebf 1.

Deprecated; useyErr_WarnEx instead.

PyErr_WarnExplicit (PyObject *category, const char *message, const char *filename, int lineno,

const char *module, PyObiject *regisiry
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrap-

per around the Python functiomarnings.warn_explicit() , see there for more information. The
moduleandregistryarguments may be set MUULL to get the default effect described there.

PyErr_WarnPy3k (char *message, int stackleyel
Issue eDeprecationWarning with the givenmessagandstackleveif the Py _Py3kWarningFlag
flag is enabled. New in version 2.6.

PyErr_CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the
processes and if so, invokes the corresponding signal handler. $ighal module is supported, this

can invoke a signal handler written in Python. In all cases, the default effe®I®INT is to raise the
Keyboardinterrupt exception. If an exception is raised the error indicator is set and the function
returns-1 ; otherwise the function returnd. The error indicator may or may not be cleared if it was
previously set.

PyErr_Setinterrupt 0
This function simulates the effect offIGINT signal arriving — the next timeyErr_CheckSignals
is called,KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

PySignal_SetWakeupFd (int fd)

This utility function specifies a file descriptor to which\@ byte will be written whenever a signal is
received. It returns the previous such file descriptor. The vdluéisables the feature; this is the initial
state. This is equivalent ignal.set_wakeup_fd() in Python, but without any error checkinéd
should be a valid file descriptor. The function should only be called from the main thread.

PyObject* PyErr_NewException (char *name, PyObject *base, PyObiject *dict

Return value: New reference.

This utility function creates and returns a new exception object. nEmeeargument must be the name of
the new exception, a C string of the formodule.class . The baseanddict arguments are normally
NULL. This creates a class object derived frBxception (accessible in C aByExc_Exception).

The__module__ attribute of the new class is set to the first part (up to the last dot) efdhesargument,
and the class name is set to the last part (after the last dot).bd@$margument can be used to specify

20

Chapter 4. Exception Handling

The Python/C API, Release 2.6.2

void

alternate base classes; it can either be only one class or a tuple of classd&t @Algument can be used to
specify a dictionary of class variables and methods.

PyErr_WriteUnraisable (PyObiject *ob)
This utility function prints a warning messagesgs.stderr when an exception has been set but it is
impossible for the interpreter to actually raise the exception. It is used, for example, when an exception
occursinan_del_ () method.

The function is called with a single argumaeitj that identifies the context in which the unraisable exception
occurred. The repr ajbj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose narRg&ace followed by the Python
exception name. These have the typeObject* ; they are all class objects. For completeness, here are all the

variables:

C Name Python Name Notes
PyExc_BaseException BaseException D), (4)
PyExc_Exception Exception (1)
PyExc_StandardError StandardError (1)
PyExc_ArithmeticError ArithmeticError (1)
PyExc_LookupError LookupError Q)
PyExc_AssertionError AssertionError
PyExc_AttributeError AttributeError
PyExc_EOFError EOFError

PyExc_EnvironmentError
PyExc_FloatingPointError
PyExc_IOError

EnvironmentError
FloatingPointError
IOError

PyExc_ImportError ImportError
PyExc_IndexError IndexError
PyExc_KeyError KeyError
PyExc_KeyboardInterrupt KeyboardInterrupt
PyExc_MemoryError MemoryError
PyExc_NameError NameError

PyExc_NotimplementedError
PyExc_OSError

NotlmplementedError
OSError

1)

PyExc_OverflowError OverflowError
PyExc_ReferenceError ReferenceError (2)
PyExc_RuntimeError RuntimeError
PyExc_SyntaxError SyntaxError
PyExc_SystemError SystemError
PyExc_SystemExit SystemEXxit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_WindowsError
PyExc_ZeroDivisionError

WindowsError
ZeroDivisionError

3)

Notes:

1. Thisis a base class for other standard exceptions.

2. This is the same aseakref.ReferenceError

3. Only defined on Windows; protect code that uses this by testing that the preprocessomM8afdNDOWS

is defined.

4. New in version 2.5.

4.1. Standard Exceptions

21

The Python/C API, Release 2.6.2

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived BageException

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also
change in a future release.

22 Chapter 4. Exception Handling

CHAPTER
FIVE

UTILITIES

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Ultilities

int Py_FdisInteractive (FILE *fp, const char *filenamp
Return true (nonzero) if the standard I/O fifewith namefilenameis deemed interactive. This is the case
for files for whichisatty(fileno(fp)) is true. If the global flag’y _InteractiveFlag is true,
this function also returns true if tHidenamepointer iSNULL or if the name is equal to one of the strings
‘<stdin>’ or’'???

long PyOS_GetLastModificationTime (char *filenamé
Return the time of last modification of the fiféename The result is encoded in the same way as the
timestamp returned by the standard C library functiore .

void PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the
Python interpreter will continue to be used. If a new executable is loaded into the new process, this function
does not need to be called.

int PyOS_CheckStack ()
Return true when the interpreter runs out of stack space. This is a reliable check, but is only available
whenUSE_STACKCHECIs defined (currently on Windows using the Microsoft Visual C++ compiler).
USE_STACKCHECWill be defined automatically; you should never change the definition in your own
code.

PyOS_sighandler_t PyOS getsig (inti)
Return the current signal handler for sigharhis is a thin wrapper around eith&gaction or signal
Do not call those functions directfPyOS_sighandler_t is a typedef alias fovoid (*)(int)

PyOS_sighandler_t PyOS setsig (inti, PyOS_sighandler_t)h
Set the signal handler for signiaio beh; return the old signal handler. This is a thin wrapper around either
sigaction orsignal . Do not call those functions directhlPyOS_sighandler_t is a typedef alias
for void (*)(int)

5.2 System Functions

These are utility functions that make functionality from #ys module accessible to C code. They all work with
the current interpreter threadsys module’s dict, which is contained in the internal thread state structure.

PyObject * PySys GetObject (char *namg
Return value: Borrowed reference.
Return the objeahamefrom thesys module orNULL if it does not exist, without setting an exception.

23

The Python/C API, Release 2.6.2

FILE * PySys GetFile (char*name, FILE *dej
Return theFILE* associated with the objenamein thesys module, ordef if nameis not in the module
or is not associated withRILE* .

int PySys SetObject (char *name, PyObject *v
Setnamein the sys module tov unlessv is NULL, in which casenameis deleted from the sys module.
Returns0 on success;1 on error.

void PySys ResetWarnOptions (void)
Resefsys.warnoptions to an empty list.

void PySys_AddWarnOption (char *s)
Appendsto sys.warnoptions

void PySys SetPath (char *path
Setsys.path to a list object of paths found ipathwhich should be a list of paths separated with the
platform’s search path delimiter (on Unix,; on Windows).

void PySys WriteStdout (const char *format, .).
Write the output string described ligrmatto sys.stdout . No exceptions are raised, even if truncation
occurs (see below).

format should limit the total size of the formatted output string to 1000 bytes or less — after 1000 bytes,
the output string is truncated. In particular, this means that no unrestricted “%s” formats should occur;
these should be limited using “%.<N>s” where <N> is a decimal number calculated so that <N> plus the
maximum size of other formatted text does not exceed 1000 bytes. Also watch out for “%f”, which can
print hundreds of digits for very large numbers.

If a problem occurs, ogys.stdout is unset, the formatted message is written to the real (C |staidut

void PySys WriteStderr (const char *format, .).
As above, but write teys.stderr or stderrinstead.

5.3 Process Control

void Py FatalError (const char *message
Print a fatal error message and Kkill the process. No cleanup is performed. This function should only be
invoked when a condition is detected that would make it dangerous to continue using the Python interpreter;
e.g., when the object administration appears to be corrupted. On Unix, the standard C library function
abort is called which will attempt to producecore file.

void Py _Exit (intstatug
Exit the current process. This calldy Finalize and then calls the standard C library function
exit(status)

int Py _AtExit (void (*func) ()
Register a cleanup function to be called By Finalize . The cleanup function will be called with
no arguments and should return no value. At most 32 cleanup functions can be registered. When the
registration is successfuty AtExit returnsO; on failure, it returns1 . The cleanup function registered
last is called first. Each cleanup function will be called at most once. Since Python's internal finalization
will have completed before the cleanup function, no Python APIs should be calfeady

5.4 Importing Modules

PyObject* Pylmport_ImportModule (const char *namg
Return value: New reference.

This is a simplified interface t®yImport_ImportModuleEx below, leaving theglobalsandlocals
arguments set tblULL andlevel set to 0. When th@ameargument contains a dot (when it specifies a
submodule of a package), tfremlistargument is set to the li§t’] so that the return value is the named
module rather than the top-level package containing it as would otherwise be the case. (Unfortunately, this

24 Chapter 5. Utilities

The Python/C API, Release 2.6.2

has an additional side effect wha@amein fact specifies a subpackage instead of a submodule: the sub-
modules specified in the package’sall__ variable are loaded.) Return a new reference to the imported
module, orNULL with an exception set on failure. Before Python 2.4, the module may still be created in
the failure case — examingys.modules to find out. Starting with Python 2.4, a failing import of a
module no longer leaves the modulesys.modules . Changed in version 2.4: failing imports remove
incomplete module objects.Changed in version 2.6: always use absolute imports

PyObject* Pylmport_ImportModuleNoBlock (const char *namg
This version ofPylmport_ImportModule does not block. It's intended to be used in C functions that
import other modules to execute a function. The import may block if another thread holds the import lock.

The functionPylmport_ImportModuleNoBlock never blocks. It first tries to fetch the module from
sys.modules and falls back fylmport_ImportModule unless the lock is held, in which case the
function will raise annmportError . New in version 2.6.

PyObject* Pylmport_ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return value: New reference.
Import a module. This is best described by referring to the built-in Python functionport_ () , as
the standard _import__ () function calls this function directly.

The return value is a new reference to the imported module or top-level packagégl bmith an exception

set on failure (before Python 2.4, the module may still be created in this case). Likeifioport ()

the return value when a submodule of a package was requested is hormally the top-level package, unless
a non-emptyfromlist was given. Changed in version 2.4: failing imports remove incomplete module ob-
jects.Changed in version 2.6: The function is an alias’fgmport_ImportModuleLevel with -1 as

level, meaning relative import.

PyObject* Pylmport_ImportModuleLevel (char *name, PyObiject *globals, PyObject *locals, PyOb-
ject *fromlist, int leve)
Import a module. This is best described by referring to the built-in Python functiomport () , as

the standard _import__() function calls this function directly.

The return value is a new reference to the imported module or top-level packaggl bmvith an exception
set on failure. Like for _import_ () , the return value when a submodule of a package was requested
is normally the top-level package, unless a non-enfiptylist was given. New in version 2.5.

PyObject* Pylmport_Import (PyObject *namg
Return value: New reference.
This is a higher-level interface that calls the current “import hook function”. It invokes the
__import__() function from the__ builtins__ of the current globals. This means that the import
is done using whatever import hooks are installed in the current environment, egxday orihooks .
Changed in version 2.6: always use absolute imports

PyObject* Pylmport_ReloadModule (PyObiject *n)
Return value: New reference.
Reload a module. This is best described by referring to the built-in Python funetioad() , as the
standardeload() function calls this function directly. Return a new reference to the reloaded module,
or NULL with an exception set on failure (the module still exists in this case).

PyObject* Pylmport_AddModule (const char *namg
Return value: Borrowed reference.
Return the module object corresponding to a module name. nahgeargument may be of the form
package.module . First check the modules dictionary if there’s one there, and if not, create a new
one and insert it in the modules dictionary. RetNHdLL with an exception set on failure.

Note: This function does not load or import the module; if the module wasn't already loaded, you will
get an empty module object. UBgImport_ImportModule or one of its variants to import a module.
Package structures implied by a dotted nameneameare not created if not already present.

PyObject* Pylmport_ExecCodeModule (char *name, PyObject *cp
Return value: New reference.
Given a module name (possibly of the fopackage.module) and a code object read from a Python
bytecode file or obtained from the built-in functioompile() , load the module. Return a new reference
to the module object, dlULL with an exception set if an error occurred. Before Python 2.4, the module

5.4. Importing Modules 25

The Python/C API, Release 2.6.2

could still be created in error cases. Starting with Python i2afneis removed fronsys.modules in

error cases, and evermiémewas already isys.modules on entry toPylmport ExecCodeModule

Leaving incompletely initialized modules says.modules is dangerous, as imports of such modules have

no way to know that the module object is an unknown (and probably damaged with respect to the module
author’s intents) state.

This function will reload the module if it was already imported. $gémport_ReloadModule for the
intended way to reload a module.

If namepoints to a dotted name of the fopackage.module , any package structures not already created
will still not be created. Changed in version 2rameis removed fronsys.modules in error cases.

long Pylmport_GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgc and.pyo files). The magic number
should be present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport_GetModuleDict 0
Return value: Borrowed reference.
Return the dictionary used for the module administration (adgya.modules). Note that this is a per-
interpreter variable.

PyObject* Pylmport_Getimporter (PyObject *path
Return an importer object forsys.path /pkg. path__ item path possibly by fetching it from the
sys.path_importer_cache dict. If it wasn’t yet cached, traversys.path_hooks until a hook
is found that can handle the path item. Retiione if no hook could; this tells our caller it should fall
back to the builtin import mechanism. Cache the resullyspath_importer_cache . Return a new
reference to the importer object. New in version 2.6.

void _Pylmport_Init 0
Initialize the import mechanism. For internal use only.

void Pylmport_Cleanup ()
Empty the module table. For internal use only.

void _Pylmport_Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport_FindExtension (char *, char *)
For internal use only.

PyObject* _Pylmport_FixupExtension (char *, char *)
For internal use only.

int Pylmport_ImportFrozenModule (char *name¢
Load a frozen module namaethme Returnl for successp if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport_ImportModule . (Note the misnomer — this function would reload the module if it was
already imported.)

_frozen
This is the structure type definition for frozen module descriptors, as generated frgaheutility (see
Tools/freeze/ in the Python source distribution). Its definition, foundmelude/import.h ,is:

struct _frozen {
char *name;
unsigned char *code;
int size;

k

struct _frozen* Pylmport_FrozenModules
This pointer is initialized to point to an array sfruct _frozen records, terminated by one whose
members are aNULL or zero. When a frozen module is imported, it is searched in this table. Third-party
code could play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport_AppendInittab (char *name, void (*initfunc)(void)

26 Chapter 5. Utilities

The Python/C API, Release 2.6.2

Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport_ExtendInittab , returning-1 if the table could not be extended. The new module can
be imported by the nameame and uses the functidnitfuncas the initialization function called on the first
attempted import. This should be called befBre Initialize

_inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name
and initialization function for a module built into the interpreter. Programs which embed Python may use an

array of these structures in conjunction withilmport_ExtendInittab to provide additional built-in
modules. The structure is definedliitlude/import.h as:
struct _inittab {

char *name;
void (*initfunc)(void);

h

int Pylmport_ExtendInittab (‘struct _inittab *newtab
Add a collection of modules to the table of built-in modules. Tibestabarray must end with a sentinel entry
which containdNULL for thename field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success orl if insufficient memory could be allocated to extend the internal table. In the
event of failure, no modules are added to the internal table. This should be calledefangialize

5.5 Data marshalling support

These routines allow C code to work with serialized objects using the same data formatresghal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

The module supports two versions of the data format: version 0 is the historical version, version 1 (new in Python
2.4) shares interned strings in the file, and upon unmarshalling. Version 2 (new in Python 2.5) uses a binary format
for floating point numbersRPy_ MARSHAL_VERSIOMdicates the current file format (currently 2).

void PyMarshal WriteLongToFile (long value, FILE *file, int version
Marshal dong integer,valueg tofile. This will only write the least-significant 32 bits walue regardless
of the size of the nativeong type. Changed in version 2.4ersionindicates the file format.

void PyMarshal WriteObjectToFile (PyObject *value, FILE *file, int versign
Marshal a Python objectalug tofile. Changed in version 2.4rersionindicates the file format.

PyObject* PyMarshal_WriteObjectToString (PyObject *value, int version
Return value: New reference.
Return a string object containing the marshalled representativaloé Changed in version 2.4.ersion
indicates the file format.

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that’s relevant), but it's not clear that negative values won’t be handled properly when there’s
no error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal_ReadLongFromFile (FILE *file)
Return a dong from the data stream inILE* opened for reading. Only a 32-bit value can be read in
using this function, regardless of the native sizéoofy .

int PyMarshal_ReadShortFromFile (FILE *file)
Return a Gshort from the data stream infelLE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizslodrt .

PyObject* PyMarshal_ReadObjectFromFile (FILE *file)
Return value: New reference.

5.5. Data marshalling support 27

The Python/C API, Release 2.6.2

Return a Python object from the data stream FilsE* opened for reading. On error, sets the appropriate
exception EOFError or TypeError) and returndNULL.

PyObject* PyMarshal_ReadlLastObjectFromFile (FILE *file)
Return value: New reference.
Return a Python object from the data stream in FLE* opened for reading. Unlike
PyMarshal_ReadObjectFromFile , this function assumes that no further objects will be read from

the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file. On error, sets the appropriate excE@iear(or

or TypeError) and returnsNULL.

PyObject* PyMarshal_ReadObjectFromString (char *string, Py_ssize tlgn
Return value: New reference.
Return a Python object from the data stream in a character buffer cont&nibgtes pointed to bgtring.
On error, sets the appropriate exceptie®EError or TypeError) and returndNULL.

5.6 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information
and examples are available fitxtending and Embedding the Python Interprdier Extending and Embedding
Python.

The first three of these functions describ&@JArg_ParseTuple , PyArg ParseTupleAndKeywords
andPyArg Parse , all useformat stringswhich are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually

a single character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not
a parenthesized sequence normally corresponds to a single address argument to these functions. In the following
description, the quoted form is the format unit; the entry in (round) parentheses is the Python object type that
matches the format unit; and the entry in [square] brackets is the type of the C variable(s) whose address should
be passed.

s (string or Unicode object) [const char *] Convert a Python string or Unicode object to a C pointer to a char-
acter string. You must not provide storage for the string itself; a pointer to an existing string is stored into
the character pointer variable whose address you pass. The C string is NUL-terminated. The Python string
must not contain embedded NUL bytes; if it doedygpeError exception is raised. Unicode objects are
converted to C strings using the default encoding. If this conversion fdilsj@deError s raised.

s# (string, Unicode or any read buffer compatible object) [const char *, int (orPy_ssize_t , see below)]
This variant ons stores into two C variables, the first one a pointer to a character string, the second one
its length. In this case the Python string may contain embedded null bytes. Unicode objects pass back
a pointer to the default encoded string version of the object if such a conversion is possible. All other
read-buffer compatible objects pass back a reference to the raw internal data representation.

Starting with Python 2.5 the type of the length argument can be controlled by defining the macro
PY_SSIZE_T_CLEANbefore includingPython.h . If the macro is defined, length isRy_ssize t
rather than anint.

s* (string, Unicode, or any buffer compatible object) [Py_buffer *] Similar tos#, this code fills a Py_buffer
structure provided by the caller. The buffer gets locked, so that the caller can subsequently use
the buffer even inside &y BEGIN_ALLOW_THREADSIlock; the caller is responsible for calling
PyBuffer_Release with the structure after it has processed the data. New in version 2.6.

z (string or None) [const char *] Like s, but the Python object may also Bene, in which case the C pointer
is set toNULL.

z# (string or None or any read buffer compatible object) [const char *, int] This is tos# asz istos.

z* (string or None or any buffer compatible object) [Py_buffer*] This is tos* asz is tos. New in version
2.6.

28 Chapter 5. Utilities

The Python/C API, Release 2.6.2

u (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated
buffer of 16-bit Unicode (UTF-16) data. As with, there is no need to provide storage for the Unicode
data buffer; a pointer to the existing Unicode data is stored int&®théJNICODEpointer variable whose
address you pass.

u# (Unicode object) [Py_UNICODE *, int] This variant oru stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their
read-buffer pointer as pointer toRy UNICODEarray.

es (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant ors is used for encoding Unicode and objects convertible to Unicode into a character buffer.
It only works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and mustdresta char* which

points to the name of an encoding as a NUL-terminated stringldrl, in which case the default encoding

is used. An exception is raised if the named encoding is not known to Python. The second argument must
be achar** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument.

PyArg_ParseTuple will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust*buffer to reference the newly allocated storage. The caller is responsible for dallivigm_Free
to free the allocated buffer after use.

et (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ases except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

es# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer_length
This variant ors# is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike thees format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustdmest char* which points

to the name of an encoding as a NUL-terminated string\GL.L, in which case the default encoding is
used. An exception is raised if the named encoding is not known to Python. The second argument must be
achar** ; the value of the pointer it references will be set to a buffer with the contents of the argument
text. The text will be encoded in the encoding specified by the first argument. The third argument must be
a pointer to an integer; the referenced integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded
data into this buffer and sébuffer to reference the newly allocated storage. The caller is responsible for
callingPyMem_Free to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg_ParseTuple will use this
location as the buffer and interpret the initial valuefofiffer_lengthas the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enoughluaError will
be set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

et# (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same ags# except that string objects are passed through without recoding them. Instead, the implemen-
tation assumes that the string object uses the encoding passed in as parameter.

b (integer) [unsigned char] Convert a nonnegative Python integer to an unsigned tiny int, stored in a C
unsigned char

B (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

h (integer) [short int] Convert a Python integer to agbort int

H (integer) [unsigned short int] Convert a Python integer to a @hsigned short int , without overflow
checking. New in version 2.3.

i (integer) [int] Convert a Python integer to a plaini@ .

5.6. Parsing arguments and building values 29

The Python/C API, Release 2.6.2

| (integer) [unsigned int] Convert a Python integer to awsigned int , without overflow checking. New
in version 2.3.

I (integer) [long int] Convert a Python integer to aléng int

k (integer) [unsigned long] Convert a Python integer or long integer to aisigned long without overflow
checking. New in version 2.3.

L (integer) [PY_LONG_LONG] Convert a Python integer to aléng long . This format is only available
on platforms that suppolbng long (or_int64 on Windows).

K (integer) [unsigned PY_LONG_LONG] Convert a Python integer or long integer to aidsigned long
long without overflow checking. This format is only available on platforms that suppastgned
long long (orunsigned _int64 on Windows). New in version 2.3.

n (integer) [Py_ssize_t]Convert a Python integer or long integer to ¢ ssize_t . New in version 2.5.
c (string of length 1) [char] Convert a Python character, represented as a string of length 1, tharC

f (float) [float] Convert a Python floating point number to dl@at

d (float) [double] Convert a Python floating point number to alGuble .

D (complex) [Py_complex] Convert a Python complex number to &€ complex structure.

O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program
thus receives the actual object that was passed. The object’s reference count is not increased. The pointer
stored is notNULL.

O! (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is simila®tdut takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable
(of typePyObject*) into which the object pointer is stored. If the Python object does not have the required
type, TypeError s raised.

O&(object) [converter anything] Convert a Python object to a C variable throughaaverterfunction. This
takes two arguments: the first is a function, the second is the address of a C variable (of arbitrary type),
converted tovoid * . Theconverterfunction in turn is called as follows:

status = converter(object, address);

whereobjectis the Python object to be converted aamdtresss thevoid* argument that was passed to
the PyArg Parse* function. The returnedtatusshould bel for a successful conversion afdif the
conversion has failed. When the conversion failsdhrverterfunction should raise an exception and leave
the content ohddressunmodified.

S (string) [PyStringObject *] Like Obut requires that the Python object is a string object. RaigpsError
if the object is not a string object. The C variable may also be declarBg@sject*

U (Unicode string) [PyUnicodeObject *] Like Obut requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declafégd@sject*

t# (read-only character buffer) [char *, int] Like s#, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, andittie is set to the
length of the buffer. Only single-segment buffer objects are accepygatError s raised for all others.

w (read-write character buffer) [char *] Similar tos, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means,w# irsstead. Only
single-segment buffer objects are acceplagieError is raised for all others.

w# (read-write character buffer) [char *, Py_ssize t] Like s#, but accepts any object which implements the
read-write buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite
is set to the length of the buffer. Only single-segment buffer objects are accéppeError s raised for
all others.

w* (read-write byte-oriented buffer) [Py_buffer *] This is towwhats* istos. New in version 2.6.

30 Chapter 5. Utilities

The Python/C API, Release 2.6.2

(tems) (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format
units initems The C arguments must correspond to the individual format uniteins Format units for
sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual
parameters, not an arbitrary sequence. Code which previously clypetirror to be raised here may
now proceed without an exception. This is hot expected to be a problem for existing code.

Itis possible to pass Python long integers where integers are requested; however no proper range checking is done
— the most significant bits are silently truncated when the receiving field is too small to receive the value (actually,
the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They
are:

| Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not
specifiedPyArg _ParseTuple does not touch the contents of the corresponding C variable(s).

The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thatArg ParseTuple raises).

; The list of format units ends here; the string after the semicolon is used as the error niast=apof the
default error message. and; mutually exclude each other.

Note that any Python object references which are provided to the calleoaosvedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the
format string; these are used to store values from the input tuple. There are a few cases, as described in the list of
format units above, where these parameters are used as input values; they should match what is specified for the
corresponding format unit in that case.

For the conversion to succeed, tirg object must match the format and the format must be exhausted. On success,
thePyArg_Parse* functions return true, otherwise they return false and raise an appropriate exception. When
the PyArg_Parse* functions fail due to conversion failure in one of the format units, the variables at the
addresses corresponding to that and the following format units are left untouched.

int PyArg_ParseTuple (PyObject *args, const char *format,)..
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParse (PyObject *args, const char *format, va_list vaijgs
Identical toPyArg_ParseTuple , except that it accepts a va_list rather than a variable number of argu-
ments.

int PyArg_ParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], ...)
Parse the parameters of a function that takes both positional and keyword parameters into local variables.

Returns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg_VaParseTupleAndKeywords (PyObject *args, PyObject *kw, const char *format, char *key-

words[], va_list varg$
Identical toPyArg_ParseTupleAndKeywords , except that it accepts a va_list rather than a variable

number of arguments.

int PyArg_Parse (PyObject *args, const char *format,)..
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use
the METH_OLDARGSarameter parsing method. This is not recommended for use in parameter parsing in
new code, and most code in the standard interpreter has been modified to no longer use this for that purpose.
It does remain a convenient way to decompose other tuples, however, and may continue to be used for that
purpose.

int PyArg_UnpackTuple (PyObject *args, const char *name, Py_ssize_t min, Py _ssize_t max, ...
A simpler form of parameter retrieval which does not use a format string to specify the types of the argu-
ments. Functions which use this method to retrieve their parameters should be dedlaEgid-as/ARARGS

5.6. Parsing arguments and building values 31

The Python/C API, Release 2.6.2

in function or method tables. The tuple containing the actual parameters should be pamsgdibsust

actually be a tuple. The length of the tuple must be at Isastand no more thamax min andmaxmay

be equal. Additional arguments must be passed to the function, each of which should be a pointer to a
PyObject* variable; these will be filled in with the values froangs they will contain borrowed refer-
ences. The variables which correspond to optional parameters not giaagdwyill not be filled in; these

should be initialized by the caller. This function returns true on success and falggsié not a tuple or
contains the wrong number of elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources fomtbakref helper module for
weak references:

static PyObject *
weakref_ref (PyObject *self, PyObject *args)

{
PyObject * object;
PyObject *callback = NULL
PyObject *result = NULL
if (PyArg_UnpackTuple(args, “ref ", 1, 2, &object, &callback)) {
result = PyWeakref NewRef(object, callback);
}
return result;
}

The call to PyArg UnpackTuple in this example is entirely equivalent to this call to
PyArg_ParseTuple

PyArg_ParseTuple(args, "O|O:ref ", &object, &callback)

New in version 2.2.

PyObject* Py Buildvalue (const char *format, .).

Return value: New reference.

Create a new value based on a format string similar to those accepted ByAhg Parse* family of
functions and a sequence of values. Returns the valbi®Jat in the case of an error; an exception will be
raised ifNULL is returned.

Py_BuildValue does not always build a tuple. It builds a tuple only if its format string contains two
or more format units. If the format string is empty, it retuidsne; if it contains exactly one format unit,

it returns whatever object is described by that format unit. To force it to return a tuple of size 0 or one,
parenthesize the format string.

When memory buffers are passed as parameters to supply data to build objects, as fordb# formats,

the required data is copied. Buffers provided by the caller are never referenced by the objects created by
Py BuildValue . In other words, if your code invokewalloc and passes the allocated memory to

Py BuildValue , your code is responsible for callifgee for that memory onc®y BuildValue

returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the
Python object type that the format unit will return; and the entry in [square] brackets is the type of the C
value(s) to be passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such
ass#). This can be used to make long format strings a tad more readable.
s (string) [char *] Convert a null-terminated C string to a Python object. If the C string poinfstisL,

None is used.

s# (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointer is
NULL, the length is ignored andone is returned.

z (string or None) [char *] Same as.
z# (string or None) [char *, int] Same as#.

32

Chapter 5. Utilities

The Python/C API, Release 2.6.2

u (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2 or UCS-4)
data to a Python Unicode object. If the Unicode buffer point&Us_L, None is returned.

u# (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2 or UCS-4) data buffer and its
length to a Python Unicode object. If the Unicode buffer pointeNWLL, the length is ignored
andNone is returned.

i (integer) [int] Convert a plain Gnt to a Python integer object.

b (integer) [char] Convert a plain @Char to a Python integer object.

h (integer) [short int] Convert a plain Ghort int to a Python integer object.

| (integer) [long int] Converta dong int to a Python integer object.

B (integer) [unsigned char] Convert a Qunsigned char to a Python integer object.

H (integer) [unsigned short int] Convert a Qunsigned short int to a Python integer object.

| (integer/long) [unsigned int] Convert a Qunsigned int to a Python integer object or a Python long
integer object, if it is larger thasys.maxint

k (integer/long) [unsigned long] Convert a Cunsigned long to a Python integer object or a Python
long integer object, if it is larger thasys.maxint

L (long) [PY_LONG_LONG] Convert a dong long to a Python long integer object. Only available
on platforms that suppolbng long

K (long) [unsigned PY_LONG_LONG] Convert a Qunsigned long long to a Python long integer
object. Only available on platforms that suppensigned long long

n (int) [Py_ssize_t] Converta CPy_ssize_t to a Python integer or long integer. New in version 2.5.
c (string of length 1) [char] Converta Qnt representing a character to a Python string of length 1.
d (float) [double] Convert a Gdouble to a Python floating point number.

f (float) [float] Same asl.

D (complex) [Py_complex *] Convert a CPy_complex structure to a Python complex number.

O(object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incre-
mented by one). If the object passed in iNldLL pointer, it is assumed that this was caused because
the call producing the argument found an error and set an exception. ThefefoiildValue
will return NULL but won't raise an exception. If no exception has been raisedSystemError
is set.

S (object) [PyObject *] Same a©.

N (object) [PyObject *] Same a®, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

O&(object) [converter anything] Convertanythingto a Python object through@nverterfunction. The
function is called withanything (which should be compatible witlioid *) as its argument and
should return a “new” Python object, BIULL if an error occurred.

(items) (tuple) [matching-item$ Convert a sequence of C values to a Python tuple with the same num-
ber of items.

[items] (list) [matching-item$ Convert a sequence of C values to a Python list with the same number
of items.

{items} (dictionary) [matching-item$ Convert a sequence of C values to a Python dictionary. Each
pair of consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tisystemError exception is set andULL returned.

PyObject* Py VaBuildvValue (constchar *format, va_list vargs
Identical toPy BuildValue , except that it accepts a va_list rather than a variable number of arguments.

5.6. Parsing arguments and building values 33

The Python/C API, Release 2.6.2

5.7 String conversion and formatting

Functions for number conversion and formatted string output.

int PyOS_snprintf (char *str, size_t size, const char *format)...
Output not more thasizebytes tostr according to the format strinfiprmat and the extra arguments. See
the Unix man pagenprintf(2)

int PyOS_vsnprintf (char *str, size_t size, const char *format, va_lishva
Output not more thasizebytes tostr according to the format striniprmatand the variable argument list
va. Unix man page/snprintf(2)

PyOS_snprintf and PyOS_vsnprintf wrap the Standard C library functionsnprintf and
vsnprintf . Their purpose is to guarantee consistent behavior in corner cases, which the Standard C functions
do not.

The wrappers ensure thatr*[*size-1] is always\0' upon return. They never write more thaize bytes
(including the trailing\O’ into str. Both functions require thatr '= NULL ,size > 0 andformat !=
NULL

If the platform doesn’t havesnprintf and the buffer size needed to avoid truncation exceetkby more
than 512 bytes, Python aborts witiPg_FatalError.

The return valuer{) for these functions should be interpreted as follows:

« When0 <= rv < size , the output conversion was successful amccharacters were written tstr
(excluding the trailind\0’ byte atstr*[*rv]).

* Whenrv >= size , the output conversion was truncated and a buffer with+ 1 bytes would have
been needed to succeatir*[*size-1] is'\O’ in this case.

« Whenrv < 0, “something bad happenedstr*[*size-1] is \O’ in this case too, but the rest efr is
undefined. The exact cause of the error depends on the underlying platform.

The following functions provide locale-independent string to number conversions.

double PyOS_ ascii_strtod (const char *nptr, char **endpfy
Convert a string to @ouble . This function behaves like the Standard C funcstmod does in the C
locale. It does this without changing the current locale, since that would not be thread-safe.

PyOS_ascii_strtod should typically be used for reading configuration files or other non-user input
that should be locale independent. New in version 2.4. See the Unix marsipegk?2) for details.

char * PyOS_ascii_formatd (char *buffer, size_t buf_len, const char *format, doub)e d
Convert adouble to a string using thé’ as the decimal separatdormatis aprintf -style format
string specifying the number format. Allowed conversion charactereare '’ ,'f ,’'F ,’g" and
‘G .
The return value is a pointer tmuffer with the converted string or NULL if the conversion failed. New in
version 2.4,

double PyOS ascii_atof (const char *nptj
Convert a string to @ouble in a locale-independent way. New in version 2.4. See the Unix man page
atof(2) for details.

char * PyOS stricmp (char*sl, char *s)
Case insensitive comparison of strings. The function works almost identicadiydmp except that it
ignores the case. New in version 2.6.

char * PyOS_strnicmp (char *sl, char *s2, Py_ssize_t s)ze
Case insensitive comparison of strings. The function works almost identicadlyrtomp except that it
ignores the case. New in version 2.6.

34 Chapter 5. Utilities

The Python/C API, Release 2.6.2

5.8 Reflection

PyObject* PyEval_GetBuiltins 0
Return value: Borrowed reference.
Return a dictionary of the builtins in the current execution frame, or the interpreter of the thread state if no
frame is currently executing.

PyObject* PyEval_GetLocals ()
Return value: Borrowed reference.
Return a dictionary of the local variables in the current execution framdUdi if no frame is currently
executing.

PyObject* PyEval_GetGlobals ()
Return value: Borrowed reference.
Return a dictionary of the global variables in the current execution framéUdt_ if no frame is currently
executing.

PyFrameObject* PyEval_GetFrame ()
Return value: Borrowed reference.
Return the current thread state’s frame, whicNWLL if no frame is currently executing.

int PyEval_GetRestricted 0
If there is a current frame and it is executing in restricted mode, return true, otherwise false.

const char* PyEval_GetFuncName (PyObiject *fung
Return the name dfincif it is a function, class or instance object, else the nanferds type.

const char* PyEval_GetFuncDesc (PyObject *fung
Return a description string, depending on the typefwofc Return values include “()" for func-
tions and methods, " constructor”, ” instance”, and " object”. Concatenated with the result of
PyEval_GetFuncName , the result will be a description dfinc

5.8. Reflection 35

The Python/C API, Release 2.6.2

36 Chapter 5. Utilities

CHAPTER
SIX

ABSTRACT OBJECTS LAYER

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object
types (e.g. all numerical types, or all sequence types). When used on object types for which they do not apply,
they will raise a Python exception.

It is not possible to use these functions on objects that are not properly initialized, such as a list object that has
been created byyList New , but whose items have not been set to somebihi value yet.

6.1 Object Protocol

int PyObject Print (PyObiject *o, FILE *fp, int flag}
Print an objecb, on file fp. Returns-1 on error. The flags argument is used to enable certain printing
options. The only option currently supportedAg_PRINT_RAW if given, thestr() of the object is
written instead of theepr()

int PyObject HasAttr (PyObject *o, PyObject *attr_name
Returnsl if o has the attributattr_name andO otherwise. This is equivalent to the Python expression

hasattr(o, attr_name) . This function always succeeds.

int PyObject HasAttrString (PyObject *0, const char *attr_nane
Returnsl if o has the attributattr_ name andO otherwise. This is equivalent to the Python expression
hasattr(o, attr_name) . This function always succeeds.

PyObject* PyObject GetAttr (PyObject *o, PyObiject *attr_name
Return value: New reference.
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successNoiLL on
failure. This is the equivalent of the Python expressiattr_name

PyObject* PyObject_GetAttrString (PyObject *o, const char *attr_nanye
Return value: New reference.
Retrieve an attribute namexdtr_namefrom objecto. Returns the attribute value on successNbiLL on
failure. This is the equivalent of the Python expressiattr _name

PyObject* PyObject_GenericGetAttr (PyObject *o, PyObject *nanme
Generic attribute getter function that is meant to be put into a type objpctgetattro slot. It looks
for a descriptor in the dictionary of classes in the object's MRO as well as an attribute in the object’s
__dict__(if present). As outlined inmplementing Descriptorn The Python Language Refereice
data descriptors take preference over instance attributes, while non-data descriptors don't. Otherwise, an
AttributeError is raised.

int PyObject_SetAttr (PyObject *o, PyObiject *attr_name, PyObject)*v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemerdttr hame = v

int PyObject_SetAttrString (PyObject *o, const char *attr_name, PyObjec)*v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is
the equivalent of the Python statemerdttr hame = v

37

The Python/C API, Release 2.6.2

int

int

int

PyObject_GenericSetAttr (PyObject *o, PyObject *name, PyObject *vajue

Generic attribute setter function that is meant to be put into a type objpctetattro slot. It looks

for a data descriptor in the dictionary of classes in the object's MRO, and if found it takes preference over
setting the attribute in the instance dictionary. Otherwise, the attribute is set in the objetits (if
present). Otherwise, akitributeError is raised andl is returned.

