10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

lineno.sty wv4.1 2004/10/19

A KETEX package to attach
line numbers to paragraphs

Stephan I. Bottcher
Uwe Liick

boettcher@physik.uni-kiel.de
ednotes.sty@Qweb.de

Contents

1 Introductions
1.1 Introduction to versions v.<4
1.2 Introduction to versions v4.00 and v4.1 (UL)
1.3 Availability
1.4 Introductory code

2 Put the line numbers to the lines
2.1 Basic code of lineno.sty \output
2.2 \LineNoTest
2.3 \LineNoHoldInsertsTest
2.4 \MakeLineNo: Actually attach line number

3 Control line numbering
3.1 Display math

4 Line number references
4.1 The \linelabel command

5 The appearance of the line numbers
5.1 Running line numbers
5.2 Pagewise line numbers 0oL

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

31

5.3 Twocolumn mode (New v3.06) 30

5.4 Numbering modulo m, startingat f. 30
6 Former package extensions 33
6.1 displaymath 33
6.2 Line numbers in internal vertical mode 34
6.3 Line number references with offset 36
6.4 Numbered quotation environments 37
6.5 Frame around a paragraph 37
7 Move \vadjust items (New v4.00) 38
7.1 Redefining \vadjust 38
7.2 Redefining the BTEX commands 39
7.3 Reminder on obsoleteness 41
8 Package options 42
8.1 \linelabel in math mode 42
8.2 \linelabel in tabular environments 42
8.3 Switch among settings oL 43
8.4 A note on calling so many options 45
8.5 Executeoptions 46
9 The final touch 46
10 The user commands 46
10.1 Customization hooks 49

1 Introductions

(New v4.00) Parts of former first section have been rendered separate sub-
sections for package version v4.00. (/New v4.00)

1.1 Introduction to versions v < 4

This package provides line numbers on paragraphs. After TEX has broken
a paragraph into lines there will be line numbers attached to them, with
the possibility to make references through the IXTEX \ref, \pageref cross
reference mechanism. This includes four issues:

e attach a line number on each line,

e create references to a line number,

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

e control line numbering mode,

e count the lines and print the numbers.

The first two points are implemented through patches to the output routine.
The third by redefining \par, \@par and \@@par. The counting is easy, as
long as you want the line numbers run through the text. If they shall start
over at the top of each page, the aux-file as well as TEXs memory have to
carry a load for each counted line.

I wrote this package for my wife Petra, who needs it for transcriptions
of interviews. This allows her to precisely refer to passages in the text. It
works well together with \marginpars, but not too well with displaymath.
\footnotes are a problem, especially when they are split, but we may get
there. (New v4.00 UL) Version v4.00 overcomes the problem, I believe. (/UL
/New v4.00)

lineno.sty works surprisingly well with other packages, for example,
wrapfig.sty. So please try if it works with whatever you need, and if it
does, please tell me, and if it does not, tell me as well, so I can try to fix it.

1.2 Introduction to versions v4.00 and v4.1 (UL)

lineno.sty has been maintained by Stephan until version v3.14. From ver-
sion v4.00 onwards, maintenance is shifting towards Uwe Liick (UL), who is
the author of v4...code and of v4...changes in documentation. This came
about as follows.

Since late 2002, Christian Tapp and Uwe Liick have employed lineno.sty
for their ednotes.sty, a package supporting critical editions—cf.

http://www.homepages.ucl.ac.uk/ " ucgadkw/edmac/

—while you find ednotes.sty and surrounding files in CTAN folder /macros/
latex/contrib/ednotes.

Soon, some weaknesses of lineno.sty showed up, mainly since Christian’s
critical editions (using ednotes.sty) needed lots of \linelabels and foot-
notes. (These weaknesses are due to weaknesses of IXTEX’s \marginpar mech-
anism that Stephan used for \linelabel.) So we changed some lineno.sty
definitions in some extra files, which moreover offered new features. We
sent these files to Stephan, hoping he would take the changes into lineno.sty.
However, he was too short of time.

Writing a TUGboat article on Ednotes in 2004, we hoped to reduce the
number of files in the Ednotes bundle and so asked Stephan again. Now he
generously offered maintenance to me, so I could execute the changes on my
own.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

The improvements are as follows:

(i) Footnotes placement approaches intentions better (footnotes formerly
liked to pile up at late pages).

(ii) The number of \1inelabels in one paragraph is no longer limited to
18.

(iii) \pagebreak, \nopagebreak, \vspace, and the star and optional ver-
sions of \\ work as one would expect (section 7).

(iv) A command is offered which chooses the first line number to be printed
in the margin (subsection 5.4).

(v) (New v4.1) ITEX tabular environments (optionally) get line numbers
as well, and you can refer to them in the usual automatic way. (It may
be considered a shortcoming that, precisely, rows are numbered, not
lines. See subsection 8.2.)

(vi) We are moving towards referring to math items (subsection 8.1 and the
hooks in subsection 4.1). (/New v4.1)

(Thanks to Stephan for making this possible!)

You may trace the earlier developments of these changes by requesting
our files linenox0.sty, linenox1.sty, and Inopatch.sty. Most of our changes
have been in linenox0.sty. Our linenoxl.sty has extended linenox0.sty for
one single purpose in a not very stable way. Inopatch.sty has done the first
line number thing referred to in case (iv) up to now. (New v4.1) Case (v)
earlier was provided by our edtab02.sty—mnow called ‘edtable.sty’. (/New
v4d.1)

Ednotes moreover profits from Stephan’s offer with regard to the doc-
umentation of our code which yielded these improvements formerly. This
documentation now becomes printable, being part of the lineno.sty docu-
mentation.

Of course, Stephan’s previous lineno.sty versions were a great and inge-
nious work and exhibit greatest TEXpertise. I never could have done this. I
learnt a lot in studying the code when Christian pointed out strange output
results and error messages, and there are still large portions of lineno.sty
which I don’t understand (consider only pagewise numbering of lines). For-
tunately, Stephan has offered future help if needed.—My code for attach-
ing line numbers to tabular environments (as mentioned above, now still
in edtable.sty) developed from macros which Stephan and Christian experi-
mented with in December 2002. Stephan built the basics. (However, I then
became too proud to follow his advice only to use and modify longtable.sty.)

4

1 There are some issues concerning use of counters on which I don’t agree
> with Stephan and where I would like to change the code if lineno.sty is “mine”
3 as Stephan offered. However, Stephan is afraid of compatibility problems
s from which, in particular, his wife could suffer in the near future. So he
s demanded that I change as little as possible for my first version. Instead of
s executing changes that I plan I just offer my opinions at the single occasions.
7 1 hope to get in touch this way with users who consider subtle features vital
s which I consider strange.

0 On the other hand, the sections on improvements of the implementation
10 have been blown up very much and may be tiring and litte understandable
u for mere users. These users may profit from the present presentation just by
> jumping to sections 8 and 10. There is a user’s guide ulineno.tex which may
13 be even more helpful, but it has not been updated for a while.

-

« 1.3 Availability

-

5 In case you have found the present file otherwise than from CTAN: A recent
16 version and documentation of this package should be available from CTAN
17 folder /macros/latex/contrib/lineno. Or mail to one of the addresses at top

1 of file.

» 1.4 Introductory code

2 This style option is written for BTEX 22, November 1994 or later, since we
1 need the \protected@write macro.

22 (New v4.00) And we use \newcommand* for controlling length of user
23 macro arguments, which has been available since December 1994.

N

1 \NeedsTeXFormat{LaTeX2e}[1994/12/01]
2 \ProvidesPackage{lineno}
3 [\filedate\space line numbers on paragraphs \fileversion]

2 (/New v4.00)

» 2 Put the line numbers to the lines

2 (New v4.00) This section contained the most basic package code previously.
27 For various purposes of version 4. .., much of these basics have been to be
26 modified. Much of my (UL’s) reasoning on these modifications has been
2 to be reported. Sorry, the present section has been blown up awfully thus
s and contains ramifications that may be difficult to trace. We add some

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

a~

N

\subsection commands in order to cope with the new situation. (/New
v4.00)

2.1 Basic code of lineno.sty \output

The line numbers have to be attached by the output routine. We simply set
the \interlinepenalty to —100000. The output routine will be called after
each line in the paragraph, except the last, where we trigger by \par. The
\linenopenalty is small enough to compensate a bunch of penalties (e.g.,
with \samepage).

(New v3.04) Longtable uses \penalty—30000. The lineno penalty range
was shrunk to —188000. .. — 32000. (/New v3.04)

\newcount\linenopenalty\linenopenalty=-100000

(UL) Hm. It is never needed below that this is a counter.
\def\linenopenalty{-100000\relax} would do. (I guess this consumes
more memory, but it is more important to save counters than to save mem-
ory.) I was frightened by -\1linenopenalty below, but indeed TEX interprets
the string -—100000 as 100000. Has any user or extension package writer ever
called \linenopenalty=xxx, or could I really change this?—The counter is
somewhat faster than the macro. Together with the compatibility question
this seems to support keeping the counter. (?77) Note that Stephan chose
\mathchardef below, so his choice above seems to have been deliberate.

(/UL)

\mathchardef\linenopenaltypar=32000

So let’s make a hook to \output, the direct way. The KIEX macro
\@reinserts puts the footnotes back on the page.

(New v3.01) \@reinserts badly screws up split footnotes. The bottom
part is still on the recent contributions list, and the top part will be put back
there after the bottom part. Thus, since lineno.sty does not play well with
\inserts anyway, we can safely experiment with \holdinginserts, without
making things much worse.

Or that’s what I thought, but: Just activating \holdinginserts while
doing the \par will not do the trick: The \output routine may be called
for a real page break before all line numbers are done, and how can we get
control over \holdinginserts at that point?

Let’s try this: When the \output routine is run with \holdinginserts=3
for a real page break, then we reset \holdinginserts and restart \output.

2

3

6

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Then, again, how do we keep the remaining \inserts while doing further
line numbers?

If we find \holdinginserts=—3 we activate it again after doing \output.
(/New v3.01)

(New v3.02) To work with multicol.sty, the original output routine is
now called indirectly, instead of being replaced. When multicol.sty changes
\output, it is a toks register, not the real thing. (/New v3.02)

(New v4.00) Two further complications are added.

(i) Problems with footnotes formerly resulted from KTEX’s \@reinserts
in \@specialoutput which Stephan’s \linelabel called via the
\marginpar mechanism.

(ii)) BTEX commands using \vadjust formerly didn’t work as one would
have hoped. The problem is as follows: Printing the line num-
ber results from a box that the output routine inserts at the
place of the \interlinepenalty. \vadjust items appear above the
\interlinepenalty (TEXbook p. 105). So \pagebreak, e.g., for-
merly sent the line number to the next page, while the penalty from
\nopagebreak could not tie the following line, since it was screened
off by the line number box.—Our trick is putting the \vadjust items
into a list macro from which the output routine transfers them into the
vertical list, below the line number box.

