
The build system of ABINIT 5.5
A definitive guide

Yann Pouillon

Draft version - December 2, 2007

Contents

I Users 1

1 Overview of the build system 3
1.1 Main objectives . 3
1.2 Underlying concepts .. 3

2 Theconfigurescript 5
2.1 Running configure . 5
2.2 Compiler options . 6
2.3 MPI options . 7
2.4 External libraries .. . 9
2.5 Other options . 10
2.6 Options provided by Autoconf 10
2.7 Environment variables .. . 13
2.8 The configuration process 14

II Developers 17

3 Preprocessing macros 19
3.1 Propagating information to the source code 19
3.2 Naming conventions .19
3.3 If statements .20
3.4 Preprocessing macros of ABINIT 5 .. . 20

3.4.1 Generic macros . 20
3.4.2 Architecture-related macros 20
3.4.3 Optional library macros .21
3.4.4 MPI macros . 21
3.4.5 Compiler macros . 22
3.4.6 Fortran-specific macros .. 22
3.4.7 Renamed macros . 23
3.4.8 Unmaintained macros . 23
3.4.9 Removed macros . 23

i

ii Contents

4 Adding external libraries / plug-ins 25
4.1 Overall procedure .. 25
4.2 The library makefile .. 26
4.3 Fine-tuningabinit.amf . 27

III Maintainers 29

5 Extending the build system 31
5.1 Prerequisites .. 31
5.2 Adding scripts .32
5.3 Adding M4 macros . 32
5.4 Editingconfigure.ac. 32

ii

Part I

Users

1

Chapter 1

Overview of the build system

1.1 Main objectives

The build system of ABINIT is here to fulfill the following objectives:

• take care of the makefiles;

1.2 Underlying concepts

Build directory support
Config-file support

3

Chapter 2

The configurescript

2.1 Running configure

Autoconf is a tool producing a shell script that automatically configures software source code
to adapt to many kinds of environments.The configuration script produced by Autoconf is
independent of Autoconf when it is run, so that its users do not need to install Autoconf.
In other words: you do not need have Autoconf installed to build ABINIT. Moreover this
configuration script requires no manual user intervention when run; it do not normally even
need an argument specifying the system type. Instead, it individually tests for the presence of
each feature that the software package it is tuned to might need. However it does not yet have
paranormal powers, and in particular has no access to what you have in mind. You still have to
explicitely interact with it for now, and the best way to do itis through the numerous options of
this configurescript.

Theconfigurescript accepts two classes of parameters:

• script-provided options, composed of triggers (enable/disable) and specifiers
(with/without), plus a few special options;

• environment variables, which influence the overall behaviour of the script.

A typical call looks like:

./configure [OPTION] ... [VAR=VALUE] ...

Here is what [OPTION] stands for:

Type ... if you want to ...
--enable-FEATURE[=ARG] activate FEATURE [ARG=yes]
--disable-FEATURE do not activate FEATURE (same as

--enable-FEATURE=no)
--with-PACKAGE[=ARG] use PACKAGE [ARG=yes]
--without-PACKAGE do not use PACKAGE (same as

--with-PACKAGE=no)

5

6 Chapter 2. Theconfigurescript

To assign environment variables (e.g., CPP, FC, . . .), you specify them asVAR=VALUE
couples on the command line. Please note that there must be nospaces around the ’=’ sign.
Moreover,VALUE must be quoted when it contains spaces. If some assignementsare ignored
by the configure script, just try the other way around:

VAR=VALUE/configure [OPTION] ...

If you runconfigurefrom a build directory, which we highly recommend, you will of course
type../configure instead of./configure.

In this chapter, the defaults for the options are specified insquare brackets. No brackets
means that there is no default value.

2.2 Compiler options

ABINIT provides an comprehensive database of optimization flags. They will suit your needs
in most cases. You may however tune them using the options listed on table 2.1. When set,
they replace the flags that would automatically be fetched from the database otherwise.

Linking additional libraries should be done through the useof theCC LIBS (C programs),
CXX LIBS (C++ programs) andFC LIBS (Fortran programs) environment variables. When
specified, they replace the settings provided by the build system during the optimization
process.FC LIBS is currently the only variable producing visible effects, but this will change
in the future. More details may be found in the ”Environment variables” section below.

The build system provides 3 different possible optimization levels, controlled by the
--enable-optleveloption:

• safe;

• standard;

• aggressive.

Their names are self-explanatory, and the default is of coursestandard, which corresponds to
the optimization database present in the previous versionsof ABINIT. It is obvious that the
aggressivelevel should be used with extreme care.

There are 3 levels of debugging as well, available through--enable-debug:

• no: do not produce debugging information (default);

• yes: produce debugging information if the compilers support itand turn-off optimizations;

• symbols: produce debugging information whenever possible, while keeping optimiza-
tions.

