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1    User's Guide

The SSL application provides secure communication over sockets.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.

1.1  The SSL Protocol
Here we provide a short introduction to the SSL protocol. We only consider those part of the protocol that are important
from a programming point of view.

For a very good general introduction to SSL and TLS see the book .

Outline:

• Two types of connections - connection: handshake, data transfer, and shutdown - SSL/TLS protocol - server
must have certificate - what the the server sends to the client - client may verify the server - server may ask
client for certificate - what the client sends to the server - server may then verify the client - verification -
certificate chains - root certificates - public keys - key agreement - purpose of certificate - references

1.1.1  SSL Connections
The SSL protocol is implemented on top of the TCP/IP protocol. From an endpoint view it also has the same type of
connections as that protocol, almost always created by calls to socket interface functions listen, accept and connect.
The endpoints are servers and clients.

A serverlistens for connections on a specific address and port. This is done once. The server then accepts each
connections on that same address and port. This is typically done indefinitely many times.

A client connects to a server on a specific address and port. For each purpose this is done once.

For a plain TCP/IP connection the establishment of a connection (through an accept or a connect) is followed by data
transfer between the client and server, finally ended by a connection close.

An SSL connection also consists of data transfer and connection close, However, the data transfer contains encrypted
data, and in order to establish the encryption parameters, the data transfer is preceded by an SSL handshake. In this
handshake the server plays a dominant role, and the main instrument used in achieving a valid SSL connection is the
server's certificate. We consider certificates in the next section, and the SSL handshake in a subsequent section.

1.1.2  Certificates
A certificate is similar to a driver's license, or a passport. The holder of the certificate is called the subject. First of
all the certificate identifies the subject in terms of the name of the subject, its postal address, country name, company
name (if applicable), etc.

Although a driver's license is always issued by a well-known and distinct authority, a certificate may have an issuer
that is not so well-known. Therefore a certificate also always contains information on the issuer of the certificate. That
information is of the same type as the information on the subject. The issuer of a certificate also signs the certificate
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with a digital signature (the signature is an inherent part of the certificate), which allow others to verify that the issuer
really is the issuer of the certificate.

Now that a certificate can be checked by verifying the signature of the issuer, the question is how to trust the issuer.
The answer to this question is to require that there is a certificate for the issuer as well. That issuer has in turn an
issuer, which must also have a certificate, and so on. This certificate chain has to have en end, which then must be a
certificate that is trusted by other means. We shall cover this problem of authentication in a subsequent section.

1.1.3  Encryption Algorithms
An encryption algorithm is a mathematical algorithm for encryption and decryption of messages (arrays of bytes, say).
The algorithm as such is always required to be publicly known, otherwise its strength cannot be evaluated, and hence it
cannot be used reliably. The secrecy of an encrypted message is not achieved by the secrecy of the algorithm used, but
by the secrecy of the keys used as input to the encryption and decryption algorithms. For an account of cryptography
in general see .

There are two classes of encryption algorithms: symmetric key algorithms and public key algorithms. Both types of
algorithms are used in the SSL protocol.

In the sequel we assume holders of keys keep them secret (except public keys) and that they in that sense are trusted.
How a holder of a secret key is proved to be the one it claims to be is a question of authentication, which, in the context
of the SSL protocol, is described in a section further below.

Symmetric Key Algorithms

A symmetric key algorithm has one key only. The key is used for both encryption and decryption. Obviously the key
of a symmetric key algorithm must always be kept secret by the users of the key. DES is an example of a symmetric
key algorithm.

Symmetric key algorithms are fast compared to public key algorithms. They are therefore typically used for encrypting
bulk data.

Public Key Algorithms

A public key algorithm has two keys. Any of the two keys can be used for encryption. A message encrypted with one
of the keys, can only be decrypted with the other key. One of the keys is public (known to the world), while the other
key is private (i.e. kept secret) by the owner of the two keys.

RSA is an example of a public key algorithm.

Public key algorithms are slow compared to symmetric key algorithms, and they are therefore seldom used for bulk
data encryption. They are therefore only used in cases where the fact that one key is public and the other is private,
provides features that cannot be provided by symmetric algorithms.

Digital Signature Algorithms

An interesting feature of a public key algorithm is that its public and private keys can both be used for encryption.
Anyone can use the public key to encrypt a message, and send that message to the owner of the private key, and be
sure of that only the holder of the private key can decrypt the message.

On the other hand, the owner of the private key can encrypt a message with the private key, thus obtaining an encrypted
message that can decrypted by anyone having the public key.

The last approach can be used as a digital signature algorithm. The holder of the private key signs an array of bytes by
performing a specified well-known message digest algorithm to compute a hash of the array, encrypts the hash value
with its private key, an then presents the original array, the name of the digest algorithm, and the encryption of the
hash value as a signed array of bytes.
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Now anyone having the public key, can decrypt the encrypted hash value with that key, compute the hash with the
specified digest algorithm, and check that the hash values compare equal in order to verify that the original array was
indeed signed by the holder of the private key.

What we have accounted for so far is by no means all that can be said about digital signatures (see for further details).

Message Digests Algorithms

A message digest algorithm is a hash function that accepts an array bytes of arbitrary but finite length of input, and
outputs an array of bytes of fixed length. Such an algorithm is also required to be very hard to invert.

MD5 (16 bytes output) and SHA1 (20 bytes output) are examples of message digest algorithms.

1.1.4  SSL Handshake
The main purpose of the handshake performed before an an SSL connection is established is to negotiate the encryption
algorithm and key to be used for the bulk data transfer between the client and the server. We are writing the key, since
the algorithm to choose for bulk encryption one of the symmetric algorithms.

There is thus only one key to agree upon, and obviously that key has to be kept secret between the client and the server.
To obtain that the handshake has to be encrypted as well.

The SSL protocol requires that the server always sends its certificate to the client in the beginning of the handshake.
The client then retrieves the server's public key from the certificate, which means that the client can use the server's
public key to encrypt messages to the server, and the server can decrypt those messages with its private key. Similarly,
the server can encrypt messages to the client with its private key, and the client can decrypt messages with the server's
public key. It is thus is with the server's public and private keys that messages in the handshake are encrypted and
decrypted, and hence the key agreed upon for symmetric encryption of bulk data can be kept secret (there are more
things to consider to really keep it secret, see ).

The above indicates that the server does not care who is connecting, and that only the client has the possibility to
properly identify the server based on the server's certificate. That is indeed true in the minimal use of the protocol, but
it is possible to instruct the server to request the certificate of the client, in order to have a means to identify the client,
but it is by no means required to establish an SSL connection.

