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1 Preface

The XMod package provides functions for the computation with finite

– crossed modules and cat1-groups, and morphisms of these structures;

– pre-crossed modules, pre-cat1-groups, and their Peiffer quotients;

– derivations of crossed modules and sections of cat1-groups; and

– the actor crossed square of a crossed module.

It is loaded with the command

gap> LoadPackage( "xmod" );

XMod was originally implemented in 1997 using the GAP 3 language. In April 2002 the first and third parts
were converted to GAP 4, the pre-structures were added, and version 2.001 was released. The final two parts,
covering derivations, sections and actors, were included in the January 2004 release 2.002 for GAP 4.4.

The current version is 2.006, released on September 6th 2004.

Many of the function names have been changed during the conversion, for example ConjugationXMod has
become XModByNormalSubgroup. For a list of name changes see the file names.pdf in the doc directory.

1I InfoXMod V

In order that the user has some control of the verbosity of the XMod package’s functions, an InfoClass
InfoXMod is provided (see Chapter 7.4 in the GAP Reference Manual for a description of the Info mech-
anism). By default, the InfoLevel of InfoXMod is 0; progressively more information is supplied by raising
the InfoLevel to 1, 2 and 3, e.g.

gap> SetInfoLevel( InfoXMod, 1); #sets the InfoXMod level to 1

The following test file (from the “xmod” directory) runs all the manual commands.

gap> ReadTest("tst/xmod_manual.tst");
+ Testing constructions of crossed modules and cat1-groups
+ GAP4stones: 0
true

Please send bug reports, suggestions and other comments to the second of these e-mail addresses.

Additional information can be found on the Computational Higher-dimensional Discrete Algebra
web site at

http://www.maths.bangor.ac.uk/chda/

Copyright c© 2004 by Murat Alp and Chris Wensley.

XMod is subject to the GAP copyright regulations as detailed in the copyright notice in the GAP manual.
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2.1 Introduction

The XMod package provides functions for computation with finite crossed modules and cat1-groups and
their morphisms. See the file notes.pdf in the doc directory for an introductory account of these algebraic
gadgets.

The package was initially produced while Murat Alp was a Ph.D. student at Bangor (see [Alp97]).

Crossed modules and cat1-groups are special types of 2-dimensional groups [Bro82] and are implemented
as 2dObjects having a Source and a Range.

The package divides into four parts, all of which have been converted from GAP 3 to the GAP 4.4 release.

The first part is concerned with the standard constructions for pre-crossed modules and crossed modules;
together with direct products; normal sub-crossed modules; and quotients. Operations for constructing pre-
cat1-groups and cat1-groups, and for converting between cat1-groups and crossed modules, are also included.

The second part is concerned with morphisms of (pre-)crossed modules and (pre-)cat1-groups, together
with standard operations for morphisms, such as composition, image and kernel.

The third part deals with the equivalent notions of derivation for a crossed module and section for a
cat1-group, and the monoids which they form under the Whitehead multiplication.

The fourth part deals with actor crossed modules and actor cat1-groups. These are the automorphism
objects in the appropriate categories. For the actor crossed module Act(X ) of a crossed module X we require
representations for the Whitehead group of regular derivations of X and for the group of automorphisms of
X . The construction also provides an inner morphism from X to Act(X ) whose kernel is the centre of X .

The package may be obtained as a compressed file by ftp from one of the sites with a GAP 4 archive, or
from the Bangor Mathematics web site:

http://www.maths.bangor.ac.uk/chda/

The following constructions were not in the GAP 3 version of the package: sub-2dobject functions, func-
tions for pre-crossed modules and the Peiffer subgroup of a pre-crossed module, and the associated crossed
modules. The source and range groups in these constructions are no longer required to be permutation
groups.

Future plans include the implementation of group-graphs which will provide examples of pre-crossed
modules (their implementation will require interaction with graph-theoretic functions in GAP 4) and crossed
squares and the equivalent cat2-groups, structures which arise as 3-dimensional groups. Examples of these
are implicitly included in the fourth part, namely inclusions of normal sub-crossed modules, and the inner
morphism from a crossed module to its actor.

The equivalent categories XMod (crossed modules) and Cat1 (cat1-groups) are also equivalent to GpGpd, the
subcategory of group objects in the category Gpd of groupoids. Finite groupoids have been implemented
in Emma Moore’s crossed resolutions package GraphGpd [Moo01], and further work on group groupoids is
planned.
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2.2 Crossed modules

The term crossed module was introduced by J. H. C. Whitehead in [Whi48], [Whi49]. Loday, in [Lod82],
reformulated the notion of a crossed module as a cat1-group. Norrie [Nor90], [Nor87] and Gilbert [Gil90] have
studied derivations, automorphisms of crossed modules and the actor of a crossed module, while Ellis [Ell84]
has investigated higher dimensional analogues. Properties of induced crossed modules have been determined
by Brown, Higgins and Wensley in [BH78], [BW95] and [BW96]. For further references see [AW00] where
we discuss some of the data structures and algorithms used in this package, and also tabulate isomorphism
classes of cat1-groups up to size 30.

A crossed module X = (∂ : S → R) consists of a group homomorphism ∂, called the boundary of X , with
source S and range R. The Group R acts on itself by conjugation, and on S by an action α : R → Aut(S )
such that, for all s, s1, s2 ∈ S and r ∈ R,

XMod 1 : ∂(sr ) = r−1(∂s)r = (∂s)r ,
XMod 2 : s∂s2

1 = s−1
2 s1s2 = s1

s2 ·

The kernel of ∂ is abelian.

There are a variety of constructors for crossed modules:

1I XMod( args ) F
I XModByBoundaryAndAction( bdy, act ) O
I XModByTrivialAction( bdy ) O
I XModByNormalSubgroup( G, N ) O
I XModByCentralExtension( bdy ) O
I XModByAutomorphismGroup( grp ) O
I XModByInnerAutomorphismGroup( grp ) O
I XModByGroupOfAutomorphisms( G, A ) O
I XModByAbelianModule( abgrp ) O

Here are the standard constructions which these implement:

• A conjugation crossed module is an inclusion of a normal subgroup S / R, where R acts on S by
conjugation.

• A central extension crossed module has as boundary a surjection ∂ : S → R with central kernel,
where r ∈ R acts on S by conjugation with ∂−1r .

• An automorphism crossed module has as range a subgroup R of the automorphism group Aut(S )
of S which contains the inner automorphism group of S . The boundary maps s ∈ S to the inner
automorphism of S by s.

• A trivial action crossed module ∂ : S → R has sr = s for all s ∈ S , r ∈ R, the source is abelian
and the image lies in the centre of the range.

• A crossed abelian module has an abelian module as source and the zero map as boundary.

• The direct product X1 × X2 of two crossed modules has source S1 × S2, range R1 × R2 and boundary
∂1 × ∂2, with R1, R2 acting trivially on S2, S1 respectively.

2I Source( X0 ) A
I Range( X0 ) A
I Boundary( X0 ) A
I AutoGroup( X0 ) A
I XModAction( X0 ) A

In this implementation the attributes used in the construction of a crossed module X0 are as follows.
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• Source(X0) and Range(X0), the source S and range R of ∂ = Boundary(X0);

• XModAction(X0), a homomorphism from R to AutoGroup(X0), a group of automorphisms of S .

3I Size( X0 ) A
I Name( X0 ) A

More familiar attributes are Size and Name, the latter formed by concatenating the names of the source and
range. An Enumerator function has not been implemented. The Display function is used to print details of
2dobjects.