In this case (ii), like in case (i), footnotes would suffer if \holdinginserts
were non-positive. Indeed, in both cases (i) and (ii) we tackle the foot-
note problem by extending that part of Stephan’s output routine that
is active when \holdinginserts is positive. This extension writes the
line number \newlabel to the .aux file (which was formerly done under
\holdinginserts = —3) and handles the \vadjust items.—To trigger
\output and its \1inelabel or, resp., \vadjust part, the list of signal penal-
ties started immediately before is increased here (first for \1inelabel, second
for postponed \vadjust items):

¢ \mathchardef\@Mllbcodepen=11111
7 \mathchardef\@Mppvacodepen=11112

(/New v4.00)

s \let\@LN@output\output
9 \newtoks\output
10 \output=\expandafter{\the\@LN@output}

Now we add two cases to Stephan’s output routine. (New v4.00)

11 \@LN@output={%,
12 \LineNoTest
18 \if@tempswa

1 (New v4.00) We insert recognition of waiting \linelabel items—

14 \ifnum\outputpenalty=-\@Mllbcodepen
15 \WriteLineNo

> —and of waiting \vadjust items:

16 \else

17 \ifnum\outputpenalty=-\@Mppvacodepen
18 \PassVadjustList

19 \else

s Now we give control back to Stephan. (/New v4.00)

20 \LineNoHoldInsertsTest

21 \if@tempswa

22 \if@twocolumn\let\@makecol\@LN@makecol\fi
23 \the\output

24 \ifnum\holdinginserts=-3

25 \global\holdinginserts 3

26 \fi

27 \else

28 \global\holdinginserts-3

29 \unvbox\@cclv

30 \ifnum\outputpenalty=10000\else
31 \penalty\outputpenalty

32 \fi

33 \fi

+ (New v4.00) Two new \fis for the \1inelabel and \vadjust tests—

34 \fi
35 \fi

s —and the remaining is Stephan’s code again: (/New v4.00)

36 \else

37 \MakeLineNo
38 \fi

39 }

s (New v4.00) Our new macros \WriteLineNo and \PassVadjustList will be
7 dealt with in sections 4 and 7.1. (/New v4.00)

1

2

6

7

8

9

=

0

40
41
42
43

11

53

54

13
14
15
16
17

18

=

9

20

N

1

2.2 \LineNoTest

The float mechanism inserts \interlinepenaltys during \output. So care-
fully reset it before going on. Else we get doubled line numbers on every
float placed in horizontal mode, e.g, from \1linelabel.

Sorry, neither a \linelabel nor a \marginpar should insert a penalty,
else the following linenumber could go to the next page. Nor should any
other float. So let us suppress the \interlinepenalty altogether with the
\@nobreak switch.

Since (ltspace.dtx, v1.2p)[1996,/07/26], the \@nobreaktrue does it’s job
globally. We need to do it locally here.

\def\LineNoTest{’
\let\@@par\@@Qpar
\ifnum\interlinepenalty<-\linenopenaltypar
\advance\interlinepenalty-\linenopenalty

(UL) Following line renders previous line obsolete, doesn’t it? (/UL)

\my@nobreaktrue
\fi
\@tempswatrue
\ifnum\outputpenalty>-\linenopenaltypar\else
\ifnum\outputpenalty>-188000\relax
\@tempswafalse
\fi
\fi
}

\def\my@nobreaktrue{\let\if@nobreak\iftrue}

(UL) I would prefer \GLN@nobreaktrue.—I thought here were another case
of the save stack problem explained in TEXbook, p. 301, namely through
both local and global changing \if@nobreak. However, \my@nobreak is
called during \@LN@output only, while \@nobreaktrue is called by IXTEX’s
\@startsection only. The latter never happens during \@LN@output. So
there is no local value of \if@nobreak on save stack when \@nobreaktrue
acts, since \the\O@LN@output (where \@LN@output is a new name for the
original \output) is executed within a group (TEXbook p. 21). (/UL)

2.3 \LineNoHoldInsertsTest
(New v4.00) No change here! Just a separate subsection. (/New v4.00)

55

\def\LineNoHoldInsertsTest{)
\ifnum\holdinginserts=3\relax
\@tempswafalse
\fi
}

1 2.4 \MakeLineNo: Actually attach line number

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

We have to return all the page to the current page, and add a box with the
line number, without adding breakpoints, glue or space. The depth of our
line number should be equal to the previous depth of the page, in case the
page breaks here, and the box has to be moved up by that depth.

The \interlinepenalty comes after the \vadjust from a \linelabel,
so we increment the line number after printing it. The macro
\makeLineNumber produces the text of the line number, see section 5.

(UL) I needed a while to understand the sentence on incrementing. Cor-
rectly: writing the \newlabel to the .aux file is triggered by the signal
penalty that \end@float inserts via \vadjust. However, this could be
changed by our new \PostponeVadjust. After \c@linenumber has been in-
troduced as a KTEX counter, it might be preferable that it behaved like stan-
dard KTEX counters which are incremented shortly before printing. But this
may be of little practical relevance in this case, as \c@linenumber is driven in
a very non-standard way.—However still, this behaviour of \c@linenumber
generates a problem with our edtable.sty. (/UL).

Finally we put in the natural \interlinepenalty, except after the last
line.

(New v3.10) Frank Mittelbach points out that box255 may be less deep
than the last box inside, so he proposes to measure the page depth with
\boxmaxdepth=\maxdimen. (/New v3.10)

(UL, New v4.00) We also resume the matter of \vadjust items that was
started in section 2.1.

TEX puts only nonzero interline penalties into the vertical list (TEXbook
p. 105), while lineno.sty formerly replaced the signal interline penalty by
something closing with an explicit penalty of the value that the interline
penalty would have without lineno.sty. This is usually 0. Now, explicit
vertical penalties can be very nasty with respect to \nopagebreak, e.g., a
low (even positive) \widowpenalty may force a widow where you explic-
itly tried to forbid it by \nopagebreak (see explanation soon below). The
\nopagebreak we create here would never work if all those zero penalties were
present.—On the other hand, we cannot just omit Stephan’s zero penalties,
because TEX puts a penalty of 10000 after what lineno.sty inserts (TEXbook

10

10
11
12
13
14

15

60
61
62
63

16

17

18
19
20
21
22
23
24

25

64

26

65
66

p. 125). This penalty must be overridden to allow page breaks between or-
dinary lines. To revive \nopagebreak, we therefore replace those zero (or
low) penalties by penalties that the user demanded by \nopagebreak.—
This mechanism is not perfect and does not exactly restore the original
KTEX working of \pagebreak and \nopagebreak. Viz., if there are sev-
eral vertical penalties after a line which were produced by closely sitting
\ [no] pagebreaks, without lineno.sty the lowest penalty would be effective
(cf. TEXbook exercise 14.10). Our mechanism, by contrast, chooses the last
user-set penalty of the line as the effective one. It would not be very difficult
to come more close to the original mechanism, but until someone urges us
we will cling to the present simple way. You may consider an advantage of
the difference between our mechanism and the original one that the user here
can actually override low penalties by \nopagebreak, which may be what a
lay BTEX user would expect.—Zero glue would do instead of zero penalty!
This could make things easier. Maybe next time. (/UL, /New v4.00)

\def\MakeLineNo{%
\boxmaxdepth\maxdimen\setbox\z@\vbox{\unvbox\Q@cclv}y,
\@tempdima\dp\z@ \unvbox\z@

\sbox\@tempboxa{\hbox to\z@{\makeLineNumber}}%

(New v4.00) Previously,

yA \stepcounter{linenumber}j,

followed. (Of course, there was no comment mark; I put it there to make
reading the actual code easy.)

(UL) I wondered about this. Why not just
\global\advance\c@linenumber\@ne? See my reasoning in section b5.
OK, I keep it. (/UL)

But then, our edtable.sty and its longtable option should use it as well.
So use a shorthand supporting uniformity. You can even use it as a hook for
choosing \global\advance\c@linenumber\@ne instead of our choice.

\stepLineNumber

(/New v4.00)

\dp\@tempboxa=\Q@tempdima\ht\@tempboxa=\z@
\nointerlineskip\kern-\@tempdima\box\@tempboxa

11

10

11

12

13

14

15

16

17

18

19

20

21

22

67
68

69
70

71
72

73
74

(New v4.00) The line number has now been placed (it may be invisible de-
pending on the modulo feature), so we can insert the \vadjust items. We
cannot do this much later, because their right place is above the artificial
interline penalty which Stephan’s code will soon insert (cf. TEXbook p. 105).
The next command is just \relax if no \vadjust items have been accumu-
lated for the current line. Otherwise it is a list macro inserting the \vadjust
items and finally resetting itself. (This is made in section 7.1 below.) If the
final item is a penalty, it is stored so it can compete with other things about
page breaking.

\@LN@do@vadjusts
\count@\lastpenalty

At this place,

% \ifnum\outputpenalty=-\linenopenaltypar\else

originally followed. We need something before the \else:

\ifnum\outputpenalty=-\linenopenaltypar
\ifnum\count@=\z@ \else

So final \pagebreak[0] or \nopagebreak[0] has no effect—but this will
make a difference after headings only, where nobody should place such a
thing anyway.

\xdef\@LN@parpgbrk{\penalty\number\count@\relax
\gdef\noexpand\@LN@parpgbrk{\kern\z@}1}/

That penalty will replace former \kern\z@ in \linenumberpar, see sec-
tion 3.—A few days earlier, I tried to send just a penalty value. However, the
\kern\z@ in \linenumberpar is crucial, as I then found out. See below.—
The final penalty is repeated, but this does no harm. (It would not be very
difficult to avoid the repeating, but it may even be less efficient.) It may be
repeated due to the previous \xdef, but it may be repeated as well below in
the present macro where artificial interline penalty is to be overridden.

\fi
\else

2z (/New v4.00)

75
76

\@tempcnta\outputpenalty
\advance\@tempcnta -\linenopenalty

12

1 (New v4.00)

2 % \penalty\@tempcnta

s followed previously. To give \nopagebreak a chance, we do

77 \penalty \ifnum\count@<\@tempcnta \@tempcnta \else \count@ \fi

s+ instead.—In linenox0.sty, the \else thing once was omitted. Sergei
s Mariev’s complaint (thanks!) showed that it is vital (see comment before
s \MakeLineNo). The remaining \fi from previous package version closes the
7 \ifnum\outputpenalty...(/New v4.00)

78 \fi
79 }

s (New v4.00)

so \newcommand\stepLineNumber{\stepcounter{linenumber}}

o For reason, see use above. (/New v4.00)

» 3 Control line numbering

1 The line numbering is controlled via \par. KIEX saved the TEX-primitive
12 \par in \@@par. We push it one level further out, and redefine \@@par to
13 insert the \interlinepenalty needed to trigger the line numbering. And
1 we need to allow pagebreaks after a paragraph.

