
Hat – The Haskell Tracer
Version 1.12

Users’ Manual

The ART Team

14 March 2002

Contents

1 Introduction 4

2 Obtaining the Trace of a Computation 4
2.1 Compilation with nhc98 . 4
2.2 Compilation with ghc . 5
2.3 Computation . 5
2.4 Trusting . 5

3 Viewing a Trace 6
3.1 Arguments in Most Evaluated Form . 6
3.2 Special Expressions . 6
3.3 Combination of Viewing Tools . 7
3.4 The Running Example . 7

4 Hat-Observe 7
4.1 Starting & Exiting . 7
4.2 The Help Menu . 7
4.3 Observing for Beginners: Using the Wizard . 7
4.4 Making Simple Observations . 8
4.5 Exploring What to Observe . 8
4.6 Filtering Reductions . 8

4.6.1 Non-Recursive Mode . 8
4.6.2 Generalise Equations . 8
4.6.3 Observing Calls from a Specific Function 8
4.6.4 Specifying Reductions with a Pattern 9
4.6.5 Combination of Filters . 9

4.7 Verbose Mode . 9
4.8 Browsing a List of Reductions . 9
4.9 Display of Large Expressions . 10
4.10 Invoking other Viewing Tools . 10
4.11 Quick reference to commands . 10

5 Hat-Trail 11
5.1 Starting & Exiting . 11
5.2 The Help Menu . 12
5.3 Basic Exploration of a Trace . 12

5.3.1 The program output (and error) pane 12
5.3.2 The trail pane . 12
5.3.3 The source code window . 13
5.3.4 Special syntax . 13
5.3.5 Pattern bindings . 15

5.4 Advanced Exploration of a Trace . 15
5.4.1 Shared expressions . 15

5.5 Invoking other Viewing Tools . 15
5.6 Some practical advice . 15
5.7 Quick reference to commands . 17

6 Hat-Detect 17
6.1 Limitations . 17
6.2 Starting & Exiting . 18
6.3 The Help Menu . 18
6.4 Basic Functionality . 18

6.4.1 Postponing an Answer . 19
6.4.2 Unevaluated Subexpressions . 19

6.5 Algorithmic Debugging . 19
6.6 Advanced Features . 19

6.6.1 Single stepping . 19
6.6.2 Showing unevaluated subexpressions 19
6.6.3 Going back to a question . 19
6.6.4 Trusting . 20
6.6.5 Memoisation . 20
6.6.6 Invoking other Viewing Tools . 20

6.7 Quick reference to commands . 20

7 Hat-Stack 21
7.1 Usage . 21
7.2 Example . 21
7.3 Further Information . 21

8 Hat-Trail-In-Java 21
8.1 Starting & Exiting . 22
8.2 The Help Menu . 22
8.3 Basic Exploration of a Trace . 22

8.3.1 The program output pane . 24
8.3.2 Selecting an expression in the trace pane 24
8.3.3 Viewing a parent . 24
8.3.4 Folding away part of a trace . 25
8.3.5 The source code pane . 25
8.3.6 Contraction of a large subexpression 25
8.3.7 Control-flow constructs . 26

2

8.3.8 Pattern bindings . 26
8.4 Advanced Exploration of a Trace . 26

8.4.1 Parents that are already shown . 27
8.4.2 Siblings . 27
8.4.3 Trusting . 27

8.5 Record a Tracing Session in a Script . 27
8.5.1 Create a script . 27
8.5.2 Run a script . 27

8.6 Further Features . 28
8.6.1 Select a font for the trace . 28

8.7 Invoking other Viewing Tools . 28
8.8 Some practical advice . 28
8.9 Quick reference . 29

9 Limitations of Functionality 30
9.1 Input/Output . 30
9.2 List Comprehensions . 30
9.3 Labelled Fields (records) . 30
9.4 Strictness Flags . 30

3

1 Introduction

Hat is a source-level tracer for Haskell (the Haskell T racer). It is a tool that gives the user
access to otherwise invisible information about a computation. Thus Hat helps locating errors
in programs. However, it is also useful for understanding how a correct program works,
especially for program maintenance. Hence we avoid the popular name “debugger”. Note
that a profiler, which gives access to information about the time or space behaviour of a
computation, is also a kind of tracer. However, Hat is not intended for that purpose. Hat
measures neither time nor space usage.

Conventional tracers (debuggers) for imperative languages allow the user to step through
the computation, stop at given points and examine variable contents. This tracing method
is unsuitable for a lazy functional language such as Haskell, because its evaluation order is
complex, function arguments are usually unwieldy large unevaluated expressions and generally
computation details do not match the user’s high-level view of functions mapping values to
values.

Hat is an offline tracer: First the specially compiled program runs as normal, except that
additionally a trace is written to file. Second, after the computation has terminated, the trace
is viewed with a number of browsing tools.

Hat can be used for computations that terminate normally, that terminate with an error
message or that are interrupted by the programmer (because they do not terminate).

The trace consists of high-level information about the computation. It describes each
reduction, that is, the replacements of an instance of a left-hand side of an equation by an
instance of its right-hand side, and the relation of the reduction to other reductions.

Because the trace describes the whole computation, it is huge. Hence the programmer uses
tools to selectively view the fragments of the trace that are of interest. Currently Hat includes
four tools – hat-observe, hat-trail, hat-detect, and hat-stack – for that purpose. Each tool
shows fragments of the computation in a particular way, highlighting a specific aspect.

2 Obtaining the Trace of a Computation

To obtain a trace of a computation of a program, the program has to be compiled specially,
either with nhc98 or ghc, and then run.

2.1 Compilation with nhc98

Compile all modules of the program with nhc98 with the -T option; also specify -T at link-time.
Using hmake -T does all the necessary compiling and linking automatically.

Tracing makes computations use more heap space. As a rough rule of thumb, traced
computations require 3 times as much heap space as untraced ones. However, because traced
computations allocate (and discard) much memory, it is useful to choose an even larger heap
size to reduce garbage collection time. The preset heap size for untraced computations is
400KB and for traced computations 2MB. For example, you can set the heap size at compile
(link) time with -H10m or for a specific computation with +RTS -H10m -RTS to a ten megabyte
heap.

Note that compilation does not insert the complete file paths of the source modules into
the executable. The trace viewers assume that the source modules are in the same directory
as the executable.

4

2.2 Compilation with ghc

Before compiling a program, all its modules must be transformed to tracing versions with the
pre-processor hat-trans. This preprocessor generates a new module (prefixed with the letter
‘T’) for each original module. Compile and link the generated modules in the normal way
using ghc with the extra option --package hat.

The hat-trans pre-processor generates and reads its own special kind of module interface
files (.hx files) and therefore modules must be transformed in the same dependency order as
normal compilation. Hence, it is often easier simply to let hmake do all the work: hmake -ghc

-hat does all the transformation, compiling, and linking automatically.