Please note that the support for 64-bit architectures is still incomplete and will be reworked
during the next development cycle of ABINIT.

6

2.3. MPI options 7

Option Description
--enable-64-bit-flags Use 64-bit flags with all compilers
--enable-debug Activate debug mode (no optimizations) [default=no]
--enable-optlevel Set optimization level [default=standard]
--enable-tricks Enable compiler tips and tricks (recommended)

[default=yes]
--with-cppflags=FLAGS Set preprocessing options
--with-cc-optflags=FLAGS Set optimizations of C routines
--with-cc-ld-optflags=FLAGS Prepend flags when calling the C linker
--with-cc-ld-optlibs=LIBS Append libraries when calling the C linker
--with-cxx-optflags=FLAGS Set optimizations of C++ routines
--with-cxx-ld-optflags=FLAGS Prepend flags when calling the C++ linker
--with-cxx-ld-optlibs=LIBS Append libraries when calling the C++ linker
--enable-fc-wrapper Wrap Fortran compiler calls [default=guessed]
--with-fc-optflags=FLAGS Set-up optimization of Fortran routines
--with-fc-ld-optflags=FLAGS Prepend flags when calling the Fortran linker
--with-fc-ld-optlibs=LIBS Append libraries when calling the Fortran linker

Table 2.1: ABINIT compiler options.

2.3 MPI options

In addition to serial optimization, ABINIT provides parallel binaries relying upon the MPI
library. If you do not know what MPI stands for, then you really need the help of a computer
scientist before reading this section. First let us make clear that we cannot provide you with
any support to install MPI. If you need to do it, we advise you to ask help to your system and/or
network administrators, because it will likely require special permissions and fair technical
skills. In many cases you will already have a working installation of MPI at your disposal, and
will at most need some information about its location.

Providing extended support for MPI is extremely delicate: there is no standard location
for the package, there are concurrent implementations following different philosophies, and
Fortran support is compiler-dependent. Moreover, there might be several versions of MPI
installed on your system, and you have to choose one of them carefully. In particular, if you
want to enable the build of parallel code in ABINIT — which you will likely do — you have
to build ABINIT with the same Fortran compiler that has been used for MPI. This is why the
configure script will tell you that it selected other compilers than those you specified if it needs
to preserve self-consistency between the sequential and parallel versions of the code.

Up to ABINIT 5.3, the interface to MPI support in the build system was a little bit
confusing, and was permanently undergoing a lot of changes.The users’ needs have first
been clarified in the lifespan of ABINIT 5.4, and the implementation has been heavily fixed
between ABINIT 5.5.1 and 5.5.2, leading to some more adjustments. The user interface has
now reached a sufficient level of consistency to be frozen. The MPI options provided by the

7

8 Chapter 2. Theconfigurescript

Option Description
--enable-mpi Enable MPI support [default=guessed]
--enable-mpi-fft Enable band/FFT parallelism [default=no]
--enable-mpi-io Enable parallel I/O [default=no]
--enable-mpi-trace Enable MPI time tracing [default=no]
--with-mpi-prefix=PATH Prefix for the MPI installation
--with-mpi-cppflags=FLAGS MPI preprocessing flags for parallel code
--with-mpi-cflags=FLAGS MPI compile flags for C parallel code
--with-mpi-cc-ldflags=FLAGS MPI link flags to prepend for parallel C programs
--with-mpi-cc-libs=LIBS MPI libraries to append for parallel C programs
--with-mpi-cxxflags=FLAGS MPI compile flags for C++ parallel code
--with-mpi-cxx-ldflags=FLAGS MPI link flags to prepend for parallel C++ programs
--with-mpi-cxx-libs=LIBS MPI libraries to append for parallel C++ programs
--with-mpi-fcflags=FLAGS MPI compile flags for Fortran parallel code
--with-mpi-fc-ldflags=FLAGS MPI link flags to prepend for parallel Fortran programs
--with-mpi-fc-libs=LIBS MPI libraries to append for parallel Fortran programs
--with-mpi-runner=PROG Full path to the MPI runner program

Table 2.2: MPI options of ABINIT.

build system are summarized in table 2.2. They are valid fromthe 5.5.2 version of ABINIT on.

The ”--enable-mpi” and ”--with-mpi-prefix” options to the ”configure” script are controlling
all the others:

• ”--enable-mpi=no” switches off the build of parallel code and is the default, because
misconfigured MPI installations may crash theconfigurescript (see the ”Environment
variables” section for a discussion about this);

• ”--enable-mpi=yes” triggers MPI auto-detection, leavinga lot of decisional freedom to
the build system;

• ”--enable-mpi=manual” bypasses auto-detection and takesuser-specified build parame-
ters as-is; the parallel code will be built independently ofthe relevance and correctness of
these parameters.

