DESIGN 1.1

A GAP 4.4 Package

by

Leonard H. Soicher

School of Mathematical Sciences
Queen Mary, University of London

1.1
1.2
1.3

1.4

2.1

3.1

4.1
4.2

5.1

6.1

6.2

7.1

7.2

Design
Installing the DESIGN Package
Loading DESIGN

The structure of a block design in
DESIGN

Example of the use of DESIGN
Constructing block designs
Functions to construct block designs

Determining basic properties of
block designs

The functions for basic properties

Automorphism groups and
isomorphism testing for block
designs

Computing automorphism groups
Testing isomorphism
Classifying block designs

The function BlockDesigns
Partitioning block designs

Partitioning a block design into block
designs

Computing resolutions

XML I/0 of block designs

Writing lists of block designs and their

properties in XML-format

Reading lists of block designs in
XMUL-format

Bibliography

=~

ESEEEN B NS

10
10

12
12
12
14
14
17

17
20
21

21

22
23

Contents

Design

This manual describes the DESIGN 1.1 package for GAP 4.4. The DESIGN package is for generating, classifying
and studying block designs.

All DESIGN functions are written entirely in the GAP language. However, DESIGN requires the GRAPE
package [Soi04] to be installed, and makes use of certain GRAPE functions, some of which make use of
B. D. McKay’s nauty (Version 2.0b5) package [McK96]. These GRAPE functions can only be used on a fully
installed version of GRAPE in a UNIX environment. DESIGN also requires the GAPDoc package [LN04], if
you want to read lists of designs in the

http://designtheory.org external representation format (see [CDMS04]).

Except for the function SmallestImageSet, which is Copyright (©) Steve Linton 2003, the DESIGN package
is Copyright (© Leonard H. Soicher 2003—2004. DESIGN is part of an EPSRC funded project to provide a
web-based resource for design theory; see

http://designtheory.org

DESIGN is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version. For details, see

http://www.gnu.org/licenses/gpl.html

If you use DESIGN to solve a problem then please send a short email about it to L.H.Soicher@qmul.ac.uk,
and reference the DESIGN package as follows:

Leonard H. Soicher, The DESIGN package for GAP,
http://designtheory.org/software/gap_design/

1.1 Installing the DESIGN Package

The DESIGN package only runs properly on a UNIX system. Before installing DESIGN (on your UNIX
system), you must make sure that the GRAPE and GAPDoc packages are fully installed.
To install DESIGN 1.1 (after installing GAP, GRAPE and GAPDoc), first obtain the DESIGN archive file
designirl.tar.gz, available from

http://designtheory.org/software/gap_design/ and then copy this archive file into the pkg
directory of the GAP root directory. Actually, it is possible to have several GAP root directories, and so it is
easy to install DESIGN locally even if you have no permission to add files to the main GAP installation (see
9.2). Now go to the appropriate pkg directory containing designirl.tar.gz, and then run

gunzip designlirl.tar.gz
tar -xf designlrl.tar

That’s all there is to do.

Both dvi and pdf versions of the DESIGN manual are available (as manual.dvi and manual . pdf respectively)
in the doc directory of the home directory of DESIGN.

If you install DESIGN, then please tell L.H.Soicher@qmul.ac.uk, where you should also send any
comments or bug reports.

4 Chapter 1. Design

1.2 Loading DESIGN

Before using DESIGN you must load the package within GAP by calling the statement

gap> LoadPackage("design");
true

1.3 The structure of a block design in DESIGN

A block design is a pair (X, B), where X is a non-empty finite set whose elements are called points, and
B is a non-empty finite multiset whose elements are called blocks, such that each block is a non-empty
finite multiset of points.

DESIGN deals with arbitrary block designs. However, at present, some DESIGN functions only work for
binary block designs (i.e. those with no repeated element in any block of the design), but these functions
will check if an input block design is binary.

In DESIGN, a block design D is stored as a record, with mandatory components isBlockDesign, v, and
blocks. The points of a block design D are always 1,2,...,D.v, but they may also be given names in the
optional component pointNames, with D.pointNames[i] the name of point i. The blocks component must
be a sorted list of the blocks of D (including any repeats), with each block being a sorted list of points
(including any repeats).

A block design record may also have some optional components which store information about the design. At
present these optional components include isSimple, isBinary, isConnected, r, blockSizes, blockNum-
bers, resolutions, autGroup, autSubgroup, tSubsetStructure, allTDesignLambdas, and pointNames.

A non-expert user should only use functions in the DESIGN package to create block design records and their
components.

1.4 Example of the use of DESIGN

To give you an idea of the capabilities of this package, we now give an extended example of an application of
the DESIGN package, in which a nearly resolvable non-simple 2-(21,4,3) is constructed (for Donald Preece)
via a pairwise-balanced design. All the DESIGN functions used here are described in this manual.

The program first discovers the unique (up to isomorphism) pairwise-balanced 2-(21,{4,5},1) design D
invariant under H = ((1,2,...,20)), and then applies the McSorley-Soicher construction to this design D
to obtain a non-simple 2-(21,4,3) design Dstar with automorphism group of order 80. The program then
classifies the near-resolutions of Dstar invariant under the subgroup of order 5 of H, and finds exactly two
such (up to the action of Aut (Dstar)). Finally, Dstar is printed.

gap> H:=CyclicGroup(IsPermGroup,20);
Group([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20) 1)
gap> D:=BlockDesigns(rec(v:=21,blockSizes:=[4,5],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),
> requiredAutSubgroup:=H));;

gap> Length(D);

1

gap> D:=D[1];;

gap> BlockSizes(D);

[4, 5]

gap> BlockNumbers(D);