PyObject_DelAttr (PyObject *o, PyObject *attr_name
Delete attribute namealtr _name for objecto. Returns1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject_DelAttrString (PyObject *0, const char *attr_name
Delete attribute nameaktr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statemendel o.attr_name

PyObject* PyObject RichCompare (PyObject *ol, PyObject *02, int op)d

int

int

int

Return value: New reference.

Compare the values afl and 02 using the operation specified lmpid, which must be one oPy LT,
Py LE,Py EQ Py _NE, Py GT, orPy_GE, corresponding t&, <=, ==, I= |, >, or >= respectively. This
is the equivalent of the Python expressimh op 02, whereop is the operator corresponding aid.
Returns the value of the comparison on succesllrl on failure.

PyObject_RichCompareBool (PyObject *o1, PyObject *02, int op)d

Compare the values afl and 02 using the operation specified lopid, which must be one oPy LT,
Py LE, Py EQ Py NE, Py GT, or Py _GE, corresponding te<, <=, ==, =, >, or >= respectively.
Returns-1 on error,0 if the result is falsel otherwise. This is the equivalent of the Python expressibn
op 02, whereop is the operator correspondingapid.

PyObject_ Cmp (PyObject *o01, PyObject *02, int *resylt

Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. The result of the comparison is returnedr@sult Returns-1 on failure. This is the
equivalent of the Python statemeatult = cmp(ol, 02)

PyObject_Compare (PyObject *ol, PyObject *op

Compare the values afl ando2 using a routine provided bgl, if one exists, otherwise with a routine
provided byo2. Returns the result of the comparison on success. On error, the value returned is undefined,;
usePyErr_Occurred to detect an error. This is equivalent to the Python expressige(ol, 02)

PyObject* PyObject_ Repr (PyObject*q

Return value: New reference.

Compute a string representation of objecReturns the string representation on sucdski,L on failure.
This is the equivalent of the Python expressiepr(o) . Called by theepr() built-in function and by
reverse quotes.

PyObject* PyObject_Str (PyObject *g

Return value: New reference.

Compute a string representation of objecReturns the string representation on sucddkHi,L on failure.
This is the equivalent of the Python expressittfo) . Called by thestr() built-in function and by the
print statement.

PyObject* PyObject Bytes (PyObject*g

Compute a bytes representation of obgcin 2.x, this is just a alias fdPyObject_Str

PyObject* PyObject_Unicode (PyObject*q

int

Return value: New reference.

Compute a Unicode string representation of obfecReturns the Unicode string representation on suc-
cess,NULL on failure. This is the equivalent of the Python expressiaoicode(o) . Called by the
unicode() built-in function.

PyObiject_IsInstance (PyObject *inst, PyObject *cls

Returnsl if instis an instance of the clasts or a subclass dfls, or O if not. On error, returnsl and sets
an exception. Itlsis a type object rather than a class objéstObject_IsInstance returnsl if inst
is of typecls. If clsis a tuple, the check will be done against every entrglin The result will bel when
at least one of the checks returhsotherwise it will beO. If instis not a class instance awtt is neither a
type object, nor a class object, nor a tuphest must have a_class__ attribute — the class relationship

38

Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.2

of the value of that attribute withls will be used to determine the result of this function. New in version
2.1.Changed in version 2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of exten-
sions to the class system may want to be aware oh dhdB are class object® is a subclass oA if it inherits

from A either directly or indirectly. If either is not a class object, a more general mechanism is used to determine
the class relationship of the two objects. When testiij#fa subclass o4, if Ais B, PyObject_IsSubclass

returns true. IfA andB are different object®3's __bases__ attribute is searched in a depth-first fashionAor

— the presence of the bases _ attribute is considered sufficient for this determination.

int

int

PyObject_IsSubclass (PyObject *derived, PyObject *¢Js

Returnsl if the classderivedis identical to or derived from the clasts, otherwise return§. In case of

an error, returnsl . If clsis a tuple, the check will be done against every entrglén The result will bel

when at least one of the checks retutn®therwise it will be0. If eitherderivedor clsis not an actual class
object (or tuple), this function uses the generic algorithm described above. New in version 2.1.Changed in
version 2.3: Older versions of Python did not support a tuple as the second argument.

PyCallable_Check (PyObject*q
Determine if the objeat is callable. Returd if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject_Call (PyObject *callable_object, PyObject *args, PyObject 3kw

Return value: New reference.

Call a callable Python objecallable objectwith arguments given by the tupdegs, and named arguments
given by the dictionarkw. If no named arguments are needied,may beNULL. argsmust not beNULL,
use an empty tuple if no arguments are needed. Returns the result of the call on sucbidkl @n
failure. This is the equivalent of the Python expressapply(callable_object, args, kw) or
callable_object(*args, **kw) . New in version 2.2.

PyObject* PyObject_CallObject (PyObject *callable_object, PyObject *arys

Return value: New reference.

Call a callable Python objedatallable_object with arguments given by the tupkrgs If no argu-
ments are needed, theargs may be NULL. Returns the result of the call on success,NMWLL on
failure. This is the equivalent of the Python expressapply(callable object, args) or
callable_object(*args)

PyObject* PyObject_CallFunction (PyObject *callable, char *format,).

Return value: New reference.

Call a callable Python objedallable with a variable number of C arguments. The C arguments are
described using &y_BuildValue style format string. The format may BeULL, indicating that no
arguments are provided. Returns the result of the call on succesblldron failure. This is the equivalent
of the Python expressioapply(callable, args) or callable(*args) . Note that if you only
passPyObject * args,PyObject_CallFunctionObjArgs is a faster alternative.

PyObject* PyObject_CallMethod (PyObiject *o, char *method, char *format,)...

Return value: New reference.

Call the method namehethodof objecto with a variable number of C arguments. The C arguments are
described by &y Buildvalue format string that should produce a tuple. The format maybi.L,
indicating that no arguments are provided. Returns the result of the call on succB&d, loon failure.
This is the equivalent of the Python expressiomethod(args) . Note that if you only pasByObject

* args,PyObject_CallMethodObjArgs is a faster alternative.

PyObject* PyObject_CallFunctionObjArgs (PyObject *callable, ..., NULL

Return value: New reference.

Call a callable Python objecillable with a variable number dPyObject* arguments. The arguments
are provided as a variable number of parameters followadUlyl. Returns the result of the call on success,
or NULL on failure. New in version 2.2.

PyObject* PyObject_CallMethodObjArgs (PyObject *o, PyObject *name, ..., NULL

Return value: New reference.

Calls a method of the object where the name of the method is given as a Python string obj@etne

It is called with a variable number ¢fyObject* arguments. The arguments are provided as a variable
number of parameters followed WWULL. Returns the result of the call on successN&iLL on failure.

6.1. Object Protocol 39

The Python/C API, Release 2.6.2

long

long

int

int

New in version 2.2.

PyObject_Hash (PyObject *g
Compute and return the hash value of an obgecOn failure, return1 . This is the equivalent of the
Python expressiohash(o)

PyObject_HashNotimplemented (PyObject *9
Set aTypeError indicating thattype(o) is not hashable and returfh . This function receives special
treatment when stored intp_hash slot, allowing a type to explicitly indicate to the interpreter that it is
not hashable. New in version 2.6.

PyObject_IsTrue (PyObject *g
Returnsl if the objectois considered to be true, afdtherwise. This is equivalent to the Python expression
not not o . On failure, returnl .

PyObject_Not (PyObject *q
Returng) if the objectois considered to be true, atidtherwise. This is equivalent to the Python expression
not o . On failure, returnl .

PyObject* PyObject_Type (PyObject*q

int

Return value: New reference.

Whenois nonNULL, returns a type object corresponding to the object type of objebn failure, raises
SystemError and returndNULL. This is equivalent to the Python expresstgpe(o) . This function
increments the reference count of the return value. There’s really no reason to use this function instead of
the common expressiom>ob_type , which returns a pointer of typeyTypeObject* , except when

the incremented reference count is needed.

PyObject_TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeab is of typetypeor a subtype ofype Both parameters must be ndiJLL. New in
version 2.2.

Py ssize t PyObject Length (PyObject*g
Py ssize 't PyObject_Size (PyObject*g

Return the length of objeat. If the objecto provides either the sequence and mapping protocols, the
sequence length is returned. On errdr, is returned. This is the equivalent to the Python expression
len(o)

PyObject* PyObject_Getltem (PyObject *o, PyObject *key

int

int

int

Return value: New reference.
Return element ob corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressioro[key]

PyObject_Setltem (PyObject *o, PyObject *key, PyObject}v
Map the objeckeyto the valuev. Returns-1 on failure. This is the equivalent of the Python statement
olkey] = v

PyObject_Delltem (PyObject *o, PyObject *kgy
Delete the mapping fokeyfrom o. Returns-1 on failure. This is the equivalent of the Python statement
del o[key]

PyObject_AsFileDescriptor (PyObject *9

Derives a file descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’ileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retuin®n failure.

PyObject* PyObject_Dir (PyObject *g

Return value: New reference.

This is equivalent to the Python expressé@ir(o) , returning a (possibly empty) list of strings appropriate
for the object argument, ddULL if there was an error. If the argumentN8JLL, this is like the Python
dir() , returning the names of the current locals; in this case, if no execution frame is activélihéris
returned buPyErr_Occurred will return false.

PyObject* PyObject_Getlter (PyObject *9

Return value: New reference.
This is equivalent to the Python expressiter(o) . It returns a new iterator for the object argument,

40

Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.2

or the object itself if the object is already an iterator. RaibgseError and returndNULL if the object
cannot be iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

PyObject* PyNumber_Add (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of addiral ando2, or NULL on failure. This is the equivalent of the Python expression
ol + o2.

PyObject* PyNumber_Subtract (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of subtractima® from 01, or NULL on failure. This is the equivalent of the Python
expressiornl - 02 .

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *op
Return value: New reference.
Returns the result of multiplyingl and 02, or NULL on failure. This is the equivalent of the Python
expressiorol * 02 .

PyObject* PyNumber_Divide (PyObject*ol, PyObject *oR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expression
ol / o2 .

PyObject* PyNumber_FloorDivide (PyObject *ol, PyObject *oR
Return value: New reference.
Return the floor ob1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of
integers. New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *01, PyObject *op
Return value: New reference.
Return a reasonable approximation for the mathematical valwd dfvided byo2, or NULL on failure.
The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *0l, PyObject *oR
Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. This is the equivalent of the Python
expressiorol % o2

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *op
Return value: New reference.
See the built-in functiomivmod() . ReturnsNULL on failure. This is the equivalent of the Python
expressiordivmod(ol, 02)

PyObject* PyNumber_Power (PyObject *o1, PyObject *02, PyObject *»3
Return value: New reference.
See the built-in functiopow() . ReturndNULL on failure. This is the equivalent of the Python expression
pow(ol, 02, 03) , whereo3is optional. Ifo3is to be ignored, pas8y None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *9
Return value: New reference.

Returns the negation @fon success, dlULL on failure. This is the equivalent of the Python expression
-0 .

PyObject* PyNumber_Positive (PyObject *g

6.2. Number Protocol 41

The Python/C API, Release 2.6.2

Return value: New reference.
Returnso on success, dldULL on failure. This is the equivalent of the Python expression

PyObject* PyNumber_Absolute (PyObject *g
Return value: New reference.
Returns the absolute value of or NULL on failure. This is the equivalent of the Python expression
abs(o) .

PyObject* PyNumber_Invert (PyObject *9
Return value: New reference.
Returns the bitwise negation ofon success, oNULL on failure. This is the equivalent of the Python
expression-o.

PyObject* PyNumber_Lshift (PyObject *ol, PyObject *oR
Return value: New reference.
Returns the result of left shiftingl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressionl << 02.

PyObject* PyNumber_Rshift (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of right shiftingl by 02 on success, dlULL on failure. This is the equivalent of the
Python expressionl >> 02.

PyObject* PyNumber_And (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the “bitwise and” afl ando2 on success andULL on failure. This is the equivalent of the Python
expressiornl & 02.

PyObject* PyNumber_Xor (PyObject *01, PyObject *oR
Return value: New reference.
Returns the “bitwise exclusive or” @fl by 02 on success, ddULL on failure. This is the equivalent of the
Python expressionl " 02 .

PyObject* PyNumber_Or (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the “bitwise or” 0b1 ando2 on success, dlULL on failure. This is the equivalent of the Python
expressiorol | 02 .

PyObject* PyNumber_InPlaceAdd (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of addiral ando2, or NULL on failure. The operation is doie-placewhenol supports
it. This is the equivalent of the Python statemeht += 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *01, PyObject *oR
Return value: New reference.
Returns the result of subtractim® from 01, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python stateroént= 02 .

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *oR
Return value: New reference.
Returns the result of multiplyingl ando2, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python staternént= 02 .

PyObject* PyNumber_InPlaceDivide (PyObject *o1, PyObject *opR
Return value: New reference.
Returns the result of dividingl by 02, or NULL on failure. The operation is dofie-placewhenol supports
it. This is the equivalent of the Python statemett /= 02 .

PyObject* PyNumber_InPlaceFloorDivide (PyObject *o1, PyObject *oR
Return value: New reference.

Returns the mathematical floor of dividimmd. by 02, or NULL on failure. The operation is dore-place
whenol supports it. This is the equivalent of the Python stateroént/= 02 . New in version 2.2.

PyObject* PyNumber_InPlaceTrueDivide (PyObject *01, PyObject *op
Return value: New reference.

42 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.2

Return a reasonable approximation for the mathematical valud dfvided byo2, or NULL on failure.

The return value is “approximate” because binary floating point numbers are approximate; it is not possible
to represent all real numbers in base two. This function can return a floating point value when passed two
integers. The operation is doireplacewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObiject *01, PyObject *oR

Return value: New reference.
Returns the remainder of dividingl by 02, or NULL on failure. The operation is dore-placewhenol
supports it. This is the equivalent of the Python statero&n®6= 02.

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *p3

Return value: New reference.

See the built-in functiorpow() . ReturnsNULL on failure. The operation is dorie-place when ol
supports it. This is the equivalent of the Python statenednt™*= 02 when 03 isPy _None, or an in-
place variant opow(ol, 02, 03) otherwise. Ifo3is to be ignored, pasdy None in its place (passing
NULL for o3would cause an illegal memory access).

PyObject* PyNumber_InPlaceLshift (PyObject *01, PyObject *oR

Return value: New reference.
Returns the result of left shiftingl by 02 on success, ddULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python stateroénk<= 02 .

PyObject* PyNumber_InPlaceRshift (PyObject *o1, PyObject *opR

Return value: New reference.
Returns the result of right shiftingll by 02 on success, ddULL on failure. The operation is done-place
whenol supports it. This is the equivalent of the Python staternént->= 02 .

PyObject* PyNumber_InPlaceAnd (PyObiject *ol1, PyObject *oR

Return value: New reference.
Returns the “bitwise and” 061 and 02 on success anNULL on failure. The operation is dorie-place
whenol supports it. This is the equivalent of the Python staternén®&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *ol, PyObject *op

Return value: New reference.
Returns the “bitwise exclusive or” ail by 02 on success, oNULL on failure. The operation is done
in-placewhenol supports it. This is the equivalent of the Python staternént'= 02 .

PyObject* PyNumber_InPlaceOr (PyObject *ol, PyObject *oP

int

int

Return value: New reference.
Returns the “bitwise or” 0b1 ando2 on success, ddULL on failure. The operation is dore-placewhen
ol supports it. This is the equivalent of the Python staternén{= 02 .

PyNumber_Coerce (PyObject **p1, PyObject **p2

This function takes the addresses of two variables of Bp@bject* . If the objects pointed to bypl
and*p2 have the same type, increment their reference count and @t{success). If the objects can be
converted to a common numeric type, replee and*p2 by their converted value (with ‘new’ reference
counts), and retur@. If no conversion is possible, or if some other error occurs, returrgfailure) and
don't increment the reference counts. The &Number_Coerce(&ol, &02) s equivalent to the
Python statemerdl, 02 = coerce(ol, 02)

PyNumber_CoerceEx (PyObject **p1, PyObject **p2
This function is similar ta>yNumber_Coerce , except that it return$ when the conversion is not possible
and when no error is raised. Reference counts are still not increased in this case.

PyObject* PyNumber_Int (PyObject *9

Return value: New reference.

Returns theo converted to an integer object on succesaNUILL on failure. If the argument is outside
the integer range a long object will be returned instead. This is the equivalent of the Python expression
int(o)

PyObject* PyNumber_Long (PyObject *q

Return value: New reference.
Returns theo converted to a long integer object on succesNOLL on failure. This is the equivalent of
the Python expressidong(o)

6.2. Number Protocol 43

The Python/C API, Release 2.6.2

PyObject* PyNumber_Float (PyObject*g
Return value: New reference.
Returns theo converted to a float object on successNWLL on failure. This is the equivalent of the
Python expressiofioat(o)

PyObject* PyNumber_Index (PyObject*g
Returns theo converted to a Python int or long on succes®NboH_L with a TypeError exception raised
on failure. New in version 2.5.

PyObject* PyNumber_ToBase (PyObject *n, int basgp
Returns the integerconverted tdaseas a string with a base markereb’ ,’00’ ,or’0x’ if applicable.
Whenbaseis not 2, 8, 10, or 16, the format is#num’ where x is the base. His not an int object, it is
converted withPyNumber_Index first. New in version 2.6.

Py ssize 't PyNumber_AsSsize t (PyObject *o, PyObject *eXc
Returnso converted to a Py_ssize t valueoitan be interpreted as an integerol€an be converted to a
Python int or long but the attempt to convert to a Py_ssize_t value would raiSgexflowError , then
theexcargument is the type of exception that will be raised (usualliexError or OverflowError).
If excis NULL, then the exception is cleared and the value is clippdeMoSSIZE T _MiINor a negative
integer orPY_SSIZE_T_MAJor a positive integer. New in version 2.5.

int Pylndex_Check (PyObject*qg
Returns True ib is an index integer (has the nb_index slot of the tp_as_number structure filled in). New in
version 2.5.

6.3 Sequence Protocol

int PySequence_Check (PyObject*q
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

Py ssize 't PySequence_Size (PyObject*q
Returns the number of objects in sequea@® success, and on failure. For objects that do not provide
seguence protocol, this is equivalent to the Python expreteiga)

Py ssize 't PySequence_Length (PyObject*g
Alternate name foPySequence_Size

PyObject* PySequence_Concat (PyObject *ol, PyObject *op
Return value: New reference.
Return the concatenation ol ando2 on success, andULL on failure. This is the equivalent of the Python
expressiorol + 02.

PyObject* PySequence_Repeat (PyObject*o, Py _ssize_t coynt
Return value: New reference.
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of
the Python expressiam * count

PyObject* PySequence_InPlaceConcat (PyObject *o1, PyObject *op
Return value: New reference.
Return the concatenation ofl. ando2 on success, andULL on failure. The operation is done-place
whenol supports it. This is the equivalent of the Python expressibn+= 02.

PyObject* PySequence_InPlaceRepeat (PyObject *o, Py_ssize t coynt
Return value: New reference.
Return the result of repeating sequence objecbunttimes, orNULL on failure. The operation is done
in-placewheno supports it. This is the equivalent of the Python expressid+ count

PyObject* PySequence_Getltem (PyObject *o, Py_ssize }Yi

Return value: New reference.

Return tha*th element of *g or NULL on failure. This is the equivalent of the Python expressiph .
PyObject* PySequence_GetSlice (PyObject *o, Py _ssize til, Py ssize }ti2

Return value: New reference.

44 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.2

Return the slice of sequence objedbetweenl andi2, or NULL on failure. This is the equivalent of the
Python expressioq[il:i2]

int PySequence_Setltem (PyObject *o, Py_ssize_ti, PyObject)*v
Assign objectv to thei*th element of *0o Returns-1 on failure. This is the equivalent of the Python
statemeno[i] = v . This functiondoes nosteal a reference ta

int PySequence_Delltem (PyObject *o, Py_ssize Yi
Delete tha*th element of object *oReturns-1 on failure. This is the equivalent of the Python statement
del ofi]

int PySequence_SetSlice (PyObject *o, Py_ssize til, Py _ssize_ti2, PyObjegt *v
Assign the sequence objecto the slice in sequence objexfrom il to i2. This is the equivalent of the
Python statemend[il:i2] = v

int PySequence_DelSlice (PyObject *o, Py_ssize til, Py_ssize }ti2
Delete the slice in sequence objecfrom il to i2. Returns-1 on failure. This is the equivalent of the
Python statemertel 0[il:i2]

Py ssize 't PySequence_Count (PyObject *o, PyObject *value
Return the number of occurrencesvalluein o, that is, return the number of keys for whiofkey] ==
value . On failure, returnl . This is equivalent to the Python expressmoount(value)

int PySequence_Contains (PyObject *o, PyObiject *value
Determine ifo containsvalue If an item ino is equal tovalue returnl, otherwise returi®. On error, return
-1 . This is equivalent to the Python expressi@iue in o

Py ssize 't PySequence_Index (PyObject *o, PyObject *value
Return the first index for whicho[i] == value . On error, returnl . This is equivalent to the Python
expressioro.index(value)

PyObject* PySequence_List (PyObject *9
Return value: New reference.
Return a list object with the same contents as the arbitrary seqoefite returned list is guaranteed to be
new.

PyObject* PySequence_Tuple (PyObject*q
Return value: New reference.
Return a tuple object with the same contents as the arbitrary sequenbiJLL on failure. Ifois a tuple,
a new reference will be returned, otherwise a tuple will be constructed with the appropriate contents. This
is equivalent to the Python expressioiple (o)

PyObject* PySequence_Fast (PyObject *o, const char *m
Return value: New reference.
Returns the sequenaeas a tuple, unless it is already a tuple or list, in which case returned. Use
PySequence _Fast GET _ITEM to access the members of the result. RetiNbd.L on failure. If the
object is not a sequence, raiSegpeError with mas the message text.

PyObject* PySequence_Fast GET_ITEM (PyObject *o, Py _ssize }i
Return value: Borrowed reference.
Return tha*th element of *@ assuming thad was returned byySequence_Fast , ois notNULL, and
thati is within bounds.

PyObject** PySequence_Fast ITEMS (PyObject*g
Return the underlying array of PyObiject pointers. Assumesaheds returned byySequence Fast
ando is notNULL.

Note, if a list gets resized, the reallocation may relocate the items array. So, only use the underlying array
pointer in contexts where the sequence cannot change. New in version 2.4.

PyObject* PySequence_ITEM (PyObject *o, Py_ssize }i
Return value: New reference.
Return thei*th element of *oor NULL on failure. Macro form ofPySequence_Getltem but without
checking thatPySequence_Check(o) is true and without adjustment for negative indices. New in
version 2.3.

6.3. Sequence Protocol 45

The Python/C API, Release 2.6.2

Py ssize 't PySequence Fast GET_SIZE (PyObject*g
Returns the length ab, assuming that was returned byySequence Fast and thato is not NULL.
The size can also be gotten by calliRgSequence _Size ono, butPySequence Fast GET_SIZE
is faster because it can assumis a list or tuple.

6.4 Mapping Protocol

int PyMapping_Check (PyObject*9
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

Py ssize t PyMapping_Length (PyObject *9
Returns the number of keys in objeztn success, andl on failure. For objects that do not provide
mapping protocaol, this is equivalent to the Python expres&info)

int PyMapping_DelltemString (PyObject *o, char *key
Remove the mapping for objeletyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statemendel o[key]

int PyMapping_Delltem (PyObiject *o, PyObject *key
Remove the mapping for objelotyfrom the objecb. Return-1 on failure. This is equivalent to the Python
statemendel o[key]

int PyMapping_HasKeyString (PyObject *o, char *key
On success, returhif the mapping object has the ké&gyandO otherwise. This is equivalent tifkey]
returningTrue on success andalse on an exception. This function always succeeds.

int PyMapping_HasKey (PyObject *o, PyObject *kgy
Returnl if the mapping object has the kégyandO otherwise. This is equivalent tkey] , returning
True on success andalse on an exception. This function always succeeds.

PyObject* PyMapping_Keys (PyObject *g
Return value: New reference.
On success, return a list of the keys in objecOn failure, returrNULL. This is equivalent to the Python
expressiorn.keys()

PyObject* PyMapping_Values (PyObject*g
Return value: New reference.
On success, return a list of the values in obfedDn failure, returrNULL. This is equivalent to the Python
expressioro.values()

PyObject* PyMapping_ltems (PyObject *9
Return value: New reference.
On success, return a list of the items in objecivhere each item is a tuple containing a key-value pair. On
failure, returnNULL. This is equivalent to the Python expressmitems()

PyObject* PyMapping_GetltemString (PyObject *o, char *key
Return value: New reference.

Return element af corresponding to the objekéyor NULL on failure. This is the equivalent of the Python
expressioro[key]

int PyMapping_SetltemString (PyObject *o, char *key, PyObject jv
Map the objeckeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python
statemenol[key] = v

6.5 lterator Protocol

New in version 2.2. There are only a couple of functions specifically for working with iterators.

int Pylter_Check (PyObject*g
Return true if the objeab supports the iterator protocol.

46 Chapter 6. Abstract Objects Layer

The Python/C API, Release 2.6.2

PyObject* Pylter Next (PyObject*g
Return value: New reference.
Return the next value from the iteration If the object is an iterator, this retrieves the next value from the
iteration, and returnBIULL with no exception set if there are no remaining items. If the object is not an
iterator, TypeError is raised, or if there is an error in retrieving the item, retidti_L and passes along
the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

PyObject *iterator = PyObject_Getlter(obj);
PyObject *item;
if (iterator == NULD {
[* propagate error */
}
while (item = Pylter_Next(iterator)) {
[* do something with item */
[* release reference when done */
Py_DECREF(item);
}

Py DECREF(iterator);

if (PyErr_Occurred()) {
[* propagate error */

}
else {

[* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject_AsCharBuffer (PyObject *obj, const char **buffer, Py_ssize_t *buffer Jen
Returns a pointer to a read-only memory location usable as character-based inpolhj atggiment must
support the single-segment character buffer interface. On success, @fsasbuffer to the memory
location andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version
1.6.

int PyObject_AsReadBuffer (PyObject *obj, const void **buffer, Py_ssize_t *buffer Jen
Returns a pointer to a read-only memory location containing arbitrary dataobjlaegument must support
the single-segment readable buffer interface. On success, rétusatsbufferto the memory location and
buffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.

int PyObject_CheckReadBuffer (PyObject *9
Returnsl if o supports the single-segment readable buffer interface. Otherwise retuN®w in version
2.2.

int PyObject_AsWriteBuffer (PyObject *obj, void **buffer, Py_ssize_t *buffer_len
Returns a pointer to a writeable memory location. T¢ argument must support the single-segment,
character buffer interface. On success, retiirnsetsbufferto the memory location anbluffer_lento the
buffer length. Returnsl and sets &ypeError on error. New in version 1.6.

6.6. Buffer Protocol 47

The Python/C API, Release 2.6.2

48 Chapter 6. Abstract Objects Layer

CHAPTER
SEVEN

CONCRETE OBJECTS LAYER

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type
is not a good idea; if you receive an object from a Python program and you are not sure that it has the right type,
you must perform a type check first; for example, to check that an object is a dictionaRyDge_Check

The chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects whigh are
passed in, many of them do not check flULL being passed instead of a valid object. AllowNgLL to be
passed in can cause memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dbject.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType_Type
This is the type object for type objects; it is the same objety@es andtypes.TypeType inthe Python
layer.

int PyType_Check (PyObject *g
Return true if the objeat is a type object, including instances of types derived from the standard type object.
Return false in all other cases.

int PyType_CheckExact (PyObject*q
Return true if the objeat is a type object, but not a subtype of the standard type object. Return false in all
other cases. New in version 2.2.

unsigned int PyType_ClearCache (void)
Clear the internal lookup cache. Return the current version tag. New in version 2.6.

void PyType_ Modified (PyTypeObject *type
Invalidate the internal lookup cache for the type and all of its subtypes. This function must be called after
any manual modification of the attributes or base classes of the type. New in version 2.6.

int PyType HasFeature (PyObiject*o, int featurg
Return true if the type objectsets the featurieature Type features are denoted by single bit flags.

int PyType_IS_GC (PyObject *g
Return true if the type object includes support for the cycle detector; this tests the type flag
Py TPFLAGS HAVE_GNew in version 2.0.

int PyType_IsSubtype (PyTypeObject *a, PyTypeObject)b

49

The Python/C API, Release 2.6.2

Return true ifais a subtype ob. New in version 2.2.

PyObject* PyType_GenericAlloc (PyTypeObject *type, Py_ssize_t nitdms
Return value: New reference.
New in version 2.2.

PyObject* PyType_GenericNew (PyTypeObiject *type, PyObject *args, PyObject *kyvds
Return value: New reference.
New in version 2.2.

int PyType_Ready (PyTypeObiject *type
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. Retonmnsuccess, or returl and sets
an exception on error. New in version 2.2.

7.1.2 The None Object

Note that the®?yTypeObject for None is not directly exposed in the Python/C API. Siidene is a singleton,
testing for object identity (using= in C) is sufficient. There is nByNone_Check function for the same reason.

PyObject* Py _None
The PythorNone object, denoting lack of value. This object has no methods. It needs to be treated just like
any other object with respect to reference counts.

Py _RETURN_NONE
Properly handle returningy_None from within a C function. New in version 2.4.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint_Type
This instance oPyTypeObject represents the Python plain integer type. This is the same objett as
andtypes.IntType

int PyIint_Check (PyObject*q
Return true ifo is of typePyInt_Type or a subtype oPyIint_ Type . Changed in version 2.2: Allowed
subtypes to be accepted.

int PyInt_CheckExact (PyObject*g
Return true ifo is of typePyInt_Type , but not a subtype dPyInt_Type . New in version 2.2.

PyObject* PyInt_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyIntObject ~ or PyLongObject based on the string value 8ir, which is interpreted
according to the radix ibase If pendis nonNULL, *pend will point to the first character istr which
follows the representation of the number.bHseis 0, the radix will be determined based on the leading
characters oftr: if str starts with'Ox’ or’0X’ , radix 16 will be used; itr starts with’0’ , radix 8 will
be used; otherwise radix 10 will be usedbHseis not0, it must be betweel and36, inclusive. Leading
spaces are ignored. If there are no digifalueError will be raised. If the string represents a number too
large to be contained within the machinsg int type and overflow warnings are being suppressed, a
PyLongObject will be returned. If overflow warnings are not being suppresbidl, L will be returned
in this case.

PyObject* PyInt_FromLong (long ival)
Return value: New reference.
Create a new integer object with a valueail.

50 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

The current implementation keeps an array of integer objects for all integers befvesrd 256, when
you create an int in that range you actually just get back a reference to the existing object. So it should be
possible to change the value bf | suspect the behaviour of Python in this case is undefined. :-)

PyObject* PyInt_ FromSsize t (Py_ssize tival
Return value: New reference.
Create a new integer object with a valueivdl. If the value exceedsONG_MAXa long integer object is
returned. New in version 2.5.

long Pyint_AsLong (PyObject*ig
Will first attempt to cast the object toRyIntObject , if it is not already one, and then return its value.
If there is an error;1 is returned, and the caller should chédkErr_Occurred() to find out whether
there was an error, or whether the value just happened to be -1.

long Pyint_ AS _LONG (PyObject *ig
Return the value of the objeidt. No error checking is performed.

unsigned long PyInt_AsUnsignedLongMask (PyObiject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , ifit is not already one, and
then return its value as unsigned long. This function does not check for overflow. New in version 2.3.

unsigned PY_LONG_LONG PyInt_AsUnsignedLongLongMask (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value as unsigned long long, without checking for overflow. New in version 2.3.

Py _ssize t Pyint_AsSsize_t (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and
then return its value aBy_ssize t . New in version 2.5.

long Pyint_GetMax ()
Return the system’s idea of the largest integer it can hah@dNG_MAXas defined in the system header
files).

int PyInt_ClearFreeList (void)
Clear the integer free list. Return the number of items that could not be freed. New in version 2.6.

7.2.2 Boolean Objects

Booleans in Python are implemented as a subclass of integers. There are only two bddle&iasse and
Py True . As such, the normal creation and deletion functions don't apply to booleans. The following macros
are available, however.

int PyBool_Check (PyObject*q
Return true ifo is of typePyBool_Type . New in version 2.3.

PyObject* Py _False
The PythorFalse object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

PyObject* Py_True
The PythorTrue object. This object has no methods. It needs to be treated just like any other object with
respect to reference counts.

Py _RETURN_FALSE
ReturnPy_False from a function, properly incrementing its reference count. New in version 2.4.

Py RETURN_TRUE
ReturnPy_True from a function, properly incrementing its reference count. New in version 2.4.

PyObject* PyBool FromLong (longV)
Return value: New reference.
Return a new reference B®y_True orPy_False depending on the truth value @f New in version 2.3.

7.2. Numeric Objects 51

The Python/C API, Release 2.6.2

7.2.3 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong_Type
This instance oPyTypeObject represents the Python long integer type. This is the same objlectagas
andtypes.LongType

int PyLong_Check (PyObject *p
Return true if its argument is ByLongObject or a subtype ofPyLongObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyLong_CheckExact (PyObject*p
Return true if its argument isyLongObject , but not a subtype dPyLongObject . New in version
2.2.

PyObject* PyLong_FromLong (long V)
Return value: New reference.
Return a newPyLongObject object fromv, or NULL on failure.

PyObject* PyLong_FromUnsignedLong (unsigned long)y
Return value: New reference.
Return a newyLongObject object from a Qunsigned long , or NULL on failure.

PyObject* PyLong_FromSsize t (Py_ssize tV
Return a newPyLongObject object from a CPy_ssize t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromSize t (size_ty
Return a newPyLongObject object from a Gsize_t , or NULL on failure. New in version 2.6.

PyObject* PyLong_FromLongLong (PY_LONG_LONG)y
Return value: New reference.
Return a newPyLongObject object from a Aong long , or NULL on failure.

PyObject* PyLong_FromUnsignedLongLong (unsigned PY_LONG_LONQG v
Return value: New reference.
Return a newPyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong_FromDouble (double y
Return value: New reference.
Return a newPyLongObject object from the integer part af or NULL on failure.

PyObject* PyLong_FromString (char *str, char **pend, int basg
Return value: New reference.
Return a newPyLongObject based on the string value gtr, which is interpreted according to the radix
in base If pendis nonNULL, *pend will point to the first character istr which follows the representation
of the number. Ibaseis 0, the radix will be determined based on the leading charactess:df str starts
with’0x’ or’0X’ , radix 16 will be used; iftr starts with’'0’ , radix 8 will be used; otherwise radix 10
will be used. Ifbaseis not0, it must be betweef and36, inclusive. Leading spaces are ignored. If there
are no digitsvalueError will be raised.

PyObject* PyLong_FromUnicode (Py_UNICODE *u, Py_ssize_tlength, int base
Return value: New reference.
Convert a sequence of Unicode digits to a Python long integer value. The first paramptents to the
first character of the Unicode strinengthgives the number of characters, dpakseis the radix for the
conversion. The radix must be in the range [2, 36]; if it is out of raMgdeError will be raised. New
in version 1.6.

PyObject* PyLong_FromVoidPtr (void *p)
Return value: New reference.
Create a Python integer or long integer from the poipteThe pointer value can be retrieved from the
resulting value using’yLong_AsVoidPtr . New in version 1.5.2.Changed in version 2.5: If the integer
is larger than LONG_MAX, a positive long integer is returned.

52 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

long PyLong_AsLong (PyObject *pylong
Return a Clong representation of the contents pylong If pylongis greater tha ONG_MAXan
OverflowError is raised and1 will be returned.

Py ssize t PyLong AsSsize t (PyObject *pylony
Return a CPy ssize t representation of the contents gf/long If pylong is greater than
PY_SSIZE_T_MAX anOverflowError is raised andl will be returned. New in version 2.6.

unsigned long PyLong_AsUnsignedLong (PyObiject *pylong
Return a Cunsigned long representation of the contents pflong If pylongis greater than
ULONG_MAXanOverflowError is raised.

PY_LONG_LONGyLong_AsLongLong (PyObject *pylony
Returna dong long from a Python long integer. fylongcannot be represented albag long , an
OverflowError will be raised. New in version 2.2.

unsigned PY_LONG_LONG PyLong_AsUnsignedLonglLong (PyObject *pylong
Return a Cunsigned long long from a Python long integer. Ifylongcannot be represented as an
unsigned long long , anOverflowError will be raised if the value is positive, oreypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong_AsUnsignedLongMask (PyObject *ig
Return a Qunsigned long from a Python long integer, without checking for overflow. New in version
2.3.

unsigned PY_LONG_LONG PyLong_AsUnsignedLongLongMask (PyObject *ig
Return a Qunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong_AsDouble (PyObject *pylong
Return a Glouble representation of the contentsmyfiong If pylongcannot be approximately represented
as adouble , anOverflowError exception is raised and.0 will be returned.

void* PyLong_AsVoidPtr (PyObiject *pylong
Convert a Python integer or long integgylongto a Cvoid pointer. If pylongcannot be converted,
an OverflowError will be raised. This is only assured to produce a usabie pointer for values
created withPyLong_FromVoidPtr . New in version 1.5.2.Changed in version 2.5: For values outside
0..LONG_MAX, both signed and unsigned integers are accepted.

7.2.4 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat Type
This instance oPyTypeObject represents the Python floating point type. This is the same object as
float andtypes.FloatType

int PyFloat Check (PyObject*p
Return true if its argument isRyFloatObject or a subtype oPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat CheckExact (PyObject*p
Return true if its argument isRyFloatObject , but not a subtype dfyFloatObject . New in version
2.2.

