| v

ERLANG

Reltool

Copyright © 2009-2010 Ericsson AB, All Rights Reserved

Reltool 0.5.3
February 22 2010

Copyright © 2009-2010 Ericsson AB, All Rights Reserved

The contents of this file are subject to the Erlang Public License, Version 1.1, (the "License"); you may not use
this file except in compliance with the License. You should have received a copy of the Erlang Public License
along with this software. If not, it can be retrieved online at http://www.erlang.org/. Software distributed under the
License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
the License for the specific language governing rights and limitations under the License. The Initial Developer of
the Original Code is Ericsson AB. Ericsson AB, All Rights Reserved.

February 22 2010

Ericsson AB, All Rights Reserved: Reltool | 1

1.1 Introduction

1 User's Guide

Rel t ool is a release management tool. It analyses a given Erlang/OTP installation and determines various
dependencies between applications. The gr aphi cal frontend depicts the dependencies and enables interactive
customization of atarget system. The backend providesabat ch interfacefor generation of customized target systems.

1.1 Introduction

Rel t ool is a release management tool. It analyses a given Erlang/OTP installation and determines various
dependencies between applications. The gr aphi cal frontend depicts the dependencies and enables interactive
customization of atarget system. The backend providesabat ch interfacefor generation of customized target systems.

1.1.1 Scope and Purpose

This manual describes the Reltool application, as a component of the Erlang/Open Telecom Platform devel opment
environment. It is assumed that the reader is familiar with the Erlang Devel opment Environment, which is described
in a separate User's Guide.

1.1.2 Prerequisites

The following prerequisitesis required for understanding the material in the Reltool User's Guide:
o familiarity with Erlang/OTP system principles and Erlang/OTP design principles

The application requires Erlang/OTP release R13B02 or later.

1.1.3 About This Manual

In addition to thisintroductory chapter, the Reltool User's Guide contains the following chapters:

» Chapter 2: "Usage" describes the architecture and typical usage of the application.
e Chapter 3: "Examples" gives some usage examples

1.1.4 Where to Find More Information

Refer to the following documentation for more information about Reltool and about the Erlang/OTP devel opment
system:

» the Reference Manual of Rel t ool

e theErlang/OTP Syst em Pri nci pl es

e theErlang/OTP Desi gn Pri nci pl es

e Programming Erlang: Software for a Concurrent World (2007), Pragmatic Bookshelf, ISBN13: 9781934356005.

1.2 Usage

1.2.1 Overview

This document focuses on the graphical parts of the tool. The concepts are explained in the reference manual for the
moduler el t ool .

2 | Ericsson AB, All Rights Reserved: Reltool

1.2 Usage

1.2.2 System window

The system window is started with the functionr el t ool : st art/ 1. At startup the tool will processthe all beam
filesand app filesin order to find out dependencies between applications and their modules. Once all thisinformation
has been derived, it will be possible to explore the tool.

The system window consists of four main pages (tabs):

e Libraries

e System settings
e Applications

* Releases

Click on aname tag to display its page.

Libraries

Onthelibrary pageit is possible to control which sources that the tool will use. The page is organized as atree which
can be expanded and collapsed by clicking on the little symbol in the beginning of the expandable/collapsible lines.

The Root di rect ory can be edited by selecting the line where the path of the root directory is displayed and
clicking with the right mouse button. Choose edit in the menu that pops up.

Library directories can be added, edited or deleted. This is done by selecting the line where the path to a library
directory is displayed and clicking with the right mouse button. Choose add, edit or delete in the menu that pops up.
New library directories can also be added by selecting thelineLi brary di r ect or i es and clicking with the right
mouse button. Choose add in the menu that pops up.

Escript files can be added, edited or deleted. This is done by selecting the line where the path to an escript file is
displayed and clicking with the right mouse button. Choose add, edit or delete in the menu that pops up. New escripts
can also be added by selecting the line Escri pt fi | es and clicking with the right mouse button. Choose add in
the menu that pops up.

When libraries and escripts are expanded, the names of their contained applications will be displayed. Double click
on an application name to launch an application window.

System settings

Onthe system settingspageit is possibleto control someglobal settingsthat are used asdefaultsfor all applications. Set
theAppl i cation incl usion policytoinclude toincludeall applicationsthat not are explicitly excluded.
Seei ncl _cond (application inclusion) and mod_cond (module inclusion) in the reference manual for the module
rel t ool for moreinfo.

The system settings page is rather incomplete.

Applications

There are four categories of applications on the applications page. | ncl uded contains applicationsthat are explicitly
included. Excl uded containsapplicationsthat are explicitly excluded. Der i ved containsapplicationsthat either are
used directly by explicitly included applications or by other derived applications. Avai | abl e containsthe remaining
applications.

Select one or more applications and click on a button directly below the application column to change application
category. For example, select an available application and click on its tick button to move the application to the
included category. Clicking onthetick symbol for included applicationswill move the application back to the available
category. Thetick is undone.

The symbols in front of the application names are intended to describe the status of the application. There are error
symbols and warning symbols that means that there are something that needs attention. The tick symbol means that
the application isincluded or derived and no problem has been detected. The cross symbol means that the application

Ericsson AB, All Rights Reserved: Reltool | 3

1.2 Usage

is excluded or available and no problem has been detected. Applications with error symbols are listed first in each
category, then comes the warnings and the normal ones (ticks and crosses) are found at the end.

Double click on an application to launch its application window.

Releases

The releases page is incomplete and very experimental .

File menu
« Display application dependency graph - Launchesan application force graph window. All included
and derived applications and their dependencies will be shown in a graph.

« Display nodul e dependency graph - Launch amodule force graph window. All included and derived
modules and their dependencies will be shown in a graph.