[20, 91

gap> Size(AutGroupBlockDesign(D));
80

Section 4. Fxample of the use of DESIGN

gap> Dstar:=TDesignFromTBD(D,2,BlockSizes(D));;
gap> AllTDesignLambdas(Dstar) ;
[105, 20, 3]
gap> Size(AutGroupBlockDesign(Dstar));
80
gap> near_resolutions:=PartitionsIntoBlockDesigns (rec(
> blockDesign:=Dstar,
v:=21,blockSizes:=[4],
tSubsetStructure:=rec(t:=0,lambdas:=[5]),
blockIntersectionNumbers:=[[[0] 1],
requiredAutSubgroup:=SylowSubgroup(H,5)));;
gap> Length(near_resolutions);
2
gap> List(near_resolutions,x->Size(x.autGroup)) ;
[5, 20 1]
gap> Print(Dstar,"\n");
rec(
isBlockDesign := true,
v = 21,
blocks := [[1, 2, 4, 1561, [1, 2, 4, 151, [1, 2, 4, 16 1],
, 3,14, 201, [1, 3, 14, 201, [1, 3, 14, 201, [1, 5, 9, 131,

vV V V VvV

—/

| T e I e I s Y e O e N e A e I e I e O s Y s N v N e I e IO s O s A s A e A e Y e O s N s N e N e I e A |
©O© 000 NNOOO OO OO PP WWWWNNNMNNDMNRE, R P

,5,9,171, [1,5,13,171, [1, 11, 161, [1, 6, 11, 21 1,
b 6) 16, 21]’ [1’ 7’ 8, 10]’ [1’ 8) 10]’ [1’ 7’ 8, 10]’
, 9,13, 171, [1, 11, 16, 21 1, [1, 12, 18, 19 1,

12, 18, 191, [1, 12, 18, 191, [2, 3, 5, 16 1, [2, 3, 5, 16 1,
3,5,161, [2,6, 10, 141, [2, 6, 10, 181, [2, 6, 14, 18 1,
7, 12, 171, [2, 7, 12, 211, [2,7, 17, 211, [2,8, 9, 111,
8, 9,111, [2,8,9, 111, [2, 10, 14, 181, [2, 12, 17, 21 1],
13, 19, 201, [2, 13, 19, 201, [2, 13, 19, 20 1,

4,6, 171, [3, 4,6, 171, [3, 4,6, 171, [3, 7, 11, 151,

7, 11, 191, [3, 7, 15, 191, [3, 8, 13, 181, [3, 8, 13, 211,
8, 18, 211, [3, 9, 10, 121, [3, 9, 10, 121, [3, 9, 10, 121,
11, 15, 191, [3, 13, 18, 211, [4, 5, 7, 181, [4 5, 7, 18 1,
5,7, 181, [4, 8, 12, 161, [4, 8, 12, 201, [4 16, 20 1,
9, 14, 191, [4, 9, 14, 217, [4, 9, 19, 211, [4, 10, 11, 1317,
10, 11, 131, [4, 10, 11, 131, [4, 12, 16, 20 1,

14, 19, 211, [5, 6,8, 191, [5, 6,8, 191, [5, 6,8, 191,
9, 13, 171, [5, 10, 15, 201, [5, 10, 15, 21 1,

-

-

M

-

-

-

-

-

-

-

-

-

-

, 10, 20, 211, [5, 11, 12, 141, [5, 11, 12, 141,
, 11, 12, 141, [5, 15, 20, 211, [6, 7, 9, 201, [6, 7, 9, 20 1,
, 7,9,207], [6, 10, 14, 181, [6, 11, 16, 21],
, 12, 13, 1561, [6, 12, 13, 151, [6, 12, 13, 1517,
, 11,15, 191, [7, 12, 17, 21 1, [7, 13, 14, 16 1,
, 13, 14, 161, [7, 13, 14, 16 1, [8, 12, 16, 20 1,
, 13, 18, 211, [8, 14, 15, 17 1, [8, 14, 15, 17 1,
, 14, 15, 171, [9, 14, 19, 211, [9, 15, 16, 181,
, 15, 16, 18 1, [9, 15, 16, 18 1, [10, 15, 20, 21 1,
10, 16, 17, 191, [10, 16, 17, 19 1, [10, 16, 17, 19 1,
[11, 17, 18, 201, [11, 17, 18, 201, [11, 17, 18, 201 1,

blockSizes := [4],
isBinary := true,
allTDesignlLambdas := [105, 20, 3],

Chapter 1. Design

isSimple :

autGroup :=

Group([(1, 2, 3, 4, 5,6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19,20),
(2,18,10,14)(3,15,19, 7)(4,12, 8,20)(5, 9,17,13) 1))

false,

1»

2»

Constructing
block designs

2.1 Functions to construct block designs
BlockDesign(v, B)

Let v be a positive integer. Then this function returns the block design with point-set {1,...,v} and block
multiset B, which must be a non-empty sorted list of non-empty sorted lists of elements of {1,...,v}.

gap> BlockDesign(2, [[1]1,[1,21,[1,2]11);
rec(isBlockDesign := true, v := 2, blocks := [[1], [1,271, [1,211)

PGPointFlatBlockDesign(n, ¢, d)

Let n be a non-negative integer, ¢ a prime-power, and d a non-negative integer less than or equal to n.
Then this function returns the block design whose points are the (projective) points of the projective space
PG(n, q), and whose blocks are the d-flats of PG(n, ¢), considering a d-flat as a set of projective points.

Note that the projective space PG(n, q) consists of all the subspaces of the vector space V(n+1, ¢), with
the projective points being the 1-dimensional subspaces and the d-flats being the (d 4+ 1)-dimensional
subspaces.

gap> D:=PGPointFlatBlockDesign(3,2,1);;
gap> Print(D,"\n");

rec(

isBlockDesign := true,

v := 15,

pointNames :=

[VectorSpace(GF(2), [[0%Z(2), 0%Z(2), 0%Z(2), z(2)"0 1 1),

VectorSpace(GF(2), [[0xZ(2), 0xZ(2), Z(2)70, 0*xZ(2) 1 1),
VectorSpace(GF(2), [[0xZ(2), 0xZ(2), Z(2)70, Z(2)°01 1),
VectorSpace(GF(2), [[0*Z(2), Z(2)°0, 0*Z(2), 0xz(2) 1 1),
VectorSpace(GF(2), [[0xZ(2), Z(2)"0, 0*xZ(2), Z(2)"0 1 1),
VectorSpace(GF(2), [[0*%Z(2), Z(2)70, Z(2)70, 0*%Z(2) 1 1),
VectorSpace(GF(2), [[0xZ(2), Zz(2)°0, Z(2)70, Z(2)701 1),
VectorSpace(GF(2), [[Z(2)70, 0xZ(2), 0*Z(2), 0xz(2) 1 1),
VectorSpace(GF(2), [[Z(2)"0, 0%Z(2), 0%Z(2), Z(2)"01 1),
VectorSpace(GF(2), [[Z2(2)°0, 0%Z(2), Z2(2)°0, 0%z2(2) 1 1),
VectorSpace(GF(2), [[Z(2)°0, 0%xz(2), Z(2)70, Z(2)°01 1),
VectorSpace(GF(2), [[Z(2)°0, Z(2)°0, 0xZ(2), 0*Z(2) 1 1),
VectorSpace(GF(2), [[Z(2)°0, Z(2)°0, 0xZ(2), Z(2)"01 1),
VectorSpace(GF(2), [[z(2)"0, Z(2)"0, z(2)"0, 0*Z(2) 1 1),
VectorSpace(GF(2), [[Z(2)"0, z(2)"0, Z(2)"0, z(2>"01 1) 1,