If a server request the client certificate, it verifies, as a part of the protocol, that the client really holds the private key
of the certificate by sending the client a string of bytes to encrypt with its private key, which the server then decrypts
with the client's public key, the result of which is compared with the original string of bytes (a similar procedure is
always performed by the client when it has received the server's certificate).

The way clients and servers authenticate each other, i.e. proves that their respective peers are what they claim to be,
is the topic of the next section.

1.1.5  Authentication
As we have already seen the reception of a certificate from a peer is not enough to prove that the peer is authentic.
More certificates are needed, and we have to consider how certificates are issued and on what grounds.

Certificates are issued by certification authorities (CAs) only. They issue certificates both for other CAs and ordinary
users (which are not CAs).

Certain CAs are top CAs, i.e. they do not have a certificate issued by another CA. Instead they issue their own certificate,
where the subject and issuer part of the certificate are identical (such a certificate is called a self-signed certificate). A
top CA has to be well-known, and has to have a publicly available policy telling on what grounds it issues certificates.

There are a handful of top CAs in the world. You can examine the certificates of several of them by clicking through
the menus of your web browser.

A top CA typically issues certificates for other CAs, called intermediate CAs, but possibly also to ordinary users. Thus
the certificates derivable from a top CA constitute a tree, where the leaves of the tree are ordinary user certificates.
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A certificate chain is an ordered sequence of certificates, C1, C2, ..., Cn, say, where C1 is a top CA certificate,
and where Cn is an ordinary user certificate, and where the holder of C1 is the issuer of C2, the holder of C2 is
the issuer of C3, ..., and the holder of Cn-1 is the issuer of Cn, the ordinary user certificate. The holders of C2,
C3, ..., Cn-1 are then intermediate CAs.

Now to verify that a certificate chain is unbroken we have to take the public key from each certificate Ck, and apply
that key to decrypt the signature of certificate Ck-1, thus obtaining the message digest computed by the holder of the
Ck certificate, compute the real message digest of the Ck-1 certificate and compare the results. If they compare equal
the link of the chain between Ck and Ck-1 is considered to unbroken. This is done for each link k = 1, 2, ..., n-1. If
all links are found to be unbroken, the user certificate Cn is considered authenticated.

Trusted Certificates

Now that there is a way to authenticate a certificate by checking that all links of a certificate chain are unbroken, the
question is how you can be sure to trust the certificates in the chain, and in particular the top CA certificate of the chain.

To provide an answer to that question consider the perspective of a client, which have just received the certificate of
the server. In order to authenticate the server the client has to construct a certificate chain and to prove that the chain is
unbroken. The client has to have a set of CA certificates (top CA or intermediate CA certificates) not obtained from the
server, but obtained by other means. Those certificates are kept locally by the client, and are trusted by the client.

More specifically, the client does not really have to have top CA certificates in its local storage. In order to authenticate
a server it is sufficient for the client to posses the trusted certificate of the issuer of the server certificate.

Now that is not the whole story. A server can send an (incomplete) certificate chain to its client, and then the task of
the client is to construct a certificate chain that begins with a trusted certificate and ends with the server's certificate.
(A client can also send a chain to its server, provided the server requested the client's certificate.)

All this means that an unbroken certificate chain begins with a trusted certificate (top CA or not), and ends with the
peer certificate. That is the end of the chain is obtained from the peer, but the beginning of the chain is obtained from
local storage, which is considered trusted.

1.2  Using the SSL application
Here we provide an introduction to using the Erlang/OTP SSL application, which is accessed through the ssl interface
module.

We also present example code in the Erlang module client_server, also provided in the directory ssl-X.Y.Z/
examples, with source code in src and the compiled module in ebin of that directory.

1.2.1  The ssl Module
The ssl module provides the user interface to the Erlang/OTP SSL application. The interface functions provided are
very similar to those provided by the gen_tcp and inet modules.

Servers use the interface functions listen and accept. The listen function specifies a TCP port to to listen to,
and each call to the accept function establishes an incoming connection.

Clients use the connect function which specifies the address and port of a server to connect to, and a successful
call establishes such a connection.

The listen and connect functions have almost all the options that the corresponding functions in gen_tcp/
have, but there are also additional options specific to the SSL protocol.

The most important SSL specific option is the cacertfile option which specifies a local file containing trusted
CA certificates which are and used for peer authentication. This option is used by clients and servers in case they want
to authenticate their peers.
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The certfile option specifies a local path to a file containing the certificate of the holder of the connection endpoint.
In case of a server endpoint this option is mandatory since the contents of the sever certificate is needed in the the
handshake preceding the establishment of a connection.

Similarly, the keyfile option points to a local file containing the private key of the holder of the endpoint. If the
certfile option is present, this option has to be specified as well, unless the private key is provided in the same
file as specified by the certfile option (a certificate and a private key can thus coexist in the same file).

The verify option specifies how the peer should be verified:

0
Do not verify the peer,

1
Verify peer,

2
Verify peer, fail the verification if the peer has no certificate.

The depth option specifies the maximum length of the verification certificate chain. Depth = 0 means the peer
certificate, depth = 1 the CA certificate, depth = 2 the next CA certificate etc. If the verification process does not find
a trusted CA certificate within the maximum length, the verification fails.

The ciphers option specifies which ciphers to use (a string of colon separated cipher names). To obtain a list of
available ciphers, evaluate the ssl:ciphers/0 function (the SSL application has to be running).

1.2.2  A Client-Server Example
Here is a simple client server example.

1.3  PKIX Certificates

1.3.1  Introduction to Certificates
Certificates were originally defined by ITU (CCITT) and the latest definitions are described in , but those definitions
are (as always) not working.

Working certificate definitions for the Internet Community are found in the the PKIX RFCs and . The parsing of
certificates in the Erlang/OTP SSL application is based on those RFCS.

Certificates are defined in terms of ASN.1 (). For an introduction to ASN.1 see ASN.1 Information Site.

1.3.2  PKIX Certificates
Certificate handling is now handled by the public_key application.

DER encoded certificates returned by ssl:peercert/1 can for example be decoded by the
public_key:pkix_decode_cert/2 function.

1.4  Creating Certificates
Here we consider the creation of example certificates.

1.4.1  The openssl Command
The openssl command is a utility that comes with the OpenSSL distribution. It provides a variety of subcommands.
Each subcommand is invoked as

href
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      openssl subcmd <options and arguments>    

where subcmd denotes the subcommand in question.