15 New (2.05beta): the prevgraf test. A paragraph that ends
16 with a displayed equation, a \noindent\par or wrapfig.sty produce
7 empty paragraphs. These should not get a spurious line number via
18 \linenopenaltypar.

-

s1 \let\@@@par\@Cpar
s2 \newcount\linenoprevgraf

v (UL) And needs \linenoprevgraf to be a counter? Perhaps there may
2 be a paragraph having thousands of lines, so \mathchardef doesn’t suffice
2 (really??). A macro ending on \relax might suffice, but would be somewhat
2 slow. I think I will use \mathchardef next time. Or has any user used
2 \linenoprevgraf? (/UL)

13

83
84
85
86
87
88
89
90

\def\linenumberpar{\ifvmode\@@@par\else\if inner\Q@@Gpar\else
\advance\interlinepenalty \linenopenalty

\linenoprevgraf\prevgraf

\global\holdinginserts3,

\@@@par

\ifnum\prevgraf>\linenoprevgraf
\penalty-\linenopenaltypar
\fi

1 (New v4.00)

2

10

11

12

13

14

15

16

91

92
93
94
95

% \kern\z@

was here previously. What for? According to TpXbook p. 125, Stephan’s
interline penalty is changed into 10000. At the end of a paragraph, the
\parskip would follow that penalty of 10000, so there could be a page break
neither at the \parskip nor at the \baselineskip (TEXbook p. 110)—so
there could never be a page break between two paragraphs. So something
must screen off the 10000 penalty. Indeed, the \kern is a place to break.
(Stephan once knew this: see ‘allow pagebreaks’ above.)
Formerly, I tried to replace \kern\z@ by

yA \penalty\@LN@parpgpen\relax

—but this allows a page break after heading. So:

\@LN@parpgbrk

After heading, \kern\z@ resulting from previous line (see below) is followed
by \write or \penalty10000, so causes no page break.

These and similar changes were formerly done by linenoxl1.sty. (/New
v4.00)

\global\holdinginserts0Y
\advance\interlinepenalty -\linenopenalty
\fi\fi
}

17 (New v4.00) Initialize \@LN@parpgbrk:

96

\gdef\@LN@parpgbrk{\kern\z@}

14

1 (/New v4.00)

2 The basic commands to enable and disable line numbers. \@par and \par
s are only touched, when they are \let to \@@@par/\linenumberpar. The line
+ number may be reset to 1 with the star-form, or set by an optional argument
s [{(number)].

6 (New v4.00) We add \ifLineNumbers etc. since many of our new adjust-
7 ments need to know whether linenumbering is active. This just provides a
s kind of shorthand for \ifx\@@par\linenumberpar; moreover it is more sta-
o ble: who knows what may happen to \@@par?—A caveat: \ifLineNumbers
10 may be wrong. E.g., it may be \iffalse where it acts, while a \1inenumbers
u a few lines below—in the same paragraph—brings about that the line where
12 the \ifLineNumbers appears gets a marginal number.

97 \newif\ifLineNumbers \LineNumbersfalse

98

99 \def\linenumbers{\LineNumberstrue

100 \let\@@par\linenumberpar

13 % \def\linenumbers{\let\@@par\linenumberpar

14 (/New V4.00)

101 \ifx\@par\@@@par\let\@par\linenumberpar\fi
102 \ifx\par\@@@par\let\par\linenumberpar\fi

103 \@ifnextchar [{\resetlinenumberl}y]

104 {\@ifstar{\resetlinenumber}{}}%
105 }

15 (New v4.00)

106 \def\nolinenumbers{\LineNumbersfalse
107 \let\@@par\@@Cpar

16 % \def\nolinenumbers{\let\@@par\@dGpar

17 (/NGW V400)

108 \ifx\@par\linenumberpar\let\@par\@@Cpar\fi
109 \ifx\par\linenumberpar\let\par\@@@par\fi
110}

18 (New v4.00) Moreover, it is useful to switch to \nolinenumbers in

v \Qarrayparboxrestore. We postpone this to section 7.2 where we’ll have
20 an appending macro for doing this. (/New v4.00)

15

11

~

112

10

11

12
13
14
15

113
114
115

11

SN

117
11

[+

119
120
12

=

16

17

18

19

What happens with a display math? Since \par is not executed, when
breaking the lines before a display, they will not get line numbers. Sorry,
but I do not dare to change \interlinepenalty globally, nor do I want to
redefine the display math environments here.

display math

See the subsection below, for a wrapper environment to make it work. But
that requires to wrap each and every display in your LaTeX source.

The next two commands are provided to turn on line numbering in
a specific mode. Please note the difference: for pagewise numbering,
\linenumbers comes first to inhibit it from seeing optional arguments, since
re-/presetting the counter is useless.

\def\pagewiselinenumbers{\linenumbers\setpagewiselinenumbers}
\def\runninglinenumbers{\setrunninglinenumbers\linenumbers}

Finally, it is a IXTEX style, so we provide for the use of environments, includ-
ing the suppression of the following paragraph’s indentation.

(UL) I'm drawing the following private thoughts of Stephan’s to publicity
so that others may think about them—or to remind myself of them in an
efficient way. (/UL)

% TO DO: add \par to \linenumbers, if called from an environment.
% To DO: add an \@endpe hack if \linenumbers are turned on

% in horizontal mode. {\par\parskip\z@\noindent} or

% something.

\@namedef{linenumbers*}{\par\linenumbers*}
\@namedef{runninglinenumbers*}{\par\runninglinenumbers*}

\def\endlinenumbers{\par\@endpetrue}
\let\endrunninglinenumbers\endlinenumbers
\let\endpagewiselinenumbers\endlinenumbers

\expandafter\let\csname endlinenumbers+*\endcsname\endlinenumbers
\expandafter\let\csname endrunninglinenumbers*\endcsname\endlinenumbers
\let\endnolinenumbers\endlinenumbers

3.1 Display math

Now we tackle the problem to get display math working. There are different
options.

1. Precede every display math with a \par. Not too good.

16

1

9
10
11
12
13
14
15

16

122
123
124
125
126
127
128
129
130
181
132
133
134
135
136
187
138
139
140
141
142
148
144

2. Change \interlinepenalty and associates globally. Unstable.

3. Wrap each display math with a {1inenomath} environment.

We'll go for option 3. See if it works:
display math (1)

The star form {linenomath*} should also number the lines of the display
itself,

multi line (2)
display math (3)
with
array

including multline displays.

First, here are two macros to turn on linenumbering on paragraphs pre-
ceeding displays, with numbering the lines of the display itself, or without.
The \ifx.. tests if line numbering is turned on. It does not harm to add
these wrappers in sections that are not numbered. Nor does it harm to wrap
a display twice, e.q, in case you have some {equation}s wrapped explicitely,
and later you redefine \equation to do it automatically.

(UL) Newly, we could replace first lines by \ifLineNumbers. (/UL)

\newcommand\linenomathNonumbers{%
\ifx\@@par\@@Qpar\else
\ifnum\interlinepenalty>-\linenopenaltypar
\global\holdinginserts3}
\advance\interlinepenalty \linenopenalty
\advance\predisplaypenalty \linenopenalty
\fi
\fi
\ignorespaces

3

\newcommand\linenomathWithnumbers{y
\ifx\@@par\@Q@Qpar\else
\ifnum\interlinepenalty>-\linenopenaltypar
\global\holdinginserts3}
\advance\interlinepenalty \linenopenalty
\advance\predisplaypenalty \linenopenalty
\advance\postdisplaypenalty \linenopenalty
\advance\interdisplaylinepenalty \linenopenalty
\fi
\fi
\ignorespaces

}

17

160

10

11
12
13
14
15
16
17

18

19

20

21

22

The {1linenomath} environment has two forms, with and without a star. The
following two macros define the environment, where the stared /non-stared
form does/doesn’t number the lines of the display or vice versa.

\newcommand\linenumberdisplaymath{%
\def\linenomath{\linenomathWithnumbers}V
\@namedef{linenomath*}{\linenomathNonumbers}/,

}

\newcommand\nolinenumberdisplaymath{,
\def\linenomath{\linenomathNonumbers}/,
\@namedef{linenomath*}{\linenomathWithnumbers}’
}

\def\endlinenomath{Y
\global\holdinginsertsO
\@ignoretrue

}

\expandafter\let\csname endlinenomath*\endcsname\endlinenomath

The default is not to number the lines of a display. But the package option
mathlines may be used to switch that behavior.

\nolinenumberdisplaymath

4 Line number references

The only way to get a label to a line number in a paragraph is to ask the
output routine to mark it.

(New v4.00) The following two paragraphs don’t hold any longer, see
below. (/New v4.00)

% We use the marginpar mechanism to hook to “\output™ for a
% second time. Marginpars are floats with number -1, we
% fake marginpars with No $-2%. Originally, every negative
% numbered float was considered to be a marginpar.

% The float box number ~\@currbox~ is used to transfer the
% label name in a macro called ~\@LNLQ@~<box-number>.

A \newlabel is written to the aux-file. The reference is to \theLineNumber,
not \thelinenumber. This allows to hook in, as done below for pagewise
line numbering.

(New v3.03) The \@LN@ExtraLabelItems are added for a hook to keep
packages like {hyperref} happy. (/New v3.03)

18

© 0 N o o » W

10
11
12
13

14

16

~

15

16

17

18

19

20

16

IS}

21

22

23

24

25

16

)

26
27

28

164
165
166
167
168
169
170

29

(New v4.00) We fire the \marginpar mechanism, so we leave IKXTEX’s
\@addmarginpar untouched.

% \let\@LN@addmarginpar\@addmarginpar
% \def\@addmarginpar{/,

% \ifnum\count\@currbox>-2\relax

% \expandafter\Q@LNQaddmarginpar

YA \else

% \@cons\@freelist\@currbox

% \protected@urite\@auxout{}{/%

% \string\newlabel

% {\csname Q@LNL@\the\Qcurrbox\endcsnamely,

% {{\theLineNumber}{\thepage}\QLN@ExtraLabelItems}}/
) \fi}

OK, we keep Stephan’s \GLN@ExtraLabelItems: (/New v4.00)

\1let\@LN@ExtralLabelItems\Q@empty

(New v4.00) We imitate the \marginpar mechanism without using the
\@freelist boxes. \linelabel will indeed place a signal penalty
(\@Mllbcodepen, new), and it will put a label into some list macro
\@LN@labellist. A new part of the output routine will take the labels
from the list and will write \newlabels to the .aux file.

The following is a version of IXTEX’s \@xnext.

\def\O@LN@xnext#1\Q1t#2\Q0#3#4{\def#3{#1}\gdef#4{#2}}

This takes an item #1 from a list #4 into #3; to be used as
\expandafter\GLN@xnext#4\00#3#4. Our lists use \@1lt after each item
for separating. Indeed, there will be another list macro which can appear as
argument #4, this will be used for moving \vadjust items (section 7.1). The
list for \1inelabels is the following:

\global\let\@LN@labellist\Q@empty

The next is the new part of the output routine writing the \newlabel to the
.aux file. Since it is no real page output, the page is put back to top of the
main vertical list.