blocks := [[1, 2,31, [1,4,51, [1,6,71,[1,8,91,
(1,10, 111, [1,12, 131, [1, 14, 151, [2, 4,61, [2,5, 71,
[2,8,10]1, [2,9, 111, [2, 12, 141, [2, 13, 1561, [3, 4, 71,
[3,5,61, [3,8, 111, [3,9,10], [3, 12, 156], [3, 13, 14],

8 Chapter 2. Constructing block designs

, 121, [4,9, 131, [4, 10, 141, [4, 11, 1561, [5, 8, 131,
’8, 14], [6, 9) 15],
9, 141,

[4, 8

[5,9,121, [5, 10, 151, [5, 11, 141, [6

[e, 10, 121, [6, 11, 131, [7, 8, 1561, [7,
[7, 10, 131, [7, 11,121 1)

gap> Size(AutGroupBlockDesign(D));

20160

3» TDesignFromTBD(D, t, K)

Assuming that D is a t-wise balanced t-(v, K, A) design, with ¢ a positive integer and K a set contained in
[t..D.v], this function returns the ¢-design obtained by applying the McSorley—Soicher construction to D.
The returned design is a ¢-(v, K[1], n\), where n is the least common multiple of {(K[l])i keK}

gap> D:=BlockDesigns(rec(v:=10,blockSizes:=[3,4],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]))) [1];
rec(isBlockDesign := true, v := 10,
blocks := [[1, 2, 3,41, [1, 5,6, 71, [1,8, 9,101, [2, 5, 81,
[2,6,91, [2,7,10]1, [3,5,9]1, (3,6, 101, [3,7,81,
[4, 5,101, [4,6,81, [4, 7,911,
tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,
isSimple := true, blockSizes := [3, 4], blockNumbers := [9, 3],

autGroup := Group([(5,6,7)(8,9,10), (2,3)(5,6)(8,10), (2,3,4)(8,9,10),
(2,3,4)(,8,7,9,6,10), (2,6,10)(3,7,9)(4,5,8) 1))
gap> Dstar:=TDesignFromTBD(D,2, [3,4]);

rec(isBlockDesign := true, v := 10,

blocks := [[1, 2,31, [1,2,41,[1,3,41,([1,5,6]1],
(1,565,731, 01,6, 7], [1,8,9]1,[1,8,10], [1, 9, 1017,
[2,3,4]1,[02,5,8]1,[2,5,81,0[2,6,91,1[2,6, 91,
(2, 7,101, [2,7,101, [3,5,9]1, [3,5,91, [3,6, 101,
[3,6,10]1, [3,7,81, [3, 7,81, [4, 5, 101, [4, 5, 10 1,
[4,6,8]1, [4,6,81, [4, 7,91, [4, 7,91, [5,6, 71,
[8,9,10]11)

gap> AllTDesignLambdas(Dstar) ;

[30, 9, 21

4» DualBlockDesign(D)

Suppose D is a block design for which every point lies on at least one block. Then this function returns the
dual of D, the block design in which the roles of points and blocks are interchanged, but incidence (including
repeated incidence) stays the same. Note that, since the list of blocks of a block design is always sorted, the
block list of the dual of the dual of D may not be equal to the block list of D.

gap> D:=BlockDesign(4,[[1,3],[2,3,4]1,[3,411);;
gap> dualD:=DualBlockDesign(D);
rec(isBlockDesign := true, v := 3,
blocks := [[1], [1,2,31,[21]1, [2
pointNames := [[1, 31, [2, 3, 4], [3
gap> DualBlockDesign(dualD) .blocks;
[[1,2],02,3,471,[2,41]1

-

—

—_
-

-

5» ComplementBlocksBlockDesign(D)

Suppose D is a binary incomplete-block design. Then this function returns the block design on the same
point-set as D, whose blocks are the complements of those of D (complemented with respect to the point-set).

Section 1. Functions to construct block designs

gap> D:=PGPointFlatBlockDesign(2,2,1);

dimension 1 over GF(2)>,

rec(isBlockDesign := true, v := 7,

pointNames := [<vector space of
<vector space of dimension 1 over
<vector space of dimension 1 over
<vector space of dimension 1 over
<vector space of dimension 1 over
<vector space of dimension 1 over
<vector space of dimension 1 over
blocks := [[1, 2,31, [1, 4, 51,
(2,5, 71, [3,4,71,1[3,s:5,

gap> AllTDesignLambdas(D);

[7,3,1]

gap> C:=ComplementBlocksBlockDesign (D) ;

rec(isBlockDesign :
blocks := [[1, 2, 4, 7],

L2, 3,
pointNames
<vector
<vector
<vector
<vector
<vector
<vector

4’ 5])

space
space
space
space
space
space

of
of
of
of
of
of

true, v :=
[2) 3! 6,

dimension
dimension
dimension
dimension
dimension
dimension

gap> AllTDesignLambdas(C) ;

[7,4, 2]

7,

[1)

7

:= [<vector space of

1
1
1
1
1
1

2, 5,

1, [

GF(2)>,
GF(2)>,
GF(2)>,
GF(2)>,
GF(2)>,
GF(2)> 1,

(1,6, 71,02, 4,61,

611)

61, [1,3,4,61,
4,5,6, 711,

dimension 1 over GF(2)>,

over
over
over
over
over
over

GF(2)>,
GF(2)>,
GF(2)>,
GF(2)>,
GF(2)>,
GF(2)> 1)

[1,3,5, 71,

1»

2>

3>

4»

5»

Determining
basic properties
of block designs

3.1 The functions for basic properties
IsBlockDesign(obj)

This boolean function returns true if and only if obj, which can be an object of arbitrary type, is a block
design.