We shall use the following subcommands to create certificates for the purpose of testing Erlang/OTP SSL:

• req to create certificate requests and a self-signed certificates,

• ca to create certificates from certificate requests.

We create the following certificates:

• the erlangCA root certificate (a self-signed certificate),

• the otpCA certificate signed by the erlangCA,

• a client certificate signed by the otpCA, and

• a server certificate signed by the otpCA.

The openssl configuration file

An openssl configuration file consist of a number of sections, where each section starts with one line containing
[ section_name ], where section_name is the name of the section. The first section of the file is either
unnamed, or is named [ default ]. For further details see the OpenSSL config(5) manual page.

The required sections for the subcommands we are going to use are as follows:

subcommand required/default section
override command line
option

configuration file option

req [req] - -config FILE

ca [ca] -name section -config FILE

Table 4.1:   openssl subcommands to use

Creating the Erlang root CA

The Erlang root CA is created with the command

 openssl req -new -x509 -config /some/path/req.cnf \\
                -keyout /some/path/key.pem -out /some/path/cert.pem 

where the option -new indicates that we want to create a new certificate request and the option -x509 implies that
a self-signed certificate is created.

Creating the OTP CA

The OTP CA is created by first creating a certificate request with the command

 openssl req -new -config /some/path/req.cnf \\
         -keyout /some/path/key.pem -out /some/path/req.pem      

and the ask the Erlang CA to sign it:
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 openssl ca -batch -notext -config /some/path/req.cnf \\
         -extensions ca_cert -in /some/path/req.pem -out /some/path/cert.pem      

where the option -extensions refers to a section in the configuration file saying that it should create a CA
certificate, and not a plain user certificate.

The client and server certificates are created similarly, except that the option -extensions then has the value
user_cert.

1.4.2  An Example
The following module create_certs is used by the Erlang/OTP SSL application for generating certificates to be
used in tests. The source code is also found in ssl-X.Y.Z/examples/certs/src.

The purpose of the create_certs:all/1 function is to make it possible to provide from the erl command line,
the full path name of the openssl command.

Note that the module creates temporary OpenSSL configuration files for the req and ca subcommands.

1.5  Using SSL for Erlang Distribution
This chapter describes how the Erlang distribution can use SSL to get additional verification and security.

1.5.1  Introduction
The Erlang distribution can in theory use almost any connection based protocol as bearer. A module that implements the
protocol specific parts of connection setup is however needed. The default distribution module is inet_tcp_dist
which is included in the Kernel application. When starting an Erlang node distributed, net_kernel uses this module
to setup listen ports and connections.

In the SSL application there is an additional distribution module, inet_ssl_dist which can be used as an
alternative. All distribution connections will be using SSL and all participating Erlang nodes in a distributed system
must use this distribution module.

The security depends on how the connections are set up, one can use key files or certificates to just get a crypted
connection. One can also make the SSL package verify the certificates of other nodes to get additional security. Cookies
are however always used as they can be used to differentiate between two different Erlang networks.

Setting up Erlang distribution over SSL involves some simple but necessary steps:

• Building boot scripts including the SSL application

• Specifying the distribution module for net_kernel

• Specifying security options and other SSL options

The rest of this chapter describes the above mentioned steps in more detail.

1.5.2  Building boot scripts including the SSL application
Boot scripts are built using the systools utility in the SASL application. Refer to the SASL documentations for
more information on systools. This is only an example of what can be done.

The simplest boot script possible includes only the Kernel and STDLIB applications. Such a script is located in the
Erlang distributions bin directory. The source for the script can be found under the Erlang installation top directory
under releases/<OTP version>start_clean.rel. Copy that script to another location (and preferably
another name) and add the SSL application with its current version number after the STDLIB application.

An example .rel file with SSL added may look like this:
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{release, {"OTP  APN 181 01","P7A"}, {erts, "5.0"},
 [{kernel,"2.5"},
  {stdlib,"1.8.1"},
  {ssl,"2.2.1"}]}.    

Note that the version numbers surely will differ in your system. Whenever one of the applications included in the
script is upgraded, the script has to be changed.

Assuming the above .rel file is stored in a file start_ssl.rel in the current directory, a boot script can be built
like this:

1> systools:make_script("start_ssl",[]).    

There will now be a file start_ssl.boot in the current directory. To test the boot script, start Erlang with the -
boot command line parameter specifying this boot script (with its full path but without the .boot suffix), in Unix
it could look like this:

$ erl -boot /home/me/ssl/start_ssl
Erlang (BEAM) emulator version 5.0
 
Eshell V5.0  (abort with ^G)
1> whereis(ssl_server).
<0.32.0>    

The whereis function call verifies that the SSL application is really started.

As an alternative to building a bootscript, one can explicitly add the path to the ssl ebin directory on the command
line. This is done with the command line option -pa. This works as the ssl application really need not be started for
the distribution to come up, a primitive version of the ssl server is started by the distribution module itself, so as long
as the primitive code server can reach the code, the distribution will start. The -pa method is only recommended for
testing purposes.

1.5.3  Specifying distribution module for net_kernel
The distribution module for SSL is named inet_ssl_dist and is specified on the command line whit the -
proto_dist option. The argument to -proto_dist should be the module name without the _dist suffix, so
this distribution module is specified with -proto_dist inet_ssl on the command line.

Extending the command line from above gives us the following:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl    

For the distribution to actually be started, we need to give the emulator a name as well:

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>     
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Note however that a node started in this way will refuse to talk to other nodes, as no certificates or key files are supplied
(see below).

When the SSL distribution starts, the OTP system is in its early boot stage, why neither application nor code are
usable. As SSL needs to start a port program in this early stage, it tries to determine the path to that program from the
primitive code loaders code path. If this fails, one need to specify the directory where the port program resides. This
can be done either with an environment variable ERL_SSL_PORTPROGRAM_DIR or with the command line option -
ssl_portprogram_dir. The value should be the directory where the ssl_esock port program is located. Note
that this option is never needed in a normal Erlang installation.

1.5.4  Specifying security options and other SSL options
For SSL to work, you either need certificate files or a key file. Certificate files can be specified both when working
as client and as server (connecting or accepting).

On the erl command line one can specify options that the ssl distribution will add when creation a socket. It is
mandatory to specify at least a key file or client and server certificates. One can specify any SSL option on the command
line, but must not specify any socket options (like packet size and such). The SSL options are listed in the Reference
Manual. The only difference between the options in the reference manual and the ones that can be specified to the
distribution on the command line is that certfile can (and usually needs to) be specified as client_certfile
and server_certfile. The client_certfile is used when the distribution initiates a connection to another
node and the server_cerfile is used when accepting a connection from a remote node.