PyObject* PyFloat FromString (PyObject *str, char **pendl
Return value: New reference.
Create &yFloatObject object based on the string valuesit, or NULL on failure. Thependargument
is ignored. It remains only for backward compatibility.

PyObject* PyFloat FromDouble (doubley
Return value: New reference.
Create &PyFloatObject object fromv, or NULL on failure.

7.2. Numeric Objects 53

The Python/C API, Release 2.6.2

double PyFloat AsDouble (PyObiject *pyfloat
Return a Gdouble representation of the contentsmyffloat If pyfloatis not a Python floating point object
buthasa float () method, this method will first be called to convpyffloatinto a float.

double PyFloat AS DOUBLE (PyObject *pyfloat
Return a Gdouble representation of the contentsmffloat but without error checking.

PyObject* PyFloat_Getinfo (void)
Return a structseq instance which contains information about the precision, minimum and maximum values
of a float. It's a thin wrapper around the headerflitmt.h . New in version 2.6.

double PyFloat_GetMax (void)
Return the maximum representable finite fIb&L_MAXas Cdouble . New in version 2.6.

double PyFloat_GetMin (void)
Return the minimum normalized positive fldaBL_MIN as Cdouble . New in version 2.6.

int PyFloat ClearFreeList (void)
Clear the float free list. Return the number of items that could not be freed. New in version 2.6.

7.2.5 Complex Number Objects

Python’s complex humber objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex
number value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as reswtsalaesather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;

} Py_complex;

Py complex _Py c_sum (Py_complex left, Py_complex right
Return the sum of two complex numbers, using theyCcomplex representation.

Py complex Py c diff (Py_complex left, Py _complex right
Return the difference between two complex numbers, using thg Complex representation.

Py complex Py c _neg (Py_complex complgx
Return the negation of the complex humbemplexusing the GPy_complex representation.

Py _complex _Py c prod (Py_complex left, Py _complex right
Return the product of two complex numbers, using theyCcomplex representation.

Py complex _Py c_quot (Py_complex dividend, Py _complex divisor
Return the quotient of two complex numbers, using tHéyCcomplex representation.

Py complex _Py c pow (Py_complex hum, Py _complex gxp
Return the exponentiation oimby exp using the CPy_complex representation.

54 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

Complex Numbers as Python Objects

PyComplexObject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex_Type
This instance oPyTypeObject represents the Python complex number type. It is the same object as
complex andtypes.ComplexType

int PyComplex_Check (PyObject *p
Return true if its argument is AyComplexObject or a subtype oPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex_CheckExact (PyObject*p
Return true if its argument isyComplexObject , but not a subtype d?yComplexObject . New in
version 2.2.

PyObject* PyComplex_FromCComplex (Py_complex)y
Return value: New reference.
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex_FromDoubles (double real, double imgg
Return value: New reference.
Return a newPyComplexObject object fromreal andimag

double PyComplex_RealAsDouble (PyObject *op
Return the real part afp as a Cdouble .

double PyComplex_ImagAsDouble (PyObject *op
Return the imaginary part afp as a Cdouble .

Py complex PyComplex_AsCComplex (PyObject *op
Return thePy complex value of the complex numbemp. Changed in version 2.6: tpis not a Python
complex number object but has acomplex__ () method, this method will first be called to convept
to a Python complex number object.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 Byte Array Objects

New in version 2.6.

PyByteArrayObject
This subtype oPyObject represents a Python bytearray object.
PyTypeObject PyByteArray Type
This instance ofPyTypeObject represents the Python bytearray type; it is the same object as
bytearray in the Python layer.
int PyByteArray Check (PyObject*g
Return true if the objeab is a bytearray object or an instance of a subtype of the bytearray type.

int PyByteArray_CheckExact (PyObject *q

Return true if the objeab is a bytearray object, but not an instance of a subtype of the bytearray type.
PyObject* PyByteArray FromObject (PyObject *9

Return a new bytearray object from any objexstthat implements the buffer protocol.

PyObject* PyByteArray FromStringAndSize (const char *string, Py_ssize_tlen
Create a new bytearray object fra@tring and its lengthlen. On failure,NULL is returned.

7.3. Sequence Objects 55

The Python/C API, Release 2.6.2

Py ssize t PyByteArray_Size (PyObject *bytearray
Return the size dbytearrayafter checking for &lULL pointer.

Py ssize t PyByteArray GET_SIZE (PyObject *bytearray
Macro version oPyByteArray Size that doesn’t do pointer checking.

char* PyByteArray AsString (PyObject *bytearray
Return the contents difytearrayas a char array after checking foN&JLL pointer.

char* PyByteArray AS_STRING (PyObject *bytearray
Macro version oPyByteArray AsString that doesn't check pointers.

PyObject* PyByteArray Concat (PyObject *a, PyObject *p
Concat bytearraya andb and return a new bytearray with the result.

PyObject* PyByteArray Resize (PyObject *bytearray, Py _ssize tlen
Resize the internal buffer difytearrayto len.

7.3.2 String/Bytes Objects

These functions raistypeError when expecting a string parameter and are called with a non-string parameter.

Note: These functions have been renamed to PyBytes_* in Python 3.x. The PyBytes names are also available in
2.6.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString_Type
This instance ofPyTypeObject represents the Python string type; it is the same objectrasand
types.StringType in the Python layer. .

int PyString_Check (PyObject*q
Return true if the objeat is a string object or an instance of a subtype of the string type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyString_CheckExact (PyObject *g
Return true if the objeab is a string object, but not an instance of a subtype of the string type. New in
version 2.2,

PyObject* PyString_FromString (const char *y
Return value: New reference.
Return a new string object with a copy of the strings value on success, ahNULL on failure. The
parameter must not beNULL; it will not be checked.

PyObject* PyString_FromStringAndSize (const char *v, Py_ssize tlgn
Return value: New reference.
Return a new string object with a copy of the strings value and lengtten on success, andULL on
failure. If vis NULL, the contents of the string are uninitialized.

PyObject* PyString_FromFormat (const char *format, .).
Return value: New reference.
Take a Qprintf -styleformatstring and a variable number of arguments, calculate the size of the resulting
Python string and return a string with the values formatted into it. The variable arguments must be C types
and must correspond exactly to the format characters ifotineat string. The following format characters
are allowed:

56 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

Format Type Comment
Charac-
ters
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent t@rintf("%d")
%u un- Exactly equivalent t@rintf("%u")
signed
int
%Id long Exactly equivalent t@rintf("%ld")
%lu un- Exactly equivalent t@rintf("%Iu")
signed
long
%zd Py_ssize Bxactly equivalent tgrintf("%zd")
%zu size t | Exactly equivalent t@rintf("%zu")
%i int Exactly equivalent tgrintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* | A null-terminated C character array.
%p void* The hex representation of a C pointer. Mostly equivalemiriotf("%p") except
that it is guaranteed to start with the litef regardless of what the platform’s
printf yields.

An unrecognized format character causes all the rest of the format string to be copied as-is to the result
string, and any extra arguments discarded.

PyObject* PyString_FromFormatV (const char *format, va_list vargs
Return value: New reference.
Identical toPyString_FromFormat except that it takes exactly two arguments.

Py ssize t PyString_Size (PyObject *string
Return the length of the string in string objetting.

Py ssize t PyString GET_SIZE (PyObject *string
Macro form ofPyString_Size but without error checking.

char* PyString_AsString (PyObject *string
Return a NUL-terminated representation of the contenttraig. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString_FromStringAndSize(NULL, size) . It must not be deallocated. $tringis a Unicode
object, this function computes the default encodingtoihg and operates on that. $tringis not a string
object at all PyString_AsString returnsNULL and raisegypeError

char* PyString_ AS_STRING (PyObject *string
Macro form ofPyString_AsString but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString_AsStringAndSize (PyObject *obj, char **buffer, Py_ssize_t *length
Return a NUL-terminated representation of the contents of the atljp¢tiirough the output variabldmiffer
andlength

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default
encoded version of the object.l&ngthis NULL, the resulting buffer may not contain NUL characters; if it
does, the function returnd and aTypeError is raised.

The buffer refers to an internal string bufferaj, not a copy. The data must not be modified in any way,

unless the string was just created usiyString_FromStringAndSize(NULL, size) . It must
not be deallocated. Htringis a Unicode object, this function computes the default encodirsiyioig and
operates on that. Htring is not a string object at alRyString_AsStringAndSize returns-1 and
raisesTypeError

void PyString_Concat (PyObject **string, PyObject *newpat
Create a new string object hstring containing the contents afewpartappended tatring; the caller will
own the new reference. The reference to the old valustrofg will be stolen. If the new string cannot be
created, the old reference string will still be discarded and the value &$tring will be set toNULL; the

7.3. Sequence Objects 57

The Python/C API, Release 2.6.2

appropriate exception will be set.

void PyString_ConcatAndDel (PyObject **string, PyObject *newpa)t
Create a new string object istring containing the contents afewpartappended tstring. This version
decrements the reference counnefvpart

int _PyString_Resize (PyObject **string, Py_ssize_t newsjze
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object
as an Ivalue (it may be written into), and the new size desired. On su¢s&gsy holds the resized string
object andD is returned; the address fatring may differ from its input value. If the reallocation fails, the
original string object atstring is deallocatedstring is set toNULL, a memory exception is set, ant is
returned.

PyObject* PyString_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object frofiormatandargs. Analogous toformat % args . Theargsargument
must be a tuple.

void PyString_InterninPlace (PyObject **string
Intern the argumentstring in place. The argument must be the address of a pointer variable pointing to
a Python string object. If there is an existing interned string that is the sarrstriag), it sets*string to
it (decrementing the reference count of the old string object and incrementing the reference count of the
interned string object), otherwise it leavestring alone and interns it (incrementing its reference count).
(Clarification: even though there is a lot of talk about reference counts, think of this function as reference-
count-neutral; you own the object after the call if and only if you owned it before the call.)

PyObject* PyString_InternFromString (const char *y
Return value: New reference.
A combination ofPyString_FromString andPyString_InterninPlace , returning either a new

string object that has been interned, or a new (“owned”) reference to an earlier interned string object with
the same value.

PyObject* PyString_Decode (constchar*s, Py_ssize_t size, const char *encoding, const char *@rrors
Return value: New reference.
Create an object by decodimigebytes of the encoded bufferusing the codec registered fencoding
encodinganderrors have the same meaning as the parameters of the same nameimcbee() built-
in function. The codec to be used is looked up using the Python codec registry. Retukrif an exception
was raised by the codec.

PyObject* PyString_AsDecodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Decode a string object by passing it to the codec registeredrfoodingand return the result as Python
object. encodingand errors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. IRetLLif an
exception was raised by the codec.

PyObject* PyString_Encode (constchar *s, Py_ssize_t size, const char *encoding, const char *@rrors
Return value: New reference.
Encode thechar buffer of the given size by passing it to the codec registere@foodingand return a
Python objectencodinganderrors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Returif an
exception was raised by the codec.

PyObject* PyString_AsEncodedObject (PyObject *str, const char *encoding, const char *errprs
Return value: New reference.
Encode a string object using the codec registeredticodingand return the result as Python objesricod-
ing anderrors have the same meaning as the parameters of the same name in therstddg() method.
The codec to be used is looked up using the Python codec registry. R&flinif an exception was raised
by the codec.

58 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

7.3.3 Unicode Objects and Codecs

Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents the storage type which is used by Python internally as basis for holding Unicode or-
dinals. Python’s default builds use a 16-bit type for UNICODEand store Unicode values internally as
UCS2. ltis also possible to build a UCS4 version of Python (most recent Linux distributions come with
UCS4 builds of Python). These builds then use a 32-bit typd”forUNICODEand store Unicode data
internally as UCS4. On platforms whewechar_t is available and compatible with the chosen Python
Unicode build variantPy UNICODEis a typedef alias fowchar_t to enhance native platform compat-
ibility. On all other platformsPy UNICODEis a typedef alias for eithamsigned short (UCS2) or
unsigned long (UCS4).

Note that UCS2 and UCS4 Python builds are not binary compatible. Please keep this in mind when writing
extensions or interfaces.

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode Type
This instance oPyTypeObject represents the Python Unicode type. It is exposed to Python code as
unicode andtypes.UnicodeType

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode_Check (PyObject*g
Return true if the objeab is a Unicode object or an instance of a Unicode subtype. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyUnicode_CheckExact (PyObject*g
Return true if the objeat is a Unicode object, but not an instance of a subtype. New in version 2.2.

Py ssize 't PyUnicode GET_SIZE (PyObject*g

Return the size of the objeat.has to be &yUnicodeObject (not checked).
Py ssize t PyUnicode GET_DATA_SIZE (PyObject *g

Return the size of the object’s internal buffer in bytefias to be &yUnicodeObject (not checked).
Py_UNICODE* PyUnicode_AS_UNICODE (PyObject *9

Return a pointer to the internBly UNICODEbuffer of the objecto has to be &@yUnicodeObject (not
checked).

const char* PyUnicode_AS_DATA (PyObject *9
Return a pointer to the internal buffer of the objezhas to be @yUnicodeObject (not checked).

int PyUnicode_ClearFreeList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

Unicode provides many different character properties. The most often needed ones are available through these
macros which are mapped to C functions depending on the Python configuration.

int Py _UNICODE_ISSPACE Py _UNICODE ch
Return 1 or 0 depending on whettedris a whitespace character.

int Py _UNICODE_ISLOWERPy_UNICODE ch
Return 1 or 0 depending on whettddris a lowercase character.

int Py _UNICODE_ISUPPERPy_UNICODE ch
Return 1 or 0 depending on whetharis an uppercase character.

int Py _UNICODE_ISTITLE (Py_UNICODE ch
Return 1 or O depending on whetleris a titlecase character.

7.3. Sequence Objects 59

The Python/C API, Release 2.6.2

int Py_UNICODE_ISLINEBREAK Py_UNICODE ch
Return 1 or 0 depending on whettetris a linebreak character.

int Py _UNICODE_ISDECIMAL Py _UNICODE ch
Return 1 or 0 depending on whettddris a decimal character.

int Py _UNICODE_ISDIGIT (Py_UNICODE ch
Return 1 or 0 depending on whetharis a digit character.

int Py _UNICODE_ISNUMERICPy_UNICODE ch
Return 1 or 0 depending on whetteéris a numeric character.

int Py_UNICODE_ISALPHA Py_UNICODE ch
Return 1 or 0 depending on whetteris an alphabetic character.

int Py _UNICODE_ISALNUNIPy_UNICODE ch
Return 1 or 0 depending on whettdris an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py UNICODE_TOLOWERyY UNICODE ch
Return the characteh converted to lower case.

Py_UNICODE Py_UNICODE_TOUPPERPY_UNICODE ch
Return the characteh converted to upper case.

Py_UNICODE Py_UNICODE_TOTITLH Py_UNICODE ch
Return the characteh converted to title case.

int Py _UNICODE_TODECIMALPY_UNICODE ch
Return the characteh converted to a decimal positive integer. Retnif this is not possible. This macro
does not raise exceptions.

int Py _UNICODE_TODIGIT(Py_UNICODE ch
Return the characteh converted to a single digit integer. Retufin if this is not possible. This macro does
not raise exceptions.

double Py_UNICODE_TONUMERI[@®y_UNICODE ch
Return the characteth converted to a double. Returth.0 if this is not possible. This macro does not
raise exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode_FromUnicode (const Py _UNICODE *u, Py_ssize t gize
Return value: New reference.
Create a Unicode Object from the Py_UNICODE bufiesf the given sizeu may beNULL which causes
the contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into
the new object. If the buffer is n&tULL, the return value might be a shared object. Therefore, modification
of the resulting Unicode object is only allowed wheis NULL.

Py _UNICODE* PyUnicode_AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s intefhal UNICODEDbuffer, NULL if unicodeis not a
Unicode object.

Py ssize t PyUnicode GetSize (PyObject *unicodg
Return the length of the Unicode object.

PyObject* PyUnicode_FromEncodedObject (PyObject *obj, const char *encoding, const char *er-

rors)
Return value: New reference.

Coerce an encoded objemij to an Unicode object and return a reference with incremented refcount.

String and other char buffer compatible objects are decoded according to the given encoding and using the
error handling defined by errors. Both canNldLL to have the interface use the default values (see the next
section for details).

All other objects, including Unicode objects, caustypeError to be set.
The API returndNULL if there was an error. The caller is responsible for decref’ing the returned objects.

60 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

PyObject* PyUnicode_FromObject (PyObiject *ob)
Return value: New reference.
Shortcut for PyUnicode_FromEncodedObject(obj, NULL, "strict") which is used
throughout the interpreter whenever coercion to Unicode is needed.

If the platform supportsvchar_t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Supportis optimized if Python’s disn UNICODEtype is identical to the system’s
wchar_t .

PyObject* PyUnicode_FromWideChar (constwchar_t *w, Py ssize t sjze
Return value: New reference.
Create a Unicode object from tchar_t bufferw of the given size. ReturNULL on failure.

Py ssize 't PyUnicode AsWideChar (PyUnicodeObject *unicode, wchar_t *w, Py _ssize tkize
Copy the Unicode object contents into thehar_t bufferw. At mostsizewchar_t characters are copied
(excluding a possibly trailing O-termination character). Return the numbeclér_t characters copied
or -1 in case of an error. Note that the resultimghar_t string may or may not be O-terminated. It is the
responsibility of the caller to make sure that thehar_t string is O-terminated in case this is required by
the application.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable
via the following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have
the same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding ttNULL causes the default encoding to be used which is ASCII. The file system calls should
usePy_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as
read-only: On some systems, it will be a pointer to a static string, on others, it will change at run-time (such as
when the application invokes setlocale).

Error handling is set by errors which may also be s@lti_ L meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “strict’alueError s raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for sim-
plicity.
These are the generic codec APIs:

PyObject* PyUnicode_Decode (constchar*s, Py ssize tsize, const char *encoding, const char *@rrors
Return value: New reference.
Create a Unicode object by decodisigebytes of the encoded strirsgencodinganderrors have the same
meaning as the parameters of the same name inrtle@de() builtin function. The codec to be used is
looked up using the Python codec registry. ReMtsLL if an exception was raised by the codec.

PyObject* PyUnicode_Encode (const Py _UNICODE *s, Py ssize t size, const char *encoding, const

char *errors)
Return value: New reference.

Encode thé®y UNICODEDbuffer of the given size and return a Python string objecicodinganderrors
have the same meaning as the parameters of the same name in the énicodie() method. The codec
to be used is looked up using the Python codec registry. R&UMOL if an exception was raised by the
codec.

PyObject* PyUnicode_AsEncodedString (PyObject *unicode, const char *encoding, const char *er-

rors)
Return value: New reference.

Encode a Unicode object and return the result as Python string objemidinganderrors have the same
meaning as the parameters of the same name in the Unicabele() method. The codec to be used is
looked up using the Python codec registry. ReMNtLL if an exception was raised by the codec.

These are the UTF-8 codec APIs:

PyObject* PyUnicode_DecodeUTF8 (constchar *s, Py _ssize_t size, const char *eryors

7.3. Sequence Objects 61

The Python/C API, Release 2.6.2

Return value: New reference.
Create a Unicode object by decodsigebytes of the UTF-8 encoded strisggReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeUTF8Stateful (const char *s, Py ssize t size, const char *errors,
Py_ssize t*consumgd
Return value: New reference.
If consumeds NULL, behave likePyUnicode_DecodeUTF8 . If consumeds notNULL, trailing incom-
plete UTF-8 byte sequences will not be treated as an error. Those bytes will not be decoded and the number
of bytes that have been decoded will be storedansumedNew in version 2.4,

PyObject* PyUnicode_EncodeUTF8 (const Py_UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode thé®’y UNICODEbuffer of the given size using UTF-8 and return a Python string object. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF8String (PyObject *unicodg
Return value: New reference.

Encode a Unicode object using UTF-8 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the UTF-32 codec APls:

PyObject* PyUnicode_DecodeUTF32 (constchar*s, Py _ssize_tsize, const char *errors, int *bytegrder
Decodelengthbytes from a UTF-32 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*pyteorder == -1: little endian
* pyteorder == 0: native order
*byteorder == 1: big endian

and then switches if the first four bytes of the input data are a byte order mark (BOM) and the specified
byte order is native order. This BOM is not copied into the resulting Unicode string. After completion,
*byteorderis set to the current byte order at the end of input data.

In a narrow build codepoints outside the BMP will be decoded as surrogate pairs.
If byteorderis NULL, the codec starts in native order mode.
ReturnNULL if an exception was raised by the codec. New in version 2.6.

PyObject* PyUnicode_DecodeUTF32Stateful (const char *s, Py_ssize t size, const char *errors, int
*byteorder, Py_ssize_t *consumed
If consumedis NULL, behave like PyUnicode_DecodeUTF32 . If consumedis not NULL,
PyUnicode_DecodeUTF32Stateful will not treat trailing incomplete UTF-32 byte sequences (such
as a number of bytes not divisible by four) as an error. Those bytes will not be decoded and the number of
bytes that have been decoded will be storedansumedNew in version 2.6.

PyObject* PyUnicode_EncodeUTF32 (const Py _UNICODE *s, Py ssize_t size, const char *errors, int

byteorde)
Return a Python bytes object holding the UTF-32 encoded value of the Unicode dath lyteorderis

notO, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDBHs not defined, surrogate pairs will be output as a single codepoint.
ReturnNULL if an exception was raised by the codec. New in version 2.6.

62 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

PyObject* PyUnicode_AsUTF32String (PyObject *unicodg
Return a Python string using the UTF-32 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec. New in version 2.6.

These are the UTF-16 codec APIs:

PyObject* PyUnicode_DecodeUTF16 (constchar*s, Py_ssize_t size, const char *errors, int *bytegrder
Return value: New reference.
Decodelengthbytes from a UTF-16 encoded buffer string and return the corresponding Unicode object.
errors (if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*byteorder == -1: little endian
*pbyteorder == 0: native order
*byteorder == 1: big endian

and then switches if the first two bytes of the input data are a byte order mark (BOM) and the specified
byte order is native order. This BOM is not copied into the resulting Unicode string. After completion,
*byteorderis set to the current byte order at the.

If byteorderis NULL, the codec starts in native order mode.
ReturnNULL if an exception was raised by the codec.

PyObject* PyUnicode_DecodeUTF16Stateful (const char *s, Py_ssize_t size, const char *errors, int
*byteorder, Py_ssize_t *consumed
Return value: New reference.
If consumedis NULL, behave like PyUnicode_DecodeUTF16 . If consumedis not NULL,
PyUnicode_DecodeUTF16Stateful will not treat trailing incomplete UTF-16 byte sequences (such
as an odd number of bytes or a split surrogate pair) as an error. Those bytes will not be decoded and the
number of bytes that have been decoded will be storedmsumedNew in version 2.4.

PyObject* PyUnicode_EncodeUTF16 (const Py _UNICODE *s, Py ssize_t size, const char *errors, int

byteorde)
Return value: New reference.

Return a Python string object holding the UTF-16 encoded value of the Unicode datH ioyteorderis
notO, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other
two modes, no BOM mark is prepended.

If Py_UNICODE_WIDHs defined, a singl®y UNICODEvalue may get represented as a surrogate pair.
If it is not defined, eacPy UNICODEvalues is interpreted as an UCS-2 character.

ReturnNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUTF16String (PyObject *unicod
Return value: New reference.
Return a Python string using the UTF-16 encoding in native byte order. The string always starts with a
BOM mark. Error handling is “strict”. ReturNULL if an exception was raised by the codec.

These are the “Unicode Escape” codec APIs:

PyObject* PyUnicode_DecodeUnicodeEscape (constchar*s, Py_ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the Unicode-Escape encoded stangeturnNULL if an
exception was raised by the codec.

PyObject* PyUnicode_EncodeUnicodeEscape (const Py_UNICODE *s, Py ssize t gize
Return value: New reference.

7.3. Sequence Objects 63

The Python/C API, Release 2.6.2

Encode thé®’y UNICODEbuffer of the given size using Unicode-Escape and return a Python string object.
ReturnNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Unicode-Escape and return the result as Python string object. Error handling
is “strict”. ReturnNULL if an exception was raised by the codec.

These are the “Raw Unicode Escape” codec APls:

PyObject* PyUnicode_DecodeRawUnicodeEscape (const char *s, Py_ssize t size, const char *er-

rors)
Return value: New reference.

Create a Unicode object by decodisigebytes of the Raw-Unicode-Escape encoded ssirReturnNULL
if an exception was raised by the codec.

PyObject* PyUnicode_EncodeRawUnicodeEscape (const Py UNICODE *s, Py ssize t size, const

char *errors)
Return value: New reference.

Encode theé®?y UNICODEDbuffer of the given size using Raw-Unicode-Escape and return a Python string
object. ReturNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsRawUnicodeEscapeString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Raw-Unicode-Escape and return the result as Python string object. Error
handling is “strict”. ReturmMNULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are
accepted by the codecs during encoding.

PyObject* PyUnicode_Decodelatinl (const char *s, Py_ssize t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodsigebytes of the Latin-1 encoded strisgReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodeLatinl (const Py _UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode the?y UNICODEDbuffer of the given size using Latin-1 and return a Python string object. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsLatin1String (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using Latin-1 and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

These are the ASCII codec APIs. Only 7-bit ASCII data is accepted. All other codes generate errors.

PyObject* PyUnicode_DecodeASCIl (const char *s, Py_ssize_t size, const char *erjors
Return value: New reference.
Create a Unicode object by decodisigebytes of the ASCII encoded striig ReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_EncodeASCIl (const Py_UNICODE *s, Py _ssize_t size, const char *ejrors
Return value: New reference.
Encode theé®?y UNICODEDbuffer of the given size using ASCII and return a Python string object. Return
NULL if an exception was raised by the codec.

PyObject* PyUnicode_AsASCIIString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using ASCII and return the result as Python string object. Error handling is “strict”.
ReturnNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done
to obtain most of the standard codecs included inetheodings package). The codec uses mapping to encode

64 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

and decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then
interpreted as Unicode ordinals) or None (meaning “undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then
interpreted as Latin-1 ordinals) or None (meaning “undefined mapping” and causing an error).

The mapping objects provided must only support the __getitem___ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings
which map characters to different code points.

PyObject* PyUnicode_DecodeCharmap (constchar *s, Py _ssize_t size, PyObject *mapping, const char

*errors)
Return value: New reference.

Create a Unicode object by decodisigebytes of the encoded strirgusing the givermappingobject.
ReturnNULL if an exception was raised by the codecmippingis NULL latin-1 decoding will be done.

Else it can be a dictionary mapping byte or a unicode string, which is treated as a lookup table. Byte values
greater that the length of the string and U+FFFE “characters” are treated as “undefined mapping”. Changed
in version 2.4: Allowed unicode string as mapping argument.

PyObject* PyUnicode_EncodeCharmap (const Py UNICODE *s, Py ssize_t size, PyObject *mapping,

const char *error$
Return value: New reference.

Encode thePy UNICODEDuffer of the given size using the givenappingobject and return a Python
string object. ReturtNULL if an exception was raised by the codec.

PyObject* PyUnicode_AsCharmapString (PyObject *unicode, PyObject *mappihg
Return value: New reference.
Encode a Unicode object using the giveappingobject and return the result as Python string object. Error
handling is “strict”. ReturrNULL if an exception was raised by the codec.

The following codec APl is special in that maps Unicode to Unicode.

PyObject* PyUnicode_TranslateCharmap (const Py_UNICODE *s, Py_ssize_t size, PyObiject *table,

const char *error$
Return value: New reference.

Translate &y UNICODEbuffer of the given length by applying a character mappatgeto it and return
the resulting Unicode object. RetuRULL when an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeckupError) are left untouched and are copied as-is.

These are the MBCS codec APIs. They are currently only available on Windows and use the Win32 MBCS
converters to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The
target encoding is defined by the user settings on the machine running the codec.

PyObject* PyUnicode_DecodeMBCS (const char *s, Py_ssize_t size, const char *eryors
Return value: New reference.
Create a Unicode object by decodisigebytes of the MBCS encoded strisgReturnNULL if an exception
was raised by the codec.

PyObject* PyUnicode_DecodeMBCSStateful ~ (const char *s, int size, const char *errors, int *con-

sumeq
If consumedis NULL, behave like PyUnicode DecodeMBCS . If consumedis not NULL,
PyUnicode_DecodeMBCSStateful will not decode trailing lead byte and the number of bytes that
have been decoded will be storeccionsumedNew in version 2.5.

PyObject* PyUnicode_EncodeMBCS (const Py_UNICODE *s, Py_ssize_t size, const char *ejrors
Return value: New reference.
Encode thé’y UNICODEbuffer of the given size using MBCS and return a Python string object. Return
NULL if an exception was raised by the codec.

7.3. Sequence Objects 65

The Python/C API, Release 2.6.2

PyObject* PyUnicode_AsMBCSString (PyObject *unicodg
Return value: New reference.
Encode a Unicode object using MBCS and return the result as Python string object. Error handling is
“strict”. ReturnNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in
the descriptions) and return Unicode objects or integers as appropriate.

They all returnNULL or -1 if an exception occurs.

PyObject* PyUnicode_Concat (PyObject *left, PyObject *right
Return value: New reference.
Concat two strings giving a new Unicode string.

PyObject* PyUnicode_Split (PyObject *s, PyObject *sep, Py_ssize_t maxpplit
Return value: New reference.
Split a string giving a list of Unicode strings. If sep MULL, splitting will be done at all whitespace
substrings. Otherwise, splits occur at the given separator. At massplitsplits will be done. If negative,
no limit is set. Separators are not included in the resulting list.

PyObject* PyUnicode_Splitlines (PyObiject *s, int keepend
Return value: New reference.
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeepends 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode_Translate (PyObject *str, PyObject *table, const char *errgrs
Return value: New reference.
Translate a string by applying a character mapping table to it and return the resulting Unicode object.

The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion
of the character).

Mapping tables need only provide thegetitem__ () interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeokupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayNd#l L which indicates to use the default error handling.

PyObject* PyUnicode_Join (PyObject *separator, PyObject *sgq
Return value: New reference.
Join a sequence of strings using the given separator and return the resulting Unicode string.

int PyUnicode_Tailmatch (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int direc-
tion)
Return value: New reference.
Return 1 ifsubstrmatchestr*[*start :end at the given tail enddirection== -1 means to do a prefix match,
direction== 1 a suffix match), 0 otherwise. Retuh if an error occurred.

Py ssize 't PyUnicode_Find (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize_t end, int di-

rection
Return the first position afubstrin str*%*start :end using the giverdirection(direction==1 means to do a

forward searchdirection== -1 a backward search). The return value is the index of the first match; a value
of -1 indicates that no match was found, a@dindicates that an error occurred and an exception has been

set.

Py ssize 't PyUnicode_Count (PyObject *str, PyObject *substr, Py_ssize_t start, Py_ssize } end
Return the number of non-overlapping occurrencesubistrin str[start:end] . Return-1 if an error
occurred.

PyObject* PyUnicode_Replace (PyObject *str, PyObject *substr, PyObject *replstr, Py_ssize_t max-

cound
Return value: New reference.

Replace at moshaxcounbccurrences oubstrin str with replstr and return the resulting Unicode object.
maxcount= -1 means replace all occurrences.

66 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

int PyUnicode_Compare (PyObiject *left, PyObject *right
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

int PyUnicode_RichCompare (PyObject *left, PyObject *right, int op
Rich compare two unicode strings and return one of the following:

*NULL in case an exception was raised
*Py True orPy False for successful comparisons
Py Notimplemented in case the type combination is unknown

Note thatPy EQandPy_NE comparisons can causeJaicodeWarning in case the conversion of the
arguments to Unicode fails withi@nicodeDecodeError

Possible values fasp arePy_GT, Py_GE Py _EQ, Py _NE, Py LT, andPy_LE.

PyObject* PyUnicode_Format (PyObject *format, PyObject *args
Return value: New reference.
Return a new string object froformatandargs this is analogous téormat % args . Theargsargu-
ment must be a tuple.

int PyUnicode_Contains (PyObject *container, PyObject *elemént
Check whetheelemenis contained ircontainerand return true or false accordingly.

elementhas to coerce to a one element Unicode stritigis returned if there was an error.

7.3.4 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions
can be used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer
interface to access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the
character contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should
be noted that array elements may be multi-byte values.

An example user of the buffer interface is the file objegtiste() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg_ParseTuple that operate against an object’s buffer interface, returning data from the target object.
More information on the buffer interface is provided in the secBaiffer Object Structureainder the description

for PyBufferProcs

A “buffer object” is defined in thébufferobject.h header (included byython.h). These objects look

very similar to string objects at the Python programming level: they support slicing, indexing, concatenation, and
some other standard string operations. However, their data can come from one of two sources: from a block of
memory, or from another object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python program-
mer. They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory,
it is possible to expose any data to the Python programmer quite easily. The memory could be a large, constant
array in a C extension, it could be a raw block of memory for manipulation before passing to an operating system
library, or it could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

PyTypeObject PyBuffer_Type
The instance oPyTypeObject which represents the Python buffer type; it is the same objdmtffsr
andtypes.BufferType in the Python layer. .

int Py END_OF_BUFFER
This constant may be passed as thwze parameter to PyBuffer FromObject or
PyBuffer_FromReadWriteObject . It indicates that the newPyBufferObject should re-
fer to baseobject from the specifiedffsetto the end of its exported buffer. Using this enables the caller to
avoid querying thdaseobject for its length.

7.3. Sequence Objects 67

The Python/C API, Release 2.6.2

int PyBuffer_Check (PyObject*p
Return true if the argument has typgBuffer Type

PyObject* PyBuffer_FromObiject (PyObject *base, Py_ssize_t offset, Py _ssize } size
Return value: New reference.
Return a new read-only buffer object. This rai3gpeError if basedoesn’t support the read-only buffer
protocol or doesn'’t provide exactly one buffer segment, or it raisdgeError if offsetis less than zero.
The buffer will hold a reference to tHeaseobject, and the buffer’'s contents will refer to thaseobject’s
buffer interface, starting as positiaiffsetand extending fosizebytes. Ifsizeis Py END_ OF BUFFER
then the new buffer’'s contents extend to the length obteeobject’s exported buffer data.

PyObject* PyBuffer_FromReadWriteObject (PyObject *base, Py_ssize _t offset, Py _ssize } size
Return value: New reference.
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer_FromObject . If the baseobject does not export the writeable buffer protocol, then
TypeError is raised.

PyObject* PyBuffer_FromMemory (void *ptr, Py_ssize t sije
Return value: New reference.
Return a new read-only buffer object that reads from a specified location in memory, with a specified size.
The caller is responsible for ensuring that the memory buffer, passegin &snot deallocated while the re-
turned buffer object exists. RaiséalueError if sizeis less than zero. Note thety END OF_BUFFER
maynotbe passed for theizeparameterValueError will be raised in that case.

PyObject* PyBuffer_FromReadWriteMemory (void *ptr, Py_ssize_t size
Return value: New reference.
Similar toPyBuffer FromMemory , but the returned buffer is writable.

PyObject* PyBuffer_New (Py_ssize_t sije
Return value: New reference.
Return a new writable buffer object that maintains its own memory buffaizgfbytes. ValueError
is returned if size is not zero or positive. Note that the memory buffer (as returned by
PyObject_AsWriteBuffer) is not specifically aligned.

7.3.5 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple_Type
This instance oPyTypeObject represents the Python tuple type; it is the same objett@e and
types.TupleType in the Python layer..

int PyTuple_Check (PyObject*p
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyTuple_CheckExact (PyObject *p
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple_New (Py_ssize tlen
Return value: New reference.
Return a new tuple object of siten, or NULL on failure.

PyObject* PyTuple_Pack (Py_ssize_tn,).
Return value: New reference.
Return a new tuple object of size or NULL on failure. The tuple values are initialized to the
subsequent C arguments pointing to Python object®yTuple_Pack(2, a, b) is equivalent to
Py Buildvalue("(00)", a, b) . New in version 2.4.

Py ssize 't PyTuple_Size (PyObject*p
Take a pointer to a tuple object, and return the size of that tuple.

Py ssize t PyTuple_GET_SIZE (PyObject *p

68 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

Return the size of the tupfe which must be nomNULL and point to a tuple; no error checking is performed.

PyObject* PyTuple_Getltem (PyObject *p, Py_ssize_t pps

Return value: Borrowed reference.
Return the object at positiguosin the tuple pointed to bp. If posis out of bounds, returNULL and sets
anindexError exception.

PyObject* PyTuple_GET_ITEM (PyObject *p, Py_ssize t pps

Return value: Borrowed reference.
Like PyTuple_Getltem , but does no checking of its arguments.

PyObject* PyTuple_GetSlice (PyObject *p, Py_ssize_tlow, Py_ssize t high

int

void

int

int

Return value: New reference.
Take a slice of the tuple pointed to pyfrom low to high and return it as a new tuple.

PyTuple_Setltem (PyObject *p, Py_ssize_t pos, PyObjec) *o
Insert a reference to objeatat positionposof the tuple pointed to bp. Return0 on success.

Note: This function “steals” a reference o

PyTuple_SET _ITEM (PyObject *p, Py_ssize_t pos, PyObjec) *o
Like PyTuple_Setltem , but does no error checking, and shoatdy be used to fill in brand new tuples.

Note: This function “steals” a reference o

_PyTuple_Resize (PyObject **p, Py_ssize_t news)ze

Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplessangposedo

be immutable, this should only be used if there is only one reference to the objeciotDse this if the

tuple may already be known to some other part of the code. The tuple will always grow or shrink at the
end. Think of this as destroying the old tuple and creating a new one, only more efficiently. Retuins
success. Client code should never assume that the resulting vaijpevafl be the same as before calling

this function. If the object referenced by is replaced, the origingp is destroyed. On failure, retura$

and setgp to NULL, and raisedMemoryError or SystemError . Changed in version 2.2: Removed
unused third parametdgst_is_sticky

PyTuple_ClearFreeList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

7.3.6 List Objects

PyListObject

This subtype oPyObject represents a Python list object.

PyTypeObject PyList Type

int

int

This instance oPyTypeObject represents the Python list type. This is the same objetisias and
types.ListType in the Python layer.