« Reset configuration to default
e Undo configuration (toggle)
* Load configuration - Loadsanew configuration from file.

e Save configuration - Savesthe current configuration to file. Normally, only the explictit configuration
parameters with values that differs from their defaults are saved. But the configuration with or without default
values and with or without derived values may also be saved.

e Cenerate rel, script and boot files
* GCenerate target system
e d ose - Close the system window and all its subwindows.

Dependencies between applications or modules displayed as a graph

The dependency graph windows are launched from the file menu in the system window. The graph depictsall included
and derived applications/modules and their dependencies.

It is possible to perform some limited manipulations of the graph. Nodes can be moved, selected, locked or deleted.
Move a single node or the entire graph by moving the mouse while the left mouse button is pressed. A node is can
be locked into a fix position by holding down the shift button when the left mouse button is released. Select several
nodes by moving the mouse while the control key and the left mouse button i pressed. Selected nodes can be locked,
unlocked or deleted by klicking on a suitable button.

The algorithm that is used to draw a graph with as few crossed links as possible is called force graph. A force graph
consists of nodes and directed link between nodes. Each node is associated with a repulsive force that pushes nodes
away from each other. Thisforce can be adjusted with the |eft slider or with the mouse wheel. Each link is associated
with an attractive force that pulls the nodes nearer each other. This force can be adjusted with the right dlider. If this
force becomes to strong, the graph will be unstable. The third parameter that can be adjusted is the length of the links.
It is adjusted with the middle slider.

The Fr eeze button starts/stops the redrawing of the graph. Reset movesthe graph to the middle of the window and
resets al graph settings to default, with the exception of deleted nodes.

1.2.3 Application window

The application window is started by double clicking on an application name. The application window consists of
four pages (tabs):

* Application settings

* Modules

* Application dependencies

e Module dependencies

4 | Ericsson AB, All Rights Reserved: Reltool

1.2 Usage

Click on aname tag to display its page.

Application settings

Select version of the applicationinthe Sour ce sel ecti on pol i cy part of the page. By default the latest version
of the application is selected, but it is possible to override this by explicitly select another version.

By default the Appl i cati on incl usi on pol i cy onsystem level isused for all applications. Set the value to
i ncl ude if you want to explicitly include one particular application. Set it to excl ude if you want to exclude the
application despite that it is used by another (explicitly or implicitly) included application. der i ved means that the
application automatically will beincluded if some other (explicitly or implicitly) included application usesit.

By default theModul e i ncl usi on pol i cy onsystemlevel isusedfor all applications. Setittoderi ved if you
only want actually used modulesto be included. Set it to app if you, besides derived modules, also want the modules
listed in the app file to be included. Set it to ebi n if you, besides derived modules, also want the modules that exists
as beam files on the ebin directory to be included. Set it to al | if you want all modules to be included, that is the
union of modules found on the ebin directory and listed in the app file.

The application settings page is rather incompl ete.

Modules

There are four categories of modules on the modules page. | ncl uded contains modules that are explicitly included.
Excl uded contains modules that are explicitly excluded. Der i ved contains modules that either are used directly
by explicitly included modules or by other derived modules. Avai | abl e contains the remaining modules.

Select one or more modules and click on a button directly below the module column to change module category. For
example, select an available module and click onitstick button to move the modul e to theincluded category. Clicking
on the tick symbol for included modules will move the module back to the available category. The tick is undone.

The symbolsin front of the module names are intended to describe the status of the module. There are error symbols
and warning symbols that means that there are something that needs attention. The tick symbol means that the module
isincluded or derived and no problem has been detected. The cross symbol means that the module is excluded or
available and no problem has been detected. Modules with error symbols are listed first in each category, then comes
the warnings and the normal ones (ticks and crosses) are found at the end.

Double click on an module to launch its modul e window.

Application dependencies

There are four categories of applications on the Appl i cati on dependenci es page. If the application is used
by other applications, these are listed under Used by. If the application requires other applications be started before
it can be started, these are listed under Requi r ed. These applications are listed in the appl i cat i ons part of the
app file. If the application includes other applications, these arelisted under | ncl uded. These applicationsarelisted
inthei ncl uded_appl i cati ons part of the app file. If the application uses modules other applications, these
arelisted under Uses.

Double click on an application name to launch an application window.

Module dependencies

There aretwo categories of modules onthe Modul e dependenci es page. If the moduleis used by other modules,
these are listed under Modul es used by ot hers. If the module uses modules other modules, these are listed
under Used nodul es.

Double click on an module name to launch a module window.

Ericsson AB, All Rights Reserved: Reltool | 5

1.3 Examples

1.2.4 Module window

The module window is started by double clicking on an module name. The module window consists initially of two
pages (tabs):

e Dependencies
+ Code
Click on aname tag to display its page.

Dependencies

There are two categories of modules on the Dependenci es page. If the module is used by other modules, these
are listed under Mbdul es used by ot her s. If the module uses modules other modules, these are listed under
Used nodul es.

Double click on an module name to launch a module window.

Code

On the Code page the Erlang source code is displayed. It is possible to search forwards and backwards for text in the
module. Enter aregular expression in the Fi nd field and press enter. It is also possible to goto a certain line on the
module. The Back button can be used to go back to the previous position.

Put the marker on a function name and double click to go to the definition of the function. If the function is defined
in another module, that module will be loaded and added to the page list.

1.3 Examples

1.3.1 Start and stop windows and servers

The main process in Reltool is the server. It can be used as it is or be used via the GUI frontend process.
When the GUI is started, a server process will automatically be started. The GUI process is started with
reltool:start/0O,reltool:start/1orreltool:start_Iink/1. Thepidof itsserver can be obtained
withrel t ool : get _server/1

Erl ang R13B02 (erts-5.7.3) [source] [64-bit] [snmp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.3 (abort with "G

1> {ok, Wn} =reltool:start([]).

{ ok, <0. 36. 01>}

2> {ok, Server} = reltool:get_server([]).
{ ok, <0. 37. 01>}

3> reltool :get_config(Server).
{ok,{sys,[]}}

4> rel tool : stop(Wn).

ok

5> {ok, Server2} = reltool:start_server([]).
{ ok, <0. 6535. 01>}

6> reltool:get_config(Server2).