\def\WriteLineNo{%
\unvbox\@cclv
\expandafter \@LN@xnext \Q@LN@labellist \@Q
\@LN@label \QLN@labellist
\protected@urite\@auxout{}{\string\newlabel{\@LN@labell}/,
{{\theLineNumber}{\thepage}\QLN@ExtraLabelItems}}’
}

(/New v4.00)

19

1

10

11
12
13
14
15
16
17
18
19
20

21

22
23
24

25

171
172
178
174
175
176
177
178
179
180
181
182

26

4.1 The \linelabel command

To refer to a place in line \ref{(foo)} at page \pageref{(foo)} you place a
\linelabel{(foo)} at that place.

If you use this command outside a \linenumbers paragraph, you will
get references to some bogus line numbers, sorry. But we don’t disable the
command, because only the \par at the end of a paragraph may decide
whether to print line numbers on this paragraph or not. A \linelabel may
legally appear earlier than \linenumbers.

\linelabel

%, via a fake float number -2, %% new mechanism v4.00

puts a \penalty into a \vadjust, which triggers the pagebuilder after
putting the current line to the main vertical list. A \write is placed
on the main vertical list, which prints a reference to the current value of
\thelinenumber and \thepage at the time of the \shipout.

A \linelabel is allowed only in outer horizontal mode. In outer ver-
tical mode we start a paragraph, and ignore trailing spaces (by fooling
\@esphack).

(New v4.00) We aim at relaxing the previous condition. We insert a hook
\@LN@mathhook and a shorthand \@LN@postlabel to support the mathrefs
option which allows \linelabel in math mode.

The next paragraph is no longer valid.

% The argument of “\linelabel” is put into a macro with a
% name derived from the number of the allocated float box.
% Much of the rest is dummy float setup.

(/New v4.00)

\def\linelabel#1{Y%
\ifvmode
\ifinner \else
\leavevmode \@bsphack \@savsk\p®@
\fi
\else
\@bsphack
\fi
\ifhmode
\ifinner
\@parmoderr
\else

(New v4.00)

20

See if it
works:
This
paragraph
starts on
page 20,
line 4.

183

© o N o A W N =

10

184

11
12

13

185
186

14

187

15

16

189

17
18
19

20

190

191
192

21

\QLN@postlabel{#11}/

% \@floatpenalty -\@Mii

yA \@next\@currbox\Q@freelist

% {\global\count\@currbox-2Y%

% \expandafter\gdef\csname Q@LNL@\the\@currbox\endcsname{#1}}/
% {\@floatpenalty\z@ \@fltovf \def\@currbox{\@tempboxal}l}’,

YA \begingroup

% \setbox\@currbox \color@vbox \vbox \bgroup \end@float

yA \endgroup

yA \@ignorefalse \@esphack

(/New v4.00)

\@esphack

(New v4.00) The \@ignorefalse was appropriate before because the
\@Esphack in \end@float set \@ignoretrue. Cf. KTEX’s \@xympar. (/New
v4.00)

\fi
\else
(New v4.00)
\@LN@mathhook{#1}Y
% \@parmoderr

Instead of complaining, you may just do your job. (/New v4.00)

\fi
}

(New v4.00) The shorthand just does what happened with linenox0.sty before
ednmath0.sty (New v4.1: now mathrefs option) appeared, and the hook is
initialized to serve the same purpose. So errors come just where Stephan had
built them in, and this is just the I¥TEX \marginpar behaviour.

\def\@LN@postlabel#1{\g@addtoOmacro\@LN@labellist{#1\@1t}/
\vadjust{\penalty-\@Mllbcodepen}}
\def\@LN@mathhook#1{\@parmoderr}

(/New v4.00)

21

. 5 The appearance of the line numbers

The line numbers are set as \tiny\sffamily\arabic{linenumber}, 10pt
left of the text. With options to place it right of the text, or . . .
4 . . . here are the hooks:

193 \def\makeLineNumberLeft{\hss\linenumberfont\LineNumber\hskip\linenumbersep}
194

195 \def\makeLineNumberRight{\linenumberfont\hskip\linenumbersep\hskip\columnwidth
196 \hbox to\linenumberwidth{\hss\LineNumber}\hss}

197

198 \def\linenumberfont{\normalfont\tiny\sffamily}

199

200 \newdimen\linenumbersep

201 \newdimen\linenumberwidth

202

203 \linenumberwidth=10pt

204 \linenumbersep=10pt

Margin switching requires pagewise numbering mode, but choosing the left
or right margin for the numbers always works.

205 \def\switchlinenumbers{\Q@ifstar

206 {\let\makeLineNumberOdd\makeLineNumberRight
207 \let\makeLineNumberEven\makeLineNumberLeft}/
208 {\let\makeLineNumberOdd\makeLineNumberLeft

209 \let\makeLineNumberEven\makeLineNumberRight1}
210 }

211

212 \def\setmakelinenumbers#1{\@ifstar

213 {\let\makeLineNumberRunning#19,

214 \let\makeLineNumber0dd#1

215 \let\makeLineNumberEven#11}Y

216 {\ifx\c@linenumber\c@runninglinenumber

=

217 \let\makeLineNumberRunning#1%
218 \else

219 \let\makeLineNumber0dd#19

220 \let\makeLineNumberEven#1J,
221 \fil}%

222}

224 \def\leftlinenumbers{\setmakelinenumbers\makeLineNumberLeft}
225 \def\rightlinenumbers{\setmakelinenumbers\makeLineNumberRight}
226

227 \leftlinenumbers*

7 \LineNumber is a hook which is used for the modulo stuff. It is the command
to use for the line number, when you customize \makeLineNumber. Use
\thelinenumber to change the outfit of the digits.

22

1

228
22

©

230

10

13

16

19

22

23

~

25

28

31

We will implement two modes of operation:
e numbers running through (parts of) the text
e pagewise numbers starting over with one on top of each page.

Both modes have their own count register, but only one is allocated as a
ETEX counter, with the attached facilities serving both.

\newcounter{linenumber}
\newcount\c@pagewiselinenumber
\let\c@runninglinenumber\c@linenumber

Only the running mode counter may be reset, or preset, for individual para-
graphs. The pagewise counter must give a unique anonymous number for
each line.

(UL) \newcounter{linenumber} was the only \newcounter in the
whole package. What is (or: “was”!) its purpose (i.e., Stephan’s
reasoning)? (In fact, Stephan couldn’t remember his thoughts on on
similar questions—this is why I reason here as if I were a histo-
rian.) Firstly, there is the check whether the name has been intro-
duced earlier—forget about this. Secondly, \thelinenumber is defined—
we could do this on our own. Note that \setcounter{linenumber} and
\addtocounter{linenumber} work even after \newcount\c@linenumber,
without \newcounter. So the final (main) difference to \newcount is that
\stepcounter{linenumber} resets XTEX counters (foo) that have been de-
clared by \newcounter{(foo)} [1inenumber]. I wondered what this is needed
for. It reminds me of “sublines” which are dealt with in John Lavagnino’s
and Dominik Wujastyk’s EDMAC.—This is the main reason why I think
it is really better to keep the \stepcounter facility and, so, \newcounter.
Finally, I found another reason for keeping it in section 5.4. (/UL)

(New v4.00)

\newcommand*\resetlinenumber [1] [1]{\c@runninglinenumber#i\relax}

Added \relax, being quite sure that this does no harm and is quite impor-
tant, as with \setcounter etc. I consider this a bug fix (although perhaps
no user has ever had a problem with this). (/New v4.00)

(UL) T thought of incrementing \c@linenumber (which is the same
as \c@linenumber when \resetlinenumber has an effect at all) be-
fore printing (see what precedes \MakeLineNo above) and of adding
\advance\c@runninglinenumber\m@ne here correspondingly. Even if
incrementing is kept as it was: Now that we have decided to

23

10

13

16

19

22

25

28

31

232
233
234
235
236
237
238
239
240

use \stepcounter{linenumber} for incrementing—in order to sup-
port “subordinate” counters \c@foo that have been introduced by
\newcounter{foo}[linenumber]—subordinate counters should be reset
here as well. This could be done as follows.

% \newcommand\resetlinenumber [1] [1]{%
% \ifx\c@linenumber\c@runninglinenumber

% \c@linenumber#1\relax

% \advance\c@linenumber\m@ne

% \stepcounter{linenumber}j,

% \else

% \PackageError{lineno},

% {You can’t reset line number in pagewise model,
% {This should suffice.}}

%o \fi

%}

But be carefull Note that \resetlinenumber acts locally only, while
\stepcounter acts globallyl—Well, this is a problem due to the received
\resetlinenumber! The received situation raises the danger of misusing
save stack—TEXbook p. 301. \c@linenumber can hardly be incremented
in another way than globally! This is a very serious reason to make
\resetlinenumber act globally!l-—I should have added \global right now,
but here I am afraid of a serious compatibility problem. Stephan urged me to
avoid such problems this time. Moreover, note that section 10 says that the
commands can be used “globally” as well as “locally within groups”. Are we
allowed to change this? We might introduce a star form which acts globally
indeed. Or we just advise the user to precede the command with a \global.

(/UL)

5.1 Running line numbers

Running mode is easy, \LineNumber and \theLineNumber produce
\thelinenumber, which defaults to \arabic{linenumber}, using the
\c@runninglinenumber counter. This is the default mode of operation.

\def\makeRunninglLineNumber{\makeLineNumberRunning}

\def\setrunninglinenumbers{}
\def\theLineNumber{\thelinenumberl}y
\let\c@linenumber\c@runninglinenumber
\let\makeLineNumber\makeRunningLineNumber

}

\setrunninglinenumbers\resetlinenumber

24

1 5.2 Pagewise line numbers

Difficult, if you think about it. The number has to be printed when there is
no means to know on which page it will end up, except through the aux-file.
+ My solution is really expensive, but quite robust.
With version v2.00 the hashsize requirements are reduced, because we
do not need one controlsequence for each line any more. But this costs some
7 computation time to find out on which page we are.
\makeLineNumber gets a hook to log the line and page number to the
aux-file. Another hook tries to find out what the page offset is, and
o subtracts it from the counter \c@linenumber. Additionally, the switch
\ifoddNumberedPage is set true for odd numbered pages, false otherwise.

=

241 \def\setpagewiselinenumbers{/,
242 \let\theLineNumber\thePagewiseLineNumber

243 \let\c@linenumber\c@pagewiselinenumber
244 \let\makeLineNumber\makePagewiseLineNumber
245 T

246
247 \def\makePagewiseLineNumber{\logtheLineNumber\getLineNumber
248 \ifoddNumberedPage

249 \makeLineNumber0dd
250 \else

251 \makeLineNumberEven
252 \fi

253}

Each numbered line gives a line to the aux file
13 \GLN{(line) }(page)}

very similar to the \newlabel business, except that we need an arabic rep-
resentation of the page number, not what there might else be in \thepage.