2.3 Computation

The traced computation behaves exactly like the untraced one, except that it is slower (cur-
rently about 50 times slower in nhc98, 300 times slower in ghc), and additionally writes a
trace to file.

If it seems that the computation is stuck in a loop, then force halting by keying an interrupt
(usually Ctrl-C). After termination of the computation (normal termination or caused by error
or interrupt) you can explore the trace with any of the programs described in the following
sections.

The computation of a program name creates the trace files name.hat, name.hat.bridge
and name.hat.output. The latter is a copy of the whole output of the computation. The
first is the actual trace. It can easily grow to several hundred megabytes. To improve the
runtime of the traced computation you should create the trace file on a local disc, not on a
file system mounted over a network. The trace files are always created in the same directory
as the executable program.

2.4 Trusting

Hat enables you to trace a computation without recording every reduction. You can trust the
function definitions of a module. Then the calls of trusted functions from trusted functions
are not recorded in the trace.

Note that a call of an untrusted function from a trusted function is possible, because an
untrusted function can be passed to a trusted higher-order function. These calls are recorded
in the trace.

For example, you may call the trusted function map with an untrusted function prime:
map prime [2,4]. If this call is from an untrusted function, then the reduction of map prime

[2,4] is recorded in the trace, but not the reductions of the recursive calls map prime [4]

and map prime []. However, the reductions of prime 2 and prime 4 are recorded, because
prime is untrusted.

You should trust modules in whose computations you are not interested. Trusting is
desirable for the following reasons:

• to keep the size of the trace file smaller (main point)

– to save file space

– to avoid unnecessary detail when viewing the trace

• to reduce the runtime of the traced program (slightly)

5

If you want to trust a module, then compile it for tracing as normal but with the extra
option -trusted. (A plain object file compiled without any tracing option cannot be used.)
By default the Prelude and the standard libraries are trusted.

3 Viewing a Trace

Although each tool gives a different view on the trace, they all have some properties in common.

3.1 Arguments in Most Evaluated Form

The tools show function arguments in evaluated form, more precisely: as far evaluated as the
arguments are at the end of the computation. For example, although in a computation the
unevaluated expression (map (+5) [1,2]) might be passed to the function length, the tools
show the function application as length [1+5,2+5] or length [,] if the list elements are
unevaluated.

3.2 Special Expressions

Unevaluated expressions Tools do not usually show non-value subexpressions. The under-
score represents these unevaluated expressions. (The ‘verbose’ option can be set interactively
if you wish to replace underscores with the full representation of the unevaluated expression.)

λ-abstractions A λ-abstraction, as for example \xs-> xs ++ xs, is represented simply by
(\..).

The undefined value ⊥ If the computation is aborted because of a run-time error or
interruption by the user, then evaluation of a redex may have begun, but not yet resulted in
a value. We call the result of such a redex undefined and denote it by ⊥ (| in ASCII form).

A typical case where we obtain ⊥ is when in order to compute the value of a redex the
value of the redex itself is needed. The occurrence of such a situation is called a black hole.
The following example causes a black hole:

a = b + 1

b = a + 1

main = print a

When the program is run, it aborts with an error message saying that a black hole has
been detected. The trace of the computation contains several ⊥’s.

Trusted Expressions The symbol { } is used to represent an expression that was not
recorded in the trace, because it was trusted.

6

3.3 Combination of Viewing Tools

Each tool gives a unique view of a computation. These views are complementary and it is
productive to use them together. From each of the three tools hat-observe, hat-trail and hat-
detect you can at any time change to any of the other two tools, starting there at exactly the
point of the trace at which you left the other tool. So after using one tool to track a bug to a
certain point you can change to another tool to continue the search or confirm your suspicion.

3.4 The Running Example

The following faulty program is used as example in the description of most viewing tools:

main = let xs :: [Int]

xs = [4*2,5 ‘div‘ 0,5+6]

in print (head xs,last’ xs)

last’ (x:xs) = last’ xs

last’ [x] = x

4 Hat-Observe

Hat-observe enables you to observe the value of top-level variables, that is, functions and con-
stants. Hat-observe shows all reductions of a variable that occurred in the traced computation.
Thus for a function it shows all the arguments with which the function was called during the
computation together with the respective results.

It is possible to use hat-observe in batch-mode from the command line, but the main form
of use is as an interactive tool. The interactive mode provides more comprehensive facilities
for filtering the output than batch mode.

4.1 Starting & Exiting

To start hat-observe as an interactive tool, simply enter

hat-observe prog[.hat]

at the command line, where prog is the name of the traced program.

4.2 The Help Menu

Enter :h (:help) to obtain a short overview of the commands understood by hat-observe. All
commands begin with a ‘:’, and can be shortened to any prefix of the full name.

4.3 Observing for Beginners: Using the Wizard

If you use hat-observe for the first time, you might want to start by using the observation
wizard. Simply enter the command :observe with no other arguments. The tool will then
ask questions about the reductions you are interested in. Eventually, it will show the resulting
query and start the observation. This way you can quickly learn what queries look like.

7

4.4 Making Simple Observations

Observations of a function are made with the :observe command, or for simplicity, just by
entering the name of the function at the prompt. For instance, enter :observe f, or simply f,
to obtain all reductions of f.

To avoid redundant output, equivalent or less general reductions of the identifier are omit-
ted in the display. A reduction of an identifier is considered more general than another if all
its arguments on the left-hand-side are less defined (due to lazy evaluation) and/or if its result
on the right-hand-side is more fully defined.

4.5 Exploring What to Observe

If you forgot the correct spelling of a function identifier you want to observe or you do not know
the program well, you may want to see a list of all function identifiers which can be observed.
With the :info command you can browse the list of all top-level function identifiers which
were used during the computation.

4.6 Filtering Reductions

Although only the most general reductions are shown, some observations may still result in an
excessively large number of unique reductions. You only want to see those reductions in which
you are particularly interested. There are several ways to decrease the number of reductions
shown.

4.6.1 Non-Recursive Mode

Hat-observe can omit recursive calls of the given function. If all the top-most calls of a function
are correct, then all its recursive calls within the function itself are likely to be correct as well.
If there are any erroneous recursive calls, their incorrect behaviour at least had no effect on
the result of the top most calls. To omit recursive calls of a function, the :set recursive

off command may be used. To see recursive calls again, use :set recursive on.

4.6.2 Generalise Equations

A function may be called several times with the same arguments. Hat-observe alwyas shows
these arguments and the result only once.

Furthermore, because a function may not need full evaluation of its arguments, a function
call may be more general than another one in that the arguments are less evaluated in the first
than the second one. If the result is the same or the result for the less general arguments is less
evaluated, then the display of the application to the less general arguments can be omitted.
Use the :set generalise on command to omit the less general equations.