PyList_ Check (PyObject*p
Return true ifp is a list object or an instance of a subtype of the list type. Changed in version 2.2: Allowed
subtypes to be accepted.

PyList_CheckExact (PyObject *p
Return true ifp is a list object, but not an instance of a subtype of the list type. New in version 2.2.

PyObject* PyList New (Py_ssize_tlen

Return value: New reference.
Return a new list of lengthken on success, ddULL on failure.

Note: If lengthis greater than zero, the returned list object’s items are ddttio. Thus you cannot use
abstract API functions such &ySequence_Setltem or expose the object to Python code before setting
all items to a real object witRyList Setltem

Py ssize t PyList_Size (PyObject *lis}

Return the length of the list object list; this is equivalent téen(list) on a list object.

Py_ssize t PyList_ GET_SIZE (PyObiject *lis)

7.3. Sequence Objects 69

The Python/C API, Release 2.6.2

Macro form ofPyList_Size without error checking.

PyObject* PyList_Getltem (PyObject *list, Py_ssize_t indgx
Return value: Borrowed reference.
Return the object at positigrosin the list pointed to by. The position must be positive, indexing from the
end of the list is not supported. bsis out of bounds, returNULL and set arindexError exception.

PyObject* PyList GET_ITEM (PyObject *list, Py_ssize }i
Return value: Borrowed reference.
Macro form ofPyList_Getltem without error checking.

int PyList_Setltem (PyObject *list, Py_ssize_t index, PyObject *ifem
Set the item at indedexin list to item Return0 on success ofl on failure.

Note: This function “steals” a reference tiemand discards a reference to an item already in the list at the
affected position.

void PyList SET_ITEM (PyObject *list, Py_ssize ti, PyObject)o
Macro form ofPyList_Setltem without error checking. This is normally only used to fill in new lists
where there is no previous content.

Note: This function “steals” a reference item, and, unlikePyList Setltem , doesnhot discard a
reference to any item that it being replaced; any referentistiat positioni will be leaked.

int PyList_Insert (PyObject *list, Py_ssize_t index, PyObject *ifem
Insert the iteniteminto listlist in front of indexindex Return0 if successful; returAl and setan exception
if unsuccessful. Analogous tst.insert(index, item)

int PyList Append (PyObject *list, PyObject *itefn
Append the objecitem at the end of listist. ReturnO if successful; returrl and set an exception if
unsuccessful. Analogous list.append(item)

PyObject* PyList GetSlice (PyObiject *list, Py_ssize_t low, Py_ssize_t high
Return value: New reference.
Return a list of the objects ilist containing the objectbetween lowand high. ReturnNULL and set an
exception if unsuccessful. Analogousligt[low:high]

int PyList_SetSlice (PyObject *list, Py_ssize_t low, Py_ssize_t high, PyObject *itejnlist
Set the slice ofist betweeriow andhighto the contents atemlist Analogous tdist[low:high] =
itemlist . Theitemlistmay beNULL, indicating the assignment of an empty list (slice deletion). Return
0 on success1 on failure.

int PyList Sort (PyObject *lis}
Sort the items ofist in place. Retur® on success,1 on failure. This is equivalent tlist.sort()

int PyList Reverse (PyObject *lis)
Reverse the items dist in place. Return0 on success;1l on failure. This is the equivalent of
list.reverse()

PyObject* PyList_AsTuple (PyObject *lis)
Return value: New reference.
Return a new tuple object containing the contentsbf equivalent tauple(list)

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict_Type
This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python pro-
grams aglict andtypes.DictType

70 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

int PyDict Check (PyObject*p
Return true ifpis a dict object or an instance of a subtype of the dict type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyDict_ CheckExact (PyObject*p
Return true ifp is a dict object, but not an instance of a subtype of the dict type. New in version 2.4.

PyObject* PyDict_New ()
Return value: New reference.
Return a new empty dictionary, itULL on failure.

PyObject* PyDictProxy_New (PyObject *dic)
Return value: New reference.
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a
proxy to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

void PyDict _Clear (PyObject*p
Empty an existing dictionary of all key-value pairs.

int PyDict_Contains (PyObject *p, PyObject *kgy
Determine if dictionary containskey. If an item inp is matcheskey, returnl, otherwise retur®. On error,
return-1 . This is equivalent to the Python expressi@y in p . New in version 2.4.

PyObject* PyDict_Copy (PyObject*pn
Return value: New reference.
Return a new dictionary that contains the same key-value papsihaw in version 1.6.

int PyDict_Setltem (PyObject *p, PyObject *key, PyObject *yal
Insertvalueinto the dictionaryp with a key ofkey keymust behashableif it isn't, TypeError will be
raised. Returi® on success ol on failure.

int PyDict_SetltemString (PyObject *p, const char *key, PyObject *yal
Insertvalueinto the dictionaryp usingkeyas a keykeyshould be a&har* . The key object is created using
PyString_FromString(key) . Return0 on success ofl on failure.

int PyDict Delltem (PyObject *p, PyObject *key
Remove the entry in dictionamy with key key keymust be hashable; if it isn’TypeError is raised.
Return0 on success otl on failure.

int PyDict_DelltemString (PyObject *p, char *key
Remove the entry in dictionafywhich has a key specified by the strikgy. ReturnO on success ol on
failure.

PyObject* PyDict_Getltem (PyObject *p, PyObject *key
Return value: Borrowed reference.
Return the object from dictionany which has a kekey ReturnNULL if the keykeyis not present, but
withoutsetting an exception.

PyObject* PyDict_GetltemString (PyObject *p, const char *kegy
Return value: Borrowed reference.
This is the same aByDict_Getltem , butkeyis specified as ahar* , rather than &yObject*

PyObject* PyDict_Items (PyObject *p
Return value: New reference.
Return aPyListObject containing all the items from the dictionary, as in the dictionary method
dict.items()

PyObject* PyDict_Keys (PyObject*p
Return value: New reference.
Return aPyListObject containing all the keys from the dictionary, as in the dictionary method
dict.keys()

PyObject* PyDict_Values (PyObject *p
Return value: New reference.
Return aPyListObject containing all the values from the dictionapy as in the dictionary method
dict.values()

7.4. Mapping Objects 71

The Python/C API, Release 2.6.2

Py ssize t PyDict Size (PyObject*p

Return the number of items in the dictionary. This is equivalefe¢n@p) on a dictionary.

int PyDict Next (PyObject*p, Py_ssize_t *ppos, PyObject **pkey, PyObject **pvalue
Iterate over all key-value pairs in the dictionguy Theint referred to bypposmust be initialized to
0 prior to the first call to this function to start the iteration; the function returns true for each pair in the
dictionary, and false once all pairs have been reported. The parampkéyendpvalueshould either point
to PyObject* variables that will be filled in with each key and value, respectively, or majNUEL.
Any references returned through them are borrowszhsshould not be altered during iteration. Its value
represents offsets within the internal dictionary structure, and since the structure is sparse, the offsets are
not consecutive.
For example:
PyObject *key, *value;
Py ssize t pos = 0;
while (PyDict_Next(self - >dict, &pos, &key, &value)) {
/* do something interesting with the values... */
}
The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of
the keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:
PyObject *key, *value;
Py ssize t pos = 0;
while (PyDict_Next(self - >dict, &pos, &key, &value)) {
int i = Pylnt_ AS_LONG(value) + 1;
PyObject *o0 = PyInt_FromLong(i);
if (0o == NULL
return -1;
if (PyDict_Setltem(self - >dict, key, 0) < 0) {
Py _DECREF(0);
return - 1;
}
Py DECREF(0);
}
int PyDict_ Merge (PyObject*a, PyObject *b, int override
Iterate over mapping objettadding key-value pairs to dictionasy b may be a dictionary, or any object
supportingPyMapping_Keys() andPyObject Getltem() . If overrideis true, existing pairs ia
will be replaced if a matching key is found Im otherwise pairs will only be added if there is not a matching
key ina. ReturnO on success oil if an exception was raised. New in version 2.2.
int PyDict Update (PyObject *a, PyObject *p
This is the same a@yDict_Merge(a, b, 1) in C, ora.update(b) in Python. Retur® on success
or-1 if an exception was raised. New in version 2.2.
int PyDict_ MergeFromSeq2 (PyObject *a, PyObject *seq2, int overrijle
Update or merge into dictionagy from the key-value pairs iseq2 seq2must be an iterable object produc-
ing iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the lasowersidfe
is true, else the first wins. Retufnon success ol if an exception was raised. Equivalent Python (except
for the return value):
def PyDict MergeFromSeq2(a, seq2, override)
for key, value in seqz2:
if override or key not in a
alkey] = value
72 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

New in version 2.2.

7.5 Other Objects

7.5.1 Class and Instance Objects

Note that the class objects described here represent old-style classes, which will go away in Python 3. When
creating new types for extension modules, you will want to work with type objects (s€stmnObjects

PyClassObject
The C structure of the objects used to describe built-in classes.

PyObject* PyClass_Type
This is the type object for class objects; it is the same objettes.ClassType in the Python layer.

int PyClass_Check (PyObject*q
Return true if the object is a class object, including instances of types derived from the standard class
object. Return false in all other cases.

int PyClass_IsSubclass (PyObject *klass, PyObject *bayse
Return true ifklassis a subclass dbase Return false in all other cases.

There are very few functions specific to instance objects.

PyTypeObject Pylnstance_Type
Type object for class instances.

int Pylnstance_Check (PyObject *ob)
Return true ifobjis an instance.

PyObject* Pylnstance_New (PyObiject *class, PyObject *arg, PyObject *kw
Return value: New reference.
Create a new instance of a specific class. The paranatpasidkw are used as the positional and keyword
parameters to the object’s constructor.

PyObject* Pylnstance_ NewRaw (PyObject *class, PyObject *dift
Return value: New reference.
Create a new instance of a specific class without calling its construtassis the class of new object. The
dict parameter will be used as the object’'sdict__ ; if NULL, a new dictionary will be created for the
instance.

7.5.2 Function Objects

There are a few functions specific to Python functions.

PyFunctionObject
The C structure used for functions.

PyTypeObject PyFunction_Type
This is an instance dPyTypeObject and represents the Python function type. It is exposed to Python
programmers atypes.FunctionType

int PyFunction_Check (PyObject*q
Return true ifois a function object (has typgeyFunction_Type). The parameter must not BeJLL.

PyObject* PyFunction_New (PyObject *code, PyObject *globgls
Return value: New reference.
Return a new function object associated with the code olsjede globalsmust be a dictionary with the
global variables accessible to the function.

The function’s docstring, name and module__are retrieved from the code object, the argument defaults
and closure are set tdULL.

7.5. Other Objects 73

The Python/C API, Release 2.6.2

PyObject* PyFunction_GetCode (PyObject *op
Return value: Borrowed reference.
Return the code object associated with the function olgjpct

PyObject* PyFunction_GetGlobals (PyObiject *op
Return value: Borrowed reference.
Return the globals dictionary associated with the function olgjpct

PyObject* PyFunction_GetModule (PyObject *op
Return value: Borrowed reference.
Return the__module__attribute of the function objedip. This is normally a string containing the module
name, but can be set to any other object by Python code.

PyObject* PyFunction_GetDefaults (PyObject *op
Return value: Borrowed reference.
Return the argument default values of the function objectThis can be a tuple of argumentsiiJLL.

int PyFunction_SetDefaults (PyObject *op, PyObject *defaults
Set the argument default values for the function objgcidefaultsmust bePy Noneor a tuple.

RaisesSystemError and returnsl on failure.

PyObject* PyFunction_GetClosure (PyObiject *op
Return value: Borrowed reference.
Return the closure associated with the function olgpgctThis can beNULL or a tuple of cell objects.

int PyFunction_SetClosure (PyObject *op, PyObject *closuje
Set the closure associated with the function obpgciclosuremust bePy_Noneor a tuple of cell objects.

RaisesSystemError and returnsl on failure.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod_Type
This instance oPyTypeObject represents the Python method type. This is exposed to Python programs
astypes.MethodType

int PyMethod_Check (PyObject *q
Return true ifo is a method object (has typg/Method_Type). The parameter must not biJLL.

PyObject* PyMethod_New (PyObject *func, PyObiject *self, PyObject *class
Return value: New reference.
Return a new method object, withncbeing any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instaetfeshould be the instance awthss
should be the class sElf, otherwiseself should beNULL andclassshould be the class which provides the
unbound method..

PyObject* PyMethod_Class (PyObject *meth
Return value: Borrowed reference.
Return the class object from which the methundthwas created; if this was created from an instance, it
will be the class of the instance.

PyObject* PyMethod_GET_CLASS PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod_Class which avoids error checking.

PyObject* PyMethod_Function (PyObject *meth
Return value: Borrowed reference.
Return the function object associated with the metimadh

PyObject* PyMethod_GET_FUNCTION PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod Function which avoids error checking.

74 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

PyObject* PyMethod_Self (PyObject *meth
Return value: Borrowed reference.
Return the instance associated with the metiedthif it is bound, otherwise returNULL.

PyObject* PyMethod_GET_SELF(PyObject *meth
Return value: Borrowed reference.
Macro version oPyMethod_Self which avoids error checking.

int PyMethod_ClearFreeList (void)
Clear the free list. Return the total number of freed items. New in version 2.6.

7.5.4 File Objects

Python’s built-in file objects are implemented entirely on fteE* support from the C standard library. This is
an implementation detail and may change in future releases of Python.

PyFileObject
This subtype oPyObject represents a Python file object.

PyTypeObject PyFile_Type
This instance oPyTypeObject represents the Python file type. This is exposed to Python programs as
file andtypes.FileType

int PyFile_Check (PyObject*p
Return true if its argument is ByFileObject or a subtype oPyFileObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFile_CheckExact (PyObject*p
Return true if its argument isyFileObject , but not a subtype dPyFileObject . New in version
2.2.

PyObject* PyFile_FromString (char *filename, char *mode
Return value: New reference.
On success, return a new file object that is opened on the file givélebgme with a file mode given by
mode wheremodehas the same semantics as the standard C rdigjies . On failure, returrNULL.

PyObject* PyFile_FromFile (FILE *fp, char *name, char *mode, int (*close)(FILEY)
Return value: New reference.
Create a newyFileObject from the already-open standard C file poinfer, The functionclosewill
be called when the file should be closed. ReMNtLL on failure.

FILE* PyFile_AsFile (PyObject *p
Return the file object associated wiitas aFILE* .

If the caller will ever use the returnellLE* object while the GIL is released it must also call the
PyFile_IncUseCount andPyFile_DecUseCount functions described below as appropriate.

void PyFile_IncUseCount (PyFileObject *p
Increments the PyFileObject’s internal use count to indicate that the undefyirkey is being used.
This prevents Python from calling f_close() on it from another thread. Callers of this must call
PyFile_DecUseCount when they are finished with thelLE* . Otherwise the file object will never
be closed by Python.

The GIL must be held while calling this function.

The suggested use is to call this after-ile_AsFile just before you release the GIL. New in version
2.6.

void PyFile_DecUseCount (PyFileObject *p
Decrements the PyFileObject’s internal unlocked_count member to indicate that the caller is done with its
own use of thé=ILE* . This may only be called to undo a prior callRyFile_IncUseCount

The GIL must be held while calling this function. New in version 2.6.

PyObject* PyFile_GetLine (PyObject *p, int 1)
Return value: New reference.

7.5. Other Objects 75

The Python/C API, Release 2.6.2

Equivalent top.readline([n]) , this function reads one line from the objgctp may be a file object

or any object with aeadline() method. Ifnis 0, exactly one line is read, regardless of the length of
the line. Ifnis greater tha®, no more tham bytes will be read from the file; a partial line can be returned.
In both cases, an empty string is returned if the end of the file is reached immediatalis IEss than
0, however, one line is read regardless of length,EOFError is raised if the end of the file is reached
immediately.

PyObject* PyFile_Name (PyObject*pn
Return value: Borrowed reference.
Return the name of the file specified pws a string object.

void PyFile_SetBufSize (PyFileObject *p, int 1)
Available on systems withetvbuf only. This should only be called immediately after file object creation.

int PyFile_SetEncoding (PyFileObject *p, const char *ernc
Set the file’s encoding for Unicode outputdnc Return 1 on success and 0 on failure. New in version 2.3.

int PyFile_SetEncodingAndErrors (PyFileObject *p, const char *enc, *errojs
Set the file’s encoding for Unicode outputeag and its error mode terr. Return 1 on success and 0 on
failure. New in version 2.6.

int PyFile_SoftSpace (PyObject *p, int newflap
This function exists for internal use by the interpreter. Setsthféspace attribute ofp to newflagand
return the previous valuga does not have to be a file object for this function to work properly; any object
is supported (thought its only interesting if theftspace attribute can be set). This function clears any
errors, and will retur® as the previous value if the attribute either does not exist or if there were errors in
retrieving it. There is no way to detect errors from this function, but doing so should not be needed.

int PyFile_WriteObject (PyObject *obj, PyObject *p, int flags
Write objectobj to file objectp. The only supported flag fdlagsis Py_PRINT_RAWif given, thestr()
of the object is written instead of threpr() . ReturnO on success orl on failure; the appropriate
exception will be set.

int PyFile_WriteString (const char *s, PyObject *p
Write stringsto file objectp. Return0 on success otl on failure; the appropriate exception will be set.

7.5.5 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule_Type
This instance oPyTypeObject represents the Python module type. This is exposed to Python programs
astypes.ModuleType

int PyModule_Check (PyObject*p
Return true ifp is a module object, or a subtype of a module object. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyModule_CheckExact (PyObject*p
Return true ifp is a module object, but not a subtyperdfModule_Type . New in version 2.2.

PyObject* PyModule_New (const char *namg
Return value: New reference.
Return a new module object with the name___ attribute set tavame Only the module’'s _doc__ and
__hame___ attributes are filled in; the caller is responsible for providing éile__ attribute.

PyObject* PyModule_GetDict (PyObject *module
Return value: Borrowed reference.
Return the dictionary object that implementsodulés namespace; this object is the same as the
__dict__ attribute of the module object. This function never fails. It is recommended extensions use
otherPyModule_* andPyObject * functions rather than directly manipulate a module’slict

char* PyModule_GetName (PyObject *module
Return modulés __name___ value. If the module does not provide one, or if it is not a string,

76 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

SystemError is raised andNULL is returned.

char* PyModule_GetFilename (PyObject *modulg
Return the name of the file from whichodulewas loaded usinghodulés __ file attribute. If this is
not defined, or if it is not a string, raisgystemError and returrNULL.

int PyModule_AddObject (PyObject *module, const char *name, PyObject *value
Add an object tanoduleasname This is a convenience function which can be used from the module’s
initialization function. This steals a referencev@ue Return-1 on error,0 on success. New in version
2.0.

int PyModule_AddIntConstant (PyObject *module, const char *name, long vglue
Add an integer constant tmoduleasname This convenience function can be used from the module’s
initialization function. Returnl on error,0 on success. New in version 2.0.

int PyModule_AddStringConstant (PyObject *module, const char *name, const char *value
Add a string constant tmoduleasname This convenience function can be used from the module’s ini-
tialization function. The stringaluemust be null-terminated. Returd on error,0 on success. New in
version 2.0.

int PyModule_AddIntMacro (PyObject *module, macjo
Add an int constant tanodule The name and the value are taken framacra For example
PyModule_AddConstant(module, AF_INET) adds the int constamF_INET with the value of
AF_INETto module Return-1 on error,0 on success. New in version 2.6.

int PyModule_AddStringMacro (PyObject *module, macjo
Add a string constant tmodule

New in version 2.6.

7.5.6 Iterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary
sequence supporting thegetitem__ () method. The second works with a callable object and a sentinel value,
calling the callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqlter_Type
Type object for iterator objects returned BySeqlter New and the one-argument form of titer()
built-in function for built-in sequence types. New in version 2.2.

int PySeqlter_Check (op)
Return true if the type obpis PySeqlter_Type . New in version 2.2.

PyObject* PySeqlter_New (PyObject *sey
Return value: New reference.
Return an iterator that works with a general sequence olgeqt, The iteration ends when the sequence
raisesndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCalllter_Type
Type object for iterator objects returnedByCalllter New and the two-argument form of thier()
built-in function. New in version 2.2.

int PyCalllter_Check (op)
Return true if the type abpis PyCalllter_Type . New in version 2.2.

PyObject* PyCalllter New (PyObject *callable, PyObject *sentinel
Return value: New reference.
Return a new iterator. The first parameteallable can be any Python callable object that can be called
with no parameters; each call to it should return the next item in the iteration. Yétlablereturns a value
equal tosentine] the iteration will be terminated. New in version 2.2,

7.5. Other Objects 7

The Python/C API, Release 2.6.2

7.5.7 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty_Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr_NewGetSet (PyTypeObiject *type, struct PyGetSetDef *gétset
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMember (PyTypeObiject *type, struct PyMemberDef *njeth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewMethod (PyTypeObiject *type, struct PyMethodDef *mieth
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped
Return value: New reference.
New in version 2.2.

PyObject* PyDescr_NewClassMethod (PyTypeObiject *type, PyMethodDef *method
Return value: New reference.
New in version 2.3.

int PyDescr_IsData (PyObject *descy
Return true if the descriptor objeadgscrdescribes a data attribute, or false if it describes a metthestr
must be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper_New (PyObject *, PyObject ¥
Return value: New reference.
New in version 2.2.

7.5.8 Slice Objects

PyTypeObject PySlice_Type
The type object for slice objects. This is the samslace andtypes.SliceType

int PySlice_Check (PyObject *ol)
Return true ifobis a slice objectpb must not beNULL.

PyObject* PySlice_New (PyObject *start, PyObject *stop, PyObject *sdep
Return value: New reference.
Return a new slice object with the given values. Fhaat, stop andstepparameters are used as the values
of the slice object attributes of the same names. Any of the values miyJbg, in which case th&lone
will be used for the corresponding attribute. RetNHdLL if the new object could not be allocated.

int PySlice_Getindices (PySliceObject *slice, Py_ssize_t length, Py ssize t *start, Py_ssize t *stop,
Py ssize t*stép
Retrieve the start, stop and step indices from the slice obj®g assuming a sequence of lendgingth
Treats indices greater thé&angthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices Wasenahd
failed to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior
to 2.3, you would probably do well to incorporate the sourcé’pElice GetindicesEx , Suitably
renamed, in the source of your extension.

int PySlice_GetIindicesEx (PySliceObject *slice, Py_ssize_tlength, Py_ssize t*start, Py_ssize_t *stop,
Py ssize t*step, Py_ssize_t *slicelength
Usable replacement fétySlice _GetIndices . Retrieve the start, stop, and step indices from the slice

78 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

objectslice assuming a sequence of lendgimgth and store the length of the slice $ticelength Out of
bounds indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set. New in version 2.3.

7.5.9 Weak Reference Objects

Python supportsveak referenceas first-class objects. There are two specific object types which directly imple-
ment weak references. The first is a simple reference object, and the second acts as a proxy for the original object
as much as it can.

int PyWeakref _Check (ob)
Return true ifobis either a reference or proxy object. New in version 2.2.

int PyWeakref _CheckRef (ob)
Return true ifobis a reference object. New in version 2.2.

int PyWeakref CheckProxy (ob)
Return true ifobis a proxy object. New in version 2.2.

PyObject* PyWeakref NewRef (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference object for the objebt This will always return a new reference, but is not
guaranteed to create a new object; an existing reference object may be returned. The second parameter,
callback can be a callable object that receives notification whieis garbage collected; it should accept a
single parameter, which will be the weak reference object iteelliilbackmay also beNone or NULL. If
obis not a weakly-referencable object, ocillbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref NewProxy (PyObject *ob, PyObject *callbagk
Return value: New reference.
Return a weak reference proxy object for the objgat This will always return a new reference, but is
not guaranteed to create a new object; an existing proxy object may be returned. The second parameter,
callback can be a callable object that receives notification whigis garbage collected; it should accept a
single parameter, which will be the weak reference object iteglflbackmay also beNone or NULL. If
obis not a weakly-referencable object, ocillbackis not callableNone, or NULL, this will returnNULL
and raiseTypeError . New in version 2.2.

PyObject* PyWeakref GetObject (PyObiject *ref)
Return value: Borrowed reference.
Return the referenced object from a weak refererefelf the referent is no longer live, returidone. New
in version 2.2.

PyObject* PyWeakref GET_OBJECT(PyObiject *ref)
Return value: Borrowed reference.
Similar to PyWeakref GetObject , but implemented as a macro that does no error checking. New in
version 2.2.

7.5.10 CObjects

Refer toProviding a C API for an Extension Modu(e Extending and Embedding PytHdor more information
on using these objects.

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass
an opaque value (asv@id* pointer) through Python code to other C code. It is often used to make a C
function pointer defined in one module available to other modules, so the regular import mechanism can be
used to access C APIs defined in dynamically loaded modules.

int PyCObject_Check (PyObject*p
Return true if its argument isRyCObject .

7.5. Other Objects 79

The Python/C API, Release 2.6.2

PyObject* PyCObject FromVoidPtr (void* cobj, void (*destr)(void *)
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed, unless it iSlULL.

PyObject* PyCObject FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void ¥)
Return value: New reference.
Create aPyCObject from thevoid * cobj. The destrfunction will be called when the object is re-
claimed. Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject_AsVoidPtr (PyObject* selj
Return the objectoid * thatthePyCObject self was created with.

void* PyCObject GetDesc (PyObject* selj
Return the descriptiomoid * that thePyCObject self was created with.

int PyCObject_SetVoidPtr (PyObject* self, void* coljj
Set the void pointer insidself to cobj ThePyCObject must not have an associated destructor. Return
true on success, false on failure.

7.5.11 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object
is created to store the value; the local variables of each stack frame that references the value contains a reference
to the cells from outer scopes which also use that variable. When the value is accessed, the value contained in
the cell is used instead of the cell object itself. This de-referencing of the cell object requires support from the
generated byte-code; these are not automatically de-referenced when accessed. Cell objects are not likely to be
useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell_Type
The type object corresponding to cell objects.

int PyCell_Check (ob)
Return true ifobis a cell objectpb must not beNULL.

PyObject* PyCell_New (PyObject *ol)
Return value: New reference.
Create and return a new cell object containing the valuérhe parameter may be¢ULL.

PyObject* PyCell_Get (PyObject *cel)
Return value: New reference.
Return the contents of the cekll.

PyObject* PyCell GET (PyObiject *cel)
Return value: Borrowed reference.
Return the contents of the cekll, but without checking thatell is nonNULL and a cell object.

int PyCell_Set (PyObject *cell, PyObject *value
Set the contents of the cell objemll to value This releases the reference to any current content of the cell.
valuemay beNULL. cell must be norNULL; if it is not a cell object-1 will be returned. On succes8,
will be returned.

void PyCell_SET (PyObject *cell, PyObject *value
Sets the value of the cell objextll to value No reference counts are adjusted, and no checks are made for
safety;cell must be norNULL and must be a cell object.

7.5.12 Generator Objects

Generator objects are what Python uses to implement generator iterators. They are normally created by iterating
over a function that yields values, rather than explicitly callihgsen_New

80 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

PyGenObject
The C structure used for generator objects.

PyTypeObject PyGen_Type
The type object corresponding to generator objects

int PyGen_Check (ob)
Return true ifobis a generator objectib must not beNULL.

int PyGen_CheckExact (ob)
Return true ifob's type isPyGen_Typés a generator objectib must not beNULL.

PyObject* PyGen_New(PyFrameObject *framg
Return value: New reference.
Create and return a new generator object based ofrgheeobject. A reference tframeis stolen by this
function. The parameter must not N&JLL.

7.5.13 DateTime Objects

Various date and time objects are supplied bydhtetime module. Before using any of these functions, the
header filedatetime.h must be included in your source (note that this is not includeBydfion.h), and the
macroPyDateTime_IMPORT must be invoked. The macro puts a pointer to a C structure into a static variable,
PyDateTimeAPI , that is used by the following macros.

Type-check macros:

int PyDate Check (PyObject *ob
Return true ifob is of typePyDateTime_DateType or a subtype oPyDateTime_DateType . ob
must not beNULL. New in version 2.4.

int PyDate CheckExact (PyObject*ob
Return true ifobis of typePyDateTime_DateType . obmust not beNULL. New in version 2.4.

int PyDateTime_Check (PyObject *oh
Return true if ob is of type PyDateTime_DateTimeType or a subtype of
PyDateTime_DateTimeType .obmust not beNULL. New in version 2.4.

int PyDateTime_CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_DateTimeType . obmust not beNULL. New in version 2.4.
int PyTime_Check (PyObject *ob
Return true ifob is of type PyDateTime_TimeType or a subtype oPyDateTime_TimeType . ob
must not beNULL. New in version 2.4.

int PyTime_CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_TimeType . obmust not beNULL. New in version 2.4.

int PyDelta_Check (PyObject*ol)
Return true ifobis of typePyDateTime_DeltaType or a subtype oPyDateTime_DeltaType . ob
must not beNULL. New in version 2.4.

int PyDelta_CheckExact (PyObject *ob
Return true ifobis of typePyDateTime_DeltaType . obmust not beNULL. New in version 2.4.
int PyTZInfo_Check (PyObiject*ob)
Return true ifobis of typePyDateTime_TZInfoType or a subtype oPyDateTime_TZInfoType
obmust not beNULL. New in version 2.4.

int PyTZInfo_CheckExact (PyObject *ol)
Return true ifobis of typePyDateTime_TZInfoType . obmust not beNULL. New in version 2.4.

Macros to create objects:

PyObject* PyDate FromDate (intyear, int month, int day
Return value: New reference.
Return adatetime.date object with the specified year, month and day. New in version 2.4.

7.5. Other Objects 81

The Python/C API, Release 2.6.2

PyObject* PyDateTime_FromDateAndTime (intyear, int month, int day, int hour, int minute, int second,

int useconyl
Return value: New reference.

Return adatetime.datetime object with the specified year, month, day, hour, minute, second and
microsecond. New in version 2.4.

PyObject* PyTime_FromTime (int hour, int minute, int second, int usecgnd
Return value: New reference.
Return adatetime.time object with the specified hour, minute, second and microsecond. New in
version 2.4.

PyObject* PyDelta_FromDSU (int days, int seconds, int usecohds
Return value: New reference.
Return adatetime.timedelta object representing the given number of days, seconds and microsec-
onds. Normalization is performed so that the resulting number of microseconds and seconds lie in the ranges
documented fodatetime.timedelta objects. New in version 2.4.

Macros to extract fields from date objects. The argument must be an instaPgBate Time_Date , including
subclasses (such ByDateTime_DateTime). The argument must not dULL, and the type is not checked:

int PyDateTime_GET_YEAR(PyDateTime_Date *p
Return the year, as a positive int. New in version 2.4.

int PyDateTime_GET_MONTH PyDateTime_Date *p
Return the month, as an int from 1 through 12. New in version 2.4.

int PyDateTime_GET_DAY (PyDateTime_Date *p
Return the day, as an int from 1 through 31. New in version 2.4.

Macros to extract fields from datetime objects. The argument must be an instdhdeaieTime_DateTime
including subclasses. The argument must ndilb& L, and the type is not checked:

int PyDateTime_DATE_GET_HOUR PyDateTime_DateTime jo
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime Jo
Return the minute, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_SECONDPyDateTime_DateTime jo
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_DATE_GET_MICROSECONDPyDateTime_DateTime o
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros to extract fields from time objects. The argument must be an instaRg®afeTime_Time , including
subclasses. The argument must nolNbd L, and the type is not checked:

int PyDateTime_TIME_GET_HOUR(PyDateTime_Time *o
Return the hour, as an int from 0 through 23. New in version 2.4.

int PyDateTime_TIME_GET_MINUTE (PyDateTime_Time *o
Return the minute, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_SECONDO PyDateTime_Time *o
Return the second, as an int from 0 through 59. New in version 2.4.

int PyDateTime_TIME_GET_MICROSECONDPyDateTime_Time *o
Return the microsecond, as an int from 0 through 999999. New in version 2.4.

Macros for the convenience of modules implementing the DB API:

PyObject* PyDateTime_FromTimestamp (PyObject *arg$
Return value: New reference.
Create and return a nedatetime.datetime object given an argument tuple suitable for passing to
datetime.datetime.fromtimestamp() . New in version 2.4,

PyObject* PyDate FromTimestamp (PyObject *arg3
Return value: New reference.

82 Chapter 7. Concrete Objects Layer

The Python/C API, Release 2.6.2

Create and return a newatetime.date object given an argument tuple suitable for passing to
datetime.date.fromtimestamp() . New in version 2.4,

7.5.14 Set Objects

New in version 2.5. This section details the public APl feet and frozenset objects. Any
functionality not listed below is best accessed using the either the abstract object protocol (including

PyObject_CallMethod , PyObject RichCompareBool , PyObject Hash , PyObject Repr

PyObject_IsTrue , PyObject Print , and PyObject Getlter) or the abstract number pro-
tocol (including PyNumber And, PyNumber Subtract , PyNumber Or, PyNumber_Xor ,

PyNumber_InPlaceAnd PyNumber_InPlaceSubtract , PyNumber_InPlaceOr and

PyNumber_InPlaceXor).

PySetObject

This subtype oPyObject is used to hold the internal data for batet andfrozenset objects. Itis

like a PyDictObject inthatitis a fixed size for small sets (much like tuple storage) and will point to a
separate, variable sized block of memory for medium and large sized sets (much like list storage). None of
the fields of this structure should be considered public and are subject to change. All access should be done
through the documented API rather than by manipulating the values in the structure.

PyTypeObject PySet Type
This is an instance dPyTypeObject representing the Pythaset type.

PyTypeObject PyFrozenSet Type
This is an instance dPyTypeObject representing the Pythdrozenset type.

The following type check macros work on pointers to any Python object. Likewise, the constructor functions work
with any iterable Python object.

int PySet_Check (PyObject*p
Return true ifp is aset object or an instance of a subtype. New in version 2.6.

int PyFrozenSet_Check (PyObject*p
Return true ifpis afrozenset object or an instance of a subtype. New in version 2.6.

int PyAnySet Check (PyObject*p
Return true ifpis aset object, afrozenset object, or an instance of a subtype.

int PyAnySet CheckExact (PyObject*p
Return true ifpis aset object or afrozenset object but not an instance of a subtype.

int PyFrozenSet_CheckExact (PyObject *p
Return true ifp is afrozenset object but not an instance of a subtype.

PyObject* PySet_New (PyObject *iterabl¢
Return value: New reference.
Return a newset containing objects returned by titerable Theiterable may beNULL to create a new
empty set. Return the new set on succedsSLL on failure. Rais@'ypeError if iterableis not actually
iterable. The constructor is also useful for copying a sesét(s)).

PyObject* PyFrozenSet_New (PyObject *iterablég
Return value: New reference.
Return a nevirozenset containing objects returned by therable Theiterablemay beNULL to create
a new empty frozenset. Return the new set on succeN$Jbt on failure. Raisel'ypeError if iterable
is not actually iterable. Changed in version 2.6: Now guaranteed to return a branfezemnwset
Formerly, frozensets of zero-length were a singleton. This got in the way of building-up new frozensets
with PySet_Add()

The following functions and macros are available for instancesetdf or frozenset or instances of their
subtypes.

Py ssize t PySet Size (PyObject*anyséet
Return the length of aset or frozenset object. Equivalent tolen(anyset) . Raises a
PyExc_SystemError if anysetis not aset , frozenset , or an instance of a subtype.

7.5. Other Objects 83

The Python/C API, Release 2.6.2

Py ssize t PySet GET_SIZE (PyObject *anysét

int

int

Macro form ofPySet_Size without error checking.

PySet_Contains (PyObject *anyset, PyObject *kgy

Return 1 if found, 0 if not found, and -1 if an error is encountered. Unlike the Pythoantains__ ()

method, this function does not automatically convert unhashable sets into temporary frozensets. Raise a
TypeError if the keyis unhashable. Raig®&yExc_SystemError if anyseis not aset , frozenset

or an instance of a subtype.

PySet Add (PyObject *set, PyObject *kgy

Add keyto aset instance. Does not apply foozenset instances. Return 0 on success or -1 on failure.
Raise aTypeError if the keyis unhashable. RaiseMemoryError if there is no room to grow. Raise

a SystemError if setis an not an instance et or its subtype. Changed in version 2.6: Now works
with instances ofrozenset or its subtypes. Liké’yTuple Setltem in that it can be used to fill-in
the values of brand new frozensets before they are exposed to other code.

The following functions are available for instancesef or its subtypes but not for instancesfaizenset or
its subtypes.

int

PySet Discard (PyObject *set, PyObject *kgy

Return 1 if found and removed, O if not found (no action taken), and -1 if an error is encountered.
Does not rais&eyError for missing keys. Raise @ypeError if the keyis unhashable. Unlike the
Pythondiscard() method, this function does not automatically convert unhashable sets into temporary
frozensets. RaisByExc_SystemError if setis an not an instance skt or its subtype.

PyObject* PySet_Pop (PyObject *set

int

Return value: New reference.

Return a new reference to an arbitrary object ingaeand removes the object from teet ReturnNULL
on failure. Rais&eyError if the setis empty. RaiseBystemError if setis an not an instance gkt
or its subtype.

PySet Clear (PyObject *set
Empty an existing set of all elements.

84

Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

void

void

int

void

PyT

INITIALIZATION, FINALIZATION, AND
THREADS

Py_Initialize 0

Initialize the Python interpreter. In an application embedding Python, this should be called before using any
other Python/C API functions; with the exceptionfof SetProgramName , PyEval InitThreads ,
PyEval_ReleaselLock , andPyEval_AcquireLock . This initializes the table of loaded modules
(sys.modules), and creates the fundamental module$uiltin__ , __main__ andsys . It also
initializes the module search patby6.path). It does not sesys.argv ; usePySys SetArgv for
that. This is a no-op when called for a second time (without calliggFinalize first). There is no
return value; it is a fatal error if the initialization fails.

