
Merging branches and solving conflicts

ge check-list:

Commit.

bzr merge ...

Solve conflicts (if any).

Write merge changelog.

Commit.

IMPORTANT

ALWAYS commit
just before and after merging!

Conflict check-list:

File myfile has a conflict
⇒ myfile.BASE: before divergence
⇒ myfile.THIS: local version
⇒ myfile.OTHER: from other tree

kdiff3 myfile.BASE myfile.OTHER
myfile.THIS # One line

Save result as myfile.

bzr resolved myfile
→ removes files created at step 1!

IMPORTANT

If myfile does not exist when typing
bzr resolved, it will automatically
be marked as removed by bzr.

Useful addresses

ABINIT Forge
bzr+ssh://archives.abinit.org/

→֒ abinit/〈version〉/〈developer〉/〈branch〉/
Development branches of ABINIT 5.5 and later. All of the
URL should be typed at once (one line only, no space).

ABINIT Website - Developer’s Corner
http://abinit.org/developers/
Reference information for developers.

Bazaar Website
http://bazaar-vcs.org/

Home page of the Bazaar Version Control System.

Mailing lists

Announcements
announce@abinit.org

Low-traffic list for important announcements about
ABINIT.

User Forum List
forum@abinit.org

Discussions about the use of ABINIT.

Developer Forum List
developer@abinit.org

Discussions about the development of ABINIT.

Committer List
gnuarch@abinit.org

For developers having an access to the ABINIT Forge
(restricted).

Need help?

To get help on all Bazaar commands, just remember
bzr help.

ABINIT FORGE

Quick reference for

committers
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Read this first

On http://abinit.org/developers/, in the
Bazaar section:

• Introduction, part I

• Introduction, part II

• Introduction, part III

• Non-standard install

and documents cited therein.

Structure of the ABINIT Forge

Full URL of a branch (one line, no space):

bzr+ssh://archives.abinit.org/
→֒ abinit/x.y/〈repository〉/〈branch〉/

x: major version number
y: minor version number

repository: trunk, or committer login

Public branches (created automatically):

• devel-public

• x.y.1-public

• x.y.2-public

• x.y.3-public

• x.y.4-public

• x.y.5-public

Private branches: automatically created replacing
”public” by ”private” in the names above; additional
branches free-form, upon request to the Forge main-
tainers.

Useful commands

bzr ... Result

help Get help
info Get source tree info
status Get status report

BEFORE ACCESSING THE FORGE

export EDITOR="/path/to/my/editor" (BASH)
or

setenv EDITOR "/path/to/my/editor" (CSH)

Working with branches

A branch is an autonomous copy of the source code.
All history is kept locally, except when explicitely pub-
lished by the committer.

Action Command

Get bzr branch url [local dir]
Sync bzr pull [url]
Publish bzr push [url]
Off-line bzr commit

Typical use: decentralised development.

If the working tree is empty, run bzr checkout
from within.

Working with checkouts

A checkout is a branch the history is kept on the Forge.
It can however be made autonomous temporarily.

Action Command

Get bzr checkout url [local dir]
Sync bzr update
Publish bzr commit
Off-line bzr commit --local

Typical use: one developer working on two comput-
ers.

Writing changelogs

Template:

One short summary line (no trailing

* dir1/sub1/file1: Some changes. Make
full sentences.

* dir2/sub2/file2,dir3/sub3/file3:
other changes.

* dir4/sub4/file4: Related changes
blank line before).

* Additional notes and issues.

GNU changelog format: please make sure that
lines are < 80 characters and start at the first column.
For a complete reference (one-line URL, no space):

http://www.gnu.org/prep/standards/
→֒ html node/Change-Logs.html

Committing

Check-list:

1. bzr status

2. Process files marked as unknown.
Go back to 1 until no file is marked
as unknown.

3. Write changelog.

4. bzr commit --strict [-F logfile]
Use -F option if your changelog is
in a file.

NOTE

Committing to a public branch will soon trig-
ger a nightly build followed by a run of
the test suite, informing the gatekeeper after
wards.