4.6.3 Observing Calls from a Specific Function

Another way to restrict the number of reductions being observed is by observing only calls
made from within a specific calling function. If you are interested in all calls of map from the
function myMapper, try :observe map in myMapper.

8

4.6.4 Specifying Reductions with a Pattern

You can significantly reduce the number of observed applications by observing only reductions
that are instances of a given pattern. With a pattern you can specify in which reductions you
are particularly interested.

You can enter a pattern for the whole equation or any prefix of it. A pattern for an equation
consists of a pattern for the left-hand-side followed by a = and a pattern for the result. The =

and result pattern may be omitted, as may any of the trailing argument patterns.
If you wish to skip one argument in the pattern, use an underscore. An underscore in a

pattern matches any expression, value, or unevaluated. The bottom symbol | may also be
used in patterns, and matches only unevaluated things.

Examples:

• To see all applications of map where its first argument is foo, enter :observe map foo.
However, to see all applications of map where its second argument is foo, enter :observe
map foo.

• To see all applications of filter using first argument odd and resulting in an empty
list, enter :observe filter odd = [].

Attention: infix patterns are not currently supported. Always use the prefix form of
function/constructor applications, and enclose each application in parentheses.

Special syntax for strings and lists is supported, e.g. "Hello world!" for a string and
[1,2,42] etc. for lists.

4.6.5 Combination of Filters

Of course, all methods previously described can be mixed with each other, as in the following
examples.

:observe (map [1,2,3]) in myMapper

:observe (filter even (: 1)) = | in myFunction

:observe (fibiterative) = 0

4.7 Verbose Mode

The command :set verbose on can be used to switch to a mode where unevaluated expres-
sions are shown in full, rather than as an underscore.

4.8 Browsing a List of Reductions

After successfully submitting a query in any of the described ways, the tool searches the given
trace file. Depending on the size of the file and the number of reductions found, the search
may take a considerable time. Progress will be indicated during the scan of the file. After
the scan of the file, additional time might be spent on filtering the most general reductions
matching the given pattern.

The first n (default 10) observed reductions are then displayed. More reductions can be
displayed by pressing the RETURN key. The system indicates the availability of additional
equations by prompting with --more--> instead of the usual command prompt. If more
equations are available but you do not wish to see them, typing anything except the plain

9

RETURN key will cause you to leave the equation display mode and go back to the normal
prompt.

The number of equations displayed per group can be altered by using the :set group n
command. The default is 10 reductions at a time. The reductions are numbered - this is to
facilitate selection of an equation for use within the other hat tools.

Attention: because hat-observe uses lazy evaluation to determine the list of the most
general reductions, there may be a delay during which more reductions are determined.

4.9 Display of Large Expressions

Sometimes expressions may contain very large data structures which clutter the display. In
order to cope with them the cutoff depth of the display can be adjusted. This cutoff value
determines the nesting depth to which nested sub-expressions are printed: any subexpression
beyond this depth is shown as a dark square. The cutoff depth is adjusted using the command
:set cutoff n.

In certain circumstances, you simply want to increase or decrease the cutoff by a small
amount. There are ‘shortcut’ commands :+ n and :- n to increase or decrease the cutoff by
n respectively. If n is omitted, then it is assumed to be one.

A data structure may be infinite. Because an infinite data structure is the result of a finite
computation, it must contain a cycle. The following example demonstrates how such a cycle
is shown.

cyclic = 1:2:3:4:cyclic

main = putStrLn (show (take 5 cyclic))

If you observe cyclic, then you obtain

cyclic = (cyc1 where cyc1 = 1:2:3:4:cyc1)

4.10 Invoking other Viewing Tools

You may eventually find an erroneous reduction. There are several ways in which you can
proceed at this point.

The first way is to start observing functions used in the definition body of the erroneous
function. You will need to check the source code for functions which might have caused the
wrong result. If you suspect a function f to have caused the incorrect behaviour of g, it is a
good idea to try :observe f in g.

A second way to proceed is to switch to the Algorithmic Debugging tool hat-detect

at this point. The command :detect n starts a separate hat-detect session for equation
number n in a new window (currently only works under Unix). See section 6 for information
on hat-detect.

Finally you have the choice to use hat-trail on a reduction you have observed. Use the
command :trail n to start a separate instance of hat-trail for equation number n.

4.11 Quick reference to commands

All the commands that are available in hat-observe are summarised in the following table.

10

<query> observe the named function/pattern

<RETURN> show more observations (if available)

:observe <query> observe the named function/pattern

:info see a list of all observable functions

:detect <n> start hat-detect on equation <n>

:trail <n> start hat-trail browser on equation <n>

:set show all current mode settings

:set <flag> change one mode setting

<flag> can be: verbose [on|off]: unevaluated expressions shown in full

generalise [on|off]: show only most general equations

recursive [on|off]: show recursive calls

group <n>: number of equations listed per page

cutoff <n>: cut-off depth for deeply nested exprs

:+[n] short-cut to increase cutoff depth by <n> (default 1)

:-[n] short-cut to decrease cutoff depth by <n> (default 1)

:help show this help text

:quit quit

5 Hat-Trail

Hat-trail is an interactive tool that enables you to explore a computation backwards, starting
at the program output or an error message (with which the computation aborted). This is
particularly useful for locating an error. You start at the observed faulty behaviour and work
backwards towards the source of the error.

Every reduction replaces an instance of the left-hand side of a program equation by an
instance of its right-hand side. The instance of the left-hand side “creates” the instance of the
right-hand side and is therefore called its parent.

Using the symbol← to represent the relationship “is the parent of”, here is an illustrative
list showing the parent of every subexpression from the example in Section 3.

last’ [] ← the error message
last’ (:[]) ← last’ []

last’ (: :[]) ← last’ (:[])

last’ (8: : :[]) ← last’ (: :[])

main ← last’ (8: : :[])

4*2 ← 8

xs ← 4*2

Every subexpression (if it is not a top-level constant such as main) has a parent. In the
example the parent of (8: : :[]) is xs. The parent of each subexpression in an expression
can be different from the parent of the expression itself.

5.1 Starting & Exiting

Start hat-trail by entering

11

hat-trail prog[.hat]

at the command line, where prog is the name of the program (the extension .hat is optional).
You can quit this browser at any time by typing the command :quit.

5.2 The Help Menu

The :help command offers short explanations of the main features of hat-trail, similar to the
quick reference of Section 5.7.

5.3 Basic Exploration of a Trace

The browser window mainly consists of two panes:

• The program output (and error) pane.
Here you can select a part of the program output (or an error message, if there was one),
to show its parent redex in the trace pane for further exploration.

• The trail pane.
This is the most important pane. In it you explore the trace. With the cursor keys you
request information about different parts of the trace. Coloured highlighting is used to
show the current and previous selections.