The command line argument for specifying the SSL options is named -ssl_dist_opt and should be followed by
an even number of SSL options/option values. The -ssl_dist_opt argument can be repeated any number of times.

An example command line would now look something like this (line breaks in the command are for readability, they
should not be there when typed):

$ erl -boot /home/me/ssl/start_ssl -proto_dist inet_ssl 
  -ssl_dist_opt client_certfile "/home/me/ssl/erlclient.pem" 
  -ssl_dist_opt server_certfile "/home/me/ssl/erlserver.pem" 
  -ssl_dist_opt verify 1 depth 1     
  -sname ssl_test
Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1>     

A node started in this way will be fully functional, using SSL as the distribution protocol.

1.5.5  Setting up environment to always use SSL
A convenient way to specify arguments to Erlang is to use the ERL_FLAGS environment variable. All the flags needed
to use SSL distribution can be specified in that variable and will then be interpreted as command line arguments for
all subsequent invocations of Erlang.

In a Unix (Bourne) shell it could look like this (line breaks for readability):

$ ERL_FLAGS="-boot \\"/home/me/ssl/start_ssl\\" -proto_dist inet_ssl 
  -ssl_dist_opt client_certfile \\"/home/me/ssl/erlclient.pem\\" 
  -ssl_dist_opt server_certfile \\"/home/me/ssl/erlserver.pem\\" 
  -ssl_dist_opt verify 1 -ssl_dist_opt depth 1"
$ export ERL_FLAGS
$ erl -sname ssl_test
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Erlang (BEAM) emulator version 5.0 [source]
 
Eshell V5.0  (abort with ^G)
(ssl_test@myhost)1> init:get_arguments().
[{root,["/usr/local/erlang"]},
 {progname,["erl "]},
 {sname,["ssl_test"]},
 {boot,["/home/me/ssl/start_ssl"]},
 {proto_dist,["inet_ssl"]},
 {ssl_dist_opt,["client_certfile","/home/me/ssl/erlclient.pem"]},
 {ssl_dist_opt,["server_certfile","/home/me/ssl/erlserver.pem"]},
 {ssl_dist_opt,["verify","1"]},
 {ssl_dist_opt,["depth","1"]},
 {home,["/home/me"]}]    

The init:get_arguments() call verifies that the correct arguments are supplied to the emulator.

1.6  Licenses
This chapter contains in extenso versions of the OpenSSL and SSLeay licenses.

1.6.1  OpenSSL License

/* ====================================================================
 * Copyright (c) 1998-2002 The OpenSSL Project.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer. 
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * 3. All advertising materials mentioning features or use of this
 *    software must display the following acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
 *
 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
 *    endorse or promote products derived from this software without
 *    prior written permission. For written permission, please contact
 *    openssl-core@openssl.org.
 *
 * 5. Products derived from this software may not be called "OpenSSL"
 *    nor may "OpenSSL" appear in their names without prior written
 *    permission of the OpenSSL Project.
 *
 * 6. Redistributions of any form whatsoever must retain the following
 *    acknowledgment:
 *    "This product includes software developed by the OpenSSL Project
 *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
 *
 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
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 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 * ====================================================================
 *
 * This product includes cryptographic software written by Eric Young
 * (eay@cryptsoft.com).  This product includes software written by Tim
 * Hudson (tjh@cryptsoft.com).
 *
 */    

1.6.2  SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
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 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */    
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2    Reference Manual

The SSL application provides secure communication over sockets.

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit (http://
www.openssl.org/).

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com).

This product includes software written by Tim Hudson (tjh@cryptsoft.com).

For full OpenSSL and SSLeay license texts, see Licenses.



ssl

Ericsson AB. All Rights Reserved.: Secure Socket Layer | 15

ssl
Application

The Secure Socket Layer (SSL) application provides secure socket communication over TCP/IP.

Warning
In previous versions of Erlang/OTP SSL it was advised, as a work-around, to set the operating system environment
variable SSL_CERT_FILE to point at a file containing CA certificates. That variable is no longer needed, and is not
recognised by Erlang/OTP SSL any more.

However, the OpenSSL package does interpret that environment variable. Hence a setting of that variable might have
unpredictable effects on the Erlang/OTP SSL application. It is therefore adviced to not used that environment variable
at all.

Environment
The following application environment configuration parameters are defined for the SSL application. Refer to
application(3) for more information about configuration parameters.

Note that the environment parameters can be set on the command line, for instance,

erl ... -ssl protocol_version '[sslv2,sslv3]' ....

ephemeral_rsa = true | false <optional>

Enables all SSL servers (those that listen and accept) to use ephemeral RSA key generation when a clients
connect with weak handshake cipher specifications, that need equally weak ciphers from the server (i.e. obsolete
restrictions on export ciphers). Default is false.

debug = true | false <optional>

Causes debug information to be written to standard output. Default is false.

debugdir = path() | false <optional>

Causes debug information output controlled by debug and msgdebug to be printed to a file named
ssl_esock.<pid>.log in the directory specified by debugdir, where <pid> is the operating system
specific textual representation of the process identifier of the external port program of the SSL application. Default
is false, i.e. no log file is produced.

msgdebug = true | false <optional>

Sets debug = true and causes also the contents of low level messages to be printed to standard output.
Default is false.

port_program = string() | false <optional>

Name of port program. The default is ssl_esock.

protocol_version = [sslv2|sslv3|tlsv1] <optional>.

Name of protocols to use. If this option is not set, all protocols are assumed, i.e. the default value is [sslv2,
sslv3, tlsv1].

proxylsport = integer() | false <optional>

Define the port number of the listen port of the SSL port program. Almost never is this option needed.

proxylsbacklog = integer() | false <optional>

Set the listen queue size of the listen port of the SSL port program. The default is 128.
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OpenSSL libraries
The current implementation of the Erlang SSL application is based on the OpenSSL package version 0.9.7 or higher.
There are source and binary releases on the web.

Source releases of OpenSSL can be downloaded from the OpenSSL project home page, or mirror sites listed there.

The same URL also contains links to some compiled binaries and libraries of OpenSSL (see the Related/
Binaries menu) of which the Shining Light Productions Win32 and OpenSSL pages are of interest for the Win32
user.

For some Unix flavours there are binary packages available on the net.

If you cannot find a suitable binary OpenSSL package, you have to fetch an OpenSSL source release and compile it.

You then have to compile and install the libraries libcrypto.so and libssl.so (Unix), or the libraries
libeay32.dll and ssleay32.dll (Win32).