Here is a simple example of an automorphism crossed module, using a cyclic group of size five.

gap> c5 := Group( (5,6,7,8,9) );;
gap> SetName( c5, "c5" );
gap> X1 := XModByAutomorphismGroup( c5 );
[c5 -> PAut(c5)]
gap> Display( X1 );
Crossed module [c5 -> PAut(c5)] :-
: Source group c5 has generators:

[ (5,6,7,8,9) ]
: Range group PAut(c5) has generators:

[ (1,2,4,3) ]
: Boundary homomorphism maps source generators to:

[ () ]
: Action homomorphism maps range generators to automorphisms:

(1,2,4,3) --> { source gens --> [ (5,7,9,6,8) ] }
This automorphism generates the group of automorphisms.

gap> Size( X1 );
[ 5, 4 ]
gap> Print( RepresentationsOfObject(X1), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "IsPreXModObj" ]
gap> Print( KnownPropertiesOfObject(X1), "\n" );
[ "Is2dObject", "IsPerm2dObject", "IsPreXMod", "IsXMod",

"IsTrivialAction2dObject", "IsAutomorphismGroup2dObject" ]
gap> Print( KnownAttributesOfObject(X1), "\n" );
[ "Name", "Size", "Range", "Source", "Boundary", "AutoGroup", "XModAction" ]

4I SubXMod( X0, src, rng ) O
I IdentitySubXMod( X0 ) A
I NormalSubXMods( X0 ) A
I DirectProduct( X1, X2 ) O

With the standard crossed module constructors listed above as building blocks, sub-crossed modules, quo-
tients of normal sub-crossed modules, and also direct products may be constructed. A sub-crossed module
S = (δ : N → M ) is normal in X = (∂ : S → R) if

• N ,M are normal subgroups of S ,R respectively,

• δ is the restriction of ∂,

• nr ∈ N for all n ∈ N , r ∈ R,

• s−1 sm ∈ N for all m ∈ M , s ∈ S .

These conditions ensure that M nN is normal in the semidirect product R n S .
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2.3 Pre-crossed modules

1I PeifferSubgroup( X0 ) A
I PreXModByBoundaryAndAction( bdy, act ) O
I PreXModByCentralExtension( bdy ) O
I SubPreXMod( X0, src, rng ) O
I XModByPeifferQuotient( pre-xmod ) A

When axiom XMod 2 is not satisfied, the corresponding structure is known as a pre-crossed module. In
this case the Peiffer subgroup of P of S is the subgroup of ker(∂) generated by Peiffer commutators

〈s1, s2〉 = (s−1
1 )∂s2 s−1

2 s1 s2 ·

Then P = (0 : P → {1R}) is a normal sub-pre-crossed module of X and X/P = (∂ : S/P → R) is a crossed
module.

2I IsPermXMod( X0 ) P
I IsPcPreXMod( X0 ) P

When both source and range groups are of the same type, corresponding properties are assigned to the
crossed module.

In the following example the Peiffer subgroup is cyclic of size 4.

gap> c := (11,12,13,14,15,16,17,18);; d := (12,18)(13,17)(14,16);;
gap> d16 := Group( c, d );
gap> gend16 := GeneratorsOfGroup( d16 );;
gap> sk4 := Subgroup( d16, [ c^4, d ] );;
gap> gensk4 := GeneratorsOfGroup( sk4 );;
gap> SetName( d16, "d16" ); SetName( sk4, "sk4" );
gap> f16 := GroupHomomorphismByImages( d16, sk4, gend16, gensk4 );;
gap> P16 := PreXModByCentralExtension( f16 );
[d16->sk4]
gap> P := PeifferSubgroup( P16 );
Group( [ (11,17,15,13)(12,18,16,14) ] )
gap> X16 := XModByPeifferQuotient( P16 );
[d16/P->sk4]
gap> Display( X16 );
Crossed module [d16/P->sk4] :-
: Source group has generators:

[ f1, f2 ]
: Range group has generators:

[ (11,15)(12,16)(13,17)(14,18), (12,18)(13,17)(14,16) ]
: Boundary homomorphism maps source generators to:

[ (12,18)(13,17)(14,16), (11,15)(12,16)(13,17)(14,18) ]
The automorphism group is trivial

gap> iso16 := IsomorphismPermGroup( Source( X16 ) );;
gap> S16 := Image( iso16 );
Group([ (1,3)(2,4), (1,2)(3,4) ])
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2.4 Cat1-groups and pre-cat1-groups

In this implementation a cat1-group C has attributes:

1I Source( C ) A
I Range( C ) A
I Tail( C ) A
I Head( C ) A
I RangeEmbedding( C ) A
I KernelEmbedding( C ) A
I Boundary( C ) A
I Name( C ) A
I Size( C ) A

In [Lod82], Loday reformulated the notion of a crossed module as a cat1-group, namely a group G with a
pair of homomorphisms t , h : G → G having a common image R and satisfying certain axioms. We find it
convenient to define a cat1-group C = (e; t , h : G → R) as having source group G , range group R, and three
homomorphisms: two surjections t , h : G → R and an embedding e : R → G satisfying:

Cat 1 : te = he = idR ,
Cat 2 : [ker t , ker h] = {1G} .

It follows that teh = h, het = t , tet = t , heh = h.

The maps t , h are often referred to as the source and target, but we choose to call them the tail and head
of C, because source is the GAP term for the domain of a function. The RangeEmbedding is the embedding
of R in G , the KernelEmbedding is the inclusion of the kernel of t in G , and the Boundary is the restriction
of h to the kernel of t .

Here are some of the constructors for pre-cat1-groups and cat1-groups:

2I Cat1( args ) F
I PreCat1ByTailHeadEmbedding( t, h, e ) O
I PreCat1ByEndomorphisms( t, h ) O
I PreCat1ByNormalSubgroup( G, N ) O
I Cat1ByPeifferQuotient( P ) O
I Reverse( C0 ) A

The following listing shows an example of a cat1-group of pc-groups:

gap> s3 := SymmetricGroup(IsPcGroup,3);;
gap> gens3 := GeneratorsOfGroup(s3);
[ f1, f2 ]
gap> pc4 := CyclicGroup(4);;
gap> SetName(s3,"s3"); SetName( pc4, "pc4" );
gap> s3c4 := DirectProduct( s3, pc4 );;
gap> SetName( s3c4, "s3c4" );
gap> gens3c4 := GeneratorsOfGroup( s3c4 );
[ f1, f2, f3, f4 ]
gap> a := gens3[1];; b := gens3[2];; one := One(s3);;
gap> t2 := GroupHomomorphismByImages( s3c4, s3, gens3c4, [a,b,one,one] );
[ f1, f2, f3, f4 ] -> [ f1, f2, <identity> of ..., <identity> of ... ]
gap> e2 := Embedding( s3c4, 1 );
[ f1, f2 ] -> [ f1, f2 ]
gap> C2 := Cat1( t2, t2, e2 );
[s3c4=>s3]
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gap> Display( C2 );
Cat1-group [s3c4=>s3] :-
: source group has generators:

[ f1, f2, f3, f4 ]
: range group has generators:

[ f1, f2 ]
: tail homomorphism maps source generators to:

[ f1, f2, <identity> of ..., <identity> of ... ]
: head homomorphism maps source generators to:

[ f1, f2, <identity> of ..., <identity> of ... ]
: range embedding maps range generators to:

[ f1, f2 ]
: kernel has generators:

[ f3, f4 ]
: boundary homomorphism maps generators of kernel to:

[ <identity> of ..., <identity> of ... ]
: kernel embedding maps generators of kernel to:

[ f3, f4 ]
gap> IsPcCat1( C2 );
true
gap> Size( C2 );
[ 24, 6 ]

3I Cat1OfXMod( X0 ) A
I XModOfCat1( C0 ) A
I PreCat1OfPreXMod( P0 ) A
I PreXModOfPreCat1( P0 ) A

The category of crossed modules is equivalent to the category of cat1-groups, and the functors between these
two categories may be described as follows.
Starting with the crossed module X = (∂ : S → R) the group G is defined as the semidirect product
G = R n S using the action from X , with multiplication rule

(r1, s1) (r2, s2) = (r1 r2, sr2
1 s2) .