You can pop up a further, very important, window on demand:

• The source code window.
Here part of the source code of the traced program is shown. In the trail pane, you
can ask to see a specific point in the source code (e.g. where exactly a function in a
particular expression was applied), and the cursor in the source code window is placed
at the relevant site in the appropriate source file. This is not an editor window, just a
viewer – type any key to close it.

5.3.1 The program output (and error) pane

Any output (or error message) produced by the traced program is shown in the top pane.
The output is divided into sections; there is one section of output for each output action
performed by the program. You select a section of the output with the cursor keys: left/up
and right/down. The selected section is shown with a coloured highlight. If the output is very
large, only a portion of it is displayed at a time – moving left/up at the top of the screen, or
right/down at the bottom, ‘pages’ through the output. Press the Return key to start exploring
the parent redex for the selected section in the lower trail pane.

5.3.2 The trail pane

Within the trail pane, the display shows a simple ‘stack’ of parent expressions, one per line.
Each expression line is the parent of the highlighted subexpression on the line before it.
Within a line, you can navigate to a subexpression using the cursor keys by one of two
methods, described below. Pressing the Return key asks for the parent of the currently
selected subexpression, and it is shown on a new line. Pressing the Delete or Backspace key
removes the current line and goes back to the previous selection in the stack.

12

Selecting a subexpression in the trail pane There are two methods of navigating within
an expression to highlight a specific subexpression. The simplest method just uses the right
and left cursor keys. Repeatedly pressing the right cursor key follows a pre-order traversal
of the underlying expression tree. Thus, first an application is highlighted, then the function
part, then each argument, and so on recursively depth-first. The left cursor key follows the
reverse order.

Alternatively, you can navigate by explicit levels within the tree. The up cursor key moves
outwards from a subexpression to the surrounding expression. The down key moves inwards
from an application to the function position. The ‘¡’ and ‘¿’ keys move left and right amongst
subexpressions at the same level, for instance between a function and its arguments.

Folding away part of an expression When you are looking at a large expression, it is
sometimes difficult to see its gross structure because of all the detail. At these times, it is
helpful to be able to shrink certain subexpressions to hide the detail. This is represented in
the display as a small dark box.

You can explicitly shrink any selected subexpression to a dark box, or expand a selected
box to its full representation, with the ‘-’ and ‘+’ keys.

Like in the other tools, there is a standard cutoff depth for deeply nested expressions.
The automatically cutoff expression is denoted by the same dark box as a manually hidden
expression. Use the :set cutoff n command to change the cutoff depth, or the shortcuts
:+ n and :- n to increase and decrease the cutoff depth – if n is omitted, the cutoff is increased
or decreased by one.

5.3.3 The source code window

Most functions and constants are used at more than one position in the program. Hence, when
viewing an expression in hat-trail, it can be very helpful to know exactly which application
site is under examination. There are a number of direct links to the source code available.

First, the filename, line, and column number of the currently selected application or value
is always visible in a status line at the top of the trail pane. You can use this to help you
navigate within your preferred editor or viewer.

Secondly, the command :source pops up a simple viewer with the cursor sitting directly
over the application site in the relevant file. The command can be abbreviated to :s, and
you may find that this is often quicker and more convenient than using an external editor or
viewer.

Thirdly, if you want to look at the definition of the selected function or constant rather
than its individual application site, the command :Source again pops up the simple viewer,
this time with the cursor on the definition line.

5.3.4 Special syntax

We have already mentioned that a dark box represents a subexpression that has been hidden
from display, either due to automatic cutoff of deep nesting, or by explicit request of the user.

There are a number of other special syntactic representations in the display.

Lists A list where some elements are undefined or unevaluated is displayed as a sequence
of nested applications of the normal list constructor (:). However, fully evaluated lists are

13

displayed using the more compact syntactic sugar of square brackets with elements separated
by commas.

Strings Fully evaluated character strings are displayed differently again. A string is usually
shown using the Haskell lexical convention of double quotes, for example "Hi". However this
representation makes it slightly more difficult to select a substring...

Control-flow constructs The control-flow in a function is determined by conditional ex-
pressions (if then else), case expressions and guards. It is often desirable to see why a
certain branch was taken in such a control-flow construct. For example, the problem in a
function definition might not be that it computes a wrong return value, but that a test is
erroneous which makes it select a branch that returns the wrong value.

A control-flow expression of this nature is shown in the trail as the value of the guard,
condition or case discriminant, placed to the right of the expression within which it belongs
and separated from it by a bar and a highlighted keyword, e.g. | if False or | case EQ.

Strictly speaking, the expression to the left of the bar is the parent of the expression on
the right, but the tool displays them together for clarity since the guard, condition, or case
makes most sense when understood in the context of its parent.

For example, in the program

abs x | x < 0 = -x

| otherwise = x

main = print (abs 42)

the parent of the result value 42 is

abs 42 | False | True

This redex display states that the second branch in the definition of abs was taken. The last
guard was evaluated to True whereas the previous guard was evaluated to False. You may
ask for the parent of False and learn that it was created by the redex 42 < 0.

Trusting Section 2.4 describes trusting of modules as a means to obtain a smaller trace.
In general the result of a trusted function may be an unevaluated expression from within

the trusted function. Such an expression is shown with the symbol { }. It cannot be expanded
like a dark box representing a cutoff expression, but it does have a parent. For example, for
the program

main = print (take 5 (from 1))

the parent of the result value [1,2,3,4,5] is

take 5 (1:2:3:4:5:{_})

The parent of { } is from 1, as for the whole expression (1:2:3:4:5:{ }).

Unevaluated expressions Unevaluated expressions are shown by default with the under-
score symbol (). Show you wish to see these expressions in full, you should switch on the
verbose option with the command :set verbose on.

14

5.3.5 Pattern bindings

A program equation with a single variable or a pattern with variables on the left hand side is
a pattern binding. The parent of a variable defined by a pattern binding is not the redex that
called it, but the redex on whose right-hand-side the pattern binding occurs. Hence variables
defined by top-level pattern bindings (i.e. constants) do not have parents.

So usually the parent of an expression is the function call that would have led to the
evaluation of the expression if eager evaluation were used. However, this relation breaks down
for pattern bindings.

5.4 Advanced Exploration of a Trace

5.4.1 Shared expressions

When you select a subexpression in the trail pane, sometimes not only this expression is
highlighted but also some other occurrences of the subexpression. The reason is that the
marked occurrences are shared. That is, they are not just equal, but they actually share
the same space in memory. This operational observation can often help you to understand a
computation.

5.5 Invoking other Viewing Tools

It is possible to invoke hat-observe and hat-detect immediately from hat-trail.

• The command :observe launches a new window with the hat-observe tool, which im-
mediately searches for all applications of the currently selected function throughout the
computation.