gap> IsBlockDesign(5);

false

gap> IsBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]11));

true

IsBinaryBlockDesign(D)

This boolean function returns true if and only if the block design D is binary, that is, if no block of D has
a repeated element.

gap> IsBinaryBlockDesign(BlockDesign(2,[[1],[1,2],[1,2]11));

true

gap> IsBinaryBlockDesign(BlockDesign(2, [[1],[1,2],[1,2,2]1]));

false

IsSimpleBlockDesign(D)

This boolean function returns true if and only if the block design D is simple, that is, if no block of D is
repeated.

gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2],[1,211));

false

gap> IsSimpleBlockDesign(BlockDesign(2,[[1],[1,2]1,[1,2,2]1]1));

true

IsConnectedBlockDesign(D)

This boolean function returns true if and only if the block design D is connected, that is, if its incidence
graph is a connected graph.

gap> IsConnectedBlockDesign(BlockDesign(2, [[1],[2]]1));
false

gap> IsConnectedBlockDesign(BlockDesign(2,[[1,2]1]1));
true

ReplicationNumber(D)

If the block design D is equireplicate, then this function returns its replication number; otherwise fail is
returned.

Section 1. The functions for basic properties 11

A block design D is equireplicate with replication number r if, for every point x of D, r is equal to the
sum over the blocks of the multiplicity of z in a block. For a binary block design this is the same as saying
that each point z is contained in exactly r blocks.

gap> ReplicationNumber(BlockDesign(4,[[1],[1,2],[2,3,3],[4,411));
2

gap> ReplicationNumber (BlockDesign(4,[[1],[1,2],[2,3],[4,411));
fail

6» BlockSizes(D)

This function returns the set of sizes (actually list-lengths) of the blocks of the block design D.

gap> BlockSizes(BlockDesign(3,[[1],[1,2,2],[1,2,3]1,[2],[3]11) J;
[1, 3]

7» BlockNumbers(D)

Let D be a block design. Then this function returns a list of the same length as BlockSizes (D), such that
the i-th element of this returned list is the number of blocks of D of size BlockSizes (D) [:].

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[311);
rec(isBlockDesign := true, v := 3,
blocks := [[11, [1,2,21]1,([1,2,3]1,[21,[311)
gap> BlockSizes(D);
[1, 3]
gap> BlockNumbers (D) ;
[3, 2]

8 » TSubsetLambdasVector(D, t)

Let D be a block design, ¢ a non-negative integer, and v=D .v. Then this function returns an integer vector
L whose positions correspond to the ¢-subsets of {1,...,v}. The i-th element of L is the sum over all blocks
B of D of the number of times the i-th t-subset (in lexicographic order) is contained in B. (For example,
if t=2and B =[1,1,2,3,3,4], then B contains [1,2] twice, [1,3] four times, [1,4] twice, [2, 3] twice, [2, 4]
once, and [3, 4] twice.) In particular, if D is binary then L[i] is simply the number of blocks of D containing
the i-th ¢-subset (in lexicographic order).

gap> D:=BlockDesign(3,[[1],[1,2,2],[1,2,3],[2],[3]11);;
gap> TSubsetLambdasVector(D,0);

[5]

gap> TSubsetLambdasVector(D,1);

[3, 4, 2]

gap> TSubsetLambdasVector(D,2);

[3,1, 1]

gap> TSubsetLambdasVector(D,3);

[1]

9» AllTDesignLambdas(D)

If the block design D is not a t-design for some ¢ > 0 then this function returns an empty list. Otherwise D
is a binary block design with constant block size k, say, and this function returns a list L of length 7"+ 1,
where T is the maximum ¢ < k such that D is a t-design, and, for ¢ = 1,..., T + 1, L[i] is equal to the
(constant) number of blocks of D containing an (¢ — 1)-subset of {1,...,D - v}.

gap> AllTDesignLambdas (PGPointFlatBlockDesign(3,2,1));
(35,7, 1]

1»

1»

2»

Automorphism groups
and isomorphism
testing for block designs

The functions in this chapter depend on nauty via the GRAPE package, which must be fully installed on a
computer running UNIX in order for these functions to work.

4.1 Computing automorphism groups
AutGroupBlockDesign(D)

This function returns the automorphism group of the block design D. The automorphism group Aut (D)
of D is the group consisting of all the permutations of the points {1,..., D - v} which preserve the block-
multiset of D.

This function is not yet implemented for non-binary block designs.

This function can also be called via AutomorphismGroup (D).

gap> D:=PGPointFlatBlockDesign(2,3,1);; # projective plane of order 3
gap> Size(AutGroupBlockDesign(D));
5616

4.2 Testing isomorphism
IsIsomorphicBlockDesign(DI, D2)

This boolean function returns true if and only if block designs D1 and D2 are isomorphic.
This function is not yet implemented for non-binary block designs.
For pairwise isomorphism testing for three or more binary block designs, see 4.2.2.

gap> D1:=BlockDesign(3, [[1],[1,2,3],[211);;

gap> D2:=BlockDesign(3,[[1],[1,2,3],[3]11);;

gap> IsIsomorphicBlockDesign(D1,D2);

true

gap> D3:=BlockDesign(4,[[1],[1,2,3],[3]11);;

gap> IsIsomorphicBlockDesign(D2,D3);

false

gap> # block designs with different numbers of points are not isomorphic

BlockDesignIsomorphismClassRepresentatives(L)

Given a list L of binary block designs, this function returns a list consisting of pairwise non-isomorphic
elements of L, representing all the isomorphism classes of elements of L. The order of the elements in the
returned list may differ from their order in L.

Section 2. Testing isomorphism

gap> D1:=BlockDesign(3, [[1],[1,2,3],[2]11);;

gap> D2:=BlockDesign(3, [[1],[1,2,3],[311);;

gap> D3:=BlockDesign(4, [[1],[1,2,3],[3]11);;

gap> BlockDesignIsomorphismClassRepresentatives([D1,D2,D3]);

[rec(isBlockDesign := true, v := 4, blocks := [[1], [1, 2, 317,
isBinary := true),

rec(isBlockDesign := true, v := 3, blocks := [[11, [1, 2, 31,

isBinary := true)]

(311,

(211,

13

1»

Classifying
block designs

This chapter describes the function BlockDesigns which can classify block designs with given properties.
The possible properties a user can specify are many and varied, and are described below. Depending on
the properties, this function can handle block designs with up to about 20 points (sometimes more and
sometimes less, depending on the problem).

