A GNU Development Environment for
the AVR Microcontroller

Rich Neswold

rneswold@enteract.com



A GNU Development Environment for the AVR Microcontroller
by Rich Neswold

Published $Date$
Copyright © 1999, 2000, 2001 by Richard M. Neswold, Jr.

This document attempts to cover the details of the GNU Tools that are specific to the AVR family of processors.



Acknowledgements

This document tries to tie together the labors of a large group of people. Without these individuals’ efforts, we
wouldn't have a terrificfree set of tools to develop AVR projects. We all owe thanks to:

- The GCC Team, which produced a very capable set of development tools for an amazing number of platforms and
processors.

- Denis Chertykov denisc@overta.ru > for making the AVR-specific changes to the GNU tools.

« Denis Chertykov and Marek Michalkiewicamarekm@linux.org.pl > for developing the standard libraries and
startup code foAVR-GCC.

« Uros Platise for developing the AVR programmer taosp.

- Joerg Wunsch jserg@FreeBSD.ORG > for adding all the AVR development tools to the FreeBSD
(http:/lwww.freebsd.org) ports tree and for providing the demo projeChiapter 2



Table of Contents

Sy = U o R (L= T VL0 A 0T P 1
1.0, GINU BINULIS. ..ttt bbbttt bbbttt b et et bne 1
IR\ B €1 O ORI 2

1.2.1. DOWNIOAAING thE SOUICE.... ..ottt ettt 2
1.2.2. BUIIdING the PrOJECL......o ettt bbbt bt 2
1.2.3. INStAlliNG the TOOIS. ... .o bbbt 2
IR T\ I | TR 3
1.3.1. DOWNIOAAING ThE SOUICE.....ccuiiitiirietreee ettt 3
1.3.2. BUIlING the LIBIariES......ccooiiiiieeee e e 3
1.3.3. Installing the Libraries and Header Files...........ccoiiinineeee e 3
U1 o TP UP PP URPUPRRTR 3

2. USING thE GINU TOOIS.....ccuiuiieieiieitriete sttt ettt h et et e bt e b e se bt b et b et bt st b e e b e bt et b e 5
FZ I I 0 TSN o (0= ot OSSPSR 5
2.2. COMPINNG AN LINKING. ..ttt ettt b e be e e e e e eaesae bt sb e be e e e eaesbesbeseeseeneenennas 7
P2 B /- Vo S 1 T OSSR 12
2.4, GENEIALINGNEX  FlES... et b ettt b e bt et et b et sbesee e eneas 13
2.5. LettingMake BUIld the PrOJECL.........cciiiei ettt et re e e sne e e e 14

T Y o] o1 TToF= N[ IR = L U o S 15

V1T o 0TV Y e SRS 17
o I e CoTo =T a (1Y =T 1 4[] oY PP U PP TRUPRUPRTRIN 17
4.2, FUNCHON RETEIENCE. ... .ottt ettt ettt st b e sa et se et e se et e et e e sbeneneas 17

4.2.1. ATTR_CONST , ATTR PROGMEM, ATTR _PURE_ .coioioiieioeeseereeeseeseeseseesseseseensenes 18
o = [« (11171 =SS 18
e T | 4 a3 TS 18
4 1= 4 ot oY 19
4.2.5.PRG_RDBh......oetereeetetsessessetsssssssessssssetessssssssssasssetasssssssssssssssssssssssesasssssasssssssasasssssasassstesassssssesns 19
A.2.8.PSTR...ecuiitetiieeteitete st e tetste s tete st e tesaete st ete st ete e e besestesesseseea et e saetese e b e et e R e e eRe At e b e R e et eReea et e naetenaeteneete e erenearan 19
O 8 o | S 19
TR o]0 o S 20
R TR o]0/ S 20
o R O oz Y =Yo7 a o o T RSP 20
o o 4 =Y 3 T USSR 21
O K 4 (o7 1Y=Y o 0 T o J = USSR 21
o G = 4 (o« T USROS 21
A s 4 Tod o =R 21
4. 3. EEPROM......ocuiiiieti ettt ettt ettt se et s et et st e e besesae s e st e b e s e et e s e et e et e b et e b e Rt Re Rt A eR e naebeneeEeneete e ete e eteneaean 22
o N o [0 I R L] (T (=] Tt USSR 22
=YY o T o] o I ST = 1o | SRRSO 22
YT o T (o] ' o NSRS 23
G YT o T o] T (=T Yo [ o] (o !SSPSR 23
YT o T o] o .Y RSP RPRSPOT 23
YT o T o] o e o SRRSO 23



T L1 (ST U] N e TP 25

LT VLYot o) gl = 1= (=] o =SS 26
LS00 051 v OO OSRRPRRRT 26
5.1.2.6nable_XIEINAIINT oottt ettt e e e e e bbbt nae e b e he b e be e e e 26
D L BUINTERRUPT .ttt ettt e e et e e e ettt e e e abeeeaseeesabeeaebeeeeaseeesaseeeasbesessesessseaesseesnneesarenan 26
L0 OSSR 27
D LD SIGNAL et e e e et e et e e et et e et e e e eabeeeaateeaaheeaateee ettt e abeeeanteeeaateeeatreeaatteesanreearenan 27
LT O 1T L=Y g =T =T o) [T o OSSOSO 28
L 1@ A = 29
0 I 1@ o T Y £ PSTSRS 29
B.2. FUNCHION REIEIENCE. ... .. e b et ettt bbbt et b et e b see e neas 29
L0200 0= 29
(T2 o T A = v 1= SR 29
L T2 18 1 A =TT =Y S 29
L o o 30
LG T2 7 1 S 30
L2 T 121 S 30
B.2.7. _INW_AIOMIC  coveeitieiieeiteeiteesee st e e te e steeseesbeesteesaeesate e seesseesaeeeaseeseessessnsesnseeseesasesnseenteesaeesnnesnreens 31
(SR < o Yo o N L i1 I oYL A F- T o =YY SR 31
(SR8 e oo o N L i1 I oYL A ST =1 S 31
L0200 0 o T o R 32
B.2.00. OULW eeierieieeiteiteete it et e et et e stesteetesbeeae e besaeesesheessesbesaeenseebeensesaeeasesbesbeenbeebeenseabesaeesbesbeenbenbeeanennes 32
L o U A1 o 32
Lo G o - 14132 <1< o T 1 PR 32
B.2.04.SDi c.victeeee ettt et ehe e aeebeehe e beeheeteaheeaeebeehe e beebe et e eaeeaeeateebeententeearennas 33
6.3, WALCHTAOG APL.....eee bbb b et bbbt b et b bbb et et 33
O 0o 1o T = =] =] o o TSSO 33
Lo 3t BT L L7 o PR 33
B.4. 2. WAL _BNADIE ..ottt h et e e e b e eh e e b b e et e Rt et e sbenheebenre e e nas 34
Lo G AT L (=YY= USSP 34
] = U (o F= o I O I o] =V TSR 35
YN A\V] S Sl €01 O3 0] o1 Te 01 =14 o] o PSSRV 36
N 1Y - TR @ T o 1T LSOO R 36

E =AY o ot o @ 1[0 ] LS SO UR 36



List of Tables

I I = T o T 1 o Tox= 1o OSSR 1
4-1. Primitive types iN Program MEMOLY......cccecueerrerrerereereesersessessessessessesessessessessessessesessessessessensessessesessessessessesseses 17
o IS o 1 = U 0 - g T 25
N I Y C- I @ T o] (o] o I OSSPSR PSPPI 36
E R Y o ot o @ o111 L3 SO P PSPPI 36