• The command :location launches a new window with the hat-observe tool, which
immediately searches for applications of the currently selected function, but only at
the same source location as the current selection. This is useful to narrow down your
exploration to a specific site of interest.

• The command :detect launches a new window with the hat-detect tool, restricting the
debugging algorithm solely to the currently selected equation and all its dependents.

• The command :trail starts a new window with a fresh instance of the hat-trail tool
starting with the current selection. This can be useful if there are several redex trails
you wish to explore and compare side-by-side.

5.6 Some practical advice

• First-time users of hat-trail tend to quickly unfold large parts of the trace and thus
clutter the screen and get lost. Think well, before you demand to see another parent.
It is seldom useful to follow a long sequence of parents for whole redexes. Do not forget
that you can ask for the parent of any subexpression. Choose the subexpression that
interests you carefully. When locating an error, a wrong subexpression of an argument
is a good candidate for further enquiry.

In our experience usually less than 10 parents need to be viewed to locate an error, even
in large programs.

15

• Use the links to the source as described in Section 8.3.5. The trail display is designed
to be concise, so the source viewer gives valuable context information.

• Avoid λ-abstractions in your program. Informative function names are very helpful for
tracing.

16

5.7 Quick reference to commands

All the commands that are available in hat-trail are summarised in the following table.

--

cursor keys movement within current expression

< and > keys movement within current expression

RETURN show parent expression of selected expression

BACKSPACE remove most recently-added expression/equation

-/+ shrink/expand a cutoff expression

^L repaint the display if it gets corrupted

^R repaint the display after resizing the window

:source look at the source-code application of this expression

:Source look at the source-code definition of current function

:observe use hat-observe to find all applications of this function

:location use hat-observe to find all applications at this call site

:trail start a fresh hat-trail with the current expression

:detect use hat-detect to debug the current expression

:set show all current mode settings

:set <flag> change one mode setting

<flag> can be: verbose [on|off]: unevaluated expressions shown in full

equations [on|off]: show equations, not just redexes

cycles [on|off]: cope with cyclic structures

cutoff <n>: cut-off depth for deeply nested exprs

:+[n] shortcut to increase cutoff depth

:-[n] shortcut to decrease cutoff depth

:help :? show this help text

:quit quit

--

6 Hat-Detect

Hat-detect is an interactive tool that enables you to locate semi-automatically an error in a
program by answering a sequence of yes/no questions. Each question concerns a reduction.
You have to answer yes, if the reduction is correct with respect to your intentions, and no
otherwise. After a number of questions hat-detect states which reduction is the cause of the
observed faulty behaviour – that is, which function definition is incorrect.

6.1 Limitations

At the moment hat-detect does not handle IO actions properly. It can only handle computa-
tions that perform a single primitive output action such as putStr or print. Monadic binding
operators (or do-notation) and input actions such as read lead to confusion.

Hence the recommended usage of hat-detect is to first use hat-observe to locate an erroneous
reduction that does not involve IO and then to invoke hat-detect for this reduction as described
in Section 4.10.

17

Also, currently hat-detect can only be used for computations that produce faulty output,
not for computations that abort with an error message or are interrupted (in the latter cases
hat-detect may indicate a wrong error location).

6.2 Starting & Exiting

Start hat-detect by entering

hat-detect prog[.hat]

where prog is the name of the traced program.
To exit hat-detect enter :quit or :q.

6.3 The Help Menu

Enter :help to obtain a short overview of the commands understood by hat-detect.

6.4 Basic Functionality

Consider the following program:

insert x [] = [x]

insert x (y:ys)

| x > y = x : insert x ys

| otherwise = x : y : ys

sort xs = foldr insert [] xs

main = print (sort [3,2,1])

It produces the faulty output [3,3,3] instead of the intended output [1,2,3].
The following is an example session with hat-detect for the computation. The y/n answers

are given by the user:

1 main = IO (print (3:3:3:[])) ? n

2 sort (3:2:1:[]) = 3:3:3:[] ? n

3 insert 1 [] = 1:[] ? y

4 insert 2 (1:[]) = 2:2:[] ? n

5 insert 2 [] = 2:[] ? y

Error located!

Bug found: "insert 2 (1:[]) = 2:2:[]"

The first question of the session asks if the reduction of main is correct. Hat-detect indicates
that main is reduced to an IO action, and shows the action. The answer is obviously no.
Further answers from the user show that the third and the fifth reductions are correct, whereas
the second and fourth are not.

Note that hat-detect does not ask about any reductions of foldr here, mainly because it
is trusted.

After the answer to the fifth question hat-detect can determine the location of the error.
The equation that is used to reduce the redex insert 2 (1:[]) is wrong. Indeed, on the
right-hand side of the guard x > y (viz: 2 > 1) the result should be y : insert x ys.

18

6.4.1 Postponing an Answer

If you are not sure about the answer to a question you can answer ?n or ?y. If you answer
?n, then hat-detect proceeds as if the answer had been no. But if it cannot locate an error in
one of the child reductions, then it will later ask you the question again. Answering ?y will
postpone the question as well, but hat-detect will proceed as if the answer hat been yes. If it
cannot locate an error in one of its brother reductions, then it will ask you the question again.

6.4.2 Unevaluated Subexpressions

Reductions may contain underscores that represent unevaluated subexpressions. A question
with an underscore on the left-hand side of the reduction has to be read as “is the reduction
correct for any value at this position?” and a question with an underscore on the right-hand
side should be read as “is the reduction correct for some value at this position?”. If there are
several underscores in a reduction the values at these positions need not be the same.

6.5 Algorithmic Debugging

Hat-detect is based on the idea of algorithmic/declarative debugging. The reductions of a
computation are related by a tree structure. The reduction of main is the root of the tree.
The children of a reduction of a function application are all those reductions that reduce
expressions occurring on the right-hand side of the definition of the function.

If a question about a reduction is answered with no, then the next question concerns the
reduction of a child node. However, if the answer is yes, then the next question will be about
a sibling or a remaining node closer to the root.

An error is located when a node is found such that its reduction is incorrect but the
reductions of all its children are correct. That reduction is the source of the error.

6.6 Advanced Features

6.6.1 Single stepping

Hat-detect can be used rather similarly to a conventional debugger. So the input no means
“step into current function call” and the input yes means “go on to next function call”. Note
that this single stepping is not with respect to the lazy evaluation order actually used in the
computation, but with respect to an eager evaluation order that “magically” skips over the
evaluation of expressions that are not needed in the remaining computation.

6.6.2 Showing unevaluated subexpressions

By default hat-detect shows unevaluated subexpressions just as underscores . For answering
a question these unevaluated subexpressions are irrelevant anyway. However, by entering the
:set verbose on command you can switch to verbose mode which shows these unevaluated
subexpressions in full. Use :set verbose off to switch the verbose mode off again.