5.1 The function BlockDesigns
BlockDesigns(param)

This function returns a list DL of block designs whose properties are specified by the user in the record
param. The precise interpretation of the output depends on param, described below. Only binary designs
are generated by this function, if param .blockDesign is unbound or is a binary design.

The required components of param are v, blockSizes, and tSubsetStructure.
param . v must be a positive integer, and specifies that for each block design in DL, the points are 1,...,param . v.|j

param .blockSizes must be a set of positive integers, and specifies that the block sizes of each block design
in DL will be contained in param .blockSizes.

param .tSubsetStructure must be a record, having components t, partition, and lambdas. Let ¢ be
equal to param .tSubsetStructure.t, partition be param .tSubsetStructure.partition, and lambdas be
param .tSubsetStructure.lambdas. Then ¢t must be a non-negative integer, partition must be a list of non-
empty sets of t-subsets of [1..param.v], forming an ordered partition of all the t-subsets of [1..param.v],
and lambdas must be a list of distinct non-negative integers (not all zero) of the same length as partition.
This specifies that for each design in DL, each t-subset in partition [i] will occur exactly lambdas [i] times,
counted over all blocks of the design. For binary designs, this means that each ¢-subset in partition [:] is
contained in exactly lambdas[i] blocks. The partition component is optional if lambdas has length 1.
We require that ¢ is less than or equal to each element of param.blockSizes, and if param.blockDesign
is bound, then each block of param.blockDesign must contain at least ¢ distinct elements. Note that if
param .tSubsetStructure is equal to rec(t:=0,lambdas:=[b]), for some positive integer b, then all that
is being specified is that each design in DL must have exactly b blocks.

The optional components of param are used to specify additional constraints on the designs in DL or to
change default parameter values. These optional components are blockDesign, r, blockNumbers, block-
IntersectionNumbers, blockMaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel.

param .blockDesign must be a block design with param.blockDesign.v equal to param.v. Then each
block multiset of a design in DL will be a submultiset of param .blockDesign.blocks (that is, each block
of a design D in DL will be a block of param .blockDesign, and the multiplicity of a block of D will be less
than or equal to that block’s multiplicity in param .blockDesign). The blockDesign component is useful
for the computation of subdesigns, such as parallel classes.

param.r must be a positive integer, and specifies that in each design in DL, each point will occur exactly
param .r times in the list of blocks. In other words, each design in DL will have replication number param.r.

param .blockNumbers must be a list of non-negative integers, the i-th element of which specifies the
number of blocks whose size is equal to param.blockSizes[i] (for each design in DL). The length of

Section 1. The function BlockDesigns 15

param .blockNumbers must equal that of param .blockSizes, and at least one entry of param .blockNumbers
must be positive.

param .blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i] [5]-
element of which specifies the set of possible sizes for the intersection of a block of size param .blockSizes [i]
with one of size param.blockSizes[j] (for each design in DL). In the case of multisets, we take the
multiplicity of an element in the intersection to be the minimum of its multiplicities in the multisets being
intersected, so, for example, the intersection of [1,1,1,2,2,3] with [1,1,2,2,2,4] is [1,1,2,2], having
size 4. The dimension of param .blockIntersectionNumbers must equal the length of param.blockSizes.

param .blockMaxMultiplicities must be a list of non-negative integers, the i-th element of which specifies
the maximum multiplicity of a block whose size is equal to param .blockSizes[i] (for each design in DL).
The length of param .blockMaxMultiplicities must equal that of param.blockSizes.

Let G be the automorphism group of param .blockDesign if bound, and G be SymmetricGroup (param .v)
otherwise. Let H be the subgroup of G stabilizing param .tSubsetStructure.partition (as an ordered
list of sets of sets) if bound, and H be equal to G otherwise.

param . isoGroup must be a subgroup of H, and specifies that we consider two designs with the required prop-
erties to be equivalent if their block multisets are in the same orbit of param . isoGroup (in its action on mul-
tisets of multisets of [1..param.v]). The default for param.isoGroup is H. Thus, if param .blockDesign
is unbound, equivalence is the same as block-design isomorphism for the required designs.

param .requiredAutSubgroup must be a subgroup of param.isoGroup, and specifies that each design
in DL must be invariant under param .requiredAutSubgroup (in its action on multisets of multisets of
[1..param.v]). The default for param .requiredAutSubgroup is the trivial permutation group.

param .isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that DL will contain at most
one block design, and will contain one block design with the required properties if and only if such a block
design exists; the value 1 specifies that DL will contain (perhaps properly) a list of param .isoGroup orbit-
representatives of the required designs; the value 2 specifies that DL will consist precisely of param . isoGroup-
orbit representatives of the required designs.

For an example, we classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular group
of automorphisms of order 5, and then classify all parallel classes of these designs, up to the action of the
automorphism groups of these designs.

gap> DL:=BlockDesigns (rec(

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),

> requiredAutSubgroup:=

> Group((1,2,3,4,5)(6,7,8,9,10) (11,12,13,14,15))));;
gap> List(DL,Al1TDesignLambdas) ;

[(3,7,11, [3, 7,11, [35, 7,111

gap> List(DL,D->Size (AutGroupBlockDesign(D)));

[20160, 5, 60]

gap> parclasses:=List(DL,D->

> BlockDesigns (rec(

> blockDesign:=D,

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1]))));
[[rec(isBlockDesign := true, v := 15,

blocks := [[1, 2,61, [3,4,81, [5, 7,141, [9, 12, 151,
[10, 11, 131 1,
tSubsetStructure := rec(t
isBinary := true, isSimple :
blockNumbers := [5], r := 1,

1, lambdas := [1]),
true, blockSizes := [3 1],

16

Chapter 5. Classifying block designs

autSubgroup := Group([(2,6)(3,11)(4,10)(5,14)(8,13)(12,15),
(2,6)(4,8)(5,12)(7,9) (10,13) (14,15),
(2,6)(3,12)(4,9) (7,14) (8,15) (11,13),
(3,12,5)(4,15,7)(8,9,14)(10,11,13),
(1,6,2)(3,4,8)(5,7,14)(9,12,15)(10,11,13),
(1,8,11,2,3,10) (4,13,6)(5,15,14,9,7,12) 1)) 1,