The structural morphisms are given by

t(r , s) = r , h(r , s) = r(∂s), er = (r , 1) .

On the other hand, starting with a cat1-group C = (e; t , h : G → R), we define S = ker t , the range R
remains unchanged, and ∂ = h |S . The action of R on S is conjugation in G via the embedding of R in G .

gap> SetName( Kernel(t2), "ker(t2)" );;
gap> X2 := XModOfCat1( C2 );
[Group( [ f3, f4 ] )->s3]
gap> Display( X2 );
Crossed module [ker(t2)->s3] :-
: Source group has generators:

[ f3, f4 ]
: Range group s3 has generators:

[ f1, f2 ]
: Boundary homomorphism maps source generators to:

[ <identity> of ..., <identity> of ... ]
The automorphism group is trivial

: associated cat1-group is [s3c4=>s3]
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2.5 Selection of a small cat1-group

The Cat1 function may also be used to select a cat1-group from a data file. All cat1-structures on groups
of size up to 47 are stored in a list in file cat1data.g. Global variables CAT1 LIST MAX SIZE := 47 and
CAT1 LIST CLASS SIZES are also stored. The XMod2 version of the database orders the groups of size up to
47 according to the GAP4 numbering of small groups. The data is read into the list CAT1 LIST only when
this function is called.

The example below is the first case in which t 6= h and the associated conjugation crossed module is given
by the normal subgroup c3 of s3.

gap> CAT1_LIST_CLASS_SIZES[ 18 ];
5
gap> Cat1( 18 );
#I Loading cat1-group data into CAT1_LIST
Usage: Cat1( size, gpnum, num )
[ "d18", "c18", "s3c3", "c3^2Xc2", "c6c3" ]
gap> Cat1( 18, 4 );
There are 4 cat1-structures for the group c3^2 X c2.
[ [range gens], source & range names, [tail genimages], [head genimages] ] :-
[ [ (1,2,3), (4,5,6), (2,3)(5,6) ], tail = head = identity mapping ]
[ [ (2,3)(5,6) ], "c3^2", "c2", [ (), (), (2,3)(5,6) ],

[ (), (), (2,3)(5,6) ] ]
[ [ (4,5,6), (2,3)(5,6) ], "c3", "s3", [ (), (4,5,6), (2,3)(5,6) ],

[ (), (4,5,6), (2,3)(5,6) ] ]
[ [ (4,5,6), (2,3)(5,6) ], "c3", "s3", [ (4,5,6), (4,5,6), (2,3)(5,6) ],

[ (), (4,5,6), (2,3)(5,6) ] ]
Usage: Cat1( size, gpnum, num )
Group has generators [ (1,2,3), (4,5,6), (2,3)(5,6) ]

gap> C4 := Cat1( 18, 4, 4 );
[c3^2 X c2=>s3]
gap> Display( C4 );
Cat1-group [c3^2 X c2=>s3] :-
: source group has generators:

[ (1,2,3), (4,5,6), (2,3)(5,6) ]
: range group has generators:

[ (4,5,6), (4,5,6), (2,3)(5,6) ]
: tail homomorphism maps source generators to:

[ (4,5,6), (4,5,6), (2,3)(5,6) ]
: head homomorphism maps source generators to:

[ (), (4,5,6), (2,3)(5,6) ]
: range embedding maps range generators to:

[ (4,5,6), (4,5,6), (2,3)(5,6) ]
: kernel has generators:

[ ( 1, 2, 3)( 4, 6, 5) ]
: boundary homomorphism maps generators of kernel to:

[ (4,6,5) ]
: kernel embedding maps generators of kernel to:

[ (1,2,3)(4,6,5) ]

gap> XC4 := XModOfCat1( C4 );
[Group( [ ( 1, 2, 3)( 4, 6, 5) ] )->s3]



3 2d-mappings

This chapter describes morphisms of (pre-)crossed modules and (pre-)cat1-groups.

1I Source( map ) A
I Range( map ) A
I SourceHom( map ) A
I RangeHom( map ) A

Morphisms of 2dObjects are implemented as 2dMappings. These have a pair of 2d-objects as source and
range, together with two group homomorphisms mapping between corresponding source and range groups.
These functions return fail when invalid data is supplied.

3.1 Morphisms of pre-crossed modules

1I IsPreXModMorphism( map ) P
I IsXModMorphism( map ) P
I IsPreCat1Morphism( map ) P
I IsCat1Morphism( map ) P

A morphism between two pre-crossed modules X1 = (∂1 : S1 → R1) and X2 = (∂2 : S2 → R2) is a pair
(σ, ρ), where σ : S1 → S2 and ρ : R1 → R2 commute with the two boundary maps and are morphisms for
the two actions:

∂2σ = ρ∂1, σ(sr ) = (σs)ρr ·

Thus σ is the SourceHom and ρ is the RangeHom. When X1 = X2 and σ, ρ are automorphisms then (σ, ρ) is
an automorphism of X1. The group of automorphisms is denoted by Aut(X1)·

2I IsInjective( map ) P
I IsSurjective( map ) P
I IsSingleValued( map ) P
I IsTotal( map ) P
I IsBijective( map ) P
I IsEndomorphism2dObject( map ) P
I IsAutomorphism2dObject( map ) P

The usual properties of mappings are easily checked. It is usually sufficient to verify that both the SourceHom
and the RangeHom have the required property.

Constructors for morphisms of pre-crossed and crossed modules include:
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3I PreXModMorphism( args ) F
I XModMorphism( args ) F
I PreXModMorphismByHoms( P1, P2, sigma, rho ) O
I XModMorphismByHoms( X1, X2, sigma, rho ) O
I InclusionMorphism2dObjects( X1, S1 ) O
I InnerAutomorphismXMod( X1, r ) O
I IdentityMapping( X1 ) A
I IsomorphismPermObject( obj ) F

In the following example we construct a simple automorphism of the crossed module X1 constructed in the
previous chapter.

gap> sigma1 := GroupHomomorphismByImages( c5, c5, [ (5,6,7,8,9) ]
[ (5,9,8,7,6) ] );;

gap> rho1 := IdentityMapping( Range( X1 ) );
IdentityMapping( PAut(c5) )
gap> mor1 := XModMorphism( X1, X1, sigma1, rho1 );
[[c5->PAut(c5))] => [c5->PAut(c5))]]
gap> Display( mor1 );
Morphism of crossed modules :-
: Source = [c5->PAut(c5))] with generating sets:

[ (5,6,7,8,9) ]
[ (1,2,4,3) ]

: Range = Source
: Source Homomorphism maps source generators to:

[ (5,9,8,7,6) ]
: Range Homomorphism maps range generators to:

[ (1,2,4,3) ]
gap> IsAutomorphism2dObject( mor1 );
true
gap> Print( RepresentationsOfObject(mor1), "\n" );
[ "IsComponentObjectRep", "IsAttributeStoringRep", "Is2dMappingRep" ]
gap> Print( KnownPropertiesOfObject(mor1), "\n" );
[ "IsTotal", "IsSingleValued", "IsInjective", "IsSurjective", "Is2dMapping",

"IsPreXModMorphism", "IsXModMorphism", "IsEndomorphism2dObject",
"IsAutomorphism2dObject" ]

gap> Print( KnownAttributesOfObject(mor1), "\n" );
[ "Name", "Range", "Source", "SourceHom", "RangeHom" ]