6.6.3 Going back to a question

The questions are numbered. By entering a number n you can go back to any previous question
numbered n. When you do this, the answers to all intervening questions are deleted.

19

6.6.4 Trusting

Hat-detect does not ask any question about the reductions of functions that are trusted as
described in Section 2.4. However, you can trust further functions and thus avoid questions
about them. By entering :trust instead of y when being asked about a specific reduction of
a function you trust this function. By entering :untrust you stop trusting all these functions
again.

6.6.5 Memoisation

By default hat-detect memoises all answers you gave. So, although the same reduction may
be performed several times in a computation, hat-detect will only ask once about it. Hat-
detect even avoids asking a question, if a more general question (containing more unevaluated
expressions) has been answered before.

You can turn memoisation on/off with the command :set memoize on or :set memoize

off.

6.6.6 Invoking other Viewing Tools

Observing a function When being asked about a specific reduction of a function you can
enter :observe to observe the function. The hat-observe tool will appear in a new window,
showing all applications of the given function. This interface to hat-observe is particularly
useful, if you are not sure whether to trust a function for Algorithmic Debugging. By observing
all applications of the function you can decide whether the function can indeed be trusted or
not. If you find an erroneous reduction in the observation, you can select it and in turn start
a new Algorithmic Debugging session for this reduction.

Tracing arguments When hat-detect asks you about the reduction of an application,
which obviously has a wrong argument, you should consider using hat-trail to investigate
where this argument came from. By answering a question with :trail the Redex Trail browser
is launched immediately from the Algorithmic Debugger.

6.7 Quick reference to commands

All the commands that are available in hat-detect are summarised in the following table.

y or yes you believe the equation is ok

n or no you believe the equation is wrong

?y or y? you are not sure (but try ok for now)

?n or n? you are not sure (but try wrong for now)

<n> go back to question <n>

:set show all current mode settings

:set <flag> change one mode setting

<flag> can be: memoise [on|off]: never ask the same question again

verbose [on|off]: show unevaluated exprs in full

cutoff <n>: set subexpression cutoff depth

:observe start hat-observe on the current function

:trail start hat-trail on the current equation

20

:trust trust all applications of the current function

:untrust untrust ALL functions which were previously trusted

:help show this help text

:quit quit

7 Hat-Stack

For aborted computations, that is computations that terminated with an error message or
were interrupted, hat-stack shows in which function call the computation was aborted. It
does so by showing a virtual stack of function calls (redexes). So every function call on the
stack caused the function call above it. The evaluation of the top stack element caused the
error or during its evaluation the computation was interrupted. The shown stack is virtual,
because it does not correspond to the actual runtime stack. The actual runtime stack enables
lazy evaluation whereas the virtual stack corresponds to a stack that would be used for eager
(strict) evaluation.

7.1 Usage

To use hat-stack enter

hat-stack programname

where programname is the name of the traced program.

7.2 Example

Here is an example output:

Program terminated with error:

"No match in pattern."

Virtual stack trace:

(last’ []) (Example.hs: line-6/col-16)

(last’ (5+6:[])) (Example.hs: line-6/col-16)

(last’ ((div 5 0):5+6:[])) (Example.hs: line-6/col-16)

(last’ (8:(div 5 0):5+6:[])) (Example.hs: line-4/col-27)

main (Example.hs: line-2/col-1)

7.3 Further Information

Hat-trail can also show this virtual stack. Hat-stack is a simple tool that enables you to obtain
the stack directly. The description of hat-trail contains more details about the relationships
between the stack elements.

8 Hat-Trail-In-Java

Hat-trail-in-java is now obsolete. It is an interactive tool very similar to hat-trail, but sig-
nificantly slower and more complex. Like hat-trail, it enables you to explore a computation

21

backwards, starting at the program output or an error message (with which the computation
aborted). This is particularly useful for locating an error. You start at the observed faulty
behaviour and work backwards towards the source of the error.

Every reduction replaces an instance of the left-hand side of a program equation by an
instance of its right-hand side. The instance of the left-hand side “creates” the instance of the
right-hand side and is therefore called its parent.

Consider our example from Section 3. The error message is caused by the redex last’ [].
The parent of last’ [] is last’ (5+6:[]).
The parent of last’ (5+6:[]) is last’ (5 ‘div‘ 0:5+6:[]).
The parent of last’ (5 ‘div‘ 0:5+6:[]) is last’ (8:5 ‘div‘ 0:5+6:[]).
The parent of last’ (8:5 ‘div‘ 0:5+6:[]) is main.
Also the parent of the 8 in the redex last’ (8:5 ‘div‘ 0:5+6:[]) is 4*2 whose parent is
xs.
Hat-trail-in-java presents this information as shown in Figure 1.

Every subexpression (if it is not a top-level constant such as main) has a parent. In the
example the parent of (8:5 ‘div‘ 0:5+6:[]) is xs. The parent of every subexpression of an
expression can be different.

8.1 Starting & Exiting

Start hat-trail-in-java by either entering

hat-trail-in-java prog[.hat]

where prog is the name of the program (the extension .hat is optional) or by entering

hat-trail-in-java

In the second case you still have to select the name of the program in a file selector box that
appears when you select “Open trace file” in the File menu.

At any time you can use “Open trace file” to view the trace of a different computation.
The browser is exited by selecting “Exit” in the “File” menu.

8.2 The Help Menu

The Help menu offers short explanations of the main features of hat-trail-in-java, similar to
the quick reference of Section 8.9.

8.3 Basic Exploration of a Trace

The browser window mainly consists of three panes:

• The trace pane.
This is the most important pane. In it you explore the trace. With the mouse you can
demand to be shown more or less information about parts of the trace. Different kinds
of highlighting are used to show how expressions relate to each other.

• The program output pane.
Here you can select a part of the program output to show its parent redex in the trace
pane for further exploration.

22

Figure 1: hat-trail

23

• The source code pane.
Here the source code of the traced program is shown. In the trace pane you can demand
to see a specific point of the source code which is then shown in the source code pane.

Additionally the browser window has a menu bar at the top and a message panel between
the trace pane and the program output and source code pane.

To save screen space the program output pane and the source code pane share the same
space in the browser window. Only one of them can be active any time. By clicking on the
tab above the two panes you can select which one should be active.

If a run-time error has occurred, or the computation has been interrupted, the trace pane
initially displays the expression under evaluation at the time. Otherwise you first have to
select a section of the program output to obtain an expression in the trace pane.

8.3.1 The program output pane

Any output produced by the traced program is shown in the program output pane. The output
is divided into sections; there is one section of output for each output action performed by the
program. You select a section of the output just by moving the mouse pointer over it. The
selected section is shown in blue. By clicking over a section you cause the parent redex for
that section to be displayed in the trace pane.