254 \def\logtheLineNumber{\protected@write\Qauxout{}{/,

16 (New v4.00) As Daniel Doherty observed, the earlier line

% \string\@LN{\the\c@linenumber}{\noexpand\the\c@page}}}

here may lead into an infinite loop when the user resets the page number
v (think of \pagenumbering, e.g.). (UL) Stephan and I briefly discussed

the matter and decided to introduce a “physical’-page counter to which

\logtheLineNumber refers. It was Stephan’s idea to use \cl@page for re-
2 liably augmenting the “physical”-page counter. However, this relies on the

output routine once doing \stepcounter{page}. Before Stephan’s sugges-

tion, I had thought of appending the stepping to KTEX’s \@outputpage.—So
s the macro definition ends as follows.

25

255 \string\@LN{\the\c@linenumber}{%

256 \noexpand\number\n@LN@truepage}}}

257

258 \newcount\n@LN@truepage

259 \g@addto®@macro\cl@page{\global\advance\n@LNOtruepage\@ne}

1 I had thought of offering more features of a KTEX counter. However, the
user should better not have access to this counter. \c@page should suffice as
a pagewise master counter.—To be sure, along the present lines the user can
+ manipulate \n@LN@truepage by \stepcounter{page}. E.g., she might do
this twice in order to manually insert a photography. Well, the physical-page
counter will skip some values then, but this will not disable pagewise line
7 numbering.
The above usage of \g@addto@macro and \cl@page may be not as sta-
ble as Stephan intended. His proposal used \xdef directly. But he used
0 \cl@page as well, and who knows ... And as to \g@addto®@macro, I have
introduced it for list macros anyway. (/UL) (/New v4.00)
From the aux-file we get one macro \LN@P(page) for each page with line
13 numbers on it. This macro calls four other macros with one argument each.
These macros are dynamically defined to do tests and actions, to find out on
which page the current line number is located.
16 We need sort of a pointer to the first page with line numbers, initiallized
to point to nothing:

260 \def\LastNumberedPage{first}
261 \def\LN@Pfirst{\nextLN\relax}

The four dynamic macros are initiallized to reproduce themselves in an \xdef

262 \let\lastLN\relax ¥ compare to last line on this page

265 \let\firstLN\relax 7, compare to first line on this page

26; \let\pageLN\relax % get the page number, compute the linenumber
265 \let\nextLN\relax J move to the next page

19 During the end-document run through the aux-files, we disable \GLN. I may
put in a check here later, to give a rerun recommendation.

266 \AtEndDocument{\let\@LN\@gobbletwo}

Now, this is the tricky part. First of all, the whole definition of
22 \@LN is grouped, to avoid accumulation on the save stack. Somehow
\csname(cs)\endcsname pushes an entry, which stays after an \xdef to that

(cs).

26

1 If \LN@P(page) is undefined, initialize it with the current page and line
number, with the pointer-to-the-next-page pointing to nothing. And the
macro for the previous page will be redefined to point to the current one.

4 If the macro for the current page already exists, just redefine the last-
line-number entry.

Finally, save the current page number, to get the pointer to the following

7 page later.

267 \def \QLN#1#2{{\expandafter\QCLN

268 \csname LN@P#2C\QLN@column\expandafter\endcsname
269 \csname LN@PO#2\endcsname
270 {#13{#2}}}

271
272 \def \QCLN#1#2#3#4{\ifx#1\relax

273 \ifx#2\relax\gdef#2{#3}\fi

27} \expandafter\QQOLN\csname LN@P\LastNumberedPage\endcsname#1

275 \xdef#1{\lastLN{#3}\firstLN{#3}\pageLN{#4}{\QLN@column}{#2}\nextLN\relax}%
276 \else

277 \def\lastLN##1{\noexpand\lastLN{#3}}/,

278 \xdef#1{#1}/,

279 \fi

250 \xdef\LastNumberedPage{#4C\@LN@column}}

The previous page macro gets its pointer to the current one, replacing the
\relax with the cs-token \LN@P(page).

2581 \def \Q@OLN#1#2{{\def \nextLN##1{\noexpand\nextLN\noexpand#2}%
282 \xdef#1{#1}}}

10 Now, to print a line number, we need to find the page, where it resides. This
will most probably be the page where the last one came from, or maybe the
next page. However, it can be a completely different one. We maintain a

13 cache, which is \1let to the last page’s macro. But for now it is initialized
to expand \LN@first, where the poiner to the first numbered page has been
stored in.

283 \def\NumberedPageCache{\LN@Pfirst}

16 To find out on which page the current \c@linenumber is, we define the four
dynamic macros to do something usefull and execute the current cache macro.
\lastLN is run first, testing if the line number in question may be on a later

19 page. If so, disable \firstLN, and go on to the next page via \nextLN.

284 \def\testLastNumberedPage#1{\ifnum#1<\c@linenumber

285 \let\firstLN\@gobble
286 \fi}

27

1 Else, if \firstLN finds out that we need an earlier page, we start over
from the beginning. Else, \nextLN will be disabled, and \pageLN will run
\gotNumberedPage with four arguments: the first line number on this col-

+ umn, the page number, the column number, and the first line on the page.

287 \def\testFirstNumberedPage#1{\ifnum#1>\c@linenumber

288 \def\nextLN##1{\testNextNumberedPage\LNOPfirst}%
289 \else

290 \let\nextLN\@gobble

201 \def\pageLN{\gotNumberedPage{#1}}%

202 \fi}

We start with \pageLN disabled and \nextLN defined to continue the search
with the next page.

293 \long\def \@gobblethree #1#2#3{}

294

295 \def\testNumberedPage{%

206 \let\lastLN\testLastNumberedPage
297 \let\firstLN\testFirstNumberedPage
2908 \let\pageLN\Qgobblethree

299 \let\nextLN\testNextNumberedPage
300 \NumberedPageCache

s01 }

7 When we switch to another page, we first have to make sure that it is there.
If we are done with the last page, we probably need to run TEX again, but for
the rest of this run, the cache macro will just return four zeros. This saves a

10 lot of time, for example if you have half of an aux-file from an aborted run, in
the next run the whole page-list would be searched in vain again and again
for the second half of the document.

13 If there is another page, we iterate the search.

s02 \def\testNextNumberedPage#1{\ifx#1\relax

303 \global\def\NumberedPageCache{\gotNumberedPage0000}/
304 \PackageWarningNoLine{lineno},

305 {Linenumber reference failed,

306 \MessageBreak rerun to get it right})

307 \else

308 \global\let\NumberedPageCache#17,

309 \fi

310 \testNumberedPage

811 }

To separate the official hooks from the internals there is this equivalence, to
hook in later for whatever purpose:

28

Let’s see if
it finds
the label
on page
20, line 4,
and back
here on
page 28,
line 14.

312 \1let\getLineNumber\testNumberedPage

1 So, now we got the page where the number is on. We establish if we are on
an odd or even page, and calculate the final line number to be printed.

313 \newif\if oddNumberedPage

314 \newif\ifcolumnwiselinenumbers

215 \columnwiselinenumbersfalse

316

317 \def\gotNumberedPage#1#2#3#4{\oddNumberedPagefalse

s18 \ifodd \if@twocolumn #3\else #2\fi\relax\oddNumberedPagetrue\fi
319 \advance\c@linenumber 1\relax

320 \ifcolumnwiselinenumbers

321 \subtractlinenumberoffset{#11}%
322 \else

323 \subtractlinenumberoffset{#41}%
s24 \fi

325 }

You might want to run the pagewise mode with running line numbers, or
+ you might not. It’s your choice:

326 \def\runningpagewiselinenumbers{%

327 \let\subtractlinenumberoffset\@gobble

528}

829

330 \def\realpagewiselinenumbers{%

331 \def\subtractlinenumberoffset##1l{\advance\c@linenumber-##1\relax}}
332}

338

384 \realpagewiselinenumbers

For line number references, we need a protected call to the whole procedure,
with the requested line number stored in the \c@linenumber counter. This
7 is what gets printed to the aux-file to make a label:

335 \def\thePagewiseLineNumber{\protect
336 \getpagewiselinenumber{\the\c@linenumber}}y

And here is what happens when the label is refered to:
337 \def\getpagewiselinenumber#1{{/,
338 \c@linenumber #1\relax\testNumberedPage

339 \thelinenumber

340 }}

A summary of all per line expenses:

29

1 CPU: The \output routine is called for each line, and the page-search is
done.

DISK: One line of output to the aux-file for each numbered line

+ MEM: One macro per page. Great improvement over v1.02, which had one
control sequence per line in addition. It blew the hash table after some
five thousand lines.

» 5.3 Twocolumn mode (New v3.06)

Twocolumn mode requires another patch to the \output routine, in order to
print a column tag to the .aux file.

341 \1et\OLN@orig@makecol\@makecol
342 \def\OLN@makecol{’

243 \@LN@orig@makecol

544 \setbox\@outputbox \vbox{%

345 \boxmaxdepth \@maxdepth

346 \protected@urite\@auxout{}{%

247 \string\@LN@col{\if@firstcolumni\else2\fi}},
348 Y

349 \box\@outputbox

350 }% \vbox

351

352
353 \def\@LN@col#1{\def\@LN@column{#1}}
354 \@LN@col{1}

v 5.4 Numbering modulo m, starting at f

Most users want to have only one in five lines numbered. \LineNumber is

supposed to produce the outfit of the line number attached to the line, while

13 \thelinenumber is used also for references, which should appear even if they
are not multiples of five.

(New v4.00) Moreover, some users want to control which linenumber

16 should be printed first. Support of this is now introduced here.—numline.sty

by Michael Jaegermann and James Fortune offers controlling which final line

numbers should not be printed. What is it good for? We ignore this here

19 until some user demands it.—Peter Wilson’s ledmac.sty offers much different

choices of line numbers to be printed, due to Wayne Sullivan. (/New v4.00)

355 \newcount\c@linenumbermodulo

30

10

13

16

19

22

25

28

31

34

356
357
858
359

(UL) On my question why, e.g., \chardef would not have sufficed, Stephan
couldn’t remember exactly; guessed that he wanted to offer IXTEX counter
facilities. However, the typical ones don’t come this way. So I'm quite sure
that I will change this next time.