For Unix The ssl_esock port program is delivered linked to OpenSSL libraries in /usr/local/lib, but the
default dynamic linking will also accept libraries in /lib and /usr/lib.

If that is not applicable to the particular Unix operating system used, the example Makefile in the SSL priv/obj
directory, should be used as a guide to relinking the final version of the port program.

For Win32 it is only required that the libraries can be found from the PATH environment variable, or that they reside
in the appropriate SYSTEM32 directory; hence no particular relinking is need. Hence no example Makefile for
Win32 is provided.

Restrictions
Users must be aware of export restrictions and patent rights concerning cryptographic software.

SEE ALSO
application(3)

href
href
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ssl
Erlang module

This module contains interface functions to the Secure Socket Layer.

General
There is a new implementation of ssl available in this module but until it is 100 % complete, so that it can replace the
old implementation in all aspects it will be described here  new ssl API

The reader is advised to also read the ssl(6) manual page describing the SSL application.

Warning:
It is strongly advised to seed the random generator after the ssl application has been started (see seed/1 below),
and before any connections are established. Although the port program interfacing to the ssl libraries does a
"random" seeding of its own in order to make everything work properly, that seeding is by no means random for
the world since it has a constant value which is known to everyone reading the source code of the port program.

Common data types
The following datatypes are used in the functions below:

• options() = [option()]

• option() = socketoption() | ssloption()

• socketoption() = {mode, list} | {mode, binary} | binary | {packet,
packettype()} | {header, integer()} | {nodelay, boolean()} | {active,
activetype()} | {backlog, integer()} | {ip, ipaddress()} | {port, integer()}

• ssloption() = {verify, code()} | {depth, depth()} | {certfile, path()} |
{keyfile, path()} | {password, string()} | {cacertfile, path()} | {ciphers,
string()}

• packettype() (see inet(3))

• activetype() (see inet(3))

• reason() = atom() | {atom(), string()}

• bytes() = [byte()]

• string() = [byte()]

• byte() = 0 | 1 | 2 | ... | 255

• code() = 0 | 1 | 2

• depth() = byte()

• address() = hostname() | ipstring() | ipaddress()

• ipaddress() = ipstring() | iptuple()

• hostname() = string()

• ipstring() = string()

• iptuple() = {byte(), byte(), byte(), byte()}

• sslsocket()

• protocol() = sslv2 | sslv3 | tlsv1
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•

The socket option {backlog, integer()} is for listen/2 only, and the option {port, integer()} is
for connect/3/4 only.

The following socket options are set by default: {mode, list}, {packet, 0}, {header, 0}, {nodelay,
false}, {active, true}, {backlog, 5}, {ip, {0,0,0,0}}, and {port, 0}.

Note that the options {mode, binary} and binary are equivalent. Similarly {mode, list} and the absence
of option binary are equivalent.

The ssl options are for setting specific SSL parameters as follows:

• {verify, code()} Specifies type of verification: 0 = do not verify peer; 1 = verify peer, 2 = verify peer,
fail if no peer certificate. The default value is 0.

• {depth, depth()} Specifies the maximum verification depth, i.e. how far in a chain of certificates the
verification process can proceed before the verification is considered to fail.

Peer certificate = 0, CA certificate = 1, higher level CA certificate = 2, etc. The value 2 thus means that a chain
can at most contain peer cert, CA cert, next CA cert, and an additional CA cert.

The default value is 1.

• {certfile, path()} Path to a file containing the user's certificate. chain of PEM encoded certificates.

• {keyfile, path()} Path to file containing user's private PEM encoded key.

• {password, string()} String containing the user's password. Only used if the private keyfile is password
protected.

• {cacertfile, path()} Path to file containing PEM encoded CA certificates (trusted certificates used for
verifying a peer certificate).

• {ciphers, string()} String of ciphers as a colon separated list of ciphers. The function ciphers/0 can
be used to find all available ciphers.

The type sslsocket() is opaque to the user.

The owner of a socket is the one that created it by a call to transport_accept/[1,2], connect/[3,4], or
listen/2.

When a socket is in active mode (the default), data from the socket is delivered to the owner of the socket in the form
of messages:

• {ssl, Socket, Data}

• {ssl_closed, Socket}

• {ssl_error, Socket, Reason}

A Timeout argument specifies a timeout in milliseconds. The default value for a Timeout argument is infinity.

Functions listed below may return the value {error, closed}, which only indicates that the SSL socket is
considered closed for the operation in question. It is for instance possible to have {error, closed} returned from
an call to send/2, and a subsequent call to recv/3 returning {ok, Data}.

Hence a return value of {error, closed} must not be interpreted as if the socket was completely closed. On
the contrary, in order to free all resources occupied by an SSL socket, close/1 must be called, or else the process
owning the socket has to terminate.

For each SSL socket there is an Erlang process representing the socket. When a socket is opened, that process links
to the calling client process. Implementations that want to detect abnormal exits from the socket process by receiving
{'EXIT', Pid, Reason} messages, should use the function pid/1 to retrieve the process identifier from the
socket, in order to be able to match exit messages properly.
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Exports

ciphers() -> {ok, string()} | {error, enotstarted}

Returns a string consisting of colon separated cipher designations that are supported by the current SSL library
implementation.

The SSL application has to be started to return the string of ciphers.

close(Socket) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Closes a socket returned by transport_accept/[1,2], connect/[3,4], or listen/2

connect(Address, Port, Options) -> {ok, Socket} | {error, Reason}
connect(Address, Port, Options, Timeout) -> {ok, Socket} | {error, Reason}

Types:

Address = address()

Port = integer()

Options = [connect_option()]

connect_option() = {mode, list} | {mode, binary} | binary | {packet, packettype()} | {header, integer()} |
{nodelay, boolean()} | {active, activetype()} | {ip, ipaddress()} | {port, integer()} | {verify, code()} | {depth,
depth()} | {certfile, path()} | {keyfile, path()} | {password, string()} | {cacertfile, path()} | {ciphers, string()}

Timeout = integer()

Socket = sslsocket()

Connects to Port at Address. If the optional Timeout argument is specified, and a connection could not be
established within the given time, {error, timeout} is returned. The default value for Timeout is infinity.