8.3.2 Selecting an expression in the trace pane

You select an expression in the trace pane just by moving the mouse pointer over it. The
currently-selected expression is marked by a red box around it. You can select any subexpres-
sion of a displayed expression. For example, you select an expression sqrt y by moving the
mouse pointer on the space between sqrt and y (the invisible application). If you move the
mouse pointer on sqrt, then you only select the expression sqrt. If you move it on y, then
you only select y. Quickly selecting exactly the expression that you desire may take practice.

8.3.3 Viewing a parent

At the start the trace pane contains only a single line with a redex and an arrow to its left.
When you click with the left mouse button on any selected subexpression of the redex, the
parent of the subexpression is shown in the line below.

If you left-click on the whole redex, then the parent is shown exactly below the selected
redex and the arrow on the left is extended appropriately. If you left-click on the whole redex
that just appeared, then its parent is shown below and the arrow is extended again. You can
continue left-clicking on whole redexes until the redex is main or another top-level constant.
These do not have parents. To indicate that the end has been reached, the arrow is replaced
by a horizontal line.

If you left-click on a proper subexpression of a redex, then its parent will be shown in the
line below as well. However, the parent will be indented further to the right. On its left a new
arrow in a new colour appears. The selected expression is underlined in the same colour.

So a parent of a whole redex is shown further down along the same arrow. The parent of
a proper subexpression is displayed with a new arrow. The colour of underlinings and arrows
indicates which subexpression belongs to which parent.

As a shortcut for obtaining the parent of a whole redex you may simply left-click on the
tip of its arrow.

24

8.3.4 Folding away part of a trace

The trace pane may be scrolled, but it quickly becomes cluttered nonetheless. Hence those
parts of the trace that are no longer of interest need to be removed from the display.

By left-clicking on an expression for which the parent is already on display, the parent and
any of its ancestors are removed from the display.

After you folded away the ancestors of a subexpression that subexpression will be under-
lined with a dashed line. This dashed line is a reminder that you have already looked at
ancestors of the subexpression.

8.3.5 The source code pane

Usually it is not enough just to see the relationship between the values and redexes in a
computation. Some coupling to the source code is needed.

If you right-click on an expression in the trace pane, then the source file where that instance
of the expression was created is loaded and shown in the source code pane, and the cursor
moves to the corresponding location in the file.

Note that, if the selected expression is a variable or constant, then the cursor shows this
variable or constant in the source code. However, if the selected expression is more complex,
then the source may contain variables where the selected expression has values. The selected
expression is an instance of the source code expression.

To see the definition of a variable or data constructor, you right-click on it in the trace as
before, but with the shift key pressed.

8.3.6 Contraction of a large subexpression

In the trace pane every redex is shown on a single line. However, some redexes are very large.
They may for example contain lists with 1000 elements. In the case of cyclic structures it is
even crucial that displaying is interrupted at some stage.

Hence, whenever an expression becomes deeper than a certain level, subexpressions are
replaced by placeholders. A placeholder looks like an open box, �. By middle-clicking on the
placeholder you can expand its contents, again just up to a certain depth. Conversely, you
can contract any expression to a placeholder by middle-clicking on it. This is useful when you
want to suppress the display of large uninteresting subexpressions.

Similarly, strings are displayed specially. A string is usually shown as in Haskell, for
example "Hi". This representation makes it impossible to sensibly select a substring, for
example "i". However, you can middle-click on the string and thus change its representation
to separate the first character, for example ’H’:"i". Thus you can select subexpressions
of a string, but the representation is also more verbose. By middle-clicking on a longer
representation you can change it back to a string representation.

When strings are very long, everything to their right can only be reached by cumbersome
scrolling. In the menu “Options” you can select the item “Choose string-length limit” to set
an upper boundary for the length of a string. Abbreviated strings are indicated by dots (...)
in their middle. These abbreviated strings can still be expanded as described in the preceding
paragraph.

25

8.3.7 Control-flow constructs

The control-flow in a function is determined by conditional expressions (if then else), case
expressions and guards. It is often desirable to see why a certain branch was taken in such a
control-flow construct. For example, the problem in a function definition might not be that
it computes a wrong return value, but that a test is erroneous which makes it select a branch
that returns the wrong value.

Hence in the “Options” menu you can choose “Show case/guard/if expression” to augment
redexes with control-flow information. An augmented redex is of the form:

function application B control-flow1 B . . . B control-flowk

A control-flow item is any of the following three

• if expression
for a conditional expression

• case expression
for a case expression

• | expression
for a guard

and the symbol B can be pronounced “and within that”. For example, for the program

abs x | x < 0 = -x

| otherwise = x

main = print (abs 42)

the parent of the result value 42 is

abs 42 B | False B | True

This redex states that the second branch in the definition of abs was taken. The last guard
was evaluated to True whereas the previous guard was evaluated to False. You may ask for
the parent of False and learn that it was created by the redex 42 < 0.

8.3.8 Pattern bindings

A program equation with a single variable or a pattern with variables on the left hand side is
a pattern binding. The parent of a variable defined by a pattern binding is not the redex that
called it, but the redex on whose right-hand-side the pattern binding occurs. Hence variables
defined by top-level pattern bindings (i.e. constants) do not have parents.

So usually the parent of an expression is the function call that would have led to the
evaluation of the expression if eager evaluation were used. However, this relation breaks down
for pattern bindings.

8.4 Advanced Exploration of a Trace

You can gain a lot of information by just moving the mouse pointer over expressions in the
trace pane. Expressions that are related to the currently-selected expression are highlighted
in various ways.

26

8.4.1 Parents that are already shown

Many expressions have the same parent. Showing the same parent twice leads to unnecessary
clutter in the trace pane. Hence, if the parent of the currently-selected expression is on
display, then it is high-lighted with a yellow background colour. This gives you a signal that
it is unnecessary to demand the parent.

8.4.2 Siblings

As just stated many expressions have the same parent. To show you which expressions have
the same parent as the currently-selected expressions, these expressions are displayed in blue
colour instead of the normal black colour.

8.4.3 Trusting

Section 2.4 describes trusting of modules as a means to obtain a smaller trace.
In general the result of a trusted function may be an unevaluated expression from within

the trusted function. Such an expression is shown as a dashed box, �∠. It cannot be expanded
like a placeholder, �, but it has a parent. For example, for the program

main = print (take 5 (from 1))

the parent of the result value [1,2,3,4,5] is

take 5 (1:2:3:4:5:�∠)

The parent of �∠ is from 1, as for the whole expression (1:2:3:4:5:�∠).

8.5 Record a Tracing Session in a Script

A script is a recorded session of using the tracer. A script contains all actions taken by the
user, and can also be annotated with comments.

8.5.1 Create a script

To create a new script select the “Create script” option in the “File” menu. A file selector box
will ask you for the file name of the script. The extension “.scr” will be appended automatically
to the file name, if you do not give it.