[rec(isBlockDesign := true, v := 1
blocks := [[1, 7, 12 1, [

(4, 10, 157, [5, 6, 1
tSubsetStructure := rec(t :
isBinary true, isSimple :
blockNumbers := [61, r :
autSubgroup := Group([(1,5,

1,

[rec(isBlockDesign := true, v := 1
1, 04, 11,1217, [5

5,

2,8, 131,
111,

1, lambdas := [1]),
true, blockSizes := [3 1],

(3,9, 141,

1,
4,3,2)(6,10,9,8,7)(11,15,14,13,12) 1))

blocks := [[1, 2, 6],

7,151, [8,9, 1411,

5, [3, 10, 13

o~

1, lambdas := [1]),
true, blockSizes := [3 1],

tSubsetStructure := rec(t :
isBinary true, isSimple :=
blockNumbers := [5], r := 1,
autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),
(1,11,8)(2,12,9)(3,13,10) (4,14,6)(5,15,7) 1)),

rec(isBlockDesign := true, v := 15,
blocks := [[1, 8, 111, [2, 9, 12], [3, 10, 1317,
[4, 6, 141, [5, 7, 1511,
tSubsetStructure := rec(t := 1, lambdas := [1]),
isBinary := true, isSimple := true, blockSizes := [3 1],
blockNumbers := [5], r := 1,
autSubgroup := Group([(1,2)(3,5)(7,10)(8,9)(11,12)(13,15),

(1,3,4,2)(6,9,8,10)(11,13,14,12),
(1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14),
(1,11,8)(2,12,9)(3,13,10) (4,14,6)(5,15,7) 1)) 1]

gap> List(parclasses,Length);

(1,1, 21

gap> List(parclasses,L->List(L,parclass->Size(parclass.autSubgroup)));

(0301, [51, [6,60]]

1»

Partitioning
block designs

This chapter describes the function PartitionsIntoBlockDesigns which can classify partitions of (the block
multiset of) a given block design into (the block multisets of) block designs having user-specified properties.
We also describe MakeResolutionsComponent which is useful for the special case when the desired partitions
are resolutions.

6.1 Partitioning a block design into block designs
PartitionsIntoBlockDesigns(param)

Let D equal param .blockDesign. This function returns a list PL of partitions of (the block multiset of) D.
Each element of PL is a record with one component partition, and, in most cases, a component autGroup.
The partition component gives a list P of block designs, all with the same point set as D, such that the list
of (the block multisets of) the designs in P.partition forms a partition of (the block multiset of) D. The
component P .autGroup, if bound, gives the automorphism group of the partition, which is the stabilizer of
the partition in the automorphism group of D. The precise interpretation of the output depends on param,
described below.

The required components of param are blockDesign, v, blockSizes, and tSubsetStructure.
param .blockDesign is the block design to be partitioned.

param .v must be a positive integer, and specifies that for each block design in each partition in PL, the
points are 1,...,param .v. It is required that param .v be equal to param .blockDesign.v.

param .blockSizes must be a set of positive integers, and specifies that the block sizes of each block design
in each partition in PL will be contained in param .blockSizes.

param .tSubsetStructure must be a record, having components t, partition, and lambdas. Let ¢ be
equal to param .tSubsetStructure.t, partition be param .tSubsetStructure.partition, and lambdas be
param . tSubsetStructure.lambdas. Then ¢ must be a non-negative integer, partition must be a list of non-
empty sets of t-subsets of [1..param.v], forming an ordered partition of all the t-subsets of [1..param.v],
and lambdas must be a list of distinct non-negative integers (not all zero) of the same length as partition.
This specifies that for each design in each partition in PL, each t-subset in partition [i] will occur exactly
lambdas [i] times, counted over all blocks of the design. For binary designs, this means that each t-subset
in partition [i] is contained in exactly lambdas[i] blocks. The partition component is optional if lambdas
has length 1. We require that ¢ is less than or equal to each element of param .blockSizes, and that each
block of param .blockDesign contains at least ¢ distinct elements.

The optional components of param are used to specify additional constraints on the partitions in PL, or to
change default parameter values. These optional components are r, blockNumbers, blockIntersection-
Numbers, blockMaxMultiplicities, isoGroup, requiredAutSubgroup, and isoLevel. Note that the last
three of these optional components refer to the partitions and not to the block designs in a partition.

param.r must be a positive integer, and specifies that in each design in each partition in PL, each point
must occur exactly param.r times in the list of blocks.

param .blockNumbers must be a list of non-negative integers, the i-th element of which specifies the number
of blocks whose size is equal to param .blockSizes [i] (in each design in each partition in PL). The length of

18 Chapter 6. Partitioning block designs

param .blockNumbers must equal that of param .blockSizes, and at least one entry of param .blockNumbers
must be positive.

param .blockIntersectionNumbers must be a symmetric matrix of sets of non-negative integers, the [i] [5]-
element of which specifies the set of possible sizes for the intersection of a block of size param .blockSizes [i]
with one of size param .blockSizes[j] (in each design in each partition in PL). In the case of multisets,
we take the multiplicity of an element in the intersection to be the minimum of its multiplicities in the
multisets being intersected, so, for example, the intersection of [1,1,1,2,2,3] with [1,1,2,2,2,4] is
[1,1,2,2], having size 4. The dimension of param .blockIntersectionNumbers must equal the length of
param .blockSizes.

param .blockMaxMultiplicities must be a list of non-negative integers, the i-th element of which specifies
the maximum multiplicity of a block whose whose size is equal to param .blockSizes[i] (for each design in
each partition in PL). The length of param .blockMaxMultiplicities must equal that of param .blockSizes.|]

param . isoGroup must be a subgroup of the automorphism group of param .blockDesign. We consider two
elements of PL to be equivalent if they are in the same orbit of param . isoGroup (in its action on multisets
of block multisets). The default for param .isoGroup is the automorphism group of param .blockDesign.

param .requiredAutSubgroup must be a subgroup of param .isoGroup, and specifies that each partition in
PL must be invariant under param .requiredAutSubgroup (in its action on multisets of block multisets).
The default for param .requiredAutSubgroup is the trivial premutation group.

param .isoLevel must be 0, 1, or 2 (the default is 2). The value 0 specifies that PL will contain at most one
partition, and will contain one partition with the required properties if and only if such a partition exists;
the value 1 specifies that PL will contain (perhaps properly) a list of param .isoGroup orbit-representatives
of the required partitions; the value 2 specifies that PL will consist precisely of param .isoGroup-orbit
representatives of the required partitions.