3.2 Morphisms of pre-cat1-groups

A morphism of pre-cat1-groups from C1 = (e1; t1, h1 : G1 → R1) to C2 = (e2; t2, h2 : G2 → R2) is a pair (γ, ρ)
where γ : G1 → G2 and ρ : R1 → R2 are homomorphisms satisfying

h2γ = ρh1 , t2γ = ρt1 , e2ρ = γe1 .
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1I PreCat1Morphism( args ) F
I Cat1Morphism( args ) F
I PreCat1MorphismByHoms( P1, P2, gamma, rho ) O
I Cat1MorphismByHoms( C1, C2, gamma, rho ) O
I InclusionMorphism2dObjects( C1, S1 ) O
I InnerAutomorphismCat1( C1, r ) O
I IdentityMapping( C1 ) A
I IsomorphismPermObject( obj ) F
I SmallerDegreePerm2dObject( obj ) F

The global function IsomorphismPermObject calls IsomorphismPermPreCat1 which constructs a morphism
whose SourceHom and RangeHom are calculated using IsomorphismPermGroup on the source and range.
Similarly SmallerDegreePermutationRepresentation is used on the two groups to obtain SmallerDe-
greePerm2dObject. Names are assigned automatically.

gap> iso2 := IsomorphismPermObject( C2 );
[[s3c4=>s3] => [Ps3c4=>Ps3]]
gap> Display( iso2 );
Morphism of cat1-groups :-
: Source = [s3c4=>s3] with generating sets:

[ f1, f2, f3, f4 ]
[ f1, f2 ]

: Range = [Ps3c4=>Ps3] with generating sets:
[ ( 5, 9)( 6,10)( 7,11)( 8,12), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12),
( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12), ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)

(11,12) ]
[ (2,3), (1,2,3) ]

: Source Homomorphism maps source generators to:
[ ( 5, 9)( 6,10)( 7,11)( 8,12), ( 1, 5, 9)( 2, 6,10)( 3, 7,11)( 4, 8,12),
( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12), ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)

(11,12) ]
: Range Homomorphism maps range generators to:

[ (2,3), (1,2,3) ]

3.3 Operations on morphisms

1I Order( auto ) A
I CompositionMorphism( map2, map1 ) O

Composition of morphisms, written (map1 * map2) for maps acting of the right, calls the Composition-
Morphism function for maps acting on the left, applied to the appropriate type of 2d-mapping.

gap> Order( mor1 );
2
gap> GeneratorsOfGroup( d16 );
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]
gap> d8 := Subgroup( d16, [ c^2, d ] );;
gap> c4 := Subgroup( d8, [ c^2 ] );;
gap> SetName( d8, "d8" ); SetName( c4, "c4" );
gap> X16 := XModByNormalSubgroup( d16, d8 );
[d8->d16]
gap> X8 := XModByNormalSubgroup( d8, c4 );
[c4->d8]
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gap> IsSubXMod( X16, X8 );
true
gap> inc8 := InclusionMorphism2dObjects( X16, X8 );
[[c4->d8] => [d8->d16]]
gap> rho := GroupHomomorphismByImages( d16, d16, [c,d], [c,d^(c^2)] );;
gap> sigma := GroupHomomorphismByImages( d8, d8, [c^2,d], [c^2,d^(c^2)] );;
gap> mor := XModMorphismByHoms( X16, X16, sigma, rho );
[[d8->d16] => [d8->d16]]
gap> comp := inc8 * mor;
[[c4->d8] => [d8->d16]]
gap> comp = CompositionMorphism( mor, inc8 );
true

2I Kernel( map ) O
I Kernel2dMapping( map ) A

The kernel of a morphism of crossed modules is a normal subcrossed module whose groups are the kernels
of the source and target homomorphisms. The inclusion of the kernel is a standard example of a crossed
square, but these have not yet been implemented.

gap> c2 := Group( (19,20) );;
gap> i2 := Subgroup( c2, [()] );;
gap> X9 := XModByNormalSubgroup( c2, i2 );;
gap> sigma9 := GroupHomomorphismByImages( c4, i2, [c^2], [()] );;
gap> rho9 := GroupHomomorphismByImages( d8, c2, [c^2,d], [(),(19,20)] );;
gap> mor9 := XModMorphism( X8, X9, sigma9, rho9 );
[[c4->d8] => [..]]
gap> K9 := Kernel( mor9 );
[Group( [ (11,13,15,17)(12,14,16,18) ] )->Group( [ (11,13,15,17)(12,14,16,18)
] )]



4

Derivations
and Sections

4.1 Whitehead Multiplication

1I IsUp2dMapping( map ) P
I IsDerivation( chi ) P
I IsSection( chi ) P

The Whitehead monoid Der(X ) of X was defined in [Whi48] to be the monoid of all derivations from R
to S , that is the set of all maps R → S , with Whitehead multiplication ? (on the right) satisfying:

Der 1 : χ(qr) = (χq)r (χr) ,
Der 2 : (χ1 ? χ2)(r) = (χ2r)(χ1r)(χ2∂χ1r) .

The zero map is the identity for this composition. Invertible elements in the monoid are called regular. The
Whitehead group of X is the group of regular derivations in Der(X ). In the next chapter the actor of X
is defined as a crossed module whose source and range are permutation representations of the Whitehead
group and the automorphism group of X .

The construction for cat1-groups equivalent to the derivation of a crossed module is the section. The
monoid of sections of C = (e; t , h : G → R) is the set of group homomorphisms ξ : R → G , with Whitehead
multiplication ?, (on the right) satisfying:

Sect 1 : tξ = idR ,
Sect 2 : (ξ1 ? ξ2)(r) = (ξ1r)(ehξ1r)−1(ξ2hξ1r) = (ξ2hξ1r)(ehξ1r)−1(ξ1r) .

The embedding e is the identity for this composition, and h(ξ1 ?ξ2) = (hξ1)(hξ2). A section is regular when
hξ is an automorphism, and the group of regular sections is isomorphic to the Whitehead group.

If ε denotes the inclusion of S = kert in G then ∂ = hε : S → R and

ξr = (er)(eχr) = (r , χr)

determines a section ξ of C in terms of the corresponding derivation χ of X , and conversely.

2I Object2d( chi ) A
I GeneratorImages( chi ) A
I DerivationByImages( X0, ims ) O

Derivations are stored like group homomorphisms by specifying the images of a generating set. Images of the
remaining elements may then be obtained using axiom Der 1. The function IsDerivation is automatically
called to check that this procedure is well-defined.

In the following example a cat1-group C3 and the associated crossed module X3 are constructed, where X3
is isomorphic to the inclusion of the normal cyclic group c3 in the symmetric group s3.
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gap> g18 := Group( (1,2,3), (4,5,6), (2,3)(5,6) );;
gap> SetName( g18, "g18" );
gap> gen18 := GeneratorsOfGroup( g18 );;
gap> g1 := gen18[1];; g2 := gen18[2];; g3 := gen18[3];;
gap> s3 := Subgroup( g18, gen18{[2..3]} );;
gap> SetName( s3, "s3" );;
gap> t := GroupHomomorphismByImages( g18, s3, gen18, [g2,g2,g3] );;
gap> h := GroupHomomorphismByImages( g18, s3, gen18, [(),g2,g3] );;
gap> e := GroupHomomorphismByImages( s3, g18, [g2,g3], [g2,g3] );;
gap> C3 := Cat1( t, h, e );
[g18=>s3]
gap> SetName( Kernel(t), "c3" );;
gap> X3 := XModOfCat1( C3 );;
gap> Display( X3 );
Crossed module [c3->s3] :-
: Source group has generators:

[ ( 1, 2, 3)( 4, 6, 5) ]
: Range group has generators:

[ (4,5,6), (2,3)(5,6) ]
: Boundary homomorphism maps source generators to:

[ (4,6,5) ]
: Action homomorphism maps range generators to automorphisms:

(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(2,3)(5,6) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

: associated cat1-group is [g18=>s3]

gap> imchi := [ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ];;
gap> chi := DerivationByImages( X3, imchi );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (1,2,3)(4,6,5), (1,2,3)(4,6,5) ] )

3I SectionByImages( C, ims ) O
I SectionByDerivation( chi ) O
I DerivationBySection( xi ) O

Sections are group homomorphisms, so do not need a special representation. Operations SectionByDeriva-
tion and DerivationBySection convert derivations to sections, and vice-versa, calling Cat1OfXMod and
XModOfCat1 automatically.