The ip and port options are for binding to a particular local address and port, respectively.

connection_info(Socket) -> {ok, {Protocol, Cipher}} | {error, Reason}

Types:

Socket = sslsocket()

Protocol = protocol()

Cipher = string()

Gets the chosen protocol version and cipher for an established connection (accepted och connected).

controlling_process(Socket, NewOwner) -> ok | {error, Reason}

Types:

Socket = sslsocket()

NewOwner = pid()

Assigns a new controlling process to Socket. A controlling process is the owner of a socket, and receives all messages
from the socket.

format_error(ErrorCode) -> string()

Types:
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ErrorCode = term()

Returns a diagnostic string describing an error.

getopts(Socket, OptionsTags) -> {ok, Options} | {error, Reason}

Types:

Socket = sslsocket()

OptionTags = [optiontag()]()

Returns the options the tags of which are OptionTags for for the socket Socket.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Types:

Port = integer()

Options = [listen_option()]

listen_option() = {mode, list} | {mode, binary} | binary | {packet, packettype()} | {header, integer()} |
{active, activetype()} | {backlog, integer()} | {ip, ipaddress()} | {verify, code()} | {depth, depth()} | {certfile,
path()} | {keyfile, path()} | {password, string()} | {cacertfile, path()} | {ciphers, string()}

ListenSocket = sslsocket()

Sets up a socket to listen on port Port at the local host. If Port is zero, listen/2 picks an available port number
(use port/1 to retrieve it).

The listen queue size defaults to 5. If a different value is wanted, the option {backlog, Size} should be added
to the list of options.

An empty Options list is considered an error, and {error, enooptions} is returned.

The returned ListenSocket can only be used in calls to transport_accept/[1,2].

peercert(Socket) -> {ok, Cert} | {error, Reason}

Types:

Socket = sslsocket()

Cert = binary()()

Subject = term()()

Returns the DER encoded peer certificate, the certificate can be decoded with
public_key:pkix_decode_cert/2.

peername(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the address and port number of the peer.

pid(Socket) -> pid()

Types:

Socket = sslsocket()

Returns the pid of the socket process. The returned pid should only be used for receiving exit messages.
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recv(Socket, Length) -> {ok, Data} | {error, Reason}
recv(Socket, Length, Timeout) -> {ok, Data} | {error, Reason}

Types:

Socket = sslsocket()

Length = integer() >= 0

Timeout = integer()

Data = bytes() | binary()

Receives data on socket Socket when the socket is in passive mode, i.e. when the option {active, false}
has been specified.

A notable return value is {error, closed} which indicates that the socket is closed.

A positive value of the Length argument is only valid when the socket is in raw mode (option {packet, 0} is
set, and the option binary is not set); otherwise it should be set to 0, whence all available bytes are returned.

If the optional Timeout parameter is specified, and no data was available within the given time, {error,
timeout} is returned. The default value for Timeout is infinity.

seed(Data) -> ok | {error, Reason}

Types:

Data = iolist() | binary()

Seeds the ssl random generator.

It is strongly advised to seed the random generator after the ssl application has been started, and before any connections
are established. Although the port program interfacing to the OpenSSL libraries does a "random" seeding of its own
in order to make everything work properly, that seeding is by no means random for the world since it has a constant
value which is known to everyone reading the source code of the seeding.

A notable return value is {error, edata}} indicating that Data was not a binary nor an iolist.

send(Socket, Data) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Data = iolist() | binary()

Writes Data to Socket.

A notable return value is {error, closed} indicating that the socket is closed.

setopts(Socket, Options) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Options = [socketoption]()

Sets options according to Options for the socket Socket.

ssl_accept(Socket) -> ok | {error, Reason}
ssl_accept(Socket, Timeout) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Timeout = integer()



ssl

22 | Ericsson AB. All Rights Reserved.: Secure Socket Layer

Reason = atom()

The ssl_accept function establish the SSL connection on the server side. It should be called directly after
transport_accept, in the spawned server-loop.

Note that the ssl connection is not complete until ssl_accept has returned true, and if an error is returned, the
socket is unavailable and for instance close/1 will crash.

sockname(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the local address and port number of the socket Socket.

transport_accept(Socket) -> {ok, NewSocket} | {error, Reason}
transport_accept(Socket, Timeout) -> {ok, NewSocket} | {error, Reason}

Types:

Socket = NewSocket = sslsocket()

Timeout = integer()

Reason = atom()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from
listen/2. The socket returned should be passed to ssl_accept to complete ssl handshaking and establishing
the connection.

Warning:
The socket returned can only be used with ssl_accept, no traffic can be sent or received before that call.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified, and no connection is accepted within the
given time, {error, timeout} is returned.

version() -> {ok, {SSLVsn, CompVsn, LibVsn}}

Types:

SSLVsn = CompVsn = LibVsn = string()()

Returns the SSL application version (SSLVsn), the library version used when compiling the SSL application port
program (CompVsn), and the actual library version used when dynamically linking in runtime (LibVsn).

If the SSL application has not been started, CompVsn and LibVsn are empty strings.

ERRORS
The possible error reasons and the corresponding diagnostic strings returned by format_error/1 are either the
same as those defined in the inet(3) reference manual, or as follows:

closed

Connection closed for the operation in question.
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ebadsocket

Connection not found (internal error).

ebadstate

Connection not in connect state (internal error).

ebrokertype

Wrong broker type (internal error).

ecacertfile

Own CA certificate file is invalid.

ecertfile

Own certificate file is invalid.

echaintoolong

The chain of certificates provided by peer is too long.

ecipher

Own list of specified ciphers is invalid.

ekeyfile

Own private key file is invalid.

ekeymismatch

Own private key does not match own certificate.

enoissuercert

Cannot find certificate of issuer of certificate provided by peer.

enoservercert

Attempt to do accept without having set own certificate.

enotlistener

Attempt to accept on a non-listening socket.

enoproxysocket

No proxy socket found (internal error).

enooptions

The list of options is empty.

enotstarted

The SSL application has not been started.

eoptions

Invalid list of options.

epeercert

Certificate provided by peer is in error.

epeercertexpired

Certificate provided by peer has expired.
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epeercertinvalid

Certificate provided by peer is invalid.

eselfsignedcert

Certificate provided by peer is self signed.

esslaccept

Server SSL handshake procedure between client and server failed.

esslconnect

Client SSL handshake procedure between client and server failed.

esslerrssl

SSL protocol failure. Typically because of a fatal alert from peer.

ewantconnect

Protocol wants to connect, which is not supported in this version of the SSL application.

ex509lookup

Protocol wants X.509 lookup, which is not supported in this version of the SSL application.

{badcall, Call}

Call not recognized for current mode (active or passive) and state of socket.

{badcast, Cast}

Call not recognized for current mode (active or passive) and state of socket.

{badinfo, Info}

Call not recognized for current mode (active or passive) and state of socket.