{ok, {sys,[]}}

7> rel tool :stop(Server2).

ok

6 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

1.3.2 Inspecting the configuration

Erl ang R13B02 (erts-5.7.3) [source] [64-bit] [snp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.3 (abort with QG
1> Config = {sys, [{escript,
"exanpl es/ di spl ay_ar gs"
[{incl _cond, include}]},
{app, inets, [{incl_cond, include}]},
{app, mesia, [{incl_cond, exclude}]},
{app, ssl, [{incl_cond, exclude}]},
{app, runtime_tools, [{incl_cond, exclude}]},
{app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys, [{escript, "exanpl es/ di splay_args",[{incl _cond, incl ude}]},
{app, inets,[{incl_cond,include}]},
{app, mesi a, [{i ncl _cond, excl ude}]},
{app, ssl, [{incl _cond, excl ude}]},
{app, runti me_tool s, [{incl _cond, excl ude}]},
{app, syntax_t ool s, [{i ncl _cond, excl ude}]}]}

2> {ok, Server} =reltool:start_server([Config]).

{ ok, <0. 35. 0>}

3> rel tool : get_config(Server).

{ok, {sys, [{escript,"/clearcase/otp/tool s/reltool/exanpl es/di spl ay_args"
[{incl _cond,include}]}]}}

4> reltool : get _config(Server, false, false).

{ok, {sys, [{escript,"/clearcase/otp/tool s/reltool /exanpl es/di spl ay_args"
[{incl _cond,include}]}]}}

5> reltool : get_config(Server, true, false).
{ok, {sys, [{root _dir,"/Idisk/hakan/otp_test"},
{lib_dirs,[]},
{escript,"/cl earcase/ ot p/tool s/reltool/exanpl es/di spl ay_ar gs"
[{incl _cond,include}]},
{nmod_cond, al | },
{incl _cond, deri ved},
{boot _rel,"start_cl ean"}
{emu_nane, "beani'},
{rel ocat abl e, t rue}
{profile, devel opnent}
{incl _sys files,[".*"]},
{excl _sys_files,[]},
{incl _app_files,[".*"]},
{excl _app_files,[]},
{incl _archive_dirs,[".*"]}
{excl _archive_dirs, [""include$", "priv$"]}
{archive_opts,[]}
{app_t ype, per nanent },
{app_file, keep},
{debug_i nf o, keep}]}}

6> reltool :get_config(Server, true, true)
{ok, {sys, [{root _dir,"/Idisk/hakan/otp_test"},
{lib_dirs,[]},
{escript,"/cl earcasel/otp/tool s/reltool/exanpl es/di spl ay_args"
[{incl _cond,include}]},

Ericsson AB, All Rights Reserved: Reltool | 7

1.3 Examples

{nod_cond
{incl _cond
{erts,[{vs
{no

{nmo

{nmo

{nmo

{nmo

{no

{nmo

{nmo

{app, comp
[{vsn

{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,

{ nod

all},

, derived},

n,"5.7.3"},

d,erl _prim|oader,[]},
d,erlang,[]},
d,init,[]1},
d, ot p_ringo, [
d,primfile,][
d, pri minet, [
d,primzip,[]
d,zlib,[1}1},
ler,
,"4.6.3"},
beam asm|[]},
beam bl ock, []},
beam bool ,[1},
beam bsm[1]},
beam cl ean, []},
beam dead, []},
beamdict,[]},
beam di sasm[]},
beam flatten,[]},
beam j unp, []},
beam listing,[]},
beam opcodes, ...},

S

1},
1},
1}
}

(ORI P
{app. crypto

[{vsn

{nod,
{nod,
{nod,
{nod,

{app. hi pe,

[{vsn,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,

{ nod

,"1.6.1"},
crypto,[]},
crypto_app, []},
crypto_server,[]},
crypto_sup, []}]},

"3.7.3"},

cerl _cconv,[]},
cerl _cl osurean,[]},
cerl _hipeify,[]},
cerl _hybrid_transform[]},
cerl _lib,[1},

cerl _messagean, []},
cerl _pmatch,[]}
cerl _prettypr,[]1},
cerl _to_icode, []}
cerl _typean, ...},

Y

(ORI

{app, ker ne
[{vsn

{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,
{nod,

{ nod

I,

,"2.13.3"},
application,[]},
application_controller,[]},
application_master,[]},
application_starter,[]},
auth,[]},

code, []},
code_server,[]},
disk_log,[]1},
disk_log_1,...},

.Y

(R 3 (P
{app, stdlib,

[{vsn
{ nod
{ nod
{ nod

,"1.16. 3"
,array, []
, baseb64, [
,beam |i b

),
0.

}
}
]

8 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

{mod, ¢, [1},
{nod, cal endar, []},
{nod, dets, []},
{nod, dets_server,[]},
{nod, dets_sup, ...},
{rmod, ...},
(T 3 P
{boot _rel,"start_cl ean"},
{emu_nane, "beani'},
{rel ocat abl e, true},
{profile, devel opnent},
{incl _sys_ files,[".*"]},
{excl _sys_files,[]},
{incl _app_files,[".*"]},
{excl _app_files,[]},
{incl _archive_dirs,[".*"]},
{excl _archive_dirs,["?include$",[...]1]1},
{archive_opts,[]},
{app_t ype, per manent },
{app_file, ...},
{... 1}