List of Figures

2-1. SChemMaAtiC Of AEIMO PIOJECL.......eiuiitirie ettt ettt s e et et be b s b e s e e sb e e e ne e st s b sbenbebeneeneereas 5
B I o (=t 1= (o =T 0 0] )0 g4 =T (o S 16

List of Examples

2-1. DEIMO SOUICE COUER.....eueuiieuireetertete ettt ettt st ae bt se e bt se ek e st e b et e b et s be st see bt s e ebe s e e b e se e b e e e b et e b e st s b ene s b e bt seebe st eb et st et et 5
2-2. Disassembly of DEmMO APPHCALIAN.........ccoiiiiiiie bbb 8
2-3. POrtion of demO MEAP FILE.....couiiie bbb bbb 12
2-4. Makefile  fOr DEIMO PIOJECL......c.eiiueiirieiirietetet ettt bbbttt bbb 14
3-1. Code that runs immediately after RESET ...t 15
3-2. Configuring the watChdOg AUING FESEL.........ciiiiiiiirieriere et bbb 16
4-1. Proper use of EEPROM VAADIES..........ciiiiiiiiei ettt sttt e 22
5-1. Setting up an interrupt NANALEL........ ..o et b b e e aesae b b e e e e e 27
5-2. Setting Up @ SIGNaAI NANAIEE ..ot b e b s e e ae bbb e e ne 27

Vi



Chapter 1. Installing the GNU Tools

This chapter shows how to build and install a complete development environment for the AVR processors using the
GNU toolset.

| created an area for the AVR tools undesr/local to keep this stuff separate from the base systemoéis,, |
chown’ed /usr/local/avr under my normal account. This way, | don’t have to be root to install the tools. All the
instructions assume the tools will be installed in this location. If you want to place them in a different locations you
need to specify the new location using th@efix ~ option.

Table 1-1. Tarball Locations

Tool Version Location

GNU Binutils 2.11 binutils-2.11.tar.bz2
(http://mirrors.rcn.net/pub/sourceware/binutils/releases/binutils-
2.11.tar.bz2)

AVR-GCC 3.01 gcc-core-3.0.1.tar.gz
(ftp://gatekeeper.dec.com/pub/GNU/gcc/gec-3.0.1/gcc-core-
3.0.1.tar.gz)

AVR libc 20011007 avr-libc-20011007.tar.gz
(http://lwww.amelek.gda.pl/avr/libc/avr-libc-20011007 .tar.gz)

AVR Programmer 1.0b uisp-1.0b.src.tar.gz 0

1.1. GNU Binutils

Thebinutils package provides all the low-level utilities needed in building and manipulating object files. Once
installed, your environment will have an AVR assembtesr{as ), linker (avr-Id ), and librarian gvr-ar and
avr-ranlib ). In addition, you get tools which extract data from object fis-pbjcopy ), dissassemble object
file information @vr-objdump ), and strip information from object fileayr-strip ). Before we can build the C
compiler, these tools need to be in place.

The binutils source archive, used in preparing this document, is version 2.11. Its location is diabteii-1
Download the file and extradts contents.

% bunzip2 -c binutils-2.11.tar.bz2 | tar xf -
% cd binutils-2.11

The next step is to configure and build the tools. This is done by supplying argumentstofibere  script that
enable the AVR-specific options.

% configure --target=avr \
--prefix=/usr/local/avr

Whenconfigure s run, it generates a lot of messages while it determines what is available on your operating
system. When it finishes, it will have created sevétakefile s that are custom tailored to your platform. At this
point, you can build the projeét.



Chapter 1. Installing the GNU Tools

% make

If the tools compiled cleanly, you're ready to install them. If you specified a destination that isn't owned by your
account, you'll needoot access to install them. To install:

% make install

Once this completes, you will have a set of utilities for the AVR processor. The executables are locatéghin the
directory located in the base directory you specified in-{piefix ~ option. You'll have to add that directory to
your search path in order to run them conveniently.

1.2. AVR-GCC

Warning: This section is being rewritten. Ignore it for now.

1.2.1. Downloading the Source

The gcc source archive, used in preparing this document, is version 2.95.2. You also need to apply AVR-specific
patches.The three files can be downloaded using the URLEable 1-1 Create a directory in which to build the
tools and put the downloaded files in it. You are now ready to build the utilities.

1.2.2. Building the Project

The first step is to pull the source from the archive and apply the patches to the code.

% tar zxf gcc-core-2.95.2.tar.gz
% cd gcc-2.95.2
% gunzip -dc ../gcc-core-2.95.2-avr-patch-1.1.gz | patch -pl

The next step is to configure and build the compiler. This is done by supplying argumentstmfigeire script that
enable the AVR-specific options and then making the project.

% configure --target=avr \
--prefix=/usr/local/avr \
--disable-nls \
--enable-languages=c

% make

| specify the same installation directory as the binutils. Also, since there is little C++ support (in the case of standard
libraries), | only build the C compiler.

1.2.3. Installing the Tools

If the compiler was built cleanly, you're ready to install it. To install:



Chapter 1. Installing the GNU Tools

% make install

1.3. AVR-LIBC

Warning: This section is being rewritten. Ignore it for now.

1.3.1. Downloading the Source

The AVR standard library archive used in this document is version 20000514. Unfortunately, it uses features of the
preprocessor that are only available in later versions versions of the tools, so a series of patches need to be applied.
The archive and patches can be obtained using the URTa&tile 1-1 Download these two files and place them in

your working directory.

1.3.2. Building the Libraries

Before we can build the libraries, we need to unarchive them and apply patches.
% tar zxf avr-libc-20000514.tar.gz
% cd avr-libc-20000514
% gunzip -dc ../avr-libc-20000514-diff.gz | patch -pl

Now simply build the project.

Note: At this point, the user can configure some library options, like setting whether the watchdog can be
initialized through the linker hack.

% cd src
% make prefix=/usr/local/avr

1.3.3. Installing the Libraries and Header Files

Once the libraries have been built, you need to install them with the rest of the tools.

% make prefix=/usr/local/avr install



Chapter 1. Installing the GNU Tools

1.4. uisp

Warning: This section is being written. Ignore it for now.

Notes

1. This file has been archived witizip2, sobunzip2 needs to be already installed on your system.

2. BSD users should note that the projedtiskefile  uses GNUmake syntax. This means FreeBSD users need to
build the tools by usingmake.

3. Again, the AVR patches have been committed to the GNU project, so future releases will have AVR support
built-in.

4. As the project reaches a more stable release, I'll update these instructions. For now, these are the steps | take.



Chapter 2. Using the GNU Tools

At this point, you should have the GNU tools configured, built, and installed on your system. In this chapter, we
present a simple example of using the GNU tools in an AVR project. After reading this chapter, you should have a
better feel as to how the tools are used and hawakefile can be configured.

2.1. The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off every two seconds. An
AT90S2313 processor will be used as the controller. The circuit for this demonstration is sheigona 2-1 If you
have a development kit, you should be able to use it, rather than build the circuit, for this project.