SEE ALSO
gen_tcp(3), inet(3) public_key(3)
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new_ssl
Erlang module

This module contains interface functions to the Secure Socket Layer.

NEW SSL
This manual page describes functions that are defined in the ssl module and represents the new ssl implementation
that coexists with the old one, as the new implementation is not yet complete enough to replace the old one.

The new implementation can be accessed by providing the option {ssl_imp, new} to the ssl:connect and ssl:listen
functions.

The new implementation is Erlang based and all logic is in Erlang and only payload encryption calculations are done
in C via the crypto application. The main reason for making a new implementation is that the old solution was very
crippled as the control of the ssl-socket was deep down in openssl making it hard if not impossible to support all
inet options, ipv6 and upgrade of a tcp connection to a ssl connection. This version has a few limitations that will be
removed before the ssl-4.0 release. Main differences and limitations are listed below.

• New ssl requires the crypto application.

• The option reuseaddr is supported and the default value is false as in gen_tcp. Old ssl is patched to accept that
the option is set to true to provide a smoother migration between the versions. In old ssl the option is hard coded
to true.

• ssl:version/0 is replaced by ssl:versions/0

• ssl:ciphers/0 is replaced by ssl:cipher_suites/0

• ssl:pid/1 is a meaningless function in new ssl and will be deprecated in ssl-4.0 until it is removed it will return a
valid but meaningless pid.

• New API functions are ssl:shutdown/2, ssl:cipher_suites/[0,1] and ssl:versions/0

• Diffie-Hellman keyexchange is not supported yet.

• CRL and policy certificate extensions are not supported yet.

• Supported SSL/TLS-versions are SSL-3.0 and TLS-1.0

• For security reasons sslv2 is not supported.

COMMON DATA TYPES
The following data types are used in the functions below:

boolean() = true | false

property() = atom()

option() = socketoption() | ssloption() | transportoption()

socketoption() = [{property(), term()}] - defaults to [{mode,list},{packet, 0},
{header, 0},{active, true}].

For valid options see inet(3)  and gen_tcp(3) .

ssloption() = {verify, verify_type()} | {fail_if_no_peer_cert, boolean()}
{depth, integer()} | {certfile, path()} | {keyfile, path()} | {password,
string()} | {cacertfile, path()} | {ciphers, ciphers()} | {ssl_imp, ssl_imp()}
| {reuse_sessions, boolean()} | {reuse_session, fun()}
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transportoption() = {CallbackModule, DataTag, ClosedTag} - defaults to {gen_tcp,
tcp, tcp_closed}. Ssl may be run over any reliable transport protocol that has
an equivalent API to gen_tcp's.

      CallbackModule = atom()

      DataTag = atom() - tag used in socket data message.

      ClosedTag = atom() - tag used in socket close message.

verify_type() = verify_none | verify_peer

path() = string() - representing a file path.

host() = hostname() | ipaddress()

hostname() = string()

ip_address() = {N1,N2,N3,N4} % IPv4 | {K1,K2,K3,K4,K5,K6,K7,K8} % IPv6

sslsocket() - opaque to the user.

protocol() = sslv3 | tlsv1

ciphers() = [ciphersuite()] | sting() (according to old API)

ciphersuite() = {key_exchange(), cipher(), hash(), exportable()}

key_exchange() = rsa | dh_dss | dh_rsa | dh_anon | dhe_dss | dhe_rsa | krb5
| KeyExchange_export

cipher() = rc4_128 | idea_cbc | des_cbc | '3des_ede_cbc' des40_cbc | dh_dss |
aes_128_cbc | aes_256_cbc | rc2_cbc_40 | rc4_40

hash() = md5 | sha

exportable() = export | no_export | ignore

ssl_imp() = new | old - default is old.

SSL OPTION DESCRIPTIONS
{verify, verify_type()}

If verify_none is specified x509-certificate path validation errors at the client side will not automatically
cause the connection to fail, as it will if the verify type is verify_peer. See also the option verify_fun.
Servers only do the path validation if verify_peer is set to true, as it then will send a certificate request
to the client (this message is not sent if the verify option is verify_none) and you may then also want to
specify the option fail_if_no_peer_cert.

{fail_if_no_peer_cert, boolean()}
Used together with {verify, verify_peer} by a ssl server. If set to true, the server will fail if the client does not
have a certificate to send, e.i sends a empty certificate, if set to false it will only fail if the client sends a invalid
certificate (an empty certificate is considered valid).

{verify_fun, fun(ErrorList) -> boolean()}
Used by the ssl client to determine if x509-certificate path validations errors are acceptable or if the connection
should fail. Defaults to:

fun(ErrorList) ->
 case lists:foldl(fun({bad_cert,unknown_ca}, Acc) ->
        Acc;
       (Other, Acc) ->
     [Other | Acc]
    end, [], ErrorList) of
     [] ->
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  true;
     [_|_] ->
  false
 end
end

I.e. by default if the only error found was that the CA-certificate holder was unknown this will be accepted.
Possible errors in the error list are: {bad_cert, cert_expired}, {bad_cert, invalid_issuer}, {bad_cert,
invalid_signature}, {bad_cert, name_not_permitted}, {bad_cert, unknown_ca}, {bad_cert, cert_expired},
{bad_cert, invalid_issuer}, {bad_cert, invalid_signature}, {bad_cert, name_not_permitted}, {bad_cert,
cert_revoked} (not implemented yet), {bad_cert, unknown_critical_extension} or {bad_cert, term()} (Will be
relevant later when an option is added for the user to be able to verify application specific extensions.)

{depth, integer()}
Specifies the maximum verification depth, i.e. how far in a chain of certificates the verification process can
proceed before the verification is considered to fail. Peer certificate = 0, CA certificate = 1, higher level CA
certificate = 2, etc. The value 2 thus means that a chain can at most contain peer cert, CA cert, next CA cert,
and an additional CA cert. The default value is 1.

{certfile, path()}
Path to a file containing the user's certificate. Optional for clients but note that some servers requires that the
client can certify itself.

{keyfile, path()}
Path to file containing user's private PEM encoded key. As PEM-files may contain several entries this option
defaults to the same file as given by certfile option.

{password, string()}
String containing the user's password. Only used if the private keyfile is password protected.

{cacertfile, path()}
Path to file containing PEM encoded CA certificates (trusted certificates used for verifying a peer certificate).
May be omitted if you do not want to verify the peer.

{ciphers, ciphers()}
The function ciphers_suites/0 can be used to find all available ciphers.

{ssl_imp, ssl_imp()}
Specify which ssl implementation you want to use.

{reuse_sessions, boolean()}
Specifies if ssl sessions should be reused when possible.