However, I observed at least two times that users gave a very high value to
\c@linenumbermodulo in order to suppress printing of the line number. One
of these users preferred an own way of handling line numbers, just wanted
to use \linelabel and Ednotes features. Should we support this? I rather
would like to advise them to \let\makeLineNumber\relax. (/UL)

(New v4.00) \themodulolinenumber waits for being declared
\LineNumber by \modulolinenumbers. (This has been so before, no
change.) Here is how it looked before:

% \def\themodulolinenumber{{\@tempcnta\c@linenumber
% \divide\@tempcnta\c@linenumbermodulo

% \multiply\@tempcnta\c@linenumbermodulo

% \ifnum\@tempcnta=\c@linenumber\thelinenumber\fi

hoo 3}

(UL) This was somewhat slow. This arithmetic happens at every line. This
time I tend to declare an extra line counter (as opposed to my usual recom-
mendations to use counters as rarely as possible) which is stepped every line.
It could be incremented in the same way as \n@truepage is incremented via
\cl@page! This is another point in favour of {linenumber} being a KTEX
counter! When this new counter equals \c@linenumbermodulo, it is reset,
and \thelinenumber is executed.—It gets much slower by my support of
controlling the first line number below. I should improve this.—On the other
hand, time expense means very little nowadays, while the number of TEX
counters still is limited.

For the same purpose, moreover, attaching the line number box could be
intercepted earlier (in \MakeLineNo), without changing \LineNumber. How-
ever, this may be bad for the latter’s announcement as a wizard interface in
section 10. (/UL)

Here is the new code. It is very near to my Inopatch.sty code which
introduced the first line number feature before.—I add starting with a \relax
which is so often recommended—without understanding this really. At least,
it will not harm.—Former group braces appear as \begingroup/\endgroup
here.

\def\themodulolinenumber{\relax
\ifnum\c@linenumber<\n@firstlinenumber
\else

\begingroup

31

360 \@tempcnta\c@linenumber

361 \advance\@tempcnta-\n@firstlinenumber

362 \divide\@tempcnta\c@linenumbermodulo

363 \multiply\@tempcnta\c@linenumbermodulo

364 \advance\@tempcnta\n@firstlinenumber

365 \ifnum\@tempcnta=\c@linenumber \thelinenumber \fi
366 \endgroup

s67 \fi

368

1 (/New v4.00)
The user command to set the modulo counter:
369 \newcommand\modulolinenumbers[1] [0]{%
370 \let\LineNumber\themodulolinenumber
371 \ifnum#i1>1\relax
372 \c@linenumbermodulo#l\relax

3273 \else\ifnum#i=1\relax

% \def\LineNumber{\thelinenumberl}y,

+ (New v4.00) I'm putting something here to enable \firstlinenumber with
\c@linenumbermodulo = 1. With Inopatch.sty, a trick was offered for this
purpose. It is now obsolete.

374 \def\LineNumber{\Q@LNQ@ifgreat\thelinenumber}y,
7 (/New v4.00)

75 \fi\fi
376}

(New v4.00) The default of \@LN@ifgreat is
377 \Llet\QLN@ifgreat\relax

The previous changes as soon as \firstlinenumber is used:

378 \newcommand*\firstlinenumber [1]{%
379 \chardef\n@firstlinenumber#1\relax

1 No counter, little values allowed only—OK?—(UL) The change is local—
OK? The good thing is that \global\firstlinenumber{(number)} works.
Moreover, \modulolinenumbers acts locally as well. (/UL)

32

sso \def\@LN@ifgreat{’

381 \ifnum\c@linenumber<\n@firstlinenumber
382 \expandafter \Q@gobble

383 \fi

384 h

385

1 The default is 0. This is best for what one would expect from modulo print-
ing.

386 \let\n@firstlinenumber=\z@

Note that the line numbers of the present section demonstrate the two
s+ devices. (/New v4.00)

387 \setcounter{linenumbermodulo}{5}
3ss \modulolinenumbers[1]

6 Former package extensions

The extensions in this section were previously supplied in separate . sty files.

;6.1 displaymath

The standard KXTEX display math environments are wrapped in a
{linenomath} environment.

10 (New 3.05) The [fleqn] option of the standard BTEX classes defines the
display math environments such that line numbers appear just fine. Thus,
we need not do any tricks when [fleqn] is loaded, as indicated by presents

3 of the \mathindent register. (/New 3.05)

(New 3.05a) for {eqnarray}s we rather keep the old trick. (/New 3.05a)
(New 3.08) Wrap \[and \] into {linenomath}, instead of
{displaymath}. Also save the definition of \equation, instead of replicating

the current TEX definition. (/New 3.08)

-

=
o

389 \ifx\do@mlineno\@empty

390 \@ifundefined{mathindent}{

391

392 \let\LN@displaymath\ [

393 \let\LN@enddisplaymath\]

394 \renewcommand\ [{\begin{linenomath}\LN@displaymath}
395 \renewcommand\]{\LN@enddisplaymath\end{linenomath}}
396

397 \let\LN@equation\equation

33

398 \let\LN@endequation\endequation
399 \renewenvironment{equation}

400 {\linenomath\LN@equation}

401 {\LN@endequation\endlinenomath}
402

403 Yh \@ifundefined{mathindent}

404

405 \let\LNQegnarray\egnarray

406 \let\LN@endeqnarray\endeqnarray
407 \renewenvironment{eqnarray}

408 {\linenomath\LN@egnarray}

409 {\LN@endegnarray\endlinenomath}
410

411 \fi

1 (UL) Indeed. The BTEX macros are saved for unnumbered mode, which is
detected by \linenomath. (/UL)

6.2 Line numbers in internal vertical mode

s+ The command \internallinenumbers adds line numbers in internal vertical
mode, but with limitations: we assume fixed baseline skip.

412 \def\internallinenumbers{\setrunninglinenumbers

413 \let\@@par\internallinenumberpar

414 \ifx\@par\@@@par\let\@par\internallinenumberpar\fi

415 \ifx\par\@@@par\let\par\internallinenumberpar\fi

416 \ifx\@par\linenumberpar\let\@par\internallinenumberpar\fi
417 \ifx\par\linenumberpar\let\par\internallinenumberpar\fi

418 \@ifnextchar [{\resetlinenumber}y]

419 {\@ifstar{\let\c@linenumber\c@internallinenumber
420 \c@linenumber\@ne}{}}%

421 }

422
423 \let\endinternallinenumbers\endlinenumbers

424 \@namedef{internallinenumbers*}{\internallinenumbersx*}

425 \expandafter\let\csname endinternallinenumbers#*\endcsname\endlinenumbers
426

427 \newcount\c@internallinenumber

(UL) This counter appears in \internallinenumbers only. It seems
7 to have been meant to be a version of \c@linenumber which is
changed only locally—see {internallinenumbers*}, where the initial-
ization is local. However, Stephan incremented it globally then, see
10 below. Now, even this global incrementing would not increment the
\c@linenumber version outside {internallinenumbers}—another reason to

34

1 consider \c@internallinenumber an “internal version” of \c@linenumber.
And another reason not to increment it globally, see below.—A drawback
of this kind of “internal” seems to be: {internallinenumbers} cannot

s+ be used to “continue line counting in internal vertical mode temporar-
ily”, exactly because, e.g., \c@Qrunninglinenumber has the same value after
\end{internallinenumbers} as it had at \begin{internallinenumbers}.

» (/UL)

428 \newcount\c@internallinenumbers
429
430 \def\internallinenumberpar{\ifvmode\@@@par\else\ifinner\0@@@par\else\Q@0@Qpar

481 \begingroup

452 \c@internallinenumbers\prevgraf

483 \setbox\@tempboxa\hbox{\vbox{\makeinternalLinenumbers}}/,
434 \dp\@tempboxa\prevdepth

485 \ht\@tempboxa\z@

436 \nobreak\vskip-\prevdepth

437 \nointerlineskip\box\@tempboxa

438 \endgroup

439 \fi\fi

440 }

441
442 \def\makeinternallLinenumbers{\ifnum\c@internallinenumbers>0\relax

(New v4.00)

% \hbox to\z@{\makeLineNumber}\global\advance\c@linenumber\@ne

0 followed here previously. = Why no \stepcounter? OK, with unit
\baselineskip there is no space for “sublines” anyway.—More se-
rious: \c@linenumber is \c@internallinenumber here, which in

13 {internallinenumbers*}has been initialized to be 1—locally! Save stack
problem again. We could use \global depending on whether the star version
is used or not. However, the “external” line counter is not affected anyway,

16 and the \global is not needed internally. So just drop it. I have no idea
how a compatibility problem could arise.

448 \hbox to\z@{\makeLineNumber}\advance\c@linenumber\@ne

(/New v4.00)

444 \advance\c@internallinenumbers\m@ne
445 \expandafter\makeinternallLinenumbers\fi
446 }

35

1 6.3 Line number references with offset

This extension defines macros to refer to line numbers with an offset, e.g.,
to refer to a line which cannot be labeled directly (display math). This was
s+ formerly knows as rlineno.sty.
To refer to a pagewise line number with offset:

\linerefp[(OFFSET)1{(LABEL)}
7 To refer to a running line number with offset:
\linerefr [(OFFSET)1{(LABEL)}
To refer to a line number labeled in the same mode as currently selected:

10 \lineref [(OFFSET)]{(LABEL)}

447 \newcommand\lineref{%
448 \ifx\c@linenumber\c@runninglinenumber

449 \expandafter\linerefr
450 \else

451 \expandafter\linerefp
452 \fi

458 }

454
455 \newcommand\linerefp [2] [\z@]{{%
456 \let\@thelinenumber\thelinenumber

457 \edef\thelinenumber{\advance\c@linenumber#1\relax\noexpand\@thelinenumberl}y,
458 \ref{#2}/
459 T}

This goes deep into BTEX’s internals.

460 \newcommand\linerefr[2] [\z@]{{%
461 \def\@@linerefadd{\advance\c@linenumber#1}/,

462 \expandafter\@setref\csname r@#2\endcsname
463 \@linerefadd{#23}%
464 T}

465
466 \newcommand\@linerefadd[2] {\c@linenumber=#1\0@@linerefadd\relax
467 \thelinenumber}

(UL) Insert ‘LN’ in internal command names. (/UL)

36

1 6.4 Numbered quotation environments

The {numquote} and {numquotation} environments are like {quote} and
{quotation}, except there will be line numbers.

4 An optional argument gives the number to count from. A star * (inside
or outside the closing }) prevent the reset of the line numbers. Default is to
count from one.

468 \newcommand\quotelinenumbers

469 {\@ifstar\linenumbers{\@ifnextchar[\linenumbers{\linenumbers*}}}
470

471 \newdimen\quotelinenumbersep

472 \quotelinenumbersep=\1linenumbersep

473 \let\quotelinenumberfont\linenumberfont

474

475 \newcommand\numquotelist

476 {\leftlinenumbers

477 \linenumbersep\quotelinenumbersep

478 \let\linenumberfont\quotelinenumberfont

479 \addtolength{\linenumbersep}{-\@totalleftmargin}y

480 \quotelinenumbers

481}

482

483 \newenvironment{numquote} {\quote\numquotelist}{\endquote}

484 \newenvironment{numquotation} {\quotation\numquotelist}{\endquotation}
485 \newenvironment{numquotex*} {\quote\numquotelist*}{\endquote}

486 \newenvironment{numquotation*}{\quotation\numquotelist*}{\endquotation}

; 6.5 Frame around a paragraph

The {bframe} environment draws a frame around some text, across page
breaks, if necessary.