Figure 2-1. Schematic of demo project

a
=M
=] ICL
- 1 | 19
— AE RESET  (SCK)PE? [
20k Lz o n asmpes |45
0TE - E, (MOSDPES =5 LEDSMH
o ATALZ PE4 (& )l
ELogps = . (OCDPBZ |5
—|J—F— uret PEZ = i
18p4 CAINLIPED ==
22 vec chinmpen 2 GND
BND 1
v—“S C(ICPIPDS ===
T — (T3ROS -
[
GND (TENRD4 %
C(INTDPO3 [~
- (INTEDPDZ |—2—
GND (TXODROL %
(REVPDE =

ATIEEZ313P

The source code is given Example 2-1For the sake of this example, create a file catleaio.c containing this
source code. Some of the more important parts are:
The PWM is being used in 10-bit mode, so we need a 16-bit variable to remember the current value.

SIGNAL() is a macro that marks the function as an interrupt routine. In this case, the function will get called
when the timer overflows. Setting up interrupts is explained in greater detailapter 5

This section determines the new value of the PWM.

Here’s where the newly computed value is loaded into the PWM regsiter. Since we are in an interrupt routine, it
is safe to useutw (). Outside of an interrupputw_atomic () should be used.

This routine gets called after a reset. It initializes the PWM and enables interrupts.

The main loop of the program does nothing -- all the work is done by the interrupt routine! If this was a real
product, we’'d probably put a sleep instruction in this loop to conserve power.

Example 2-1. Demo source code
/*

*

* "THE BEER-WARE LICENSE" (Revision 42):




Chapter 2. Using the GNU Tools

* <joerg@FreeBSD.ORG > wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch

* Simple AVR demonstration. Controls a LED that can be directly

* connected from OC1 (PB1 on the '2333 chip, PB3 on the '2313 chip)
* to GND. The brightness of the LED is controlled with the PWM.

* After each period of the PWM, the PWM value is either incremented
* or decremented, that's all.

* $Id: simple-demo.c,v 1.1 2001/01/14 21:35:41 j Exp $

#include <io.h >
#include  <interrupt.h >
#include  <sig-avr.h >

#if defined(__AVR_AT90S2333_ )
# define OC1 PB1

#elif defined(__AVR_AT90S2313_ )
# define OC1 PB3

#else

# error "Don’'t know what kind of MCU you are compiling for"
#endif

static uint16_t pwm; a

enum {UP, DOWN} direction;

SIGNAL(SIG_OVERFLOW1)]

{
switch (direction) { d
case UP:
if (++pwm == 1023)
direction = DOWN,;
break;
case DOWN:
if (--pwm == 0)
direction = UP;
break;
}
__outw(pwm, OCR1L); O
}
void
ioinit(void) ad
{

#if defined(COM11)

outp(BV(PWM10)|BV(PWM11)|BV(COM11), TCCR1A); /* tmrl is 10-bit PWM */
#elif defined(COM1A1)

outp(BV(PWM10)|BV(PWM11)|BV(COM1Al), TCCR1A); /* tmrl is 10-bit PWM */



Chapter 2. Using the GNU Tools

telse

# error "need either COM1Al or COM11"

#endif
outp(BV(CS10), TCCR1B); /* tmrl running on full MCU clock */
__outw(0, OCRL1L); [* set PWM value to 0 */
outp(BV(OC1), DDRB); /* enable OC1 and PB2 as output */

timer_enable_int(BV(TOIEL));

sei(); /* enable interrupts */
}
int
main(void)
{

ioinit();

for ;) O

/* wait forever, the interrupts are doing the rest */

}

2.2. Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the compiler needs to know the
processor type so thenmcu option is specified. Theds option will tell the compiler to optimize the code for

efficient space usage (at the possible expense of code execution speed.)iFbsed to embed debug info. The

debug info is useful for disassemblies and doesn’t end up irhtlxe files, so | usually specify it. Finally, the tells

the compiler to compile and stop -- don’t link. This demo is small enough that we could compile and link in one step.
However, real-world projects will have several modules and will typically need to break up the building of the project
into several compiles and one link.

% avr-gcc -g -Os -mmcu=at90s2313 -c demo.c
The compilation will create demo.o file. Next we link it into a binary calledemo.out .
% avr-gcc -g -mmcu=at90s2313 -0 demo.out demo.o

It is important to specify the MCU type when linking. The compiler usestiracu option to choose start-up files
and run-time libraries that get linked together. If this option isn’t specified, the compiler defaults to the 8515
processor environment, which is most certainly what you didn’t want.

Now we have a binary file. Can we do anything useful with it (besides put it into the processor?) The GNU Binutils
suite is made up of many useful tools for manipulating object files that get generated. Onatoabigump

which takes information from the object file and displays it in many useful ways. Typing the command by itself will
cause it to list out its options.

For instance, to get a feel of the application’s size -th@ption can be used:

% avr-objdump -h demo.out



Chapter 2. Using the GNU Tools

demo.out: file format elf32-avr

Sections:

Idx Name Size VMA LMA File off Algn

0 .text 000000ec 00000000 00000000 00000094 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 00800060 000000ec 00000180 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000004 00800060 00800060 00000180 2**0
ALLOC

3 .eeprom 00000000 00810000 00810000 00000180 2**0
CONTENTS

4 .stab 00000690 00000000 00000000 00000180 2**2
CONTENTS, READONLY, DEBUGGING

5 .stabstr 00000637 00000000 00000000 00000810 2**0

CONTENTS, READONLY, DEBUGGING

The output of this command shows how much space is used in each of the sections (the .stab and .stabstr sections
hold the debugging information and won’t make it into the ROM file.)

An even more useful option is . This option disassembles the binary file and intersperses the source code in the
output! This method is much better, in my opinion, than usingghevith the compiler because this listing includes
routines from the libraries and the vector table contents. Also, all the “fix-ups” have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

% avr-objdump -S demo.out

This command generates the output showBxample 2-2

Example 2-2. Disassembly of Demo Application

demo.out: file format elf32-avr

Disassembly of section .text:

00000000 <.__start_of_init__ >
0: Oa c0 rimp .+20 ; 0x16
2: 21 c0 rjmp .+66 ; 0x46
4: 20 c0 rjmp .+64 ; 0x46
6: 1f cO rmp .+62 ; 0x46
8: le c0 rjmp .+60 ; 0x46
a: 1f c0 rjmp .+62 ; Oxda
c: 1c c0 rjmp .+56 ; 0x46
e: 1b c0 rjmp .+54 ; 0x46
10: 1a cO rmp .+52 ; 0x46
12: 19 c0 rmp .+50 ; 0x46
14: 18 cO0 rNmp .+48 ; 0x46

00000016 <_real_init_ >
16: 11 24 eor rl, rl
18: 1f be out Ox3f, r1 ; 63



la: 20 e0
1c: a8 95
le: 21 bd
20: 20 e0
22: 25 bf
24: ec ee
26: fO €0
28: a0 eb6
2a: b0 e0
2c: 03 c0

Idi r18, Ox00 ; O

wdr

out Ox21, r18 ; 33

Idi r18, 0x00 ; O

out Ox35, r18 ; 53

Idi r30, OXEC ; 236

Idi r31, Ox00 ; O

Idi r26, 0x60 ; 96

Idi r27, 0x00 ; O

rmp .+6 ; 0x34

0000002e <.copy_data_loop  >:

2e: ¢c8 95
30: 31 96
32: 0d 92

Ipm
adiw r30, 0x01 ; 1
st X+, r0

00000034 <.copy_data_start >

34: a0 36
36: d9 f7
38: a0 e6
3a: b0 e0
3c: 01 cO

cpi r26, 0x60 ; 96
brne .-10 ; Ox2e
Idi r26, 0x60 ; 96

Idi r27, Ox00 ; O

rmp .+2 ; 0x40

0000003e <.zero_bss_loop  >:

3e: 1d 92

st X+, rl

00000040 <.zero_bss_start >!