Py _InitializeEx (int initsigs)
This function works likePy _Initialize if initsigsis 1. If initsigsis 0, it skips initialization registration
of signal handlers, which might be useful when Python is embedded. New in version 2.4.

Py _lsInitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py Finalize is called, this returns false untly _Initialize is called again.

Py_Finalize ()
Undo all initializations made by _Initialize and subsequent use of Python/C API functions, and
destroy all sub-interpreters (s@g_Newlnterpreter below) that were created and not yet destroyed
since the last call t®y_Initialize . Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without callfyg Initialize again first). There is no

return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading
the DLL. During a hunt for memory leaks in an application a developer might want to free all memory
allocated by Python before exiting from the application.

Bugs and caveats:The destruction of modules and objects in modules is done in random order; this may
cause destructors (del__ () methods) to fail when they depend on other objects (even functions) or
modules. Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of
memory allocated by the Python interpreter may not be freed (if you find a leak, please report it). Memory
tied up in circular references between objects is not freed. Some memory allocated by extension modules
may not be freed. Some extensions may not work properly if their initialization routine is called more than
once; this can happen if an application célls Initialize andPy_Finalize more than once.

hreadState* Py _Newlnterpreter 0
Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python
code. In particular, the new interpreter has separate, independent versions of all imported modules, in-
cluding the fundamental modules builtin__ , __main__ andsys . The table of loaded modules
(sys.modules) and the module search patty6.path) are also separate. The new environment has
no sys.argv variable. It has new standard I/O stream file objests.stdin , sys.stdout and
sys.stderr (however these refer to the same underlyfigE structures in the C library).

85

The Python/C API, Release 2.6.2

The return value points to the first thread state created in the new sub-interpreter. This thread state is made
in the current thread state. Note that no actual thread is created; see the discussion of thread states below.
If creation of the new interpreter is unsuccessNILL is returned; no exception is set since the exception
state is stored in the current thread state and there may not be a current thread state. (Like all other Python/C
API functions, the global interpreter lock must be held before calling this function and is still held when

it returns; however, unlike most other Python/C API functions, there needn’t be a current thread state on
entry.) Extension modules are shared between (sub-)interpreters as follows: the first time a particular
extension is imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled
away. When the same extension is imported by another (sub-)interpreter, a new module is initialized and
filled with the contents of this copy; the extensiomg function is not called. Note that this is different

from what happens when an extension is imported after the interpreter has been completely re-initialized
by callingPy Finalize andPy_Initialize ; in that case, the extensioriigitmodule function

is called again. Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the
same process, the insulation between them isn't perfect — for example, using low-level file operations like
os.close() they can (accidentally or maliciously) affect each other’s open files. Because of the way
extensions are shared between (sub-)interpreters, some extensions may not work properly; this is especially
likely when the extension makes use of (static) global variables, or when the extension manipulates its
module’s dictionary after its initialization. It is possible to insert objects created in one sub-interpreter into

a namespace of another sub-interpreter; this should be done with great care to avoid sharing user-defined
functions, methods, instances or classes between sub-interpreters, since import operations executed by such
objects may affect the wrong (sub-)interpreter’s dictionary of loaded modules. (XXX This is a hard-to-fix
bug that will be addressed in a future release.)

Also note that the use of this functionality is incompatible with extension modules such as PyObjC and
ctypes that use theyGILState_* APIs (and this is inherent in the way tRyGILState_* functions
work). Simple things may work, but confusing behavior will always be near.

void Py_Endinterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the
current thread state. See the discussion of thread states below. When the call returns, the current thread
state iSNULL. All thread states associated with this interpreter are destroyed. (The global interpreter lock
must be held before calling this function and is still held when it returifg.)Finalize will destroy all
sub-interpreters that haven't been explicitly destroyed at that point.

void Py_SetProgramName (char *namé
This function should be called befoRrey Initialize is called for the first time, if it is called at all.
It tells the interpreter the value of treggv[0] argument to thenain function of the program. This is
used byPy GetPath and some other functions below to find the Python run-time libraries relative to the
interpreter executable. The default valuépgthon’ . The argument should point to a zero-terminated
character string in static storage whose contents will not change for the duration of the program'’s execution.
No code in the Python interpreter will change the contents of this storage.

char* Py_GetProgramName ()
Return the program name set wily _SetProgramName , or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated
rules from the program name set witly_ SetProgramName and some environment variables; for exam-
ple, if the program name l&usr/local/bin/python’ , the prefix is/usr/local’ . The returned
string points into static storage; the caller should not modify its value. This correspondstefitievari-
able in the top-leveMakefile and the--prefix argument to theonfigure script at build time. The
value is available to Python code &s.prefix . Itis only useful on Unix. See also the next function.

char* Py _GetExecPrefix ()
Return theexec-prefixXor installed platformdependenfiles. This is derived through a number of compli-
cated rules from the program name set With SetProgramName and some environment variables; for
example, if the program name ‘isisr/local/bin/python’ , the exec-prefix iusr/local
The returned string points into static storage; the caller should not modify its value. This corresponds to
theexec_prefixvariable in the top-levdllakefile and the--exec-prefix argument to theonfigure
script at build time. The value is available to Python codsyasexec_prefix . Itis only useful on

86 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.2

uUnix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables
and shared libraries) are installed in a different directory tree. In a typical installation, platform dependent
files may be installed in thaisr/local/plat subtree while platform independent may be installed in
Jusr/local

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines
running the Solaris 2.x operating system are considered the same platform, but Intel machines running
Solaris 2.x are another platform, and Intel machines running Linux are yet another platform. Different
major revisions of the same operating system generally also form different platforms. Non-Unix operating
systems are a different story; the installation strategies on those systems are so different that the prefix and
exec-prefix are meaningless, and set to the empty string. Note that compiled Python bytecode files are
platform independent (but not independent from the Python version by which they were compiled!).

System administrators will know how to configure timeount or automount programs to share
Jusr/local between platforms while havinisr/local/plat be a different filesystem for each
platform.

char* Py_GetProgramFullPath 0
Return the full program name of the Python executable; this is computed as a side-effect of deriving the
default module search path from the program name (s€ybysetProgramName above). The returned
string points into static storage; the caller should not modify its value. The value is available to Python code
assys.executable

char* Py GetPath ()
Return the default module search path; this is computed from the program name (set by
Py SetProgramName above) and some environment variables. The returned string consists of a se-
ries of directory names separated by a platform dependent delimiter character. The delimiter character is
7 on Unix and Mac OS X;;’ on Windows. The returned string points into static storage; the caller
should not modify its value. The value is available to Python code as theylighbath , which may be
modified to change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2] "

The first word (up to the first space character) is the current Python version; the first three characters are
the major and minor version separated by a period. The returned string points into static storage; the caller
should not modify its value. The value is available to Python cods/awersion

const char* Py_GetBuildNumber ()
Return a string representing the Subversion revision that this Python executable was built from. This number
is a string because it may contain a trailing ‘M’ if Python was built from a mixed revision source tree. New
in version 2.5.

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. On Unix, this is formed from the “official” name of
the operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x,
which is also known as SunOS 5.x, the valulsigios5’ . On Mac OS X, itisdarwin’ . On Windows,
itis'win’ . The returned string points into static storage; the caller should not modify its value. The value
is available to Python code ags.platform

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’ The re-

turned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.copyright

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for exam-

ple:

87

The Python/C API, Release 2.6.2

"[GCC 2.7.2.2] "

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialsigs.version

const char* Py_GetBuildinfo 0
Return information about the sequence number and build date and time of the current Python interpreter
instance, for example

"#67, Aug 1 1997, 22:34:28 "

The returned string points into static storage; the caller should not modify its value. The value is available
to Python code as part of the varialsgs.version

void PySys_SetArgv (intargc, char **argv)
Setsys.argv based orargc andargv. These parameters are similar to those passed to the program'’s
main function with the difference that the first entry should refer to the script file to be executed rather than
the executable hosting the Python interpreter. If there isn't a script that will be run, the first eatgvin
can be an empty string. If this function fails to initialisgs.argv , a fatal condition is signalled using
Py_FatalError

This function also prepends the executed script’s paflysgpath . If no script is executed (in the case of
callingpython -c orjust the interactive interpreter), the empty string is used instead.

void Py_SetPythonHome (char *homg¢
Set the default “home” directory, that is, the location of the standard Python libraries. The libraries are
searched imome/lib/pythonversion andhome/lib/pythonversion

char* Py _GetPythonHome ()
Return the default “home”, that is, the value set by a previous célitdSetPythonHome , or the value
of thePYTHONHOME environment variable if it is set.

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock, called theglobal interpreter lockor GIL, that must be held by the current thread before it can safely access
Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program:
for example, when two threads simultaneously increment the reference count of the same object, the reference
count could end up being incremented only once instead of twice. Therefore, the rule exists that only the thread
that has acquired the global interpreter lock may operate on Python objects or call Python/C API functions. In
order to support multi-threaded Python programs, the interpreter regularly releases and reacquires the lock — by
default, every 100 bytecode instructions (this can be changedswystsetcheckinterval()). The lock is

also released and reacquired around potentially blocking 1/0O operations like reading or writing a file, so that other
threads can run while the thread that requests the 1/O is waiting for the I/O operation to complete. The Python
interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data structure
calledPyThreadState . There’s one global variable, however: the pointer to the curfgiithreadState

structure. While most thread packages have a way to store “per-thread global data,” Python’s internal platform
independent thread abstraction doesn’t support this yet. Therefore, the current thread state must be manipulated
explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the global interpreter lock.

...Do some blocking | / O operation...

Reacquire the global interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

88 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.2

Py_BEGIN_ALLOW_THREADS
...Do some blocking | / O operation...
Py _END_ALLOW_THREADS

The Py BEGIN_ALLOW_THREAD®acro opens a new block and declares a hidden local variable; the
Py END_ALLOW_THREAD®acro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and GIL manipu-
lations.

When thread support is enabled, the block above expands to the following code:
PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking | / O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:
PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaseLock();

...Do some blocking | / O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particuRarEval _RestoreThread saves and restores the value of

the global variablesrrno , since the lock manipulation does not guarantee énato is left alone. Also,

when thread support is disabledyEval_SaveThread andPyEval_RestoreThread don’t manipulate

the GIL; in this caselPyEval_ReleaseLock andPyEval_AcquireLock are not available. This is done so

that dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter that was
compiled with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and
saving the thread state, the current thread state pointer must be retrieved before the lock is released (since another
thread could immediately acquire the lock and store its own thread state in the global variable). Conversely, when
acquiring the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves
into existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread
state pointer, before they can start using the Python/C API. When they are done, they should reset the thread state
pointer, release the lock, and finally free their thread state data structure.

Beginning with version 2.3, threads can now take advantage dPyi@&LState * functions to do all of the
above automatically. The typical idiom for calling into Python from a C thread is now:

PyGILState_ STATE gstate;
gstate = PyGILState_Ensure();

/* Perform Python actions here. */
result = CallSomeFunction();
/* evaluate result */

[* Release the thread. No Python API allowed beyond this point. */
PyGILState Release(gstate);

Note that thePyGILState * functions assume there is only one global interpreter (created automatically by
Py_lInitialize). Python still supports the creation of additional interpreters (usingNewInterpreter),
but mixing multiple interpreters and tliyGILState * APl is unsupported.

8.1. Thread State and the Global Interpreter Lock 89

The Python/C API, Release 2.6.2

PylnterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to
the same interpreter share their module administration and a few other internal items. There are no public
members in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available mem-
ory, open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to
which interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState * interp , which points to this thread’s interpreter state.

void PyEval_InitThreads 0
Initialize and acquire the global interpreter lock. It should be called in the main thread before creat-
ing a second thread or engaging in any other thread operations suehEasl| ReleaseLock or

PyEval_ReleaseThread(tstate) . It is not needed before callingyEval_SaveThread or
PyEval RestoreThread . Thisis a no-op when called for a second time. It is safe to call this function
before callingPy_Initialize . When only the main thread exists, no GIL operations are needed. This is

a common situation (most Python programs do not use threads), and the lock operations slow the interpreter
down a bit. Therefore, the lock is not created initially. This situation is equivalent to having acquired the
lock: when there is only a single thread, all object accesses are safe. Therefore, when this function initial-
izes the global interpreter lock, it also acquires it. Before the Pytii@ad module creates a new thread,
knowing that either it has the lock or the lock hasn't been created yet, itReglisal InitThreads

When this call returns, it is guaranteed that the lock has been created and that the calling thread has acquired
it.

Itis not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

int PyEval_Threadslnitialized 0
Returns a non-zero valueffyEval_InitThreads has been called. This function can be called without
holding the GIL, and therefore can be used to avoid calls to the locking API when running single-threaded.
This function is not available when thread support is disabled at compile time. New in version 2.4.

void PyEval_AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the
lock, a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval ReleaselLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available
when thread support is disabled at compile time.

void PyEval_AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and set the current thread stédeate which should not b&ULL. The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is
not available when thread support is disabled at compile time.

void PyEval ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNbJLL and release the global interpreter lock. The lock must have been
created earlier and must be held by the current thread.tStaeargument, which must not BeULL, is
only used to check that it represents the current thread state — if it isn't, a fatal error is reported. This
function is not available when thread support is disabled at compile time.

PyThreadState* PyEval_SaveThread ()
Release the global interpreter lock (if it has been created and thread support is enabled) and reset the thread
state toNULL, returning the previous thread state (which is NatLL). If the lock has been created, the
current thread must have acquired it. (This function is available even when thread support is disabled at
compile time.)

void PyEval RestoreThread (PyThreadState *tstaje
Acquire the global interpreter lock (if it has been created and thread support is enabled) and set the thread
state totstate which must not beNULL. If the lock has been created, the current thread must not have

20 Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.2

acquired it, otherwise deadlock ensues. (This function is available even when thread support is disabled at
compile time.)

void PyEval_RelnitThreads 0
This function is called fronPyOS_AfterFork to ensure that newly created child processes don't hold
locks referring to threads which are not running in the child process.

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py BEGIN_ALLOW_THREADS
This macro expands fo PyThreadState * save; _save = PyEval_SaveThread(); . Note
that it contains an opening brace; it must be matched with a following=ND_ALLOW_THREAD®acro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py END_ALLOW_THREADS
This macro expands t®yEval_RestoreThread(_save); } . Note that it contains a closing brace;
it must be matched with an earliey BEGIN_ALLOW _ THREAD@®acro. See above for further discussion
of this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK_THREADS

This macro expands to PyEval RestoreThread(_save); : it is equivalent to
Py END_ALLOW_ THREAD#thout the closing brace. It is a no-op when thread support is disabled at
compile time.
Py_UNBLOCK_THREADS
This macro expands to_save = PyEval SaveThread(); : it is equivalent to

Py BEGIN_ALLOW_ THREADS®vithout the opening brace and variable declaration. It is a no-op
when thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be
called only when the global interpreter lock has been created.

PylnterpreterState* PylinterpreterState_New 0
Create a new interpreter state object. The global interpreter lock need not be held, but may be held if it is
necessary to serialize calls to this function.

void PylnterpreterState_Clear (PyInterpreterState *interp
Reset all information in an interpreter state object. The global interpreter lock must be held.

void PylinterpreterState_Delete (PylnterpreterState *interp
Destroy an interpreter state object. The global interpreter lock need not be held. The interpreter state must
have been reset with a previous calRplnterpreterState_Clear

PyThreadState* PyThreadState_New (PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The global interpreter lock need
not be held, but may be held if it is necessary to serialize calls to this function.

void PyThreadState Clear (PyThreadState *tstaje
Reset all information in a thread state object. The global interpreter lock must be held.

void PyThreadState Delete (PyThreadState *tstaje
Destroy a thread state object. The global interpreter lock need not be held. The thread state must have been
reset with a previous call tByThreadState Clear

PyThreadState* PyThreadState_Get ()
Return the current thread state. The global interpreter lock must be held. When the current thread state is
NULL, this issues a fatal error (so that the caller needn’t checKIEicL).

PyThreadState* PyThreadState_ Swap (PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstag@twhich may beNULL. The
global interpreter lock must be held.

PyObject* PyThreadState GetDict 0
Return value: Borrowed reference.
Return a dictionary in which extensions can store thread-specific state information. Each extension should

8.1. Thread State and the Global Interpreter Lock 91

The Python/C API, Release 2.6.2

int

use a unigue key to use to store state in the dictionary. It is okay to call this function when no current thread
state is available. If this function returb8JLL, no exception has been raised and the caller should assume
no current thread state is available. Changed in version 2.3: Previously this could only be called when a
current thread is active, amdlULL meant that an exception was raised.

PyThreadState SetAsyncExc (long id, PyObject *exg

Asynchronously raise an exception in a thread. ithargument is the thread id of the target threexic

is the exception object to be raised. This function does not steal any referereas i prevent naive
misuse, you must write your own C extension to call this. Must be called with the GIL held. Returns the
number of thread states modified; this is normally one, but will be zero if the thread id isn’t fouexic If

is NULL, the pending exception (if any) for the thread is cleared. This raises no exceptions. New in version
2.3.

PyGILState STATE PyGlLState_Ensure ()

void

Ensure that the current thread is ready to call the Python C API regardless of the current state of Python,
or of the global interpreter lock. This may be called as many times as desired by a thread as long as each
call is matched with a call t8yGlLState_Release . In general, other thread-related APIs may be used
betweerPyGlLState_Ensure andPyGlILState Release calls aslong as the thread state is restored

to its previous state before the Release(). For example, normal usageef tBREGIN_ALLOW_THREADS

andPy END_ALLOW_THREAD®acros is acceptable.

The return value is an opaque “handle” to the thread state Wh&iL State Ensure was called, and
must be passed t@yGILState_Release to ensure Python is left in the same state. Even though recur-
sive calls are allowed, these handbéemnotbe shared - each unique callfgGILState Ensure must
save the handle for its call oyGlLState Release

When the function returns, the current thread will hold the GIL. Failure is a fatal error. New in version 2.3.

PyGlLState Release (PyGILState STATE
Release any resources previously acquired. After this call, Python’s state will be the same as it was prior
to the correspondingyGILState Ensure call (but generally this state will be unknown to the caller,
hence the use of the GILState API.)

Every call toPyGILState_Ensure must be matched by a call RyGILState_Release onthe same
thread. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities.
These are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed,
the interface allows trace functions to be installed per-thread, and the basic events reported to the trace function
are the same as had been reported to the Python-level trace functions in previous versions.

(*Py_tracefunc)

The type of the trace function registered uskigEval SetProfile andPyEval_SetTrace . The
first parameter is the object passed to the registration functiobjasameis the frame object to which the
event pertainsyhatis one of the constan®yTrace CALL ,PyTrace EXCEPTION, PyTrace LINE
PyTrace_ RETURN, PyTrace_C CALL , PyTrace_ C_EXCEPTION, or PyTrace_C_RETURN, and
arg depends on the value wfhat

Value of what Meaning of arg

PyTrace CALL Always NULL.

PyTrace_ EXCEPTION Exception information as returned bys.exc_info()
PyTrace_LINE Always NULL.

PyTrace_ RETURN Value being returned to the caller.
PyTrace_C_CALL Name of function being called.
PyTrace_C_EXCEPTION | AlwaysNULL.

PyTrace_ C_RETURN Always NULL.

92

Chapter 8. Initialization, Finalization, and Threads

The Python/C API, Release 2.6.2

int

int

int

int

int

int

int

void

void

PyTrace CALL

The value of thevhatparameter to &y_tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function
is not reported as there is no control transfer to the Python bytecode in the corresponding frame.

PyTrace_EXCEPTION

The value of thevhatparameter to &y_tracefunc function when an exception has been raised. The
callback function is called with this value favhat when after any bytecode is processed after which the
exception becomes set within the frame being executed. The effect of this is that as exception propaga-
tion causes the Python stack to unwind, the callback is called upon return to each frame as the exception
propagates. Only trace functions receives these events; they are not needed by the profiler.

PyTrace_ LINE
The value passed as thwatparameter to a trace function (but not a profiling function) when a line-number
event is being reported.

PyTrace_ RETURN
The value for thevhatparameter t¢’y _tracefunc functions when a call is returning without propagat-
ing an exception.

PyTrace_C_CALL
The value for thavhatparameter t&°y tracefunc functions when a C function is about to be called.

PyTrace_C_EXCEPTION
The value for thavhatparameter t®y_tracefunc functions when a C function has thrown an exception.

PyTrace_C_RETURN
The value for thavhatparameter té’y_tracefunc functions when a C function has returned.

PyEval_SetProfile (Py_tracefunc func, PyObject *obj
Set the profiler function téunc Theobj parameter is passed to the function as its first parameter, and may
be any Python object, dMULL. If the profile function needs to maintain state, using a different value for
obj for each thread provides a convenient and thread-safe place to store it. The profile function is called for
all monitored events except the line-number events.

PyEval_SetTrace (Py_tracefunc func, PyObject *gbj
Set the tracing function téunc. This is similar toPyEval_SetProfile , except the tracing function
does receive line-number events.

PyObject* PyEval GetCallStats (PyObject *selj

Return a tuple of function call counts. There are constants defined for the positions within the tuple:

Name Value
PCALL_ALL
PCALL_FUNCTION
PCALL_FAST_FUNCTION
PCALL_FASTER_FUNCTION
PCALL_METHOD
PCALL_BOUND_METHOD
PCALL_CFUNCTION
PCALL_TYPE
PCALL_GENERATOR
PCALL_OTHER
PCALL_POP 0

PCALL_FAST_FUNCTIONneans no argument tuple needs to be cre®&RALL_FASTER_FUNCTION
means that the fast-path frame setup code is used.

P Ooo~NOOULAWNEO

If there is a method call where the call can be optimized by changing the argument tuple and calling the
function directly, it gets recorded twice.

This function is only present if Python is compiled wilALL_PROFILE defined.

8.2. Profiling and Tracing 93

The Python/C API, Release 2.6.2

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PylInterpreterState_Head 0
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PylnterpreterState* PylnterpreterState_Next (PylInterpreterState *interp
Return the next interpreter state object afiteerp from the list of all such objects. New in version 2.2.

PyThreadState * PyinterpreterState_ThreadHead (PylInterpreterState *interp
Return the a pointer to the firBfy ThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState Next (PyThreadState *tstaje
Return the next thread state object aftetate from the list of all such objects belonging to the same
PylInterpreterState object. New in version 2.2.

94 Chapter 8. Initialization, Finalization, and Threads

CHAPTER
NINE

MEMORY MANAGEMENT

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The
management of this private heap is ensured internally byPgthon memory managerThe Python memory
manager has different components which deal with various dynamic storage management aspects, like sharing,
segmentation, preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing
all Python-related data by interacting with the memory manager of the operating system. On top of the raw
memory allocator, several object-specific allocators operate on the same heap and implement distinct memory
management policies adapted to the peculiarities of every object type. For example, integer objects are managed
differently within the heap than strings, tuples or dictionaries because integers imply different storage requirements
and speed/space tradeoffs. The Python memory manager thus delegates some of the work to the object-specific
allocators, but ensures that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and
that the user has no control over it, even if she regularly manipulates object pointers to memory blocks inside
that heap. The allocation of heap space for Python objects and other internal buffers is performed on demand by
the Python memory manager through the Python/C API functions listed in this document. To avoid memory
corruption, extension writers should never try to operate on Python objects with the functions exported by the C
library: malloc , calloc , realloc andfree . This will result in mixed calls between the C allocator and

the Python memory manager with fatal consequences, because they implement different algorithms and operate
on different heaps. However, one may safely allocate and release memory blocks with the C library allocator for
individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); [* for 1/O */

if (buf == NULD
return PyErr_NoMemory();
...Do some | /O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the 1/0 buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because
the latter is under control of the Python memory manager. For example, this is required when the interpreter is
extended with new object types written in C. Another reason for using the Python heap is the defimrrtthe

Python memory manager about the memory needs of the extension module. Even when the requested memory
is used exclusively for internal, highly-specific purposes, delegating all memory requests to the Python memory
manager causes the interpreter to have a more accurate image of its memory footprint as a whole. Consequently,
under certain circumstances, the Python memory manager may or may not trigger appropriate actions, like garbage

95

The Python/C API, Release 2.6.2

collection, memory compaction or other preventive procedures. Note that by using the C library allocator as shown
in the previous example, the allocated memory for the I/O buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero
bytes, are available for allocating and releasing memory from the Python heap:

void* PyMem_Malloc (size_tn)
Allocatesn bytes and returns a pointer of typeid* to the allocated memory, &#ULL if the request fails.
Requesting zero bytes returns a distinct NMOLL pointer if possible, as PyMem_Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMem_Realloc (void *p, size_th
Resizes the memory block pointed to pyo n bytes. The contents will be unchanged to the minimum of
the old and the new sizes. fifis NULL, the call is equivalent t®yMem_Malloc(n) ; else ifnis equal to
zero, the memory block is resized but is not freed, and the returned pointer MWwion-Unlessp is NULL,
it must have been returned by a previous calPtovlem_Malloc or PyMem_Realloc . If the request
fails, PyMem_Realloc returnsNULL andp remains a valid pointer to the previous memory area.

void PyMem_Free(void *p)
Frees the memory block pointed to ky which must have been returned by a previous call to
PyMem_Malloc or PyMem_Realloc . Otherwise, or ifPyMem_Free(p) has been called before, un-
defined behavior occurs. fifis NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Notd ¥RaErefers to any C type.

TYPE* PyMem_NeWTYPE, size_th
Same as’yMem_Malloc , but allocategn * sizeof(TYPE)) bytes of memory. Returns a pointer
cast toTYPE*. The memory will not have been initialized in any way.

TYPE* PyMem_Resize (void *p, TYPE, size_t)n
Same a®yMem_Realloc , but the memory block is resized o * sizeof(TYPE)) bytes. Returns
a pointer cast td YPE*. On return,p will be a pointer to the new memory area, MULL in the event of
failure. This is a C preprocessor macro; p is always reassigned. Save the original value of p to avoid losing
memory when handling errors.

void PyMem_Del(void *p)
Same a®yMem_Free.

In addition, the following macro sets are provided for calling the Python memory allocator directly, without
involving the C API functions listed above. However, note that their use does not preserve binary compatibility
across Python versions and is therefore deprecated in extension modules.

PyMem_MALLO®yMem_REALLOXPyMem_FREE
PyMem_NEWPyMem_RESIZE PyMem_DEL

9.3 Examples

Here is the example from secti@wverview rewritten so that the 1/0O buffer is allocated from the Python heap by
using the first function set:

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); [* for 1/O */

if (buf == NULL
return ~ PyErr_NoMemory();
/* ..Do some |/O operation involving buf... */

96 Chapter 9. Memory Management

The Python/C API, Release 2.6.2

res = PyString_FromString(buf);
PyMem_Free(buf); [* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_Newgthar , BUFSIZ); /* for /O */

if (buf == NULL
return PyErr_NoMemory();
[* ...Do some 1/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); [* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set.
Indeed, it is required to use the same memory API family for a given memory block, so that the risk of mixing
different allocators is reduced to a minimum. The following code sequence contains two errors, one of which is
labeled adatal because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New¢har , BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
PyMem_Del(buf3); I* Wrong -- should be PyMem_Free() */
free(buf2); [* Right -- allocated via malloc() */
free(bufl); [* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released wiklyObject New , PyObject NewVar andPyObject Del

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 97

The Python/C API, Release 2.6.2

98 Chapter 9. Memory Management

CHAPTER
TEN

OBJECT IMPLEMENTATION SUPPORT

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject New (PyTypeObject *type
Return value: New reference.

PyVarObject* ~_PyObject_NewVar (PyTypeObiject *type, Py_ssize_t 3ize
Return value: New reference.

void _PyObject_Del (PyObject*op

PyObject* PyObject_Init (PyObject *op, PyTypeObject *tyjpe
Return value: Borrowed reference.
Initialize a newly-allocated objedaip with its type and initial reference. Returns the initialized object. If
typeindicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of
observed objects. Other fields of the object are not affected.

PyVarObject* PyObject_InitVar (PyVarObiject *op, PyTypeObject *type, Py_ssize t)size
Return value: Borrowed reference.
This does everythin§yObject_Init does, and also initializes the length information for a variable-size
object.

TYPE* PyObject New (TYPE, PyTypeObject *type
Return value: New reference.
Allocate a new Python object using the C structure tyy&Eand the Python type objettpe Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of
the memory allocation is determined from tipe basicsize field of the type object.

TYPE* PyObject NewVar (TYPE, PyTypeObject *type, Py_ssize tksize
Return value: New reference.
Allocate a new Python object using the C structure tyy&@Eand the Python type objettpe Fields not
defined by the Python object header are not initialized. The allocated memory allows TofRistructure
plussizefields of the size given by thie_itemsize field oftype This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into
the same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject Del (PyObject*op
Releases memory allocated to an object usin@bject New orPyObject NewVar . Thisis normally
called from thep_dealloc handler specified in the object’s type. The fields of the object should not be
accessed after this call as the memory is no longer a valid Python object.

PyObject* Py _InitModule (char *name, PyMethodDef *methogds
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module object.

99

The Python/C API, Release 2.6.2

Changed in version 2.3: Older versions of Python did not supdbltL as the value for thenethods
argument.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *gloc
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module dbject. If
is nonNULL, it will be used to define the docstring for the module. Changed in version 2.3: Older versions
of Python did not suppoNlULL as the value for thenethodsargument.

PyObject* Py _InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver
Return value: Borrowed reference.
Create a new module object based on a name and table of functions, returning the new module dbject. If
is nonNULL, it will be used to define the docstring for the moduleséif is nonNULL, it will passed to
the functions of the module as their (otherwi¢&LL) first parameter. (This was added as an experimental
feature, and there are no known uses in the current version of Pythongpker, the only value which
should be passed is defined by the consRiTHON_API_VERSION

Note: Most uses of this function should probably be usingRiye InitModule3 instead; only use this
if you are sure you need it. Changed in version 2.3: Older versions of Python did not shipfidrias the
value for themethodsargument.

PyObject Py NoneStruct
Object which is visible in Python d$one. This should only be accessed usingfye None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in
memory. These are represented byBly®©bject andPyVarObject types, which are defined, in turn, by the
expansions of some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to
treat a pointer to an object as an object. In a normal “release” build, it contains only the object’s reference
count and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion
of thePyObject HEAD macro.

PyVarObject
This is an extension dPyObject that adds theb size field. This is only used for objects that have
some notion ofength This type does not often appear in the Python/C API. It corresponds to the fields
defined by the expansion of tiyObject VAR_HEAD macro.

These macros are used in the definitioPgDbject andPyVarObject

PyObject_ HEAD
This is a macro which expands to the declarations of the fields oPtiigbject type; it is used when
declaring new types which represent objects without a varying length. The specific fields it expands to de-
pend on the definition d?y_TRACE_REFSBY default, that macro is not defined, aRgObject HEAD
expands to:

Py ssize t ob_refent;
PyTypeObject *ob_type;

WhenPy_TRACE_REFSs defined, it expands to:
PyObject *_ob_next, *_ob_prev;

Py _ssize t ob_refent;
PyTypeObject *ob_type;

100 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

PyObject_ VAR_HEAD
This is a macro which expands to the declarations of the fields dfyhrObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject HEAD
Py ssize t ob_size;

Note thatPyObject HEAD is part of the expansion, and that its own expansion varies depending on the
definition of Py_TRACE_REFS

PyObject_ HEAD_INIT

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return valdiJisL, an exception shall have
been set. If nONULL, the return value is interpreted as the return value of the function as exposed in Python.
The function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:
Field C Type Meaning
ml_name char * name of the method
ml_meth PyCFunction| pointer to the C implementation
ml_flags int flag bits indicating how the call should be constructed
ml_doc char * points to the contents of the docstring

The ml_meth is a C function pointer. The functions may be of different types, but they always return
PyObject* . If the function is not of thePyCFunction , the compiler will require a cast in the method ta-
ble. Even thougtPyCFunction defines the first parameter &y Object* , it is common that the method
implementation uses a the specific C type of¢bH object.

The ml_flags field is a bitfield which can include the following flags. The individual flags indicate ei-
ther a calling convention or a binding convention. Of the calling convention flags,\MalyH VARARG&Nd
METH_KEYWORI[@an be combined (but note theit=TH KEYWORRNe is equivalent tMETH_VARARGS

| METH_KEYWORDSANy of the calling convention flags can be combined with a binding flag.

METH_VARARGS
This is the typical calling convention, where the methods have the Ryga&-unction . The function
expects twdPyObject* values. The first one is theelf object for methods; for module functions, it has
the value given té’y_InitModule4 (or NULL if Py_InitModule was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg_ParseTuple orPyArg_UnpackTuple

METH_KEYWORDS
Methods with these flags must be of tyg®yCFunctionWithKeywords . The function ex-
pects three parametersself args and a dictionary of all the keyword arguments. The flag
is typically combined with METH VARARGSand the parameters are typically processed using
PyArg_ParseTupleAndKeywords

METH_NOARGS
Methods without parameters don’t need to check whether arguments are given if they are listed with the
METH_NOARGHag. They need to be of tygeyCFunction . When used with object methods, the first
parameter is typically namesklf and will hold a reference to the object instance. In all cases the second
parameter will beNULL.

METH_O
Methods with a single object argument can be listed with BheTH_Oflag, instead of invoking
PyArg_ParseTuple witha"O" argument. They have the typgCFunction , with theself parameter,
and aPyObject* parameter representing the single argument.

METH_OLDARGS
This calling convention is deprecated. The method must be offyd-unction . The second argument

10.2. Common Object Structures 101

The Python/C API, Release 2.6.2

is NULL if no arguments are given, a single object if exactly one argument is given, and a tuple of objects
if more than one argument is given. There is no way for a function using this convention to distinguish
between a call with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of
classes. These may not be used for functions defined for modules. At most one of these flags may be set for any
given method.

METH_CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is
used to createlass methodsimilar to what is created when using ttlassmethod() built-in function.
New in version 2.3.

METH_STATIC
The method will be passedULL as the first parameter rather than an instance of the type. This is used to
createstatic methodssimilar to what is created when using ttaticmethod() built-in function. New

in version 2.3.

One other constant controls whether a method is loaded in place of another definition with the same method name.

METH_COEXIST
The method will be loaded in place of existing definitions. WithililBTH_COEXISTthe default is to skip
repeated definitions. Since slot wrappers are loaded before the method table, the existaoceohtins
slot, for example, would generate a wrapped method namedntains__ () and preclude the loading
of a corresponding PyCFunction with the same name. With the flag defined, the PyCFunction will be loaded
in place of the wrapper object and will co-exist with the slot. This is helpful because calls to PyCFunctions
are optimized more than wrapper object calls. New in version 2.4.

PyMemberDef
Structure which describes an attribute of a type which corresponds to a C struct member. Its fields are:

Field C Type Meaning

name char * name of the member

type int the type of the member in the C struct

offset Py_ssize t| the offset in bytes that the member is located on the type’s object struct
flags int flag bits indicating if the field should be read-only or writable

doc char * points to the contents of the docstring

type can be one of many_ macros corresponding to various C types. When the member is accessed in
Python, it will be converted to the equivalent Python type.

Macro name C type

T _SHORT short

T_INT int

T _LONG long

T_FLOAT float
T_DOUBLE double
T_STRING char *
T_OBJECT PyObject *
T_OBJECT_EX | PyObject*
T_CHAR char

T BYTE char

T _UBYTE unsigned char
T _UINT unsigned int

T _USHORT unsigned short
T_ULONG unsigned long
T_BOOL char
T_LONGLONG long long
T_ULONGLONG | unsigned long long
T_PYSSIZET Py_ssize_t

T OBJECTand T_OBJECT_ EXdiffer in that T_OBJECT returnsNone if the member isNULL and
T_OBJECT_EXaises arAttributeError

102 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

flags can be O for write and read accessREADONLYor read-only access. Usinf STRING for
type impliesREADONLYOnly T_OBJECTandT_OBJECT_EXmembers can be deleted. (They are set
to NULL).

PyObject* Py _FindMethod (PyMethodDef table[], PyObject *ob, char *name
Return value: New reference.
Return a bound method object for an extension type implemented in C. This can be useful in the implementa-
tion of atp_getattro ortp_getattr handler that does not use tRgObject_GenericGetAttr
function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the PyTypeObject structure. Type objects can be handled using any ofPy®@bject * or PyType *

functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to
how objects behave, so they are very important to the interpreter itself and to any extension module that implements
new types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type
object stores a large number of values, mostly C function pointers, each of which implements a small part of the
type’s functionality. The fields of the type object are examined in detail in this section. The fields will be described

in the order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intinto-
bjargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmp-
func, reprfunc, hashfunc

The structure definition foPyTypeObject can be found irnnclude/object.h . For convenience of refer-
ence, this repeats the definition found there:

typedef struct _typeobject {
PyObject VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; [* For allocation */

/* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */

10.3. Type Objects 103

The Python/C API, Release 2.6.2

PyBufferProcs *tp_as_buffer;

[* Flags to define presence of optional/lexpanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

[* Assigned meaning in release 2.0 */
[* call function for all accessible objects */
traverseproc tp_traverse;

[* delete references to contained objects */
inquiry tp_clear;

[* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

[* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

[* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *{p_base;

PyObject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; [* Low-level free-memory routine */
inquiry tp_is_gc; [* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

The type object structure extends thgVarObject structure. Theob_size field is used for dynamic types
(created bytype _new() , usually called from a class statement). Note thaType Type (the metatype)
initializestp_itemsize , which means that its instances (i.e. type objeats$thave theob size field.

PyObject* _ob_next

PyObject* _ob_prev
These fields are only present when the ma&yoTRACE_REFSs defined. Their initialization ttlULL is
taken care of by th®yObject HEAD_INIT macro. For statically allocated objects, these fields always
remainNULL. For dynamically allocated objects, these two fields are used to link the object into a doubly-
linked list of all live objects on the heap. This could be used for various debugging purposes; currently
the only use is to print the objects that are still alive at the end of a run when the environment variable

104 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

PYTHONDUMPREFS is set.
These fields are not inherited by subtypes.