10 This works only for plain text paragraphs, without special height lines.
All lines must be \baselineskip apart, no display math.

487 \newenvironment{bframe}

488 {\par

489 \@tempdima\textwidth

490 \advance\@tempdima 2\bframesep

491 \setbox\bframebox\hbox to\textwidth{’

492 \hskip-\bframesep

493 \vrule\@width\bframerule\Gheight\baselineskip\@depth\bframesep
494 \advance\@tempdima-2\bframerule

495 \hskip\@tempdima

496 \vrule\@width\bframerule\@height\baselineskip\@depth\bframesep
497 \hskip-\bframesep

498 Yh

37

499
500
501
502
503

515
516
517
518
519
520
521
522
523
524

1

10

525
526

\hbox{\hskip-\bframesep
\vrule\@width\@tempdima\@height\bframerule\@depth\z@l}/

\nointerlineskip

\copy\bframebox

\nobreak

\kern-\baselineskip

\runninglinenumbers

\def\makeLineNumber{\copy\bframebox\hss}/

}

{\par

\kern-\prevdepth

\kern\bframesep

\nointerlineskip

\@tempdima\textwidth

\advance\@tempdima 2\bframesep

\hbox{\hskip-\bframesep
\vrule\@width\@tempdima\@height\bframerule\@depth\z@}%

}

\newdimen\bframerule
\bframerule=\fboxrule

\newdimen\bframesep
\bframesep=\fboxsep

\newbox\bframebox

7 Move \vadjust items (New v4.00)

This section completes reviving \pagebreak, \nopagebreak, \vspace, and
the star and optional form of \\. This was started in section 2.1 and resumed
in sections 2.4 and 3. The problem was explained in section 2.1: \vadjust
items come out at a bad position, and the IXTEX commands named before
work with \vadjust indeed. Our solution was sketched there as well.

According to the caveat in section 3 concerning \ifLineNumbers, the
BETEX commands enumerated may go wrong if you switch line numbering
inside or at the end of a paragraph.

7.1 Redefining \vadjust

\vadjust will temporarily be changed into the following command.

\def\PostponeVadjust#1{/
\globall\let\vadjust\@LN@G@vadjust

38

1 This undoes a \globalllet\vadjust\PostponeVadjust which will start
each of the refined BTEX commands. The \globals are most probably su-
perfluous. They might be useful should one \vadjust appear in a group

s starting after the change of \vadjust into \PostponeVadjust. (UL) Even
the undoing may be superfluous, cf. discussion in section 7.2 below. (UL)

527 \vadjust{\penalty-\@Mppvacodepen}’

528 \g@addto@macro\Q@LN@vadjustlist{#1\@1t}/,
529 +

530 \1let\QLN@@vadjust\vadjust

531 \global\let\@LN@vadjustlist\@empty

532 \global\let\Q@LN@do@vadjusts\relax

These \globals are just to remind that all the changes of the strings af-
7 ter \let should be \global (TgXbook p. 301). \@LN@vadjustlist col-
lects the \vadjust items of a paragraph. \PassVadjustList tears one
\vadjust item for the current line out of \@LN@vadjustlist and puts it
10 into \@LN@do@vadjusts. The latter is encountered each line in \MakeLineNo
(section 2.4), while those ITEX \vadjust commands will come rather rarely.
So I decided that \@LN@do@vadjust is \relax until a \vadjust item is wait-
13 ing. In the latter case, \QLN@do@vadjusts is turned into a list macro which
resets itself to \relax when the other contents have been placed in the verti-
cal list.—\PassVadjustList is invoked by the output routine (section 2.1),
16 so the \box255 must be put back.

533 \def\PassVadjustList{/,

534 \unvbox\@cclv

535 \expandafter \@LN@xnext \QLN@vadjustlist \@Q

536 \@tempa \@LN@vadjustlist

537 \ifx\@LN@do@vadjusts\relax

538 \gdef\@LN@do@vadjusts{\global\let\@LNC@doGvadjusts\relax}’
530 \fi

550 \expandafter \g@addto@macro \expandafter \@LN@do@vadjusts
541 \expandafter {\@tempal}’

542 }

7.2 Redefining the BTEX commands

Now we change \pagebreak etc. so that they use \PostponeVadjust in
v place of \vadjust. We try to do this as independently as possible of
the implementation of the IXTEX commands to be redefined. Therefore,
we don’t just copy macro definition code from any single implementa-
» tion (say, latest IXTEX) and insert our changes, but attach a conditional
\globalllet\vadjust\PostponeVadjust to their left ends in a way which

39

10

13

16

19

22

552

558

should work rather independantly of their actual code. However, \vadjust
should be the primitive again after execution of the command. So the
\globalllet... may be used only if it’s guaranteed that a \vadjust is
near.—(UL) Sure? In line numbering mode, probably each \vadjust com-
ing from a KTEX command should be \PostponeVadjust. \marginpars
and floats seem to be the only cases which are not explicitly dealt with in
the present section. This would be a way to avoid \my@nobreaktrue! Of
course, the \vadjusts that the present package uses then must be replaced
by \@LN@@vadjust.—Maybe next time. (/UL)

The next command and something else will be added to the IXTEX com-
mands we are concerned with here.

\DeclareRobustCommand\@LN@changevadjust{’%
\ifvmode\else\ifinner\else
\global\let\vadjust\PostponeVadjust
\fi\fi
}

(UL) What about math mode? Math display? Warn? (/UL)

\@tempa will now become a two place macro which adds first argu-
ment (single token), enclosed by \ifLineNumbers...\fi to the left of sec-
ond argument. As long as we need it, we can’t use the star form of
\DeclareRobustCommand or the like, because AMS-ITEX uses \@tempa for
\@ifstar.

\def\Q@tempa#1#2{/,
\expandafter \def \expandafter#2\expandafter{\expandafter
\ifLineNumbers\expandafter#1\expandafter\fi#2}
}

(UL) This \ifLineNumber can be fooled by \linenumbers ahead etc. It
might be better to place a signal penalty in any case and let the output
routine decide what to do. (/UL)

We use the occasion to switch off linenumbers where they don’t work
anyway and where we don’t want them, especially in footnotes:

\@tempa\nolinenumbers\@arrayparboxrestore

We hope this suffices ... let’s check one thing at least:

\CheckCommand*\@parboxrestore{\@arrayparboxrestore\let\\\@normalcr}

40

1 Now for the main theme of the section. The next lines assume that \vspace,
\pagebreak, and \nopagebreak use \vadjust whenever they occur outside
vertical mode; moreover, that they don’t directly read an argument. Indeed

+ \pagebreak and \nopagebreak first call something which tests for a left
bracket ahead, while \vspace first tests for a star.

554 \@tempa\@LN@changevadjust\vspace
555 \@tempa\@LN@changevadjust\pagebreak
556 \@tempa\@LN@changevadjust\nopagebreak

\\, however, uses \vadjust only in star or optional form. We relax indepen-

7 dency of implementation in assuming that \@normalcr is the fragile version
of \\ (and we use \@ifstar!). (Using a copy of \\ would be safer, but an
ugly repetition of \protect.)

557 \DeclareRobustCommand\\{%
558 \ifLineNumbers

559 \expandafter \QLNQcr
s60 \else

561 \expandafter \@normalcr
562 \fi

563 +

564 \def\@LN@cr{%

565 \@ifstar{\@LN@changevadjust\@normalcr*1}y,

566 {\@ifnextchar [{\@LN@changevadjust\@normalcr}\@normalcr}y,
567 }

10 Moreover we hope that \newline never leads to a \vadjust, although names
of some commands invoked by \\ contain newline. At last, this seems to
have been OK since 1989 or even earlier.

13 Let’s have a few tests. Testing \pagebreak and \nopagebreak would

1 be too expensive here, but—oops!—we have just experienced a successful
15 \vspacex{.5\baselineskip}. A \\x[.5\baselineskip]

1 may look even more drastical, but this time we are happy about it. Note
17 that the line numbers have moved with the lines. Without our changes, one

line number would have “anticipated” the move of the next line, just as you
18

10 can observe it now. (/New v4.00)

7.3 Reminder on obsoleteness

(New v4.1) We have completed inclusion of the earlier extension packages
linenox0.sty, linenox1.sty, and Inopatch.sty. If one of them is loaded, though,
we produce an error message before something weird happens. We avoid
\newif because the switchings occur so rarely.

41

20

21

22

23

24

568 \AtBeginDocument{7

569 \let\if@LNQobsolete\iffalse

s70 \Q@ifpackageloaded{linenoxO}{\let\if@LN@obsolete\iftrue}\relax
571 \@ifpackageloaded{linenox1}{\let\if@LN@obsolete\iftrue}\relax
572 \@ifpackageloaded{lnopatch}{\let\if@LN@obsolete\iftrue}\relax
573 \1f@QLNQ@obsolete

574 \PackageError{lineno}{Obsolete extension package(s)}{%

575 With lineno.sty version 4.00 or later,\MessageBreak

576 linenox0/linenox1/lnopatch.sty must no longer be loaded.}/
577 \fi

578 +

. 8 Package options

> (New v4.1) The last heading formerly was the heading of what is now sub-
3 section 8.3. The options declared there were said to execute user commands
s+ only. This was wrong already concerning displaymath and hyperref. At
s least, however, these options were no or almost no occasion to skip definitions
s or allocations. This is different with the options that we now insert.

; 81 \linelabel in math mode

s We have made some first steps towards allowing \linelabel in math mode.
o Because our code for this is presently experimental, we leave it to the user to
10 decide for the experiment by calling option mathrefs. We are in a hurry now
un and thus leave the code, explanations, and discussion in the separate package
12 ednmathO.sty. Maybe we later find the time to improve the code and move
13 the relevant content of ednmath0.sty to here. The optimal situation would
14 be to define \linelabel from the start so it works in math mode, omitting
15 the mathrefs option.

16 Actually, this package even provides adjustments for analogously allowing
17 ednotes.sty commands in math mode. Loading the package is postponed to
18 \AtBeginDocument when we know whether these adjustments are needed.

579 \DeclareOption{mathrefs}{\AtBeginDocument
ss0 {\RequirePackage{ednmath0} [2004/08/20]}3}
v 8.2 \linelabel in tabular environments

20 We provide adjustments to make \linelabel work in some KTEX tabular
a1 environments. We do this similarly as with with option mathrefs before. We
» leave code and explanations in the separate package edtable.sty. This package

42

58

~

582

provides adjustments for ednotes.sty as well. However, in the present case we
don’t try to avoid them unless ednotes.sty is loaded. Package option edtable
defines—by loading edtable.sty—an environment {edtable} which is able to
change some KTEX tabular environments with the desired effects.

This method doesn’t work with longtable.sty, however. To make up for
this, {longtable} is adjusted in a different way—and this happens only when
another lineno.sty option longtable is called. In this case, option edtable
needn’t be called explicitly: option longtable works as if edtable had been
called.