Two strategies for calculating derivations and sections are implemented, see [AW00]. The default method
for AllDerivations is to search for all possible sets of images using a backtracking procedure, and when
all the derivations are found it is not known which are regular. In the GAP 3 version of this package, the
default method for AllSections( C ) was to compute all endomorphisms on the range group R of C as
possibilities for the composite hξ. A backtrack method then found possible images for such a section. In the
current version the derivations of the associated crossed module are calculated, and these are all converted
to sections using SectionByDerivation.

gap> xi := SectionByDerivation( chi );
[ (4,5,6), (2,3)(5,6) ] -> [ (1,2,3), (1,2)(4,6) ]
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4.2 Whitehead Groups and Monoids

1I RegularDerivations( X0 ) A
I AllDerivations( X0 ) A
I RegularSections( C0 ) A
I AllSections( C0 ) A
I ImagesList( obj ) A
I ImagesTable( obj ) A

There are two functions to determine the elements of the Whitehead group and the Whitehead monoid of
X0, namely RegularDerivations and AllDerivations. (The functions RegularSections and AllSections
perform corresponding tasks for a cat1-group.)

Using our example X3 we find that there are just nine derivations, six of them regular, and the associated
group is isomorphic to s3.

gap> all3 := AllDerivations( X3 );;
gap> imall3 := ImagesList( all3 );; Display( imall3 );
[ [ (), () ],

[ (), ( 1, 2, 3)( 4, 6, 5) ],
[ (), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 2, 3)( 4, 6, 5), () ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 2, 3)( 4, 6, 5), ( 1, 3, 2)( 4, 5, 6) ],
[ ( 1, 3, 2)( 4, 5, 6), () ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 3, 2)( 4, 5, 6) ]
]

gap> KnownAttributesOfObject( all3 );
[ "Object2d", "ImagesList", "AllOrRegular", "ImagesTable" ]
gap> Display( ImagesTable( all3 ) );
[ [ 1, 1, 1, 1, 1, 1 ],

[ 1, 1, 1, 2, 2, 2 ],
[ 1, 1, 1, 3, 3, 3 ],
[ 1, 2, 3, 1, 2, 3 ],
[ 1, 2, 3, 2, 3, 1 ],
[ 1, 2, 3, 3, 1, 2 ],
[ 1, 3, 2, 1, 3, 2 ],
[ 1, 3, 2, 2, 1, 3 ],
[ 1, 3, 2, 3, 2, 1 ] ]

2I CompositeDerivation( chi1, chi2 ) O
I ImagePositions( chi ) A

The Whitehead multiplication χ1 ? χ2 is implemented as CompositeDerivation( chi1, chi2 ).

gap> reg3 := RegularDerivations( X3 );;
gap> imder3 := ImagesList( reg3 );;
gap> chi4 := DerivationByImages( X3, imder3[4] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ ( 1, 3, 2)( 4, 5, 6), () ] )
gap> chi5 := DerivationByImages( X3, imder3[5] );
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ ( 1, 3, 2)( 4, 5, 6), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im4 := ImagePositions( chi4 );
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[ 1, 3, 2, 1, 3, 2 ]
gap> im5 := ImagePositions( chi5 );
[ 1, 3, 2, 2, 1, 3 ]
gap> chi45 := chi4 * chi5;
DerivationByImages( s3, c3, [ (4,5,6), (2,3)(5,6) ],
[ (), ( 1, 2, 3)( 4, 6, 5) ] )
gap> im45 := ImagePositions( chi45 );
[ 1, 1, 1, 2, 2, 2 ]
gap> pos := Position( imder3, GeneratorImages( chi45 ) );
2

3I WhiteheadGroupTable( X0 ) A
I WhiteheadMonoidTable( X0 ) A
I WhiteheadPermGroup( X0 ) A
I WhiteheadTransMonoid( X0 ) A

Multiplication tables for the Whitehead group or monoid enable the construction of permutation or trans-
formation representations.

gap> wgt3 := WhiteheadGroupTable( X3 );; Display( wgt3 );
[ [ 1, 2, 3, 4, 5, 6 ],

[ 2, 3, 1, 5, 6, 4 ],
[ 3, 1, 2, 6, 4, 5 ],
[ 4, 6, 5, 1, 3, 2 ],
[ 5, 4, 6, 2, 1, 3 ],
[ 6, 5, 4, 3, 2, 1 ] ]

gap> wpg3 := WhiteheadPermGroup( X3 );
Group([ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ])
gap> wmt3 := WhiteheadMonoidTable( X3 );; Display( wmt3 );
[ [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ],

[ 2, 3, 1, 5, 6, 4, 8, 9, 7 ],
[ 3, 1, 2, 6, 4, 5, 9, 7, 8 ],
[ 4, 4, 4, 4, 4, 4, 4, 4, 4 ],
[ 5, 5, 5, 5, 5, 5, 5, 5, 5 ],
[ 6, 6, 6, 6, 6, 6, 6, 6, 6 ],
[ 7, 9, 8, 4, 6, 5, 1, 3, 2 ],
[ 8, 7, 9, 5, 4, 6, 2, 1, 3 ],
[ 9, 8, 7, 6, 5, 4, 3, 2, 1 ] ]

gap> wtm3 := WhiteheadTransMonoid( X3 );
Monoid( [ Transformation( [ 1, 2, 3, 4, 5, 6, 7, 8, 9 ] ),

Transformation( [ 2, 3, 1, 5, 6, 4, 8, 9, 7 ] ),
Transformation( [ 3, 1, 2, 6, 4, 5, 9, 7, 8 ] ),
Transformation( [ 4, 4, 4, 4, 4, 4, 4, 4, 4 ] ),
Transformation( [ 5, 5, 5, 5, 5, 5, 5, 5, 5 ] ),
Transformation( [ 6, 6, 6, 6, 6, 6, 6, 6, 6 ] ),
Transformation( [ 7, 9, 8, 4, 6, 5, 1, 3, 2 ] ),
Transformation( [ 8, 7, 9, 5, 4, 6, 2, 1, 3 ] ),
Transformation( [ 9, 8, 7, 6, 5, 4, 3, 2, 1 ] ) ], ... )



5 Actors of 2d-objects

5.1 Actor of a Crossed Module

The actor of X is a crossed module (∆ : W(X )→ Aut(X )) which was shown by Lue and Norrie, in [Nor87]
and [Nor90] to give the automorphism object of a crossed module X . In this implementation, the source of
the actor is a permutation representation W of the Whitehead group of regular derivations, and the range
is a permutation representation A of the automorphism group Aut(X ) of X .