{reuse_session, fun(SuggestedSessionId, PeerCert, Compression, CipherSuite) -> boolean()}
Enables the ssl server to have a local policy for deciding if a session should be reused or not, only meaning full
if reuse_sessions is set to true. SuggestedSessionId is a binary(), PeerCert is a DER encoded certificate,
Compression is an enumeration integer and CipherSuite of type ciphersuite().

General
When a ssl socket is in active mode (the default), data from the socket is delivered to the owner of the socket in the
form of messages:

• {ssl, Socket, Data}

• {ssl_closed, Socket}

• {ssl_error, Socket, Reason}

A Timeout argument specifies a timeout in milliseconds. The default value for a Timeout argument is infinity.

Exports

cipher_suites() ->
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cipher_suites(Type) -> ciphers()

Types:

Type = erlang | openssl

Returns a list of supported cipher suites. cipher_suites() is equivalent to cipher_suites(erlang). Type openssl is provided
for backwards compatibility with old ssl that used openssl.

connect(Socket, SslOptions) ->
connect(Socket, SslOptions, Timeout) -> {ok, SslSocket} | {error, Reason}

Types:

Socket = socket()

SslOptions = [ssloption()]

Timeout = integer() | infinity

SslSocket = sslsocket()

Reason = term()

Upgrades a gen_tcp, or equivalent, connected socket to a ssl socket e.i performs the client-side ssl handshake.

connect(Host, Port, Options) ->
connect(Host, Port, Options, Timeout) -> {ok, SslSocket} | {error, Reason}

Types:

Host = host()

Port = integer()

Options = [option()]

Timeout = integer() | infinity

SslSocket = sslsocket()

Reason = term()

Opens an ssl connection to Host, Port.

close(SslSocket) -> ok | {error, Reason}

Types:

SslSocket = sslsocket()

Reason = term()

Close a ssl connection.

controlling_process(SslSocket, NewOwner) -> ok | {error, Reason}

Types:

SslSocket = sslsocket()

NewOwner = pid()

Reason = term()

Assigns a new controlling process to the ssl-socket. A controlling process is the owner of a ssl-socket, and receives
all messages from the socket.

connection_info(SslSocket) -> {ok, {ProtocolVersion, CipherSuite}} | {error,
Reason}

Types:
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CipherSuite = ciphersuite()

ProtocolVersion = protocol()

Returns the negotiated protocol version and cipher suite.

getopts(Socket) ->
getopts(Socket, OptionNames) -> {ok, [socketoption()]} | {error, Reason}

Types:

Socket = sslsocket()

OptionNames = [property()]

Get the value of the specified socket options, if no options are specified all options are returned.

listen(Port, Options) -> {ok, ListenSocket} | {error, Reason}

Types:

Port = integer()

Options = options()

ListenSocket = sslsocket()

Creates a ssl listen socket.

peercert(Socket) -> {ok, Cert} | {error, Reason}

Types:

Socket = sslsocket()

Cert = binary()

Subject = term()

The peer certificate is returned as a DER encoded binary. The certificate can be decoded with
public_key:pkix_decode_cert/2.

peername(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the address and port number of the peer.

recv(Socket, Length) ->
recv(Socket, Length, Timeout) -> {ok, Data} | {error, Reason}

Types:

Socket = sslsocket()

Length = integer()

Timeout = integer()

Data = [char()] | binary()

This function receives a packet from a socket in passive mode. A closed socket is indicated by a return value {error,
closed}.
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The Length argument is only meaningful when the socket is in raw mode and denotes the number of bytes to read. If
Length = 0, all available bytes are returned. If Length > 0, exactly Length bytes are returned, or an error; possibly
discarding less than Length bytes of data when the socket gets closed from the other side.

The optional Timeout parameter specifies a timeout in milliseconds. The default value is infinity.

send(Socket, Data) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Data = iolist() | binary()

Writes Data to Socket.

A notable return value is {error, closed} indicating that the socket is closed.

setopts(Socket, Options) -> ok | {error, Reason}

Types:

Socket = sslsocket()

Options = [socketoption]()

Sets options according to Options for the socket Socket.

shutdown(Socket, How) -> ok | {error, Reason}

Types:

Socket = sslsocket()

How = read | write | read_write

Reason = reason()

Immediately close a socket in one or two directions.

How == write means closing the socket for writing, reading from it is still possible.

To be able to handle that the peer has done a shutdown on the write side, the {exit_on_close, false} option
is useful.

ssl_accept(ListenSocket) ->
ssl_accept(ListenSocket, Timeout) -> ok | {error, Reason}

Types:

ListenSocket = sslsocket()

Timeout = integer()

Reason = term()

The ssl_accept function establish the SSL connection on the server side. It should be called directly after
transport_accept, in the spawned server-loop.

ssl_accept(ListenSocket, SslOptions) ->
ssl_accept(ListenSocket, SslOptions, Timeout) -> {ok, Socket} | {error,
Reason}

Types:

ListenSocket = socket()

SslOptions = ssloptions()
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Timeout = integer()

Reason = term()

Upgrades a gen_tcp, or equivalent, socket to a ssl socket e.i performs the ssl server-side handshake.

sockname(Socket) -> {ok, {Address, Port}} | {error, Reason}

Types:

Socket = sslsocket()

Address = ipaddress()

Port = integer()

Returns the local address and port number of the socket Socket.

start() ->
start(Type) -> ok | {error, Reason}

Types:

Type = permanent | transient | temporary

Starts the Ssl application. Default type is temporary. application(3)

stop() -> ok

Stops the Ssl application. application(3)

transport_accept(Socket) ->
transport_accept(Socket, Timeout) -> {ok, NewSocket} | {error, Reason}

Types:

Socket = NewSocket = sslsocket()

Timeout = integer()

Reason = reason()

Accepts an incoming connection request on a listen socket. ListenSocket must be a socket returned from
listen/2. The socket returned should be passed to ssl_accept to complete ssl handshaking and establishing
the connection.

Warning:
The socket returned can only be used with ssl_accept, no traffic can be sent or received before that call.

The accepted socket inherits the options set for ListenSocket in listen/2.

The default value for Timeout is infinity. If Timeout is specified, and no connection is accepted within the
given time, {error, timeout} is returned.

versions() -> [{SslAppVer, SupportedSslVer, AvailableSslVsn}]

Types:

SslAppVer = string()

SupportedSslVer = [protocol()]

AvailableSslVsn = [protocol()]
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Returns version information relevant for the ssl application.

SEE ALSO
inet(3)  and gen_tcp(3)
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