If ”--enable-mpi” is set to ”yes”, the parallel code will be built only if a usable MPI
implementation can be detected. If the ”--with-mpi-prefix”option is provided,enablempi is
automatically set to ”yes” and the build system tries to find ausable generic MPI installation
at the specified location very early during the configuration. If this step is successful, the
compilers and the runner provided by MPI are used inlieu of the user-specified ones, and no
further test is performed. If ”--with-mpi-prefix” is not present, the build of parallel code will be
deactivated unless ”--enable-mpi” is explicitely set to ”yes”.

If the first attempt fails, a second one is undertaken once thecompilers have been
configured. The build system then checks whether the compilers are able to build MPI source

8

2.4. External libraries 9

Library Internal Required Depends Note
bigdft yes no —
etsf-io yes no netcdf
etsf-xc yes no — Needs more testing
fftw no no —
fox yes no — Currently unsupported

linalg yes yes —
netcdf yes no —

wannier90 yes no — Test library for the plug-in feature
xmlf90 yes no — Soon replaced by FoX

Table 2.3: Specifications of the ABINIT libraries.

code natively, taking advantage of the user-specified parameters. If successful, a MPI runner
will be looked for using thePATHenvironment variable. If something goes wrong, the build of
parallel code will be automatically disabled. In such a case, and as a last resort, the user may
force the build through the use of ”--enable-mpi=manual”.

Additional levels of parallelization may be activated, though they are still experimental and
meant to be used by developers only:

• ”--enable-mpi-fft”: parallel FFT; this feature will be soon fully integrated and replaced
by an input variable;

• ”--enable-mpi-io”: parallel file I/O;

• ”--enable-mpi-trace”: parallel time tracing.

You will find a detailed description of all these options in the source package of ABINIT,
within the MPI support section of the ” abinit/doc/config/build-config.ac” template. We warmly
recommend you to have a close look at this file and to use it as much as you will.

2.4 External libraries

The configurescript of ABINIT provides a unified way of dealing with external libraries, by
means of a trigger (enable/disable) and two specifiers (for include and link flags) for each
package. Below the surface, things are however much more complex: some libraries are
required by ABINIT, others not; some are contained within thesource package, others are
too big to be included; a few of them depend on other external libraries, which may or may
not be found within the package. The current situation is summarized in table 2.3, and the
corresponding options are described in table 2.4.

When a library is required and cannot be found outside the source package, the build system
systematically restores consistency by ignoring user requests and disabling the corresponding

9

10 Chapter 2. Theconfigurescript

support.

Providing automatic external library detection lead to complicate the build system too much,
and jeopardized its maintainability. Hence we decided to aim at maximum simplicity. This
means that you need to provide the include and link flags yourself, just as you would do when
directly calling the compiler, e.g.:

./configure \
--enable-netcdf \
--with-netcdf-includes="-I/opt/etsf/include/g95" \
--with-netcdf-libs="-L/opt/etsf/lib -lnetcdf"

2.5 Other options

Theconfigurescript provides a few more options. Though most of them will only be used in
specific situations, they might prove very convenient in these cases. The full list of special
options may be found in table 2.5.

The build system of ABINIT makes it possible to use config files to store
your preferred build parameters. A fully documented template is provided in the
source code under abinit/doc/config/build-config.ac, along with a few examples in
abinit/doc/config/build-examples/. After editing this file to suit your needs, you may save it
as $HOME/.abinit/build/<hostname>.ac to keep these parameters as per-user defaults. Just
replace<hostname> by the name of your machine, excluding the domain name. E.g.:if your
machine is calledmyhost.mydomain, you will save this file as$HOME/.abinit/build/myhost.ac.
You may put this file at the top level of an ABINIT source tree as well, in which case its
definitions will apply to this particular tree only. Using config files is highly recommended,
since it saves you from typing all the options on the command-line each time you build a new
version of ABINIT.

2.6 Options provided by Autoconf

Every configurescript generated by Autoconf provides a basic set of options, whatever the
package and the environment. They either give information on the tunable parameters of the
package or influence globally the build process. In most cases you will only need a few of
them, if any.