Py ssize t ob_refcnt
This is the type object’s reference count, initialized tby thePyObject HEAD_INIT macro. Note that
for statically allocated type objects, the type’s instances (objects wiinggpe points back to the type)
donotcount as references. But for dynamically allocated type objects, the insidmcesnt as references.

This field is not inherited by subtypes.

PyTypeObject* ob_type
This is the type’s type, in other words its metatype. It is initialized by the argument to the
PyObject HEAD_INIT macro, and its value should normally B®yType_Type . However, for dy-
namically loadable extension modules that must be usable on Windows (at least), the compiler complains
that this is not a valid initializer. Therefore, the convention is to pdkL to thePyObject. HEAD _INIT
macro and to initialize this field explicitly at the start of the module’s initialization function, before doing
anything else. This is typically done like this:

Foo_Type.ob_type = &PyType_ Type;

This should be done before any instances of the type are crefat@ddpe Ready checks ifob_type

is NULL, and if so, initializes it: in Python 2.2, it is set &PyType_Type ; in Python 2.2.1 and later it
is initialized to theob_type field of the base classPyType Ready will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by
subtypes.

Py ssize 't ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type
objects, this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp_name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type nameeéfined in modulé/lin subpackag®in package
P should have thgp_name initializer "P.Q.M.T"

For dynamically allocated type objects, this should just be the type name, and the module name explicitly
stored in the type dict as the value for Key module__’

For statically allocated type objects, the tp_name field should contain a dot. Everything before the last dot
is made accessible as themodule__ attribute, and everything after the last dot is made accessible as the
__name___ attribute.

If no dot is present, the entirpp_name field is made accessible as thename__ attribute, and the
__module__ attribute is undefined (unless explicitly set in the dictionary, as explained above). This
means your type will be impossible to pickle.

This field is not inherited by subtypes.

Py ssize t tp_basicsize
Py ssize t tp_itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have gzeremsize field, types with
variable-length instances have a non-zgratemsize field. For a type with fixed-length instances, all
instances have the same size, givetpirbasicsize

For a type with variable-length instances, the instances must have aive field, and the instance size
is tp_basicsize plus N timestp_itemsize , where N is the “length” of the object. The value of
N is typically stored in the instancetsh_size field. There are exceptions: for example, long ints use
a negativeob_size to indicate a negative number, and Naiss(ob_size) there. Also, the presence

10.3. Type Objects 105

The Python/C API, Release 2.6.2

of anob_size field in the instance layout doesn’t mean that the instance structure is variable-length (for
example, the structure for the list type has fixed-length instances, yet those instances have a meaningful
ob_size field).

The basic size includes the fields in the instance declared by the niagBmject HEAD or
PyObject VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp_basicsize is to use thesizeof operator on the struct used to declare the instance
layout. The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC
header size was includedip_basicsize).

These fields are inherited separately by subtypes. If the base type has a nom-#erosize it is
generally not safe to sgi_itemsize to a different non-zero value in a subtype (though this depends on
the implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by

the value ofp_basicsize . Example: suppose atype implements an arrajooble . tp_itemsize
is sizeof(double) . It is the programmer’s responsibility thgh basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirementdouble).

destructor tp_dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that
its instances will never be deallocated (as is the case for the singtesandEllipsis).

The destructor function is called by tiiey DECREFand Py XDECREFmacros when the new refer-
ence count is zero. At this point, the instance is still in existence, but there are no references to it.
The destructor function should free all references which the instance owns, free all memory buffers
owned by the instance (using the freeing function corresponding to the allocation function used to al-
locate the buffer), and finally (as its last action) call the tygp'sfree function. If the type is not
subtypable (doesn't have thiey TPFLAGS BASETYPHlag bit set), it is permissible to call the object
deallocator directly instead of vigw_free . The object deallocator should be the one used to allocate
the instance; this is normallypyObject _Del if the instance was allocated usifyObject_ New or
PyObject_VarNew , or PyObject GC_Del if the instance was allocated usifRgObject GC_New

or PyObject_ GC_VarNew .

This field is inherited by subtypes.

printfunc tp_print

An optional pointer to the instance print function.

The print function is only called when the instance is printed tea file; when it is printed to a pseudo-
file (like a StringlO instance), the instancelp_repr ortp_str function is called to convert it to a
string. These are also called when the tygp’'sprint field is NULL. A type should never implement
tp_print in a way that produces different output th@anrepr ortp_str would.

The print function is called with the same signature d%yObject Print int

tp_print(PyObject *self, FILE *file, int flags) . The self argument is the in-
stance to be printed. THéde argument is the stdio file to which it is to be printed. Tregsargument is
composed of flag bits. The only flag bit currently defineBys PRINT_RAWWhen thePy_PRINT_RAW
flag bit is set, the instance should be printed the same walp agr would format it; when the
Py _PRINT_RAWiag bit is clear, the instance should be printed the same wigs espr would format
it. It should return1 and set an exception condition when an error occurred during the comparison.

It is possible that thep print field will be deprecated. In any case, it is recommended not to define
tp_print , butinstead to rely otp_repr andtp_str for printing.

This field is inherited by subtypes.

getattrfunc tp_getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_getattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as forObject GetAttrString

This field is inherited by subtypes together with getattro . a subtype inherits bottp_getattr
andtp_getattro from its base type when the subtypg’s getattr andtp_getattro are both
NULL.

106

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

setattrfunc tp_setattr
An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the same as the
tp_setattro function, but taking a C string instead of a Python string object to give the attribute name.
The signature is the same as fyyObject_SetAttrString

This field is inherited by subtypes together with setattro . a subtype inherits bottp_setattr
andtp_setattro from its base type when the subtypg’s setattr andtp_setattro are both
NULL.

cmpfunc tp_compare
An optional pointer to the three-way comparison function.

The signature is the same as foyObject_Compare . The function should returfh if self greater than
other, O if self is equal toother, and-1 if self less tharother. It should return-1 and set an exception
condition when an error occurred during the comparison.

This field is inherited by subtypes together with richcompare andtp_hash : a subtypes inher-
its all three oftp_compare , tp_richcompare , andtp_hash when the subtype'sp _compare ,
tp_richcompare , andtp_hash are allNULL.

reprfunc tp_repr
An optional pointer to a function that implements the built-in functiepr()

The signature is the same as foyObject Repr ; it must return a string or a Unicode object. Ideally,
this function should return a string that, when passeevid() , given a suitable environment, returns an
object with the same value. If this is not feasible, it should return a string startingwittand ending with
> from which both the type and the value of the object can be deduced.

When this field is not set, a string of the forfos object at %p> is returned, wher&bsis replaced
by the type name, arfbpby the object’'s memory address.

This field is inherited by subtypes.

PyNumberMethods* tp_as_number
Pointer to an additional structure that contains fields relevant only to objects which implement the number
protocol. These fields are documentediimmber Object Structures

Thetp_as number field is not inherited, but the contained fields are inherited individually.

PySequenceMethods* tp_as_sequence
Pointer to an additional structure that contains fields relevant only to objects which implement the sequence
protocol. These fields are documentediEquence Object Structures

Thetp_as sequence field is not inherited, but the contained fields are inherited individually.
PyMappingMethods* tp_as_mapping

Pointer to an additional structure that contains fields relevant only to objects which implement the mapping
protocol. These fields are documented/iapping Object Structures

Thetp_as mapping field is not inherited, but the contained fields are inherited individually.

hashfunc tp_hash
An optional pointer to a function that implements the built-in functi@ash() .

The signature is the same as féyObject Hash ; it must return a C long. The valud should not
be returned as a normal return value; when an error occurs during the computation of the hash value, the
function should set an exception and retutn

This field can be set explicitly tByObject_HashNotimplemented to block inheritance of the hash

method from a parent type. This is interpreted as the equivalentlssh_ = None at the Python
level, causingsinstance(o, collections.Hashable) to correctly returnFalse . Note that
the converse is also true - settinghash__ = None on a class at the Python level will result in the

tp_hash slot being set t&’yObject _HashNotImplemented

When this field is not set, two possibilities exist: if ttre compare andtp_richcompare fields are
both NULL, a default hash value based on the object’s address is returned; otherWigegError s
raised.

10.3. Type Objects 107

The Python/C API, Release 2.6.2

This field is inherited by subtypes together with richcompare andtp_compare : a subtypes in-
herits all three ofp_compare ,tp_richcompare ,andtp_hash , when the subtype® compare |,
tp_richcompare andtp_hash are allNULL.

ternaryfunc tp_call

An optional pointer to a function that implements calling the object. This shoulUid._ if the object is
not callable. The signature is the same asfpDbject_Call

This field is inherited by subtypes.

reprfunc tp_str

An optional pointer to a function that implements the built-in operasinf) . (Note thatstr is a type
now, andstr() calls the constructor for that type. This constructor dall®bject_Str to do the actual
work, andPyObject_Str will call this handler.)

The signature is the same as FyrObject_Str ; it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used
by the print statement.

When this field is not seRyObject_Repr is called to return a string representation.
This field is inherited by subtypes.

getattrofunc tp_getattro
An optional pointer to the get-attribute function.
The signature is the same as feyObject GetAttr . It is usually convenient to set this field to
PyObject_GenericGetAttr , which implements the normal way of looking for object attributes.

This field is inherited by subtypes together with getattr ~ : a subtype inherits bottp_getattr and
tp_getattro from its base type when the subtypgis getattr andtp_getattro are bothNULL.

setattrofunc tp_setattro
An optional pointer to the set-attribute function.
The signature is the same as feyObject_SetAttr . It is usually convenient to set this field to
PyObject_GenericSetAttr , which implements the normal way of setting object attributes.

This field is inherited by subtypes together with setattr : a subtype inherits botip_setattr and
tp_setattro from its base type when the subtyp#ds setattr andtp_setattro are bothNULL.

PyBufferProcs* tp_as_buffer

long

Pointer to an additional structure that contains fields relevant only to objects which implement the buffer
interface. These fields are documente@®irifer Object Structures

Thetp_as_buffer field is not inherited, but the contained fields are inherited individually.

tp_flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp_as_number ,tp_as_sequence ,tp_as_mapping ,andtp_as_buffer) that were historically
not always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and
must be considered to have a zerd\WLL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into
the subtype together with a pointer to the extension structure. PTh@ PFLAGS HAVE_Gdlag bit is
inherited together with thg_traverse andtp clear fields, i.e. if thePy TPFLAGS HAVE GC

flag bit is clear in the subtype and tlie traverse andtp_clear fields in the subtype exist (as
indicated by the’y TPFLAGS HAVE_RICHCOMPAHRE&g bit) and haveNULL values.

The following bit masks are currently defined; these can be ORed together usingpeeator to form the
value of thetp_flags field. The macrd®’yType HasFeature takes a type and a flags valupandf,

and checks whethép->tp_flags & f is non-zero.
Py_TPFLAGS_HAVE_GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp as buffer has the

bf _getcharbuffer field.

108

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

Py _TPFLAGS_HAVE_SEQUENCE_IN
If this bit is set, thePySequenceMethods struct referenced byp as sequence has the
sg_contains field.

Py _TPFLAGS_GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS_HAVE_INPLACEOPS
If this bit is set, thePySequenceMethods struct referenced byp as sequence and
the PyNumberMethods structure referenced byip as number contain the fields for
in-place operators. In particular, this means that #gNumberMethods structure has

the fields nb_inplace_add , nb_inplace_subtract , hb_inplace_multiply ,
nb_inplace_divide , nb_inplace_remainder , nb_inplace_power
nb_inplace_Ishift ,nb_inplace_rshift ,nNb_inplace_and ,nb_inplace_xor ,and

nb_inplace_or ; and thePySequenceMethods struct has the fieldsg_inplace_concat
andsq_inplace_repeat

Py _TPFLAGS_CHECKTYPES
If this bit is set, the binary and ternary operations in thgNumberMethods structure refer-
enced bytp_as _number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-
rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
pliestonb_add ,nb_subtract ,nb_multiply ,nb_divide ,nb_remainder ,nb_divmod ,
nb_power , nb_Ishift ,nb_rshift ,nb_and,nb_xor , andnb _or .

Py TPFLAGS HAVE_RICHCOMPARE
If this bit is set, the type object has the richcompare field, as well as thép_traverse and
thetp _clear fields.

Py_TPFLAGS_HAVE_WEAKREFS
If this bit is set, thetp_weaklistoffset field is defined. Instances of a type are weakly refer-
enceable if the type_weaklistoffset field has a value greater than zero.

Py TPFLAGS HAVE_ITER
If this bit is set, the type object has the iter ~ andtp_iternext fields.

Py TPFLAGS_HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Python
2.2: tp_methods , tp_members , tp_getset , tp_base , tp_dict , tp _descr _get
tp_descr_set , tp_dictoffset ,tp_init ,tp_alloc ,tp_new,tp free ,tp_is gc ,
tp_bases ,tp_mro ,tp_cache ,tp_subclasses ,andtp_weaklist

Py TPFLAGS_HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this case)) thgoe field
of its instances is considered a reference to the type, and the type object is INCREF'ed when a new
instance is created, and DECREF’ed when an instance is destroyed (this does not apply to instances
of subtypes; only the type referenced by the instance’s ob_type gets INCREF'ed or DECREF’ed).

Py_TPFLAGS_BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type
cannot be subtyped (similar to a “final” class in Java).

Py_TPFLAGS_READY
This bit is set when the type object has been fully initializedPlyyype Ready .

Py TPFLAGS_READYING
This bit is set whilePyType_Ready is in the process of initializing the type object.

Py TPFLAGS HAVE_GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be
created using’yObject GC_New and destroyed usingyObject GC_Del . More information
in sectionSupporting Cyclic Garbage CollectionThis bit also implies that the GC-related fields
tp_traverse andtp clear are present in the type object; but those fields also exist when
Py TPFLAGS HAVE_GG clear buPy TPFLAGS HAVE_RICHCOMPARESet.

Py_TPFLAGS_DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in

10.3. Type Objects 109

The Python/C API, Release 2.6.2

the type object and its extension structures. Currently, it includes the following
bits: Py TPFLAGS HAVE_GETCHARBUFFER Py TPFLAGS_HAVE_SEQUENCE_JN

Py TPFLAGS_HAVE_INPLACEOPRS Py TPFLAGS HAVE_RICHCOMPARE
Py TPFLAGS HAVE_WEAKREFS Py TPFLAGS_HAVE_ITER and

Py _TPFLAGS_HAVE_CLASS

char* tp_doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed
asthe doc__ attribute on the type and instances of the type.

This field isnotinherited by subtypes.
The following three fields only exist if they TPFLAGS_HAVE_RICHCOMPAHR&g bit is set.

traverseproc tp_traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py TPFLAGS HAVE_GG@lag bit is set. More information about Python’s garbage collection scheme
can be found in sectioBupporting Cyclic Garbage Collection

Thetp_traverse pointer is used by the garbage collector to detect reference cycles. A typical imple-
mentation of &p_traverse function simply callsPy_VISIT on each of the instance’s members that

are Python objects. For example, this is funclimeel_traverse from thethread extension module:
static int

local_traverse (localobject *self, visitproc visit, void *arg)

{

Py VISIT(self - >args);
Py _VISIT(self - >kw);
Py VISIT(self - >dict);
return 0,

}

Note thatPy VISIT is called only on those members that can participate in reference cycles. Although
there is also @&elf->key = member, it can only b&IULL or a Python string and therefore cannot be part
of a reference cycle.

On the other hand, even if you know a member can never be part of a cycle, as a debugging aid you may
want to visit it anyway just so thgc module’sget_referents() function will include it.

Note thatPy VISIT requires thevisit andarg parameters téocal_traverse to have these specific
names; don’t name them just anything.

This field is inherited by subtypes together with clear and thePy TPFLAGS_HAVE_G(lag bit:
the flag bit,tp_traverse , andtp _clear are all inherited from the base type if they are all zero in the
subtypeandthe subtype has they TPFLAGS HAVE_RICHCOMPAHRA&g bit set.

inquiry tp_clear
An optional pointer to a clear function for the garbage collector. This is only used if the
Py TPFLAGS HAVE_Gfdag bit is set.

Thetp_clear member function is used to break reference cycles in cyclic garbage detected by the garbage
collector. Taken together, dfy_clear functions in the system must combine to break all reference cycles.
This is subtle, and if in any doubt supplyt@ clear function. For example, the tuple type does not
implement ap clear function, because it's possible to prove that no reference cycle can be composed
entirely of tuples. Therefore thie clear functions of other types must be sufficient to break any cycle
containing a tuple. This isn't immediately obvious, and there’s rarely a good reason to avoid implementing
tp_clear

Implementations ofp_clear should drop the instance’s references to those of its members that may be
Python objects, and set its pointers to those membexéid., as in the following example:

static int
local_clear (localobject * self)
{

Py _CLEAR(self - >key);

110 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

Py CLEAR(self -=>args);
Py_CLEAR(self - >kw);
Py_CLEAR(self - >dict);
return 0;

}

The Py _CLEARmMmacro should be used, because clearing references is delicate: the reference to the con-
tained object must not be decremented until after the pointer to the contained object idlskiltoThis

is because decrementing the reference count may cause the contained object to become trash, triggering a
chain of reclamation activity that may include invoking arbitrary Python code (due to finalizers, or weakref
callbacks, associated with the contained object). If it's possible for such code to refesthagain, it's

important that the pointer to the contained objectNddLL at that time, so thaself knows the contained

object can no longer be used. Thg CLEARmMacro performs the operations in a safe order.

Because the goal op _clear functions is to break reference cycles, it's not necessary to clear contained
objects like Python strings or Python integers, which can't participate in reference cycles. On the other hand,
it may be convenient to clear all contained Python objects, and write the typelsalloc function to
invoketp_clear

More information about Python’s garbage collection scheme can be found in s&ctigiorting Cyclic
Garbage Collection

This field is inherited by subtypes together with traverse and thePy TPFLAGS HAVE_ Gdlag
bit: the flag bit,tp_traverse , andtp_clear are all inherited from the base type if they are all zero in
the subtypendthe subtype has they TPFLAGS HAVE RICHCOMPARE&Y bit set.

richcmpfunc tp_richcompare

An optional pointer to the rich comparison function, whose signature FgObject
*tp_richcompare(PyObject *a, PyObject *b, int op)

The function should return the result of the comparison (usitlyTrue orPy_False). If the compari-
son is undefined, it must retuRy_Notlmplemented , if another error occurred it must retuNULL and
set an exception condition.

Note: If you want to implement a type for which only a limited set of comparisons makes sensefe.g.
and!=, but not< and friends), directly rais€ypeError in the rich comparison function.

This field is inherited by subtypes together with compare and tp_hash : a subtype inherits
all three oftp_compare , tp_richcompare , andtp_hash , when the subtype'sp compare ,
tp_richcompare , andtp_hash are allNULL.

The following constants are defined to be used as the third argumefty fochcompare and for
PyObject_RichCompare

Constant | Comparison
Py LT <

Py LE <=

Py_EQ ==

Py_NE I=

Py_GT >

Py_GE >=

The next field only exists if they TPFLAGS HAVE_WEAKREHM&g bit is set.

long

tp_weaklistoffset
If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset
in the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is
used byPyObject_ClearWeakRefs and thePyWeakref * functions. The instance structure needs
to include a field of typé’yObject* which is initialized toNULL.

Do not confuse this field witlp_weaklist ; that is the list head for weak references to the type object
itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype uses a different weak reference list head than the base type. Since the list head is
always found vigp_weaklistoffset , this should not be a problem.

10.3. Type Objects 111

The Python/C API, Release 2.6.2

When a type defined by a class statement has rsiots ~ declaration, and none of its base types are
weakly referenceable, the type is made weakly referenceable by adding a weak reference list head slot to
the instance layout and setting tipe weaklistoffset of that slot's offset.

When a type's__slots_ declaration contains a slot named weakref | that slot becomes
the weak reference list head for instances of the type, and the slot's offset is stored in the type's
tp_weaklistoffset

When a type’s_slots declaration does not contain a slot namedveakref _ , the type inherits
its tp_weaklistoffset from its base type.

The next two fields only exist if they TPFLAGS_HAVE_ITERflag bit is set.

getiterfunc tp_iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that
the instances of this type are iterable (although sequences may be iterable without this function, and classic
instances always have this function, even if they don’t define ater () method).

This function has the same signaturePg®bject_Getlter
This field is inherited by subtypes.

iternextfunc tp_iternext
An optional pointer to a function that returns the next item in an iterator. When the iterator is exhausted, it
must returrNULL; a Stoplteration exception may or may not be set. When another error occurs, it

must returrNULL too. Its presence normally signals that the instances of this type are iterators (although
classic instances always have this function, even if they don’t defimx®) method).

Iterator types should also define tipe iter ~ function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signaturePgster Next
This field is inherited by subtypes.

The next fields, up to and includirig_weaklist , only exist if thePy TPFLAGS HAVE_CLASS$ag bit is
set.

struct PyMethodDef* tp_methods
An optional pointer to a statidULL-terminated array dPyMethodDef structures, declaring regular meth-
ods of this type.

For each entry in the array, an entry is added to the type’s dictionary{séect below) containing a
method descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp_members
An optional pointer to a statiNULL-terminated array oPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionant{sdet below) containing a
member descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp_getset
An optional pointer to a statilULL-terminated array oPyGetSetDef structures, declaring computed
attributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionant{seest below) containing a
getset descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(* getter)(PyObject * void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

typedef struct PyGetSetDef {

112 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

char *name; [* attribute name */

getter get; [* C function to get the attribute */
setter set; [* C function to set the attribute */
char *doc; /* optional doc string */

void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;

PyTypeObject* tp_base

An optional pointer to a base type from which type properties are inherited. At this level, only single
inheritance is supported; multiple inheritance require dynamically creating a type object by calling the
metatype.

This field is not inherited by subtypes (obviously), but it default&RyBaseObject Type (which to
Python programmers is known as the tyjigect).

PyObject* tp_dict

The type’s dictionary is stored here By Type_Ready .

This field should normally be initialized tdULL before PyType Ready is called; it may also be initialized

to a dictionary containing initial attributes for the type. Orieglype Ready has initialized the type,

extra attributes for the type may be added to this dictionary only if they don't correspond to overloaded
operations (like_add__ ()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp_descr_get

An optional pointer to a “descriptor get” function.
The function signature is

PyObject * tp_descr_get(PyObject *self, PyObject *obj, PyObject *type);

XXX explain.
This field is inherited by subtypes.

descrsetfunc tp_descr_set

long

An optional pointer to a “descriptor set” function.
The function signature is

int tp_descr_set(PyObject *self, PyObject *obj, PyObject *value);

This field is inherited by subtypes.
XXX explain.

tp_dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject_GenericGetAttr

Do not confuse this field witkp_dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure.
If the value is less than zero, it specifies the offset fromehd of the instance structure. A negative

offset is more expensive to use, and should only be used when the instance structure contains a variable-
length part. This is used for example to add an instance variable dictionary to subtytes of tuple

Note that thep basicsize field should account for the dictionary added to the end in that case, even
though the dictionary is not included in the basic object layout. On a system with a pointer size of 4 bytes,
tp_dictoffset should be set te4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negatigiestoffset as follows:

10.3. Type Objects 113

The Python/C API, Release 2.6.2

dictoffset = tp_basicsize + abs(ob_size) *tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof (void *):
round up to sizeof (void *)

wheretp_basicsize , tp_itemsize and tp_dictoffset are taken from the type object, and
ob_size istakenfromtheinstance. The absolute value is taken because long ints use thekigrzsf

to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject_GetDictPtr J)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this
means that the subtype instances store the dictionary at a difference offset than the base type. Since the
dictionary is always found vigp_dictoffset , this should not be a problem.

When a type defined by a class statement has rsbots_ declaration, and none of its base types has
an instance variable dictionary, a dictionary slot is added to the instance layout apddheoffset
is set to that slot's offset.

When a type defined by a class statement has slots declaration, the type inherits its
tp_dictoffset from its base type.
(Adding a slot named_dict__ tothe__slots__ declaration does not have the expected effect, it just

causes confusion. Maybe this should be added as a feature just Weakref _ though.)

initproc tp_init

An optional pointer to an instance initialization function.

This function corresponds to the init_ () method of classes. Like init_ () , it is possible to
create an instance without callinginit__ () , and it is possible to reinitialize an instance by calling its
_init__() method again.

The function signature is
int tp_init(PyObject *self, PyObject *args, PyObject * kwds)

The self argument is the instance to be initialized; @ings and kwdsarguments represent positional and
keyword arguments of the call to init__ ()

Thetp_init function, if notNULL, is called when an instance is created normally by calling its type,
after the type’sp_new function has returned an instance of the type. Iftthenew function returns an
instance of some other type that is not a subtype of the original typgy moit function is called; if
tp_new returns an instance of a subtype of the original type, the subtypeisit is called. (VERSION
NOTE: described here is what is implemented in Python 2.2.1 and later. In Python 22, ithie of

the type of the object returned loyy new was always called, if natlULL.)

This field is inherited by subtypes.

allocfunc tp_alloc

An optional pointer to an instance allocation function.
The function signature is

PyObject *tp_alloc(PyTypeObject *self, Py_ssize t nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return
a pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to
zeros, but wittob_refcnt settol andob_type set to the type argument. If the typéys itemsize

is non-zero, the object'sb_size field should be initialized tmitemsand the length of the allocated
memory block should bép_basicsize + nitems*tp_itemsize , rounded up to a multiple of
sizeof(void*) ; otherwise pitemsis not used and the length of the block shouldbebasicsize

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bip_new .

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is always set?gType GenericAlloc , to force a standard heap allocation
strategy. That is also the recommended value for statically defined types.

114

Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

newfunc tp_new
An optional pointer to an instance creation function.

If this function isNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is
PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject * kwds)

The subtype argument is the type of the object being createdygisandkwdsarguments represent posi-
tional and keyword arguments of the call to the type. Note that subtype doesn’t have to equal the type whose
tp_new function is called; it may be a subtype of that type (but not an unrelated type).

Thetp_new function should calsubtype->tp_alloc(subtype, nitems) to allocate space for

the object, and then do only as much further initialization as is absolutely necessary. Initialization that can
safely be ignored or repeated should be placed irigh&it handler. A good rule of thumb is that for
immutable types, all initialization should take placepnnew , while for mutable types, most initialization
should be deferred tip_init

This field is inherited by subtypes, except it is not inherited by static types whosase is NULL or
&PyBaseObject_Type . The latter exception is a precaution so that old extension types don’'t become
callable simply by being linked with Python 2.2.

destructor tp_free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signatasgrisctor
void tp_free(PyObject *)

In Python 2.3 and beyond, its signaturdriesefunc

void tp_free(void *)

The only initializer that is compatible with both versions ByObject_Del , whose definition has suit-
ably adapted in Python 2.3.
This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class state-
ment); in the latter, this field is set to a deallocator suitable to maychype GenericAlloc and the
value of thePy_TPFLAGS_HAVE_Gf(lag bit.
inquiry tp_is_gc
An optional pointer to a function called by the garbage collector.
The garbage collector needs to know whether a particular object is collectible or not. Normally, it is suf-
ficient to look at the object’s type'p_flags field, and check th&y TPFLAGS_HAVE_GGlag bit.
But some types have a mixture of statically and dynamically allocated instances, and the statically allocated

instances are not collectible. Such types should define this function; it should feforma collectible
instance, an@ for a non-collectible instance. The signature is

int tp_is_gc(PyObject * self)

(The only example of this are types themselves. The metaBypeype Type , defines this function to
distinguish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in
2.2.1 and later versions.)

PyObject* tp_bases
Tuple of base types.
This is set for types created by a class statement. It shou\lLthé for statically defined types.
This field is not inherited.

10.3. Type Objects 115

The Python/C API, Release 2.6.2

PyObject* tp_mro
Tuple containing the expanded set of base types, starting with the type itself and endiofpjedh , in
Method Resolution Order.

This field is not inherited; it is calculated fresh By Type Ready .

PyObject* tp_cache
Unused. Not inherited. Internal use only.

PyObject* tp_subclasses
List of weak references to subclasses. Not inherited. Internal use only.

PyObject* tp_weaklist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

The remaining fields are only defined if the feature test m&@WNT_ALLOCH defined, and are for internal
use only. They are documented here for completeness. None of these fields are inherited by subtypes.

Py ssize t tp_allocs
Number of allocations.

Py ssize t tp_frees
Number of frees.

Py ssize t tp_maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp_next
Pointer to the next type object with a non-zépoallocs field.

Also, note that, in a garbage collected Python, tp_dealloc may be called from any Python thread, not just the thread
which created the object (if the object becomes part of a refcount cycle, that cycle might be collected by a garbage
collection on any thread). This is not a problem for Python API calls, since the thread on which tp_dealloc is
called will own the Global Interpreter Lock (GIL). However, if the object being destroyed in turn destroys objects
from some other C or C++ library, care should be taken to ensure that destroying those objects on the thread which
called tp_dealloc will not violate any assumptions of the library.

10.4 Number Object Structures

PyNumberMethods
This structure holds pointers to the functions which an object uses to implement the number protocol.
Almost every function below is used by the function of similar name documented idith@er Protocol
section.

Here is the structure definition:

typedef struct {
binaryfunc nb_add;
binaryfunc nb_subtract;
binaryfunc nb_multiply;
binaryfunc nb_remainder;
binaryfunc nb_divmod;
ternaryfunc nb_power;
unaryfunc nb_negative;
unaryfunc nb_positive;
unaryfunc nb_absolute;
inquiry nb_nonzero;
unaryfunc nb_invert;
binaryfunc nb_lIshift;
binaryfunc nb_rshift;
binaryfunc nb_and;
binaryfunc nb_xor;
binaryfunc nb_or;

~

* Used by PyObject _IsTrue */

116 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

coercion nb_coerce; /¥ Used by the coerce() function */
unaryfunc nb_int;

unaryfunc nb_long;

unaryfunc nb_float;

unaryfunc nb_oct;

unaryfunc nb_hex;

/* Added in release 2.0 */
binaryfunc nb_inplace_add,;
binaryfunc nb_inplace_subtract;
binaryfunc nb_inplace_multiply;
binaryfunc nb_inplace_divide;
binaryfunc nb_inplace_remainder;
ternaryfunc nb_inplace_power;
binaryfunc nb_inplace_Ishift;
binaryfunc nb_inplace_rshift;
binaryfunc nb_inplace_and;
binaryfunc nb_inplace_xor;
binaryfunc nb_inplace_or;

[* Added in release 2.2 */
binaryfunc nb_floor_divide;
binaryfunc nb_true_divide;
binaryfunc nb_inplace_floor_divide;
binaryfunc nb_inplace_true_divide;

/* Added in release 2.5 */
unaryfunc nb_index;
} PyNumberMethods;

Binary and ternary functions may receive different kinds of arguments, depending on the flag bit
Py_TPFLAGS_CHECKTYPES

e If Py TPFLAGS CHECKTYPER not set, the function arguments are guaranteed to be of the object’s
type; the caller is responsible for calling the coercion method specified byttheoerce member to
convert the arguments:

coercion nb_coerce
This function is used byyNumber _CoerceEx and has the same signature. The first argument
is always a pointer to an object of the defined type. If the conversion to a common “larger” type is
possible, the function replaces the pointers with new references to the converted objects anf@ returns
If the conversion is not possible, the function retutngf an error condition is set, it will returrl .

« If the Py TPFLAGS CHECKTYPEffag is set, binary and ternary functions must check the type of all
their operands, and implement the necessary conversions (at least one of the operands is an instance of the
defined type). This is the recommended way; with Python 3.0 coercion will disappear completely.

If the operation is not defined for the given operands, binary and ternary functions must return
Py_Notimplemented , if another error occurred they must retiMb/LL and set an exception.

10.5 Mapping Object Structures

PyMappingMethods
This structure holds pointers to the functions which an object uses to implement the mapping protocol. It
has three members:

lenfunc mp_length
This function is used b¥?yMapping_Length andPyObject_Size , and has the same signature. This
slot may be set ttlULL if the object has no defined length.

10.5. Mapping Object Structures 117

The Python/C API, Release 2.6.2

binaryfunc mp_subscript
This function is used bi?yObject_Getltem and has the same signature. This slot must be filled for the
PyMapping_Check function to returrl, it can beNULL otherwise.

objobjargproc mp_ass_subscript
This function is used bf?yObject_Setltem and has the same signature. If this sld¥lISLL, the object
does not support item assignment.

10.6 Sequence Object Structures

PySequenceMethods
This structure holds pointers to the functions which an object uses to implement the sequence protocol.

lenfunc sqg_length
This function is used bi?ySequence_Size andPyObject_Size , and has the same signature.

binaryfunc sg_concat
This function is used byySequence _Concat and has the same signature. It is also used by+the
operator, after trying the numeric addition via tipeas_number.nb_add slot.

ssizeargfunc sq_repeat
This function is used byySequence Repeat and has the same signature. It is also used by+the
operator, after trying numeric multiplication via the as_number.nb_mul slot.

ssizeargfunc sq_item
This function is used bySequence_Getltem and has the same signature. This slot must be filled for
thePySequence_Check function to returrl, it can beNULL otherwise.

Negative indexes are handled as follows: if gtg length slot is filled, it is called and the sequence
length is used to compute a positive index which is passedjtitem . If sq_length is NULL, the
index is passed as is to the function.

ssizeobjargproc sg_ass_item
This function is used byySequence_Setltem and has the same signature. This slot may be left to
NULL if the object does not support item assignment.

objobjproc sq_contains
This function may be used hyySequence_Contains and has the same signature. This slot may be
left to NULL, in this casé’ySequence_Contains simply traverses the sequence until it finds a match.

binaryfunc sq_inplace_concat
This function is used byySequence_InPlaceConcat and has the same signature. It should modify
its first operand, and return it.

ssizeargfunc sq_inplace_repeat
This function is used bySequence InPlaceRepeat and has the same signature. It should modify
its first operand, and return it.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data,
where each chunk is specified as a pointer/length pair. These chunks aresegheehtand are presumed to be
non-contiguous in memory.

If an object does not export the buffer interface, thentjitsas buffer member in thePyTypeObject
structure should bBULL. Otherwise, thép_as_buffer will point to aPyBufferProcs structure.

Note: It is very important that youPyTypeObject structure use®y TPFLAGS DEFAULTor the value

of thetp _flags member rather thafl. This tells the Python runtime that yo&yBufferProcs structure
contains theébf _getcharbuffer slot. Older versions of Python did not have this member, so a nhew Python
interpreter using an old extension needs to be able to test for its presence before using it.

118 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.
The first slot isbf_getreadbuffer , of type getreadbufferproc . If this slot isNULL, then the

object does not support reading from the internal data. This is non-sensical, so implementors should fill this
in, but callers should test that the slot contains a NaH-L value.

The next slot idf getwritebuffer having typegetwritebufferproc . This slot may beNULL
if the object does not allow writing into its returned buffers.

The third slot isbf _getsegcount , with typegetsegcountproc . This slot must not b&lULL and is

used to inform the caller how many segments the object contains. Simple objects By&lirasy Type
andPyBuffer_Type objects contain a single segment. The last sldif igetcharbuffer , of type
getcharbufferproc . This slot will only be present if they TPFLAGS HAVE GETCHARBUFFER
flag is present in thé _flags field of the object'sPyTypeObject . Before using this slot, the caller
should test whether it is present by using thgType_HasFeature function. If the flag is present,

bf _getcharbuffer may beNULL, indicating that the object’s contents cannot be use8-bi char-

acters The slot function may also raise an error if the object’s contents cannot be interpreted as 8-bit
characters. For example, if the object is an array which is configured to hold floating point values, an excep-
tion may be raised if a caller attempts to ldegetcharbuffer to fetch a sequence of 8-bit characters.
This notion of exporting the internal buffers as “text” is used to distinguish between objects that are binary
in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies
that a buffer size oN does not mean there alkecharacters present.

Py _TPFLAGS_HAVE_GETCHARBUFFER
Flag bit set in the type structure to indicate that tifiegetcharbuffer slot is known. This being set
does not indicate that the object supports the buffer interface or thddf tigetcharbuffer slot is
non-NULL.

(*readbufferproc)
Return a pointer to a readable segment of the buffeiptmptr . This function is allowed to raise an
exception, in which case it must retwh . The segmentvhich is specified must be zero or positive, and
strictly less than the number of segments returned bypthgetsegcount slot function. On success, it
returns the length of the segment, and $ptgptr to a pointer to that memory.

(*writebufferproc)
Return a pointer to a writable memory bufferfiptrptr , and the length of that segment as the function
return value. The memory buffer must correspond to buffer segsegrhent Must return-1 and set
an exception on errorTypeError should be raised if the object only supports read-only buffers, and
SystemError should be raised whesegmenspecifies a segment that doesn’t exist.

(*segcountproc)
Return the number of memory segments which comprise the buffengfs notNULL, the implementation
must report the sum of the sizes (in bytes) of all segmentieip . The function cannot fail.

(*charbufferproc)
Return the size of the segmesggmenthatptrptr is set to.*ptrptr is set to the memory buffer. Returns
-1 on error.

10.8 Supporting Cyclic Garbage Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from
object types which are “containers” for other objects which may also be containers. Types which do not store
references to other objects, or which only store references to atomic types (such as numbers or strings), do not
need to provide any explicit support for garbage collection.

To create a container type, the flags field of the type object must include thiey TPFLAGS HAVE_GC
and provide an implementation of the traverse handler. If instances of the type are mutablig aclear
implementation must also be provided.

Py_TPFLAGS_HAVE_GC

10.8. Supporting Cyclic Garbage Collection 119

The Python/C API, Release 2.6.2

Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usity@bject GC_New or PyObject GC_VarNew .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject GC_Track

TYPE* PyObject_ GC_New (TYPE, PyTypeObject *type
Analogous td?yObject_ New but for container objects with thiey TPFLAGS HAVE_Gflag set.

TYPE* PyObject GC_NewVar (TYPE, PyTypeObject *type, Py_ssize tkize
Analogous tdPyObject NewVar but for container objects with they TPFLAGS HAVE_Gflag set.