7> reltool :get_config([{sys,[{profile, enbedded}]}]).
{ok, {sys, [{profile, enbedded},
{incl _sys_filters,[""bin",""erts","~lib",""rel eases"]},
{excl _sys_filters,[""bin/(erlc|dialyzer|typer)(|\\.exe)$",
"Nerts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
"Nerts. */bin/.*(debug| pdb)"]},
{incl _app_filters,["”ebin", ""include", ""priv"]}]}}
8> reltool :get_config([{sys,[{profile, standalone}]}]).
{ok, {sys, [{profile, standal one},
{incl _sys_filters,[""~bin/(erl|epnmd)(|\\.exe|\\.ini)$",
"Abin/start(|_clean).boot$", " "Merts.*/bin"," ib$"]},
{excl _sys_filters,[""erts.*/bin/(erlc|dialyzer|typer)(|\\.exe)$",
"Nerts.*/bin/(start|escript|to_erl|run_erl)(|\\.exe)$",
"Nerts. */bin/.*(debug| pdb)"]},
{incl _app_filters,["”ebin","?priv"]},
{excl _app_filters,[""ebin/.*\\.appup$"]}]}}

1.3.3 Generate release and script files

5> {ok, Server} =reltool:start_server([{config, {sys, [{boot_rel, "NAME'},
{rel, "NAME"', "VSN',
[kernel, stdlib, sasl]}]}}]).
{ ok, <0.1288. 0>}
6> reltool:get_config(Server).
{ok, {sys, [{boot _rel,"NAME"},
{rel,"NAME", "VSN', [kernel ,stdlib,sasl]}]}}
7> reltool:get_rel (Server, "NAMVE").
{ok, {rel ease, {"NAME", "VSN'},
{erts,"5.7"},
[{kernel,"2.13"},{stdlib,"1. 16"}, {sasl,"2.1.6"}]}}
8> reltool:get_script(Server, "NAME").
{ok, {script, {"NAME", "VSN'},
[{preLoaded, [er| _pri m| oader,erlang,init,otp_ringo0,
primfile,priminet,primazip,zlib]},
{progress, prel oaded},
{path, ["$ROOT/ | i b/ ker nel - 2. 13/ ebi n",

Ericsson AB, All Rights Reserved: Reltool | 9

1.3 Examples

"$ROOT/ | i b/ stdlib-1.16/ebin"]},
{primnmLoad, [error_handl er]},
{kernel _| oad_conpl et ed},
{progress, kernel _| oad_conpl et ed},
{path, ["$ROOT/ | i b/ ker nel - 2. 13/ ebi n"] },
{primnmLoad, [appl i cation, application_controller,
appl i cati on_master, applicati on_starter, aut h, code,
code_server, di sk_| og, di sk_| og_1, di sk_| og_server,
di sk_| og_sup, di st _ac, dist_util,erl_boot_server|...]},
{path, ["$ROOT/ | i b/stdlib-1.16/ebin"]},
{prinmLoad, [array, base64, beam | i b, c, cal endar, det s,
dets_server, dets_sup,dets_utils,dets_v8,dets_v9,dict|...]},
{path, ["$ROOT/ | i b/ sasl -2. 1. 6/ ebi n"] },
{prinmLoad, [al arm handl er, erl srv, format _| i b_supp, m sc_supp,
overl oad, rb, rb_f or mat _supp, rel ease_handl er,
rel ease_handl er_1,sasl|...]},
{progress, nodul es_| oaded},
{path, ["$ROOT/ | i b/ ker nel - 2. 13/ ebi n",
"$ROOT/ |i b/ stdlib-1.16/ebin", "$ROOT/ | i b/ sasl-2.1.6/ebin"]},
{kernel Process, heart, {heart,start,[]}},
{kernel Process, error_| ogger, {error_|l ogger,start_link,[]}},
{kernel Process, application_controller,
{application_controller,start,[{...}]}},
{progress,init_kernel _started},
{apply, {application,load,[...]}},
{apply, {application,load,...}},
{progress, appl i cati ons_| oaded},
{apply,{...}},
{apply, ...},
{... 3 13
9> reltool:stop(Server).
ok

1.3.4 Create a target system

Erl ang R13B02 (erts-5.7.3) [source] [64-bit] [snp:4:4] [rq:4]
[async-threads: 0] [kernel-poll:false]

Eshell V5.7.3 (abort with "G
1> Config = {sys, [{escript,
"exanpl es/ di spl ay_ar gs",
[{incl_cond, include}]},
{app, inets, [{incl_cond, include}]},
{app, mmesia, [{incl_cond, exclude}]},
{app, ssl, [{incl_cond, exclude}]},
{app, runtine_tools, [{incl_cond, exclude}]},
{app, syntax_tools, [{incl_cond, exclude}]}]}.
{sys, [{escript, "exanpl es/di spl ay_args", [{incl _cond, include}]},
{app, inets, [{incl_cond,include}]},
{app, mesi a, [{i ncl _cond, excl ude}]},
{app, ssl, [{incl _cond, excl ude}]},
{app, runtime_tool s, [{incl_cond, excl ude}]}
{app, syntax_tool s, [{incl _cond, excl ude}]}]

)

2> {ok, Spec} = reltool:get_target_spec([Config]).
{ok,[{create_dir, "rel eases",
[{wite file,"start_erl.data","5.7.3 1.0"},
{create_dir,"1.0",
[{wite file,"start_clean.rel",

10 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

{create_dir, "bin",

[37,37, 32,114, 101, 108, 32, 103, 101, 110, 101] .
{wite_file,"start_clean.script",

[37, 37, 32, 115, 99, 114, 105, 112, 116, 32| ...]},
{wite_file,"start_cl ean. boot",

<<131, 104, 3, 100, 0, 6, 115, 99, 114, ... >>},
{wite_file,"start_sasl.rel",

[37,37, 32,114, 101, 108, 32, 103, 101, 110, 101] .
{wite_file, "start_sasl.script",

[37, 37, 32, 115, 99, 114, 105, 112, 116, 32| ...]},
{wite_file,"start_sasl.boot",

<<131, 104, 3, 100, 0, 6, 115, 99, 114, ...>>}]}]},

di spl ay_args. escript"”,

"/cl earcase/ ot p/tool s/reltool /exanpl es/ di spl ay_args"},

[{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"
{copy_file,"