Overall configuration:

10

2.6. Options provided by Autoconf 11

Option Description
--enable-bigdft Enable support for the BigDFT wavelet library

[default=no]
--with-bigdft-includes Include flags for the BigDFT library
--with-bigdft-libs Library flags for the BigDFT library
--enable-etsf-io Enable support for the ETSF I/O library [default=no]
--with-etsf-io-includes Include flags for the ETSF I/O library
--with-etsf-io-libs Library flags for the ETSF I/O library
--enable-etsf-xc Enable support for the ETSF exchange-correlation

library [default=no]
--with-etsf-xc-includes Include flags for the XC library
--with-etsf-xc-libs Library flags for the ETSF XC library
--enable-fftw Enable support for the FFTW library [default=no]
--enable-fftw-threads Enable support for the threaded FFTW library

[default=no]
--with-fftw-libs Library flags for the FFTW library
--enable-fox Enable support for the FoX I/O library [default=no]
--with-fox-includes Include flags for the FoX I/O library
--with-fox-libs Library flags for the FoX I/O library
--with-linalg-libs Library flags for the linalg library
--enable-netcdf Enable support for the NetCDF I/O library [de-

fault=no]
--with-netcdf-includes Include flags for the NetCDF library
--with-netcdf-libs Library flags for the NetCDF library
--enable-wannier90 Enable support for the Wannier90 library [default=no]
--with-wannier90-includes Include flags for the Wannier90 library
--with-wannier90-libs Library flags for the Wannier90 library
--enable-xmlf90 Enable support for the XML Fortran 90 I/O library

[default=no]
--with-xmlf90-includes Include flags for the XMLF90 library
--with-xmlf90-libs Library flags for the XMLF90 library

Table 2.4: External library options of ABINIT.

Option Description
--enable-config-file Read options from config files [default=yes]
--with-config-file=FILE Specify config file to read options from
--enable-cclock Use C clock for timings [default=no]
--enable-stdin Read file lists from standard input [default=yes]

Table 2.5: Special options of ABINIT.

11

12 Chapter 2. Theconfigurescript

Option Description
-h, --help display all options and exit

--help=short display options specific to the ABINIT package
--help=recursive display the short help of all the included packages

-V, --version display version information and exit
-q, --quiet, --silent do not print ‘checking...’ messages

--cache-file=FILE cache test results in FILE [disabled]
-C, --config-cache alias for ‘--cache-file=config.cache’
-n, --no-create do not create output files

--srcdir=DIR find the sources in DIR [configure dir or ‘..’]

Installation directories:

Option Description
--prefix=PREFIX install architecture-independent files in PREFIX

[/opt]
--exec-prefix=EPREFIX install architecture-dependent files in EPREFIX

[PREFIX]

By default, make install will install all the files in subdirectories of
/opt/abinit/<version>. You can specify an installation prefix other than/optusing--prefix,
for instance--prefix=$HOME.

For a finer-grained control, use the options below.

Fine tuning of the installation directories:

Option Description
--bindir=DIR user executables [EPREFIX/bin]
--sbindir=DIR system admin executables [EPREFIX/sbin]
--libexecdir=DIR program executables [EPREFIX/libexec]
--datadir=DIR read-only architecture-independent data [PREFIX/share]
--sysconfdir=DIR read-only single-machine data [PREFIX/etc]
--sharedstatedir=DIR modifiable architecture-independent data [PREFIX/com]
--localstatedir=DIR modifiable single-machine data [PREFIX/var]
--libdir=DIR object code libraries [EPREFIX/lib]
--includedir=DIR C header files [PREFIX/include]
--oldincludedir=DIR C header files for non-gcc [/usr/include]
--infodir=DIR info documentation [PREFIX/info]
--mandir=DIR man documentation [PREFIX/man]

Program names:

12

2.7. Environment variables 13

Option Description
--program-prefix=PREFIX prepend PREFIX to installed program

names
--program-suffix=SUFFIX append SUFFIX to installed program

names
--program-transform-name=PROGRAM run sed PROGRAM on installed program

names

System types:

Option Description
--build=BUILD configure for building on BUILD [guessed]
--host=HOST cross-compile to build programs to run on HOST [BUILD]
--target=TARGET configure for building compilers for TARGET [HOST]

Developer options:

Option Description
--enable-shared[=PKGS] build shared libraries [default=no]
--enable-dependency-tracking speeds up one-time build
--enable-dependency-tracking do not reject slow dependency extractors
--with-gnu-ld assume the C compiler uses GNU ld [default=no]

2.7 Environment variables

In table 2.6, you will find short descriptions of the most useful variables recognized by the
configure script of ABINIT. Use these variables to override the choices made byconfigure
or to help it to find libraries and programs with nonstandard names/locations. Please note that
they always have precedence over command-line options.

There are 2 environment variables of critical importance tothe build system, though they
cannot be managed byconfigure:

• PATH, which defines the order in which the compilers will be found,and the number of
hits;

• LD LIBRARYPATH, which will greatly help the build system find usable external
libraries, in particular MPI.