For an example, we first classify up to isomorphism the 2-(15,3,1) designs invariant under a semi-regular
group of automorphisms of order 5, and then use PartitionsIntoBlockDesigns to classify all the resolutions
of these designs, up to the actions of the respective automorphism groups of the designs.

gap> DL:=BlockDesigns (rec(

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1]),

> requiredAutSubgroup:=

> Group((1,2,3,4,5)(6,7,8,9,10) (11,12,13,14,15))));;
gap> List(DL,D->Size (AutGroupBlockDesign(D)));

[20160, 5, 60]

gap> PL:=PartitionsIntoBlockDesigns(rec(

> blockDesign:=DL[1],
> v:=15,blockSizes:=[3],
> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
[rec(
partition := [rec(isBlockDesign := true, v := 15, blocks := [[1, 2,

61, [3,4,81,[5,7,1417, [9, 12, 1517,
[10, 11, 131 1),
rec(isBlockDesign := true, v := 15, blocks :=
trf1, 3, 121,02, 4,127, [5,6,81, [7, 13, 1517,
[9, 10, 141 1),
rec(isBlockDesign := true, v := 15, blocks :=
((1, 4,171, [2,5,15]1, [3, 10,1217, [6,7, 1117,
[8,9,1311),
rec(isBlockDesign := true, v := 15, blocks :=
(f1,56,101, 2,9, 111, [3, 14, 1561, [4, 6, 131,

Section 1. Partitioning a block design into block designs

[7, 8’ 12]])’
rec(isBlockDesign := true, v := 15, blocks :=

tf1, 7,91, 02,8, 101, [3,5, 137, [4, 11, 1517,

[6, 12, 141 1),
rec(isBlockDesign := true, v := 15, blocks :=
[L[1, 8, 15 1]
[5, 11, 12
rec(isBlockDesign :

])’

true, v :

[T

5, blocks :

(2, 13,141, [03,6,91, [4,7, 101,

=1
trf1,12,131,02,3, 71, [4,5,91, [6, 10, 1517,

[8, 11, 141 1) 1,
autGroup := Group([(1,10)(2,11)(3,8)(6,13)(7,14)(12,15),
(1,13)(2,11)(3,14) (4,5)(6,10)(7,8),
(1,13,7)(2,11,5)(6,10,14)(9,12,15),
(2,11,5,15,4,9,12) (3,10,8,14,7,13,6) 1)),
rec(partition := [rec(isBlockDesign := true, v := 15,
blocks := [[1, 2,61, [3, 4,81, [5, 7, 141,
[9, 12, 151, [10, 11, 131 1),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 3, 111, [2, 4, 121, [5, 6, 81,
[7,13,151, [9, 10, 141 1),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 4, 141, [2, 5, 151, [3, 10, 121,
(e, 7,111, [8,9, 1311),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 5, 101, [2, 13, 141, [3, 6, 91,
[4, 11,151, [7,8,1211),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 7,91, [2,8, 101, [3, 14, 151,
[4, 6, 131, [5, 11, 121 1),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 8, 1561, [2, 9, 111, [3, 5, 13 1],
[4, 7,101, [6, 12, 141 1),
rec(isBlockDesign := true, v := 15,
blocks := [[1, 12, 131, [2, 3, 71, [4, 5, 91,
[6, 10, 151, [8, 11, 141 1) 1,
autGroup := Group([(1,15)(2,9)(3,4)(5,7)(6,12)(10,13),
(1,12)(2,9)(3,5)(4,7)(6,15)(8,14),
(1,14)(2,5)(3,8)(6,7)(9,12) (10,13),
(1,8,10)(2,5,15)(3,14,13)(4,9,12) 1)) 1
gap> List(PL,resolution->Size(resolution.autGroup));

[168, 168 1]

gap> PL:=PartitionsIntoBlockDesigns (rec(

> blockDesign:=DL[2],

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
L 1]

gap> PL:=PartitionsIntoBlockDesigns (rec(

> blockDesign:=DL[3],

> v:=15,blockSizes:=[3],

> tSubsetStructure:=rec(t:=1,lambdas:=[1])));
L]

20 Chapter 6. Partitioning block designs

6.2 Computing resolutions

MakeResolutionsComponent(D)
MakeResolutionsComponent(D, isolevel)

This function computes resolutions of the block design D, and stores the result in D.resolutions. If
D .resolutions already exists then it is ignored and overwritten. This function returns no value.

A resolution of a block design D is a partition of the blocks into subsets, each of which forms a partition
of the point set. We say that two resolutions R and S of D are isomorphic if there is an element ¢ in the
automorphism group of D, such that the g-image of R is S. (Isomorphism defines an equivalence relation
on the set of resolutions of D.)

The parameter isolevel (default 2) determines how many resolutions are computed: isolevel=2 means to
classify up to isomorphism, isolevel=1 means to determine at least one representative from each isomorphism
class, and isolevel=0 means to determine whether or not D has a resolution.

When this function is finished, D .resolutions will have the following three components:
list: a list of distinct partitions into block designs forming resolutions of D;

pairwiseNonisomorphic: true, false or "unknown", depending on the resolutions in list and what is
known. If isolevel=0 or isolevel=2 then this component will be true;

allClassesRepresented: true, false or "unknown", depending on the resolutions in list and what is
known. If isolevel=1 or isolevel=2 then this component will be true.