PyVarObject * PyObject GC_Resize (PyVarObject *op, Py_ssiz€) t
Resize an object allocated ByyObject NewVar . Returns the resized object MtJLL on failure.

void PyObject GC_Track (PyObject *op
Adds the objecbp to the set of container objects tracked by the collector. The collector can run at unex-
pected times so objects must be valid while being tracked. This should be called once all the fields followed
by thetp_traverse handler become valid, usually near the end of the constructor.

void _PyObject GC_TRACK (PyObject *op
A macro version oPyObject GC_Track . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalidafgd)bject GC_UnTrack must be called.

2. The object’'s memory must be deallocated usitypbject GC_Del

void PyObject GC Del (void *op)
Releases memory allocated to an object usip@bject GC New or PyObject GC_NewVar .

void PyObject GC_UnTrack (void *op)
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject GC_Track can be called again on this object to add it back to the set of tracked objects.
The deallocatortp dealloc handler) should call this for the object before any of the fields used by the
tp_traverse handler become invalid.

void _PyObject GC_UNTRACK(PyObject *op
A macro version oPyObject_GC_UnTrack . It should not be used for extension modules.

Thetp_traverse handler accepts a function parameter of this type:

(*visitproc)
Type of the visitor function passed to the traverse handler. The function should be called with an
object to traverse asbjectand the third parameter to the traverse handler asrg. The Python core
uses several visitor functions to implement cyclic garbage detection; it's not expected that users will need
to write their own visitor functions.

Thetp_traverse handler must have the following type:

(*traverseproc)
Traversal function for a container object. Implementations must calligie function for each object
directly contained bgelf with the parameters tasit being the contained object and g value passed to
the handler. Theisit function must not be called withl[dULL object argument. I¥isit returns a non-zero
value that value should be returned immediately.

To simplify writing tp_traverse handlers, &y VISIT macro is provided. In order to use this macro, the
tp_traverse implementation must name its arguments exadtjt andarg:

void Py _VISIT (PyObject*q
Call thevisit callback, with arguments andarg. If visit returns a non-zero value, then return it. Using this
macro,tp_traverse handlers look like:

120 Chapter 10. Object Implementation Support

The Python/C API, Release 2.6.2

static int
my_traverse (Noddy *self, visitproc visit, void *arg)
{

Py VISIT(self - >foo);
Py VISIT(self - >bar);
return 0,

}

New in version 2.4.

Thetp_clear handler must be of thequiry type, orNULL if the object is immutable.

(*inquiry)
Drop references that may have created reference cycles. Immutable objects do not have to define this method
since they can never directly create reference cycles. Note that the object must still be valid after calling
this method (don't just calPy_DECREFon a reference). The collector will call this method if it detects
that this object is involved in a reference cycle.

10.8. Supporting Cyclic Garbage Collection 121

The Python/C API, Release 2.6.2

122 Chapter 10. Object Implementation Support

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

The default Python prompt of the interactive shell when entering code for an indented code block or within
a pair of matching left and right delimiters (parentheses, square brackets or curly braces).

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilites
which can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library #b2to3 ; a standalone entry point is provided as
Tools/scripts/2to3 . See2to3 - Automated Python 2 to 3 code translat{@gm The Python Library
Referencp

abstract base classAbstract Base Classes (abbreviated ABCs) complemienit-typingby providing a way to
define interfaces when other techniques Iiasattr() would be clumsy. Python comes with many
builtin ABCs for data structures (in thellections module), numbers (in theumbers module), and
streams (in thé@ module). You can create your own ABC with tabc module.

argument A value passed to a function or method, assigned to a named local variable in the function body. A
function or method may have both positional arguments and keyword arguments in its definition. Positional
and keyword arguments may be variable-lengtraccepts or passes (if in the function definition or call)
several positional arguments in a list, white does the same for keyword arguments in a dictionary.

Any expression may be used within the argument list, and the evaluated value is passed to the local variable.

attribute A value associated with an object which is referenced by name using dotted expressions. For example,
if an objecto has an attribute it would be referenced asa

BDFL Benevolent Dictator For Life, a.k.&uido van RossupPython’s creator.

bytecode Python source code is compiled into bytecode, the internal representation of a Python program in the
interpreter. The bytecode is also cachedyc and.pyo files so that executing the same file is faster the
second time (recompilation from source to bytecode can be avoided). This “intermediate language” is said
to run on avirtual machinethat executes the machine code corresponding to each bytecode.

class A template for creating user-defined objects. Class definitions normally contain method definitions which
operate on instances of the class.

classic classAny class which does not inherit froobject . Seenew-style classClassic classes will be removed
in Python 3.0.

coercion The implicit conversion of an instance of one type to another during an operation which involves two
arguments of the same type. For examjié(3.15) converts the floating point number to the inte-
ger 3, but in 3+4.5 , each argument is of a different type (one int, one float), and both must be con-
verted to the same type before they can be added or it will rai$gpgError . Coercion between
two operands can be performed with th@erce builtin function; thus,3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) and results inoperator.add(3.0, 4.5) . Without co-
ercion, all arguments of even compatible types would have to be normalized to the same value by the
programmer, e.gfloat(3)+4.5 rather than jusB+4.5 .

123

http://www.python.org/~{}guido/

The Python/C API, Release 2.6.2

complex number An extension of the familiar real number system in which all numbers are expressed as a sum
of a real part and an imaginary part. Imaginary numbers are real multiples of the imaginary unit (the square
root of -1), often writteni in mathematics oj in engineering. Python has builtin support for complex
numbers, which are written with this latter notation; the imaginary part is written vyitbudfix, e.g.,3+1j .
To get access to complex equivalents of tieth module, usemath . Use of complex numbers is a fairly
advanced mathematical feature. If you're not aware of a need for them, it's almost certain you can safely
ignore them.

context manager An object which controls the environment seen inwith statement by defining
enter () and__exit () methods. SeBEP 343

CPython The canonical implementation of the Python programming language. The term “CPython” is used in
contexts when necessary to distinguish this implementation from others such as Jython or IronPython.

decorator A function returning another function, usually applied as a function transformation using the
@wrapper syntax. Common examples for decoratorsdassmethod() andstaticmethod()

The decorator syntax is merely syntactic sugar, the following two function definitions are semantically
equivalent:

def f(...):
f = éféticmethod(f)

@staticmethod
def f(...):

Seethe documentation for function definitigim The Python Language Referehéar more about decora-
tors.

descriptor Any new-styleobject which defines the methodsget () , set () ,or__delete ()
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, usinga.bto get, set or delete an attribute looks up the object naiadhe class dictionary foa,
but if b is a descriptor, the respective descriptor method gets called. Understanding descriptors is a key to
a deep understanding of Python because they are the basis for many features including functions, methods,
properties, class methods, static methods, and reference to super classes.

For more information about descriptors’ methods, Iseglementing Descriptorén The Python Language
Reference

dictionary An associative array, where arbitrary keys are mapped to values. The dis¢ ofclosely resembles
that forlist , but the keys can be any object with ahash__ () function, not just integers. Called a
hash in Perl.

docstring A string literal which appears as the first expression in a class, function or module. While ignored when
the suite is executed, it is recognized by the compiler and put into thec__ attribute of the enclosing
class, function or module. Since it is available via introspection, it is the canonical place for documentation
of the object.

duck-typing A pythonic programming style which determines an object’s type by inspection of its method or
attribute signature rather than by explicit relationship to some type object (“If it looks like a duck and
quacks like a duck, it must be a duck.”) By emphasizing interfaces rather than specific types, well-designed
code improves its flexibility by allowing polymorphic substitution. Duck-typing avoids tests tgieg)
or isinstance() . (Note, however, that duck-typing can be complemented with abstract base classes.)
Instead, it typically employbkasattr() tests olEAFP programming.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of maényy andexcept statements. The technique contrasts with the
LBYLstyle common to many other languages such as C.

124 Appendix A. Glossary

http://www.python.org/dev/peps/pep-0343

The Python/C API, Release 2.6.2

expression A piece of syntax which can be evaluated to some value. In other words, an expression is an ac-
cumulation of expression elements like literals, names, attribute access, operators or function calls which
all return a value. In contrast to many other languages, not all language constructs are expressions. There
are alsostatemerg which cannot be used as expressions, sugbrias or if . Assignments are also
statements, not expressions.

extension module A module written in C or C++, using Python’s C API to interact with the core and with user
code.

finder An object that tries to find thdoader for a module. It must implement a method named
find_module() . SeePEP 302for details.

function A series of statements which returns some value to a caller. It can also be passed zero or more arguments
which may be used in the execution of the body. Seeaigomentandmethod

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expressiod currently evaluates t@. If the module
in which it is executed had enabléde divisionby executing:

from _ future_ import division

the expressioil/4 would evaluate t@.75 . By importing the _future_ module and evaluating its
variables, you can see when a new feature was first added to the language and when it will become the
default:

>>> import _ future__
>>> future__.division
_Feature((2, 2, 0, 'alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

garbage collection The process of freeing memory when it is not used anymore. Python performs garbage col-
lection via reference counting and a cyclic garbage collector that is able to detect and break reference cycles.

generator A function which returns an iterator. It looks like a normal function except that values are returned to
the caller using gield statement instead ofraturn statement. Generator functions often contain one
or morefor orwhile loops whichyield elements back to the caller. The function execution is stopped
at theyield keyword (returning the result) and is resumed there when the next element is requested by
calling thenext() method of the returned iterator.

generator expressionAn expression that returns a generator. It looks like a normal expression followed by a
for expression defining a loop variable, range, and an optibnaxpression. The combined expression
generates values for an enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares O, 1, 4, ... 81
285

GIL Seeglobal interpreter lock

global interpreter lock The lock used by Python threads to assure that only one thread executeSrytthen
virtual machineat a time. This simplifies the CPython implementation by assuring that no two processes can
access the same memory at the same time. Locking the entire interpreter makes it easier for the interpreter to
be multi-threaded, at the expense of much of the parallelism afforded by multi-processor machines. Efforts
have been made in the past to create a “free-threaded” interpreter (one which locks shared data at a much
finer granularity), but so far none have been successful because performance suffered in the common single-
processor case.

hashable An object is hashableif it has a hash value which never changes during its lifetime (it needs a
__hash__ () method), and can be compared to other objects (it needsen () or__cmp_ ()
method). Hashable objects which compare equal must have the same hash value.

Hashability makes an object usable as a dictionary key and a set member, because these data structures use
the hash value internally.

All of Python’s immutable built-in objects are hashable, while no mutable containers (such as lists or dic-
tionaries) are. Objects which are instances of user-defined classes are hashable by default; they all compare
unequal, and their hash value is thielif)

125

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.2

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
which ships with the standard distribution of Python. Good for beginners, it also serves as clear example
code for those wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable An object with a fixed value. Immutable objects include numbers, strings and tuples. Such an object
cannot be altered. A new object has to be created if a different value has to be stored. They play an important
role in places where a constant hash value is needed, for example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the exprekiién currently
evaluates t@ in contrast to th@.75 returned by float division. Also calleitbor division When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (suchfesat), the result will be coerced (seeercior)
to a common type. For example, an integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using/theoperator instead of the operator. See also
future_.

importer An object that both finds and loads a module; botméderandloaderobject.

interactive Python has an interactive interpreter which means you can enter statements and expressions at the
interpreter prompt, immediately execute them and see their results. Just fitheh with no arguments
(possibly by selecting it from your computer’s main menu). It is a very powerful way to test out new ideas
or inspect modules and packages (remenhiedp(x)).

interpreted Python is an interpreted language, as opposed to a compiled one, though the distinction can be
blurry because of the presence of the bytecode compiler. This means that source files can be run directly
without explicitly creating an executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs generally also run more slowly. See
alsointeractive

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (suchles , str , andtuple) and some non-sequence types liket andfile and
objects of any classes you define with ariter__ () or __getitem__ () method. Iterables can be
used in &or loop and in many other places where a sequence is neeigll (, map() , ...). When an
iterable object is passed as an argument to the builtin funiteof) , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to calliter() or deal with iterator objects yourself. Ther statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. Séeratso,
sequenceandgenerator

iterator An object representing a stream of data. Repeated calls to the itera¢atld method return suc-
cessive items in the stream. When no more data are availaBtepdteration exception is raised
instead. At this point, the iterator object is exhausted and any further callstext§ method just raise
Stoplteration again. Iterators are required to have arter__ () method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code which attempts multiple iteration passes. A container object (such
as alist) produces a fresh new iterator each time you pass it titéh@ function or use it in dor
loop. Attempting this with an iterator will just return the same exhausted iterator object used in the previous
iteration pass, making it appear like an empty container.

More information can be found iterator Typegin The Python Library Referenge
keyword argument Arguments which are preceded withvariable_name= in the call. The variable name

designates the local name in the function to which the value is assighed used to accept or pass a
dictionary of keyword arguments. Sesjument

lambda An anonymous inline function consisting of a singbeoressiorwhich is evaluated when the function is
called. The syntax to create a lambda functiolammbda [arguments]: expression

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theAFP approach and is characterized by the presence of iharsgatements.

list A built-in PythonsequenceDespite its name it is more akin to an array in other languages than to a linked
list since access to elements are O(1).

126 Appendix A. Glossary

The Python/C API, Release 2.6.2

list comprehension A compact way to process all or part of the elements in a sequence and return a list with the
results. result = ["0x%02x" % x for x in range(256) if x % 2 == 0] generates a
list of strings containing even hex numbers (0x..) in the range from 0 to 255if Tlbause is optional. If
omitted, all elements imlange(256) are processed.

loader An object that loads a module. It must define a method ndwesti module() . A loader is typically
returned by dinder. SeePEP 302for details.

mapping A container object (such adict) which supports arbitrary key lookups using the special method
__getitem__ ()

metaclass The class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

More information can be found iBustomizing class creatigiin The Python Language Referehce

method A function which is defined inside a class body. If called as an attribute of an instance of that class, the
method will get the instance object as its fissument(which is usually calledelf). Seefunctionand
nested scope

mutable Mutable objects can change their value but keep td€ir . See alsommutable

named tuple Any tuple-like class whose indexable elements are also accessible using named attributes (for ex-
ample time.localtime() returns a tuple-like object where tlgearis accessible either with an index
such ag[0] or with a named attribute liketm_year).

A named tuple can be a built-in type such t@®e.struct_time , or it can be created with a
regular class definition. A full featured named tuple can also be created with the factory function
collections.namedtuple() . The latter approach automatically provides extra features such as a
self-documenting representation likenployee(name='jones’, title="programmer’)

namespaceThe place where a variable is stored. Namespaces are implemented as dictionaries. There are the
local, global and builtin namespaces as well as nested namespaces in objects (in methods). Namespaces
support modularity by preventing naming conflicts. For instance, the functidmsiltin__.open()
andos.open() are distinguished by their namespaces. Namespaces also aid readability and maintain-
ability by making it clear which module implements a function. For instance, writimglom.seed()
or itertools.izip() makes it clear that those functions are implemented byrémelom and
itertools modules, respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class which inherits fronobject . This includes all built-in types likéist anddict
Only new-style classes can use Python’s newer, versatile features Bkats ~ , descriptors, properties,
and__ getattribute__ ()

More information can be found iNew-style and classic classg@s The Python Language Referehce

object Any data with state (attributes or value) and defined behavior (methods). Also the ultimate base class of
anynew-style class

positional argument The arguments assigned to local names inside a function or method, determined by the
order in which they were given in the call. is used to either accept multiple positional arguments (when
in the definition), or pass several arguments as a list to a functiorar§esent

Python 3000 Nickname for the next major Python version, 3.0 (coined long ago when the release of version 3
was something in the distant future.) This is also abbreviated “Py3K”.

127

http://www.python.org/dev/peps/pep-0302

The Python/C API, Release 2.6.2

Pythonic An idea or piece of code which closely follows the most common idioms of the Python language,
rather than implementing code using concepts common to other languages. For example, a common idiom
in Python is to loop over all elements of an iterable usirfgra statement. Many other languages don't
have this type of construct, so people unfamiliar with Python sometimes use a numerical counter instead:

for i in range(len(food))
print food][i]

As opposed to the cleaner, Pythonic method:

for piece in food:
print piece

reference count The number of references to an object. When the reference count of an object drops to zero,
it is deallocated. Reference counting is generally not visible to Python code, but it is a key element of the
CPythonimplementation. Theys module defines getrefcount() function that programmers can
call to return the reference count for a particular object.

__slots__ A declaration inside aew-style clasthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory-critical application.

sequenceAn iterable which supports efficient element access using integer indices via thetitem__ ()
special method and defineden() method that returns the length of the sequence. Some built-in se-
guence types arést |, str , tuple , andunicode . Note thatdict also supports getitem__ ()
and__len__ () , butis considered a mapping rather than a sequence because the lookups use arbitrary
immutablekeys rather than integers.

slice An object usually containing a portion of sequence A slice is created using the subscript notation,
[with colons between numbers when several are given, such\agiable_name[1:3:5] . The
bracket (subscript) notation usskce objects internally (or in older versions, getslice () and
__setslice_ ()).

special method A method that is called implicitly by Python to execute a certain operation on a type, such as
addition. Such methods have names starting and ending with double underscores. Special methods are
documented irspecial method namém The Python Language Referehce

statement A statement is part of a suite (a “block” of code). A statement is eithexaressioror a one of several
constructs with a keyword, such #s, while or print

triple-quoted string A string which is bound by three instances of either a quotation mark (“) or an apostrophe
(). While they don't provide any functionality not available with single-quoted strings, they are useful for a
number of reasons. They allow you to include unescaped single and double quotes within a string and they
can span multiple lines without the use of the continuation character, making them especially useful when
writing docstrings.

type The type of a Python object determines what kind of object it is; every object has a type. An object’s type is
accessible asits class__ attribute or can be retrieved withipe(obj)

virtual machine A computer defined entirely in software. Python’s virtual machine executésytheodemitted
by the bytecode compiler.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typimgport this " at the interactive prompt.

128 Appendix A. Glossary

APPENDIX
B

ABOUT THESE DOCUMENTS

These documents are generated fref@tructured Texsources bysphinx a document processor specifically writ-
ten for the Python documentation.

In the online version of these documents, you can submit comments and suggest changes directly on the docu-
mentation pages.

Development of the documentation and its toolchain takes place odatt®@python.orgnailing list. We're
always looking for volunteers wanting to help with the docs, so feel free to send a mail there!

Many thanks go to:

* Fred L. Drake, Jr., the creator of the original Python documentation toolset and writer of much of the
content;

« theDocutilsproject for creating reStructuredText and the Docutils suite;

« Fredrik Lundh for hisAlternative Python Referengaroject from which Sphinx got many good ideas.

SeeReporting Bugs in Pythofor information how to report bugs in Python itself.

B.1 Contributors to the Python Documentation

This section lists people who have contributed in some way to the Python documentation. It is probably
not complete — if you feel that you or anyone else should be on this list, please let us know (send email to
docs@python.ong and we’ll be glad to correct the problem.

Aahz, Michael Abbott, Steve Alexander, Jim Ahlstrom, Fred Allen, A. Amoroso, Pehr Anderson, Oliver Andrich,
Heidi Annexstad, Jesus Cea Avion, Daniel Barclay, Chris Barker, Don Bashford, Anthony Baxter, Alexander
Belopolsky, Bennett Benson, Jonathan Black, Robin Boerdijk, Michal Bozon, Aaron Brancotti, Georg Brandl,
Keith Briggs, lan Bruntlett, Lee Busby, Lorenzo M. Catucci, Carl Cerecke, Mauro Cicognini, Gilles Civario,
Mike Clarkson, Steve Clift, Dave Cole, Matthew Cowles, Jeremy Craven, Andrew Dalke, Ben Darnell, L. Peter
Deutsch, Robert Donohue, Fred L. Drake, Jr., Josip Dzolonga, Jeff Epler, Michael Ernst, Blame Andy Eskilsson,
Carey Evans, Martijn Faassen, Carl Feynman, Dan Finnie, Herndn Martinez Foffani, Stefan Franke, Jim Ful-
ton, Peter Funk, Lele Gaifax, Matthew Gallagher, Gabriel Genellina, Ben Gertzfield, Nadim Ghaznavi, Jonathan
Giddy, Shelley Gooch, Nathaniel Gray, Grant Griffin, Thomas Guettler, Anders Hammarquist, Mark Hammond,
Harald Hanche-Olsen, Manus Hand, Gerhard Haring, Travis B. Hartwell, Tim Hatch, Janko Hauser, Thomas
Heller, Bernhard Herzog, Magnus L. Hetland, Konrad Hinsen, Stefan Hoffmeister, Albert Hofkamp, Gregor Hof-
fleit, Steve Holden, Thomas Holenstein, Gerrit Holl, Rob Hooft, Brian Hooper, Randall Hopper, Michael Hudson,
Eric Huss, Jeremy Hylton, Roger Irwin, Jack Jansen, Philip H. Jensen, Pedro Diaz Jimenez, Kent Johnson, Lucas
de Jonge, Andreas Jung, Robert Kern, Jim Kerr, Jan Kim, Greg Kochanski, Guido Kollerie, Peter A. Koren, Daniel
Kozan, Andrew M. Kuchling, Dave Kuhlman, Erno Kuusela, Thomas Lamb, Detlef Lannert, Piers Lauder, Glyph
Lefkowitz, Robert Lehmann, Marc-André Lemburg, Ross Light, UIf A. Lindgren, Everett Lipman, Mirko Liss,
Martin von Léwis, Fredrik Lundh, Jeff MacDonald, John Machin, Andrew Macintyre, Vladimir Marangozov,
Vincent Marchetti, Laura Matson, Daniel May, Rebecca McCreary, Doug Mennella, Paolo Milani, Skip Monta-
naro, Paul Moore, Ross Moore, Sjoerd Mullender, Dale Nagata, Ng Pheng Siong, Koray Oner, Tomas Oppelstrup,
Denis S. Otkidach, Zooko O’'Whielacronx, Shriphani Palakodety, William Park, Joonas Paalasmaa, Harri Pasanen,

129

http://docutils.sf.net/rst.html
mailto:docs@python.org
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm
mailto:docs@python.org

The Python/C API, Release 2.6.2

Bo Peng, Tim Peters, Benjamin Peterson, Christopher Petrilli, Justin D. Pettit, Chris Phoenix, Francois Pinard,
Paul Prescod, Eric S. Raymond, Edward K. Ream, Sean Reifschneider, Bernhard Reiter, Armin Rigo, Wes Rishel,
Armin Ronacher, Jim Roskind, Guido van Rossum, Donald Wallace Rouse I, Mark Russell, Nick Russo, Chris
Ryland, Constantina S., Hugh Sasse, Bob Savage, Scott Schram, Neil Schemenauer, Barry Scott, Joakim Sern-
brant, Justin Sheehy, Charlie Shepherd, Michael Simcich, lonel Simionescu, Michael Sloan, Gregory P. Smith,
Roy Smith, Clay Spence, Nicholas Spies, Tage Stabell-Kulo, Frank Stajano, Anthony Starks, Greg Stein, Peter
Stoehr, Mark Summerfield, Reuben Sumner, Kalle Svensson, Jim Tittsler, David Turner, Ville Vainio, Martijn
Vries, Charles G. Waldman, Greg Ward, Barry Warsaw, Corran Webster, Glyn Webster, Bob Weiner, Eddy Wel-
bourne, Jeff Wheeler, Mats Wichmann, Gerry Wiener, Timothy Wild, Collin Winter, Blake Winton, Dan Wolfe,
Steven Work, Thomas Wouters, Ka-Ping Yee, Rory Yorke, Moshe Zadka, Milan Zamazal, Cheng Zhang.

Itis only with the input and contributions of the Python community that Python has such wonderful documentation
— Thank You!

130 Appendix B. About these documents

APPENDIX
C

HISTORY AND LICENSE

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.upin Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.con)! In 2001, the Python Software Foundation (PSF,teg&//www.python.org/psj/was

formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (s&p://www.opensource.ordor the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

131

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

The Python/C API, Release 2.6.2

Release Derived from | Year Owner GPL compatible?
0.9.0thru1.2| n/a 1991-1995| CWI yes
1.3thrul.5.2| 1.2 1995-1999| CNRI yes
1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com| no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.11 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 222 2002-2003| PSF yes
2.3 222 2002-2003| PSF yes
2.3.1 2.3 2002-2003| PSF yes
2.3.2 23.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
234 233 2004 PSF yes
2.35 234 2005 PSF yes
2.4 2.3 2004 PSF yes
2.4.1 2.4 2005 PSF yes
2.4.2 24.1 2005 PSF yes
2.4.3 2.4.2 2006 PSF yes
244 243 2006 PSF yes
2.5 24 2006 PSF yes
251 25 2007 PSF yes
252 251 2008 PSF yes
2.5.3 252 2008 PSF yes
2.6 25 2008 PSF yes
26.1 2.6 2008 PSF yes

Note: GPL-compatible doesn’'t mean that we're distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.6.2

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.6.2 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.6.2 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copyright © 2001-2009 Python Software
Foundation; All Rights Reserved” are retained in Python 2.6.2 alone or in any derivative version prepared
by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.6.2 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.6.2.

132 Appendix C. History and License

The Python/C API, Release 2.6.2

4. PSF is making Python 2.6.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.6.2 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.6.2 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.6.2, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.6.2, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0 BEOPEN PYTHON OPEN SOURCE LICENSE
AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available étttp://www.pythonlabs.com/logos.htmay be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

C.2. Terms and conditions for accessing or otherwise using Python 133

http://www.pythonlabs.com/logos.html

The Python/C API, Release 2.6.2

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyright © 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRISHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 Copyright © 1991 - 1995,
Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF

134 Appendix C. History and License

http://hdl.handle.net/1895.22/1013

The Python/C API, Release 2.6.2

USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and Acknowledgements for Incorporated Software

This section is an incomplete, but growing list of licenses and acknowledgements for third-party software incor-
porated in the Python distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download frdttp://www.math.keio.ac.jp/matu-
moto/MT2002/emt19937ar.html. The following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. The names of its contributors may not be used to endorse or promote
products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

C.3. Licenses and Acknowledgements for Incorporated Software 135

http://www.math.keio.ac.jp/

The Python/C API, Release 2.6.2

C.3.2 Sockets

Thesocket module uses the functiongetaddrinfo() ,andgetnameinfo() , which are coded in separate
source files from the WIDE Projedtitp://www.wide.ad.jp/

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS “AS IS” AND
GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GAI_ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

C.3.3 Floating point exception control

The source for thépectl module includes the following notice:

/ Copyright (c) 1996. \
The Regents of the University of California. |
All rights reserved. [

Permission to use, copy, modify, and distribute this software for [
any purpose without fee is hereby granted, provided that this en- |
tire notice is included in all copies of any software which is or |
includes a copy or modification of this software and in all |
copies of the supporting documentation for such software. |

This work was produced at the University of California, Lawrence |
Livermore National Laboratory under contract no. W-7405-ENG-48 |
between the U.S. Department of Energy and The Regents of the |
University of California for the operation of UC LLNL. |

DISCLAIMER |
This software was prepared as an account of work sponsored by an |

agency of the United States Government. Neither the United States |
Government nor the University of California nor any of their em- |

136 Appendix C. History and License

http://www.wide.ad.jp/

The Python/C API, Release 2.6.2

ployees, makes any warranty, express or implied, or assumes any |
liability or responsibility for the accuracy, completeness, or |
usefulness of any information, apparatus, product, or process |
disclosed, or represents that its wuse would not infringe |
privately-owned rights. Reference herein to any specific commer- |
cial products, process, or service by trade name, trademark, |
manufacturer, or otherwise, does not necessarily constitute or |
imply its endorsement, recommendation, or favoring by the United |
States Government or the University of California. The views and |
opinions of authors expressed herein do not necessarily state or |
reflect those of the United States Government or the University |
of California, and shall not be used for advertising or product |

\ endorsement purposes. /

C.3.4 MD5 message digest algorithm

The source code for thmd5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved.

This software is provided 'as-is’, without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://lwww.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test suite
(section A.5) but excluding the rest of Appendix A. It does not include
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change history
that follows (in reverse chronological order):

2002-04-13 Ipd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 1321;
now handles byte order either statically or dynamically.

C.3. Licenses and Acknowledgements for Incorporated Software 137

The Python/C API, Release 2.6.2

1999-11-04 Ipd Edited comments slightly for automatic TOC extraction.
1999-10-18 Ipd Fixed typo in header comment (ansi2knr rather than md5);
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.
1999-05-03 Ipd Original version.

C.3.5 Asynchronous socket services

Theasynchat andasyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and

its documentation for any purpose and without fee is hereby

granted, provided that the above copyright notice appear in all

copies and that both that copyright notice and this permission

notice appear in supporting documentation, and that the name of Sam
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior

permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN

NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,

NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

TheCookie module contains the following notice:

Copyright 2000 by Timothy O’Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy O’Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, written
prior permission.

Timothy O’Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O’'Malley BE LIABLE FOR

ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

138 Appendix C. History and License

The Python/C API, Release 2.6.2

C.3.7 Profiling
Theprofile andpstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python software
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby granted,
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software

without specific, written prior permission. This permission is

explicitly restricted to the copying and modification of the software

to remain in Python, compiled Python, or other languages (such as C)
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

Thetrace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rights...
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko O’'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights reserved.

Permission to use, copy, modify, and distribute this Python software and
its associated documentation for any purpose without fee is hereby
granted, provided that the above copyright notice appears in all copies,
and that both that copyright notice and this permission notice appear in
supporting documentation, and that the name of neither Automatrix,
Bioreason or Mojam Media be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.

C.3. Licenses and Acknowledgements for Incorporated Software 139

The Python/C API, Release 2.6.2

C.3.9 UUencode and UUdecode functions

Theuu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.
All Rights Reserved
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. The C
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

Thexmirpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and

its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicity
pertaining to distribution of the software without specific, written

prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT-
ABILITY AND FITNESS. IN NO EVENT SHALL SECRET LABS AB OR THE AUTHOR
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

140 Appendix C. History and License

The Python/C API, Release 2.6.2

C.3.11 test_epoll

Thetest_epoll contains the following notice:

Copyright (c) 2001-2006 Twisted Matrix Laboratories.

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS 1S", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION

OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

C.3.12 Select kqueue

Theselect and contains the following notice for the kqueue interface:

Copyright (c) 2000 Doug White, 2006 James Knight, 2007 Christian Heimes
All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS” AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

C.3. Licenses and Acknowledgements for Incorporated Software 141

The Python/C API, Release 2.6.2

142 Appendix C. History and License

APPENDIX
D

COPYRIGHT

Python and this documentation is:

Copyright © 2001-2008 Python Software Foundation. All rights reserved.

Copyright © 2000 BeOpen.com. All rights reserved.

Copyright © 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright © 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

SeeHistory and Licenséor complete license and permissions information.

143

The Python/C API, Release 2.6.2

144 Appendix D. Copyright

Symbols

..,123
_Pylmport_FindExtension (C functior)
_Pylmport_Fini (C function)26
__Pylmport_FixupExtension (C functior§6
_Pylmport_Init (C function)26
_PyObject_Del (C functionp9
PyObject GC_TRACK (C function},20
PyObject GC_UNTRACK (C function},20
_PyObject_New (C functionp9
_PyObject_NewVar (C functionp9
_PyString_Resize (C functiorj3
_PyTuple_Resize (C functior§9
_Py_NoneStruct (C variable)p0
_Py_c_diff (C function) 54
_Py ¢ _neg (C functionh4
_Py c_pow (C function$4
_Py c_prod (C functiong4
_Py _c_quot (C functionh4
_Py _c_sum (C functionp4
__all__ (package variable)4
__builtin_

module,9, 85
__dict__ (module attributey,6
__doc___ (module attributej6
__file__ (module attribute),6, 77
__ future__ 125
__import__

built-in function, 25
__main__

module,9, 85
__name__ (module attribute)6
__slots__ 128
_frozen (C type)26
_inittab (C type)27
_ob_next (C member),04
_ob_prev (C member),04
>>> 123
2t03,123

A

abort(),24
abs

built-in function,42
abstract base class23

apply

INDEX

built-in function, 39
argument123
argv (in module sysy38
attribute,123

B

BaseException (built-in exceptior)2
BDFL, 123
buffer
object,67
buffer interfacep7
BufferType (in module typesh7
built-in function
__import__ 25
abs,42
apply,39
bytes,38
classmethod] 02
cmp, 38
coerce43
compile,25
divmod, 41
float,44
hash40, 107
int, 43
len, 40, 44, 46, 69, 72, 83
long,43
pow, 41, 43
reload,25
repr,38, 107
staticmethod102
str, 38
tuple,45, 70
type,40
unicode,38
bytearray
object,55
bytecode 123
bytes
built-in function, 38

C

calloc(),95
charbufferproc (C type),19
class, 123

object,73

145

The Python/C API, Release 2.6.2

classic class] 23
classmethod

built-in function, 102
ClassType (in module typesj)3
cleanup function24
close() (in module osB6
cmp

built-in function, 38
CO_FUTURE_DIVISION (C variable). 4
CObject

object,79
coerce

built-in function,43
coercion,123
compile

built-in function, 25
complex number]23

object,54
context managef,24
copyright (in module sysB7
CPython,124

D

decorator124
descriptor124
dictionary,124

object,70
DictionaryType (in module typesy0
DictType (in module types);0
divmod

built-in function,41
docstring,124
duck-typing,124

E

EAFP,124
environment variable
exec_prefix3, 4
PATH, 9
prefix, 3, 4
PYTHONDUMPREFS 105
PYTHONHOME,9, 88
PYTHONPATH,9
EOFError (built-in exception)/6
errno,89
exc_info() (in module sys)]
exc_traceback (in module sys),17
exc_type (in module sysJ, 17
exc_value (in module sysjy, 17
exceptions
module,9
exec_prefix3, 4
executable (in module sys)7
exit(), 24
expression]124
extension modulel 25

F
file
object,75
FileType (in module typesy,5
finder,125
float
built-in function, 44
floating point
object,53
FloatType (in modules types)3
fopen(),75
free(),95
freeze utility,26
frozenset
object,83
function, 125
object,73

G

garbage collectior,25
generatorl25

generator expressioh25
GIL, 125

global interpreter lock38, 125

H

hash
built-in function,40, 107
hashable]l25

IDLE, 125
ihooks

module,25
immutable, 126
importer,126
incr_item(),8
inquiry (C type), 121
instance

object,73
int

built-in function,43
integer

object,50
integer division, 126
interactive, 126
interpreted;126
interpreter lock38
IntType (in modules typesh0
iterable, 126
iterator,126

K

Keyboardinterrupt (built-in exception}0
keyword argument].26

L
lambda,126

146

Index

The Python/C API, Release 2.6.2

LBYL, 126
len

built-in function, 40, 44, 46, 69, 72, 83
list, 126

object,69
list comprehension,26
ListType (in module types}9
loader,127
lock, interpreter38
long

built-in function,43
long integer

object,52
LONG_MAX, 51,53
LongType (in modules types)2

M

main(),86, 88
malloc(),95
mapping,127

object,70
metaclass]27
METH_CLASS (built-in variable);102
METH_COEXIST (built-in variable)102
METH_KEYWORDS (built-in variable)101
METH_NOARGS (built-in variable)101
METH_O (built-in variable) 101
METH_OLDARGS (built-in variable) 101
METH_STATIC (built-in variable), 102
METH_VARARGS (built-in variable),101
method,127

object,74
MethodType (in module types}3, 74
module

__builtin__,9, 85

__main__ 9,85

exceptions9

ihooks,25

object,76

rexec,25

search pathy, 85, 87

signal,20

sys,9, 85

thread 90
modules (in module sys}4, 85
ModuleType (in module types),6
mp_ass_subscript (C membet),8
mp_length (C member},17
mp_subscript (C member)18
mutable, 127

N

named tuple127
namespace,27
nb_coerce (C member),17
nested scopée,27
new-style classl27

None

object,50
numeric
object,50

O

ob_refent (C member),05
ob_size (C member)},05
ob_type (C member),05
object,127
buffer, 67
bytearray55
class,’3
CObject,79
complex numberb4
dictionary,70
file, 75
floating point,53
frozenset33
function,73
instance,/3
integer,50
list, 69
long integerb2
mapping,70
method,74
module,76
None,50
numeric,50
sequence;5
set,83
string,56
tuple,68
type,4, 49
OverflowError (built-in exception),3

P

package variable

_all__,24
PATH, 9
path

module searchy, 85, 87
path (in module sys}p, 85, 87
platform (in module sys)7
positional argument,27
pow

built-in function,41, 43
prefix, 3, 4
Py_AtExit (C function),24
Py BEGIN_ALLOW_THREADSZ89
Py _BEGIN_ALLOW_THREADS (C macrop1
Py_BLOCK_THREADS (C macrop1
Py_BuildValue (C function)32
Py_CLEAR (C function),15
Py_CompileString (C function),3
Py_CompileString()13, 14
Py_CompileStringFlags (C functior)3
Py _complex (C typeh4
Py_DECREF (C function)}5