40: a4 36
42: e9 f7
44: 4c¢ c0

cpi r26, 0x64 ; 100
brne .-6 ; 0x3e
rmp .+152 . Oxde

00000046 <_comparator_  >:

46: 00 cO

rmp .+0 ; 0x48

00000048 <_unexpected_ >:

48: 18 95

reti

0000004a <_overflowl_ >:

static uintl6_t pwm;

enum {UP, DOWN} direction;

SIGNAL(SIG_OVERFLOW1)

{
4a: 1f 92

4c: Of 92
4e: Of b6
50: Of 92
52: 11 24
54: 2f 93
56: 8f 93
58: 9f 93

push rl

push rO

in r0, Ox3f ; 63
push r0

eor rl, rl
push r18

push r24

push r25

switch (direction) {

5a: 80 91 62 00

Ids r24, 0x0062

Chapter 2. Using the GNU Tools



Se:
62:
64:
66:
68:

90 91 63 00 Ids r25, 0x0063

00 97 shiw r24, 0x00 ; O

71 fO breq .+28 ; 0x82
01 97 shiw r24, ox01 ; 1

fl f4 brne .+60 ; Oxab
case UP:

if (++pwm == 1023)

direction = DOWN;

break;
case DOWN:
if (-pwm == 0)
6a: 80 91 60 00 Ids r24, 0x0060
6e: 90 91 61 00 Ids r25, 0x0061
72: 01 97 shiw r24, 0x01 ; 1
74: 90 93 61 00 sts 0x0061, r25
78: 80 93 60 00 sts 0x0060, r24
7c: 00 97 shiw r24, 0x00 ; O
7e: 99 f4 brne .+38 ; Oxab
direction = UP;
80: Oe cO rmp .+28 ; 0x9e
82: 80 91 60 00 Ids r24, 0x0060
86: 90 91 61 00 Ids r25, 0x0061
8a: 01 96 adiw r24, 0x01 ; 1
8c: 90 93 61 00 sts 0x0061, r25
90: 80 93 60 00 sts 0x0060, r24
94:. 8f 5f subi r24, OxFF ; 255
96: 93 40 sbci r25, 0x03 ; 3
98: 31 f4 brne .+12 ; Oxab
9a: 81 e0 Idi r24, 0x01 ; 1
9c: 90 e0 Idi r25, Ox00 ; O
9e: 90 93 63 00 sts 0x0063, r25
a2: 80 93 62 00 sts 0x0062, r24
break;
}
__outw(pwm, OCRIL);
a6: 80 91 60 00 Ids r24, 0x0060
aa: 90 91 61 00 Ids r25, 0x0061
ae: 9b bd out 0x2b, r25 ; 43
b0: 8a bd out Ox2a, r24 ; 42
b2: of 91 pop r25
b4: 8f 91 pop r24
b6: 2f 91 pop rl8
b8: Of 90 pop r0
ba: Of be out Ox3f, r0 ; 63
bc: Of 90 pop rO
be: 1f 90 pop rl
c0: 18 95 reti

000000c2 <ioinit  >:

}

void

Chapter 2. Using the GNU Tools

10



Chapter 2. Using the GNU Tools

ioinit(void)
{
#if defined(COM11)
outp(BV(PWM10)|BV(PWM11)|BV(COM11), TCCR1A); /* tmrl is 10-bit PWM */
#elif defined(COM1A1)
outp(BV(PWM10)|BV(PWM11)|BV(COM1A1l), TCCR1A); /* tmrl is 10-bit PWM */
c2: 83 e8 Idi r24, 0x83 ; 131

c4: 8f bd out Ox2f, r24 ; 47
#else
# error "need either COM1A1 or COM11"
#endif
outp(BV(CS10), TCCR1B); /* tmrl running on full MCU clock */
c6: 81 e0 Idi r24, 0x01 ; 1
c8: 8e hd out Ox2e, r24 ; 46
__outw(0, OCRL1L); /* set PWM value to 0 */
ca: 80 e0 Idi r24, 0x00 ; O
cc: 90 e0 Idi r25, 0x00 ; O
ce: 9b bhd out Ox2b, r25 ; 43
d0: 8a bd out Ox2a, r24 ; 42
outp(BV(OC1), DDRB); [* enable OC1 and PB2 as output */
d2: 88 e0 Idi r24, 0x08 ; 8
d4: 87 bb out 0x17, r24 ; 23
#endif
}
extern inline void timer_enable_int (unsigned char ints)
{
d6: 80 e8 Idi r24, 0x80 ; 128
#ifdef TIMSK
outp (ints, TIMSK);
d8: 89 bf out 0x39, r24 ; 57
timer_enable_int(BV(TOIEL));
sei(); /* enable interrupts */
da: 78 94 sei
}
dc: 08 95 ret

000000de <main >:

int

main(void)

{
de: cf ed Idi r28, OxDF ; 223
e0: dO e0 Idi r29, Ox00 ; O
e2: de bf out Ox3e, r29 ; 62
e4: cd bf out 0x3d, r28 ; 61

ioinit();

e6: ed df rcall .-38 ; 0xc2

for ()

11



Chapter 2. Using the GNU Tools

e8: ff cf rmp .-2 ; Oxe8
000000ea <__stop_progli___ >
ea: ff cf rNmp .-2 ; Oxea

2.3. “Map” Files

avr-objdump is very useful, but sometimes it's necessary to see information about the link that can only be
generated by the linker. A map file contains this information. A map file is useful for monitoring the sizes of your
code and data. It also shows where modules are loaded and which modules were loaded from libraries. It is yet
another view of your application. To get a map file, | usually afft-Map,demo.map  to my link command. Relink
the application using the following command to gened&t®o.map (a portion of which is shown iExample 2-3

% avr-gcc -g -mmcu=at90s2313 -WI,-Map,demo.map -0 demo.out demo.o
Some points of interest in the map file are:

The .text segment (where program instructions are stored) starts at location 0x0.

The next available address in the .text segment is location Oxec, so the instructions use up 234 bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at location 0x60, which is the first address
after the register bank on a 2313 processor.

The next available address in the .data segment is also location 0x60, so the application has no initialized data.
The .bss segment (where uninitialized data is stored) starts at location 0x60.

The next available address in the .bss segment is location 0x64, so the application uses 4 bytes of uninitialized
data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t any EEPROM variables.

Example 2-3. Portion of demo map file

text 0x00000000 Oxec O
*(.init)
.init 0x00000000 0x16 /usr/local/lib/gcc-lib/avr/3.0/..1..1..1..Javrllib/crts2313.0
*(.progmem.gcc¥)
*(.progmem?)