1I AutomorphismPermGroup( xmod ) A
I WhiteheadXMod( xmod ) A
I LueXMod( xmod ) A
I NorrieXMod( xmod ) A
I ActorXMod( xmod ) A

An automorphism (σ, ρ) of X acts on the Whitehead monoid by χ(σ,ρ) = σ◦χ◦ρ−1, and this action determines
the action for the actor. In fact the four groups R,S ,W ,A, the homomorphisms between them, and the
various actions, give five crossed modules forming a crossed square:

• X = (∂ : S → R), the initial crossed module, on the left,

• W(X ) = (η : S →W ), the Whitehead crossed module of X , at the top,

• L(X ) = (∆ ◦ η = α ◦ ∂ : S → A), the Lue crossed module of X , along the top-left to bottom-right
diagonal,

• N (X ) = (α : R → A), the Norrie crossed module of X , at the bottom, and

• Act(X ) = (∆ : W → A), the actor crossed module of X , on the right.

2I InnerActor( xmod ) A
I InnerMorphism( xmod ) A
I Centre( xmod ) A

Pairs of boundaries or identity mappings provide six morphisms of crossed modules. In particular, the
boundaries of W(X ) and N (X ) form the inner morphism of X , mapping source elements to principal
derivations and range elements to inner automorphisms. The image of X under this morphism is the inner
actor of X , while the kernel is the centre of X . In the example which follows, using the crossed module
(X3 : c3 -> s3) from the previous chapter, the inner morphism is an inclusion of crossed modules.

gap> X3;
[c3->s3]]
gap> WGX3 := WhiteheadPermGroup( X3 );
Group( [ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ] )
gap> APX3 := AutomorphismPermGroup( X3 );
Group( [ (3,4,5), (1,2)(4,5) ] )
gap> WX3 := WhiteheadXMod( X3 );; Display( WX3 );
Crossed module Whitehead[c3->s3] :-
: Source group has generators:
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[ ( 1, 2, 3)( 4, 6, 5) ]
: Range group has generators:

[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
: Boundary homomorphism maps source generators to:

[ (1,3,2)(4,6,5) ]
: Action homomorphism maps range generators to automorphisms:

(1,2,3)(4,5,6) --> { source gens --> [ (1,2,3)(4,6,5) ] }
(1,4)(2,6)(3,5) --> { source gens --> [ (1,3,2)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> LX3 := LueXMod( X3 );
Lue[c3->s3]
gap> NX3 := NorrieXMod( X3 );
Norrie[c3->s3]
gap> AX3 := ActorXMod( X3 );; Display( AX3);
Crossed module Actor[c3->s3] :-
: Source group has generators:

[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
: Range group has generators:

[ (3,4,5), (1,2)(4,5) ]
: Boundary homomorphism maps source generators to:

[ (3,5,4), (1,2)(4,5) ]
: Action homomorphism maps range generators to automorphisms:

(3,4,5) --> { source gens --> [ (1,2,3)(4,5,6), (1,5)(2,4)(3,6) ] }
(1,2)(4,5) --> { source gens --> [ (1,3,2)(4,6,5), (1,4)(2,6)(3,5) ] }
These 2 automorphisms generate the group of automorphisms.

gap> IAX3 := InnerActorXMod( X3 );; Display( IAX3 );
Crossed module InnerActor[c3->s3] :-
: Source group has generators:

[ (1,3,2)(4,6,5) ]
: Range group has generators:

[ (3,5,4), (1,2)(4,5) ]
: Boundary homomorphism maps source generators to:

[ (3,4,5) ]
: Action homomorphism maps range generators to automorphisms:

(3,5,4) --> { source gens --> [ (1,3,2)(4,6,5) ] }
(1,2)(4,5) --> { source gens --> [ (1,2,3)(4,5,6) ] }
These 2 automorphisms generate the group of automorphisms.

gap> IMX3 := InnerMorphism( X3 );; Display( IMX3 );
Morphism of crossed modules :-
: Source = [c3->s3] with generating sets:

[ ( 1, 2, 3)( 4, 6, 5) ]
[ (4,5,6), (2,3)(5,6) ]

: Range = Actor[c3->s3] with generating sets:
[ (1,2,3)(4,5,6), (1,4)(2,6)(3,5) ]
[ (3,4,5), (1,2)(4,5) ]

: Source Homomorphism maps source generators to:
[ (1,3,2)(4,6,5) ]

: Range Homomorphism maps range generators to:
[ (3,5,4), (1,2)(4,5) ]

gap> Centre( X3 );
[Group( () )->Group( () )]



6 Induced Constructions

6.1 Induced crossed modules

1I IsInducedXMod( xmod ) P
I IsInducedCat1( cat1 ) P
I InducedXMod( args ) F
I InducedCat1( args ) F
I MorphismOfInducedXMod( xmod ) A

A morphism of crossed modules (σ, ρ) : X1 → X2 factors uniquely through an induced crossed module
ρ∗X1 = (δ : ρ∗S1 → R2). Similarly, a morphism of cat1-groups factors through an induced cat1-group.
Calculation of induced crossed modules of X also provides an algebraic means of determining the homotopy
2-type of homotopy pushouts of the classifying space of X . For more background from algebraic topology
see references in [BH78], [BW95], [BW96]. Induced crossed modules and induced cat1-groups also provide
the building blocks for constructing pushouts in the categories XMod and Cat1.

Data for the cases of algebraic interest is provided by a conjugation crossed module X = (∂ : S → R)
and a homomorphism ι from R to a third group Q . The output from the calculation is a crossed module
ι∗X = (δ : ι∗S → Q) together with a morphism of crossed modules X → ι∗X . When ι is a surjection
with kernel K then ι∗S = [S ,K ] (see [BH78]). When ι is an inclusion the induced crossed module may be
calculated using a copower construction [BW95] or, in the case when R is normal in Q , as a coproduct of
crossed modules ([BW96], but not yet implemented). When ι is neither a surjection nor an inclusion, ι is
written as the composite of the surjection onto the image and the inclusion of the image in Q , and then the
composite induced crossed module is constructed. These constructions use Tietze transformation routines
in the library file tietze.gi.

As a first, surjective example, we take for X the normal inclusion crossed module of a4 in s4, and for ι the
surjection from s4 to s3 with kernel k4. The induced crossed module is isomorphic to X3.

gap> s4gens := [ (1,2), (2,3), (3,4) ];;
gap> s4 := Group( s4gens );; SetName(s4,"s4");
gap> a4gens := [ (1,2,3), (2,3,4) ];;
gap> a4 := Subgroup( s4, a4gens );; SetName( a4, "a4" );
gap> s3 := Group( (5,6),(6,7) );; SetName( s3, "s3" );
gap> epi := GroupHomomorphismByImages( s4, s3, s4gens, [(5,6),(6,7),(5,6)] );;
gap> X4 := XModByNormalSubgroup( s4, a4 );;
gap> indX4 := SurjectiveInducedXMod( X4, epi );
[a4/ker->s3]
gap> morX4 := MorphismOfInducedXMod( indX4 );
[[a4->s4] => [a4/ker->s3]]

For a second, injective example we take for X the conjugation crossed module (∂ : c4→ d8) of Chapter 3,
and for ι the inclusion incd8 of d8 in d16. The induced crossed module has c4× c4 as source.
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gap> incd8 := RangeHom( inc8 );;
gap> [ Source(incd8), Range(incd8), IsInjective(incd8) ];
[ d8, d16, true ]
gap> indX8 := InducedXMod( X8, incd8 );
#I Simplified presentation for induced group :-
<presentation with 2 gens and 3 rels of total length 12>
#I generators: [ f11, f14 ]
#I relators:
#I 1. 4 [ 1, 1, 1, 1 ]
#I 2. 4 [ 2, 2, 2, 2 ]
#I 3. 4 [ 2, -1, -2, 1 ]
#I induced group has Size: 16
#I factor 1 is abelian with invariants: [ 4, 4 ]
i*([c4->d8])
gap> Display( indX8 );
Crossed module i*([c4->d8]) :-
: Source group has generators:

[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]

: Range group d16 has generators:
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]