Note that D.resolutions may be changed to contain more information as a side-effect of other functions
in the DESIGN package.

gap> L:=BlockDesigns(rec(v:=9,blockSizes:=[3],

> tSubsetStructure:=rec(t:=2,lambdas:=[1])));;
gap> D:=L[1];;
gap> MakeResolutionsComponent (D) ;
gap> D;
rec(isBlockDesign := true, v := 9,
blocks := [[1,2,3]1, [1,4,5]1,(1,6,7],[1,8, 9],
[2,4,61,[2,5,81, [2,7,91, [3, 4,91, [3,5, 71,
[3,6,81, [4, 7,81, [5,6,911,
tSubsetStructure := rec(t := 2, lambdas := [1]), isBinary := true,
isSimple := true, blockSizes := [3], blockNumbers := [12], r := 4,

autGroup := Group([(1,2)(5,6)(7,8), (1,3,2)(4,8,7)(5,6,9), (1,2)(4,7)(5,9),
(1,2)(4,9)(5,7)(6,8), (1,4,8,6,9,2)(3,5,7) 1),

resolutions := rec(list := [rec(partition :=
[rec(isBlockDesign := true, v := 9,
blocks := [[1, 2,31, [4, 7,81, [5,6,911),
rec(isBlockDesign := true, v := 9,
blocks := [[1, 4,51, [2,7,91, [3,6,811),
rec(isBlockDesign := true, v := 9,
blocks := [[1,6, 71, [2,5,81,[3,4,911),
rec(isBlockDesign := true, v := 9,
blocks := [[1,8, 91, [2,4,61, [3,5,711)1,

autGroup := Group(

[(2,3)(4,5)(6,7(8,9), (1,3,2)(4,8,7)(5,6,9),
(1,8,9(2,4,6)(3,7,5), (1,2)(5,6)(7,8), (1,2)(4,7)(5,9),
(1,2,9,6,8,4)(3,7,5) 1)) 1, pairwiseNonisomorphic := true,

allClassesRepresented := true))

v

XML 1/0 of
block designs

This chapter describes functions to write and read lists of binary block designs in the

http://designtheory.org external representation XML-format (see [CDMS04]).

7.1 Writing lists of block designs and their properties in XML-format

BlockDesignsToXMLFile(filename, designs)
BlockDesignsToXMLFile(filename, designs, include)
BlockDesignsToXMLFile(filename, designs, include, list_id)

This function writes a list of (assumed distinct) binary block designs (given in DESIGN package format) to
a file in external representation XML-format (version 2.0).

The parameter filename is a string giving the name of the file, and designs is a record whose compo-
nent list contains the list of block designs (designs can also be a list, in which case it is replaced by
rec(list:=designs).

The record designs should have the following components:
list: the list of distinct binary block designs in DESIGN package format;

pairwiseNonisomorphic (optional): should be true or false or the string "unknown", specifying the
pairwise-nonisomorphism status of the designs in designs.list;

infoXML (optional): should contain a string in XML format for the info element of the list_of designs which
is written.

The combinatorial and group-theoretical properties output for each design depend on include, which should
be a list containing zero or more of the strings "indicators", "resolvable", "combinatorial properties" i
"automorphism group", and "resolutions". A shorthand for the list containing all these strings is "all".
The default for include is the empty list (which is a change from versions of DESIGN previous to 1.1).
The strings "indicators", "combinatorial properties", "automorphism group", and "resolutions"
are used to specify that those subtrees of the external representation of each design are to be expanded
and written out. In the case of "resolutions" being in include, all resolutions up to isomorphism will be
determined and written out. The string "resolvable" is used to specify that the resolvable indicator
must be set (usually this is not forced), if the indicators subtree is written out, and also that if a design
is resolvable but "resolutions" is not in include, then one and only one resolution should be written out
in the resolutions subtree.

If list_id is given then the id’s of the output designs will be list_id-0, list_id-1, list_id-2, ...

gap> D:=[BlockDesign(3, [[1,2],[1,3]]),

> BlockDesign(3, [[1,2],[1,2],[2,311) 1;;

gap> designs:=rec(list:=D, pairwiseNonisomorphic:=true);;

gap> BlockDesignsToXMLFile("example.xml",designs, [],"example");

1»

22 Chapter 7. XML I/0 of block designs

7.2 Reading lists of block designs in XML-format

BlockDesignsFromXMLFile(filename)

This function reads a file with name filename, containing a list of distinct binary block designs in external
representation XML-format, and returns a record designs in DESIGN package format containing the essential
information in this file.

The record designs contains the following components:

list: a list of block designs in DESIGN package format of the list of block designs in the file (certain elements
such as statistical_properties are stored verbatim as strings; certain other elements are not stored since it is
usually easier and more reliable to recompute them — this can be done when the block designs are written
out in XML format);

pairwiseNonisomorphic is set according to the attribute pairwise nonisomorphic of the XML element
list_of_designs. The component pairwiseNonisomorphic is false if this attribute is false, true if this
attribute is true, and "unknown" otherwise;

infoXML is bound iff the info element occurs as a child of the XML [list_of_designs element, and if bound,
contains this info element in a string.

gap> BlockDesignsFromXMLFile("example.xml") ;

rec(
list := [rec(isBlockDesign := true, v := 3, id := "example-0", blocks :=
(01,21, [1, 3711, isBinary := true),
rec(isBlockDesign := true, v := 3, id := "example-1",

blocks := [[1, 21, [1,21, [2, 3] 1, isBinary := true) 1],
pairwiseNonisomorphic := true)

Bibliography

[CDMS04] Peter J. Cameron, Peter Dobcsanyi, John P. Morgan, and Leonard H. Soicher. The external
representation of block designs (version 2.0), 2004.

http://designtheory.org/library/extrep/.
[LN04] Frank Liibeck and Max Neunhoffer. The GAPDoc package for GAP (version 0.9999), 2004.
http://www.math.rwth-aachen.de/ Frank.Luebeck/GAPDoc/.
[McK96] Brendan D. McKay. The nauty package (version 2.0b5), 1996.
http://cs.anu.edu.au/people/bdm/nauty/.
[Soi04] Leonard H. Soicher. The GRAPE package for GAP (version 4.2), 2004.
http://www.maths.qmul.ac.uk/"leonard/grape/.

	Contents
	Design
	Installing the DESIGN Package
	Loading DESIGN
	The structure of a block design in DESIGN
	Example of the use of DESIGN

	Constructing block designs
	Functions to construct block designs

	Determining basic properties of block designs
	The functions for basic properties

	Automorphism groups and isomorphism testing for block designs
	Computing automorphism groups
	Testing isomorphism

	Classifying block designs
	The function BlockDesigns

	Partitioning block designs
	Partitioning a block design into block designs
	Computing resolutions

	XML I/O of block designs
	Writing lists of block designs and their properties in XML-format
	Reading lists of block designs in XML-format

	Bibliography