{wite_file,

{wite_file,
{wite_file,
{create_dir, "msc",
[{copy_file,"
{copy_file,"Install"},
{create_dir, "usr",
[{create_dir,

{create_dir,

{create_dir,"erts-5.7.3",

[{create_dir,

{create_dir,

{create_dir,

di spl ay_args", "erts-5.7.3/bin/escript"},
start","erts-5.7.3/bin/start"},
erl","erts-5.7.3/bin/dyn_erl "},

epmd”, "erts-5.7.3/bin/epmd"},
to_erl","erts-5.7.3/bin/to_erl"},
run_erl","erts-5.7.3/bin/run_erl"},
escript”,"erts-5.7.3/bin/escript"},
erlc","erts-5.7.3/bin/erlc"},

di al yzer","erts-5.7.3/bin/dialyzer"},
typer","erts-5.7.3/bin/typer"},

"start_cl ean. boot ",

<<131, 104, 3, 100, 0, 6, 115, ... >>},
"start_sasl . boot", <<131, 104, 3, 100, 0, 6, . .. >>},
"start.boot", <<131, 104, 3, 100, 0, ...>>}1},

makewhatis"}, {copy_file,"format_man_pages"}]},

“lib",
[{copy_file,"liberts_r.a"},{copy_file,"liberts.a"}]},
"incl ude",

[{copy_file,"erl _fixed_size_int_types.h"},
{copy_file,"erl _int_sizes_config.h"},
{copy_file,"erl _menmory_trace_parser.h"},
{create_dir, "obsol ete", [{copy_file,"driver.h"}]},
{copy_file,"driver_int.h"},
{copy_file,"erl_driver.h"}]}]},

"lib",

[{create_dir,"internal",
[{copy_file,"liberts_internal _r.a"},
{copy_file,"liberts_internal.a"},

{copy_file,"libethread.a"},

{copy_file, "READVE"}]},
{copy_file,"liberts_r.a"},
{copy_file,"liberts.a"}]},

"bin",

[{copy_file,"start"},
{copy_file,"erl","erts-5.7.3/bin/dyn_erl"},
{copy_file,"epmd"},
{copy_file,"to_erl"},

{copy_file, "run_erl"},
{copy_file, "escript"},
{copy_file, "erlc"},
{copy_file,"dialyzer"},
{copy_file, "typer"},
{copy_file, "erlexec"},

{copy_file,[...]},
{copy_file,...},
(S 3 R
“doc",[]},

Ericsson AB, All Rights Reserve

1}

1}

d: Reltool | 11

1.3 Examples

{create_dir,"man",[]1},
{create_dir,"include",
[{create_dir,"internal",
[{create_dir,"tile",[{copy_file,...},{...}]},
{create_dir,"sparc64",[{...}]},
{create_dir,"sparc32",[...]1},
{create_dir,[...],...},
{create_dir, ...},
{3 P
{copy_file,"erl _fixed_size_int_types.h"},
{copy_file,"erl _int_sizes_config.h"},
{copy_file,"erl _menmory_trace_parser.h"},
{copy_file,"driver_int.h"},
{copy_file,"erl _driver.h"}1},
{create_dir,"src",[{copy_file,"setuid_socket_wap.c"}]}]},
{create_dir,"lib",
[{archive, "compiler-4.6.3.ez",[],
[{create_dir, "conpiler-4.6.3",
[{create_dir, "ebin",
[{copy_file,"conpiler.appup"},
{copy_file,[...]},
{copy_file,...},
(R 3 P
{create_dir,"src",
[{copy_file,[...]1},
{copy_file,...}, {...}]...1}]1}1},
{archive,"crypto-1.6.1.ez",[],

[{create_dir,"crypto-1.6.1",
[{create_dir, "ebin",
[{copy_file,[...]1},
{copy_file,...}, {...}]...1},

{create_dir,"src",[{copy_file,...},{...}|...1}1}1},
{create_dir,"crypto-1.6.1",

[{create_dir, "priv",
[{create_dir,"lib",[{copy_file [...]}]1},
{create_dir,"obj",[{copy_file,...},{...}1}1}1},
{archive,"erts-5.7.3.ez",[],
[{create_dir,"erts-5.7.3",
[{create_dir,"ebin",[{...}]...1},
{create_dir,"src",[...1}]1}1},
{archive,"hipe-3.7.3.ez",[],
[{create_dir, "hipe-3.7.3",
[{create_dir,"util",[...]1},
{create_dir,[...],...},
{create_dir, ...},
{23130
{archive, "kernel -2.13. 3. ez",[],
[{create_dir, "kernel -2.13. 3",
[{create_dir,[...],...},{create_dir,...},{...}1}1},
{create_dir, "kernel -2.13. 3",
[{create_dir,"include",
[{copy_file [...1},{copy_file ...},{...}]}I},
{archive, "stdlib-1.16.3.ez",[],
[{create_dir,"stdlib-1.16.3",[{...}]|...]1}1},
{create_dir, "stdlib-1.16.3",
[{create_dir,"include",[{...}|...1}]1}1}1}

3> TargetDir = "ny_target_dir".

"my_target _dir"

4> reltool : eval _target_spec(Spec, code:root_dir(), TargetDir).
{error,"/clearcase/otp/tools/reltool/my_target_dir: no such file or directory"}
5> file:make_dir("my_target_dir").

ok

12 | Ericsson AB, All Rights Reserved: Reltool

1.3 Examples

6> reltool : eval _target_spec(Spec, code:root_dir(), TargetDir).

ok
7> file:list_dir(TargetDir).
{ok,["lib","erts-5.7.3","usr","Install","msc", "bin", "rel eases"]}

8> file:list_dir(filename:join([TargetDir,"lib"])).

