
Merging branches and solving conflicts

ge check-list:

Commit.

bzr merge ...

Solve conflicts (if any).

Write merge changelog.

Commit.

IMPORTANT

ALWAYS commit
just before and after merging!

Conflict check-list:

File myfile has a conflict
⇒ myfile.BASE: before divergence
⇒ myfile.THIS: local version
⇒ myfile.OTHER: from other tree

kdiff3 myfile.BASE myfile.OTHER
myfile.THIS # One line

Save result as myfile.

bzr resolved myfile
→ removes files created at step 1!

IMPORTANT

If myfile does not exist when typing
bzr resolved, it will automatically
be marked as removed by bzr.

Useful addresses

ABINIT Forge
bzr+ssh://archives.abinit.org/

→֒ abinit/〈version〉/〈developer〉/〈branch〉/
Development branches of ABINIT 5.5 and later. All of the
URL should be typed at once (one line only, no space).

ABINIT Website - Developer’s Corner
http://abinit.org/developers/
Reference information for developers.

Bazaar Website
http://bazaar-vcs.org/

Home page of the Bazaar Version Control System.

Mailing lists

Announcements
announce@abinit.org

Low-traffic list for important announcements about
ABINIT.

User Forum List
forum@abinit.org

Discussions about the use of ABINIT.

Developer Forum List
developer@abinit.org

Discussions about the development of ABINIT.

Committer List
gnuarch@abinit.org

For developers having an access to the ABINIT Forge
(restricted).

Need help?

To get help on all Bazaar commands, just remember
bzr help.

ABINIT FORGE

Quick reference for

committers

Copyright c© 2007 The ABINIT Group.
Originally written by Yann Pouillon.



Read this first

On http://abinit.org/developers/, in the
Bazaar section:

• Introduction, part I

• Introduction, part II

• Introduction, part III

• Non-standard install

and documents cited therein.

Structure of the ABINIT Forge

Full URL of a branch (one line, no space):

bzr+ssh://archives.abinit.org/
→֒ abinit/x.y/〈repository〉/〈branch〉/

x: major version number
y: minor version number

repository: trunk, or committer login

Public branches (created automatically):

• devel-public

• x.y.1-public

• x.y.2-public

• x.y.3-public

• x.y.4-public

• x.y.5-public

Private branches: automatically created replacing
”public” by ”private” in the names above; additional
branches free-form, upon request to the Forge main-
tainers.

Useful commands

bzr ... Result

help Get help
info Get source tree info
status Get status report

BEFORE ACCESSING THE FORGE

export EDITOR="/path/to/my/editor" (BASH)
or

setenv EDITOR "/path/to/my/editor" (CSH)

Working with branches

A branch is an autonomous copy of the source code.
All history is kept locally, except when explicitely pub-
lished by the committer.

Action Command

Get bzr branch url [local dir]
Sync bzr pull [url]
Publish bzr push [url]
Off-line bzr commit

Typical use: decentralised development.

If the working tree is empty, run bzr checkout
from within.

Working with checkouts

A checkout is a branch the history is kept on the Forge.
It can however be made autonomous temporarily.

Action Command

Get bzr checkout url [local dir]
Sync bzr update
Publish bzr commit
Off-line bzr commit --local

Typical use: one developer working on two comput-
ers.

Writing changelogs

Template:

One short summary line (no trailing

* dir1/sub1/file1: Some changes. Make
full sentences.

* dir2/sub2/file2,dir3/sub3/file3:
other changes.

* dir4/sub4/file4: Related changes
blank line before).

* Additional notes and issues.

GNU changelog format: please make sure that
lines are < 80 characters and start at the first column.
For a complete reference (one-line URL, no space):

http://www.gnu.org/prep/standards/
→֒ html node/Change-Logs.html

Committing

Check-list:

1. bzr status

2. Process files marked as unknown.
Go back to 1 until no file is marked
as unknown.

3. Write changelog.

4. bzr commit --strict [-F logfile]
Use -F option if your changelog is
in a file.

NOTE

Committing to a public branch will soon trig-
ger a nightly build followed by a run of
the test suite, informing the gatekeeper after
wards.