0x00000016 .=ALIGN(0x2)
*(.text)
text 0x00000016 0x34 /usr/localllib/gcc-lib/avr/3.0/../..1..1..Javr/lib/crts2313.0
0x00000046 _interruptl_
0x00000046 _uart_trans_
0x00000046 _overflowO_
0x00000016 _init_
0x00000046 _uart_data_
0x00000046 _uart_recv_
0x00000048 _unexpected_

12



Chapter 2. Using the GNU Tools

0x00000046 _comparator_
0x00000046 _interruptO_
0x00000046 _output_comparela_
0x00000046 _input_capturel
0x00000016 _real_init_
text 0x0000004a Oxa2 demo.o
0x0000004a _overflowl
0x000000c2 ioinit
0x000000de main
0x000000ec .=ALIGN(0x2)
*(.text.*)
0x000000ec .=ALIGN(0x2)
*(.fini)
0x000000ec _etext=. a
.data 0x00800060 0x0 load address 0x000000ec O
0x00800060 PROVIDE (__data_start, .)
*(.data)
*(.gnu.linkonce.d*)
0x00800060 .=ALIGN(0x2)
0x00800060 _edata=. O
.bss 0x00800060 ox4 O
0x00800060 PROVIDE (__bss_start, .)
*(.bss)
.bss 0x00800060 0x2 demo.o
*(COMMON)
COMMON 0x00800062 0x2 demo.o
0x0 (size before relaxing)
0x00800062 direction
0x00800064 PROVIDE (__bss_end, .)
0x00800064 _end=. 0O
.eeprom 0x00810000 0x0 load address 0x000000ec O
*(.eeprom®)
0x00810000 __eeprom_end=. 0O

2.4. Generating .hex Files

We have a binary of the application, but how do we get it into the processor? Most (if not all) programmers will not
accept a GNU executable as an input file, so we need to do a little more processing. The next step is to extract
portions of the binary and save the information into “hex” files. The GNU utility that does this is called

avr-objcopy

The ROM contents can be pulled from our project’s binary and put into theofiledhex using the following
command:

% avr-objcopy -j .text -O ihex demo.out rom.hex

The resultinghex file contains:

13



Chapter 2. Using the GNU Tools

:100000000AC021C020C01FCO1EC01FC01CC01BC012
:100010001AC019C018C011241FBE20EOA89521BD28
:1000200020E025BFE4EFFOEOAOEG6BOEO03C0C89513
:1000300031960D92A437D9F7A4E7BOE001C01D9224
:10004000A837E9F750C000C018951F920F920FB65D
:100050000F9211242F938F939F938091760090910C
:100060007700009791F0019711F5809174009091BD
:10007000750001979093750080937400892BB9F4F3
:1000800080916000909161000EC080917400909109
:100090007500019690937500809374008F5F934074
:1000A00031F481E090E09093770080937600809126
:1000B0007400909175009BBD8ABD9F918F912F9187
:1000CO000F900FBEOF901F90189583E88FBD81EOB1
:1000D000SEBDSOEO90E09BBDSABDSSEO87BB80ES54
:1000E00089BF78940895CFEDDOEODEBFCDBFEDDFBE
:0400FO000FFCFFFCF70

:00000001FF

The-j option indicates that we want the information from the .text segment extracted. If we specify the EEPROM
segment, we can generatenax file that can be used to program the EEPROM:

% avr-objcopy -j .eeprom -O ihex demo.out eeprom.hex
The resultinghex file contains:
:00000001FF

which is an emptyhex file (which is expected, since we didn’t define any EEPROM variables.)

2.5. Letting Make Build the Project

Rather than type these commands over and over, they can all be placedkefile. To build the demo project
usingmake, saveExample 2-4n a file calledMakefile

Example 2-4.Makefile  for Demo Project

CC=avr-gcc
OBJCOPY=avr-objcopy

CFLAGS=-g -mmcu=at90s2313

rom.hex : demo.out
$(OBJICOPY) -j .text -O ihex demo.out rom.hex

demo.out : demo.o
$(CC) $(CFLAGS) -0 demo.out -WI,-Map,demo.map demo.o

demo.o : demo.c
$(CC) $(CFLAGS) -Os -c demo.c

14



Chapter 3. Application Start-up

The standard library includes a start-up module that prepares the environment for running applications written in C.
Several versions of the start-up script are available because each processor has different set-up requirements. The
compiler,avr-gcc , selects the appropriate module based upon the processor specified by command line options (see
Appendix).

For the AVR processors, the start-up module is responsible for the following tasks:

+ Providing a default vector table.

« Providing default interrupt handlers.

- Initializing the globally-reserved registers.
« Initializing the watchdog.

« Initializing the mcucr register.

- Initializing the data segment.

- Zeroing out the .bss segment.

- Jumping tomain() . (A jump is used, rather than a call, to save space on the stackinf) is not expected to
return.)

The start-up module contains a default interrupt vector table. The contents of the table are filled with predefined
function names which can be overridden by the programmer. This is discussed compl€iehpier 5The first

entry in the table, however, is the reset vector, which is set to jump to location . _init_  is defined to be a

"weak" symbol, which means that if the application doesn’t define it, the linker will use the value from the library (or
module). The start-up module defingsit_  to be the same location ageal_init_

If you want to add some custom code that gets executed immediately after a reset, name yourinitutineTo

avoid wasting program memory, you should define the function usingakeal attribute. This tells the compiler not

to generate any prologue or epilogue code in the function. It also prevents a ret instruction from being added, which
allows us to end the function with a rjmp instruction. An example of how to do this is shorample 3-1

Example 3-1. Code that runs immediately after RESET.

void _real_init_(void);
void _init_(void) __attribute__((naked));

void _init_(void)

{
/* This must be the last line of the function. */
asm ( "rimp _real_init_" );
}
Once execution begins ateal_init_ , the system sets up the watchdog and the mcucr registers. The module uses

a linker trick to allow you to modify the value without recompiling. The module takestltgessof the variables
__init_wdctr__and __init_mcucr__, rather than the contents. By usingdéfeym option to the linker, you set

the address of the symbols, which are used as the load values for the registers. These two variables are defined as
"weak" symbols, so the module will provide default values if you don't override them.

15



Chapter 3. Application Start-up

Example 3-Xhows the use afvr-gcc  to link together some object files into an executapteg.out . The
executable will set the watchdog control register to 0x03.

Example 3-2. Configuring the watchdog during reset

% avr-gcc -0 prog.out -WI,--defsym, _init_wdctr__=3 filel.o file2.0 file3.0

Next, global variables that have initial values are loaded from program memory. The compiler creates two identically
laid out sections. One will be placed in static RAM and is used during program execution. The other is placed in
program ROM and contains the initial values. The start-up code copies the ROM image into the static RAM so that
main() (and everything called fronmain() ) see a properly initialized data segment.

The uninitialized data section, .bss, is then zeroed out. This section contains all non-auto variables that weren't given
an initial value.

Lastly, the module jumps tmain() and the application starts running. The functiosin() is recognized by the
compiler as being special, so some prolog and epilog code is placed in this function. When entering, the stack is
initialized to point to the end of static RAM. The end of the function always contains an infinite loop, so if you try to
exitmain() , your application will hang.

It should be noted that the start-up modules add quite a bit of bulk to an application. If you are using a smaller part,
the bloat caused by the start-up module may be unacceptible. In those cases, your application would be better served
by writing it entirely in assembly language. As an exampigure 3-1contains the hex file, generated by an empty

main() , targetted for the AT90S2313 processor. The processor has only 1Kwords of ROM space and the start-up
code eats up nearly 5% of it!

Figure 3-1. Hex file for empty main()

:150000000FC027C026C025C024C023C022C021C020C01FCO1E03
:15001500COCFEDDOEOCDBFDEBFFFCF11241FBE20EOA89521BD86
:15002A0020E025BFE4E5FOEOAOE6BOEOO3C0C89531960D92A008
:15003F0036D9F7AOEGBOEO01C01D92A036E9F7E3CF1895FECF3E
:00000001FF

16



Chapter 4. Memory APIs

The AVR family of processors do not use a single address space to map data and code. Since the registers are 8 bits
wide, and the registers are used to write to RAM, the static RAM was made 8 bits wide. The program memory, on
the other hand, is 16 bits wide. This allows the instructions to represent more operations in a single memory access.
In addition, the EEPROM resides in yet another bank of memory.