Improper settings of these 2 variables may cause a great confusion to the configure script
in some cases, in particular when looking for MPI compilers and libraries. A typical issue
encountered is the following crash:

checking for gcc... /home/pouillon/hpc/openmpi-1.2.4-gcc4.1/bin/mpicc
checking for C compiler default output file name... a.out
checking whether the C compiler works... configure: error: cannot run C compiled programs.
If you meant to cross compile, use ‘--host’.
See ‘config.log’ for more details.

13

14 Chapter 2. Theconfigurescript

Option Description
AR Archiver
ARFLAGS Archiver flags
CPP C preprocessor
CPPFLAGS C/C++ preprocessor flags, e.g.-I<include dir> if you have

headers in a non-standard directory named<includedir>
CC C compiler command
CFLAGS C compiler flags
CC LDFLAGS C link flags to prepend to the command line
CC LIBS Libraries to append when linking a C program
CXX C++ compiler command
CXXFLAGS C++ compiler flags
CXX LDFLAGS C++ link flags to prepend to the command line
CXX LIBS Libraries to append when linking a C++ program
FC Fortran compiler command
FCFLAGS Fortran compiler flags
FC LDFLAGS Fortran link flags to prepend to the command line
FC LIBS Libraries to append when linking a Fortran program

Table 2.6: Influencial environment variables for the build system of ABINIT.

And a look at config.log shows:

...
configure:6613: checking whether the C compiler works
configure:6623: ./a.out
./a.out: error while loading shared libraries: libmpi.so.0: cannot open shared
object file: No such file or directory
configure:6626: $? = 127
configure:6635: error: cannot run C compiled programs.
...

This kind of error results from a missing path in theLD LIBRARYPATH environment
variable, and can be solved very easily, in the present case this way:

export LD_LIBRARY_PATH="/home/pouillon/hpc/openmpi-1.2.4-gcc4.1/lib:${LD_LIBRARY_PATH}"

in the case of a BASH shell, and by:

setenv LD_LIBRARY_PATH "/home/pouillon/hpc/openmpi-1.2.4-gcc4.1/lib:${LD_LIBRARY_PATH}"

for a C shell.

2.8 The configuration process

Configuring ABINIT is a delicate step-by-step process, because each component is interacting
permanently with most others. This is reflected in the outputof configure, that we describe in

14

2.8. The configuration process 15

this section.

The process starts with an overall startup, where the basic parameters required by Autoconf
and Automake are set. During the second part of this step, thebuild system of ABINIT reads
the options from the command line and from a config file, makingsure that the environment
variables will always have precedence over the command-line options, which in turn override
the options read from the config file. It then reports about changes in the user interface of the
build system, warning the user if they have used an obsolete option.

The next step is about ensuring the overall consistency of the options provided to configure.
The build system takes the necessary decisions so that the code may be built safely. It then
parses the options, and issues an error if the user has provided invalid options. The error
messages give all the information needed to fix the problems.

Then comes the MPI startup stage, which the first half of the configuration of MPI support.
This must happen beforeany Autoconf compiler test, in order to give the build systemthe
possibility to consistently select the MPI compilers that have been detected. This step is
mandatory to avoid configuration issues later on, due to mismatches between the sequential
and parallel compilers.

The next step is to find the various utilities that the build system may need along the rest of
the configuration process. This runs usually very smoothly,since these tools are found on most
of the platforms ABINIT runs on.

The preprocessing step is where serious things really start. The C preprocessor is
searched for, which involves in turn the search for a workingC compiler. At this point,
all compilers must already have been selected. This is also typically where configure
may crash if the MPI installation detected is broken or misconfigured (see ”Environment
variables” section within this chapter), because the C compiler will not be able to produce
executables. This is why MPI support is disabled by default,and we are open to any suggestion.

The three next steps involve the search for suitable C, C++ and Fortran compilers, the
detection of their type, and the application of tricks to have them work properly on the user’s
platform. These are also stages where the configuration may fail, in particular if no suitable
Fortran compiler is found.

Then the build system configures the use of the archiver, to build the numerous libraries
that are part of ABINIT.

The two next steps are about fine-tuning the compile flags so that the build will work fine if
the architecture is 64-bit (work still in progress), and to set the adequate level of optimization
according to the platform parameters identified so far.

Here comes the probably most critical step of the configuration: MPI support. If everything
could be set during the MPI startup stage, no further test is performed, and the parallel code is

15

16 Chapter 2. Theconfigurescript

marked for building. If not, the build system will try to detect whether the compilers are able
to build MPI source code and set the MPI options accordingly.

Once all this is done, the build system can set the parametersfor the linear algebra and FFT
libraries (work still in progress), before turning to the plug-ins.

One last configuration step is dedicated to the nightly buildsupport, which is now working
but still at an early stage of development.

The very last step is to output the configuration to the numerous makefiles, as well as to a
few other important files. At the end, a warning is issued if the Fortran compiler in use is known
to cause trouble.