{ok,["stdlib-1.16.3","stdlib-1.16.3.ez", "kernel -2. 13. 3",
"kernel -2.13.3.ez","hipe-3.7.3.ez","erts-5.7.3.ez",
"crypto-1.6.1","crypto-1.6.1.ez","conpiler-4.6.3.ez"]}

9> file:make_dir("yet_another_target_dir").

ok

10> reltool :create_target (Config, "yet_another_target_dir").

ok

Ericsson AB, All Rights Reserved: Reltool | 13

1.3 Examples

2 Reference Manual

Rel t ool is a release management tool. It analyses a given Erlang/OTP installation and determines various
dependencies between applications. The gr aphi cal frontend depicts the dependencies and enables interactive
customization of atarget system. The backend providesabat ch interfacefor generation of customized target systems.

14 | Ericsson AB, All Rights Reserved: Reltool

reltool

reltool

Erlang module

Thisis an interface module for the Reltool application.

Reltool isarelease management tool. It analyses agiven Erlang/OTP installation and determines various dependencies
between applications. Thegr aphi cal frontend depicts the dependencies and enables interactive customization of a
target system. The backend providesabat ch interface for generation of customized target systems.

Thetool uses an installed Erlang/OTP system asinput. r oot _di r istheroot directory of the analysed system and it
defaultsto the system executingr el t ool . Applicationsmay also belocated outsider oot _di r.1i b_di r s defines
additional library directories where applications additional may reside and it defaults to the the directories listed by
the operating system environment variable ERL_ LI BS. See the module code for more info. Finally single modules
and entire applications may be read from Escripts.

Some configuration parameters control the behavior of Reltool on system (sys) level. Others provide control on
application (app) level and yet othersare on module (mod) level. Module level parameters overrides application level
parameters and application level parameters overrides system level parameters. Escript escri pt level parameters
overrides system level parameters.

Thefollowing top level opt i ons are supported:
config

This is the main option and it controls the configuration of r el t ool . It can either be asys tuple or a name
of af i | e containing a systuple.

trap_exit

This option controls the error handling behavior of r el t ool . By default the window processes traps exit, but
this behavior can atered by settingt rap_exit tof al se.

wx_debug

This option controls the debug level of wx. As its name indicates it is only useful for debugging. See
wx: debug/ 1 for moreinfo.

Besides the already mentioned source parameters r oot _di r and | i b_di r s, the following system (sys) level
options are supported:

erts
Erts specific configuration. See application level options below.
escri pt

Escript specific configuration. An escript has a mandatory file name and escript level options that are described
below.

app

Application specific configuration. An application has a mandatory name and application level options that are
described below.

nod_cond

This parameter controls the module inclusion policy. It defaults to al | which means that if an application is
included (either explicitly or implicitly) all modules in that application will be included. This implies that both
modules that exists on the ebi n directory of the application, as well as modules that are named in the app file
will be included. If the parameter is set to ebi n, both modules on the ebi n directory and derived modules
are included. If the parameter is set to app, both modules in the app file and derived modules are included.

Ericsson AB, All Rights Reserved: Reltool | 15

reltool

der i ved meansthat only modulesthat are used by other included modulesareincluded. Thenod_cond setting
on system level is used as default for all applications.

i ncl _cond

This parameter controls the application and escript inclusion policy. It defaultsto der i ved which means that
the applications that not have any expliciti ncl _cond setting, will only be included if any other (explicitly or
implicitly included) application usesit. The value i ncl ude implies that all applications and escripts that that
not have any expliciti ncl _cond setting will beincluded. excl ude impliesthat all applications and escripts)
that that not have any expliciti ncl _cond setting will be excluded.

boot _rel

rel

A target system may have severa releases but the one given as boot _r el will be used as default when the
system is booting up.

Release specific configuration. Eachrelease mapstoar el ,scri pt andboot file. Seethemodulesyst ool s
for more info about the details. Each release has a name, a version and a set of applications with afew release
specific parameters such as type and included applications.

rel ocat abl e

This parameter controls whether the er | executable in the target system automatically should determine where
itisinstalled or if it should use a hardcoded path to the installation. In the latter case the target system must be
installedwithr el t ool : i nst al | / 2 beforeit can be used. If the system isrel ocatable, thefile tree containing
the target system can be moved to another location without re-installation. The defaultist r ue.

profile

The creation of the specification for a target system is performed in two steps. In the first step a complete
specification is generated. It will likely contain much more files than you are interested in your customized
target system. In the second step the specification will be filtered according to your filters. There you have the
ability to specify filters per application as well as system wide filters. You can also select apr of i | e for your
system. Depending on the pr of i | e, different default filters will be used. There are three different profiles to
choose from: devel oprent , enbedded and st andal one. devel opnent isdefault. The parameters that
areaffectedby theprofil eareli ncl _sys_filters,excl _sys filters,incl _app_filtersand
excl _app_filters.

app_file

This parameter controls the default handling of the app files when a target system is generated. It defaults to
keep which meansthat app files are copied to the target system and their contents are kept asthey are. stri p
meansthat anew app fileis generated from the contents of the original app file where the non included modules
areremoved fromthefile. al | doesalsoimply that anew app fileis generated from the contents of the original
app file, with the difference that all included modules are added to the file. If the application does not have any
app fileafilewill be created for al | but not for keep andstri p.

debug info

Thedebug_i nf o parameter controls whether the debug information in the beam file should be kept (keep) or
stripped st ri p when thefile is copied to the target system.

incl_sys filters

This parameter normally contains alist of regular expressions that controls which files in the system that should
be included. Each file in the target system must match at least one of the listed regular expressions in order
to be included. Further the files may not match any filter in excl _sys_filters in order to be included.
Which application files that should be included are controlled with the parametersi ncl _app_filters and
excl _app_filters. Thisparameter defaultsto[. *"] .