AVR-GCC places code in the flash ROM and places data in the SRAM, which would be expected. If your program
needs to access the EEPROM or place data in the ROM, however, things are a little less intuitive. This chapter shows
what support has been provide for these situations.

4.1. Program Memory

Placing data in ROM is very useful to embedded applications: the data is always available and doesn'’t have to be
generated at startup. Even more importantly, the data cannot get corrupted by an errant application, which reduces
the number of considerations when debugging.

Since the ROM resides in a different address space, we need a way to tell the compiler to place variables there. We
also need a way to access the data (i.e. the compiler has to use the Ipm instruction.)

The first detail is provided by the attribute__ keyword. By tagging a variable with

__attribute__ ((progmem)) , you can force it to reside in the ROMariables with this attribute cannot be

accessed like variables not using the attributeu need to use the macros described in this section to access the data
in ROM. There are a number of data types already defined for the primitive types. These are shalla #1

Table 4-1. Primitive types in program memory

Type Name Definition

prog_void void __attribute__ ((progmem))
prog_char char __ attribute__ ((progmem))
prog_uchar unsigned char __ attribute__ ((progmem))
prog_int int__ attribute__ ((progmem))

prog_long long __ attribute__ ((progmem))
prog_long_long long long __attribute__ ((progmem))
PGM_P prog_char const*

PGM_VOID_P prog_void const*

The second step, accessing the data, is done using the macros in this section. These macros are found in
pgmspace.h .

17



Chapter 4. Memory APIs

4.2. Function Reference

4.2.1.  ATTR_CONST , ATTR_PROGMEM, ATTR PURE__

#include  <pgmspace.h >

__ATTR_CONST_, _ ATTR_PROGMEM, _ ATTR_PURE__

description. These macros are used to notify the compiler that it is to handle a function or variable specially.

If a function is marked with the  ATTR_CONST__macro, the compiler will assume the function produces no side
effects and produces an identical result when rpesented with identical inputs. (i.e. the function takes the parameters
and produces a result, but doesn’t change any memory locations.) If a function marked with this attribute is in a loop
and its parameters don't change, the compiler can call it once and use the return value in the loop.

The__ ATTR_PROGMEM macro is used in variable definitions. If a variable has this attribute, it is allocated in
program memory. Since program memory can’'t be changed when the processor is running, a variable with this
attribute is always defined with an initial value.

The__ ATTR_PURE__macro, when used on a function, tells the compiler not to generate any prologue or epilogue
code (the function’s ret instruction is even suppressed!)

4.2.2. _elpm_inline

#include  <pgmspace.h >

uint8_t __elpm_inline  (uint32_t addr);

description. This macro gets converted into in-line assembly instructions to pull a byte from program ROM. The
elpm instruction is used, so this macro can only be used with AVR devices that support it. The argument is the 32-bit
address of the cell. The maximum address depends upon the device being used.

4.2.3. __Ipm_inline

#include  <pgmspace.h >

uint8_t  __ Ipm_inline  (uintl6_t addr);

18



Chapter 4. Memory APIs

description. This function gets converted into in-line assembly instructions to pull a byte from program ROM. The
argument is the 16-bit address of the cell. The maximum address depends upon the device being used.

Only one byte is returned by this function. When pulling wider values from the program memomettigy P()
andstrcpy P()  functions should be used.

see alsomemcpy_P() , strcpy_P()

4.2.4. memcpy_P

#include  <pgmspace.h >

void* memcpy_Rvoid* dst, PGM_VOID_P src, size_t n);

description. This is a special version of theemcpyfunction that copies data from program memory to RAM.

4.2.5. PRG_RDB

#include  <pgmspace.h >

uint8_t PRG_RDRiint16_t addr);

description. This macro simply invokes the Ipm_inline() function.

4.2.6. PSTR

#include  <pgmspace.h >

PSTRS);

description. This macro takes a literal string as an argument. It places the string into the program address space and
returns its address. The string can be accessed using the macros and functions in this section.

19



Chapter 4. Memory APIs

4.2.7. strcat_P

#include  <pgmspace.h >

char* strcat P (char* s1, PGM_P s2);

description. This function operates similarly to thercat() function. Its second argument, however, refers to a
string in program memory.

4.2.8. strcmp_P

#include  <pgmspace.h >

int strcmp_P (char const* s1, PGM_P s2);

description. This function operates similarly to tircmp()  function. Its second argument, however, refers to a
string in program memory. Make sure you don’t get the arguments reversed.

4.2.9. strcpy P

#include  <pgmspace.h >

char* strcpy_P (char* s1, PGM_P s2);

description. This function operates similarly to tlercpy()  function. Its second argument, however, refers to a
string in program memory.

4.2.10. strcasecmp_P

#include  <pgmspace.h >

int strcasecmp_P (char const* s1, PGM_P s2);

20



description. This function operates similarly to thrcasecmp()
to a string in program memory.

4.2.11. strlen_P

#include  <pgmspace.h >

size t strlen_P (PGM_P 5s);

Chapter 4. Memory APIs

function. Its second argument, however, refers

description. This function operates similarly to therlen() function. Its argument, however, refers to a string in

program memory.

4.2.12. strncasecmp_P

#include  <pgmspace.h >

int strncasecmp_P (char const* s1, PGM_P s2, size_t n);

description. This function operates similarly to tlsrncasecmp()
to a string in program memory.

4.2.13. strncmp_P

#include  <pgmspace.h >

int  strncmp_P (char const* s1, PGM_P s2, size_t n);

function. Its second argument, however, refers

description. This function operates similarly to tlrrncmp()  function. Its second argument, however, refers to a
string in program memory. Make sure you don’t get the arguments reversed.

4.2.14. strncpy_P

#include  <pgmspace.h >

21



Chapter 4. Memory APIs

char* strncpy_P (char* s1, PGM_P s2, size_t n);

description. This function operates similarly to thrncpy()  function. Its second argument, however, refers to a
string in program memory.

4.3. EEPROM

All AVR processors contain a bank of nonvolatile memory. Unfortunately, this memory doesn’t reside in the same
address space as the static RAM; the architecture requires that the EEPROM cells be accessed through I/O registers.
The EEPROM API provides a high-level interface to the hardware, which makes using the nonvolatile memory much
easier. To gain access to these functions, include thedfiemm.h .

The routines take an argument representing the address of the cell. Rather than using hard-coded numbers or defined
symbols, it would be nice to use actual variables. AVR-GCC allows this by using theibute keyword.

Example 4-Ishows a function that returns a checksum value from the EEPROM. The example allocates space in the
.eeprom section to hold the variable, but doesn’t specify the actual address. By taking this approach, the linker will
properly fix-up the address references.

Example 4-1. Proper use of EEPROM variables

static uint8_t checksum __attribute_ ((section (".eeprom"))) = 0;
uint8_t getChecksum(void)
{

return eeprom_rb(&checksum);

}

The amount of nonvolatile memory varies from device to device. The linker "knows" the limits of the sections, so by
letting the compiler and linker reserve the space for variables, you can get diagnostic messages if you exceed the size
of the bank. This can also come in handy if you need to switch device types in a project.

4.4. Function Reference

4.4.1. eeprom_is_ready

#include  <eeprom.h >

int eeprom_is_ready (void);

description. This function indicates when the eeprom is able to be accessed. When an EEPROM location is written
to, the entire EEPROM become unavailable for up to 4 milliseconds. Unlike some other microcontrollers, the AVR

22



Chapter 4. Memory APIs

processors use hardware timers to program EEPROM cells. A status bit is provided to give an application the state of
the EEPROM. This function allows an application to poll the status to find out when the memory is accessible.