16

Part II

Developers

17

Chapter 3

Preprocessing macros

3.1 Propagating information to the source code

While many arguments of the configure script control the way ABINIT is built, some of them
--- in addition to the results of the tests performed at configure-time --- greatly influence what
will be built. In the latter case, the information has to be propagated up to the source code,
which is done by means of preprocessing macros. They are created by theAC DEFINE macro
of Autoconf, or specified by the user on the command line.

Macros are(name,value)pairs allowing the mapping of a sequence to another. Names
are usually single words, while values usually range from simple numbers to very complex
sequences of instructions. During compilation,name is replaced byvalue every time it is
encountered, this process being calledmacro expansion. Special lines, starting with the ’#’
character in C, allow for more operations on macros, like setting, unsetting or tests. Last but
not least, the concept of macro is not limited to any programming language, and macros are
indeed ubiquitous in the programming world.

The build of ABINIT leads to the creation of many preprocessing macros (73 in ABINIT
5.5), which are stored inconfig.h. Besides command-line options, this file is the only link
between the build system and the source code of ABINIT, and this is the reason why all of them
must include it at their very beginning.

3.2 Naming conventions

As far as preprocessing directive names are concerned, ABINIT abides strictly by the GNU
Coding Standards. This means in particular that:

• all user-defined compiler directives must be upper case;

• all names must start with a letter;

• names may contain capital letters, digits and underscores only;

19

20 Chapter 3. Preprocessing macros

Directives related to features that may or may not be presentdepending on the
configuration must begin by the keywordHAVE * , e.g. HAVE CONFIG H, HAVE NETCDF,
HAVE ETSFXC, etc.

3.3 If statements

If statements should all begin with ’#if’. We kindly ask you not to use ’#ifdef’, but
’#if defined’ instead. A line ending anif statement must contain the ’#endif’ keyword
only. The same holds for ’#else’.

Here is a typical example:

#if defined HAVE_CONFIG_H
#include "config.h"
#endif

We thank you in advance for following these simple rules, as it will greatly simplify the
automatic checks and fixes of the source code.

3.4 Preprocessing macros of ABINIT 5

3.4.1 Generic macros
ABINITGW Light version of ABINIT, for GW calculations
CONTRACT Design-by-contract code
HAVE CONFIG H Mandatory: use config.h if present

3.4.2 Architecture-related macros
OS IRIX IRIX operating system
OS LINUX Linux operating system
OS MACOSX Mac OS X operating system
OS WINDOWS DOS/Windows operating system
VMS VAX/VMS architecture

20

3.4. Preprocessing macros of ABINIT 5 21

3.4.3 Optional library macros

HAVE COMPAQ FFT HP/Compaq/DEC FFT library
HAVE FFTW FFTW library
HAVE FFTWTHREADS FFTW library (threaded version)
HAVE HP MLIB HP mathematical library
HAVE SCALAPACK SCALAPACK linear algebra library
HAVE SGI MATH SGI mathematical library
HAVE IBM ESSL IBM mathematical library
HAVE IBM ESSLOLD IBM mathematical library (old version)
HAVE NEC ASL NEC mathematical library
HAVE NETCDF NetCDF file I/O library
HAVE BIGDFT BigDFT wavelet library
HAVE ETSF IO ETSF file I/O library
HAVE ETSFXC ETSF exchange-correlation library
HAVE XMLF90 XML Fortran I/O library

3.4.4 MPI macros

MPI macros may not be included in theconfig.hfile, as it would preclude the build of sequential
code. They should be specified within the compiler command line. The following table gives
the full list of permitted MPI macros and the way they are managed. Manual handling is done
through the--with-mpi-cppflagsoption of configure.

Option Description Management
MPI MPI statements follow Build system
MPI1 MPI version 1 Manual
MPI2 MPI version 2 Manual
MPI3 MPI version 3 Manual
MPI EXT MPI HTOR routines (?) Manual
MPI FFT Parallel FFT Build system
MPI IO Parallel I/O Build system
MPI TRACE Timing within parallel routines Build system

21

22 Chapter 3. Preprocessing macros

3.4.5 Compiler macros

FC ABSOFT ABSoft Fortran compiler
FC COMPAQ HP/Compaq/DEC Fortran compiler
FC FUJITSU Fujitsu Fortran compiler
FC GNU GNU Fortran compiler (gfortran)
FC G95 G95 Fortran compiler (g95)
FC HITACHI Hitachi Fortran compiler
FC HP HP Fortran compiler
FC IBM IBM XL Fortran compiler
FC INTEL Intel Fortran compiler
FC MIPSPRO SGI MipsPro Fortran compiler
FC NAG NAGWare Fortran compiler
FC NEC NEC Fortran compiler
FC PGI PGI Fortran compiler
FC SUN Sun Fortran compiler

The same holds for C and C++ compilers.