Index

147

The Python/C API, Release 2.6.2

Py_DECREF()4

Py END_ALLOW_THREADSZ39

Py END_ALLOW_THREADS (C macrop1

Py END_OF_BUFFER (C variable)/

Py_EndInterpreter (C functiony6

Py eval_input (C variable),3

Py_Exit (C function) 24

Py False (C variableh1

Py_FatalError (C functionR4

Py_FatalError()88

Py_FdIsiInteractive (C function,3

Py _file_input (C variable)] 3

Py_Finalize (C function)35

Py_Finalize() 24, 85, 86

Py_FindMethod (C function),03

Py_GetBuildInfo (C function)38

Py _GetBuildNumber (C functiong7

Py _GetCompiler (C functiong7

Py_GetCopyright (C functiong7

Py_GetExecPrefix (C functionds

Py GetExecPrefix(

Py _GetPath (C function®7

Py GetPath()9, 86

Py_GetPlatform (C functiong7

Py_GetPrefix (C function6

Py_GetPrefix()9

Py_GetProgramFullPath (C functio)/

Py _GetProgramFullPath(,

Py_GetProgramName (C functio$

Py_GetPythonHome (C functior§8

Py_GetVersion (C functiong7

Py _INCREF (C function)15

Py_INCREF()4

Py_Initialize (C function)35

Py _Initialize(),9, 86, 90

Py _InitializeEx (C function)85

Py_InitModule (C function)99

Py _InitModule3 (C function)100

Py _InitModule4 (C function)100

Py_lIsInitialized (C function)35

Py _lsInitialized() 9

Py_Main (C function),11

Py_NewiInterpreter (C function$5

Py _None (C variable0

Py PRINT_RAW,76

Py_RETURN_FALSE (C macrojhl

Py _RETURN_NONE (C macroh0

Py _RETURN_TRUE (C macrojl

Py_SetProgramName (C functioBf

Py _SetProgramNameg, 85-87

Py_SetPythonHome (C functior§3

Py_single_input (C variable)4

PY_SSIZE_T_MAX,53

Py_TPFLAGS_BASETYPE (built-in variable},09

Py_TPFLAGS_CHECKTYPES (built-in variable),
109

Py_TPFLAGS_DEFAULT (built-in variable),09

Py _TPFLAGS_GC (built-in variable),09

Py TPFLAGS HAVE_CLASS (built-in variable),
109

Py_TPFLAGS_HAVE_GC (built-in variable},09

Py TPFLAGS_ HAVE_GETCHARBUFFER (built-
in variable),108 119

Py _TPFLAGS_HAVE_INPLACEOPS
variable),109

Py_TPFLAGS_HAVE_ITER (built-in variable},09

Py TPFLAGS_HAVE_RICHCOMPARE (built-in
variable),109

Py _TPFLAGS_HAVE_SEQUENCE_IN
variable),108

Py TPFLAGS HAVE_WEAKREFS (built-in vari-
able),109

Py TPFLAGS_HEAPTYPE (built-in variable}09

Py _TPFLAGS_READY (built-in variable),09

Py_TPFLAGS_READYING (built-in variable),09

Py _tracefunc (C typep?2

Py _True (C variable)1

Py _UNBLOCK_THREADS (C macrop1

Py_UNICODE (C type)59

Py_UNICODE_ISALNUM (C function)50

Py_UNICODE_ISALPHA (C function)s0

Py _UNICODE_ISDECIMAL (C function)g0

Py_UNICODE_ISDIGIT (C function)60

Py_UNICODE_ISLINEBREAK (C function)59

Py_UNICODE_ISLOWER (C functiong9

Py _UNICODE_ISNUMERIC (C function);0

Py_UNICODE_ISSPACE (C function}9

Py_UNICODE_ISTITLE (C function)59

Py_UNICODE_ISUPPER (C function$9

Py_UNICODE_TODECIMAL (C function)60

Py_UNICODE_TODIGIT (C function)60

Py_UNICODE_TOLOWER (C function}0

Py_UNICODE_TONUMERIC (C function}0

Py _UNICODE_TOTITLE (C function)g0

Py_UNICODE_TOUPPER (C functiony0

Py_VaBuildValue (C function)33

Py_VISIT (C function),120

Py_XDECREF (C function)15

Py XDECREF()8

Py_XINCREF (C function).l5

PyAnySet_Check (C function$3

PyAnySet CheckExact (C functiord3

PyArg_Parse (C functiongl

PyArg_ParseTuple (C functionj,L

PyArg_ParseTupleAndKeywords (C functioB),

PyArg_UnpackTuple (C functiong1

PyArg_VaParse (C functionpl

PyArg_VaParseTupleAndKeywords (C functio8),

PyBool_Check (C functionf1

PyBool_FromLong (C functionh1

PyBuffer_Check (C function}y7

PyBuffer FromMemory (C function}38

PyBuffer_FromObject (C function}8

PyBuffer FromReadWriteMemory (C functior§)3

PyBuffer_FromReadWriteObject (C functio®)

PyBuffer_New (C function)68

(built-in

(built-in

148

Index

The Python/C API, Release 2.6.2

PyBuffer_Type (C variable)y7
PyBufferObject (C type)p7
PyBufferProcsg7

PyBufferProcs (C type) 18

PyByteArray AS_STRING (C function)6
PyByteArray_AsString (C functionj6
PyByteArray_Check (C functionh5
PyByteArray CheckExact (C functiorfb
PyByteArray_Concat (C function}6
PyByteArray FromObject (C function)b
PyByteArray FromStringAndSize (C functiory,
PyByteArray GET_SIZE (C function)6
PyByteArray_Resize (C function)6
PyByteArray_Size (C function5
PyByteArray_Type (C variable}h5
PyByteArrayObject (C typek5
PyCallable_Check (C function39
PyCalllter_Check (C function}, 7
PyCalllter_New (C function)77
PyCalllter_Type (C variable),7
PyCell_Check (C function0
PyCell_GET (C function)30

PyCell_Get (C function)30

PyCell_New (C function)30

PyCell_SET (C function)30

PyCell_Set (C function)30

PyCell_Type (C variable 0

PyCellObject (C type)30

PyCFunction (C type)| 01
PyClass_Check (C functionj3
PyClass_IsSubclass (C functioii}
PyClass_Type (C variablej3
PyClassObject (C type),3

PyCObject (C type)79
PyCObiject_AsVoidPtr (C functionj0
PyCObiject_Check (C function})9
PyCObject_FromVoidPtr (C functionj9
PyCObject_FromVoidPtrAndDesc (C functiol))
PyCObject_GetDesc (C functior§)
PyCObject_SetVoidPtr (C function}p
PyCompilerFlags (C type)L4
PyComplex_AsCComplex (C functior§s
PyComplex_Check (C functionys
PyComplex_CheckExact (C functiors
PyComplex_FromCComplex (C functiory
PyComplex_FromDoubles (C functior)s
PyComplex_ImagAsDouble (C functiord5
PyComplex_RealAsDouble (C functiors
PyComplex_Type (C variable}5
PyComplexObject (C typekh5
PyDate_Check (C function1
PyDate_CheckExact (C functiorgl
PyDate_FromDate (C functionj,L
PyDate_FromTimestamp (C functioy
PyDateTime_Check (C functiornf;L
PyDateTime_CheckExact (C functio@)l
PyDateTime_DATE_GET_HOUR (C functiorf)2

PyDateTime_DATE_GET_MICROSECOND (C
function),82

PyDateTime_DATE_GET_MINUTE (C function),
82

PyDateTime_DATE_GET_SECOND (C function),
82

PyDateTime_FromDateAndTime (C functioB),

PyDateTime_FromTimestamp (C functioB},

PyDateTime_GET_DAY (C functiong2

PyDateTime_GET_MONTH (C function$2

PyDateTime_GET_YEAR (C function$2

PyDateTime_TIME_GET_HOUR (C function2

PyDateTime_TIME_GET_MICROSECOND (C
function),82

PyDateTime_TIME_GET_MINUTE (C function),
82

PyDateTime_TIME_GET_SECOND (C function),
82

PyDelta_Check (C function®1

PyDelta_CheckExact (C functiory,L

PyDelta_FromDSU (C function2

PyDescr_IsData (C functionj8

PyDescr_NewClassMethod (C functioi§

PyDescr_NewGetSet (C functiom)3

PyDescr_NewMember (C functionj8

PyDescr_NewMethod (C functionj8

PyDescr_NewWrapper (C functior)3

PyDict_Check (C function);0

PyDict_CheckExact (C functiony,1

PyDict_Clear (C function)71

PyDict_Contains (C function),1

PyDict_Copy (C function)71

PyDict_Delltem (C function)71

PyDict_DelltemString (C function);1

PyDict_Getltem (C function){1

PyDict_GetltemString (C functiony,1

PyDict_Items (C function)71

PyDict_Keys (C function)71

PyDict_Merge (C function)/2

PyDict_MergeFromSeq2 (C functiory)2

PyDict_New (C function)71

PyDict_Next (C function)y2

PyDict_Setltem (C function)]1

PyDict_SetltemString (C functiony,1

PyDict_Size (C function)/1

PyDict_Type (C variable)70

PyDict_Update (C function);2

PyDict_Values (C function)/ 1

PyDictObject (C type)70

PyDictProxy_New (C function)71

PyErr_BadArgument (C function).9

PyErr_BadInternalCall (C function),9

PyErr_CheckSignals (C functiorp

PyErr_Clear (C function)18

PyErr_Clear()7, 8

PyErr_ExceptionMatches (C functiori)/

PyErr_ExceptionMatches(,

PyErr_Fetch (C function).8

Index

149

The Python/C API, Release 2.6.2

PyErr_Format (C function).8

PyErr_GivenExceptionMatches (C functiony,

PyErr_NewException (C function0

PyErr_NoMemory (C function)19

PyErr_NormalizeException (C functiorn)y

PyErr_Occurred (C function),7

PyErr_Occurred()?

PyErr_Print (C function)17

PyErr_PrintEx (C function)17

PyErr_Restore (C function),3

PyErr_SetExcFromWindowsErr (C functiord

PyErr_SetExcFromWindowsErrWithFilename
function),19

PyErr_SetFromErrno (C function)9

PyErr_SetFromErrnoWithFilename (C functiohy

PyErr_SetFromWindowsErr (C functior)9

PyErr_SetFromWindowsErrWithFilename (C func-

tion), 19
PyErr_Setinterrupt (C function0
PyErr_SetNone (C function),9
PyErr_SetObject (C function),8
PyErr_SetString (C function},8
PyErr_SetString()7
PyErr_Warn (C function)20
PyErr_WarnEx (C function)19
PyErr_WarnExplicit (C function)20
PyErr_WarnPy3k (C function}0
PyErr_WriteUnraisable (C function),1
PyEval_AcquireLock (C functionp0
PyEval_AcquireLock()85, 89
PyEval_AcquireThread (C functiordp
PyEval_EvalCode (C function},3
PyEval_EvalCodeEx (C function),3
PyEval_EvalFrame (C function},3
PyEval_EvalFrameEx (C function)3
PyEval_GetBuiltins (C function35
PyEval_GetCallStats (C functiorf3
PyEval_GetFrame (C function}5
PyEval_GetFuncDesc (C functiord
PyEval_GetFuncName (C functiord
PyEval_GetGlobals (C function}5
PyEval_GetLocals (C function®5
PyEval_GetRestricted (C functior§s
PyEval_InitThreads (C function®0
PyEval_InitThreads(85
PyEval_MergeCompilerFlags (C functiord)3
PyEval_RelnitThreads (C functiorf)1
PyEval_ReleaselLock (C functior§)Q
PyEval _Releaselock($5, 89, 90
PyEval_ReleaseThread (C functiof}}
PyEval_ReleaseThreadf))
PyEval_RestoreThread (C functioS))
PyEval_RestoreThread9, 90
PyEval_SaveThread (C functiord))
PyEval_SaveThread($9, 90
PyEval_SetProfile (C function®3
PyEval_SetTrace (C functior)3
PyEval_Threadslnitialized (C functiorfp

PyExc_ArithmeticError21
PyExc_AssertionErrog1
PyExc_AttributeError21
PyExc_BaseExceptiod,l
PyExc_EnvironmentErrof,1
PyExc_EOFError21l
PyExc_Exception21
PyExc_FloatingPointErrof1
PyExc_ImportError21
PyExc_IndexError21
PyExc_IOError21
PyExc_Keyboardinterrupgl
PyExc_KeyError21
PyExc_LookupError21
PyExc_MemoryError21
PyExc_NameErro1
PyExc_NotlmplementedErro?,1
PyExc_OSErrorR1
PyExc_OverflowError21
PyExc_ReferenceErroz1
PyExc_RuntimeErrog1
PyExc_StandardErro?,1
PyExc_SyntaxErro21
PyExc_SystemErrof1
PyExc_SystemExif21
PyExc_TypeError21
PyExc_ValueError21
PyExc_WindowsError21
PyExc_ZeroDivisionError21
PyFile_AsFile (C function)75
PyFile_Check (C function);5
PyFile_CheckExact (C functionjs
PyFile_DecUseCount (C functionj5
PyFile_FromFile (C function)/5
PyFile_FromsString (C function),5
PyFile_GetLine (C function)/5
PyFile_IncUseCount (C functionj5
PyFile_Name (C function);6
PyFile_SetBufSize (C function)6
PyFile_SetEncoding (C functionjf
PyFile_SetEncodingAndErrors (C functio@f
PyFile_SoftSpace (C functionjf
PyFile_Type (C variable);5
PyFile_WriteObject (C function);6
PyFile_WriteString (C function)76
PyFileObject (C type)75

PyFloat_ AS_DOUBLE (C function®4
PyFloat_AsDouble (C function3
PyFloat_Check (C function}3
PyFloat_CheckExact (C functiorf)3
PyFloat_ClearFreeList (C functiori)4
PyFloat_FromDouble (C function)3
PyFloat_FromString (C function}3
PyFloat_GetInfo (C functiong4
PyFloat_GetMax (C functionj4
PyFloat_GetMin (C function}4
PyFloat_Type (C variable}R3
PyFloatObject (C type}h3

150

Index

The Python/C API, Release 2.6.2

PyFrozenSet_Check (C functio@3
PyFrozenSet_CheckExact (C functiod},
PyFrozenSet_New (C functiorf)3
PyFrozenSet_Type (C variabl&)33
PyFunction_Check (C function}3
PyFunction_GetClosure (C functiory
PyFunction_GetCode (C function)3
PyFunction_GetDefaults (C functiori)4
PyFunction_GetGlobals (C functior)4
PyFunction_GetModule (C functionj4
PyFunction_New (C functiony,3
PyFunction_SetClosure (C functiomy}
PyFunction_SetDefaults (C functiory
PyFunction_Type (C variable}j3
PyFunctionObject (C type),3
PyGen_Check (C functiony1
PyGen_CheckExact (C functiorgl
PyGen_New (C function1

PyGen_Type (C variable®1

PyGenObiject (C typeR0
PyGILState_Ensure (C functiorf?
PyGILState Release (C functio)?
Pylmport_AddModule (C function®5
Pylmport_AppendInittab (C function},6
Pylmport_Cleanup (C function6
Pylmport_ExecCodeModule (C functior®5
Pylmport_ExtendInittab (C function,7
Pylmport_FrozenModules (C variabl€
Pylmport_Getimporter (C function}6
Pylmport_GetMagicNumber (C functior§6
Pylmport_GetModuleDict (C function}6
Pylmport_Import (C function)25
Pylmport_ImportFrozenModule (C functior)6
Pylmport_ImportModule (C functionp4
Pylmport_ImportModuleEx (C functionp5
Pylmport_ImportModuleLevel (C function?5
Pylmport_ImportModuleNoBlock (C function®5
Pylmport_ReloadModule (C functior}s
PyIndex_Check (C function}i4
Pylnstance_Check (C functior)3
Pylnstance_New (C functionj3
Pylnstance_NewRaw (C function)3
Pylnstance_Type (C variable)3

PyInt AS_LONG (C function)51
PyInt_AsLong (C function)51
PyInt_AsSsize_t (C functionp1
PyInt_AsUnsignedLongLongMask (C functior)l
PyInt_AsUnsignedLongMask (C functiorjl
PyInt_Check (C function};0
PyInt_CheckExact (C function}0
PyInt_ClearFreeList (C function}1
PyInt_FromLong (C function);0
PyInt_FromSsize_t (C function},1
PylInt_FromString (C function0
PyInt_GetMax (C function);1

PyInt_Type (C variable};0
PylInterpreterState (C typej9
PylinterpreterState_Clear (C functiof},

PylInterpreterState_Delete (C functiof),
PylInterpreterState_Head (C functiof,
PylinterpreterState_New (C functio)l
PylinterpreterState_Next (C functio®y}
PyinterpreterState_ThreadHead (C functi@a),
PyIntObject (C type)50

Pylter_Check (C function}i6
Pylter_Next (C function)46
PyList_Append (C function){0
PyList_AsTuple (C function)70
PyList_Check (C function);9
PyList_CheckExact (C function$9
PyList GET_ITEM (C function)70
PyList_ GET_SIZE (C function)}9
PyList_Getltem (C function)70
PyList_Getltem()6

PyList_GetSlice (C function);0
PyList_Insert (C function)70
PyList_New (C function)$9
PyList_Reverse (C function),0

PyList SET_ITEM (C function)70
PyList_Setltem (C function);0
PyList_Setltem()5

PyList_SetSlice (C function);0
PyList_Size (C function)39

PyList_Sort (C function)70

PyList_Type (C variable);9
PyListObject (C type)69
PyLong_AsDouble (C function}3
PyLong_AsLong (C function};2
PyLong_AsLongLong (C functionh3
PyLong_AsSsize_t (C function)3
PyLong_AsUnsignedLong (C functiorf3
PyLong_AsUnsignedLongLong (C functiory3

PyLong_AsUnsignedLongLongMask (C function),

53
PyLong_AsUnsignedLongMask (C functioi®)3
PyLong_AsVoidPtr (C function);3
PyLong_Check (C functionj2
PyLong_CheckExact (C functiorf2
PyLong_FromDouble (C function}2
PyLong_FromLong (C functionj2
PyLong_FromLongLong (C function}2
PyLong_FromSize_t (C functionj2
PyLong_FromSsize_t (C functior2
PyLong_FromString (C functionj2
PyLong_FromUnicode (C function}2
PyLong_FromUnsignedLong (C functiorp?
PyLong_FromUnsignedLongLong (C functioBy,
PyLong_FromVoidPtr (C function2
PyLong_Type (C variableh?2
PyLongObject (C type)h2
PyMapping_Check (C function},6
PyMapping_Delltem (C function}i6
PyMapping_DelltemString (C functiond6
PyMapping_GetltemString (C functiom)6
PyMapping_HasKey (C function},6
PyMapping_HasKeyString (C functiom)6

Index

151

The Python/C API, Release 2.6.2

PyMapping_Items (C function}i6
PyMapping_Keys (C function)i6
PyMapping_Length (C function),6
PyMapping_SetltemString (C functiom)6
PyMapping_Values (C function},6
PyMappingMethods (C type),17
PyMarshal_ReadLastObjectFromFile (C function),
28
PyMarshal_ReadLongFromFile (C functiogy,
PyMarshal _ReadObjectFromFile (C functiof),
PyMarshal_ReadObjectFromString (C functiozs,
PyMarshal _ReadShortFromFile (C functiogy,
PyMarshal_WriteLongToFile (C function,’
PyMarshal_WriteObjectToFile (C functiorfy
PyMarshal_WriteObjectToString (C functior®)y
PyMem_Del (C function)96
PyMem_Free (C functionp6
PyMem_Malloc (C function)96
PyMem_New (C function)96
PyMem_Realloc (C function6
PyMem_Resize (C function6
PyMemberDef (C type)102
PyMethod_Check (C functiony4
PyMethod_Class (C functionj4
PyMethod_ClearFreeList (C function)s
PyMethod_Function (C function}4
PyMethod_GET_CLASS (C functionj4
PyMethod GET_FUNCTION (C functiony4
PyMethod GET_SELF (C functionj5
PyMethod_New (C function)[4
PyMethod_Self (C function)[4
PyMethod_Type (C variabley4
PyMethodDef (C type)101
PyModule _AddIntConstant (C functionjy
PyModule_AddIntMacro (C function),7
PyModule_AddObject (C functiony,7
PyModule_AddStringConstant (C functior)/
PyModule AddStringMacro (C functionj,7
PyModule_Check (C functiony,6
PyModule_CheckExact (C functionj6
PyModule_GetDict (C function);6
PyModule_GetFilename (C functior)7
PyModule_GetName (C functionjt
PyModule_New (C function);6
PyModule_Type (C variable),6
PyNumber_Absolute (C functiond2
PyNumber_Add (C function}}1
PyNumber_And (C function}}2
PyNumber_AsSsize t (C functiom)4
PyNumber_Check (C function,1
PyNumber_Coerce (C functior)3
PyNumber_CoerceEx (C function)3
PyNumber_Divide (C function}}1
PyNumber_Divmod (C function)1
PyNumber_Float (C function}3
PyNumber_FloorDivide (C function}i1
PyNumber_Index (C function}i4
PyNumber_InPlaceAdd (C functior)2

PyNumber_InPlaceAnd (C functior)3
PyNumber_InPlaceDivide (C functior)2
PyNumber_InPlaceFloorDivide (C functiom)?
PyNumber_InPlaceLshift (C function}3
PyNumber_InPlaceMultiply (C function,2
PyNumber_InPlaceOr (C functiom)3
PyNumber_InPlacePower (C functiod
PyNumber_InPlaceRemainder (C functiof3,
PyNumber_InPlaceRshift (C functior)3
PyNumber_InPlaceSubtract (C functioA,
PyNumber_InPlaceTrueDivide (C functiod)?
PyNumber_InPlaceXor (C functiom3
PyNumber_Int (C function}43
PyNumber_Invert (C function)i2
PyNumber_Long (C function}3
PyNumber_Lshift (C function)}2
PyNumber_Multiply (C function)41
PyNumber_Negative (C functiorj,L
PyNumber_Or (C function)}2
PyNumber_Positive (C function),1
PyNumber_Power (C function},1
PyNumber_Remainder (C functior)]
PyNumber_Rshift (C function}2
PyNumber_Subtract (C functior)1
PyNumber_ToBase (C functiom4
PyNumber_TrueDivide (C functionj,1
PyNumber_Xor (C function)}2
PyNumberMethods (C type),16

PyObiject (C type)100
PyObject_AsCharBuffer (C function,”
PyObject_AsFileDescriptor (C functior)p
PyObject_AsReadBuffer (C functior)y
PyObject_AsWriteBuffer (C function)}7
PyObject_Bytes (C functionj8
PyObject_Call (C function}39
PyObject_CallFunction (C function}9
PyObject_CallFunctionObjArgs (C functiord9
PyObject_CallMethod (C function®9
PyObject_CallMethodObjArgs (C functior§9
PyObject_CallObject (C functionp9
PyObject_CheckReadBuffer (C functiod);
PyObject_Cmp (C function}38
PyObject_Compare (C functior§g
PyObject_Del (C function9
PyObject_DelAttr (C function)38
PyObiject_DelAttrString (C function}38
PyObject_Delltem (C function}0
PyObject_Dir (C function)40

PyObject_ GC_Del (C function),20
PyObject_ GC_New (C function),20
PyObject_GC_NewVar (C function}20
PyObject_GC_Resize (C functiori)20
PyObject_GC_Track (C function),20
PyObject_ GC_UnTrack (C function)20
PyObject_GenericGetAttr (C functior§y
PyObject_GenericSetAttr (C functior§y
PyObject_GetAttr (C function37
PyObject_GetAttrString (C functiony7

152

Index

The Python/C API, Release 2.6.2

PyObject_Getltem (C function),0
PyObject_Getlter (C function},0
PyObject_HasAttr (C function7
PyObject_HasAttrString (C function},/
PyObject_Hash (C function,0
PyObject_HashNotimplemented (C functiof,
PyObject HEAD (C macro),00
PyObiject_Init (C function)99
PyObject_InitVar (C function)99
PyObject_IsInstance (C functior§8
PyObject_IsSubclass (C functio®
PyObject_IsTrue (C function}0
PyObject_Length (C function},0
PyObject_New (C function9
PyObject_NewVar (C functionp9
PyObiject_Not (C function}0
PyObject_Print (C function37
PyObject_Repr (C functionR8
PyObject_RichCompare (C functior3g
PyObject_RichCompareBool (C functior3g
PyObject_SetAttr (C functionj7
PyObject_SetAttrString (C function},/
PyObject_Setltem (C function}0
PyObject_Size (C function)0
PyObject_Str (C function38
PyObject_Type (C function}0
PyObject_TypeCheck (C functio(
PyObject_Unicode (C function}8
PyObject_ VAR_HEAD (C macro) 01
PyOS_AfterFork (C function)?3
PyOS_ascii_atof (C functionp4
PyOS_ascii_formatd (C function}4
PyOS_ascii_strtod (C functionj4
PyOS_CheckStack (C functior)3
PyOS_GetLastModificationTime (C functior®)3
PyOS_getsig (C functionp3

PyOS_setsig (C function3
PyOS_snprintf (C functionj34
PyOS_stricmp (C functiong4
PyOS_strnicmp (C functiong4
PyOS_vsnprintf (C functionj34
PyParser_SimpleParseFile (C functich,
PyParser_SimpleParseFileFlags (C functidR),
PyParser_SimpleParseString (C functidrd),
PyParser_SimpleParseStringFlags (C functiag),

PyParser_SimpleParseStringFlagsFilename (C func-

tion), 12
PyProperty_Type (C variablej3
PyRun_AnyFile (C function)].1
PyRun_AnyFileEx (C function)} 1
PyRun_AnyFileExFlags (C function),1
PyRun_AnyFileFlags (C function),1
PyRun_File (C function)13
PyRun_FileEx (C function)1.3
PyRun_FileExFlags (C function),3
PyRun_FileFlags (C function),3
PyRun_InteractiveLoop (C function)?
PyRun_InteractiveLoopFlags (C functioi)y,

PyRun_InteractiveOne (C functior)?
PyRun_InteractiveOneFlags (C functiofy,
PyRun_SimpleFile (C function},2
PyRun_SimpleFileEx (C function),2
PyRun_SimpleFileExFlags (C functiori)?
PyRun_SimpleFileFlags (C functior)?
PyRun_SimpleString (C function},1
PyRun_SimpleStringFlags (C functiori)l
PyRun_String (C function), 2
PyRun_StringFlags (C function)2
PySeqlter_Check (C functionj
PySeqlter_New (C function,7
PySeqlter_Type (C variablejy
PySequence_Check (C functios}
PySequence_Concat (C functiod,
PySequence_Contains (C functiof,
PySequence_Count (C functiodl
PySequence_Delltem (C functiod
PySequence_DelSlice (C functiod}
PySequence_Fast (C functiodp
PySequence_Fast GET_ITEM (C functiof,
PySequence Fast GET_SIZE (C functiety,
PySequence_Fast ITEMS (C functiof,
PySequence_Getltem (C function)
PySequence_Getltem@,
PySequence_GetSlice (C functioal
PySequence_Index (C functiodf
PySequence_InPlaceConcat (C functiai),
PySequence_InPlaceRepeat (C functidd),
PySequence_ITEM (C function}b
PySequence_Length (C functiod)}
PySequence_List (C functiom)5
PySequence_Repeat (C functiofy,
PySequence_Setltem (C functiodl
PySequence_SetSlice (C function},
PySequence_Size (C functiody}
PySequence_Tuple (C functiod},
PySequenceMethods (C typé),8
PySet_Add (C functiong4

PySet_Check (C function$3

PySet_Clear (C function4
PySet_Contains (C function4
PySet_Discard (C function34

PySet GET_SIZE (C function$3
PySet_New (C function3

PySet_Pop (C function®4

PySet_Size (C function3

PySet_Type (C variable$3

PySetObject (C typeR3
PySignal_SetWakeupFd (C functiod))
PySlice_Check (C functiony,3
PySlice_Getindices (C functionj3
PySlice_GetIndicesEx (C functionj8
PySlice_New (C function){8
PySlice_Type (C variable),8
PyString_AS_STRING (C function}7
PyString_AsDecodedObiject (C functio}
PyString_AsEncodedObiject (C functiobg

Index

153

The Python/C API, Release 2.6.2

PyString_AsString (C function)7
PyString_AsStringAndSize (C functior)7
PyString_Check (C functionh6
PyString_CheckExact (C functiorfp
PyString_Concat (C function),7
PyString_ConcatAndDel (C functiorh3
PyString_Decode (C function}8
PyString_Encode (C function)3
PyString_Format (C functionh8
PyString_ FromFormat (C functiorfjs
PyString_FromFormatV (C function,/
PyString_FromString (C function}6
PyString_FromString()71
PyString_FromStringAndSize (C functiorbp
PyString_ GET_SIZE (C function7
PyString_InternFromString (C functior§3
PyString_InterninPlace (C functiorj3
PyString_Size (C function}7
PyString_Type (C variableh6
PyStringObject (C typeh6
PySys_AddWarnOption (C functiord4
PySys_GetFile (C function}3
PySys_GetObject (C function}3
PySys ResetWarnOptions (C functio®?,
PySys_SetArgv (C functionj8
PySys_SetArgv()9, 85
PySys_SetObiject (C functior)4
PySys_SetPath (C functior)4
PySys_WriteStderr (C function}4
PySys_WriteStdout (C function}4
Python 3000127
Python Enhancement Proposals

PEP 23814

PEP 302125 127

PEP 343124
PYTHONDUMPREFS 105
PYTHONHOME,9, 88
Pythonic,127
PYTHONPATH,9
PyThreadState38
PyThreadState (C type)D
PyThreadState_Clear (C functioB),
PyThreadState Delete (C functiof),
PyThreadState_Get (C functio)]
PyThreadState_GetDict (C functio)l
PyThreadState_New (C functior$)l
PyThreadState_Next (C functiordy4
PyThreadState SetAsyncExc (C functio®i,
PyThreadState_Swap (C functiof),
PyTime_Check (C functiong1
PyTime_CheckExact (C functionj,L
PyTime_FromTime (C function32
PyTrace_C_CALL (C variableR3
PyTrace_C_EXCEPTION (C variabl€)3
PyTrace_C_RETURN (C variable&)3
PyTrace_CALL (C variable3
PyTrace_ EXCEPTION (C variabl€d3
PyTrace_LINE (C variablep3

PyTrace_ RETURN (C variable)3
PyTuple_Check (C function8
PyTuple_CheckExact (C functior§8
PyTuple_ClearFreeList (C functior)9
PyTuple_GET_ITEM (C function$}9
PyTuple_GET_SIZE (C function}8
PyTuple_Getltem (C function9
PyTuple_GetSlice (C functionp9
PyTuple_New (C function);8
PyTuple_Pack (C function}8
PyTuple_SET_ITEM (C function9
PyTuple_Setltem (C function9
PyTuple_Setltem($

PyTuple_Size (C function}38
PyTuple_Type (C variable}8
PyTupleObject (C typek8
PyType_Check (C function}i9
PyType_CheckExact (C functiorn)9
PyType_ClearCache (C functior)?
PyType_GenericAlloc (C function0
PyType_GenericNew (C functior§0
PyType_ HasFeature (C functiod))
PyType_HasFeature();]19

PyType_ IS_GC (C function)9
PyType_IsSubtype (C functiom9
PyType_Modified (C function)}9
PyType_Ready (C function}0
PyType_Type (C variable}i9
PyTypeObiject (C type}9
PyTZInfo_Check (C function§1
PyTZInfo_CheckExact (C functiony1
PyUnicode_AS_DATA (C function);9
PyUnicode_AS_UNICODE (C function)9
PyUnicode_AsASCIIString (C functiony4
PyUnicode_AsCharmapsString (C functiofp
PyUnicode_AsEncodedString (C functiod),
PyUnicode_AsLatin1String (C functionj4
PyUnicode_AsMBCSString (C functionjs

PyUnicode_AsRawUnicodeEscapeString (C func-

tion), 64
PyUnicode_AsUnicode (C functior§0

PyUnicode_AsUnicodeEscapeString (C function),

64
PyUnicode_AsUTF16String (C functior§3
PyUnicode_AsUTF32String (C functior§?
PyUnicode_AsUTF8String (C functionj?2
PyUnicode_AsWideChar (C functiorf1
PyUnicode_Check (C function}9
PyUnicode_CheckExact (C functiorp9
PyUnicode_ClearFreeList (C functiorp9
PyUnicode_Compare (C functiorgg
PyUnicode_Concat (C functionjs
PyUnicode_Contains (C functiory
PyUnicode_Count (C functiony6
PyUnicode_Decode (C functiorfl
PyUnicode_DecodeASCII (C functiorf4
PyUnicode_DecodeCharmap (C functiod,
PyUnicode_DecodeLatinl (C functior4

154

Index

The Python/C API, Release 2.6.2

PyUnicode_DecodeMBCS (C functior)s
PyUnicode _DecodeMBCSStateful (C functiofl,

PyUnicode_DecodeRawUnicodeEscape (C func-

tion), 64
PyUnicode_DecodeUnicodeEscape (C functién),
PyUnicode_DecodeUTF16 (C functio®)d
PyUnicode DecodeUTF16Stateful (C functiod,
PyUnicode_DecodeUTF32 (C functio®)
PyUnicode_DecodeUTF32Stateful (C functiob,
PyUnicode_DecodeUTFS8 (C functior)]
PyUnicode_DecodeUTF8Stateful (C functiof,
PyUnicode_Encode (C functiorf)1
PyUnicode_EncodeASCII (C functior4
PyUnicode_EncodeCharmap (C functio®,
PyUnicode_Encodelatinl (C functioriy
PyUnicode_EncodeMBCS (C functior§s

PyUnicode_EncodeRawUnicodeEscape (C func-

tion), 64
PyUnicode_EncodeUnicodeEscape (C functiéi),
PyUnicode_EncodeUTF16 (C functio®)3
PyUnicode_EncodeUTF32 (C functio®R
PyUnicode_EncodeUTF8 (C functior§)?
PyUnicode_Find (C function6
PyUnicode_Format (C functionj,”
PyUnicode_FromEncodedObject (C functio®y),
PyUnicode_FromObject (C functior§p
PyUnicode_FromuUnicode (C functior§)
PyUnicode_FromWideChar (C functiorg)]
PyUnicode_GET_DATA_SIZE (C function}9
PyUnicode_GET_SIZE (C function}9
PyUnicode_GetSize (C functiorf))
PyUnicode_Join (C function}6
PyUnicode_Replace (C functior§6
PyUnicode_RichCompare (C functior)/
PyUnicode_Split (C function;6
PyUnicode_Splitlines (C function§6
PyUnicode_Tailmatch (C functiond6
PyUnicode_Translate (C functior§6
PyUnicode_TranslateCharmap (C functig®i),
PyUnicode_Type (C variable}9
PyUnicodeObiject (C typeh9
PyVarObject (C type)100
PyWeakref_Check (C functionj9
PyWeakref CheckProxy (C functiory)9
PyWeakref_CheckRef (C functionj9
PyWeakref GET_OBJECT (C functiory)9
PyWeakref GetObject (C functionj9
PyWeakref NewProxy (C functionj9
PyWeakref NewRef (C function}9
PyWrapper_New (C functiony,8

R

readbufferproc (C type),19
realloc(),95
reference countl,28
reload

built-in function, 25
repr

built-in function,38, 107
rexec
module,25

S

search

path, module9, 85, 87
segcountproc (C type),19
sequencel 28

object,55
set

object,83
set_all(),6
setcheckinterval() (in module sy$)3
setvbuf(),76
SIGINT, 20
signal

module,20
slice,128
SliceType (in module types}8
softspace (file attribute},6
special method] 28
sq_ass_item (C membef)] 8
sq_concat (C member) 18
sq_contains (C member)18
sg_inplace_concat (C membet),8
sq_inplace_repeat (C membet),8
sq_item (C member),18
sq_length (C member),18
sq_repeat (C member)18
statement]128
staticmethod

built-in function, 102
stderr (in module sysB5
stdin (in module sys)B5
stdout (in module sysB5
str

built-in function, 38
strerror(),19
string

object,56
StringType (in module types)6
sum_list(),6
sum_sequence(J,
sys

module,9, 85
SystemError (built-in exceptiony6, 77

T

thread

module,90
tp_alloc (C member)114
tp_allocs (C member),16
tp_as_buffer (C member)08
tp_as_mapping (C membef))7
tp_as_number (C membef))7
tp_as_sequence (C membeér),/
tp_base (C member),13

Index

155

The Python/C API, Release 2.6.2

tp_bases (C member)15
tp_basicsize (C member)05
tp_cache (C member},16
tp_call (C member)108
tp_clear (C member),10
tp_compare (C memben)Q7
tp_dealloc (C member),06
tp_descr_get (C member)13
tp_descr_set (C membef)] 3
tp_dict (C member)113
tp_dictoffset (C member),13
tp_doc (C member),10
tp_flags (C member),08
tp_free (C member), 15
tp_frees (C member)},16
tp_getattr (C member),06
tp_getattro (C member),08
tp_getset (C member),12
tp_hash (C member),07
tp_init (C member)114
tp_is_gc (C member),15
tp_itemsize (C member),05
tp_iter (C member)112
tp_iternext (C member),12
tp_maxalloc (C member),16
tp_members (C member)12
tp_methods (C member),12
tp_mro (C member)115
tp_name (C member),05
tp_new (C member),14
tp_next (C member),16
tp_print (C member)106
tp_repr (C member),07
tp_richcompare (C member)11
tp_setattr (C member),07
tp_setattro (C member},08
tp_str (C member)108
tp_subclasses (C membet),6
tp_traverse (C member)10
tp_weaklist (C member),16
tp_weaklistoffset (C member), 11
traverseproc (C type),20
triple-quoted string128
tuple

built-in function, 45, 70

object,68
TupleType (in module typesp3
type,128

built-in function,40

object,4, 49
TypeType (in module types},9

U

ULONG_MAX, 53
unicode
built-in function, 38

\Y,

version (in module sysg7, 88
virtual machine 128
visitproc (C type),120

W
writebufferproc (C type)119

Z
Zen of Python;128

156

Index

	Introduction
	Include Files
	Objects, Types and Reference Counts
	Exceptions
	Embedding Python
	Debugging Builds

	The Very High Level Layer
	Reference Counting
	Exception Handling
	Standard Exceptions
	Deprecation of String Exceptions

	Utilities
	Operating System Utilities
	System Functions
	Process Control
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol

	Concrete Objects Layer
	Fundamental Objects
	Numeric Objects
	Sequence Objects
	Mapping Objects
	Other Objects

	Initialization, Finalization, and Threads
	Thread State and the Global Interpreter Lock
	Profiling and Tracing
	Advanced Debugger Support

	Memory Management
	Overview
	Memory Interface
	Examples

	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Number Object Structures
	Mapping Object Structures
	Sequence Object Structures
	Buffer Object Structures
	Supporting Cyclic Garbage Collection

	Glossary
	About these documents
	Contributors to the Python Documentation

	History and License
	History of the software
	Terms and conditions for accessing or otherwise using Python
	Licenses and Acknowledgements for Incorporated Software

	Copyright
	Index