: Boundary homomorphism maps source generators to:
[ (11,13,15,17)(12,14,16,18), (11,17,15,13)(12,18,16,14) ]

: Action homomorphism maps range generators to automorphisms:
(11,12,13,14,15,16,17,18) --> { source gens -->

[ ( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12),
( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14) ] }
(12,18)(13,17)(14,16) --> { source gens -->

[ ( 1, 3, 6, 2)( 4, 9,12, 7)( 5,10,13, 8)(11,15,16,14),
( 1, 5,11, 4)( 2, 8,14, 7)( 3,10,15, 9)( 6,13,16,12) ] }
These 2 automorphisms generate the group of automorphisms.

gap> morX8 := MorphismOfInducedXMod( indX8 );
[[c4->d8] => i*([c4->d8])]
gap> Display( morX8 );
Morphism of crossed modules :-
: Source = [c4->d8] with generating sets:

[ (11,13,15,17)(12,14,16,18) ]
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]

: Range = i*([c4->d8]) with generating sets:
[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15),
( 1, 4,11, 5)( 2, 7,14, 8)( 3, 9,15,10)( 6,12,16,13) ]
[ (11,12,13,14,15,16,17,18), (12,18)(13,17)(14,16) ]

: Source Homomorphism maps source generators to:
[ ( 1, 2, 6, 3)( 4, 7,12, 9)( 5, 8,13,10)(11,14,16,15) ]

: Range Homomorphism maps range generators to:
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ]

For a third example we take the identity mapping on s3 as boundary, and the inclusion of s3 in s4 as iota.
The induced group is a general linear group GL(2,3).
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gap> s3b := Subgroup( s4, [ (2,3), (3,4) ] );; SetName( s3b, "s3b" );
gap> indX3 := InducedXMod( s4, s3b, s3b );
#I Simplified presentation for induced group :-
<presentation with 2 gens and 4 rels of total length 33>
#I generators: [ f11, f112 ]
#I relators:
#I 1. 2 [ 1, 1 ]
#I 2. 3 [ 2, 2, 2 ]
#I 3. 12 [ 1, -2, 1, 2, 1, 2, 1, -2, 1, 2, 1, 2 ]
#I 4. 16 [ -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1, -2, 1 ]
#I induced group has Size: 48
#I IdGroup = [ [ 48, 29 ] ]
i*([s3b->s3b])
gap> isoX3 := IsomorphismGroups( Source( indX3 ), GeneralLinearGroup(2,3) );
[ (1,2)(4,5)(6,8), (2,3,4)(5,6,7) ] ->
[ [ [ Z(3)^0, 0*Z(3) ], [ Z(3), Z(3) ] ],

[ [ Z(3)^0, Z(3)^0 ], [ 0*Z(3), Z(3)^0 ] ] ]

2I AllInducedXMods( Q ) O

This function calculates all the induced crossed modules InducedXMod( Q, P, M ) where P runs over all
conjugacy classes of subgroups of Q and M runs over all non-trivial subgroups of P.



7 Utility functions

By a utility function we mean a GAP function which is

• needed by other functions in this package,

• not (as far as we know) provided by the standard GAP library,

• more suitable for inclusion in the main library than in this package.

7.1 Inclusion and Restriction Mappings

1I InclusionMappingGroups( G, H ) O
I RestrictionMappingGroups( hom, src, rng ) O
I MappingToOne( G, H ) O

The first set of utilities concerns inclusion and restriction mappings. Restriction may apply to both the
source and the range of the map. The map incd8 is the inclusion of d8 in d16 used in Section 3.3.

gap> Print( incd8, "\n" );
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ] ->
[ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ]
gap> imd8 := Image( incd8 );;
gap> resd8 := RestrictionMappingGroups( incd8, c4, imd8 );;
gap> Source( res8 ); Range( res8 );
c4
Group([ (11,13,15,17)(12,14,16,18), (11,18)(12,17)(13,16)(14,15) ])
gap> MappingToOne( c4, imd8 );
[ (11,13,15,17)(12,14,16,18) ] -> [ () ]

7.2 Endomorphism Classes and Automorphisms

1I EndomorphismClasses( grp, case ) F
I EndoClassNaturalHom( class ) A
I EndoClassIsomorphism( class ) A
I EndoClassConjugators( class ) A
I AutoGroup( class ) A

The monoid of endomorphisms of a group is used when calculating the monoid of derivations of a crossed
module and when determining all the cat1-structures on a group.

An endomorphism ε of R with image H ′ is determined by

• a normal subgroup N of R and a permutation representation θ : R/N → Q of the quotient, giving a
projection θ ◦ ν : R → Q , where ν : R → R/N is the natural homomorphism;

• an automorphism α of Q ;

• a subgroup H ′ in a conjugacy class [H ] of subgroups of R isomorphic to Q having representative H , an
isomorphism φ : Q ∼= H , and a conjugating element c ∈ R such that H c = H ′.
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Then ε takes values
εr = (φαθν r)c ·

Endomorphisms are placed in the same class if they have the same choice of N and [H ], and so the number
of endomorphisms is

|End(R)| =
∑

classes

|Aut(Q)| · |[H ]| ·

The function EndomorphismClasses( grp, case ) may be called in three ways:

• case 1 includes automorphisms and the zero map,

• case 2 excludes automorphisms and the zero map,

• case 3 is when N intersects H trivially.

gap> end8 := EndomorphismClasses( d8, 1 );;
gap> Length( end8 );
13
gap> e4 := end8[4];
<enumerator>
gap> EndoClassNaturalHom( e4 );
GroupHomomorphismByImages( d8, Group( [ f1 ] ),
[ (11,13,15,17)(12,14,16,18), (12,18)(13,17)(14,16) ], [ f1, f1 ] )
gap> EndoClassIsomorphism( e4 );
Pcgs([ f1 ]) -> [ (11,13)(14,18)(15,17) ]
gap> EndoClassConjugators( e4 );
[ (), (12,18)(13,17)(14,16) ]
gap> AutoGroup( e4 );
Group( [ Pcgs([ f1 ]) -> [ f1 ] ] )
gap> L := List( end8, e -> Length(EndoClassConjugators(e)) * Size(AutoGroup(e)) );
[ 8, 1, 2, 2, 1, 2, 2, 1, 2, 2, 6, 6, 1 ]
gap> Sum( L );
36

2I InnerAutomorphismsByNormalSubgroup( G, N ) O
I IsGroupOfAutomorphisms( A ) P

Inner automorphisms of a group G by the elements of a normal subgroup N are calculated with the first of
these functions, usually with G = N.

gap> autd8 := AutomorphismGroup( d8 );;
gap> innd8 := InnerAutomorphismsByNormalSubgroup( d8, d8 );;
gap> GeneratorsOfGroup( innd8 );
[ InnerAutomorphism( d8, (11,13,15,17)(12,14,16,18) ),

InnerAutomorphism( d8, (12,18)(13,17)(14,16) ) ]
gap> IsGroupOfAutomorphisms( innd8 );
true
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7.3 Abelian Modules

1I IsAbelianModule( obj ) P
I AbelianModuleGroup( obj ) A
I AbelianModuleAction( obj ) A
I AbelianModuleObject( grp, act ) O

An abelian module is an abelian group together with a group action. These are used by the crossed module
constructor XModByAbelianModule.

gap> x := (6,7)(8,9);; y := (6,8)(7,9);; z := (6,9)(7,8);;
gap> k4 := Group( x, y ); SetName( k4, "k4" );
gap> s3 := Group( (1,2), (2,3) );; SetName( s3, "s3" );
gap> alpha := GroupHomomorphismByImages( k4, k4, [x,y], [y,x] );
gap> beta := GroupHomomorphismByImages( k4, k4, [x,y], [x,z] );
gap> aut := Group( alpha, beta );
gap> act := GroupHomomorphismByImages( s3, aut, [(1,2),(2,3)], [alpha,beta] );
gap> abmod := AbelianModuleObject( k4, act );
<enumerator>
gap> Xabmod := XModByAbelianModule( abmod );
[k4->s3]

The resulting Xabmod is isomorphic to the output from XModByAutomorphismGroup( k4 );.