4.4.2. eeprom_rb

#include  <eeprom.h >

uint8_t  eeprom_rb (uintl6_t addr);

description. Reads a single byte from the EEPROM. The parareddr specifies the location to read. The
maximum address that can be specified depends upon the device. A macro has been defined to provide compatibility
with the IAR compiler. Using the macrdEEGET(addr) will actually call this function.

4.4.3. eeprom_read_block

#include  <eeprom.h >

void eeprom_read_block (void* buf, uintl6_t addr, size_t n);

description. Reads a block of EEPROM memory. The starting address of the EEPROM block is specified in the
addr parameter. The maximum address depends upon the device. The number of bytes to transfer is indicated by the
n parameter. The data is transferred to an SRAM buffer, the starting address of which is passédfin aingument.

4.4.4. eeprom_rw

#include  <eeprom.h >

uintlé_t  eeprom_rw (uintl6_t addr);

description. Reads a 16-bit value from the EEPROM. The data is assumed to be in little endian format. The
parametenddr specifies the location to read. The maximum address that can be specified depends upon the device.

23



Chapter 4. Memory APIs

4.4.5. eeprom_wb

#include  <eeprom.h >

void eeprom_wb (uintl6_t addr, uint8_t val);

description. Writes a valueyal , to the EEPROM. The value is written to addrasislr . To be compatible with the
IAR compiler, a macro has been defineBEPUT(addr, val)  will expand to a call taeprom_wb() .

24



Chapter 5. Interrupt API

It's nearly impossible to find compilers that agree on how to handle interrupt code. Since the C language tries to stay
away from machine dependent details, each compiler writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt routines with predetermined names.
By using the appropriate name, your routine will be called when the correspondi ng interrupt occurs. The device
library provides a set of default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by convention, a set of registers
when it's normally executing compiler-generated code. It's important that these registers, as well as the status
register, get saved and restored. The extra code needed to do this is enabled by tagging the interrupt function with
__attribute__ ((interrupt))

These details seem to make interrupt routines a little messy, but all these details are handled by the Interrupt API. An
interrupt routine is defined with one of two macro$TERRUPT() andSIGNAL() . The interrupt is chosen by

supplying one of the symbols ifable 5-1 These macros register and mark the routine as an interrupt handler for the
specified peripheral. See the entriesIMFERRUPT() andSIGNAL() for examples of their use.

Unused interrupt vectors point to a routine callediexpected_ . The default version of this function simply
consists of a reti instruction. You can define your own handler, if you want to handle unexpected interrupts
differently.

Table 5-1. Signal names

Name Description

SIG_INTERRUPTO
SIG_INTERRUPTL1
SIG_INTERRUPT2
SIG_INTERRUPT3
SIG_INTERRUPT4
SIG_INTERRUPTS
SIG_INTERRUPT6
SIG_INTERRUPT?
SIG_OUTPUT_COMPAREZ2
SIG_OVERFLOW2
SIG_INPUT_CAPTURE1
SIG_OUTPUT_COMPARE1A
SIG_OUTPUT_COMPARE1B
SIG_OVERFLOW1
SIG_OUTPUT_COMPAREO
SIG_OVERFLOWO

SIG_SPI

External InterruptO

External Interruptl

External Interrupt2

External Interrupt3

External Interrupt4

External Interrupt5

External Interrupt6

External Interrupt?

Output Compare2 Interrupt
Overflow?2 Interrupt

Input Capturel Interrupt
Output Comparel(A) Interrupt
Output Comparel(B) Interrupt
Overflowl Interrupt

Output CompareO Interrupt
OverflowO Interrupt

SPI Interrupt

SIG_UART_RECV
SIG_UART1_RECV
SIG_UART_DATA

UART(0) Receive Complete Interrupt
UART(1) Receive Complete Interrupt
UART(0) Data Register Empty Interrupt

25



Chapter 5. Interrupt API

Name Description

SIG_UART1_DATA UART(1) Data Register Empty Interrupt
SIG_UART_TRANS UART(0) Transmit Complete Interrupt
SIG_UART1_TRANS UART(1) Transmit Complete Interrupt
SIG_ADC ADC Conversion complete
SIG_EEPROM Eeprom ready

SIG_COMPARATOR Analog Comparator Interrupt

5.1. Function Reference

5.1.1.cli

#include  <interrupt.h >

void cli (void);

description. Disables all interrupts by clearing the global interrupt mask. This function actually compiles into a
single line of assembly, so there is no function call overhead.

5.1.2. enable_external_int

#include  <interrupt.h >

void enable_external_int (uint8_t ints);

description. This function gives access to the gimsk register (or eimsk register if using an AVR Mega device).
Although this function is essentially the same as usingthg() function, it does adapt slightly to the type of
device being used.

5.1.3. INTERRUPT

#include  <sig-avr.h >

INTERRUPTsigname);

26



Chapter 5. Interrupt API

description. This macro creates the prototype and opening of a function that is to be used as an irdiggmapte
should be one of the symbols foundTiable 5-1 The routine will be executed with interrupts enabled. If you want
interrupts disabled, use tI®GNAL() macro insteadExample 5-1sets up an empty routine which gets called when
the ADC has completed a conversion.

see alsoSIGNAL()
Example 5-1. Setting up an interrupt handler
[* This function will get attached to the SIG_ADC interrupt vector. */

INTERRUPT(SIG_ADC)

{
}

5.1.4. sei

#include  <interrupt.h >

void sei (void);

description. Enables interrupts by clearing the global interrupt mask. This function actually compiles into a single
line of assembly, so there is no function call overhead.

5.1.5. SIGNAL

#include  <sig-avr.h >

SIGNAL(signame);

description. This macro creates the prototype and opening of a function that is to be used as an interrupt. The
argumensigname should be one of the symbols foundTable 5-1 The routine will be executed with interrupts
disabled. If you want interrupts enabled, use MieERRUPT() macro instead.

Example 5-Zets up an empty routine which gets called when the ADC has completed a conversion.
see alsoINTERRUPT()
Example 5-2. Setting up a signal handler

[* This function will get attached to the SIG_ADC interrupt vector. */

SIGNAL(SIG_ADC)

27



5.1.6. timer_enable_int

#include  <interrupt.h >

void timer_enable_int (uint8_t ints);

description. This function modifies the timsk register.

Chapter 5. Interrupt API

28



Chapter 6. 1/0 API

6.1. I/0 Port APIs

This section describes the functions and macros that make it easier to access the 1/O registers. Most of these routines
actually get replaced with in-line assembly, so there is little to no performance penalty to use them. These routines
are defined irio.h . This header file also defines the registers and bit definitions for the correct AVR device.

Note to self...

Include a few paragraphs that mention the various symbols that have been defined. Also, mention the bit ddfinitions
and how they are typically used.

6.2. Function Reference

6.2.1. BV

#include <io.h >

BV(pos);

description. This macro converts a bit definition into a bit mask. It is intended to be used with the bit definitions in
theio.h header file. For instance, to build a mask of both the wdtoe and wde watchdog bits, you would use
"BV(WDTOE) | BV(WDE)".

6.2.2. bit_is_clear

#include <io.h >

uint8_t bit_is_clear (uint8_t port, uint8_t bit);

description. Returns 1 if the specifiekit in port is clearbit can be 0to 7. This function uses the sbic
instruction to test the bit, gport needs to be a valid address for that instruction.