16 | Ericsson AB, All Rights Reserved: Reltool

reltool

excl _sys filters

This parameter normally contains a list of regular expressions that controls which files in the system that
not should be included in the target system. In order to be included, a file must match some filter in
incl_sys filters butnotanyfilterinexcl sys_filters. Thisparameter defaultsto[] .

incl _app_filters

This parameter normally contains alist of regular expressions that controls which application specific files that
should be included. Each file in the application must match at |east one of the listed regular expressionsin order
to beincluded. Further the files may not match any filter inexcl _app_fi | t er s inorder to beincluded. This
parameter defaultsto[". *"] .

excl _app_filters

This parameter normally contains a list of regular expressions that controls which application specific files
that not should be included in the target system. In order to be included, a file must match some filter in
incl _app_filters butnotanyfilterinexcl _app_filters. Thisparameter defaultsto|] .

incl _archive filters

This parameter normally contains a list of regular expressions that controls which top level directories in an
application that should beincluded in an archivefile (as opposed of beeing included asaregular directory outside
the archive). Each top directory in the application must match at least one of the listed regular expressionsin
order to be included. Further the files may not match any filterinexcl _app_fi |l t er s inorder to beincluded.
This parameter defaultsto[. *"] .

excl _archive_filters

This parameter normally contains a list of regular expressions that controls which top level directories in
an application that not should be included in an archive file. In order to be included in the application
archive, a top directory must match some filter in i ncl _archive filters but not any filter in
excl _archive_filters.Thisparameter defaultsto[" i ncl ude$", "~priv$"].

archive_opts

This parameter contains a list of options that are givento zi p: cr eat e/ 3 when application specific files are
packaged into an archive. All options are not supported. The most useful optionsin this context, are the ones that
controls which types of files that should be compressed. This parameter defaultsto[] .

On application (escr i pt) levelthe following options are supported:
i ncl_cond
The value of this parameter overrides the parameter with the same name on system level.
On application (app) level the following options are supported:
vsn

Theversion of the application. In an installed system there may exist several versions of an application. Thevsn
parameter controls which version of the application that will be choosen. If it is omitted, the latest version will
be choosen.

nod

Module specific configuration. A module has a mandatory name and module level options that are described
below.

nod_cond

The value of this parameter overrides the parameter with the same name on system level.

Ericsson AB, All Rights Reserved: Reltool | 17

reltool

i ncl_cond

The value of this parameter overrides the parameter with the same name on system level.
app_file

The value of this parameter overrides the parameter with the same name on system level.
debug_info

The value of this parameter overrides the parameter with the same name on system level.
incl _app filters

The value of this parameter overrides the parameter with the same name on system level.
excl _app_filters

The value of this parameter overrides the parameter with the same name on system level.
incl _archive filters

The value of this parameter overrides the parameter with the same name on system level.
excl _archive filters

The value of this parameter overrides the parameter with the same name on system level.
archive_opts

The value of this parameter overrides the parameter with the same name on system level.
On module (nmod) level the following options are supported:
i ncl _cond

This parameter controls whether the module is included or not. By default the nod_i ncl
application and system level will be used to control whether the module is included or not. The vaue of
i ncl _cond overrides the module inclusion policy. i ncl ude implies that the module is included, while
excl ude implies that the module not is included. der i ved implies that the is included if any included uses

the module.
debug info

parameter on

The value of this parameter overrides the parameter with the same name on application level.

DATA TYPES

options() = [option()]

option() = {config, config() | file()}
| {trap_exit, bool ()}
| {wx_debug, term()}

config() = {sys, [sys()1}

sys() = {root_dir, root_dir()}

{lib_dirs, [lib_dir()]}

{profile, profile()}

{erts, app()}

{escript, escript_file(), [escript()]}
{app, app_name(), [app()]}

{nod_cond, nod_cond()}

{incl _cond, incl_cond()}

{boot _rel, boot _rel ()}

{rel, rel _nanme(), rel _vsn(), [rel _app()]}
{rel ocatabl e, relocatable()}
{app_file, app_file()}

{debug_i nfo, debug_info()}

18 | Ericsson AB, All Rights Reserved: Reltool

reltool

app()

mod()

rel _app()

app_nane()
app_type()
app_vsn()

ar chi ve_opt
boot _rel ()
app_file()
debug_i nfo()
dir()
escript()
escript_file()

excl _app_filters()
excl _archive_filters() = regexps()
excl _sys_filters()

file()
i ncl _app()

incl _app_filters()
incl _archive_filters()

incl _cond()

incl_sys_filters()

lib_dir()
nmod_cond()
nmod_nane()
profile()
re_regexp()
reason()
regexps()
rel _file()
rel _name()
rel _vsn()
rel ocat abl e
root _dir()
script_file()
server ()
server _pid()
target _dir()
wi ndow_pi d()

{incl_sys_f
{excl _sys_f
{incl _app_f
{excl _app_f

Iters, incl_sys_ filters()}
Iters, excl_sys filters()}
Iters, incl_app_filters()}
Iters, excl_app_filters()}

{incl _archive_filters, incl_archive_filters()}
{excl _archive_filters, excl_archive_filters()}
{archive_opts, [archive_opt()]}

{vsn, app_vsn()}

{nod, nod_nane(), nod()}

{nod_cond, nod_cond()}

{incl _cond
{debug_i nf o,

incl _cond()}
debug_info()}

{app_file, app_file()}

{incl_sys_f
{excl _sys_f
{incl _app_f
{excl _app_f

Iters, incl_sys_ filters()}
Iters, excl_sys filters()}
Iters, incl_app_filters()}
Iters, excl_app_filters()}

{incl_archive_filters, incl_archive_filters()}
{excl _archive_filters, excl_archive_filters()}
{archi ve_opts, [archive_opt()]}

{vsn, app_vsn()}

{incl _cond
{debug_i nf o,
app_name()
{app_name()
{app_name()
{app_name()

atom()

per manent
string()

incl _cond()}
debug_i nfo()}

app_type()}
[incl _app()]}
app_type(), [incl_app()]}

transient | tenporary | load | none

zi p_create_opt()

rel _name()

keep | strip | al

keep | strip

string()
{incl _cond
file()
regexps()

regexps()
string()
app_nane()
regexps()