On the message panel between the trace pane and the program output and source panes
the browser informs you that script recording is on. All your actions in exploring the trace
will be recorded. You can also write a comment about the actions you just performed or you
are going to perform by selecting the “Add script message” option in the “File” menu. A
window will appear in which you can type your comment. Press “Ok” when you complete
your comment and continue exploring the trace.

You end script recording by selecting the “End script” option in the “File” menu.

8.5.2 Run a script

To run a script select the “Run script” option in the “File” menu. A file selector box will ask
you for the file name of the script.

Subsequently a window will appear. At the bottom of the window are four buttons:

27

Step Moves the script one step further. Every step performs a single action in
the browser window, such as selecting an expression or showing a parent.

Run Steps automatically through the script, with a short time interval between
each step.

Pause Interrupts a running script.

Done Finishes the script, the browser resumes normal operation.

Note that when a script is active, you cannot manually explore trails.

8.6 Further Features

8.6.1 Select a font for the trace

You can select the font in which the trace is displayed by selecting the “Select font” option
in the “Options” menu. A dialogue appears in which you can choose the font face, the style
and the size. Note that you have to press “Enter” or “Return” to change the size. The effect
of your choice is shown in the dialogue. You commit your choice by selecting “Ok”.

8.7 Invoking other Viewing Tools

It is possible to invoke hat-detect and hat-observe immediately from hat-trail-in-java.

• A double click with the right mouse button on an identifier immediately launches a new
window with the hat-observe tool. It allows to observe all applications of the chosen
identifier.

• A double click with the right mouse button on a redex launches a separate window
with the hat-detect Algorithmic Debugging tool. Hat-detect then allows to analyse the
evaluation of the chosen redex.

8.8 Some practical advice

• First-time users of hat-trail-in-java tend to quickly unfold large parts of the trace and
thus clutter the screen and get lost. Think well, before you demand to see another parent.
It is seldom useful to follow a long sequence of parents for whole redexes. Do not forget
that you can ask for the parent of any subexpression. Choose the subexpression that
interests you carefully. When locating an error, a wrong subexpression of an argument
is a good candidate for further enquiry.

In our experience usually less than 10 parents need to be viewed to locate an error, even
in large programs.

• Use the links to the source as described in Section 8.3.5. The trace is designed to be of
minimal size. The source gives valuable context information.

• Use the various forms of highlighting described in Section 8.4. The information conveyed
by highlighting often makes viewing a parent superfluous.

• Avoid λ-abstractions in your program. Informative function names are very helpful for
tracing.

28

8.9 Quick reference

A mouse click on a subexpression S in the trace panel has the following effect:

left fold/unfold trace
show the parent redex of S, if any;
or, if the parent is already on display, remove it
along with any of its ancestors also on display

middle fold/unfold expression
if S is a place-holder, expand it;
or, if not, contract S to a place-holder

right show source reference
show where S was created in the source program,
displayed in the source code panel.

shift-right show where S is defined in the source program,
displayed in the source code panel.
(only for names, not arbitrary expressions)

Moving the mouse over expressions in the trace panel causes highlighting of expressions in
various ways:

surrounded by red box currently-selected expression
in blue text expression with the same parent as the currently-selected expression
with yellow background parent redex of the currently-selected expression

(if it is on display)

Beyond the normal syntax for Haskell expressions, five special symbols may occur in trace
expressions:

⊥ the undefined value, as usual;

� a placeholder for a subexpression suppressed for the time-being (e.g. to avoid over-wide
displays);

�∠ a placeholder for an expression that is not available because it is part of a trusted compu-
tation not recorded in the trace – however, the parent redex is available;

� a placeholder for an expression that is not available – should rarely occur;

B shown between a redex and its control-flow information for case, conditions or guards; it
is pronounced “and within that”.

29

9 Limitations of Functionality

Although Hat can trace nearly any Haskell 98 program, some program constructs are still only
supported in a restricted way. See the Hat web page for further limitations and bugs.

9.1 Input/Output

Programs can use all standard IO actions, but in the trace the internal implementation of IO
sometimes shows up. Hence the viewing tools sometimes show obscure expressions involving
a data constructor IO.

9.2 List Comprehensions

List comprehensions are desugared by Hat, that is, their implementation in terms of higher-
order list functions such as foldr is traced.

9.3 Labelled Fields (records)

Expressions with field labels (records) are desugared by Hat. So viewing tools show field
names only as selectors but never together with the arguments of a data constructor. An
update using field labels is shown as a case expression.

9.4 Strictness Flags

Strictness flags in data type definitions are ignored by Hat and hence lose their effect.

30

	Introduction
	Obtaining the Trace of a Computation
	Compilation with nhc98
	Compilation with ghc
	Computation
	Trusting

	Viewing a Trace
	Arguments in Most Evaluated Form
	Special Expressions
	Combination of Viewing Tools
	The Running Example

	Hat-Observe
	Starting & Exiting
	The Help Menu
	Observing for Beginners: Using the Wizard
	Making Simple Observations
	Exploring What to Observe
	Filtering Reductions
	Non-Recursive Mode
	Generalise Equations
	Observing Calls from a Specific Function
	Specifying Reductions with a Pattern
	Combination of Filters

	Verbose Mode
	Browsing a List of Reductions
	Display of Large Expressions
	Invoking other Viewing Tools
	Quick reference to commands

	Hat-Trail
	Starting & Exiting
	The Help Menu
	Basic Exploration of a Trace
	The program output (and error) pane
	The trail pane
	The source code window
	Special syntax
	Pattern bindings

	Advanced Exploration of a Trace
	Shared expressions

	Invoking other Viewing Tools
	Some practical advice
	Quick reference to commands

	Hat-Detect
	Limitations
	Starting & Exiting
	The Help Menu
	Basic Functionality
	Postponing an Answer
	Unevaluated Subexpressions

	Algorithmic Debugging
	Advanced Features
	Single stepping
	Showing unevaluated subexpressions
	Going back to a question
	Trusting
	Memoisation
	Invoking other Viewing Tools

	Quick reference to commands

	Hat-Stack
	Usage
	Example
	Further Information

	Hat-Trail-In-Java
	Starting & Exiting
	The Help Menu
	Basic Exploration of a Trace
	The program output pane
	Selecting an expression in the trace pane
	Viewing a parent
	Folding away part of a trace
	The source code pane
	Contraction of a large subexpression
	Control-flow constructs
	Pattern bindings

	Advanced Exploration of a Trace
	Parents that are already shown
	Siblings
	Trusting

	Record a Tracing Session in a Script
	Create a script
	Run a script

	Further Features
	Select a font for the trace

	Invoking other Viewing Tools
	Some practical advice
	Quick reference

	Limitations of Functionality
	Input/Output
	List Comprehensions
	Labelled Fields (records)
	Strictness Flags