3.4.6 Fortran-specific macros

HAVE FORTRAN EXIT The Fortran compiler accepts exit()
USE CCLOCK Use C clock for timings

22

3.4. Preprocessing macros of ABINIT 5 23

3.4.7 Renamed macros
Option Replaced by Version

IFC FC INTEL 5.1
ibm FC IBM 5.1
NAGf95 FC NAG 5.1
mpi MPI 5.1
MPIEXT MPI EXT 5.1
TRACE MPI TRACE 5.1
FFTW HAVE FFTW 5.1
FFTWTHREADS HAVE FFTWTHREADS 5.1
bim HAVE IBM ESSL 5.1
bmi HAVE IBM ESSL 5.1
cen HAVE NEC ASL, FC NEC 5.1
decalpha FC COMPAQ 5.1
hp HAVE HP MLIB, FC HP 5.1
hpux HAVE HP MLIB 5.1
nec HAVE NEC ASL, FC NEC 5.1
nolib HAVE COMPAQ FFT 5.1
sgi HAVE SGI MATH, FC MIPSPRO 5.1
sr8k FC HITACHI 5.1
vpp FC FUJITSU 5.1

VMS VMS 5.1
P6 i386 5.1
macosx OS MACOSX 5.1
CHGSTDIO READ FROM FILE 5.1

3.4.8 Unmaintained macros
OPENMP OpenMP parallelism
T3E Cray T3E architecture
TEST AIM Optional checks for AIM

3.4.9 Removed macros

The following preprocessing macros have been removed from the ABINIT source code.

23

24 Chapter 3. Preprocessing macros

Option Last version Comments
OLD INIT 4.6 Was used insrc/04wfs/wfconv.F90to initialize the

wavefunctions, and has been replaced for a long time
by a more efficient method.

PGIWin 4.6 The PGI Fortran compiler is no longer used to build
Abinit under Windows, since it is too buggy.

ultrix 4.6 Ultrix was an operating system based on a 4.2BSD
Unix with some features from System V. It was
first released in 1984. Its purpose was to provide a
DEC-supported native Unix for VAX. The last major
release of Ultrix was version 4.5 in 1995, which
supported DECstations and VAXen. There were some
subsequent Y2K patches. There has been no ABINIT
user on Ultrix quite some time.

24

Chapter 4

Adding external libraries / plug-ins

4.1 Overall procedure

For all the tasks to perform, just use the existing librariesas examples and tutorials as soon
as you have a doubt. All paths are given from the top source directory. Please note that this
procedure has been elaborated and complexified progressively and is now being reworked in
order to greatly simplify it.

1. Create a new directory inlib/, with a short and explicit name.

2. Copy the tarball to the new directory and go there. Its name should be:
<packagename>.tar.gz. The package name may of course include a version number.

3. Create a RoboDOC header briefly describing the library. The file should have the same
name as the directory, plus leading and trailing underscores. Suggestion: copy the one
from lib/netcdf/and start from it.

4. Create a makefile with the same name as the directory, plus a ”.mk” extension. It will
tell the build system how to perform the various steps of the library build: uncompress,
configure, build, install. Suggestion: copy the one fromlib/netcdf/and use it as a starting
point.

5. Create aabinit.amf file containing a list of additional files to clean. It will basically
consists in the libraries, binaries, headers and Fortran modules used by ABINIT.
Suggestion: uselib/netcdf/abinit.amfto see which is the format to follow.

6. Editconfig/specs/extlibs.cf: add one line for your library following the specified format.
Put the most important module only in the second column if your library has several
C/C++ headers or Fortran modules. The name of the library should be the same as for the
directory.

7. Editconfig/specs/libraries.cf:

a. inabinit libs, add the libraryafter the others it could depend on andbefore
the libraries depending on it;

25

26 Chapter 4. Adding external libraries / plug-ins

b. inabilibs specs, copy the ”netcdf” line, changing only its name and removing
|ABI LIB INC if your library has no C/C++ header and no Fortran module; here
the order is external/internal, then alphabetical, so you should add your library
before the ”defs” line;

c. describe the dependencies inabilibs deps.

The name of the library should be the same as for the directory.

8. Edit config/specs/binaries.cf: add the library to the dependencies of every binary that
may use it; the line should be putbefore the libraries it depends on andafter the libraries
that depend on it. The name of the library should be the same asfor the directory.

9. Edit config/specs/options.cf: add the--enable-* and--with-* options for your
library, with short and precise info strings. Usenetcdfas a typical example.