7.4 Distinct and Common Representatives

1I DistinctRepresentatives( list ) O
I CommonRepresentatives( list1, list2 ) O
I CommonTransversal( grp, subgrp ) O
I IsCommonTransversal( grp, subgrp, list ) O

The final set of utilities deal with lists of subsets of [1 . . .n] and construct systems of distinct and common
representatives using simple, non-recursive, combinatorial algorithms.

When L is a set of n subsets of [1 . . .n] and the Hall condition is satisfied (the union of any k subsets has
at least k elements), a set of distinct representatives exists.

When J ,K are both lists of n sets, the function CommonRepresentatives returns two lists: the set of
representatives, and a permutation of the subsets of the second list. It may also be used to provide a
common transversal for sets of left and right cosets of a subgroup H of a group G , although a greedy
algorithm is usually quicker.

gap> J := [ [1,2,3], [3,4], [3,4], [1,2,4] ];;
gap> DistinctRepresentatives( J );
[ 1, 3, 4, 2 ]
gap> K := [ [3,4], [1,2], [2,3], [2,3,4] ];;
gap> CommonRepresentatives( J, K );
[ [ 3, 3, 3, 1 ], [ 1, 3, 4, 2 ] ]
gap> CommonTransversal( d16, c4 );
[ (), (12,18)(13,17)(14,16), (11,12,13,14,15,16,17,18),

(11,12)(13,18)(14,17)(15,16) ]
gap> IsCommonTransversal( d16, c4, [ (), c, d, c*d ] );
true



8 Development History

This chapter, which is intended to contain details of the major changes to the package as it develops, was
first created in April 2002. Details of the changes from XMod 1 to XMod 2.001 are far from complete.

Version 1

The inspiration for this package was the need, in the mid-1990’s, to calculate induced crossed modules (see
[BW1,BW2,BW3]). GAP was chosen over other computational group theory systems because the code was
freely available, and it was possible to modify the Tietze transformation code so as to record the images of
the original generators of a presentation as words in the simplified presentation. (These modifications are
now a standard part of the Tietze transformation package in GAP.)

The first version of XMod became an accepted share package for GAP 3.4.3 in December 1996.

Version 2

Conversion of XMod 1 from GAP 3.4.3 to the new GAP syntax began soon after GAP 4 was released, and
had a lengthy gestation. The new GAP syntax encouraged a re-naming of many of the function names. An
early decision was to introduce generic names 2dObject for (pre-)crossed modules and (pre-)cat1-groups,
and 2dMapping for the various types of morphism. This allows 3dObject to be used in future for crossed
squares and cat2-groups, and 3dMapping for their morphisms. A generic name for derivations and sections
is also required, and Up2dMapping is currently used.

Version 2.001

This was the first version of XMod for GAP 4, completed in April 2002 in a rush to catch the release of
GAP 4.3. Functions for actors and induced crossed modules were not included, nor many of the functions for
derivations and sections, for example InnerDerivation. During the ten days prior to the release, the main
changes made were:

• Generic name UpMapping chosen for derivations and sections (now changed to Up2dMapping).

• File names changed to obj2.gd, map2.gi, up2.tex, etc.

• Added alternative methods for IsomorphismPermGroup for 2dObjects. (Strange terminology here! Will
probably define global functions IsomorphismPermObject, IsomorphismFpObject, etc. in a later version
which will call IsomorphismPermGroup, IsomorphismPerm2dObject or whatever is appropriate.)

• Sorted a problem with fixing the generating set for R when used to define derivations. The (old)
code uses an fp-group version of R and checks that all the relators map by chi to 1 . Unfortunately,
IsomorphismFpGroup sometimes permutes the order of the R-generators, with unfortunate effects. The
fix is to use IsomorphismFpGroupByGenerators which returns the images of the generators specified in
the function call. We have also used genR := StrongGeneratorsStabChain( StabChain( rng ) );
throughout to specify the generators of R.

• Operation XModMorphism renamed as XModMorphismByHoms, and a new global function XModMorphism
introduced (and ditto for other 2dMappings).
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• Now using χ1 ? χ2 for Whitehead multiplication on the right, with CompositeDerivation still giving
multiplication on the left. This means that the second axiom for derivations and for sections has
changed – see Chapter 4.

During the period May 20th - May 27th 2002 converted induce.g to induce.gd and induce.gi (later
renamed induce2.gd, induce2.gi), at least as regards induced crossed modules — induced cat1-groups
still to come. This involved the following.

• Converted combinatorial functions – DistinctRepresentatives, CommonRepresentatives, Common-
Transversal and IsCommonTransversal.

• Converted Tietze modification functions TzCommutatorPair, TzPartition and FactorsPresentation.

• As suggested above, introduced global functions IsomorphismPermObject, IsomorphismFpObject, Iso-
morphismPcObject which call IsomorphismPermGroup etc. when the object is a group. Added functions
IsomorphismPermPreXMod, IsomorphismPermPreCat1, etc. to be called when the object is a 2d-object.

• Added IsomorphismXModByNormalSubgroup which applies when the boundary of the xmod is injective.

• Added PreXModIsomorphismByIsomorphisms ( a similar PreCat1IsomorphismByIsomorphisms will be
needed) where the data consists of an xmod, an isomorphism of the source, and an isomorphism of the
range.

• Changed RModule to AbelianModule.

8.1 Versions 2.002 – 2.005

Version 2.002 was prepared for the 4.4 release at the end of January 2004, and so required a PackageInfo.g
file.

Version 2.003 of February 28th 2004 just fixed some file protections.

Version 2.004 of April 14th 2004 gave a new email address for Murat Alp and added the Cat1Select
functionality of version 1 to the Cat1 function (the loading mechanism was revised in version 2.006).

Version 2.005 of April 16th 2004 moved the example files from tst/test i.g to examples/example i.g,
and converted testmanual.g to a proper test file tst/xmod manual.tst.

Changes made include the following.

• Replaced OperationHomomorphism by ActionHomomorphism – a general GAP 4.4 change.

• Finished replacing RModule by AbelianModule.

• Renamed UpMapping as Up2dMapping.

• Added MappingGeneratorsImages and InverseGeneralMapping for a 2dMapping.

• Converted the actor crossed module functions from the 3.4.4 version, including AutomorphismPermGroup
for a crossed module, WhiteheadXMod, NorrieXMod, LueXMod, ActorXMod, Centre of a crossed module,
InnerMorphism and InnerActorXMod.

• Added SmallerDegreePermPreXMod after discovering SmallerDegreePermutationRepresentation in
the library.

8.2 Version 2.006

This version contains changes made between May 4th and September 6th 2004.

• Changed morphism functions to return fail when invalid data is supplied, rather than calling Error.

• Fixed a bug in XmodByGroupOfAutomorphisms.
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8.3 What needs doing next?

• Speed up the calculation of Whitehead groups.

• Complete the conversion from Version 1 of the calculation of sections using EndoClasses.

• Add basic functions for 3dObjects: the actor of a crossed module is a typical example of a crossed
square.

• Add interaction with IdRel, XRes, ntp.

• Need InverseGeneralMapping for morphisms.

• Need more features for FpXMods, PcXMods, etc.

• Implement actions of a crossed module.

• Implement FreeXMods.

• Implement an operation Isomorphism2dObjects.
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