Now, we are convinced that vertical spacing around {longtable} works
wrongly—see TEX bugs database tools/3180 and 3485, or see explanations
in the package ltabptch.sty (which is to be obtained from CTAN folder
/macros/latex/Itabptch). Our conviction is so strong that the longtable
option loads—after longtable.sty—the patch package ltabptch.sty. If the user
doesn’t want this (maybe preferring her own arrangement with the vertical
spacing), she can forbid it by calling nolongtablepatch.

The following code just collects some choices, which are then executed
in section 8.5. We use an \if... without \newif since \if...true and
\if...false would occur at most two times and only within the present
package. (\AtEndOfClass{\RequirePackage{edtable}} could be used in-
stead, I just overlooked this. Now I don’t change it because it allows to
change the version requirement at one place only.)

\let\if@LN@edtable\iffalse

53 \DeclareOption{edtable}{\let\if@LN@edtable\iftrue}

<
%
&%

584
585
586

588
589

590

\DeclareOption{longtable}{\let\if@LNQedtable\iftrue
\PassOptionsToPackage{longtable}{edtablel}}

\DeclareOption{nolongtablepatch}{’
\PassOptionsToPackage{nolongtablepatch}{edtable}}

(/New v4.1)

8.3 Switch among settings

There is a bunch of package options, all of them executing only user com-
mands (see below).

Options left (right) put the line numbers on the left (right) margin.
This works in all modes. left is the default.

\DeclareOption{left}{\leftlinenumbers*}

43

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

591
592

593
594
595
596
597
598
599

600
601
602

10
11
12
13
14
15
16
17
18
19
20
21

22

603
604
605
606

\DeclareOption{right}{\rightlinenumbers*}

Option switch (switch#*) puts the line numbers on the outer (inner) margin
of the text. This requires running the pagewise mode, but we turn off the
page offset subtraction, getting sort of running numbers again. The pagewise
option may restore true pagewise mode later.

\DeclareOption{switch}{\setpagewiselinenumbers
\switchlinenumbers
\runningpagewiselinenumbers}

\DeclareOption{switch*}{\setpagewiselinenumbers
\switchlinenumbers*j,
\runningpagewiselinenumbers}

In twocolumn mode, we can switch the line numbers to the outer margin,
and /or start with number 1 in each column. Margin switching is covered by
the switch options.

\DeclareOption{columnwise}{\setpagewiselinenumbers
\columnwiselinenumberstrue
\realpagewiselinenumbers}

The options pagewise and running select the major linenumber mechanism.
running line numbers refer to a real counter value, which can be reset for
any paragraph, even getting multiple paragraphs on one page starting with
line number one. pagewise line numbers get a unique hidden number within
the document, but with the opportunity to establish the page on which they
finally come to rest. This allows the subtraction of the page offset, getting
the numbers starting with 1 on top of each page, and margin switching in
twoside formats becomes possible. The default mode is running.

The order of declaration of the options is important here pagewise must
come after switch, to overide running pagewise mode. running comes last,
to reset the running line number mode, e.g, after selecting margin switch
mode for pagewise running. Once more, if you specify all three of the options
[switch,pagewise,running], the result is almost nothing, but if you later
say \pagewiselinenumbers, you get margin switching, with real pagewise
line numbers.

\DeclareOption{pagewise}{\setpagewiselinenumbers
\realpagewiselinenumbers}

\DeclareOption{running}{\setrunninglinenumbers}

44

607

608

609
610

61

~

612
613
614
615
616
617

The option modulo causes only those linenumbers to be printed which are
multiples of five.

\DeclareOption{modulo}{\modulolinenumbers\relax}

The package option mathlines switches the behavior of the {1inenomath}
environment with its star-form. Without this option, the {linenomath}
environment does not number the lines of the display, while the star-form
does. With this option, its just the opposite.

\DeclareOption{mathlines}{\linenumberdisplaymath}

displaymath now calls for wrappers of the standard LaTeX display math
environment. This was previously done by mlineno.sty.

\let\do@mlineno\relax
\DeclareOption{displaymath}{\let\do@mlineno\@empty}

The hyperref package, via nameref, requires three more groups in the sec-
ond argment of a \newlabel. Well, why shouldn’t it get them? (New
v3.07) The presence of the nameref package is now detected automatically
\AtBeginDocument. (/New v3.07) (Fixed in v3.09) We try to be smart,
and test \AtBeginDocument if the nameref package is loaded, but hyperref
postpones the loading of nameref too, so this is all in vain.

\DeclareOption{hyperref}{\PackageWarningNoLine{lineno}{%
Option [hyperref] is obsolete.
\MessageBreak The hyperref package is detected automatically.l}}

\AtBeginDocument{’,

\@ifpackageloaded{nameref}{/,
\def\QLN@ExtraLabelItems{{}{}{}}}{}}

(New v4.1)

8.4 A note on calling so many options

The number of package options may stimulate worrying about how to enter
all the options that one would like to use—they may not fit into one line.
Fortunately, you can safely break code lines after the commas separating the
option names in the \usepackage command (no comment marks needed).

45

10

11

12

13

14

15

16

17

18

19

20

1 8.5 Execute options

> We stop declaring options and execute the ones that are called by the user.
3 (/New v4.1)

618 \ProcessOptions

+ (New v4.1) Now we know whether edtable.sty is wanted and (if it is) with
s which options it is to be called.

619 \1f@LN@edtable \RequirePackage{edtablel}[2004/10/12] \fi

s (/New v4.1)

.9 The final touch

¢ There is one deadcycle for each line number.

620 \advance\maxdeadcycles 100
621
622 \endinput

s 10 The user commands

10 The user commands to turn on and off line numbering are

11 \linenumbers

12 Turn on line numbering in the current mode.

13 \linenumbers*

14 and reset the line number to 1.

15 \linenumbers[{number)]

16 and start with (number).

17 \nolinenumbers

18 Turn off line numbering.

1 \runninglinenumbers* [(number)]

20 Turn on running line numbers, with the same optional arguments as
21 \linenumbers. The numbers are running through the text over page-
2 breaks. When you turn numbering off and on again, the numbers will
23 continue, except, of cause, if you ask to reset or preset the counter.

46

\pagewiselinenumbers
Turn on pagewise line numbers. The lines on each page are numbered
beginning with one at the first pagewise numbered line.
\resetlinenumber [(number)]

Reset [Set] the line number to 1 [{number)].

\setrunninglinenumbers

Switch to running line number mode. Do not turn it on or off.

\setpagewiselinenumbers

Switch to pagewise line number mode. Do not turn it on or off.

\switchlinenumbers*
Causes margin switching in pagewise modes. With the star, put the
line numbers on the inner margin.

\leftlinenumbersx*

\rightlinenumbers*

Set the line numbers in the left /right margin. With the star this works
for both modes of operation, without the star only for the currently
selected mode.

\runningpagewiselinenumbers

When using the pagewise line number mode, do not subtract the page
offset. This results in running line numbers again, but with the possibil-
ity to switch margins. Be careful when doing line number referencing,
this mode status must be the same while setting the paragraph and
during references.

\realpagewiselinenumbers

Reverses the effect of \runningpagewiselinenumbers.

\modulolinenumbers [{number)]

Give a number only to lines which are multiples of [(number)].
If (number) is not specified, the current value in the counter
linenumbermodulo is retained. (number)=1 turns this off without
changing 1inenumbermodulo. The counter is initialized to 5.

47

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

\firstlinenumber

\firstlinenumber{(filino)} brings about that (after it) line num-
bers less than (filino) do not appear in the margin. Moreover,
with \modulolinenumbers [(number)], just the line numbers which
are (filino) plus a multiple of (number) are printed.—If you had
\firstlinenumber{(pos)} with some (pos) > 0 and want to switch
to printing multiples of, e.g., 4, you best do \modulolinenumbers [4]
and \firstlinenumber{0}

\linenumberdisplaymath

Number the lines of a display math in a {linenomath} environment,
but do not in a {linenomath*} environment. This is used by the
package option [mathlines].

\nolinenumberdisplaymath
Do not Number the lines of a display math in a {linenomath} envi-
ronment, but do in a {1linenomath*} environment. This is the default.
\linelabel

Set a \linelabel{(foo)} to the line number where this commands is
in. Refer to it with the BTEX referencing commands \ref{(foo)} and
\pageref{(foo)}.

The commands can be used globally, locally within groups or as environ-
ments. It is important to know that they take action only when the \par is
executed. The \end{(mode)linenumbers} commands provide a \par. Ex-
amples:

{\linenumbers (fext) \par}
\begin{linenumbers}

(text)

\end{linenumbers}

{(paragraph) {\linenumbers\par}
\linenumbers

(text) \par

\nolinenumbers

\linenumbers
(paragraph) {\nolinenumbers\par}

48

(New v4.00) However, the examples containing (paragraph) show what you
should not do, at least if you use \pagebreak, \nopagebreak, \vspace, *
or \\ [{space)]—cf. section 7.

The same care should be applied to the “wizard” devices \ifLineNumbers
(section 3) and \PostponeVadjust (section 7.1). (/New v4.00)

10.1 Customization hooks

There are several hooks to customize the appearance of the line numbers,
and some low level hooks for special effects.
\thelinenumber

This macro should give the representation of the line number in the
ITEX-counter linenumber. The default is provided by KTEX:

\arabic{linenumber}

\makeLineNumberLeft

This macro is used to attach a line number to the left of the text page.
This macro should fill an \hbox to Opt which will be placed at the
left margin of the page, with the reference point aligned to the line to
which it should give a number. Please use the macro \LineNumber to
refer to the line number.

The default definition is

\hss\linenumberfont\LineNumber\hskip\linenumbersep

\makeLineNumberRight
Like \makeLineNumberLeft, but for line numbers on the right margin.
The default definition is
\linenumberfont\hskip\linenumbersep\hskip\textwidth
\hbox to\linenumberwidth{\hss\LineNumber}\hss

\linenumberfont
This macro is initialized to

\normalfont\tiny\sffamily

\linenumbersep

This dimension register sets the separation of the linenumber to the
text. Default value is 10pt.

49

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

1 \linenumberwidth

2 This dimension register sets the width of the line number box on the
3 right margin. The distance of the right edge of the text to the right
4 edge of the line number is \1inenumbersep + \linenumberwidth. The
5 default value is 10pt.

s \theLineNumber (for wizards)

7 This macro is called for printing a \newlabel entry to the aux-file.
8 Its definition depends on the mode. For running line numbers it’s just
0 \thelinenumber, while in pagewise mode, the page offset subtraction
10 is done in here.

1 \makeLineNumber (for wizards)

12 This macro produces the line numbers. The definition depends
13 on the mode. In the running line numbers mode it just expands
1 \makeLineNumberLeft.

15 \LineNumber (for wizards)

16 This macro is called by \makeLineNumber to typeset the line num-
17 ber. This hook is changed by the modulo mechanism and by
18 \firstlinenumber.

50