= regexps()

incl _cond()}

i nclude | exclude | derived

regexps()
dir()

all | app |
atom()

devel oprment
string()
string()

ebin | derived | none

| enbedded | standal one

[re_regexp()] | {add, [re_regexp()]} | {del, [re_regexp()]}

term)
string()

string()
bool ean()
dir()
term)

server _pid()

pi d()
file()
pi d()

| options()

Ericsson AB, All Rights Reserved: Reltool | 19

reltool

Exports

create_target(Server, TargetDir) -> ok | {error, Reason}
Types:

Server = server()

TargetDir =target_dir()

Reason = reason()

Createatarget system. Givesthesameresult as{ ok, Tar get Spec} =rel t ool : get _target spec(Server)
andrel tool : eval target spec(Target Spec, RootDir, TargetDir).

eval target_spec(Target Spec, RootDir, TargetDir) -> ok | {error, Reason}
Types:

TargetSpec = target_spec()

RootDir = root_dir()

TargetDir =target_dir()

Reason = reason()
Create the actual target system from a specification generated by r el t ool : get _t arget spec/ 1. The creation
of the specification for a target system is performed in two steps. In the first step a complete specification will be
generated. It will likely contain much morefilesthan you are interested inin your target system. In the second step the
specification will be filtered according to your filters. There you have the ability to specify filters per application as

well as system wide filters. You can also select apr of i | e for your system. Depending on the pr of i | e, different
default filters will be used.

The top directories bi n, r el eases and | i b are treated differently from other files. All other files are by default
copied to the target system. Ther el eases directory contains generated r el , scri pt, and boot files. Thel i b
directory contains the applications. Which applications that are included and if they should be customized (archived,
stripped from debug info etc.) is specified with various configuration parameters. The filesin the bi n directory are
copied fromtheert s- vsn/ bi n directory, but only those files that was originally included in bi n directory of the
source system.

If the configuration parameter r el ocat abl e was set to t r ue there is no need to install the target system with
reltool:install/2 beforeit can be started. In that case the file tree containing the target system can be moved
without re-installation.

get _config(Server) -> {ok, Config} | {error, Reason}
Types:

Server = server()

Config = config()

Reason = reason()

Get reltool configuration. Shorthand for r el t ool : get _confi g(Server, fal se, fal se).

get _config(Server, InclDefaults, InclDerived) -> {ok, Config} | {error,
Reason}

Types.
Server = server()
InclDefaults = incl_defaults()
InclDerived = incl_derived()

20 | Ericsson AB, All Rights Reserved: Reltool

reltool

Config = config()
Reason = reason()
Get reltool configuration. Normally, only the explicit configuration parameters with values that differs from their

defaults are interesting. But the builtin default values can be returned by setting | ncl Def aul t s totrue. The
derived configuration can be return by setting | ncl Deri ved tot r ue.

get _rel (Server, Relnanme) -> {ok, RelFile} | {error, Reason}
Types:

Server = server()

RelName =rel_name()

RelFile=rd_filg()

Reason = reason()

Get contents of areleasefile. Seer el (4) for more details.

get _script(Server, Relnane) -> {ok, ScriptFile | {error, Reason}
Types:

Server = server()

RelName =rel_name()

ScriptFile=script_file()

Reason = reason()

Get contents of aboot script file. Seescri pt (4) for more details.

get _server (W ndowPi d) -> {ok, ServerPid} | {error, Reason}
Types:

WindowPid = window_pid()

ServerPid = server_pid()

Reason = reason()

Return the process identifier of the server process.

get _target_spec(Server) -> {ok, targetSpec} | {error, Reason}
Types:

Server = server()

TargetSpec = target_spec()

Reason = reason()

Return a specification of the target system. The actual target system can be created with
reltool:eval _target_spec/3.

install (Server, TargetDir) -> ok | {error, Reason}
Types:

Server = server()

TargetDir =target_dir()

Reason = reason()
Install a created target system

Ericsson AB, All Rights Reserved: Reltool | 21

reltool

start() -> {ok, WndowPid} | {error, Reason}
Types:

WindowPid = window_pid()

Reason = reason()
Start amain window process with default options

start(Options) -> {ok, WndowPid} | {error, Reason}
Types.

Options = options()

WindowPid = window_pid()

Reason = reason()
Start a main window process with options

start_link(Options) -> {ok, WndowPid} | {error, Reason}
Types:

Options = options()

WindowPid = window_pid()

Reason = reason()
Start a main window process with options. The processis linked.

start_server(Options) -> {ok, ServerPid} | {error, Reason}
Types:

Options = options()

ServerPid = server_pid()

Reason = reason()

Start a server process with options. The server process identity can be given as argument to several other functions
inthe API.

stop(Pid) -> ok | {error, Reason}
Types:
Pid = server_pid() | window_pid()()
Reason = reason()
Stop a server or window process

22 | Ericsson AB, All Rights Reserved: Reltool

	Reltool
	User's Guide
	Introduction
	Scope and Purpose
	Prerequisites
	About This Manual
	Where to Find More Information

	Usage
	Overview
	System window
	Libraries
	System settings
	Applications
	Releases
	File menu
	Dependencies between applications or modules displayed as a graph

	Application window
	Application settings
	Modules
	Application dependencies
	Module dependencies

	Module window
	Dependencies
	Code

	Examples
	Start and stop windows and servers
	Inspecting the configuration
	Generate release and script files
	Create a target system

	Reference Manual
	reltool
	create_target/2
	eval_target_spec/3
	get_config/1
	get_config/3
	get_rel/2
	get_script/2
	get_server/1
	get_target_spec/1
	install/2
	start/0
	start/1
	start_link/1
	start_server/1
	stop/1