10. Edit config.mk.in: add the build flags of the library at the end of the file. You may
copy/paste from another external library, yet be careful tochangeALL the references.

11. Editconfig/m4/tricks.m4: add a ”tricky” macro at the end of the file. You may leave it
empty, just as many of them already are.

12. Editconfigure.ac:

a. at the beginning, where external packages are declared;

b. at the end, where the external library macros are called.

Add the relevant information using what is there as examples.

13. Runconfig/scripts/makemake, and watch carefully any possible error message.

14. Runconfigure, and watch carefully any possible error message.

15. Runmake, and watch carefully any possible error message.

4.2 The library makefile

The build system expects a few things from the makefile<lib name>.mkmanaging the package
stored in<packagename>.tar.gz:

• it should includeconfig.mk, in order to transmit the build parameters to the package’s own
build system;

• it should uncompress inlib/<lib name>/<packagename>, and thus move the
uncompressed directory afterwards if it not the case (seelib/fox/fox.mkfor an example);

• it should install inlib/<lib name>/tmp, so that the build system of ABINIT may import
all required data by itself if the package is managed by the Autotools.

Please read all the library makefiles contained within ABINITbefore writing yours, this
might help you a lot.

26

4.3. Fine-tuningabinit.amf 27

4.3 Fine-tuningabinit.amf

Once you manage to build your library properly, run amake cleanfrom within and add all
remaining files that should have been swept off to the list contained inabinit.amf.

27

Part III

Maintainers

29

Chapter 5

Extending the build system

5.1 Prerequisites

In order to efficiently tweak the build system, you will need to have a good experience of some
basic Unix utilities:cat, grep, sed, awk, cut, tr, tee, wc. A long familiarity with ABINIT and an
active participation to the developments occuring within the last six months, though mandatory,
will not suffice. You should already be fluent in the followingareas as well:

• Bourne-type shell scripting
(http://en.wikipedia.org/wiki/Bourne shell);

• Perl scripting
(http://en.wikipedia.org/wiki/Perl);

• Python scripting
(http://en.wikipedia.org/wiki/Python %28programming language%29);

• M4 scripting
(http://en.wikipedia.org/wiki/M4 %28computer language%29);

• Makefile writing
(http://en.wikipedia.org/wiki/Makefile);

• Link editing
(http://en.wikipedia.org/wiki/Linker);

• Regular expression designing
(http://en.wikipedia.org/wiki/Regular expression).

Just as when developing for ABINIT, you will need a fully working installation of the GNU
Autotools. And here is what distinguishes the maintainer from the developer: you will need to
know how they work and understand their principles. Their respective documentations may be
found at the following addresses:

• Autoconf−→ http://www.gnu.org/software/autoconf/manual/

31

32 Chapter 5. Extending the build system

• Automake−→ http://sources.redhat.com/automake/automake.html

• Libtool −→ http://www.gnu.org/software/libtool/manual.html

We strongly urge you to read them if you want to know what you are doing.

Last but not least, you will need to have Bazaar (http://bazaar-vcs.org/) installed
on your development machine, since the delicate character of your contributions will require
real-time interactions with other maintainers and/or developers, be it for bug fixing or testing.

5.2 Adding scripts

If your extension influences exclusively the pre-build stage of ABINIT, i.e. it prepares the way
for the Autotools, you may add it in the form of a script inãbinit/config/scripts/. Please follow
the conventions already adopted for the other scripts. When done, do not forget to add a call
to your script inãbinit/config/scripts/makemake, and remember thatmakemakeexpects to be
called from the top-level directory of the source tree.

If your script is producing M4 macros, the names of the files containing them must be
prefixed by ”do-not-edit-”.

5.3 Adding M4 macros

When you want to propagate information up to the Makefiles of ABINIT, the recommended
way to extend the build system is by writing M4 macros. The best practice is to create a new
file in ãbinit/config/m4/, following the conventions adopted for the other files. If ata later time
your contribution is approved, it may be redispatched into other files.

5.4 Editing configure.ac

Theconfigure.acfile is the spine of the build system. Every single character of this file plays a
well-defined role, and is present for a carefully-thought logical reason. In particular, the order
of the lines is of critical importance to the proper functioning of the whole build system. That
is why this file should only be edited withextreme careby persons having a good knowledge
of shell-scripts, M4, Autoconf, Automake, LibTool and the ABINIT build system. Messing-up
with the instructions present there without a sufficient experience in these matters willfor sure
lead to catastrophic consequences, and may even result in massive loss of data. To summarise,
YOU EDIT THIS FILE AT YOUR OWN RISKS . Believing you are more clever than the
designers of the ABINIT build system will not save you.

Theconfigurescript is generated fromconfigure.acby Autoconf. As such,configureshould
NEVER EVER been edited.

32