29



Chapter 6. 1/0 API

6.2.3. bit_is_set

#include <io.h >

uint8_t bit_is_set (uint8_t port, uint8_t bit);

description. Returns 1 if the specifiekiit in port is set.bit can be 0to 7. This function uses the sbis instruction
to test the bit, sport needs to be a valid address for that instruction.

6.2.4. chbi

#include <io.h >

void chi (uint8_t port, uint8_t bit);

description. Clears the specified bibit , in the 1/O register specified tgort . bit is a value from 0 to 7 and
should be specified as one of the defined symbols in the I/O header fipest If specifies an actual I/O register, this
macro reduces to a single in-line assembly instruction. If it isn’t an 1/O register, it attempts to generate the most
efficient code to complete the operation.

see alsosbi()

6.2.5. inp

#include <io.h >

uint8_t  inp (uint8_t port);

description. Reads the 8-bit value from the 1/O port specifieddmyt . If port is a constant value, this macro
assumes the value refers to a valid address and tries to use the in instruction. A variable argument results in an access
using direct addressing.

6.2.6. _inw

#include <io.h >

30



Chapter 6. 1/0 API
uintlé_t __inw (uint8_t port);
description. Reads a 16-bit value from 1/O registers. This routine was created for accessing the 16-bit registers

(ADC, ICR1, OCR1, TCNT1) because they need to be read in the proper order. This macro should only be used if
interrupts are disabled since it only generates the two lines of assembly that reads the register.

6.2.7. __inw_atomic

#include <io.h >

uintlé_t _ inw_atomic (uint8_t port);

description. Atomically reads a 16-bit value from I/O registers. The generated code disables interrupts during the
access and properly restores the interrupt state when through. This routine was created for accessing the 16-bit
registers (ADC, ICR1, OCR1, TCNT1) because they need to be read in the proper order. This macro can safely be
used in interrupt and non-interrupt routines because it preserves the interrupt enable flag (although you may not want
to pay for the extra lines of assembly in an interrupt routine.)

6.2.8. loop_until_bit_is_clear

#include <io.h >

void loop_until_bit_is_clear (uint8_t port, uint8_t bit);

description. This macro generates a very tight polling loop that waits for a bit to become cleared. It uses the sbic
instruction to perform the test, so the valugpoft is restricted to valid I/O register addresses for that instruction.
bit isavalue fromOto 7.

6.2.9. loop_until_bit_is_set

#include <io.h >

void loop_until_bit_is_set (uint8_t port, uint8_t bit);

31



Chapter 6. 1/0 API

description. This macro generates a very tight polling loop that waits for a bit to become set. It uses the cbic
instruction to perform the test, so the valuegpoft is restricted to valid I/O register addresses for that instruction.
bit isavalue from0Oto 7.

6.2.10. outp

#include <io.h >

void outp (uint8_t val, uint8_t port);

description. Writes the 8-bit valueval to port . If port is a constant value, this macro assumes the value refers to
a valid address and tries to use the out instruction. A variable argument results in an access using direct addressing.

6.2.11. outw

#include <io.h >

void __ outw (uintl6_t val, uint8_t port);

description. Writes to a 16-bit I/O register. This routine was created for manipulating the 16-bit registers (ADC,
ICR1, OCR1, TCNT1) because they need to be written in the proper order. This macro should only be used if
interrupts are disabled since it only generates the two lines of assembly that modify the register.

6.2.12. _ outw_atomic

#include <io.h >

void __ outw_atomic (uintl6_t val, uint8_t port);

description. Atomically writes to a 16-bit I/O register. The generated code disables interrupts during the access and
properly restores the interrupt state when through. This routine was created for accessing the 16-bit registers (ADC,
ICR1, OCR1, TCNT1) because they need to be written in the proper order. This macro can safely be used in interrupt
and non-interrupt routines because it preserves the interrupt enable flag (although you may not want to pay for the
extra lines of assembly in an interrupt routine.)

32



Chapter 6. 1/0 API

6.2.13. parity_even_bit

#include <io.h >

void parity_even_bit (uint8_t val);

description. Returns 1 ifval has even parity. All eight bits are used in the calculation.
6.2.14. shi

#include <io.h >

void shi (uint8_t port, uint8_ t bit);

description. Sets the specified bihjt , in the I/O register specified yort . bit is a value from 0 to 7 and should
be specified as one of the defined symbols in the /O header filpsrtlf specifies an actual I/O register, this macro
reduces to a single in-line assembly instruction. If it isn’t an 1/O register, it attempts to generate the most efficient
code to complete the operation.

see alsocbi()

6.3. Watchdog API

The functions in this section manipulate the watchdog hardware. These macros are defidted in

The startup code is able to initialize the watchdog hardware. By default, the control register, wdctr, is zeroed out. If
you want it to be set to another value, you need to specify it on the linker command line. The symbol used is
_ init_wdtcr__ . For instance, to set wdctr to Ox1f, you would have a command line like this:

% avr-ld --defsym __init_wdctr__=0x1f ...

6.4. Function Reference

6.4.1. wdt_disable

#include <wdt.h >

33



Chapter 6. 1/0 API

void wdt_disable (void);

description. Disables the watchdog timer. This function actually generates six inline assembly instructions.

6.4.2. wdt_enable

#include <wdth >

void wdt_enable (uint8_t timeout);

description. Enables the watchdog timer. The passed vdloeout , is loaded in the watchdog control register.
This function generates five inline assembly instructions.

This function should probably never be used, since the startup code can already start up the watchdog timer (and it
does it using less instructions.) The only reason it would be usedvit iflisable  is used.

6.4.3. wdt_reset

#include <wdt.h >

void wdt_reset (void);

description. Resets the watchdog timer. This function generates a single wdr instruction. Your application must
guarantee that this function is called sooner than the timeout rate of the watchdog. Otherwise the processor will reset.

34



Chapter 7. Standard C Library

A subset of the C standard library is supported. This chapter covers the functions that have been supported. Since the
AVR processors have several memory spaces, developers must be careful when passing parameters to these functions.
The C library understands only one type of pointer, so passing addresses to data in the EEPROM or FLASH will fail.
The routines that understand these other memory spaces are addre3setibin 4. landSection 4.3

35



Appendix A. AVR-GCC Configuration

This appendix describes the AVR-specific changes to the GNU toolset. See the GNU documentation for options that

are common to all processor targets.

A.l. avr-as Options

Table A-1.avr-as Options

Option

Description

-mmcu=name

Tellsavr-as which AVR processor is the targetame can beat90s1200
at90s2313 , at90s2323 , at90s2333 , attiny22 , at90s2343 , at90s4433

at90s4414 , at90s4434 , at90s8515 , at90s8535 , atmega603 , atmegalO3 , or

atmegal6l .
A.2. avr-gcc  Options
Table A-2.avr-gcc  Options
Option Description
-mava Tellsavr-gcc  to useava as the assembler and linker.

-mcall-prologues
-minit-stack=symbol
-mint8

-mmcu=name

-mno-interrupts

-msize

Use subroutines for function prologue/epilogue.
Sets the initial stack address.
Assume int to be an eight bit integer.

Specify the devicegt90s23xx |, attiny22 , at90s44xx , at90s85xx
atmega603 , atmegal03 ). The default isat90s85xx

Don't disable interrupts when updating the upper eight bits of the stack pointer.

Outputs instruction sizes to the asm listing.

36



